Lim, Poon Nian; Wang, Zuyong; Chang, Lei; Konishi, Toshiisa; Choong, Cleo; Ho, Bow; Thian, Eng San
2017-01-01
Prevention of infection and enhanced osseointegration are closely related, and required for a successful orthopaedic implant, which necessitate implant designs to consider both criteria in tandem. A multi-material coating containing 1:1 ratio of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite as the top functional layer, and hydroxyapatite as the base layer, was produced via the drop-on-demand micro-dispensing technique, as a strategic approach in the fight against infection along with the promotion of bone tissue regeneration. The homogeneous distribution of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite micro-droplets at alternate position in silicon-substituted hydroxyapatite-silver-substituted hydroxyapatite/hydroxyapatite coating delayed the exponential growth of Staphylococcus aureus for up to 24 h, and gave rise to up-regulated expression of alkaline phosphatase activity, type I collagen and osteocalcin as compared to hydroxyapatite and silver-substituted hydroxyapatite coatings. Despite containing reduced amounts of silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite micro-droplets over the coated area than silicon-substituted hydroxyapatite and silver-substituted hydroxyapatite coatings, silicon-substituted hydroxyapatite-silver-substituted hydroxyapatite/hydroxyapatite coating exhibited effective antibacterial property with enhanced bioactivity. By exhibiting good controllability of distributing silicon-substituted hydroxyapatite, silver-substituted hydroxyapatite and hydroxyapatite micro-droplets, it was demonstrated that drop-on-demand micro-dispensing technique was capable in harnessing the advantages of silver-substituted hydroxyapatite, silicon-substituted hydroxyapatite and hydroxyapatite to produce a multi-material coating along with enhanced bioactivity and reduced infection.
Enhanced osteoconductivity of sodium-substituted hydroxyapatite by system instability.
Sang Cho, Jung; Um, Seung-Hoon; Su Yoo, Dong; Chung, Yong-Chae; Hye Chung, Shin; Lee, Jeong-Cheol; Rhee, Sang-Hoon
2014-07-01
The effect of substituting sodium for calcium on enhanced osteoconductivity of hydroxyapatite was newly investigated. Sodium-substituted hydroxyapatite was synthesized by reacting calcium hydroxide and phosphoric acid with sodium nitrate followed by sintering. As a control, pure hydroxyapatite was prepared under identical conditions, but without the addition of sodium nitrate. Substitution of calcium with sodium in hydroxyapatite produced the structural vacancies for carbonate ion from phosphate site and hydrogen ion from hydroxide site of hydroxyapatite after sintering. The total system energy of sodium-substituted hydroxyapatite with structural defects calculated by ab initio methods based on quantum mechanics was much higher than that of hydroxyapatite, suggesting that the sodium-substituted hydroxyapatite was energetically less stable compared with hydroxyapatite. Indeed, sodium-substituted hydroxyapatite exhibited higher dissolution behavior of constituent elements of hydroxyapatite in simulated body fluid (SBF) and Tris-buffered deionized water compared with hydroxyapatite, which directly affected low-crystalline hydroxyl-carbonate apatite forming capacity by increasing the degree of apatite supersaturation in SBF. Actually, sodium-substituted hydroxyapatite exhibited markedly improved low-crystalline hydroxyl-carbonate apatite forming capacity in SBF and noticeably higher osteoconductivity 4 weeks after implantation in calvarial defects of New Zealand white rabbits compared with hydroxyapatite. In addition, there were no statistically significant differences between hydroxyapatite and sodium-substituted hydroxyapatite on cytotoxicity as determined by BCA assay. Taken together, these results indicate that sodium-substituted hydroxyapatite with structural defects has promising potential for use as a bone grafting material due to its enhanced osteoconductivity compared with hydroxyapatite. © 2013 Wiley Periodicals, Inc.
Synthesis and Characterization of Hydroxyapatite/Fullerenol Nanocomposites.
Djordjevic, Aleksandar; Ignjatovic, Nenad; Seke, Mariana; Jovic, Danica; Uskokovic, Dragan; Rakocevic, Zlatko
2015-02-01
Fullerenols are polyhydroxylated, water soluble derivatives of fullerene C60, with potential application in medicine as diagnostic agents, antioxidants or nano drug carriers. This paper describes synthesis and physical characterization of a new nanocomposite hydroxyapatite/fullerenol. Surface of the nanocomposite hydroxyapatite/fullerenol is inhomogeneous with the diameter of the particles in the range from 100 nm to 350 nm. The ζ potential of this nanocomposite is ten times lower when compared to hydroxyapatite. Surface phosphate groups of hydroxyapatite are prone to forming hydrogen bonds, when in close contact with hydroxyl groups, which could lead to formation of hydrogen bonds between hydroxyapatite and hydroxyl groups of fullerenol. The surface of hydroxyapatite particles (-2.5 mV) was modified by fullerenol particles, as confirmed by the obtained ζ potential value of the nanocomposite biomaterial hydroxyapatite/fullerenol (-25.0 mV). Keywords: Hydroxyapatite, Fullerenol, Nanocomposite, Surface Analysis.
Periodontal regeneration with stem cells-seeded collagen-hydroxyapatite scaffold.
Liu, Zeping; Yin, Xing; Ye, Qingsong; He, Wulin; Ge, Mengke; Zhou, Xiaofu; Hu, Jing; Zou, Shujuan
2016-07-01
Re-establishing compromised periodontium to its original structure, properties and function is demanding, but also challenging, for successful orthodontic treatment. In this study, the periodontal regeneration capability of collagen-hydroxyapatite scaffolds, seeded with bone marrow stem cells, was investigated in a canine labial alveolar bone defect model. Bone marrow stem cells were isolated, expanded and characterized. Porous collagen-hydroxyapatite scaffold and cross-linked collagen-hydroxyapatite scaffold were prepared. Attachment, migration, proliferation and morphology of bone marrow stem cells, co-cultured with porous collagen-hydroxyapatite or cross-linked collagen-hydroxyapatite, were evaluated in vitro. The periodontal regeneration capability of collagen-hydroxyapatite scaffold with or without bone marrow stem cells was tested in six beagle dogs, with each dog carrying one sham-operated site as healthy control, and three labial alveolar bone defects untreated to allow natural healing, treated with bone marrow stem cells - collagen-hydroxyapatite scaffold implant or collagen-hydroxyapatite scaffold implant, respectively. Animals were euthanized at 3 and 6 months (3 animals per group) after implantation and the resected maxillary and mandibular segments were examined using micro-computed tomography scan, H&E staining, Masson's staining and histometric evaluation. Bone marrow stem cells were successfully isolated and demonstrated self-renewal and multi-potency in vitro. The porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite had average pore sizes of 415 ± 20 µm and 203 ± 18 µm and porosity of 69 ± 0.5% and 50 ± 0.2%, respectively. The attachment, proliferation and migration of bone marrow stem cells were satisfactory on both porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite scaffolds. Implantation of bone marrow stem cells - collagen-hydroxyapatite or collagen-hydroxyapatite scaffold in beagle dogs with experimental periodontal defects resulted in significantly enhanced periodontal regeneration characterized by formation of new bone, periodontal ligament and cementum, compared with the untreated defects, as evidenced by histological and micro-computed tomography examinations. The prepared collagen-hydroxyapatite scaffolds possess favorable bio-compatibility. The bone marrow stem cells - collagen-hydroxyapatite and collagen-hydroxyapatite scaffold - induced periodontal regeneration, with no aberrant events complicating the regenerative process. Further research is necessary to improve the bone marrow stem cells behavior in collagen-hydroxyapatite scaffolds after implantation. © The Author(s) 2016.
Mechanical properties and biocompatibility of the sputtered Ti doped hydroxyapatite.
Vladescu, A; Padmanabhan, S C; Ak Azem, F; Braic, M; Titorencu, I; Birlik, I; Morris, M A; Braic, V
2016-10-01
The hydroxyapatite enriched with Ti were prepared as possible candidates for biomedical applications especially for implantable devices that are in direct contact to the bone. The hydroxyapatites with different Ti content were prepared by RF magnetron sputtering on Ti-6Al-4V alloy using pure hydroxyapatite and TiO2 targets. The content of Ti was modified by changing the RF power fed on TiO2 target. The XPS and FTIR analyses revealed the presence of hydroxyapatite structure. The hardness and elastic modulus of the hydroxyapatite were increased by Ti addition. After 5 days of culture, the cell viability of the Ti-6Al-4V was enhanced by depositing with undoped or doped hydroxyapatite. The Ti additions led to an increase in cell viability of hydroxyapatite, after 5 days of culture. The electron microscopy showed the presence of more cells on the surface of Ti-enriched hydroxyapatite than those observed on the surface of the uncoated alloys or undoped hydroxyapatite. Copyright © 2016 Elsevier Ltd. All rights reserved.
Valorization of Bone Waste of Saudi Arabia by Synthesizing Hydroxyapatite.
Amna, Touseef
2018-05-09
At present, hydroxyapatite is being frequently used for diverse biomedical applications as it possesses excellent biocompatibility, osteoconductivity, and non-immunogenic characteristics. The aim of the present work was to recycle bone waste for synthesis of hydroxyapatite nanoparticles to be used as bone extracellular matrix. For this reason, we for the first time utilized bio-waste of cow bones of Albaha city. The residual bones were utilized for the extraction of natural bone precursor hydroxyapatite. A facile scientific technique has been used to synthesize hydroxyapatite nanoparticles through calcinations of wasted cow bones without further supplementation of chemicals/compounds. The obtained hydroxyapatite powder was ascertained using physicochemical techniques such as XRD, SEM, FTIR, and EDX. These analyses clearly show that hydroxyapatite from native cow bone wastes is biologically and physicochemically comparable to standard hydroxyapatite, commonly used for biomedical functions. The cell viability and proliferation over the prepared hydroxyapatite was confirmed with CCk-8 colorimetric assay. The morphology of the cells growing over the nano-hydroxyapatite shows that natural hydroxyapatite promotes cellular attachment and proliferation. Hence, the as-prepared nano-hydroxyapatite can be considered as cost-effective source of bone precursor hydroxyapatite for bone tissue engineering. Taking into account the projected demand for reliable bone implants, the present research work suggested using environment friendly methods to convert waste of Albaha city into nano-hydroxyapatite scaffolds. Therefore, besides being an initial step towards accomplishment of projected demands of bone implants in Saudi Arabia, our study will also help in reducing the environmental burden by recycling of bone wastes of Albaha city.
Characterisations of collagen-silver-hydroxyapatite nanocomposites
NASA Astrophysics Data System (ADS)
Ciobanu, C. S.; Popa, C. L.; Petre, C. C.; Jiga, G.; Trusca, R.; Predoi, D.
2016-05-01
The XRD analysis were performed to confirm the formation of hydroxyapatite structure in collagen-silver-hydroxyapatite nanocomposites. The molecular interaction in collagen-hydroxyapatite nanocomposites was highlighted by Fourier transform infrared spectroscopy (FTIR) analysis. The SEM showed a nanostructure of collagen-silverhydroxyapatite nanocomposites composed of nano needle-like particles in a veil with collagen texture. The presence of vibrational groups characteristics to the hydroxyapatite structure in collagen-silver-hydroxyapatite (AgHApColl) nanocomposites was investigated by FTIR.
[Adsorption of Congo red from aqueous solution on hydroxyapatite].
Zhan, Yan-Hui; Lin, Jian-Wei
2013-08-01
The adsorption of Congo red (CR) from aqueous solution on hydroxyapatite was investigated using batch experiments. The hydroxyapatite was effective for CR removal from aqueous solution. The adsorption kinetics of CR on hydroxyapatite well followed a pseudo-second-order model. The equilibrium adsorption data of CR on hydroxyapatite could be described by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Thermodynamic parameters such as Gibbs free energy change, enthalpy change and entropy change were calculated and showed that the adsorption of CR on hydroxyapatite was spontaneous and exothermic in nature. The CR adsorption capacity for hydroxyapatite decreased significantly with increasing pH from 8 to 10. Thermal regeneration showed that hydroxyapatite could be used for six desorption-adsorption cycles with high removal efficiency for CR in each cycle. The mechanisms for CR adsorption on hydroxyapatite with pH value below the pH at point of zero charge (pH(PZC)) include electrostatic attraction, hydrogen bonding and Lewis acid-base interaction. The mechanisms for CR adsorption on hydroxyapatite with pH value above its pH(PZC) include hydrogen bonding and Lewis acid-base interaction. Results of this work indicate that hydroxyapatite is a promising adsorbent for CR removal from aqueous solution.
Tseng, Ching-Li; Chen, Jung-Chih; Wu, Yu-Chun; Fang, Hsu-Wei; Lin, Feng-Huei; Tang, Tzu-Piao
2015-10-01
Developing an effective vehicle for cancer treatment, hydroxyapatite nanoparticles were fabricated for drug delivery. When 5-Fluorouracil, a major chemoagent, is combined with hydroxyapatite nanocarriers by interclay insertion, the modified hydroxyapatite nanoparticles have superior lysosomal degradation profiles, which could be leveraged as controlled drug release. The decomposition of the hydroxyapatite nanocarriers facilitates the release of 5-Fluorouracil into the cytoplasm causing cell death. Hydroxyapatite nanoparticles with/without 5-Fluorouracil were synthesized and analyzed in this study. Their crystallization properties and chemical composition were examined by X-ray diffraction and Fourier transforms infrared spectroscopy. The 5-Fluorouracil release rate was determined by UV spectroscopy. The biocompatibility of hydroxyapatite-5-Fluorouracil extraction solution was assessed using 3T3 cells via a WST-8 assay. The effect of hydroxyapatite-5-Fluorouracil particles which directly work on the human lung adenocarcinoma (A549) cells was evaluated by a lactate dehydrogenase assay via contact cultivation. A 5-Fluorouracil-absorbed hydroxyapatite particles were also tested. Overall, hydroxyapatite-5-Fluorouracils were prepared using a co-precipitation method wherein 5-Fluorouracil was intercalated in the hydroxyapatite lattice as determined by X-ray diffraction. Energy dispersive scanning examination showed the 5-Fluorouracil content was higher in hydroxyapatite-5-Fluorouracil than in a prepared absorption formulation. With 5-Fluorouracil insertion in the lattice, the widths of the a and c axial constants of the hydroxyapatite crystal increased. The extraction solution of hydroxyapatite-5-Fluorouracil was nontoxic to 3T3 cells, in which 5-Fluorouracil was not released in a neutral phosphate buffer solution. In contrast, at a lower pH value (2.5), 5-Fluorouracil was released by the acidic decomposition of hydroxyapatite. Finally, the results of the lactate dehydrogenase assay revealed that 5-Fluorouracil-hydroxyapatite was highly toxic to A549 cells through direct culture, this phenomenon may result from lysosomal decomposition of particles causing 5-Fluorouracil releasing. The pH-responsive hydroxyapatite-5-Fluorouracil nanoparticles have the potential to be part of a selective drug-delivery system in chemotherapy for cancer treatment. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Faksawat, K.; Kaewwiset, W.; Limsuwan, P.; Naemchanthara, K.
2017-09-01
The aim of this work was to compare characteristics of hydroxyapatite synthesized by precipitation and ball milling techniques. The cuttlefish bone powder was a precursor in calcium source and the di ammonium hydrogen orthophosphate powders was a precursor in phosphate source. The hydroxyapatite was synthesized by the both techniques such as precipitation and ball milling techniques. The phase formation, chemical structure and morphology of the both hydroxyapatite powders have been examined by X-ray diffractometer (XRD), Fourier transform infrared spectroscope (FTIR) and field emission scanning electron microscope (FESEM), respectively. The results show that the hydroxyapatite synthesized by precipitation technique formed hydroxyapatite phase slower than the hydroxyapatite synthesized by ball milling technique. The FTIR results show the chemical structures of sample in both techniques are similar. The morphology of the hydroxyapatite from the both techniques were sphere like shapes and particle size was about in nano scale. The average particle size of the hydroxyapatite by ball milling technique was less than those synthesized by precipitation technique. This experiment indicated that the ball milling technique take time less than the precipitation technique in hydroxyapatite synthesis.
Synthesis and Characterization of Hydroxyapatite Powder by Wet Precipitation Method
NASA Astrophysics Data System (ADS)
Cahyaningrum, S. E.; Herdyastuty, N.; Devina, B.; Supangat, D.
2018-01-01
Hydroxyapatite is main inorganic component of the bone with formula Ca10(PO4)6(OH)2. Hydroxyapatite can be used as substituted bone biomaterial because biocompatible, non toxic, and osteoconductive. In this study, hydroxyapatite is synthesized using wet precipitation method from egg shell. The product was sintered at different temperatures of 800°C to 1000°C to improve its crystallinity. The hydroxyapatite was characterized by X-ray analysis, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) to reveal its phase content, morphology and types of bond present within it. The analytical results showed hydroxyapatite had range in crystallinity from 85.527 to 98.753%. The analytical functional groups showed that presence of functional groups such as OH, (PO4)3 2-, and CO3 2- that indicated as hydroxyapatite. The result of characterization SEM indicated that hydroxyapatite without sintering and HAp sintering at 800 °C were irregular shape without pore. The best hydroxyapatite with temperature sintering at 900 °C showed oval shaped with pores without agglomerated.
Development of hydroxyapatite/polyvinyl alcohol bionanocomposite for prosthesis implants
NASA Astrophysics Data System (ADS)
Karthik, V.; Pabi, S. K.; Chowdhury, S. K. Roy
2018-02-01
Hydroxyapatite (Ca10(PO4)6(OH)2) has similar structural and chemical properties of natural bone mineral and hence widely used as a bone replacement substitute. Natural bone consists of hydroxyapatite and collagen. For mimicking the natural, in the present work, a sintered porous hydroxyapatite component has been vacuum impregnated with Polyvinyl alcohol (PVA), which has better properties like biocompatibility, biodegradability and water- solubility. Hydroxyapatite powders have been made into nanosize to reduce the melting point and hence the sintering temperature. In the present investigation high energy ball mill is used to produce nano-hydroxyapatite powders in bulk quantity by optimizing the milling parameters using stainless steel grinding media. Pellets of 10 mm diameter have been produced from nano- hydroxyapatite powders under different uniaxial compaction pressures. The pellets have been sintered to form porous compacts. The vacuum impregnation of sintered pallets with PVA solution of different strength has been done to find the optimum impregnation condition. Microhardness, compressive strength, wear loss and haemocompatibility of hydroxyapatite ceramics have been studied before and after impregnation of PVA. The nano- hydroxyapatite/PVA composites have superior mechanical properties and reduced wear loss than the non-impregnated porous nano-hydroxyapatite ceramics.
Kong, Deying; Chen, Zilin
2017-05-01
Bisphosphonates are a class of chemical compounds used to treat diseases caused by increased bone resorption. Zoledronate is a third-generation bisphosphonate drug. Hydroxyapatite is main mineral constituent of bones, which can be bound by bisphosphonates in vivo. In this work, we report a method of nonlinear capillary electrochromatography for study on the interaction between hydroxyapatite and bisphosphonate. Hydroxyapatite was modified on the inner wall of capillary by a biomimetic-mineralization method. Then nonlinear chromatography was used to fit and analyze the interaction between zoledronate and hydroxyapatite. The association rate constants of zoledronate in hydroxyapatite-modified capillary and bare capillary are 642.3 and 195/M/min, respectively. This indicates that there is strong binding interactions and affinity between zoledronate and hydroxyapatite. Besides, the interaction between zoledronate and hydroxyapatite was confirmed further by ultraviolet spectroscopy. The method of nonlinear capillary electrochromatography provides a fast and effect approach for studying of bone metabolism disease by evaluation of interaction between hydroxyapatite and bisphosphonates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Parekh, Bharat; Joshi, Mihir; Vaidya, Ashok
2008-04-01
Hydroxyapatite is very useful for various biomedical applications, due to its chemical similarity with mineralized bone of human. Hydroxyapatite is also responsible for arthropathy (joint disease). In the present study, the growth of hydroxyapatite crystals was carried out by using single-diffusion gel growth technique in silica hydro gel media, at physiological temperature. The growth of hydroxyapatite crystals under slow and controlled environment in gel medium can be simulated in a simple manner to the growth in human body. The crystals, formed in the Liesegang rings, were characterized by powder XRD, FTIR and dielectric study. The diffusion study is also carried out for the hydroxyapatite crystals using the moving boundary model. The inhibitive influence of various Ayurvedic medicinal plant extracts such as Boswellia serrata gum resin , Tribulus terrestris fruits, Rotula aquatica roots, Boerhaavia diffusa roots and Commiphora wightii, on the growth of hydroxyapatite was studied. Roots of R. aquatica and B. diffusa show some inhibition of the hydroxyapatite crystals in vitro. This preclinical study will be helpful to design the therapy for prevention of hydroxyapatite-based ailments.
Huang, Yi; Song, Lei; Liu, Xiaoguang; Xiao, Yanfeng; Wu, Yao; Chen, Jiyong; Wu, Fang; Gu, Zhongwei
2010-12-01
Hydroxyapatite coatings were deposited on Ti-6Al-4V substrates by a novel plasma spraying process, the liquid precursor plasma spraying (LPPS) process. X-ray diffraction results showed that the coatings obtained by the LPPS process were mainly composed of hydroxyapatite. The LPPS process also showed excellent control on the coating microstructure, and both nearly fully dense and highly porous hydroxyapatite coatings were obtained by simply adjusting the solid content of the hydroxyapatite liquid precursor. Scanning electron microscope observations indicated that the porous hydroxyapatite coatings had pore size in the range of 10-200 µm and an average porosity of 48.26 ± 0.10%. The osteoblastic cell responses to the dense and porous hydroxyapatite coatings were evaluated with human osteoblastic cell MG-63, in respect of the cell morphology, proliferation and differentiation, with the hydroxyapatite coatings deposited by the atmospheric plasma spraying (APS) process as control. The cell experiment results indicated that the heat-treated LPPS coatings with a porous structure showed the best cell proliferation and differentiation among all the hydroxyapatite coatings. Our results suggest that the LPPS process is a promising plasma spraying technique for fabricating hydroxyapatite coatings with a controllable microstructure, which has great potential in bone repair and replacement applications.
Hydroxyapatite nanorods: soft-template synthesis, characterization and preliminary in vitro tests.
Nguyen, Nga Kim; Leoni, Matteo; Maniglio, Devid; Migliaresi, Claudio
2013-07-01
Synthetic hydroxyapatite nanorods are excellent candidates for bone tissue engineering applications. In this study, hydroxyapatite nanorods resembling bone minerals were produced by using soft-template method with cetyltrimethylammonium bromide. Composite hydroxyapatite/poly(D, L)lactic acid films were prepared to evaluate the prepared hydroxyapatite nanorods in terms of cell affinity. Preliminary in vitro experiments showed that aspect ratio and film surface roughness play a vital role in controlling adhesion and proliferation of human osteoblast cell line MG 63. The hydroxyapatite nanorods with aspect ratios in the range of 5.94-7 were found to possess distinctive properties, with the corresponding hydroxyapatite/poly(D, L)lactic acid films promoting cellular confluence and a fast formation of collagen fibers as early as after 7 days of culture.
Narita, H; Takeda, Y; Takagaki, K; Nakamura, T; Harata, S; Endo, M
1995-11-20
Glycosaminoglycans (heparin, heparan sulfate, dermatan sulfate, chondroitin sulfate, and hyaluronic acid) were labeled with a fluorescent reagent, 2-aminopyridine. The fluoro-labeled glycosaminoglycans were subjected to high-performance liquid chromatography on a hydroxyapatite column. The binding property of each glycosaminoglycan to hydroxyapatite was different. The structural properties of glycosaminoglycans bound to hydroxyapatite were then investigated using chemical desulfated or enzymic depolymerized glycosaminoglycans. This revealed that the sulfate content and molecular weight of the glycosaminoglycans correlated with their binding properties to hydroxyapatite. Desulfated dermatan sulfate but not desulfated chondroitin 6-sulfate bound to the hydroxyapatite. These data indicate that iduronic acid residues of glycosaminoglycans are important for the binding property. The method described which uses hydroxyapatite columns facilitates rapid separation and microanalysis of the glycosaminoglycans, especially dermatan sulfate and chondroitin sulfate.
Turner, Ronald J; Renshaw, Joanna C; Hamilton, Andrea
2017-09-20
Ordinary Portland cement (OPC) is by weight the world's most produced man-made material and is used in a variety of applications in environments ranging from buildings, to nuclear wasteforms, and within the human body. In this paper, we present for the first time the direct deposition of biogenic hydroxyapatite onto the surface of OPC in a synergistic process which uses the composition of the cement substrate. This hydroxyapatite is very similar to that found in nature, having a similar crystallite size, iron and carbonate substitution, and a semi-crystalline structure. Hydroxyapatites with such a structure are known to be mechanically stronger and more biocompatible than synthetic or biomimetic hydroxyapatites. The formation of this biogenic hydroxyapatite coating therefore has significance in a range of contexts. In medicine, hydroxyapatite coatings are linked to improved biocompatibility of ceramic implant materials. In the built environment, hydroxyapatite coatings have been proposed for the consolidation and protection of sculptural materials such as marble and limestone, with biogenic hydroxyapatites having reduced solubility compared to synthetic apatites. Hydroxyapatites have also been established as effective for the adsorption and remediation of environmental contaminants such as radionuclides and heavy metals. We identify that in addition to providing a biofilm scaffold for nucleation, the metabolic activity of Pseudomonas fluorescens increases the pH of the growth medium to a suitable level for hydroxyapatite formation. The generated ammonia reacts with phosphate in the growth medium, producing ammonium phosphates which are a precursor to the formation of hydroxyapatite under conditions of ambient temperature and pressure. Subsequently, this biogenic deposition process takes place in a simple reaction system under mild chemical conditions and is cheap and easy to apply to fragile biological or architectural surfaces.
Liuyun, Jiang; Lixin, Jiang; Chengdong, Xiong; Lijuan, Xu; Ye, Li
2016-01-01
It is promising and challenging to study surface modification for nano-hydroxyapatite to improve the dispersion and enhance the mechanical properties and bioactivity of poly(lactic acid-co-glycolic acid). In this paper, we designed an effective new surface grafting with the assist of l-lysine for nano-hydroxyapatite, and the nano-hydroxyapatite surface grafted with the assist of l-lysine (g-nano-hydroxyapatite) was incorporated into poly(lactic acid-co-glycolic acid) to develop a series of g-nano-hydroxyapatite/poly(lactic acid-co-glycolic acid) nano-composites. The surface modification reaction for nano-hydroxyapatite, the mechanical properties, and in vitro human osteoblast-like cell (MG-63) response were characterized and investigated by Fourier transformation infrared, thermal gravimetric analysis, dispersion test, electromechanical universal tester, differential scanning calorimeter measurements, and in vitro cells culture experiment. The results showed that the grafting amount on the surface of nano-hydroxyapatite was enhanced with the increase of l-lysine, and the dispersion of nano-hydroxyapatite was improved more, so that it brought about better promotion crystallization and more excellent mechanical enhancement effect for poly(lactic acid-co-glycolic acid), comparing with the unmodified nano-hydroxyapatite. Moreover, the cells' attachment and proliferation results confirmed that the incorporation of the g-nano-hydroxyapatite into poly(lactic acid-co-glycolic acid) exhibited better biocompatibility than poly(lactic acid-co-glycolic acid). The above results indicated that the new surface grafting with the assist of l-lysine for nano-hydroxyapatite was an ideal novel surface modification method, which brought about better mechanical enhancement effect and in vitro bioactivity for poly(lactic acid-co-glycolic acid) with adding higher g-nano-hydroxyapatite content, suggesting it had a great potential to be used as bone fracture internal fixation materials in future. © The Author(s) 2015.
Cho, Yong Sang; Hong, Myoung Wha; Jeong, Hoon-Jin; Lee, Seung-Jae; Kim, Young Yul; Cho, Young-Sam
2017-11-01
In this study, the fabrication method was proposed for the well-interconnected polycaprolactone/hydroxyapatite composite scaffold with exposed hydroxyapatite using modified WNM technique. To characterize well-interconnected scaffolds in terms of hydroxyapatite exposure, several assessments were performed as follows: morphology, mechanical property, wettability, calcium ion release, and cell response assessments. The results of these assessments were compared with those of control scaffolds which were fabricated by precision extruding deposition (PED) apparatus. The control PED scaffolds have interconnected pores with nonexposed hydroxyapatite. Consequently, cell attachment of proposed WNM scaffold was improved by increased hydrophilicity and surface roughness of scaffold surface resulting from the exposure of hydroxyapatite particles and fabrication process using powders. Moreover, cell proliferation and differentiation of WNM scaffold were increased, because the exposure of hydroxyapatite particles may enhance cell adhesion and calcium ion release. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2315-2325, 2017. © 2016 Wiley Periodicals, Inc.
Synthesis of hydroxyapatite nanoparticles from egg shells by sol-gel method
NASA Astrophysics Data System (ADS)
Azis, Y.; Adrian, M.; Alfarisi, C. D.; Khairat; Sri, R. M.
2018-04-01
Hydroxyapatite, [Ca10(PO4)6(OH)2, (HAp)] is widely used in medical fields especially as a bone and teeth substitute. Hydroxyapatite nanoparticles have been succesfully synthesized from egg shells as a source of calcium by using sol-gel method. The egg shells were calcined, hydrated (slaking) and undergone carbonation to form Precipitated Calcium Carbonate (PCC).Then the PCC was added (NH4)2HPO4 to form HAp with variation the mole ratio Ca and P (1.57; 1.67 and 1.77), aging time (24, 48, and 72 hr) and under basic condition pH (9, 10 and 11). The formation of hydroxyapatite biomaterial was characterized using XRD, FTIR, SEM-EDX. The XRD patterns showed that the products were hydroxyapatite crystals. The best result was obtained at 24 hr aging time, pH 9 with hexagonal structure of hydroxyapatite. Particle size of HAp was 35-54 nm and the morphology of hydroxyapatite observed using SEM, it showed that the uniformity crystal of hydroxyapatite.
Recent advances in research applications of nanophase hydroxyapatite.
Fox, Kate; Tran, Phong A; Tran, Nhiem
2012-07-16
Hydroxyapatite, the main inorganic material in natural bone, has been used widely for orthopaedic applications. Due to size effects and surface phenomena at the nanoscale, nanophase hydroxyapatite possesses unique properties compared to its bulk-phase counterpart. The high surface-to-volume ratio, reactivities, and biomimetic morphologies make nano-hydroxyapatite more favourable in applications such as orthopaedic implant coating or bone substitute filler. Recently, more efforts have been focused on the possibility of combining hydroxyapatite with other drugs and materials for multipurpose applications, such as antimicrobial treatments, osteoporosis treatments and magnetic manipulation. To build more effective nano-hydroxyapatite and composite systems, the particle synthesis processes, chemistry, and toxicity have to be thoroughly investigated. In this Minireview, we report the recent advances in research regarding nano-hydroxyapatite. Synthesis routes and a wide range of applications of hydroxyapatite nanoparticles will be discussed. The Minireview also addresses several challenges concerning the biosafety of the nanoparticles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sroka-Bartnicka, Anna; Borkowski, Leszek; Ginalska, Grazyna; Ślósarczyk, Anna; Kazarian, Sergei G.
2017-01-01
Hydroxyapatite and carbonate-substituted hydroxyapatite are widely used in bone tissue engineering and regenerative medicine. Both apatite materials were embedded into recently developed ceramic/polymer composites, subjected to Simulated Body Fluid (SBF) for 30 days and characterized using ATR-FTIR spectroscopic imaging to assess their behaviour and structures. The specific aim was to detect the transition phases between both types of hydroxyapatite during the test and to analyze the surface modification caused by SBF. ATR-FTIR spectroscopic imaging was successfully applied to characterise changes in the hydroxyapatite lattice due to the elastic properties of the scaffolds. It was observed that SBF treatment caused a replacement of phosphates in the lattice of non-substituted hydroxyapatite by carbonate ions. A detailed study excluded the formation of pure A type carbonate apatite. In turn, CO32- content in synthetic carbonate-substituted hydroxyapatite decreased. The usefulness of ATR-FTIR spectroscopic imaging studies in the evaluation of elastic and porous β-glucan hydroxyapatite composites has been demonstrated.
C-Axis-Oriented Hydroxyapatite Film Grown Using ZnO Buffer Layer
NASA Astrophysics Data System (ADS)
Sakoishi, Yasuhiro; Iguchi, Ryo; Nishikawa, Hiroaki; Hontsu, Shigeki; Hayami, Takashi; Kusunoki, Masanobu
2013-11-01
A method of fabricating c-axis-oriented hydroxyapatite film on a quartz crystal microbalance (QCM) sensor was investigated. ZnO was used as a template to obtain a hexagonal hydroxyapatite crystal of uniaxial orientation. The ZnO was grown as a c-axis film on a Au/quartz with the surface structure of a QCM sensor. Under optimized conditions, hydroxyapatite was deposited by pulsed laser deposition. X-ray diffraction showed the hydroxyapatite film to be oriented along the c-axis. Because Au and ZnO are applied to many devices, the anisotropic properties of hydroxyapatite may be incorporated into these devices as well as QCM sensors.
Watanabe, Satoshi; Kashiwagi, Rei; Matsumoto, Mutsuyoshi
2017-03-01
We discuss an alternate spray-coating technique for the direct fabrication of hydroxyapatite films using metal masks, suction-type spray nozzles and two calcification solutions of calcium hydroxide and phosphoric acid aqueous solutions. Hydroxyapatite films were formed only on the hydrophobic surface of the substrates. Scanning electron microscopy and energy dispersive X-ray spectroscopy showed that the spray-coated films consisted of hydroxyapatite nanoparticles. The Ca/P ratio was estimated to be about 1.26. X-ray diffraction patterns of the spray-coated films almost coincided with those of the hydroxyapatite powders, showing that the spray-coated films consisted of hydroxyapatite nanoparticles. Dot arrays of hydroxyapatite films at a diameter of 100 μm were formed by tuning the concentrations of calcium hydroxide and phosphoric acid aqueous solutions. This technique allows for the direct fabrication of the hydroxyapatite films without crystal growth process in hydroxyapatite precursors, the scaffolds of crystal growth such as biocompatibility SiO 2 -CaO glasses, or electrophoresis processes. By using this technique, large-area ceramic films with biocompatibility will be micropatterned with minimized material consumption, short fabrication time, and reduced equipment investments.
Lock, Jaclyn; Liu, Huinan
2011-01-01
Background Nanomaterials have unique advantages in controlling stem cell function due to their biomimetic characteristics and special biological and mechanical properties. Controlling adhesion and differentiation of stem cells is critical for tissue regeneration. Methods This in vitro study investigated the effects of nano-hydroxyapatite, nano-hydroxyapatite-polylactide- co-glycolide (PLGA) composites, and a bone morphogenetic protein (BMP-7)- derived short peptide (DIF-7c) on osteogenic differentiation of human mesenchymal stem cells (MSC). The peptide was chemically functionalized onto nano-hydroxyapatite, incorporated into a nanophase hydroxyapatite-PLGA composite or PLGA control, or directly injected into culture media. Results Unlike the PLGA control, the nano-hydroxyapatite-PLGA composites promoted adhesion of human MSC. Importantly, nano-hydroxyapatite and nano-hydroxyapatite-PLGA composites promoted osteogenic differentiation of human MSCs, comparable with direct injection of the DIF-7c peptide into culture media. Conclusion Nano-hydroxyapatite and nano-hydroxyapatite-PLGA composites provide a promising alternative in directing the adhesion and differentiation of human MSC. These nanocomposites should be studied further to clarify their effects on MSC functions and bone remodeling in vivo, eventually translating to clinical applications. PMID:22114505
[Biomimetic mineralization of rod-like cellulose nano-whiskers and spectrum analysis].
Qu, Ping; Wang, Xuan; Cui, Xiao-xia; Zhang, Li-ping
2012-05-01
Cellulose nano-whiskers/nano-hydroxyapatite composite was prepared with biomimetic mineralization using rod-like cellulose nano-whiskers as template. The cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope-energy dispersive analysis of X-rays (SEM-EDXA). Variation and distribution of carbon, oxygen, calcium, and phosphorus in the composites were studied. The morphologies and growth mechanism of nano-hydroxyapatite were analyzed. The results showed that nano-hydroxyapatite was formed on the surface of cellulose nano-whiskers; the carbon-oxygen ratio of cellulose nano-whiskers and cellulose nano-whiskers/nano-hydroxyapatite composite was 1.81 and 1.54, respectively; the calcium-phosphorus ratio of the composite was 1.70. The nucleation of nano-hydroxyapatite was around the hydroxyl groups of cellulose nano-whiskers. It is suggested that there is coordination between the hydroxyl groups of cellulose nano-whiskers and calcium ions of nano-hydroxyapatite. The nano-hydroxyapatite can distribute in the matrix of cellulose nano-whiskers. From the atomic force microscope (AFM) images, we can see that the diameter of the spherical nano-hydroxyapatite particles was about 20 nm.
Comín, Romina; Cid, Mariana P; Grinschpun, Luciano; Oldani, Carlos; Salvatierra, Nancy A
2017-04-26
In clinical orthopedics, a critical problem is the bone tissue loss produced by a disease or injury. The use of composites from titanium and hydroxyapatite for biomedical applications has increased due to the resulting advantageous combination of hydroxyapatite bioactivity and favorable mechanical properties of titanium. Powder metallurgy is a simple and lower-cost method that uses powder from titanium and hydroxyapatite to obtain composites having hydroxyapatite phases in a metallic matrix. However, this method has certain limitations arising from thermal decomposition of hydroxyapatite in the titanium-hydroxyapatite system above 800°C. We obtained a composite from titanium and bovine hydroxyapatite powders sintered at 800°C and evaluated its bioactivity and cytocompatibility according to the ISO 10993 standard. Surface analysis and bioactivity of the composite was evaluated by X-ray diffraction and SEM. MTT assay was carried out to assess cytotoxicity on Vero and NIH3T3 cells. Cell morphology and cell adhesion on the composite surface were analyzed using fluorescence and SEM. We obtained a porous composite with hydroxyapatite particles well integrated in titanium matrix which presented excellent bioactivity. Our data did not reveal any toxicity of titanium-hydroxyapatite composite on Vero or NIH3T3 cells. Moreover, extracts from composite did not affect cell morphology or density. Finally, NIH3T3 cells were capable of adhering to and proliferating on the composite surface. The composite obtained displayed promising biomedical applications through the simple method of powder metallurgy. Additionally, these findings provide an in vitro proof for adequate biocompatibility of titanium-hydroxyapatite composite sintered at 800°C.
2008-12-01
1 OSTEOMYELITIS TREATMENT WITH NANOMETER-SIZED HYDROXYAPATITE PARTICLES AS A DELIVERY VEHICLE FOR A CIPROFLOXACIN- BISPHOSPHONATE CONJUGATE; NEW...FLUOROQUINOLONE-BISPHOSPHONATE DERIVATIVES SHOW SIMILAR BINDING AFFINITY TO HYDROXYAPATITE AND IMPROVED ANTIBACTERIAL ACTIVITY AGAINST DRUG-RESISTANT...vivo OM model. Current studies contrast two CP homeostatic bone-substitute particles, nanometer-sized hydroxyapatite NanOss™ (Nan), and µ-sized
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozturk, Fahrettin; Toros, Serkan; Evis, Zafer
In this study, the diametral strength test of sintered hydroxyapatite was simulated by the finite element software, ABAQUS/Standard. Stress distributions on diametral test sample were determined. The effect of sintering temperature on stress distribution of hydroxyapatite was studied. It was concluded that high sintering temperatures did not reduce the stress on hydroxyapatite. It had a negative effect on stress distribution of hydroxyapatite after 1300 deg. C. In addition to the porosity, other factors (sintering temperature, presence of phases and the degree of crystallinity) affect the diametral strength of the hydroxyapatite.
Methods of synthesizing hydroxyapatite powders and bulk materials
Luo, Ping
1999-01-12
Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 .mu.m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogenous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided.
Methods of synthesizing hydroxyapatite powders and bulk materials
Luo, P.
1999-01-12
Methods are provided for producing non-porous controlled morphology hydroxyapatite granules of less than 8 {micro}m by a spray-drying process. Solid or hollow spheres or doughnuts can be formed by controlling the volume fraction and viscosity of the slurry as well as the spray-drying conditions. Methods of providing for homogeneous cellular structure hydroxyapatite granules are also provided. Pores or channels or varying size and number can be formed by varying the temperature at which a hydroxyapatite slurry formed in basic, saturated ammonium hydroxide is spray-dried. Methods of providing non-porous controlled morphology hydroxyapatite granules in ammonium hydroxide are also provided. The hydroxyapatite granules and bulk materials formed by these methods are also provided. 26 figs.
Heterogeneous nucleation of hydroxyapatite on protein: structural effect of silk sericin
Takeuchi, Akari; Ohtsuki, Chikara; Miyazaki, Toshiki; Kamitakahara, Masanobu; Ogata, Shin-ichi; Yamazaki, Masao; Furutani, Yoshiaki; Kinoshita, Hisao; Tanihara, Masao
2005-01-01
Acidic proteins play an important role during mineral formation in biological systems, but the mechanism of mineral formation is far from understood. In this paper, we report on the relationship between the structure of a protein and hydroxyapatite deposition under biomimetic conditions. Sericin, a type of silk protein, was adopted as a suitable protein for studying structural effect on hydroxyapatite deposition, since it forms a hydroxyapatite layer on its surface in a metastable calcium phosphate solution, and its structure has been reported. Sericin effectively induced hydroxyapatite nucleation when it has high molecular weight and a β sheet structure. This indicates that the specific structure of a protein can effectively induce heterogeneous nucleation of hydroxyapatite in a biomimetic solution, i.e. a metastable calcium phosphate solution. This finding is useful in understanding biomineralization, as well as for the design of organic polymers that can effectively induce hydroxyapatite nucleation. PMID:16849195
Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon
Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.
2013-01-01
Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics. PMID:23884324
Hydroxyapatite Based 99Mo - 99Tc and 188W - 188Re Generator Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knapp Jr, Russ F; Monroy-Guzman, F.; Badillo, V. E.
2006-01-01
This paper describes studies evaluating the use of hydroxyapatite as the adsorbent material for both {sup 99}Mo-{sup 99m}Tc and {sup 188}W-{sup 188}Re generator systems. Hydroxyapatite is an insoluble solid with anion exchange properties. A study of the sorption behaviour of {sup 99}Mo, {sup 99m}Tc, {sup 188}W and {sup 188}Re on hydroxyapatite in NaCl medium was evaluated by batch experiments. The results demonstrated that while {sup 99}Mo, {sup 99m}Tc and {sup 188}Re are not adsorbed by the hydroxyapatite in NaCl solutions (Kd <5), {sup 188}W is strongly adsorbed (Kd >500). On the basis of these measurements, hydroxyapatite {sup 188}W-{sup 188}Re generatormore » systems were then constructed and eluted in NaCl solutions. The hydroxyapatite based {sup 188}W-{sup 188}Re generator performances are presented.« less
Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon
NASA Astrophysics Data System (ADS)
Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.
2013-07-01
Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics.
Ferroelectric polarization in nanocrystalline hydroxyapatite thin films on silicon.
Lang, S B; Tofail, S A M; Kholkin, A L; Wojtaś, M; Gregor, M; Gandhi, A A; Wang, Y; Bauer, S; Krause, M; Plecenik, A
2013-01-01
Hydroxyapatite nanocrystals in natural form are a major component of bone--a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics.
Synthetic Hydroxyapatite as a Biomimetic Oral Care Agent.
Enax, Joachim; Epple, Matthias
Human tooth enamel consists mostly of minerals, primarily hydroxyapatite, Ca10(PO4)6(OH)2, and thus synthetic hydroxyapatite can be used as a biomimetic oral care agent. This review describes the synthesis and characterization of hydroxyapatite from a chemist's perspective and provides an overview of its current use in oral care, with a focus on dentin hypersensitivity, caries, biofilm management, erosion, and enamel lesions. Reviews and original research papers published in English and German were included. The efficiency of synthetic hydroxyapatite in occluding open dentin tubules, resulting in a protection for sensitive teeth, has been well documented in a number of clinical studies. The first corresponding studies on caries, biofilm management and erosion have provided evidence for a positive effect of hydroxyapatite either as a main or synergistic agent in oral care products. However, more in situ and in vivo studies are needed due to the complexity of the oral milieu and to further clarify existing results. Due to its biocompatibility and similarity to biologically formed hydroxyapatite in natural tooth enamel, synthetic hydroxyapatite is a promising biomimetic oral care ingredient that may extend the scope of preventive dentistry.
Shin, Euisup; Kim, Ill Yong; Cho, Sung Baek; Ohtsuki, Chikara
2015-03-01
Hydroxyapatite formation on the surfaces of implanted materials plays an important role in osteoconduction of bone substitutes in bone tissues. Titania hydrogels are known to instigate hydroxyapatite formation in a solution mimicking human blood plasma. To date, the relationship between the surface characteristics of titania and hydroxyapatite formation on its surface remains unclear. In this study, titania powders with varying surface characteristics were prepared by addition of manganese or iron to examine hydroxyapatite formation in a type of simulated body fluid (Kokubo solution). Hydroxyapatite formation was monitored by observation of deposited particles with scale-like morphology on the prepared titania powders. The effect of the titania surface characteristics, i.e., crystal structure, zeta potential, hydroxy group content, and specific surface area, on hydroxyapatite formation was examined. Hydroxyapatite formation was observed on the surface of titania powders that were primarily anatase, and featured a negative zeta potential and low specific surface areas irrespective of the hydroxy group content. High specific surface areas inhibited the formation of hydroxyapatite because calcium and phosphate ions were mostly consumed by adsorption on the titania surface. Thus, these surface characteristics of titania determine its osteoconductivity following exposure to body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.
Hyvönen, P M; Kowolik, M J
1992-01-01
Transmission electron microscopy and standard chemiluminescence assays were used to investigate the in vivo effect of dichloromethylene bisphosphonate (clodronate) on the phagocytosis of pure hydroxyapatite particles by rat peritoneal macrophages and the production of chemiluminescence by the peritoneal exudate cells. Hydroxyapatite (control) and a hydroxyapatite/clodronate suspension (28 mumol clodronate per gram of hydroxyapatite, experimental) were injected into the peritoneum of rats, the clodronate dose being 10 micrograms/kg. Macrophages were harvested at 12, 24, 48, and 96 hours after injection and the particle phagocytosis was assessed by transmission electron microscopy. Hydroxyapatite alone was completely phagocytosed by 24 hours and hydroxyapatite reacted with clodronate was completely phagocytosed by 48 hours. From 48 hours onwards hydroxyapatite particle dissolution was observed in the phagosomes of cells in the two groups. At 48 hours the chemiluminescence produced by the peritoneal exudate cells was also measured. Clodronate and clodronate/hydroxyapatite enhanced cell activity on subsequent challenge with phorbol myristate acetate or zymosan. Clodronate seemed to exhibit an inhibitory effect on the phagocytic activity and an enhancement of the chemiluminescence production by the cells in this model, indicating that it was modifying the inflammatory cell response. Images PMID:1532298
Jo, Ji-Hoon; Li, Yuanlong; Kim, Sae-Mi; Kim, Hyoun-Ee; Koh, Young-Hag
2013-11-01
Hydroxyapatite was deposited on pure magnesium (Mg) with a flexible poly(ε-caprolactone) interlayer to reduce the corrosion rate of Mg and enhance coating flexibility. The poly(ε-caprolactone) interlayer was uniformly coated on Mg by a spraying method, followed by hydroxyapatite deposition on the poly(ε-caprolactone) using an aerosol deposition method. In scanning electron microscopy observations, inorganic/organic composite-like structure was observed between the hydroxyapatite and poly(ε-caprolactone) layers, resulting from the collisions of hydroxyapatite particles into the poly(ε-caprolactone) matrix at the initial stage of the aerosol deposition. The corrosion resistance of the coated Mg was examined using potentiodynamic polarization tests. The hydroxyapatite/poly(ε-caprolactone) double coating remarkably improved the corrosion resistance of Mg in Hank's solution. In the in vitro cell tests, the coated Mg showed better cell adhesion compared with the bare Mg due to the reduced corrosion rate and enhanced biocompatibility. The stability and flexibility of hydroxyapatite/poly(ε-caprolactone) double coating was investigated by scanning electron microscopy inspections after the coated Mg was deformed. The hydroxyapatite coating on the poly(ε-caprolactone) interlayer revealed enhanced coating stability and flexibility without cracking or delamination during bending and stretching compared with the hydroxyapatite single coating. These results demonstrated that the hydroxyapatite/poly(ε-caprolactone) double coating significantly improved the surface corrosion resistance of Mg and enhanced coating flexibility for use of Mg as a biodegradable implant.
Kruse, A; Jung, R E; Nicholls, F; Zwahlen, R A; Hämmerle, C H F; Weber, F E
2011-05-01
A comparison of synthetic hydroxyapatite/silica oxide, xenogenic hydroxyapatite-based bone substitute materials with empty control sites in terms of bone regeneration enhancement in a rabbit calvarial four non-critical-sized defect model. In each of six rabbits, four bicortical calvarial bone defects were generated. The following four treatment modalities were randomly allocated: (1) empty control site, (2) synthetic hydroxyapatite/silica oxide-based (HA/SiO) test granules, (3) xenogenic hydroxyapatite -based granules, (4) synthetic hydroxyapatite/silica oxide -based (HA/SiO) test two granules. The results of the latter granules have not been reported due to their size being three times bigger than the other two granule types. After 4 weeks, the animals were sacrificed and un-decalcified sections were obtained for histological analyses. For statistical analysis, the Kruskal-Wallis test was applied (P<0.05). Histomorphometric analysis showed an average area fraction of newly formed bone of 12.32±10.36% for the empty control, 17.47±6.42% for the xenogenic hydroxyapatite -based granules group, and 21.2±5.32% for the group treated with synthetic hydroxyapatite/silica oxide -based granules. Based on the middle section, newly formed bone bridged the defect to 38.33±37.55% in the empty control group, 54.33±22.12% in the xenogenic hydroxyapatite -based granules group, and to 79±13.31% in the synthetic hydroxyapatite/silica oxide -based granules group. The bone-to-bone substitute contact was 46.38±18.98% for the xenogenic and 59.86±14.92% for the synthetic hydroxyapatite/silica oxide-based granules group. No significant difference in terms of bone formation and defect bridging could be detected between the two bone substitute materials or the empty defect. There is evidence that the synthetic hydroxyapatite/silica oxide granules provide comparable results with a standard xenogenic bovine mineral in terms of bone formation and defect bridging in non-critical size defects. © 2010 John Wiley & Sons A/S.
Mechanical, dielectric and surface analysis of hydroxyapatite doped anions for implantations
NASA Astrophysics Data System (ADS)
Helen, S.; Kumar, A. Ruban
2018-04-01
Calcium Phosphate has broad applications in field of medicine and in tissue engineering. In that hydroxyapatite is one of the calcium phosphate similar to bone and teeth mineral phase. The aim of this paper is to improve mechanical property of hydroxyapatite which has less mechanical strength by doping of ions. The ions increase its strength which can be used in various medical applications. Surface property of hydroxyapatite and electrical property of ion doped hydroxyapatite analyzed and shown that it can be used in implantations, coatings.
Electrochemical properties of Ti3+ doped Ag-Ti nanotube arrays coated with hydroxyapatite
NASA Astrophysics Data System (ADS)
Zhang, Hangzhou; Shi, Xiaoguo; Tian, Ang; Wang, Li; Liu, Chuangwei
2018-04-01
Ag-Ti nanotube array was prepared by simple anodic oxidation method and uniform hydroxyapatite were electrochemically deposited on the nanotubes, and then characterized by SEM, XRD, XPS and EIS. In order to investigate the influence of Ti3+ on the electrochemical deposition of hydroxyapatite on the nanotubes, the Ag-Ti nanotube array self-doped with Ti3+ was prepared by one step reduction method. The experiment results revealed that the Ti3+ can promote the grow rate of hydroxyapatite coatings on nanotube surface. The hydroxyapatite coated Ag-Ti nanotube arrays with Ti3+ exhibit excellent stability and higher corrosion resistance. Moreover, the compact and dense hydroxyapatite coating can also prevent the Ag atom erosion from the Ag-Ti nanotube.
Jiang, Jia; Hao, Wei; Li, Yuzhuo; Yao, Jinrong; Shao, Zhengzhong; Li, Hong; Yang, Jianjun; Chen, Shiyi
2013-04-01
A novel hydroxyapatite/regenerated silk fibroin scaffold was prepared and investigated for its potential to enhance both osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells in vitro. Approx. 12.4 ± 0.06 % (w/w) hydroxyapatite was deposited onto the scaffold, and cell viability and DNA content were significantly increased (18.5 ± 0.6 and 33 ± 1.2 %, respectively) compared with the hydroxyapatite scaffold after 14 days. Furthermore, alkaline phosphatase activity in the novel scaffold increased 41 ± 2.5 % after 14 days compared with the hydroxyapatite scaffold. The data indicate that this novel hydroxyapatite/regenerated silk fibroin scaffold has a positive effect on osteoinductivity and osteoconductivity, and may be useful for bone tissue engineering.
Wei, Qingrong; Lu, Jian; Wang, Qiaoying; Fan, Hongsong; Zhang, Xingdong
2015-03-20
Inspired by coralline-derived hydroxyapatite, we designed a methodological route to synthesize carbonated-hydroxyapatite microspheres from the conversion of CaCO3 spherulite templates within a collagen matrix under mild conditions and thus constructed the composite hydrogel of collagen/hydroxyapatite-microspheres. Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) were employed to confirm the successful generation of the carbonated hydroxyapatite phase originating from CaCO3, and the ratios of calcium to phosphate were tracked over time. Variations in the weight portion of the components in the hybrid gels before and after the phase transformation of the CaCO3 templates were identified via thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) shows these composite hydrogels have a unique multiscale microstructure consisting of a collagen nanofibril network and hydroxyapatite microspheres. The relationship between the hydroxyapatite nanocrystals and the collagen fibrils was revealed by transmission electron microscopy (TEM) in detail, and the selected area electron diffraction (SAED) pattern further confirmed the results of the XRD analyses which show the typical low crystallinity of the generated hydroxyapatite. This smart synthesis strategy achieved the simultaneous construction of microscale hydroxyapatite particles and collagen fibrillar hydrogel, and appears to provide a novel route to explore an advanced functional hydrogel materials with promising potentials for applications in bone tissue engineering and reconstruction medicine.
In vitro and in vivo evaluation of silicated hydroxyapatite and impact of insulin adsorption.
Lasgorceix, M; Costa, A M; Mavropoulos, E; Sader, M; Calasans, M; Tanaka, M N; Rossi, A; Damia, C; Chotard-Ghodsnia, R; Champion, E
2014-10-01
This study evaluates the biological behaviour, in vitro and in vivo, of silicated hydroxyapatite with and without insulin adsorbed on the material surface. Insulin was successfully adsorbed on hydroxyapatite and silicated hydroxyapatite bioceramics. The modification of the protein secondary structure after the adsorption was investigated by means of infrared and circular dichroism spectroscopic methods. Both results were in agreement and indicated that the adsorption process was likely to change the secondary structure of the insulin from a majority of α-helix to a β-sheet form. The biocompatibility of both materials, with and without adsorbed insulin on their surface, was demonstrated in vitro by indirect and direct assays. A good viability of the cells was found and no proliferation effect was observed regardless of the material composition and of the presence or absence of insulin. Dense granules of each material were implanted subcutaneously in mice for 1, 3 and 9 weeks. At 9 weeks of implantation, a higher inflammatory response was observed for silicated hydroxyapatite than for pure hydroxyapatite but no significant effect of adsorbed insulin was detected. Though the presence of silicon in hydroxyapatite did not improve the biological behaviour, the silicon substituted hydroxyapatite remained highly viable.
Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.
Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin
2014-02-01
The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. © 2013.
An improved biofunction of titanium for keratoprosthesis by hydroxyapatite-coating.
Dong, Ying; Yang, Jingxin; Wang, Liqiang; Ma, Xiao; Huang, Yifei; Qiu, Zhiye; Cui, Fuzhai
2014-03-01
Titanium framework keratoprosthesis has been commonly used in the severe corneal blindness, but the tissue melting occurred frequently around titanium. Since hydroxyapatite has been approved to possess a good tissue integration characteristic, nanostructured hydroxyapatite was coated on the surface of titanium through the aerosol deposition method. In this study, nanostructured hydroxyapatite coating was characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy, and auger electronic spectrometer. Biological evaluations were performed with rabbit cornea fibroblast in vitro and an animal model in vivo. The outcomes showed the coating had a grain-like surface topography and a good atomic mixed area with substrate. The rabbit cornea fibroblasts appeared a good adhesion on the surface of nanostructured hydroxyapatite in vitro. In the animal model, nanostructured hydroxyapatite-titanium implants were stably retained in the rabbit cornea, and by contrast, the corneal stroma became thinner anterior to the implants in the control. Therefore, our findings proved that nanostructured hydroxyapatite-titanium could not only provide an improved bond for substrate but also enhance the tissue integration with implants in host. As a promising material, nanostructured hydroxyapatite-titanium-based keratoprosthesis prepared by the aerosol deposition method could be utilized for the corneal blindness treatment.
Liu, Yi; Zhou, Rongjing; Wu, Hongkun
2015-06-01
This study aims to compare and determine a kind of nano-hydroxyapatite composite material with good antibacterial efficacy on Enterococcusfaecalis (E. faecalis) in vitro. We investigated the antimicrobial activity of four kinds of nano-hydroxyapatite composites, namely, silver/hydroxyapatite composite nanoparticles (Ag/nHA), yttrium/hydroxyapatite composite nanoparticles (Yi/nHA), cerium/hydroxyapatite composite nanoparticles (Ce/nHA), and hydroxyapatite nanoparticles (nHA), against E. faecalis in vitro using the agar diffusion and broth dilution method by measuring the growth inhibition zone and the minimum inhibitory concentration (MIC), respectively. The agar diffusion test results showed that Ag/nHA displayed an obvious growth inhibition zone, whereas Yi/nHA, Ce/nHA, and nHA showed no influence on E. faecalis. The MIC value of Ag/nHA was 1.0 g.L-1, and the three other materials had no effect on E.faecalis even at the high concentration of 32.0 g.L-1. Ag/nHA display a potential antimicrobial efficacy to planktonic E.faecalis. Whereas, the three other kinds of nano-hydroxyapatite composites (Yi/nHA, Ce/nHA, nHA) show no influence.
Improvement of the stability of hydroxyapatite through glass ceramic reinforcement.
Ha, Na Ra; Yang, Zheng Xun; Hwang, Kyu Hong; Kim, Tae Suk; Lee, Jong Kook
2010-05-01
Hydroxyapatite has achieved significant application in orthopedic and dental implants due to its excellent biocompatibility. Sintered hydroxyapatites showed significant dissolution, however, after their immersion in water or simulated body fluid (SBF). This grain boundary dissolution, even in pure hydroxyapatites, resulted in grain separation at the surfaces, and finally, in fracture. In this study, hydroxyapatite ceramics containing apatite-wollastonite (AW) or calcium silicate (SG) glass ceramics as additives were prepared to prevent the dissolution. AW and SG glass ceramics were added at 0-7 wt% and powder-compacted uniaxially followed by firing at moisture conditions. The glass phase was incorporated into the hydroxyapatite to act as a sintering aid, followed by crystallization, to improve the mechanical properties without reducing the biocompatibility. As seen in the results of the dissolution test, a significant amount of damage was reduced even after more than 14 days. TEM and SEM showed no decomposition of HA to the secondary phase, and the fracture toughness increased, becoming even higher than that of the commercial hydroxyapatite.
Zhong, Zhenyu; Ma, Jun
2017-09-01
Zinc substituted hydroxyapatite/silk fibroin composite coatings were deposited on titanium substrates at room temperature by electrophoretic deposition. Microscopic characterization of the synthesized composite nanoparticles revealed that the particle size ranged 50-200 nm, which increased a little after zinc substitution. The obtained coatings maintained the phase of hydroxyapatite and they could induce fast apatite formation in simulated body fluid, indicating high bone activity. The cell culturing results showed that the biomimetic hydroxyapatite coatings could regulate adhesion, spreading, and proliferation of osteoblastic cells. Furthermore, the biological behavior of the zinc substituted hydroxyapatite coatings was found to be better than the bare titanium without coatings and hydroxyapatite coatings without zinc, increasing MC3T1-E1 cell differentiation in alkaline phosphatase expression.
Chen, Yun-Lin; Lin, Tiao; Liu, An; Shi, Ming-Min; Hu, Bin; Shi, Zhong-Li; Yan, Shi-Gui
2015-01-28
There are some arguments between the use of hydroxyapatite and porous coating. Some studies have shown that there is no difference between these two coatings in total hip arthroplasty (THA), while several other studies have shown that hydroxyapatite has advantages over the porous one. We have collected the studies in Pubmed, MEDLINE, EMBASE, and the Cochrane library from the earliest possible years to present, with the search strategy of "(HA OR hydroxyapatite) AND ((total hip arthroplasty) OR (total hip replacement)) AND (RCT* OR randomiz* OR control* OR compar* OR trial*)". The randomized controlled trials and comparative observation trials that evaluated the clinical and radiographic effects between hydroxyapatite coating and porous coating were included. Our main outcome measurements were Harris hip score (HHS) and survival, while the secondary outcome measurements were osteolysis, radiolucent lines, and polyethylene wear. Twelve RCTs and 9 comparative observation trials were included. Hydroxyapatite coating could improve the HHS (p < 0.01), reduce the incidence of thigh pain (p = 0.01), and reduce the incidence of femoral osteolysis (p = 0.01), but hydroxyapatite coating had no advantages on survival (p = 0.32), polyethylene wear (p = 0.08), and radiolucent lines (p = 0.78). Hydroxyapatite coating has shown to have an advantage over porous coating. The HHS and survival was duration-dependent-if given the sufficient duration of follow-up, hydroxyapatite coating would be better than porous coating for the survival. The properties of hydroxyapatite and the implant design had influence on thigh pain incidence, femoral osteolysis, and polyethylene wear. Thickness of 50 to 80 μm and purity larger than 90% increased the thigh pain incidence. Anatomic design had less polyethylene wear.
Tapsir, Zafirah; Jamaludin, Farah H; Pingguan-Murphy, Belinda; Saidin, Syafiqah
2018-02-01
The utilisation of hydroxyapatite and collagen as bioactive coating materials could enhance cells attachment, proliferation and osseointegration. However, most methods to form crystal hydroxyapatite coating do not allow the incorporation of polymer/organic compound due to production phase of high sintering temperature. In this study, a polydopamine film was used as an intermediate layer to immobilise hydroxyapatite-collagen without the introduction of high sintering temperature. The surface roughness, coating adhesion, bioactivity and osteoblast attachment on the hydroxyapatite-collagen coating were assessed as these properties remains unknown on the polydopamine grafted film. The coating was developed by grafting stainless steel 316L disks with a polydopamine film. Collagen type I fibres were then immobilised on the grafted film, followed by the biomineralisation of hydroxyapatite. The surface roughness and coating adhesion analyses were later performed by using AFM instrument. An Alamar Blue assay was used to determine the cytotoxicity of the coating, while an alkaline phosphatase activity test was conducted to evaluate the osteogenic differentiation of human fetal osteoblasts on the coating. Finally, the morphology of cells attachment on the coating was visualised under FESEM. The highest RMS roughness and coating adhesion were observed on the hydroxyapatite-collagen coating (hydroxyapatite-coll-dopa). The hydroxyapatite-coll-dopa coating was non-toxic to the osteoblast cells with greater cells proliferation, greater level of alkaline phosphate production and more cells attachment. These results indicate that the immobilisation of hydroxyapatite and collagen using an intermediate polydopamine is identical to enhance coating adhesion, osteoblast cells attachment, proliferation and differentiation, and thus could be implemented as a coating material on orthopaedic and dental implants.
Morphology and electronic structure of nanoscale powders of calcium hydroxyapatite
NASA Astrophysics Data System (ADS)
Kurgan, Nataly; Karbivskyy, Volodymyr; Kasyanenko, Vasyl
2015-02-01
Atomic force microscopy, infrared spectroscopy and NMR studied morphological and physicochemical properties of calcium hydroxyapatite powders produced by changing the temperature parameters of synthesis. Features of morphology formation of calcium hydroxyapatite nanoparticles with an annealing temperature within 200°C to 1,100°C were determined. It is shown that the particle size of the apatite obtained that annealed 700°C is 40 nm corresponding to the particle size of apatite in native bone. The effect of dimension factor on structural parameters of calcium hydroxyapatite is manifested in a more local symmetry of the PO4 3- tetrahedra at nanodispersed calcium hydroxyapatite.
NASA Astrophysics Data System (ADS)
Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr
2015-12-01
Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.
On the assessment of hydroxyapatite fluoridation by means of Raman scattering
NASA Astrophysics Data System (ADS)
Campillo, M.; Lacharmoise, P. D.; Reparaz, J. S.; Goñi, A. R.; Valiente, M.
2010-06-01
Hydroxyapatite is the main mineral component of bones and teeth. Fluorapatite, a bioceramic that can be obtained from hydroxyapatite by chemical substitution of the hydroxide ions with fluoride, exhibits lower mineral solubility and larger mechanical strength. Despite the widespread use of fluoride against caries, a reliable technique for unambiguous assessment of fluoridation in in vitro tests is still lacking. Here we present a method to probe fluorapatite formation in fluoridated hydroxyapatite by combining Raman scattering with thermal annealing. In synthetic minerals, we found that effectively fluoride substituted hydroxyapatite transforms into fluorapatite only after heat treatment, due to the high activation energy for this first order phase transition.
Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr
2015-12-01
Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.
NASA Astrophysics Data System (ADS)
Kanasan, Nanthini; Adzila, Sharifah; Suid, Mohd Syafiq; Gurubaran, P.
2016-07-01
In biomedical fields, synthetic scaffolds are being improved by using the ceramics, polymers and composites materials to avoid the limitations of allograft. Ceramic-polymer composites are appearing to be the most successful bone graft substitute in human body. The natural bones itself are well-known as composite of collagen and hydroxyapatite. In this research, precipitation method was used to synthesis hydroxyapatite (HA)/sodium alginate (SA) in various parameters. This paper describes the hydroxyapatite/sodium alginate biocomposite which suitable for use in bone defects or regeneration of bone through the characterizations which include FTIR, FESEM, EDS and DTA. In FTIR, the characteristi peaks of PO4-3 and OH- groups which corresponding to hydroxyapatite are existed in the mixing powders. The needle-size particle of hydroxyapatite/ alginate (HA/SA) are observed in FESEM in the range of 15.8nm-38.2nm.EDS confirmed the existence of HA/SA composition in the mixing powders. There is an endothermic peak which corresponds to the dehydration and the loss of physically adsorbed water molecules of the hydroxyapatite (HA)/sodium alginate (SA) powder which are described in DTA.
Carbon foam/hydroxyapatite coating for carbon/carbon composites: Microstructure and biocompatibility
NASA Astrophysics Data System (ADS)
Zhang, Leilei; Li, Hejun; Li, Kezhi; Zhang, Shouyang; Lu, Jinhua; Li, Wei; Cao, Sheng; Wang, Bin
2013-12-01
To improve the surface biocompatibility of carbon/carbon composites, a carbon foam/hydroxyapatite coating was applied using a combination method of slurry procedure and ultrasound-assisted electrochemical deposition procedure. The morphology, microstructure and chemical composition of the coating were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and X-ray diffraction. The biocompatibility of the carbon foam/hydroxyapatite coating was investigated by osteoblast-like MG63 cell culture tests. The results showed that the carbon foam could provide a large number of pores on the surface of carbon/carbon composites. The hydroxyapatite crystals could infiltrate into the pores and form the carbon foam/hydroxyapatite coating. The coating covered the carbon/carbon composites fully and uniformly with slice morphology. The cell response tests showed that the MG63 cells on carbon foam/hydroxyapatite coating had a better cell adhesion and cell proliferation than those on uncoated carbon/carbon composites. The carbon foam/hydroxyapatite coatings were cytocompatible and were beneficial to improve the biocompatibility. The approach presented here may be exploited for fabrication of carbon/carbon composite implant surfaces.
Seo, Dong Seok; Lee, Jong Kook; Hwang, Kyu Hong; Hahn, Byung Dong; Yoon, Seog Young
2015-08-01
Three types of raw materials were used for the fabrication of hydroxyapatite coatings by using the room temperature spraying method and their influence on the microstructure and in vitro characteristics were investigated. Starting hydroxyapatite powders for coatings on titanium substrate were prepared by a heat treatment at 1100 °C for 2 h of bovine bone, bone ash, and commercial hydroxyapatite powders. The phase compositions and Ca/P ratios of the three hydroxyapatite coatings were similar to those of the raw materials without decomposition or formation of a new phase. All hydroxyapatite coatings showed a honeycomb structure, but their surface microstructures revealed different features in regards to surface morphology and roughness, based on the staring materials. All coatings consisted of nano-sized grains and had dense microstructure. Inferred from in vitro experiments in pure water, all coatings have a good dissolution-resistance and biostability in water.
Surface free energy predominates in cell adhesion to hydroxyapatite through wettability.
Nakamura, Miho; Hori, Naoko; Ando, Hiroshi; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro
2016-05-01
The initial adhesion of cells to biomaterials is critical in the regulation of subsequent cell behaviors. The purpose of this study was to investigate a mechanism through which the surface wettability of biomaterials can be improved and determine the effects of biomaterial surface characteristics on cellular behaviors. We investigated the surface characteristics of various types of hydroxyapatite after sintering in different atmospheres and examined the effects of various surface characteristics on cell adhesion to study cell-biomaterial interactions. Sintering atmosphere affects the polarization capacity of hydroxyapatite by changing hydroxide ion content and grain size. Compared with hydroxyapatite sintered in air, hydroxyapatite sintered in saturated water vapor had a higher polarization capacity that increased surface free energy and improved wettability, which in turn accelerated cell adhesion. We determined the optimal conditions of hydroxyapatite polarization for the improvement of surface wettability and acceleration of cell adhesion. Copyright © 2016 Elsevier B.V. All rights reserved.
[Cytocompatibility of nanophase hydroxyapatite ceramics].
Wen, Bo; Chen, Zhi-qing; Jiang, Yin-shan; Yang, Zheng-wen; Xu, Yong-zhong
2004-12-01
To evaluate the cytocompatibility of nanophase hydroxyapatite ceramics in vitro. Hydroxyapatite (HA) was prepared via wet method. The grain size of the hydroxyapatite in the study was determined by scanning electron microscope and atomic force microscope with image analysis software. Primary osteoblast culture was established from rat calvaria. Cell adherence and proliferation on nanophase hydroxyapatite ceramics and conventional hydroxyapatite ceramics were examined at 1, 3, 5, 7 days. Morphology of the cells was observed by microscope. The average grain size of the nanophase and conventional HA was 55 nm and 780 nm, respectively. Throughout 7 days period, osteoblast proliferation on the HA was similar to that on tissue culture borosilicate glass controls, osteoblasts could attach, spread and proliferate on HA. However, compared to conventional ceramics, osteoblast proliferation on nanophase HA was significantly better after 1, 3, 5 and 7 days. Cytocompatibility of nanophase HA was significantly better than conventional ceramics.
[In Situ Polymerization and Characterization of Hydroxyapatite/polyurethane Implanted Material].
