Science.gov

Sample records for hyper accumulator plant

  1. Prosopis pubescens (Screw bean mesquite) seedlings are hyper accumulators of copper

    PubMed Central

    Zappala, Marian N.; Ellzey, Joanne T.; Bader, Julia; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge

    2013-01-01

    Due to health reasons, toxic metals must be removed from soils contaminated by mine tailings and smelter activities. The phytoremediation potential of Prosopis pubescens (screw bean mesquite) was examined by use of inductively-coupled plasma spectroscopy (ICP-OES). Transmission electron microscopy (TEM) was used to observe ultrastructural changes of parenchymal cells of leaves in the presence of copper. Elemental analysis was utilized to localize copper within leaves. A 600 ppm copper sulfate exposure to seedlings for 24 days resulted in 31,000 ppm copper in roots, 17,000 ppm in stems, 11,000 in cotyledons and 20 ppm in the true leaves. In order for a plant to be considered a hyper accumulator, the plant must accumulate a leaf: root ratio of <1. Screw bean mesquite exposed to copper had a leaf: root ratios of 0.355 when cotyledons were included. We showed that Prosopis pubescens grown in soil is a hyper accumulator of copper. We recommend that this plant should be field tested. PMID:23612918

  2. Selenium accumulation by plants

    PubMed Central

    White, Philip J.

    2016-01-01

    Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg–1 dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg–1 dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000–15 000 mg Se kg–1 dry matter and are called Se hyperaccumulators. Scope This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. Conclusions The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated

  3. Selenium accumulation by plants.

    PubMed

    White, Philip J

    2016-02-01

    Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators. This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins

  4. A hyper-thermostable α-amylase from Pyrococcus furiosus accumulates in Nicotiana tabacum as functional aggregates.

    PubMed

    Zhu, Hong; Reynolds, L Bruce; Menassa, Rima

    2017-06-19

    Alpha amylase hydrolyzes α-bonds of polysaccharides such as starch and produces malto-oligosaccharides. Its starch saccharification applications make it an essential enzyme in the textile, food and brewing industries. Commercially available α-amylase is mostly produced from Bacillus or Aspergillus. A hyper-thermostable and Ca 2++ independent α-amylase from Pyrococcus furiosus (PFA) expressed in E.coli forms insoluble inclusion bodies and thus is not feasible for industrial applications. We expressed PFA in Nicotiana tabacum and found that plant-produced PFA forms functional aggregates with an accumulation level up to 3.4 g/kg FW (fresh weight) in field conditions. The aggregates are functional without requiring refolding and therefore have potential to be applied as homogenized plant tissue without extraction or purification. PFA can also be extracted from plant tissue upon dissolution in a mild reducing buffer containing SDS. Like the enzyme produced in P. furiosus and in E. coli, plant produced PFA preserves hyper-thermophilicity and hyper-thermostability and has a long shelf life when stored in lyophilized leaf tissue. With tobacco's large biomass and high yield, hyper-thermostable α-amylase was produced at a scale of 42 kg per hectare. Tobacco may be a suitable bioreactor for industrial production of active hyperthermostable alpha amylase.

  5. Cadmium-accumulating plants.

    PubMed

    Küpper, Hendrik; Leitenmaier, Barbara

    2013-01-01

    Plants are categorized in three groups concerning their uptake of heavy metals: indicator, excluder, and hyperaccumulator plants, which we explain in this chapter, the former two groups briefly and the hyperaccumulators in detail. The ecological role of hyperaccumulation, for example, the prevention of herbivore attacks and a possible substitution of Zn by Cd in an essential enzyme, is discussed. As the mechanisms of cadmium hyperaccumulation are a very interesting and challenging topic and many aspects are studied worldwide, we provide a broad overview over compartmentation strategies, expression and function of metal transporting proteins and the role of ligands for uptake, transport, and storage of cadmium. Hyperaccumulators are not without reason a topic of great interest, they can be used biotechnologically for two main purposes which we discuss here for Cd: phytoremediation, dealing with the cleaning of anthropogenically contaminated soils as well as phytomining, i.e., the use of plants for commercial metal extraction. Finally, the outlook deals with topics for future research in the fields of biochemistry/biophysics, molecular biology, and biotechnology. We discuss which knowledge is still missing to fully understand Cd hyperaccumulation by plants and to use that phenomenon even more successfully for both environmental and economical purposes.

  6. Daclatasvir inhibits hepatitis C virus NS5A motility and hyper-accumulation of phosphoinositides

    PubMed Central

    Chukkapalli, Vineela; Berger, Kristi L.; Kelly, Sean M.; Thomas, Meryl; Deiters, Alexander; Randall, Glenn

    2014-01-01

    Combinations of direct-acting antivirals (DAAs) against the hepatitis C virus (HCV) have the potential to revolutionize the HCV therapeutic regime. An integral component of DAA combination therapies are HCV NS5A inhibitors. It has previously been proposed that NS5A DAAs inhibit two functions of NS5A: RNA replication and virion assembly. In this study, we characterize the impact of a prototype NS5A DAA, daclatasvir (DCV), on HCV replication compartment formation. DCV impaired HCV replicase localization and NS5A motility. In order to characterize the mechanism behind altered HCV replicase localization, we examined the impact of DCV on the interaction of NS5A with its essential cellular cofactor, phosphatidylinositol-4-kinase III α (PI4KA). We observed that DCV does not inhibit PI4KA directly, nor does it impair early events of the NS5A-PI4KA interaction that can occur when NS5A is expressed alone. NS5A functions that are unaffected by DCV include PI4KA binding, as determined by co-immunoprecipitation, and a basal accumulation of the PI4KA product, PI4P. However, DCV impairs late steps in PI4KA activation that requires NS5A expressed in the context of the HCV polyprotein. These NS5A functions include hyper-stimulation of PI4P levels and appropriate replication compartment formation. The data are most consistent with a model wherein DCV inhibits conformational changes in the NS5A protein or protein complex formations that occur in the context of HCV polyprotein expression and stimulate PI4P hyper-accumulation and replication compartment formation. PMID:25546252

  7. Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator

    NASA Astrophysics Data System (ADS)

    Wood, J. L.; Zhang, C.; Mathews, E. R.; Tang, C.; Franks, A. E.

    2016-11-01

    Phytoextraction is influenced by the indigenous soil microbial communities during the remediation of heavy metal contaminated soils. Soil microbial communities can affect plant growth, metal availability and the performance of phytoextraction-assisting inocula. Understanding the basic ecology of indigenous soil communities associated with the phytoextraction process, including the interplay between selective pressures upon the communities, is an important step towards phytoextraction optimization. This study investigated the impact of cadmium (Cd), and the presence of a Cd-accumulating plant, Carpobrotus rossii (Haw.) Schwantes, on the structure of soil-bacterial and fungal communities using automated ribosomal intergenic spacer analysis (ARISA) and quantitative PCR (qPCR). Whilst Cd had no detectable influence upon fungal communities, bacterial communities underwent significant structural changes with no reduction in 16S rRNA copy number. The presence of C. rossii influenced the structure of all communities and increased ITS copy number. Suites of operational taxonomic units (OTUs) changed in abundance in response to either Cd or C. rossii, however we found little evidence to suggest that the two selective pressures were acting synergistically. The Cd-induced turnover in bacterial OTUs suggests that Cd alters competition dynamics within the community. Further work to understand how competition is altered could provide a deeper understanding of the microbiome-plant-environment and aid phytoextraction optimization.

  8. Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator

    PubMed Central

    Wood, J. L.; Zhang, C.; Mathews, E. R.; Tang, C.; Franks, A. E.

    2016-01-01

    Phytoextraction is influenced by the indigenous soil microbial communities during the remediation of heavy metal contaminated soils. Soil microbial communities can affect plant growth, metal availability and the performance of phytoextraction-assisting inocula. Understanding the basic ecology of indigenous soil communities associated with the phytoextraction process, including the interplay between selective pressures upon the communities, is an important step towards phytoextraction optimization. This study investigated the impact of cadmium (Cd), and the presence of a Cd-accumulating plant, Carpobrotus rossii (Haw.) Schwantes, on the structure of soil-bacterial and fungal communities using automated ribosomal intergenic spacer analysis (ARISA) and quantitative PCR (qPCR). Whilst Cd had no detectable influence upon fungal communities, bacterial communities underwent significant structural changes with no reduction in 16S rRNA copy number. The presence of C. rossii influenced the structure of all communities and increased ITS copy number. Suites of operational taxonomic units (OTUs) changed in abundance in response to either Cd or C. rossii, however we found little evidence to suggest that the two selective pressures were acting synergistically. The Cd-induced turnover in bacterial OTUs suggests that Cd alters competition dynamics within the community. Further work to understand how competition is altered could provide a deeper understanding of the microbiome-plant-environment and aid phytoextraction optimization. PMID:27805014

  9. Overcompensation of herbivore reproduction through hyper-suppression of plant defenses in response to competition.

    PubMed

    Schimmel, Bernardus C J; Ataide, Livia M S; Chafi, Rachid; Villarroel, Carlos A; Alba, Juan M; Schuurink, Robert C; Kant, Merijn R

    2017-06-01

    Spider mites are destructive arthropod pests on many crops. The generalist herbivorous mite Tetranychus urticae induces defenses in tomato (Solanum lycopersicum) and this constrains its fitness. By contrast, the Solanaceae-specialist Tetranychus evansi maintains a high reproductive performance by suppressing tomato defenses. Tetranychus evansi outcompetes T. urticae when infesting the same plant, but it is unknown whether this is facilitated by the defenses of the plant. We assessed the extent to which a secondary infestation by a competitor affects local plant defense responses (phytohormones and defense genes), mite gene expression and mite performance. We observed that T. evansi switches to hyper-suppression of defenses after its tomato host is also invaded by its natural competitor T. urticae. Jasmonate (JA) and salicylate (SA) defenses were suppressed more strongly, albeit only locally at the feeding site of T. evansi, upon introduction of T. urticae to the infested leaflet. The hyper-suppression of defenses coincided with increased expression of T. evansi genes coding for salivary defense-suppressing effector proteins and was paralleled by an increased reproductive performance. Together, these observations suggest that T. evansi overcompensates its reproduction through hyper-suppression of plant defenses in response to nearby competitors. We hypothesize that the competitor-induced overcompensation promotes competitive population growth of T. evansi on tomato. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  10. Quantitative Analysis of Glycerol Accumulation, Glycolysis and Growth under Hyper Osmotic Stress

    PubMed Central

    Nordlander, Bodil; Klein, Dagmara; Hong, Kuk-Ki; Jacobson, Therese; Dahl, Peter; Schaber, Jörg; Nielsen, Jens; Hohmann, Stefan; Klipp, Edda

    2013-01-01

    We provide an integrated dynamic view on a eukaryotic osmolyte system, linking signaling with regulation of gene expression, metabolic control and growth. Adaptation to osmotic changes enables cells to adjust cellular activity and turgor pressure to an altered environment. The yeast Saccharomyces cerevisiae adapts to hyperosmotic stress by activating the HOG signaling cascade, which controls glycerol accumulation. The Hog1 kinase stimulates transcription of genes encoding enzymes required for glycerol production (Gpd1, Gpp2) and glycerol import (Stl1) and activates a regulatory enzyme in glycolysis (Pfk26/27). In addition, glycerol outflow is prevented by closure of the Fps1 glycerol facilitator. In order to better understand the contributions to glycerol accumulation of these different mechanisms and how redox and energy metabolism as well as biomass production are maintained under such conditions we collected an extensive dataset. Over a period of 180 min after hyperosmotic shock we monitored in wild type and different mutant cells the concentrations of key metabolites and proteins relevant for osmoadaptation. The dataset was used to parameterize an ODE model that reproduces the generated data very well. A detailed computational analysis using time-dependent response coefficients showed that Pfk26/27 contributes to rerouting glycolytic flux towards lower glycolysis. The transient growth arrest following hyperosmotic shock further adds to redirecting almost all glycolytic flux from biomass towards glycerol production. Osmoadaptation is robust to loss of individual adaptation pathways because of the existence and upregulation of alternative routes of glycerol accumulation. For instance, the Stl1 glycerol importer contributes to glycerol accumulation in a mutant with diminished glycerol production capacity. In addition, our observations suggest a role for trehalose accumulation in osmoadaptation and that Hog1 probably directly contributes to the regulation of the

  11. Hyper Accumulation of Arsenic in Mutants of Ochrobactrum tritici Silenced for Arsenite Efflux Pumps

    PubMed Central

    Piedade, Ana Paula; Morais, Paula V.

    2015-01-01

    Ochrobactrum tritici SCII24T is a highly As-resistant bacterium, with two previously described arsenic resistance operons, ars1 and ars2. Among a large number of genes, these operons contain the arsB and Acr3 genes that encode the arsenite efflux pumps responsible for arsenic resistance. Exploring the genome of O. tritici SCII24T, an additional putative operon (ars3) was identified and revealed the presence of the Acr3_2 gene that encodes for an arsenite efflux protein but which came to prove to not be required for full As resistance. The genes encoding for arsenite efflux pumps, identified in this strain, were inactivated to develop microbial accumulators of arsenic as new tools for bioremediation. Six different mutants were produced, studied and three were more useful as biotools. O. tritici wild type and the Acr3-mutants showed the highest resistance to As(III), being able to grow up to 50 mM of arsenite. On the other hand, arsB-mutants were not able to grow at concentrations higher than 1 mM As(III), and were the most As(III) sensitive mutants. In the presence of 1 mM As(III), the strain with arsB and Acr3_1 mutated showed the highest intracellular arsenic concentration (up to 17 ng(As)/mg protein), while in assays with 5 mM As(III), the single arsB-mutant was able to accumulate the highest concentration of arsenic (up to 10 ng(As)/mg protein). Therefore, arsB is the main gene responsible for arsenite resistance in O. tritici. However, both genes arsB and Acr3_1 play a crucial role in the resistance mechanism, depending on the arsenite concentration in the medium. In conclusion, at moderate arsenite concentrations, the double arsB- and Acr3_1-mutant exhibited a great ability to accumulate arsenite and can be seen as a promising bioremediation tool for environmental arsenic detoxification. PMID:26132104

  12. Accumulation and hyperaccumulation of copper in plants

    NASA Astrophysics Data System (ADS)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species

  13. ACCUMULATION OF PERCHLORATE IN TOBACCO PLANTS: DEVELOPMENT OF A PLANT KINETIC MODEL

    EPA Science Inventory

    Previous studies have shown that tobacco plants are tolerant of perchlorate and will accumulate perchlorate in plant tissues. This research determined the uptake, translocation, and accumulation of perchlorate in tobacco plants. Three hydroponics growth studies were completed u...

  14. Selenium accumulation in plants--phytotechnological applications and ecological implications.

    PubMed

    Valdez Barillas, José Rodolfo; Quinn, Colin F; Pilon-Smits, Elizabeth A H

    2011-01-01

    Selenium (Se) is an essential trace element for many organisms including humans, yet toxic at higher levels. Both Se deficiency and toxicity are problems worldwide. Since plants readily accumulate and volatilize Se, they may be used both as a source of dietary Se and for removing excess Se from the environment. Plant species differ in their capacity to metabolize and accumulate Se, from non-Se accumulators (< 100 mg Se/kg DW), to Se-accumulators (100-1000 mg Se/kg DW) to Se hyperaccumulators (> 1,000 mg Se/kg DW). Here we review plant mechanisms of Se metabolism in these various plant types. We also summarize results from genetic engineering that have led to enhanced plant Se accumulation, volatilization, and/or tolerance, including field studies. Before using Se-accumulating plants at a large scale we need to evaluate the ecological implications. Research so far indicates that plant Se accumulation significantly affects the plant's ecological interactions below and above ground. Selenium canprotect plants from fungal pathogens and from a variety of invertebrate and vertebrate herbivores, due to both deterrence and toxicity. However, specialist (Se-tolerant herbivores), detritivores and endophytes appear to utilize Se hyperaccumulator plants as a resource. These findings are relevant for managing phytoremediation of Se and similar elements.

  15. ACCUMULATION OF PERCHLORATE IN TOBACCO PLANTS AND TOBACCO PRODUCTS

    EPA Science Inventory

    Previous field and laboratory studies with vascular plants have shown that perchlorate is transported from perchlorate fortified soils and is accumulated in the plant tissues and organs. This paper reports results of initial investigations on the accumulation of perchlorate in t...

  16. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues

    DOE PAGES

    Xu, Changcheng; Shanklin, John

    2016-02-03

    One of the most abundant energy-dense storage compounds in eukaryotes are oils in the form of triacylglycerols , and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Moreover, plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerolsmore » as a renewable and sustainable bioenergy source. We review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.« less

  17. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues.

    PubMed

    Xu, Changcheng; Shanklin, John

    2016-04-29

    Oils in the form of triacylglycerols are the most abundant energy-dense storage compounds in eukaryotes, and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerols as a renewable and sustainable bioenergy source. Here, we review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.

  18. Radionuclides: Accumulation and Transport in Plants.

    PubMed

    Gupta, D K; Chatterjee, S; Datta, S; Voronina, A V; Walther, C

    Application of radioactive elements or radionuclides for anthropogenic use is a widespread phenomenon nowadays. Radionuclides undergo radioactive decays releasing ionizing radiation like gamma ray(s) and/or alpha or beta particles that can displace electrons in the living matter (like in DNA) and disturb its function. Radionuclides are highly hazardous pollutants of considerable impact on the environment, food chain and human health. Cleaning up of the contaminated environment through plants is a promising technology where the rhizosphere may play an important role. Plants belonging to the families of Brassicaceae, Papilionaceae, Caryophyllaceae, Poaceae, and Asteraceae are most important in this respect and offer the largest potential for heavy metal phytoremediation. Plants like Lactuca sativa L., Silybum marianum Gaertn., Centaurea cyanus L., Carthamus tinctorius L., Helianthus annuus and H. tuberosus are also important plants for heavy metal phytoremediation. However, transfer factors (TF) of radionuclide from soil/water to plant ([Radionuclide]plant/[Radionuclide]soil) vary widely in different plants. Rhizosphere, rhizobacteria and varied metal transporters like NRAMP, ZIP families CDF, ATPases (HMAs) family like P1B-ATPases, are involved in the radio-phytoremediation processes. This review will discuss recent advancements and potential application of plants for radionuclide removal from the environment.

  19. Strontium-90 Accumulation on Plant Foliage During Rainfall.

    PubMed

    Menzel, R G; Roberts, H; Stewart, E H; Mackenzie, A J

    1963-11-01

    Accumulation of strontium-90 in field-grown crops was measured during the spring of 1962. Each rainfall markedly increased the strontium-90 content of the crops, except when the plants were very small. Accumulation between rains was comparatively small, about equal to the expected uptake from the soil.

  20. Transcriptome analysis of the key role of GAT2 gene in the hyper-accumulation of copper in the oyster Crassostrea angulata

    NASA Astrophysics Data System (ADS)

    Shi, Bo; Huang, Zekun; Xiang, Xu; Huang, Miaoqin; Wang, Wen-Xiong; Ke, Caihuan

    2015-12-01

    One paradigm of oysters as the hyper-accumulators of many toxic metals is the inter-individual variation of metals, but the molecular mechanisms remain very elusive. A comprehensive analysis of the transcriptome of Crassostrea angulata was conducted to reveal the relationship between gene expression and differential Cu body burden in oysters. Gene ontology analysis for the differentially expressed genes showed that the neurotransmitter transporter might affect the oyster behavior, which in turn led to difference in Cu accumulation. The ATP-binding cassette transporters superfamily played an important role in the maintenance of cell Cu homeostasis, vitellogenin and apolipophorin transport, and elimination of excess Cu. Gill and mantle Cu concentrations were significantly reduced after silencing the GABA transporter 2 (GAT2) gene, but increased after the injection of GABA receptor antagonists, suggesting that the function of GABA transporter 2 gene was strongly related to Cu accumulation. These findings demonstrated that GABA transporter can control the action of transmitter GABA in the nervous system, thereby affecting the Cu accumulation in the gills and mantles.

  1. Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza.

    PubMed

    de Andrade, Sara Adrián López; da Silveira, Adriana Parada Dias; Jorge, Renato Atílio; de Abreu, Mônica Ferreira

    2008-01-01

    In order to investigate the cadmium (Cd) accumulation patterns and possible alleviation of Cd stress by mycorrhization, sunflower plants (Helianthus annuus L.) were grown in the presence or absence of Cd (20 micromol L(-1)) and inoculated or not inoculated with the arbuscular mycorrhizal fungus (AMF) Glomus intraradices. No visual symptoms of Cd phytotoxicity were observed; nevertheless, in non-mycorrhizal plants the presence of Cd decreased plant growth. The addition of Cd had no significant effect on either mycorrhizal colonization or the amount of extra-radical mycelia that was produced by the AMF. Cd accumulated mainly in roots; only 22% of the total Cd absorbed was translocated to the shoots, where it accumulated to an average of 228 mg Cd kg(-1). Although the shoot-to-root ratio of Cd was similar in both the AMF inoculated and non-inoculated plants, the total absorbed Cd was 23% higher in mycorrhizal plants. Cd concentration in AMF extra-radical mycelium was 728 microg g(-1) dry weight. Despite the greater absorption of Cd, mycorrhizal plants showed higher photosynthetic pigment concentrations and shoot P contents. Cd also influenced mineral nutrition, leading to decreased Ca and Cu shoot concentrations; N, Fe and Cu shoot contents; and increased S and K shoot concentrations. Cd induced guaiacol peroxidase activity in roots in both mycorrhizal and non-mycorrhizal plants, but this increase was much more accentuated in non-mycorrhizal roots. In conclusion, sunflower plants associated with G. intraradices were less sensitive to Cd stress than non-mycorrhizal plants. Mycorrhizal sunflowers showed enhanced Cd accumulation and some tolerance to excessive Cd concentrations in plant tissues.

  2. Metabolic Adaptation in Transplastomic Plants Massively Accumulating Recombinant Proteins

    PubMed Central

    Bally, Julia; Job, Claudette; Belghazi, Maya; Job, Dominique

    2011-01-01

    Background Recombinant chloroplasts are endowed with an astonishing capacity to accumulate foreign proteins. However, knowledge about the impact on resident proteins of such high levels of recombinant protein accumulation is lacking. Methodology/Principal Findings Here we used proteomics to characterize tobacco (Nicotiana tabacum) plastid transformants massively accumulating a p-hydroxyphenyl pyruvate dioxygenase (HPPD) or a green fluorescent protein (GFP). While under the conditions used no obvious modifications in plant phenotype could be observed, these proteins accumulated to even higher levels than ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), the most abundant protein on the planet. This accumulation occurred at the expense of a limited number of leaf proteins including Rubisco. In particular, enzymes involved in CO2 metabolism such as nuclear-encoded plastidial Calvin cycle enzymes and mitochondrial glycine decarboxylase were found to adjust their accumulation level to these novel physiological conditions. Conclusions/Significance The results document how protein synthetic capacity is limited in plant cells. They may provide new avenues to evaluate possible bottlenecks in recombinant protein technology and to maintain plant fitness in future studies aiming at producing recombinant proteins of interest through chloroplast transformation. PMID:21966485

  3. Susceptibility of riparian wetland plants to perfluorooctanoic acid (PFOA) accumulation.

    PubMed

    Mudumbi, J B N; Ntwampe, S K O; Muganza, M; Okonkwo, J O

    2014-01-01

    As plants have been shown to accumulate organic compounds from contaminated sediments, there is a potential for long-lasting ecological impact as a result of contaminant accumulation in riparian areas of wetlands, particularly the accumulation of non-biodegradable contaminants such as perfluorooctanoic acid (PFOA). In this study, commonly found riparian wetland plants including reeds, i.e., Xanthium strumarium, Phragmites australis, Schoenoplectus corymbosus, Ruppia maritime; Populus canescens, Polygonum salicifolium, Cyperus congestus; Persicaria amphibian, Ficus carica, Artemisia schmidtiana, Eichhornia crassipes, were studied to determine their susceptibility to PFOA accumulation from PFOA contaminated riparian sediment with a known PFOA concentration, using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The bioconcentration factor (BCF) indicated that the plants affinity to PFOA accumulation was; E. crassipes, > P. sali-cifolium, > C. congestus, > P. x canescens, > P. amphibian, > F. carica, > A. schmidtiana, > X. strumarium,> P. australis, > R. maritime, > S. corymbosus. The concentration of PFOA in the plants and/or reeds was in the range 11.7 to 38 ng/g, with a BCF range of 0.05 to 0.37. The highest BCF was observed in sediment for which its core water had a high salinity, total organic carbon and a pH which was near neutral. As the studied plants had a higher affinity for PFOA, the resultant effect is that riparian plants such as E. crassipes, X. strumarium, and P. salicifolium, typified by a fibrous rooting system, which grow closer to the water edge, exacerbate the accumulation of PFOA in riparian wetlands.

  4. Sulphur interferes with selenium accumulation in Tartary buckwheat plants.

    PubMed

    Golob, Aleksandra; Gadžo, Drena; Stibilj, Vekoslava; Djikić, Mirha; Gavrić, Teofil; Kreft, Ivan; Germ, Mateja

    2016-11-01

    Tartary buckwheat (Fagopyrum tataricum Gaertn.) and common buckwheat (Fagopyrum esculentum Moench.) plants grown in the field were treated foliarly with 126 μM solutions of selenate and/or sulphate in order to study the effect of sulphur (S) on selenium (Se) concentration in plants. In both species, the concentration of Se in all plant parts was similar in control and S treated plants. In Tartary buckwheat the concentration of Se was higher in S and Se treated plants than in plants treated with Se alone. S was shown to enhance Se accumulation in Tartary buckwheat. It was also shown that it is possible to produce grain and herb of Tartary and common buckwheat containing appropriate amounts of Se for food without affecting the yield of the plants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Predicting plant biomass accumulation from image-derived parameters

    PubMed Central

    Chen, Dijun; Shi, Rongli; Pape, Jean-Michel; Neumann, Kerstin; Graner, Andreas; Chen, Ming; Klukas, Christian

    2018-01-01

    Abstract Background Image-based high-throughput phenotyping technologies have been rapidly developed in plant science recently, and they provide a great potential to gain more valuable information than traditionally destructive methods. Predicting plant biomass is regarded as a key purpose for plant breeders and ecologists. However, it is a great challenge to find a predictive biomass model across experiments. Results In the present study, we constructed 4 predictive models to examine the quantitative relationship between image-based features and plant biomass accumulation. Our methodology has been applied to 3 consecutive barley (Hordeum vulgare) experiments with control and stress treatments. The results proved that plant biomass can be accurately predicted from image-based parameters using a random forest model. The high prediction accuracy based on this model will contribute to relieving the phenotyping bottleneck in biomass measurement in breeding applications. The prediction performance is still relatively high across experiments under similar conditions. The relative contribution of individual features for predicting biomass was further quantified, revealing new insights into the phenotypic determinants of the plant biomass outcome. Furthermore, methods could also be used to determine the most important image-based features related to plant biomass accumulation, which would be promising for subsequent genetic mapping to uncover the genetic basis of biomass. Conclusions We have developed quantitative models to accurately predict plant biomass accumulation from image data. We anticipate that the analysis results will be useful to advance our views of the phenotypic determinants of plant biomass outcome, and the statistical methods can be broadly used for other plant species. PMID:29346559

  6. Refeeding-Induced Brown Adipose Tissue Glycogen Hyper-Accumulation in Mice Is Mediated by Insulin and Catecholamines

    PubMed Central

    Carmean, Christopher M.; Bobe, Alexandria M.; Yu, Justin C.; Volden, Paul A.; Brady, Matthew J.

    2013-01-01

    Brown adipose tissue (BAT) generates heat during adaptive thermogenesis through a combination of oxidative metabolism and uncoupling protein 1-mediated electron transport chain uncoupling, using both free-fatty acids and glucose as substrate. Previous rat-based work in 1942 showed that prolonged partial fasting followed by refeeding led to a dramatic, transient increase in glycogen stores in multiple fat depots. In the present study, the protocol was replicated in male CD1 mice, resulting in a 2000-fold increase in interscapular BAT (IBAT) glycogen levels within 4–12 hours (hr) of refeeding, with IBAT glycogen stores reaching levels comparable to fed liver glycogen. Lesser effects occurred in white adipose tissues (WAT). Over the next 36 hr, glycogen levels dissipated and histological analysis revealed an over-accumulation of lipid droplets, suggesting a potential metabolic connection between glycogenolysis and lipid synthesis. 24 hr of total starvation followed by refeeding induced a robust and consistent glycogen over-accumulation similar in magnitude and time course to the prolonged partial fast. Experimentation demonstrated that hyperglycemia was not sufficient to drive glycogen accumulation in IBAT, but that elevated circulating insulin was sufficient. Additionally, pharmacological inhibition of catecholamine production reduced refeeding-induced IBAT glycogen storage, providing evidence of a contribution from the central nervous system. These findings highlight IBAT as a tissue that integrates both canonically-anabolic and catabolic stimulation for the promotion of glycogen storage during recovery from caloric deficit. The preservation of this robust response through many generations of animals not subjected to food deprivation suggests that the over-accumulation phenomenon plays a critical role in IBAT physiology. PMID:23861810

  7. Cellulose Deficiency Is Enhanced on Hyper Accumulation of Sucrose by a H+-Coupled Sucrose Symporter1[OPEN

    PubMed Central

    Yeats, Trevor H.; Sorek, Hagit

    2016-01-01

    In order to understand factors controlling the synthesis and deposition of cellulose, we have studied the Arabidopsis (Arabidopsis thaliana) double mutant shaven3 shaven3-like1 (shv3svl1), which was shown previously to exhibit a marked cellulose deficiency. We discovered that exogenous sucrose (Suc) in growth medium greatly enhances the reduction in hypocotyl elongation and cellulose content of shv3svl1. This effect was specific to Suc and was not observed with other sugars or osmoticum. Live-cell imaging of fluorescently labeled cellulose synthase complexes revealed a slowing of cellulose synthase complexes in shv3svl1 compared with the wild type that is enhanced in a Suc-conditional manner. Solid-state nuclear magnetic resonance confirmed a cellulose deficiency of shv3svl1 but indicated that cellulose crystallinity was unaffected in the mutant. A genetic suppressor screen identified mutants of the plasma membrane Suc/H+ symporter SUC1, indicating that the accumulation of Suc underlies the Suc-dependent enhancement of shv3svl1 phenotypes. While other cellulose-deficient mutants were not specifically sensitive to exogenous Suc, the feronia (fer) receptor kinase mutant partially phenocopied shv3svl1 and exhibited a similar Suc-conditional cellulose defect. We demonstrate that shv3svl1, like fer, exhibits a hyperpolarized plasma membrane H+ gradient that likely underlies the enhanced accumulation of Suc via Suc/H+ symporters. Enhanced intracellular Suc abundance appears to favor the partitioning of carbon to starch rather than cellulose in both mutants. We conclude that SHV3-like proteins may be involved in signaling during cell expansion that coordinates proton pumping and cellulose synthesis. PMID:27013021

  8. Mercury uptake and accumulation by four species of aquatic plants.

    PubMed

    Skinner, Kathleen; Wright, Nicole; Porter-Goff, Emily

    2007-01-01

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively.