Gu, Muqing; Xiao, Fengjuan; Liang, Ye; Yue, Lin; Li, Song; Li, Lanlan; Feng, Feifei
2015-08-01
In order to improve the interfacial bonding strength of hydroxyapatite/polyurethane implanted material and dispersion of hydroxyapatite in the polyurethane matrix, we in the present study synthesized nano-hydroxyapatite/polyurethane composites by in situ polymerization. We then characterized and analyzed the fracture morphology, thermal stability, glass transition temperature and mechanical properties. We seeded MG63 cells on composites to evaluate the cytocompatibility of the composites. In situ polymerization could improve the interfacial bonding strength, ameliorate dispersion of hydroxyapatite in the properties of the composites. After adding 20 wt% hydroxyapatite into the polyurethane, the thermal stability was improved and the glass transition temperatures were increased. The tensile strength and maximum elongation were 6.83 MPa and 861.17%, respectively. Compared with those of pure polyurethane the tensile strength and maximum elongation increased by 236.45% and 143.30%, respectively. The composites were helpful for cell adhesion and proliferation in cultivation.
Mathew, Dennis; Bhardwaj, Garima; Wang, Qi; Sun, Linlin; Ercan, Batur; Geetha, Manisavagam; Webster, Thomas J
2014-01-01
Plasma-spray deposition of hydroxyapatite on titanium (Ti) has proven to be a suboptimal solution to improve orthopedic-implant success rates, as demonstrated by the increasing number of orthopedic revision surgeries due to infection, implant loosening, and a myriad of other reasons. This could be in part due to the high heat involved during plasma-spray deposition, which significantly increases hydroxyapatite crystal growth into the nonbiologically inspired micron regime. There has been a push to create nanotopographies on implant surfaces to mimic the physiological nanostructure of native bone and, thus, improve osteoblast (bone-forming cell) functions and inhibit bacteria functions. Among the several techniques that have been adopted to develop nanocoatings, electrophoretic deposition (EPD) is an attractive, versatile, and effective material-processing technique. The in vitro study reported here aimed to determine for the first time bacteria responses to hydroxyapatite coated on Ti via EPD. There were six and three times more osteoblasts on the electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 5 days of culture, respectively. Impressively, there were 2.9 and 31.7 times less Staphylococcus aureus on electrophoretic-deposited hydroxyapatite on Ti compared with Ti (control) and plasma-spray-deposited hydroxyapatite on Ti after 18 hours of culture, respectively. Compared with uncoated Ti and plasma-sprayed hydroxyapatite coated on Ti, the results provided significant promise for the use of EPD to improve bone-cell density and be used as an antibacterial coating without resorting to the use of antibiotics.
LIBS analysis of hydroxyapatite extracted from bovine bone for Ca/P ratio measurements
NASA Astrophysics Data System (ADS)
Tariq, Usman; Haider, Zuhaib; Hussain, Rafaqat; Tufail, Kashif; Ali, Jalil
2017-03-01
Hydroxyapatite has been extensively used as a potential biocompatible ceramic in many orhtopedic applications. Hydroxyapatite is one of the members of calcium phosphate family and been used extensively as a bone substitute. The mechanical properties of hydroxyapatite itself, ceramics and bone cements prepared from hydroxyapatite vary greatly with slight variation in its Ca/P ratio. At present EDX, XRD, XRF and ICP-OES are being used for the determination of Ca/P ratio in hydroxyapatite. These techniques require special sample preparation, may also use toxic chemicals and usually are not very fast in giving the measurements. We report LIBS as a rapid alternative technique for calculation of Ca/P ratio in hydroxyapatite extracted from bovine bone (BHA). Ca/P ratio in laboratory prepared HA is calculated using LIBS and the results are validated against EDX results Ca/P ratio of the hydroxyapatite was calculated as 1.54±0.19 using LIBS while 1.63±0.03 using EDX. Ca/P ratio calculated by LIBS and EDX and showed comparable results with a difference of 5.5%. Moreover, plasma temperature and the ratio of the calcium (ion) line to calcium (atomic) line did not show significant variation in plasma conditions during measurements. The present study has demonstrated that LIBS can also be used for the determination of Ca/P ratio of hydroxyapatite and other calcium phosphates. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 24 May 2017.
Template-directed synthesis and selective adsorption of oligoadenylates in hydroxyapatite
NASA Technical Reports Server (NTRS)
Gibbs, D.; Lohrmann, R.; Orgel, L. E.
1980-01-01
Polyuridylic acid is adsorbed completely from aqueous solution by hydroxyapatite under conditions that permit template-directed synthesis of oligoadenylates in free solution. The yield of oligoadenylates is enhanced to almost the same extent by poly(U) in the presence or the absence of hydroxyapatite. Under very similar conditions small quantities of hydroxyapatite adsorb higher-molecular-weight oligoadenylates selectively from a mixture of oligomers. On the basis of these results a mechanism for prebiotic oligonucleotide formation is proposed in which selective adsorption on hydroxyapatite or some other immobilized anion-exchanging material plays a major role. Monomers are released from the surface for reactivation, while oligomers are retained in a protected environment by adsorption to the apatite surface.
Preparation and characterization of collagen-hydroxyapatite/pectin composite.
Wenpo, Feng; Gaofeng, Liang; Shuying, Feng; Yuanming, Qi; Keyong, Tang
2015-03-01
Pectin, a kind of plant polysaccharide, was introduced into collagen-hydroxyapatite composite system, and prepared collagen-hydroxyapatite/pectin (Col-HA/pectin) composite in situ. The structure of the composite was investigated by XRD, SEM, and FT-IR. The mechanical properties, water absorption, enzyme degradation, and cytotoxicity of the composite were investigated as well. The results show that the inorganic substance in the composite materials is hydroxyapatite in relatively low crystallinity. A new interface appeared by the interaction among hydroxyapatite and collagen-pectin, and formed smooth fine particles. The mechanical properties, water absorption, enzyme degradation, and cytotoxicity indicate a potential use in bone replacement for the new composite. Copyright © 2014 Elsevier B.V. All rights reserved.
Spectral analysis of allogeneic hydroxyapatite powders
NASA Astrophysics Data System (ADS)
Timchenko, P. E.; Timchenko, E. V.; Pisareva, E. V.; Vlasov, M. Yu; Red'kin, N. A.; Frolov, O. O.
2017-01-01
In this paper we discuss the application of Raman spectroscopy to the in vitro analysis of the hydroxyapatite powder samples produced from different types of animal bone tissue during demineralization process at various acid concentrations and exposure durations. The derivation of the Raman spectrum of hydroxyapatite is attempted by the analysis of the pure powders of its known constituents. Were experimentally found spectral features of hydroxyapatite, based on analysis of the line amplitude at wave numbers 950-965 cm-1 ((PO4)3- (ν1) vibration) and 1065-1075 cm-1 ((CO3)2-(ν1) B-type replacement). Control of physicochemical properties of hydroxyapatite was carried out by Raman spectroscopy. Research results are compared with an infrared Fourier spectroscopy.
Bio resorbability of the modified hydroxyapatite in Tris-HCL buffer
NASA Astrophysics Data System (ADS)
Golovanova, O. A.; Izmailov, R. R.; Ghyngazov, S. A.
2016-02-01
The solubility of carbonated hydroxyapatite powders and granulated carbonated hydroxyapatite produced from the synovial biofluid model solution has been studied. The kinetic characteristics of dissolution were determined. It was found that the solubility of carbonated hydroxyapatite is higher as compared to that of hydroxyapatite. The impact of the organic matrix on the rate of sample dissolution was revealed. For HA-gelatin composites, as the gelatin concentration grows, the dissolution rate becomes greater, and a sample of 6.0 g / L concentration has higher resorbability. The results of the research can be used to study the kinetics of dissolution and the biocompatibility of ceramic materials for medicine, namely for reconstructive surgery, dentistry, and development of drug delivery systems.
Multiplexed microfluidic approach for nucleic acid enrichment
VanderNoot, Victoria A.; Langevin, Stanley Alan; Bent, Zachary; Renzi, Ronald F.; Ferko, Scott M.; Van De Vreugde, James L.; Lane, Todd; Patel, Kamlesh; Branda, Steven
2016-04-26
A system for enhancing a nucleic acid sample may include a one pump, a denaturing chamber; a microfluidic hydroxyapatite chromatography device configured for performing hydroxyapatite chromatography on the nucleic acid sample, a sample collector, and tubing connecting the pump with the denaturing chamber, the hydroxyapatite chromatography device and the sample collector such that the pump may be used to move the nucleic acid sample from the denaturing chamber to the hydroxyapatite chromatography device and then to the sample collector.
Simple route for nano-hydroxyapatite properties expansion.
Rojas, L; Olmedo, H; García-Piñeres, A J; Silveira, C; Tasic, L; Fraga, F; Montero, M L
2015-10-20
Simple surface modification of nano-hydroxyapatite, through acid-basic reactions, allows expanding the properties of this material. Introduction of organic groups such as hydrophobic alkyl chains, carboxylic acid, and amide or amine basic groups on the hydroxyapatite surface systematically change the polarity, surface area, and reactivity of hydroxyapatite without modifying its phase. Physical and chemical properties of the new derivative particles were analyzed. The biocompatibility of modified Nano-Hap on Raw 264.7 cells was also assessed.
Nam, J W; Khureltogtokh, S; Choi, H M; Lee, A R; Park, Y B; Kim, H J
2017-10-01
The aim of this randomised controlled clinical trial was to assess the early efficacy of bone morphogenetic protein-2 with hydroxyapatite granules (BMP-2/hydroxyapatite) on augmentation of the alveolar ridge, by comparing changes in volume with those associated with the use of an inorganic bovine-derived xenograft (BDX). We studied 20 patients who were divided into two groups using a table of random numbers, and BMP-2/hydroxyapatite and BDX were applied accordingly. Computed tomographic (CT) images and panoramic radiographs were obtained immediately after operation and four months later. CT images were reconstructed in three dimensions to measure volumetric changes, and linear measurements were made on panoramic images. The mean (SD) absorption rates for BMP-2/hydroxyapatite and BDX were 13.2 (8.8)% and 13.8 (20.5)%, respectively. While the mean value did not differ significantly between the two materials, the SD was higher in the BDX group than in the BMP-2/hydroxyapatite group. No clinically important complications occurred in either group. We conclude that both BMP-2/hydroxyapatite and BDX were effective in augmenting the alveolar ridge, but BMP-2/hydroxyapatite seemed to be more useful in complicated bone defects. Copyright © 2017 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Geven, Mike A; Barbieri, Davide; Yuan, Huipin; de Bruijn, Joost D; Grijpma, Dirk W
2015-01-01
Composite materials of photo-crosslinked poly(trimethylene carbonate) and nanoscale hydroxyapatite were prepared and their mechanical characteristics for application as orbital floor implants were assessed. The composites were prepared by solvent casting poly(trimethylene carbonate) macromers with varying amounts of nano-hydroxyapatite and subsequent photo-crosslinking. The incorporation of the nano-hydroxyapatite into the composites was examined by thermogravimetric analysis, scanning electron microscopy and gel content measurements. The mechanical properties were investigated by tensile testing and trouser tearing experiments. Our results show that nano-hydroxyapatite particles can readily be incorporated into photo-crosslinked poly(trimethylene carbonate) networks. Compared to the networks without nano-hydroxyapatite, incorporation of 36.3 wt.% of the apatite resulted in an increase of the E modulus, yield strength and tensile strength from 2.2 MPa to 51 MPa, 0.5 to 1.4 N/mm2 and from 1.3 to 3.9 N/mm2, respectively. We found that composites containing 12.4 wt.% nano-hydroxyapatite had the highest values of strain at break, toughness and average tear propagation strength (376% , 777 N/mm2 and 3.1 N/mm2, respectively).
Pezzotti, Giuseppe; Sakakura, Seiji
2003-05-01
A Raman microprobe spectroscopy characterization of microscopic fracture mechanisms is presented for a natural hydroxyapatite material (cortical bovine femur) and two synthetic hydroxyapatite-based materials with biomimetic structures-a hydroxyapatite skeleton interpenetrated with a metallic (silver) or a polymeric (nylon-6) phase. In both the natural and synthetic materials, a conspicuous amount of toughening arose from a microscopic crack-bridging mechanism operated by elasto-plastic stretching of unbroken second-phase ligaments along the crack wake. This mechanism led to a rising R-curve behavior. An additional micromechanism, responsible for stress relaxation at the crack tip, was recognized in the natural bone material and was partly mimicked in the hydroxyapatite/silver composite. This crack-tip mechanism conspicuously enhanced the cortical bone material resistance to fracture initiation. A piezo-spectroscopic technique, based on a microprobe measurement of 980 cm(-1) Raman line of hydroxyapatite, enabled us to quantitatively assess in situ the microscopic stress fields developed during fracture both at the crack tip and along the crack wake. Using the Raman piezo-spectroscopy technique, toughening mechanisms were assessed quantitatively and rationally related to the macroscopic fracture characteristics of hydroxyapatite-based materials. Copyright 2003 Wiley Periodicals, Inc.
Chadda, Harshita; Naveen, Sangeetha Vasudevaraj; Mohan, Saktiswaren; Satapathy, Bhabani K; Ray, Alok R; Kamarul, Tunku
2016-07-01
Although the physical and mechanical properties of hydroxyapatite-filled dental restorative composite resins have been examined, the biocompatibility of these materials has not been studied in detail. The purpose of this in vitro study was to analyze the toxicity of acrylate-based restorative composite resins filled with hydroxyapatite and a silica/hydroxyapatite combination. Five different restorative materials based on bisphenol A-glycidyl methacrylate (bis-GMA) and tri-ethylene glycol dimethacrylate (TEGDMA) were developed: unfilled (H0), hydroxyapatite-filled (H30, H50), and silica/hydroxyapatite-filled (SH30, SH50) composite resins. These were tested for in vitro cytotoxicity by using human bone marrow mesenchymal stromal cells. Surface morphology, elemental composition, and functional groups were determined by scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), and Fourier-transformed infrared spectroscopy (FTIR). The spectra normalization, baseline corrections, and peak integration were carried out by OPUS v4.0 software. Both in vitro cytotoxicity results and SEM analysis indicated that the composite resins developed were nontoxic and supported cell adherence. Elemental analysis with EDX revealed the presence of carbon, oxygen, calcium, silicon, and gold, while the presence of methacrylate, hydroxyl, and methylene functional groups was confirmed through FTIR analysis. The characterization and compatibility studies showed that these hydroxyapatite-filled and silica/hydroxyapatite-filled bis-GMA/TEGDMA-based restorative composite resins are nontoxic to human bone marrow mesenchymal stromal cells and show a favorable biologic response, making them potential biomaterials. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Osteogenic efficacy of strontium hydroxyapatite micro-granules in osteoporotic rat model.
Chandran, Sunitha; Babu S, Suresh; Vs, Hari Krishnan; Varma, H K; John, Annie
2016-10-01
Excessive demineralization in osteoporotic bones impairs its self-regeneration potential following a defect/fracture and is of great concern among the aged population. In this context, implants with inherent osteogenic ability loaded with therapeutic ions like Strontium (Sr 2+ ) may bring forth promising outcomes. Micro-granular Strontium incorporated Hydroxyapatite scaffolds have been synthesized and in vivo osteogenic efficacy was evaluated in a long-term osteoporosis-induced aged (LOA) rat model. Micro-granules with improved surface area are anticipated to resorb faster and together with the inherent bioactive properties of Hydroxyapatite with the leaching of Strontium ions from the scaffold, osteoporotic bone healing may be promoted. Long-term osteoporosis-induced aged rat model was chosen to extrapolate the results to clinical osteoporotic condition in the aged. Micro-granular 10% Strontium incorporated Hydroxyapatite synthesized by wet precipitation method exhibited increased in vitro dissolution rate and inductively coupled plasma studies confirmed Strontium ion release of 0.01 mM, proving its therapeutic potential for osteoporotic applications. Wistar rats were induced to long-term osteoporosis-induced aged model by ovariectomy along with a prolonged induction period of 10 months. Thereafter, osteogenic efficacy of Strontium incorporated Hydroxyapatite micro-granules was evaluated in femoral bone defects in the long-term osteoporosis-induced aged model. Post eight weeks of implantation in vivo regeneration efficacy ratio was highest in the Strontium incorporated Hydroxyapatite implanted group (0.92 ± 0.04) compared to sham and Hydroxyapatite implanted group. Micro CT evaluation further substantiated the improved osteointegration of Strontium incorporated Hydroxyapatite implants from the density histograms. Thus, the therapeutical potential of micro-granular Strontium incorporated Hydroxyapatite scaffolds becomes relevant, especially as bone void fillers in osteoporotic cases of tumor resection or trauma. © The Author(s) 2016.
Yi, Seong; Rim, Dae-Cheol; Park, Seoung Woo; Murovic, Judith A; Lim, Jesse; Park, Jon
2015-06-01
In vertebrae with low bone mineral densities pull out strength is often poor, thus various substances have been used to fill screw holes before screw placement for corrective spine surgery. We performed biomechanical cadaveric studies to compare nonaugmented pedicle screws versus hydroxyapatite, calcium phosphate, or polymethylmethacrylate augmented pedicle screws for screw tightening torques and pull out strengths in spine procedures requiring bone screw insertion. Seven human cadaveric T10-L1 spines with 28 vertebral bodies were examined by x-ray to exclude bony abnormalities. Dual-energy x-ray absorptiometry scans evaluated bone mineral densities. Twenty of 28 vertebrae underwent ipsilateral fluoroscopic placement of 6-mm holes augmented with hydroxyapatite, calcium phosphate, or polymethylmethacrylate, followed by transpedicular screw placements. Controls were pedicle screw placements in the contralateral hemivertebrae without augmentation. All groups were evaluated for axial pull out strength using a biomechanical loading frame. Mean pedicle screw axial pull out strength compared with controls increased by 12.5% in hydroxyapatite augmented hemivertebrae (P = 0.600) and by 14.9% in calcium phosphate augmented hemivertebrae (P = 0.234), but the increase was not significant for either method. Pull out strength of polymethylmethacrylate versus hydroxyapatite augmented pedicle screws was 60.8% higher (P = 0.028). Hydroxyapatite and calcium phosphate augmentation in osteoporotic vertebrae showed a trend toward increased pedicle screw pull out strength versus controls. Pedicle screw pull out force of polymethylmethacrylate in the insertion stage was higher than that of hydroxyapatite. However, hydroxyapatite is likely a better clinical alternative to polymethylmethacrylate, as hydroxyapatite augmentation, unlike polymethylmethacrylate augmentation, stimulates bone growth and can be revised. Copyright © 2015 Elsevier Inc. All rights reserved.
The Effect of Zirconia in Hydroxyapatite on Staphylococcus epidermidis Growth.
Siswomihardjo, Widowati; Sunarintyas, Siti; Tontowi, Alva Edy
2012-01-01
Synthetic hydroxyapatite (HA) has been widely used and developed as the material for bone substitute in medical applications. The addition of zirconia is needed to improve the strength of hydroxyapatite as the bone substitute. One of the drawbacks in the use of biomedical materials is the occurrence of biomaterial-centred infections. The recent method of limiting the presence of microorganism on biomaterials is by providing biomaterial-bound metal-containing compositions. In this case, S. epidermidis is the most common infectious organism in biomedical-centred infection. Objective. This study was designed to evaluate the effect of zirconia concentrations in hydroxyapatite on the growth of S. epidermidis. Methods and Materials. The subjects of this study were twenty hydroxyapatite discs, divided into four groups in which one was the control and the other three were the treatment groups. Zirconia powder with the concentrations of 20%, 30%, and 40% was added into the three different treatment groups. Scanning electron microscope analysis was performed according to the hydroxyapatite and hydroxyapatite-zirconia specimens. All discs were immersed into S. epidermidis culture for 24 hours and later on they were soaked into a medium of PBS. The cultured medium was spread on mannitol salt agar. After incubation for 24 hours at 37°C , the number of colonies was measured with colony counter. Data obtained were analyzed using the ANOVA followed by the pairwise comparison. Result. The statistical analysis showed that different concentrations of zirconia powder significantly influenced the number of S. epidermidis colony (P < 0.05) . Conclusion. The addition of zirconia into hydroxyapatite affected the growth of S. epidermidis. Hydroxyapatite with 20% zirconia proved to be an effective concentration to inhibit the growth of S. epidermidis colony.
The Effect of Zirconia in Hydroxyapatite on Staphylococcus epidermidis Growth
Siswomihardjo, Widowati; Sunarintyas, Siti; Tontowi, Alva Edy
2012-01-01
Synthetic hydroxyapatite (HA) has been widely used and developed as the material for bone substitute in medical applications. The addition of zirconia is needed to improve the strength of hydroxyapatite as the bone substitute. One of the drawbacks in the use of biomedical materials is the occurrence of biomaterial-centred infections. The recent method of limiting the presence of microorganism on biomaterials is by providing biomaterial-bound metal-containing compositions. In this case, S. epidermidis is the most common infectious organism in biomedical-centred infection. Objective. This study was designed to evaluate the effect of zirconia concentrations in hydroxyapatite on the growth of S. epidermidis. Methods and Materials. The subjects of this study were twenty hydroxyapatite discs, divided into four groups in which one was the control and the other three were the treatment groups. Zirconia powder with the concentrations of 20%, 30%, and 40% was added into the three different treatment groups. Scanning electron microscope analysis was performed according to the hydroxyapatite and hydroxyapatite-zirconia specimens. All discs were immersed into S. epidermidis culture for 24 hours and later on they were soaked into a medium of PBS. The cultured medium was spread on mannitol salt agar. After incubation for 24 hours at 37°C , the number of colonies was measured with colony counter. Data obtained were analyzed using the ANOVA followed by the pairwise comparison. Result. The statistical analysis showed that different concentrations of zirconia powder significantly influenced the number of S. epidermidis colony (P < 0.05) . Conclusion. The addition of zirconia into hydroxyapatite affected the growth of S. epidermidis. Hydroxyapatite with 20% zirconia proved to be an effective concentration to inhibit the growth of S. epidermidis colony. PMID:22919390
Formation of pyrophosphate on hydroxyapatite with thioesters as condensing agents
NASA Technical Reports Server (NTRS)
Weber, A. L.
1982-01-01
'Energy-rich' thioesters are shown to act as condensing agents in the formation of pyrophosphate on hydroxyapatite in the presence of water at ambient temperature. The yield of pyrophosphate based on thioester ranges from 2.5% to 11.4% and depends upon the pH and concentration of reactants. Reaction of 0.130 M hydroxyapatite suspended in a solution of 0.08 M sodium phosphate and 0.20 M imidazole hydrochloride (pH 7.0) with 0.10 M N,S-diacetylcysteamine for 6 days gives the highest yield of pyrophosphate (11.4%). Pyrophosphate formation requires the presence of hydroxyapatite, sodium phosphate and the thioester, N,S-diacetylcysteamine. The related thioester, N,S-diacetylcysteine, also yields pyrophosphate in reactions on hydroxyapatite.
Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta
2015-06-01
Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA)(2-) and (NH4)2HPO4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Ciobanu, Gabriela; Ciobanu, Octavian
2013-04-01
This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D3, and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence. Copyright © 2012 Elsevier B.V. All rights reserved.
Sánchez Lafarga, Ana Karen; Pacheco Moisés, Fermín P; Gurinov, Andrey; Ortiz, Genaro Gabriel; Carbajal Arízaga, Gregorio Guadalupe
2015-03-01
The development of probes for biomedical applications demands materials with low toxicity levels besides fluorescence or magnetic properties to be detected by confocal microscopes or MRI resonators. Several drug delivery systems or other biomedical materials prepared with hydroxyapatite have been proposed, however, toxicity effects might arise when the size of particles is nanometric. In this study, hydroxyapatite functionalized with glucuronic or folic acids presented lower oxidative stress, measured from lipoperoxides and nitric oxide indicators in rats than pure hydroxyapatite. In separated experiments, hydroxyapatite was doped with dysprosium cations by coprecipitation producing a single crystal phase with fluorescent properties easily visualized by confocal microscopy when excited at 488nm. These particles also presented the ability to modify the proton relaxation time in T1 maps collected by magnetic resonance imaging. These modified hydroxyapatite nanoparticles could be candidates to design bimodal probes with low toxicity. Copyright © 2014 Elsevier B.V. All rights reserved.
Seo, Dong Seok; Chae, Hak Cheol; Lee, Jong Kook
2015-08-01
Hydroxyapatite coatings were fabricated on zirconia substrates by a room temperature spray process and were investigated with regards to their microstructure, composition and dissolution in water. An initial hydroxyapatite powder was prepared by heat treatment of bovine-bone derived powder at 1100 °C for 2 h, while dense zirconia substrates were fabricated by pressing 3Y-TZP powder and sintering it at 1350 °C for 2 h. Room temperature spray coating was performed using a slit nozzle in a low pressure-chamber with a controlled coating time. The phase composition of the resultant hydroxyapatite coatings was similar to that of the starting powder, however, the grain size of the hydroxyapatite particles was reduced to about 100 nm due to their formation by particle impaction and fracture. All areas of the coating had a similar morphology, consisting of reticulated structure with a high surface roughness. The hydroxyapatite coating layer exhibited biostability in a stimulated body fluid, with no severe dissolution being observed during in vitro experimentation.
Mistry, S; Kundu, D; Datta, S; Basu, D
2011-03-01
Current trends in clinical dental implant therapy include modification of titanium surfaces for the purpose of improving osseointegration by different additive (bioactive coatings) and subtractive processes (acid etching, grit-blasting). The aim of this study was to evaluate and compare the behaviour of hydroxyapatite and the newly developed bioactive glass coated implants (62 implants) in osseous tissue following implantation in 31 patients. Bioactive glass and hydroxyapatite was suitably coated on titanium alloy. Hydroxyapatite coating was applied on the implant surface by air microplasma spray technique and bioactive glass coating was applied by vitreous enamelling technique. The outcome was assessed up to 12 months after prosthetic loading using different clinical and radiological parameters. Hydroxyapatite and bioactive glass coating materials were non-toxic and biocompatible. Overall results showed that bioactive glass coated implants were as equally successful as hydroxyapatite in achieving osseointegration and supporting final restorations. The newly developed bioactive glass is a good alternative coating material for dental implants. © 2011 Australian Dental Association.
Epinette, Jean-Alain; Manley, Michael T
2008-10-01
Hydroxyapatite-coated unicompartmental knee arthroplasty (UKA) is a debatable approach to unicompartmental knee arthritis because UKA isoften viewed as a short-term solution, at best, fora condition that will eventually require a total knee arthroplasty (TKA). Unicompartmental knee arthroplasty is a more technically demanding procedure than TKA, and appropriate patient selection, careful surgical technique, and correct choice of implant geometry are all critical components to its success. A fundamental issue surrounding UKA is whether hydroxyapatite-coated unicompartmental components can provide a long-term solution to unicondylar arthritis. We address this issue in the current study, which is based on a prospective series of 125 hydroxyapatite-coated Unix knee prostheses implanted consecutively between 1994 and 2002, with a 5-year minimum follow-up and a 13-year maximum follow-up. The results of our study indicate that uncemented hydroxyapatite-coated UKA can be successful in the long term.
A process for the development of strontium hydroxyapatite
NASA Astrophysics Data System (ADS)
Zahra, N.; Fayyaz, M.; Iqbal, W.; Irfan, M.; Alam, S.
2014-06-01
A procedure for the preparation of Strontium Hydroxyapatite is adapted to produce high purity and better homogeneity ceramic with good Crystallinity. The strontium substituted bone cement has potential for use in orthopedic surgeries. Ionic Strontium (Sr) in humans shares the same physiological pathway as calcium and can be deposited in the mineral structure of the bone. In the present study, a novel concept of preparing Sr-contained Hydroxyapatite bone cement by using a precipitation method is proposed to get an ideal biomaterial that possesses potential degradability and more excellent pharmacological effect. Chemical analysis, Fourier Transform Infra Red analysis and Thermogravimetric/ Differential Scanning Calorimetric studies were conducted on prepared Strontium Hydroxyapatite sample to characterize the incorporation of 15% Sr2+ into the crystal lattice of Hydroxyapatite. Strontium was quantitatively incorporated into Hydroxyapatite where its substitution for calcium provoked a linear shift of the infrared absorption bands of the hydroxyl and phosphate groups. Thus, the formation of Sr-HAp was confirmed by Chemical Analysis, FT-IR and TGA/DSC results.
Development of hydroxyapatite derived from Indian coral.
Sivakumar, M; Kumar, T S; Shantha, K L; Rao, K P
1996-09-01
A simple method of converting the calcium carbonate skeleton of the corals available in the Indian coast into hydroxyapatite granules has been developed. By heating the coral to 900 degrees C, the organic materials were eliminated. Powder X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were employed to characterize the coral and to optimize the processing parameters as well as to confirm the hydroxyapatite formation. The coral used exhibits the presence of both aragonite and calcite phases (dimorphism). At a temperature of 900 degrees C the coral was found to decompose all the carbonate phases. The pre-heated coral is converted into hydroxyapatite by a chemical exchange reaction with di-ammonium phosphate under hydrothermal conditions. The hydroxyapatite obtained was in powder form and does not contain any impurities. The in vitro solubility test of the apatite granules performed in Gomoris, Michalelis, Sorensens, Ringer's and phosphate buffer of pH 7.2 and de-ionized water indicated the stability of the coralline hydroxyapatite.
Domingos, Marco; Gloria, Antonio; Coelho, Jorge; Bartolo, Paulo; Ciurana, Joaquim
2017-06-01
Bone tissue engineering is strongly dependent on the use of three-dimensional scaffolds that can act as templates to accommodate cells and support tissue ingrowth. Despite its wide application in tissue engineering research, polycaprolactone presents a very limited ability to induce adhesion, proliferation and osteogenic cell differentiation. To overcome some of these limitations, different calcium phosphates, such as hydroxyapatite and tricalcium phosphate, have been employed with relative success. This work investigates the influence of nano-hydroxyapatite and micro-hydroxyapatite (nHA and mHA, respectively) particles on the in vitro biomechanical performance of polycaprolactone/hydroxyapatite scaffolds. Morphological analysis performed with scanning electron microscopy allowed us to confirm the production of polycaprolactone/hydroxyapatite constructs with square interconnected pores of approximately 350 µm and to assess the distribution of hydroxyapatite particles within the polymer matrix. Compression mechanical tests showed an increase in polycaprolactone compressive modulus ( E) from 105.5 ± 11.2 to 138.8 ± 12.9 MPa (PCL_nHA) and 217.2 ± 21.8 MPa (PCL_mHA). In comparison to PCL_mHA scaffolds, the addition of nano-hydroxyapatite enhanced the adhesion and viability of human mesenchymal stem cells as confirmed by Alamar Blue assay. In addition, after 14 days of incubation, PCL_nHA scaffolds showed higher levels of alkaline phosphatase activity compared to polycaprolactone or PCL_mHA structures.
FORMATION OF CHLOROPYROMORPHITE IN A LEAD-CONTAMINATED SOIL AMENDED WITH HYDROXYAPATITE
To evaluate conversion of soil Pb to pyromorphite, a Pb contaminated soil collected adjacent to a historical smelter was reacted with hydroxyapatite in a traditional incubation experiment and in a dialysis system in which the soil and hydroxyapatite solids were separated by a dia...
USDA-ARS?s Scientific Manuscript database
Hydroxyapatite was prepared from catfish bones, called catfish hydroxyapatite (CFHA), by mechanical and chemical treatment methods and was characterized by x-ray diffraction (X-RD) and scanning electron microscope (SEM) techniques to confirm the presence of hydroxyapatite. The ability of CFHA to rem...
An expeditious and efficient protocol for the synthesis of naphthopyrans has been developed that proceeds via one-pot three-component sequential reaction in water catalyzed by hydroxyapatite or sodium-modified-hydroxyapatite. The title compounds have been obtained in high yield a...
Sneha, Murugesan; Sundaram, Nachiappan Meenakshi
2015-01-01
Recently, multifunctional magnetic nanostructures have been found to have potential applications in biomedical and tissue engineering. Iron oxide nanoparticles are biocompatible and have distinctive magnetic properties that allow their use in vivo for drug delivery and hyperthermia, and as T2 contrast agents for magnetic resonance imaging. Hydroxyapatite is used frequently due to its well-known biocompatibility, bioactivity, and lack of toxicity, so a combination of iron oxide and hydroxyapatite materials could be useful because hydroxyapatite has better bone-bonding ability. In this study, we prepared nanocomposites of iron oxide and hydroxyapatite and analyzed their physicochemical properties. The results suggest that these composites have superparamagnetic as well as biocompatible properties. This type of material architecture would be well suited for bone cancer therapy and other biomedical applications.
Katoh, Masahiko; Risky, Elsya; Sato, Takeshi
2017-10-23
This study conducted plant growth tests using a rhizobox system to quantitatively determine the distance of immobilization lead migrating from contaminated soil into uncontaminated rhizosphere soil, and to assess the lead phases accumulated in rhizosphere soil by sequential extraction. Without the hydroxyapatite, exchangeable lead fractions increased as the rhizosphere soil got closer to the contaminated soil. Exchangeable lead fractions were higher even in the rhizosphere soil that shares a boundary with the root surface than in the soil before being planted. Thus, plant growth of hairy vetch was lower in the soil without the hydroxyapatite than in the soil with the hydroxyapatite. The presence of hydroxyapatite may immobilize the majority of lead migrating from contaminated soil into the rhizosphere soil within 1 mm from the contaminated soil. The dominant lead fraction in the rhizosphere soil with the hydroxyapatite was residual. Thus, plant growth was not suppressed and the lead concentration of the plant shoot remained at the background level. These results indicate that the presence of hydroxyapatite in the rhizosphere soil at 5% wt may immobilize most of the lead migrating into the rhizosphere soil within 1 mm from the contaminated soil, resulting in the prevention of lead migration toward the root surface.
Biocompatibility of hydroxyapatite scaffolds processed by lithography-based additive manufacturing.
Tesavibul, Passakorn; Chantaweroad, Surapol; Laohaprapanon, Apinya; Channasanon, Somruethai; Uppanan, Paweena; Tanodekaew, Siriporn; Chalermkarnnon, Prasert; Sitthiseripratip, Kriskrai
2015-01-01
The fabrication of hydroxyapatite scaffolds for bone tissue engineering applications by using lithography-based additive manufacturing techniques has been introduced due to the abilities to control porous structures with suitable resolutions. In this research, the use of hydroxyapatite cellular structures, which are processed by lithography-based additive manufacturing machine, as a bone tissue engineering scaffold was investigated. The utilization of digital light processing system for additive manufacturing machine in laboratory scale was performed in order to fabricate the hydroxyapatite scaffold, of which biocompatibilities were eventually evaluated by direct contact and cell-culturing tests. In addition, the density and compressive strength of the scaffolds were also characterized. The results show that the hydroxyapatite scaffold at 77% of porosity with 91% of theoretical density and 0.36 MPa of the compressive strength are able to be processed. In comparison with a conventionally sintered hydroxyapatite, the scaffold did not present any cytotoxic signs while the viability of cells at 95.1% was reported. After 14 days of cell-culturing tests, the scaffold was able to be attached by pre-osteoblasts (MC3T3-E1) leading to cell proliferation and differentiation. The hydroxyapatite scaffold for bone tissue engineering was able to be processed by the lithography-based additive manufacturing machine while the biocompatibilities were also confirmed.
Risky, Elsya; Sato, Takeshi
2017-01-01
This study conducted plant growth tests using a rhizobox system to quantitatively determine the distance of immobilization lead migrating from contaminated soil into uncontaminated rhizosphere soil, and to assess the lead phases accumulated in rhizosphere soil by sequential extraction. Without the hydroxyapatite, exchangeable lead fractions increased as the rhizosphere soil got closer to the contaminated soil. Exchangeable lead fractions were higher even in the rhizosphere soil that shares a boundary with the root surface than in the soil before being planted. Thus, plant growth of hairy vetch was lower in the soil without the hydroxyapatite than in the soil with the hydroxyapatite. The presence of hydroxyapatite may immobilize the majority of lead migrating from contaminated soil into the rhizosphere soil within 1 mm from the contaminated soil. The dominant lead fraction in the rhizosphere soil with the hydroxyapatite was residual. Thus, plant growth was not suppressed and the lead concentration of the plant shoot remained at the background level. These results indicate that the presence of hydroxyapatite in the rhizosphere soil at 5% wt may immobilize most of the lead migrating into the rhizosphere soil within 1 mm from the contaminated soil, resulting in the prevention of lead migration toward the root surface. PMID:29065529
Facial skeletal augmentation using hydroxyapatite cement.
Shindo, M L; Costantino, P D; Friedman, C D; Chow, L C
1993-02-01
This study investigates the use of a new calcium phosphate cement, which sets to solid, microporous hydroxyapatite, for facial bone augmentation. In six dogs, the supraorbital ridges were augmented bilaterally with this hydroxyapatite cement. On one side, the hydroxyapatite cement was placed directly onto the bone within a subperiosteal pocket. On the opposite side, the cement was contained within a collagen membrane tubule and then inserted into a subperiosteal pocket. The use of collagen tubules facilitated easy, precise placement of the cement. All implants maintained their original augmented height throughout the duration of the study. They were well tolerated without extrusion or migration, and there was no significant sustained inflammatory response. Histologic studies, performed at 3, 6, and 9 months revealed that when the cement was placed directly onto bone, progressive replacement of the implant by bone (osseointegration of the hydroxyapatite with the underlying bone) without a loss of volume was observed. In contrast, when the cement-collagen tubule combination was inserted, primarily a fibrous union was noted. Despite such fibrous union, the hydroxyapatite-collagen implant solidly bonded to the underlying bone, and no implant resorption was observed. Hydroxyapatite cement can be used successfully for the experimental augmentation of the craniofacial skeleton and may be applicable for such uses in humans.
Hydroxyapatite granules used in the obliteration of mastoid cavities in rats.
Hamerschmidt, Rogério; Santos, Rafael Francisco dos; Araújo, João Cândido; Stahlke, Henrique Jorge; Agulham, Miguel Angelo; Moreira, Ana Tereza Ramos; Mocellin, Marcos
2011-06-01
Prospective experimental study in which we created a bony defect in the mastoids of rats and filled it up with hydroxyapatite to evaluate bone regeneration, to solve the problems of open cavities after mastoidectomies that frequently present with otorrhea, infection, granulation tissue and hearing loss. The aim was to evaluate bone regeneration in defects created in the mastoids of rats, using hydroxyapatite, to see how much of the cavity we could reduce. Twelve rats Wistar-Furth were used. A 0.5 x 0.5 cm bone defect was created in both temporal bones of the rats, and filled with 15 micrograms of hydroxyapatite. The left side was used as control. The animals were slaughtered 40 days afterwards and histology analyses were carried out. In the hydroxyapatite group, the new bone growth involved an area of 68.53% of the total; and in the control group it was only of 15.97%. It was observed a very good hydroxyapatite integration to the temporal bone in this experimental model. The microscopic results were superior with the use of hydroxyapatite when compared to the control group. It is a safe method and easy to apply to solve the problems of open cavities with chronic discharge and difficult to clean.
The hydroxyapatite-binding regions of a rat salivary glycoprotein.
Embery, G; Green, D R
1989-09-01
The regions of a salivary sulphated glycoprotein which are involved in its attachment to hydroxyapatite (Biogel HTP) have been characterised. The sulphated glycoprotein, a 35S-labelled preparation from mixed palatal and buccal minor gland secretions of the rat was bound onto hydroxyapatite and the resultant glycoprotein-hydroxyapatite complex was sequentially digested with pronase E and alpha-L-fucosidase, a treatment which released 86.8% +/- 1.7% of the radioactivity of the initially bound glycoprotein. The fragments which remained attached to the hydroxyapatite after enzymic digestion were fractionated on Sephadex G-25 and analysed for carbohydrate and amino acid components. A range of amino acids were detected which could reflect both glycosylated and non-glycosylated-binding regions. Sialic acid, although considered to be involved in the attachment process was not detected in any of the fragments remaining after enzymic digestion, a finding which provides indirect evidence that the enzymically liberated products do not subsequently re-attach to the hydroxyapatite surface. The notable feature of the fractions with average Mr estimated at 1000 or less is the high proportion of N-acetylhexosamine and N-acetylgalactosamine. It is apparent that the hexosamine residues, which normally bear the ester sulphate moieties of sulphated glycoproteins, play an important role in the attachment of sulphated glycoproteins to hydroxyapatite.
NASA Astrophysics Data System (ADS)
Verma, Devendra
In this dissertation, novel biomaterials are designed for bone biomaterials and bone tissue engineering applications. Novel biomaterials of hydroxyapatite with synthetic and natural polymers have been fabricated using a combination of processing routes. Initially, we investigated hydroxyapatite-polycaprolactone-polyacrylic acid composites and observed that minimal interfacial interactions between polymer and mineral led to inadequate improvement in the mechanical properties. Bioactivity experiments on these composites showed that the presence of functional groups, such as carboxylate groups, influence bioactivity of the composites. We have developed and investigated composites of hydroxyapatite with chitosan and polygalacturonic acid (PgA). Chitosan and PgA are biocompatible, biodegradable, and also electrostatically complementary to each other. This strategy led to significant improvement in mechanical properties of new composites. The nanostructure analysis using atomic force microscopy revealed a multilevel organization in these composites. Enhancement in mechanical response was attributed to stronger interfaces due to strong electrostatic interaction between oppositely charged chitosan and PgA. Further analysis using the Rietveld method showed that biopolymers have marked impact on hydroxyapatite crystal growth and also on its crystal structure. Significant changes were observed in the lattice parameters of hydroxyapatite synthesized by following biomineralization method (organics mediated mineralization). For scaffold preparation, chitosan and PgA were mixed first, and then, nano-hydroxyapatite was added. Oppositely charged polyelectrolytes, such as chitosan and PgA, spontaneously form complex upon mixing. The poly-electrolyte complex exists as nano-sized particles. Chitosan/PgA scaffolds with and without hydroxyapatite were prepared by the freeze drying method. By controlling the rate of cooling and concentration, we have produced both fibrous and sheet-containing scaffolds. Hydroxyapatite-containing chitosan/PgA scaffolds maintained their structural integrity under wet conditions. These scaffolds showed extremely porous (97.4%) and interconnected architecture. These scaffolds also promoted cell adhesion, proliferation and differentiation, Osteoblast cells formed nodular structure on thin films and scaffold. Mineralization of these nodules was confirmed by alizarin red S staining. Even after 20 days of seeding, all the cells were found alive. Our results indicated that chitosan-PgA-hydroxyapatite composite scaffolds have high potential for bone tissue engineering. This dissertation represents a comprehensive study on design of novel bone biomaterials through tailoring of interfaces in nanocomposites of polymers, biopolymer and hydroxyapatite.
Chen, Yantian; Zhang, Fengli; Fu, Qiang; Liu, Yong; Wang, Zejian; Qi, Nianmin
2016-09-01
Injectable thermo-sensitive hydrogels have a potential application in bone tissue engineering for their sensitivities and minimal invasive properties. Human dental pulp stem cells have been considered a promising tool for tissue reconstruction. The objective of this study was to investigate the proliferation and osteogenic differentiation of dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel in vitro. The chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel were prepared using the sol-gel method. The injectability of chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel was measured using a commercial disposable syringe. Scanning electron microscopy was used to observe the inner structure of hydrogels. Then dental pulp stem cells were seeded in chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel, respectively. The growth of dental pulp stem cells was periodically observed under an inverted microscope. The proliferation of dental pulp stem cells was detected by using an Alamar Blue kit, while cell apoptosis was determined by using a Live/Dead Viability/Cytotoxicity kit. The osteogenic differentiations of dental pulp stem cells in chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel were evaluated by alkaline phosphatase activity assay and mRNA expression of osteogenesis gene for 21 days in osteogenic medium. The results indicated that there was no significant difference between chitosan /β-glycerophosphate hydrogel and chitosan/β-glycerophosphate/hydroxyapatite hydrogel in injectability. Cells within the chitosan/β-glycerophosphate/hydroxyapatite hydrogel displayed a typical adherent cell morphology and rapid proliferation with high cellular viability after 14 days of culture. Dental pulp stem cells seeded in chitosan/β-glycerophosphate/hydroxyapatite hydrogels had a higher alkaline phosphatase activity and better up-regulation of gene expression levels of Runx-2, Collagen I, alkaline phosphatase and osteocalcin than in chitosan /β-glycerophosphate hydrogels after osteogenic differentiation. These results demonstrated that the chitosan/β-glycerophosphate/hydroxyapatite hydrogel had excellent cellular compatibility and the superiority in promoting dental pulp stem cells osteogenic differentiation in vitro, showing that the combination of dental pulp stem cells and chitosan/β-glycerophosphate/hydroxyapatite hydrogel has the potential to be used for bone tissue engineering. © The Author(s) 2016.
Kumar, Alok; Akkineni, Ashwini R; Basu, Bikramjit; Gelinsky, Michael
2016-03-01
Scaffolds for bone tissue engineering are essentially characterized by porous three-dimensional structures with interconnected pores to facilitate the exchange of nutrients and removal of waste products from cells, thereby promoting cell proliferation in such engineered scaffolds. Although hydroxyapatite is widely being considered for bone tissue engineering applications due to its occurrence in the natural extracellular matrix of this tissue, limited reports are available on additive manufacturing of hydroxyapatite-based materials. In this perspective, hydroxyapatite-based three-dimensional porous scaffolds with two different binders (maltodextrin and sodium alginate) were fabricated using the extrusion method of three-dimensional plotting and the results were compared in reference to the structural properties of scaffolds processed via chemical stabilization and sintering routes, respectively. With the optimal processing conditions regarding to pH and viscosity of binder-loaded hydroxyapatite pastes, scaffolds with parallelepiped porous architecture having up to 74% porosity were fabricated. Interestingly, sintering of the as-plotted hydroxyapatite-sodium alginate (cross-linked with CaCl2 solution) scaffolds led to the formation of chlorapatite (Ca9.54P5.98O23.8Cl1.60(OH)2.74). Both the sintered scaffolds displayed progressive deformation and delayed fracture under compressive loading, with hydroxyapatite-alginate scaffolds exhibiting a higher compressive strength (9.5 ± 0.5 MPa) than hydroxyapatite-maltodextrin scaffolds (7.0 ± 0.6 MPa). The difference in properties is explained in terms of the phase assemblage and microstructure. © The Author(s) 2015.
Activity of vancomycin release from bioinspired coatings of hydroxyapatite or TiO2 nanotubes.
Ionita, Daniela; Bajenaru-Georgescu, Daniela; Totea, Georgeta; Mazare, Anca; Schmuki, Patrik; Demetrescu, Ioana
2017-01-30
Herein we investigate the efficiency of various biomimetic coatings for localized drug delivery, using vancomycin as key therapeutic drug, which is a widely used antibiotic for the treatment of strong infections caused by positive Gram bacteria. We evaluate classical hydroxyapatite and biomimetic hydroxyapatite-collagen coatings obtained by electrochemical deposition as well as TiO 2 nanotubes arrays obtained by electrochemical anodization. Surface morphology, compositional and structural data confirm the incorporation of vancomycin into the layers and drug release profiles for vancomycin evaluate their release ability. Namely, hydroxyapatite coatings lead to a ≈92% vancomycin release after 30h and hydroxyapatite-collagen to 85%, while the TiO 2 nanotubes layers lead to 78% release. The antibacterial effect of such drug loaded coatings is evaluated against S. aureus (Gram-positive bacteria). Our study shows that the vancomycin incorporated hydroxyapatite coatings lead to a faster release, while the nanotubular coatings may lead to longer time release and additionally both types of coatings ensure a good antibacterial inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Maleki-Ghaleh, H.; Aghaie, E.; Nadernezhad, A.; Zargarzadeh, M.; Khakzad, A.; Shakeri, M. S.; Beygi Khosrowshahi, Y.; Siadati, M. H.
2016-06-01
Modern techniques for expanding stem cells play a substantial role in tissue engineering: the raw material that facilitates regeneration of damaged tissues and treats diseases. The environmental conditions and bioprocessing methods are the primary determinants of the rate of cultured stem cell proliferation. Bioceramic scaffolds made of calcium phosphate are effective substrates for optimal cell proliferation. The present study investigates the effects of two bioceramic scaffolds on proliferating cells in culture media. One scaffold was made of hydroxyapatite and the other was a mixture of hydroxyapatite and ferromagnetic material (Fe3O4 nanoparticles). Disk-shaped (10 mm × 2 mm) samples of the two scaffolds were prepared. Primary human fibroblast proliferation was 1.8- and 2.5-fold faster, respectively, when cultured in the presence of hydroxyapatite or ferrous nanoparticle/hydroxyapatite mixtures. Optical microscopy images revealed that the increased proliferation was due to enhanced cell-cell contact. The presence of magnetic Fe3O4 nanoparticles in the ceramic scaffolds significantly increased cell proliferation compared to hydroxyapatite scaffolds and tissue culture polystyrene.
Kilian, Olaf; Wenisch, Sabine; Karnati, Srikanth; Baumgart-Vogt, Eveline; Hild, Anne; Fuhrmann, Rosemarie; Jonuleit, Tarja; Dingeldein, Elvira; Schnettler, Reinhard; Franke, Ralf-Peter
2008-01-01
The microvascularization of metaphyseal bone defects filled with nanoparticulate, biodegradable hydroxyapatite biomaterial with and without platelet factors enrichment was investigated in a minipig model. Results from morphological analysis and PECAM-1 immunohistochemistry showed the formation of new blood vessels into the bone defects by sprouting and intussusception of pre-existing ones. However, no significant differences were observed in the microvascularization of the different biomaterials applied (pure versus platelet factors-enriched hydroxyapatite), concerning the number of vessels and their morphological structure at day 20 after operation. The appearance of VEGFR-2 positive endothelial progenitor cells in the connective tissue between hydroxyapatite particles was also found to be independent from platelet factors enrichment of the hydroxyapatite bone substitute. In both groups formation of lymphatic vessels was detected with a podoplanin antibody. No differences were noted between HA/PLF- and HA/PLF+ implants with respect to the podoplanin expression level, the staining pattern or number of lymphatic vessels. In conclusion, the present study demonstrates different mechanisms of blood and lymphatic vessel formation in hydroxyapatite implants in minipigs.
Okazaki, Masayuki; Hirata, Isao; Matsumoto, Takuya; Takahashi, Junzo
2005-12-01
The chemical analysis of hydroxyapatite and fluorapatite was carried out using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Hydroxyapatite and fluorapatite were synthesized at 80 +/- 1 degrees C and pH 7.4 +/- 0.2. Fluorapatite was better crystallized, with its (300) reflection shifted to a slightly higher angle. High-resolution transmission electron microscopy clearly revealed a typical, regular hexagonal cross section perpendicular to the c-axis for fluorapatite and a flattened hexagonal cross section for hydroxyapatite. FT-IR spectra of fluorapatite confirmed the absence of OH absorption peak--which was seen in hydroxyapatite at about 3570 cm(-1). TOF-SIMS mass spectra showed a peak at 40 amu due to calcium. In addition, a peak at 19 amu due to fluorine could be clearly seen, although the intensities of PO, PO2, and PO3 were very low. It was confirmed that TOF-SIMS clearly showed the differences between positive and negative mass spectra of hydroxyapatite and fluorapatite, especially for F-. We concluded that TOF-SIMS exhibited distinct advantages compared with other methods of analysis.
NASA Astrophysics Data System (ADS)
Kolmas, Joanna; Groszyk, Ewa; Piotrowska, Urszula
2015-07-01
In this work, we used the co-precipitation method to synthesize hydroxyapatite (Mn-SeO3-HA) containing both selenium IV (approximately 3.60 wt.%) and manganese II (approximately 0.29 wt.%). Pure hydroxyapatite (HA), hydroxyapatite-containing manganese (II) ions (Mn-HA), and hydroxyapatite-containing selenite ions alone (SeO3-HA), prepared with the same method, were used as reference materials. The structures and physicochemical properties of all the obtained samples were investigated. PXRD studies showed that the obtained materials were homogeneous and consisted of apatite phase. Introducing selenites into the hydroxyapatite crystals considerably affects the size and degree of ordering. Experiments with transmission electron microscopy (TEM) showed that Mn-SeO3-HA crystals are very small, needle-like, and tend to form agglomerates. Fourier transform infrared spectroscopy (FT-IR) and solid-state nuclear magnetic resonance (ssNMR) were used to analyze the structure of the obtained material. Preliminary microbiological tests showed that the material demonstrated antibacterial activity against Staphylococcus aureus, yet such properties were not confirmed regarding Escherichia coli. PACS codes: 61, 76, 81
Characterisation of Suspension Precipitated Nanocrystalline Hydroxyapatite Powders
NASA Astrophysics Data System (ADS)
Mallik, P. K.; Swain, P. K.; Patnaik, S. C.
2016-02-01
Hydroxyapatite (HA) is a well-known biomaterial for coating on femoral implants, filling of dental cavity and scaffold for tissue replacement. Hydroxyapatite possess limited load bearing capacity due to their brittleness. In this paper, the synthesis of nanocrystalline hydroxyapatite powders was prepared by dissolving calcium oxide in phosphoric acid, followed by addition of ammonia liquor in a beaker. The prepared solution was stirred by using magnetic stirrer operated at temperature of 80°C for an hour. This leads to the formation of hydroxyapatite precipitate. The precipitate was dried in oven for overnight at 100°C. The dried agglomerated precipitate was calcined at 800°C in conventional furnace for an hour. The influence of calcium oxide concentration and pH on the resulting precipitates was studied using BET, XRD and SEM. As result, a well-defined sub-rounded morphology of powders size of ∼41 nm was obtained with a salt concentration of 0.02 M. Finally, it can be concluded that small changes in the reaction conditions led to large changes in final size, shape and degree of aggregation of the hydroxyapatite particles.
The nature of the hydroxyapatite-binding site in salivary acidic proline-rich proteins.
Bennick, A; Cannon, M; Madapallimattam, G
1979-10-01
Protein A and C, which are major components of the acidic proline-rich proteins in human saliva, were digested, before or after adsorption to hydroxyapatite, with alkaline phosphatase, trypsin, thermolysin and a proteinase preparation from salivary sediment. The results demonstrate that the binding site is located in the proline-poor N-terminal part of the protein, possibly between residues 3 and 25. Phosphoserine is necessary for maximal adsorption of the proteins to hydroxyapatite. When proteins A and C are adsorbed to hydroxyapatite before proteolytic digestion there is a protection of some of the susceptible bonds in the N-terminal part of the proteins and a gradual removal of the proline-rich C-terminal part. Thermolysin can cleave susceptible bonds in the part of the protein that remains bound to hydroxyapatite, but at least some of the resulting peptides are retained on the mineral. Since the ability of the proteins to inhibit hydroxyapatite formation and to bind calcium is located in the N-terminal proline-poor part, it is possible that these activities are retained after proteolytic digestion of the adsorbed proteins.
Cobalt doped proangiogenic hydroxyapatite for bone tissue engineering application.
Kulanthaivel, Senthilguru; Roy, Bibhas; Agarwal, Tarun; Giri, Supratim; Pramanik, Krishna; Pal, Kunal; Ray, Sirsendu S; Maiti, Tapas K; Banerjee, Indranil
2016-01-01
The present study delineates the synthesis and characterization of cobalt doped proangiogenic-osteogenic hydroxyapatite. Hydroxyapatite samples, doped with varying concentrations of bivalent cobalt (Co(2+)) were prepared by the ammoniacal precipitation method and the extent of doping was measured by ICP-OES. The crystalline structure of the doped hydroxyapatite samples was confirmed by XRD and FTIR studies. Analysis pertaining to the effect of doped hydroxyapatite on cell cycle progression and proliferation of MG-63 cells revealed that the doping of cobalt supported the cell viability and proliferation up to a threshold limit. Furthermore, such level of doping also induced differentiation of the bone cells, which was evident from the higher expression of differentiation markers (Runx2 and Osterix) and better nodule formation (SEM study). Western blot analysis in conjugation with ELISA study confirmed that the doped HAp samples significantly increased the expression of HIF-1α and VEGF in MG-63 cells. The analysis described here confirms the proangiogenic-osteogenic properties of the cobalt doped hydroxyapatite and indicates its potential application in bone tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.
Oryan, A; Meimandi Parizi, A; Shafiei-Sarvestani, Z; Bigham, A S
2012-12-01
Hydroxyapatite is an osteoconductive material used as a bone graft extender and exhibits excellent biocompatibility with soft tissues such as skin, muscle and gums, making it an ideal candidate for orthopedic and dental implants or components of implants. Synthetic hydroxyapatite has been widely used in repair of hard tissues, and common uses include bone repair, bone augmentation, as well as coating of implants or acting as fillers in bone or teeth. On the other hand, human platelet rich plasma (hPRP) has been used as a source of osteoinductive factor. A combination of hPRP and hydroxyapatite is expected to create a composite with both osteoconductive and osteoinductive properties. This study examined the effect of a combination of hydroxyapatite and hPRP on osteogenesis in vivo, using rabbit model bone healing. A critical size defect of 10 mm long was created in the radial diaphysis of 36 rabbit and either supplied with hydroxyapatite-human PRP or hydroxyapatite or was left empty (control group). Radiographs of each forelimb were taken postoperatively on 1st day and then at the 2nd, 4th, 6th and 8th weeks post injury to evaluate bone formation, union and remodeling of the defect. The operated radiuses of half of the animals in each group were removed on 56th postoperative day and were grossly and histopathologically evaluated. In addition, biomechanical test was conducted on the operated and normal forearms of the other half of the animals of each group. This study demonstrated that hydroxyapatite-humanPRP, could promote bone regeneration in critical size defects with a high regenerative capacity. The results of the present study demonstrated that hydroxyapatite-hPRP could be an attractive alternative for reconstruction of the major diaphyseal defects of the long bones in animal models.
Comparison of hydroxyapatite and dental enamel for testing shear bond strengths.
Imthiaz, Nishat; Georgiou, George; Moles, David R; Jones, Steven P
2008-05-01
To investigate the feasibility of using artificial hydroxyapatite as a future biomimetic laboratory substitute for human enamel in orthodontic bond strength testing by comparing the shear bond strengths and nature of failure of brackets bonded to samples of hydroxyapatite and enamel. One hundred and fifty hydroxyapatite discs were prepared by compression at 20 tons and fired in a furnace at 1300 degrees C. One hundred and five enamel samples were prepared from the buccal and palatal/lingual surfaces of healthy premolars extracted for orthodontic purposes. Orthodontic brackets were bonded to each sample and these were subjected to shear bond strength testing using a custom-made jig mounted in an Instron Universal Testing Machine. The force value at bond failure was obtained, together with the nature of failure which was assessed using the Adhesive Remnant Index. The mean shear bond strength for the enamel samples was 16.62 MPa (95 per cent CI: 15.26, 17.98) and for the hydroxyapatite samples 20.83 MPa (95 per cent CI: 19.68, 21.98). The difference between the two samples was statistically significant (p < 0.001). When the nature of failure was assessed with the ARI Index, 83 per cent of the enamel samples scored 2 or 3, while 49 per cent of the hydroxyapatite samples scored 0 or 1. Hydroxyapatite was an effective biomimetic substrate for bond strength testing with a mean shear bond strength value (20.83 MPa) at the upper end of the normal range attributed to enamel (15-20 MPa). Although the difference between the shear bond strengths for hydroxyapatite and enamel was statistically significant, hydroxyapatite could be used as an alternative to enamel for comparative laboratory studies until a closer alternative is found. This would eliminate the need for extracted teeth to be collected. However, it should be used with caution for quantitative studies where true bond strengths are to be investigated.
Predoi, Daniela; Popa, Cristina Liana; Chapon, Patrick; Groza, Andreea; Iconaru, Simona Liliana
2016-01-01
The inhibitory and antimicrobial effects of silver particles have been known since ancient times. In the last few years, a major health problem has arisen due to pathogenic bacteria resistance to antimicrobial agents. The antibacterial activities of new materials including hydroxyapatite (HAp), silver-doped hydroxyapatite (Ag:HAp) and various types of antibiotics such as tetracycline (T-HAp and T-Ag:HAp) or ciprofloxacin (C-HAp and C-Ag:HAp) have not been studied so far. In this study we reported, for the first time, the preparation and characterization of various thin films based on hydroxyapatite and silver-doped hydroxyapatite combined with tetracycline or ciprofloxacin. The structural and chemical characterization of hydroxyapatite and silver-doped hydroxyapatite thin films has been evaluated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The morphological studies of the HAp, Ag:HAp, T-HAp, T-Ag:HAp, C-HAp and C-Ag:HAp thin solid films were performed using scanning electron microscopy (SEM). In order to study the chemical composition of the coatings, energy dispersive X-ray analysis (EDX) and glow discharge optical emission spectroscopy (GDOES) measurements have been used, obtaining information on the distribution of the elements throughout the film. These studies have confirmed the purity of the prepared hydroxyapatite and silver-doped hydroxyapatite thin films obtained from composite targets containing Ca10−xAgx(PO4)6(OH)2 with xAg = 0 (HAp) and xAg = 0.2 (Ag:HAp). On the other hand, the major aim of this study was the evaluation of the antibacterial activities of ciprofloxacin and tetracycline in the presence of HAp and Ag:HAp thin layers against Staphylococcus aureus and Escherichia coli strains. The antibacterial activities of ciprofloxacin and tetracycline against Staphylococcus aureus and Escherichia coli test strains increased in the presence of HAp and Ag:HAp thin layers. PMID:28773899
Tailoring the Microstructure of Sol–Gel Derived Hydroxyapatite/Zirconia Nanocrystalline Composites
2011-01-01
In this study, we tailor the microstructure of hydroxyapatite/zirconia nanocrystalline composites by optimizing processing parameters, namely, introducing an atmosphere of water vapor during sintering in order to control the thermal stability of hydroxyapatite, and a modified sol–gel process that yields to an excellent intergranular distribution of zirconia phase dispersed intergranularly within the hydroxyapatite matrix. In terms of mechanical behavior, SEM images of fissure deflection and the presence of monoclinic ZrO2 content on cracked surface indicate that both toughening mechanisms, stress-induced tetragonal to monoclinic phase transformation and deflection, are active for toughness enhancement. PMID:24764458
Affinity of hydroxyapatite for furfural and a brown pigment formed by furfural and glycine.
Nordbö, H; Eriksen, H M; Rölla, G
1979-10-01
The affinity of hydroxyapatite for furfural and a brown pigment formed by furfural and glycine was studied. A series of mixtures containing 1 M furfural and 0.25-2.0 M glycine were incubated at 37 degrees C and aliquots of hydroxyapatite added. The apatite showed a strong affinity for the brown pigment formed, and an excess of glycine in the mixtures appeared to enhance the binding. The adsorption of furfural to hydroxyapatite was estimated by a spectrophotometric method. The data revealed that pretreatment with CaCl2 and glycine significantly increased the adsorption of furfural.
Yamamoto, Takenori; Tamaki, Haruna; Katsuda, Chie; Nakatani, Kiwami; Terauchi, Satsuki; Terada, Hiroshi; Shinohara, Yasuo
2013-08-02
Hydroxyapatite chromatography is a very important step in the purification of voltage-dependent anion channels (VDACs) and several members of solute carrier family 25 (Slc25) from isolated mitochondria. In the presence of Triton X-100, VDACs and Slc25 members present a peculiar property, i.e., a lack of interaction with hydroxyapatite, resulting in their presence in the flow-through fraction of hydroxyapatite chromatography. This property has allowed selective isolation of VDACs and Slc25 members from a mixture of total mitochondrial proteins. However, the reason why only these few proteins are selectively obtained in the presence of Triton X-100 from the flow-though fraction of hydroxyapatite chromatography has not yet been adequately understood. In this study, when we examined the protein species in the flow-through fractions by proteomic analysis, VDAC isoforms, Slc25 members, and some other membrane proteins were identified. All the mitochondrial proteins had in common high hydrophobicity over their entire protein sequences. When the proteins were fused to soluble proteins, the fused proteins showed affinity for hydroxyapatite even in the presence of Triton X-100. Based on these results, we discussed the molecular basis of the interactions between proteins and hydroxyapatite in the presence of Triton X-100. Copyright © 2013 Elsevier B.V. All rights reserved.
Suspension thermal spraying of hydroxyapatite: microstructure and in vitro behaviour.
Bolelli, Giovanni; Bellucci, Devis; Cannillo, Valeria; Lusvarghi, Luca; Sola, Antonella; Stiegler, Nico; Müller, Philipp; Killinger, Andreas; Gadow, Rainer; Altomare, Lina; De Nardo, Luigi
2014-01-01
In cementless fixation of metallic prostheses, bony ingrowth onto the implant surface is often promoted by osteoconductive plasma-sprayed hydroxyapatite coatings. The present work explores the use of the innovative High Velocity Suspension Flame Spraying (HVSFS) process to coat Ti substrates with thin homogeneous hydroxyapatite coatings. The HVSFS hydroxyapatite coatings studied were dense, 27-37μm thick, with some transverse microcracks. Lamellae were sintered together and nearly unidentifiable, unlike conventional plasma-sprayed hydroxyapatite. Crystallinities of 10%-70% were obtained, depending on the deposition parameters and the use of a TiO2 bond coat. The average hardness of layers with low (<24%) and high (70%) crystallinity was ≈3.5GPa and ≈4.5GPa respectively. The distributions of hardness values, all characterised by Weibull modulus in the 5-7 range, were narrower than that of conventional plasma-sprayed hydroxyapatite, with a Weibull modulus of ≈3.3. During soaking in simulated body fluid, glassy coatings were progressively resorbed and replaced by a new, precipitated hydroxyapatite layer, whereas coatings with 70% crystallinity were stable up to 14days of immersion. The interpretation of the precipitation behaviour was also assisted by surface charge assessments, performed through Z-potential measurements. During in vitro tests, HA coatings showed no cytotoxicity towards the SAOS-2 osteoblast cell line, and surface cell proliferation was comparable with proliferation on reference polystyrene culture plates. © 2013.
Novel silk fibroin films prepared by formic acid/hydroxyapatite dissolution method.
Ming, Jinfa; Liu, Zhi; Bie, Shiyu; Zhang, Feng; Zuo, Baoqi
2014-04-01
Bombyx mori silk fibroin from the silkworm was firstly found to be soluble in formic acid/hydroxyapatite system. The rheological behavior of silk fibroin solution was significantly influenced by HAp contents in dissolved solution. At the same time, silk fibroin nanofibers were observed in dissolved solution with 103.6±20.4nm in diameter. Moreover, the structure behavior of SF films prepared by formic acid/hydroxyapatite dissolution method was examined. The secondary structure of silk fibroin films was attributed to silk II structure (β-sheet), indicating that the hydroxyapatite contents in dissolved solution were not significantly affected by the structure of silk fibroin. The X-ray diffraction results exhibited obviously hydroxyapatite crystalline nature existing in silk fibroin films; however, when the hydroxyapatite content was 5.0wt.% in dissolved solution, some hydroxyapatite crystals were converted to calcium hydrogen phosphate dehydrate in silk fibroin dissolution process. This result was also confirmed by Fourier transform infrared analysis and DSC measurement. In addition, silk fibroin films prepared by this dissolution method had higher breaking strength and extension at break. Based on these analyses, an understanding of novel SF dissolution method may provide an additional tool for designing and synthesizing advanced materials with more complex structures, which should be helpful in different fields, including biomaterial applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Azari, Abbas; Nikzad, Sakineh; Yazdani, Arash; Atri, Faezeh; Fazel Anvari-Yazdi, Abbas
2017-07-01
The poor bonding strength of zirconia to different dental substrates is one of the challenging issues in restorative dentistry. Hydroxyapatite is an excellent biocompatible material with fine bonding properties. In this study, it was hypothesized that hydroxyapatite coating on zirconia would improve its bond strength. Forty-five zirconia blocks were prepared and randomly divided into three groups: hydroxyapatite coating, sandblasting, and no preparation (control). The blocks were bonded to cement and the micro-shear bond strength was measured following load application. The bond strength values were analyzed with the Kruskal-Wallis test in 3 groups and paired comparisons were made using the Mann-Whitney U test. The failure patterns of the specimens were studied by a stereomicroscope and a scanning electron microscope and then analyzed by the chi-square test (significance level = 0.05). Deposition of hydroxyapatite on the zirconia surface significantly improved its bond strength to the resin cement in comparison with the control specimens (p < 0.0001). Also, the bond strength was similar to the sandblasted group (p = 0.34). The sandblasted and control group only showed adhesive failure, but the hydroxyapatite coated group had mixed failures, indicating the better quality of bonding (p < 0.0001). As a final point, hydroxyapatite coating on the zirconia surface improved the bond strength quality and values.
Genetically-Engineered Proteins For Functional Nanoinorganics
2007-02-28
CD) protocols have been successfully implemented; noble metals (Au and Ag, in addition to Pt and Pd previously selected) and oxides ( hydroxyapatite ...nanomasks (Schwartz, Baneyx, and Sarikaya); 7. Biofabrication of material using genetically selected and designed peptides, including hydroxyapatite ...Pt-, silica, and hydroxyapatite -binding peptides) have been determined, and related to their functions (binding and assembly). Again, for the
Aljabo, Anas; Abou Neel, Ensanya A; Knowles, Jonathan C; Young, Anne M
2016-03-01
The study aim was to develop light-curable, high strength dental composites that would release calcium phosphate and chlorhexidine (CHX) but additionally promote surface hydroxyapatite/CHX co-precipitation in simulated body fluid (SBF). 80 wt.% urethane dimethacrylate based liquid was mixed with glass fillers containing 10 wt.% CHX and 0, 10, 20 or 40 wt.% reactive mono- and tricalcium phosphate (CaP). Surface hydroxyapatite layer thickness/coverage from SEM images, Ca/Si ratio from EDX and hydroxyapatite Raman peak intensities were all proportional to both time in SBF and CaP wt.% in the filler. Hydroxyapatite was, however, difficult to detect by XRD until 4 weeks. XRD peak width and SEM images suggested this was due to the very small size (~10 nm) of the hydroxyapatite crystallites. Precipitate mass at 12 weeks was 22 wt.% of the sample CaP total mass irrespective of CaP wt.% and up to 7 wt.% of the specimen. Early diffusion controlled CHX release, assessed by UV spectrometry, was proportional to CaP and twice as fast in water compared with SBF. After 1 week, CHX continued to diffuse into water but in SBF, became entrapped within the precipitating hydroxyapatite layer. At 12 weeks CHX formed 5 to 15% of the HA layer with 10 to 40 wt.% CaP respectively. Despite linear decline of strength and modulus in 4 weeks from 160 to 101 MPa and 4 to 2.4 GPa, respectively, upon raising CaP content, all values were still within the range expected for commercial composites. The high strength, hydroxyapatite precipitation and surface antibacterial accumulation should reduce tooth restoration failure due to fracture, aid demineralised dentine repair and prevent subsurface carious disease respectively. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Khalili, Vida; Khalil-Allafi, Jafar; Sengstock, Christina; Motemani, Yahya; Paulsen, Alexander; Frenzel, Jan; Eggeler, Gunther; Köller, Manfred
2016-06-01
Release of Ni(1+) ions from NiTi alloy into tissue environment, biological response on the surface of NiTi and the allergic reaction of atopic people towards Ni are challengeable issues for biomedical application. In this study, composite coatings of hydroxyapatite-silicon multi walled carbon nano-tubes with 20wt% Silicon and 1wt% multi walled carbon nano-tubes of HA were deposited on a NiTi substrate using electrophoretic methods. The SEM images of coated samples exhibit a continuous and compact morphology for hydroxyapatite-silicon and hydroxyapatite-silicon-multi walled carbon nano-tubes coatings. Nano-indentation analysis on different locations of coatings represents the highest elastic modulus (45.8GPa) for HA-Si-MWCNTs which is between the elastic modulus of NiTi substrate (66.5GPa) and bone tissue (≈30GPa). This results in decrease of stress gradient on coating-substrate-bone interfaces during performance. The results of nano-scratch analysis show the highest critical distance of delamination (2.5mm) and normal load before failure (837mN) as well as highest critical contact pressure for hydroxyapatite-silicon-multi walled carbon nano-tubes coating. The cell culture results show that human mesenchymal stem cells are able to adhere and proliferate on the pure hydroxyapatite and composite coatings. The presence of both silicon and multi walled carbon nano-tubes (CS3) in the hydroxyapatite coating induce more adherence of viable human mesenchymal stem cells in contrast to the HA coated samples with only silicon (CS2). These results make hydroxyapatite-silicon-multi walled carbon nano-tubes a promising composite coating for future bone implant application. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lin, Jin-Shyong; Tsai, Tzung-Bau; Say, Wen-Ching; Chiu, Chun; Chen, Shih-Hsun
2017-04-04
Titanium and its alloys have been widely used as orthopedic and dental implants for several decades due to their superior mechanical properties, corrosion resistance and biocompatibility. Recently, many researches revealed that the hydroxyapatite coatings on biomedical materials can further improve their biocompatibility and bioactivity. However, hydroxyapatite coatings are easily decomposed, weakening the bonding between implants and bone tissues and resulting in a high dissolution rate in the biological environment. Prolonging the lifetime of hydroxyapatite in implants is valuable for improving postoperative quality. Hydroxyapatite is the primary inorganic component of bones and teeth. A suitable amount of fluoride ions would be beneficial for the formation of fluoridated hydroxyapatite, which can enhance bone-cell response and the acid resistance of enamel. In this study, G-II titanium substrate was anodized to form a TiO 2 interlayer with a nanotube structure. An electrolyte composed of fluoride, calcium and phosphorus ions was prepared for electroplating fluoridated hydroxyapatite (FHA) coatings onto anodized G-II titanium substrates at a constant voltage. The obtained coatings were examined for their microstructure, mechanical properties; moreover, the changes of apatite structure, surface morphology and corrosion resistance were further investigated after immersion in simulated body fluid (SBF) for a number of weeks. The results show that FHA coatings have a higher surface roughness and hardness than plain hydroxyapatite. After immersion in SBF, the FHA coatings induced the nucleation and growth of apatite on the surface and increased their crystallinity. In a potentiodynamic polarization test, FHA coatings exhibited a better anti-corrosion ability than bare G-II titanium substrate in SBF. Additionally, the anodized TiO 2 nanotube improved the adhesion and corrosion resistance of FHA as well.