  9. Screening for new accumulator plants in Andes Range mines

    NASA Astrophysics Data System (ADS)

    Bech, Jaume; Roca, Núria

    2016-04-01

    Toxic metal pollution of waters and soils is a major environmental problem, and most conventional remediation approaches do not provide acceptable solutions. The use of plants or plant products to restore or stabilize contaminated sites, collectively known as phytoremediation, takes advantage of the natural abilities of plants to take up, accumulate, store, or degrade organic and inorganic substances. Although not a new concept, phytoremediation is currently being re-examined as an environmentally friendly, cost-effective means of reducing metal contaminated soil. Plants growing on naturally metal-enriched soils are of particular interest in this regard, since they are genetically tolerant to high metal concentrations and have an excellent adaptation to this multi-stress environment. Processes include using plants that tolerate and accumulate metals at high levels (phytoextraction) and using plants that can grow under conditions that are toxic to other plants while preventing, for example, soil erosion (phytostabilization). Soil and plant samples were taken at polymetallic mines in Peru, Ecuador and Chile. It is suggested that Plantago orbignyana Steinheil is a Pb hyperaccumulator. Moreover, unusually elevated concentrations of Pb (over 1000 mg kg-1) and Translocation Factor (TF) greater than one were also detected in shoots of 6 different plants species (Ageratina sp., Achirodine alata, Cortaderia apalothica, Epilobium denticulatum, Taraxacum officinalis and Trifolium repens) of a Caroline mine in Perú. Among the grass species (Poaceae), the highest shoot As concentration were found in Paspalum sp. (>1000 μg g-1) and Eriochola ramose (460 μg g-1) from the Cu mine in Peru and in Holcus lanatus and Pennisetum clandestinum (>200 μg g-1) from the silver mine in Ecuador. The shoot accumulation of Zn was highest in Baccharis amdatensis (>1900 μg g-1) and in Rumex crispus (1300 μg g-1) from the Ag mine in Ecuador (Bech et al., 2002). Paspalum racemosum also

  10. Global exchange and accumulation of non-native plants.

    PubMed

    van Kleunen, Mark; Dawson, Wayne; Essl, Franz; Pergl, Jan; Winter, Marten; Weber, Ewald; Kreft, Holger; Weigelt, Patrick; Kartesz, John; Nishino, Misako; Antonova, Liubov A; Barcelona, Julie F; Cabezas, Francisco J; Cárdenas, Dairon; Cárdenas-Toro, Juliana; Castaño, Nicolás; Chacón, Eduardo; Chatelain, Cyrille; Ebel, Aleksandr L; Figueiredo, Estrela; Fuentes, Nicol; Groom, Quentin J; Henderson, Lesley; Inderjit; Kupriyanov, Andrey; Masciadri, Silvana; Meerman, Jan; Morozova, Olga; Moser, Dietmar; Nickrent, Daniel L; Patzelt, Annette; Pelser, Pieter B; Baptiste, María P; Poopath, Manop; Schulze, Maria; Seebens, Hanno; Shu, Wen-sheng; Thomas, Jacob; Velayos, Mauricio; Wieringa, Jan J; Pyšek, Petr

    2015-09-03

    All around the globe, humans have greatly altered the abiotic and biotic environment with ever-increasing speed. One defining feature of the Anthropocene epoch is the erosion of biogeographical barriers by human-mediated dispersal of species into new regions, where they can naturalize and cause ecological, economic and social damage. So far, no comprehensive analysis of the global accumulation and exchange of alien plant species between continents has been performed, primarily because of a lack of data. Here we bridge this knowledge gap by using a unique global database on the occurrences of naturalized alien plant species in 481 mainland and 362 island regions. In total, 13,168 plant species, corresponding to 3.9% of the extant global vascular flora, or approximately the size of the native European flora, have become naturalized somewhere on the globe as a result of human activity. North America has accumulated the largest number of naturalized species, whereas the Pacific Islands show the fastest increase in species numbers with respect to their land area. Continents in the Northern Hemisphere have been the major donors of naturalized alien species to all other continents. Our results quantify for the first time the extent of plant naturalizations worldwide, and illustrate the urgent need for globally integrated efforts to control, manage and understand the spread of alien species.

  11. Global exchange and accumulation of non-native plants

    NASA Astrophysics Data System (ADS)

    van Kleunen, Mark; Dawson, Wayne; Essl, Franz; Pergl, Jan; Winter, Marten; Weber, Ewald; Kreft, Holger; Weigelt, Patrick; Kartesz, John; Nishino, Misako; Antonova, Liubov A.; Barcelona, Julie F.; Cabezas, Francisco J.; Cárdenas, Dairon; Cárdenas-Toro, Juliana; Castaño, Nicolás; Chacón, Eduardo; Chatelain, Cyrille; Ebel, Aleksandr L.; Figueiredo, Estrela; Fuentes, Nicol; Groom, Quentin J.; Henderson, Lesley; Inderjit; Kupriyanov, Andrey; Masciadri, Silvana; Meerman, Jan; Morozova, Olga; Moser, Dietmar; Nickrent, Daniel L.; Patzelt, Annette; Pelser, Pieter B.; Baptiste, María P.; Poopath, Manop; Schulze, Maria; Seebens, Hanno; Shu, Wen-Sheng; Thomas, Jacob; Velayos, Mauricio; Wieringa, Jan J.; Pyšek, Petr

    2015-09-01

    All around the globe, humans have greatly altered the abiotic and biotic environment with ever-increasing speed. One defining feature of the Anthropocene epoch is the erosion of biogeographical barriers by human-mediated dispersal of species into new regions, where they can naturalize and cause ecological, economic and social damage. So far, no comprehensive analysis of the global accumulation and exchange of alien plant species between continents has been performed, primarily because of a lack of data. Here we bridge this knowledge gap by using a unique global database on the occurrences of naturalized alien plant species in 481 mainland and 362 island regions. In total, 13,168 plant species, corresponding to 3.9% of the extant global vascular flora, or approximately the size of the native European flora, have become naturalized somewhere on the globe as a result of human activity. North America has accumulated the largest number of naturalized species, whereas the Pacific Islands show the fastest increase in species numbers with respect to their land area. Continents in the Northern Hemisphere have been the major donors of naturalized alien species to all other continents. Our results quantify for the first time the extent of plant naturalizations worldwide, and illustrate the urgent need for globally integrated efforts to control, manage and understand the spread of alien species.

  12. Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation.

    PubMed

    Sarvepalli, Kavitha; Nath, Utpal

    2011-08-01

    Plant organs are initiated as primordial outgrowths, and require controlled cell division and differentiation to achieve their final size and shape. Superimposed on this is another developmental program that orchestrates the switch from vegetative to reproductive to senescence stages in the life cycle. These require sequential function of heterochronic regulators. Little is known regarding the coordination between organ and organismal growth in plants. The TCP gene family encodes transcription factors that control diverse developmental traits, and a subgroup of class II TCP genes regulate leaf morphogenesis. Absence of these genes results in large, crinkly leaves due to excess division, mainly at margins. It has been suggested that these class II TCPs modulate the spatio-temporal control of differentiation in a growing leaf, rather than regulating cell proliferation per se. However, the link between class II TCP action and cell growth has not been established. As loss-of-function mutants of individual TCP genes in Arabidopsis are not very informative due to gene redundancy, we generated a transgenic line that expressed a hyper-activated form of TCP4 in its endogenous expression domain. This resulted in premature onset of maturation and decreased cell proliferation, leading to much smaller leaves, with cup-shaped lamina in extreme cases. Further, the transgenic line initiated leaves faster than wild-type and underwent precocious reproductive maturation due to a shortened adult vegetative phase. Early senescence and severe fertility defects were also observed. Thus, hyper-activation of TCP4 revealed its role in determining the timing of crucial developmental events, both at the organ and organism level. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  13. Accumulation of Apoplastic Iron in Plant Roots 1

    PubMed Central

    Longnecker, Nancy; Welch, Ross M.

    1990-01-01

    We hypothesized that the resistance of Hawkeye (HA) soybean (Glycine max L.) to iron-deficiency induced chlorosis (IDC) is correlated to an ability to accumulate a large pool of extracellular-root iron which can be mobilized to shoots as the plants become iron deficient. Iron in the root apoplast was assayed after efflux from the roots of intact plants in nutrient solution treated with sodium dithionite added under anaerobic conditions. Young seedlings of HA soybean accumulated a significantly larger amount of extracellular iron in their roots than did either IDC-susceptible PI-54619 (PI) soybean or IDC-resistant IS-8001 (IS) sunflower (Helianthus annus L.). Concurrently, HA soybean had much higher concentrations of iron in their shoots than either PI soybean or IS sunflower. The concentration of iron in the root apoplast and in shoots of HA soybean decreased sharply within days after the first measurements of extracellular root iron were made, in both +Fe and −Fe treatments. The accumulation of short-term iron reserves in the root apoplast and translocation of iron in large quantities to the shoot may be important characteristics of IDC resistance in soybeans. PMID:16667242

  14. Localization of lead accumulated by corn plants. [Zea mays L

    SciTech Connect

    Malone, C.; Koeppe, D.E.; Miller, R.J.

    1974-01-01

    Light and electron microscopic studies of corn plants (Zea mays L.) exposed to Pb in hydroponic solution showed that the roots generally accumulated a surface Pb precipitate and slowly accumulated Pb crystals in the cell walls. The root surface precipitate formed without the apparent influence of any cell organelles. In contrast, Pb taken up by roots was concentrated in dicytosome vesicles. Dicytosome vesicles containing cell wall material fused with one another to encase the Pb deposit. This encased deposit which was surrounded by a membrane migrated toward the outside of the cell where the membrane surrounding the deposit then fusedmore » with the plasmalemma. The material surrounding the deposit then fused with the cell wall. The result of this process was a concentration of Pb deposits in the cell wall outside the plasmalemma. Similar deposits were observed in stems and leaves suggesting that Pb was transported and deposited in a similar manner.« less

  15. Localization of Lead Accumulated by Corn Plants 1

    PubMed Central

    Malone, Carl; Koeppe, D. E.; Miller, Raymond J.

    1974-01-01

    Light and electron microscopic studies of corn plants (Zea mays L.) exposed to Pb in hydroponic solution showed that the roots generally accumulated a surface Pb precipitate and slowly accumulated Pb crystals in the cell walls. The root surface precipitate formed without the apparent influence of any cell organelles. In contrast, Pb taken up by roots was concentrated in dictyosome vesicles. Dictyosome vesicles containing cell wall material fused with one another to encase the Pb deposit. This encased deposit which was surrounded by a membrane migrated toward the outside of the cell where the membrane surrounding the deposit fused with the plasmalemma. The material surrounding the deposit then fused with the cell wall. The result of this process was a concentration of Pb deposits in the cell wall outside the plasmalemma. Similar deposits were observed in stems and leaves suggesting that Pb was transported and deposited in a similar manner. Images PMID:16658711

  16. Nitrate deficiency reduces cadmium and nickel accumulation in chamomile plants.

    PubMed

    Kovácik, Jozef; Klejdus, Borivoj; Stork, Frantisek; Hedbavny, Josef

    2011-05-11

    The effect of nitrogen (nitrate) deficiency (-N) on the accumulation of cadmium (Cd) and nickel (Ni) in chamomile ( Matricaria chamomilla ) plants was studied. Elimination of N from the culture medium led to decreases in N-based compounds (free amino acids and soluble proteins) and increases in C-based compounds (reducing sugars, soluble phenols, coumarins, phenolic acids, and partially flavonoids and lignin), being considerably affected by the metal presence. Proline, a known stress-protective amino acid, decreased in all -N variants. The activity of phenylalanine ammonia-lyase was stimulated only in -N control plants, whereas the activities of polyphenol oxidase and guaiacol peroxidase were never reduced in -N variants in comparison with respective +N counterparts. Among detected phenolic acids, chlorogenic acid strongly accumulated in all N-deficient variants in the free fraction and caffeic acid in the cell wall-bound fraction. Mineral nutrients were rather affected by a given metal than by N deficiency. Shoot and total root Cd and Ni amounts decreased in -N variants. On the contrary, ammonium-fed plants exposed to N deficiency did not show similar changes in Cd and Ni contents. The present findings are discussed with respect to the role of phenols and mineral nutrition in metal uptake.

  17. Gamma amino butyric acid accumulation in medicinal plants without stress

    PubMed Central

    Anju, P.; Moothedath, Ismail; Rema Shree, Azhimala Bhaskaranpillai

    2014-01-01

    Introduction: Gamma amino butyric acid (GABA) is an important ubiquitous four carbon nonprotein amino acid with an amino group attached to gamma carbon instead of beta carbon. It exists in different organisms including bacteria, plants, and animals and plays a crucial role in humans by regulating neuronal excitability throughout the nervous system. It is directly responsible for the regulation of muscle tone and also effective in lowering stress, blood pressure, and hypertension. Aim and Objective: The aim of the study was to develop the fingerprint profile of selected medicinally and economically important plants having central nervous system (CNS) activity and to determine the quantity of GABA in the selected plants grown under natural conditions without any added stress. Materials and Methods: The high-performance thin layer chromatography analysis was performed on precoated silica gel plate 60F–254 plate (20 cm × 10 cm) in the form of bands with width 8 mm using Hamilton syringe (100 μl) using n-butanol, acetic acid, and water in the proportion 5:2:2 as mobile phase in a CAMAG chamber which was previously saturated for 30 min. CAMAG TLC scanner 3 was used for the densitometric scanning at 550 nm. Specific marker compounds were used for the quantification. Results and Conclusion: Among the screened medicinal plants, Zingiber officinale and Solanum torvum were found to have GABA. The percentage of GABA present in Z. officinale and S. torvum were found to be 0.0114% and 0.0119%, respectively. The present work confirmed that among the selected CNS active medicinal plants, only two plants contain GABA. We found a negative correlation with plant having CNS activity and accumulation of GABA. The GABA shunt is a conserved pathway in eukaryotes and prokaryotes but, although the role of GABA as a neurotransmitter in mammals is clearly established, its role in plants is still vague. PMID:25861139

  18. Effects of perchlorate on growth of four wetland plants and its accumulation in plant tissues.

    PubMed

    He, Hongzhi; Gao, Haishuo; Chen, Guikui; Li, Huashou; Lin, Hai; Shu, Zhenzhen

    2013-10-01

    Perchlorate contamination in water is of concern because of uncertainties about toxicity and health effects, impact on ecosystems, and possible indirect exposure pathways to humans. Therefore, it is very important to investigate the ecotoxicology of perchlorate and to screen plant species for phytoremediation. Effects of perchlorate (20, 200, and 500 mg/L) on the growth of four wetland plants (Eichhornia crassipes, Acorus calamus L., Thalia dealbata, and Canna indica) as well as its accumulation in different plant tissues were investigated through water culture experiments. Twenty milligrams per liter of perchlorate had no significant effects on height, root length, aboveground part weight, root weight, and oxidizing power of roots of four plants, except A. calamus, and increasing concentrations of perchlorate showed that out of the four wetland plants, only A. calamus had a significant (p<0.05) dose-dependent decrease in these parameters. When treated with 500 mg/L perchlorate, these parameters and chlorophyll content in the leaf of plants showed significant decline contrasted to control groups, except the root length of E. crassipes and C. indica. The order of inhibition rates of perchlorate on root length, aboveground part weight and root weight, and oxidizing power of roots was: A. calamus > C. indica > T. dealbata > E. crassipes and on chlorophyll content in the leaf it was: A. calamus > T. dealbata > C. indica > E. crassipes. The higher the concentration of perchlorate used, the higher the amount of perchlorate accumulation in plants. Perchlorate accumulation in aboveground tissues was much higher than that in underground tissues and leaf was the main tissue for perchlorate accumulation. The order of perchlorate accumulation content and the bioconcentration factor in leaf of four plants was: E. crassipes > C. indica > T. dealbata > A. calamus. Therefore, E. crassipes might be an ideal plant with high tolerance ability and accumulation ability for constructing

  19. Anchoring plant metallothioneins to the inner face of the plasma membrane of Saccharomyces cerevisiae cells leads to heavy metal accumulation.

    PubMed

    Ruta, Lavinia Liliana; Lin, Ya-Fen; Kissen, Ralph; Nicolau, Ioana; Neagoe, Aurora Daniela; Ghenea, Simona; Bones, Atle M; Farcasanu, Ileana Cornelia

    2017-01-01

    In this study we engineered yeast cells armed for heavy metal accumulation by targeting plant metallothioneins to the inner face of the yeast plasma membrane. Metallothioneins (MTs) are cysteine-rich proteins involved in the buffering of excess metal ions, especially Cu(I), Zn(II) or Cd(II). The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b) and four Noccaea caerulescens MTs (NcMT1, NcMT2a, NcMT2b and NcMT3) were each translationally fused to the C-terminus of a myristoylation green fluorescent protein variant (myrGFP) and expressed in Saccharomyces cerevisiae cells. The myrGFP cassette introduced a yeast myristoylation sequence which allowed directional targeting to the cytosolic face of the plasma membrane along with direct monitoring of the intracellular localization of the recombinant protein by fluorescence microscopy. The yeast strains expressing plant MTs were investigated against an array of heavy metals in order to identify strains which exhibit the (hyper)accumulation phenotype without developing toxicity symptoms. Among the transgenic strains which could accumulate Cu(II), Zn(II) or Cd(II), but also non-canonical metal ions, such as Co(II), Mn(II) or Ni(II), myrGFP-NcMT3 qualified as the best candidate for bioremediation applications, thanks to the robust growth accompanied by significant accumulative capacity.

  20. Polyhydroxyalkanoate (PHA) accumulation potential and PHA-accumulating microbial communities in various activated sludge processes of municipal wastewater treatment plants.

    PubMed

    Sakai, K; Miyake, S; Iwama, K; Inoue, D; Soda, S; Ike, M

    2015-01-01

    To clarify the polyhydroxyalkanoate (PHA) accumulation potential and the PHA-accumulating microbial community structure in activated sludge in municipal wastewater treatment plants (WWTPs) and to identify their influential factors. Nine activated sludge samples were collected from municipal WWTPs employing various biological treatment processes. In acetate-fed 24-h batch experiments under aerobic and nitrogen- and phosphorus-limited conditions, polyhydroxybutyrate (PHB) content of activated sludge increased from 0-1·3 wt% to 7·9-24 wt%, with PHB yields of 0·22-0·50 C-mol 3-hydroxybutyrate (C-mol acetate)(-1). Microbial community analyses found that activated sludge samples that accumulated >20 wt% of PHB after 24-h PHA accumulation experiments had >5·0 × 10(8) copies g(-1)-mixed liquor-suspended solid of phaC genes. Results indicated that (i) activated sludge in municipal WWTPs can accumulate up to approx. 20 wt% of PHA without enrichment processes, (ii) PHA accumulation potential of activated sludge varied depending on the operational conditions (treatment processes) of WWTPs, and (iii) phaC gene number can provide a simple indication of PHA accumulation potential. This is the first study to compare the PHA accumulation potential and PHA-accumulating microbial communities in activated sludge of various treatment processes. Our findings may be useful for enhancing the resource recovery potential of wastewater treatment systems. © 2014 The Society for Applied Microbiology.

  1. Nutrient accumulation in planted red and jack pine.

    Treesearch

    David H. Alban

    1988-01-01

    Compares nutrient accumulation in adjacent plantations of red and jack pine in the upper Great Lakes. Describes equations developed to predict biomass and nutrient accumulation based on stand basal area and height.

  2. Long-term impact of primary domestic sewage on metal/loid accumulation in drainage ditch sediments, plants and water: Implications for phytoremediation and restoration.

    PubMed

    Kumwimba, Mathieu Nsenga; Zhu, Bo; Suanon, Fidèle; Muyembe, Diana Kavidia; Dzakpasu, Mawuli

    2017-03-01

    We evaluate the long-term performance of a vegetated drainage ditch (VDD) treating domestic sewage with respect to heavy metal/metalloid (HM/M) accumulation in sediments, plants and water. VDD sediment contained significantly higher macro and trace elements compared to an agricultural ditch (AD) sediment. However, concentrations of HM/Ms in VDD sediment were below the ranges considered toxic to plants. Most HM/Ms were efficiently removed in the VDD, whereby removal efficiencies varied between 11% for Al and 89% for K. Accumulation of HM/Ms varied among species and plant parts, although sequestration by plants represents only a small proportion (<1%) of the inflow load. Accumulation of Al, As, Cd, Pb, Cr, Fe and Ni in VDD plants were mostly distributed in the roots, indicating an exclusive strategy for metal tolerance. The opposite was found for Zn, Cu, K, Ca, P, K, Na, N and Mg, which were accumulated either in the stems or leaves. Overall, concentrations of metals in sediment showed significant positive correlations with those in ditch plants. None of the studied species were identified as metal hyper-accumulators (i.e. >10,000mgkg -1 of Zn or Mn). Nevertheless, the high translocation factor (TF) values for Mn, Ni, Cu, Zn, Na, Mg, P, K and Ca in the ditch plants make them suitable for phytoextraction from water/soil, while the low TF values for Pb, Cd, As, Fe, Cr and Al make them suitable for their phytostabilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite.

    PubMed

    Li, Hongcheng; Zhang, Jinsong; Wang, Thanh; Luo, Wenru; Zhou, Qunfang; Jiang, Guibin

    2008-09-29

    Recent studies have shown that elemental selenium particles at nano-size (Nano-Se) exhibited comparable bioavailability and less toxicity in mice and rats when compared to sodium selenite, selenomethinine and methylselenocysteine. However, little is known about the toxicity profile of Nano-Se in aquatic animals. In the present study, toxicities of Nano-Se and selenite in selenium-sufficient Medaka fish were compared. Selenium bioaccumulation and subsequent clearance in fish livers, gills, muscles and whole bodies were examined after 10 days of exposure to Nano-Se and selenite (100 microg Se/L) and again after 7 days of depuration. Both forms of selenium exposure effectively increased selenium concentrations in the investigated tissues. Surprisingly, Nano-Se was found to be more hyper-accumulated in the liver compared to selenite with differences as high as sixfold. Selenium clearance of both Nano-Se and selenite occurred at similar ratios in whole bodies and muscles but was not rapidly cleared from livers and gills. Nano-Se exhibited strong toxicity for Medaka with an approximately fivefold difference in terms of LC(50) compared to selenite. Nano-Se also caused larger effects on oxidative stress, most likely due to more hyper-accumulation of selenium in liver. The present study suggests that toxicity of nanoparticles can largely vary between different species and concludes that the evaluation of nanotoxicology should be carried out on a case-by-case basis.

  4. Comparative oral dose toxicokinetics of selenium compounds commonly found in selenium accumulator plants

    USDA-ARS?s Scientific Manuscript database

    Consumption of Se accumulator plants by livestock can result in Se intoxication. Recent research indicates that the Se forms most common in Se accumulator plants are selenate and Se-methylselenocysteine (MeSeCys). In this study the absorption, distribution, and elimination kinetics of Se in serum ...

  5. Soil and plant factors influencing the accumulation of heavy metals by plants.

    PubMed Central

    Cataldo, D A; Wildung, R E

    1978-01-01

    The use of plants to monitor heavy metal pollution in the terrestrial environment must be based on a cognizance of the complicated, integrated effects of pollutant source and soil-plant variables. To be detectable in plants, pollutant sources must significantly increase the plant available metal concentration in soil. The major factor governing metal availability to plants in soils is the solubility of the metal associated with the solid phase, since in order for root uptake to occur, a soluble species must exist adjacent to the root membrane for some finite period. The rate of release and form of this soluble species will have a strong influence on the rate and extent of uptake and, perhaps, mobility and toxicity in the plant and consuming animals. The factors influencing solubility and form of available metal species in soil vary widely geographically and include the concentration and chemical form of the element entering soil, soil properties (endogenous metal concentration, mineralogy, particle size distribution), and soil processes (e.g., mineral weathering, microbial activity), as these influence the kinetics of sorption reactions, metal concentration in solution and the form of soluble and insoluble chemical species. The plant root represents the first barrier to the selective accumulation of ions present in soil solution. Uptake and kinetic data for nutrient ions and chemically related nonnutrient analogs suggest that metabolic processes associated with root absorption of nutrients regulate both the affinity and rate of absorption of specific nonnutrient ions. Detailed kinetic studies of Ni, Cd, and Tl uptake by intact plants demonstrate multiphasic root absorption processes over a broad concentration range, and the use of transport mechanisms in place for the nutrient ions Cu, Zn, and K. Advantages and limitations of higher plants as indicators of increased levels of metal pollution are discussed in terms of these soil and plant phenomena. PMID:367766

  6. The effect of technogenic emissions on the heavy metals accumulation by herbaceous plants.

    PubMed

    Chaplygin, Victor; Minkina, Tatiana; Mandzhieva, Saglara; Burachevskaya, Marina; Sushkova, Svetlana; Poluektov, Evgeniy; Antonenko, Elena; Kumacheva, Valentina

    2018-02-07

    The effect of technogenic emissions on the input of Pb, Zn, Cd, Cu, Mn, Cr, and Ni into plants from the Poaceae and Asteraceae families has been studied. Soil and plant contamination by anthropogenic emissions from industrial enterprises leads the decreasing of crop quality; therefore, the monitoring investigation of plants and soils acquires special importance. The herbaceous plants may be used as bioindicators for main environmental changes. It was found that the high level of anthropogenic load related to atmospheric emissions from the power plant favors the heavy metal (HM) accumulation in herbaceous plants. Contamination with Pb, Cd, Cr, and Ni was revealed in plants growing near the power plant. Heavy metals arrive to plants from the soil in the form of mobile compounds. Plant family is one of the main factors affecting the HM distribution in the above- and underground parts of plants. Plants from the Poaceae family accumulate less chemical elements in their aboveground parts than the Asteraceae plants. Ambrosia artemisiifolia and Artemisia austriaca are HM accumulators. For assessing the stability of plants under contamination with HMs, metal accumulation by plants from soil (the bioconcentration factor) and metal phytoavailability from plants above- and underground parts (the acropetal coefficient) were calculated. According to the bioconcentration factor and translocation factor values, Poaceae species are most resistant to technogenic contamination with HMs. The translocation factor highest values were found for Tanacetum vulgare; the lowest bioconcentration factor values were typical for Poa pratensis.

  7. Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge.

    PubMed

    Lange, Bastien; van der Ent, Antony; Baker, Alan John Martin; Echevarria, Guillaume; Mahy, Grégory; Malaisse, François; Meerts, Pierre; Pourret, Olivier; Verbruggen, Nathalie; Faucon, Michel-Pierre

    2017-01-01

    This review synthesizes contemporary understanding of copper-cobalt (Cu-Co) tolerance and accumulation in plants. Accumulation of foliar Cu and Co to > 300 μg g -1 is exceptionally rare globally, and known principally from the Copperbelt of Central Africa. Cobalt accumulation is also observed in a limited number of nickel (Ni) hyperaccumulator plants occurring on ultramafic soils around the world. None of the putative Cu or Co hyperaccumulator plants appears to comply with the fundamental principle of hyperaccumulation, as foliar Cu-Co accumulation is strongly dose-dependent. Abnormally high plant tissue Cu concentrations occur only when plants are exposed to high soil Cu with a low root to shoot translocation factor. Most Cu-tolerant plants are Excluders sensu Baker and therefore setting nominal threshold values for Cu hyperaccumulation is not informative. Abnormal accumulation of Co occurs under similar circumstances in the Copperbelt of Central Africa as well as sporadically in Ni hyperaccumulator plants on ultramafic soils; however, Co-tolerant plants behave physiologically as Indicators sensu Baker. Practical application of Cu-Co accumulator plants in phytomining is limited due to their dose-dependent accumulation characteristics, although for Co field trials may be warranted on highly Co-contaminated mineral wastes because of its relatively high metal value. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  8. The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana.

    PubMed

    Zhao, Huijun; Wu, Liangqi; Chai, Tuanyao; Zhang, Yuxiu; Tan, Jinjuan; Ma, Shengwen

    2012-09-01

    Synchrotron radiation X-ray fluorescence (SRXRF) and inductively coupled plasma mass spectrometry were used to estimate major, minor and trace elements in Cu-, Zn- and Mn-treated Phytolacca americana. The effects of the addition of Cu, Zn and Mn on morphological parameters, such as root length, shoot height, and fresh and dry weights of shoots and roots, were also examined. In addition, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidases (GPX) and catalase (CAT) and the expression of Fe-SOD, Cu/Zn-SOD, metallothionein-2 and glutathione S-transferase (GST) exposed to the highest amounts of Cu, Zn or Mn were detected. Our results confirmed the following: (1) Zn supplementation leads to chlorosis, disturbed elemental homeostasis and decreased concentrations of micro- and macroelements such as Fe, Mg, Mn, Ca and K. Cu competed with Fe, Mn and Zn uptake in plants supplemented with 25 μM Cu. However, no antagonistic interactions took place between Cu, Zn, Mn and Fe uptake in plants supplemented with 100 μM Cu. Mn supplementation at various concentrations had no negative effects on elemental deficits. Mn was co-located with high concentrations of Fe and Zn in mature leaves and the concentrations of macro elements were unchanged. (2) P. americana supplemented with increased concentrations of Zn and Cu exhibited lower biomass production and reduced plant growth. (3) When plants were supplemented with the highest Zn and Cu concentrations, symptoms of toxicity corresponded to decreased SOD or CAT activities and increased APX and GPX activities. However, Mn tolerance corresponded to increased SOD and CAT activities and decreased POD and APX activities. Our study revealed that heavy metals partially exert toxicity by disturbing the nutrient balance and modifying enzyme activities that induce damage in plants. However, P. americana has evolved hyper accumulating mechanisms to maintain elemental balance and redox homeostasis under

  9. Activating glutamate decarboxylase activity by removing the autoinhibitory domain leads to hyper γ-aminobutyric acid (GABA) accumulation in tomato fruit.

    PubMed

    Takayama, Mariko; Matsukura, Chiaki; Ariizumi, Tohru; Ezura, Hiroshi

    2017-01-01

    The C-terminal extension region of SlGAD3 is likely involved in autoinhibition, and removing this domain increases GABA levels in tomato fruits. γ-Aminobutyric acid (GABA) is a ubiquitous non-protein amino acid with several health-promoting benefits. In many plants including tomato, GABA is synthesized via decarboxylation of glutamate in a reaction catalyzed by glutamate decarboxylase (GAD), which generally contains a C-terminal autoinhibitory domain. We previously generated transgenic tomato plants in which tomato GAD3 (SlGAD3) was expressed using the 35S promoter/NOS terminator expression cassette (35S-SlGAD3-NOS), yielding a four- to fivefold increase in GABA levels in red-ripe fruits compared to the control. In this study, to further increase GABA accumulation in tomato fruits, we expressed SlGAD3 with (SlGAD3 OX ) or without (SlGAD3ΔC OX ) a putative autoinhibitory domain in tomato using the fruit ripening-specific E8 promoter and the Arabidopsis heat shock protein 18.2 (HSP) terminator. Although the GABA levels in SlGAD3 OX fruits were equivalent to those in 35S-SlGAD3-NOS fruits, GABA levels in SlGAD3ΔC OX fruits increased by 11- to 18-fold compared to control plants, indicating that removing the autoinhibitory domain increases GABA biosynthesis activity. Furthermore, the increased GABA levels were accompanied by a drastic reduction in glutamate and aspartate levels, indicating that enhanced GABA biosynthesis affects amino acid metabolism in ripe-fruits. Moreover, SlGAD3ΔC OX fruits exhibited an orange-ripe phenotype, which was associated with reduced levels of both carotenoid and mRNA transcripts of ethylene-responsive carotenogenic genes, suggesting that over activation of GAD influences ethylene sensitivity. Our strategy utilizing the E8 promoter and HSP terminator expression cassette, together with SlGAD3 C-terminal deletion, would facilitate the production of tomato fruits with increased GABA levels.

  10. A plant natriuretic peptide-like gene in the bacterial pathogen Xanthomonas axonopodis may induce hyper-hydration in the plant host: a hypothesis of molecular mimicry.

    PubMed

    Nembaware, Victoria; Seoighe, Cathal; Sayed, Muhammed; Gehring, Chris

    2004-03-24

    Plant natriuretic peptides (PNPs) are systemically mobile molecules that regulate homeostasis at nanomolar concentrations. PNPs are up-regulated under conditions of osmotic stress and PNP-dependent processes include changes in ion transport and increases of H2O uptake into protoplasts and whole tissue. The bacterial citrus pathogen Xanthomonas axonopodis pv. Citri str. 306 contains a gene encoding a PNP-like protein. We hypothesise that this bacterial protein can alter plant cell homeostasis and thus is likely to represent an example of molecular mimicry that enables the pathogen to manipulate plant responses in order to bring about conditions favourable to the pathogen such as the induced plant tissue hyper-hydration seen in the wet edged lesions associated with Xanthomonas axonopodis infection. We found a Xanthomonas axonopodis PNP-like protein that shares significant sequence similarity and identical domain organisation with PNPs. We also observed a significant excess of conserved residues between the two proteins within the domain previously identified as being sufficient to induce biological activity. Structural modelling predicts identical six stranded double-psi beta barrel folds for both proteins thus supporting the hypothesis of similar modes of action. No significant similarity between the Xanthomonas axonopodis protein and other bacterial proteins from GenBank was found. Sequence similarity of the Xanthomonas axonopodis PNP-like protein with the Arabidopsis thaliana PNP (AtPNP-A), shared domain organisation and incongruent phylogeny suggest that the PNP-gene may have been acquired by the bacteria in an ancient lateral gene transfer event. Finally, activity of a recombinant Xanthomonas axonopodis protein in plant tissue and changes in symptoms induced by a Xanthomonas axonopodis mutant with a knocked-out PNP-like gene will be experimental proof of molecular mimicry. If the hypothesis is true, it could at least in part explain why the citrus pathogen

  11. A SIMPLE MODEL FOR THE UPTAKE, TRANSLOCATION, AND ACCUMULATION OF PERCHLORATE IN TOBACCO PLANTS

    EPA Science Inventory

    A simple mathematical model is being developed to describe the uptake, translocation, and accumulation of perchlorate in tobacco plants. The model defines a plant as a set of compartments, consisting of mass balance differential equations and plant-specific physiological paramet...

  12. Screening ornamentals for their potential as As Accumulator Plants

    USDA-ARS?s Scientific Manuscript database

    Arsenic-based pesticides, herbicides and insecticides are used in horticultural operations resulting in soil contamination around greenhouse structures. Phytoremediation and phytostabilization are two techniques for treating arsenic (As) contaminated soil. Several ornamental plant species, Iris (Ir...

  13. Accumulation of /sup 60/Co by freshwater plants under natural conditions

    SciTech Connect

    Trapeznikov, A.V.; Trapeznikova, V.N.

    1979-03-01

    The study of /sup 60/Co accumulation by aquatic plants is of interest in finding effective bioindicators for radioactive pollution of nuclear power station cooling ponds. In this respect, /sup 60/Co accumulation was studied in four species of higher aquatic plants most commonly found in the Urals: water thyme (Elodea canadensis), hornwort (Ceratophyllum demersum), lesser duckweed (Lemna minor), and fennel pondweed (Potamogeton pectinatus). The /sup 60/Co accumulation coefficients in the plants studied reached considerable values. The data obtained demonstrate that plants such as hornwort and water thyme with /sup 60/Co accumulation coefficients of 33,500 and 21,500, respectively, may be recommended asmore » bioindicators for these radionuclides in the water bodies polluted with radioactive cobalt.« less

  14. The fascinating facets of plant selenium accumulation - biochemistry, physiology, evolution and ecology.

    PubMed

    Schiavon, Michela; Pilon-Smits, Elizabeth A H

    2017-03-01

    Contents 1582 I. 1582 II. 1583 III. 1588 IV. 1590 V. 1592 1592 References 1592 SUMMARY: The importance of selenium (Se) for medicine, industry and the environment is increasingly apparent. Se is essential for many species, including humans, but toxic at elevated concentrations. Plant Se accumulation and volatilization may be applied in crop biofortification and phytoremediation. Topics covered here include beneficial and toxic effects of Se on plants, mechanisms of Se accumulation and tolerance in plants and algae, Se hyperaccumulation, and ecological and evolutionary aspects of these processes. Plant species differ in the concentration and forms of Se accumulated, Se partitioning at the whole-plant and tissue levels, and the capacity to distinguish Se from sulfur. Mechanisms of Se hyperaccumulation and its adaptive significance appear to involve constitutive up-regulation of sulfate/selenate uptake and assimilation, associated with elevated concentrations of defense-related hormones. Hyperaccumulation has evolved independently in at least three plant families, probably as an elemental defense mechanism and perhaps mediating elemental allelopathy. Elevated plant Se protects plants from generalist herbivores and pathogens, but also gives rise to the evolution of Se-resistant specialists. Plant Se accumulation affects ecological interactions with herbivores, pollinators, neighboring plants, and microbes. Hyperaccumulation tends to negatively affect Se-sensitive ecological partners while facilitating Se-resistant partners, potentially affecting species composition and Se cycling in seleniferous ecosystems. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  15. Sodium chloride accumulation in glycophyte plants with cyanobacterial symbionts

    PubMed Central

    Sancho, Leopoldo G; Pintado, Ana; Saco, Dolores; Martín, Soledad; Arróniz-Crespo, María; Angel Casermeiro, Miguel; de la Cruz Caravaca, Maria Teresa; Cameron, Steven; Rozzi, Ricardo

    2017-01-01

    Abstract The majority of plant species are glycophytes and are not salt-tolerant and maintain low sodium levels within their tissues; if. high tissue sodium concentrations do occur, it is in response to elevated environmental salt levels. Here we report an apparently novel and taxonomically diverse grouping of plants that continuously maintain high tissue sodium contents and share the rare feature of possessing symbiotic cyanobacteria. Leaves of Gunnera magellanica in Tierra del Fuego always had sodium contents (dry weight basis) of around 4.26 g kg−1, about 20 times greater than measured in other higher plants in the community (0.29 g kg−1). Potassium and chloride levels were also elevated. This was not a response to soil sodium and chloride levels as these were low at all sites. High sodium contents were also confirmed in G. magellanica from several other sites in Tierra del Fuego, in plants taken to, and cultivated in Madrid for 2 years at low soil salt conditions, and also in other free living or cultivated species of Gunnera from the UK and New Zealand. Gunnera species are the only angiosperms that possess cyanobacterial symbionts so we analysed other plants that have this rather rare symbiosis, all being glycophytes. Samples of Azolla, a floating aquatic fern, from Europe and New Zealand all had even higher sodium levels than Gunnera. Roots of the gymnosperm Cycas revoluta had lower sodium contents (2.52 ± 0.34 g kg−1) but still higher than the non-symbiotic glycophytes. The overaccumulation of salt even when it is at low levels in the environment appears to be linked to the possession of a cyanobacterial symbiosis although the actual functional basis is unclear. PMID:29225764

  16. Anion Channel Inhibitor NPPB-Inhibited Fluoride Accumulation in Tea Plant (Camellia sinensis) Is Related to the Regulation of Ca2+, CaM and Depolarization of Plasma Membrane Potential

    PubMed Central

    Zhang, Xian-Chen; Gao, Hong-Jian; Yang, Tian-Yuan; Wu, Hong-Hong; Wang, Yu-Mei; Zhang, Zheng-Zhu; Wan, Xiao-Chun

    2016-01-01

    Tea plant is known to be a hyper-accumulator of fluoride (F). Over-intake of F has been shown to have adverse effects on human health, e.g., dental fluorosis. Thus, understanding the mechanisms fluoride accumulation and developing potential approaches to decrease F uptake in tea plants might be beneficial for human health. In the present study, we found that pretreatment with the anion channel inhibitor NPPB reduced F accumulation in tea plants. Simultaneously, we observed that NPPB triggered Ca2+ efflux from mature zone of tea root and significantly increased relative CaM in tea roots. Besides, pretreatment with the Ca2+ chelator (EGTA) and CaM antagonists (CPZ and TFP) suppressed NPPB-elevated cytosolic Ca2+ fluorescence intensity and CaM concentration in tea roots, respectively. Interestingly, NPPB-inhibited F accumulation was found to be significantly alleviated in tea plants pretreated with either Ca2+ chelator (EGTA) or CaM antagonists (CPZ and TFP). In addition, NPPB significantly depolarized membrane potential transiently and we argue that the net Ca2+ and H+ efflux across the plasma membrane contributed to the restoration of membrane potential. Overall, our results suggest that regulation of Ca2+-CaM and plasma membrane potential depolarization are involved in NPPB-inhibited F accumulation in tea plants. PMID:26742036

  17. Litter accumulation and nutrient content of roadside plant communities in Sichuan Basin, China

    USDA-ARS?s Scientific Manuscript database

    It is widely recognized that plant community composition strongly influences plant litter, but this relationship is difficult to interpret over heterogeneous conditions typical of modified environments such as roadways. We characterized litter accumulation and nutrient content (i.e., organic C, tota...

  18. Plant Response to TSWV and Seed Accumulation of Resveratrol in Peanut

    USDA-ARS?s Scientific Manuscript database

    Biotic and abiotic stress may induce peanut plants to produce a high amount of resveratrol. The relationship of plant response to tomato spotted wilt virus (TSWV) and seed accumulation of resveratrol was investigated. Twenty peanut accessions and six wild relatives were selected from the US peanut g...

  19. Accumulation of contaminants of emerging concern in food crops-part 2: Plant distribution.

    PubMed

    Hyland, Katherine C; Blaine, Andrea C; Higgins, Christopher P

    2015-10-01

    Arid agricultural regions often turn to using treated wastewater (reclaimed water) to irrigate food crops. Concerns arise, however, when considering the potential for persistent contaminants of emerging concern to accumulate into plants intended for human consumption. The present study examined the accumulation of a suite of 9 contaminants of emerging concern into 2 representative food crops, lettuce and strawberry, following uptake via the roots and subsequent distribution to other plant tissues. Calculating accumulation metrics (concentration factors) allowed for comparison of the compartmental affinity of each chemical for each plant tissue compartment. The root concentration factor was found to exhibit a positive linear correlation with the pH-adjusted octanol-water partition coefficient (DOW ) for the target contaminants of emerging concern. Coupled with the concentration-dependent accumulation observed in the roots, this result implies that accumulation of these contaminants of emerging concern into plant roots is driven by passive partitioning. Of the contaminants of emerging concern examined, nonionizable contaminants, such as triclocarban, carbamazepine, and organophosphate flame retardants displayed the greatest potential for translocation from the roots to above-ground plant compartments. In particular, the organophosphate flame retardants displayed increasing affinity for shoots and fruits with decreasing size/octanol-water partition coefficient (KOW ). Cationic diphenhydramine and anionic sulfamethoxazole, once transported to the shoots of the strawberry plant, demonstrated the greatest potential of the contaminants examined to be then carried to the edible fruit portion. © 2015 SETAC.

  20. Biochar amendment reduced methylmercury accumulation in rice plants.

    PubMed

    Shu, Rui; Wang, Yongjie; Zhong, Huan

    2016-08-05

    There is growing concern about methylmercury (MeHg) accumulation in rice grains and thus enhanced dietary exposure to MeHg in Asian countries. Here, we explored the possibility of reducing grain MeHg levels by biochar amendment, and the underlying mechanisms. Pot (i.e., rice cultivation in biochar amended soils) and batch experiments (i.e., incubation of amended soils under laboratory conditions) were carried out, to investigate MeHg dynamics (i.e., MeHg production, partitioning and phytoavailability in paddy soils, and MeHg uptake by rice) under biochar amendment (1-4% of soil mass). We demonstrate for the first time that biochar amendment could evidently reduce grain MeHg levels (49-92%). The declines could be attributed to the combined effects of: (1) increased soil MeHg concentrations, probably explained by the release of sulfate from biochar and thus enhanced microbial production of MeHg (e.g., by sulfate-reducing bacteria), (2) MeHg immobilization in soils, facilitated by the large surface areas and high organosulfur content of biochar, and (3) biodilution of MeHg in rice grains, due to the increased grain biomass under biochar amendment (35-79%). These observations together with mechanistic explanations improve understanding of MeHg dynamics in soil-rice systems, and support the possibility of reducing MeHg phytoaccumulation under biochar amendment. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Early H2O2 Accumulation in Mesophyll Cells Leads to Induction of Glutathione during the Hyper-Sensitive Response in the Barley-Powdery Mildew Interaction1

    PubMed Central

    Vanacker, Helene; Carver, Tim L.W.; Foyer, Christine H.

    2000-01-01

    H2O2 production and changes in glutathione, catalase, and peroxidase were followed in whole-leaf extracts from the susceptible (AlgS [Algerian/4* (F14) Man.(S)]; ml-a1 allele) and resistant (AlgR [Algerian/4* (F14) Man.(R)]; Ml-a1 allele) barley (Hordeum vulgare) isolines between 12 and 24 h after inoculation with powdery mildew (Blumeria graminis [DC]. Speer [syn. Erysiphe graminis DC] f.sp hordei Marchal). Localized papilla responses and cell death hypersensitive responses were not observed within the same cell. In hypersensitive response sites, H2O2 accumulation first occurred in the mesophyll underlying the attacked epidermal cell. Subsequently, H2O2 disappeared from the mesophyll and accumulated around attacked epidermal cells. In AlgR, transient glutathione oxidation coincided with H2O2 accumulation in the mesophyll. Subsequently, total foliar glutathione and catalase activities transiently increased in AlgR. These changes, absent from AlgS, preceded inoculation-dependent increases in peroxidase activity that were observed in both AlgR and AlgS at 18 h. An early intercellular signal precedes H2O2, and this elicits anti-oxidant responses in leaves prior to events leading to death of attacked cells. PMID:10938348

  2. Assessing the Capacity of Plant Species to Accumulate Particulate Matter in Beijing, China

    PubMed Central

    Mo, Li; Ma, Zeyu; Xu, Yansen; Sun, Fengbin; Lun, Xiaoxiu; Liu, Xuhui; Chen, Jungang; Yu, Xinxiao

    2015-01-01

    Air pollution causes serious problems in spring in northern China; therefore, studying the ability of different plants to accumulate particulate matter (PM) at the beginning of the growing season may benefit urban planners in their attempts to control air pollution. This study evaluated deposits of PM on the leaves and in the wax layer of 35 species (11 shrubs, 24 trees) in Beijing, China. Differences in the accumulation of PM were observed between species. Cephalotaxus sinensis, Euonymus japonicus, Broussonetia papyriferar, Koelreuteria paniculata and Quercus variabilis were all efficient in capturing small particles. The plants exhibiting high amounts of total PM accumulation (on leaf surfaces and/or in the wax layer), also showed comparatively high levels of PM accumulation across all particle sizes. A comparison of shrubs and trees did not reveal obvious differences in their ability to accumulate particles based on growth form; a combination of plantings with different growth forms can efficiently reduce airborne PM concentrations near the ground. To test the relationships between leaf traits and PM accumulation, leaf samples of selected species were observed using a scanning electron microscope. Growth forms with greater amounts of pubescence and increased roughness supported PM accumulation; the adaxial leaf surfaces collected more particles than the abaxial surfaces. The results of this study may inform the selection of species for urban green areas where the goal is to capture air pollutants and mitigate the adverse effects of air pollution on human health. PMID:26506104

  3. A Novel Selenocystine-Accumulating Plant in Selenium-Mine Drainage Area in Enshi, China

    PubMed Central

    Yuan, Linxi; Zhu, Yuanyuan; Lin, Zhi-Qing; Banuelos, Gary; Li, Wei; Yin, Xuebin

    2013-01-01

    Plant samples of Cardamine hupingshanesis (Brassicaceae), Ligulariafischeri (Ledeb.) turcz (Steraceae) and their underlying top sediments were collected from selenium (Se) mine drainage areas in Enshi, China. Concentrations of total Se were measured using Hydride Generation-Atomic Fluorescence Spectrometry (HG-AFS) and Se speciation were determined using liquid chromatography/UV irradiation-hydride generation-atomic fluorescence spectrometry (LC-UV-HG-AFS). The results showed that C. hupingshanesis could accumulate Se to 239±201 mg/kg DW in roots, 316±184 mg/kg DW in stems, and 380±323 mg/kg DW in leaves, which identifies it as Se secondary accumulator. Particularly, it could accumulate Se up to 1965±271 mg/kg DW in leaves, 1787±167 mg/kg DW in stem and 4414±3446 mg/kg DW in roots, living near Se mine tailing. Moreover, over 70% of the total Se accumulated in C. hupingshanesis were in the form of selenocystine (SeCys2), increasing with increased total Se concentration in plant, in contrast to selenomethionine (SeMet) in non-accumulators (eg. Arabidopsis) and secondary accumulators (eg. Brassica juncea), and selenomethylcysteine (SeMeCys) in hyperaccumulators (eg. Stanleya pinnata). There is no convincing explanation on SeCys2 accumulation in C. hupingshanesis based on current Se metabolism theory in higher plants, and further study will be needed. PMID:23750270

  4. Sucrose-induced anthocyanin accumulation in vegetative tissue of Petunia plants requires anthocyanin regulatory transcription factors.

    PubMed

    Ai, Trinh Ngoc; Naing, Aung Htay; Arun, Muthukrishnan; Lim, Sun-Hyung; Kim, Chang Kil

    2016-11-01

    The effects of three different sucrose concentrations on plant growth and anthocyanin accumulation were examined in non-transgenic (NT) and transgenic (T 2 ) specimens of the Petunia hybrida cultivar 'Mirage rose' that carried the anthocyanin regulatory transcription factors B-Peru+mPAP1 or RsMYB1. Anthocyanin accumulation was not observed in NT plants in any treatments, whereas a range of anthocyanin accumulation was observed in transgenic plants. The anthocyanin content detected in transgenic plants expressing the anthocyanin regulatory transcription factors (B-Peru+mPAP1 or RsMYB1) was higher than that in NT plants. In addition, increasing sucrose concentration strongly enhanced anthocyanin content as shown by quantitative real-time polymerase chain reaction (qRT-PCR) analysis, wherein increased concentrations of sucrose enhanced transcript levels of the transcription factors that are responsible for the induction of biosynthetic genes involved in anthocyanin synthesis; this pattern was not observed in NT plants. In addition, sucrose affected plant growth, although the effects were different between NT and transgenic plants. Taken together, the application of sucrose could enhance anthocyanin production in vegetative tissue of transgenic Petunia carrying anthocyanin regulatory transcription factors, and this study provides insights about interactive effects of sucrose and transcription factors in anthocyanin biosynthesis in the transgenic plant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit.

    PubMed

    Zhang, H X; Blumwald, E

    2001-08-01

    Transgenic tomato plants overexpressing a vacuolar Na+/H+ antiport were able to grow, flower, and produce fruit in the presence of 200 mM sodium chloride. Although the leaves accumulated high sodium concentrations, the tomato fruit displayed very low sodium content. Contrary to the notion that multiple traits introduced by breeding into crop plants are needed to obtain salt-tolerant plants, the modification of a single trait significantly improved the salinity tolerance of this crop plant. These results demonstrate that with a combination of breeding and transgenic plants it could be possible to produce salt-tolerant crops with far fewer target traits than had been anticipated. The accumulation of sodium in the leaves and not in the fruit demonstrates the utility of such a modification in preserving the quality of the fruit.

  6. Accumulation and translocation peculiarities of (137)Cs and (40)K in the soil--plant system.

    PubMed

    Marčiulionienė, Danutė; Lukšienė, Benedikta; Jefanova, Olga

    2015-12-01

    Long-term investigations (1996-2008) were conducted into the (137)Cs and (40)K in the soil of forests, swamps and meadows in different regions of Lithuania, as well as in the plants growing in these media. The (137)Cs and (40)K activity concentrations, the (137)Cs/(40)K activity concentration ratio and accumulation, and translocation in the system, i.e. from the soil to plant roots to above-ground plant part of these radionuclides, were evaluated after gamma-spectrometric measurements using a high purity germanium (HPGe) detector. Based on the obtained data, it can be asserted that in the tested plant species, the (137)Cs and (40)K accumulation, the transfer from soil to roots and translocation within the plants depend on the plant species and environmental ecological conditions. The (137)Cs/(40)K activity concentration ratios in the same plant species in different regions of Lithuania are different and this ratio depends on the biotope (forest, swamp or meadow) in which the plant grows and on the location of the growing region. Based on the determined trends of statistically reliable inverse dependence between the activity concentrations in both soil and plants, it can be stated that the exchange of (137)Cs and (40)K in plants and soil is different. Different accumulations and translocations of investigated radionuclides in the same plant species indicate diverse biological metabolism of (137)Cs and its chemical analogue (40)K in plants. A competitive relationship exists between (137)Cs and (40)K in plants as well as in the soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Transcriptome analysis of differentially expressed genes involved in selenium accumulation in tea plant (Camellia sinensis)

    PubMed Central

    Liu, Yanli; Ma, Linlong; Jin, Xiaofang; Guo, Guiyi; Tan, Rongrong; Liu, Zheng; Zheng, Lin; Ye, Fei; Liu, Wei

    2018-01-01

    Tea plant (Camellia sinensis) has strong enrichment ability for selenium (Se). Selenite is the main form of Se absorbed and utilized by tea plant. However, the mechanism of selenite absorption and accumulation in tea plant is still unknown. In this study, RNA sequencing (RNA-seq) was used to perform transcriptomic analysis on the molecular mechanism of selenite absorption and accumulation in tea plant. 397.98 million high-quality reads were obtained and assembled into 168,212 unigenes, 89,605 of which were extensively annotated. There were 60,582 and 1,362 differentially expressed genes (DEGs) in roots and leaves, respectively. RNA-seq results were further validated by quantitative RT-PCR. Based on GO terms, the unigenes were mainly involved in cell, binding and metabolic process. KEGG pathway enrichment analysis showed that predominant pathways included ribosome and protein processing in endoplasmic reticulum. Further analysis revealed that sulfur metabolism, glutathione metabolism, selenocompound metabolism and plant hormone signal transduction responded to selenite in tea plant. Additionally, a large number of genes of higher expressions associated with phosphate transporters, sulfur assimilation, antioxidant enzymes, antioxidant substances and responses to ethylene and jasmonic acid were identified. Stress-related plant hormones might play a signaling role in promoting sulfate/selenite uptake and assimilation in tea plant. Moreover, some other Se accumulation mechanisms of tea plant were found. Our study provides a possibility for controlling Se accumulation in tea plant through bio-technologies and will be helpful for breeding new tea cultivars. PMID:29856771

  8. Use of phytic acid and hyper-salting to eliminate Escherichia coli O157:H7 from napa cabbage for kimchi production in a commercial plant.

    PubMed

    Kim, Nam Hee; Jang, Seong Ho; Kim, Soon Han; Lee, Hee Jung; Kim, Younghoon; Ryu, Jee Hoon; Rhee, Min Suk

    2015-12-02

    The aim of this study was to develop a new salting method using natural phytic acid (PA) to ensure the microbiological safety and quality of salted napa cabbage used for kimchi production. The production of salted napa cabbage involves several stages: trimming, hyper-salting (20% NaCl) for up to 1h, salting (10% NaCl for 10-18 h), three sequential washes in water (30s for each), and draining (2 h). Two separate experiments were performed: one to determine the appropriate treatment conditions and a second to validate applicability under commercial conditions. In Experiment I, the effects of hyper-salting with PA on Escherichia coli O157:H7 numbers were tested in the laboratory. The following variables were monitored: 1) PA concentration (1, 2, 3%, w/w); 2) the ratio of the sample weight to the total volume of the solution (1:1.5, 1:3, or 1:6); 3) the hyper-salting time (30 or 60 min); and 4) the salting time (2, 5, or 8 h). A procedure that achieved a >5-log reduction in the E. coli O157:H7 population was then tested in an actual kimchi processing plant (Experiment II). The results from Experiment I showed that bactericidal efficacy increased as all the measured variables increased (p<0.05). Hyper-salting with 2% PA at a sample-to-water ratio (w/v) of 1:3 and 1:6 for 60 min resulted in a >5-log CFU/g reduction in the E. coli O157:H7 population. Further salting for 5h completely eliminated (<1-log CFU/g) all bacteria. Thus, hyper-salting with PA 2% at a sample-to-water ratio of 1:3 for 60 min, followed by salting for 5h, was tested under large-scale production conditions. The results revealed that the initial aerobic plate counts (APC), total coliform counts (TC), and fecal coliform counts (FC) were 6.6, 3.4, and 2.8-log CFU/g, respectively. The selected protocol reduced these values by 3.7-, >2.4-, and >1.8-log CFU/g, respectively. The 5h salting step maintained the TC and FC at <1-log CFU/g; however, the APC recovered somewhat. The pH and salinity of the treated

  9. Metabolic Conversion of l-Ascorbic Acid to Oxalic Acid in Oxalate-accumulating Plants 1

    PubMed Central

    Yang, Joan C.; Loewus, Frank A.

    1975-01-01

    l-Ascorbic acid-1-14C and its oxidation product, dehydro-l-ascorbic acid, produced labeled oxalic acid in oxalate-accumulating plants such as spinach seedlings (Spinacia oleracea) and the detached leaves of woodsorrel (Oxalis stricta and O. oregana), shamrock (Oxalis adenopylla), and begonia (Begonia evansiana). In O. oregana, conversion occurred equally well in the presence or absence of light. This relationship between l-ascorbic acid metabolism and oxalic acid formation must be given careful consideration in attempts to explain oxalic accumulation in plants. PMID:16659288

  10. [Migration in soil and accumulation in plants of peaceful nuclear explosion products in Perm region].

    PubMed

    Raskosha, N G; Shuktova, I I

    2015-01-01

    The data on the migration capacity in soil and accumulation of 238Pu, 239, 240Pu, 137Cs and 90Sr by plants in the area of a peaceful nuclear explosion located in the taiga zone are presented. The influence of the soil parameters on the distribution and transformation forms of the radionuclides in the podzolic soil profile was studied. The major amounts of man-made radionuclides were found in the matter of the ground lip. The accumulation parameters of pollutants by plants were the highest for the leaves, young branches and conifer of trees.

  11. Investigating the role of polyols in Cladosporium fulvum during growth under hyper-osmotic stress and in planta.

    PubMed

    Clark, Anthony J; Blissett, Kerry J; Oliver, Richard P

    2003-02-01

    The role of the large amounts of polyols accumulated by the fungal tomato pathogen, Cladosporium fulvum (syn. Fulvia fulva, Cooke) both in planta and in axenic cultures has been examined. Arabinitol and glycerol accumulated in response to hyper-osmotic stress in vitro. Mannitol levels were lower in osmo-stressed mycelium. (13)C NMR spectroscopy indicated that carbon flow from glucose to mannitol was redirected to arabinitol and glycerol in hyper-osmotic conditions. Infected tomato ( Lycopersicon esculentum Mill.) plants contained all three polyols whereas glycerol was the only polyol present in uninfected plants, suggesting that the mannitol and arabinitol were of fungal origin. Substantially higher levels of arabinitol and glycerol were present in infected plants that were subjected to a restricted watering regime compared to fully watered plants. The results suggest that a primary role of fungal arabinitol and glycerol, but not mannitol, is osmoregulation and that water acquisition is an important aspect of pathogenicity.

  12. Effects of Planting of Calluna Vulgaris for Stable Snow Accumulation in Winter

    NASA Astrophysics Data System (ADS)

    Ibuki, R.; Harada, K.

    2017-12-01

    Recent year climate of the winter season is changing and the period of snow accumulation is reduced compared with before. It affects the management of the ski resort. Snowfall had occurred in December 2016, but the snow accumulated after January 2017 at the ski resort located in the Pacific Ocean side of the Northeast region of Japan. This situation is thought to be originated from two reasons, one is snow thawing, another is to be blown away by the strong monsoon wind. We are considering utilizing planting to stabilize snow accumulation. Currently building rock gardens with shrubs, mainly Calluna Vulgaris in the ski resort for attracting customers in the summer. These are difficult to raise in the lowlands of Japan because they are too hot, but because of their good growth in relatively low-temperature highlands, it is rare for local residents to appreciate the value of these. In addition, it is excellent in low temperature resistance, and it will not die even under the snow. We investigated the pressure resistance performance due to snowfall and the appropriateness of growth under the weather conditions of the area. Regarding Calluna Vulgaris, Firefly, the plants were not damaged even under snow more than 1 m. In addition, three years have passed since planting, relatively good growth is shown, and the stock has been growing every year. Based on these results, we plan to stabilize the snow accumulation by carrying out planting of Calluna vulgaris inside the slope. The growth of the Calluna species is gentle and the tree height grows only about 50 cm even if 15 years have passed since planting. Therefore, it is considered that the plant body is hard to put out their head on the snow surface during the ski season. Next season will monitor the snow accumulation around the planting area through the snow season.

  13. Accumulation of perchlorate in aquatic and terrestrial plants at a field scale.

    PubMed

    Tan, Kui; Anderson, Todd A; Jones, Matthew W; Smith, Philip N; Jackson, W Andrew

    2004-01-01

    Previous laboratory-scale studies have documented perchlorate ClO(-)(4) uptake by different plant species, but less information is available at field scale, where ClO(-)(4) uptake may be affected by environmental conditions, such as distance to streams or shallow water tables, exposure duration, and species. This study examined uptake of ClO(-)(4) in smartweed (Polygonum spp.) and watercress (Nasturtium spp.) as well as more than forty trees, including ash (Fraxinus greggii A. Gray), chinaberry (Melia azedarach L.), elm (Ulmus parvifolia Jacq.), willow (Salix nigra Marshall), mulberry [Broussonetia papyrifera (L.) Vent.], and hackberry (Celtis laevigata Willd.) from multiple streams surrounding a perchlorate-contaminated site. Results indicate a large potential for ClO(-)(4) accumulation in aquatic and terrestrial plants, with ClO(-)(4) concentration in plant tissues approximately 100 times higher than that in bulk water. Perchlorate accumulation in leaves of terrestrial plants was also dependent on species, with hackberry, willow, and elm having a strong potential to accumulate ClO(-)(4). Generally, trees located closer to the stream had a higher ClO(-)(4) accumulation than trees located farther away from the stream. Seasonal leaf sampling of terrestrial plants indicated that ClO(-)(4) accumulation also was affected by exposure duration, with highest accumulation observed in the late growing cycle, although leaf concentrations for a given tree were highly variable. Perchlorate may be re-released into the environment via leaching and rainfall as indicated by lower perchlorate concentrations in collected leaf litter. Information obtained from this study will be helpful to understand the fate of ClO(-)(4) in macrophytes and natural systems.

  14. Accumulation of Radioactive Cesium Released from Fukushima Daiichi Nuclear Power Plant in Terrestrial Cyanobacteria Nostoc commune

    PubMed Central

    Sasaki, Hideaki; Shirato, Susumu; Tahara, Tomoya; Sato, Kenji; Takenaka, Hiroyuki

    2013-01-01

    The Fukushima Daiichi Nuclear Power Plant accident released large amounts of radioactive substances into the environment and contaminated the soil of Tohoku and Kanto districts in Japan. Removal of radioactive material from the environment is an urgent problem, and soil purification using plants is being considered. In this study, we investigated the ability of 12 seed plant species and a cyanobacterium to accumulate radioactive material. The plants did not accumulate radioactive material at high levels, but high accumulation was observed in the terrestrial cyanobacterium Nostoc commune. In Nihonmatsu City, Fukushima Prefecture, N. commune accumulated 415,000 Bq/kg dry weight 134Cs and 607,000 Bq kg−1 dry weight 137Cs. The concentration of cesium in N. commune tended to be high in areas where soil radioactivity was high. A cultivation experiment confirmed that N. commune absorbed radioactive cesium from polluted soil. These data demonstrated that radiological absorption using N. commune might be suitable for decontaminating polluted soil. PMID:24256969

  15. Soybean GmMYB73 promotes lipid accumulation in transgenic plants

    PubMed Central

    2014-01-01

    Background Soybean is one of the most important oil crops. The regulatory genes involved in oil accumulation are largely unclear. We initiated studies to identify genes that regulate this process. Results One MYB-type gene GmMYB73 was found to display differential expression in soybean seeds of different developing stages by microarray analysis and was further investigated for its functions in lipid accumulation. GmMYB73 is a small protein with single MYB repeat and has similarity to CPC-like MYB proteins from Arabidopsis. GmMYB73 interacted with GL3 and EGL3, and then suppressed GL2, a negative regulator of oil accumulation. GmMYB73 overexpression enhanced lipid contents in both seeds and leaves of transgenic Arabidopsis plants. Seed length and thousand-seed weight were also promoted. GmMYB73 introduction into the Arabidopsis try cpc double mutant rescued the total lipids, seed size and thousand-seed weight. GmMYB73 also elevated lipid levels in seeds and leaves of transgenic Lotus, and in transgenic hairy roots of soybean plants. GmMYB73 promoted PLDα1 expression, whose promoter can be bound and inhibited by GL2. PLDα1 mutation reduced triacylglycerol levels mildly in seeds but significantly in leaves of Arabidopsis plants. Conclusions GmMYB73 may reduce GL2, and then release GL2-inhibited PLDα1 expression for lipid accumulation. Manipulation of GmMYB73 may potentially improve oil production in legume crop plants. PMID:24655684

  16. Maize Iranian mosaic virus shows a descending transcript accumulation order in plant and insect hosts.

    PubMed

    Hortamani, Mozhgan; Massah, Amir; Izadpanah, Keramat

    2018-04-01

    Maize Iranian mosaic virus (MIMV) is a distinct member of the genus Nucleorhabdovirus. In this study, expression of all MIMV genes in maize for four weeks after inoculation and in inoculative planthoppers was examined using a quantitative RT-PCR (RT-qPCR) assay. Accumulation of MIMV P, gene 3, M, G and L transcripts relative to N transcripts was measured and normalized to 18S rRNA in maize plants and to the ribosomal protein S13 gene (RPS13) in planthoppers using the comparative C T method. In plants, higher levels of MIMV N transcripts were found relative to other transcripts, while MIMV L transcripts were at the lowest levels. The highest accumulation of MIMV transcripts was found at 14 days postinoculation (dpi). At 21 dpi, we found the lowest transcript levels for all genes, which increased again at 28 dpi, although in lower amounts than at 14 dpi. In Laodelphax striatellus, MIMV M, G and L transcripts accumulated at lower levels than other transcripts. The gene 3 transcript level was high in both plants and planthoppers. Our results showed that transcript accumulation for the MIMV genes was similar in both hosts and followed the pattern of sequential transcriptional attenuation from the 3' to the 5' end of the genome, similar to vertebrate rhabdoviruses. These results indicate that the regulation of virus gene transcription for this plant-infecting rhabdovirus is similar to that of some vertebrate-infecting rhabdoviruses.