NASA Astrophysics Data System (ADS)
Maidaniuc, Andreea; Miculescu, Florin; Voicu, Stefan Ioan; Andronescu, Corina; Miculescu, Marian; Matei, Ecaterina; Mocanu, Aura Catalina; Pencea, Ion; Csaki, Ioana; Machedon-Pisu, Teodor; Ciocan, Lucian Toma
2018-04-01
Hydroxyapatite powders characteristics need to be determined both for quality control purposes and for a proper control of microstructural features of bone reconstruction products. This study combines bulk morphological and compositional analysis methods (XRF, SEM-EDS, FT-IR) with surface-related methods (XPS, contact angle measurements) in order to correlate the characteristics of hydroxyapatite powders derived from bovine bone for its use in medical applications. An experimental approach for correlating the surface and volume composition was designed based on the analysis depth of each spectral method involved in the study. Next, the influences of powder particle size and forming method on the contact angle between water drops and ceramic surface were evaluated for identifying suitable strategies of tuning hydroxyapatite's wettability. The results revealed a preferential arrangement of chemical elements at the surface of hydroxyapatite particles which could induce a favourable material behaviour in terms of sinterability and biological performance.
Iwasaki, Tomohiro; Nakatsuka, Ryo; Murase, Kenya; Takata, Hiroshige; Nakamura, Hideya; Watano, Satoru
2013-01-01
This paper presents a simple method for the rapid synthesis of magnetite/hydroxyapatite composite particles. In this method, superparamagnetic magnetite nanoparticles are first synthesized by coprecipitation using ferrous chloride and ferric chloride. Immediately following the synthesis, carbonate-substituted (B-type) hydroxyapatite particles are mechanochemically synthesized by wet milling dicalcium phosphate dihydrate and calcium carbonate in a dispersed suspension of magnetite nanoparticles, during which the magnetite nanoparticles are incorporated into the hydroxyapatite matrix. We observed that the resultant magnetite/hydroxyapatite composites possessed a homogeneous dispersion of magnetite nanoparticles, characterized by an absence of large aggregates. When this material was subjected to an alternating magnetic field, the heat generated increased with increasing magnetite concentration. For a magnetite concentration of 30 mass%, a temperature increase greater than 20 K was achieved in less than 50 s. These results suggest that our composites exhibit good hyperthermia properties and are promising candidates for hyperthermia treatments. PMID:23629669
Wiglusz, Rafal J; Kedziora, Anna; Lukowiak, Anna; Doroszkiewicz, Wlodzimierz; Strek, Wieslaw
2012-08-01
Hydroxyapatites (Ca10(PO4)6(OH)2 and Eu3+:Ca10(PO4)6(OH)2) were synthesized by aqueous synthesis route. Hydroxyapatites were impregnated with silver ions that were subsequently reduced. XRD, TEM, and SAED measurements were used in order to determine the crystal structure and morphology of the final products. The results showed the well crystallized hydroxyapatite grains with diameter of about 35 nm and with silver nanoparticles on their surface. The antimicrobial activity of the nanoparticles against: Staphylococcus aureus ATCC 6538 as model of the Gram-positive bacteria, Escherichia coli ATCC 11229, and Klebsiella pneumoniae ATCC 4352 as model of Gram-negative bacteria, were shown with the best activity against K. pneumoniae. These nanocomposite powders can be a promising antimicrobial agent and a fluorescent material for biodetection due to their optical and bioactive properties.
Friedman, C D; Costantino, P D; Takagi, S; Chow, L C
1998-01-01
BoneSource-hydroxyapatite cement is a new self-setting calcium phosphate cement biomaterial. Its unique and innovative physical chemistry coupled with enhanced biocompatibility make it useful for craniofacial skeletal reconstruction. The general properties and clinical use guidelines are reviewed. The biomaterial and surgical applications offer insight into improved outcomes and potential new uses for hydroxyapatite cement systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campillo, M.; Valiente, M.; Lacharmoise, P. D.
Hydroxyapatite is the main mineral component of bones and teeth. Fluorapatite, a bioceramic that can be obtained from hydroxyapatite by chemical substitution of the hydroxide ions with fluoride, exhibits lower mineral solubility and larger mechanical strength. Despite the widespread use of fluoride against caries, a reliable technique for unambiguous assessment of fluoridation in in vitro tests is still lacking. Here we present a method to probe fluorapatite formation in fluoridated hydroxyapatite by combining Raman scattering with thermal annealing. In synthetic minerals, we found that effectively fluoride substituted hydroxyapatite transforms into fluorapatite only after heat treatment, due to the high activationmore » energy for this first order phase transition.« less
Hydroxyapatite Reinforced Coatings with Incorporated Detonationally Generated Nanodiamonds
NASA Astrophysics Data System (ADS)
Pramatarova, L.; Pecheva, E.; Dimitrova, R.; Spassov, T.; Krasteva, N.; Hikov, T.; Fingarova, D.; Mitev, D.
2010-01-01
We studied the effect of the substrate chemistry on the morphology of hydroxyapatite-detonational nanodiamond composite coatings grown by a biomimetic approach (immersion in a supersaturated simulated body fluid). When detonational nanodiamond particles were added to the solution, the morphology of the grown for 2 h composite particles was porous but more compact then that of pure hydroxyapatite particles. The nanodiamond particles stimulated the hydroxyapatite growth with different morphology on the various substrates (Ti, Ti alloys, glasses, Si, opal). Biocompatibility assay with MG63 osteoblast cells revealed that the detonational nanodiamond water suspension with low and average concentration of the detonational nanodiamond powder is not toxic to living cells.
Biocompatability of hydroxyapatite composite as a local drug delivery system.
Krisanapiboon, A; Buranapanitkit, B; Oungbho, K
2006-12-01
To investigate the biocompatibility of hydroxyapatite composite (hydroxyapatite, plaster of Paris, and chitosan) impregnated with gentamicin, fosfomycin, imipenem, or amphotericin B. The interactions of the extract from each drug against osteoblast were tested using the methylthiotetrazole test. Extracts from all drugs showed good biocompatibility at concentrations varying from 10 microgram/ml to 1000 microgram/ml. Imipenem and amphotericin B at a concentration of 1000 microgram/ml had a significantly higher percentage of cell viability than the control group. No morphological change of osteoblast was observed in all drug tests at any concentrations. The hydroxyapatite composite had a good biocompatibility for carrying gentamicin, fosfomycin, imipenem, or amphotericin B.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Sangeeta, E-mail: spt658@aucklanduni.ac.nz; Wei, Shanghai; Han, Jie
In this present study, hydroxyapatite which was obtained from cattle bones has been heat treated at temperature 400 °C and 600 °C. The microstructure after the treatment has been studied in detail using Transmission electron microscopy (TEM) and X-ray diffraction techniques. The TEM results indicate that natural bone consists of collagen and hydroxyapatite nano-crystals which are needle shaped. The heat treatment influences the crystallinity and growth of these hydroxyapatite nano-crystals known as ‘crystal maturation’ or ‘crystal ageing’. - Highlights: • Hydroxyapatite is obtained from cattle bones. • Material has been characterised using XRD and TEM. • Crystal growth and orientationmore » has been studied in detail.« less
NASA Astrophysics Data System (ADS)
Dubey, Devendra K.; Tomar, Vikas
2010-01-01
Osteogenesis Imperfecta (OI) is a genetic disorder that affects cellular synthesis of Type-I collagen fibrils and causes extreme bone fragility. This study reports the effects of OI mutations in Tropocollagen (TC) molecules on strength of model Tropocollagen-Hydroxyapatite biomaterials with two different mineral [hydroxyapatite (HAP)] distributions using three dimensional atomistic simulations. Results show that the effect of TC mutations on the strength of TC-HAP biomaterials is insignificant. Instead, change in mineral distribution showed significant impact on the overall strength of TC-HAP biomaterials. Study suggests that TC mutations manifest themselves by changing the mineral distribution during hydroxyapatite growth and nucleation period.
NASA Astrophysics Data System (ADS)
Lv, Yuguang; Shi, Qi; Jin, Yuling; Ren, Hengxin; Qin, Yushan; Wang, Bo; Song, Shanshan
2018-03-01
In this paper, the La3+-doped Sm3+ hydroxyapatite (La/Sm/HAP) complexes were prepared by a precipitation method. The sample was defined by IR spectra, fluorescence spectra and X ray diffraction analysis et al. The structure of complexes were discussed. The emission wavelength of heat treatment of Sm3+ do not change, but will affect the intensity of the peak Sm3+ luminescence properties and the occupy hydroxyapatite in the lattice Ca( II )and Ca( I ) loci with Sm3+ doped concentration and the proportion of the sintering temperature change and change: The nano hydroxyapatite complex of the La3+ doped samarium obtain the good fluorescence intensity, by La3+ doping content of Sm3+ were hydroxyapatite 6% (La3+, Sm3+ mole ratio) device. The complex of La3+ doped samarium HAP have Stable chemical property, fluorescence property and excellent biological activity. The ligand HAP absorbs energy or captures an electron-hole pair and then transfers it to the lanthanide ions. The catalytic activity influence of the La3+-doped Sm3+hydroxyapatite was discussed, the La/Sm/HAP had excellent antibacterial property, which used as potential biological antibacterial material.
Large-scale synthesis of water-soluble luminescent hydroxyapatite nanorods for security printing.
Chen, Xiaohu; Jin, Xiaoying; Tan, Junjun; Li, Wei; Chen, Minfang; Yao, Lan; Yang, Haitao
2016-04-15
Luminescent hydroxyapatite nanoparticles, which have excellent biocompatibility, excellent photostability, and strong fluorescence, have received increasing attention as bioprobes in cell imaging. However, they are also excellent candidates for use in ink-jet security printing. Successful products for related applications usually require highly crystalline, mono-dispersible hydroxyapatite nanorods with good colloidal stability and high fluorescence in aqueous media. These requirements are hard to simultaneously satisfy using most synthetic methods. In this paper, we report a simple and versatile hydrothermal method that incorporates the use of sodium citrate to prepare water-dispersible Eu(3+)-doped hydroxyapatite nanorods. The hydroxyapatite nanorods obtained using this method are highly crystalline rod-shaped particles with an average length of 50-80 nm and an average diameter of 15-30 nm. Dispersions of these hydroxyapatite nanorods, which are transparent with a slightly milky color under natural light and a bright red color when excited with 241 nm UV light, display zeta potentials of -35 mV and hydrodynamic diameters of 120 nm. These dispersions remain colloidally stable for a few months. Dispersions with these properties could be easily applied to security printing for confidential information storage and anti-counterfeiting technologies. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Aihua, E-mail: aihyao@126.com; Ai, Fanrong; Liu, Xin
Hollow hydroxyapatite microspheres, consisting of a hollow core and a porous shell, were prepared by converting Li{sub 2}O-CaO-B{sub 2}O{sub 3} glass microspheres in dilute phosphate solution at 37 {sup o}C. The results confirmed that Li{sub 2}O-CaO-B{sub 2}O{sub 3} glass was transformed to hydroxyapatite without changing the external shape and dimension of the original glass object. Scanning electron microscopy images showed the shell wall of the microsphere was built from hydroxyapatite particles, and these particles spontaneously align with one another to form a porous sphere with an interior cavity. Increase in phosphate concentration resulted in an increase in the reaction rate,more » which in turn had an effect on shell wall structure of the hollow hydroxyapatite microsphere. For the Li{sub 2}O-CaO-B{sub 2}O{sub 3} glass microspheres reacted in low-concentration K{sub 2}HPO{sub 4} solution, lower reaction rate and a multilayered microstructure were observed. On the other hand, the glass microspheres reacted in higher phosphate solution converted more rapidly and produced a single hydroxyapatite layer. Furthermore, the mechanism of forming hydroxyapatite hollow microsphere was described.« less
NASA Astrophysics Data System (ADS)
Tang, Hui; Han, Yu; Wu, Tao; Tao, Wei; Jian, Xian; Wu, Yunfeng; Xu, Fangjun
2017-04-01
In this study, hydroxyapatite-containing coatings were prepared by microarc oxidation on AZ31 magnesium alloy surface to improve its biodegradation performance. Five applied voltages were chosen to prepare the MAO coatings. The results demonstrate that the number of micropores in the films increases but their dimensions decrease after higher voltage is applied. As the surface roughness of the MAO coatings increases with the applied voltage, the wettability of the coatings improves continuously. The MAO coatings were mainly composed of magnesium oxide (MgO) and hydroxyapatite. The amount of hydroxyapatite phase increased with increasing voltage that was applied. The bonding strength became slightly weaker after a higher voltage was applied. But the bonding strengths of all the coatings were consistently higher than 37 MPa, which met the requirement of implant biomaterials. All coatings exhibited higher corrosion resistances and lower hydrogen evolution rate than the bare AZ31 Mg substrate, implying that the degradation rate of the AZ31 Mg alloy was enhanced by the hydroxyapatite-containing coatings. The results indicate that the present treatment of applying hydroxyapatite-containing coatings is a promising technique for the degradable Mg-based biomaterials for orthopedic applications.
Ciocca, Leonardo; Donati, Davide; Fantini, Massimiliano; Landi, Elena; Piattelli, Adriano; Iezzi, Giovanna; Tampieri, Anna; Spadari, Alessandro; Romagnoli, Noemi; Scotti, Roberto
2013-08-01
In this study, rapid CAD-CAM prototyping of pure hydroxyapatite to replace temporomandibular joint condyles was tested in sheep. Three adult animals were implanted with CAD-CAM-designed porous hydroxyapatite scaffolds as condyle substitutes. The desired scaffold shape was achieved by subtractive automated milling machining (block reduction). Custom-made surgical guides were created by direct metal laser sintering and were used to export the virtual planning of the bone cut lines into the surgical environment. Using the same technique, fixation plates were created and applied to the scaffold pre-operatively to firmly secure the condyles to the bone and to assure primary stability of the hydroxyapatite scaffolds during masticatory function. Four months post-surgery, the sheep were sacrificed. The hydroxyapatite scaffolds were explanted, and histological specimens were prepared. Different histological tissues penetrating the scaffold macropores, the sequence of bone remodeling, new apposition of bone and/or cartilage as a consequence of the different functional anatomic role, and osseointegration at the interface between the scaffold and bone were documented. This animal model was found to be appropriate for testing CAD-CAM customization and the biomechanical properties of porous, pure hydroxyapatite scaffolds used as joint prostheses.
Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review.
Dutta, S R; Passi, D; Singh, P; Bhuibhar, A
2015-03-01
Treatment of dental, craniofacial and orthopedic defects with bone graft substitutes has shown promising result achieving almost complete bone regeneration depending on product resorption similar to human bone's physicochemical and crystallographic characteristics. Among these, non-ceramic and ceramic hydroxyapatite being the main inorganic salt of bone is the most studied calcium phosphate material in clinical practices ever since 1970s and non-ceramic since 1985. Its "chemical similarity" with the mineralized phase of biologic bone makes it unique. Hydroxyapatite as an excellent carrier of osteoinductive growth factors and osteogenic cell populations is also useful as drug delivery vehicle regardless of its density. Porous ceramic and non-ceramic hydroxyapatite is osteoconductive, biocompatible and very inert. The need for bone graft material keeps on increasing with increased age of the population and the increased conditions of trauma. Recent advances in genetic engineering and doping techniques have made it possible to use non-ceramic hydroxyapatite in larger non-ceramic crystals and cluster forms as a successful bone graft substitute to treat various types of bone defects. In this paper we have mentioned some recently studied properties of hydroxyapatite and its various uses through a brief review of the literatures available to date.
NASA Astrophysics Data System (ADS)
Webler, G. D.; Rodrigues, W. C.; Silva, A. E. S.; Silva, A. O. S.; Fonseca, E. J. S.; Degenhardt, M. F. S.; Oliveira, C. L. P.; Otubo, L.; Barros Filho, D. A.
2018-04-01
Hydroxyapatite is one of the most important biomaterials whose application mainly extends to implants and drug delivery. This work will discuss the changes in the pore size distribution of hydroxyapatite when there are latex beads present during the synthesis. These changes were monitored using different techniques: small angle X-ray scattering, X-ray diffraction, thermal gravimetrical analysis, N2 adsorption, scanning and transmission electron microscopy. Latex beads and hydroxyapatite form a single nanocomposite with well-distinguished inorganic and organic phases. Latex bead removal in the temperature range of 300-600 °C did not modify the original crystalline structure of hydroxyapatite. However, the latex beads favored an increase in the adsorption capacity of mesopores at temperatures higher than their glassy transition (Tg). The main result of this research work consists on the increase of surface area and pore size distribution obtained after the removal of latex beads template. Latex beads have been used in a different approach changing the porosity of hydroxyapatite scaffolds not only introducing new routes for cell integration but also broadening the pore size distribution which can result in a more high efficiency for drug release in living cells.
Wang, Xin; Zakaria, Osama; Madi, Marwa; Kasugai, Shohei
2015-01-01
This study evaluated the quantity and quality of newly formed vertical bone induced by sputtered hydroxyapatite-coated titanium implants compared with sandblasted acid-etched implants after dura mater elevation. Hydroxyapatite-coated and non-coated implants (n = 20/group) were used and divided equally into two groups. All implants were randomly placed into rabbit calvarial bone (four implants for each animal) emerging from the inferior cortical layer, displacing the dura mater 3 mm below the original bone. Animals were sacrificed at 4 (n = 5) and 8 (n = 5) weeks post-surgery. Vertical bone height and area were analyzed histologically and radiographically below the original bone. Vertical bone formation was observed in both groups. At 4 and 8 weeks, vertical bone height reached a significantly higher level in the hydroxyapatite compared with the non-coated group (p < 0.05). Vertical bone area was significantly larger in the hydroxyapatite compared with the non-coated group at 4 and 8 weeks (p < 0.05). This study indicates that vertical bone formation can be induced by dura mater elevation and sputtered hydroxyapatite coating can enhance vertical bone formation.
Yabutsuka, Takeshi; Fukushima, Keito; Hiruta, Tomoko; Takai, Shigeomi; Yao, Takeshi
2017-12-01
When bioinert substrates with fine-sized pores are immersed in a simulated body fluid (SBF) and the pH value or the temperature is increased, fine particles of calcium phosphate, which the authors denoted as 'precursor of apatite' (PrA), are formed in the pores. By this method, hydroxyapatite formation ability can be provided to various kinds of bioinert materials. In this study, the authors studied fabrication methods of bioactive PEEK by using the above-mentioned process. First, the fine-sized pores were formed on the surface of the PEEK substrate by H 2 SO 4 treatment. Next, to provide hydrophilic property to the PEEK, the surfaces of the PEEK were treated with O 2 plasma. Finally, PrA were formed in the pores by the above-mentioned process, which is denoted as 'Alkaline SBF' treatment, and the bioactive PEEK was obtained. By immersing in SBF with the physiological condition, hydroxyapatite formation was induced on the whole surface of the substrate within 1day. The formation of PrA directly contributed to hydroxyapatite formation ability. By applying the O 2 plasma treatment, hydroxyapatite formation was uniformly performed on the whole surface of the substrate. The H 2 SO 4 treatment contributed to a considerable enhancement of adhesive strength of the formed hydroxyapatite layer formed in SBF because of the increase of surface areas of the substrate. As a comparative study, the sandblasting method was applied as the pores formation process instead of the H 2 SO 4 treatment. Although hydroxyapatite formation was provided also in this case, however, the adhesion of the formed hydroxyapatite layer to the substrate was not sufficient even if the O 2 plasma treatment was conducted. This result indicates that the fine-sized pores should be formed on the whole surface of the substrate uniformly to achieve high adhesive strength of the hydroxyapatite layer. Therefore, it is considered that the H 2 SO 4 treatment before the O 2 plasma and the 'Alkaline SBF' treatment is an important factor to achieve high adhesive strength of hydroxyapatite layer to the PEEK substrate. This material is expected to be a candidate for next-generation implant materials with high bioactivity. Copyright © 2017 Elsevier B.V. All rights reserved.
Ajduković, Zorica R; Mihajilov-Krstev, Tatjana M; Ignjatović, Nenad L; Stojanović, Zoran; Mladenović-Antić, Snezana B; Kocić, Branislava D; Najman, Stevo; Petrović, Nenad D; Uskoković, Dragan P
2016-02-01
In the field of oral implantology the loss of bone tissue prevents adequate patient care, and calls for the use of synthetic biomaterials with properties that resemble natural bone. Special attention is paid to the risk of infection after the implantation of these materials. Studies have suggested that some nanocontructs containing metal ions have antimicrobial properties. The aim of this study was to examine the antimicrobial and hemolytic activity of cobalt-substituted hydroxyapatite nanoparticles, compared to hydroxyapatite and hydroxyapatite/poly-lactide-co-glycolide. The antibacterial effects of these powders were tested against two pathogenic bacterial strains: Escherichia coi (ATCC 25922) and Staphylococcus aureus (ATCC 25923), using the disc diffusion method and the quantitative antimicrobial test in a liquid medium. The quantitative antimicrobial test showed that all of the tested biomaterials have some antibacterial properties. The effects of both tests were more prominent in case of S. aureus than in E coli. A higher percentage of cobalt in the crystal structure of cobalt-substituted hydroxyapatite nanoparticles led to an increased antimicrobial activity. All of the presented biomaterial samples were found to be non-hemolytic. Having in mind that the tested of cobalt-substituted hydroxyapatite (Ca/Co-HAp) material in given concentrations shows good hemocompatibility and antimicrobial effects, along with its previously studied biological properties, the conclusion can be reached that it is a potential candidate that could substitute calcium hydroxyapatite as the material of choice for use in bone tissue engineering and clinical practices in orthopedic, oral and maxillofacial surgery.
Detection of hydroxyapatite in calcified cardiovascular tissues.
Lee, Jae Sam; Morrisett, Joel D; Tung, Ching-Hsuan
2012-10-01
The objective of this study is to develop a method for selective detection of the calcific (hydroxyapatite) component in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues ex vivo. This method uses a novel optical molecular imaging contrast dye, Cy-HABP-19, to target calcified cells and tissues. A peptide that mimics the binding affinity of osteocalcin was used to label hydroxyapatite in vitro and ex vivo. Morphological changes in vascular smooth muscle cells were evaluated at an early stage of the mineralization process induced by extrinsic stimuli, osteogenic factors and a magnetic suspension cell culture. Hydroxyapatite components were detected in monolayers of these cells in the presence of osteogenic factors and a magnetic suspension environment. Atherosclerotic plaque contains multiple components including lipidic, fibrotic, thrombotic, and calcific materials. Using optical imaging and the Cy-HABP-19 molecular imaging probe, we demonstrated that hydroxyapatite components could be selectively distinguished from various calcium salts in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues, carotid endarterectomy samples and aortic valves, ex vivo. Hydroxyapatite deposits in cardiovascular tissues were selectively detected in the early stage of the calcification process using our Cy-HABP-19 probe. This new probe makes it possible to study the earliest events associated with vascular hydroxyapatite deposition at the cellular and molecular levels. This target-selective molecular imaging probe approach holds high potential for revealing early pathophysiological changes, leading to progression, regression, or stabilization of cardiovascular diseases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Detection of Hydroxyapatite in Calcified Cardiovascular Tissues
Lee, Jae Sam; Morrisett, Joel D.; Tung, Ching-Hsuan
2012-01-01
Objective The objective of this study is to develop a method for selective detection of the calcific (hydroxyapatite) component in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues ex vivo. This method uses a novel optical molecular imaging contrast dye, Cy-HABP-19, to target calcified cells and tissues. Methods A peptide that mimics the binding affinity of osteocalcin was used to label hydroxyapatite in vitro and ex vivo. Morphological changes in vascular smooth muscle cells were evaluated at an early stage of the mineralization process induced by extrinsic stimuli, osteogenic factors and a magnetic suspension cell culture. Hydroxyapatite components were detected in monolayers of these cells in the presence of osteogenic factors and a magnetic suspension environment. Results Atherosclerotic plaque contains multiple components including lipidic, fibrotic, thrombotic, and calcific materials. Using optical imaging and the Cy-HABP-19 molecular imaging probe, we demonstrated that hydroxyapatite components could be selectively distinguished from various calcium salts in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues, carotid endarterectomy samples and aortic valves, ex vivo. Conclusion Hydroxyapatite deposits in cardiovascular tissues were selectively detected in the early stage of the calcification process using our Cy-HABP-19 probe. This new probe makes it possible to study the earliest events associated with vascular hydroxyapatite deposition at the cellular and molecular levels. This target-selective molecular imaging probe approach holds high potential for revealing early pathophysiological changes, leading to progression, regression, or stabilization of cardiovascular diseases. PMID:22877867
New nano-hydroxyapatite in bone defect regeneration: A histological study in rats.
Kubasiewicz-Ross, Paweł; Hadzik, Jakub; Seeliger, Julia; Kozak, Karol; Jurczyszyn, Kamil; Gerber, Hanna; Dominiak, Marzena; Kunert-Keil, Christiane
2017-09-01
Many types of bone substitute materials are available on the market. Researchers are refining new bone substitutes to make them comparable to autologous grafting materials in treatment of bone defects. The purpose of the study was to evaluate the osseoconductive potential and bone defect regeneration in rat calvaria bone defects treated with new synthetic nano-hydroxyapatite. The study was performed on 30 rats divided into 5 equal groups. New preproduction of experimental nano-hydroxyapatite material by NanoSynHap (Poznań, Poland) was tested and compared with commercially available materials. Five mm critical size defects were created and filled with the following bone grafting materials: 1) Geistlich Bio-Oss ® ; 2) nano-hydroxyapatite+β-TCP; 3) nano-hydroxyapatite; 4) nano-hydroxyapatite+collagen membrane. The last group served as controls without any augmentation. Bone samples from calvaria were harvested for histological and micro-ct evaluation after 8 weeks. New bone formation was observed in all groups. Histomorphometric analysis revealed an amount of regenerated bone between 34.2 and 44.4% in treated bone defects, whereas only 13.0% regenerated bone was found in controls. Interestingly, in group 3, no significant particles of the nano-HA material were found. In contrast, residual bone substitute material could be detected in all other test groups. Micro-CT study confirmed the results of the histological examinations. The new nano-hydroxyapatite provides comparable results to other grafts in the field of bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Lyasnikova, A. V.; Markelova, O. A.; Lyasnikov, V. N.; Dudareva, O. A.
2016-01-01
The method of synthesis of a zinc-substituted hydroxyapatite powder is presented, and the technology of creating coatings by its spraying is described. The results of studies on the morphological, physical, and chemical parameters of a zinc-substituted hydroxyapatite coating by using X-ray analysis, infrared spectroscopy, transmission electron microscopy, optical microscopy, SEM, and other methods are given.
Ono, I; Tateshita, T; Sasaki, T; Matsumoto, M; Kodama, N
2001-05-01
We devised a technique to fix the temporalis muscle to the transplanted hydroxyapatite implant by using a titanium plate, which is fixed to the hydroxyapatite ceramic implant by screws and achieves good clinical results. The size, shape, and curvature of the hydroxyapatite ceramic implants were determined according to full-scale models fabricated using the laser lithographic modeling method from computed tomography data. A titanium plate was then fixed with screws on the implant before implantation, and then the temporalis muscle was refixed to the holes at both ends of the plate. The application of this technique reduced the hospitalization time and achieved good results esthetically.
Preparation of hydroxyapatite from animal bones.
Sobczak, Agnieszka; Kowalski, Zygmunt; Wzorek, Zbigniew
2009-01-01
This paper presents the method of obtaining hydroxyapatite from animal bones. Bone sludge and calcined products were characterized by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). Calcium concentration was determined with titration, and phosphorus--spectrophotometrically. Making use of the AAS and ICP methods the content of microelements was determined. In all the products, hydroxyapatite was the only crystalline phase indicated. The FT-IR spectra confirmed that calcination removed the total of organic substances. Calcium and phosphorus contents were 38% and 18%, respectively, which corresponded to the Ca/P molar ratio of nonstoichiometric hydroxyapatite. The specific surfaces of products were measured by BET method. The volume of micro- and mesopores was determined.
Antimicrobial Activity of Thin Solid Films of Silver Doped Hydroxyapatite Prepared by Sol-Gel Method
Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela
2014-01-01
In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x Ag = 0.5 are effective against E. coli and S. aureus after 24 h. PMID:24523630
Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela
2014-01-01
In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x(Ag) = 0.5 are effective against E. coli and S. aureus after 24 h.
NASA Astrophysics Data System (ADS)
Sumathi, Shanmugam; Gopal, Buvaneswari
2015-07-01
Structure of hydroxyapatite (HAP) is more flexible towards ionic substitutions. Properties such as solubility, antimicrobial property can be tailored by substitutions. Substituted hydroxyapatite and fluorapatite of formulae BiNaCa3(PO4)3OH, Bi0.5M0.5Ca4(PO4)3OH (M=K, Ag), Ca10-xCux(PO4)6(OH/F)2 d(x=0.05-0.25) and Bi0.5Na0.5Ca4(PO4)3F were synthesized and characterized by powder XRD, FT-IR, SEM-EDAX and TGA. In vitro solubility of the synthesized compounds was studied in the phosphate buffered medium of pH 7.4 at 37 °C. Based on the release of calcium and phosphorus ion concentration and pH, the solubility of these compounds is discussed. Bismuth and sodium co-substituted hydroxyapatite are found to be more soluble compared with other substituted apatite compounds and unsubstituted hydroxyapatite.
Fabrication of hydroxyapatite from fish bones waste using reflux method
NASA Astrophysics Data System (ADS)
Cahyanto, A.; Kosasih, E.; Aripin, D.; Hasratiningsih, Z.
2017-02-01
The aim of this present study was to investigate the fabrication of hydroxyapatites, which were synthesized from fish bone wastes using reflux method. The fish bone wastes collected from the restaurant were brushed and boiled at 100°C for 10 minutes to remove debris and fat. After drying, the fish bones were crushed, and ball milled into a fine powder. The fish bone wastes were then processed by refluxing using KOH and H3PO4 solutions. The samples were calcined at 900°C and characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectrometry (FT-IR). The XRD pattern of samples after treatment revealed that the peak of hydroxyapatite was observed and the bands of OH- and PO4 3- were observed by FT-IR. The scanning electron microscope evaluation of sample showed the entangled crystal and porous structure of hydroxyapatite. In conclusion, the hydroxyapatite was successfully synthesized from fish bone wastes using reflux method.
Micro- and nano-hydroxyapatite as active reinforcement for soft biocomposites.
Munarin, F; Petrini, P; Gentilini, R; Pillai, R S; Dirè, S; Tanzi, M C; Sglavo, V M
2015-01-01
Pectin-based biocomposite hydrogels were produced by internal gelation, using different hydroxyapatite (HA) powders from commercial source or synthesized by the wet chemical method. HA possesses the double functionality of cross-linking agent and inorganic reinforcement. The mineralogical composition, grain size, specific surface area and microstructure of the hydroxyapatite powders are shown to strongly influence the properties of the biocomposites. Specifically, the grain size and specific surface area of the HA powders are strictly correlated to the gelling time and rheological properties of the hydrogels at room temperature. Pectin pH is also significant for the formation of ionic cross-links and therefore for the hydrogels stability at higher temperatures. The obtained results point out that micrometric-size hydroxyapatite can be proposed for applications which require rapid gelling kinetics and improved mechanical properties; conversely the nanometric hydroxyapatite synthesized in the present work seems the best choice to obtain homogeneous hydrogels with more easily controlled gelling kinetics. Copyright © 2014 Elsevier B.V. All rights reserved.
Eliaz, Noam; Eliyahu, Moshe
2007-03-01
Recently, interest in electrochemical formation of hydroxyapatite has evolved. In this work, highly crystalline hydroxyapatite is electrodeposited on pure titanium and Ti-6Al-4V alloy. In situ and ex situ imaging, coupled with potentiostatic and potentiodynamic measurements, is conducted by means of electrochemical atomic force microscopy. This allows for a study of the nucleation and growth of hydroxyapatite as well as of its near-atomic structure. Electrodeposition of hydroxyapatite is shown to result from precipitation in solution, following two stages: (1) instantaneous nucleation, two-dimensional growth; (2) progressive nucleation, three-dimensional growth. Although some nucleation occurs already at -842 mV, potentials that are more negative than -1.26 V versus SCE are required for enhanced growth. Mass transport is found to have only secondary effect on the deposition process. The conclusions of this work have implications in optimization of coatings on implants as well as in enhancement of the understanding of bone mineralization in vivo.
[Experimental research on the effect of nanophase ceramics on osteoblasts functions].
Wen, Bo; Chen, Zhiqing; Jiang, Yinshan; Yang, Zhengwen; Xu, Yongzhong
2005-06-01
In order to study the cytocompatibility of nanophase hydroxyapatite ceramic in vitro, we prepared hydroxyapatite by use of the wet chemistry techniques. The grain size of hydroxyapatite of interest to the present study was determined by scanning electron microscopy and atomic force microscopy with image analysis software. Primary culture of osteoblast from rat calvaria was established. Protein content, synthesis of alkaline phosphatase and deposition of calcium-containing mineral by osteoblasts cultured on nanophase hydroxyapatite ceramics and on conventional hydroxyapatite ceramics for 7, 14, 21 and 28 days were examined. The results showed that the average surface grain size of the nanophase and that of the conventional HA compact formulations was 55 (nanophase) and 780 (conventional) nm, respectively. More importantly, compared to the synthesis of alkaline phosphatase and deposition of calcium-containing mineral by osteoblasts cultured on nanophase was significantly greater than that on conventional ceramics after 21 and 28 days. The cytocompatibility was significantly greater on nanophase HA than on conventional formulations of the same ceramic.
Electrophoretic co-deposition of PEEK-hydroxyapatite composite coatings for biomedical applications.
Baştan, Fatih E; Atiq Ur Rehman, Muhammad; Avcu, Yasemin Yıldıran; Avcu, Egemen; Üstel, Fatih; Boccaccini, Aldo R
2018-05-03
This study focuses on the optimization of electrophoretic deposition (EPD) and suspension parameters for producing PEEK-hydroxyapatite (HA) coatings with feasible microstructure, adhesion strength, and in-vitro bioactivity. Nanostructured hydroxyapatite (HA) micro-granules were incorporated with PEEK to form PEEK-hydroxyapatite composite coatings via EPD. After EPD, a heat-treatment at 375 °C was applied for densification of the coatings and for enhancing the adhesion between the coatings and the substrates. It was found that both adhesion strength and in-vitro bioactivity of the coatings were dependent on the PEEK and HA relative contents. Thus, increasing the amount of HA improved the bioactivity while decreased the adhesion strength of the coatings. Apatite-like layer formation was observed on coatings with high HA content after incubation for three days in simulated body fluid (SBF). Finally, a deposition mechanism was proposed for the EPD of the PEEK-hydroxyapatite composite system. Copyright © 2018 Elsevier B.V. All rights reserved.
On the anisotropic elastic properties of hydroxyapatite.
NASA Technical Reports Server (NTRS)
Katz, J. L.; Ukraincik, K.
1971-01-01
Experimental measurements of the isotropic elastic moduli on polycrystalline specimens of hydroxyapatite and fluorapatite are compared with elastic constants measured directly from single crystals of fluorapatite in order to derive a set of pseudo single crystal elastic constants for hydroxyapatite. The stiffness coefficients thus derived are given. The anisotropic and isotropic elastic properties are then computed and compared with similar properties derived from experimental observations of the anisotropic behavior of bone.
Bond Strength of Methacrylate-Based Composite to Dentin using a Silorane Adhesive
2013-06-06
the smear layer is not removed, and the interaction with dentin is superficial, and the residual hydroxyapatite remains available for chemical...interaction. This chemical interaction is more stable in an aqueous environment, and occurs between specific monomers and the calcium of hydroxyapatite ...between the monomer and the calcium of the hydroxyapatite (HAp) crystal (Van Meerbeek et al., 9 2010). Van Meerbeek suggests that monomers such as
2015-12-01
lateral condyles of the tibia and the anterioposterior axis was oriented orthogonally. The CT Hounsfield units were converted to calcium hydroxyapatite...orthogonally. The CT Hounsfield units were converted to calcium hydroxyapatite density rha using a linear relationship established with the phantom...concentration (QRM, Moehrendorf, Germany). The phantom allowed conversion of computed tomography Hounsfield units into hydroxyapatite equivalent density
Bisphosphonates enhance bacterial adhesion and biofilm formation on bone hydroxyapatite.
Kos, Marcin; Junka, Adam; Smutnicka, Danuta; Szymczyk, Patrycja; Gluza, Karolina; Bartoszewicz, Marzenna
2015-07-01
Because of the suspicion that bisphosphonates enhance bacterial colonization, this study evaluated adhesion and biofilm formation by Streptococcus mutans 25175, Staphylococcus aureus 6538, and Pseudomonas aeruginosa 14454 reference strains on hydroxyapatite coated with clodronate, pamidronate, or zoledronate. Bacterial strains were cultured on bisphosphonate-coated and noncoated hydroxyapatite discs. After incubation, nonadhered bacteria were removed by centrifugation. Biofilm formation was confirmed by scanning electron microscopy. Bacterial colonization was estimated using quantitative cultures compared by means with Kruskal-Wallis and post-hoc Student-Newman-Keuls tests. Modeling of the interactions between bisphosphonates and hydroxyapatite was performed using the Density Functional Theory method. Bacterial colonization of the hydroxyapatite discs was significantly higher for all tested strains in the presence of bisphosphonates vs. Adherence in the presence of pamidronate was higher than with other bisphosphonates. Density Functional Theory analysis showed that the protonated amine group of pamidronate, which are not present in clodronate or zoledronate, forms two additional hydrogen bonds with hydroxyapatite. Moreover, the reactive cationic amino group of pamidronate may attract bacteria by direct electrostatic interaction. Increased bacterial adhesion and biofilm formation can promote osteomyelitis, cause failure of dental implants or bisphosphonate-coated joint prostheses, and complicate bone surgery in patients on bisphosphonates. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Warren, L M; Mackenzie, A; Dance, D R; Young, K C
2013-04-07
Aluminium is often used as a substitute material for calcifications in phantom measurements in mammography. Additionally, calcium oxalate, hydroxyapatite and aluminium are used in simulation studies. This assumes that these materials have similar attenuation properties to calcification, and this assumption is examined in this work. Sliced mastectomy samples containing calcification were imaged at ×5 magnification using a digital specimen cabinet. Images of the individual calcifications were extracted, and the diameter and contrast of each calculated. The thicknesses of aluminium required to achieve the same contrast as each calcification when imaged under the same conditions were calculated using measurements of the contrast of aluminium foils. As hydroxyapatite and calcium oxalate are also used to simulate calcifications, the equivalent aluminium thicknesses of these materials were also calculated using tabulated attenuation coefficients. On average the equivalent aluminium thickness was 0.85 times the calcification diameter. For calcium oxalate and hydroxyapatite, the equivalent aluminium thicknesses were 1.01 and 2.19 times the thickness of these materials respectively. Aluminium and calcium oxalate are suitable substitute materials for calcifications. Hydroxyapatite is much more attenuating than the calcifications and aluminium. Using solid hydroxyapatite as a substitute for calcification of the same size would lead to excessive contrast in the mammographic image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neelgund, Gururaj M.; Oki, Aderemi, E-mail: aroki@pvamu.edu; Luo, Zhiping
Graphical abstract: A facile chemical precipitation method is reported for effective in situ deposition of hydroxyapatite on graphene nanosheets. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. Display Omitted Highlights: ► It is a facile and effective method for deposition of HA on GR nanosheets. ► It avoids the use of harmful reducing agents like hydrazine, NaBH{sub 4} etc. ► GR nanosheets were produced using bio-compatible, ethylenediamine. ► The graphitic structure of synthesized GR nanosheets was high ordered. ► The ratio of Ca to P in HAmore » was 1.64, which is close to ratio in natural bone. -- Abstract: Graphene nanosheets were effectively functionalized by in situ deposition of hydroxyapatite through a facile chemical precipitation method. Prior to grafting of hydroxyapatite, chemically modified graphene nanosheets were obtained by the reduction of graphene oxide in presence of ethylenediamine. The resulting hydroxyapatite functionalized graphene nanosheets were characterized by attenuated total reflection IR spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, X-ray energy dispersive spectroscopy, Raman spectroscopy and thermogravimetric analysis. These characterization techniques revealed the successful grafting of hydroxyapatite over well exfoliated graphene nanosheets without destroying their structure.« less
Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells
Schmelzer, Eva; Over, Patrick; Nettleship, Ian; Gerlach, Joerg C.
2016-01-01
Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications. PMID:27403430
NASA Astrophysics Data System (ADS)
Coşkun, M. İbrahim; Karahan, İsmail H.; Yücel, Yasin; Golden, Teresa D.
2016-10-01
CoCrMo biomedical alloys were coated with a hydroxyapatite layer to improve biocompatibility and in vitro corrosion performance. A fast electrodeposition process was completed in 5 minutes for the hydroxyapatite coating. Effect of the solution temperature and applied potential on the in vitro corrosion performance of the hydroxyapatite coatings was modeled by response surface methodology (RSM) coupled with central composite design (CCD). A 5-level-2-factor experimental plan designed by CCD was used; the experimental plan contained 13 coating experiments with a temperature range from 283 K to 347 K (10 °C to 74 °C) and potential range from -1.2 to -1.9 V. Corrosion potential ( E corr) of the coatings in a simulated body fluid solution was chosen as response for the model. Predicted and experimental values fitted well with an R 2 value of 0.9481. Response surface plots of the impedance and polarization resistance ( R P) were investigated. Optimized parameters for electrodeposition of hydroxyapatite were determined by RSM as solution temperature of 305.48 K (32.33 °C) and potential of -1.55 V. Hydroxyapatite coatings fabricated at optimized parameters showed excellent crystal formation and high in vitro corrosion resistance.
Ghasemi, Ensieh; Sillanpää, Mika
2015-01-01
A novel type of magnetic nanosorbent, hydroxyapatite-coated Fe2O3 nanoparticles was synthesized and used for the adsorption and removal of nitrite and nitrate ions from environmental samples. The properties of synthesized magnetic nanoparticles were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray powder diffraction. After the adsorption process, the separation of γ-Fe2O3@hydroxyapatite nanoparticles from the aqueous solution was simply achieved by applying an external magnetic field. The effects of different variables on the adsorption efficiency were studied simultaneously using an experimental design. The variables of interest were amount of magnetic hydroxyapatite nanoparticles, sample volume, pH, stirring rate, adsorption time, and temperature. The experimental parameters were optimized using a Box-Behnken design and response surface methodology after a Plackett-Burman screening design. Under the optimum conditions, the adsorption efficiencies of magnetic hydroxyapatite nanoparticles adsorbents toward NO3(-) and NO2(-) ions (100 mg/L) were in the range of 93-101%. The results revealed that the magnetic hydroxyapatite nanoparticles adsorbent could be used as a simple, efficient, and cost-effective material for the removal of nitrate and nitrite ions from environmental water and soil samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Preparation and characterization of selenite substituted hydroxyapatite.
Ma, Jun; Wang, Yanhua; Zhou, Lei; Zhang, Shengmin
2013-01-01
Selenite-substituted hydroxyapatite (Se-HA) with different Se/P ratios was synthesized by a co-precipitation method, using sodium selenite (Na2SeO3) as a Se source. Selenium has been incorporated into the hydroxyapatite lattice by partially replacing phosphate (PO4(3-)) groups with selenite (SeO3(2-)) groups. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) techniques reveal that substitutions of phosphate groups by selenite groups cause lower carbonate groups occupying at phosphate sites and change the lattice parameters of hydroxyapatite. The powders obtained are nano-crystalline hydroxyapatite when the Se/P ratios are not more than 0.1. The particle shape of Se-HA has not been altered compared with selenite-free hydroxyapatite but Se-incorporation reduces the crystallite size. The crystallinity was reduced as the Se/P ratios increased until amorphous phase (Se/P=0.3) appeared in the Se-HA powder obtained, and then another crystal phase presented as calcium selenite hydrate (Se/P=10). In addition, the sintering tests show that the Se-HA powders with the Se/P ratio of 0.1 have thermal stability at 900 °C for 2 h; hence they have great potential in the fabrication of bone repair scaffolds. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sangmala, A.; Limsuwan, P.; Kaewwiset, W.; Naemchanthara, K.
2017-09-01
Hydroxyapatite-ZrO2 composite ceramic were synthesized using a thermal precipitation techniques. The chemical precursors were prepared from di-ammonium hydrogen orthophosphate, calcium oxide (CaO) derived from chicken eggshell, zirconium dioxide (ZrO2) and distilled water. The mixture were heated at the various temperatures from 100 to 700 °C in the furnace with an incremental temperature of 100 °C. The ZrO2 contents in the composite ceramic were varied from 0 to 15 percent weight of CaO. The prepared composites were then annealed at 300, 600 and 700 °C for 4 h in air. The crystal structure, function group and morphology of all samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and universal testing machine (UTM), respectively. The results indicated that the undoped-ZrO2 samples hydroxyapatite phase with a hexagonal structure. However, the hydroxyapatite was transformed to the tri-calcium phosphate after thermal treatment at 700 °C. For the doped-ZrO2 samples, the hydroxyapatite and ZrO2 phases were found. Moreover, the result showed that the compressive strength of hydroxyapatite-ZrO2 composite ceramic increased with increasing the ZrO2 content.
The electrolysis time on electrosynthesis of hydroxyapatite with bipolar membrane
NASA Astrophysics Data System (ADS)
Nur, Adrian; Jumari, Arif; Budiman, Anatta Wahyu; Puspitaningtyas, Stella Febianti; Cahyaningrum, Suci; Nazriati, Nazriati; Fajaroh, Fauziatul
2018-02-01
The electrochemical method with bipolar membrane has been successfully used for the synthesis of hydroxyapatite. In this work, we have developed 2 chambers electrolysis system separated by a bipolar membrane. The membrane was used to separate cations (H+ ions produced by the oxidation of water at the anode) and anions (OH- ions produced by the reduction of water at the cathode). With this system, we have designed that OH- ions still stay in the anions chamber because OH- ions was very substantial in the hydroxyapatite particles formation. The aim of this paper was to compare the electrolysis time on electrosynthesis of hydroxyapatite with and without the bipolar membrane. The electrosynthesis was performed at 500 mA/cm2 for 0.5 to 2 hours at room temperature and under ultrasonic cleaner to void agglomeration with and without the bipolar membrane. The electrosynthesis of hydroxyapatite with the bipolar membrane more effective than without the bipolar membrane. The hydroxyapatite has been appeared at 0.5 h of the electrolysis time with the bipolar membrane (at the cathode chamber) while it hasn't been seen without the bipolar membrane. The bipolar membrane prevents OH- ions migrate to the cation chamber. The formation of HA becomes more effective because OH- ions just formed HA particle.
Jones, Siân B; Barbour, Michele E; Shellis, R Peter; Rees, Gareth D
2014-05-01
Tooth surface modification is a potential method of preventing dental erosion, a form of excessive tooth wear facilitated by softening of tooth surfaces through the direct action of acids, mainly of dietary origin. We have previously shown that dodecyl phosphates (DPs) effectively inhibit dissolution of native surfaces of hydroxyapatite (the type mineral for dental enamel) and show good substantivity. However, adsorbed saliva also inhibits dissolution and DPs did not augment this effect, which suggests that DPs and saliva interact at the hydroxyapatite surface. In the present study the adsorption and desorption of potassium and sodium dodecyl phosphates or sodium dodecyl sulphate (SDS) to hydroxyapatite and human tooth enamel powder, both native and pre-treated with saliva, were studied by high performance liquid chromatography-mass Spectrometry. Thermo gravimetric analysis was used to analyse residual saliva and surfactant on the substrates. Both DPs showed a higher affinity than SDS for both hydroxyapatite and enamel, and little DP was desorbed by washing with water. SDS was readily desorbed from hydroxyapatite, suggesting that the phosphate head group is essential for strong binding to this substrate. However, SDS was not desorbed from enamel, so that this substrate has surface properties different from those of hydroxyapatite. The presence of a salivary coating had little or no effect on adsorption of the DPs, but treatment with DPs partly desorbed saliva; this could account for the failure of DPs to increase the dissolution inhibition due to adsorbed saliva. Copyright © 2014 Elsevier B.V. All rights reserved.
Maas, Michael; Bodnar, Pedro Marcus; Hess, Ulrike; Treccani, Laura; Rezwan, Kurosch
2013-10-01
The synthesis of porous hydroxyapatite scaffolds is essential for biomedical applications such as bone tissue engineering and replacement. One way to induce macroporosity, which is needed to support bone in-growth, is to use protein additives as foaming agents. Another reason to use protein additives is the potential to introduce a specific biofunctionality to the synthesized scaffolds. In this work, we study the rheological properties of a hydroxyapatite suspension system with additions of the proteins bovine serum albumin (BSA), lysozyme (LSZ) and fibrinogen (FIB). Both the rheology of the bulk phase as well as the interfacial shear rheology are studied. The bulk rheological data provides important information on the setting behavior of the thixotropic suspension, which we find to be faster with the addition of FIB and LSZ and much slower with BSA. Foam bubble stabilization mechanisms can be rationalized via interfacial shear rheology and we show that it depends on the growth of interfacial films at the suspension/air interface. These interfacial films support the stabilization of bubbles within the ceramic matrix and thereby introduce macropores. Due to the weak interaction of the protein molecules with the hydroxyapatite particles of the suspension, we find that BSA forms the most stable interfacial films, followed by FIB. LSZ strongly interacts with the hydroxyapatite particles and thus only forms thin films with very low elastic moduli. In summary, our study provides fundamental rheological insights which are essential for tailoring hydroxyapatite/protein suspensions in order to synthesize scaffolds with controlled porosities. Copyright © 2013 Elsevier Inc. All rights reserved.
Hydroxyapatite synthesis using EDTA
Kang, Nak Heon; Kim, Soon Je; Song, Seung Han; Choi, Sang mun; Choi, Sik Young; Kim, Youn Jung
2013-01-01
Bone comprises structure of body and is consisted of inorganic substances. It exists in an organic structure in the body. Even though it is firm and has self healing mechanism, it can be damaged by trauma, cancer, or bone diseases. Allograft can be an alternative solution for autologous bone graft. Hydroxyapatite(Ca10(PO4)6(OH)2), an excellent candidate for allograft, can be applied to bone defect area. There are several methods to produce hydroxyapatite, however economical cost and time consuming make the production difficult. In this study we synthesized the hydroxyapatite with Ethyenediamine tetraacetic acid. Freeze Dried Bone Allograft(Hans Biomed) was used to be a control group. Synthesized hydroxyapatite was a rod shape, white powdery type substance with 2 ~ 5 μm length and 0.5 ~ 1 μm width. X-ray diffraction showed the highest sharp peak at 32° and high peaks at 25.8°, 39.8°, 46.8°, 49.5°, and 64.0° indicating a similar substance to the freeze Dried Bone Allograft. 3 days after the cell growth of synthesized hydroxyapatite showed 1.5 fold more than the Bone Allograft. Cellular and media alkaline phosphate activity increased similar to the bone alloagraft. In this study we came up with a new method to produce the hydroxyapatite. It is a convenient method that can be held in room temperature and low pressure. Also the the product can be manufactured in large quantity. It can be also transformed into scaffold structure which will perform a stronger configuration. The manufacturing method will help the bony defect patients and make future medical products. PMID:23714942
Properties of Basil and Lavender Essential Oils Adsorbed on the Surface of Hydroxyapatite.
Predoi, Daniela; Groza, Andreea; Iconaru, Simona Liliana; Predoi, Gabriel; Barbuceanu, Florica; Guegan, Regis; Motelica-Heino, Mikael Stefan; Cimpeanu, Carmen
2018-04-24
The research conducted in this study presented for the first time results of physico-chemical properties and in vitro antimicrobial activity of hydroxyapatite plant essential oil against Gram-positive bacteria (methicillin-resistant Staphylococcus aureus (MRSA) and S. aureus 0364) and Gram-negative bacteria ( Escherichia coli ATCC 25922). The samples were studied by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy to determine the morphology and structure of the nanocomposites of hydroxyapatite coated with basil (HAp-B) and lavender (HAp-L) essential oils (EOs). The values of the BET specific surface area (S BET ), total pore volume (V P ) and pore size (D P ) were determined. The results for the physico-chemical properties of HAp-L and HAp-B revealed that lavender EOs were well adsorbed on the surface of hydroxyapatite, whereas basil EOs showed a poor adsorption on the surface of hydroxyapatite. We found that the lavender EOs hydroxyapatite (HAp-L) exhibited a very good inhibitory growth activity. The value of the minimum inhibitory concentration (MIC) related to growth bacteria was 0.039 mg/mL for MRSA, 0.02 mg/mL for S. aureus and 0.039 mg/mL E. coli ATCC 25922. The basil EO hydroxyapatite (HAp-B) showed poor inhibition of bacterial cell growth. The MIC value was 0.625 mg/mL for the HAp-B sample in the presence of the MRSA bacteria, 0.313 mg/mL in the presence of S. aureus and 0.078 mg/mL for E. coli ATCC 25922.
Real-Time Protein and Cell Binding Measurements on Hydroxyapatite Coatings
Vilardell, A. M.; Cinca, N.; Jokinen, A.; Garcia-Giralt, N.; Dosta, S.; Cano, I. G.; Guilemany, J. M.
2016-01-01
Although a lot of in vitro and in vivo assays have been performed during the last few decades years for hydroxyapatite bioactive coatings, there is a lack of exploitation of real-time in vitro interaction measurements. In the present work, real-time interactions for a plasma sprayed hydroxyapatite coating were measured by a Multi-Parametric Surface Plasmon Resonance (MP-SPR), and the results were compared with standard traditional cell viability in vitro assays. MP-SPR is proven to be suitable not only for measurement of molecule–molecule interactions but also molecule–material interaction measurements and cell interaction. Although SPR is extensively utilized in interaction studies, recent research of protein or cell adsorption on hydroxyapatite coatings for prostheses applications was not found. The as-sprayed hydroxyapatite coating resulted in 62.4% of crystalline phase and an average thickness of 24 ± 6 μm. The MP-SPR was used to measure lysozyme protein and human mesenchymal stem cells interaction to the hydroxyapatite coating. A comparison between the standard gold sensor and Hydroxyapatite (HA)-plasma coated sensor denoted a clearly favourable cell attachment on HA coated sensor as a significantly higher signal of cell binding was detected. Moreover, traditional cell viability and proliferation tests showed increased activity with culture time indicating that cells were proliferating on HA coating. Cells show homogeneous distribution and proliferation along the HA surface between one and seven days with no significant mortality. Cells were flattened and spread on rough surfaces from the first day, with increasing cytoplasmatic extensions during the culture time. PMID:27618911
Hydroxyapatite Growth Inhibition Effect of Pellicle Statherin Peptides.
Xiao, Y; Karttunen, M; Jalkanen, J; Mussi, M C M; Liao, Y; Grohe, B; Lagugné-Labarthet, F; Siqueira, W L
2015-08-01
In our recent studies, we have shown that in vivo-acquired enamel pellicle is a sophisticated biological structure containing a significant portion of naturally occurring salivary peptides. From a functional aspect, the identification of peptides in the acquired enamel pellicle is of interest because many salivary proteins exhibit functional domains that maintain the activities of the native protein. Among the in vivo-acquired enamel pellicle peptides that have been newly identified, 5 peptides are derived from statherin. Here, we assessed the ability of these statherin pellicle peptides to inhibit hydroxyapatite crystal growth. In addition, atomistic molecular dynamics (MD) simulations were performed to better understand the underlying physical mechanisms of hydroxyapatite growth inhibition. A microplate colorimetric assay was used to quantify hydroxyapatite growth. Statherin protein, 5 statherin-derived peptides, and a peptide lacking phosphate at residues 2 and 3 were analyzed. Statherin peptide phosphorylated on residues 2 and 3 indicated a significant inhibitory effect when compared with the 5 other peptides (P < 0.05). MD simulations showed a strong affinity and fast adsorption to hydroxyapatite for phosphopeptides, whereas unphosphorylated peptides interacted weakly with the hydroxyapatite. Our data suggest that the presence of a covalently linked phosphate group (at residues 2 and 3) in statherin peptides modulates the effect of hydroxyapatite growth inhibition. This study provides a mechanism to account for the composition and function of acquired enamel pellicle statherin peptides that will contribute as a base for the development of biologically stable and functional synthetic peptides for therapeutic use against dental caries and/or periodontal disease. © International & American Associations for Dental Research 2015.
Yatongchai, Chokchai; Placek, Lana M; Curran, Declan J; Towler, Mark R; Wren, Anthony W
2015-11-01
Hydroxyapatite (Ca10(PO4)6(OH)2) is widely investigated as an implantable material for hard tissue restoration due to its osteoconductive properties. However, hydroxyapatite in bulk form is limited as its mechanical properties are insufficient for load-bearing orthopedic applications. Attempts have been made to improve the mechanical properties of hydroxyapatite, by incorporating ceramic fillers, but the resultant composite materials require high sintering temperatures to facilitate densification, leading to the decomposition of hydroxyapatite into tricalcium phosphate, tetra-calcium phosphate and CaO phases. One method of improving the properties of hydroxyapatite is to incorporate bioactive glass particles as a second phase. These typically have lower softening points which could possibly facilitate sintering at lower temperatures. In this work, a bioactive glass (SiO2-CaO-ZnO-Na2O-TiO2) is incorporated (10, 20 and 30 wt%) into hydroxyapatite as a reinforcing phase. X-ray diffraction confirmed that no additional phases (other than hydroxyapatite) were formed at a sintering temperature of 560 ℃ with up to 30 wt% glass addition. The addition of the glass phase increased the % crystallinity and the relative density of the composites. The biaxial flexural strength increased to 36 MPa with glass addition, and there was no significant change in hardness as a function of maturation. The pH of the incubation media increased to pH 10 or 11 through glass addition, and ion release profiles determined that Si, Na and P were released from the composites. Calcium phosphate precipitation was encouraged in simulated body fluid with the incorporation of the bioactive glass phase, and cell culture testing in MC-3T3 osteoblasts determined that the composite materials did not significantly reduce cell viability. © The Author(s) 2015.
Effect of Hydroxyapatite on Bone Integration in a Rabbit Tibial Defect Model
Sohn, Sung-Keun; Kim, Kyung-Taek; Kim, Chul-Hong; Ahn, Hee-Bae; Rho, Mee-Sook; Jeong, Min-Ho; Sun, Sang-Kyu
2010-01-01
Background The aim of the present study was to prepare hydroxyapatite (HA) and then characterize its effect on bone integration in a rabbit tibial defect model. The bone formation with different designs of HA was compared and the bony integration of several graft materials was investigated qualitatively by radiologic and histologic study. Methods Ten rabbits were included in this study; two holes were drilled bilaterally across the near cortex and the four holes in each rabbit were divided into four treatment groups (HAP, hydroxyapatite powder; HAC, hydroxyapatite cylinder; HA/TCP, hydroxyapatite/tri-calcium phosphate cylinder, and titanium cylinder). The volume of bone ingrowth and the change of bone mineral density were statistically calculated by computed tomography five times for each treatment group at 0, 2, 4, 6, and 8 weeks after grafting. Histologic analysis was performed at 8 weeks after grafting. Results The HAP group showed the most pronounced effect on the bone ingrowth surface area, which seen at 4, 6, and 8 weeks after graft (p < 0.05). On comparing the change of bone mineral density the bone ingrowth surface area among the 4 groups, there were no statistically significant differences among the groups found for any period (p > 0.05). On histological examination, the HAP group revealed well-recovered cortical bone, but the bone was irregularly thickened and haphazardly admixed with powder. The HAC group showed similar histological features to those of the HA/TCP group; the cortical surface of the newly developed bone was smooth and the bone matrix on the surface of the cylinder was regularly arranged. Conclusions We concluded that both the hydroxyapatite powder and cylinder models investigated in our study may be suitable as a bone substitute in the rabbit tibial defect model, but their characteristic properties are quite different. In contrast to hydroxyapatite powder, which showed better results for the bone ingrowth surface, the hydroxyapatite cylinder showed better results for the sustained morphology. PMID:20514266
Lee, Seungbae; An, Jinsung; Kim, Young-Jin; Nam, Kyoungphile
2011-02-28
In situ stabilization of sediment-bound heavy metals has been proposed as an alternative to ex situ treatment due to the concerns on ecosystem disturbance and remediation cost. The present study was conducted to test the performance of birnessite, hydroxyapatite, and zeolite as stabilizing agents for Pb and Cd in sediment. The heavy metal binding capacity and strength of the stabilizing agents were determined by analyzing Langmuir model parameters. The three agents showed the similar binding capacity (i.e., maximum monolayer sorption constant, K(a)) ranging from 1.13 to 3.62×10(5) mg/kg for Pb and 1.07 to 1.33×10(5) mg/kg for Cd. In contrast, binding strength (i.e., binding energy constant, b) of birnessite and hydroxyapatite was about one order higher than that of zeolite. This is further supported by five-step sequential extraction data: more than 99 and 70% of freshly spiked Pb and Cd were present as not-readily extractable fractions in birnessite and hydroxyapatite, respectively while the fractions were 17.9 and 14.1% in zeolite. Toxicity Characteristic Leaching Procedure (TCLP) test was also conducted to verify the effectiveness of the heavy metal-stabilizing ability of birnessite and hydroxyapatite. Birnessite successfully retained both Pb and Cd against the leaching solution, satisfying the TCLP extract concentration limits (i.e., 5 and 1 mg/L, respectively). However, hydroxyapatite released about 223.7 mg/L of Cd into the solution, which greatly exceeded the limit. The toxicity test with Hyalella azteca showed that their survival rate increased by 92.5-100% when birnessite or hydroxyapatite was added to Pb- or Cd-spiked sediment as a stabilizing agent. Our data demonstrate the potential use of birnessite and hydroxyapatite as an effective in situ remediation means for heavy metal-contaminated sediment with minimal risk to the aquatic ecosystem. Copyright © 2011 Elsevier B.V. All rights reserved.
Nucleation of hydroxyapatite by bone sialoprotein.
Hunter, G K; Goldberg, H A
1993-01-01
Bone sialoprotein (BSP) and osteopontin, the major phosphorylated proteins of mammalian bone, have been proposed to function in the initiation of mineralization. To test this hypothesis, the effects of BSP and osteopontin on hydroxyapatite crystal formation were determined by using a steady-state agarose gel system. At low calcium phosphate concentrations, no accumulation of calcium and phosphate occurred in control gels or gels containing osteopontin. Gels containing BSP at 1-5 micrograms/ml, however, exhibited a visible precipitation band and significantly elevated Ca + PO4 contents. By powder x-ray diffraction, the precipitate formed in the presence of BSP was shown to be hydroxyapatite. These findings suggest that bone sialoprotein may be involved in the nucleation of hydroxyapatite at the mineralization front of bone. Images Fig. 4 PMID:8397409
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukov, Mikhail, E-mail: cloudjyk@yandex.ru; Golubok, Alexander; Institute for Analytical Instrumentation, Russian Academy of Sciences
The new specialized AFM-probes with hydroxyapatite structures for atomic force microscopy of heart tissues calcification were created and studied. A process of probe fabrication is demonstrated. The adhesive forces between specialized hydroxyapatite probe and endothelium/subendothelial layers were investigated. It was found that the adhesion forces are significantly higher for the subendothelial layers. We consider that it is connected with the formation and localization of hydroxyapatite in the area of subendothelial layers of heart tissues. In addition, the roughness analysis and structure visualization of the endothelial surface of the heart tissue were carried out. The results show high efficiency of createdmore » specialized probes at study a calcinations process of the aortic heart tissues.« less
Mechanical properties of hydroxyapatite single crystals from nanoindentation data
Zamiri, A.; De, S.
2011-01-01
In this paper we compute elasto-plastic properties of hydroxyapatite single crystals from nanindentation data using a two-step algorithm. In the first step the yield stress is obtained using hardness and Young’s modulus data, followed by the computation of the flow parameters. The computational approach is first validated with data from existing literature. It is observed that hydroxyapatite single crystals exhibit anisotropic mechanical response with a lower yield stress along the [1010] crystallographic direction compared to the [0001] direction. Both work hardening rate and work hardening exponent are found to be higher for indentation along the [0001] crystallographic direction. The stress-strain curves extracted here could be used for developing constitutive models for hydroxyapatite single crystals. PMID:21262492
Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite
NASA Astrophysics Data System (ADS)
Paluszkiewicz, Czesława; Ślósarczyk, Anna; Pijocha, Dawid; Sitarz, Maciej; Bućko, Mirosław; Zima, Aneta; Chróścicka, Anna; Lewandowska-Szumieł, Małgorzata
2010-07-01
Hydroxyapatite (HA) - Ca 10(PO 4) 6(OH) 2 is a basic inorganic model component of hard biological tissues, such as bones and teeth. The significant property of HA is its ability to exchange Ca 2+ ions, which influences crystallinity, physico-chemical and biological properties of modified hydroxyapatite materials. In this work, FTIR, Raman spectroscopy, XRD, SEM and EDS techniques were used to determine thermal stability, chemical and phase composition of Mn containing hydroxyapatite (MnHA). Described methods confirmed thermal decomposition and phase transformation of MnHA to αTCP, βTCP and formation of Mn 3O 4 depending on sintering temperature and manganese content. In vitro biological evaluation of Mn-modified HA ceramics was also performed using human osteoblast cells.
Crystallographic texture in pulsed laser deposited hydroxyapatite bioceramic coatings
Kim, Hyunbin; Camata, Renato P.; Lee, Sukbin; Rohrer, Gregory S.; Rollett, Anthony D.; Vohra, Yogesh K.
2008-01-01
The orientation texture of pulsed laser deposited hydroxyapatite coatings was studied by X-ray diffraction techniques. Increasing the laser energy density of the KrF excimer laser used in the deposition process from 5 to 7 J/cm2 increases the tendency for the c-axes of the hydroxyapatite grains to be aligned perpendicular to the substrate. This preferred orientation is most pronounced when the incidence direction of the plume is normal to the substrate. Orientation texture of the hydroxyapatite grains in the coatings is associated with the highly directional and energetic nature of the ablation plume. Anisotropic stresses, transport of hydroxyl groups and dehydroxylation effects during deposition all seem to play important roles in the texture development. PMID:18563207
Regenerated cellulose/wool blend enhanced biomimetic hydroxyapatite mineralization.
Salama, Ahmed; El-Sakhawy, Mohamed
2016-11-01
The current article investigates the effect of bioactive cellulose/wool blend on calcium phosphate biomimetic mineralization. Regenerated cellulose/wool blend was prepared by dissolution-regeneration of neat cellulose and natural wool in 1-butyl-3-methyl imidazolium chloride [Bmim][Cl], as a solvent for the two polymers. Crystalline hydroxyapatite nanofibers with a uniform size, shape and dimension were formed after immersing the bioactive blend in simulated body fluid. The cytotoxicity of cellulose/wool/hydroxyapatite was studied using animal fibroblast baby hamster kidney cells (BHK-21) and the result displayed good cytocompatability. This research work presents a green processing method for the development of novel cellulose/wool/hydroxyapatite hybrid materials for tissue engineering applications. Copyright © 2016 Elsevier B.V. All rights reserved.
The precursors effects on biomimetic hydroxyapatite ceramic powders.
Yoruç, Afife Binnaz Hazar; Aydınoğlu, Aysu
2017-06-01
In this study, effects of the starting material on chemical, physical, and biological properties of biomimetic hydroxyapatite ceramic powders (BHA) were investigated. Characterization and chemical analysis of BHA powders were performed by using XRD, FT-IR, and ICP-AES. Microstructural features such as size and morphology of the resulting BHA powders were characterized by using BET, nano particle sizer, pycnometer, and SEM. Additionally, biological properties of the BHA ceramic powders were also investigated by using water-soluble tetrazolium salts test (WST-1). According to the chemical analysis of BHA ceramic powders, chemical structures of ceramics which are prepared under different conditions and by using different starting materials show differences. Ceramic powders which are produced at 80°C are mainly composed of hydroxyapatite, dental hydroxyapatite (contain Na and Mg elements in addition to Ca), and calcium phosphate sulfide. However, these structures are altered at high temperatures such as 900°C depending on the features of starting materials and form various calcium phosphate ceramics and/or their mixtures such as Na-Mg-hydroxyapatite, hydroxyapatite, Mg-Whitlockit, and chloroapatite. In vitro cytotoxicity studies showed that amorphous ceramics produced at 80°C and ceramics containing chloroapatite structure as main or secondary phases were found to be extremely cytotoxic. Furthermore, cell culture studies showed that highly crystalline pure hydroxyapatite structures were extremely cytotoxic due to their high crystallinity values. Consequently, the current study indicates that the selection of starting materials which can be used in the production of calcium phosphate ceramics is very important. It is possible to produce calcium phosphate ceramics which have sufficient biocompatibility at physiological pH values and by using appropriate starting materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Rouholamin, Davood; van Grunsven, William; Reilly, Gwendolen C; Smith, Patrick J
2016-08-01
A novel supercritical CO2 foaming technique was used to fabricate scaffolds of controllable morphology and mechanical properties, with the potential to tailor the scaffolds to specific tissue engineering applications. Biodegradable scaffolds are widely used as temporary supportive structures for bone regeneration. The scaffolds must provide a sufficient mechanical support while allowing cell attachment and growth as well as metabolic activities. In this study, supercritical CO2 foaming was used to prepare fully interconnected porous scaffolds of poly-d,l-lactic acid and poly-d,l-lactic acid/hydroxyapatite. The morphological, mechanical and cell behaviours of the scaffolds were measured to examine the effect of hydroxyapatite on these properties. These scaffolds showed an average porosity in the range of 86%-95%, an average pore diameter of 229-347 µm and an average pore interconnection of 103-207 µm. The measured porosity, pore diameter, and interconnection size are suitable for cancellous bone regeneration. Compressive strength and modulus of up to 36.03 ± 5.90 and 37.97 ± 6.84 MPa were measured for the produced porous scaffolds of various compositions. The mechanical properties presented an improvement with the addition of hydroxyapatite to the structure. The relationship between morphological and mechanical properties was investigated. The matrices with different compositions were seeded with bone cells, and all the matrices showed a high cell viability and biocompatibility. The number of cells attached on the matrices slightly increased with the addition of hydroxyapatite indicating that hydroxyapatite improves the biocompatibility and proliferation of the scaffolds. The produced poly-d,l-lactic acid/hydroxyapatite scaffolds in this study showed a potential to be used as bone graft substitutes. © IMechE 2016.