  17. Characterizing the Uptake, Accumulation and Toxicity of Silver Sulfide Nanoparticles in Plants

    EPA Science Inventory

    Silver nanoparticles (Ag-NPs) are used in a wide range of everyday products, leading to increasing concerns regarding their accumulation in soils and subsequent impact on plants. Using single particle inductively coupled plasma mass spectrometry (spICP-MS) and synchrotron-based t...

  18. Effect of Transpiration on Plant Accumulation and Translocation of PPCP/EDCs

    PubMed Central

    Dodgen, Laurel K; Ueda, Aiko; Wu, Xiaoqin; Parker, David R; Gan, Jay

    2015-01-01

    The reuse of treated wastewater for agricultural irrigation in arid and hot climates where plant transpiration is high may affect plant accumulation of pharmaceutical and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs). In this study, carrot, lettuce, and tomato plants were grown in solution containing 16 PPCP/EDCs in either a cool-humid or a warm-dry environment. Leaf bioconcentration factors (BCF) were positively correlated with transpiration for chemical groups of different ionized states (p < 0.05). However, root BCFs were correlated with transpiration only for neutral PPCP/EDCs (p < 0.05). Neutral and cationic PPCP/EDCs showed similar accumulation, while anionic PPCP/EDCs had significantly higher accumulation in roots and significantly lower accumulation in leaves (p < 0.05). Results show that plant transpiration may play a significant role in the uptake and translocation of PPCP/EDCs, which may have a pronounced effect in arid and hot climates where irrigation with treated wastewater is common. PMID:25594843

  19. Using iron fertilizer to control Cd accumulation in rice plants: a new promising technology.

    PubMed

    Shao, GuoSheng; Chen, MingXue; Wang, DanYing; Xu, ChunMei; Mou, RenXiang; Cao, ZhaoYun; Zhang, XiuFu

    2008-03-01

    Effects of two kinds of iron fertilizer, FeSO4 and EDTA.Na2Fe were studied on cadmium accumulation in rice plants with two rice genotypes, Zhongzao 22 and Zhongjiazao 02, with soil culture systems. The results showed that application of iron fertilizers could hardly make adverse effects on plant growth and rice grain yield. Soil application of EDTA.Na2Fe significantly reduced the Cd accumulation in rice roots, shoots and rice grain. Cd concentration in white rice of both rice genotypes in the treatment of soil application of EDTA.Na2Fe was much lower than 0.2 mg/kg, the maximal Cd permission concentration in cereal crop foods in State standard. However, soil application of FeSO4 or foliar application of FeSO4 or EDTA.Na2Fe resulted in the significant increase of Cd accumulation in rice plants including rice grain compared with the control. The results also showed iron fertilizers increased the concentration of iron, copper and manganese element in rice grain and also affected zinc concentration in plants. It may be a new promising way to regulate Cd accumulation in rice grain in rice production through soil application of EDTA.Na2Fe fertilizers to maintain higher content of available iron and ferrous iron in soils.

  20. Effects of surrounding land use on metal accumulation in environments and submerged plants in subtropical ponds.

    PubMed

    Liu, Hui; Bu, Hongmei; Liu, Guihua; Wang, Zhixiu; Liu, Wenzhi

    2015-12-01

    Ponds are widely used as stormwater treatment facilities to retain contaminants, including metals, and to improve water quality throughout the world. However, there is still a limited understanding of the effects of surrounding land use on metal accumulation in pond environments and organisms. To address this gap, we measured the concentrations of nine metals (i.e., Al, Ba, Ca, K, Li, Mg, Na, Se, and Sr) in water, sediments, and submerged plants collected from 37 ponds with different surrounding land uses in southwestern China and assessed the metal accumulation capacity of four dominant submerged plant species. Our results showed that Al, Ca, and K concentrations in the water were above drinking water standards. In the sediments, the average concentrations of Ca and Sr were higher than the corresponding soil background values. Ceratophyllum demersum L. could accumulate more K in aboveground biomass than Myriophyllum spicatum L. and Potamogeton maackianus A. Benn. The K concentration in submerged plants was positively influenced by the corresponding metal concentration in the water and negatively influenced by water temperature. Among the nine studied metals, only the water K concentration in ponds receiving agricultural runoff was significantly higher than that for ponds receiving urban and forested runoff. This result suggests that surrounding land use types have no significant effect on metal accumulation in sediments and submerged plants in the studied ponds. A large percentage of the metals in these ponds may be derived from natural sources such as the weathering of rocks.

  1. Arsenic accumulation in native plants of West Bengal, India: prospects for phytoremediation but concerns with the use of medicinal plants.

    PubMed

    Tripathi, Preeti; Dwivedi, Sanjay; Mishra, Aradhana; Kumar, Amit; Dave, Richa; Srivastava, Sudhakar; Shukla, Mridul Kumar; Srivastava, Pankaj Kumar; Chakrabarty, Debasis; Trivedi, Prabodh Kumar; Tripathi, Rudra Deo

    2012-05-01

    Arsenic (As) is a widespread environmental and food chain contaminant and class I, non-threshold carcinogen. Plants accumulate As due to ionic mimicry that is of importance as a measure of phytoremediation but of concern due to the use of plants in alternative medicine. The present study investigated As accumulation in native plants including some medicinal plants, from three districts [Chinsurah (Hoogly), Porbosthali (Bardhman), and Birnagar (Nadia)] of West Bengal, India, having a history of As pollution. A site-specific response was observed for Specific Arsenic Uptake (SAU; mg kg(-1) dw) in total number of 13 (8 aquatic and 5 terrestrial) collected plants. SAU was higher in aquatic plants (5-60 mg kg(-1) dw) than in terrestrial species (4-19 mg kg(-1) dw). The level of As was lower in medicinal plants (MPs) than in non-medicinal plants, however it was still beyond the WHO permissible limit (1 mg kg(-1) dw). The concentration of other elements (Cu, Zn, Se, and Pb) was found to be within prescribed limits in medicinal plants (MP). Among the aquatic plants, Marsilea showed the highest SAU (avg. 45 mg kg(-1) dw), however, transfer factor (TF) of As was the maximum in Centella asiatica (MP, avg. 1). Among the terrestrial plants, the maximum SAU and TF were demonstrated by Alternanthera ficoidea (avg. 15) and Phyllanthus amarus (MP, avg. 1.27), respectively. In conclusion, the direct use of MP or their by products for humans should not be practiced without proper regulation. In other way, one fern species (Marsilea) and some aquatic plants (Eichhornia crassipes and Cyperus difformis) might be suitable candidates for As phytoremediation of paddy fields.

  2. Interaction between sulfur and lead in toxicity, iron plaque formation and lead accumulation in rice plant.

    PubMed

    Yang, Junxing; Liu, Zhiyan; Wan, Xiaoming; Zheng, Guodi; Yang, Jun; Zhang, Hanzhi; Guo, Lin; Wang, Xuedong; Zhou, Xiaoyong; Guo, Qingjun; Xu, Ruixiang; Zhou, Guangdong; Peters, Marc; Zhu, Guangxu; Wei, Rongfei; Tian, Liyan; Han, Xiaokun

    2016-06-01

    Human activities have resulted in lead and sulfur accumulation in paddy soils in parts of southern China. A combined soil-sand pot experiment was conducted to investigate the influence of S supply on iron plaque formation and Pb accumulation in rice (Oryza sativa L.) under two Pb levels (0 and 600 mg kg(-1)), combined with four S concentrations (0, 30, 60, and 120 mg kg(-1)). Results showed that S supply significantly decreased Pb accumulation in straw and grains of rice. This result may be attributed to the enhancement of Fe plaque formation, decrease of Pb availability in soil, and increase of reduced glutathione (GSH) in rice leaves. Moderate S supply (30 mg kg(-1)) significantly increased Fe plaque formation on the root surface and in the rhizosphere, whereas excessive S supply (60 and 120 mg kg(-1)) significantly decreased the amounts of iron plaque on the root surface. Sulfur supply significantly enhanced the GSH contents in leaves of rice plants under Pb treatment. With excessive S application, the rice root acted as a more effective barrier to Pb accumulation compared with iron plaque. Excessive S supply may result in a higher monosulfide toxicity and decreased iron plaque formation on the root surface during flooded conditions. However, excessive S supply could effectively decrease Pb availability in soils and reduce Pb accumulation in rice plants. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Mn accumulation in a submerged plant Egeria densa (Hydrocharitaceae) is mediated by epiphytic bacteria.

    PubMed

    Tsuji, Kousuke; Asayama, Takuma; Shiraki, Nozomi; Inoue, Shota; Okuda, Erina; Hayashi, Chizuru; Nishida, Kazuma; Hasegawa, Hiroshi; Harada, Emiko

    2017-07-01

    Many aquatic plants act as biosorbents, removing and recovering metals from the environment. To assess the biosorbent activity of Egeria densa, a submerged freshwater macrophyte, plants were collected monthly from a circular drainage area in Lake Biwa basin and the Mn concentrations of the plants were analysed. Mn concentrations in these plants were generally above those of terrestrial hyperaccumulators, and were markedly higher in spring and summer than in autumn. Mn concentrations were much lower in plants incubated in hydroponic medium at various pH levels with and without Mn supplementation than in field-collected plants. The precipitation of Mn oxides on the leaves was determined by variable pressure scanning electron microscopy-energy dispersive X-ray analysis and Leucoberbelin blue staining. Several strains of epiphytic bacteria were isolated from the field-collected E. densa plants, with many of these strains, including those of the genera Acidovorax, Comamonas, Pseudomonas and Rhizobium, found to have Mn-oxidizing activity. High Mn concentrations in E. densa were mediated by the production of biogenic Mn oxide in biofilms on leaf surfaces. These findings provide new insights into plant epidermal bacterial flora that affect metal accumulation in plants and suggest that these aquatic plants may have use in Mn phytomining. © 2017 John Wiley & Sons Ltd.

  4. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites.

    PubMed

    Xun, Yu; Feng, Liu; Li, Youdan; Dong, Haochen

    2017-12-01

    Cyrtomium macrophyllum naturally grown in 225.73 mg kg -1 of soil mercury in mining area was found to be a potential mercury accumulator plant with the translocation factor of 2.62 and the high mercury concentration of 36.44 mg kg -1 accumulated in its aerial parts. Pot experiments indicated that Cyrtomium macrophyllum could even grow in 500 mg kg -1 of soil mercury with observed inhibition on growth but no obvious toxic effects, and showed excellent mercury accumulation and translocation abilities with both translocation and bioconcentration factors greater than 1 when exposed to 200 mg kg -1 and lower soil mercury, indicating that it could be considered as a great mercury accumulating species. Furthermore, the leaf tissue of Cyrtomium macrophyllum showed high resistance to mercury stress because of both the increased superoxide dismutase activity and the accumulation of glutathione and proline induced by mercury stress, which favorited mercury translocation from the roots to the aerial parts, revealing the possible reason for Cyrtomium macrophyllum to tolerate high concentration of soil mercury. In sum, due to its excellent mercury accumulation and translocation abilities as well as its high resistance to mercury stress, the use of Cyrtomium macrophyllum should be a promising approach to remediating mercury polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants.

    PubMed

    García, Andrés Calderín; Santos, Leandro Azevedo; de Souza, Luiz Gilberto Ambrósio; Tavares, Orlando Carlos Huertas; Zonta, Everaldo; Gomes, Ernane Tarcisio Martins; García-Mina, José Maria; Berbara, Ricardo Luis Louro

    2016-03-15

    This work aims to determine the reactive oxygen species (ROS) accumulation, gene expression, anti-oxidant enzyme activity, and derived effects on membrane lipid peroxidation and certain stress markers (proline and malondialdehyde-MDA) in the roots of unstressed and PEG-stressed rice plants associated with vermicompost humic acid (VCHA) application. The results show that the application of VCHA to the roots of unstressed rice plants caused a slight but significant increase in root ROS accumulation and the gene expression and activity of the major anti-oxidant enzymes (superoxide dismutase and peroxidase). This action did not have negative effects on root development, and an increase in both root growth and root proliferation occurred. However, the root proline and MDA concentrations and the root permeability results indicate the development of a type of mild stress associated with VCHA application. When VCHA was applied to PEG-stressed plants, a clear alleviation of the inhibition in root development linked to PEG-mediated osmotic stress was observed. This was associated with a reduction in root ROS production and anti-oxidant enzymatic activity caused by osmotic stress. This alleviation of stress caused by VCHA was also reflected as a reduction in the PEG-mediated concentration of MDA in the root as well as root permeability. In summary, the beneficial action of VCHA on the root development of unstressed or PEG-stressed rice plants clearly involves the modulation of ROS accumulation in roots. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Enantioselective accumulation of chiral polychlorinated biphenyls in lotus plant (Nelumbonucifera spp.).

    PubMed

    Dai, Shouhui; Wong, Charles S; Qiu, Jing; Wang, Min; Chai, Tingting; Fan, Li; Yang, Shuming

    2014-09-15

    Enantioselective accumulation of chiral polychlorinated biphenyls (PCBs) 91, 95, 136, 149, 176 and 183 was investigated in lotus plants (Nelumbonucifera spp.) exposed to these chemicals via spiked sediment, to determine uptake and possible biotransformation for aquatic phytoremediation purposes. The concentrations of most PCBs were greatest in roots at 60 d (19.6 ± 1.51-70.6 ± 6.14 μg kg(-1)), but were greatest in stems and leaves at 120 d (25.3 ± 6.14-95.5 ± 19.4 μg kg(-1) and 17.4 ± 4.41-70.4 ± 10.4 μg kg(-1), respectively). Total amounts were greatest at 120 d and significantly higher in roots than those in stems and in leaves (1,457 ± 220-5,852 ± 735 ng, 237 ± 47.1-902 ± 184 ng and 202 ± 60.3-802 ± 90.2 ng, respectively), but represented less than 0.51% of the total mass of PCBs added to sediments, indicating that lotus plants were unlikely to remove appreciable amounts of PCBs from contaminated sediments. Racemic PCB residues in sediment indicate no enantioselective biodegradation by sedimentary microbial consortia over the entire experiment. Preferential accumulation of the (-)-enantiomers of PCBs 91, 95 and 136 were observed in roots, stems and leaves, but non-enantioselective accumulation was observed for PCBs 149, 176 and 183. These results indicate that aquatic plants can accumulate PCBs enantioselectively via root uptake, possibly by biotransformation within plant tissues as observed for terrestrial plants. This is also the first report to identify optical rotation of the atropisomers of PCBs 91 and 95. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants.

    PubMed

    Cai, Yingqi; McClinchie, Elizabeth; Price, Ann; Nguyen, Thuy N; Gidda, Satinder K; Watt, Samantha C; Yurchenko, Olga; Park, Sunjung; Sturtevant, Drew; Mullen, Robert T; Dyer, John M; Chapman, Kent D

    2017-07-01

    Fat storage-inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. Here, we tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension-cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids in leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. When expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER-LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ER-vesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. These results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Atmospheric Pb and Ti accumulation rates from Sphagnum moss: dependence upon plant productivity.

    PubMed

    Kempter, H; Krachler, M; Shotyk, W

    2010-07-15

    The accumulation rates of atmospheric Pb and Ti were obtained using the production rates of Sphagnum mosses collected in four ombrotrophic bogs from two regions of southern Germany: Upper Bavaria (Oberbayern, OB) and the Northern Black Forest (Nordschwarzwald, NBF). Surfaces of Sphagnum carpets were marked with plastic mesh and one year later the production of plant matter was harvested. Metal concentrations were determined in acid digests using sector field ICP-MS employing well established analytical procedures. Up to 12 samples (40 x 40 cm) were collected per site, and 6-10 sites were investigated per bog. Variations within a given sampling site were in the range 2.3-4x for Pb concentrations, 1.8-2.5x for Ti concentrations, 3-8.3x for Pb/Ti, 5.6-7.8x for Pb accumulation rates, and 2.3-6.4x for Ti accumulation rates. However, the median values of these parameters for the sites (6-10 per bog) were quite consistent. The mosses from the bogs in NBF exhibited significantly greater productivity (187-202 g m(-2) a(-1)) compared to the OB peat bogs (71-91 g m(-2) a(-1)), and these differences had a pronounced effect on the Pb and Ti accumulation rates. Highly productive mosses showed no indication of a "dilution effect" of Pb or Ti concentrations, suggesting that more productive plants were simply able to accumulate more particles from the air. The median rates of net Pb accumulation by the mosses are in excellent agreement with the fluxes obtained by direct atmospheric measurements at nearby monitoring stations in both regions (EMEP and MAPESI data).

  9. The mechanism of metal nanoparticle formation in plants: limits on accumulation

    NASA Astrophysics Data System (ADS)

    Haverkamp, R. G.; Marshall, A. T.

    2009-08-01

    Metal nanoparticles have many potential technological applications. Biological routes to the synthesis of these particles have been proposed including production by vascular plants, known as phytoextraction. While many studies have looked at metal uptake by plants, particularly with regard to phytoremediation and hyperaccumulation, few have distinguished between metal deposition and metal salt accumulation. This work describes the uptake of AgNO3, Na3Ag(S2O3)2, and Ag(NH3)2NO3 solutions by hydroponically grown Brassica juncea and the quantitative measurement of the conversion of these salts to silver metal nanoparticles. Using X-ray absorption near edge spectroscopy (XANES) to determine the metal speciation within the plants, combined with atomic absorption spectroscopy (AAS) for total Ag, the quantity of reduction of AgI to Ag0 is reported. Transmission electron microscopy (TEM) showed Ag particles of 2-35 nm. The factors controlling the amount of silver accumulated are revealed. It is found that there is a limit on the amount of metal nanoparticles that may be deposited, of about 0.35 wt.% Ag on a dry plant basis, and that higher levels of silver are obtained only by the concentration of metal salts within the plant, not by deposition of metal. The limit on metal nanoparticle accumulation, across a range of metals, is proposed to be controlled by the total reducing capacity of the plant for the reduction potential of the metal species and limited to reactions occurring at an electrochemical potential greater than 0 V (verses the standard hydrogen electrode).

  10. Enhanced iron and zinc accumulation in genetically engineered pineapple plants using soybean ferritin gene.

    PubMed

    Mhatre, Minal; Srinivas, Lingam; Ganapathi, Thumballi R

    2011-12-01

    Pineapple (Ananas comosus L. Merr., cv. "Queen") leaf bases were transformed with Agrobacterium tumefaciens strain EHA 105 harboring the pSF and pEFESF plasmids with soybean ferritin cDNA. Four to eight percent of the co-cultivated leaf bases produced multiple shoots 6 weeks after transfer to Murashige and Skoog's medium supplemented with α-naphthalene acetic acid 1.8 mg/l, indole-3-butyric acid 2.0 mg/l, kinetin 2.0 mg/l, cefotaxime 400 mg/l, and kanamycin 50 mg/l. Putatively transformed shoots (1-2 cm) were selected and multiplied on medium of the same composition and elongated shoots (5 cm) were rooted on liquid rooting medium supplemented with cefotaxime 400 mg/l and kanamycin 100 mg/l. The rooted plants were analyzed through PCR, genomic Southern analysis, and reverse transcription PCR. The results clearly confirmed the integration and expression of soybean ferritin gene in the transformed plants. Atomic absorption spectroscopic analysis carried out with six independently transformed lines of pSF and pEFE-SF revealed a maximum of 5.03-fold increase in iron and 2.44-fold increase in zinc accumulation in the leaves of pSF-transformed plants. In pEFE-SF-transformed plants, a 3.65-fold increase in iron and 2.05-fold increase in zinc levels was observed. Few of the transgenic plants were hardened in the greenhouse and are being grown to maturity to determine the enhanced iron and zinc accumulation in the fruits. To the best of our knowledge this is the first report on the transformation of pineapple with soybean ferritin for enhanced accumulation of iron and zinc content in the transgenic plants.

  11. Effects of plant growth regulators on the growth and lipid accumulation of Nannochloropsis oculata (droop) Hibberd

    NASA Astrophysics Data System (ADS)

    Trinh, Cam Tu; Tran, Thanh Huong; Bui, Trang Viet

    2017-09-01

    Nannochloropsis oculata cells were grown in f/2 modified medium of Chiu et al. (2009) supplemented with the plant growth regulators in different concentrations. Lipid accumulation of N. oculata cells was evaluated by using Nile Red dye and Fiji Image J with Analyze Particles. Indole-3-acetic acid (IAA) stimulated the increase of cell density in rapid growth phase (day 6) at high concentration (0.75 mg/L) and in slow growth phase (day 10) at lower concentration (0.50 mg/L). IAA, gibberellic acid (GA3) and zeatin increased content of chlorophyll a, in particular, in f/2 modified medium supplemented with 0.5 mg/L zeatin at the 10th day of culture. Roles of plant growth regulators in growth and lipid accumulation of N. oculata were discussed.

  12. Ambient air sulphur dioxide and sulphate accumulation in deciduous and evergreen plants.

    PubMed

    Dwivedi, Anil K; Shashi

    2012-01-01

    Present study is an attempt to evaluate the difference in rate of sulphur dioxide (SO2) absorption by deciduous (Ficus religiosa) and evergreen (Carica papaya) plants, under elevated concentration of the gas in ambient air. Two-way ANOVA for SO2 in air and sulphate (SO4) accumulation in both the selected plants showed significant difference (p<0.01) at different study sites; different months as well as interaction effect of both site and months. The linear correlation coefficient among ambient air SO2 and SO4 in leaves was always significant (p<0.001) in case of deciduous plant; however, the same in evergreen plants showed heterogeneous result. Air pollution tolerance index (APTI) of F. religiosa (deciduous) and C. papaya (evergreen) was found to be 19.73 and 81.10 respectively, proving that the former has low tolerance capacity and is sensitive, while the latter is resistant to the elevated ambient air SO2.

  13. Enhanced oxidation of flavan-3-ols and proanthocyanidin accumulation in water-stressed tea plants.

    PubMed

    Hernández, Iker; Alegre, Leonor; Munné-Bosch, Sergi

    2006-06-01

    (-)-Epicatechin (EC) and (-)-epigallocatechin gallate (EGCG), two major tea flavan-3-ols, have received attention in food science and biomedicine because of their potent antioxidant properties. In plants, flavan-3-ols serve as proanthocyanidin (PA) building blocks, and although both monomeric flavan-3-ols and PAs show antioxidant activity in vitro, their antioxidant function in vivo remains unclear. In the present study, EC quinone (ECQ) and EGCG quinone (EGCGQ), the oxidation products of EC and EGCG, increased up to 100- and 30-fold, respectively, in tea plants exposed to 19 days of water deficit. Oxidation of EC and EGCG preceded PAs accumulation in leaves, which increased from 35 to 53 mg gDW(-1) after 26 days of water deficit. Aside from the role monomeric flavan-3-ols may play in PAs biosynthesis, formation of ECQ and EGCGQ strongly negatively correlated with the extent of lipid peroxidation in leaves, thus supporting a protective role for these compounds in drought-stressed plants. Besides demonstrating flavonoid accumulation in drought-stressed tea plants, we show for the first time that EC and EGCG are oxidized to their respective quinones in plants in vivo.

  14. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants

    SciTech Connect

    Cai, Yingqi; McClinchie, Elizabeth; Price, Ann

    Fat storage-inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. We tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension-cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids inmore » leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. Furthermore, when expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER-LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ERvesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. Our results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes.« less

  15. Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytoremediation perspectives.

    PubMed

    Rodriguez, Luis; Rincón, Jesusa; Asencio, Isaac; Rodríguez-Castellanos, Laura

    2007-01-01

    High-biomass crops can be considered as an alternative to hyperaccumulator plants to phytoremediate soils contaminated by heavy metals. In order to assess their practical capability for the absorption and accumulation of Hg in shoots, barley, white lupine, lentil, and chickpea were tested in pot experiments using several growth substrates. In the first experimental series, plants were grown in a mixture of vermiculite and perlite spiked with 8.35 microg g(-1) d.w. of soluble Hg. The mercury concentration of the plants' aerial tissues ranged from 1.51 to 5.13 microg g(-1) d.w. with lentil and lupine showing the highest values. In a second experiment carried out using a Hg-polluted soil (32.16 microg g(-1) d.w.) collected from a historical mining area (Almadén, Spain), the crop plants tested only reached shoot Hg concentration up to 1.13 microg g(-1) d.w. In the third experimental series, the Almadén soil was spiked with 1 microg g(-1) d.w. of soluble Hg; as a result, mercury concentrations in the plant shoots increased approximately 6 times for lupine, 5 times for chickpea, and 3.5 times for barley and lentil, with respect to those obtained with the original soil without Hg added. This marked difference was attributed to the low availability of Hg in the original Almadin soil and its subsequent increase in the Hg-spiked soil. The low mercury accumulation yields obtained for all plants do not make a successful decontamination of the Almadén soils possible byphytoremediation using crop plants. However, since the crops tested can effectively decrease the plant-available Hg level in this soil, their use could, to some extent, reduce the environmental risk of Hg pollution in the area.

  16. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants

    DOE PAGES

    Cai, Yingqi; McClinchie, Elizabeth; Price, Ann; ...

    2017-01-18

    Fat storage-inducing transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. We tested the function of FIT2 in plant cells by ectopically expressing mouse (Mus musculus) FIT2 in Nicotiana tabacum suspension-cultured cells, Nicotiana benthamiana leaves and Arabidopsis thaliana plants. Confocal microscopy indicated that the expression of FIT2 dramatically increased the number and size of LDs in leaves of N. benthamiana and Arabidopsis, and lipidomics analysis and mass spectrometry imaging confirmed the accumulation of neutral lipids inmore » leaves. FIT2 also increased seed oil content by ~13% in some stable, overexpressing lines of Arabidopsis. Furthermore, when expressed transiently in leaves of N. benthamiana or suspension cells of N. tabacum, FIT2 localized specifically to the ER and was often concentrated at certain regions of the ER that resembled ER-LD junction sites. FIT2 also colocalized at the ER with other proteins known to be involved in triacylglycerol biosynthesis or LD formation in plants, but not with ER resident proteins involved in electron transfer or ERvesicle exit sites. Collectively, these results demonstrate that mouse FIT2 promotes LD accumulation in plants, a surprising functional conservation in the context of a plant cell given the apparent lack of FIT2 homologues in higher plants. Our results suggest also that FIT2 expression represents an effective synthetic biology strategy for elaborating neutral lipid compartments in plant tissues for potential biofuel or bioproduct purposes.« less

  17. Copper tolerance and copper accumulation of herbaceous plants colonizing inactive California copper mines

    SciTech Connect

    Kruckeberg, A.L.; Wu, L.

    1992-06-01

    Herbaceous plant species colonizing four copper mine waste sites in northern California were investigated for copper tolerance and copper accumulation. Copper tolerance was found in plant species colonizing soils with high concentrations of soil copper. Seven of the eight plant species tested were found at more than one copper mine. The mines are geographically isolated, which makes dispersal of seeds from one mine to another unlikely. Tolerance has probably evolved independently at each site. The nontolerant field control population of Vulpia microstachya displays significantly higher tolerance to copper at all copper concentration levels tested than the nontolerant Vulpia myrous population,more » and the degree of copper tolerance attained by V. microstachya at the two copper mines was much greater than that found in V. myrous. It suggests that even in these two closely related species, the innate tolerance in their nontolerant populations may reflect their potential for evolution of copper tolerance and their ability to initially colonize copper mine waste sites. The shoot tissue of the copper mine plants of Arenaria douglasii, Bromous mollis, and V. microstachya accumulated less copper than those plants of the same species from the field control sites when the two were grown in identical conditions in nutrient solution containing copper. The root tissue of these mine plants contain more copper than the roots of the nonmine plants. This result suggests that exclusion of copper from the shoots, in part by immobilization in the roots, may be a feature of copper tolerance. No difference in the tissue copper concentration was detected between tolerant and nontolerant plants of Lotus purshianus, Lupinus bicolor, and Trifolium pratense even though the root tissue had more copper than the leaves.« less

  18. Directed plant cell-wall accumulation of iron: Embedding co-catalyst for efficient biomass conversion

    SciTech Connect

    Lin, Chien -Yuan; Jakes, Joseph E.; Donohoe, Bryon S.

    Plant lignocellulosic biomass is an abundant, renewable feedstock for the production of biobased fuels and chemicals. Previously, we showed that iron can act as a co-catalyst to improve the deconstruction of lignocellulosic biomass. However, directly adding iron catalysts into biomass prior to pretreatment is diffusion limited, and increases the cost of biorefinery operations. Recently, we developed a new strategy for expressing iron-storage protein ferritin intracellularly to accumulate iron as a catalyst for the downstream deconstruction of lignocellulosic biomass. In this study, we extend this approach by fusing the heterologous ferritin gene with a signal peptide for secretion into Arabidopsis cellmore » walls (referred to here as FerEX). The transgenic Arabidopsis plants. FerEX. accumulated iron under both normal and iron-fertilized growth conditions; under the latter (iron-fertilized) condition, FerEX transgenic plants showed an increase in plant height and dry weight by 12 and 18 %, respectively, compared with the empty vector control plants. The SDS- and native-PAGE separation of cell-wall protein extracts followed by Western blot analyses confirmed the extracellular expression of ferritin in FerEX plants. Meanwhile, Perls' Prussian blue staining and X-ray fluorescence microscopy (XFM) maps revealed iron depositions in both the secondary and compound middle lamellae cell-wall layers, as well as in some of the corner compound middle lamella in FerEX. Remarkably, their harvested biomasses showed enhanced pretreatability and digestibility, releasing, respectively, 21 % more glucose and 34 % more xylose than the empty vector control plants. These values are significantly higher than those of our recently obtained ferritin intracellularly expressed plants. This study demonstrated that extracellular expression of ferritin in Arabidopsis can produce plants with increased growth and iron accumulation, and reduced thermal and enzymatic recalcitrance. Here, the

  19. Directed plant cell-wall accumulation of iron: Embedding co-catalyst for efficient biomass conversion

    DOE PAGES

    Lin, Chien -Yuan; Jakes, Joseph E.; Donohoe, Bryon S.; ...

    2016-10-21

    Plant lignocellulosic biomass is an abundant, renewable feedstock for the production of biobased fuels and chemicals. Previously, we showed that iron can act as a co-catalyst to improve the deconstruction of lignocellulosic biomass. However, directly adding iron catalysts into biomass prior to pretreatment is diffusion limited, and increases the cost of biorefinery operations. Recently, we developed a new strategy for expressing iron-storage protein ferritin intracellularly to accumulate iron as a catalyst for the downstream deconstruction of lignocellulosic biomass. In this study, we extend this approach by fusing the heterologous ferritin gene with a signal peptide for secretion into Arabidopsis cellmore » walls (referred to here as FerEX). The transgenic Arabidopsis plants. FerEX. accumulated iron under both normal and iron-fertilized growth conditions; under the latter (iron-fertilized) condition, FerEX transgenic plants showed an increase in plant height and dry weight by 12 and 18 %, respectively, compared with the empty vector control plants. The SDS- and native-PAGE separation of cell-wall protein extracts followed by Western blot analyses confirmed the extracellular expression of ferritin in FerEX plants. Meanwhile, Perls' Prussian blue staining and X-ray fluorescence microscopy (XFM) maps revealed iron depositions in both the secondary and compound middle lamellae cell-wall layers, as well as in some of the corner compound middle lamella in FerEX. Remarkably, their harvested biomasses showed enhanced pretreatability and digestibility, releasing, respectively, 21 % more glucose and 34 % more xylose than the empty vector control plants. These values are significantly higher than those of our recently obtained ferritin intracellularly expressed plants. This study demonstrated that extracellular expression of ferritin in Arabidopsis can produce plants with increased growth and iron accumulation, and reduced thermal and enzymatic recalcitrance. Here, the

  20. Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits.

    PubMed

    Wójcik, Małgorzata; Sugier, Piotr; Siebielec, Grzegorz

    2014-07-15

    Metal (Zn, Pb, Cd, Cu, Ni, Cr) accumulation in shoots of 38 plant species spontaneously colonizing three Zn-Pb waste deposits in southern Poland was studied in order to find out if the age of the waste (30-130 years) or its type (slag or flotation residues) influence metal content in plants and to identify species potentially suitable for biomonitoring and phytoremediation. The total metal concentrations in the waste upper layers ranged from 7300 to 171,790 mg kg(-1) for Zn, from 1390 to 22,265 mg kg(-1) for Pb, and from 66 to 1,464 mg kg(-1) for Cd, whereas CaCl2-extracted fractions accounted for 0.034-0.11 %, 0.005-0.03 %, and 0.28-0.62 % of total Zn, Pb and Cd concentrations, respectively. The concentrations of Cu, Ni, and Cr in substrates and in plants were low and ranged within the background values. Metal accumulation in plant shoots was poorly correlated with both total and CaCl2-extracted forms of metals in the substrate and was highly variable among species and also specimens of the same species. The highest mean concentrations of Zn, Pb and Cd were found in Anthyllis vulneraria L. (901.5 mg kg(-1)), Echium vulgare L. (116.92 mg kg(-1)), and Hieracium piloselloides Vill. (26.86 mg kg(-1)), respectively. Besides Reseda lutea L., no species appeared to be a good indicator of polymetallic environment pollution based on chemical analysis of shoots; however, metal accumulation in the whole plant communities of a particular contaminated area might be an accurate tool for assessment of metal transfer to vegetation irrespective of the type or age of the waste. All the species studied developed a metal exclusion strategy, thus exhibiting potential for phytostabilization of metalliferous wastelands. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Altered Expression of OsNLA1 Modulates Pi Accumulation in Rice (Oryza sativa L.) Plants

    PubMed Central

    Zhong, Sihui; Mahmood, Kashif; Bi, Yong-Mei; Rothstein, Steven J.; Ranathunge, Kosala

    2017-01-01

    Current agricultural practices rely on heavy use of fertilizers for increased crop productivity. However, the problems associated with heavy fertilizer use, such as high cost and environmental pollution, require the development of crop species with increased nutrient use efficiency. In this study, by using transgenic approaches, we have revealed the critical role of OsNLA1 in phosphate (Pi) accumulation of rice plants. When grown under sufficient Pi and nitrate levels, OsNLA1 knockdown (Osnla1-1, Osnla1-2, and Osnla1-3) lines accumulated higher Pi content in their shoot tissues compared to wild-type, whereas, over-expression lines (OsNLA1-OE1, OsNLA1-OE2, and OsNLA1-OE3) accumulated the least levels of Pi. However, under high Pi levels, knockdown lines accumulated much higher Pi content compared to wild-type and exhibited Pi toxicity symptoms in the leaves. In contrast, the over-expression lines had 50–60% of the Pi content of wild-type and did not show such symptoms. When grown under limiting nitrate levels, OsNLA1 transgenic lines also displayed a similar pattern in Pi accumulation and Pi toxicity symptoms compared to wild-type suggesting an existence of cross-talk between nitrogen (N) and phosphorous (P), which is regulated by OsNLA1. The greater Pi accumulation in knockdown lines was a result of enhanced Pi uptake/permeability of roots compared to the wild-type. The cross-talk between N and P was found to be nitrate specific since the knockdown lines failed to over-accumulate Pi under low (sub-optimal) ammonium level. Moreover, OsNLA1 was also found to interact with OsPHO2, a known regulator of Pi homeostasis, in a Yeast Two-Hybrid (Y2H) assay. Taken together, these results show that OsNLA1 is involved in Pi homeostasis regulating Pi uptake and accumulation in rice plants and may provide an opportunity to enhance P use efficiency by manipulating nitrate supply in the soil. PMID:28626465

  2. Species richness and selenium accumulation of plants in soils with elevated concentration of selenium and salinity

    SciTech Connect

    Huang, Z.Z.; Wu, L.

    1991-12-01

    Field studies were conducted in soils with elevated concentrations of Se and salinity at Kesterson, California. Biomass distribution, species richness, and selenium accumulation of plants were examined for two sites where 15 cm of surface soil was removed and replaced with fill dirt in the fall of 1989, and two sites were native soil cover. The Se concentrations in the top 15 cm of fill dirt ranged from undetectable to 36 ng g-1. For the native soil sites, Se levels ranged from 75 to 550 ng g-1. Soil Se concentrations below 15 cm ranged from 300 to 700 ng g-1more » and were comparable between the fill dirt and the native soil sites. At least 20 different plant species were brought into the two fill dirt sites with the top soil. Avena fatua L., Bassia hyssopifolia Kuntze Rev. Gen. Pl., Centaurea solstitialis L., Erysimum officianale L., Franseria acanthicarpa Cav. Icon., and Melilotus indica (L.) All. contributed over 60% of the total biomass. Only 5 species were found in the native soil sites, and salt grass (Distichlis spicata L.) was the predominant species and accounted for over 80% of the total biomass. Between 1989 and 1990, two years after the surface soil replacement, the two fill dirt sites had a 70% reduction in species richness. Plant tissue selenium concentrations were found to be quite variable between plant species and between sites of sampling. At the fill dirt sites, the plant species with deep root systems accumulated greater amounts of selenium than the shallow-rooted species. The soil selenium concentration of the field soil had no negative effect on pollen fertility, seed set, and seed germination for the plant species examined. However, seedling growth was impaired by the soil selenium concentrations. This suggests that a selection pressure of soil Se concentration may have been imposed on plant species such as M. indica in an early stage of its life cycle.« less

  3. Exogenous Melatonin Improves Plant Iron Deficiency Tolerance via Increased Accumulation of Polyamine-Mediated Nitric Oxide.

    PubMed

    Zhou, Cheng; Liu, Zhi; Zhu, Lin; Ma, Zhongyou; Wang, Jianfei; Zhu, Jian

    2016-10-25

    Melatonin has recently been demonstrated to play important roles in the regulation of plant growth, development, and abiotic and biotic stress responses. However, the possible involvement of melatonin in Fe deficiency responses and the underlying mechanisms remained elusive in Arabidopsis thaliana . In this study, Fe deficiency quickly induced melatonin synthesis in Arabidopsis plants. Exogenous melatonin significantly increased the soluble Fe content of shoots and roots, and decreased the levels of root cell wall Fe bound to pectin and hemicellulose, thus alleviating Fe deficiency-induced chlorosis. Intriguingly, melatonin treatments induced a significant increase of nitric oxide (NO) accumulation in roots of Fe-deficient plants, but not in those of polyamine-deficient ( adc2-1 and d-arginine-treated) plants. Moreover, the melatonin-alleviated leaf chlorosis was blocked in the polyamine- and NO-deficient ( nia1nia2noa1 and c-PTIO-treated) plants, and the melatonin-induced Fe remobilization was largely inhibited. In addition, the expression of some Fe acquisition-related genes, including FIT1 , FRO2 , and IRT1 were significantly up-regulated by melatonin treatments, whereas the enhanced expression of these genes was obviously suppressed in the polyamine- and NO-deficient plants. Collectively, our results provide evidence to support the view that melatonin can increase the tolerance of plants to Fe deficiency in a process dependent on the polyamine-induced NO production under Fe-deficient conditions.

  4. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity.

    PubMed

    Tripathi, Durgesh Kumar; Shweta; Singh, Shweta; Singh, Swati; Pandey, Rishikesh; Singh, Vijay Pratap; Sharma, Nilesh C; Prasad, Sheo Mohan; Dubey, Nawal Kishore; Chauhan, Devendra Kumar

    2017-01-01

    The unprecedented capability to control and characterize materials on the nanometer scale has led to the rapid expansion of nanostructured materials. The expansion of nanotechnology, resulting into myriads of consumer and industrial products, causes a concern among the scientific community regarding risk associated with the release of nanomaterials in the environment. Bioavailability of excess nanomaterials ultimately threatens ecosystem and human health. Over the past few years, the field of nanotoxicology dealing with adverse effects and the probable risk associated with particulate structures <100 nm in size has emerged from the recognized understanding of toxic effects of fibrous and non-fibrous particles and their interactions with plants. The present review summarizes uptake, translocation and accumulation of nanomaterials and their recognized ways of phytotoxicity on morpho-anatomical, physiological, biochemical and molecular traits of plants. Besides this, the present review also examines the intrinsic detoxification mechanisms in plants in light of nanomaterial accumulation within plant cells or parts. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment

    PubMed Central

    Zhou, Hang; Yang, Wen-Tao; Zhou, Xin; Liu, Li; Gu, Jiao-Feng; Wang, Wen-Lei; Zou, Jia-Ling; Tian, Tao; Peng, Pei-Qin; Liao, Bo-Han

    2016-01-01

    The objectives of the present study were to investigate heavy metal accumulation in 22 vegetable species and to assess the human health risks of vegetable consumption. Six vegetable types were cultivated on farmland contaminated with heavy metals (Pb, Cd, Cu, Zn, and As). The target hazard quotient (THQ) method was used to assess the human health risks posed by heavy metals through vegetable consumption. Clear differences were found in the concentrations of heavy metals in edible parts of the different vegetables. The concentrations of heavy metals decreased in the sequence as leafy vegetables > stalk vegetables/root vegetables/solanaceous vegetables > legume vegetables/melon vegetables. The ability of leafy vegetables to uptake and accumulate heavy metals was the highest, and that of melon vegetables was the lowest. This indicated that the low accumulators (melon vegetables) were suitable for being planted on contaminated soil, while the high accumulators (leafy vegetables) were unsuitable. In Shizhuyuan area, China, the total THQ values of adults and children through consumption of vegetables were 4.12 and 5.41, respectively, suggesting that the residents may be facing health risks due to vegetable consumption, and that children were vulnerable to the adverse effects of heavy metal ingestion. PMID:26959043

  6. Stable isotopic composition of perchlorate and nitrate accumulated in plants: Hydroponic experiments and field data.

    PubMed

    Estrada, Nubia Luz; Böhlke, J K; Sturchio, Neil C; Gu, Baohua; Harvey, Greg; Burkey, Kent O; Grantz, David A; McGrath, Margaret T; Anderson, Todd A; Rao, Balaji; Sevanthi, Ritesh; Hatzinger, Paul B; Jackson, W Andrew

    2017-10-01

    Natural perchlorate (ClO 4 - ) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ 37 Cl, δ 18 O, and Δ 17 O), indicating that ClO 4 - may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO 4 - , but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO 4 - in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO 4 - was transported from solutions into plants similarly to NO 3 - but preferentially to Cl - (4-fold). The ClO 4 - isotopic compositions of initial ClO 4 - reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO 4 - uptake or accumulation. The ClO 4 - isotopic composition of field-grown snap beans was also consistent with that of ClO 4 - in varying proportions from irrigation water and precipitation. NO 3 - uptake had little or no effect on NO 3 - isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε ( 15 N/ 18 O) ratio of 1.05 was observed between NO 3 - in hydroponic solutions and leaf extracts, consistent with partial NO 3 - reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO 4 - in commercial produce, as illustrated by spinach, for which the ClO 4 - isotopic composition was similar to that of indigenous natural ClO 4 - . Our results indicate that some types of plants can accumulate and (presumably) release ClO 4 - to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO 4 - and NO 3 - in plants may be useful for determining sources of fertilizers and sources of ClO 4 - in their growth

  7. Stable isotopic composition of perchlorate and nitrate accumulated in plants: Hydroponic experiments and field data

    USGS Publications Warehouse

    Estrada, Nubia Luz; Böhlke, John Karl; Sturchio, Neil C.; Gu, Baohua; Harvey, Greg; Burkey, Kent O.; Grantz, David A.; McGrath, Margaret T.; Anderson, Todd A.; Rao, Balaji; Sevanthi, Ritesh; Hatzinger, Paul B.; Jackson, W. Andrew

    2017-01-01

    Natural perchlorate (ClO4−) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ37Cl, δ18O, and Δ17O), indicating that ClO4− may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO4−, but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO4− in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO4− was transported from solutions into plants similarly to NO3− but preferentially to Cl− (4-fold). The ClO4− isotopic compositions of initial ClO4− reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO4− uptake or accumulation. The ClO4− isotopic composition of field-grown snap beans was also consistent with that of ClO4− in varying proportions from irrigation water and precipitation. NO3− uptake had little or no effect on NO3− isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε (15N/18O) ratio of 1.05 was observed between NO3− in hydroponic solutions and leaf extracts, consistent with partial NO3− reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO4− in commercial produce, as illustrated by spinach, for which the ClO4− isotopic composition was similar to that of indigenous natural ClO4−. Our results indicate that some types of plants can accumulate and (presumably) release ClO4− to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO4−and NO3− in plants may be useful for determining sources of fertilizers and sources of ClO4− in their growth environments and

  8. Manganese and lead in dust fall accumulation in elementary schools near a ferromanganese alloy plant

    SciTech Connect

    Menezes-Filho, José Antonio, E-mail: antomen@ufba.br; Souza, Karine O. Fraga de, E-mail: karinefraga11@hotmail.com; Rodrigues, Juliana L. Gomes, E-mail: juuhrodrigues@icloud.com

    Previous studies have shown elevated airborne manganese (Mn) in villages adjacent to a Mn alloy production plant in Brazil and negative associations between biomarkers of Mn and children's cognition and behavior. Since small Mn particles may be carried for long distances, we measured manganese (Mn) and lead (Pb) dust fall accumulation in 15 elementary schools, located between 1.25 and 6.48 km from the plant in the municipality of Simões Filho, Bahia, Brazil. Passive samplers (polyethylene Petri dishes) were set in interior and exterior environments. After 30 days, the samplers’ content was solubilized with diluted nitric acid and Mn and Pbmore » levels were analyzed by electrothermal absorption spectrometry. The overall geometric mean and range of Mn and Pb accumulation in dust fall (loading rates) were 1582 μg Mn/m{sup 2}/30 days (37–37,967) and 43.2 μg Pb/m{sup 2}/30 days (2.9–210.4). A logarithmic decrease in interior and exterior Mn loading rates was observed with distance from the ferro-manganese alloy plant. Multiple regression analyses of log-transformed Mn loading rate within the schools showed a positive association with Mn levels in outdoor dust, a negative association with distance from the plant; as well, wind direction (downwind>upwind) and school location (urban>rural) entered significantly into the model. For the interior school environments, located within a 2-km radius from the plant, loading rate was, on average, 190 times higher than the Mn levels reported by Gulson et al., (2014) in daycare centers in Sydney, Australia, using a similar method. Pb loading rates were not associated with distance from the plant and were lower than the rates observed in the same daycare centers in Sydney. Our findings suggest that a significant portion of the children in this town in Brazil may be exposed to airborne Mn at concentrations that may affect their neurodevelopment. - Highlights: • Manganese levels in settled dust in schools are inversely

  9. The accumulation and subcellular distribution of arsenic and antimony in four fern plants.

    PubMed

    Feng, R; Wang, X; Wei, C; Tu, S

    2015-01-01

    In the present study, Pteris cretica 'Albo-Lineata' (PC), Pteris fauriei (PF), Humata tyermanii Moore (HT), and Pteris ensiformis Burm (PE), were selected to explore additional plant materials for the phytoremediation of As and Sb co-contamination. To some extent, the addition of As and Sb enhanced the growth of HT, PE, and PF. Conversely, the addition of As and Sb negatively affected the growth of PC and was accompanied with the accumulation of high levels of As and Sb in the roots. The highest concentration of Sb was recorded as 6405 mg kg(-1) in the roots of PC, and that for As was 337 mg kg(-1) in the rhizome of PF. To some degree, As and Sb stimulated the uptake of each other in these ferns. Arsenic was mainly stored in the cytoplasmic supernatant (CS) fraction, followed by the cell wall (CW) fraction. In contrast, Sb was mainly found in the CW fraction and, to a lesser extent, in the CS fraction, suggesting that the cell wall and cytosol play different roles in As and Sb accumulation by fern plants. This study demonstrated that these fern plants show a good application potential in the phytoremediation of As and Sb co-contaminated environments.

  10. Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth

    PubMed Central

    Kim, Hyun Uk; Lee, Kyeong-Ryeol; Jung, Su-Jin; Shin, Hyun A; Go, Young Sam; Suh, Mi-Chung; Kim, Jong Bum

    2017-01-01

    Summary The synthesis of fatty acids and glycerolipids in wild-type Arabidopsis leaves do not typically lead to strong triacylglycerol (TAG) accumulation. LEAFY COTYLEDON2 (LEC2) is a master regulator of seed maturation and oil accumulation in seeds. Constitutive ectopic LEC2 expression causes somatic embryogenesis and defects in seedling growth. Here, we report that senescence-inducible LEC2 expression caused a 3-fold increase in TAG levels in transgenic leaves compared with that in the leaves of wild-type plants. Plant growth was not severely affected by the accumulation the TAG in response to LEC2 expression. The levels of plastid-synthesized lipids, mono- and di-galactosyldiacylglycerol and phosphatidylglycerol, were reduced more in senescence-induced LEC2 than endoplasmic reticulum-synthesized lipids, including phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. Senescence-induced LEC2 upregulated the expression of many genes involved in fatty acid and TAG biosynthesis at precise times in senescent leaves, including WRINKLED1 (WRI1), which encodes a fatty acid transcription factor. The expression of glycerol-3-phosphate dehydrogenase 1 and phospholipid:diacylglycerol 2 were increased in the transgenic leaves. Five seed-type oleosin-encoding genes, expressed during oil-body formation, and the seed-specific FAE1 gene, which encodes the enzyme responsible for the synthesis of C20:1 and C22:1 fatty acids, were also expressed at higher levels in senescing transgenic leaves than in wild-type leaves. Senescence-inducible LEC2 triggers the key metabolic steps that increase TAG accumulation in vegetative tissues. PMID:25790072

  11. Senescence-inducible LEC2 enhances triacylglycerol accumulation in leaves without negatively affecting plant growth.

    PubMed

    Kim, Hyun Uk; Lee, Kyeong-Ryeol; Jung, Su-Jin; Shin, Hyun A; Go, Young Sam; Suh, Mi-Chung; Kim, Jong Bum

    2015-12-01

    The synthesis of fatty acids and glycerolipids in wild-type Arabidopsis leaves does not typically lead to strong triacylglycerol (TAG) accumulation. LEAFY COTYLEDON2 (LEC2) is a master regulator of seed maturation and oil accumulation in seeds. Constitutive ectopic LEC2 expression causes somatic embryogenesis and defects in seedling growth. Here, we report that senescence-inducible LEC2 expression caused a threefold increase in TAG levels in transgenic leaves compared with that in the leaves of wild-type plants. Plant growth was not severely affected by the accumulation the TAG in response to LEC2 expression. The levels of plastid-synthesized lipids, mono- and di-galactosyldiacylglycerol and phosphatidylglycerol were reduced more in senescence-induced LEC2 than in endoplasmic reticulum-synthesized lipids, including phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol. Senescence-induced LEC2 up-regulated the expression of many genes involved in fatty acid and TAG biosynthesis at precise times in senescent leaves, including WRINKLED1 (WRI1), which encodes a fatty acid transcription factor. The expressions of glycerol-3-phosphate dehydrogenase 1 and phospholipid:diacylglycerol 2 were increased in the transgenic leaves. Five seed-type oleosin-encoding genes, expressed during oil-body formation, and the seed-specific FAE1 gene, which encodes the enzyme responsible for the synthesis of C20:1 and C22:1 fatty acids, were also expressed at higher levels in senescing transgenic leaves than in wild-type leaves. Senescence-inducible LEC2 triggers the key metabolic steps that increase TAG accumulation in vegetative tissues. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Plant and soil carbon accumulation following fire in Mediterranean woodlands in Spain.

    PubMed

    Kaye, Jason Philip; Romanyà, Joan; Vallejo, V Ramón

    2010-10-01

    We measured plant and soil carbon (C) storage following canopy-replacing wildfires in woodlands of northeastern Spain that include an understory of shrubs dominated by Quercus coccifera and an overstory of Pinus halepensis trees. Established plant succession models predict rapid shrub recovery in these ecosystems, and we build on this model by contrasting shrub succession with long-term C storage in soils, trees, and the whole ecosystem. We used chronosequence and repeated sampling approaches to detect change over time. Aboveground plant C increased from <100 to ~3,000 g C m(-2) over 30 years following fire, which is substantially less than the 5,942 ± 487 g C m(-2) (mean ±1 standard error) in unburned sites. As expected, shrubs accumulated C rapidly, but the capacity for C storage in shrubs was <600 g C m(-2). Pines were the largest plant C pool in sites >20 years post fire, and accounted for all of the difference in plant C between older burned sites and unburned sites. In contrast, soil C was initially higher in burned sites (~4,500 g C m(-2)) than in unburned sites (3,264 ± 261 g C m(-2)) but burned site C declined to unburned levels within 10 years after fire. Combining these results with prior research suggests two states for C storage. When pine regeneration is successful, ~9,200 g C m(-2) accumulate in woodlands but when tree regeneration fails (due to microclimatic stress or short fire return intervals), ecosystem C storage of ~4,000 g C m(-2) will occur in the resulting shrublands.

  13. Genome-wide exploration of silicon (Si) transporter genes, Lsi1 and Lsi2 in plants; insights into Si-accumulation status/capacity of plants.

    PubMed

    Vatansever, Recep; Ozyigit, Ibrahim Ilker; Filiz, Ertugrul; Gozukirmizi, Nermin

    2017-04-01

    Silicon (Si) is a nonessential, beneficial micronutrient for plants. It increases the plant stress tolerance in relation to its accumulation capacity. In this work, root Si transporter genes were characterized in 17 different plants and inferred for their Si-accumulation status. A total of 62 Si transporter genes (31 Lsi1 and 31 Lsi2) were identified in studied plants. Lsi1s were 261-324 residues protein with a MIP family domain whereas Lsi2s were 472-547 residues with a citrate transporter family domain. Lsi1s possessed characteristic sequence features that can be employed as benchmark in prediction of Si-accumulation status/capacity of the plants. Silicic acid selectivity in Lsi1s was associated with two highly conserved NPA (Asn-Pro-Ala) motifs and a Gly-Ser-Gly-Arg (GSGR) ar/R filter. Two NPA regions were present in all Lsi1 members but some Ala substituted with Ser or Val. GSGR filter was only available in the proposed high and moderate Si accumulators. In phylogeny, Lsi1s formed three clusters as low, moderate and high Si accumulators based on tree topology and availability of GSGR filter. Low-accumulators contained filters WIGR, AIGR, FAAR, WVAR and AVAR, high-accumulators only with GSGR filter, and moderate-accumulators mostly with GSGR but some with A/CSGR filters. A positive correlation was also available between sequence homology and Si-accumulation status of the tested plants. Thus, availability of GSGR selectivity filter and sequence homology degree could be used as signatures in prediction of Si-accumulation status in experimentally uncharacterized plants. Moreover, interaction partner and expression profile analyses implicated the involvement of Si transporters in plant stress tolerance.

  14. Zinc accumulation in plant species indigenous to a Portuguese polluted site: relation with soil contamination.

    PubMed

    Marques, Ana P G C; Rangel, António O S S; Castro, Paula M L

    2007-01-01

    The levels of zinc accumulated by roots, stems, and leaves of two plant species, Rubus ulmifolius and Phragmites australis, indigenous to the banks of a stream in a Portuguese contaminated site were investigated in field conditions. R. ulmifolius, a plant for which studies on phytoremediation potential are scarce, dominated on the right side of the stream, while P. australis proliferated on the other bank. Heterogeneous Zn concentrations were found along the banks of the stream. Zn accumulation in both species occurred mainly in the roots, with poor translocation to the aboveground sections. R. ulmifolius presented Zn levels in the roots ranging from 142 to 563 mg kg(-1), in the stems from 35 to 110 mg kg(-1), and in the leaves from 45 to 91 mg kg(-1), vs. average soil total Zn concentrations varying from 526 to 957 mg kg(-1). P. australis showed Zn concentrations in the roots from 39 to 130 mg kg(-1), in the stems from 31 to 63 mg kg(-1), and in the leaves from 37 to 83 mg kg(-1), for the lower average soil total Zn levels of 138 to 452 mg kg(-1) found on the banks where they proliferated. Positive correlations were found between the soil total, available and extractable Zn fractions, and metal accumulation in the roots and leaves of R. ulmifolius and in the roots and stems of P. australis. The use of R. ulmifolius and P. australis for phytoextraction purposes does not appear as an effective method of metal removing, but these native metal tolerant plant species may be used to reduce the effects of soil contamination, avoiding further Zn transfer to other environmental compartments.

  15. Plant-environment interactions: Accumulation of hypericin in dark glands of Hypericum perforatum.

    PubMed

    Zobayed, S M A; Afreen, F; Goto, E; Kozai, T

    2006-10-01

    Hypericum perforatum is a perennial herbaceous plant and an extract from this plant has a significant antidepressant effect when administered to humans. The plant is characterized by its secretory glands, also known as dark glands, which are mainly visible on leaves and flowers. The current study evaluates the influence of several environmental factors and developmental stages of the plant on the accumulation and synthesis of hypericin and pseudohypericin (Hy-G), the major bioactive constituents, in H. perforatum plants. The appearance of dark glands on different parts of the plant, under several environmental conditions, was monitored by microscopy. Hy-G concentrations were quantified by high-performance liquid chromatography. A significant presence of dark glands accompanying the highest concentrations of Hy-G was observed in the stamen tissues more than in any other organ of H. perforatum. A linear relationship between the number of dark glands and net photosynthetic rate of the leaf and Hy-G concentration in the leaf tissue was also established. A very high concentration of Hy-G was measured in the dark-gland tissues, but in the tissues without any dark glands it was almost absent. The presence of emodin, a precursor of Hy-G, at a high concentration in the dark-gland tissues, and its absence in the surrounding tissues was also observed, suggesting that the site of biosynthesis of Hy-G is in the dark-gland cells. A significantly low concentration of Hy-G (occasionally non-detectable) was measured in the xylem sap of the stem tissues. The dark-gland tissues collected from leaves, stems or flowers contained similar concentrations of Hy-G. The concentration of Hy-G in various organs of H. perforatum plants is dependent on the number of dark glands, their size or area, not on the location of the dark glands on the plant. The study provides the first experimental evidence that Hy-G is synthesized and accumulates in dark glands.

  16. Phytoaccumulation of trace elements by wetland plants: 3. Uptake and accumulation of ten trace elements by twelve plant species

    SciTech Connect

    Qian, J.H.; Zayed, A.; Zhu, Y.L.

    1999-10-01

    Interest is increasing in using wetland plants in constructed wetlands to remove toxic elements from polluted wastewater. To identify those wetland plants that hyperaccumulate trace elements, 12 plant species were tested for their efficiency to bioconcentrate 10 potentially toxic trace elements including As, b, Cd, Cr, Cu, Pb, Mn, Hg, Ni, and Se. Individual plants were grown under carefully controlled conditions and supplied with 1 mg L{sup {minus}1} of each trace element individually for 10 d. Except B, all elements accumulated to much higher concentrations in roots than in shoots. Highest shoot tissue concentrations (mg kg{sup {minus}1} DW) of themore » various trace elements were attained by the following species: umbrella plant (Cyperus alternifolius L.) for Mn (198) and Cr (44); water zinnia (Wedelia trilobata Hitchc.) for Cd (148) and Ni (80); smartweed (Polygonum hydropiperoides Michx.) for Cu (95) and Pb (64); water lettuce (Pistia stratiotes L.) for Hg (92), As (34), and Se (39); and mare's tail (hippuris vulgaris L.) for B (1132). Whereas, the following species attained the highest root tissue concentrations (mg kg{sup {minus}1} DW); stripped rush (Baumia rubiginosa) for Mn (1683); parrot's feather (Myriophyllum brasiliense Camb.) for Cd (1426) and Ni (1077); water lettuce for Cu (1038), Hg (1217), and As (177); smartweed for Cr (2980) and Pb (1882); mare's tail for B (1277); and monkey flower (Mimulus guttatus Fisch.) for Se (384). From a phytoremediation perspective, smartweed was probably the best plant species for trace element removal from wastewater due to its faster growth and higher plant density.« less

  17. The first report of Pb and Zn accumulation in some native plants from the Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Bech, Jaume; Duran, Paola; Poma, Wilfredo; Sánchez, Isidoro; Barceló, Juan; Roca, Núria; Boluda, Rafael; Roca-Pérez, Luís.; Poschenrieder, Charlotte

    2010-05-01

    Until recent decades little has been known about the remediation of mining sites using metalophytes in Latin America. Metal mining has helped to create severe and diverse environmental problems. The present study proposed to identify and characterize spontaneously growing heavy metal tolerant plant species in the area around the polimetalic mine in Hualgayoc (Cajamarca, Peru). These species are potentially useful for phytorremediation. Plant and soils from their rhizosphere were sampled and analized for concentration of As, Fe, Mn, Pb and Zn. Translocation Factor (TF) defined the metals concentrations ratio between shoots and root biomass and Shoot Accumulation Factor (SAF) the metal concentration ratio between shoot and soil concentration were determined and used to measure the effectiveness of a plant in concentrating metals into its biomass. The soils were neutral pH (7,4±0,5) with variable content of organic carbon (2,4±1,1) and loam texture: sand (42,9±10,8) and clay (16,7±4,6). According to the total metals, all samples exceeded toxicity thresholds, high Pb (20016 ± 32559 mg•kg-1) and Zn (22512 ± 13056 mg•kg-1) concentrations were detected. High shoot Pb and Zn concentrations were found in Plantaginaceae Plantago orbignyana (6998 and 9617 μg/g); Brassicaceae Lepidium bipinnatifidum (6886 and 5034 mg•kg-1) and Asteraceae Senecio sp (4253 and 3870 mg•kg-1) and Baccharis latifolia (2554 and 1284 mg•kg-1 respectively). The high values of TFs indicates that the plants effectively traslocated metales. Lepidium bipinnatifidum shows the highest TFs values (143 in Pb and 21,5 in Zn). The SAF values were much lower than those reported for other species such as Paspalum sp in the Peruvian copper mine, which may be due to a high top soil Pb and Zn concentrations. These species can surely be considered as interesting for phytoextraction, due not only to its accumulative capacity but also since they showed an elevated transfer factor and grew in the

  18. Screening for Bioactive Metabolites in Plant Extracts Modulating Glucose Uptake and Fat Accumulation

    PubMed Central

    El-Houri, Rime B.; Kotowska, Dorota; Olsen, Louise C. B.; Bhattacharya, Sumangala; Christensen, Lars P.; Oksbjerg, Niels; Færgeman, Nils; Kristiansen, Karsten; Christensen, Kathrine B.