Suchý, Tomáš; Šupová, Monika; Klapková, Eva; Adamková, Václava; Závora, Jan; Žaloudková, Margit; Rýglová, Šárka; Ballay, Rastislav; Denk, František; Pokorný, Marek; Sauerová, Pavla; Hubálek Kalbáčová, Marie; Horný, Lukáš; Veselý, Jan; Voňavková, Tereza; Průša, Richard
2017-03-30
The aim of this study was to develop an osteo-inductive resorbable layer allowing the controlled elution of antibiotics to be used as a bone/implant bioactive interface particularly in the case of prosthetic joint infections, or as a preventative procedure with respect to primary joint replacement at a potentially infected site. An evaluation was performed of the vancomycin release kinetics, antimicrobial efficiency and cytocompatibility of collagen/hydroxyapatite layers containing vancomycin prepared employing different hydroxyapatite concentrations. Collagen layers with various levels of porosity and structure were prepared using three different methods: by means of the lyophilisation and electrospinning of dispersions with 0, 5 and 15wt% of hydroxyapatite and 10wt% of vancomycin, and by means of the electrospinning of dispersions with 0, 5 and 15wt% of hydroxyapatite followed by impregnation with 10wt% of vancomycin. The maximum concentration of the released active form of vancomycin characterised by means of HPLC was achieved via the vancomycin impregnation of the electrospun layers, whereas the lowest concentration was determined for those layers electrospun directly from a collagen solution containing vancomycin. Agar diffusion testing revealed that the electrospun impregnated layers exhibited the highest level of activity. It was determined that modification using hydroxyapatite exerts no strong effect on vancomycin evolution. All the tested samples exhibited sufficient cytocompatibility with no indication of cytotoxic effects using human osteoblastic cells in direct contact with the layers or in 24-hour infusions thereof. The results herein suggest that nano-structured collagen-hydroxyapatite layers impregnated with vancomycin following cross-linking provide suitable candidates for use as local drug delivery carriers. Copyright © 2017 Elsevier B.V. All rights reserved.
Efficacy of a mouthrinse based on hydroxyapatite to reduce initial bacterial colonisation in situ.
Kensche, A; Holder, C; Basche, S; Tahan, N; Hannig, C; Hannig, M
2017-08-01
The present in situ - investigation aimed to specify the impact of pure hydroxyapatite microclusters on initial bioadhesion and bacterial colonization at the tooth surface. Pellicle formation was carried out in situ on bovine enamel slabs (9 subjects). After 1min of pellicle formation rinses with 8ml of hydroxyapatite (HA) microclusters (5%) in bidestilled water or chlorhexidine 0.2% were performed. As negative control no rinse was adopted. In situ biofilm formation was promoted by the intraoral slab exposure for 8h overnight. Afterwards initial bacterial adhesion was quantified by DAPI staining and bacterial viability was determined in vivo/in vitro by live/dead-staining (BacLight). SEM analysis evaluated the efficacy of the mouthrinse to accumulate hydroxyapatite microclusters at the specimens' surface and spit-out samples of the testsolution were investigated by TEM. Compared to the control (2.36×10 6 ±2.01×10 6 bacteria/cm 2 ), significantly reduced amounts of adherent bacteria were detected on specimens rinsed with chlorhexidine 0.2% (8.73×10 4 ±1.37×10 5 bacteria/cm 2 ) and likewise after rinses with the hydroxyapatite testsolution (2.08×10 5 ±2.85×10 5 bacteria/cm 2 , p<0.001). No demonstrable effect of HA-particles on Streptococcus mutans viability could be shown. SEM analysis confirmed the temporary adsorption of hydroxyapatite microclusters at the tooth surface. Adhesive interactions of HA-particles with oral bacteria were shown by TEM. Hydroxyapatite microclusters reduced initial bacterial adhesion to enamel in situ considerably and could therefore sensibly supplement current approaches in dental prophylaxis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hydroxyapatite synthesis using EDTA.
Kang, Nak Heon; Kim, Soon Je; Song, Seung Han; Choi, Sang mun; Choi, Sik Young; Kim, Youn Jung
2013-05-01
Bone comprises structure of the body and consisted of inorganic substances. It exists in an organic structure in the body. Even though it is firm and has self-healing mechanism, it can be damaged by trauma, cancer, or bone diseases. Allograft can be an alternative solution for autologous bone graft. Hydroxyapatite (Ca10(PO4)6(OH)2), an excellent candidate for allograft, can be applied to bone defect area. There are several methods to produce hydroxyapatite; however, economical cost and being time consuming make the production difficult. In this study, we synthesized hydroxyapatite with EDTA. Freeze-dried bone allograft (Hans Biomed) was used as the control group. Synthesized hydroxyapatite was a rod-shaped, white powdery substance with 2- to 5-μm length and 0.5- to 1-μm width. X-ray diffraction showed the highest sharp peak at 32°C and high peaks at 25.8°C, 39.8°C, 46.8°C, 49.5°C, and 64.0°C, indicating a similar substance to the freeze-dried bone allograft. After 3 days, the cell growth of synthesized hydroxyapatite showed 1.5-fold more than did the bone allograft. Cellular and media alkaline phosphate activity increased similar to the bone allograft. In this study, we came up with a new method to produce the hydroxyapatite. It is a convenient method that can be held in room temperature and low pressure. Also, the product can be manufactured in large quantity. It can be also transformed into scaffold structure, which will perform a stronger configuration. The manufacturing method will help the bony defect patients and make future medical products.
Vilardell, A M; Cinca, N; Garcia-Giralt, N; Dosta, S; Cano, I G; Nogués, X; Guilemany, J M
2018-06-01
Three different surface treatments on a Ti6Al4V alloy have been in vitro tested for possible application in cementless joint prosthesis. All of them involve the novelty of using the Cold Spray technology for their deposition: (i) an as-sprayed highly rough titanium and, followed by the deposition of a thin hydroxyapatite layer with (ii) microcrystalline or (iii) nanocrystalline structure. Primary human osteoblasts were extracted from knee and seeded onto the three different surfaces. Cell viability was tested by MTS and LIVE/DEAD assays, cell differentiation by alkaline phosphatase (ALP) quantification and cell morphology by Phalloidin staining. All tests were carried out at 1, 7 and 14 days of cell culture. Different cell morphologies between titanium and hydroxyapatite surfaces were exhibited. At 1 day of cell culture, cells on the titanium coating were spread and flattened, expanding the filopodia actin filaments in all directions, while cells on the hydroxyapatite coatings showed round like-shape morphology due to slower attachment. Higher cell viability was detected at all times of cell culture on titanium coating due to a better attachment at 1 day. However, from 7 days of cell culture, cells on hydroxyapatite showed good attachment onto surfaces and highly increased their proliferation, mostly on nanocrystalline, achieving similar cell viability levels than titanium coatings. ALP levels were significantly higher in titanium, in part, because of greatest cell number. Overall, the best cell functional results were obtained on titanium coatings whereas microcrystalline hydroxyapatite presented the worst cellular parameters. However, results indicate that nanocrystalline hydroxyapatite coatings may achieve promising results for the faster cell proliferation once cells are attached on the surface. Copyright © 2018 Elsevier B.V. All rights reserved.
Younesi, M; Bahrololoom, M E; Fooladfar, H
2010-02-01
Implants made of nickel free austenitic stainless steel can reduce the toxic effect of released nickel ion and compounds from the conventional stainless steels. On the other hand, hydroxyapatite is a ceramic which has been used in orthopaedic applications due to its good osteoconductivity, biocompatibility and bioactivity. However, there is no evidence in the literature up to now on producing composites based on nickel free stainless steel and hydroxyapatite and study of their tribology. The aim of this work was to produce novel biocomposites made up of nickel free stainless steel with hydroxyapatite (prepared by heat treating bone ash) and studying their tribology under various loads in air and in Ringer's physiological solution. Different amounts of hydroxyapatite powder (10, 20, 30 and 40% Vol.) were added to this nickel free stainless steel powder to get the biocomposites. Variation of their density, hardness, wear resistance and friction with the ceramic (hydroxyapatite) content and wear load were investigated in air and in Ringer's solution. The density of the composites was decreased by increasing the volume percentage of the hydroxyapatite, while wear resistance of the composites was increased. The wear mechanism of these composites was changed by increasing the wear load and consequently the volume loss was enhanced dramatically. Furthermore, by increasing the sliding distance, the rate of volume loss was decreased slightly. The friction coefficient of the composites was also decreased by increasing the weight percentage of hydroxyapatite. Effect of the physiological Ringer's solution on wear resistance and friction coefficient of the composites was nearly negligible. The wear mechanisms of the samples were identified by studying the SEM images of the worn surfaces of the tested samples in different wear loads and HA contents. Copyright 2009 Elsevier Ltd. All rights reserved.
Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming
2015-01-01
The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m(2)/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration.
Holopainen, Jani; Kauppinen, Kyösti; Mizohata, Kenichiro; Santala, Eero; Mikkola, Esa; Heikkilä, Mikko; Kokkonen, Hanna; Leskelä, Markku; Lehenkari, Petri; Tuukkanen, Juha; Ritala, Mikko
2014-09-01
Nanocrystalline hydroxyapatite thin films were fabricated on silicon and titanium by atomic layer deposition (ALD) of CaCO3 and its subsequent conversion to hydroxyapatite by diammonium hydrogen phosphate (DAP) solution. The effects of conversion process parameters to crystallinity and morphology of the films were examined. DAP concentration was found to be critical in controlling the crystal size and homogeneity of the films. The hydroxyapatite phase was identified by XRD. ToF-elastic recoil detection analysis studies revealed that the films are calcium deficient in relation to hydroxyapatite with a Ca/P ratio of 1.39 for films converted with 0.2 M DAP at 95 °C. The coatings prepared on titanium conformally follow the rough surface topography of the substrate, verifying that the good step coverage of the ALD method was maintained in the conversion process. The dissolution tests revealed that the coating was nondissolvable in the cell culture medium. Annealing the coated sample at 700 °C for 1 h seemed to enhance its bonding properties to the substrate. Also, the biocompatibility of the coatings was confirmed by human bone marrow derived cells in vitro. The developed method provides a new possibility to produce thin film coatings on titanium implants with bone-type hydroxyapatite that is biocompatible with human osteoblasts and osteoclasts.
Pepla, Erlind; Besharat, Lait Kostantinos; Palaia, Gaspare; Tenore, Gianluca; Migliau, Guido
2014-07-01
This study aims to critically summarize the literature about nano-hydroxyapatite. The purpose of this work is to analyze the benefits of using nano-hydroxyapatite in dentistry, especially for its preventive, restorative and regenerative applications. We also provide an overview of new dental materials, still experimental, which contain the nano-hydroxyapatite in its nano-crystalline form. Hydroxyapatite is one of the most studied biomaterials in the medical field for its proven biocompatibility and for being the main constituent of the mineral part of bone and teeth. In terms of restorative and preventive dentistry, nano-hydroxyapatite has significant remineralizing effects on initial enamel lesions, certainly superior to conventional fluoride, and good results on the sensitivity of the teeth. The nano-HA has also been used as an additive material, in order to improve already existing and widely used dental materials, in the restorative field (experimental addition to conventional glass ionomer cements, that has led to significant improvements in their mechanical properties). Because of its unique properties, such as the ability to chemically bond to bone, to not induce toxicity or inflammation and to stimulate bone growth through a direct action on osteoblasts, nano-HA has been widely used in periodontology and in oral and maxillofacial surgery. Its use in oral implantology, however, is a widely used practice established for years, as this substance has excellent osteoinductive capacity and improves bone-to-implant integration.
Luminescence variations in hydroxyapatites doped with Eu2+ and Eu3+ ions.
Graeve, Olivia A; Kanakala, Raghunath; Madadi, Abhiram; Williams, Brandon C; Glass, Katelyn C
2010-05-01
We present a detailed analysis of the luminescence behavior of europium-doped hydroxyapatite (HAp) and calcium-deficient hydroxyapatite (Ca-D HAp) nanopowders. The results show that, while both powders are similar in crystallite size, particle size, and morphology, the luminescence behavior differs significantly. For the HAp:Eu powders, the emission is clearly from Eu(3+) ions and corresponds to typical (5)D(0) --> (7)F(J) emissions, whereas for the Ca-D HAp:Eu powders, we also see a broad emission with two peaks at 420 and 445 nm, corresponding to the 4f(6)5d(1) --> 4f(7) ((8)S(7/2)) transition of Eu(2+). The powders are weakly luminescent in the as-synthesized state, as expected for combustion-synthesized materials and have higher emission intensities as the heat treatment temperature is increased. Luminescence spectra obtained using an excitation wavelength of 254 nm are weak for all samples. Excitation wavelengths of 305, 337, and 359 nm, are better at promoting the Eu(3+) and Eu(2+) emissions in hydroxyapatites. We propose that fluorescence measurements are an excellent way of qualitatively determining the phase composition of europium-doped hydroxyapatite powders, since powders that exhibit a blue emission contain substantial amounts of Ca-D HAp, allowing the determination of the presence of this phase in mixed-phase hydroxyapatites. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Khalili, V; Khalil-Allafi, J; Frenzel, J; Eggeler, G
2017-02-01
In order to improve the surface bioactivity of NiTi bone implant and corrosion resistance, hydroxyapatite coating with addition of 20wt% silicon, 1wt% multi walled carbon nano-tubes and both of them were deposited on a NiTi substrate using a cathodic electrophoretic method. The apatite formation ability was estimated using immersion test in the simulated body fluid for 10days. The SEM images of the surface of coatings after immersion in simulated body fluid show that the presence of silicon in the hydroxyapatite coatings accelerates in vitro growth of apatite layer on the coatings. The Open-circuit potential and electrochemical impedance spectroscopy were measured to evaluate the electrochemical behavior of the coatings in the simulated body fluid at 37°C. The results indicate that the compact structure of hydroxyapatite-20wt% silicon and hydroxyapatite-20wt% silicon-1wt% multi walled carbon nano-tubes coatings could efficiently increase the corrosion resistance of NiTi substrate. Copyright © 2016 Elsevier B.V. All rights reserved.
Borkowski, Leszek; Sroka-Bartnicka, Anna; Drączkowski, Piotr; Ptak, Agnieszka; Zięba, Emil; Ślósarczyk, Anna; Ginalska, Grażyna
2016-05-01
Apatite forming ability of hydroxyapatite (HAP) and carbonate hydroxyapatite (CHAP) containing composites was compared. Two composite materials, intended for filling bone defects, were made of polysaccharide polymer and one of two types of hydroxyapatite. The bioactivity of the composites was evaluated in vitro by soaking in a simulated body fluid (SBF), and the formation of the apatite layer was determined by scanning electron microscopy with energy-dispersive spectrometer and Raman spectroscopy. The results showed that both the composites induced the formation of apatite layer on their surface after soaking in SBF. In addition, the sample weight changes and the ion concentration of the SBF were scrutinized. The results showed the weight increase for both materials after SBF treatment, higher weight gain and higher uptake of calcium ions by HAP containing scaffolds. SBF solution analysis indicated loss of calcium and phosphorus ions during experiment. All these results indicate apatite forming ability of both biomaterials and suggest comparable bioactive properties of composite containing pure hydroxyapatite and carbonate-substituted one. Copyright © 2016 Elsevier B.V. All rights reserved.
Preparation and Characterization of Hydroxyapatite-Silica Composite Nanopowders
NASA Astrophysics Data System (ADS)
Latifi, S. M.; Fathi, M. H.; Golozar, M. A.
One of the most important objectives in the field of biomaterials science and engineering is development of new materials as bone substitutes. Silica (SiO2) has an important role in the biomineralization and biological responses. The aim of this research was to prepare and characterize hydroxyapatite-silica (HA-SiO2) composite nanopowder with different content of silica. Hydroxyapatite-silica composite nanopowders with 20 and 40 wt% silica were prepared using a sol-gel method at 600°C with phosphoric pentoxide and calcium nitrate tetrahydrate as a source of hydroxyapatite; also, tetraethylorthosilicate and methyltriethoxisilane as a source of silica. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) techniques were used for characterization and evaluation of the products. The results indicated the presence of nanocrystalline hydroxyapatite phase beside amorphous silica phase in prepared composite nanopowders. Moreover, by increasing the content of silica in composite nanopowders, the crystallinity will be decreased,and the ability of the product as a bone substitute material might be controlled by changing the content of the ingredients and subsequently its structure.
Okuda, Mitsuhiro; Ogawa, Nobuhiro; Takeguchi, Masaki; Hashimoto, Ayako; Tagaya, Motohiro; Chen, Song; Hanagata, Nobutaka; Ikoma, Toshiyuki
2011-10-01
The mineralized structure of aligned collagen fibrils in a tilapia fish scale was investigated using transmission electron microscopy (TEM) techniques after a thin sample was prepared using aqueous techniques. Electron diffraction and electron energy loss spectroscopy data indicated that a mineralized internal layer consisting of aligned collagen fibrils contains hydroxyapatite crystals. Bright-field imaging, dark-field imaging, and energy-filtered TEM showed that the hydroxyapatite was mainly distributed in the hole zones of the aligned collagen fibrils structure, while needle-like materials composed of calcium compounds including hydroxyapatite existed in the mineralized internal layer. Dark-field imaging and three-dimensional observation using electron tomography revealed that hydroxyapatite and needle-like materials were mainly found in the matrix between the collagen fibrils. It was observed that hydroxyapatite and needle-like materials were preferentially distributed on the surface of the hole zones in the aligned collagen fibrils structure and in the matrix between the collagen fibrils in the mineralized internal layer of the scale.
NASA Astrophysics Data System (ADS)
Mohammadi, M.; Ziaie, F.; Majdabadi, A.; Akhavan, A.; Shafaei, M.
2017-01-01
In this research work, the nano-composites of high density polyethylene/hydroxyapatite samples were manufactured via two methods: In the first method, the granules of high density polyethylene and nano-structure hydroxyapatite were processed in an internal mixer to prepare the nano-composite samples with a different weight percentage of the reinforcement phase. As for the second one, high density polyethylene was prepared in nano-powder form in boiling xylene. During this procedure, the hydroxyapatite nano-powder was added with different weight percentages to the solvent to obtain the nano-composite. In both of the procedures, the used hydroxyapatite nano-powder was synthesized via hydrolysis methods. The samples were irradiated under 10 MeV electron beam in 70-200 kGy of doses. Mechanical, thermal and morphological properties of the samples were investigated and compared. The results demonstrate that the nano-composites which we have prepared using nano-polyethylene, show better mechanical and thermal properties than the composites prepared from normal polyethylene granules, due to the better dispersion of nano-particles in the polymer matrix.
Shanmugavel, Suganya; Reddy, Venugopal Jayarama; Ramakrishna, Seeram; Lakshmi, B S; Dev, Vr Giri
2014-07-01
Advances in electrospun nanofibres with bioactive materials have enhanced the scope of fabricating biomimetic scaffolds for tissue engineering. The present research focuses on fabrication of polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds by electrospinning followed by hydroxyapatite deposition by calcium-phosphate dipping method for bone tissue engineering. Morphology, composition, hydrophilicity and mechanical properties of polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds along with controls polycaprolactone and polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds were examined by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle and tensile tests, respectively. Adipose-derived stem cells cultured on polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds displayed highest cell proliferation, increased osteogenic markers expression (alkaline phosphatase and osteocalcin), osteogenic differentiation and increased mineralization in comparison with polycaprolactone control. The obtained results indicate that polycaprolactone/aloe vera/silk fibroin-hydroxyapatite nanofibrous scaffolds have appropriate physico-chemical and biological properties to be used as biomimetic scaffolds for bone tissue regeneration. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Electrophoretic deposition of zinc-substituted hydroxyapatite coatings.
Sun, Guangfei; Ma, Jun; Zhang, Shengmin
2014-06-01
Zinc-substituted hydroxyapatite nanoparticles synthesized by the co-precipitation method were used to coat stainless steel plates by electrophoretic deposition in n-butanol with triethanolamine as a dispersant. The effect of zinc concentration in the synthesis on the morphology and microstructure of coatings was investigated. It is found that the deposition current densities significantly increase with the increasing zinc concentration. The zinc-substituted hydroxyapatite coatings were analyzed by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. It is inferred that hydroxyapatite and triethanolamine predominate in the chemical composition of coatings. With the increasing Zn/Ca ratios, the contents of triethanolamine decrease in the final products. The triethanolamine can be burnt out by heat treatment. The tests of adhesive strength have confirmed good adhesion between the coatings and substrates. The formation of new apatite layer on the coatings has been observed after 7days of immersion in a simulated body fluid. In summary, the results show that dense, uniform zinc-substituted hydroxyapatite coatings are obtained by electrophoretic deposition when the Zn/Ca ratio reaches 5%. Copyright © 2014 Elsevier B.V. All rights reserved.
Heat treatment's effects on hydroxyapatite powders in water vapor and air atmosphere
NASA Astrophysics Data System (ADS)
Karabulut, A.; Baştan, F. E.; Erdoǧan, G.; Üstel, F.
2015-03-01
Hydroxyapatite (HA; Ca10(PO4)6(OH)2) is the main chemical constituent of bone tissue (~70%) as well as HA which is a calcium phosphate based ceramic material forms inorganic tissue of bone and tooth as hard tissues is used in production of prosthesis for synthetic bone, fractured and broken bone restoration, coating of metallic biomaterials and dental applications because of its bio compatibility. It is known that Hydroxyapatite decomposes with high heat energy after heat treatment. Therefore hydroxyapatite powders that heated in water vapor will less decomposed phases and lower amorphous phase content than in air atmosphere. In this study high purity hydroxyapatite powders were heat treated with open atmosphere furnace and water vapor atmosphere with 900, 1000, 1200 °C. Morphology of same powder size used in this process by SEM analyzed. Chemical structures of synthesized coatings have been examined by XRD. The determination of particle size and morphological structure of has been characterized by Particle Sizer, and SEM analysis, respectively. Weight change of sample was recorded by thermogravimetric analysis (TGA) during heating and cooling.
NASA Astrophysics Data System (ADS)
Wang, Ning; Cai, Chuanjie; Cai, Dongqing; Cheng, Junjie; Li, Shengli; Wu, Zhengyan
2012-10-01
Wood-hydroxyapatite composite material was developed by depositing hydrated calcium hydrogen phosphate (HCHP) on the surface of wood from Chinese Glossy Privet (CGP) with polyethylene glycol (PEG, HO(CH2CH2O)nH) as the grafting agent and subsequent hydrothermal vapor treatment. The results illustrated that HCHP could adhere quickly and strongly on the PEG-grafted wood surface. Moreover, this HCHP could be efficiently transformed to hydroxyapatite (HA, Ca10(PO4)6(OH)2) by hydrothermal vapor treatment. IR, XRD analysis and SEM observation indicated that the fabricated hydroxyapatite was pure and its morphology was uniform and microporous. This work provides a new fabricating approach of biocompatible material which may have some potential applications as bone-repairing material.
Papay, F A; Morales, L; Ahmed, O F; Neth, D; Reger, S; Zins, J
1996-09-01
Demineralized bone allografts in the repair of calvarial defects are compared with other common bone fillers. This study uses a video-digitizing radiographic analysis of calvarial defect ossification to determine calcification of bone defects and its relation to postoperative clinical examination and regional controls. The postoperative clinical results at 3 months demonstrated that bony healing was greatest in bur holes filled with demineralized bone and hydroxyapatite. Radiographic analysis demonstrated calcification of demineralized bone-filled defects compared to bone wax- and Gelfoam-filled regions. Hydroxyapatite granules are radiographically dense, thus not allowing accurate measurement of true bone healing. The results suggest that demineralized bone and hydroxyapatite provide better structural support via bone healing to defined calvarial defects than do Gelfoam and bone wax.
Hydroxyapatite ocular implant and non-integrated implants in eviscerated patients
Gradinaru, S; Popescu, V; Leasu, C; Pricopie, S; Yasin, S; Ciuluvica, R; Ungureanu, E
2015-01-01
Introduction: This study compares the outcomes and complications of hydroxyapatite ocular implant and non-integrated ocular implants following evisceration. Materials and Methods: This is a retrospective study of 90 patients who underwent evisceration for different ocular affections, in the Ophthalmology Department of the University Emergency Hospital Bucharest, between January 2009 and December 2013. The outcomes measured were conjunctival dehiscence, socket infection, implant exposure and extrusion rate. Results: Forty-three patients had the hydroxyapatite implant (coralline–Integrated Ocular Implants, USA or synthetic–FCI, France) and forty-seven received non-integrated ocular implants (24 acrylic and 23 silicone). Five cases of socket infection, thirteen cases of extrusion and two cases of conjunctival dehiscence were encountered. Conclusions: There was a higher rate of conjunctival dehiscence with hydroxyapatite ocular implant, but implant extrusion and socket infection were found in non-integrated ocular implants. PMID:25914747
Meski, S; Ziani, S; Khireddine, H; Yataghane, F; Ferguene, N
2011-01-01
Carbonate hydroxyapatite (CHAP) was synthesized from different precursors; synthetic (CaCO3 and Ca(OH)2) and natural (egg shell before and after calcinations at 900 degrees C) under different conditions and characterized by using TG/DTG analysis, X-ray powder diffraction (XRD) method and Fourier transform infrared (FT-IR) spectroscopy techniques. The results of these analyses indicate that the four powders present the same structure of hydroxyapatite. Furthermore the four powders obtained were used for the retention of lead. The results obtained indicated that all powders present high adsorption capacity for lead, but from environmental and economic views, the hydroxyapatite synthesized from eggshell no calcined (HA2) is most advantageous. The influence of different sorption parameters, such as: initial metal concentration, equilibration time, solution pH and sorbent dosage was studied and discussed.
Venkatasubbu, G Devanand; Ramasamy, S; Ramakrishnan, V; Kumar, J
2011-12-01
Hydroxyapatite is a bioceramic which has a wide range of medical application for bone diseases. To enhance its usage, we have prepared ciprofloxacin loaded nano hydroxyapatite (HA) composite with a natural polymer, alginate, using wet chemical method at low temperature. The prepared composites were analyzed by various physicochemical methods. The results show that the nano HA crystallites are well intact with the alginate macromolecules. For the composite system FT-IR and micro Raman results are reported in this paper. Studies on the drug loading and drug release have been done. The drug is pre-adsorbed onto the ceramic particle before the formation of composite. The thermal behavior of composite has been studied using thermo gravimetric analysis (TGA). This work, reports that the nanocomposite prepared under optimum condition could prolong the release of ciprofloxacin compared with the ciprofloxacin loaded hydroxyapatite.
NASA Astrophysics Data System (ADS)
Dai, Yanfeng; Xu, Min; Wei, Junchao; Zhang, Haobin; Chen, Yiwang
2012-01-01
The surface of hydroxyapatite nanoparticles was modified by poly(L-phenylalanine) via the ring opening polymerization (ROP) of L-phenylalanine N-carboxyanhydride. The preparation procedure was monitored by Fourier transform infrared spectroscopy (FTIR), and the modified hydroxyapatite was characterized by thermal gravimetric analysis (TGA) and X-ray diffraction (XRD). The results showed that the surface grafting amounts of poly(L-phenylalanine) on HA ranging from 20.26% to 38.92% can be achieved by tuning the reaction condition. The XRD patterns demonstrated that the crystalline structure of the modified hydroxyapatite was nearly the same with that of HA, implying that the ROP was an efficient surface modification method. The MTT assay proved that the biocompatibility of modified HA was very good, which showed the potential application of modified HA in bone tissue engineering.
Wu, Xiaoguang; Zhao, Xu; Li, Yi; Yang, Tao; Yan, Xiujuan; Wang, Ke
2015-09-01
In situ fabrication of carbonated hydroxyapatite (CHA) remineralization layer on an enamel slice was completed in a novel, biomimetic two-step method. First, a CaCO3 layer was synthesized on the surface of demineralized enamel using an acidic amino acid (aspartic acid or glutamate acid) as a soft template. Second, at the same concentration of the acidic amino acid, rod-like carbonated hydroxyapatite was produced with the CaCO3 layer as a sacrificial template and a reactant. The morphology, crystallinity and other physicochemical properties of the crystals were characterized using field emission scanning electron microscopy (FESEM), Fourier transform infrared spectrometry (FTIR), X-ray diffraction (XRD) and energy-dispersive X-ray analysis (EDAX), respectively. Acidic amino acid could promote the uniform deposition of hydroxyapatite with rod-like crystals via absorption of phosphate and carbonate ions from the reaction solution. Moreover, compared with hydroxyapatite crystals coated on the enamel when synthesized by a one-step method, the CaCO3 coating that was synthesized in the first step acted as an active bridge layer and sacrificial template. It played a vital role in orienting the artificial coating layer through the template effect. The results show that the rod-like carbonated hydroxyapatite crystals grow into bundles, which are similar in size and appearance to prisms in human enamel, when using the two-step method with either aspartic acid or acidic glutamate (20.00 mmol/L). Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fadli, A.; Akbar, F.; Prabowo, A.; Hidayah, P. H.
2018-04-01
Hydroxyapatite (HA) is a mineral form of naturally occurring apatite calcium with Ca10(PO4)6(OH)2 formula. One of the major innovations in the field of bone reconstruction is to apply HA as a surface coating on a mechanically strong implant metal and to improve the stability of bone implants thereby increasing the lifetime of the metal implants. Pure hydroxyapatite has poor mechanical properties so it is necessary to add sago starch as a binder to combine the strength and hardness of metal surfaces with bioactive properties of hydroxyapatite by Dip Coating method. Stainless steel 316L is the most commonly used alloy as an implant for bones and teeth due to its excellent corrosion and oxidation resistance and is easily formed. In this study, hydroxyapatite coatings used fixed variables as hydroxyapatite mass (10 grams), aquades mass (20 grams), dipping time (20 seconds), and calcination conditions (800°C, 1 hour). The variables are sago starch mass (1, 1.25, 1.5 gram) and stirring time (16, 20, 24 hours). The shear strength value is higher in the addition of 1.25, 10, 20, and again in the binder ratio of 1.5; 10; 20. The addition of stirring time causes a decrease in shear strength. The highest shear strength value obtained was 3.07 MPa. The layer attached to the substrate is a hydroxyapatite with a composition of 99.4% as evidenced by the results of XRD analysis.
In vitro mechanical integrity of hydroxyapatite coated magnesium alloy.
Kannan, M Bobby; Orr, Lynnley
2011-08-01
The mechanical integrity of resorbable implants during service, especially in load bearing orthopaedic applications, is critical. The high degradation rate of resorbable magnesium and magnesium-based implants in body fluid may potentially cause premature in-service failure. In this study, a magnesium alloy (AZ91) was potentiostatically coated with hydroxyapatite at different cathodic voltages in an attempt to enhance the mechanical integrity. The mechanical integrity of the uncoated and hydroxyapatite coated alloys was evaluated after in vitro testing of the coated samples in simulated body fluid (SBF). The uncoated alloy showed 40% loss in the mechanical strength after five days exposure to SBF. However, the hydroxyapatite coated alloy exposed to SBF showed 20% improvement in the mechanical strength as compared to that of the uncoated alloy. The alloy coated potentiostatically at -2 V performed better than the -3 V coated alloy. The cross-sectional analysis of the coatings revealed relatively uniform coating thickness for the -2 V coated alloy, whereas the -3 V coated alloy exhibited areas of uneven coating. This can be attributed to the increase in hydrogen evolution on the alloy during -3 V coating as compared to -2 V coating. The scanning electron micrographs of the in vitro tested alloy revealed that hydroxyapatite coating significantly reduced the localized corrosion of the alloy, which is critical for better in-service mechanical integrity. Thus, the study suggests that the in vitro mechanical integrity of resorbable magnesium-based alloy can be improved by potentiostatic hydroxyapatite coating. © 2011 IOP Publishing Ltd
Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming
2015-01-01
The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m2/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration. PMID:25609957
Predoi, Daniela; Iconaru, Simona Liliana; Deniaud, Aurélien; Chevallet, Mireille; Michaud-Soret, Isabelle; Buton, Nicolas; Prodan, Alina Mihaela
2017-01-01
The present work was focused on the synthesis and characterization of hydroxyapatite doped with low concentrations of zinc (Zn:HAp) (0.01 < xZn < 0.05). The incorporation of low concentrations of Zn2+ ions in the hydroxyapatite (HAp) structure was achieved by co-precipitation method. The physico-chemical properties of the samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), zeta-potential, and DLS and N2-BET measurements. The results obtained by XRD and FTIR studies demonstrated that doping hydroxyapatite with low concentrations of zinc leads to the formation of a hexagonal structure with lattice parameters characteristic to hydroxyapatite. The XRD studies have also shown that the crystallite size and lattice parameters of the unit cell depend on the substitutions of Ca2+ with Zn2+ in the apatitic structure. Moreover, the FTIR analysis revealed that the water content increases with the increase of zinc concentration. Furthermore, the Energy Dispersive X-ray Analysis (EDAX) and XPS analyses showed that the elements Ca, P, O, and Zn were found in all the Zn:HAp samples suggesting that the synthesized materials were zinc doped hydroxyapatite, Ca10−xZnx(PO4)6(OH), with 0.01 ≤ xZn ≤ 0.05. Antimicrobial assays on Staphylococcus aureus and Escherichia coli bacterial strains and HepG2 cell viability assay were carried out. PMID:28772589
Mehta, J S; Futter, C E; Sandeman, S R; Faragher, R G A F; Hing, K A; Tanner, K E; Allan, B D S
2005-10-01
Published clinical series suggest the osteoodontokeratoprosthesis (OOKP) may have a lower extrusion rate than current synthetic keratoprostheses. The OOKP is anchored in the eye wall by autologous tooth. The authors' aim was to compare adhesion, proliferation, and morphology for telomerase transformed keratocytes seeded on calcium hydroxyapatite (the principal mineral constituent of tooth) and materials used in the anchoring elements of commercially available synthetic keratoprostheses. Test materials were hydroxyapatite, polytetrafluoroethylene (PTFE), polyhydroxyethyl methacrylate (HEMA), and glass (control). Cell adhesion and viability were quantified at 4 hours, 24 hours, and 1 week using a calcein-AM/EthD-1 viability/cytotoxicity assay. Focal contact expression and cytoskeletal organisation were studied at 24 hours by confocal microscopy with immunoflourescent labelling. Further studies of cell morphology were performed using light and scanning electron microscopy. Live cell counts were significantly greater on hydroxyapatite surfaces at each time point (p<0.04). Dead cell counts were significantly higher for PTFE at 7 days (p<0.002). ss(1) integrin expression was highest on hydroxyapatite. Adhesion structures were well expressed in flat, spread out keratocytes on both HA and glass. Keratocytes tended to be thinner and spindle shaped on PTFE. The relatively few keratocytes visible on HEMA test surfaces were rounded and poorly adherent. Keratocyte adhesion, spreading, and viability on hydroxyapatite test surfaces is superior to that seen on PTFE and HEMA. Improving the initial cell adhesion environment in the skirt element of keratoprostheses may enhance tissue integration and reduce device failure rates.
Knowles, Jonathan C; Rehman, Ihtesham; Darr, Jawwad A
2013-01-01
A range of crystalline and nano-sized carbonate- and silicate-substituted hydroxyapatite has been successfully produced by using continuous hydrothermal flow synthesis technology. Ion-substituted calcium phosphates are better candidates for bone replacement applications (due to improved bioactivity) as compared to phase-pure hydroxyapatite. Urea was used as a carbonate source for synthesising phase pure carbonated hydroxyapatite (CO3-HA) with ≈5 wt% substituted carbonate content (sample 7.5CO3-HA) and it was found that a further increase in urea concentration in solution resulted in biphasic mixtures of carbonate-substituted hydroxyapatite and calcium carbonate. Transmission electron microscopy images revealed that the particle size of hydroxyapatite decreased with increasing urea concentration. Energy-dispersive X-ray spectroscopy result revealed a calcium deficient apatite with Ca:P molar ratio of 1.45 (±0.04) in sample 7.5CO3-HA. For silicate-substituted hydroxyapatite (SiO4-HA) silicon acetate was used as a silicate ion source. It was observed that a substitution threshold of ∼1.1 wt% exists for synthesis of SiO4-HA in the continuous hydrothermal flow synthesis system, which could be due to the decreasing yields with progressive increase in silicon acetate concentration. All the as-precipitated powders (without any additional heat treatments) were analysed using techniques including Transmission electron microscopy, X-ray powder diffraction, Differential scanning calorimetry, Thermogravimetric analysis, Raman spectroscopy and Fourier transform infrared spectroscopy. PMID:22983020
NASA Astrophysics Data System (ADS)
Jallot, E.; Irigaray, J. L.; Oudadesse, H.; Brun, V.; Weber, G.; Frayssinet, P.
1999-05-01
From the viewpoint of hard tissue response to implant materials, calcium phosphates are probably the most compatible materials presently known. During the last few years, much attention has been paid to hydroxyapatite and β-tricalcium phosphate as potential biomaterials for bone substitute. A good implantation of biomaterials in the skeleton is to reach full integration of non-living implant with living bone. The aim of this study is to compare the resorption kinetics of four kinds of calcium phosphate ceramics: hydroxyapatite (Ca{10}(PO4)6(OH)2), hydroxyapatite doped with manganese or zinc and a composite material of 75% hydroxyapatite and 25% β-tricalcium phosphate (Ca3(PO4)2). Cylinders (5 6 mm in diameter) of these ceramics were packed into holes made in the femur diaphysis of mature ovine. At 2, 4, 8, 12, 16, 20, 28, 36 and 48 weeks after the operation, bone/implant interface was embedded in polymethylmethacrylate. We used the PIXE method (particle induced X-ray emission) to measure the distribution of mineral elements (Ca, P, Sr, Zn, Mn and Fe) at the bone/implant interface. At 4, 8, 16, 28 and 48 weeks after implantation we studied a biopsy of the ceramics by neutron activation method. Then, we have a global measurement of mineral elements in the biomaterial. The results showed that the resorption kinetics of hydroxyapatite doped with zinc was faster than that of the three other bioceramics.
Dunne, Conor F; Twomey, Barry; O'Neill, Liam; Stanton, Kenneth T
2014-01-01
The aim of this work is to assess the influence of two blast media on the deposition of hydroxyapatite onto a titanium substrate using a novel ambient temperature coating technique named CoBlast. CoBlast was developed to address the problems with high temperature coating techniques. The blasting media used in this study were Al2O3 and a sintered apatite powder. The prepared and coated surfaces were compared to plasma sprayed hydroxyapatite on the same substrates using the same hydroxyapatite feedstock powder. X-ray diffraction analysis revealed the coating crystallinity was the same as the original hydroxyapatite feedstock powder for the CoBlast samples while evidence of amorphous hydroxyapatite phases and β-TCP was observed in the plasma sprayed samples. The blast media type significantly influences the adhesive strength of the coating, surface roughness of both the substrate and coating and the microstructure of the substrate. The coating adhesion increased for the CoBlasted samples from 50 MPa to 60 MPa for sintered apatite powder and alumina, respectively, while plasma spray samples were significantly lower (5 MPa) when tested using a modified pull-test. In conclusion, the choice of blast medium is shown to be a key parameter in the CoBlast process. This study indicates that sintered apatite powder is the most suitable candidate for use as a blast medium in the coating of medical devices.
Ohba, Seigo; Sumita, Yoshinori; Umebayashi, Mayumi; Yoshimura, Hitoshi; Yoshida, Hisato; Matsuda, Shinpei; Kimura, Hideki; Asahina, Izumi; Sano, Kazuo
2016-01-01
The aim of this study was to assess newly formed onlay bone on mouse calvarial bone using a new artificial bone material, a hydroxyapatite/collagen composite, with total blood or platelet-rich plasma. The hydroxyapatite/collagen composite material with normal saline, total blood or platelet-rich plasma was transplanted on mouse calvarial bone. The mice were sacrificed and the specimens were harvested four weeks after surgery. The newly formed bone area was measured on hematoxylin and eosin stained specimens using Image J software. The hydroxyapatite/collagen composite materials with total blood or platelet-rich plasma induced a significantly greater amount of newly formed bone than that with normal saline. Moreover, bone marrow was observed four weeks after surgery in the transplanted materials with total blood or platelet-rich plasma but not with normal saline. However, there were no significant differences in the amount of newly formed bone between materials used with total blood versus platelet-rich plasma. The hydroxyapatite/collagen composite material was valid for onlay bone augmentation and this material should be soaked in total blood or platelet-rich plasma prior to transplantation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cho, Jung Sang; Lee, Jeong-Cheol; Rhee, Sang-Hoon
2016-02-01
In the synthesis of hydroxyapatite powders by spray pyrolysis, control of the particle size was investigated by varying the initial concentration of the precursor solution and the pyrolysis temperature. Calcium phosphate solutions (Ca/P ratio of 1.67) with a range of concentrations from 0.1 to 2.0 mol/L were prepared by dissolving calcium nitrate tetrahydrate and diammonium hydrogen phosphate in deionized water and subsequently adding nitric acid. Hydroxyapatite powders were then synthesized by spray pyrolysis at 900°C and at 1500°C, using these calcium phosphate precursor solutions, under the fixed carrier gas flow rate of 10 L/min. The particle size decreased as the precursor concentration decreased and the spray pyrolysis temperature increased. Sinterability tests conducted at 1100°C for 1 h showed that the smaller and denser the particles were, the higher the relative densities were of sintered hydroxyapatite disks formed from these particles. The practical implication of these results is that highly sinterable small and dense hydroxyapatite particles can be synthesized by means of spray pyrolysis using a low-concentration precursor solution and a high pyrolysis temperature under a fixed carrier gas flow rate. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Verisqa, F.; Triaminingsih, S.; Corputty, J. E. M.
2017-08-01
Hydroxyapatite (HA) formation is one of the most important aspects of bone regeneration. Because domestically made chitosan-hydroxyapatite-collagen composite scaffolding from crab shell and bovine bone and tendon has potential as a maxillofacial reconstruction material, the material’s HA-forming ability requires evaluation. The aim of this research is to investigate chitosan-hydroxyapatite-collagen composite scaffold’s potential as a maxillofacial reconstruction material by observing the scaffold’s compositional changes. Scaffold specimens were immersed in 37°C simulated body fluid (SBF) for periods of 2, 4, 6, and 8 days. Scaffold composition was then evaluated by using energy dispersive spectroscopy (EDS). The calcium (Ca) and phosphorus (P) percentages of the scaffold were found to increase following SBF immersion. The high Ca/P ratio (3.82) on the scaffold indicated HA formation. Ion exchange played a significant role in the increased percentages of Ca and P, which led to new HA layer formation. The scaffold’s HA acted as a nucleation site of Ca and P from the SBF, with collagen and chitosan as the scaffold’s matrix. Chitosan-hydroxyapatite-collagen composite scaffold shows potential as a maxillofacial reconstruction material, since its composition favors HA formation.
NASA Astrophysics Data System (ADS)
Joshi, Parth; Patel, Chirag; Vyas, Meet
2018-05-01
Hydroxyapatite (HA) is a unique material having high adsorption capacity of heavy metals, high ion exchange capacity, high biological compatibility, low water solubility, high stability under reducing and oxidizing conditions, availability and low cost. As the starting reagents, analytical grade Ca(NO3)2.4H2O, (NH4)2HPO4 and NaOH were used. In order to study the factors that have an important influence on the chemical precipitation process a experimental platform has been designed for hydroxyapatite synthesis. The addition of Phosphorus pentaoxide to Calcium hydroxide was carried out slowly with simultaneous stirring. After addition, solution was aged for maturation. The precipitate was dried at 80°C overnight and further heat treated at 600°C for 2 hours. The dried and calcined particles were characterized by Fourier transform infra-red spectroscopy and Thermo gravimetric analysis. The particle size and morphology were studied using transmission electron microscopy. TEM examination of the treated powders displayed particles of polygon morphology with dimensions 30-70 nm in length. The FT-IR spectra for sample confirmed the formation of hydroxyapatite. Purity of the prepared Hydroxyapatite has been confirmed by XRD analysis.
Bang, L. T.; Long, B. D.; Othman, R.
2014-01-01
The present study investigates the chemical composition, solubility, and physical and mechanical properties of carbonate hydroxyapatite (CO3Ap) and silicon-substituted carbonate hydroxyapatite (Si-CO3Ap) which have been prepared by a simple precipitation method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF) spectroscopy, and inductively coupled plasma (ICP) techniques were used to characterize the formation of CO3Ap and Si-CO3Ap. The results revealed that the silicate (SiO4 4−) and carbonate (CO3 2−) ions competed to occupy the phosphate (PO4 3−) site and also entered simultaneously into the hydroxyapatite structure. The Si-substituted CO3Ap reduced the powder crystallinity and promoted ion release which resulted in a better solubility compared to that of Si-free CO3Ap. The mean particle size of Si-CO3Ap was much finer than that of CO3Ap. At 750°C heat-treatment temperature, the diametral tensile strengths (DTS) of Si-CO3Ap and CO3Ap were about 10.8 ± 0.3 and 11.8 ± 0.4 MPa, respectively. PMID:24723840
Continuous microwave flow synthesis of mesoporous hydroxyapatite.
Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat
2015-11-01
We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution. Copyright © 2015 Elsevier B.V. All rights reserved.
Mistry, Surajit; Roy, Rajiv; Kundu, Biswanath; Datta, Someswar; Kumar, Manoj; Chanda, Abhijit; Kundu, Debabrata
2016-04-01
Growing aspect of endosseous implant research is focused on surface modification of dental implants for the purpose of improving osseointegration. The aim of this study was to evaluate and compare the clinical outcome (ie, osseointegration) of hydroxyapatite coated, bioactive glass coated and machined titanium alloy threaded dental implants in human jaw bone after implantation. One hundred twenty-six implants (45 hydroxyapatite coated, 41 bioactive glass coated, and 40 machined titanium implants) have been placed in incisor areas of 62 adult patients. Outcome was assessed up to 12 months after prosthetic rehabilitation using different clinical and radiological parameters. Surface roughness of failed implants was analyzed by laser profilometer. Hydroxyapatite and bioactive glass coating materials were nontoxic and biocompatible. Least marginal bone loss in radiograph, significantly higher (P < 0.05) interface radiodensity, and less interfacial gaps were observed in computed tomography with bioactive glass coated implants at anterior maxilla compared to other 2 types. Bioactive glass coated implants are equally safe and effective as hydroxyapatite coated and machined titanium implants in achieving osseointegration; therefore, can be effectively used as an alternative coating material for dental implants.
NASA Astrophysics Data System (ADS)
Sari, N. K.; Indrani, D. J.; Johan, C.; Corputty, J. E. M.
2017-08-01
The reconstruction of bone tissue defects is a major challenge facing oral and maxillofacial surgeons. The essential elements needed for tissue engineering are cells, scaffolds (matrix), and stimulant molecules (growth factors). The mechanical properties of chitosan-hydroxyapatite-collagen scaffolds produced by BATAN, Jakarta, have not yet been studied. This study therefore analyzed the mechanical properties of chitosan-hydroxyapatite-collagen composite scaffolds prepared by BATAN, Jakarta, before and after immersion in simulated body fluid (SBF) for eight days. The compressive and tensile strengths of the chitosan-hydroxyapatite-collagen composite scaffolds were analyzed after immersion in SBF at 37°C for eight days. Each scaffold was removed and dried at room temperature on days 0, 2, 4, 6, and 8. The data obtained were processed and analyzed. Variations in the compressive strength and tensile strength were attributed to several aspects, such the specimen size, which was not uniform, the scaffold composition, scaffold pore size, which was also not uniform, and the degradation of the polymer. The chitosan-hydroxyapatite-collagen composite scaffold does not exhibit differences in the tensile strength and compressive strength before and after immersion in SBF.
Biomorphous porous hydroxyapatite-ceramics from rattan (Calamus Rotang).
Eichenseer, Christiane; Will, Julia; Rampf, Markus; Wend, Süsen; Greil, Peter
2010-01-01
The three-dimensional, highly oriented pore channel anatomy of native rattan (Calamus rotang) was used as a template to fabricate biomorphous hydroxyapatite (Ca(5)(PO(4))(3)OH) ceramics designed for bone regeneration scaffolds. A low viscous hydroxyapatite-sol was prepared from triethyl phosphite and calcium nitrate tetrahydrate and repeatedly vacuum infiltrated into the native template. The template was subsequently pyrolysed at 800 degrees C to form a biocarbon replica of the native tissue. Heat treatment at 1,300 degrees C in air atmosphere caused oxidation of the carbon skeleton and sintering of the hydroxyapatite. SEM analysis confirmed detailed replication of rattan anatomy. Porosity of the samples measured by mercury porosimetry showed a multimodal pore size distribution in the range of 300 nm to 300 microm. Phase composition was determined by XRD and FT-IR revealing hydroxyapatite as the dominant phase with minimum fractions of CaO and Ca(3)(PO(4))(2). The biomorphous scaffolds with a total porosity of 70-80% obtained a compressive strength of 3-5 MPa in axial direction and 1-2 MPa in radial direction of the pore channel orientation. Bending strength was determined in a coaxial double ring test resulting in a maximum bending strength of approximately 2 MPa.
Pramatarova, L; Pecheva, E; Krastev, V
2007-03-01
The interest in stainless steel as a material widely used in medicine and dentistry has stimulated extensive studies on improving its bone-bonding properties. AISI 316 stainless steel is modified by a sequential ion implantation of Ca and P ions (the basic ions of hydroxyapatite), and by Ca and P implantation and subsequent thermal treatment in air (600( composite function)C, 1 h). This paper investigates the ability of the as-modified surfaces to induce hydroxyapatite deposition by using a biomimetic approach, i.e. immersion in a supersaturated aqueous solution resembling the human blood plasma (the so-called simulated body fluid). We describe our experimental procedure and results, and discuss the physico-chemical properties of the deposed hydroxyapatite on the modified stainless steel surfaces. It is shown that the implantation of a selected combination of ions followed by the applied methodology of the sample soaking in the simulated body fluid yield the growth of hydroxyapatite layers with composition and structure resembling those of the bone apatite. The grown layers are found suitable for studying the process of mineral formation in nature (biomineralization).
Assadian, Mahtab; Jafari, Hassan; Ghaffari Shahri, Seyed Morteza; Idris, Mohd Hasbullah; Almasi, Davood
2016-08-12
In this study, different types of calcium-phosphate phases were coated on NaOH pre-treated pure magnesium. The coating was applied by electrodeposition method in order to provide higher corrosion resistance and improve biocompatibility for magnesium. Thickness, surface morphology and topography of the coatings were analyzed using optical, scanning electron and atomic-force microscopies, respectively. Composition and chemical bonding, crystalline structures and wettability of the coatings were characterized using energy-dispersive and attenuated total reflectance-Fourier transform infrared spectroscopies, grazing incidence X-ray diffraction and contact angle measurement, respectively. Degradation behavior of the coated specimens was also investigated by potentiodynamic polarization and immersion tests. The experiments proved the presence of a porous coating dominated by dicalcium-phosphate dehydrate on the specimens. It was also verified that the developed hydroxyapatite was crystallized by alkali post-treatment. Addition of supplemental fluoride to the coating electrolyte resulted in stable and highly crystallized structures of fluoridated hydroxyapatite. The coatings were found effective to improve biocompatibility combined with corrosion resistance of the specimens. Noticeably, the fluoride supplemented layer was efficient in lowering corrosion rate and increasing surface roughness of the specimens compared to hydroxyapatite and dicalcium-phosphate dehydrates layers.
1979-10-01
transformed, by dissolution and reprecipitation, Into the crystalline constituent (85). It has also been suggested that crystalline hydroxyapatite ...a Ca:P molar ratio of 8:6), and finally hydroxyapatite (115). The apatites of bone are primarily hydroxvapatite which has the composition Ca 1 0 (P0...Thus bone always contains a large variety of materials other than those which compose hydroxyapatite . ____ ____ ___..~rr? - -- lt- - -11- The amount
Effect of preparation conditions on the nanostructure of hydroxyapatite and brushite phases
NASA Astrophysics Data System (ADS)
Mansour, S. F.; El-dek, S. I.; Ahmed, M. A.; Abd-Elwahab, S. M.; Ahmed, M. K.
2016-10-01
Hydroxyapatite (HAP) and dicalcium phosphate dihydrate (brushite) nanoparticles were prepared by co-precipitation method. The obtained products were characterized by X-ray powder diffraction (XRD), Fourier transformation infra-red spectroscopy (FTIR) and thermo-gravimetric analysis (TGA). Scanning electron microscopy (SEM) and transmission electron microscope (TEM) were used to investigate the morphology of the powdered samples as well as their microstructure, respectively. Brushite samples were obtained in a spherical shape, while hydroxyapatite was formed in a needle and rice shape depending on the pH value.
Shao, Rong-Xue; Quan, Ren-Fu; Huang, Xiao-Long; Wang, Tuo; Xie, Shang-Ju; Gao, Huan-Huan; Wei, Xi-Cheng; Yang, Di-Sheng
2016-04-01
To evaluate the effects of porous gradient composites with hydroxyapatite/zirconia and autologous iliac in repair of lumbar vertebra body defects in dogs. (1) New porous gradient hydroxyapatite/zirconia composites were prepared using foam immersion, gradient compound and high temperature sintering; (2) A total of 18 adult beagle dogs, aged five to eight months and weighted 10-13 kg, were randomly assigned into two subgroups, which were implanted with new porous gradient hydroxyapatite/zirconia composites (subgroup A in 12) or autologous iliac bone (subgroup B in 6); (3) The post-operative data were analyzed and compared between the subgroups to repair the vertebral body defect by roentgenoscopy, morphology and biomechanics. The porosity of new porous gradient hydroxyapatite/zirconia composites is at 25 poles per inch, and the size of pores is at between 150 and 300 µm. The post-operative roentgenoscopy displayed that new-bone formation is increased gradually, and the interface between composites and host-bone becomes became blur, and the new-bone around the composites were integrated into host-bone at 24 weeks postoperatively in subgroup A. As to subgroup B, the resorption and restructure were found at six weeks after the surgery, and the graft-bone and host-bone have been integrated completely without obvious boundary at 24 weeks postoperatively. Histomorphologic study showed that the amount of bone within pores of the porous gradient hydroxyapatite/zirconia composites increased continuously with a prolonged implantation time, and that partial composites were degradated and replaced by new-bone trabeculae. There was no significant difference between subgroups (P > 0.05) in the ultimate compressive strengths. New porous gradient hydroxyapatite/zirconia composites can promote the repair of bony defect, and induce bone tissue to ingrow into the pores, which may be applied widely to the treatment of bony defect in the future. © The Author(s) 2016.
Solubility and Cation Exchange Properties of Synthetic Hydroxyapatite and Clinoptilolite Mixtures
NASA Technical Reports Server (NTRS)
Beiersdorfer, Raymond E.; Ming, Douglas W.
2003-01-01
A zeoponic plant growth system is defined as the cultivation of plants in artificial soils, which have zeolites as a major component. These systems: 1) can serve as a controllable and renewable fertilization system to provide plant growth nutrients; 2) can mitigate the adverse effects of contamination due to leaching of highly soluble and concentrated fertilizers; and 3) are being considered as substrates for plant growth in regenerative life-support systems for long-duration space missions. Batch-equilibrium studies of the dissolution and ion-exchange properties of mixtures of naturally-occurring Wyoming clinoptilolite (a zeolite) exchanged with K(+) or NH4(+); and synthetic hydroxyapatite were conducted to determine: 1) the plant availability of the macro-nutrients NH4-N, P, K, Ca, and Mg and 2) the effects of varying the clinoptilolite to hydroxyapatite ratio and the ratio of exchangeable cations (K(+) vs. NH4(+)) on clinoptilolite extraframework sites. The nutrients NH4-N (19.7 to 73.6 mg L(sup -1), P (0.57 to 14.99 mg L(sup- 1), K (14.8 to 104.9 mg L(sup -1), and Mg (0.11 to 6.68mg L(sup -1) are available to plants at sufficient levels. Solution Ca concentrations (0.47 to 3.40 mg L(sup -1) are less than optimal. Solution concentrations of NH4(+), K(+), Ca(2+), and Mg(2+) all decreased with increasing clinoptilolite to hydroxyapatite ratio in the sample. Solution concentrations of phosphorous initially increased, reached a maximum value and then decreased with increasing clinoptilolite to hydroxyapatite ratio in the sample. The NH4(+) -exchanged clinoptilolite is more efficient in dissolving synthetic hydroxyapatite than the K(+) -exchanged clinoptilolite. This suggests that NH4(+), which is less selective at clinoptilolite extraframework sites than K(+) is exchanged more readily by Ca(2+) and thereby enhances the dissolution of the synthetic hydroxyapatite.
Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles
Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela
2013-01-01
The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures. PMID:23509801
Geloina coaxans shell as calcium source on synthesis hydroxyapatite
NASA Astrophysics Data System (ADS)
Yanti, P. H.; Kamiah, A.
2018-04-01
Geloina coaxans shell (GCS) is one of mullusc shell mainly composed by calcium carbonate. In this work, calcium carbonate has been converted to calcium oxide by calcination at 1000°C for 12 hours. The calcined of geloina coaxans shell were treated with HNO3 to produce Ca(NO3)2 as calcium source on synthesis hydroxyapatite. Orthophosphoric acid (H3PO4) was used as phosphate donor. Reaction of Ca/P has been done by precipitation method at molar ratio of precursors of 1.67 and pH adjusted at 10 using NH4OH. The XRD result revealed that hydoxyapatite can be prepared at 3 M of HNO3 and stirring time for 240 minutes. Specific band of hydroxyapatite such as PO4 and OH observed using FTIR instrument. Analysis of crystal size using Schererr equation proved nanosize of powder hydroxyapatite can be produced.
Mercado, D Fabio; Magnacca, Giuliana; Malandrino, Mery; Rubert, Aldo; Montoneri, Enzo; Celi, Luisella; Bianco Prevot, Alessandra; Gonzalez, Mónica C
2014-03-26
This paper describes the synthesis of paramegnetic iron-containing hydroxyapatite nanoparticles and their increased Cu(2+) sorbent capacity when using Ca(2+) complexes of soluble bioorganic substrates from urban wastes as synthesis precursors. A thorough characterization of the particles by TEM, XRD, FTIR spectroscopy, specific surface area, TGA, XPS, and DLS indicates that loss of crystallinity, a higher specific area, an increased surface oxygen content, and formation of surface iron phases strongly enhance Cu(2+) adsorption capacity of hydroxyapatite-based materials. However, the major effect of the surface and morphologycal modifications is the size diminution of the aggregates formed in aqueous solutions leading to an increased effective surface available for Cu(2+) adsorption. Maximum sorption values of 550-850 mg Cu(2+) per gram of particles suspended in an aqueous solution at pH 7 were determined, almost 10 times the maximum values observed for hydroxyapatite nanoparticles suspensions under the same conditions.
Synthesis and antimicrobial activity of silver-doped hydroxyapatite nanoparticles.
Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Chifiriuc, Mariana Carmen; Costescu, Adrian; Le Coustumer, Philippe; Predoi, Daniela
2013-01-01
The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca(10-x)Ag(x)(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against gram-positive and gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures.
Stabilize lead and cadmium in contaminated soils using hydroxyapatite and potassium chloride.
Wang, Li; Li, Yonghua; Li, Hairong; Liao, Xiaoyong; Wei, Binggan; Ye, Bixiong; Zhang, Fengying; Yang, Linsheng; Wang, Wuyi; Krafft, Thomas
2014-12-01
Combination of hydroxyapatite (HAP) and potassium chloride (KCl) was used to stabilize lead and cadmium in contaminated mining soils. Pot experiments of chilli (Capsicum annuum) and rape (Brassica rapachinensis) were used to evaluate the stabilization efficiency. The results were the following: (1) the optimal combination decreased the leachable lead by 83.3 and 97.27 %, and decreased leachable cadmium by 57.82 and 35.96% for soil HF1 and soil HF2, respectively; (2) the total lead and cadmium concentrations in both plants decreased 69 and 44 %, respectively; (3) The total lead and cadmium concentrations in the edible parts of both vegetables also decreased significantly. This study reflected that potassium chloride can improve the stabilization efficiency of hydroxyapatite, and the combination of hydroxyapatite and potassium chloride can be effectively used to remediate lead and cadmium contaminated mining soil.
NASA Astrophysics Data System (ADS)
Kuda, Oleksii; Pinchuk, Nataliia; Bykov, Oleksandr; Tomila, Tamara; Olifan, Olena; Golovkova, Maryna
2018-05-01
Composite materials based on hydroxyapatite are widely used for bone tissue engineering. There is evidence of a positive effect of the presence of strontium in osteoplastic materials in the case of a Ca/Sr certain ratio. To examine the effect of the addition of Sr2+, a study was made by introducing it into the material composition based on biogenic hydroxyapatite and sodium borosilicate glass (50/50% wt.). The strontium was introduced into the composition in an amount of 1% wt. Composite materials were obtained at final sintering temperatures of 780 °C and a sintering time of 1 h. The effect of additions of glass phase and strontium affect changes in the crystal lattice of biogenic hydroxyapatite was investigated with the help of X-ray phase analysis, IR spectroscopy. Also the behavior of composites in vitro in physiological solution was studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xin-Yu; Zhu, Ying-Jie, E-mail: y.j.zhu@mail.sic.ac.cn; Lu, Bing-Qiang
Graphical abstract: Hydroxyapatite nanorods are synthesized using biocompatible biomolecule pyridoxal-5′-phosphate as a new organic phosphorus source by the hydrothermal method. - Highlights: • Hydrothermal synthesis of hydroxyapatite nanorods is reported. • Biocompatible pyridoxal-5′-phosphate is used as an organic phosphorus source. • This method is simple, surfactant-free and environmentally friendly. - Abstract: Hydroxyapatite nanorods are synthesized by the hydrothermal method using biocompatible biomolecule pyridoxal-5′-phosphate (PLP) as a new organic phosphorus source. In this method, PLP biomolecules are hydrolyzed to produce phosphate ions under hydrothermal conditions, and these phosphate ions react with pre-existing calcium ions to form hydroxyapatite nanorods. The effects ofmore » experimental conditions including hydrothermal temperature and time on the morphology and crystal phase of the products are investigated. This method is simple, surfactant-free and environmentally friendly. The products are characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric (TG) analysis.« less
Bone marrow induced osteogenesis in hydroxyapatite and calcium carbonate implants.
Vuola, J; Göransson, H; Böhling, T; Asko-Seljavaara, S
1996-09-01
In this experimental study, blocks of natural coral (calcium carbonate) and its structurally similar derivate in the form of hydroxyapatite (calcium phosphate) were implanted in rat latissimus dorsi muscle with autogenous bone marrow to compare their bone-forming capability. A block without marrow placed in the opposite latissimus muscle served as a control. The animals were killed at 3, 6 and 12 weeks and, in the hydroxyapatite group, also at 24 weeks. The sections were analysed histologically and histomorphometrically. Bone was found only in implants containing bone marrow. Bone formation was significantly (p < 0.05) higher in coral than in hydroxyapatite implants at 3 weeks (10.8% versus 4.8%) and at 12 weeks (13.7% versus 6.3%, bone/total original block area). At 12 weeks all the coral implants had lost their original structure, and the cross-sectional area of the block had diminished to 40% of the original area.
Pezzotti, Giuseppe; Zhu, Wenliang; Boffelli, Marco; Adachi, Tetsuya; Ichioka, Hiroaki; Yamamoto, Toshiro; Marunaka, Yoshinori; Kanamura, Narisato
2015-05-01
The Raman spectroscopic method has quantitatively been applied to the analysis of local crystallographic orientation in both single-crystal hydroxyapatite and human teeth. Raman selection rules for all the vibrational modes of the hexagonal structure were expanded into explicit functions of Euler angles in space and six Raman tensor elements (RTE). A theoretical treatment has also been put forward according to the orientation distribution function (ODF) formalism, which allows one to resolve the statistical orientation patterns of the nm-sized hydroxyapatite crystallite comprised in the Raman microprobe. Close-form solutions could be obtained for the Euler angles and their statistical distributions resolved with respect to the direction of the average texture axis. Polarized Raman spectra from single-crystalline hydroxyapatite and textured polycrystalline (teeth enamel) samples were compared, and a validation of the proposed Raman method could be obtained through confirming the agreement between RTE values obtained from different samples.
Carbon-centered radicals in γ-irradiated bone substituting biomaterials based on hydroxyapatite.
Sadlo, Jaroslaw; Strzelczak, Grazyna; Lewandowska-Szumiel, Malgorzata; Sterniczuk, Marcin; Pajchel, Lukasz; Michalik, Jacek
2012-09-01
Gamma irradiated synthetic hydroxyapatite, bone substituting materials NanoBone(®) and HA Biocer were examined using EPR spectroscopy and compared with powdered human compact bone. In every case, radiation-induced carbon centered radicals were recorded, but their molecular structures and concentrations differed. In compact bone and synthetic hydroxyapatite the main signal assigned to the CO(2) (-) anion radical was stable, whereas the signal due to the CO(3) (3-) radical dominated in NanoBone(®) and HA Biocer just after irradiation. However, after a few days of storage of these samples, also a CO(2) (-) signal was recorded. The EPR study of irradiated compact bone and the synthetic graft materials suggest that their microscopic structures are different. In FT-IR spectra of NanoBone(®), HA Biocer and synthetic hydroxyapatite the HPO(4) (2-) and CO(3) (2-) in B-site groups are detected, whereas in compact bone signals due to collagen dominate.
Fabbri, M; Celotti, G C; Ravaglioli, A
1995-02-01
At the request of medical teams from the maxillofacial sector, a highly porous ceramic support based on hydroxyapatite of around 70-80% porosity was produced with a pore size distribution similar to bone texture (< 10 microns, approximately 3 vol%; 10-150 microns, approximately 110 vol%; > 150 microns, approximately 86 vol%). The ceramic substrates were conceived not only as a fillers for bone cavities, but also for use as drug dispensers and as supports to host cells to produce particular therapeutic agents. A method is suggested to obtain a substrate of high porosity, exploiting the impregnation of spongy substrate with hydroxyapatite ceramic particles. X-ray and scanning electron microscopy analyses were carried out to evaluate the nature of the new ceramic support in comparison with the most common commercial product; pore size distribution and porosity were controlled to known hydroxyapatite ceramic architecture for the different possible uses.
Nano-crystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions.
Handley-Sidhu, Stephanie; Renshaw, Joanna C; Yong, Ping; Kerley, Robert; Macaskie, Lynne E
2011-01-01
Hydroxyapatites were analysed using electron microscopy, X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis. Examination of a bacterially produced hydroxyapatite (Bio-HA) by scanning electron microscopy showed agglomerated nano-sized particles; XRD analysis confirmed that the Bio-HA was hydroxyapatite, with an organic matter content of 7.6%; XRF analysis gave a Ca/P ratio of 1.55, also indicative of HA. The size of the Bio-HA crystals was calculated as ~25 nm from XRD data using the Scherrer equation, whereas Comm-HA powder size was measured as ≤ 50 μm. The nano-crystalline Bio-HA was ~7 times more efficient in removing Sr(2+) from synthetic groundwater than Comm-HA. Dissolution of HA as indicated by the release of phosphate into the solution phase was higher in the Comm-HA than the Bio-HA, indicating a more stable biomaterial which has a potential for the remediation of contaminated sites.
Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review
Prakasam, Mythili; Locs, Janis; Salma-Ancane, Kristine; Loca, Dagnija; Largeteau, Alain; Berzina-Cimdina, Liga
2015-01-01
In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes. PMID:26703750
NASA Astrophysics Data System (ADS)
Ruddyard, A. A.; Soejoko, D. S.; Nurlely
2017-07-01
Carbonated hydroxyapatite is a biomaterial with high biocompatibility with human bone, moreso than regular hydroxyapatite, making it an acceptable synthetic bone graft material. The purpose of this research is to study the effect of sintering temperature and time on carbonated hydroxyapatite samples synthesized using a hydrothermal method with CaCO3 as one of its components. The samples are then characterized using Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Scanning Electron Microscope. Infrared (IR) spectra showed that the CO3 content in each sample is proportional to the amount of CaCO3 used during synthesis. X-Ray Diffraction (XRD) patterns showed an increase in apatite content and a decrease in calcite content as sintering temperature and time increases, with temperature increases having a stronger effect on the samples than time increases. Calcite disappears completely after sintering at 900 °C for 2 hours.
NASA Astrophysics Data System (ADS)
Joughehdoust, Sedigheh; Manafi, Sahebali
2011-12-01
Hydroxyapatite [HA, Ca10(PO4)6(OH)2] is chemically similar to the mineral component of bones and hard tissues. HA can support bone ingrowth and osseointegration when used in orthopaedic, dental and maxillofacial applications. In this research, HA nanostructure was synthesized by mechanical alloying method. Phase development, particle size and morphology of HA were investigated by X-ray diffraction (XRD) pattern, zetasizer instrument, scanning electron microscopy (SEM), respectively. XRD pattern has been used to determination of the microstructural parameters (crystallite size, lattice parameters and crystallinity percent) by Williamson-Hall equation, Nelson-Riley method and calculating the areas under the peaks, respectively. The crystallite size and particle size of HA powders were in nanometric scales. SEM images showed that some parts of HA particles have agglomerates. The ratio of lattice parameters of synthetic hydroxyapatite (c/a = 0.73) was determined in this study is the same as natural hydroxyapatite structure.
Nutrient-substituted hydroxyapatites: synthesis and characterization
NASA Technical Reports Server (NTRS)
Golden, D. C.; Ming, D. W.
1999-01-01
Incorporation of Mg, S, and plant-essential micronutrients into the structure of synthetic hydroxyapatite (HA) may be advantageous for closed-loop systems, such as will be required on Lunar and Martian outposts, because these apatites can be used as slow-release fertilizers. Our objective was to synthesize HA with Ca, P, Mg, S, Fe, Cu, Mn, Zn, Mo, B, and Cl incorporated into the structure, i.e., nutrient-substituted apatites. Hydroxyapatite, carbonate hydroxyapatite (CHA), nutrient-substituted hydroxyapatite (NHA), and nutrient-substituted carbonate hydroxyapatite (NCHA) were synthesized by precipitating from solution. Chemical and mineralogical analysis of precipitated samples indicated a considerable fraction of the added cations were incorporated into HA, without mineral impurities. Particle size of the HA was in the 1 to 40 nm range, and decreased with increased substitution of nutrient elements. The particle shape of HA was elongated in the c-direction in unsubstituted HA and NHA but more spherical in CHA and NCHA. The substitution of cations and anions in the HA structure was confirmed by the decrease of the d[002] spacing of HA with substitution of ions with an ionic radius less than that of Ca or P. The DTPA-extractable Cu ranged from 8 to 8429 mg kg-1, Zn ranged from 57 to 1279 mg kg-1, Fe from 211 to 2573 mg kg-1, and Mn from 190 to 1719 mg kg-1, depending on the substitution level of each element in HA. Nutrient-substituted HA has the potential to be used as a slow-release fertilizer to supply micronutrients, S, and Mg in addition to Ca and P.