    2014-01-01

    Dichloromethane and methanol extracts of seven different food and medicinal plants were tested in a screening platform for identification of extracts with potential bioactivity related to insulin-dependent glucose uptake and fat accumulation. The screening platform included a series of in vitro bioassays, peroxisome proliferator-activated receptor (PPAR) γ-mediated transactivation, adipocyte differentiation of 3T3-L1 cell cultures, and glucose uptake in both 3T3-L1 adipocytes and primary porcine myotubes, as well as one in vivo bioassay, fat accumulation in the nematode Caenorhabditis elegans. We found that dichloromethane extracts of aerial parts of golden root (Rhodiola rosea) and common elder (Sambucus nigra) as well as the dichloromethane extracts of thyme (Thymus vulgaris) and carrot (Daucus carota) were able to stimulate insulin-dependent glucose uptake in both adipocytes and myotubes while weekly activating PPARγ without promoting adipocyte differentiation. In addition, these extracts were able to decrease fat accumulation in C. elegans. Methanol extracts of summer savory (Satureja hortensis), common elder, and broccoli (Brassica oleracea) enhanced glucose uptake in myotubes but were not able to activate PPARγ, indicating a PPARγ-independent effect on glucose uptake. PMID:25254050

  19. Fusarium proliferatum strains change fumonisin biosynthesis and accumulation when exposed to host plant extracts.

    PubMed

    Górna, Karolina; Pawłowicz, Izabela; Waśkiewicz, Agnieszka; Stępień, Łukasz

    2016-01-01

    Fumonisin concentrations in mycelia and media were studied in liquid Fusarium proliferatum cultures supplemented with host plant extracts. Furthermore, the kinetics of fumonisin accumulation in media and mycelia collected before and after extract addition was analysed as well as the changes in the expression of the FUM1 gene. Fumonisin content in culture media increased in almost all F. proliferatum strains shortly after plant extracts were added. The asparagus extract induced the highest FB level increase and the garlic extract was the second most effective inducer. Fumonisin level decreased constantly until 14th day of culturing, though for some strains also at day 8th an elevated FB level was observed. Pineapple extract induced the highest increase of fum1 transcript levels as well as fumonisin synthesis in many strains, and the peas extract inhibited fungal growth and fumonisin biosynthesis. Moreover, fumonisins were accumulated in mycelia of studied strains and in the respective media. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  20. Uptake, Accumulation and Toxicity of Silver Nanoparticle in Autotrophic Plants, and Heterotrophic Microbes: A Concentric Review

    PubMed Central

    Tripathi, Durgesh K.; Tripathi, Ashutosh; Shweta; Singh, Swati; Singh, Yashwant; Vishwakarma, Kanchan; Yadav, Gaurav; Sharma, Shivesh; Singh, Vivek K.; Mishra, Rohit K.; Upadhyay, R. G.; Dubey, Nawal K.; Lee, Yonghoon; Chauhan, Devendra K.

    2017-01-01

    Nanotechnology is a cutting-edge field of science with the potential to revolutionize today’s technological advances including industrial applications. It is being utilized for the welfare of mankind; but at the same time, the unprecedented use and uncontrolled release of nanomaterials into the environment poses enormous threat to living organisms. Silver nanoparticles (AgNPs) are used in several industries and its continuous release may hamper many physiological and biochemical processes in the living organisms including autotrophs and heterotrophs. The present review gives a concentric know-how of the effects of AgNPs on the lower and higher autotrophic plants as well as on heterotrophic microbes so as to have better understanding of the differences in effects among these two groups. It also focuses on the mechanism of uptake, translocation, accumulation in the plants and microbes, and resulting toxicity as well as tolerance mechanisms by which these microorganisms are able to survive and reduce the effects of AgNPs. This review differentiates the impact of silver nanoparticles at various levels between autotrophs and heterotrophs and signifies the prevailing tolerance mechanisms. With this background, a comprehensive idea can be made with respect to the influence of AgNPs on lower and higher autotrophic plants together with heterotrophic microbes and new insights can be generated for the researchers to understand the toxicity and tolerance mechanisms of AgNPs in plants and microbes. PMID:28184215

  1. Investigation of arsenic accumulation and biochemical response of in vitro developed Vetiveria zizanoides plants.

    PubMed

    Singh, Shraddha; Sounderajan, Suvarna; Kumar, Kiran; Fulzele, D P

    2017-11-01

    Vetiver grass (Vetiveria zizanoides L. Nash) is found to be a suitable candidate for the phytoremediation of heavy metals. An investigation of arsenic (As) accumulation, translocation and tolerance was conducted in V. zizanoides plantlets upon exposure to different concentrations of arsenic (10, 50, 100 and 200µM) for 7 and 14 d. V. zizanoides plants were found effective in remediation of As, maximum being at 200µM after 14 d of exposure. The results of TBARS and photosynthetic pigments demonstrated that plants did not experience significant toxicity at all the concentrations of As after 7 days, however an increase in their level was found after 14 d. The up-regulation of antioxidant enzyme activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), catalase (CAT) and glutathione s-transferase (GST) in a coordinated and complementary manner enhanced tolerance to plants against arsenic induced oxidative stress. Taken together, the results indicated that in vitro developed plants of V. zizanoides have the potential to remediate and tolerate varying levels of As. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Paenibacillus pabuli strain P7S promotes plant growth and induces anthocyanin accumulation in Arabidopsis thaliana.

    PubMed

    Trinh, Cao Son; Jeong, Chan Young; Lee, Won Je; Truong, Hai An; Chung, Namhyun; Han, Juhyeong; Hong, Suk-Whan; Lee, Hojoung

    2018-06-01

    In this study, a novel plant growth-promoting rhizobacteria (PGPR), the bacterial strain Paenibacillus pabuli P7S (PP7S), showed promising plant growth-promoting effects. Furthermore, it induced anthocyanin accumulation in Arabidopsis. When co-cultivated with PP7S, there was a significant increase in anthocyanin content and biomass of Arabidopsis seedlings compared with those of the control. The quantitative reverse transcription-polymerase chain reaction analysis revealed higher expression of many key genes regulating anthocyanin and flavonoid biosynthesis pathways in PP7S-treated seedlings when compared with that of the control. Furthermore, higher expression of pathogen-related genes and microbe-associated molecular pattern genes was also observed in response to PP7S, indicating that the PGPR triggered the induced systemic response (ISR) in A. thaliana. These results suggest that PP7S promotes plant growth in A. thaliana and increases anthocyanin biosynthesis by triggering specific ISRs in plant. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Superoxide (O2.-) accumulation contributes to symptomless (type I) nonhost resistance of plants to biotrophic pathogens.

    PubMed

    Künstler, András; Bacsó, Renáta; Albert, Réka; Barna, Balázs; Király, Zoltán; Hafez, Yaser Mohamed; Fodor, József; Schwarczinger, Ildikó; Király, Lóránt

    2018-05-07

    Nonhost resistance is the most common form of disease resistance exhibited by plants against most pathogenic microorganisms. Type I nonhost resistance is symptomless (i.e. no macroscopically visible cell/tissue death), implying an early halt of pathogen growth. The timing/speed of defences is much more rapid during type I nonhost resistance than during type II nonhost and host ("gene-for-gene") resistance associated with a hypersensitive response (localized necrosis, HR). However, the mechanism(s) underlying symptomless (type I) nonhost resistance is not entirely understood. Here we assessed accumulation dynamics of the reactive oxygen species superoxide (O 2 .- ) during interactions of plants with a range of biotrophic and hemibiotrophic pathogens resulting in susceptibility, symptomless nonhost resistance or host resistance with HR. Our results show that the timing of macroscopically detectable superoxide accumulation (1-4 days after inoculation, DAI) is always associated with the speed of the defense response (symptomless nonhost resistance vs. host resistance with HR) in inoculated leaves. The relatively early (1 DAI) superoxide accumulation during symptomless nonhost resistance of barley to wheat powdery mildew (Blumeria graminis f. sp. tritici) is localized to mesophyll chloroplasts of inoculated leaves and coupled to enhanced NADPH oxidase (EC 1.6.3.1) activity and transient increases in expression of genes regulating superoxide levels and cell death (superoxide dismutase, HvSOD1 and BAX inhibitor-1, HvBI-1). Importantly, the partial suppression of symptomless nonhost resistance of barley to wheat powdery mildew by heat shock (49 °C, 45 s) and antioxidant (SOD and catalase) treatments points to a functional role of superoxide in symptomless (type I) nonhost resistance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Plant Resistance to TSWV and Seed Accumulation of Resveratrol within Peanut Germplasm and Its Wild Relatives in the US Collection

    USDA-ARS?s Scientific Manuscript database

    Biotic and abiotic stress may induce peanut plants to produce a high amount of resveratrol. The relationship of plant response to tomato spotted wilt virus (TSWV) and seed accumulation of resveratrol was investigated. Twenty peanut accessions and six wild relatives were selected from the US peanut g...

  5. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects.

    PubMed

    Etesami, Hassan

    2018-01-01

    Heavy metal pollution of agricultural soils is one of main concerns causing some of the different ecological and environmental problems. Excess accumulation of these metals in soil has changed microbial community (e.g., structure, function, and diversity), deteriorated soil, decreased the growth and yield of plant, and entered into the food chain. Plants' tolerance to heavy metal stress needs to be improved in order to allow growth of crops with minimum or no accumulation of heavy metals in edible parts of plant that satisfy safe food demands for the world's rapidly increasing population. It is well known that PGPRs (plant growth-promoting rhizobacteria) enhance crop productivity and plant resistance to heavy metal stress. Many recent reports describe the application of heavy metal resistant-PGPRs to enhance agricultural yields without accumulation of metal in plant tissues. This review provides information about the mechanisms possessed by heavy metal resistant-PGPRs that ameliorate heavy metal stress to plants and decrease the accumulation of these metals in plant, and finally gives some perspectives for research on these bacteria in agriculture in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Assessing the Impacts of Herbivory on Plant Silica Accumulation across a Global Network of Grasslands

    NASA Astrophysics Data System (ADS)

    Quigley, K.

    2015-12-01

    Plants, especially grasses, have a profound impact on the biogeochemical cycling of silicon. Silicic acid (Si(OH)4) in soil water is absorbed by plant roots, transported via the transpiration stream, and deposited as solid silica (SiO2) phytoliths in leaf tissue. Evidence indicates that plant phytolith accumulation may have evolved as an anti-herbivore strategy, and modern studies reveal that these silica particles are abrasive to animal mouthparts and can interfere with digestion. Furthermore, several studies have shown that grasses have the ability to respond to insect and mammal herbivory by modifying the amount of silicon they absorb from soil, a property known as inducible defense. However, herbivory studies remain largely limited to a laboratory setting, and research in natural systems has only been conducted at a regional spatial scale. To address whether these localized patterns persist at the global scale, we utilized data from a network of 40 grassland sites occurring on six continents. Vegetation samples including grasses, forbs, and litter, were collected in and out of 6m x 6m herbivore exclosures by a team of collaborating scientists for an on-going research effort known as the Nutrient Network (NutNet). We utilized near infrared spectroscopy (NIRS) to create a calibration for plant silica which allowed for the rapid analysis of more than 1000 samples. Preliminary analyses indicate that silica content of grasses was higher outside of exclosures, where herbivores had access to vegetation. Our data reveal that herbivores play a significant role in modifying plant silicon uptake, and hence, the rates of silicon cycling in grasslands across the globe.

  7. Temporal changes of radiocesium in irrigated paddy fields and its accumulation in rice plants in Fukushima.

    PubMed

    Yang, Baolu; Onda, Yuichi; Wakiyama, Yoshifumi; Yoshimura, Kazuya; Sekimoto, Hitoshi; Ha, Yiming

    2016-01-01

    About half of the total paddy field area, which is the dominant agricultural land in Fukushima Prefecture, was contaminated by radiocesium released by the Fukushima Daiichi Nuclear Power Plant accident. In this study, we investigated the temporal changes of radiocesium in soil, irrigation water, and rice plant in two adjacent rice paddies, with and without surface-soil-removal, in Fukushima Prefecture for over three years (2012-2014) after the nuclear accident. Our results showed that radiocesium migrated into 24-28 cm soil layers and that the activity concentration of radiocesium in paddy soils showed a significant reduction in 2014. The newly added radiocesium to paddies through irrigation water contributed only a maximum value of 0.15% and 0.75% of the total amount present in control and decontaminated paddies, respectively, throughout the study period. The radiocesium activity concentration in suspended sediment in irrigation water exponentially decreased, and the effective half-lives (Teff) for (137)Cs and (134)Cs were 1.3 and 0.9 years, respectively. Additionally, the average suspended sediment concentration in irrigation water increased between 2012 and 2014, suggesting that enhanced soil erosion had occurred in the surrounding environment. Radiocesium accumulation in rice plant also decreased with time in both paddies. However, the concentration ratio of radiocesium for rice plant in the decontaminated paddy increased compared with control paddy, despite approximately 96% of fallout radiocesium removed in paddy soil. Further analysis is required to clarify the reasons of high concentration ratio of radiocesium for rice plant in the decontaminated paddy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Declining plant nitrogen supply and carbon accumulation in ageing primary boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Högberg, Mona N.; Yarwood, Stephanie A.; Trumbore, Susan; Högberg, Peter

    2016-04-01

    ecosystems, whereas the soil C accumulation rate declined as N supply to the plants declined.

  9. Joint enhancement of lead accumulation in Brassica plants by EDTA and ammonium sulfate in sand culture.

    PubMed

    Xiong, Zhi-ting; Lu, Ping

    2002-04-01

    When EDTA was added alone in the Pb-contaminated sand, the plant biomass and the total Pb amount in Plant decreased in both species, Brassica pekinensis and B. juncea var. multiceps, though the shoot Pb amount increased. In contrast, when (NH4)2SO4 was added alone in the Pb-contaminated sand, little effect was observed on the shoot Pb amount, though the root Pb amount was significantly increased in B. juncea var. multiceps. When amending EDTA and (NH4)2SO4 in combination, however, the shoot Pb amount in both species substantially increased, being, on an average, 2 times and 9 times higher than that in EDTA alone or (NH4)2SO4 alone amended treatment, respectively. The two amendments showed antagonism for plant growth, but synergism for Pb bioaccumulation. B. pekinensis showed its highest level of shoot and total Pb amount in the treatment amended with EDTA and (NH4)2SO4 only a half as much as in the other treatments. It is inferred that the mechanisms responsible for the joint-enhanced Pb accumulation might be concerned with the acidification of the growth medium, cation exchange reaction and relieving EDTA induced toxicity as results by amending ammonium sulfate.

  10. Ectopic accumulation of linalool confers resistance to Xanthomonas citri subsp. citri in transgenic sweet orange plants.

    PubMed

    Shimada, Takehiko; Endo, Tomoko; Rodríguez, Ana; Fujii, Hiroshi; Goto, Shingo; Matsuura, Takakazu; Hojo, Yuko; Ikeda, Yoko; Mori, Izumi C; Fujikawa, Takashi; Peña, Leandro; Omura, Mitsuo

    2017-05-01

    In order to clarify whether high linalool content in citrus leaves alone induces strong field resistance to citrus canker caused by Xanthomonas citri subsp. citri (Xcc), and to assess whether this trait can be transferred to a citrus type highly sensitive to the bacterium, transgenic 'Hamlin' sweet orange (Citrus sinensis L. Osbeck) plants over-expressing a linalool synthase gene (CuSTS3-1) were generated. Transgenic lines (LIL) with the highest linalool content showed strong resistance to citrus canker when spray inoculated with the bacterium. In LIL plants inoculated by wounding (multiple-needle inoculation), the linalool level was correlated with the repression of the bacterial titer and up-regulation of defense-related genes. The exogenous application of salicylic acid, methyl jasmonate or linalool triggered responses similar to those constitutively induced in LIL plants. The linalool content in Ponkan mandarin leaves was significantly higher than that of leaves from six other representative citrus genotypes with different susceptibilities to Xcc. We propose that linalool-mediated resistance might be unique to citrus tissues accumulating large amounts of volatile organic compounds in oil cells. Linalool might act not only as a direct antibacterial agent, but also as a signal molecule involved in triggering a non-host resistance response against Xcc. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation

    PubMed Central

    Kobayashi, Takanori; Nagasaka, Seiji; Senoura, Takeshi; Itai, Reiko Nakanishi; Nakanishi, Hiromi; Nishizawa, Naoko K.

    2013-01-01

    Iron is essential for most living organisms. Plants transcriptionally induce genes involved in iron acquisition under conditions of low iron availability, but the nature of the deficiency signal and its sensors are unknown. Here we report the identification of new iron regulators in rice, designated Oryza sativa Haemerythrin motif-containing Really Interesting New Gene (RING)- and Zinc-finger protein 1 (OsHRZ1) and OsHRZ2. OsHRZ1, OsHRZ2 and their Arabidopsis homologue BRUTUS bind iron and zinc, and possess ubiquitination activity. OsHRZ1 and OsHRZ2 are susceptible to degradation in roots irrespective of iron conditions. OsHRZ-knockdown plants exhibit substantial tolerance to iron deficiency, and accumulate more iron in their shoots and grains irrespective of soil iron conditions. The expression of iron deficiency-inducible genes involved in iron utilization is enhanced in OsHRZ-knockdown plants, mostly under iron-sufficient conditions. These results suggest that OsHRZ1 and OsHRZ2 are iron-binding sensors that negatively regulate iron acquisition under conditions of iron sufficiency. PMID:24253678

  12. Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency.

    PubMed

    Luo, Zhi-Bin; He, Jiali; Polle, Andrea; Rennenberg, Heinz

    2016-11-01

    Heavy metal (HM)-accumulating herbaceous and woody plants are employed for phytoremediation. To develop improved strategies for enhancing phytoremediation efficiency, knowledge of the microstructural, physiological and molecular responses underlying HM-accumulation is required. Here we review the progress in understanding the structural, physiological and molecular mechanisms underlying HM uptake, transport, sequestration and detoxification, as well as the regulation of these processes by signal transduction in response to HM exposure. The significance of genetic engineering for enhancing phytoremediation efficiency is also discussed. In herbaceous plants, HMs are taken up by roots and transported into the root cells via transmembrane carriers for nutritional ions. The HMs absorbed by root cells can be further translocated to the xylem vessels and unloaded into the xylem sap, thereby reaching the aerial parts of plants. HMs can be sequestered in the cell walls, vacuoles and the Golgi apparatuses. Plant roots initially perceive HM stress and trigger the signal transduction, thereby mediating changes at the molecular, physiological, and microstructural level. Signaling molecules such as phytohormones, reactive oxygen species (ROS) and nitric oxide (NO), modulate plant responses to HMs via differentially expressed genes, activation of the antioxidative system and coordinated cross talk among different signaling molecules. A number of genes participated in HM uptake, transport, sequestration and detoxification have been functionally characterized and transformed to target plants for enhancing phytoremediation efficiency. Fast growing woody plants hold an advantage over herbaceous plants for phytoremediation in terms of accumulation of high HM-amounts in their large biomass. Presumably, woody plants accumulate HMs using similar mechanisms as herbaceous counterparts, but the processes of HM accumulation and signal transduction can be more complex in woody plants

  13. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India.

    PubMed

    Mukhopadhyay, Suchita; Rana, Vivek; Kumar, Adarsh; Maiti, Subodh Kumar

    2017-10-01

    insight especially for moderate or low metal-contaminated sites. Principle component analysis revealed that all the plants showed positive correlation with Co and Cd which suggest its subsequent uptake in root and shoot. The biological indices (BCF, BAF, and TF) revealed that E. prostrata (10 mg Cd kg -1 ) and C. procera (3.5 mg Cd kg -1 ) can be utilized efficiently for the phytoextraction of Cd and phytostabilization of other potentially toxic metals (Pb, Cr, and Co) from FA lagoon. All the plants were tolerant to Pb pollution (TF > 1, BAF > 1, and BCF > 1); hence, there was a negligible translocation of Pb to the aerial tissues of these plants which shows their suitability in phytostabilization. In addition, V. cinerea accumulated elevated concentration of potentially toxic Cr (50 mg Cr kg -1 ) and Ni (67 mg Ni kg -1 ) which could also help in the phytoremediation of FA lagoon.

  14. Systemic Growth of F. graminearum in Wheat Plants and Related Accumulation of Deoxynivalenol

    PubMed Central

    Moretti, Antonio; Panzarini, Giuseppe; Somma, Stefania; Campagna, Claudio; Ravaglia, Stefano; Logrieco, Antonio F.; Solfrizzo, Michele

    2014-01-01

    Fusarium head blight (FHB) is an important disease of wheat worldwide caused mainly by Fusarium graminearum (syn. Gibberella zeae). This fungus can be highly aggressive and can produce several mycotoxins such as deoxynivalenol (DON), a well known harmful metabolite for humans, animals, and plants. The fungus can survive overwinter on wheat residues and on the soil, and can usually attack the wheat plant at their point of flowering, being able to infect the heads and to contaminate the kernels at the maturity. Contaminated kernels can be sometimes used as seeds for the cultivation of the following year. Poor knowledge on the ability of the strains of F. graminearum occurring on wheat seeds to be transmitted to the plant and to contribute to the final DON contamination of kernels is available. Therefore, this study had the goals of evaluating: (a) the capability of F. graminearum causing FHB of wheat to be transmitted from the seeds or soil to the kernels at maturity and the progress of the fungus within the plant at different growth stages; (b) the levels of DON contamination in both plant tissues and kernels. The study has been carried out for two years in a climatic chamber. The F. gramineraum strain selected for the inoculation was followed within the plant by using Vegetative Compatibility technique, and quantified by Real-Time PCR. Chemical analyses of DON were carried out by using immunoaffinity cleanup and HPLC/UV/DAD. The study showed that F. graminearum originated from seeds or soil can grow systemically in the plant tissues, with the exception of kernels and heads. There seems to be a barrier that inhibits the colonization of the heads by the fungus. High levels of DON and F. graminearum were found in crowns, stems, and straw, whereas low levels of DON and no detectable levels of F. graminearum were found in both heads and kernels. Finally, in all parts of the plant (heads, crowns, and stems at milk and vitreous ripening stages, and straw at vitreous

  15. Further Studies on Oxalic Acid Biosynthesis in Oxalate-accumulating Plants 1

    PubMed Central

    Nuss, Richard F.; Loewus, Frank A.

    1978-01-01

    l-Ascorbic acid functions as a precursor of oxalic acid in several oxalate-accumulating plants. The present study extends this observation to include Rumex crispus L. (curly dock), Amaranthus retroflexus L. (red root pigweed), Chenopodium album L. (lamb's-quarters), Beta vulgaris L. (sugar beet), Halogeton glomeratus M. Bieb. (halogeton), and Rheum rhabarbarum L. (rhubarb). Several species with low oxalate content are also examined. When l-[1-14C]ascorbic acid is supplied to young seedlings of R. crispus or H. glomeratus, a major portion of the 14C is released over a 24-hour period as 14CO2 and only a small portion is recovered as [14C]oxalate, unlike cuttings from 2- or 4-month-old plants which retain a large part of the 14C as [14C]oxalic acid and release very little 14CO2. Support for an intermediate role of oxalate in the release of 14CO2 from l-[1-14C]ascorbic acid is seen in the rapid release of 14CO2 by R. crispus and H. glomeratus seedlings labeled with [14C]oxalic acid. The common origin of oxalic acid carbon in the C1 and C2 fragment from l-ascorbic acid is demonstrated by comparison of 14C content of oxalic acid in several oxalate-accumulators after cuttings or seedlings are supplied equal amounts of l-[1-14C]- or l-[UL-14C]ascorbic acid. Theoretically, l-[1-14C]ascorbic acid will produce labeled oxalic acid containing three times as much 14C as l-[UL-14C]ascorbic acid when equal amounts of label are provided. Experimentally, a ratio of 2.7 ± 0.5 is obtained in duplicate experiments with six different species. PMID:16660342

  16. Higher accumulation of F1-V fusion recombinant protein in plants after induction of protein body formation.

    PubMed

    Alvarez, M Lucrecia; Topal, Emel; Martin, Federico; Cardineau, Guy A

    2010-01-01

    Improving foreign protein accumulation is crucial for enhancing the commercial success of plant-based production systems since product yields have a major influence on process economics. Cereal grain evolved to store large amounts of proteins in tightly organized aggregates. In maize, gamma-Zein is the major storage protein synthesized by the rough endoplasmic reticulum (ER) and stored in specialized organelles called protein bodies (PB). Zera (gamma-Zein ER-accumulating domain) is the N-terminal proline-rich domain of gamma-zein that is sufficient to induce the assembly of PB formation. Fusion of the Zera domain to proteins of interest results in assembly of dense PB-like, ER-derived organelles, containing high concentration of recombinant protein. Our main goal was to increase recombinant protein accumulation in plants in order to enhance the efficiency of orally-delivered plant-made vaccines. It is well known that oral vaccination requires substantially higher doses than parental formulations. As a part of a project to develop a plant-made plague vaccine, we expressed our model antigen, the Yersinia pestis F1-V antigen fusion protein, with and without a fused Zera domain. We demonstrated that Zera-F1-V protein accumulation was at least 3x higher than F1-V alone when expressed in three different host plant systems: Ncotiana benthamiana, Medicago sativa (alfalfa) and Nicotiana tabacum NT1 cells. We confirmed the feasibility of using Zera technology to induce protein body formation in non-seed tissues. Zera expression and accumulation did not affect plant development and growth. These results confirmed the potential exploitation of Zera technology to substantially increase the accumulation of value-added proteins in plants.

  17. Heavy metals effects on forage crops yields and estimation of elements accumulation in plants as affected by soil.

    PubMed

    Grytsyuk, N; Arapis, G; Perepelyatnikova, L; Ivanova, T; Vynograds'ka, V

    2006-02-01

    Heavy metals (Cu, Cd, Pb, Zn) effect on the productivity of forage crops (clover and perennial cereal grasses) and their accumulation in plants, depending on the concentration of these elements in a soil, has been studied in micro-field experiments on three types of soil. The principle objective was to determine regularities of heavy metals migration in a soil-plant system aiming the estimation of permissible levels of heavy metals content in soils with the following elaboration of methods, which regulate the toxicants transfer to plants. Methods of field experiments, agrochemical and atomic absorption analysis were used. Results were statistically treated by Statistica 6.0, S-Plus 6. Experimental results have shown that the intensity of heavy metals accumulation in plants depends on the type of the soil, the species of plants, the physicochemical properties of heavy metals and their content in the soil. Logarithmic interdependency of heavy metals concentration in soils and their accumulation in plants is suggested. However, the strong correlation between the different heavy metals concentrations in the various soils and the yield of crops was not observed. Toxicants accumulation in crops decreased in time.

  18. Environmental niche conservatism explains the accumulation of species richness in Mediterranean-hotspot plant genera.

    PubMed

    Skeels, Alexander; Cardillo, Marcel

    2017-03-01

    The causes of exceptionally high plant diversity in Mediterranean-climate biodiversity hotspots are not fully understood. We asked whether a mechanism similar to the tropical niche conservatism hypothesis could explain the diversity of four large genera (Protea, Moraea, Banksia, and Hakea) with distributions within and adjacent to the Greater Cape Floristic Region (South Africa) or the Southwest Floristic Region (Australia). Using phylogenetic and spatial data we estimated the environmental niche of each species, and reconstructed the mode and dynamics of niche evolution, and the geographic history, of each genus. For three genera, there were strong positive relationships between the diversity of clades within a region and their inferred length of occupation of that region. Within genera, there was evidence for strong evolutionary constraint on niche axes associated with climatic seasonality and aridity, with different niche optima for hotspot and nonhotspot clades. Evolutionary transitions away from hotspots were associated with increases in niche breadth and elevated rates of niche evolution. Our results point to a process of "hotspot niche conservatism" whereby the accumulation of plant diversity in Mediterranean-type ecosystems results from longer time for speciation, with dispersal away from hotspots limited by narrow and phylogenetically conserved environmental niches. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  19. Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants--implications for phytoremediation.

    PubMed

    Anjum, Naser A; Umar, Shahid; Iqbal, Muhammad

    2014-09-01

    This study, based on a greenhouse pot culture experiment conducted with 15-day-old rapeseed (Brassica campestris L. cv. Pusa Gold; family Brassicaceae) and moong bean (Vigna radiata L. Wilczek cv. Pusa Ratna; family Fabaceae) plants treated with cadmium (Cd) concentrations (0, 50, and 100 mg kg(-1) soil), investigates their potential for Cd accumulation and tolerance, and dissects the underlying basic physiological/biochemical mechanisms. In both species, plant dry mass decreased, while Cd concentration of both root and shoot increased with increase in soil Cd. Roots harbored a higher amount of Cd (vs. shoot) in B. campestris, while the reverse applied to V. radiata. By comparison, root Cd concentration was higher in B. campestris than in V. radiata. The high Cd concentrations in B. campestris roots and V. radiata shoots led to significant elevation in oxidative indices, as measured in terms of electrolyte leakage, H2O2 content, and lipid peroxidation. Both plants displayed differential adaptation strategies to counteract the Cd burden-caused anomalies in their roots and shoots. In B. campestris, increasing Cd burden led to a significantly decreased reduced glutathione (GSH) content but a significant increase in activities of GSH reductase (GR), GSH peroxidase (GPX), and GSH sulfotransferase (GST). However, in V. radiata, increasing Cd burden caused significant increase in GSH content and GR activity, but a significant decline in activities of GPX and GST. Cross talks on Cd burden of tissues and the adapted Cd tolerance strategies against Cd burden-accrued toxicity indicated that B. campestris and V. radiata are good Cd stabilizer and Cd extractor, respectively, wherein a fine tuning among the major components (GR, GPX, GST, GSH) of the GSH redox system helped the plants to counteract differentially the Cd load-induced anomalies in tissues. On the whole, the physiological/biochemical characterization of the B. campestris and V. radiata responses to varying Cd

  20. Hyper III on ramp

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Hyper III was a full-scale lifting-body remotely piloted research vehicle (RPRV) built at what was then the NASA Flight Research Center located at Edwards Air Force Base in Southern California. The Flight Research Center (FRC--as Dryden was named from 1959 until 1976) already had experience with testing small-scale aircraft using model-airplane techniques, but the first true remotely piloted research vehicle was the Hyper III, which flew only once in December 1969. At that time, the Center was engaged in flight research with a variety of reentry shapes called lifting bodies, and there was a desire both to expand the flight research experience with maneuverable reentry vehicles, including a high-performance, variable-geometry craft, and to investigate a remotely piloted flight research technique that made maximum use of a research pilot's skill and experience by placing him 'in the loop' as if he were in the cockpit. (There have been, as yet, no female research pilots assigned to Dryden.) The Hyper III as originally conceived was a stiletto-shaped lifting body that had resulted from a study at NASA's Langley Research Center in Hampton, Virginia. It was one of a number of hypersonic, cross-range reentry vehicles studied at Langley. (Hypersonic means Mach 5--five times the speed of sound--or faster; cross-range means able to fly a considerable distance to the left or right of the initial reentry path.) The FRC added a small, deployable, skewed wing to compensate for the shape's extremely low glide ratio. Shop personnel built the 32-foot-long Hyper III and covered its tubular frame with dacron, aluminum, and fiberglass, for about $6,500. Hyper III employed the same '8-ball' attitude indicator developed for control-room use when flying the X-15, two model-airplane receivers to command the vehicle's hydraulic controls, and a telemetry system (surplus from the X-15 program) to transmit 12 channels of data to the ground not only for display and control but for data

  1. Rice planted along with accumulators in arsenic amended plots reduced arsenic uptake in grains and shoots.

    PubMed

    Praveen, Ashish; Mehrotra, Sonali; Singh, Nandita

    2017-10-01

    An experiment was designed using phytoremadiation technology to obtain grains of rice safe for consumption. Sixteen plots of size 2 × 2 m were prepared (8 plots were treated with 50 mg kg -1 of sodium arsenate and rest 8 without any treatment). The study was done for two plantations (1st and 2nd plantation). Rice was planted with three accumulators (Phragmites australis, Vetiveria zizanioides and Pteris vitatta) in treated and untreated plot. Arsenic in grains of Actr (R + Pt, R + Ph and R + Vt) for 1st plantation was 0.4, 0.2 and 0.2 mg kg -1 where as in the case of wActr (Ras) it was 3 mg kg -1 . In 2nd plantation the concentration of arsenic in grain of Actr (R + Pt, R + Ph and R + Vt) was 0.1, 0.1 and 0.1 mg kg -1 where as in the case of wActr (Ras) it was 2 mg kg -1 . Significant differences in growth and yield parameters of rice between Actr and wActr in 1st plantation, while for 2nd plantation the activity was reduced in combinations except R + Pt and no significant difference was observed between Actr, Acntr and wActr. The study concluded that combinations of accumulators with crops could be useful for the survival and safe grains in As-contaminated soils but with some amendments in long-term remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Evaluating heavy metal accumulation and potential risks in soil-plant systems applied with magnesium slag-based fertilizer.