Monmaturapoj, Naruporn; Srion, Autcharaporn; Chalermkarnon, Prasert; Buchatip, Suthawan; Petchsuk, Atitsa; Noppakunmongkolchai, Warobon; Mai-Ngam, Katanchalee
2017-08-01
A composite of 70/30 poly(lactic acid)/hydroxyapatite was systematically prepared using various amounts of glycidyl methacrylate as reactive compatibilizer or Joncryl ADR®-4368 containing nine glycidyl methacrylate functions as a chain extension/branching agent to improve the mechanical and biological properties for suitable usage as internal bone fixation devices. The effect of glycidyl methacrylate/Joncryl on mechanical properties of poly(lactic acid)/hydroxyapatite was investigated through flexural strength. Cell proliferation and differentiation of osteoblast-like MC3T3-E1 cells cultured on the composite samples were determined by Alamar Blue assay and alkaline phosphatase expression, respectively. Result shows that flexural strength tends to decrease, as glycidyl methacrylate content increases except for 1 wt.% glycidyl methacrylate. With an addition of dicumyl peroxide, the flexural strength shows an improvement than that of without dicumyl peroxide probably due to the chemical bonding of the hydroxyapatite and poly(lactic acid) as revealed by FTIR and NMR, whereas the composite with 5 wt.% Joncryl shows the best result, as the flexural strength increases getting close to pure poly(lactic acid). The significant morphology change could be seen in composite with Joncryl where the uniform agglomeration of hydroxyapatite particles oriented in poly(lactic acid) matrix. Addition of the epoxy functional compatibilizers at suitable percentages could also have benefits to cellular attachment, proliferation, differentiation and mineralization. So that, this poly(lactic acid)/hydroxyapatite composite could be a promising material to be used as internal bone fixation devices such as screws, pins and plates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Pei; Wei, Pingpin; Li, Pengjian
Calcium silicate possessed excellent biocompatibility, bioactivity and degradability, while the high brittleness limited its application in load-bearing sites. Hydroxyapatite whiskers ranging from 0 to 30 wt.% were incorporated into the calcium silicate matrix to improve the strength and fracture resistance. Porous scaffolds were fabricated by selective laser sintering. The effects of hydroxyapatite whiskers on the mechanical properties and toughening mechanisms were investigated. The results showed that the scaffolds had a uniform and continuous inner network with the pore size ranging between 0.5 mm and 0.8 mm. The mechanical properties were enhanced with increasing hydroxyapatite whiskers, reached a maximum at 20more » wt.% (compressive strength: 27.28 MPa, compressive Young's modulus: 156.2 MPa, flexural strength: 15.64 MPa and fracture toughness: 1.43 MPa·m{sup 1/2}) and then decreased by addition of more hydroxyapatite whiskers. The improvement of mechanical properties was due to whisker pull-out, crack deflection and crack bridging. Moreover, the degradation rate decreased with the increase of hydroxyapatite whisker content. A layer of bone-like apatite was formed on the scaffold surfaces after being soaked in simulated body fluid. Human osteoblast-like MG-63 cells spread well on the scaffolds and proliferated with increasing culture time. These findings suggested that the calcium silicate scaffolds reinforced with hydroxyapatite whiskers showed great potential for bone regeneration and tissue engineering applications. - Highlights: • HA whiskers were incorporated into CS to improve the properties. • The scaffolds were successfully fabricated by SLS. • Toughening mechanisms was whisker pull-out, crack deflection and bridging. • The scaffolds showed excellent apatite forming ability.« less
NASA Astrophysics Data System (ADS)
SIDANE, Djahida; KHIREDDINE, Hafit; YALA, Sabeha
2017-12-01
The aim of this paper is to investigate the effect of the addition of titania (TiO2) inner-layer on the morphological and mechanical properties of hydroxyapatite (HAP) bioceramic coatings deposited on 316L stainless steel (316L SS) by sol-gel method in order to improve the properties of hydroxyapatite and expand its clinical application. The addition of TiO2 as sublayer of a hydroxyapatite coating results in changes in surface morphology as well as an increase of the microhardness. The deposition of the inner-layer provides the formation of new types of hydroxyapatite coatings at the same condition of annealing. This represents an advantage for the various applications of the hydroxyapatite bioceramic in the medical field. Classical hardness measurements conducted on the coated systems under the same indentation load (10g) indicated that the microhardness of the HAP coating is improved by the addition of TiO2 inner-layer on the 316L stainless steel substrate. The hardness values obtained from both classical tests in microindentation and the continuous stiffness measurement mode in nanoindentation are slightly different. This is because nanoindentation is more sensitive to the surface roughness and the influence of defects that could be present into the material. Moreover, nanoindentation is the most useful method to separate the contribution of each layer in the bilayer coatings. In this study, the hardness is comparable with those reported previously for pure HAP ceramics (1.0-5.5 GPa) which are close to the properties of natural teeth.
Synthesis of mesoporous nano-hydroxyapatite by using zwitterions surfactant
Mesoporous nano-hydroxyapatite (mn-HAP) was successfully synthesized via a novel micelle-templating method using lauryl dimethylaminoacetic acid as zwitterionic surfactant. The systematic use of such a surfactant in combination with microwave energy inputenables the precise contr...
Method for incorporating radioactive phosphoric acid solutions in concrete
Wolf, G.A.; Smith, J.W.; Ihle, N.C.
1982-07-08
A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH)/sub 2/ to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with Portland cement to form concrete.
Method for incorporating radioactive phosphoric acid solutions in concrete
Wolf, Gary A [Kennewick, WA; Smith, Jeffrey W [Lancaster, OH; Ihle, Nathan C [Walla Walla, WA
1984-01-01
A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH).sub.2 to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with portland cement to form concrete.
Microwave-Assisted Synthesis of Mesoporous Nano-Hydroxyapatite Using Surfactant Templates
Mesoporous nano-hydroxyapatite (n-HAP) was expeditiously synthesized using the pseudo sol-gel microwave-assisted protocol (30 min) in the presence of two novel templates, namely sodium lauryl ether sulfate (SLES) and linear alkylbenzenesulfonate (LABS). The cooperative self-assem...
Investigations on the in vitro bioactivity of swift heavy oxygen ion irradiated hydroxyapatite.
Suganthi, R V; Prakash Parthiban, S; Elayaraja, K; Girija, E K; Kulariya, P; Katharria, Y S; Singh, F; Asokan, K; Kanjilal, D; Narayana Kalkura, S
2009-12-01
The effect of swift heavy oxygen ion irradiation of hydroxyapatite on its in vitro bioactivity was studied. The irradiation experiment was performed using oxygen ions at energy of 100 MeV with 1 x 10(12) and 1 x 10(13) ions/cm2 fluence range. The irradiated samples were characterized by glancing angle X-ray diffraction (GXRD), photoluminescence spectroscopy (PL) and scanning electron microscopy (SEM). GXRD showed that irradiated samples exhibited better crystallinity. The irradiated samples revealed an increase in PL intensity. In addition, the irradiated hydroxyapatite was found to have enhanced bioactivity.
Yanhua, Wang; Hao, Hang; Li, Yan; Zhang, Shengmin
2016-04-01
Absence of curative treatment creates urgent need for new strategies for unresectable hepatoma. Novel selenium-substituted hydroxyapatite nanoparticles (SeHAN) were designed to serve as anticancer agent. The authors examined the nanoparticles by physicochemical techniques. The in vivo efficacy and toxicity of these nanoparticles were also investigated on a nude mice model of human hepatocellular carcinoma. The results showed that the selenite ions can be incorporated into the hydroxyapatite lattice facilely. They exhibited bundles of needles shape with a size of 160-200 nm. In the in vivo study, they showed better survival advantage. The overall survival rate of nude mice in the control, pure hydroxyapatite and SeHAN group were 50.00%, 76.92%, and 100.00% respectively. Blood biochemical studies showed that SeHAN group had significantly lower toxicities on the liver and kidney functions. Histopathological studies confirmed that massive tumor necrosis and calcium deposition were evident after SeHAN treatment. Moreover, immunohistochemistry and Western blot assay showed significantly reduced expression of the Ki-67, VEGF and MMP-9 protein in the SeHAN group. Taken together, these results suggest that the selenium-substituted hydroxyapatite nanoparticles could be a new type of promising anticancer agent to provide both survival advantage and lower toxicity. Copyright © 2016 Elsevier B.V. All rights reserved.
Structural Characterization and Antifungal Studies of Zinc-Doped Hydroxyapatite Coatings.
Iconaru, Simona Liliana; Prodan, Alina Mihaela; Buton, Nicolas; Predoi, Daniela
2017-04-09
The present study is focused on the synthesis, characterization and antifungal evaluation of zinc-doped hydroxyapatite (Zn:HAp) coatings. The Zn:HAp coatings were deposited on a pure Si (Zn:HAp_Si) and Ti (Zn:HAp_Ti) substrate by a sol-gel dip coating method using a zinc-doped hydroxyapatite nanogel. The nature of the crystal phase was determined by X-ray diffraction (XRD). The crystalline phase of the prepared Zn:HAp composite was assigned to hexagonal hydroxyapatite in the P6 3/m space group. The colloidal properties of the resulting Zn:HAp (x Zn = 0.1) nanogel were analyzed by Dynamic Light Scattering (DLS) and zeta potential. Scanning Electron Microscopy (SEM) was used to investigate the morphology of the zinc-doped hydroxyapatite (Zn:HAp) nanogel composite and Zn:HAp coatings. The elements Ca, P, O and Zn were found in the Zn:HAp composite. According to the EDX results, the degree of Zn substitution in the structure of Zn:HAp composite was 1.67 wt%. Moreover, the antifungal activity of Zn:HAp_Si and Zn:HAp_Ti against Candida albicans ( C. albicans ) was evaluated. A decrease in the number of surviving cells was not observed under dark conditions, whereas under daylight and UV light illumination a major decrease in the number of surviving cells was observed.
Shahabi, Sima; Najafi, Farhood; Majdabadi, Abbas; Hooshmand, Tabassom; Haghbin Nazarpak, Masoumeh; Karimi, Batool
2014-01-01
Gamma irradiation is able to affect various structural and biological properties of biomaterials In this study, a composite of Hap/PLGA-PEG and their ingredients were submitted to gamma irradiation doses of 25 and 50 KGy. Various properties such as molecular weight (GPC), thermal behavior (DSC), wettability (contact angle), cell viability (MTT assay), and alkaline phosphatase activity were studied for the composites and each of their ingredients. The results showed a decrease in molecular weight of copolymer with no change in the glass transition and melting temperatures after gamma irradiation. In general gamma irradiation can increase the activation energy ΔH of the composites and their ingredients. While gamma irradiation had no effect on the wettability of copolymer samples, there was a significant decrease in contact angle of hydroxyapatite and composites with increase in gamma irradiation dose. This study showed an increase in biocompatibility of hydroxyapatite with gamma irradiation with no significant effect on cell viability in copolymer and composite samples. In spite of the fact that no change occurred in alkaline phosphatase activity of composite samples, results indicated a decrease in alkaline phosphatase activity in irradiated hydroxyapatites. These effects on the properties of PLGA-PEG-hydroxyapatite can enhance the composite application as a biomaterial. PMID:25574485
Li, Feng; Shao, Zhenyi; Zhu, Degui; Zhu, Minhao
2018-01-01
Biomaterial composites made of titanium and hydroxyapatite (HA) powder are among the most important biomedicalmaterials due to their good mechanical properties and biocompatibility. In this work, graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites were prepared by vacuum hot-pressing sintering. The microstructure and mechanical properties of graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were systematically investigated. Microstructures of the nanocomposites were examined by X-ray diffraction (XRD), back scattered electron imaging (BSE), scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS), electron probe microanalyzer (EPMA), and transmission electron microscope (TEM). The mechanical properties were determined from microhardness, shear strength, and compressive strength. Results showed that during the high-temperature sintering process, complex chemical reactions occurred, resulting in new phases of nucleation such as Ca3(PO4)2, TixPy, and Ti3O.The new phases, which easily dropped off under the action of external force, could hinder the densification of sintering and increase the brittleness of the nanocomposites. Results demonstrated that graphene had an impact on the microstructure and mechanical properties of the nanocomposites. Based on the mechanical properties and microstructure of the nanocomposites, the strengthening and fracture mechanisms of the graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were analyzed. PMID:29659504
Effect of SiC interlayer between Ti6Al4V alloy and hydroxyapatite films.
Azem, Funda Ak; Birlik, Isil; Braic, Viorel; Toparli, Mustafa; Celik, Erdal; Parau, Anca; Kiss, Adrian; Titorencu, Irina; Vladescu, Alina
2015-04-01
Bioactive coatings are frequently used to improve the osseointegration of the metallic implants used in dentistry or orthopaedics. Among different types of bioactive coatings, hydroxyapatite (Ca10(PO4)6(OH)2) is one of the most extensively used due to its chemical similarities to the components of bones and teeth. In this article, production and characterization of hydroxyapatite films deposited on Ti6Al4V alloy prepared by magnetron sputtering were reported. Besides, SiC was deposited on substrate surface to study the interlayer effect. Obtained coatings were annealed at 600 °C for 30 and 120 min in a mixed atmosphere of N2 + H2O vapours with the heating rate of 12 °C min(-1). The effects of SiC interlayer and heat treatment parameters on the structural, mechanical and corrosion properties were investigated. After heat treatment process, the crystalline hydroxyapatite was obtained. Additionally, cell viability tests were performed. The results show that the presence of the SiC interlayer contributes a decrease in surface roughness and improves the mechanical properties and corrosion performance of the hydroxyapatite coatings. Biological properties were not affected by the presence of the SiC interlayer. © IMechE 2015.
NASA Astrophysics Data System (ADS)
Duta, L.; Mihailescu, N.; Popescu, A. C.; Luculescu, C. R.; Mihailescu, I. N.; Çetin, G.; Gunduz, O.; Oktar, F. N.; Popa, A. C.; Kuncser, A.; Besleaga, C.; Stan, G. E.
2017-08-01
We report on the synthesis by Pulsed Laser Deposition of simple and Ti doped hydroxyapatite thin films of biological (ovine dentine) origin. Detailed physical, chemical, mechanical and biological investigations were performed. Morphological examination of films showed a surface composed of spheroidal particulates, of micronic size. Compositional analyses pointed to the presence of typical natural doping elements of bone, along with a slight non-stoichiometry of the deposited films. Structural investigations proved the monophasic hydroxyapatite nature of both simple and Ti doped films. Ti doping of biological hydroxyapatite induced an overall downgrade of the films crystallinity together with an increase of the films roughness. It is to be emphasized that bonding strength values measured at film/Ti substrate interface were superior to the minimum value imposed by International Standards regulating the load-bearing implant coatings. In vitro tests on Ti doped structures, compared to simple ones, revealed excellent biocompatibility in human mesenchymal stem cell cultures, a higher proliferation rate and a good cytocompatibility. The obtained results aim to elucidate the overall positive role of Ti doping on the hydroxyapatite films performance, and demonstrate the possibility to use this novel type of coatings as feasible materials for future implantology applications.
Delbem, Alberto Carlos Botazzo; Souza, José Antonio Santos; Zaze, Ana Carolina Soares Fraga; Takeshita, Eliana Mitsue; Sassaki, Kikue Takebayashi; Moraes, João Carlos Silos
2014-01-01
The present study analyzed the action of sodium trimetaphosphate (TMP) and/or fluoride on hydroxyapatite. Hydroxyapatite powder was suspended in different solutions: deionized water, 500 µg F/mL, 1,100 µg F/mL, 1%TMP, 3%TMP, 500 µg F/mL plus 1%TMP and 500 µg F/mL plus 3%TMP. The pH value of the solutions was reduced to 4.0 and after 30 min, raised to 7.0 (three times). After pH-cycling, the samples were analyzed by X-ray diffraction and infrared spectroscopy. The concentrations of calcium fluoride, fluoride, calcium and phosphorus were also determined. Adding 1% or 3% TMP to the solution containing 500 µg F/mL produced a higher quantity of calcium fluoride compared to samples prepared in a 1,100 µg F/mL solution. Regarding the calcium concentration, samples prepared in solutions of 1,100 µg F/mL and 500 µg F/mL plus TMP were statistically similar and showed higher values. Using solutions of 1,100 µg F/mL and 500 µg F/mL plus TMP resulted in a calcium/phosphorus ratio close to that of hydroxyapatite. It is concluded that the association of TMP and fluoride favored the precipitation of a more stable hydroxyapatite.
Rajesh, Rajendiran; Dominic Ravichandran, Y
2015-01-01
In recent times, tricomponent scaffolds prepared from naturally occurring polysaccharides, hydroxyapatite, and reinforcing materials have been gaining increased attention in the field of bone tissue engineering. In the current work, a tricomponent scaffold with an oxidized multiwalled carbon nanotube (fMWCNT)–alginate–hydroxyapatite with the required porosity was prepared for the first time by a freeze-drying method and characterized using analytical techniques. The hydroxyapatite for the scaffold was isolated from chicken bones by thermal calcination at 800°C. The Fourier transform infrared spectra and X-ray diffraction data confirmed ionic interactions and formation of the fMWCNT–alginate–hydroxyapatite scaffold. Interconnected porosity with a pore size of 130–170 µm was evident from field emission scanning electron microscopy. The total porosity calculated using the liquid displacement method was found to be 93.85%. In vitro biocompatibility and cell proliferation on the scaffold was checked using an MG-63 cell line by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and cell attachment by Hoechst stain assay. In vitro studies showed better cell proliferation, cell differentiation, and cell attachment on the prepared scaffold. These results indicate that this scaffold could be a promising candidate for bone tissue engineering. PMID:26491303
Reinforcing of a calcium phosphate cement with hydroxyapatite crystals of various morphologies.
Neira, Inés S; Kolen'ko, Yury V; Kommareddy, Krishna P; Manjubala, Inderchand; Yoshimura, Masahiro; Guitián, Francisco
2010-11-01
A series of biocomposite materials was successfully prepared by reinforcing advanced calcium phosphate cement with hydroxyapatite fibrous and elongated plate-like particles. Powder X-ray diffraction showed that ball-milled biocomposite precursors (dicalcium and tetracalcium phosphates) entirely transform to a single phase hydroxyapatite end product within 7 h at 37 °C. Electron microscopy showed that the resultant biocomposites are constituted of nanoscaled cement particles intimately associated with the reinforcement crystals. The influence of shape, size, and concentration of the hydroxyapatite filler on the compression strength of reinforced cements is discussed. The best compression strength of 37 ± 3 MPa (enhancement of ∼50% compared to pure cement) was achieved using submicrometer-sized hydroxyapatite crystals with complementary shapes. Nanoindentation revealed that averaged elastic modulus and hardness values of the cements are consistent with those reported for trabecular and cortical human bones, indicating a good match of the micromechanical properties for their potential use for bone repair. The stiffness of the biocomposites was confirmed to gradate-compliant cement matrix, cement-filler interface, and stiff filler-as a result of the structuring at the nanometer-micrometer level. This architecture is critical in conditioning the final mechanical properties of the functional composite biomaterial. In vitro cell culture experiments showed that the developed biomaterial system is noncytotoxic.
Li, Feng; Jiang, Xiaosong; Shao, Zhenyi; Zhu, Degui; Zhu, Minhao
2018-04-16
Biomaterial composites made of titanium and hydroxyapatite (HA) powder are among the most important biomedicalmaterials due to their good mechanical properties and biocompatibility. In this work, graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites were prepared by vacuum hot-pressing sintering. The microstructure and mechanical properties of graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were systematically investigated. Microstructures of the nanocomposites were examined by X-ray diffraction (XRD), back scattered electron imaging (BSE), scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS), electron probe microanalyzer (EPMA), and transmission electron microscope (TEM). The mechanical properties were determined from microhardness, shear strength, and compressive strength. Results showed that during the high-temperature sintering process, complex chemical reactions occurred, resulting in new phases of nucleation such as Ca₃(PO₄)₂, Ti x P y , and Ti₃O.The new phases, which easily dropped off under the action of external force, could hinder the densification of sintering and increase the brittleness of the nanocomposites. Results demonstrated that graphene had an impact on the microstructure and mechanical properties of the nanocomposites. Based on the mechanical properties and microstructure of the nanocomposites, the strengthening and fracture mechanisms of the graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were analyzed.
Tiwari, Shilpi; Nandlal, Bhojraj
2016-04-01
Glass Ionomer Cement (GIC) is well known for its fluoride releasing property but has its own drawbacks of poor mechanical properties, sensitivity to initial desiccation and moisture contamination. To overcome these, search led to the reinforcement of hydroxyapatite and application of surface coating agent but their effect on fluoride release is still not clear. To evaluate and compare the release of fluoride from Hydroxyapatite Reinforced Glass Ionomer (HA-GIC) with and without protective coating. Specimens were prepared as follows- Eight percent by weight conventional glass ionomer was replaced by hydroxyapatite powder (HA) and an indigenous product was prepared (HA-GIC). This powder was mixed with liquid of conventional GIC and allowed to set, then G coat plus coating agent was applied in surface coated group and light cured. Fluoride release of the sample was measured every 24 hrs for seven days and weekly from 7(th) to 21(st) day using combination ion selective electrode. Mean values clearly reveal a significant decrease in the fluoride release from day 1 to day 21 for both the groups. Results of repeated measure ANOVA revealed statistically significant difference between two groups (p <0.001). Coating the hydroxyapatite reinforced glass ionomer will allow for slow and steady release of fluoride for a long period of time into oral environment.
Quartz Crystal Microbalance with Dissipation Monitoring
2014-11-06
Hydroxyapatite , 10 nm, Sensors • Biotin Functionalized on Gold Sensors • His-tag Capturing Sensor QCM-D techniques provide answers about...UV/Ozone cleaner • Hydroxyapatite , 10 nm, Sensors • Biotin Functionalized on Gold Sensors • His-tag Capturing Sensor QCM-D techniques provide
Lange, R; de Klerk, J M H; Bloemendal, H J; Ramakers, R M; Beekman, F J; van der Westerlaken, M M L; Hendrikse, N H; Ter Heine, R
2015-05-01
(188)Rhenium-HEDP is an effective bone-targeting therapeutic radiopharmaceutical, for treatment of osteoblastic bone metastases. It is known that the presence of carrier (non-radioactive rhenium as ammonium perrhenate) in the reaction mixture during labeling is a prerequisite for adequate bone affinity, but little is known about the optimal carrier concentration. We investigated the influence of carrier concentration in the formulation on the radiochemical purity, in-vitro hydroxyapatite affinity and the in-vivo bone accumulation of (188)Rhenium-HEDP in mice. The carrier concentration influenced hydroxyapatite binding in-vitro as well as bone accumulation in-vivo. Variation in hydroxyapatite binding with various carrier concentrations seemed to be mainly driven by variation in radiochemical purity. The in-vivo bone accumulation appeared to be more complex: satisfactory radiochemical purity and hydroxyapatite affinity did not necessarily predict acceptable bio-distribution of (188)Rhenium-HEDP. For development of new bisphosphonate-based radiopharmaceuticals for clinical use, human administration should not be performed without previous animal bio-distribution experiments. Furthermore, our clinical formulation of (188)Rhenium-HEDP, containing 10 μmol carrier, showed excellent bone accumulation that was comparable to other bisphosphonate-based radiopharmaceuticals, with no apparent uptake in other organs. Radiochemical purity and in-vitro hydroxyapatite binding are not necessarily predictive of bone accumulation of (188)Rhenium-HEDP in-vivo. The formulation for (188)Rhenium-HEDP as developed by us for clinical use exhibits excellent bone uptake and variation in carrier concentration during preparation of this radiopharmaceutical should be avoided. Copyright © 2015 Elsevier Inc. All rights reserved.
Nga, Nguyen Kim; Hoai, Tran Thanh; Viet, Pham Hung
2015-04-01
This study presents a facile synthesis of biomimetic hydroxyapatite nanorod/poly(D,L) lactic acid (HAp/PDLLA) scaffolds with the use of solvent casting combined with a salt-leaching technique for bone-tissue engineering. Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy were used to observe the morphologies, pore structures of synthesized scaffolds, interactions between hydroxyapatite nanorods and poly(D,L) lactic acid, as well as the compositions of the scaffolds, respectively. Porosity of the scaffolds was determined using the liquid substitution method. Moreover, the apatite-forming capability of the scaffolds was evaluated through simulated body fluid (SBF) incubation tests, whereas the viability, attachment, and distribution of human osteoblast cells (MG 63 cell line) on the scaffolds were determined through alamarBlue assay and confocal laser microscopy after nuclear staining with 4',6-diamidino-2-phenylindole and actin filaments of a cytoskeleton with Oregon Green 488 phalloidin. Results showed that hydroxyapatite nanorod/poly(D,L) lactic acid scaffolds that mimic the structure of natural bone were successfully produced. These scaffolds possessed macropore networks with high porosity (80-84%) and mean pore sizes ranging 117-183 μm. These scaffolds demonstrated excellent apatite-forming capabilities. The rapid formation of bone-like apatites with flower-like morphology was observed after 7 days of incubation in SBFs. The scaffolds that had a high percentage (30 wt.%) of hydroxyapatite demonstrated better cell adhesion, proliferation, and distribution than those with low percentages of hydroxyapatite as the days of culture increased. This work presented an efficient route for developing biomimetic composite scaffolds, which have potential applications in bone-tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boskey, Adele L., E-mail: boskeya@hss.edu; Christensen, Brian, E-mail: bc@mb.au.dk; Taleb, Hayat, E-mail: Talebh@hss.edu
Highlights: Black-Right-Pointing-Pointer Thrombin-cleaved fragments of milk-osteopontin effect hydroxyapatite formation differently. Black-Right-Pointing-Pointer N- and C-terminal fragments promoted hydroxyapatite formation and growth. Black-Right-Pointing-Pointer A central fragment inhibited hydroxyapatite formation and growth. Black-Right-Pointing-Pointer Binding to collagen or hydroxyapatite seed crystals modified these effects. -- Abstract: The manuscript tests the hypothesis that posttranslational modification of the SIBLING family of proteins in general and osteopontin in particular modify the abilities of these proteins to regulate in vitro hydroxyapatite (HA) formation. Osteopontin has diverse effects on hydroxyapatite (HA) mineral crystallite formation and growth depending on the extent of phosphorylation. We hypothesized that different regions of full-lengthmore » OPN would also have distinct effects on the mineralization process. Thrombin fragmentation of milk OPN (mOPN) was used to test this hypothesis. Three fragments were tested in a de novo HA formation assay; an N-terminal fragment (aa 1-147), a central fragment (aa 148-204) denoted SKK-fragment and a C-terminal fragment (aa 205-262). Compared to intact mOPN the C- and N-terminal fragments behaved comparably, promoting HA formation and growth, but the central SKK-fragment acted as a mineralization inhibitor. In a seeded growth experiment all fragments inhibited mineral proliferation, but the SKK-fragment was the most effective inhibitor. These effects, seen in HA-formation and seeded growth assays in a gelatin gel system and in a pH-stat experiment were lost when the protein or fragments were dephosphorylated. Effects of the fully phosphorylated protein and fragments were also altered in the presence of fibrillar collagen. The diverse effects can be explained in terms of the intrinsically disordered nature of OPN and its fragments which enable them to interact with their multiple partners.« less
Effect of ozone to remineralize initial enamel caries: in situ study.
Samuel, S R; Dorai, S; Khatri, S G; Patil, S T
2016-06-01
Effect of ozonated water in remineralizing artificially created initial enamel caries was investigated using laser fluorescence and polarized light microscopy in an in situ study. Teeth specimens (buccal sections) were immersed in 5-ml solution of 2 mM CaCl2, 2 mM NaH2P04, and 50 mM CH3COOH at pH of 4.55 for 5 h in an incubator at 37° to create subsurface demineralization. After which, they were randomly allocated into one of the following remineralization regimens: ozone (ozonated water 0.1 mg/l and 10 % nano-hydroxyapatite paste, Aclaim(TM)), without ozone (only 10 % nano-hydroxyapatite paste, Aclaim(TM)), and control (subjects' saliva alone). Specimens were embedded in acrylic retainers worn by orthodontic patients throughout the 21-day study duration and constantly exposed to their saliva. Laser fluorescence was recorded for all the specimens at baseline, after demineralization, and remineralization using DIAGNOdent, and the results were validated using polarized microscopic examination. The results were analyzed using repeated measures, one-way ANOVA with post hoc multiple comparisons. Reduced DIAGNOdent scores and greater depth of remineralization following application of ozonated water and nano-hydroxyapatite were found compared to those of the without ozone and control groups (P < 0.001), and the ozone-treated group exhibited maximum remineralization under the polarized light microscopy. Ozonated water can be considered an effective agent in reversing the initial enamel caries alongside with nano-hydroxyapatite compared to nano-hydroxyapatite alone and saliva. Ozone water can be used to remineralize incipient carious lesions, and it enhances the remineralizing potential of nano-hydroxyapatite thereby preventing the tooth from entering into the repetitive restorative cycle.
NASA Astrophysics Data System (ADS)
Gopi, D.; Ansari, M. Thameem; Shinyjoy, E.; Kavitha, L.
2012-02-01
Nowadays magnetic hydroxyapatite (m-HAP) has potential applications in biomedicine more especially for bone cancer treatment. In this paper the functionalization of the hydroxyapatite (HAP) with magnetite nanoparticle (MNP) through ultrasonic irradiation technique is reported and its spectral investigation has been carried out. The ultrasonic irradiation with two different frequencies of 28 kHz and 35 kHz at the power of 150 and 320 W, respectively, was employed for the synthesis of m-HAP. The ultrasound irradiation of 35 kHz at 320 W shows the efficient diffusion of MNP to the HAP host matrix leads to the formation of m-HAP. The ultrasonic irradiation technique does not require stabilizers as in the case of coprecipitation method hence the final product of pure m-HAP is obtained. The X-ray diffraction pattern shows the formation of magnetite nanoparticles which are functionalized with hydroxyapatite host matrix. The vibrating sample magnetometer curve exhibits the super paramagnetic property of the samples and the saturation magnetization ( Ms) value of the functionalized magnetic hydroxyapatite. The Ms value is found to be much less than that of pure magnetite nanoparticle and this decrement in Ms is due to the hindrance of magnetic domain of the particles with HAP. The portrayed Raman spectra discriminate between the m-HAP and MNP with corresponding vibrational modes of frequencies. The transmission electron micrograph shows excellent morphology of functionalized m-HAP in nanometer range. The atomic force microscopic investigation shows the 3-dimensional view of crust and trench shape of m-HAP. All these results confirm the formation of magnetic hydroxyapatite nanocomposite with typical magnetic property for biological applications.
Gopi, D; Ansari, M Thameem; Shinyjoy, E; Kavitha, L
2012-02-15
Nowadays magnetic hydroxyapatite (m-HAP) has potential applications in biomedicine more especially for bone cancer treatment. In this paper the functionalization of the hydroxyapatite (HAP) with magnetite nanoparticle (MNP) through ultrasonic irradiation technique is reported and its spectral investigation has been carried out. The ultrasonic irradiation with two different frequencies of 28kHz and 35kHz at the power of 150 and 320W, respectively, was employed for the synthesis of m-HAP. The ultrasound irradiation of 35kHz at 320W shows the efficient diffusion of MNP to the HAP host matrix leads to the formation of m-HAP. The ultrasonic irradiation technique does not require stabilizers as in the case of coprecipitation method hence the final product of pure m-HAP is obtained. The X-ray diffraction pattern shows the formation of magnetite nanoparticles which are functionalized with hydroxyapatite host matrix. The vibrating sample magnetometer curve exhibits the super paramagnetic property of the samples and the saturation magnetization (M(s)) value of the functionalized magnetic hydroxyapatite. The M(s) value is found to be much less than that of pure magnetite nanoparticle and this decrement in M(s) is due to the hindrance of magnetic domain of the particles with HAP. The portrayed Raman spectra discriminate between the m-HAP and MNP with corresponding vibrational modes of frequencies. The transmission electron micrograph shows excellent morphology of functionalized m-HAP in nanometer range. The atomic force microscopic investigation shows the 3-dimensional view of crust and trench shape of m-HAP. All these results confirm the formation of magnetic hydroxyapatite nanocomposite with typical magnetic property for biological applications. Copyright © 2011 Elsevier B.V. All rights reserved.
The addition of nanostructured hydroxyapatite to an experimental adhesive resin.
Leitune, Vicente Castelo Branco; Collares, Fabrício Mezzomo; Trommer, Rafael Mello; Andrioli, Daniela Guerra; Bergmann, Carlos Pérez; Samuel, Susana Maria Werner
2013-04-01
Was produced nanostructured hydroxyapatite (HAnano) and evaluated the influence of its incorporation in an adhesive resin. HAnano was produced by a flame-based process and was characterized by scanning electron microscopy. The surface area, particle size, micro-Raman and cytotoxicity were evaluated. The organic phase was formulated by mixing 50 wt.% Bis-GMA, 25 wt.% TEGDMA, and 25 wt.% HEMA. HAnano was added at seven different concentrations: 0; 0.5; 1; 2; 5; 10 and 20 wt.%. Adhesive resins with hydroxyapatite incorporation were evaluated for their radiopacity, degree of conversion, flexural strength, softening in solvent and microshear bond strength. The data were analyzed by one-way ANOVA and Tukey's post hoc test (α=0.05), except for softening in solvent (paired t-test) and cytotoxicity (two-way ANOVA and Bonferroni). HAnano presented 15.096 m(2)/g of specific surface area and a mean size of 26.7 nm. The radiopacity values were not different from those of 1-mm aluminium. The degree of conversion ranged from 52.2 to 63.8%. The incorporation of HAnano did not influence the flexural strength, which ranged from 123.3 to 143.4MPa. The percentage of reduction of the microhardness after immersion in the solvent became lower as the HAnano concentration increased. The addition of 2% nanostructured hydroxyapatite resulted in a higher value of microshear bond strength than the control group (p<0.05). The incorporation of 2% of nanostructured hydroxyapatite into an adhesive resin presented the best results. The incorporation of nanostructured hydroxyapatite increases the adhesive properties and may be a promising filler for adhesive resin. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zupancic, Marija; Bukovec, Peter; Milacic, Radmila; Scancar, Janez
2006-01-01
The leachability of zinc (Zn) and nickel (Ni) was investigated in various soil types amended with sewage sludge and sewage sludge treated with hydroxyapatite. Sandy, clay and peat soils were investigated. For leachability tests, plastic columns (diameter 9 cm, height 50 cm) were filled with moist samples up to a height of 25 cm. Sewage sludge (1 kg) was mixed with 4.6 kg of clay and sandy soils and with 6.7 kg of peat soil. For sewage sludge mixtures treated with hydroxyapatite, 0.5 kg of the hydroxyapatite was added to 1 kg of the sewage sludge. Neutral (pH 7) and acid precipitation (pH 3.5) were applied. Acid precipitation was prepared from concentrated HNO(3), H(2)SO(4) and fresh doubly distilled water. The amount of precipitation corresponded to the average annual precipitation for the city of Ljubljana, Slovenia. It was divided into eight equal portions and applied sequentially on the top of the columns. The results indicated that the leachabilities of Zn in sewage sludge amended peat and clay soils were low (below 0.3% of total Zn content) and of Ni in sewage sludge amended sandy, clay and peat soil below 1.9% of total Ni content. In sewage sludge amended sandy soil, the leachability of Zn was higher (11% of Zn content). The pH of precipitation had no influence on the leachability of either metal. Treatment of sewage sludge with hydroxyapatite efficiently reduced the leachability of Zn in sewage sludge amended sandy soil (from 11% to 0.2% of total Zn content). In clay and peat sewage sludge amended soils, soil characteristics rather than hydroxyapatite treatment dominate Zn mobility.
Zhang, Qinghao; Schmelzer, Eva; Gerlach, Jörg C; Nettleship, Ian
2017-04-01
Hydroxyapatite pellets, partially densified in a low-temperature heat treatment, were infiltrated with calcium nitrate solution followed by in-situ precipitation of Ca(OH) 2 and CaCO 3 . The infiltrated bodies were then densified to high relative density and the calcium carbonate transformed to calcium oxide during sintering and resulted in biphasic hydroxyapatite-CaO ceramics. This work investigated the influence of the infiltration on surface morphology, weight change, and microstructural-level degradation caused by exposure to saline at pH=7.4 and a temperature of 20°C. The CaO rendered the materials more susceptible to degradation, and released calcium into the saline faster than single phase, calcium deficient hydroxyapatite (HA) that were used as a control. In consequence, these ceramics could be used to release calcium into the culture microenvironments of bone tissue or bone marrow cells next to a scaffold surface. Copyright © 2016 Elsevier B.V. All rights reserved.
Fulgione, Andrea; Nocerino, Nunzia; Iannaccone, Marco; Roperto, Sante; Capuano, Federico; Roveri, Norberto; Lelli, Marco; Crasto, Antonio; Calogero, Armando; Pilloni, Argenia Paola; Capparelli, Rosanna
2016-01-01
Background The resistance of Helicobacter pylori to the antibiotic therapy poses the problem to discover new therapeutic approaches. Recently it has been stated that antibacterial, immunomodulatory, and antioxidant properties of lactoferrin are increased when this protein is surface-linked to biomimetic hydroxyapatite nanocrystals. Objective Based on these knowledge, the aim of the study was to investigate the efficacy of lactoferrin delivered by biomimetic hydroxyapatite nanoparticles with cell free supernatant from probiotic Lactobacillus paracasei as an alternative therapy against Helicobacter pylori infection. Methods Antibacterial and antinflammatory properties, humoral antibody induction, histopathological analysis and absence of side effects were evaluated in both in vitro and in vivo studies. Results The tests carried out have been demonstrated better performance of lactoferrin delivered by biomimetic hydroxyapatite nanoparticles combined with cell free supernatant from probiotic Lactobacillus paracasei compared to both lactoferrin and probiotic alone or pooled. Conclusion These findings indicate the effectiveness and safety of our proposed therapy as alternative treatment for Helicobacter pylori infection. PMID:27384186
Popescu, L M; Piticescu, R M; Antonelli, A; Rusti, C F; Carboni, E; Sfara, C; Magnani, M; Badilita, V; Vasile, E; Trusca, R; Buruiana, T
2013-11-01
The development of engineered biomaterials that mimic bone tissues is a promising research area that benefits from a growing interest. Polymers and polymer-ceramic composites are the principle materials investigated for the development of synthetic bone scaffolds thanks to their proven biocompatibility and biostability. Several polymers have been combined with calcium phosphates (mainly hydroxyapatite) to prepare nanocomposites with improved biocompatible and mechanical properties. Here, we report the hydrothermal synthesis in high pressure conditions of nanostructured composites based on hydroxyapatite and polyurethane functionalized with carboxyl and thiol groups. Cell-material interactions were investigated for potential applications of these new types of composites as coating for orthopedic implants. Physical-chemical and morphological characteristics of hydroxyapatite/polyurethane composites were evaluated for different compositions, showing their dependence on synthesis parameters (pressure, temperature). In vitro experiments, performed to verify if these composites are biocompatible cell culture substrates, showed that they are not toxic and do not affect cell viability.
Pietrzyńska, Monika; Zembrzuska, Joanna; Tomczak, Rafał; Mikołajczyk, Jakub; Rusińska-Roszak, Danuta; Voelkel, Adam; Buchwald, Tomasz; Jampílek, Josef; Lukáč, Miloš; Devínsky, Ferdinand
2016-10-10
A method based on experimental and in silico evaluations for investigating interactions of organic phosphates and phosphonates with hydroxyapatite was developed. This quick and easy method is used for determination of differences among organophosphorus compounds of various structures in their mineral binding affinities. Empirical sorption evaluation was carried out using liquid chromatography with tandem mass spectrometry or UV-VIS spectroscopy. Raman spectroscopy was used to confirm sorption of organic phosphates and phosphonates on hydroxyapatite. Polymer-ceramic monolithic material and bulk hydroxyapatite were applied as sorbent materials. Furthermore, a Polymer-ceramic Monolithic In-Needle Extraction device was used to investigate both sorption and desorption steps. Binding energies were computed from the fully optimised structures utilising Density Functional Theory (DFT) at B3LYP/6-31+G(d,p) level. Potential pharmacologic and toxic effects of the tested compounds were estimated by the Prediction of the Activity Spectra of Substances using GeneXplain software. Copyright © 2016 Elsevier B.V. All rights reserved.
Advanced Microstructural Study of Suspension Plasma Sprayed Hydroxyapatite Coatings
NASA Astrophysics Data System (ADS)
Podlesak, Harry; Pawlowski, Lech; D'Haese, Romain; Laureyns, Jacky; Lampke, Thomas; Bellayer, Severine
2010-03-01
Fine, home-synthesized, hydroxyapatite powder was formulated with water and alcohol to obtain a suspension used to plasma spray coatings onto a titanium substrate. The deposition process was optimized using statistical design of 2 n experiments with two variables: spray distance and electric power input to plasma. X-ray diffraction (XRD) was used to determine quantitatively the phase composition of obtained deposits. Raman microscopy and electron probe microanalysis (EPMA) enabled localization of the phases in different positions of the coating cross sections. Transmission electron microscopic (TEM) study associated with energy-dispersive x-ray spectroscopy (EDS) enabled visualization and analysis of a two-zone microstructure. One zone contained crystals of hydroxyapatite, tetracalcium phosphate, and a phase rich in calcium oxide. This zone included lamellas, usually observed in thermally sprayed coatings. The other zone contained fine hydroxyapatite grains that correspond to nanometric and submicrometric solids from the suspension that were agglomerated and sintered in the cold regions of plasma jet and on the substrate.
Gabriel, Laís P; Santos, Maria Elizabeth M Dos; Jardini, André L; Bastos, Gilmara N T; Dias, Carmen G B T; Webster, Thomas J; Maciel Filho, Rubens
2017-01-01
In this work, thermoset polyurethane composites were prepared by the addition of hydroxyapatite nanoparticles using the reactants polyol polyether and an aliphatic diisocyanate. The polyol employed in this study was extracted from the Euterpe oleracea Mart. seeds from the Amazon Region of Brazil. The influence of hydroxyapatite nanoparticles on the structure and morphology of the composites was studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), the structure was evaluated by Fourier transform infrared spectroscopy (FT-IR), thermal properties were analyzed by thermogravimetry analysis (TGA), and biological properties were studied by in vitro and in vivo studies. It was found that the addition of HA nanoparticles promoted fibroblast adhesion while in vivo investigations with histology confirmed that the composites promoted connective tissue adherence and did not induce inflammation. In this manner, this study supports the further investigation of bio-based, polyurethane/hydroxyapatite composites as biocompatible scaffolds for numerous tissue engineering applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Ahmadzadeh, Elham; Talebnia, Farid; Tabatabaei, Meisam; Ahmadzadeh, Hossein; Mostaghaci, Babak
2016-07-01
To repair damaged bone tissues, osteoconductive bone graft substitutes are required for enhancement of the regenerative potential of osteoblast cells. Nanostructured hydroxyapatite is a bioactive ceramic used for bone tissue engineering purposes. In this study, carbonate hydroxyapatite (cHA) and zinc-magnesium substituted hydroxyapatite (Zn-Mg-HA) nanoparticles were synthesized via biomineralization method using Enterobacter aerogenes. The structural phase composition and the morphology of the samples were analyzed using appropriate powder characterization methods. Next, a composite graft was fabricated by using polyvinyl alcohol and both cHA and Zn-Mg-HA samples. In vivo osteogenic potential of the graft was then investigated in a rabbit tibial osteotomy model. Histological, radiological and morphological studies showed that the graft was mineralized by the newly formed bone tissue without signs of inflammation or infection after 4 weeks of implantation. These histomorphometric results suggest that the fabricated graft can function as a potent osteoconductive bone tissue substitute. Copyright © 2016 Elsevier Inc. All rights reserved.
Interactions of hydroxyapatite surfaces: conditioning films of human whole saliva.
Cárdenas, Marité; Valle-Delgado, Juan José; Hamit, Jildiz; Rutland, Mark W; Arnebrant, Thomas
2008-07-15
Hydroxyapatite is a very interesting material given that it is the main component in tooth enamel and because of its uses in bone implant applications. Therefore, not only the characterization of its surface is of high relevance but also designing reliable methods to study the interfacial properties of films adsorbed onto it. In this paper we apply the colloidal probe atomic force microscopy method to investigate the surface properties of commercially available hydroxyapatite surfaces (both microscopic particles and macroscopic discs) in terms of interfacial and frictional forces. In this way, we find that hydroxyapatite surfaces at physiological relevant conditions are slightly negatively charged. The surfaces were then exposed to human whole saliva, and the surface properties were re-evaluated. A thick film was formed that was very resistant to mechanical stress. The frictional measurements demonstrated that the film was indeed highly lubricating, supporting the argument that this system may prove to be a relevant model for evaluating dental and implant systems.
Kaur, Balwinder; Srivastava, Rajendra; Satpati, Biswarup; Kondepudi, Kanthi Kiran; Bishnoi, Mahendra
2015-11-01
Silver ion-exchanged nanocrystalline zeolite (Ag-Nano-ZSM-5) and silver ion-exchanged conventional zeolite (Ag-ZSM-5) were synthesized. Zeolites were incubated in simulated body fluid at 310K for different time periods to grow hydroxyapatite in their matrixes. Significant large amount of hydroxyapatite was grown in Ag-Nano-ZSM-5 matrix after incubation in simulated body fluid when compared to Ag-ZSM-5. The resultant material was characterized using X-ray diffraction, N2-adsorption, scanning/transmission electron microscopy, energy dispersive X-ray, and inductively coupled plasma analysis. Mechanical properties such as compressive modulus, compressive strength, and strain at failure of the parent materials were evaluated. Biocompatibility assays suggested that Ag-Nano-ZSM-5 and hydroxyapatite grown in Ag-Nano-ZSM-5 were compatible and did not impose any toxicity to RAW 264.7 cells macrophase and Caco2 cells suggesting considerable potential for biomedical applications such as bone implants. Copyright © 2015 Elsevier B.V. All rights reserved.
Antitumoral materials with regenerative function obtained using a layer-by-layer technique
Ficai, Denisa; Sonmez, Maria; Albu, Madalina Georgiana; Mihaiescu, Dan Eduard; Ficai, Anton; Bleotu, Coralia
2015-01-01
A layer-by layer technique was successfully used to obtain collagen/hydroxyapatite-magnetite-cisplatin (COLL/HAn-Fe3O4-CisPt, n=1–7) composite materials with a variable content of hydroxyapatite intended for use in the treatment of bone cancer. The main advantages of this system are the possibility of controlling the rate of delivery of cytostatic agents, the presence of collagen and hydroxyapatite to ensure more rapid healing of the injured bone tissue, and the potential for magnetite to be a passive antitumoral component that can be activated when an appropriate external electromagnetic field is applied. In vitro cytotoxicity assays performed on the COLL/HAn-Fe3O4-CisPt materials obtained using a layer-by layer method confirmed their antitumoral activity. Samples with a higher content of hydroxyapatite had more antitumoral activity because of their better absorption of cisplatin and consequently a higher amount of cisplatin being present in the matrices. PMID:25767374
Crystallization of carbonate hydroxyapatite in the presence of strontium ranelate
NASA Astrophysics Data System (ADS)
Izmailov, R. R.; Golovanova, O. A.
2015-11-01
The influence of strontium ranelate on the crystallization of carbonate hydroxyapatite from a prototype of synovial fluid of humans has been investigated. The synthesis products are studied by IR Fourier spectroscopy, X-ray diffraction, and differential thermal analysis. The amount of strontium in the samples is determined by atomic emission analysis. The sizes of crystallites in the synthesized phases are calculated from the Selyakov-Scherrer formula; the lattice parameters are also determined. The phases obtained are found to be species of calcium-deficient strontium-containing carbonate hydroxyapatite of mixed A and B types. Schemes of chemical reactions occurring during heat treatment are proposed.
Nanocrystalline hydroxyapatite ceramics prepared by hydrolysis in polyol medium
NASA Astrophysics Data System (ADS)
Mechay, Abderrahmen; Feki, Hafed E. L.; Schoenstein, Fréderic; Jouini, Noureddine
2012-07-01
This Letter describes a new approach for the synthesis of hydroxyapatite nanoparticles, which involves precipitation and hydrolysis reactions conducted in polyol medium. In fact, ammonium-hydrogen phosphate and calcium nitrate were dissolved in polyol, and then heated at the boiling point of the polyol (ethane1, 2diol or propane1, 2diol). Besides, the phase and composition of the polycrystalline were studied by TGA/DTA, FT-IR, TEM and XRD techniques. The nanoparticles thus obtained present interesting morphological characters varying from needle to very thin platelet. Moreover, the hydroxyapatite prepared in ployol shows higher cristallinity in comparison with that obtained by other 'chimie douce' methods.
Near-Infrared (NIR) Spectroscopy of Synthetic Hydroxyapatites and Human Dental Tissues.
Kolmas, Joanna; Marek, Dariusz; Kolodziejski, Waclaw
2015-08-01
Near-infrared spectroscopy (NIR) was used to analyze synthetic hydroxyapatite calcined at various temperatures, synthetic carbonated hydroxyapatite, and human hard dental tissues (enamel and dentin). The NIR bands of those materials in the combination, first-overtone, and second-overtone spectral regions were assigned and evaluated for structural characterization. They were attributed to adsorbed and structural water, structural hydroxyl (OH) groups and surface P-OH groups. The NIR spectral features were quantitatively discussed in view of proton solid-state magic-angle spinning nuclear magnetic resonance ((1)H MAS NMR) results. We conclude that the NIR spectra of apatites are useful in the structural characterization of synthetic and biogenic apatites.
Im, Owen; Li, Jian; Wang, Mian; Zhang, Lijie Grace; Keidar, Michael
2012-01-01
Background Many shortcomings exist in the traditional methods of treating bone defects, such as donor tissue shortages for autografts and disease transmission for allografts. The objective of this study was to design a novel three-dimensional nanostructured bone substitute based on magnetically synthesized single-walled carbon nanotubes (SWCNT), biomimetic hydrothermally treated nanocrystalline hydroxyapatite, and a biocompatible hydrogel (chitosan). Both nanocrystalline hydroxyapatite and SWCNT have a biomimetic nanostructure, excellent osteoconductivity, and high potential to improve the load-bearing capacity of hydrogels. Methods Specifically, three-dimensional porous chitosan scaffolds with different concentrations of nanocrystalline hydroxyapatite and SWCNT were created to support the growth of human osteoblasts (bone-forming cells) using a lyophilization procedure. Two types of SWCNT were synthesized in an arc discharge with a magnetic field (B-SWCNT) and without a magnetic field (N-SWCNT) for improving bone regeneration. Results Nanocomposites containing magnetically synthesized B-SWCNT had superior cytocompatibility properties when compared with nonmagnetically synthesized N-SWCNT. B-SWCNT have much smaller diameters and are twice as long as their nonmagnetically prepared counterparts, indicating that the dimensions of carbon nanotubes can have a substantial effect on osteoblast attachment. Conclusion This study demonstrated that a chitosan nanocomposite with both B-SWCNT and 20% nanocrystalline hydroxyapatite could achieve a higher osteoblast density when compared with the other experimental groups, thus making this nanocomposite promising for further exploration for bone regeneration. PMID:22619545
Zinc-Containing Hydroxyapatite Enhances Cold-Light-Activated Tooth Bleaching Treatment In Vitro
Shi, Xinchang
2017-01-01
Cold-light bleaching treatment has grown to be a popular tooth whitening procedure in recent years, but its side effect of dental enamel demineralization is a widespread problem. The aim of this study was to synthesize zinc-substituted hydroxyapatite as an effective biomaterial to inhibit demineralization or increase remineralization. We synthesized zinc-substituted hydroxyapatite containing different zinc concentrations and analysed the product using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and energy dispersive spectrometer (EDS). The biological assessment of Zn-HA was conducted by CCK-8 assay and bacterial inhibition tests. pH cycling was performed to estimate the effect of Zn-HA on the enamel surface after cold-light bleaching treatment. The XRD, FTIR, and EDS results illustrated that zinc ions and hydroxyapatite combined in two forms: (1) Zn2+ absorbed on the surface of HA crystal and (2) Zn2+ incorporated into the lattice of HA. The results indicated that 2% Zn-HA, 4% Zn-HA, and 8% Zn-HA effectively inhibited the growth of bacteria yet showed poor biocompatibility, whereas 1% Zn-HA positively affected osteoblast proliferation. The XRD and scanning electron microscopy (SEM) results showed that the use of Zn-HA in pH cycling is obviously beneficial for enamel remineralization. Zinc-substituted hydroxyapatite could be a promising biomaterial for use in cold-light bleaching to prevent enamel demineralization. PMID:29159178
A Solid-State NMR Study of Selenium Substitution into Nanocrystalline Hydroxyapatite
Kolmas, Joanna; Kuras, Marzena; Oledzka, Ewa; Sobczak, Marcin
2015-01-01
The substitution of selenium oxyanions in the hydroxyapatite structure was examined using multinuclear solid-state resonance spectroscopy (ssNMR). The study was supported by powder X-ray diffractometry (PXRD) and wavelength dispersion X-ray fluorescence (WD-XRF). Samples of pure hydroxyapatite (HA300) and selenate (HA300-1.2SeO4) or selenite (HA300-1.2SeO3) substituted hydroxyapatites were synthesized using the standard wet method and heated at 300 °C to remove loosely bonded water. PXRD data showed that all samples are single-phase, nanocrystalline hydroxyapatite. The incorporation of selenite and selenate ions affected the lattice constants. In selenium-containing samples the concentration of Se was very similar and amounted to 9.55% and 9.64%, for HA300-1.2SeO4 and HA300-1.2SeO3, respectively. PXRD and ssNMR data showed that the selenite doping significantly decreases the crystallite size and crystallinity degree. 31P and 1H NMR experiments demonstrated the developed surface hydrated layer in all samples, especially in HA300-1.2SeO3. 1H NMR studies showed the dehydroxylation of HA during the selenium oxyanions substitution and the existence of hydrogen bonding in structural hydroxyl group channels. 1H→77Se cross polarization NMR experiments indicated that selenites and selenates are located in the crystal lattice and on the crystal surface. PMID:25997001
Linsheng, Li; Guoxiang, Lin; Lihui, Li
2016-08-12
In this paper, magnesium matrix hydroxyapatite composite material was prepared by electrophoretic deposition method. The optimal process parameters of electrophoretic deposition were HA suspension concentration of 0.02 kg/L, aging time of 10 days and voltage of 60 V. Animal experiment and SBF immersion experiment were used to test the biocompatibility and bioactivity of this material respectively. The SD rats were divided into control group and implant group. The implant surrounding tissue was taken to do tissue biopsy, HE dyed and organizational analysis after a certain amount of time in the SD rat body. The biological composite material was soaked in SBF solution under homeothermic condition. After 40 days, the bioactivity of the biological composite material was evaluated by testing the growth ability of apatite on composite material. The experiment results showed that magnesium matrix hydroxyapatite biological composite material was successfully prepared by electrophoretic deposition method. Tissue hyperplasia, connective tissue and new blood vessels appeared in the implant surrounding soft tissue. No infiltration of inflammatory cells of lymphocytes and megakaryocytes around the implant was found. After soaked in SBF solution, a layer bone-like apatite was found on the surface of magnesium matrix hydroxyapatite biological composite material. The magnesium matrix hydroxyapatite biological composite material could promot calcium deposition and induce bone-like apatite formation with no cytotoxicity and good biocompatibility and bioactivity.
Zuñiga, Abraham Damian Giraldo; Sousa, Rita de Cássia Superbi; Zacchi Scolforo, Carmelita
2016-01-01
Bovine serum albumin is one of the major serum proteins; it plays an important role as a result of its functional and nutritional properties which have bioactive peptides. Adsorption method was used to separate protein, which involves hydroxyapatite, synthetic hydroxyapatite, and active babassu coal. Initially, characterization was carried out using the zeta potential of the adsorbents. Kinetic pseudo-first- and pseudo-second-order models were applied. For isotherms, equilibrium data studies were carried out using the Langmuir and Freundlich models, in addition to determining the efficiency of adsorptive process. The results of the zeta potential showed loads ranging from +6.9 to −42.8 mV. The kinetic data were better represented in the pseudo-second-order model with chemisorption characteristics. The adsorption capacity of the adsorbents decreased as pH increased, indicating that the electrostatic bonds and some functional groups of active babassu coal contributed to the reduction of adsorption, especially oxygen linked to carbon atoms. The value of pH 4.0 showed the best results of adsorption, being obtained as the maximum adsorption capacity (q m) and yield (%) (where q m = 87.95 mg g−1 and 74.2%; 68.26 mg g−1 and 68.6%; and 36.18 mg g−1, 37.4%) of hydroxyapatite, synthetic hydroxyapatite, and active babassu coal, respectively. PMID:27376149
Adsorption of Uranyl Ions at the Nano-hydroxyapatite and Its Modification
NASA Astrophysics Data System (ADS)
Skwarek, Ewa; Gładysz-Płaska, Agnieszka; Bolbukh, Yuliia
2017-04-01
Nano-hydroxyapatite and its modification, hydroxyapatite with the excess of phosphorus (P-HAP) and hydroxyapatite with the carbon ions built into the structure (C-HAP), were prepared by the wet method. They were studied by means of XRD, accelerated surface area and porosimetry (ASAP), and SEM. The size of crystallites computed using the Scherrer method was nano-hydroxyapatite (HAP) = 20 nm; P-HAP—impossible to determine; C-HAP = 22 nm; nano-HAP/U(VI) = 13.7 nm; P-HAP/U(VI)—impossible to determine, C-HAP/U(VI) = 11 nm. There were determined basic parameters characterizing the double electrical layer at the nano-HAP/electrolyte and P-HAP/electrolyte, C-HAP/electrolyte inter faces: density of the surface charge and zeta potential. The adsorption properties of nano-HAP sorbent in relation to U(VI) ions were studied by the batch technique. The adsorption processes were rapid in the first 60 min and reached the equilibrium within approximately 120 min (for P-HAP) and 300 min (for C-HAP and nano-HAP). The adsorption process fitted well with the pseudo-second-order kinetics. The Freundlich, Langmuir-Freundlich, and Dubinin-Radushkevich models of isotherms were examined for their ability to the equilibrium sorption data. The maximum adsorption capabilities ( q m ) were 7.75 g/g for P-HAP, 1.77 g/g for C-HAP, and 0.8 g/g for HAP at 293 K.
Gad, H M H; Youssef, M A
2017-08-16
Nano-pore hydroxyapatite (HAP) was prepared using physical activation of raw and chemically modified [using Acid; HNO 3 (HAPA) or Base; NaOH (HAPB)] bone char (BC) by heating at 900°C for 1 hr to obtain HAP9, HAPA9 and HAPB9, respectively. Investigation the effects of thermal and chemical treatment of prepared nano-hydroxyapatite on elemental analysis, FTIR, scanning electron microscopy, surface area and consequently, the sorption behavior of Eu (III) ions onto the prepared nano-pore hydroxyapatite. Batch adsorption technique was used and the obtained results revealed that the optimum pH = 5.0. The % removal of europium (III) using HAPA9 and HAPB9 reach to 100% within 15 min, while HAP9 after 180 min and the pseudo-second-order was found to be fit to the experimental data. According to Langmuir model, the maximum sorption capacities (q m ) were 123.8, 384.9 and 74.2 mg g -1 for HAP9, HAPA9 and HAPB9, respectively. The reaction is spontaneous according to ΔG° value. HCl (0.5 M) was the most efficient desorbing agent for recovery of Eu(III) and regeneration of adsorbents. Finally, nano-pore hydroxyapatite (HAP) was low cost and very effective adsorbent for sorption or recovery of Eu(III) from aqueous solutions and remediation of environmental pollution.
NASA Astrophysics Data System (ADS)
Heng, Chunning; Zheng, Xiaoyan; Liu, Meiying; Xu, Dazhuang; Huang, Hongye; Deng, Fengjie; Hui, Junfeng; Zhang, Xiaoyong; Wei, Yen
2016-11-01
Hydroxyapatite nanomaterials as an important class of nanomaterials, have been widely applied for different biomedical applications for their excellent biocompatibility, biodegradation potential and low cost. In this work, hydroxyapatite nanorods with uniform size and morphology were prepared through hydrothermal synthesis. The surfaces of these hydroxyapatite nanorods are covered with hydrophobic oleic acid, making them poor dispersibility in aqueous solution and difficult for biomedical applications. To overcome this issue, a simple surface initiated polymerization strategy has been developed via combination of the surface ligand exchange and reversible addition fragmentation chain transfer (RAFT) polymerization. Hydroxyapatite nanorods were first modified with Riboflavin-5-phosphate sodium (RPSSD) via ligand exchange reaction between the phosphate group of RPSSD and oleic acid. Then hydroxyl group of nHAp-RPSSD was used to immobilize chain transfer agent, which was used as the initiator for surface-initiated RAFT polymerization. The nHAp-RPSSD-poly(IA-PEGMA) nanocomposites were characterized by means of 1H nuclear magnetic resonance, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermal gravimetric analysis in detailed. The biocompatibility, biological imaging and drug delivery of nHAp-RPSSD-poly(IA-PEGMA) were also investigated. Results showed that nHAp-RPSSD-poly(IA-PEGMA) exhibited excellent water dispersibility, desirable optical properties, good biocompatibility and high drug loading capability, making them promising candidates for biological imaging and controlled drug delivery applications.
Misra, Virendra; Chaturvedi, Pranav Kumar
2007-10-01
Uptake /bioavailability study using the Indian mustard plant (Brassica juncea) was undertaken at the interval of 7, 14 and 21 days to test the immobilization of heavy metals from contaminated soil that were amended with humus soil and/or hydroxyapatite. For this, four sets consisting of non-humus soil + metals (Cd, Cr, Ni and Pb), humus soil + metals, non-humus and humus soil in the ratio of 1:3 + metals and non-humus soil: humus soil in the ratio of 1:3 + metals + 1% hydroxyapatite were prepared. The bioavailability of Pb, Cd, Cr and Ni in non-humus soil system was 58%, 67%, 65% and 63%, respectively in 7 days, more than 80% in 14 days and more than 90% in 21 days. Use of non-humus, humus soil in the ratio of 1:3 and addition of 1% hydroxyapatite decreased the bioavailability of lead around 21 to 22.5%, Cd 35 to 36%, Cr 25.5 to 26.9%, Ni 34 to 39% in 7, 14 and 21 days. Apart from this increase in the fresh weight of the plant was also noticed during the experiment. The data showed that addition of 1% hydroxyapatite in the non-humus-humus soil system caused the increase in the fresh weight around 90% in 7, 14 and 21 days as compared to plant grown in non-humus and metal soil system.
Wu, M S; Higuchi, W I; Fox, J L; Friedman, M
1976-01-01
The model given in this report and the rotating disk method provide a useful combination in the study of dental enamel and hydroxyapatite dissolution kinetics. The present approach is a significant improvement over earlier studies, and both the ionic activity product that governs the dissolution reaction and the apparent surface dissolution reaction rate constant may be simultaneously obtained. Thus, these investigations have established the baseline for the dissolution rate studies under sink conditions. Concurrent studies, under conditions where the acidic buffer mediums are partially saturated with respect to hydroxyapatite have shown another dissolution site for hydroxyapatite that operates at a higher ionic activity product but has a much smaller apparent surface reaction rate constant. This has raised the question of whether the presence of this second site may interfere with the proper theoretical analysis of the experimental results obtained under sink conditions. A preliminary analysis of the two-site model has shown that the dissolution kinetics of hydroxyapatite under sink conditions is almost completely governed by the sink condition site (KHAP = 10(-124.5), k' = 174) established in this report. The difference between the predicted dissolution rate for the one-site model and the two-site model are generally of the order of 4 to 5% where the experiments are conducted under sink conditions and over the range of variables covered in the present study.
Nandlal, Bhojraj
2016-01-01
Introduction Glass Ionomer Cement (GIC) is well known for its fluoride releasing property but has its own drawbacks of poor mechanical properties, sensitivity to initial desiccation and moisture contamination. To overcome these, search led to the reinforcement of hydroxyapatite and application of surface coating agent but their effect on fluoride release is still not clear. Aim To evaluate and compare the release of fluoride from Hydroxyapatite Reinforced Glass Ionomer (HA-GIC) with and without protective coating. Materials and Methods Specimens were prepared as follows- Eight percent by weight conventional glass ionomer was replaced by hydroxyapatite powder (HA) and an indigenous product was prepared (HA-GIC). This powder was mixed with liquid of conventional GIC and allowed to set, then G coat plus coating agent was applied in surface coated group and light cured. Fluoride release of the sample was measured every 24 hrs for seven days and weekly from 7th to 21st day using combination ion selective electrode. Results Mean values clearly reveal a significant decrease in the fluoride release from day 1 to day 21 for both the groups. Results of repeated measure ANOVA revealed statistically significant difference between two groups (p <0.001). Conclusion Coating the hydroxyapatite reinforced glass ionomer will allow for slow and steady release of fluoride for a long period of time into oral environment. PMID:27190957
NASA Astrophysics Data System (ADS)
Bhardwaj, Garima; Yazici, Hilal; Webster, Thomas J.
2015-04-01
Reducing bacterial density on titanium implant surfaces has been a major concern because of the increasing number of nosocomial infections. Controlling the inflammatory response post implantation has also been an important issue for medical devices due to the detrimental effects of chronic inflammation on device performance. It has recently been demonstrated that manipulating medical device surface properties including chemistry, roughness and wettability can control both infection and inflammation. Here, we synthesized nanophase (that is, materials with one dimension in the nanoscale) hydroxyapatite coatings on titanium to reduce bacterial adhesion and inflammatory responses (as measured by macrophage functions) and compared such results to bare titanium and plasma sprayed hydroxyapatite titanium coated surfaces used clinically today. This approach is a pharmaceutical-free approach to inhibit infection and inflammation due to the detrimental side effects of any drug released in the body. Here, nanophase hydroxyapatite was synthesized in sizes ranging from 110-170 nm and was subsequently coated onto titanium samples using electrophoretic deposition. Results indicated that smaller nanoscale hydroxyapatite features on titanium surfaces alone decreased bacterial attachment in the presence of gram negative (P. aeruginosa), gram positive (S. aureus) and ampicillin resistant gram-negative (E. coli) bacteria as well as were able to control inflammatory responses; properties which should lead to their further investigation for improved medical applications.
USDA-ARS?s Scientific Manuscript database
Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The tr...
An effective and environmentally friendly protocol for the epoxidation of olefins and α,β-unsaturated ketones in the presence of hydroxyapatite as catalyst using hydrogen peroxide is described. The catalyst is active and reusable for the selective epoxidation of a variety...
NASA Astrophysics Data System (ADS)
Soltani, Z.; Ziaie, F.; Ghaffari, M.; Afarideh, H.; Ehsani, M.
2013-02-01
In this work the nano-composite samples were prepared using the LDPE filled with different weight percentages of hydroxyapatite powder which was synthesized via hydrolysis method. The samples were subjected to irradiation under 10 MeV electron beam in 75-250 kGy doses. Mechanical and thermal properties as well as the morphology of the nano-composite samples were investigated and compared. The hot-set and swelling tests confirmed the radiation crosslinking induced in the polymer matrix especially between the matrix and reinforcement phase. The result indicates that the mechanical and thermal parameters are strongly dependent on the hydroxyapatite content in comparison to radiation.
Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films
NASA Astrophysics Data System (ADS)
Hristu, Radu; Stanciu, Stefan G.; Tranca, Denis E.; Stanciu, George A.
2015-08-01
Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed.
Pino-Mínguez, J; Jorge-Mora, A; Couceiro-Otero, R; García-Santiago, C
2015-01-01
The purpose of this study is to compare the biocompatibility and the effect in osteoblasts of polymethyl methacrylate alone, and mixed with hydroxyapatite in different concentrations of 5, 10, 15 and 20%, without exceeding 20%, as it can alter mechanical properties of the composite. Experimental study comparing osteoblast response to Polymethyl methacrylate alone and with hydroxyapatite in different concentrations. Composites at 15 and 20% obtained better osteoblast response, with higher osteoblastic activity markers, and lower apoptosis markers. Electron microscopy images show improved adhesion of osteoblasts. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.
Milella, E; Cosentino, F; Licciulli, A; Massaro, C
2001-06-01
In the present work a titania network encapsulating a hydroxyapatite particulate phase is proposed as a bioceramic composite coating. The coating on a titanium substrate was produced starting from a sol containing a mixture of titania colloidal particles and hydroxyapatite submicron particles using the dip-coating technique. The microstructure, the morphology and the surface chemical composition of the coating were characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. Adhesion tests were also performed. These analyses showed that the obtained coating was chemically clean, homogeneous, rough, porous, with a low thickness and well-defined phase composition as well as a good adhesion to the substrate.
Dielectric and piezoelectric properties of hydroxyapatite-BaTiO3 composites
NASA Astrophysics Data System (ADS)
Bowen, C. R.; Gittings, J.; Turner, I. G.; Baxter, F.; Chaudhuri, J. B.
2006-09-01
This letter describes the relationships between the composition and the dielectric and piezoelectric properties of hydroxyapatite-barium titanate composites for polarized bone substitutes. The ac conductivity and permittivity were characterized from 0.1Hzto1MHz, along with measurements of the d33 piezoelectric charge coefficient. The addition of BaTiO3 led to an increase in permittivity and ac conductivity of the material. The increase in both properties was attributed to the presence of the high permittivity ferroelectric phase. The d33 and g33 coefficients decreased rapidly as hydroxyapatite was introduced into BaTiO3 material. Composites below 80% by volume of BaTiO3 exhibited no net piezoelectric effect.
Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals
Nocerino, Nunzia; Fulgione, Andrea; Iannaccone, Marco; Tomasetta, Laura; Ianniello, Flora; Martora, Francesca; Lelli, Marco; Roveri, Norberto; Capuano, Federico; Capparelli, Rosanna
2014-01-01
The emergence of bacterial strains resistant to antibiotics is a general public health problem. Progress in developing new molecules with antimicrobial properties has been made. In this study, we evaluated the biological activity of a hybrid nanocomposite composed of synthetic biomimetic hydroxyapatite surface-functionalized by lactoferrin (LF-HA). We evaluated the antimicrobial, anti-inflammatory, and antioxidant properties of LF-HA and found that the composite was active against both Gram-positive and Gram-negative bacteria, and that it modulated proinflammatory and anti-inflammatory responses and enhanced antioxidant properties as compared with LF alone. These results indicate the possibility of using LF-HA as an antimicrobial system and biomimetic hydroxyapatite as a candidate for innovative biomedical applications. PMID:24623976
Study of mixed Ca-Zn hydroxyapatite surface modified by lactic acid
NASA Astrophysics Data System (ADS)
Turki, Thouraya; Aissa, Abdallah; Bac, Christophe Goze; Rachdi, Férid; Debbabi, Mongi
2012-07-01
The new hybrid inorganic-organic composites, Ca(10-x)Znx(PO4)6(OH)2-lactic acid, at different amounts of zinc and lactic acid were prepared by dissolution of the organic compound in an hydroxyapatite suspension. They were characterized by XRD, IR, MAS NMR (13C and 1H) and chemical analysis. The crystallinity was slightly affected by the presence of organic fragments. IR and (13C and 1H) MAS NMR measurements indicate that the carboxylic groups of the acid interact with calcium and zinc ions of hydroxyapatite surface. Chemical analysis displays that zinc promotes the acid grafting. A mechanism of surface modification is proposed based on the obtained results.
Facilitated transport of copper with hydroxyapatite nanoparticles in saturated sand
USDA-ARS?s Scientific Manuscript database
Saturated packed column experiments were conducted to investigate the facilitated transport of Cu with hydroxyapatite nanoparticles (nHAP) at different pore water velocities (0.22-2.2 cm min–1), solution pH (6.2-9.0), and fraction of Fe oxide coating on grain surfaces (', 0-0.36). The facilitated tr...
Lobo, Anderson O; Corat, Marcus A F; Ramos, Sandra C; Matsushima, Jorge T; Granato, Alessandro E C; Pacheco-Soares, Cristina; Corat, Evaldo J
2010-12-07
A method for the electrodeposition of hydroxyapatite films on superhydrophilic vertically aligned multiwalled carbon nanotubes is presented. The formation of a thin homogeneous film with high crystallinity was observed without any thermal treatment and with bioactivity properties that accelerate the in vitro biomineralization process and osteoblast adhesion.
Hilbrig, Frank; Freitag, Ruth
2012-01-01
Hydroxyapatite and related stationary phases increasingly play a role in the downstream processing of high-value biological materials, such as recombinant proteins, therapeutic antibodies and pharmaceutical-grade plasmid DNA. Chromatographic hydroxyapatite is an inorganic, ceramic material identical in composition, if not in structure, to calcium phosphate found in human bones and teeth. The interaction of hydroxyapatite with biomacromolecules is complex and highly dynamic, which can make predicting performance difficult, but also allows the design of very selective isolation processes. This review discusses the currently commercially available chromatographic materials, different retention mechanisms supported by these materials and differential exploitation for the design of highly specific isolation procedures. The state of the art of antibody purification by hydroxy- and fluoroapatite is reviewed together with tested routines for method development and implementation. Finally, the isolation of plasmid DNA is discussed, since the purification of DNA therapeutics at a sufficiently large scale is an emerging need in bioprocess development and perhaps the area in bioseparation where apatite chromatography can make its most important contribution to date. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mohammed, Eddya; Bouazza, Tbib; Khalil, El-Hami
2018-02-01
In this paper, we report the first synthesis of hydroxyapatite (Hap) by sol-gel using the albumin (egg white) compared with the four classical elaboration methods such as co-precipitation, solid state, and solid-liquid samples of hydroxyapatite. We use a reference sample of hydroxyapatite bought from Fluka Chemika company (Lot and Filling code 385330/1 14599). All samples are characterized by X-ray diffraction (XRD), Uv-visible spectroscopy (Uv-Vis), and Fourier transforms infrared spectroscopy (FT-IR). The XRD study showed the existence of a Hexagonal phase for all our samples prepared in our laboratory and an orthorhombic phase for the Fulka Chemika sample of Hap (Lot and Filling code 385330/1 14599). The study by Uv-visible spectroscopy was performed to determine and compare the optical gap and the disorder of each sample of Hap. The FT-IR spectroscopy demonstrated that all our Hap samples had a similar mode of vibration of the chemical bonds (OH-) and (PO4)3-.
Donadel, Karina; Felisberto, Marcos D V; Laranjeira, Mauro C M
2009-06-01
Magnetic particles of iron oxide have been increasingly used in medical diagnosis by magnetic resonance imaging and in cancer therapies involving targeted drug delivery and magnetic hyperthermia. In this study we report the preparation and characterization of iron oxide particles coated with bioceramic hydroxyapatite by spray-drying. The iron oxide magnetic particles (IOMP) were coated with hydroxyapatite (HAp) by spray-drying using two IOMP/HAp ratios (0.7 and 3.2). The magnetic particles were characterized by way of scanning electronic microscopy, energy dispersive X-ray, X-ray diffraction, Fourier transformed infrared spectroscopy, flame atomic absorption spectrometry,vibrating sample magnetometry and particle size distribution (laser diffraction). The surface morphology of the coated samples is different from that of the iron oxide due to formation of hydroxyapatite coating. From an EDX analysis, it was verified that the surface of the coated magnetic particles is composed only of HAp, while the interior containsiron oxide and a few layers of HAp as expected. The results showed that spray-drying technique is an efficient and relatively inexpensive method for forming spherical particles with a core/shell structure.
Ultrasonic synthesis of hydroxyapatite in non-cavitation and cavitation modes.
Nikolaev, A L; Gopin, A V; Severin, A V; Rudin, V N; Mironov, M A; Dezhkunov, N V
2018-06-01
The size control of materials is of great importance in research and technology because materials of different size and shape have different properties and applications. This paper focuses on the synthesis of hydroxyapatite in ultrasound fields of different frequencies and intensities with the aim to find the conditions which allow control of the particles size. The results are evaluated by X-ray diffraction, Transmission Electron Microscopy, morphological and sedimentation analyses. It is shown that the hydroxyapatite particles synthesized at low intensity non-cavitation regime of ultrasound have smaller size than those prepared at high intensity cavitation regime. The explanation of observed results is based on the idea of formation of vortices at the interface between phosphoric acid and calcium hydroxide solution where the nucleation of hydroxyapatite particles is taken place. Smaller vortices formed at high frequency non-cavitation ultrasound regime provide smaller nucleation sites and smaller resulting particles, compared to vortices and particles obtained without ultrasound. Discovered method has a potential of industrial application of ultrasound for the controlled synthesis of nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.
Physico-chemical characteristics and antimicrobial studies of silver doped hydroxyapatite
NASA Astrophysics Data System (ADS)
Predoi, D.; Predoi, M. V.; Kettani, Moncef Ech Cherif El; Leduc, Damien; Iconaru, S. L.; Ciobanu, C. S.; Buton, N.; Petre, C. C.; Prodan, A. M.
2018-02-01
The present research is focused on the synthesis, structural and morphological characterization and antimicrobial evaluation of silver doped hydroxyapatite (AgHAp) in water. The preliminary ultrasonic characterizations of the AgHAp in water synthesized by an adapted co-precipitation method are also presented. X-ray diffraction result showed that silver ions were substituted in the hydroxyapatite structure. The lattice parameters increased when the silver substitution increased. The morphology of AgHAp were evaluated by Scanning Electron Microscopy (SEM). By EDX analysis the constituents elements of hydroxyapatite were detected in all analyzed samples. The silver was also found in the samples with xAg = 0.5 and 0.2. The colloidal properties of the resulted AgHAp (xAg = 0.0, 0.05 and 0.2) in water were analyzed by Dynamic Light Scattering (DLS) and zeta potential. On the other hand, the novelty of our research consists of preliminary ultrasonic measurements (US) conducted on AgHAp in water. Furthermore, the antimicrobial activity of AgHAp was evaluated and a decrease in the number of surviving cells was established.
Kulkova, Julia; Moritz, Niko; Huhtinen, Hannu; Mattila, Riina; Donati, Ivan; Marsich, Eleonora; Paoletti, Sergio; Vallittu, Pekka K
2017-11-01
In skeletal reconstructions, composites, such as bisphenol-A-glycidyldimethacrylate resin reinforced with glass fibers, are potentially useful alternatives to metallic implants. Recently, we reported a novel method to prepare bioactive surfaces for these composites. Surface etching by Excimer laser was used to expose bioactive glass granules embedded in the resin. The purpose of this study was to analyze two types of bioactive surfaces created by this technique. The surfaces contained bioactive glass and hydroxyapatite granules. The selected processing parameters were adequate for the creation of the surfaces. However, the use of porous hydroxyapatite prevented the complete exposure the granules. In cell culture, for bioactive glass coatings, the pattern of proliferation of MG63 cells was comparable to that in the positive control group (Ti6Al4V) while inferior cell proliferation was observed on the surfaces containing hydroxyapatite granules. Scanning electron microscopy revealed osteointegration of implants with both types of surfaces. The technique is suitable for the exposure of solid bioactive glass granules. However, the long-term performance of the surfaces needs further assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bareiro, O; Santos, L A
2014-03-01
Nanometric hydroxyapatite (HAp) particles were modified with 5 or 10 wt.% tetraethylorthosilicate (TEOS) solutions in order to prepare polydimethylsiloxane/hydroxyapatite (PDMS/HAp) composites. The surface modification of the HAp particles was studied by transmission electron spectroscopy (TEM) and by scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS) equipment. The dispersion state of the modified particles in the PDMS matrix was also assessed by SEM. The composite phase composition was characterized by X-ray diffraction (XRD). The composite thermodynamic parameters of cross-linking were analyzed by differential scanning calorimetry (DSC). TEM micrographs and EDS spectra indicated evidence of silica-coating formation on the surface of modified HAp particles. SEM results showed that the HAp particles formed agglomerates in the PDMS matrix. It was found that the introduction of HAp particles into the PDMS changed the enthalpy of cross-linking and the temperature of the beginning of the cross-linking reaction. EDS results indicated that the surface modification of HAp produced composites showing thermodynamic parameters that were more similar to those of unfilled PDMS. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Raymond; Chan, Kenneth H.; Jew, Jamison; Simon, Jacob C.; Fried, Daniel
2017-02-01
Both laser irradiation and fluoride treatment alone are known to provide increased resistance to acid dissolution. CO2 lasers tuned to a wavelength of 9.3 μm can be used to efficiently convert the carbonated hydroxyapatite of enamel to a much more acid resistant purer phase hydroxyapatite (HAP). Further studies have shown that fluoride application to HAP yields fluoroapatite (FAP) which is even more resistant against acid dissolution. Previous studies show that CO2 lasers and fluoride treatments interact synergistically to provide significantly higher protection than either method alone, but the mechanism of interaction has not been elucidated. We recently observed the formation of microcracks or a "crazed" zone in the irradiated region that is resistant to demineralization using high-resolution microscopy. The microcracks are formed due to the slight contraction of enamel due to transformation of carbonated hydroxyapatite to the more acid resistant pure phase hydroxyapatite (HAP) that has a smaller lattice. In this study, we test the hypothesis that these small cracks will provide greater adhesion for topical fluoride for greater protection against acid demineralization.
Bajaj, Meghna; Poornima, P; Praveen, S; Nagaveni, N B; Roopa, K B; Neena, I E; Bharath, K P
To compare CPP-ACP, Tri-calcium phosphate and Hydroxyapatite on remineralization of artificial caries like lesions on primary enamel. Ten extracted Primary molars coated with nail varnish, leaving a window of 2×4 mm on buccal and lingual surface were immersed in demineralizing solution for 96 hours and sectioned longitudinally to obtain 40 sections (4 sections per tooth) and were randomly divided into 4 groups (A to D) n=10; Group A: negative control, Group B: CPP-ACP, Group C: Tri-calcium phosphate, Group D: Hydroxyapatite. Sections were subjected to pH cycling for 10 days and were evaluated by polarized light microscope before and after treatment. Intra group comparison of demineralization and remineralization was done by paired t-test. One way ANOVA was used for multiple group comparisons followed by post HOC TUKEY'S Test for group wise comparisons. Remineralization was found more with Group D followed by Group B, C and A. Hydroxyapatite showed better remineralization when compared to CPP-ACP and Tri-calcium phosphate.
Roman-Lopez, J; Correcher, V; Garcia-Guinea, J; Rivera, T; Lozano, I B
2014-01-01
The luminescence (cathodoluminescence and thermoluminescence) properties of natural bones (Siberian mammoth and adult elephant), commercial hydroxyapatite and collagen were analyzed. Chemical analyses of the natural bones were determined using by Electron Probe Micro-Analysis (EMPA). Structural, molecular and thermal characteristics were determined by X-ray Diffraction (XRD), Raman spectroscopy and Differential Thermal and Thermogravimetric analysis (DTA-TG). Cathodoluminescence (CL) spectra of natural bones and collagen showed similar intense broad bands at 440 and 490 nm related to luminescence of the tetrahedral anion [Formula: see text] or structural defects. A weaker luminescence exhibited at 310 nm could be attributed to small amount of rare earth elements (REEs). Four luminescent bands at 378, 424, 468 and 576 nm were observed in the commercial hydroxyapatite (HAP). Both natural bones and collagen samples exhibited natural thermoluminescence (NTL) with well-defined glow curves whereas that the induced thermoluminescence (ITL) only appears in the samples of commercial hydroxyapatite and collagen. Additional explanations for the TL anomalous fading of apatite, as a crucial difficulty performing dosimetry and dating, are also considered. Copyright © 2013 Elsevier B.V. All rights reserved.
Surface modification of calcium hydroxyapatite by grafting of etidronic acid
NASA Astrophysics Data System (ADS)
Othmani, Masseoud; Aissa, Abdallah; Bac, Christophe Goze; Rachdi, Férid; Debbabi, Mongi
2013-06-01
The surface of prepared calcium hydroxyapatite CaHAp has been modified by grafting the etidronic acid (ETD). For that purpose, CaHAp powders have been suspended in an aqueous etidronate solution with different concentrations. The obtained composites CaHAp-(ETD) were characterized by TEM and AFM techniques to determinate morphological properties and were also characterized by XRD, IR, NMR and chemical and thermal analysis to determinate their physico-chemical properties and essentially the nature of the interaction between the inorganic support and the grafted organic ETD. After reaction with ETD, XRD powder analysis shows that the apatitic structure remains unchanged with slight affectation of its crystallinity. The presence of etidronate fragment bounded to hydroxyapatite was confirmed by IR and solid-state NMR spectroscopy. TEM and AFM techniques indicate that the presence of etidronate changes the morphology of the particles. Basing on the obtained results, a reactional mechanism was proposed to explain the formation of covalent Casbnd Osbnd Porg bonds on the hydroxyapatite surface between the superficial hydroxyl groups (tbnd Casbnd OH) of the apatite and phosphonate group (Psbnd OH) of etidronate.
The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy.
Hou, Chun-Han; Hou, Sheng-Mou; Hsueh, Yu-Sheng; Lin, Jinn; Wu, Hsi-Chin; Lin, Feng-Huei
2009-08-01
Hyperthermia therapy for cancer has drawn more and more attention these days. In this study, we conducted an in vivo cancer hyperthermia study of the new magnetic hydroxyapatite nanoparticles by a mouse model. The magnetic hydroxyapatite nanoparticles were first made by co-precipitation method with the addition of Fe(2+). Then, magnetic-HAP powder (mHAP) or pure HAP powder (HAP) was mixed with phosphate buffer solution (PBS), respectively. The mixture was injected around the tumor. In order to achieve hyperthermia, the mice were placed into an inductive heater with high frequency and alternating magnetic field. Only the mice which were injected with mHAP and had been treated inside the magnetic field showed dramatic reduction of tumor volume, in the 15-day observation period. No local recurrence was noted. The blood test of mice proved that mHAP powders possessed good biocompatibility and little toxicity when injected subcutaneously. Therefore, our new magnetic hydroxyapatite nanoparticles have demonstrated therapeutic effect in a mouse model with little toxicity. Further study should be done before its application inside the human body.
Gabbai-Armelin, Paulo R; Renno, Ana Cm; Crovace, Murilo C; Magri, Angela Mp; Zanotto, Edgar D; Peitl, Oscar; Leeuwenburgh, Sander Cg; Jansen, John A; van den Beucken, Jeroen Jjp
2017-08-01
Calcium phosphates and bioactive glass ceramics have been considered promising biomaterials for use in surgeries. However, their moldability should be further enhanced. We here thereby report the handling, physicochemical features, and morphological characteristics of formulations consisting of carboxymethylcellulose-glycerol and hydroxyapatite-tricalcium phosphate or Biosilicate® particles. We hypothesized that combining either material with carboxymethylcellulose-glycerol would improve handling properties, retaining their bioactivity. In addition to scanning electron microscopy, cohesion, mineralization, pH, and viscoelastic properties of the novel formulations, cell culture experiments were performed to evaluate the cytotoxicity and cell proliferation. Putty-like formulations were obtained with improved cohesion and moldability. Remarkably, mineralization in simulated body fluid of hydroxyapatite-tricalcium phosphate/carboxymethylcellulose-glycerol formulations was enhanced compared to pure hydroxyapatite-tricalcium phosphate. Cell experiments showed that all formulations were noncytotoxic and that HA-TCP60 and BGC50 extracts led to an increased cell proliferation. We conclude that combining carboxymethylcellulose-glycerol with either hydroxyapatite-tricalcium phosphate or Biosilicate® allows for the generation of moldable putties, improves handling properties, and retains the ceramic bioactivity.
Influence of sodium fluoride on the synthesis of hydroxyapatite by gel method
NASA Astrophysics Data System (ADS)
Kanchana, P.; Sekar, C.
2010-03-01
Hydroxyapatite (HA) is a good candidate for bone substitutes due to its chemical and structural similarity to bone mineral. Hydroxyapatite has been grown by the gel method using sodium fluoride (NaF) as additive. The growth was carried out at room temperature under the physiological pH of 7.4. The addition of NaF has significantly reduced growth rate and the yield was much less when compared to pure system. The samples of pure and fluoride doped HA were sintered at 600, 900 and 1200 °C in ambient atmosphere. Scanning electron microscopy (SEM), powder X-ray diffraction (XRD), thermogravimetric analysis (TG) and Fourier transform infrared spectroscopy (FTIR) were adopted to investigate the influence of NaF on the morphology, crystallinity, stability and phase purity of HA. EDAX and FTIR studies confirm that the fluoride is doped into the hydroxyapatite. Powder XRD and TGA results suggested that the incorporation of fluorine into the HA matrix improves the phase formation and crystallinity. SEM studies show that the microstructural morphology of HA changes from the fibers for pure to granular structure for the fluoride doped.
NASA Astrophysics Data System (ADS)
Albab, Muh Fadhil; Giovani, Nicholas; Yuwono, Akhmad Herman; Sofyan, Nofrijon; Ramahdita, Ghiska; Whulanza, Yudan
2018-02-01
Biomaterials composite of hydroxyapatite/chitosan is a preeminent material for medical applications including bone scaffold. To improve its mechanical properties, the chitosan as the matrix needs to be modified with particular chemical agents. One of the methods is phosphorylation of chitosan by using orthophosphoric acid prior to the biomaterials fabrication. In the current study, biomaterials with the weight composition of 70% hydroxyapatite (HA) and 30% phosphorylated chitosan have been fabricated using thermally induced phase separation (TIPS) method with freezing temperature variation of -20, -30, -40 and -80°C prior to three day-freeze drying. The results obtained by this work showed that the highest compression modulus of 376.9 kPa, highest compressive strength of 38.4 kPa and biggest pore size of 48.24 µm were achieved in the freezing temperature of -20°C. In comparison to non-phosphorylated chitosan/hydroxyapatite, the modification of chitosan using orthophosphoric acid in this work has been found to increase the compressive strength of composite up to 5.5 times.
Nazeer, Muhammad Anwaar; Yilgör, Emel; Yilgör, Iskender
2017-11-01
Preparation and characterization of chitosan/hydroxyapatite (CS/HA) nanocomposites displaying an intercalated structure is reported. Hydroxyapatite was synthesized through sol-gel process. Formic acid was introduced as a new solvent to obtain stable dispersions of nano-sized HA particles in polymer solution. CS/HA dispersions with HA contents of 5, 10 and 20% by weight were prepared. Self-assembling of HA nanoparticles during the drying of the solvent cast films led to the formation of homogeneous CS/HA nanocomposites. Composite films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-rays (EDX) analysis, Fourier transform infrared (FTIR) spectroscopy, X-rays diffraction (XRD) analysis and thermogravimetric analysis (TGA). SEM and AFM confirmed the presence of uniformly distributed HA nanoparticles on the chitosan matrix surface. XRD patterns and cross-sectional SEM images showed the formation of layered nanocomposites. Complete degradation of chitosan matrix in TGA experiments, led to the formation of nanoporous 3D scaffolds containing hydroxyapatite, β-tricalcium phosphate and calcium pyrophosphate. CS/HA composites can be considered as promising materials for bone tissue engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Prosolov, Konstantin A.; Belyavskaya, Olga A.; Muehle, Uwe; Sharkeev, Yurii P.
2018-02-01
Nanocrystalline Zn substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8 nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P-O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.
Wang, Junming; Zhang, Hong; Chen, Wei; Li, Guigang
2012-01-01
Anophthalmia is associated with a range of psychosocial difficulties and hydroxyapatite orbital implant insertion and prosthesis wearing is the predominant rehabilitation therapy for anophthalmia. However, few articles have compared preoperative and postoperative psychosocial outcomes using standardized questionnaires. This study aimed to investigate the psychosocial benefits of hydroxyapatite orbital implant insertion and prosthesis wearing in this patient population. In all, 36 participants were tested preoperatively and 6-months postoperatively using standardized measures of anxiety and depression (Hospital Anxiety and Depression Scale), social anxiety and social avoidance (Derriford Appearance Scale-Short Form), and quality of life (World Health Organization Quality of Life Scale-Short Form). Before treatment, levels of depression were comparable with population norms; however, levels of general anxiety were slightly raised, levels of social anxiety, social avoidance, and quality of life were significantly poorer than population norms. Treatment resulted in significant improvement in psychosocial adjustment with improvements in all study variables for the participant group as a whole. Hydroxyapatite orbital implant insertion and prosthesis wearing offers significant improvements in psychological and physical functioning for patients with anophthalmia.
Khan, Nida Iqbal; Ijaz, Kashif; Zahid, Muniza; Khan, Abdul S; Abdul Kadir, Mohammed Rafiq; Hussain, Rafaqat; Anis-Ur-Rehman; Darr, Jawwad A; Ihtesham-Ur-Rehman; Chaudhry, Aqif A
2015-11-01
Hydroxyapatite is used extensively in hard tissue repair due to its biocompatibility and similarity to biological apatite, the mineral component of bone. It differs subtly in composition from biological apatite which contains other ions such as magnesium, zinc, carbonate and silicon (believed to play biological roles). Traditional methods of hydroxyapatite synthesis are time consuming and require strict reaction parameter control. This paper outlines synthesis of magnesium substituted hydroxyapatite using simple microwave irradiation of precipitated suspensions. Microwave irradiation resulted in a drastic decrease in ageing times of amorphous apatitic phases. Time taken to synthesize hydroxyapatite (which remained stable upon heat treatment at 900°C for 1h) reduced twelve folds (to 2h) as compared to traditionally required times. The effects of increasing magnesium concentration in the precursors on particle size, surface area, phase-purity, agglomeration and thermal stability, were observed using scanning electron microscopy, BET surface area analysis, X-ray diffraction and photo acoustic Fourier transform infra-red spectroscopy. Porous agglomerates were obtained after a brief heat-treatment (1h) at 900°C. Copyright © 2015 Elsevier B.V. All rights reserved.
Sivakumar, M; Rao, K Panduranga
2003-05-01
In this work, composite microspheres were prepared from bioactive ceramics such as coralline hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2)] granules, a biodegradable polymer, sodium alginate, and an antibiotic, gentamicin. Previously, we have shown a gentamicin release from coralline hydroxyapatite granules-chitosan composite microspheres. In the present investigation, we attempted to prepare composite microspheres containing coralline hydroxyapatite granules and sodium alginate by the dispersion polymerization technique with gentamicin incorporated by absorption method. The crystal structure of the composite microspheres was analyzed using X-ray powder diffractometer. Fourier transform infrared spectra clearly indicated the presence of per-acid of sodium alginate, phosphate, and hydroxyl groups in the composite microspheres. Scanning electron micrographs and optical micrographs showed that the composite microspheres were spherical in shape and porous in nature. The particle size of composite microspheres was analyzed, and the average size was found to be 15 microns. The thermal behavior of composite microspheres was studied using thermogravimetric analysis and differential scanning calorimetric analysis. The cumulative in vitro release profile of gentamicin from composite microspheres showed near zero order patterns. Copyright 2003 Wiley Periodicals, Inc.
Micro arc oxidized HAp-TiO 2 nanostructured hybrid layers-part I: Effect of voltage and growth time
NASA Astrophysics Data System (ADS)
Abbasi, S.; Bayati, M. R.; Golestani-Fard, F.; Rezaei, H. R.; Zargar, H. R.; Samanipour, F.; Shoaei-Rad, V.
2011-05-01
Micro arc oxidation was employed to grow hydroxyapatite-TiO 2 nanostructured porous composite layers. The layers were synthesized on the titanium substrates in the electrolytes consisting of calcium acetate and sodium β-glycerophosphate salts under different applied voltages for various times. SEM and AFM investigations revealed a porous structure and rough surface where the pores size and the surface roughness were respectively determined as 70-650 nm and 9.8-12.7 nm depending on the voltage and time. Chemical composition and phase structure of the layers were evaluated using EDX, XPS, and XRD methods. The layers consisted of the hydroxyapatite, anatase, α-TCP, and calcium titanatephases with a varying fraction depending on the growth conditions. The hydroxyapatite crystalline size was also determined as ˜42 nm. The sample fabricated under the voltage of 350 V for 3 min exhibited the most appropriate Ca/P ratio (˜1.60) as well as the highest amount of the hydroxyapatite phase. This sample had a fine surface morphology and a high pores density.
2011-01-01
Synthesis of nanosized particle of Ag-doped hydroxyapatite with antibacterial properties is in the great interest in the development of new biomedical applications. In this article, we propose a method for synthesized the Ag-doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionized water. Other phase or impurities were not observed. Silver-doped hydroxyapatite nanoparticles (Ag:HAp) were performed by setting the atomic ratio of Ag/[Ag + Ca] at 20% and [Ca + Ag]/P as 1.67. The X-ray diffraction studies demonstrate that powders made by co-precipitation at 100°C exhibit the apatite characteristics with good crystal structure and no new phase or impurity is found. The scanning electron microscopy (SEM) observations suggest that these materials present a little different morphology, which reveals a homogeneous aspect of the synthesized particles for all samples. The presence of calcium (Ca), phosphor (P), oxygen (O), and silver (Ag) in the Ag:HAp is confirmed by energy dispersive X-ray (EDAX) analysis. FT-IR and FT-Raman spectroscopies revealed that the presence of the various vibrational modes corresponds to phosphates and hydroxyl groups. The strain of Staphylococcus aureus was used to evaluate the antibacterial activity of the Ca10-xAgx(PO4)6(OH)2 (x = 0 and 0.2). In vitro bacterial adhesion study indicated a significant difference between HAp (x = 0) and Ag:HAp (x = 0.2). The Ag:Hap nanopowder showed higher inhibition. PMID:22136671
Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration
NASA Technical Reports Server (NTRS)
Thomson, R. C.; Yaszemski, M. J.; Powers, J. M.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)
1998-01-01
A process has been developed to manufacture biodegradable composite foams of poly(DL-lactic-co-glycolic acid) (PLGA) and hydroxyapatite short fibers for use in bone regeneration. The processing technique allows the manufacture of three-dimensional foam scaffolds and involves the formation of a composite material consisting of a porogen material (either gelatin microspheres or salt particles) and hydroxyapatite short fibers embedded in a PLGA matrix. After the porogen is leached out, an open-cell composite foam remains which has a pore size and morphology defined by the porogen. By changing the weight fraction of the leachable component it was possible to produce composite foams with controlled porosities ranging from 0.47 +/- 0.02 to 0.85 +/- 0.01 (n = 3). Up to a polymer:fiber ratio of 7:6, short hydroxyapatite fibers served to reinforce low-porosity PLGA foams manufactured using gelatin microspheres as a porogen. Foams with a compressive yield strength up to 2.82 +/- 0.63 MPa (n = 3) and a porosity of 0.47 +/- 0.02 (n = 3) were manufactured using a polymer:fiber weight ratio of 7:6. In contrast, high-porosity composite foams (up to 0.81 +/- 0.02, n = 3) suitable for cell seeding were not reinforced by the introduction of increasing quantities of hydroxyapatite short fibers. We were therefore able to manufacture high-porosity foams which may be seeded with cells but which have minimal compressive yield strength, or low porosity foams with enhanced osteoconductivity and compressive yield strength.
NASA Astrophysics Data System (ADS)
Zhang, Lingli; Hanagata, Nobutaka; Maeda, Megumi; Minowa, Takashi; Ikoma, Toshiyuki; Fan, Hongsong; Zhang, Xingdong
2009-04-01
Because calcium phosphate (Ca-P) ceramics have been used as bone substitutes, it is necessary to investigate what effects the ceramics have on osteoblast maturation. We prepared three types of Ca-P ceramics with different Ca-P ratios, i.e. hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP), and biphasic calcium phosphate (BCP) ceramics with dense-smooth and porous structures. Comprehensive gene expression microarray analysis of mouse osteoblast-like cells cultured on these ceramics revealed that porous Ca-P ceramics considerably affected the gene expression profiles, having a higher potential for osteoblast maturation. In the in vivo study that followed, porous Ca-P ceramics were implanted into rat skeletal muscle. Sixteen weeks after the implantation, more alkaline-phosphatase-positive cells were observed in the pores of hydroxyapatite and BCP, and the expression of the osteocalcin gene (an osteoblast-specific marker) in tissue grown in pores was also higher in hydroxyapatite and BCP than in β-TCP. In the pores of any Ca-P ceramics, 16 weeks after the implantation, we detected the expressions of marker genes of the early differentiation stage of chondrocytes and the complete differentiation stage of adipocytes, which originate from mesenchymal stem cells, as well as osteoblasts. These marker gene expressions were not observed in the muscle tissue surrounding the implanted Ca-P ceramics. These observations indicate that porous hydroxyapatite and BCP had a greater potential for promoting the differentiation of mesenchymal stem cells into osteoblasts than β-TCP.
NASA Astrophysics Data System (ADS)
Ciobanu, Carmen Steluta; Massuyeau, Florian; Constantin, Liliana Violeta; Predoi, Daniela
2011-12-01
Synthesis of nanosized particle of Ag-doped hydroxyapatite with antibacterial properties is in the great interest in the development of new biomedical applications. In this article, we propose a method for synthesized the Ag-doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionized water. Other phase or impurities were not observed. Silver-doped hydroxyapatite nanoparticles (Ag:HAp) were performed by setting the atomic ratio of Ag/[Ag + Ca] at 20% and [Ca + Ag]/P as 1.67. The X-ray diffraction studies demonstrate that powders made by co-precipitation at 100°C exhibit the apatite characteristics with good crystal structure and no new phase or impurity is found. The scanning electron microscopy (SEM) observations suggest that these materials present a little different morphology, which reveals a homogeneous aspect of the synthesized particles for all samples. The presence of calcium (Ca), phosphor (P), oxygen (O), and silver (Ag) in the Ag:HAp is confirmed by energy dispersive X-ray (EDAX) analysis. FT-IR and FT-Raman spectroscopies revealed that the presence of the various vibrational modes corresponds to phosphates and hydroxyl groups. The strain of Staphylococcus aureus was used to evaluate the antibacterial activity of the Ca10- x Ag x (PO4)6(OH)2 ( x = 0 and 0.2). In vitro bacterial adhesion study indicated a significant difference between HAp ( x = 0) and Ag:HAp ( x = 0.2). The Ag:Hap nanopowder showed higher inhibition.
In situ fabrication of hollow hydroxyapatite microspheres by phosphate solution immersion
NASA Astrophysics Data System (ADS)
Wang, Yingchun; Yao, Aihua; Huang, Wenhai; Wang, Deping; zhou, Jun
2011-07-01
Hollow hydroxyapatite (HAP) microspheres with pores on their surfaces were prepared by converting Li 2O-CaO-B 2O 3 (LCB) glass microspheres in phosphate solution. The structure, phase composition, surface morphology, and porosity of the hollow HAP microspheres were characterized by SEM, SEM-EDS, XRD, FTIR, ICP-AES, and N 2 adsorption-desorption techniques. The formation and conversion mechanism of the hollow HAP microspheres during immersion process were discussed. The as-prepared microspheres consisted of calcium deficient carbonated hydroxyapatite, which is biomimetic. FTIR spectra indicated that the resulting apatite were B-type CO 3HAP, in which carbonate ions occupied the phosphate sites. After 600 °C heating treatment, hollow microspheres were completely composed of calcium deficient hydroxyapatite crystals including CO32-. The pore size distribution of the as-prepared hollow HAP microspheres were mainly the mesopores in the range of 2-40 nm with the pore volume 0.5614 cm 3/g, and the mean pore size 10.5 nm, respectively. The results confirmed that LCB glass were transformed to hydroxyapatite without changing the external shape and dimension of the original glass object and the resulting microspheres possessed good hollow structures. Once immersed in phosphate solution, Ca-P-OH hydrates were in situ formed on the surface of the glass and precipitated in the position occupied by Ca 2+, while the pores were formed in the position occupied by Li + and B 3+. These hollow HAP microspheres with such structures may be used as promising drug delivery devices.
Boulila, Salha; Elfeki, Abdelfattah; Oudadesse, Hassane; Elfeki, Hafed
2015-03-01
This study aimed to investigate the potential effects of a synthetic apatite (carbonated hydroxyapatite) on the detoxification of a group of male "Wistar" rats exposed to nickel chloride. Toxicity was evaluated by rats' bioassay of nickel chloride. Wistar rats received this metal daily by gavage for seven days (4 mg/ml nickel chloride/200 g body weight, BW). To detoxify this organism, a subcutaneous implantation of the apatite is made. The results revealed that exposure to nickel induced oxidative stress, disorders in the balances of ferric phosphocalcic, renal failures, liver toxicity and significant increase in nickel rates in the bones of intoxicated rats. The application of the carbonated hydroxyapatite presented in this study restored those disorders back to normal. The synthetic apatite protected the rats against the toxic effects of nickel by lowering the levels of lipid peroxidation markers and improving the activities of defense enzymes. It also amended ferric and phosphocalcic equilibriums, protected liver and kidney functions and reduced the nickel rate in the bones of the rats. Overall, the results provided strong support for the protective role of carbonated hydroxyapatite in the detoxification of rats exposed to nickel. Those beneficial effects were further confirmed by physico-chemical characterization (X-ray diffraction and infrared spectroscopy), which revealed its property of anionic and cationic substitution, thus supporting its promising candidacy for future biomedical application. The hydroxyapatite is an effective biomaterial to solve health problems, particularly detoxification against metals (nickel).
Adsorption of Uranyl Ions at the Nano-hydroxyapatite and Its Modification.
Skwarek, Ewa; Gładysz-Płaska, Agnieszka; Bolbukh, Yuliia
2017-12-01
Nano-hydroxyapatite and its modification, hydroxyapatite with the excess of phosphorus (P-HAP) and hydroxyapatite with the carbon ions built into the structure (C-HAP), were prepared by the wet method. They were studied by means of XRD, accelerated surface area and porosimetry (ASAP), and SEM. The size of crystallites computed using the Scherrer method was nano-hydroxyapatite (HAP) = 20 nm; P-HAP-impossible to determine; C-HAP = 22 nm; nano-HAP/U(VI) = 13.7 nm; P-HAP/U(VI)-impossible to determine, C-HAP/U(VI) = 11 nm. There were determined basic parameters characterizing the double electrical layer at the nano-HAP/electrolyte and P-HAP/electrolyte, C-HAP/electrolyte inter faces: density of the surface charge and zeta potential. The adsorption properties of nano-HAP sorbent in relation to U(VI) ions were studied by the batch technique. The adsorption processes were rapid in the first 60 min and reached the equilibrium within approximately 120 min (for P-HAP) and 300 min (for C-HAP and nano-HAP). The adsorption process fitted well with the pseudo-second-order kinetics. The Freundlich, Langmuir-Freundlich, and Dubinin-Radushkevich models of isotherms were examined for their ability to the equilibrium sorption data. The maximum adsorption capabilities (q m ) were 7.75 g/g for P-HAP, 1.77 g/g for C-HAP, and 0.8 g/g for HAP at 293 K.
Vila, Mercedes; García, Ana; Girotti, Alessandra; Alonso, Matilde; Rodríguez-Cabello, Jose Carlos; González-Vázquez, Arlyng; Planell, Josep A; Engel, Elisabeth; Buján, Julia; García-Honduvilla, Natalio; Vallet-Regí, María
2016-11-01
The current study reports on the manufacturing by rapid prototyping technique of three-dimensional (3D) scaffolds based on silicon substituted hydroxyapatite with Elastin-like Recombinamers (ELRs) functionalized surfaces. Silicon doped hydroxyapatite (Si-HA), with Ca 10 (PO 4 ) 5.7 (SiO 4 ) 0.3 (OH) 1.7 h 0.3 nominal formula, was surface functionalized with two different types of polymers designed by genetic engineering: ELR-RGD that contain cell attachment specific sequences and ELR-SN A 15/RGD with both hydroxyapatite and cells domains that interact with the inorganic phase and with the cells, respectively. These hybrid materials were subjected to in vitro assays in order to clarify if the ELRs coating improved the well-known biocompatible and bone regeneration properties of calcium phosphates materials. The in vitro tests showed that there was a total and homogeneous colonization of the 3D scaffolds by Bone marrow Mesenchymal Stromal Cells (BMSCs). In addition, the BMSCs were viable and able to proliferate and differentiate into osteoblasts. Bone tissue engineering is an area of increasing interest because its main applications are directly related to the rising life expectancy of the population, which promotes higher rates of several bone pathologies, so innovative strategies are needed for bone tissue regeneration therapies. Here we use the rapid prototyping technology to allow moulding ceramic 3D scaffolds and we use different bio-polymers for the functionalization of their surfaces in order to enhance the biological response. Combining the ceramic material (silicon doped hydroxyapatite, Si-HA) and the Elastin like Recombinamers (ELRs) polymers with the presence of the integrin-mediate adhesion domain alone or in combination with SNA15 peptide that possess high affinity for hydroxyapatite, provided an improved Bone marrow Mesenchymal Stromal Cells (BMSCs) differentiation into osteoblastic linkage. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Carradò, A; Perrin-Schmitt, F; Le, Q V; Giraudel, M; Fischer, C; Koenig, G; Jacomine, L; Behr, L; Chalom, A; Fiette, L; Morlet, A; Pourroy, G
2017-03-01
The aim of this study was to improve the strength and quality of the titanium-hydroxyapatite interface in order to prevent long-term failure of the implanted devices originating from coating delamination and to test it in an in-vivo model. Ti disks and dental commercial implants were etched in Kroll solution. Thermochemical treatments of the acid-etched titanium were combined with sol-gel hydroxyapatite (HA) coating processes to obtain a nanoporous hydroxyapatite/sodium titanate bilayer. The sodium titanate layer was created by incorporating sodium ions onto the Ti surface during a NaOH alkaline treatment and stabilized using a heat treatment. HA layer was added by dip-coating in a sol-gel solution. The bioactivity was assessed in vitro with murine MC3T3-E1 and human SaOs-2 cells. Functional and histopathological evaluations of the coated Ti implants were performed at 22, 34 and 60days of implantation in a dog lower mandible model. Nanoporous hydroxyapatite/sodium titanate bilayer on titanium implants was sensitive neither to crack propagation nor to layer delamination. The in vitro results on murine MC3T3-E1 and human SaOs-2 cells confirm the advantage of this coating regarding the capacity of cell growth and differentiation. Signs of progressive bone incorporation, such as cancellous bone formed in contact with the implant over the existing compact bone, were notable as early as day 22. Overall, osteoconduction and osteointegration mean scores were higher for test implants compared to the controls at 22 and 34 days. Nanoporous hydroxyapatite/sodium titanate bilayer improves the in-vivo osteoconduction and osteointegration. It prevents the delamination during the screwing and it could increase HA-coated dental implant stability without adhesive failures. The combination of thermochemical treatments with dip coating is a low-cost strategy. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Adsorption of benzoxaboroles on hydroxyapatite phases.
Pizzoccaro, Marie-Alix; Nikel, Ondrej; Sene, Saad; Philippe, Coralie; Mutin, P Hubert; Bégu, Sylvie; Vashishth, Deepak; Laurencin, Danielle
2016-09-01
Benzoxaboroles are a family of molecules that are finding an increasing number of applications in the biomedical field, particularly as a "privileged scaffold" for the design of new drugs. Here, for the first time, we determine the interaction of these molecules with hydroxyapatites, in view of establishing (i) how benzoxaborole drugs may adsorb onto biological apatites, as this could impact on their bioavailability, and (ii) how apatite-based materials can be used for their formulation. Studies on the adsorption of the benzoxaborole motif (C7H7BO2, referred to as BBzx) on two different apatite phases were thus performed, using a ceramic hydroxyapatite (HAceram) and a nanocrystalline hydroxyapatite (HAnano), the latter having a structure and composition more similar to the one found in bone mineral. In both cases, the grafting kinetics and mechanism were studied, and demonstration of the surface attachment of the benzoxaborole under the form of a tetrahedral benzoxaborolate anion was established using (11)B solid state NMR (including (11)B-(31)P correlation experiments). Irrespective of the apatite used, the grafting density of the benzoxaborolates was found to be low, and more generally, these anions demonstrated a poor affinity for apatite surfaces, notably in comparison with other anions commonly found in biological media, such as carboxylates and (organo)phosphates. The study was then extended to the adsorption of a molecule with antimicrobial and antifungal properties (3-piperazine-bis(benzoxaborole)), showing, on a more general perspective, how hydroxyapatites can be used for the development of novel formulations of benzoxaborole drugs. Benzoxaboroles are an emerging family of molecules which have attracted much attention in the biomedical field, notably for the design of new drugs. However, the way in which these molecules, once introduced in the body, may interact with bone mineral is still unknown, and the possibility of associating benzoxaboroles to calcium phosphates for drug-formulation purposes has not been looked into. Here, we describe the first study of the adsorption of benzoxaboroles on hydroxyapatite, which is the main mineral phase present in bone. We describe the mode of grafting of benzoxaboroles on this material, and show that they only weakly bind to its surface, especially in comparison to other ionic species commonly found in physiological media, such as phosphates and carboxylates. This demonstrates that administered benzoxaborole drugs are unlikely to remain adsorbed on hydroxyapatite surfaces for long periods of time, which means that their biodistribution will not be affected by such phenomena. Moreover, this work shows that the formulation of benzoxaborole drugs by association to calcium phosphates like hydroxyapatite will lead to a rapid release of the molecules. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Bone-Like Hydroxyapatite Formation in Human Blood
ERIC Educational Resources Information Center
Titov, Anatoly T.; Larionov, Peter M.; Ivanova, Alexandra S.; Zaikovskii, Vladimir I.; Chernyavskiy, Mikhail A.
2016-01-01
The purpose of this study was to prove the mechanism of mineralization, when hydroxyapatite (HAP) is formed in blood plasma. These observations were substantiated by in vitro simulation of HAP crystallization in the plasma of healthy adults in a controllable quasi-physiological environment (T = 37°C, pH = 7.4) and at concentrations of dissolved Ca…
Electroplasma coatings based on silicon-containing hydroxyapatite: Technology and properties
NASA Astrophysics Data System (ADS)
Lyasnikova, A. V.; Markelova, O. A.
2016-09-01
IR analysis and the plasma deposition of silicon-containing hydroxyapatite powder have been carried out. It has been shown that the coating exhibits developed morphology and consists of molten powder (including nanosize) particles uniformly distributed over the entire surface. The adhesion characteristics have been calculated and scanning electron microscope images of the resultant coating have been analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Chengfeng
Calcium phosphate powders with nano-sized crystallinity were synthesized by neutralization using calcium hydroxide and orthophosphoric acid with the assistance of citric acid. The influence of processing parameters, such as free or additive citric acid, synthetic temperature and ripening time, on the crystallinity of hydroxyapatite were investigated. The results of X-ray diffraction and microstructure observations showed that the crystallinity and morphology of nano-sized hydroxyapatite particles were influenced by the presence or absence of citric acid. It was found that the crystallinities and crystallite sizes of hydroxyapatite powders prepared with the additive citric acid increased with increasing synthetic temperature and ripening time.more » Especially, the crystallinities of (h k 0) planes were raised and more homogeneously grown particles were obtained with increasing synthetic temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popa, C. L.; Ciobanu, C. S.; Predoi, D., E-mail: dpredoi@gmail.com
The aim of this study was to synthetize new nanoparticles based on methyltrimethoxysilane coated hydroxyapatite (MTHAp) for lead removal in aqueous solutions. The morphological and compositional analysis of MTHAp was investigated by scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometer (EDS). Removal experiments of Pb{sup 2+} ions were carried out in aqueous solutions with controlled concentration of Pb{sup 2+} and at fixed pH of 5. After the removal experiment of Pb{sup 2+} ions from solutions, porous hydroxyapatite nanoparticles were transformed into PbMTHAp-5 via the adsorption of Pb{sup 2+} ions followed by a cation exchange reaction. Our resultsmore » demonstrate that the porous hydroxyapatite nanoparticles can be used as an adsorbent for removing Pb{sup 2+} ions from aqueous solution.« less
DC and AC conductivity properties of bovine dentine hydroxyapatite (BDHA)
NASA Astrophysics Data System (ADS)
Dumludag, F.; Gunduz, O.; Kılıc, O.; Ekren, N.; Kalkandelen, C.; Ozbek, B.; Oktar, F. N.
2017-12-01
Bovine dentine bio-waste may be used as a potential natural source of hydroxyapatite (BDHA), thus extraction of bovine dentin hydroxyapatite (BDHA) from bio-waste is significantly important to fabricate in a simple, economically and environmentally preferable. DC and AC conductivity properties of BDHA were investigated depending on sintering temperature (1000ºC - 1300°C) in air and vacuum (<10-2 mbar) ambient at room temperature. DC conductivity measurements performed between -1 and 1 V. AC conductivity measurements performed in the frequency range of 40 Hz - 100 kHz. DC conductivity results showed that dc conductivity values of the BDHA decrease with increasing sintering temperature in air ambient. It is not observed remarkable/systematic behavior for ac conductivity depending on sintering temperature.
Kolmas, Joanna; Oledzka, Ewa; Sobczak, Marcin; Nałęcz-Jawecki, Grzegorz
2014-06-01
Selenium-substituted hydroxyapatites containing selenate SeO4(2-) or selenite SeO3(2-) ions were synthesized using a wet precipitation method. The selenium content was determined by atomic absorbance spectrometry. The raw, unsintered powders were also characterized using powder X-ray diffraction, middle-range FT-IR spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopic microanalysis. The synthesized apatites were found to be pure and nanocrystalline with a crystal size similar to that in bone mineral. The incorporation of selenium oxyanions into the crystal lattice was confirmed. The toxicity of hydroxyapatites containing selenite or selenate ions was evaluated with a protozoan assay and bacterial luminescence test. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bante-Guerra, J.; Conde-Contreras, M.; Trujillo, S.; Martinez-Torres, P.; Cruz-Jimenez, B.; Quintana, P.; Alvarado-Gil, J. J.
2009-02-01
Non destructive analysis of hydroxyapatite materials is an active research area mainly in the study of dental pieces and bones due to the importance these pieces have in medicine, archeology, dentistry, forensics and anthropology. Infrared thermography and photothermal techniques constitute highly valuable tools in those cases. In this work the quantitative analysis of thermal diffusion in bones is presented. The results obtained using thermographic images are compared with the ones obtained from the photothermal radiometry. Special emphasis is done in the analysis of samples with previous thermal damage. Our results show that the treatments induce changes in the physical properties of the samples. These results could be useful in the identification of the agents that induced modifications of unknown origin in hydroxyapatite structures.
Jayabalan, M; Shalumon, K T; Mitha, M K; Ganesan, K; Epple, M
2010-04-01
The effect of radiation processing and filler morphology on the biodegradation and biomechanical stability of a poly(propylene fumarate)/hydroxyapatite composite was investigated. Radiation processing influenced both cross-linking and biodegradation of the composites. Irradiation with a dose of 3 Mrad resulted in enhanced cross-linking, mechanical properties and a higher storage modulus which are favourable for dimensional stability of the implant. The particle morphology of the added hydroxyapatite in the highly cross-linked state significantly influenced the biomechanical and interfacial stability of the composites. Reorganization of agglomerated hydroxyapatite occurred in the cross-linked polymeric matrix under dynamic mechanical loading under simulated physiological conditions. Such a reorganization may increase the damping characteristics of the composite.
Song, Y; Wang, X F; Wang, Y G; Dong, F; Lv, P J
2016-10-18
To study the effect of nano hydroxyapatite on human adipose-derived mesenchymal stem cells(hASCs) mixture 3D bio-printing for cells' proliferation and osteogenesis. P5 hASCs were used as seed cells, 10 g/L nano hydroxyapatite was added into the cell-sodium alginate-gelatin mixture (concentration: 20 g/L sodium alginate, 80 g/L gelatin; cell density: 1×10 6 /mL), then the mixture was printed by 3D bio-printer as the experimental group. And the cell-sodium alginate-gelatin mixture without nano hydroxyapatite was printed as the control group. Respectively, both the experimental and control groups were detected by microscope, CCK-8, Western blot and PCR at certain time pointsafter being printed, whose cells' proliferation and osteogenic differentiation were analyzed. The microscopic observation and CCK-8 results showed that the cells of the experimental group and the control group both had a good proliferation 24 h and 7 d after being printed. The Western blot results showed that 14 d after printing, the expression of Runt-related transcription factor 2 (RUNX2) had no statistical difference between the experimental group and control group. The PCR results showed that 14 d after printing, the expression of osteogenesis-related genes (RUNX2, osterix, and osteocalcin) was significantly higher in the experimental group than in the control group. Nano hydroxyapatite can increase osteogenic differentiation of the hASCs mixture after bio-printing, in which the cells still have a good proliferation.
Sodagar, Ahmad; Akhavan, Azam; Hashemi, Ehsan; Arab, Sepideh; Pourhajibagher, Maryam; Sodagar, Kosar; Kharrazifard, Mohammad Javad; Bahador, Abbas
2016-12-01
One of the most important complications of fixed orthodontic treatment is the formation of white spots which are initial carious lesions. Addition of antimicrobial agents into orthodontic adhesives might be a wise solution for prevention of white spot formation. The aim of this study was to evaluate the antibacterial properties of a conventional orthodontic adhesive containing three different concentrations of silver/hydroxyapatite nanoparticles. One hundred and sixty-two Transbond XT composite discs containing 0, 1, 5, and 10 % silver/hydroxyapatite nanoparticles were prepared and sterilized. Antibacterial properties of these composite groups against Streptococcus mutans, Lactobacillus acidophilus, and Streptococcus sanguinis were investigated using three different antimicrobial tests. Disk agar diffusion test was performed to assess the diffusion of antibacterial agent on brain heart infusion agar plate by measuring bacterial growth inhibition zones. Biofilm inhibition test showed the antibacterial capacity of composite discs against resistant bacterial biofilms. Antimicrobial activity of eluted components from composite discs was investigated by comparing the viable counts of bacteria after 3, 15, and 30 days. Composite discs containing 5 and 10 % silver/hydroxyapatite nanoparticles were capable of producing growth inhibition zones for all bacterial types. Results of biofilm inhibition test showed that all of the study groups reduced viable bacterial count in comparison to the control group. Antimicrobial activity of eluted components from composite discs was immensely diverse based on the bacterial type and the concentration of nanoparticles. Transbond XT composite discs containing 5 and 10 % silver/hydroxyapatite nanoparticles produce bacterial growth inhibition zones and show antibacterial properties against biofilms.
Yang, Yang; Cui, Qiang; Sahai, Nita
2010-06-15
Bone sialoprotein (BSP) is a highly phosphorylated, acidic, noncollagenous protein in bone matrix. Although BSP has been proposed to be a nucleator of hydroxyapatite (Ca(5)(PO(4))(3)OH), the major mineral component of bone, no detailed mechanism for the nucleation process has been elucidated at the atomic level to date. In the present work, using a peptide model, we apply molecular dynamics (MD) simulations to study the conformational effect of a proposed nucleating motif of BSP (a phosphorylated, acidic, 10 amino-acid residue sequence) on controlling the distributions of Ca(2+) and inorganic phosphate (Pi) ions in solution, and specifically, we explore whether a nucleating template for orientated hydroxyapatite could be formed in different peptide conformations. Both the alpha-helical conformation and the random coil structure have been studied, and inorganic solutions without the peptide are simulated as reference. Ca(2+) distributions around the peptide surface and interactions between Ca(2+) and Pi in the presence of the peptide are examined in detail. From the MD simulations, although in some cases for the alpha-helical conformation, we observe that a Ca(2+) equilateral triangle forms around the surface of peptide, which matches the distribution of Ca(2+) ions on the (001) face of the hydroxyapatite crystal, we do not consistently find a stable nucleating template formation in general for either the helical conformation or the random coil structure. Therefore, independent of conformations, the BSP nucleating motif is more likely to help nucleate an amorphous calcium phosphate cluster, which ultimately converts to crystalline hydroxyapatite.
Nadra, Imad; Boccaccini, Aldo R; Philippidis, Pandelis; Whelan, Linda C; McCarthy, Geraldine M; Haskard, Dorian O; Landis, R Clive
2008-01-01
Macrophages may promote a vicious cycle of inflammation and calcification in the vessel wall by ingesting neointimal calcific deposits (predominantly hydroxyapatite) and secreting tumor necrosis factor (TNF)alpha, itself a vascular calcifying agent. Here we have investigated whether particle size affects the proinflammatory potential of hydroxyapatite crystals in vitro and whether the nuclear factor (NF)-kappaB pathway plays a role in the macrophage TNFalpha response. The particle size and nano-topography of nine different crystal preparations was analyzed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and gas sorbtion analysis. Macrophage TNFalpha secretion was inversely related to hydroxyapatite particle size (P=0.011, Spearman rank correlation test) and surface pore size (P=0.014). A necessary role for the NF-kappaB pathway was demonstrated by time-dependent I kappaB alpha degradation and sensitivity to inhibitors of I kappaB alpha degradation. To test whether smaller particles were intrinsically more bioactive, their mitogenic activity on fibroblast proliferation was examined. This showed close correlation between TNFalpha secretion and crystal-induced fibroblast proliferation (P=0.007). In conclusion, the ability of hydroxyapatite crystals to stimulate macrophage TNFalpha secretion depends on NF-kappaB activation and is inversely related to particle and pore size, with crystals of 1-2 microm diameter and pore size of 10-50 A the most bioactive. Microscopic calcific deposits in early stages of atherosclerosis may therefore pose a greater inflammatory risk to the plaque than macroscopically or radiologically visible deposits in more advanced lesions.
USDA-ARS?s Scientific Manuscript database
Hydroxyapatite nanoparticles (nHAP) are increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP in water-saturated granular media were investigated. Experiments were conducted over a range of ionic ...
USDA-ARS?s Scientific Manuscript database
Column experiments were conducted to investigate the facilitated transport of Cu in association with hydroxyapatite nanoparticles (nHAP) in water-saturated quartz sand at different solution concentrations of NaCl (0 to 100 mM) or CaCl2 (0.1 to 1.0 mM). The experimental breakthrough curves and retent...
The soluble Pb concentration and formation of chloropyromorphite [Pb5(PO4)3Cl] were monitored during the reaction of cerrusite (PbCO3), a highly bioavailable soil Pb species, and hydroxyapatite [Ca5(PO4)3OH] at various P/Pb molar ratios under constant and dynamic pH conditions. ...
NASA Astrophysics Data System (ADS)
Zhang, Yin; Chen, Jie; Li, Yadong; Seo, Hyo Jin
2014-11-01
β-Dicalcium silicate (β-Ca2SiO4) doped with Eu3+ was synthesized by sol-gel method. The luminescence intensity of the mineralization products formed during the hydroxyapatite (Ca10(PO4)6(OH)2, HA) conversion of Eu3+-doped β-Ca2SiO4, in 0.25 M K2HPO4 solution, were detected using luminescence spectroscopy. The results indicated that the luminescence intensity of Eu3+ ion gradually depressed with prolonged mineralization time, and it could hardly be detected with the complete transformation from β-Ca2SiO4:Eu3+ to hydroxyapatite. The change of Eu3+ ionic concentrations in the mineralization products and the final solutions after conversion reaction, were further examined using energy-dispersive X-ray and inductively-coupled plasma mass spectrometry, respectively. This suggested that the process of mineralization can be monitored with the luminescence intensity of Eu3+ ions in the mineralization products. The current study will open up a new and simple in vivo avenue for in situ monitoring hydroxyapatite conversion with a fiber luminescence spectrometer.
Tungtasana, Hathairat; Shuangshoti, Somruetai; Shuangshoti, Shanop; Kanokpanont, Sorada; Kaplan, David L; Bunaprasert, Tanom; Damrongsakkul, Siriporn
2010-12-01
This work aimed to investigate tissue responses and biodegradation, both in vitro and in vivo, of four types of Bombyx mori Thai silk fibroin based-scaffolds. Thai silk fibroin (SF), conjugated gelatin/Thai silk fibroin (CGSF), hydroxyapatite/Thai silk fibroin (SF4), and hydroxyapatite/conjugated gelatin/Thai silk fibroin (CGSF4) scaffolds were fabricated using salt-porogen leaching, dehydrothermal/chemical crosslinking and an alternate soaking technique for mineralization. In vitro biodegradation in collagenase showed that CGSF scaffolds had the slowest biodegradability, due to the double crosslinking by dehydrothermal and chemical treatments. The hydroxyapatite deposited from alternate soaking separated from the surface of the protein scaffolds when immersed in collagenase. From in vivo biodegradation studies, all scaffolds could still be observed after 12 weeks of implantation in subcutaneous tissue of Wistar rats and also following ISO10993-6: Biological evaluation of medical devices. At 2 and 4 weeks of implantation the four types of Thai silk fibroin based-scaffolds were classified as "non-irritant" to "slight-irritant", compared to Gelfoam(®) (control samples). These natural Thai silk fibroin-based scaffolds may provide suitable biomaterials for clinical applications.
Nevins, Alan J; Cymerman, Jerome J
2015-06-01
An enhanced revision of the revitalization endodontic technique for immature teeth with apical periodontitis has been described. It includes the addition of collagen-hydroxyapatite scaffold to the currently practiced revascularization technique. Four cases treated in series are presented in this report, 1 case involving 2 teeth. Periapical diagnoses of immature teeth included "asymptomatic apical periodontitis," "symptomatic apical periodontitis," and "acute apical abscess." Additionally, 1 fully developed tooth that had undergone root canal treatment that failed had a periapical diagnosis of acute apical abscess. An established revascularization protocol was used for all teeth. In addition to stimulating blood clots, all teeth were filled with collagen-hydroxyapatite scaffolds. Periapical radiolucencies healed in all teeth, and diffuse radiopacity developed within the coronal portions of canal spaces. Root development with root lengthening occurred in the immature nonvital maxillary premolar that had not undergone prior treatment. The technique of adding a collagen-hydroxyapatite scaffold to the existing revitalization protocol has been described in which substantial hard tissue repair has occurred. This may leave teeth more fully developed and less likely to fracture. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Phospho-silicate and silicate layers modified by hydroxyapatite particles
NASA Astrophysics Data System (ADS)
Rokita, M.; Brożek, A.; Handke, M.
2005-06-01
Common used metal materials do not ensure good connection between an implant and biological neighbourhood. Covering implants by thin silicate or phosphate layers enable to improve biological properties of implants and create conditions for producing the non-concrete bonding between the implant and tissue. The project includes preparing silicate sols of different concentrations and proper (powder) fraction of synthetic as well as natural ox hydroxyapatite, depositing the sol mixed with hydroxyapatite onto the base material (metal, ceramic carbon) and heat treatment. Our work includes also preparation of phospho-silicate layers deposited onto different base materials using sol-gel method. Deposited sols were prepared regarding composition, concentration and layer heat treatment conditions. The prepared layers are examined to determine their phase composition (XRD, IR spectroscopy methods), density and continuity (scanning microscopy with EDX methods). Biological activity of layers was evaluated by means of estimation of their corrosive resistance in synthetic body fluids ('in vitro' method) and of bone cells growth on the layers surface. Introducing hydroxyapatite to the layer sol should improve connection between tissue and implant as well as limit the disadvantageous, corrosive influence of implant material (metal) on the tissue.
Zhang, Qinghao; Gerlach, Jörg C; Schmelzer, Eva; Nettleship, Ian
2017-01-01
Foamed hydroxyapatite offers a three-dimensional scaffold for the development of bone constructs, mimicking perfectly the in vivo bone structure. In vivo, calcium release at the surface is assumed to provide a locally increased gradient supporting the maintenance of the hematopoietic stem cells niche. We fabricated hydroxyapatite scaffolds with high surface calcium concentration by infiltration, and used human umbilical vein endothelial cells (HUVECs) as a model to study the effects on hematopoietic lineage direction. HUVECs are umbilical vein-derived and thus possess progenitor characteristics, with a prospective potential to give rise to hematopoietic lineages. HUVECs were cultured for long term on three-dimensional porous hydroxyapatite scaffolds, which were either infiltrated biphasic foams or untreated. Controls were cultured in two-dimensional dishes. The release of calcium into culture medium was determined, and cells were analyzed for typical hematopoietic and endothelial gene expressions, surface markers by flow cytometry, and hematopoietic potential using colony-forming unit assays. Our results indicate that the biphasic foams promoted a hematopoietic lineage direction of HUVECs, suggesting an improved in vivo-like scaffold for hematopoietic bone tissue engineering. © 2017 S. Karger AG, Basel.
Biomimetic Bone-like Hydroxyapatite by Mineralization on Supramolecular Porous Fiber Networks.
Li, Bo; Kan, Lei; Zhang, Xinyue; Li, Jie; Li, Ruiting; Gui, Qinyuan; Qiu, Dengli; He, Fei; Ma, Ning; Wang, Yapei; Wei, Hao
2017-08-29
Hydroxyapatite (HA), the main inorganic component of bone tissue, is mineralized with collagen fibril scaffolds during bone formation. Inspired by the process, a self-assembled porous network architecture was designed and synthesized by using the 2-ureido-4[1H]-pyrimidone (UPy) modified glycerol molecule UPy-Gly, which was further utilized as a template for biomimetic mineralization. When incubated in simulated body fluid (SBF), the HA nucleus first formed in the holes of the template by the induction of hydroxyls on the surface, grew along the nanofibers, and fused with the template to fabricate hydroxyapatite composites (UPy-Gly/HA). Transmission electron microscopic observation demonstrates that the mineral clusters are accumulated by lamella-like nano hydroxyapatite and the elasticity modulus measured by atomic force microscopy is about 5.5 GPa, which is quite close to the natural cancellous bone tissue of human both in structure and in mechanical properties. The Cell Counting Kit 8 (CCK-8) assay of UPy-Gly and UPy-Gly/HA shows noncytotoxicity to mouse fibroblast L-929 cells. This bioinspired composite will be a promising material for potential use in bone tissue implantation and regeneration engineering.
Electrospinning of calcium carbonate fibers and their conversion to nanocrystalline hydroxyapatite.
Holopainen, Jani; Santala, Eero; Heikkilä, Mikko; Ritala, Mikko
2014-12-01
Calcium carbonate (CaCO3) fibers were prepared by electrospinning followed by annealing. Solutions consisting of calcium nitrate tetrahydrate (Ca(NO3)2·4H2O) and polyvinylpyrrolidone (PVP) dissolved in ethanol or 2-methoxyethanol were used for the fiber preparation. By varying the precursor concentrations in the electrospinning solutions CaCO3 fibers with average diameters from 140 to 290 nm were obtained. After calcination the fibers were identified as calcite by X-ray diffraction (XRD). The calcination process was studied in detail with high temperature X-ray diffraction (HTXRD) and thermogravimetric analysis (TGA). The initially weak fiber-to-substrate adhesion was improved by adding a strengthening CaCO3 layer by spin or dip coating Ca(NO3)2/PVP precursor solution on the CaCO3 fibers followed by annealing of the gel formed inside the fiber layer. The CaCO3 fibers were converted to nanocrystalline hydroxyapatite (HA) fibers by treatment in a dilute phosphate solution. The resulting hydroxyapatite had a plate-like crystal structure with resemblance to bone mineral. The calcium carbonate and hydroxyapatite fibers are interesting materials for bone scaffolds and bioactive coatings. Copyright © 2014 Elsevier B.V. All rights reserved.
Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods
NASA Astrophysics Data System (ADS)
Thanh, Dong Nguyen; Novák, Pavel; Vejpravova, Jana; Vu, Hong Nguyen; Lederer, Jaromír; Munshi, Tasnim
2018-06-01
A nanocomposite of magnetic hydroxyapatite was synthesized and tested as an adsorbent for the removal of copper (Cu (II)) and nickel (Ni(II)) from aqueous solution. The adsorbent was investigated using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy equipped with an Energy Dispersive Spectrometer (SEM/EDS), X-ray powder diffraction (XRD) and the Brunauer-Elmet-Teller nitrogen adsorption technique (BET-N2 adsorption). Batch experiments were carried out to determine and compare the adsorption parameters of Fe3O4 and its composite with hydroxyapatite. It was found that the adsorbent is nanostructured and has a specific surface area of 101.2 m2 g-1. The Langmuir adsorption isotherm was found to be an appropriate model to describe the adsorption processes, showing the adsorption capacities of Cu(II) and Ni(II) of 48.78 mg g-1 and 29.07 mg g-1, respectively. In addition to the high adsorption capacity, the fully-adsorbed material could be easily separated from aqueous media using an external magnetic field. These results suggested that the utilization of new hydroxyapatite - Fe3O4 nanocomposite for the removal of Cu(II) and Ni(II) is a promising method in water technology.
Magnesium-enriched hydroxyapatite as bone filler in an ameloblastoma mandibular defect
Grigolato, Roberto; Pizzi, Natalia; Brotto, Maria C; Corrocher, Giovanni; Desando, Giovanna; Grigolo, Brunella
2015-01-01
The aim of this study was to evaluate the clinical performance of a magnesium-enriched hydroxyapatite biomaterial used as bone substitute in a case of mandibular ameloblastoma treated with conservative surgery. A 63 year old male patient was treated for an ameloblastoma in the anterior mandibular profile. After tissue excision, the bone defect was filled with a synthetic hydroxyapatite biomaterial enriched with magnesium ions, in order to promote bone tissue regeneration and obtain a good aesthetic result. Twenty-five months after surgery, due to ameloblastoma recurrence in an area adjacent to the previously treated one, the patient underwent to a further surgery. In that occasion the surgeon performed a biopsy in the initially treated area, in order to investigate the nature of the newly-formed tissue and to evaluate the bone regenerative potential of this biomaterial by clinical, radiographic and histological analyses. The clinical, radiographic and histological evaluations showed various characteristics of bone remodeling stage with an ongoing osteogenic formation and a good osteo-integration. In conclusion, magnesium-enriched hydroxyapatite used as bone substitute in a mandibular defect due to ameloblastoma excision showed an effective bone regeneration at 25 months follow-up, demonstrating an excellent biocompatibility and a high osteo-integration property. PMID:25784998
Characterizing Sintered Nano-Hydroxyapatite Sol-Gel Coating Deposited on a Biomedical Ti-Zr-Nb Alloy
NASA Astrophysics Data System (ADS)
Jafari, Hassan; Hessam, Hamid; Shahri, Seyed Morteza Ghaffari; Assadian, Mahtab; Shairazifard, Shahin Hamtaie Pour; Idris, Mohd Hasbullah
2016-03-01
In this study, sol-gel dip-coating method was used to coat nano-hydroxyapatite on specimens of Ti-14Zr-13Nb alloy for orthopedic applications. The coated specimens were sintered at three different temperatures and time spans to evaluate the impact of sintering process on microstructure, mechanical, bio-corrosion, and bioactivity properties of the coating. Field-emission scanning electron microscopy and x-ray diffraction were used to analyze the coating microstructure. Coating adhesion and mechanical performance were also investigated by scratch testing. Besides, electrochemical corrosion and immersion tests were performed in simulated body fluid to examine the sintering effect on corrosion performance and bioactivity of the coatings, respectively. The evaluations of coated specimens displayed that sintering at elevated temperatures leads to higher surface integrity and improves crystallinity of the nano-hydroxyapatite to approximately 89% which brings about distinctively enhanced mechanical properties. Similarly, it improved the corrosion rate for about 17 times through sintering at 700 °C. Immersion test proved that the coating increased the bioactivity resulted from the dissolution of calcium phosphates into the corresponding environment. It is noticeable that sintering the dip-coated specimens in the nano-hydroxyapatite improves corrosion performance and maintains bioactive behaviors as well.
Chen, Song; Gururaj, Satwik; Xia, Wei; Engqvist, Håkan
2016-11-01
Developing dental restorations with enhanced antibacterial properties has been a constant quest for materials scientists. The aim of this study was to synthesize silver doped calcium phosphate particles and use them to improve antibacterial properties of conventional glass ionomer cement. The Ag doped monetite (Ag-DCPA) and hydroxyapatite (Ag-HA) were synthesized by precipitation method and characterized using X-ray diffraction, scanning electron microscope and X-ray fluorescence spectroscopy. The antibacterial properties of the cements aged for 1 day and 7 days were evaluated by direct contact measurement using staphylococcus epidermis Xen 43. Ion concentrations (F - and Ag + ) and pH were measured to correlate to the results of the antibacterial study. The compressive strength of the cements was evaluated with a crosshead speed of 1 mm/min. The glass ionomer cements containing silver doped hydroxyapatite or monetite showed improved antibacterial properties. Addition of silver doped hydroxyapatite or monetite did not change the pH and ion release of F - . Concentration of Ag + was under the detection limit (0.001 mg/L) for all samples. Silver doped hydroxyapatite or monetite had no effect on the compressive strength of glass ionomer cement.
Biomimetic Hydroxyapatite Growth on Functionalized Surfaces of Ti-6Al-4V and Ti-Zr-Nb Alloys
NASA Astrophysics Data System (ADS)
Pylypchuk, Ie V.; Petranovskaya, A. L.; Gorbyk, P. P.; Korduban, A. M.; Markovsky, P. E.; Ivasishin, O. M.
2015-08-01
A biomimetic approach for coating titanium-containing alloys with hydroxyapatite (HA) is reported in the article. Two types of Ti-containing alloys were chosen as an object for coating: Ti-6Al-4V (recommended for orthopedic application) and a novel highly biocompatible Ti-Zr-Nb alloy, with good mechanical compatibility due to a modulus that is more close to that of human bones (E ≈ 50 GPa instead of 110 GPa in Ti-6Al-4V). Coating process was carried out in a 10×-concentrated simulated body fluid (SBF)—synthetic analog of human body plasma. The effect of oxidized and carboxylated alloy surface on formation of biomimetic hydroxyapatite has been studied. By XRD, we found influence of thermal conditions on HA crystal formation and size. SEM images and Fourier transform infrared confirmed that hydroxyapatite with different morphology, crystallinity, and Ca/P ratio formed on metallic surfaces. X-ray photoelectron spectroscopy showed that in the Ti-6AL-4V sample the observed Ca/P ratio reach 0.97, whereas in the Ti-Zr-Nb sample the observed Ca/P ratio reach 1.15.
NASA Astrophysics Data System (ADS)
Zykova, A.; Safonov, V.; Dudin, S.; Yakovin, S.; Donkov, N.; Ghaemi, M. H.; Szkodo, M.; Antoszkiewicz, M.; Szyfelbain, M.; Czaban, A.
2018-03-01
The ion-beam assisted deposition (IBAD) is an advanced method capable of producing crystalline coatings at low temperatures. We determined the characteristics of hydroxyapatite Ca10(PO4)6(OH)2 target and coatings formed by IBAD using X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX). The composition of the coatings’ cross-section and surface was close to those of the target. The XPS spectra showed that the binding energy values of Ca (2p1/2, 2p3/2), P (2p3/2), and O 1s levels are related to the hydroxyapatite phase. The coatings demonstrate an optimal H/E ratio, and a good resistance to scratch tests.
Moisenovich, M. M.; Arkhipova, A. Yu.; Orlova, A. A.; Drutskaya, M. S; Volkova, S. V.; Zacharov, S. E.; Agapov, I. I.; Kirpichnikov, M. P.