    PubMed

    Fan, Yuan; Li, Yongling; Li, Hua; Cheng, Fangqin

    2018-04-01

    Two typical Chinese soils including southern paddy soil and northern calcareous soils were used in a pot experiment to evaluate the effect of magnesium slag-based fertilizer on heavy metal accumulation and health risk in soil-plant system. The results indicated that magnesium slag-based fertilizer promoted the growth of maize plants. The concentrations of Cr, Cu, Pb and Zn in both soils amended with magnesium slag-based fertilizer were qualified for the second level criterion of Standard of Soil Environment (GB 15618-2009). Accumulation of HMs exhibited partitioning characteristics in maize plants, i.e. Cr and Cu were accumulated mainly in root and leaf parts while Pb was concentrated in roots. The order of transfer factors (TF) of HMs in different plant organs was ordered as follows: root > stem > leaf > grain. It indicated that less HMs were accumulated in the grain compared with that in other organs. The estimate daily intakes and total target hazard quotient of HMs including Cr, Cu, Pb, and Zn were less than 1, indicating that consumption of maize grain was at low risk and would not cause non-carcinogenic risks. From the above results, application of magnesium slag-based fertilizer at present level would not cause pollution risk for maize plants cultivated in two Chinese soils. Copyright © 2018. Published by Elsevier Ltd.

  3. Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India.

    PubMed

    Singh, N K; Raghubanshi, A S; Upadhyay, A K; Rai, U N

    2016-08-01

    The present study was conducted to quantify the arsenic (As) and other heavy metal concentrations in the plants and algae growing naturally in As contaminated blocks of North-24-Pargana and Nandia district, West Bengal, India to assess their bioaccumulation potential. The plant species included five macrophytes and five algae were collected from the nine selected sites for estimation of As and other heavy metals accumulated therein by using Inductively Coupled Plasma Mass Spectrophotometer (ICP-MS). Results revealed that maximum As concentration (117mgkg(-1)) was recorded in the agricultural soil at the Barasat followed by Beliaghat (111mgkg(-1)) sites of North-24-Pargana. Similarly, concentration of selenium (Si, 249mgkg(-1)), lead (Pb, 79.4mgkg(-1)), chromium (Cr, 138mgkg(-1)) was also found maximum in the soil at Barasat and cadmium (Cd, 163mgkg(-1)) nickel (Ni, 36.5mgkg(-1)) at Vijaynagar site. Among the macrophytes, Eichhornia crassipes found more dominating species in As contaminated area and accumulate As (597mgkg(-1)) in the shoot at kanchrapara site. The Lemna minor found to accumulate maximum As (735mgkg(-1)) in the leaves at Sonadanga and Pistia stratiotes accumulated minimum As (24.5mgkg(-1)) in the fronds from Ranaghat site. In case of diatoms, maximum As (760mgkg(-1)) was accumulated at Kanchrapara site followed by Hydrodictiyon reticulatum (403mgkg(-1)) at the Ranaghat site. High concentration of As and other heavy metal in soil indicates long term effects of irrigation with contaminated ground water, however, high concentration of heavy metals in naturally growing plants and algae revealed their mobilization through leaching and possible food chain contamination. Therefore, efficient heavy metal accumulator macrophytes Eichhornia crassipes, Lemna minor, Spirodela polyrhiza may be exploited in removing metals from contaminated water by developing a plant based treatment system. However, As accumulator algal species may be used as a bioresource for

  4. Use of the cryptogein gene to stimulate the accumulation of Bacopa saponins in transgenic Bacopa monnieri plants.

    PubMed

    Majumdar, Sukanya; Garai, Saraswati; Jha, Sumita

    2012-10-01

    Genetic transformation of the Indian medicinal plant, Bacopa monnieri, using a gene encoding cryptogein, a proteinaceous elicitor, via Ri and Ti plasmids, were established and induced bioproduction of bacopa saponins in crypt-transgenic plants were obtained. Transformed roots obtained with A. rhizogenes strain LBA 9402 crypt on selection medium containing kanamycin (100 mg l(-1)) dedifferentiated forming callus and redifferentiated to roots which, spontaneously showed shoot bud induction. Ri crypt-transformed plants thus obtained showed integration and expression of rol genes as well as crypt gene. Ti crypt-transformed B. monnieri plants were established following transformation with disarmed A. tumefaciens strain harboring crypt. Transgenic plants showed significant enhancement in growth and bacopa saponin content. Bacopasaponin D (1.4-1.69 %) was maximally enhanced in transgenic plants containing crypt. In comparison to Ri-transformed plants, Ri crypt-transformed plants showed significantly (p ≤ 0.05) enhanced accumulation of bacoside A(3), bacopasaponin D, bacopaside II, bacopaside III and bacopaside V. Produced transgenic lines can be used for further research on elicitation in crypt-transgenic plants as well as for large scale production of saponins. Key message The cryptogein gene, which encodes a proteinaceous elicitor is associated with increase in secondary metabolite accumulation-either alone or in addition to the increases associated with transformation by A. rhizogenes.

  5. A mesocosm study using four native Hawaiian plants to assess nitrogen accumulation under varying surface water nitrogen concentrations.

    PubMed

    Unser, C U; Bruland, G L; Hood, A; Duin, K

    2010-01-01

    Accumulation of nitrogen (N) by native Hawaiian riparian plants from surface water was measured under a controlled experimental mesocosm setting. Four species, Cladium jamaicense, Cyperus javanicus, Cyperus laevigatus, and Cyperus polystachyos were tested for their ability to survive in coconut fiber coir log media with exposure to differing N concentrations. It was hypothesized that the selected species would have significantly different tissue total nitrogen (TN) concentrations, aboveground biomass, and TN accumulation rates because of habitat preference and physiological growth differences. A general linear model (GLM) analysis of variance (ANOVA) determined that species differences accounted for the greatest proportion of variance in tissue TN concentration, aboveground biomass growth, and accumulation rates, when compared with the other main effects (i.e. N concentration, time) and their interactions. A post hoc test of means demonstrated that C. jamaicense had significantly higher tissue TN concentration, aboveground biomass growth, and accumulation rates than the other species under all N concentrations. It was also hypothesized that tissue TN concentrations and biomass growth would increase in plants exposed to elevated N concentrations, however data did not support this hypothesis. Nitrogen accumulation rates by species were controlled by differences in plant biomass growth.

  6. Accumulation and response of willow plants exposed to environmental relevant sulfonamide concentrations.

    PubMed

    Michelini, Lucia; Gallina, Guglielmo; Capolongo, Francesca; Ghisi, Rossella

    2014-01-01

    As a result of manure application to arable lands, agricultural ecosystems are often contaminated by veterinary antibiotics. In this study the aptitude of Salix fragilis L. to accumulate and tolerate sulfadimethoxine (SDM) was evaluated, together with the antibiotic effects on the plant development, with particular attention focused on roots. Results showed an antibiotic presence in root tissues, but not in leaves, after one month of SDM exposure to 0.01, 0.1, 1 and 10 mg l(-1). A hormetic growth of the hypogeal system was observed, however stress symptoms on the root development were only noticed after treatment to the highest dose. Results obtained from a second test, where new cuttings were exposed to 10 mg SDM l(-1) for different periods, suggested that willow tolerance to SDM increased with the exposure duration, probably because of the onset of particular acclimation mechanisms. Therefore, the present work indicates that this woody species could be utilized in the phytoremediation of sulfonamide antibiotics at doses comparable to that found in agricultural ecosystems once obtained appropriate confirmations through future studies at a laboratory and field scale.

  7. Weed management practices for organic production of trailing blackberry. II. Accumulation and loss of plant biomass and nutrients

    USDA-ARS?s Scientific Manuscript database

    A study was conducted to assess the impact of cultivar and weed management on accumulation and loss of plant biomass and nutrients during the first 3 years of establishment when using organic fertilizer in trailing blackberry. Treatments included two cultivars, Marion and Black Diamond, each with ei...

  8. Bacillus licheniformis SA03 Confers Increased Saline–Alkaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation

    PubMed Central

    Zhou, Cheng; Zhu, Lin; Xie, Yue; Li, Feiyue; Xiao, Xin; Ma, Zhongyou; Wang, Jianfei

    2017-01-01

    Soil saline-alkalization is a major abiotic stress that leads to low iron (Fe) availability and high toxicity of sodium ions (Na+) for plants. It has recently been shown that plant growth promoting rhizobacteria (PGPR) can enhance the ability of plants to tolerate multiple abiotic stresses such as drought, salinity, and nutrient deficiency. However, the possible involvement of PGPR in improving saline–alkaline tolerance of plants and the underlying mechanisms remain largely unknown. In this study, we investigated the effects of Bacillus licheniformis (strain SA03) on the growth of Chrysanthemum plants under saline–alkaline conditions. Our results revealed that inoculation with SA03 alleviated saline–alkaline stress in plants with increased survival rates, photosynthesis and biomass. The inoculated plants accumulated more Fe and lower Na+ concentrations under saline–alkaline stress compared with the non-inoculated plants. RNA-Sequencing analyses further revealed that SA03 significantly activated abiotic stress- and Fe acquisition-related pathways in the stress-treated plants. However, SA03 failed to increase saline–alkaline tolerance in plants when cellular abscisic acid (ABA) and nitric oxide (NO) synthesis were inhibited by treatment with fluridone (FLU) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), respectively. Importantly, we also found that NO acted downstream of SA03-induced ABA to activate a series of adaptive responses in host plants under saline–alkaline stress. These findings demonstrated the potential roles of B. licheniformis SA03 in enhancing saline–alkaline tolerance of plants and highlighted the intricate integration of microbial signaling in regulating cellular Fe and Na+ accumulation. PMID:28706529

  9. Bacillus licheniformis SA03 Confers Increased Saline-Alkaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation.

    PubMed

    Zhou, Cheng; Zhu, Lin; Xie, Yue; Li, Feiyue; Xiao, Xin; Ma, Zhongyou; Wang, Jianfei

    2017-01-01

    Soil saline-alkalization is a major abiotic stress that leads to low iron (Fe) availability and high toxicity of sodium ions (Na + ) for plants. It has recently been shown that plant growth promoting rhizobacteria (PGPR) can enhance the ability of plants to tolerate multiple abiotic stresses such as drought, salinity, and nutrient deficiency. However, the possible involvement of PGPR in improving saline-alkaline tolerance of plants and the underlying mechanisms remain largely unknown. In this study, we investigated the effects of Bacillus licheniformis (strain SA03) on the growth of Chrysanthemum plants under saline-alkaline conditions. Our results revealed that inoculation with SA03 alleviated saline-alkaline stress in plants with increased survival rates, photosynthesis and biomass. The inoculated plants accumulated more Fe and lower Na + concentrations under saline-alkaline stress compared with the non-inoculated plants. RNA-Sequencing analyses further revealed that SA03 significantly activated abiotic stress- and Fe acquisition-related pathways in the stress-treated plants. However, SA03 failed to increase saline-alkaline tolerance in plants when cellular abscisic acid (ABA) and nitric oxide (NO) synthesis were inhibited by treatment with fluridone (FLU) and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), respectively. Importantly, we also found that NO acted downstream of SA03-induced ABA to activate a series of adaptive responses in host plants under saline-alkaline stress. These findings demonstrated the potential roles of B. licheniformis SA03 in enhancing saline-alkaline tolerance of plants and highlighted the intricate integration of microbial signaling in regulating cellular Fe and Na + accumulation.

  10. Accumulation of 24 nucleotide transgene-derived siRNAs is associated with crinivirus immunity in transgenic plants.

    PubMed

    Qiao, Wenjie; Zarzyńska-Nowak, Aleksandra; Nerva, Luca; Kuo, Yen-Wen; Falk, Bryce W

    2018-04-28

    RNA silencing is a conserved antiviral defense mechanism that has been used to develop robust resistance against plant virus infections. Previous efforts have been made to develop RNA silencing-mediated resistance to criniviruses, yet none have given immunity. In this study, transgenic Nicotiana benthamiana plants harboring a hairpin construct of the Lettuce infectious yellows virus (LIYV) RdRp sequence exhibited immunity to systemic LIYV infection. Deep-sequencing analysis was performed to characterize virus-derived siRNAs (vsiRNAs) generated upon systemic LIYV infection in non-transgenic N. benthamiana plants as well as transgene-derived siRNAs (t-siRNAs) derived from the immune transgenic plants before and after LIYV inoculation. Interestingly, a similar sequence distribution pattern was obtained with t-siRNAs and vsiRNAs mapped to the transgene region in both immune and susceptible plants except a significant increase of t-siRNAs of 24 nt in length, which was consistent with small RNA northern blot results that showed the abundance of t-siRNAs of 21-, 22-, and 24- nt in length. The accumulated 24-nt sequences haven't yet been reported in transgenic plants partially resistant to criniviruses, thus may indicate their correlation with crinivirus immunity. To further test this hypothesis, we developed transgenic melon (Cucumis melo) plants immune to systemic infection of another crinivirus, Cucurbit yellow stunting disorder virus (CYSDV). As predicted, the accumulation of 24-nt t-siRNAs was detected in transgenic melon plants by northern blot. Together with our findings and previous studies on crinivirus resistance, we propose that the accumulation of 24 nt t-siRNAs is associated with crinivirus immunity in transgenic plants. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  11. Behavior of N-ethyl perfluorooctane sulfonamido acetic acid (N-EtFOSAA) in biosolids amended soil-plant microcosms of seven plant species: Accumulation and degradation.

    PubMed

    Wen, Bei; Pan, Ying; Shi, Xiaoli; Zhang, Hongna; Hu, Xiaoyu; Huang, Honglin; Lv, Jitao; Zhang, Shuzhen

    2018-06-13

    Perfluorooctane sulfonate (PFOS) precursors have been found extensively in sewage sludge and biosolids-amended soils. The degradation of these precursors are regarded as a significant source of PFOS in the environment. In this study, the accumulation of N-ethyl perfluorooctane sulfonamido acetic acid (N-EtFOSAA) in the plants of seven species, namely alfalfa, lettuce, maize, mung bean, radish, ryegrass, and soybean from biosolids-amended soil, and the degradation kinetics of N-EtFOSAA in soil-plant microcosms were evaluated over 60 days. N-EtFOSAA was found in the roots of all plant species, while was not in stems and leaves. The root concentration factors of N-EtFOSAA ranged 0.52-1.37 (pmol/g root )/(pmol/g soil ). Stepwise multiple regression analysis was used to elucidate the accumulation of N-EtFOSAA in the roots of plants. The results showed that the root protein and lipid contents explain 85.0% of the variation in root N-EtFOSAA levels (P < 0.05). Four degradation products, including N-ethyl perfluorooctane sulfonamide (N-EtFOSA), perfluorooctane sulfonamide acetate (FOSAA), perfluorooctane sulfonamide (FOSA) and PFOS were found in soils and plant roots, stems and leaves, indicating the degradation of N-EtFOSAA in soil-plant system. Degradation kinetics fitted a first-order kinetic model well. Degradation rate constants of N-EtFOSAA in the microcosms with plants ranged 0.063-0.165 d -1 , which was 1.40-3.6 times higher than those without plants. Degradation rate constant of maize was relatively higher than those of other plant species. The results is the first to reveal N-EtFOSAA accumulation in plants and degradation in soil-plant microcosms. Copyright © 2018. Published by Elsevier B.V.

  12. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance

    PubMed Central

    Mao, Ying-Bo; Liu, Yao-Qian; Chen, Dian-Yang; Chen, Fang-Yan; Fang, Xin; Hong, Gao-Jie; Wang, Ling-Jian; Wang, Jia-Wei; Chen, Xiao-Ya

    2017-01-01

    Immunity deteriorates with age in animals but comparatively little is known about the temporal regulation of plant resistance to herbivores. The phytohormone jasmonate (JA) is a key regulator of plant insect defense. Here, we show that the JA response decays progressively in Arabidopsis. We show that this decay is regulated by the miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE9 (SPL9) group of proteins, which can interact with JA ZIM-domain (JAZ) proteins, including JAZ3. As SPL9 levels gradually increase, JAZ3 accumulates and the JA response is attenuated. We provide evidence that this pathway contributes to insect resistance in young plants. Interestingly however, despite the decay in JA response, older plants are still comparatively more resistant to both the lepidopteran generalist Helicoverpa armigera and the specialist Plutella xylostella, along with increased accumulation of glucosinolates. We propose a model whereby constitutive accumulation of defense compounds plays a role in compensating for age-related JA-response attenuation during plant maturation. PMID:28067238

  13. Assessment of heavy metal accumulation in macrophyte, agricultural soil, and crop plants adjacent to discharge zone of sponge iron factory

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Nayek, S.; Saha, R. N.; Satpati, S.

    2008-08-01

    The present study deals with the characterization of effluent released from sponge iron industries and distribution of heavy metals in soil and macrophytes near to effluent discharge channel. Apart from this, accumulation of heavy metals in nearby soil and vegetation system irrigated with effluent-contaminated water is also the subject of this study. Physico-chemical analysis of effluent reveals that the concentration of total suspended solids (TSS), total hardness (TH), iron (Fe2+), and oil and grease are greater than the IS (1981) norms for discharge of water into inland water body. The soil along the sides of the effluent channel also shows higher concentration of heavy metals than the background soil. The enrichment of the heavy metals are in the order of Chromium (Cr) > Iron (Fe) > Manganese (Mn) > Zinc (Zn) > Copper (Cu) > Cadmium (Cd). Macrophytes growing along the sides of the effluent channel also show significant accumulation of heavy metals almost in the same order as accumulated in soil. Higher uptake of heavy metals by these varieties reveals that these species can be used for future phytoremediation. The effluent as well as contaminated water is extensively used for irrigation for growing vegetables like tomato ( Lycopersicon esculatum) in the surrounding areas. Heavy metal accumulation in this agricultural soil are in the sequence of Cr > Fe > Mn > Zn > Cu > Cd. More or less similar type of accumulation pattern are also found in tomato plants except Fe and Zn exceeding Cr and Mn. Transfer Factor of heavy metals from soil to tomato plants (TFS) shows average value of <1, suggesting less uptake of heavy metals from soil. Among the plant parts studied, fruit shows least accumulation. Although tomato plants show some phenotypic changes, the survival of tomato plants as well as least accumulation of metals in fruit reveals their tolerance to heavy metals. Therefore it may be suggested that this plant can be grown successfully in the heavy metal

  14. Difference of toxicity and accumulation of methylated and inorganic arsenic in arsenic-hyperaccumulating and -hypertolerant plants.

    PubMed

    Huang, Ze-Chun; Chen, Tong-Bin; Lei, Mei; Liu, Ying-Ru; Hu, Tian-Dou

    2008-07-15

    The arsenic (As) hyperaccumulators, Pteris vittata and Pteris cretica and an As-tolerant plant Boehmeria nivea, were selected to compare the toxicity, uptake, and transportation of inorganic arsenate (As(V)) and its methylated counterpart dimethylarsinic acid (DMA). The XANES method was used to elucidate the effect of As species transformation on As toxicity and accumulation characteristics. Significantly higher toxicity and lower accumulation of DMAthan inorganic As(V) was shown in the As hyperaccumulators and the As-tolerant plant. Reduction of As(V) was commonly found in the plants. Arsenic complexation with thiols, which have less mobility in plants and usually occur in As-tolerant plants, was also found in rhizoids of P. cretica. Plants with greater ability to form As-thiolate have lower ability for upward transport of As. Demethylation of DMA occurred in the three plants. The DMA component decreased from the rhizoids to the fronds in both hyperaccumulators, while this tendency is reverse in B. nivea.

  15. Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions.

    PubMed

    Bellés, José M; Garro, Rafael; Pallás, Vicente; Fayos, Joaquín; Rodrigo, Ismael; Conejero, Vicente

    2006-02-01

    In the present work we have studied the accumulation of gentisic acid (2,5-dihydroxybenzoic acid, a metabolic derivative of salicylic acid, SA) in the plant-pathogen systems, Cucumis sativus and Gynura aurantiaca, infected with either prunus necrotic ringspot virus (PNRSV) or the exocortis viroid (CEVd), respectively. Both pathogens produced systemic infections and accumulated large amounts of the intermediary signal molecule gentisic acid as ascertained by electrospray ionization mass spectrometry (ESI-MS) coupled on line with high performance liquid chromatography (HPLC). The compound was found mostly in a conjugated (beta-glucoside) form. Gentisic acid has also been found to accumulate (although at lower levels) in cucumber inoculated with low doses of Pseudomonas syringae pv. tomato, producing a nonnecrotic reaction. In contrast, when cucumber was inoculated with high doses of this pathogen, a hypersensitive reaction occurred, but no gentisic-acid signal was induced. This is consistent with our results supporting the idea that gentisic-acid signaling may be restricted to nonnecrotizing reactions of the host plant (Bellés et al. in Mol Plant-Microbe Interact 12:227-235, 1999). In cucumber and Gynura plants, the activity of gentisic acid as inducing signal was different to that of SA, thus confirming the data found for tomato. Exogenously supplied gentisic acid was able to induce peroxidase activity in both Gynura and cucumber plants in a similar way as SA or pathogens. However, gentisic-acid treatments strongly induced polyphenol oxidase activity in cucumber, whereas pathogen infection or SA treatment resulted in a lower induction of this enzyme. Nevertheless, gentisic acid did not induce other defensive proteins which are induced by SA in these plants. This indicates that gentisic acid could act as an additional signal to SA for the activation of plant defenses in cucumber and Gynura plants.

  16. Effects of dust accumulation and module cleaning on performance ratio of solar rooftop system and solar power plants

    NASA Astrophysics Data System (ADS)

    Sakarapunthip, Nattakarn; Chenvidhya, Dhirayut; Chuangchote, Surawut; Kirtikara, Krissanapong; Chenvidhya, Tanokkorn; Onreabroy, Wandee

    2017-08-01

    Thailand is an agricultural country, with rice, sugar, and cassava as the major export products. Production of rice, sugar cane, and cassava entails agricultural activities that give rise to significant airborne dusts. In this work, five photovoltaic (PV) units (one solar rooftop and four power plants) are selected for the study. From the study of dust accumulation on glass surface located near rice farms, it was found that opaque areas due to the deposition of dust are 11-14% after 1-2-week exposure. As a consequence, PV system performance is affected. Performance ratio was calculated to determine these effects. Overall results reveal that during the dry and hot seasons, dust deposition significantly affects the performance ratio. The performance ratio reduces by 1.6-3% for 1-month dust accumulation and reduces by 6-8% for 2-month dust accumulation. After cleaning the dust accumulated, the performance ratio greatly increases, resulting in the increase in the energy output by 10%. This increase provides economic and cost benefits of PV cleaning. The performance ratio is not significantly changed during the rainy season, which PV modules are relatively clean as the dust is washed away by rain. It was also found that most of the solar power plants in Thailand still rely on manual cleaning of PV modules with washing water followed by wiping. However, only one power plant, employs a machine for cleaning, resulting in lower cleaning costs.

  17. Effect of temperature on the pathogenesis, accumulation of viral and satellite RNAs and on plant proteome in peanut stunt virus and satellite RNA-infected plants

    PubMed Central

    Obrępalska-Stęplowska, Aleksandra; Renaut, Jenny; Planchon, Sebastien; Przybylska, Arnika; Wieczorek, Przemysław; Barylski, Jakub; Palukaitis, Peter

    2015-01-01

    Temperature is an important environmental factor influencing plant development in natural and diseased conditions. The growth rate of plants grown at C27°C is more rapid than for plants grown at 21°C. Thus, temperature affects the rate of pathogenesis progression in individual plants. We have analyzed the effect of temperature conditions (either 21°C or 27°C during the day) on the accumulation rate of the virus and satellite RNA (satRNA) in Nicotiana benthamiana plants infected by peanut stunt virus (PSV) with and without its satRNA, at four time points. In addition, we extracted proteins from PSV and PSV plus satRNA-infected plants harvested at 21 dpi, when disease symptoms began to appear on plants grown at 21°C and were well developed on those grown at 27°C, to assess the proteome profile in infected plants compared to mock-inoculated plants grown at these two temperatures, using 2D-gel electrophoresis and mass spectrometry approaches. The accumulation rate of the viral RNAs and satRNA was more rapid at 27°C at the beginning of the infection and then rapidly decreased in PSV-infected plants. At 21 dpi, PSV and satRNA accumulation was higher at 21°C and had a tendency to increase further. In all studied plants grown at 27°C, we observed a significant drop in the identified proteins participating in photosynthesis and carbohydrate metabolism at the proteome level, in comparison to plants maintained at 21°C. On the other hand, the proteins involved in protein metabolic processes were all more abundant in plants grown at 27°C. This was especially evident when PSV-infected plants were analyzed, where increase in abundance of proteins involved in protein synthesis, degradation, and folding was revealed. In mock-inoculated and PSV-infected plants we found an increase in abundance of the majority of stress-related differently-regulated proteins and those associated with protein metabolism. In contrast, in PSV plus satRNA-infected plants the shift in the

  18. Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation.

    PubMed

    Zhang, H X; Hodson, J N; Williams, J P; Blumwald, E

    2001-10-23

    Transgenic Brassica napus plants overexpressing AtNHX1, a vacuolar Na(+)/H(+) antiport from Arabidopsis thaliana, were able to grow, flower, and produce seeds in the presence of 200 mM sodium chloride. Although the transgenic plants grown in high salinity accumulated sodium up to 6% of their dry weight, growth of the these plants was only marginally affected by the high salt concentration. Moreover, seed yields and the seed oil quality were not affected by the high salinity of the soil. Our results demonstrate the potential use of these transgenic plants for agricultural use in saline soils. Our findings, showing that the modification of a single trait significantly improved the salinity tolerance of this crop plant, suggest that with a combination of breeding and transgenic plants it could be possible to produce salt-tolerant crops with far fewer target traits than had been anticipated.

  19. HyperCLIPS: A HyperCard interface to CLIPS

    NASA Technical Reports Server (NTRS)

    Pickering, Brad; Hill, Randall W., Jr.

    1990-01-01

    HyperCLIPS combines the intuitive, interactive user interface of the Apple Macintosh(TM) with the powerful symbolic computation of an expert system interpreter. HyperCard(TM) is an excellent environment for quickly developing the front end of an application with buttons, dialogs, and pictures, while the CLIPS interpreter provides a powerful inference engine for complex problem solving and analysis. By integrating HyperCard and CLIPS the advantages and uses of both packages are made available for a wide range of uses: rapid prototyping of knowledge-based expert systems, interactive simulations of physical systems, and intelligent control of hypertext processes, to name a few. Interfacing HyperCard and CLIPS is natural. HyperCard was designed to be extended through the use of external commands (XCMDs), and CLIPS was designed to be embedded through the use of the I/O router facilities and callable interface routines. With the exception of some technical difficulties which will be discussed later, HyperCLIPS implements this interface in a straight forward manner, using the facilities provided. An XCMD called 'ClipsX' was added to HyperCard to give access to the CLIPS routines: clear, load, reset, and run. And an I/O router was added to CLIPS to handle the communication of data between CLIPS and HyperCard.

  20. Biosynthesis and accumulation of osmoprotective compounds by halophytic plants of the genus Limonium

    SciTech Connect

    Hanson, A.D.; Rathinasabapathi, B.; Gage, D.A.

    1991-05-01

    Analyses of quaternary ammonium compounds in leaf and root tissues of halophytic Limonium spp. using fast atom bombardment mass spectrometry revealed that only 3 out of 21 spp. accumulated glycine betaine, the common angiosperm osmolyte. The 18 other spp. accumulated {beta}-alanine betaine instead. However, all the Limonium spp. studied accumulated choline-O-sulfate and their leaf disks metabolized ({sup 14}C) choline to choline-O-sulfate. Only the glycine betaine accumulators oxidized ({sup 14}C) choline to glycine betaine and only {beta}-alanine betaine accumulators converted {beta}-({sup 14}C)alanine to {beta}-alanine betaine. When {beta}-alanine betaine and glycine betaine accumulators were salinized with NaCl, the levels of their respectivemore » betaines and of choline sulfate were closely correlated with solute potential. Glycine betaine accumulators had less choline-O-sulfate than {beta}-alanine betaine accumulators and increasing the SO{sub 4}{sup 2}/Cl ratio in the medium increased choline-O-sulfate and caused a matching decrease in glycine betaine. Thus, it appears that {beta}-alanine betaine has replaced glycine betaine in most members of this genus, eliminating a possible competition between glycine betaine and choline-O-sulfate for choline.« less

  1. Red mud (RM)-Induced enhancement of iron plaque formation reduces arsenic and metal accumulation in two wetland plant species.

    PubMed

    Yang, J X; Guo, Q J; Yang, J; Zhou, X Y; Ren, H Y; Zhang, H Z; Xu, R X; Wang, X D; Peters, M; Zhu, G X; Wei, R F; Tian, L Y; Han, X K

    2016-01-01

    Human activities have resulted in arsenic (As) and heavy metals accumulation in paddy soils in China. Phytoremediation has been suggested as an effective and low-cost method to clean up contaminated soils. A combined soil-sand pot experiment was conducted to investigate the influence of red mud (RM) supply on iron plaque formation and As and heavy metal accumulation in two wetland plant species (Cyperus alternifolius Rottb., Echinodorus amazonicus Rataj), using As and heavy metals polluted paddy soil combined with three rates of RM application (0, 2%, 5%). The results showed that RM supply significantly decreased As and heavy metals accumulation in shoots of the two plants due to the decrease of As and heavy metal availability and the enhancement of the formation of iron plaque on the root surface and in the rhizosphere. Both wetland plants supplied with RM tended to have more Fe plaque, higher As and heavy metals on roots and in their rhizospheres, and were more tolerant of As and heavy metal toxicity. The results suggest that RM-induced enhancement of the formation of iron plaque on the root surface and in the rhizosphere of wetland plants may be significant for remediation of soils contaminated with As and heavy metals.

  2. Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator.

    PubMed

    Küpper, Hendrik; Götz, Birgit; Mijovilovich, Ana; Küpper, Frithjof C; Meyer-Klaucke, Wolfram

    2009-10-01

    The amphibious water plant Crassula helmsii is an invasive copper (Cu)-tolerant neophyte in Europe. It now turned out to accumulate Cu up to more than 9,000 ppm in its shoots at 10 microm (=0.6 ppm) Cu(2+) in the nutrient solution, indicating that it is a Cu hyperaccumulator. We investigated uptake, binding environment, and toxicity of Cu in this plant under emerged and submerged conditions. Extended x-ray absorption fine structure measurements on frozen-hydrated samples revealed that Cu was bound almost exclusively by oxygen ligands, likely organic acids, and not any sulfur ligands. Despite significant differences in photosynthesis biochemistry and biophysics between emerged and submerged plants, no differences in Cu ligands were found. While measurements of tissue pH confirmed the diurnal acid cycle typical for Crassulacean acid metabolism, Delta(13)C measurements showed values typical for regular C3 photosynthesis. Cu-induced inhibition of photosynthesis mainly affected the photosystem II (PSII) reaction center, but with some unusual features. Most obviously, the degree of light saturation of electron transport increased during Cu stress, while maximal dark-adapted PSII quantum yield did not change and light-adapted quantum yield of PSII photochemistry decreased particularly in the first 50 s after onset of actinic irradiance. This combination of changes, which were strongest in submerged cultures, shows a decreasing number of functional reaction centers relative to the antenna in a system with high antenna connectivity. Nonphotochemical quenching, in contrast, was modified by Cu mainly in emerged cultures. Pigment concentrations in stressed plants strongly decreased, but no changes in their ratios occurred, indicating that cells either survived intact or died and bleached quickly.