2014-01-01
Three-dimensional (3D) silk fibroin scaffolds were modified with one of the major bone tissue derivatives (nano-hydroxyapatite) and/or a collagen derivative (gelatin). Adhesion and proliferation of mouse embryonic fibroblasts (MEF) within the scaffold were increased after modification with either nano-hydroxyapatite or gelatin. However, a significant increase in MEF adhesion and proliferation was observed when both additives were introduced into the scaffold. Such modified composite scaffolds provide a new and better platform to study wound healing, bone and other tissue regeneration, as well as artificial organ bioengineering. This system can further be applied to establish experimental models to study cell-substrate interactions, cell migration and other complex processes, which may be difficult to address using the conventional two-dimensional culture systems. PMID:24772332
Hydroxyapatite Fibers: A Review of Synthesis Methods
NASA Astrophysics Data System (ADS)
Qi, Mei-Li; He, Kun; Huang, Zhen-Nan; Shahbazian-Yassar, Reza; Xiao, Gui-Yong; Lu, Yu-Peng; Shokuhfar, Tolou
2017-08-01
Hydroxyapatite (HA) exhibits excellent biocompatibility, bioactivity, osteoconductivity, non-toxicity and so on, making it a perfect candidate for biomedical applications. However, HA is not qualified to be used in load-bearing sites due to its poor flexural strength and fracture toughness. Design, synthesis and application of fibrous HA is a promising strategy to overcome the inherent brittleness. This review provides a brief description of HA and hydroxyapatite fiber (HAF), then introduces different synthesis methods of HAF and highlights the inherent merits and drawbacks involved in each method. Finally, the future perspectives in this active research area are given. The purpose of this review is to acquaint the reader with this promising new field of biomaterials research and with emphasis on recent techniques to obtain continuous, uniform and long HAF.
Microfluidic vascularized bone tissue model with hydroxyapatite-incorporated extracellular matrix.
Jusoh, Norhana; Oh, Soojung; Kim, Sudong; Kim, Jangho; Jeon, Noo Li
2015-10-21
Current in vitro systems mimicking bone tissues fail to fully integrate the three-dimensional (3D) microvasculature and bone tissue microenvironments, decreasing their similarity to in vivo conditions. Here, we propose 3D microvascular networks in a hydroxyapatite (HA)-incorporated extracellular matrix (ECM) for designing and manipulating a vascularized bone tissue model in a microfluidic device. Incorporation of HA of various concentrations resulted in ECM with varying mechanical properties. Sprouting angiogenesis was affected by mechanically modulated HA-extracellular matrix interactions, generating a model of vascularized bone microenvironment. Using this platform, we observed that hydroxyapatite enhanced angiogenic properties such as sprout length, sprouting speed, sprout number, and lumen diameter. This new platform integrates fibrin ECM with the synthetic bone mineral HA to provide in vivo-like microenvironments for bone vessel sprouting.
Biodegradation and biocompatability of a calcium sulphate-hydroxyapatite bone substitute.
Nilsson, M; Wang, J S; Wielanek, L; Tanner, K E; Lidgren, L
2004-01-01
An injectable material consisting of calcium sulphate mixed with hydroxyapatite was investigated as a possible alternative to autograft in the restoration of bone defects. The material was studied both in vitro in simulated body fluid (SBF) and in vivo when implanted in rat muscles and into the proximal tibiae of rabbits. Variation in the strength and weight of the material during ageing in SBF was measured. Tissue response, material resorption and bone ingrowth were studied in the animal models. A good tissue response was observed in both the rat muscles and rabbit tibiae without inflammatory reactions or the presence of fibrous tissue. Ageing in SBF showed that during the first week carbonated hydroxyapatite precipitated on the surfaces of the material and this may enhance bone ingrowth.
Influence of hydroxyapatite on the corrosion resistance of the Ti-13Nb-13Zr alloy.
Duarte, Laís T; Biaggio, Sonia R; Rocha-Filho, Romeu C; Bocchi, Nerilso
2009-05-01
Electrochemical analyses on the biocompatible alloy Ti-13Nb-13Zr wt% in an electrolyte simulating physiological medium (PBS solution) are reported. Hydroxyapatite (HA) films were obtained on the alloy by electrodeposition at constant cathodic current. Samples of the alloy covered with an anodic-oxide film or an anodic-oxide/HA film were analyzed by open circuit potential and electrochemical impedance spectroscopy measurements during 180 days in the PBS electrolyte. Analyses of the open-circuit potential (E (oc)) values indicated that the oxide/HA film presents better protection characteristics than the oxide only. This behavior was corroborated by the higher film resistances obtained from impedance data, indicating that, besides improving the alloy osteointegration, the hydroxyapatite film may also increase the corrosion protection of the biomaterial.
Synthesis and thermal stability of selenium-doped hydroxyapatite with different substitutions
NASA Astrophysics Data System (ADS)
Liu, Yonghui; Ma, Jun; Zhang, Shengmin
2015-12-01
Selenium (Se) plays a specific role in human health, especially for its antitumor effect. Incorporation of selenium into biocompatible hydroxyapatite (HAP) may endow the materials with novel characteristics. In the current work, a series of seleniumdoped hydroxyapatite (Se-HAP) nanoparticles with different Se/P ratios were synthesized by a modified chemical precipitation. It was revealed that the powders with/without heattreatment were nano-sized needle-like HAP while the heat-treated samples have high crystallinity. The addition of selenium decreases the crystallinity of the synthesized apatite, and also takes a negative effect on the thermal stability of the as-prepared powders. The Se-HAP nanoparticles with Se/P molar ratio not more than 5% sintered at 900°C can achieve good crystallinity and thermal stability.
Coralline hydroxyapatite: a bone graft alternative in foot and ankle surgery.
Rahimi, F; Maurer, B T; Enzweiler, M G
1997-01-01
The use of coralline hydroxyapatite has become a viable bone grafting alternative. Its efficacy has been well established through multiple human and animal studies. Coralline hydroxyapatite enhances osteogenesis by providing a biocompatible lattice for the passage and assembly of vascular, fibroblastic, and osteoblastic tissues. It also provides support for surrounding osseous structures. The uses of this material are expanding into the realm of foot and ankle surgery. Its consideration as an appropriate bone graft substitute as well as multiple case studies demonstrating its surgical applicability are discussed. The implants utilized at Thorek Hospital and Medical Center over the past eight years, with an average follow-up of three and one-half years, have proven to be a valuable resource for augmentation where an osseous defect has occurred.
NASA Astrophysics Data System (ADS)
Lu, Yu-Peng; Song, Yi-Zhong; Zhu, Rui-Fu; Li, Mu-Sen; Lei, Ting-Quan
2003-02-01
Heat treatment was expected to enhance the long-term reliability of hydroxyapatite (HA) coatings on metal substrates. In this study, factors influencing phase compositions and structure of plasma sprayed hydroxyapatite coatings during heat treatment were carefully analyzed. The phases were characterized by using X-ray diffraction (XRD), the OH - ion contents were determined by Fourier transform infrared (FTIR) spectroscopy. Of the involved factors, heating temperature is of more importance. The appropriate heat treatments is (600- 700 ° C)×2 h for coatings made from fine particles (10-20 μm) and 600 ° C×2 h for coatings made from coarse particles (50-80 μm). The excessive high temperatures and long holding times were unfavorable for the structural integrity of HA.
Removal of oxytetracycline from aqueous solutions by hydroxyapatite as a low-cost adsorbent
NASA Astrophysics Data System (ADS)
Harja, Maria; Ciobanu, Gabriela
2017-11-01
The present paper involved a study of the adsorption process of the oxytetracycline drug from aqueous medium by using the hydroxyapatite nanopowders as adsorbent materials. The batch adsorption experiments were performed by monitoring the solution pH, contact time, adsorbent dosage and drug solution concentration. At pH 8 and ambient temperature, high oxytetracycline removal rates of about 97.58% and 89.95% for the uncalcined and calcined nanohydroxyapatites, respectively, were obtained. The kinetic studies indicate that the oxytetracycline adsorption onto nanohydroxyapatite samples follows a pseudo-second order kinetic model. The maximum adsorption capacities of 291.32 mg/g and 278.27 mg/g for uncalcined and calcined nanohydroxyapatite samples, respectively, have been found. So, the conclusion can be drawn that the hydroxyapatite shows good adsorption ability towards oxytetracycline.
NASA Astrophysics Data System (ADS)
Zoulgami, M.; Lucas-Girot, A.; Michaud, V.; Briard, P.; Gaudé, J.; Oudadesse, H.
2002-09-01
New composite materials based on aluminosilicate materials were developed to be used in orthopaedic or maxillo-facial surgery. They are called geopolymers or polysialate-siloxo (PSS) and were studied alone or mixed with hydroxyapatite (HAP). The properties of these materials were investigated for potential use in biological or surgery applications. In this work, the chemistry involved in materials preparation was described. Samples were characterized by some physico-chemical methods like X-ray diffraction (XRD), infrared spectrometry (IR) and electron dispersion X-ray spectrometry (EDX). Results indicate that the mixing hydroxyapatite-geopolymer (PSS) leads to a neutral porous composite material with interesting physico-chemical properties. A preliminary evaluation of its cytotoxicity reveals an harmlessness towards fibroblasts. These properties allow to envisage this association as a potential biomaterial.
Tribosupplementation with Lubricin in Prevention of Post-Traumatic Arthritis
2014-10-01
utilizing anion exchange, hydroxyapatite and a hydrophobic exchange media resins achieves a high level of purity. Explants of bovine articular cartilage...progress report and results in a highly purified product (Fig 1). It consists of all flow through steps utilizing anion exchange, hydroxyapatite and...Control), and the interaction between these two experimental parameters for each region of cartilage. Anterior COFs indicated near significance
Sintering and microstructure property relationships of porous hydroxyapatite
NASA Astrophysics Data System (ADS)
Zakaria, Fadzil Ayad
2000-09-01
The use of ceramics inside the body, as implant materials, is a relatively new technology, the first instance having been reported just 20 years ago. The ceramics used for the repair and reconstruction of diseased, damaged or 'worn out' parts of the body are referred to as bioceramics, and such a material is hydroxyapatite. The use of calcium phosphate to repair bone defects has been based on the rationale that calcium phosphate resembles vertebrate tooth and bone mineral, and is biologically compatible with these and surrounding tissues. The concept of preparing porous hydroxyapatite was developed to prevent loosening of implants by enhancing the ingrowth of tissue into the pores (biological fixation). A structural limitation of this type of implant is the requirement to have a minimal pore size between 80- 100 m in diameter to allow bone to grow into the pores. The presence of such porosity would lead to a lower strength of the bioceramic component, but this is offset by the advantages of biocompatibility. It is well known that hydroxyapatite is a brittle material and making it porous would reduce the existing mechanical properties. This study was carried out to optimise the mechanical properties by investigating the processing conditions and methods of preparation. The effect of forming method, pore geometry, pore size, sintering cycle, sintering atmosphere and types of spherical polymers on the microstructure and mechanical properties were studied. As a consequence of the experiments, it was observed that porous hydroxyapatite is formed using an isostatic pressing technique, with 53 vol. % of HMWPVC as the porosifier. Sintering in air, with a heating rate of 50C/h, held for 1h at 600C in the first stage, and a heating rate of 100C/h, held for 4h at between 1200 and 1250C, generated a spherical pore geometry which gave the best combination of properties. This fabrication route resulted in an interconnected porous hydroxyapatite with a pore size ~90 m, the volume fraction of porosity ~35%, relative density of ~60%, a grain size ~1.7-2 m, a compressive strength between 14-18 MPa and a tensile strength of 4-5 MPa.
Urrutia, Julio; Contreras, Oscar
2017-05-01
Calcific tendinitis is a frequent disorder caused by hydroxyapatite crystal deposition; however, bone erosions from calcific tendinitis are unusual. The spinal manifestation of this disease is calcific tendinitis of the longus colli muscle; this disease has never been described in the posterior aspect of the spine. We report a case of calcium hydroxyapatite crystal deposition involving the posterior cervical spine eroding the bone cortex. A 57-year-old woman presented with a 5-month history of left-sided neck pain. Radiographs showed C4-C5 interspinous calcification with lytic compromise of the posterior arch of C4. Magnetic resonance imaging confirmed a lytic lesion of the posterior arch of C4, with a soft tissue mass extending to the C4-C5 interspinous space; calcifications were observed as very low signal intensity areas on T1 and T2 sequences, surrounded by gadolinium-enhanced soft tissues. A computed tomography (CT) scan confirmed the bone erosions and the soft tissue calcifications. A CT-guided needle biopsy was performed; it showed vascularized connective tissue with inflammatory histiocytic infiltration and multinucleated giant cells; Alizarin Red stain confirmed the presence of hydroxyapatite crystals. The patient was treated with anti-inflammatories for 2 weeks. She has been asymptomatic in a 6-month follow-up; a CT scan at the last follow-up revealed reparative remodeling of bone erosions. This is the first report of calcium hydroxyapatite crystal deposition with intraosseous penetration involving the posterior aspect of the cervical spine. Considering that this unusual lesion can be misinterpreted as a tumor or infection, high suspicion is required to avoid unnecessary surgical procedures.
Abbasi Aval, Negar; Pirayesh Islamian, Jalil; Hatamian, Milad; Arabfirouzjaei, Mohammad; Javadpour, Jafar; Rashidi, Mohammad-Reza
2016-07-25
In the present study, a series of multifunctional drug delivery systems based on mesostructured hydroxyapatite coating and superparamagnetic nanoparticles with pH-responsive characters was prepared. The structure of each new synthesized nanoscale composite was fully characterized by XRD, FTIR, TEM, VSM and BET. The results showed a good ordered mesostructure having large pores, high pore volume, high surface area, and varied super paramagnetic properties. The mesoporous hydroxyapatite coated super paramagnetic Fe3O4 nanoparticles were applied as a drug delivery carrier loaded with doxorubicin (DOX) as a model drug. The storage/release properties of the developed nonocarriers in phosphate buffer saline (PBS) were studied in two certain pHs: pH=7.4 (the human blood pH) and pH=5.5 (pH of cancer cells). The large pores in the synthesized mesoporous acted as an excellent carrier for DOX molecules with a loading efficiency of ≈93% which is much higher than that of the conventional hydroxyapatite particles. When the pH of the release medium (PBS) was changed from 7.4 to 5.5, the drug release increased significantly from 10% of the adsorbed drug to about 70%. DOX-loaded mesostructure hydroxyapatite reduced the viability of SKBR3 and T47D cells by 54.7 and 57.3%, respectively, which were very similar to 56.8 and 60.4% reduction resulted from free DOX incubation. This new drug delivery system which benefits from both super paramagnetic properties and pH-responsive performances may serve as a suitable platform for developing new biocompatible drug carriers and could have a good potential use in targeted cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.
Clavell, R Salvador; de Llano, J J Martín; Carda, C; Ribelles, J L Gómez; Vallés-Lluch, A
2016-11-01
Dental implantology is still an expanding field of scientific study because of the number of people that receive dental therapies throughout their lives worldwide. Recovery times associated to dental surgery are still long and demand strategies to improve integration of metallic devices with hard tissues. In this work, an in vitro ceramic coating is proposed to improve and accelerate osseointegration of titanium surfaces conceived to be used as dental implants or hip or knee prosthesis, shaped either as dishes or screws. Such coating consists of hydroxyapatite microdomains on the implant surfaces obtained in vitro by immersion of titanium alloy samples (Ti6Al4V) in a simulated body fluid. This titanium alloy is highly used in implant dentistry and trauma surgery, among other fields. Once the immersion times under physiological conditions yielding to different ceramic topographies on this alloy were set, the acellular coating time of major interest so as to optimize its biological development was determined. For this purpose, dental pulp mesenchymal cells were cultured on titanium coated surfaces with different hydroxyapatite outline, and cell adhesion, proliferation and morphology were followed through histological techniques and scanning electron microscopy. It was found that 4 days of acellular hydroxyapatite coating led to a significant cell adhesion on the titanium alloys at an early stage (6 h). Cells tended although to detach from the surface of the coating over time, but those adhered on domains of intricated topography or hydroxyapatite cauliflowers proliferated on them, leading to isolated large cell clusters. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2723-2729, 2016. © 2016 Wiley Periodicals, Inc.
Wang, Shou; Kryvi, Harald; Grotmol, Sindre; Wargelius, Anna; Krossøy, Christel; Epple, Mattias; Neues, Frank; Furmanek, Tomasz; Totland, Geir K
2013-01-01
We performed a sequential morphological and molecular biological study of the development of the vertebral bodies in Atlantic salmon (Salmo salar L.). Mineralization starts in separate bony elements which fuse to form complete segmental rings within the notochord sheath. The nucleation and growth of hydroxyapatite crystals in both the lamellar type II collagen matrix of the notochord sheath and the lamellar type I collagen matrix derived from the sclerotome, were highly similar. In both matrices the hydroxyapatite crystals nucleate and accrete on the surface of the collagen fibrils rather than inside the fibrils, a process that may be controlled by a template imposed by the collagen fibrils. Apatite crystal growth starts with the formation of small plate-like structures, about 5 nm thick, that gradually grow and aggregate to form extensive multi-branched crystal arborizations, resembling dendritic growth. The hydroxyapatite crystals are always oriented parallel to the long axis of the collagen fibrils, and the lamellar collagen matrices provide oriented support for crystal growth. We demonstrate here for the first time by means of synchroton radiation based on X-ray diffraction that the chordacentra contain hydroxyapatite. We employed quantitative real-time PCR to study the expression of key signalling molecule transcripts expressed in the cellular core of the notochord. The results indicate that the notochord not only produces and maintains the notochord sheath but also expresses factors known to regulate skeletogenesis: sonic hedgehog (shh), indian hedgehog homolog b (ihhb), parathyroid hormone 1 receptor (pth1r) and transforming growth factor beta 1 (tgfb1). In conclusion, our study provides evidence for the process of vertebral body development in teleost fishes, which is initially orchestrated by the notochord. PMID:23711083
Guo, Fuyu; Ding, Changfeng; Zhou, Zhigao; Huang, Gaoxiang; Wang, Xingxiang
2018-02-01
Soil cadmium (Cd) contamination in China has become a serious concern due to its high toxicity to human health through food chains. A pot experiment was conducted to investigate the effects of hydrated lime (L), hydroxyapatite (H) and organic fertilizer (F) alone or in combination to remedy a mild (DY) and a moderate (YX) Cd contaminated agricultural soil under rice-wheat rotation. Results showed that crops grain yield and Cd concentration, soil pH, CaCl 2 extractable Cd and Cd speciation were markedly affected by the amendments. In both cropping seasons, hydrated lime and hydroxyapatite significantly immobilized soil Cd, and hydroxyapatite, organic fertilizer significantly increased grain yield. Hydrated lime mainly increased soil carbonates bound Cd fractions resulted from 16.7% to 36.2% and from 16.8% to 28.3%, and hydroxyapatite increased Fe/Mn oxides Cd fractions from 19.3% to 33.4% and from 31.4% to 42.1% in the DY and YX soils, respectively; while organic fertilizer slightly increased soil exchangeable and organic matter bound Cd fractions. Besides, combined amendments contain alkaline materials and organic materials have the potential to decrease grain Cd and increase grain yield simultaneously. Therefore, in view of the effects of amendments on grain yield and Cd concentration, the cost as well as the potential benefits expected, combined amendments like hydrated lime + organic fertilizer, hydrated lime + hydroxyapatite + organic fertilizer are recommended in practical application. Mechanisms of Cd immobilization affected by amendments are mainly attributed to the changes in soil Cd availability and crops root uptake rather than internal translocation in plants. Copyright © 2017 Elsevier Inc. All rights reserved.
Kattimani, Vivekanand S; Chakravarthi, Srinivas P; Neelima Devi, K Naga; Sridhar, Meka S; Prasad, L Krishna
2014-01-01
Bone grafts are frequently used in the treatment of bone defects. Bone harvesting can cause postoperative complications and sometimes does not provide a sufficient quantity of bone. Therefore, synthetic biomaterials have been investigated as an alternative to autogenous bone grafts. The aim of this study was to evaluate and compare bovine derived hydroxyapatite (BHA) and synthetic hydroxyapatite (SHA) graft material as bone graft substitute in maxillary cystic bony defects. Patients were analyzed by computerized densitometric study and digital radiography. In this study, 12 patients in each group were included randomly after clinical and radiological evaluation. The integration of hydroxyapatite was assessed with mean bone density, surgical site margin, and radiological bone formation characteristics, of the successful graft cases using computer densitometry and radio-visiograph. Statistical analysis was carried out using Mann-Whitney U-test, Wilcoxon matched pairs test and paired t-test. By the end of 24 th week, the grafted defects radiologically and statistically showed similar volumes of bone formation. However, the significant changes observed in the formation of bone and merging of material and surgical site margin at 1 st week to 1 st month. The results were significant and correlating with all the parameters showing the necessity of the grafting for early bone formation. However, the bone formation pattern is different in both BHA and SHA group at 3 rd month interval with significant P value. Both BHA and SHA graft materials are biocompatible for filling bone defects, showing less resorption and enhanced bone formation with similar efficacy. Our study showed maximum bone healing within 12 weeks of grafting of defects. The BHA is economical; however, price difference between the two is very nominal.
D'Alpino, Paulo Henrique Perlatti; Silva, Marília Santos; Vismara, Marcus Vinícius Gonçalves; Di Hipólito, Vinicius; Miranda González, Alejandra Hortencia; de Oliveira Graeff, Carlos Frederico
2015-06-01
This study evaluated the degree of conversion, the free radical entrapment, and the chemical interaction of self-adhesive resin cements mixed with pure hydroxyapatite, as a function of the polymerization activation mode among a variety of commercial self-adhesive cements. Four cements (Embrace WetBond, MaxCem Elite, Bifix SE, and RelyX U200) were mixed, combined with hydroxyapatite, dispensed into molds, and distributed into three groups, according to polymerization protocols: IP (photoactivation for 40s); DP (delayed photoactivation, 10 min self-curing plus 40s light-activated); and CA (chemical activation, no light exposure). Infrared (IR) spectra were obtained and monomer conversion (%) was calculated by comparing the aliphatic-to-aromatic IR absorption peak ratio before and after polymerization (n=10). The free radical entrapment values of the resin cements were characterized using Electron Paramagnetic Resonance (EPR) and the concentration of spins (number of spins/mass) calculated (n=3). Values were compared using two-way ANOVA and Tukey's post-hoc test (α=5%). X-ray diffraction (XRD) characterized the crystallinity of hydroxyapatite as a function of the chemical interactions with the resin cements. The tested parameters varied as a function of resin cement and polymerization protocol. Embrace WetBond and RelyX U200 demonstrated dependence on photoactivation (immediate or delayed), whereas MaxCem Elite exhibited dependence on the chemical activation mode. Bifix SE presented the best balance based on the parameters analyzed, irrespective of the activation protocol. Choice of polymerization protocol affects the degree of conversion, free radical entrapment, and the chemical interaction between hydroxyapatite and self-adhesive resin cement mixtures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wijesinghe, W P S L; Mantilaka, M M M G P G; Premalal, E V A; Herath, H M T U; Mahalingam, S; Edirisinghe, M; Rajapakse, R P V J; Rajapakse, R M G
2014-09-01
Synthetic hydroxyapatite (HA) nanoparticles, that mimic natural HA, are widely used as biocompatible coatings on prostheses to repair and substitute human bones. In this study, HA nanoparticles are prepared by precipitating them from a precursor solution containing calcium sucrate and ammonium dihydrogen orthophosphate, at a Ca/P mole ratio of 1.67:1, at temperatures, ranging from 10°C to 95°C. A set of products, prepared at different temperatures, is analyzed for their crystallinity, crystallite size, morphology, thermal stability and composition, by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopic techniques, while the other set is analyzed after calcining the respective products, soon after their synthesis, for 3h, at 700°C. The as-prepared products, after 2h of drying, without any calcination, are not crystalline, but they grow very slowly into needle-like morphologies, as they are ripened with time. The percentage crystallinity of the final products increases from 15% to 52%, with increasing the preparative temperature. The calcined samples always produce spherical nanoparticles of essentially the same diameter, between 90 nm and 100 nm, which does not change due to aging and preparative temperatures. Therefore, the same method can be utilized to synthesize both spherical and needle-like nanoparticles of hydroxyapatite, with well-defined sizes and shapes. The ability to use readily available cheap raw materials, for the synthesis of such well-defined crystallites of hydroxyapatite, is an added advantage of this method, which may be explored further for the scaling up of the procedures to suit to industrial scale synthesis of such hydroxyapatite nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.
Shi, Pujie; Wang, Qun; Yu, Cuiping; Fan, Fengjiao; Liu, Meng; Tu, Maolin; Lu, Weihong; Du, Ming
2017-07-01
Lactoferrin (LF) has been recently recognized as a promising new novel bone growth factor for the beneficial effects on bone cells and promotion of bone growth. Currently, it has been attracted wide attention in bone regeneration as functional food additives or a potential bioactive protein in bone tissue engineering. The present study investigated the possibility that hydroxyapatite (HAP) particles, a widely used bone substitute material for high biocompatibility and osteoconductivity, functionalized with lactoferrin as a composite material are applied to bone tissue engineering. Two kinds of hydroxyapatite samples with different sizes, including nanorods and microspheres particles, were functionalized with lactoferrin molecules, respectively. A detailed characterization of as-prepared HAP-LF complex is presented, combining thermal gravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FT-IR). Zeta potential and the analysis of electrostatic surface potential of lactoferrin were carried to reveal the mechanism of adsorption. The effects of HAP-LF complex on MC3T3-E1 osteoblast proliferation and morphology were systematically evaluated at different culture time. Interestingly, results showed that cell viability of HAP-LF group was significantly higher than HAP group indicating that the HAP-LF can improve the biocompatibility of HAP, which mainly originated from a combination of HAP-LF interaction. These results indicated that hydroxyapatite particles can work as a controlled releasing carrier of lactoferrin successfully, and lactoferrin showed better potentiality on using in the field of bone regeneration by coupling with hydroxyapatite. This study would provide a new biomaterial and might offer a new insight for enhancement of bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Shou; Kryvi, Harald; Grotmol, Sindre; Wargelius, Anna; Krossøy, Christel; Epple, Mattias; Neues, Frank; Furmanek, Tomasz; Totland, Geir K
2013-08-01
We performed a sequential morphological and molecular biological study of the development of the vertebral bodies in Atlantic salmon (Salmo salar L.). Mineralization starts in separate bony elements which fuse to form complete segmental rings within the notochord sheath. The nucleation and growth of hydroxyapatite crystals in both the lamellar type II collagen matrix of the notochord sheath and the lamellar type I collagen matrix derived from the sclerotome, were highly similar. In both matrices the hydroxyapatite crystals nucleate and accrete on the surface of the collagen fibrils rather than inside the fibrils, a process that may be controlled by a template imposed by the collagen fibrils. Apatite crystal growth starts with the formation of small plate-like structures, about 5 nm thick, that gradually grow and aggregate to form extensive multi-branched crystal arborizations, resembling dendritic growth. The hydroxyapatite crystals are always oriented parallel to the long axis of the collagen fibrils, and the lamellar collagen matrices provide oriented support for crystal growth. We demonstrate here for the first time by means of synchroton radiation based on X-ray diffraction that the chordacentra contain hydroxyapatite. We employed quantitative real-time PCR to study the expression of key signalling molecule transcripts expressed in the cellular core of the notochord. The results indicate that the notochord not only produces and maintains the notochord sheath but also expresses factors known to regulate skeletogenesis: sonic hedgehog (shh), indian hedgehog homolog b (ihhb), parathyroid hormone 1 receptor (pth1r) and transforming growth factor beta 1 (tgfb1). In conclusion, our study provides evidence for the process of vertebral body development in teleost fishes, which is initially orchestrated by the notochord. © 2013 Anatomical Society.
Synthesis and Thermal Characterization of Hydroxyapatite Powders Obtained by Sol-Gel Technique
NASA Astrophysics Data System (ADS)
Jiménez-Flores, Y.; Camacho, N.; Rojas-Trigos, J. B.; Suárez, M.
The development of bioactive materials presents an interesting and an extremely relevant problem to solve, in the development of customized cranial and maxillofacial prosthesis, bioactive coating, and cements, for example. In such areas, one of the more employed materials is the synthetic hydroxyapatite, due to its proved biocompatibility with the human body; however, there are few studies about the thermal affinity with the biological surroundings, and most of them are centered in the thermal stability of the hydroxyapatite instead of its transient thermal response. In the present paper, the synthesis and physical-chemical characterization of hydroxyapatite samples, obtained by the sol-gel technique employing ultrasonic mixing, are reported. Employing X-ray diffraction patterns, XEDS and FTIR spectra, the crystal symmetry, chemical elements, and the present functional groups of the studied samples were determined and found to correspond to those reported in the literature, with a stoichiometry close to the ideal for biological applications. Additionally, by means of the photoacoustic detection and infrared photothermal radiometry (IPTR) techniques, the thermal response of the samples was obtained. Analyzing the photoacoustic data, the synthetized samples show photoacoustic opaqueness, responding in the thermally thick regime in the measurement range, and their thermal effusivity was also determined, having values of 1.47 folds the thermal effusivity of the mandibular human bone. Finally, from the IPTR measurements, the thermal diffusivity and thermal conductivity of the samples were also determined, having good agreement with the reported values for synthetic hydroxyapatite. The structural and thermophysical properties of the here reported samples show that the synthesized samples have good thermal affinity with the mandibular human bone tissue, and are suitable for biomedical applications.
Electrophoretic Deposition of Hydroxyapatite Film Containing Re-Doped MoS₂ Nanoparticles.
Shalom, Hila; Feldman, Yishay; Rosentsveig, Rita; Pinkas, Iddo; Kaplan-Ashiri, Ifat; Moshkovich, Alexey; Perfilyev, Vladislav; Rapoport, Lev; Tenne, Reshef
2018-02-26
Films combining hydroxyapatite (HA) with minute amounts (ca. 1 weight %) of (rhenium doped) fullerene-like MoS₂ (IF) nanoparticles were deposited onto porous titanium substrate through electrophoretic process (EPD). The films were analyzed by scanning electron microscopy (SEM), X-ray diffraction and Raman spectroscopy. The SEM analysis showed relatively uniform coatings of the HA + IF on the titanium substrate. Chemical composition analysis using energy dispersive X-ray spectroscopy (EDS) of the coatings revealed the presence of calcium phosphate minerals like hydroxyapatite, as a majority phase. Tribological tests were undertaken showing that the IF nanoparticles endow the HA film very low friction and wear characteristics. Such films could be of interest for various medical technologies. Means for improving the adhesion of the film to the underlying substrate and its fracture toughness, without compromising its biocompatibility are discussed at the end.
NASA Astrophysics Data System (ADS)
Asha, S.; Ananth, A. Nimrodh; Jose, Sujin P.; Rajan, M. A. Jothi
2018-05-01
Reduced Graphene Oxide aerogels (A-RGO), functionalized with chitosan, were found to induce and/or accelerate the mineralization of hydroxyapatite. The functionalized chitosan acts as a soft interfacial template on the surface of A-RGO assisting the growth of hydroxyapatite particles. The mineralization on these soft aerogel networks was performed by soaking the aerogels in simulated body fluid, relative to time. Polymer-induced mineralization exhibited an ordered arrangement of hydroxyapatite particles on reduced graphene oxide aerogel networks with a higher crystalline index (IC) of 1.7, which mimics the natural bone formation indicating the importance of the polymeric interfacial template. These mineralized aerogels which mimic the structure and composition of natural bone exhibit relatively higher rate of cell proliferation, osteogenic differentiation and osteoid matrix formation proving it to be a potential scaffold for bone tissue regeneration.
NASA Astrophysics Data System (ADS)
Bozkurt, Y.; Sahin, A.; Sunulu, A.; Aydogdu, M. O.; Altun, E.; Oktar, F. N.; Ekren, N.; Gunduz, O.
2017-04-01
Polyurethane (PU) is a synthetic polymer that is used for construction of scaffold in tissue engineering applications in order to obtain desirable mechanical, physical and chemical properties like elasticity and durability. Bovine derived hydroxyapatite (BHAp) is a ceramic based natural polymer that is used as the most preferred implant material in orthopedics and dentistry due to their chemically and biologically similarity to the mineral phase found in the human bone structure. PU and bovine derived hydroxyapatite (BHAp) solutions with different concentrations were prepared with dissolving polyurethane and BHAp in Dimethylformamide (DMF) and Tetrahydrofuran (THF) solutions. Blended PU-BHAp solutions in different concentrations were used for electrospinning technique to create nanofiber scaffolds and new biocomposite material together. SEM, FTIR and physical analysis such as viscosity, electrical conductivity, density measurement and tensile strength measurement tests were carried out after production process.
Cell death induced by hydroxyapatite on L929 fibroblast cells.
Inayat-Hussain, S H; Rajab, N F; Roslie, H; Hussin, A A; Ali, A M; Annuar, B O
2004-05-01
Biomaterials intended for end-use application as bone-graft substitutes have to undergo safety evaluation. In this study, we investigated the in vitro cytotoxic effects especially to determine the mode of death of two hydroxyapatite compounds (HA2, HA3) which were synthesized locally. The methods used for cytotoxicity was the standard MTT assay whereas AO/PI staining was performed to determine the mode of cell death in HA treated L929 fibroblasts. Our results demonstrated that both HA2 and HA3 were not significantly cytotoxic as more than 75% cells after 72 hours treatment were viable. Furthermore, we found that the major mode of cell death in HA treated cells was apoptosis. In conclusion, our results demonstrated that these hydroxyapatite compounds are not cytotoxic where the mode of death was primarily via apoptosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mossaad, Christina; Starr, Matthew; Payzant, E Andrew
The objective of the present paper was to produce nanoscale hydroxyapatite at room temperature under 10 nm through a simple method that requires no specialized equipment, surfactants, or additives. The Ca(C2H3O2)2-K3PO4-H2O synthesis system explored in previous literature was employed and the nanoscale powder product completely characterized through x-ray diffraction, transmission electron microscopy, BET nitrogen surface area adsorption, helium pycnometry, TGA and Karl Fisher titration. In accordance with other materials, it was found that hydroxyapatite under 5 nm produced by this chemistry undergoes an uphill phase transformation when left in dry storage over 5 months. Although it is possible to producemore » hydroxyapatite (and other materials) in this size range, it is imperative that care is taken through storage alterations to prevent any undesirable changes in structure or surface chemistry« less
NASA Astrophysics Data System (ADS)
Sharkeev, Yu. P.; Sedelnikova, M. B.; Komarova, E. G.; Khlusov, I. A.
2015-11-01
An investigation of titanium surface modification by microarc oxidation in the electrolyte based on wollastonite and hydroxyapatite was presented. The dependences of the coating properties on the microarc oxidation parameters were found. A variation of the process parameters allowed producing wollastonite-calcium phosphate coatings with aplate-like structure, thickness 25-30 µm, roughness 2.5-5.0 µm, and adhesion strength 57 MPa. The optimum microarc oxidation parameters such as the electrical voltage of 150 V, process duration of 5-10 min, and pulse duration of 100-300 µs were revealed. The wollastonite addition to the electrolyte based on the aqueous solution of phosphoric acid and hydroxyapatite allowed us to form wollastonite-calcium phosphate coatings on the titanium surface by the microarc oxidation method with enhanced strength properties and an increased ability to osseointegration.
[The preparation of a new hydroxyapatite and the study on its cytocompatibility].
Tao, Kai; Mao, Tianqiu; Chen, Fulin; Liu, Xiaoyan
2006-08-01
The cuttlebones, harvested from cuttles, undergo the chemical reaction in high temperature and high pressure for a certain time. The products are qualitatively analysed, and spacial structure observation and cytocompatibility are tested. The results show that the chemical component of the cuttlebone is CaCO3 and the crystal type is aragonite. Cuttlebones undergo a hydro-thermal reaction, and thus transform into hydroxyapatite-that is, the cuttlebone-transformed hydroxyapatite(CBHA). The CBHA materials have the interconnected microporous network structures. Under the high magnification, CBHAs appear to have many micro-spheres, thus construct a new self-assembled nano-material system. The marrow stromal osteoblasts can adhere to and proliferate well on the surface of the CBHAs. These results show that CBHAs have good biocompatibility. Therefore, it can be a potential candidate scaffold for bone tissue engineering.
Zhang, Chao; Li, Zhi-An; Cheng, Xiang-Rong; Xiao, Qun; Li, Hong-Bo
2010-01-01
Hydroxyapatite coating on metal implants is an effective method to enhance bioactive properties of the metal surface. We report here a method to coat the Ti-6Al-4V alloy with hydroxyapatite crystals. After alkaline/heat treatment, the spontaneous growth of organoapatite on titanium alloy surface involves sequential preadsorption of titanium isopropoxide (TIPO) and the copolymer of acrylic acid and itaconic acid on the metal, followed by exposure to simulated body fluid (SBF). The organoapatite characterization of the coating was carried out by scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction. The copolymer of acrylic acid and itaconic acid overlayer which is rich of carboxylate groups can lead to the deposition of needle-like and homogeneous HA on the surface after immersion in SBF.
Crystal imperfection studies of pure and silicon substituted hydroxyapatite using Raman and XRD.
Zou, Shuo; Huang, Jie; Best, Serena; Bonfield, William
2005-12-01
Hydroxyapatite (HA) is important in biomedical applications because of its chemical similarity to the mineral content of bone and its consequent bioactivity. Silicon substitution into the hydroxyapatite crystal lattice was found to enhance its bioactivity both in vitro and in vivo [1, 2]. However, the mechanism for the enhancement is still not well understood. In this paper, the crystal imperfections introduced by silicon substitution were studied using XRD and Raman spectroscopy. It was found that silicon substitution did not introduce microstrain, but deceased the crystal size in the hk0 direction. Three new vibration modes and peak broadening were observed in Raman spectra following silicon incorporation. The imperfections introduced by silicon substitution may play a role in enhancing bioactivity. A phenomenological relationship between the width of the PO4 v1 peak and crystal size was established.
NASA Astrophysics Data System (ADS)
Kaur, Pardeep; Singh, K. J.
2016-05-01
Bioactive sample with the nominal composition of 64SiO2-26CaO-5P2O5-5CuO has been prepared in the laboratory by using the sol-gel technique. The bioactivity of the prepared sample has been analyzed by using the Tris Simulated Body Fluid which has also been prepared in the laboratory. XRD and Raman techniques have been employedto probe the formation of hydroxyapatite layer. pH studies has also been undertaken to check the acidic/non-acidic behavior of sample. Growth of hydroxyapatite layer has been observed after one day on the surface of the sample. Moreover, sample has been observed to be non-acidic in nature.
Surface modification of calcium-copper hydroxyapatites using polyaspartic acid
NASA Astrophysics Data System (ADS)
Othmani, Masseoud; Aissa, Abdallah; Bachoua, Hassen; Debbabi, Mongi
2013-01-01
Mixed calcium-copper hydroxyapatite (Ca-CuHAp), with general formula Ca(10-x)Cux(PO4)6(OH)2, where 0 ≤ x ≤ 0.75 was prepared in aqueous medium in the presence of different concentrations of poly-L-aspartic acid (PASP). XRD, IR, TG-DTA, TEM-EDX, AFM and chemical analyses were used to characterize the structure, morphology and composition of the products. All techniques show the formation of new hybrid compounds Ca-CuHAp-PASP. The presence of the grafting moiety on the apatitic material is more significant with increasing of copper amount and/or organic concentration in the starting solution. These increases lead to the affectation of apatite crystallinity. The IR spectroscopy shows the conservation of (Psbnd OH) band of (HPO4)2- groups, suggesting that PASP acid was interacted only with metallic cations of hydroxyapatite.
Kwak, Dae Hyun; Lee, Eun Ju; Kim, Deug Joong
2014-11-01
Hydroxyapatite/cellulose acetate composite webs were fabricated by an electro-spinning process. This electro-spinning process makes it possible to fabricate complex three-dimensional shapes. Nano fibrous web consisting of cellulose acetate and hydroxyapatite was produced from their mixture solution by using an electro-spinning process under high voltage. The surface of the electro-spun fiber was modified by a plasma and alkaline solution in order to increase its bioactivity. The structure, morphology and properties of the electro-spun fibers were investigated and an in-vitro bioactivity test was evaluated in simulated body fluid (SBF). Bioactivity of the electro-spun web was enhanced with the filler concentration and surface treatment. The surface changes of electro-spun fibers modified by plasma and alkaline solution were investigated by FT-IR (Fourier Transform Infrared Spectroscopy) and XPS (X-ray Photoelectron Spectroscopy).
Coralline hydroxyapatite bone graft substitutes.
Elsinger, E C; Leal, L
1996-01-01
The authors present a review of the various bone grafts currently available with special attention to coral bone grafts. Several of the benefits of coralline hydroxyapatite bone graft substitutes, such as safety and biocompatibility, will be addressed in this article, part of an ongoing investigation of coral bone grafts used in triple arthrodesis procedures. To date, eight cases have been performed. In seven cases, granular chips were employed to pack the subtalar joint. The final case, presented in this article, represents a 26-year-old male who, 2 years previously, sustained a calcaneal fracture with resultant shortening along the lateral column. A coralline hydroxyapatite block was used at the calcaneocuboid joint to achieve distraction. Clinically, the patient is progressing well at 10 months postoperatively. Radiographically, one can still clearly appreciate the margins of the bone graft at 5 months.
NASA Astrophysics Data System (ADS)
de Araujo, T. S.; de Souza, S. O.; de Sousa, E. M. B.
2010-11-01
Biocompatible phosphate materials are used in different applications like bone and dental implants, drug delivery systems and others, but could also be applied in inorganic sunscreens. Using sunscreens is extremely necessary, because long time exposure to sun can cause skin cancer. In this work chemical precipitation method has been used to produce hydroxyapatite. Cr3+, Zn2+ and Fe3+ doped samples were characterized using powder X-Ray Diffraction (XRD) and Optical Absorption techniques. X-ray diffraction measurements confirmed the materials were in the expected crystalline structures. The crystallite size as measured from the X-ray pattern was 23-27 nm (±1). The absorption spectra in the ultraviolet and visible ranges indicate that appropriately doped and sized hydroxyapatite particles may have potential applications as active constituents of sunscreens.
Pereira, Bruno P G; Chang, Eric Y; Resnick, Donald L; Pathria, Mini N
2016-01-01
The intent of the study is to describe an unusual pattern of intramuscular migration of calcific deposits related to hydroxyapatite deposition disease (HADD) involving the rotator cuff, to illustrate the characteristic imaging features of this phenomenon, and to discuss the clinical significance of such migration. A series of cases of intramuscular accumulation of calcium hydroxyapatite crystals collected over a 7-year period at multiple hospitals within the same academic institution were retrospectively reviewed. The patient group was composed of seven men and four women, ranging in age from 51 to 79 years, with a mean age of 63 years. All subjects presented with acute shoulder pain. The majority of subjects reported the spontaneous onset of the symptoms (64%), while others reported weight lifting (27%) and a fall on the arm (9%) as the mechanisms of injury. The right shoulder was affected in 73% of the subjects. The supraspinatus was the most commonly affected muscle (82%), followed by the infraspinatus muscle (36%). Knowledge of the imaging features of intramuscular migration of hydroxyapatite deposits is important in order to avoid the erroneous diagnosis of other causes of muscle edema and inflammation such as myotendinous injury, myositis, subacute denervation, and neoplasm.
Handley-Sidhu, Stephanie; Mullan, Thomas K.; Grail, Quentin; Albadarneh, Malek; Ohnuki, Toshihiko; Macaskie, Lynne E.
2016-01-01
Anthropogenic radionuclides contaminate a range of environments as a result of nuclear activities, for example, leakage from waste storage tanks/ponds (e.g. Hanford, USA or Sellafield sites, UK) or as a result of large scale nuclear accidents (e.g. Chernobyl, Ukraine or Fukushima, Japan). One of the most widely applied remediation techniques for contaminated waters is the use of sorbent materials (e.g. zeolites and apatites). However, a key problem at nuclear contaminated sites is the remediation of radionuclides from complex chemical environments. In this study, biogenic hydroxyapatite (BHAP) produced by Serratia sp. bacteria was investigated for its potential to remediate surrogate radionuclides (Sr2+ and Co2+) from environmentally relevant waters by varying pH, salinity and the type and concentration of cations present. The sorption capacity of the BHAP for both Sr2+ and Co2+ was higher than for a synthetically produced hydroxyapatite (HAP) in the solutions tested. BHAP also compared favorably against a natural zeolite (as used in industrial decontamination) for Sr2+ and Co2+ uptake from saline waters. Results confirm that hydroxyapatite minerals of high surface area and amorphous calcium phosphate content, typical for biogenic sources, are suitable restoration or reactive barrier materials for the remediation of complex contaminated environments or wastewaters. PMID:26988070
Hydroxyapatite ceramic implants for cranioplasty in children: a single-center experience.
Zaccaria, Laura; Tharakan, Sasha Job; Altermatt, Stefan
2017-02-01
The use of hydroxyapatite ceramic (HAC) implants for the treatment of skull defects in pediatric patients started 2010 at our institution. Ceramic implants facilitate osteoblast migration and therefore optimize osteointegration with the host bone. The purpose of this study is to report a single-center experience with this treatment modality. A retrospective review of all patients from July 2010 through June 2014 undergoing a cranioplasty using hydroxyapatite ceramic implant and managed at a single institution was performed. Indication for cranioplasty, the hospital course, and follow-up were reviewed. Bone density was measured in Hounsfield Units (HU) and osteointegration was calculated using Mimics Software® (Mimics Innovation Suite v17.0 Medical, Materialize, Leuven, Belgium). Over the 4-year period, six patients met criteria for the study. Five patients had an osteointegration of nearly 100%. One patient had an incomplete osteointegration with a total bone-implant contact area of 69%. The mean bone density was 2800 HU (2300-3000 HU). Bone density alone is estimated to have a Hounsfield value between 400 and 2000 HU depending on the body region and bone quality. There were no major complications, and the patients were highly satisfied with the esthetical result. Hydroxyapatite ceramic implants for cranioplasty in pediatric patients are a good choice for different indications. The implants show excellent osteointegration and esthetical results.
Kim, Hyoungmin; Lee, Choon-Ki; Yeom, Jin-Sup; Lee, Jae-Hyup; Lee, Ki-Ho; Chang, Bong-Soon
2012-07-01
To evaluate whether a synthetic bone chip made of porous hydroxyapatite can effectively extend local decompressed bone graft in instrumented posterior lumbar interbody fusion (PLIF). 130 patients, 165 segments, who had undergone PLIF with cages and instrumentation for single or double level due to degenerative conditions, were investigated retrospectively by independent blinded observer. According to the material of graft, patients were divided into three groups. HA group (19 patients, 25 segments): with hydroxyapatite bone chip in addition to autologous local decompressed bone, IBG group (25 patients, 28 segments): with autologous iliac crest bone graft in addition to local decompressed bone and LB group (86 patients, 112 segments): with local decompressed bone only. Radiologic and clinical outcome were compared among groups and postoperative complications, transfusion, time and cost of operation and duration of hospitalization were also investigated. Radiologic fusion rate and clinical outcome were not different. Economic cost, transfusion and hospital stay were also similar. But operation time was significantly longer in IBG group than in other groups. There were no lasting complications associated with HA and LB group with contrast to five cases with persisting donor site pain in IBG group. Porous hydroxyapatite bone chip is a useful bone graft extender in PLIF when used in conjunction with local decompressed bone.
NASA Astrophysics Data System (ADS)
Handley-Sidhu, Stephanie; Mullan, Thomas K.; Grail, Quentin; Albadarneh, Malek; Ohnuki, Toshihiko; Macaskie, Lynne E.
2016-03-01
Anthropogenic radionuclides contaminate a range of environments as a result of nuclear activities, for example, leakage from waste storage tanks/ponds (e.g. Hanford, USA or Sellafield sites, UK) or as a result of large scale nuclear accidents (e.g. Chernobyl, Ukraine or Fukushima, Japan). One of the most widely applied remediation techniques for contaminated waters is the use of sorbent materials (e.g. zeolites and apatites). However, a key problem at nuclear contaminated sites is the remediation of radionuclides from complex chemical environments. In this study, biogenic hydroxyapatite (BHAP) produced by Serratia sp. bacteria was investigated for its potential to remediate surrogate radionuclides (Sr2+ and Co2+) from environmentally relevant waters by varying pH, salinity and the type and concentration of cations present. The sorption capacity of the BHAP for both Sr2+ and Co2+ was higher than for a synthetically produced hydroxyapatite (HAP) in the solutions tested. BHAP also compared favorably against a natural zeolite (as used in industrial decontamination) for Sr2+ and Co2+ uptake from saline waters. Results confirm that hydroxyapatite minerals of high surface area and amorphous calcium phosphate content, typical for biogenic sources, are suitable restoration or reactive barrier materials for the remediation of complex contaminated environments or wastewaters.
Functional outcome of vocal fold medialization thyroplasty with a hydroxyapatite implant.
Storck, Claudio; Brockmann, Meike; Schnellmann, Elvira; Stoeckli, Sandro J; Schmid, Stephan
2007-06-01
Unilateral vocal fold paralysis can cause a persistent incomplete glottal closure during phonation, resulting in impaired voice function. The aim of this study was to evaluate functional results of medialization thyroplasty using a hydroxyapatite implant (VoCoM). Prospective observational cohort study. Between 1999 and 2003, a total of 26 patients (19 men, 7 women) undergoing medialization thyroplasty using a hydroxyapatite implant because of unilateral vocal fold paralysis were enrolled in the study. To evaluate voice function, the following parameters were measured preoperatively and postoperatively: mean fundamental frequency, mean sound pressure level, frequency and amplitude range (voice range profile), and maximum phonation time. A perceptual assessment of hoarseness was conducted using the Roughness, Breathiness, Hoarseness scale. Furthermore, the magnitude of voice related impairment of the patient's communication skills was rated on a 7-point scale. A combined parameter called the Voice Dysfunction Index (VDI) was used to rate vocal performance. All patients showed a statistically significant improvement in the VDI, in perceptual voice analysis, in maximum phonation time, and in the dynamic range of voice. One patient experienced a postoperative wound hemorrhage as a minor complication. No further complications or implant extrusions were observed. Medialization thyroplasty using a hydroxyapatite implant is a secure and efficient phonosurgical procedure. Voice quality and patient satisfaction improve significantly after treatment.
Fahami, Abbas; Beall, Gary W; Betancourt, Tania
2016-02-01
Chlorine and fluorine substituted hydroxyapatites (HA-Cl-F) with different degrees of ion replacement were successfully prepared by the one step mechanochemical activation method. X-ray diffraction (XRD) and FT-IR spectra indicated that substitution of these anions in milled powders resulted in the formation of pure hydroxyapatite phase except for the small observed change in the lattice parameters and unit cell volumes of the resultant hydroxyapatite. Microscopic observations showed that the milled product had a cluster-like structure made up of polygonal and spherical particles with an average particle size of approximately ranged from 20±5 to 70±5nm. The zeta potential of milled samples was performed at three different pH (5, 7.4, and 9). The obtained zeta potential values were negative for all three pH values. Negative zeta potential was described to favor osseointegration, apatite nucleation, and bone regeneration. The bioactivity of samples was investigated on sintered pellets soaked in simulated body fluid (SBF) solution and apatite crystals formed on the surface of the pellets after being incubated for 14days. Zeta potential analysis and bioactivity experiment suggested that HA-Cl-F will lead to the formation of new apatite particles and therefore be a potential implant material. Copyright © 2015 Elsevier B.V. All rights reserved.
On the fate of particles liberated from hydroxyapatite coatings in vivo.
Dunne, C F; Gibbons, J; FitzPatrick, D P; Mulhall, K J; Stanton, K T
2015-03-01
Hydroxyapatite (HA) has been used as a coating for orthopaedic implants for over 30 years to help promote the fixation of orthopaedic implants into the surrounding bone. However, concerns exist about the fate of the hydroxyapatite coating and hydroxyapatite particles in vivo, especially in the wake of recent concerns about particulates from metal-on-metal bearings. Here, we assess the mechanisms of particle detachment from coated orthopaedic devices as well as the safety and performance concerns and biomedical implications arising from the liberation of the particles by review of the literature. The mechanisms that can result in the detachment of the HA coating from the implant can be mechanical or biochemical, or both. Mechanical mechanisms include implant insertion, abrasion, fatigue and micro-motion. Biochemical mechanisms that contribute to the liberation of HA particles include dissolution into extra-cellular fluid, cell-mediated processes and crystallisation of amorphous phases. The form the particles take once liberated is influenced by a number of factors such as coating method, the raw powder morphology, processing parameters, coating thickness and coating structure. This review summarises and discusses each of these factors and concludes that HA is a safe biomimetic material to use as a coating and does not cause any problems in particulate form if liberated as debris from an orthopaedic implant.
In vitro electromagnetically stimulated SAOS-2 osteoblasts inside porous hydroxyapatite
Fassina, Lorenzo; Saino, Enrica; Sbarra, Maria Sonia; Visai, Livia; De Angelis, Maria Gabriella Cusella; Magenes, Giovanni; Benazzo, Francesco
2009-01-01
One of the key challenges in reconstructive bone surgery is to provide living constructs that possess the ability to integrate in the surrounding tissue. Bone graft substitutes, such as autografts, allografts, xenografts, and biomaterials have been widely used to heal critical-size long bone defects due to trauma, tumor resection, congenital deformity, and tissue degeneration. In particular, porous hydroxyapatite is widely used in reconstructive bone surgery owing to its biocompatibility. In addition, the in vitro modification of hydroxyapatite with osteogenic signals enhances the tissue regeneration in vivo, suggesting that the biomaterial modification could play an important role in tissue engineering. In this study we have followed a biomimetic strategy where electromagnetically stimulated SAOS-2 human osteoblasts proliferated and built their extracellular matrix inside a porous hydroxyapatite scaffold. The electromagnetic stimulus had the following parameters: intensity of the magnetic field equal to 2 mT, amplitude of the induced electric tension equal to 5 mV, frequency of 75 Hz, and pulse duration of 1.3 ms. In comparison with control conditions, the electromagnetic stimulus increased the cell proliferation and the surface coating with bone proteins (decorin, osteocalcin, osteopontin, type-I collagen, and type-III collagen). The physical stimulus aimed at obtaining a better modification of the biomaterial internal surface in terms of cell colonization and coating with bone matrix. PMID:19827111
Wang, Li; Li, Yong-Hua; Ji, Yan-Fang; Yang, Lin-Sheng; Li, Hai-Rong; Zhang, Xiu-Wu; Yu, Jiang-Ping
2011-07-01
The composite agents containing potassium chloride (KCl) and Hydroxyapatite (HA) were used to remediate the lead and cadmium contaminated soil in Fenghuang lead-zinc mining-smelting areas, Hunan province. The objective of this study was to identify and evaluate the influence of Cl- to the fixing efficiency of Pb and Cd by HA. Two types of contaminated soil (HF-1, HF-2) were chosen and forty treatments were set by five different Hydroxyapatite (HA) dosages and four different Cl- dosages. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the results. It showed that HA could efficiently fix the Pb and Cd from TCLP form. The maximum Pb-fixing efficiency and Cd-fixing efficiency of two types of soil were 83.3%, 97.27% and 35.96%, 57.82% when the HA: Pb: KCl molar ratio was 8: 1: 2. Compared to the fixing efficiency without KCl, KCl at the KCl: Pb molar ratio of 2 improved Pb-fixing efficiency and Cd-fixing efficiency by 6.26%, 0.33% and 7.74%, 0.83% respectively when the HA: Pb molar ratio was 8. Generally, Cl- can improve the Pb/Cd-fixing efficiency in heavy metal contaminated soil by Hydroxyapatite.
Femtosecond laser ablation of enamel
NASA Astrophysics Data System (ADS)
Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui
2016-06-01
The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.
NASA Astrophysics Data System (ADS)
Safuan, Nadia; Sukmana, Irza; Kadir, Mohammed Rafiq Abdul; Noviana, Deni
2014-04-01
Porous tantalum has been used as an orthopedic implant for bone defects as it has a good corrosion resistance and fatigue behaviour properties. However, there are some reports on the rejection of porous Ta after the implantation. Those clinical cases refer to the less bioactivity of metallic-based materials. This study aims to evaluate hydroxyapatite coated and uncoated porous Tantalum in order to improve the biocompatibility of porous tantalum implant and osseointegration. Porous tantalum was used as metallic-base substrate and hydroxyapatite coating has been done using plasma-spraying technique. Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) techniques were utilizes to investigate the coating characteristics while Confocal Raman Microscopy to investigate the interface and image. The effect of coating to the corrosion behaviour was assessed by employing potentiodynamic polarization tests in simulated body fluid at 37±1 °C. Based on SEM and FESEM results, the morphologies as well the weight element consists in the uncoated and hydroxyapatite coated porous tantalum were revealed. The results indicated that the decrease in corrosion current density for HA coated porous Ta compared to the uncoated porous Ta. This study concluded that by coating porous tantalum with HA supports to decrease the corrosion rate of pure porous.
Synthesis of fluorapatite–hydroxyapatite nanoparticles and toxicity investigations
Montazeri, N; Jahandideh, R; Biazar, Esmaeil
2011-01-01
In this study, calcium phosphate nanoparticles with two phases, fluorapatite (FA; Ca10(PO4)6F2) and hydroxyapatite (HA; Ca10(PO4)6(OH)2), were prepared using the solgel method. Ethyl phosphate, hydrated calcium nitrate, and ammonium fluoride were used, respectively, as P, Ca, and F precursors with a Ca:P ratio of 1:72. Powders obtained from the sol-gel process were studied after they were dried at 80°C and heat treated at 550°C. The degree of crystallinity, particle and crystallite size, powder morphology, chemical structure, and phase analysis were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Zetasizer experiments. The results of XRD analysis and FTIR showed the presence of hydroxyapatite and fluorapatite phases. The sizes of the crystallites estimated from XRD patterns using the Scherrer equation and the crystallinity of the hydroxyapatite phase were about 20 nm and 70%, respectively. Transmission electron microscope and SEM images and Zetasizer experiments showed an average size of 100 nm. The in vitro behavior of powder was investigated with mouse fibroblast cells. The results of these experiments indicated that the powders were biocompatibile and would not cause toxic reactions. These compounds could be applied for hard-tissue engineering. PMID:21499417
Hydroxyapatite-TiO2-SiO2-Coated 316L Stainless Steel for Biomedical Application
NASA Astrophysics Data System (ADS)
Sidane, Djahida; Khireddine, Hafit; Bir, Fatima; Yala, Sabeha; Montagne, Alex; Chicot, Didier
2017-07-01
This study investigated the effectiveness of titania (TiO2) as a reinforcing phase in the hydroxyapatite (HAP) coating and silica (SiO2) single layer as a bond coat between the TiO2-reinforced hydroxyapatite (TiO2/HAP) top layer and 316L stainless steel (316L SS) substrate on the corrosion resistance and mechanical properties of the underlying 316L SS metallic implant. Single layer of SiO2 film was first deposited on 316L SS substrate and studied separately. Water contact angle measurements, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrophotometer analysis were used to evaluate the hydroxyl group reactivity at the SiO2 outer surface. The microstructural and morphological results showed that the reinforcement of HAP coating with TiO2 and SiO2 reduced the crystallite size and the roughness surface. Indeed, the deposition of 50 vol pct TiO2-reinforced hydroxyapatite layer enhanced the hardness and the elastic modulus of the HAP coating, and the introduction of SiO2 inner layer on the surface of the 316L SS allowed the improvement of the bonding strength and the corrosion resistance as confirmed by scratch studies, nanoindentation, and cyclic voltammetry tests.
Biomimetic synthesis of hierarchical crystalline hydroxyapatite fibers in large-scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Chaogang; Ge, Suxiang; Huang, Baojun
Highlights: ► Crystalline hierarchical hydroxyapatite (HAp) fibers are synthesized. ► We employ a biomimetic route by using cotton cloth as a natural bio-template. ► We study the effects of pH, ultrasonic cleaning time, and calcination temperature. ► We obtain an optimized reaction condition. ► This is a low cost method for production of hierarchical HAp fibers. -- Abstract: Crystalline hierarchical hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HAp)] fibers were successfully synthesized via a biomimetic route by using cotton cloth as a natural bio-template. The effects of pH value, aging time, ultrasonic cleaning time, and calcination temperature on the purity andmore » morphology of the resulting hydroxyapatite (HAp) were monitored by scanning election microscope (SEM), X-ray diffraction (XRD), and infrared spectrophotometer (IR) to obtain an optimized reaction condition, namely, pH 9, ultrasonic cleaning for 1 min, aging for 24 h, and calcination at 600 °C for 4 h. We found that the natural cellulose could not only control the morphology of HAp but also lower its phase transformation temperature. The impact of this method lies in its low cost and successful production of large-scale patterning of three-dimensional hierarchical HAp fibers.« less
Design of Natural Hydroxyapatite as bio-composite ceramics (HAP): Experimental and Numerical Study
NASA Astrophysics Data System (ADS)
Belghazi, Z.; Katundi, D.; Ayari, F.; Bayraktar, E.
2011-01-01
Hydroxyapatite (HAP—Ca10(PO4)6 (OH)2), which exhibits excellent biocompatibility in the body, is one of the most widely used bioactive ceramics for biomedical applications. Along with the ability to carry the load, one of the most important properties of materials used for bone replacement is biocompatibility. In fact, HAP is a bioactive material and it can incorporate into bone structures, supporting bone in-growth without breaking down or dissolving, and it interacts with the living tissue due to the presence of free calcium and phosphate compounds. Generally, Al2O3 powder is added to HAP powder in order to obtain high fracture toughness. Al2O3 has good mechanical properties as compared with HAP, and exhibits extremely high stability with human tissues [1-6]. In this paper, the effect of microwave sintering temperature on the relative density, hardness, and phase purity of compacted bovine Hydroxyapatite (BHA) powder was reported. This research is a comprehensive attempt to develop Hydroxyapatite bio composite ceramics reinforced with alumina—Al2O3, pure titanium and pure pulverised boron powder. A Finite Element (FEM) analysis is also used for modelling to simulate the macroscopic behaviour of this material, taking into account the relevant microscopic scales.
Pistone, Alessandro; Iannazzo, Daniela; Panseri, Silvia; Montesi, Monica; Tampieri, Anna; Galvagno, Signorino
2014-10-24
New magnetic hydroxyapatite-based nanomaterials as bone-specific systems for controlled drug delivery have been synthesized. The synthesized hydroxyapatite, HA, decorated with magnetite nanoparticles by a deposition method (HA/Fe3O4) and the nanocomposite system obtained using magnetic multi-walled carbon nanotubes (HA/MWCNT/Fe3O4) as a filler for HA have been characterized by chemical and morphological analyses, and their biological behavior was investigated. The systems have also been doped with clodronate in order to combine the effect of bone biomineralization induced by hydroxyapatite-based composites with the decrease of osteoclast formation induced by the drug. An analysis of the preosteoclastic RAW264.7 cell proliferation by MTT assay confirmed the high biocompatibility of the three systems. TRAP staining of RAW 264.7 conditioned with sRAKL to induce osteoclastogenesis, cultured in the presence of the systems doped and undoped with clodronate, showed the inhibitory effect of clodronate after we counted the MNC TRAP(+)cells but only in the osteoclast formation; in particular, the system HA/Fe3O4-Clo exerted a high inhibitory effect compared to the drug alone. These results demonstrate that the synthesized nanocomposites are a biocompatible magnetic drug delivery system and can represent a useful multimodal platform for applications in bone tissue engineering.
Massaro, C; Baker, M A; Cosentino, F; Ramires, P A; Klose, S; Milella, E
2001-01-01
Hydroxyapatite coatings have been deposited on titanium cp by plasma spray, sol-gel, and sputtering techniques for dental implant applications. The latter two techniques are of current interest, as they allow coatings of micrometer dimensions to be deposited. Coating morphology, composition, and structure have been investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). All coatings were homogeneous and exhibited a rough morphology suitable for implant applications. The sputtered (after annealing), plasma spray, and sol-gel coatings all showed diffraction peaks corresponding to hydroxyapatite. The surface contaminants were observed to be different for the different coating types. The sputtered coatings were found to have a composition most similar to hydroxyapatite; the sol-gel deposits also showed a high concentration of hydroxyl ions. A discrepancy in the Ca/P ratio was observed for the plasma spray coatings, and a small concentration of carbonate ions was found in the sputter-deposited coatings. The in vitro cell-culture studies using MG63 osteoblast-like cells demonstrated the ability of cells to proliferate on the materials tested. The sol-gel coating promotes higher cell growth, greater alkaline phosphatase activity, and greater osteocalcin production compared to the sputtered and plasma-sprayed coatings. Copyright 2001 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Ulfyana, D.; Anugroho, F.; Sumarlan, S. H.; Wibisono, Y.
2018-03-01
Fish scales biowaste contain high collagens and calcium phosphates, therefore have considerable potential as raw material for value-added biomaterial such as hydroxyapatite (HAp). HAp is the main constituent component of hard tissue such as bone and teeth in the human body and is known as bioceramic materials. In this work, wet chemical precipitation method was used to syntesize HAp from Red Snapper Fish (Lutjanus campechanus) Scales. Two variations of calcination temperatures of 600°C (FHAp1) and 800°C (FHAp2) were conducted for 5 hours. The results showed calcium content from biowaste of red snapper fish scale was 83.62%. FTIR result shows that PO4 3-, OH-, and CO3 2- functional groups presence as indicates the formation of HAp. XRD result showed the degree of crystallinity for FHAp1 and FHAp2 were 75.52% and 79.20%, respectively. The degree of crystallinity is in accordance with ISO 13779-2:2000 standard in which the minimum degree of crystallinity of hydroxyapatite used for biomedical materials is 45%. Finally, Particle Size Analyzer (PSA) results show that the particle size distribution is evenly distributed, with the size of micro-scale hydroxyapatite particles, ranging from 5.76 μm to 132.64 μm.
Ready to Use Tissue Construct for Military Bone & Cartilage Trauma
2013-10-01
scaffolds composed of 90% poly-caprolactone (PCL) and 10% hydroxyapatite (HA) by weight (PCL+HA) without any seeding with either canine MSC or biologic...ligaments of the 5 knee. The implant consisted of a two layer Polycarprolacton (PCL) mixed with 10% hydroxyapatite (HA) scaffold with a 500 μm top...denoted by arrows, are apparent on both tibiae. Ratios of the biomechanical test parameters (experimental/control) in terms of percentage for
Promotion of osteogenesis by a piezoelectric biological ceramic.
Feng, J; Yuan, H; Zhang, X
1997-12-01
Hydroxyapatite (HA) ceramic and piezoelectric biological ceramic, hydroxyapatite and barium titanate (HABT), were implanted in the jawbones of dogs. Histological observation showed that, compared with HA ceramics, HABT promoted the growth and repair of the bone significantly, the tissue growth around the HABT ceramic was direction-dependent, the collagen arranged orderly and the bone grew orderly. The order growth of the bone increased the efficiency of osteogenesis on the surface of the implanted HABT ceramics.
Modification of the supramolecular structure of collagen with nanodisperse hydroxyapatite
NASA Astrophysics Data System (ADS)
Voloskova, E. V.; Berdnikova, L. K.; Poluboyarov, V. A.; Gur'yanova, T. I.
2015-02-01
The influence of nanodisperse particles of hydroxyapatite on the structure of films based on collagen with a molecular mass of 360 kDa was studied. When coatings formed, the collagen macromolecules aggregated into spherulites; modification led to structural changes related to the decomposition of the spherulite structure and the formation of a grain structure. The variation of the physicomechanical properties of film materials directly depends on the size of the structural units.
Sola, Daniel; Paulés, Daniel; Grima, Lorena
2017-01-01
Laser-induced breakdown spectroscopy (LIBS) is applied to characterize the formation of porous hydroxyapatite layers on the surface of 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass immersed in simulated body fluid (SBF). Compositional and structural characterization analyses were also conducted by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and micro-Raman spectroscopy. PMID:29211006
Cementless Hydroxyapatite Coated Hip Prostheses
Herrera, Antonio; Mateo, Jesús; Gil-Albarova, Jorge; Lobo-Escolar, Antonio; Ibarz, Elena; Gabarre, Sergio; Más, Yolanda
2015-01-01
More than twenty years ago, hydroxyapatite (HA), calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality. PMID:25802848
Otten, Volker T C; Crnalic, Sead; Röhrl, Stephan M; Nivbrant, Bo; Nilsson, Kjell G
2016-01-01
Screws, pegs and hydroxyapatite-coating are used to enhance the primary stability of uncemented cups. We present a 14-year follow-up of 48 hips randomized to four groups: press-fit only, press-fit plus screws, press-fit plus pegs and hydroxyapatite-coated cups. Radiostereometric migration measurements showed equally good stability regardless cup augmentation. The mean wear rate was high, 0.21 mm/year, with no differences between the groups. Seven hips had radiographical osteolysis but only in hips with augmented cups. Cups without screw-holes compared with cups with screw-holes resulted in better clinical outcome at the 14-year follow-up. Thus, augmentation of uncemented cups with screws, pegs, or hydroxyapatite did not appear to improve the long-term stability compared with press-fit only. Copyright © 2016 Elsevier Inc. All rights reserved.
Reactive hydroxyapatite fillers for pectin biocomposites.
Munarin, Fabiola; Petrini, Paola; Barcellona, Giulia; Roversi, Tommaso; Piazza, Laura; Visai, Livia; Tanzi, Maria Cristina
2014-12-01
In this work, a novel injectable biocomposite hydrogel is produced by internal gelation, using pectin as organic matrix and hydroxyapatite either as crosslinking agent and inorganic reinforcement. Tunable gelling kinetics and rheological properties are obtained varying the hydrogels' composition, with the final aim of developing systems for cell immobilization. The reversibility by dissolution of pectin-hydroxyapatite hydrogels is achieved with saline solutions, to possibly accelerate the release of the cells or active agents immobilized. Texture analysis confirms the possibility of extruding the biocomposites from needles with diameters from 20 G to 30 G, indicating that they can be implanted with minimally-invasive approaches, minimizing the pain during injection and the side effects of the open surgery. L929 fibroblasts entrapped in the hydrogels survive to the immobilization procedure and exhibit high cell viability. On the overall, these systems result to be suitable supports for the immobilization of cells for tissue regeneration applications. Copyright © 2014 Elsevier B.V. All rights reserved.
In-vitro bioactivity of zirconia doped borosilicate glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samudrala, Rajkumar; Azeem, P. Abdul, E-mail: rk.satyaswaroop@gmail.com, E-mail: drazeem2002@yahoo.com
2015-06-24
Glass composition 31B{sub 2}O{sub 3}-20SiO{sub 2}-24.5Na{sub 2}O-(24.5-x) CaO-xZrO{sub 2} x=1,2,3,4,5 were prepared by melt-quenching Technique. The formation of hydroxyapatite layer on the surface of glasses after immersion in simulated body fluid (SBF) was explored through XRD, Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM-EDX) analyses. In this report, we observed that hydroxyapatite formation for 5days of immersion time. Also observed that with increasing the immersion time up to 15days, higher amount of hydroxyapatite layer formation on the surface of glasses. The varying composition of zirconia in glass samples influences shown by XRD, FTIR studies. The present results indicate that,more » in-vitro bioactivity of glasses decreased with increasing zirconia incorporation.« less
Fujii, Syuji; Okada, Masahiro; Nishimura, Taiki; Maeda, Hayata; Sugimoto, Tatsuya; Hamasaki, Hiroyuki; Furuzono, Tsutomu; Nakamura, Yoshinobu
2012-05-15
Hydroxyapatite (HAp) nanoparticle-armored poly(ε-caprolactone) (PCL) microspheres were fabricated via a "Pickering-type" emulsion solvent evaporation method in the absence of any molecular surfactants. It was clarified that the interaction between carbonyl/carboxylic acid groups of PCL and the HAp nanoparticles at an oil-water interface played a crucial role in the preparation of the stable Pickering-type emulsions and the HAp nanoparticle-armored microspheres. The HAp nanoparticle-armored PCL microspheres were characterized in terms of size, size distribution, morphology, and chemical compositions using scanning electron microscopy, laser diffraction, energy dispersive X-ray microanalysis, and thermogravimetric analysis. The presence of HAp nanoparticles at the surface of the microspheres was confirmed by scanning electron microscopy and energy dispersive X-ray microanalysis. Pyrolysis of the PCL cores led to the formation of the corresponding HAp hollow microcapsules. Copyright © 2012 Elsevier Inc. All rights reserved.
Thampi, VV Anusha; Dhandapani, P; Manivasagam, Geetha; Subramanian, B
2015-01-01
Thin films of titanium carbonitride (TiCN) were fabricated by DC magnetron sputtering on medical grade steel. The biocompatibility of the coating was further enhanced by growing hydroxyapatite crystals over the TiCN-coated substrates using biologically activated ammonia from synthetic urine. The coatings were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM)-energy dispersive spectroscopy, and Raman spectroscopy. The electrochemical behavior of the coatings was determined in simulated body fluid. In addition, hemocompatibility was assessed by monitoring the attachment of platelets on the coating using SEM. The wettability of the coatings was measured in order to correlate with biocompatibility results. Formation of a coating with granular morphology and the preferred orientation was confirmed by SEM and X-ray diffraction results. The hydroxyapatite coating led to a decrease in thrombogenicity, resulting in controlled blood clot formation, hence demonstrating the hemocompatibility of the coating. PMID:26491312
Biocompatible inorganic nanoparticles for [18F]-fluoride binding with applications in PET imaging
Jauregui-Osoro, Maite; Williamson, Peter A.; Glaria, Arnaud; Sunassee, Kavitha; Charoenphun, Putthiporn; Green, Mark A.; Mullen, Gregory E. D.; Blower, Philip J.
2014-01-01
A wide selection of insoluble nanoparticulate metal salts was screened for avid binding of [18F]-fluoride. Hydroxyapatite and aluminium hydroxide nanoparticles showed particularly avid and stable binding of [18F]-fluoride in various biological media. The in vivo behaviour of the [18F]-labelled hydroxyapatite and aluminium hydroxide particles was determined by PET-CT imaging in mice. [18F]-labelled hydroxyapatite was stable in circulation and when trapped in various tissues (lung embolisation, subcutaneous and intramuscular), but accumulation in liver via reticuloendothelial clearance was followed by gradual degradation and release of [18F]-fluoride (over a period of 4 h) which accumulated in bone. [18F]-labelled aluminium hydroxide was also cleared to liver and spleen but degraded slightly even without liver uptake (subcutanenous and intramuscular). Both materials have properties that are an attractive basis for the design of molecular targeted PET imaging agents labelled with 18F. PMID:21394352
Morphology effect of nano-hydroxyapatite as a drug carrier of methotrexate.
Sun, Haina; Liu, Shanshan; Zeng, Xiongfeng; Meng, Xianguang; Zhao, Lina; Wan, Yizao; Zuo, Guifu
2017-09-13
In this study, morphology effect of nano-hydroxyapatite as a drug carrier was investigated for the first time. Hydroxyapatite/methotrexate (HAp/MTX) hybrids with different morphologies were successfully prepared in situ using polyethylene glycol (PEG) as a template. SEM, TEM, XRD and FTIR results confirmed that the hybrids of different morphologies (laminated, rod-like and spherical) with similar phase composition and functional groups were obtained by changing the preparation parameters. UV-Vis spectroscopy was used to identify the drug loading capacity and drug release mechanism of the three hybrids with different morphologies. It is concluded that the laminated hybrid exhibits a higher drug loading capacity compared to the other two hybrids, and all the three hybrids showed a sustained slow release which were fitted well by Bhaskar equation. Additionally, the result of in vitro bioassay test confirms that the inhibition efficacy of the three hybrids showed a positive correlation to the drug loading capacity.
Electrophoretic Deposition of Hydroxyapatite Film Containing Re-Doped MoS2 Nanoparticles
Shalom, Hila; Feldman, Yishay; Rosentsveig, Rita; Pinkas, Iddo; Kaplan-Ashiri, Ifat; Moshkovich, Alexey; Perfilyev, Vladislav; Rapoport, Lev
2018-01-01
Films combining hydroxyapatite (HA) with minute amounts (ca. 1 weight %) of (rhenium doped) fullerene-like MoS2 (IF) nanoparticles were deposited onto porous titanium substrate through electrophoretic process (EPD). The films were analyzed by scanning electron microscopy (SEM), X-ray diffraction and Raman spectroscopy. The SEM analysis showed relatively uniform coatings of the HA + IF on the titanium substrate. Chemical composition analysis using energy dispersive X-ray spectroscopy (EDS) of the coatings revealed the presence of calcium phosphate minerals like hydroxyapatite, as a majority phase. Tribological tests were undertaken showing that the IF nanoparticles endow the HA film very low friction and wear characteristics. Such films could be of interest for various medical technologies. Means for improving the adhesion of the film to the underlying substrate and its fracture toughness, without compromising its biocompatibility are discussed at the end. PMID:29495394
Microstructure and thermal characterization of dense bone and metals for biomedical use
NASA Astrophysics Data System (ADS)
Rodríguez, G. Peña; Calderón, A.; Hernández, R. A. Muñoz; Orea, A. Cruz; Méndez, M.; Sinencio, F. Sánchez
2000-10-01
We present a microstructural study and thermal diffusivity measurements at room temperature in two different sections of bull dense bone, bull bone and commercial hydroxyapatite, the last two in powder form. A comparison was realised between these measured values and those obtained from metallic samples frequently used in implants, as high purity titanium and 316L stainless steel. Our results show that the porosity and its orientation in the bone are two important factors for the heat flux through the bone. On the other hand, we obtained that the hydroxyapatite, in compact powder form, presents a thermal diffusivity value close to those obtained for the samples of bone which gives a good thermal agreement between these materials. Finally, it was obtained at one order of magnitude difference between the thermal diffusivity values of metallic samples and those corresponding values to bone and hydroxyapatite being this difference greater in titanium than in stainless steel.
Heidari, Fatemeh; Razavi, Mehdi; E Bahrololoom, Mohammad; Bazargan-Lari, Reza; Vashaee, Daryoosh; Kotturi, Hari; Tayebi, Lobat
2016-08-01
Chitosan (CS), hydroxyapatite (HA), and magnetite (Fe3O4) have been broadly employed for bone treatment applications. Having a hybrid biomaterial composed of the aforementioned constituents not only accumulates the useful characteristics of each component, but also provides outstanding composite properties. In the present research, mechanical properties of pure CS, CS/HA, CS/HA/magnetite, and CS/magnetite were evaluated by the measurements of bending strength, elastic modulus, compressive strength and hardness values. Moreover, the morphology of the bending fracture surfaces were characterized using a scanning electron microscope (SEM) and an image analyzer. Studies were also conducted to examine the biological response of the human Mesenchymal Stem Cells (hMSCs) on different composites. We conclude that, although all of these composites possess in-vitro biocompatibility, adding hydroxyapatite and magnetite to the chitosan matrix can noticeably enhance the mechanical properties of the pure chitosan. Copyright © 2016 Elsevier B.V. All rights reserved.
Thampi, V V Anusha; Dhandapani, P; Manivasagam, Geetha; Subramanian, B
2015-01-01
Thin films of titanium carbonitride (TiCN) were fabricated by DC magnetron sputtering on medical grade steel. The biocompatibility of the coating was further enhanced by growing hydroxyapatite crystals over the TiCN-coated substrates using biologically activated ammonia from synthetic urine. The coatings were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM)-energy dispersive spectroscopy, and Raman spectroscopy. The electrochemical behavior of the coatings was determined in simulated body fluid. In addition, hemocompatibility was assessed by monitoring the attachment of platelets on the coating using SEM. The wettability of the coatings was measured in order to correlate with biocompatibility results. Formation of a coating with granular morphology and the preferred orientation was confirmed by SEM and X-ray diffraction results. The hydroxyapatite coating led to a decrease in thrombogenicity, resulting in controlled blood clot formation, hence demonstrating the hemocompatibility of the coating.
Nguyen, Van Cuong; Pho, Quoc Hue
2014-01-01
An adsorbent called chitosan coated magnetic hydroxyapatite nanoparticles (CS-MHAP) was prepared with the purpose of improvement for the removal of Ni2+ ions and textile dye by coprecipitation. Structure and properties of CS-MHAP were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and vibrating sample magnetometer (VSM). Weight percent of chitosan was investigated by thermal gravimetric analysis (TGA). The prepared CS-MHAP presents a significant improvement on the removal efficiency of Ni2+ ions and reactive blue 19 dye (RB19) in comparison with chitosan and magnetic hydroxyapatite nanoparticles. Moreover, the adsorption capacities were affected by several parameters such as contact time, initial concentration, adsorbent dosage, and initial pH. Interestingly, the prepared adsorbent could be easily recycled from an aqueous solution by an external magnet and reused for adsorption with high removal efficiency. PMID:24592158
Effects of sintering temperature on electrical properties of sheep enamel hydroxyapatite
NASA Astrophysics Data System (ADS)
Dumludag, F.; Gunduz, O.; Kılıc, O.; Kılıc, B.; Ekren, N.; Kalkandelen, C.; Oktar, F. N.
2017-12-01
Bioceramics, especially calcium phosphate based bioceramics, whose examples are hydroxyapatite, and calcium phosphate powders have been widely used in the biomedical engineering applications. Hydroxyapatite (HA) is one of the most promising biomaterials, which are derived from natural sources, chemical method, animal like dental enamel and corals. The influence of sintering temperature on the electrical properties (i.e. DC conductivity, AC conductivity) of samples of sintered sheep enamel (SSSE) was studied in air and in vacuum ambient at room temperature. The sheep enamel were sintered at varying temperatures between 1000°C and 1300°C. DC conductivity results revealed that while dc conductivity of the SSSE decreases with increasing the sintering temperature in air ambient the values increased with increasing the sintering temperature in vacuum ambient. AC conductivity measurements were performed in the frequency range of 40 Hz - 105 Hz. The results showed that ac conductivity values decrease with increasing the sintering temperature.
Fabrication of hydroxyapatite ceramics with controlled pore characteristics by slip casting.
Yao, Xiumin; Tan, Shouhong; Jiang, Dongliang
2005-02-01
Porous hydroxyapatite (HAp) ceramics with controlled pore characteristics were fabricated using slip casting method by mixing PMMA with HAp powder. The optimum conditions of HAp slip for slip casting was achieved by employing various experimental techniques, zeta potential and sedimentation, as a function of pH of the slips in the pH range of 4-12. HAp suspensions displayed an absolute maximum in zeta potential values and a minimum in sedimentation height at pH 11.5. The optimal amount of dispersant for the HAp suspensions was found at 1.0 wt% according to the viscosity of 25 vol% HAp slurry. The rheological behaviour of HAp slurry displays a shear-thinning behavior without thixotropy, which is needed in slip casting processing. The pore characteristics of sintered porous hydroxyapatite bioceramics can be controlled by added PMMA particle size and volume. The obtained ceramics exhibit higher strength than those obtained by dry pressing.
Fabrication, characterization and fracture study of a machinable hydroxyapatite ceramic.
Shareef, M Y; Messer, P F; van Noort, R
1993-01-01
In this study the preparation of a machinable hydroxyapatite from mixtures of a fine, submicrometer powder and either a coarse powder composed of porous aggregates up to 50 microns or a medium powder composed of dense particles of 3 microns median size is described. These were characterized using X-ray diffraction, transmission and scanning electron microscopy and infra-red spectroscopy. Test-pieces were formed by powder pressing and slip casting mixtures of various combinations of the fine, medium and coarse powders. The fired test-pieces were subjected to measurements of firing shrinkage, porosity, bulk density, tensile strength and fracture toughness. The microstructure and composition were examined using scanning electron microscopy and X-ray diffraction. For both processing methods, a uniform interconnected microporous structure was produced of a high-purity hydroxyapatite. The maximum tensile strength and fracture toughness that could be attained while retaining machinability were 37 MPa and 0.8 MPa m1/2 respectively.
Hydroxyapatite: Vibrational spectra and monoclinic to hexagonal phase transition
NASA Astrophysics Data System (ADS)
Slepko, Alexander; Demkov, Alexander A.
2015-02-01
Fundamental studies of biomaterials are necessary to deepen our understanding of their degradation and to develop cure for related illnesses. Biomineral hydroxyapatite Ca10(PO4)6(OH)2 is the main mineral constituent of mammal bone, and its synthetic analogues are used in biomedical applications. The mineral can be found in either hexagonal or monoclinic form. The transformation between these two phases is poorly understood, but knowing its mechanism may be critical to reversing processes in bone related to aging. Using density functional theory, we investigate the mechanisms of the phase transformation and estimate the transition temperature to be 680 K in fair agreement with the experimental temperature of 470 K. We also report the heat capacity of hydroxyapatite and a peculiarity in its phonon dispersion that might allow for non-destructive measurements of the crystal composition with applications in preventive medical screening for bone mineral loss.
Saito, Maiko; Kurosawa, Yae; Okuyama, Tsuneo
2012-02-01
Antibody purification using proteins A and G has been a standard method for research and industrial processes. The conventional method, however, includes a three-step process, including buffer exchange, before chromatography. In addition, proteins A and G require low pH elution, which causes antibody aggregation and inactivates the antibody's immunity. This report proposes a two-step method using hydroxyapatite chromatography and membrane filtration, without proteins A and G. This novel method shortens the running time to one-third the conventional method for each cycle. Using our two-step method, 90.2% of the monoclonal antibodies purified were recovered in the elution fraction, the purity achieved was >90%, and most of the antigen-specific activity was retained. This report suggests that the two-step method using hydroxyapatite chromatography and membrane filtration should be considered as an alternative to purification using proteins A and G.
Sanli, Ilknur; Arts, Jacobus Johannes Christiaan; Geurts, Jan
2016-01-01
Stress shielding remains a concern in total hip arthroplasty. The consequences of stress shielding in hydroxyapatite-coated femoral component revisions were evaluated in a prospective cohort study. A total of 106 patients operated on by revision total hip arthroplasty were identified. Sixty-three patients were eligible for clinical and radiologic assessment of osseointegration, bone remodeling, and stress shielding. Five patients showed evidence of excessive stress shielding. One patient experienced a periprosthetic fracture. No adverse events occurred in the remaining patients with a low rate of thigh pain and reliable osseointegration. This is the only available study concerning mid- to long-term consequences of excessive stress shielding in hydroxyapatite-coated revision stems. We advocate surgeons using these stems to remain vigilant and be aware of possible stress shielding side effects. Copyright © 2016 Elsevier Inc. All rights reserved.
Mhaede, Mansour; Ahmed, Aymen; Wollmann, Manfred; Wagner, Lothar
2015-05-01
The present work investigates the effects of severe plastic deformation by cold rolling on the microstructure, the mechanical properties and the corrosion behavior of austenitic stainless steel (SS) 316Ti. Hydroxyapatite coating (HA) was applied on the deformed material to improve their corrosion resistance. The martensitic transformation due to cold rolling was recorded by X-ray diffraction spectra. The effects of cold rolling on the corrosion behavior were studied using potentiodynamic polarization. The electrochemical tests were carried out in Ringer's solution at 37±1 °C. Cold rolling markedly enhanced the mechanical properties while the electrochemical tests referred to a lower corrosion resistance of the deformed material. The best combination of both high strength and good corrosion resistance was achieved after applying hydroxyapatite coating. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhang, Min; Cai, Shu; Zhang, Feiyang; Xu, Guohua; Wang, Fengwu; Yu, Nian; Wu, Xiaodong
2017-06-01
In this work, a magnesium phytic acid/hydroxyapatite composite coating was successfully prepared on AZ31 magnesium alloy substrate by chemical conversion deposition technology with the aim of improving its corrosion resistance and bioactivity. The influence of hydroxyapatite (HA) content on the microstructure and corrosion resistance of the coatings was investigated. The results showed that with the increase of HA content in phytic acid solution, the cracks on the surface of the coatings gradually reduced, which subsequently improved the corrosion resistance of these coated magnesium alloy. Electrochemical measurements in simulated body fluid (SBF) revealed that the composite coating with 45 wt.% HA addition exhibited superior surface integrity and significantly improved corrosion resistance compared with the single phytic acid conversion coating. The results of the immersion test in SBF showed that the composite coating could provide more effective protection for magnesium alloy substrate than that of the single phytic acid coating and showed good bioactivity. Magnesium phytic acid/hydroxyapatite composite, with the desired bioactivity, can be synthesized through chemical conversion deposition technology as protective coatings for surface modification of the biodegradable magnesium alloy implants. The design idea of the new type of biomaterial is belong to the concept of "third generation biomaterial". Corrosion behavior and bioactivity of coated magnesium alloy are the key issues during implantation. In this study, preparation and corrosion behavior of magnesium phytic acid/hydroxyapatite composite coatings on magnesium alloy were studied. The basic findings and significance of this paper are as follows: 1. A novel environmentally friendly, homogenous and crack-free magnesium phytic acid/hydroxyapatite composite coating was fabricated on AZ31 magnesium alloy via chemical conversion deposition technology with the aim of enhancing its corrosion resistance and bioactivity. The chemical conversion coatings, which are formed through the reaction between the substrate and the environment, have attracted increasing attention owing to the relative low treatment temperature, favorable bonding to substrate and simple implementation process. 2. With the increasing of hydroxyapatite (HA) content, the crack width in the composite coatings and the thickness of the coatings exhibit obviously decreased. The reason is probably that when adding HA into the phytic acid solution, the amount of active hydroxyl groups in the phytic acid are reduced via forming the coordination bond between P-OH groups from phytic acid and P-OH groups from the surface of HA, thus decreasing the coating thickness and hydrogen formation, as well as avoiding coating cracking. 3. By adjusting the HA content to 45 wt.%, a dense and relatively smooth composite coating with ~1.4 μm thickness is obtained on magnesium alloy, and exhibits high corrosion resistance and good bioactivity when compared with the single phytic acid conversion coating.
Frohbergh, Michael E.; Katsman, Anna; Botta, Gregory P.; Lazarovici, Phillip; Schauer, Caroline L.; Wegst, Ulrike G. K.; Lelkes, Peter I.
2012-01-01
Reconstruction of large bone defects remains problematic in orthopedic and craniofacial clinical practice. Autografts are limited in supply and are associated with donor site morbidity while other materials show poor integration with the host’s own bone. This lack of integration is often due to the absence of periosteum, the outer layer of bone that contains osteoprogenitor cells and is critical for the growth and remodeling of bone tissue. In this study we developed a one-step platform to electrospin nanofibrous scaffolds from chitosan, which also contain hydroxyapatite nanoparticles and are crosslinked with genipin. We hypothesized that the resulting composite scaffolds represent a microenvironment that emulates the physical, mineralized structure and mechanical properties of non-weight bearing bone extracellular matrix while promoting osteoblast differentiation and maturation similar to the periosteum. The ultrastructure and physicochemical properties of the scaffolds were studied using scanning electron microscopy and spectroscopic techniques. The average fiber diameters of the electrospun scaffolds were 227±154 nm as spun, and increased to 335±119 nm after crosslinking with genipin. Analysis by X-ray diffraction, Fourier transformed infrared spectroscopy and energy dispersive spectroscopy confirmed the presence of characteristic features of hydroxyapatite in the composite chitosan fibers. The Young’s modulus of the composite fibrous scaffolds was 142±13 MPa, which is similar to that of the natural periosteum. Both pure chitosan scaffolds and composite hydroxyapatite-containing chitosan scaffolds supported adhesion, proliferation and osteogenic differentiation of mouse 7F2 osteoblast-like cells. Expression and enzymatic activity of alkaline phosphatase, an early osteogenic marker, were higher in cells cultured on the composite scaffolds as compared to pure chitosan scaffolds, reaching a significant, 2.4 fold, difference by day 14 (p<0.05). Similarly, cells cultured on hydroxyapatite-containing scaffolds had the highest rate of osteonectin mRNA expression over 2 weeks, indicating enhanced osteoinductivity of the composite scaffolds. Our results suggest that crosslinking electrospun hydroxyapatite-containing chitosan with genipin yields bio-composite scaffolds, which combine non-weight-bearing bone mechanical properties with a periosteum-like environment and facilitate the proliferation, differentiation and maturation of osteoblast-like cells. We propose that these scaffolds might be useful for the repair and regeneration of maxillofacial defects and injuries. PMID:23022346
Did template-directed nucleation precede molecular replication?
NASA Technical Reports Server (NTRS)
Orgel, Leslie E.
1986-01-01
It is proposed that mononucleotides incorporated into the surfaces of microcrystals of inorganic phosphates such as hydroxyapatite can act as templates to assemble complementary mononucleotides from solution, and that the phosphate groups of the assembled nucleotides can facilitate nucleation of a second hydroxyapatite crystal. This would provide a mechanism of replication that is subject to natural selection. The possible role of a replicating system of this kind in the origins of life on the earth is discussed.
An Injectable Method for Posterior Lateral Spine Fusion
2013-09-01
any problems that would prevent us from reaching our proposed goals. We have begun to establish optimal parameters for encapsulation of the MSCs...783–799 (2009). 3. U. Heise, J. F. Osborn, and F. Duwe, “ Hydroxyapatite ceramic as a bone substitute,” Int. Orthop. 14(3), 329–338 (1990). 4. H...gel and porous hydroxyapatite for posterolateral lumbar spine fusion,” Spine 30(10), 1134–1138 (2005). 9. M. R. Urist, “Bone: formation by
Development of Biodegradable Implants for Use in Maxillofacial Surgery
1988-09-23
Previous edit,ons are obsolete EC1_4 ’ Y C ,S ’iCAT ON OF 7±5S aGE I"L{..-. { ~; ABBREVIATIONS poly(DL-lactide) (DL-PLA) poly(L-lactide) (L-PLA...modulus of L-PLA plates ........... ......................... 53 13 Non-coated hydroxyapatite particles after drying .............. 59 14 Hydroxyapatite ...77 (continued) ix LIST OF FIGURES (continued) Fieure age 23 Drawing No. 1 scale: 1/2" - 1" iaterial:alumina (99.7% A1203
Investigation into the Depth of Cure of Resin-Modified Glass-Ionomer Restorative Materials
2006-08-01
al?2 studied the acid/base reaction of glass ionomer cements using Raman spectroscopy and confirmed the necessity of water availability for the acid...exchange layer." In the ion-exchange layer, Wilson et al.48 postulated the formation of an ionic bond between the polyacrylic acid and the hydroxyapatite ...investigators further detailed the interaction between the polyalkenoic acids and hydroxyapatite in a later report?’ The bonding of RMGI to dentin was
Development of a Calcifiable Matrix for Bone Formation.
1987-09-01
Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE 4 ! Ir .€ w)N "," f " f " W"€ r ,. . , a v " -.-. ,. . P "w...process is hydroxyapatite *o(15). It was the purpose of our study to determine if three different doses of -.ofour variations of the polypentapeptide...phosphate would bind until a cascading series of events led to calcium phosphate deposition and its conversion to hydroxyapatite . The validity of this
Tredwin, Christopher J; Young, Anne M; Abou Neel, Ensanya A; Georgiou, George; Knowles, Jonathan C
2014-01-01
Hydroxyapatite (HA), fluor-hydroxyapatite (FHA) with varying levels of fluoride ion substitution and fluorapatite (FA) were synthesised by the sol-gel method as possible implant coating or bone-grafting materials. Calcium nitrate and triethyl phosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride were incorporated for the preparation of the FHA and FA sol-gels. After heating and powdering the sol-gels, dissolution behaviour was assessed using ion chromatography to measure Ca(2+) and PO4 (3-) ion release. Biological behaviour was assessed using cellular proliferation with human osteosarcoma cells and alamarBlue™ assay. Statistical analysis was performed with a two way analysis of variance and post hoc testing with a Bonferroni correction. Increasing fluoride substitution into an apatite structure decreased the dissolution rate. Increasing the firing temperature of the HA, FHA and FA sol-gels up to 1,000 °C decreased the dissolution rate. There was significantly higher cellular proliferation on highly substituted FHA and FA than on HA or Titanium. The properties of an implant coating or bone grafting material can be tailored to meet specific requirements by altering the amount of fluoride that is incorporated into the original apatite structure. The dissolution behaviour can further be altered by the temperature at which the sol-gel is fired.
NASA Astrophysics Data System (ADS)
Tamagawa, Hiroki; Tenkumo, Taichi; Sugaya, Tsutomu; Kawanami, Masamitsu
2012-12-01
AimThe purpose of this study was to evaluate the effects of the addition of nano-hydroxyapatite to a collagen membrane-carrier of recombinant human bone morphogenetic protein-2 (rhBMP-2) on hard tissue formation and dentin resorption on dentin surfaces in vivo. Materials and methodsNano-hydroxyapatite collagen composite (nHAC) membranes or collagen (C) membranes were each immersed in either 100 or 400 μg/ml rhBMP-2 and placed on dentin chips that were implanted into rat thigh muscle. The implants were analyzed at 2 or 4 weeks after surgery by histological observation and histomorphometric analysis. ResultsThe percentage of the hard tissue formed by each nHAC group was significantly higher than that formed by any of the C groups, except for that formed by the group loaded with 400 μg/ml rhBMP-2 at 4 weeks after implantation. No significant differences were observed in the percentage of dentin resorption between the nHAC groups and C groups at any stage or at any rhBMP-2 concentration. ConclusionThese findings showed that addition of nano-hydroxyapatite to a collagen membrane accelerated the formation of hard tissue induced by a low dose of rhBMP-2 on dentin surfaces at an early stage after implantation into rat thigh muscle, without increasing dentin resorption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Lina; He, Xiaomei; Wu, Zhenyu, E-mail: zhenyuwuhn@sina.com
Highlights: • Mesoporous Fe{sub 3}O{sub 4}/hydroxyapatite composite was synthesized by a simple, efficient and environmental friendly method. • The prepared material had a large surface area, high pore volume, and good magnetic separability. • DOX-loaded Fe{sub 3}O{sub 4}/hydroxyapatite composite exhibited surprising slow drug release behavior and pH-dependent behavior. - Abstract: In this contribution, we introduced a simple, efficient, and green method of preparing a mesoporous Fe{sub 3}O{sub 4}/hydroxyapatite (HA) composite. The as-prepared material had a large surface area, high pore volume, and good magnetic separability, which made it suitable for targeted drug delivery systems. The chemotherapeutic agent doxorubicin (DOX) wasmore » used to investigate the drug release behavior of Fe{sub 3}O{sub 4}/HA composite. The drug release profiles displayed a little burst effect and pH-dependent behavior. The release rate of DOX at pH 5.8 was larger than that at pH 7.4, which could be attributed to DOX protonation in acid medium. In addition, the released DOX concentrations remained at 0.83 and 1.39 μg/ml at pH 7.4 and 5.8, respectively, which indicated slow, steady, and safe release rates. Therefore, the as-prepared Fe{sub 3}O{sub 4}/hydroxyapatite composite could be an efficient platform for targeted anticancer drug delivery.« less
Simionescu, Bogdan C; Drobota, Mioara; Timpu, Daniel; Vasiliu, Tudor; Constantinescu, Cristina Ana; Rebleanu, Daniela; Calin, Manuela; David, Geta
2017-12-01
Nano-hydroxyapatite (nHAp), surface functionalized with linear polyethylenimine (LPEI), was used for the preparation of biocomposites in combination with biopolymers and poly(ε-caprolactone) (PCL), by cryogelation technique, to yield biomimetic scaffolds with controlled interconnected macroporosity, mechanical stability, and predictable degradation behavior. The structural characteristics, swelling and degradation behavior of hydroxyapatite and hydroxyapatite/β-tricalcium phosphate (β-TCP) filled matrices were investigated as compared to the corresponding naked polymer 3D system. It was found that the homogeneity and cohesivity of the composite are significantly dependent on the size and amount of the included inorganic particles, which are thus determining the structural parameters. Surface modification with LPEI and nanodimensions favored the nHAp integration in the organic matrix, with preferential location along protein fibers, while β-TCP microparticles induced an increased disorder in the hybrid system. The biocomposite including nHAp only was further investigated targeting biomedical uses, and proved to be non-cytotoxic and capable of acting as gene-activated matrix (GAM). It allowed sustained delivery over time (until 22days) of embedded PEI 25 -pDNA polyplexes at high levels of transgene expression, while insuring a decrease in cytotoxicity as compared to polyplexes alone. Experimental data recommend such biocomposite as an attractive material for regenerative medicine. Copyright © 2017 Elsevier B.V. All rights reserved.
Maia, F Raquel; Musson, David S; Naot, Dorit; da Silva, Lucilia P; Bastos, Ana R; Costa, João B; Oliveira, Joaquim M; Correlo, Vitor M; Reis, Rui L; Cornish, Jillian
2018-03-16
Bone tissue engineering with cell-scaffold constructs has been attracting a lot of attention, in particular as a tool for the efficient guiding of new tissue formation. However, the majority of the current strategies used to evaluate novel biomaterials focus on osteoblasts and bone formation, while osteoclasts are often overlooked. Consequently, there is limited knowledge on the interaction between osteoclasts and biomaterials. In this study, the ability of spongy-like gellan gum and hydroxyapatite-reinforced gellan gum hydrogels to support osteoclastogenesis was investigated in vitro. First, the spongy-like gellan gum and hydroxyapatite-reinforced gellan gum hydrogels were characterized in terms of microstructure, water uptake and mechanical properties. Then, bone marrow cells isolated from the long bones of mice and cultured in spongy-like hydrogels were treated with 1,25-dihydroxyvitamin D3 to promote osteoclastogenesis. It was shown that the addition of HAp to spongy-like gellan gum hydrogels enables the formation of larger pores and thicker walls, promoting an increase in stiffness. Hydroxyapatite-reinforced spongy-like gellan gum hydrogels support the formation of the aggregates of tartrate-resistant acid phosphatase-stained cells and the expression of genes encoding DC-STAMP and Cathepsin K, suggesting the differentiation of bone marrow cells into pre-osteoclasts. The hydroxyapatite-reinforced spongy-like gellan gum hydrogels developed in this work show promise for future use in bone tissue scaffolding applications.
Xun, Ren; Jing, Yao; Qin, Du; Chuhang, Liao; Kun, Tian
2014-10-01
To modify biomacromolecules, such as chitosan and collagen, to synthesize a mineralized template that will induce self-growing remineralization of tooth enamel. Natural polycation polysaccharide chitosan was modified through phosphorylation to synthesize the polyanion derivative ofphosphorylated chitosan. Parent hydrogels com- bined with chitosan and collagen I were built through peptide binding reaction using genipin as a crosslinker. The gels self- assembled on the tooth's inert surface, which was stimulated by ultraviolet radiation. The bionic saliva provided mineralized ion, and then the hydroxyapatite assembled and grew in situ on the tooth. The functional group P04(3-) (3,446 cm(-1)) was grafted on chitosan as confirmed by the Fourier transform infrared spectroscopy. The porous polyelectrolyte complex hydrogel formed by the interaction between the polycation chitosan and the polyanion phosphorylated chitosan could induce hydroxyapatite crystal nucleation and growth on the hydrogel fiber surfaces. The neonatal crystal was hydroxyapatite as confirmed by X-ray diffraction and was tightly connected to the tooth. A continuous structure of column crystals with sizes ranging from 30 nm to 60 nm was observed. The structure was in parallel direction similar to the direction of the enamel rod, and its hardness was close to dentin. The parent hydrogels that were easily obtained and controlled could mimic the template of the enamel mineralization and induce a self-growing hydroxyapatite, which is an important step in the structural bionics of enamel.
Szubert, M; Adamska, K; Szybowicz, M; Jesionowski, T; Buchwald, T; Voelkel, A
2014-01-01
The aim of this study was the surface modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) grafting and characterization of modificates. The bioactivity examination was carried out by the determination to grow an apatite layer on modified materials during incubation in simulated body fluid at 37°C. The additional issue taken up in this paper was to investigate the influence of fluid replacement. The process of the surface modification of biomaterials was evaluated by means of infrared and Raman spectroscopy. Formation of the apatite layer was assessed by means of scanning electron microscopy and confirmed by energy dispersive, Raman and Fourier transformed infrared spectroscopy. During exposure in simulated body fluid, the variation of the zeta potential, pH measurement and relative weight was monitored. Examination of scanning electron microscopy micrographs suggests that modification of hydroxyapatite and β-tricalcium phosphate by poly(3-hydroxybutyrate) significantly increases apatite layer formation. Raman spectroscopy evaluation revealed that the formation of the apatite layer was more significant in the case of hydroxyapatite modificate, when compared to the β-tricalcium phosphate modificate. Both modificates were characterized by stable pH, close to the natural pH of human body fluids. Furthermore, we have shown that a weekly changed, simulated body fluid solution increases apatite layer formation. © 2013.
Tsetsekou, A; Brasinika, D; Vaou, V; Chatzitheodoridis, E
2014-10-01
Controlling the structure of hydroxyapatite nanocrystals is vital for acquiring a consistent product. In an effort to synthesize crystals mimicking the morphology of natural bone's apatite, a bioinspired process was developed based on the use of a natural biomacromolecule, collagen or chitosan, in conjunction with l-arginine to direct the formation of hydroxyapatite from H3PO4 and Ca(OH)2. Different cases were investigated by employing various concentrations of the precursors and two molar ratios of Ca/P 1/1 and 10/6. The reaction was carried out at basic pH conditions and at biomimetic temperature (40°C). The resulting aqueous suspensions were characterized in terms of their rheological behavior, whereas the derived powders were fully evaluated by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction analysis and Raman spectroscopy. The analysis showed that in all cases, the only phase detected was hydroxyapatite of a plate-like morphology very similar to that of natural apatite. The homogeneity of the morphology and the crystal size distribution depend on the precursors' final concentration with the mean size ranging from 5 nm up to 20 nm. The powder that demonstrated the best characteristics in terms of homogeneity was that produced in the presence of collagen for molar ratio of Ca/P 1/1. Copyright © 2014 Elsevier B.V. All rights reserved.
Fan, Yuwei; Nelson, James R.; Alvarez, Jason R.; Hagan, Joseph; Berrier, Allison; Xu, Xiaoming
2011-01-01
The formation of organized nanocrystals that resemble enamel is crucial for successful enamel remineralization. Calcium, phosphate and fluoride ions and amelogenin are important ingredients for the formation of organized hydroxyapatite (HAP) crystals in vitro. However, the effects of these remineralization agents on the enamel crystal morphology have not been thoroughly studied. The objective of this study was to investigate the effects of fluoride ions, supersaturation degree and amelogenin on the crystal morphology and organization of ex vivo remineralized human enamel. Extracted third molars were sliced thin and acid-etched to provide the enamel surface for immersion in different remineralization solutions. The crystal morphology and mineral phase of the remineralized enamel surface were analyzed by FE-SEM, ATR-FTIR and XRD. The concentration of fluoride and supersaturation degree of hydroxyapatite had significant effects on the crystal morphology and crystal organization, which varied from plate-like loose crystals to rod-like densely packed nanocrystal arrays. Densely packed arrays of fluoridated hydroxyapatite nanorods were observed under the following conditions: σ(HAP) = 10.2±2.0 with fluoride 1.5±0.5 mg/L and amelogenin 40±10 µg/mL, pH 6.8±0.4. A phase diagram summarized the conditions that form dense or loose hydroxyapatite nanocrystal structures. This study provides the basis for the development of novel dental materials for caries management. PMID:21256987
Influence of SrO substitution for CaO on the properties of bioactive glass S53P4.
Massera, Jonathan; Hupa, Leena
2014-03-01
Commercial melt-quenched bioactive glasses consist of the oxides of silicon, phosphorus, calcium and sodium. Doping of the glasses with oxides of some other elements is known to affect their capability to support hydroxyapatite formation and thus bone tissue healing but also to modify their high temperature processing parameters. In the present study, the influence of gradual substitution of SrO for CaO on the properties of the bioactive glass S53P4 was studied. Thermal analysis and hot stage microscopy were utilized to measure the thermal properties of the glasses. The in vitro bioactivity and solubility was measured by immersing the glasses in simulated body fluid for 6 h to 1 week. The formation of silica rich and hydroxyapatite layers was assessed from FTIR spectra analysis and SEM images of the glass surface. Increasing substitution of SrO for CaO decreased all characteristic temperatures and led to a slightly stronger glass network. The initial glass dissolution rate increased with SrO content. Hydroxyapatite layer was formed on all glasses but on the SrO containing glasses the layer was thinner and contained also strontium. The results suggest that substituting SrO for CaO in S53P4 glass retards the bioactivity. However, substitution greater than 10 mol% allow for precipitation of a strontium substituted hydroxyapatite layer.
Effect of modification substrate on the microstructure of hydroxyapatite coating
NASA Astrophysics Data System (ADS)
Realpe-Jaramillo, J.; Morales-Morales, J. A.; González-Sánchez, J. A.; Cabanzo, R.; Mejía-Ospino, E.; Rodríguez-Pereira, J.
2017-01-01
Bioactive hydroxyapatite (HA) coatings were fabricated by a precipitation, sol-gel and dip-coating method. The effects of the aging time and the base used to adjust pH and substrate materials on the phases and microstructures of HA coatings were studied by field emission scanning electron microscopy FESEM, energy dispersive spectroscopy EDS, X-ray photoelectron spectroscopy XPS, and the vibrations of the phosphate groups were determined by Raman spectroscopy. The results showed that all the films were composed of the phases of TiO2 and HA. With coated titanium substrate with TiO2, the crystallinity of the HA coating increases, the structure became more compact and the Ca/P ratio increased because of the loss of P in the films. The addition of sodium hydroxide (adjusting the pH level to about 10) can increase the HA content in the coating. XPS and EDS results for steel substrate and titanium showed poor calcium content as obtained with a Ca/P ratio of 1.38 and 1.58, respectively, composition is similar to that of natural apatite. However, spectroscopic results suggest the presence of a mixture of hydroxyapatite and octacalcium phosphate. The different substrate materials have a high influence on the microstructure of the separated double films. However, hydroxyapatite nanopowders coatings were obtained using a simple method, with potential biomedical applications.
Two Different Percutaneous Bone-Anchored Hearing Aid Abutment Systems: Comparative Clinical Study.
Polat, Beldan; İşeri, Mete; Orhan, Kadir Serkan; Yılmazer, Ayça Başkadem; Enver, Necati; Ceylan, Didem; Kara, Ahmet; Güldiken, Yahya; Çomoğlu, Şenol
2016-04-01
To compare two different percutaneous bone-anchored hearing aid (BAHA) abutment systems regarding operation time, scar healing, quality of life, implant stability, audiologic results, and complications. The study involves a prospective multi-center clinical evaluation. Thirty-two consecutive patients who had undergone BAHA surgery from January 2011 to January 2013 in two tertiary centers were included in the study. The Glasgow Inventory Benefit Score was used to assess the patients at least 6 months after surgery. The operation time and complications were recorded. Implant stability quotient (ISQ) values were recorded using resonance frequency analysis. Holger's classification was used to evaluate skin reactions. The mean length of the operation was 39.2±4 min for standard abutment and 18.3±5.7 min for hydroxyapatite-coated abutment. ISQ scores were significantly better for standard abutment in all tests. The mean total Glasgow Inventory Benefit Score was 39.3±19 for the standard abutment and 46.3±24.5 for the hydroxyapatite-coated abutment groups, but there was no statistical significance between the two groups. There was no difference in audiological improvement between the two groups after surgery. Hydroxyapatite-coated abutment provided a shorter operation time that was significantly different from standard abutment. There were no significant differences between standard abutment and hydroxyapatite-coated abutment regarding audiologic improvement, quality of life, loading time, and complications.
Usefulness of an Osteotomy Template for Skull Tumorectomy and Simultaneous Skull Reconstruction.
Oji, Tomito; Sakamoto, Yoshiaki; Miwa, Tomoru; Nakagawa, Yu; Yoshida, Kazunari; Kishi, Kazuo
2016-09-01
Simultaneous tumor resection and cranioplasty with hydroxyapatite osteosynthesis are sometimes necessary in patients of skull neoplasms or skull-invasive tumors. However, the disadvantage of simultaneous surgery is that mismatches often occur between the skull defect and the hydroxyapatite implant. To solve this problem, the authors developed a customized template for designing the craniotomy line. Before each operation, the craniotomy design was discussed with a neurosurgeon. Based on the discussion, 2 hydroxyapatite implants were customized for each patient on the basis of models prepared using computed tomography data. The first implant was an onlay template for the preoperative cranium, which was customized for designing the osteotomy line. The other implant was used for the skull defect. Using the template, the osteotomy line was drawn along the template edge, osteotomy was performed along this line, and the implant was placed in the skull defect. This technique was performed in 3 patients. No implant or defect trimming was required in any patient, good cosmetic outcomes were noted in all patients, and no complications occurred. Use of predesigned hydroxyapatite templates for craniotomy during simultaneous skull tumor resection and cranioplasty has some clinical advantages: the precise craniotomy line can be designed, the implant and skull defect fit better and show effective osteoconduction, trimming of the implant or defect is minimized, and the operation time is shortened.
Pinheiro, Antônio L B; Soares, Luiz G P; da Silva, Aline C P; Santos, Nicole R S; da Silva, Anna Paula L T; Neves, Bruno Luiz R C; Soares, Amanda P; Silveira, Landulfo
2018-04-23
The aim of the present study was to assess, by means of Raman spectroscopy, the repair of complete surgical tibial fractures fixed with wire osteosynthesis (WO) treated or not with infrared laser (λ780 nm) or infrared light emitting diode (LED) (λ850 ± 10 nm) lights, 142.8 J/cm 2 per treatment, associated or not to the use of mineral trioxide aggregate (MTA) cement. Surgical tibial fractures were created on 18 rabbits, and all fractures were fixed with WO and some groups were grafted with MTA. Irradiated groups received lights at every other day during 15 days, and all animals were sacrificed after 30 days, being the tibia removed. The results showed that only irradiation with either laser or LED influenced the peaks of phosphate hydroxyapatite (~ 960 cm -1 ). Collagen (~ 1450 cm -1 ) and carbonated hydroxyapatite (~ 1070 cm -1 ) peaks were influenced by both the use of MTA and the irradiation with either laser or LED. It is concluded that the use of either laser or LED phototherapy associated to MTA cement was efficacious on improving the repair of complete tibial fractures treated with wire osteosynthesis by increasing the synthesis of collagen matrix and creating a scaffold of calcium carbonate (carbonated hydroxyapatite-like) and the subsequent deposition of phosphate hydroxyapatite.
Balasundaram, Ganesan; Storey, Daniel M; Webster, Thomas J
2015-01-01
In order to begin to prepare a novel orthopedic implant that mimics the natural bone environment, the objective of this in vitro study was to synthesize nanocrystalline hydroxyapatite (NHA) and coat it on titanium (Ti) using molecular plasma deposition (MPD). NHA was synthesized through a wet chemical process followed by a hydrothermal treatment. NHA and micron sized hydroxyapatite (MHA) were prepared by processing NHA coatings at 500°C and 900°C, respectively. The coatings were characterized before and after sintering using scanning electron microscopy, atomic force microscopy, and X-ray diffraction. The results revealed that the post-MPD heat treatment of up to 500°C effectively restored the structural and topographical integrity of NHA. In order to determine the in vitro biological responses of the MPD-coated surfaces, the attachment and spreading of osteoblasts (bone-forming cells) on the uncoated, NHA-coated, and MHA-coated anodized Ti were investigated. Most importantly, the NHA-coated substrates supported a larger number of adherent cells than the MHA-coated and uncoated substrates. The morphology of these cells was assessed by scanning electron microscopy and the observed shapes were different for each substrate type. The present results are the first reports using MPD in the framework of hydroxyapatite coatings on Ti to enhance osteoblast responses and encourage further studies on MPD-based hydroxyapatite coatings on Ti for improved orthopedic applications. PMID:25609958
Guillaume, O; Geven, M A; Sprecher, C M; Stadelmann, V A; Grijpma, D W; Tang, T T; Qin, L; Lai, Y; Alini, M; de Bruijn, J D; Yuan, H; Richards, R G; Eglin, D
2017-05-01
Fabrication of composite scaffolds using stereolithography (SLA) for bone tissue engineering has shown great promises. However, in order to trigger effective bone formation and implant integration, exogenous growth factors are commonly combined to scaffold materials. In this study, we fabricated biodegradable composite scaffolds using SLA and endowed them with osteopromotive properties in the absence of biologics. First we prepared photo-crosslinkable poly(trimethylene carbonate) (PTMC) resins containing 20 and 40wt% of hydroxyapatite (HA) nanoparticles and fabricated scaffolds with controlled macro-architecture. Then, we conducted experiments to investigate how the incorporation of HA in photo-crosslinked PTMC matrices improved human bone marrow stem cells osteogenic differentiation in vitro and kinetic of bone healing in vivo. We observed that bone regeneration was significantly improved using composite scaffolds containing as low as 20wt% of HA, along with difference in terms of osteogenesis and degree of implant osseointegration. Further investigations revealed that SLA process was responsible for the formation of a rich microscale layer of HA corralling scaffolds. To summarize, this work is of substantial importance as it shows how the fabrication of hierarchical biomaterials via surface-enrichment of functional HA nanoparticles in composite polymer stereolithographic structures could impact in vitro and in vivo osteogenesis. This study reports for the first time the enhance osteopromotion of composite biomaterials, with controlled macro-architecture and microscale distribution of hydroxyapatite particles, manufactured by stereolithography. In this process, the hydroxyapatite particles are not only embedded into an erodible polymer matrix, as reported so far in the literature, but concentrated at the surface of the structures. This leads to robust in vivo bone formation at low concentration of hydroxyapatite. The reported 3D self-corralling composite architecture provides significant opportunities to develop functional biomaterials for bone repair and tissue engineering. Copyright © 2017. Published by Elsevier Ltd.
Guo, Fuyu; Ding, Changfeng; Zhou, Zhigao; Huang, Gaoxiang; Wang, Xingxiang
2018-06-04
Chemical immobilization is a practical approach to remediate heavy metal contamination in agricultural soils. However, the potential remobilization risks of immobilized metals are a major environmental concern, especially in acid rain zones. In the present study, changes in the immobilization efficiency of several amendments as affected by simulated soil acidification were investigated to evaluate the immobilization remediation stability of several amendments on two cadmium (Cd) contaminated soils. Amendments (hydrated lime, hydroxyapatite and biochar) effectively immobilized Cd, except for organic fertilizer, and their immobilizations were strongly decreased by the simulated soil acidification. The ratio of changes in CaCl 2 -extractable Cd: pH (△CaCl 2 -Cd/△pH) can represent the Cd remobilization risk of different amended soils. Hydroxyapatite and biochar had a stronger durable immobilizing effect than did hydrated lime, particularly in soil with a lower pH buffering capacity, which was further confirmed by the Cd concentration and accumulation in lettuce. These results can be attributed to that hydroxyapatite and biochar transformed greater proportions of exchangeable Cd to other more stable fractions than lime. After 48 weeks of incubation, in soil with a lower pH buffering capacity, the immobilization efficiencies of lime, hydroxyapatite, biochar and organic fertilizer in the deionized water group (pH 6.5) were 71.7%, 52.7%, 38.6% and 23.9%, respectively, and changed to 19.1%, 33.6%, 26.5% and 5.0%, respectively, in the simulated acid rain group (pH 2.5). The present study provides a simple method to preliminarily estimate the immobilization efficiency of amendments and predict their stability in acid rain regions before large-scale field application. In addition, hydrated lime is recommended to be combined with other acid-stable amendments (such as hydroxyapatite or biochar) to remediate heavy metal-contaminated agricultural soils in acid precipitation zones. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ruan, Zhongyuan; Tian, Yaxi; Ruan, Jifu; Cui, Guijia; Iqbal, Kanwal; Iqbal, Anam; Ye, Herui; Yang, Zhangzhong; Yan, Shiqiang
2018-04-01
In our recent paper [1], we reported the synthesis of hydroxyapatite/multi-walled carbon nanotubes (HA-MWCNTs) and studied their performance for the removal of fluoride ions from solution. However, we have made some writing mistakes, especially in the section on adsorption kinetics analysis. Our mistakes were spotted by Prof. Yuandong Huang, who graciously noticed these errors. We are grateful to him, and have decided to write a "Corrigendum".
NASA Astrophysics Data System (ADS)
Kumar, B. Y. Santosh; Kumar, G. C. Mohan; Isloor, Arun M.
2018-04-01
Developing a novel antibacterial, nontoxic and biocompatible hydrogel with superior physio mechanical properties is still becoming a challenge. Herein, we synthesize hydroxyapatite (HA) powder from cuttlefish bone and prepare a series of stiff, tough, high strength, biocompatible hydrogel reinforced with HA by integrating glutaraldehyde into PVA/HA. Powder was characterized by SEM and XRD. Compressive strength and swelling properties are studied and compare the results with the properties of healthy natural articular cartilage.
Healing of Stress Fracture in an Animal Model
2005-09-01
result of damage in vivo [1,15]. (with hydroxyl ions) at the surface of the hydroxyapatite crystal 54 35 Recently, we have found that positron emission...after loading. Scale bar = 500 pm. 4 1 Li ef al. / Bone xr (2005) xtx-xxv A B C -Comparison of Fatigue Loading with Loading without Fatigue AOL 2.0, I.O...groups in the hydroxyapatite crystal . a t P 3 267 of bone to form fluoroapatite. [ F]fluoride is deposited pre- The authors would like totha;lnBce Mock
Bai, Hao; Walsh, Flynn; Gludovatz, Bernd; Delattre, Benjamin; Huang, Caili; Chen, Yuan; Tomsia, Antoni P; Ritchie, Robert O
2016-01-06
Using a bidirectional freezing technique, combined with uniaxial pressing and in situ polymerization, "nacre-mimetic" hydroxyapatite/poly(methyl methacrylate) (PMMA) composites are developed by processing large-scale aligned lamellar ceramic scaffolds. Structural and mechanical characterization shows "brick-and-mortar" structures, akin to nacre, with interesting combinations of strength, stiffness, and work of fracture, which provide a pathway to making strong and tough lightweight materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
dePaula, S M; Huila, M F G; Araki, K; Toma, H E
2010-12-01
Conversion of Pomacea lineate shells into hydroxyapatite (HA) bioceramic materials was investigated by their in vitro treatment with phosphate solutions, at room temperature. Confocal Raman microscopy revealed that the conversion proceeds at distinct rates through the nacreous or periostracum sides of the shell. The conversion can be accelerated using powdered samples, yielding biocompatible materials of great interest in biomedicine. Copyright © 2010 Elsevier Ltd. All rights reserved.
Wettability and surface free energy of polarised ceramic biomaterials.
Nakamura, Miho; Hori, Naoko; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro
2015-01-13
The surface modification of ceramic biomaterials used for medical devices is expected to improve osteoconductivity through control of the interfaces between the materials and living tissues. Polarisation treatment induced surface charges on hydroxyapatite, β-tricalcium phosphate, carbonate-substituted hydroxyapatite and yttria-stabilized zirconia regardless of the differences in the carrier ions participating in the polarisation. Characterization of the surfaces revealed that the wettability of the polarised ceramic biomaterials was improved through the increase in the surface free energies compared with conventional ceramic surfaces.
NASA Astrophysics Data System (ADS)
Wan, Dong; Liu, Weijiao; Wang, Lei; Wang, Hao; Pan, Jie
2016-03-01
In this study, fluoridated hydroxyapatite: Eu3+ nanorod-loaded folate-conjugated TPGS micelles were prepared by thin-film hydration. The findings in this study demonstrate that micelles show improved dispersion, high stability, and excellent fluorescent property in aqueous solutions, suitable for targeted imaging of cancer cells with over-expressing folate receptors on their surface. The micelles designed in this study will be a promising tool for early detection of cancer.
Electric field-assisted sintering of nanocrystalline hydroxyapatite for biomedical applications
NASA Astrophysics Data System (ADS)
Tran, Tien Bich
As the main inorganic component of bone, hydroxyapatite (HA, Ca 10(PO4)6(OH)2) should be an ideal candidate in biomaterials selection. When grain sizes are in the nanometric regime, protein adsorption and cell adhesion are enhanced, while strength, hardness, and wear resistance are improved. Unfortunately, low phase stability, poor sinterability, and a tendency towards exaggerated grain coarsening challenge full densification of nanocrystalline hydroxyapatite by conventional sintering methods. The field-assisted sintering technique (FAST) has successfully consolidated a variety of nanocrystalline metals and ceramics in dramatically reduced times. The sintering enhancements observed during FAST can be attributed to thermal and athermal effects. The rapid heating rates (up to ˜1000ºC/min) afforded by FAST contribute a significant thermal effect. Since fast heating rates reduce powder exposure to sub-sintering temperatures, non-densifying surface diffusion is limited. The athermal effects of FAST are less well understood and can include plasma generation, dielectric breakdown, particle surface cleaning, grain boundary pinning, and space charge effects. Applying the field-assisted sintering technique to nanocrystalline hydroxyapatite yielded surprising results. Deviations from conventional densification behavior were observed, with dehydroxylation identified as the most deleterious process to densification as well as mechanical and biological performance. Since hydroxyapatite is not a stable phase at high temperatures and low water partial pressure atmospheres, desintering due to dehydroxylation-related pore formation became apparent during Stage III sintering. In fact, the degree of desintering and pore formation increased with the extent of Stage III sintering and grain growth. The atomic rearrangements taking place during grain boundary migration are believed to favor the formation of more-stable oxyapatite through hydroxyapatite dehydroxylation. This behavior was consistent during varied heating rate (50--400ºC/min) and varied pressure application (25--90 MPa) studies. While in vitro cytocompatibility studies using MG63 osteoblast-like cells demonstrated the biocompatibility of the FAST-processed specimens, bioactivity was sensitive to processing parameters. Since extensive dehydroxylation reduces the surface charge of the sintered materials, apatite deposition during simulated body fluid immersion only occurred when dehydroxylation was mild---i.e., on specimens sintered at low temperatures (800--900ºC) or for short periods. Microstructural investigations revealed that HA sintered at temperatures above 900ºC under an applied electric field contained nanometric residual pores in grain interiors, as well as micron-sized dehydroxylation-related pores at grain boundaries and grain boundary junctions. These larger pores were responsible for the increasing embrittlement of specimens sintered at higher temperatures. Although grain size dependence could not be found in the 60--100 nm grain size range, fracture toughness (KIC = 1.92 MPa√m, maximum) increased with decreasing sintering temperature. Results from the suite of investigations conducted demonstrate that biocompatible and bioactive nanocrystalline hydroxyapatite with enhanced mechanical properties can be efficiently manufactured by field-assisted sintering under controlled processing conditions.
Sartuqui, Javier; Gravina, A Noel; Rial, Ramón; Benedini, Luciano A; Yahia, L'Hocine; Ruso, Juan M; Messina, Paula V
2016-09-01
Intrinsic material skills have a deep effect on the mechanical and biological performance of bone substitutes, as well as on its associated biodegradation properties. In this work we have manipulated the preparation of collagenous derived fiber mesh frameworks to display a specific composition, morphology, open macroporosity, surface roughness and permeability characteristics. Next, the effect of the induced physicochemical attributes on the scaffold's mechanical behavior, bone bonding potential and biodegradability were evaluated. It was found that the scaffold microstructure, their inherent surface roughness, and the compression strength of the gelatin scaffolds can be modulated by the effect of the cross-linking agent and, essentially, by mimicking the nano-scale size of hydroxyapatite in natural bone. A clear effect of bioactive hydroxyapatite nano-rods on the scaffolds skills can be appreciated and it is greater than the effect of the cross-linking agent, offering a huge perspective for the upcoming progress of bone implant technology. Copyright © 2016 Elsevier B.V. All rights reserved.
Adsorption of catechol and comparative solutes on hydroxyapatite.
Chirdon, William M; O'Brien, William J; Robertson, Richard E
2003-08-15
Contemporary medical and dental adhesives often have difficulty sticking to wet surfaces or weaken with long-term exposure to water. Substantial research has been dedicated to finding a means of achieving adhesion in an aqueous environment. A study evaluates the adsorption of catechol relative to other chemical groups as means of gauging how effective they may be as adsorptive groups in adhesives. Contact angle and surface-tension measurements of solutions of catechols and other chemical groups were used to determine their works of adhesion. Adsorption isotherms were also constructed to ascertain Langmuir constants. Solutes containing catechol groups were compared to solutes containing other polar groups to see how well catechol adsorbs to hydroxyapatite, the mineral component of bones and teeth, relative to other chemical groups found in adhesives. The results of this study show that catechol and molecules containing catechol groups have higher rates and energies of adsorption to hydroxyapatite than do groups such as alcohols, amines, and carboxylic acids. Copyright 2003 Wiley Periodicals, Inc.
Iqbal, Bushra; Sarfaraz, Zenab; Muhammad, Nawshad; Ahmad, Pervaiz; Iqbal, Jibran; Khan, Zia Ul Haq; Gonfa, Girma; Iqbal, Farasat; Jamal, Arshad; Rahim, Abdur
2018-07-01
In this study, collagen/alginate/hydroxyapatite beads having different proportions were prepared as bone fillers for the restoration of osteological defects. Ionic liquid was used to dissolve the collagen and subsequently the solution was mixed with sodium alginate solution. Hydroxyapatite was added in different proportions, with the rationale to enhance mechanical as well as biological properties. The prepared solutions were given characteristic bead shapes by dropwise addition into calcium chloride solution. The prepared beads were characterized using FTIR, XRD, TGA and SEM analysis. Microhardness testing was used to evaluate the mechanical properties. The prepared beads were investigated for water adsorption behavior to ascertain its ability for body fluid uptake and adjusted accordingly to the bone cavity. Drug loading and subsequently the antibacterial activity was investigated for the prepared beads. The biocompatibility was assessed using the hemolysis testing and cell proliferation assay. The prepared collagen-alginate-HA beads, having biocompatibility and good mechanical properties, have showed an option of promising biologically active bone fillers for bone regeneration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji Shidong; Murakami, Setsuaki; Kamitakahara, Masanobu
The titania/hydroxyapatite composite granular photo-catalyst with novel microstructure was fabricated by the process based on the liquid immiscibility effect and followed by precalcination and hydrothermal treatment from commercially available powders of {alpha}-Tri-calcium phosphate and TiO{sub 2}. XRD, SEM, BET, optical microscopy and UV-vis spectrophotometer were applied to characterize the prepared photo-catalyst. Microstructure analysis indicated that the granule was weaved by rod-shaped hydroxyapatite crystals whose surface was covered by nano-sized TiO{sub 2}. In the composite granules, the active surface of anatase was retained effectively. With the hybridization of TiO{sub 2} and HAp, a 16-nm blue-shift of absorption edge could be observedmore » and the crystallinity of anatase could be enhanced by precalcination. The granules with the rod-shaped hydroxyapatite crystals performing as scaffold work as three-dimensional high porous, size-controllable small reactor. The phase and microstructure transformation of the granule before and after hydrothermal treatment was investigated and its decomposition ability was evaluated by using Methylene blue as a target pollutant compound.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Shan, E-mail: coralgao@hotmail.com; Engineering Ceramics Key Laboratory of Shandong Province, Shandong University, Jinan 250061; Sun, Kangning, E-mail: sunkangning@sdu.edu.cn
Highlights: ► We succeeded in synthesizing hydroxyapatite nano fibers by a chemical method. ► The reaction temperature is only 90 °C. ► The synthetic hydroxyapatite nano fiber is single crystal. - Abstract: We report a novel chemical precipitation route for the synthesis of hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HA) fibers using surfactants as templates. Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction (PXRD) reveal the characteristic peaks of HA. Transmission electron microscope (TEM) and high-resolution TEM revealed the nano structure, crystallinity and morphology of the HA fibers. The morphology of the HA fibers after calcinations were characterized bymore » scanning electron microscope (SEM). Br{sup −} ions were quickly replaced by the excess PO{sub 4}{sup 3−} ions in the solution after the addition of cetyltrime-thylammonium bromide (CTAB). Meanwhile, CTAB formed a rod-like micelles. Precursors reacted with PO{sub 4}{sup 3−} at the surface of CTAB micelles and finally formed the nanofiber structure.« less
McManamon, Colm; de Silva, Johann P; Power, John; Ramirez-Garcia, Sonia; Morris, Michael A; Cross, Graham L W
2014-09-30
We investigate the chemical composition and mechanical properties of plasma-deposited hydroxyapatite on grit-blasted Ti-6Al-4V coupons as models of typical prosthetic hip implants. Nanoindentation is used to extract the mechanical properties of the hydroxyapatite (HA) coating and to evaluate the behavior of the material as a function of distance from the interface. A microscratch technique was used to determine parameters of cohesive and adhesive failure of the material that are critical in determining the functionality of these biomedical devices. This delamination method has not been studied in detail before and is usually considered to be unsuitable because of the thickness of the HA and the roughness of the substrate. However, through cross-section analysis of the scratch test, we can determine the point at which the HA delaminates from the substrate. It was concluded that spallation occurs locally, and there is no evidence of gross spallation, indicating that the coating is well adhered to the substrate.
Magnetic hydroxyapatite: a promising multifunctional platform for nanomedicine application
Mondal, Sudip; Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Santha Moorthy, Madhappan; Kim, Hye Hyun; Seo, Hansu; Lee, Kang Dae; Oh, Junghwan
2017-01-01
In this review, specific attention is paid to the development of nanostructured magnetic hydroxyapatite (MHAp) and its potential application in controlled drug/gene delivery, tissue engineering, magnetic hyperthermia treatment, and the development of contrast agents for magnetic resonance imaging. Both magnetite and hydroxyapatite materials have excellent prospects in nanomedicine with multifunctional therapeutic approaches. To date, many research articles have focused on biomedical applications of nanomaterials because of which it is very difficult to focus on any particular type of nanomaterial. This study is possibly the first effort to emphasize on the comprehensive assessment of MHAp nanostructures for biomedical applications supported with very recent experimental studies. From basic concepts to the real-life applications, the relevant characteristics of magnetic biomaterials are patented which are briefly discussed. The potential therapeutic and diagnostic ability of MHAp-nanostructured materials make them an ideal platform for future nanomedicine. We hope that this advanced review will provide a better understanding of MHAp and its important features to utilize it as a promising material for multifunctional biomedical applications. PMID:29200851
Preparation of hydroxyapatite nanoparticles by sol-gel method with optimum processing parameters
NASA Astrophysics Data System (ADS)
Yusoff, Yusriha Mohd; Salimi, Midhat Nabil Ahmad; Anuar, Adilah
2015-05-01
Many studies have been carried out in order to prepare hydroxyapatite (HAp) by various methods. In this study, we focused on the preparation of HAp nanoparticles by using sol-gel technique in which few parameters are optimized which were stirring rate, aging time and sintering temperature. HAp nanoparticles were prepared by using precursors of calcium nitrate tetrahydrate, Ca(NO3)2.4H2O and phosphorous pentoxide, P2O5. Both precursors are mixed in ethanol respectively before they were mixed together in which it formed a stable sol. Fourier transform infrared (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were used for its characterization in terms of functional group, phase composition, crystallite size and morphology of the nanoparticles produced. FTIR spectra showed that the functional groups that present in all five samples were corresponding to the formation of HAp. Besides, XRD shows that only one phase was formed which was hydroxyapatite. Meanwhile, SEM shows that the small particles combine together to form agglomeration.
Velard, Frédéric; Schlaubitz, Silke; Fricain, Jean-Christophe; Guillaume, Christine; Laurent-Maquin, Dominique; Möller-Siegert, Janina; Vidal, Loïc; Jallot, Edouard; Sayen, Stéphanie; Raissle, Olivier; Nedelec, Jean-Marie; Vix-Guterl, Cathie; Anselme, Karine; Amédée, Joëlle; Laquerrière, Patrice
2015-01-01
To discriminate the most important physicochemical parameters for bone reconstruction, the inflammatory potential of seven nanoporous hydroxyapatite powders synthesized by hard or soft templating was evaluated both in vitro and in vivo. After physical and chemical characterization of the powders, we studied the production of inflammatory mediators by human primary monocytes after 4 and 24 h in contact with powders, and the host response after 2 weeks implantation in a mouse critical size defect model. In vitro results highlighted increases in the secretion of TNF-α, IL-1, -8, -10 and proMMP-2 and -9 and decreases in the secretion of IL-6 only for powders prepared by hard templating. In vivo observations confirmed an extensive inflammatory tissue reaction and a strong resorption for the most inflammatory powder in vitro. These findings highlight that the most critical physicochemical parameters for these nanoporous hydroxyapatite are, the crystallinity that controls dissolution potential, the specific surface area and the size and shape of crystallites.
NASA Astrophysics Data System (ADS)
Kaygili, Omer; Ates, Tankut; Keser, Serhat; Al-Ghamdi, Ahmed A.; Yakuphanoglu, Fahrettin
2014-08-01
The hydroxyapatite (HAp) samples in the presence of various amounts of ethylenediamine tetraacetic acid (EDTA) were prepared by sol-gel method. The effects of EDTA on the crystallinity, phase structure, chemical, micro-structural and dielectric properties of HAp samples were investigated. With the addition of EDTA, the average crystallite size of the HAp samples is gradually decreased from 30 to 22 nm and the crystallinity is in the range of 65-71%. The values of the lattice parameters (a and c) and volume of the unit cell are decreased by stages with the addition of EDTA. The dielectric parameters such as relative permittivity, dielectric loss and relaxation time are affected by the adding of EDTA. The alternating current conductivity of the as-synthesized hydroxyapatites increases with the increasing frequency and obeys the universal power law behavior. The HAp samples exhibit a non-Debye relaxation mechanism. The obtained results that the dielectrical parameters of the HAp sample can be controlled by EDTA.
Nair, Manitha B; Bernhardt, Anne; Lode, Anja; Heinemann, Christiane; Thieme, Sebastian; Hanke, Thomas; Varma, Harikrishna; Gelinsky, Michael; John, Annie
2009-08-01
Hydroxyapatite (HA) ceramics are widely used as bone graft substitutes because of their biocompatibility and osteoconductivity. However, to enhance the success of therapeutic application, many efforts are undertaken to improve the bioactivity of HA. We have developed a triphasic, silica-containing ceramic-coated hydroxyapatite (HASi) and evaluated its performance as a scaffold for cell-based tissue engineering applications. Human bone marrow stromal cells (hBMSCs) were seeded on both HASi and HA scaffolds and cultured with and without osteogenic supplements for a period of 4 weeks. Cellular responses were determined in vitro in terms of cell adhesion, viability, proliferation, and osteogenic differentiation, where both materials exhibited excellent cytocompatibility. Nevertheless, an enhanced rate of cell proliferation and higher levels of both alkaline phosphatase expression and activity were observed for cells cultured on HASi with osteogenic supplements. These findings indicate that the bioactivity of HA endowed with a silica-containing coating has definitely influenced the cellular activity, projecting HASi as a suitable candidate material for bone regenerative therapy.
An in vitro study of electrically active hydroxyapatite-barium titanate ceramics using Saos-2 cells.
Baxter, Frances R; Turner, Irene G; Bowen, Christopher R; Gittings, Jonathan P; Chaudhuri, Julian B
2009-08-01
Electrically active ceramics are of interest as bone graft substitute materials. This study investigated the ferroelectric properties of hydroxyapatite-barium titanate (HABT) composites and the behaviour of osteoblast-like cells seeded on their surfaces. A piezoelectric coefficient (d(33)) of 57.8 pCN(-1) was observed in HABT discs prepared for cell culture. The attachment, proliferation, viability, morphology and metabolic activity of cells cultured on unpoled HABT were comparable to those observed on commercially available hydroxyapatite at all time points. No indication of the cytotoxicity of HABT was detected. At one day after seeding, cell attachment was modified on both the positive and negative surfaces of poled HABT. After longer incubations, all parameters observed were comparable on poled and unpoled ceramics. The results indicate that HABT ceramics are biocompatible in the short term in vitro and that further investigation of cell responses to these materials under mechanical load and at longer incubation times is warranted.
Di Foggia, Michele; Corda, Ugo; Plescia, Elena; Taddei, Paola; Torreggiani, Armida
2010-06-01
The effects of a high energy sterilization treatment on poly-epsilon-caprolactone/carbonated hydroxyapatite composites have been investigated. Poly-epsilon-caprolactone is a biodegradable polymer used as long-term bioresorbable scaffold for bone tissue engineering and carbonated hydroxyapatite is a bioactive material able to promote bone growth. The composites were gamma-irradiated in air or under nitrogen atmosphere with doses ranging from 10 to 50 kGy (i.e. to a value higher than that recommended for sterilization). The effects of the irradiation treatment were evaluated by vibrational spectroscopy (IR and Raman spectroscopies) coupled to thermal analysis (Differential Scanning Calorimetry and Thermogravimetry) and Electron Paramagnetic Resonance spectroscopy. Irradiation with the doses required for sterilization induced acceptable structural changes and damaging effects: only a very slight fragmentation of the polymeric chains and some defects in the inorganic component were observed. Moreover, the radiation sensitivity of the composites proved almost the same under the two different atmospheres.
Ciobanu, C S; Groza, A; Iconaru, S L; Popa, C L; Chapon, P; Chifiriuc, M C; Hristu, R; Stanciu, G A; Negrila, C C; Ghita, R V; Ganciu, M; Predoi, D
2015-01-01
The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC-American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells.
Ciobanu, C. S.; Groza, A.; Iconaru, S. L.; Popa, C. L.; Chapon, P.; Chifiriuc, M. C.; Hristu, R.; Stanciu, G. A.; Negrila, C. C.; Ghita, R. V.; Ganciu, M.; Predoi, D.
2015-01-01
The goal of this study was the preparation, physicochemical characterization, and microbiological evaluation of novel hydroxyapatite doped with silver/polydimethylsiloxane (Ag:HAp-PDMS) composite layers. In the first stage, the deposition of polydimethylsiloxane (PDMS) polymer layer on commercially pure Si disks has been produced in atmospheric pressure corona discharges. Finally, the new silver doped hydroxyapatite/polydimethylsiloxane composite layer has been obtained by the thermal evaporation technique. The Ag:HAp-PDMS composite layers were characterized by various techniques, such as Scanning Electron Microscopy (SEM), Glow Discharge Optical Emission Spectroscopy (GDOES), and X-ray photoelectron spectroscopy (XPS). The antimicrobial activity of the Ag:HAp-PDMS composite layer was assessed against Candida albicans ATCC 10231 (ATCC—American Type Culture Collection) by culture based and confirmed by SEM and Confocal Laser Scanning Microscopy (CLSM) methods. This is the first study reporting the antimicrobial effect of the Ag:HAp-PDMS composite layer, which proved to be active against Candida albicans biofilm embedded cells. PMID:26504849
The Influence of Conditions on Synthesis Hydroxyapatite By Chemical Precipitation Method
NASA Astrophysics Data System (ADS)
Zhu, Jianping; Kong, Deshuang; Zhang, Yin; Yao, Nengjian; Tao, Yaqiu; Qiu, Tai
2011-10-01
Particles of Hydroxyapatite (HAp) were synthesized by means of chemical precipitation method, under atmosphere pressure. The starting solution with the Ca/P ratio of 1.67 was prepared by mixing 0.167 mol·dm-3 Ca(NO3)2·4H2O, 0.100 mol·dm-3 (NH4)2HPO4, 0.500 mol·dm-3 (NH2)2CO and 0.10 mol·dm-3 HNO3 aqueous solutions. The hydroxyapatite were prepared by heating the solution at 80 °C for 24 hour and then at 90°C for 72 hour. Then followed, the dry powers were heat treatment at 660°C temperatures for 8 hour. The obtained powder was analyzed using XRD, XRF, FT-IR, SEM, TG-DTA. The results showed that obtained HAp powers were greatly influenced by synthetic conditions. HAp powders with various morphologies, such as sphere, rod, layered, dumbbell, fibre, scaly, were obtained by controlling the synthetic conditions.