  3. Effects of phosphate and thiosulphate on arsenic accumulation in Brassica juncea plants grown in soil and in hydroponic culture

    NASA Astrophysics Data System (ADS)

    Pezzarossa, Beatrice; Petruzzelli, Gianniantonio; Grifoni, Martina; Rosellini, Irene; Malagoli, Mario; Schiavon, Michela

    2013-04-01

    Arsenic is recognised as a toxic metalloid and a strong pollutant in soils of many countries. Thus, the reclamation of contaminated areas is fundamental in order to protect both human health and agricultural production. This study is focused on the assisted phytoextraction, a technology for reclaiming polluted soils that takes advantage of the capability of some plants to extract inorganic elements from soils with the aid of additive agents. The nutrients phosphorus, as phosphate, and sulphur, as thiosulphate, can compete with the form more oxidised of arsenic, both in soil and plant. This study examined the capability of thiosulphate (Th) and phosphate (Ph) to promote the release of As from soil surfaces in order to improve the phytoavailability and thus the absorption of As by Brassica juncea plants. In the first experiment B. juncea plants were grown on a soil that had been sampled from an industrial area strongly contaminated by As (790 mg As kg-1 soil). The second experiment was carried out in hydroponics where As has been added at a concentration (100 microM) similar to the As available concentration measured in soil. In both trials ammonium thiosulphate (at the concentration of 0.27 M in soil, and 400 microM in hydroponics) and potassium hydrogen phosphate (at the concentration of 0.05 M in soil, and 112 microM in hydroponics) were added. The biomass of B. juncea was determined and the accumulation of P, S and As in root and in the above-ground tissues have been analyzed. Our results showed that thiosulphate and phosphate acted either as nutrients and detoxifying agents, due to the stimulation of plant defensive systems, and influenced either the biomass production and the As accumulation in plant tissues. In the plants grown in soil, As accumulated at higher levels in the above-ground part than in the roots and the addition of Th induced a higher biomass production and a higher total As accumulation (concentration x biomass) in the above-ground tissues

  4. Zinc tolerance and accumulation in stable cell suspension cultures and in vitro regenerated plants of the emerging model plant Arabidopsis halleri (Brassicaceae).

    PubMed

    Vera-Estrella, Rosario; Miranda-Vergara, Maria Cristina; Barkla, Bronwyn J

    2009-03-01

    Arabidopsis halleri is increasingly employed as a model plant for studying heavy metal hyperaccumulation. With the aim of providing valuable tools for studies on cellular physiology and molecular biology of metal tolerance and transport, this study reports the development of successful and highly efficient methods for the in vitro regeneration of A. halleri plants and production of stable cell suspension lines. Plants were regenerated from leaf explants of A. halleri via a three-step procedure: callus induction, somatic embryogenesis and shoot development. Efficiency of callus proliferation and regeneration depended on the initial callus induction media and was optimal in the presence of 1 mg L(-1) 2,4-dichlorophenoxyacetic acid, and 0.05 mg L(-1) benzylaminopurine. Subsequent shoot and root regeneration from callus initiated under these conditions reached levels of 100% efficiency. High friability of the callus supported the development of cell suspension cultures with minimal cellular aggregates. Characterization of regenerated plants and cell cultures determined that they maintained not only the zinc tolerance and requirement of the whole plant but also the ability to accumulate zinc; with plants accumulating up to 50.0 micromoles zinc g(-1) FW, and cell suspension cultures 30.9 micromoles zinc g(-1) DW. Together this work will provide the experimental basis for furthering our knowledge of A. halleri as a model heavy metal hyperaccumulating plant.

  5. Comparison of the metabolism of inorganic and organic selenium species between two selenium accumulator plants, garlic and Indian mustard.

    PubMed

    Ogra, Yasumitsu; Ogihara, Yurie; Anan, Yasumi

    2017-01-25

    The metabolism of selenomethionine (SeMet) in two major selenium (Se) accumulator plants, garlic and Indian mustard, was compared to that of stable isotope labeled selenate. Indian mustard more efficiently transported Se from roots to leaves than garlic. In addition, Indian mustard accumulated larger amounts of Se than garlic. γ-Glutamyl-Se-methylselenocysteine (γ-GluMeSeCys) and Se-methylselenocysteine (MeSeCys) were the common metabolites of selenate and SeMet in garlic and Indian mustard. Indian mustard had a specific metabolic pathway to selenohomolanthionine (SeHLan) from both inorganic and organic Se species. SeMet was a more effective fertilizer for cultivating Se-enriched plants than selenate in terms of the production of selenoamino acids.

  6. RPT2/NCH1 subfamily of NPH3-like proteins is essential for the chloroplast accumulation response in land plants.

    PubMed

    Suetsugu, Noriyuki; Takemiya, Atsushi; Kong, Sam-Geun; Higa, Takeshi; Komatsu, Aino; Shimazaki, Ken-Ichiro; Kohchi, Takayuki; Wada, Masamitsu

    2016-09-13

    In green plants, the blue light receptor kinase phototropin mediates various photomovements and developmental responses, such as phototropism, chloroplast photorelocation movements (accumulation and avoidance), stomatal opening, and leaf flattening, which facilitate photosynthesis. In Arabidopsis, two phototropins (phot1 and phot2) redundantly mediate these responses. Two phototropin-interacting proteins, NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and ROOT PHOTOTROPISM 2 (RPT2), which belong to the NPH3/RPT2-like (NRL) family of BTB (broad complex, tramtrack, and bric à brac) domain proteins, mediate phototropism and leaf flattening. However, the roles of NRL proteins in chloroplast photorelocation movement remain to be determined. Here, we show that another phototropin-interacting NRL protein, NRL PROTEIN FOR CHLOROPLAST MOVEMENT 1 (NCH1), and RPT2 redundantly mediate the chloroplast accumulation response but not the avoidance response. NPH3, RPT2, and NCH1 are not involved in the chloroplast avoidance response or stomatal opening. In the liverwort Marchantia polymorpha, the NCH1 ortholog, MpNCH1, is essential for the chloroplast accumulation response but not the avoidance response, indicating that the regulation of the phototropin-mediated chloroplast accumulation response by RPT2/NCH1 is conserved in land plants. Thus, the NRL protein combination could determine the specificity of diverse phototropin-mediated responses.

  7. Starch Accumulation in the Bundle Sheaths of C3 Plants: A Possible Pre-Condition for C4 Photosynthesis.

    PubMed

    Miyake, Hiroshi

    2016-05-01

    C4 plants have evolved >60 times from their C3 ancestors. C4 photosynthesis requires a set of closely co-ordinated anatomical and biochemical characteristics. However, it is now recognized that the evolution of C4 plants requires fewer changes than had ever been considered, because of the genetic, biochemical and anatomical pre-conditions of C3 ancestors that were recruited into C4 photosynthesis. Therefore, the pre-conditions in C3 plants are now being actively investigated to clarify the evolutionary trajectory from C3 to C4 plants and to engineer C4 traits efficiently into C3 crops. In the present mini review, the anatomical characteristics of C3 and C4 plants are briefly reviewed and the importance of the bundle sheath for the evolution of C4 photosynthesis is described. For example, while the bundle sheath of C3 rice plants accumulates large amounts of starch in the developing leaf blade and at the lamina joint of the mature leaf, the starch sheath function is also observed during leaf development in starch accumulator grasses regardless of photosynthetic type. The starch sheath function of C3 plants is therefore also implicated as a possible pre-condition for the evolution of C4 photosynthesis. The phylogenetic relationships between the types of storage carbohydrates and of photosynthesis need to be clarified in the future. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum)

    USDA-ARS?s Scientific Manuscript database

    Selenium (Se) is an essential micronutrient for animals and humans and a target for biofortification in crops. Sulfur (S) is a crucial nutrient for plant growth. To gain better understanding of Se and S nutrition and interaction in plants, the effects of Se dosages and forms on plant growth as well ...

  9. Growth responses of three ornamental plants to Cd and Cd-Pb stress and their metal accumulation characteristics.

    PubMed

    Liu, Jia-nv; Zhou, Qi-xing; Sun, Ting; Ma, Lena Q; Wang, Song

    2008-02-28

    Up to now, there was no document on ornamental plants that had been applied to phytoremediation, which can remedy contaminated environment and beautify it at the same time. Thus, the growth responses and possible phytoremediation ability of three ornamental plants selected from the previous preliminary experiments were further examined under single Cd or combined Cd-Pb stress. The results showed that these tested plants had higher tolerance to Cd and Pb contamination and could effectively accumulate the metals, especially for Calendula officinalis and Althaea rosea. For C. officinalis, it grew normally in soils containing 100 mg kg(-1) Cd without suffering phytotoxicity, and the Cd concentration in the roots was up to 1084 mg kg(-1) while the Cd concentration in the shoots was 284 mg kg(-1). For A. rosea, the Cd accumulation in the shoots was higher than that in the roots when the Cd concentration in soils was <100 mg kg(-1), and reached 100 mg kg(-1) as the criteria of a Cd hyperaccumulator when the Cd concentration in soils was 100 mg kg(-1). Their accumulation and tolerance to Cd and Pb were further demonstrated through the hydroponic-culture method. And A. rosea had a great potential as a possible Cd hyperaccumulator under favorable or induced conditions. Furthermore, the interactive effects of Cd and Pb in the three ornamentals were complicated, not only additive, antagonistic or synergistic, but also related to many factors including concentration combinations of heavy metals, plant species and various parts of plants. Thus, it can be forecasted that this work will provide a new way for phytoremediation of contaminated soils.

  10. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.

    PubMed

    Wang, Fayuan; Liu, Xueqin; Shi, Zhaoyong; Tong, Ruijian; Adams, Catharine A; Shi, Xiaojun

    2016-03-01

    ZnO nanoparticles (NPs) are considered an emerging contaminant when in high concentration, and their effects on crops and soil microorganisms pose new concerns and challenges. Arbuscular mycorrhizal (AM) fungi (AMF) form mutualistic symbioses with most vascular plants, and putatively contribute to reducing nanotoxicity in plants. Here, we studied the interactions between ZnO NPs and maize plants inoculated with or without AMF in ZnO NPs-spiked soil. ZnO NPs had no significant adverse effects at 400 mg/kg, but inhibited both maize growth and AM colonization at concentrations at and above 800 mg/kg. Sufficient addition of ZnO NPs decreased plant mineral nutrient acquisition, photosynthetic pigment concentrations, and root activity. Furthermore, ZnO NPs caused Zn concentrations in plants to increase in a dose-dependent pattern. As the ZnO NPs dose increased, we also found a positive correlation with soil diethylenetriaminepentaacetic acid (DTPA)-extractable Zn. However, AM inoculation significantly alleviated the negative effects induced by ZnO NPs: inoculated-plants experienced increased growth, nutrient uptake, photosynthetic pigment content, and SOD activity in leaves. Mycorrhizal plants also exhibited decreased ROS accumulation, Zn concentrations and bioconcentration factor (BCF), and lower soil DTPA-extractable Zn concentrations at high ZnO NPs doses. Our results demonstrate that, at high contamination levels, ZnO NPs cause toxicity to AM symbiosis, but AMF help alleviate ZnO NPs-induced phytotoxicity by decreasing Zn bioavailability and accumulation, Zn partitioning to shoots, and ROS production, and by increasing mineral nutrients and antioxidant capacity. AMF may play beneficial roles in alleviating the negative effects and environmental risks posed by ZnO NPs in agroecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. [Effects of different colored plastic film mulching and planting density on dry matter accumulation and yield of spring maize.

    PubMed

    Zhang, Lin Lin; Sun, Shi Jun; Chen, Zhi Jun; Jiang, Hao; Zhang, Xu Dong; Chi, Dao Cai

    2018-01-01

    In order to investigate the effect of different colored plastic film mulching and planting density on spring maize dry matter accumulation and yield in the rain-fed area of the Northeast China, a complete combination field experiment which was comprised by three types of mulching (non-mulching, transparent plastic film mulching and black plastic film mulching) and five densities (60000, 67500, 75000, 82500 and 90000 plants·hm -2 ), was conducted to analyze the water and heat effect, dry matter accumulation and yield of spring maize (Liangyu 99). The results showed that, compared with the other mulching treatments, the black plastic film mulching treatment significantly increased the maize dry matter accumulation and maize biomass by 3.2%-8.2%. In mature stage, the biomass increased firstly and then decreased with the increasing plant density. When planting density was 82500 plants·hm -2 , the biomass was the highest, which was 5.2%-28.3% higher than that of other plant density treatments. The mean soil temperature in prophase of transparent plastic film mulching treatment was 0.4-2.7 ℃ higher than that of other treatments, which accelerated the maize growth process and augmented the dry matter transportation amount (T), dry matter transportation efficiency (TE) and contribution rate of dry matter transportation to the grain yield (TC) of maize stalk and leaf. The T, TE, TC of leaf and leaf-stalk under 60000 plants·hm -2 treatment were the highest. The highest T, TE, TC of stalk were observed under 75000 plants·hm -2 treatment. In heading period, the water consumption and daily water consumption intensity of maize under the treatment of black film mulching were the largest, which were 9.4%-10.6% and 10.6%-24.5% higher than that of other mulching treatments, respectively. The highest water consumption and daily water consumption intensity were both obtained under 90000 plants·hm -2 treatment, which increased by 6.8%-15.7% and 7.0%-20.0% compared with other

  12. Leaf malate and succinate accumulation are out of phase throughout the development of the CAM plant Ananas comosus.

    PubMed

    Rainha, N; Medeiros, V P; Ferreira, C; Raposo, A; Leite, J P; Cruz, C; Pacheco, C A; Ponte, D; Silva, A B

    2016-03-01

    In plants with Crassulacean Acid Metabolism (CAM), organic acids, mainly malate are crucial intermediates for carbon fixation. In this research we studied the circadian oscillations of three organic anions (malate, citrate, and succinate) in Ananas comosus, assessing the effect of season and plant development stage. Seasonal and plant development dependencies were observed. The circadian oscillations of malate and citrate were typical of CAM pathways reported in the literature. Citrate content was quite stable (25-30 μmol g(-1) FW) along the day, with a seasonal effect. Succinate was shown to have both diurnal and seasonal oscillations and also a correlation with malate, since it accumulated during the afternoon when malate content was normally at a minimum, suggesting a possible mechanistic effect between both anions in CAM and/or respiratory metabolisms. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Digital Biomass Accumulation Using High-Throughput Plant Phenotype Data Analysis.

    PubMed

    Rahaman, Md Matiur; Ahsan, Md Asif; Gillani, Zeeshan; Chen, Ming

    2017-09-01

    Biomass is an important phenotypic trait in functional ecology and growth analysis. The typical methods for measuring biomass are destructive, and they require numerous individuals to be cultivated for repeated measurements. With the advent of image-based high-throughput plant phenotyping facilities, non-destructive biomass measuring methods have attempted to overcome this problem. Thus, the estimation of plant biomass of individual plants from their digital images is becoming more important. In this paper, we propose an approach to biomass estimation based on image derived phenotypic traits. Several image-based biomass studies state that the estimation of plant biomass is only a linear function of the projected plant area in images. However, we modeled the plant volume as a function of plant area, plant compactness, and plant age to generalize the linear biomass model. The obtained results confirm the proposed model and can explain most of the observed variance during image-derived biomass estimation. Moreover, a small difference was observed between actual and estimated digital biomass, which indicates that our proposed approach can be used to estimate digital biomass accurately.

  14. The interactions of metal concentrations and soil properties on toxic metal accumulation of native plants in vanadium mining area.

    PubMed

    Aihemaiti, Aikelaimu; Jiang, Jianguo; Li, De'an; Liu, Nuo; Yang, Meng; Meng, Yuan; Zou, Quan

    2018-05-29

    High demand of Vanadium (V) in high-strength steel and battery manufacturing industry led to extensive V mining activity in China, and caused multi-metal pollution of soil around V mining area. To understand the phytoremediation potentials of native plants grown in V mining area, and the effect of soil properties and soil metal concentrations on toxic metal accumulations of native plants. Setaria viridis, Kochia scoparia and Chenopodium album were sampled from different sites in V mining area, soil properties, soil metal concentrations and metal accumulation amount of investigated plants were measured, bioaccumulation (BAF) and translocation (TF) efficiencies were calculated. Soil pH, cation exchange capacity (CEC) and available phosphorous (P) can significantly affect V and copper (Cu) uptake in the shoots of Setaria viridis while soil metal contents were lower than the permissible limits. Soil pH can significantly affect V accumulations in the roots and shoots of Kochia scoparia grown in slightly V polluted soils. Setaria viridis exhibited TF > 1 for moderately V and slightly chromium (Cr) polluted soils, and BAF>1 for slightly Cu contaminated soils respectively. Kochia scoparia and Chenopodium album showed TF > 1 and BAF>1 for slightly V polluted soils, respectively. Setaria viridis was practical for in situ phytoextractions of moderately V and slightly Cr polluted soils, and phytostabilization of slightly Cu contaminated soils. Kochia scoparia and Chenopodium album could be used as phytoextractor and phytostablizer in slightly V polluted soils in V mining area. Metal uptake of native plants grown in slightly multi-metal contaminated sites in V mining area can be manipulated by altering soil properties. Copyright © 2018. Published by Elsevier Ltd.

  15. Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements.

    PubMed

    Rivelli, Anna Rita; De Maria, Susanna; Puschenreiter, Markus; Gherbin, Piergiorgio

    2012-04-01

    We investigated the effects on physiological response, trace elements and nutrients accumulation of sunflower plants grown in soil contaminated with: 5 mg kg(-1) of Cd; 5 and 300 mg kg(-1) of Cd and Zn, respectively; 5, 300, and 400 mg kg(-1) of Cd, Zn, and Cu, respectively. Contaminants applied did not produce large effects on growth, except in Cd-Zn-Cu treatment in which leaf area and total dry matter were reduced, by 15%. The contamination with Cd alone did not affect neither growth nor physiological parameters, despite considerable amounts of Cd accumulated in roots and older leaves, with a high bioconcentration factor from soil to plant. By adding Zn and then Cu to Cd in soil, significant were the toxic effects on chlorophyll content and water relations due to greater accumulation of trace elements in tissues, with imbalances in nutrients uptake. Highly significant was the interaction between shoot elements concentration (Cd, Zn, Cu, Fe, Mg, K, Ca) and treatments. Heavy metals concentrations in roots always exceeded those in stem and leaves, with a lower translocation from roots to shoots, suggesting a strategy of sunflower to compartmentalise the potentially toxic elements in physiologically less active parts in order to preserve younger tissues.

  16. Metal(loid) accumulation in aquatic plants of a mining area: Potential for water quality biomonitoring and biogeochemical prospecting.

    PubMed

    Favas, Paulo J C; Pratas, João; Rodrigues, Nelson; D'Souza, Rohan; Varun, Mayank; Paul, Manoj S

    2018-03-01

    Aquatic bryophytes can accumulate extremely high levels of chemical elements because of their unique morphology and physiology which is markedly different from vascular plants. Four aquatic mosses-Fontinalis squamosa, Brachythecium rivulare, Platyhypnidium riparioides, Thamnobryum alopecurum-and a freshwater red alga Lemanea fluviatilis along with water samples from the streams of Góis mine region in Central Portugal were analyzed for 46 elements. Despite being below detection levels in the water samples, the elements Zr, V, Cr, Mo, Ru, Os, Rh, Ir, Pt, Ag, Ge and Bi were obtained in the plant samples. The moss T. alopecurum had the highest mean concentrations of 19 elements followed by B. rivulare (15 elements). Maximum accumulation of Rb, Ta and Au, however, was seen in the alga L. fluviatilis. Bioconcentration factors > 10 6 were obtained for a few metals. The investigation confirms that aquatic bryophytes can be suitable for water quality biomonitoring and biogeochemical prospecting in fresh water bodies owing to their high accumulative capacity of multi-elements from their aquatic ambient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter. Preliminary settling and resuspension testing

    SciTech Connect

    Fox, K. M.; Fowley, M. D.; Miller, D. H.

    2016-05-01

    The full-scale, room-temperature Hanford Tank Waste Treatment and Immobilization Plant (WTP) High-Level Waste (HLW) melter riser test system was successfully operated with silicone oil and magnetite particles at a loading of 0.1 vol %. Design and construction of the system and instrumentation, and the selection and preparation of simulant materials, are briefly reviewed. Three experiments were completed. A prototypic pour rate was maintained, based on the volumetric flow rate. Settling and accumulation of magnetite particles were observed at the bottom of the riser and along the bottom of the throat after each experiment. The height of the accumulated layer atmore » the bottom of the riser, after the first pouring experiment, approximated the expected level given the solids loading of 0.1 vol %. More detailed observations of particle resuspension and settling were made during and after the third pouring experiment. The accumulated layer of particles at the bottom of the riser appeared to be unaffected after a pouring cycle of approximately 15 minutes at the prototypic flow rate. The accumulated layer of particles along the bottom of the throat was somewhat reduced after the same pouring cycle. Review of the time-lapse recording showed that some of the settling particles flow from the riser into the throat. This may result in a thicker than expected settled layer in the throat.« less

  18. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants

    USDA-ARS?s Scientific Manuscript database

    Fat Storage-Inducing Transmembrane protein 2 (FIT2) is an endoplasmic reticulum (ER)-localized protein that plays an important role in lipid droplet (LD) formation in animal cells. However, no obvious homologue of FIT2 is found in plants. Here, we tested the function of FIT2 in plant cells by ectopi...

  19. X43 Hyper-X

    NASA Image and Video Library

    2004-02-11

    NASA's Hyper-x Program Manager, Vince Rausch talks about the upcoming launch of the X43A vehicle over the Pacific Ocean later this month from his office at NASA Langley Research Center in Hampton, VA. Hyper X is a high risk, high payoff program. The flight of the X43 A will demonstrated in flight for the first time, air breathing hypersonic propulsion technology. (Photo by Jeff Caplan)

  20. Host-pathogen interactions in plants. Plants, when exposed to oligosaccharides of fungal origin, defend themselves by accumulating antibiotics

    SciTech Connect

    Albersheim, P.; Valent, B.S.

    1978-01-01

    The ability to synthesize phytoalexins is a mechanism by which plants are able to stop the growth of microorganisms which have not become pathogenic on the phytoalexin-producing plant. Although not sufficient for its complete resistence to pathogens, an ability to synthesize phytoalexins is likely to be one essential criterion for a plant to be resistant to pathogens. Plants recognize the presence of many nonpathogenic fungi by recognizing a structural component of the mycelial walls of the fungi. Other microorganisms do not have structural glucans in their walls. There is, likely, some other components of bacteria, for instance, which act asmore » elicitors in plants since it is known that they do elicit phytoalexin production in plants. The authors are attempting to identify a bacterial elicitor. It is known that the soybean pathogen Phytophthora magasperma is an oligosaccharide composed only of glucose. This is of general biological interest since it shows that oligosaccharides can act as regulatory molecules.« less

  1. Tele Hyper Virtuality

    NASA Technical Reports Server (NTRS)

    Terashima, Nobuyoshi

    1994-01-01

    In the future, remote images sent over communication lines will be reproduced in virtual reality (VR). This form of virtual telecommunications, which will allow observers to engage in an activity as though it were real, is the focus of considerable attention. Taken a step further, real and unreal objects will be placed in a single space to create an extremely realistic environment. Here, imaginary and other life forms as well as people and animals in remote locations will gather via telecommunication lines that create a common environment where life forms can work and interact together. Words, gestures, diagrams and other forms of communication will be used freely in performing work. Actual construction of a system based on this new concept will not only provide people with experiences that would have been impossible in the past, but will also inspire new applications in which people will function in environments where it would have been difficult if not impossible for them to function until now. This paper describes Tele Hyper Virtuality concept, its definition, applications, the key technologies to accomplish it and future prospects.

  2. Element accumulation in boreal bryophytes, lichens and vascular plants exposed to heavy metal and sulfur deposition in Finland.

    PubMed

    Salemaa, Maija; Derome, John; Helmisaari, Heljä-Sisko; Nieminen, Tiina; Vanha-Majamaa, Ilkka

    2004-05-25

    Macronutrient (N, P, K, Mg, S, Ca), heavy metal (Fe, Zn, Mn, Cu, Ni, Cd, Pb) and Al concentrations in understorey bryophytes, lichens and vascular plant species growing in Scots pine forests at four distances from the Harjavalta Cu-Ni smelter (0.5, 2, 4 and 8 km) were compared to those at two background sites in Finland. The aim was to study the relationship between element accumulation and the distribution of the species along a pollution gradient. Elevated sulfur, nitrogen and heavy metal concentrations were found in all species groups near the pollution source. Macronutrient concentrations tended to decrease in the order: vascular plants>bryophytes>lichens, when all the species groups grew on the same plot. Heavy metal concentrations (except Mn) were the highest in bryophytes, followed by lichens, and were the lowest in vascular plants. In general, vascular plants, being capable of restricting the uptake of toxic elements, grew closer to the smelter than lichens, while bryophytes began to increase in the understorey vegetation at further distances from the smelter. A pioneer moss (Pohlia nutans) was an exception, because it accumulated considerably higher amounts of Cu and Ni than the other species and still survived close to the smelter. The abundance of most of the species decreased with increasing Cu and Ni concentrations in their tissues. Cetraria islandica, instead, showed a positive relationship between the abundance and Cu, Ni and S concentrations of the thallus. It is probable that, in addition to heavy metals, sporadically high SO(2) emissions have also affected the distribution of the plant species.

  3. [Hyper-reactive malarial splenomegaly].

    PubMed

    Maazoun, F; Deschamps, O; Barros-Kogel, E; Ngwem, E; Fauchet, N; Buffet, P; Froissart, A

    2015-11-01

    Hyper-reactive malarial splenomegaly is a rare and severe form of chronic malaria. This condition is a common cause of splenomegaly in endemic areas. The pathophysiology of hyper-reactive malarial splenomegaly involves an intense immune reaction (predominantly B cell-driven) to repeated/chronic infections with Plasmodium sp. The diagnosis may be difficult, due to a poorly specific clinical presentation (splenomegaly, fatigue, cytopenias), a long delay between residence in a malaria-endemic area and onset of symptoms, and a frequent absence of parasites on conventional thin and thick blood smears. A strongly contributive laboratory parameter is the presence of high levels of total immunoglobulin M. When the diagnostic of hyper-reactive malarial splenomegaly is considered, search for anti-Plasmodium antibodies and Plasmodium nucleic acids (genus and species) by PCR is useful. Diagnosis of hyper-reactive malarial splenomegaly relies on the simultaneous presence of epidemiological, clinical, biological and follow-up findings. Regression of both splenomegaly and hypersplenism following antimalarial therapy allows the differential diagnosis with splenic lymphoma, a common complication of hyper-reactive malarial splenomegaly. Although rare in Western countries, hyper-reactive malarial splenomegaly deserves increased medical awareness to reduce the incidence of incorrect diagnosis, to prevent progression to splenic lymphoma and to avoid splenectomy. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  4. Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals.

    PubMed

    Schmidt, Ulrich

    2003-01-01

    For heavy metal-contaminated agricultural land, low-cost, plant-based phytoextraction measures can be a key element for a new land management strategy. When agents are applied into the soil, the solubility of heavy metals and their subsequent accumulation by plants can be increased, and, therefore, phytoextraction enhanced. An overview is given of the state of the art of enhancing heavy metal solubility in soils, increasing the heavy metal accumulation of several high-biomass-yielding and metal-tolerant plants, and the effect of these measures on the risk of heavy metal leaching. Several organic as well as inorganic agents can effectively and specifically increase solubility and, therefore, accumulation of heavy metals by several plant species. Crops like willow (Salix viminalis L.), Indian mustard [Brassica juncea (L.) Czern.], corn (Zea mays L.), and sunflower (Helianthus annuus L.) show high tolerance to heavy metals and are, therefore, to a certain extent able to use the surpluses that originate from soil manipulation. More than 100-fold increases of lead concentrations in the biomass of crops were reported, when ethylenediaminetetraacetic acid (EDTA) was applied to contaminated soils. Uranium concentrations could be strongly increased when citric acid was applied. Cadmium and zinc concentrations could be enhanced by inorganic agents like elemental sulfur or ammonium sulfate. However, leaching of heavy metals due to increased mobility in soils cannot be excluded. Thus, implementation on the field scale must consider measures to minimize leaching. So, the application of more than 1 g EDTA kg(-1) becomes inefficient as lead concentration in crops is not enhanced and leaching rate increases. Moreover, for large-scale applications, agricultural measures as placement of agents, dosage splitting, the kind and amount of agents applied, and the soil properties are important factors governing plant growth, heavy metal concentrations, and leaching rates. Effective

  5. Microautoradiographic study of Rhodocyclus-related polyphosphate-accumulating bacteria in full-scale enhanced biological phosphorus removal plants.

    PubMed

    Kong, Yunhong; Nielsen, Jeppe Lund; Nielsen, Per Halkjaer

    2004-09-01

    The ecophysiology of uncultured Rhodocyclus-related polyphosphate-accumulating organisms (PAO) present in three full-scale enhanced biological phosphorus removal (EBPR) activated sludge plants was studied by using microautoradiography combined with fluorescence in situ hybridization. The investigations showed that these organisms were present in all plants examined and constituted 5 to 10, 10 to 15, and 17 to 22% of the community biomass. The behavior of these bacteria generally was consistent with the biochemical models proposed for PAO, based on studies of lab-scale investigations of enriched and often unknown PAO cultures. Rhodocyclus-related PAO were able to accumulate short-chain substrates, including acetate, propionate, and pyruvate, under anaerobic conditions, but they could not assimilate many other low-molecular-weight compounds, such as ethanol and butyrate. They were able to assimilate two substrates (e.g., acetate and propionate) simultaneously. Leucine and thymidine could not be assimilated as sole substrates and could only be assimilated as cosubstrates with acetate, perhaps serving as N sources. Glucose could not be assimilated by the Rhodocyclus-related PAO, but it was easily fermented in the sludge to products that were subsequently consumed. Glycolysis, and not the tricarboxylic acid cycle, was the source that provided the reducing power needed by the Rhodocyclus-related PAO to form the intracellular polyhydroxyalkanoate storage compounds during anaerobic substrate assimilation. The Rhodocyclus-related PAO were able to take up orthophosphate and accumulate polyphosphate when oxygen, nitrate, or nitrite was present as an electron acceptor. Furthermore, in the presence of acetate growth was sustained by using oxygen, as well as nitrate or nitrite, as an electron acceptor. This strongly indicates that Rhodocyclus-related PAO were able to denitrify and thus played a role in the denitrification occurring in full-scale EBPR plants.

  6. Mercury accumulation in transplanted Hypogymnia physodes lichens downwind of Wisconsin chlor-alkali plant

    USGS Publications Warehouse

    Makholm, M.M.; Bennett, J.P.

    1998-01-01

    Emissions of mercury from a chlor-alkali plant in central Wisconsin have raised concern about possible effects on biota in the area. Samples of the lichen Hypogymnia physodes, which no longer grows in the area, were transplanted from a site in northeastern Wisconsin and positioned on plastic stands at varying distances up to 1250 m from the plant and sampled for Hg quarterly for one year to test the hypothesis that Hg would be taken up by the lichens and would decline with distance. Average tissue concentrations were elevated when first sampled at three months and continued to increase at the nearest sites until the study ended after one year. Average concentrations after a year of exposure ranged from 4418 ppb at 250 m from the plant to 403 ppb at 1250 m from the plant. The decrease over distance followed a negative exponential pattern. Background concentrations at a control site in northern Wisconsin averaged 155 ppb.

  7. Evaluation of growth and biochemical indicators of Salvinia natans exposed to zinc oxide nanoparticles and zinc accumulation in plants.

    PubMed

    Hu, Changwei; Liu, Xu; Li, Xiuling; Zhao, Yongjun

    2014-01-01

    The adverse effects of zinc oxide nanoparticles (ZnO NPs) with an average diameter of 25 nm on the aquatic plant Salvinia natans (L.) All. were determined. Growth, superoxide dismutase (SOD) activity, catalase (CAT) activity, peroxidase activity, and chlorophyll content of the plants were measured after 7 days of exposure to different concentrations of ZnO NPs (1 to 50 mg L(-1)). The particle distribution in the culture medium (without plants) during the first 24 h was determined using a Nanotrac 250 particle analyzer. We also investigated the zinc accumulation in leaves and roots of the plant after 7 days of exposure. Exposure to 50 mg L(-1) ZnO NPs significantly increased SOD and CAT activities (P < 0.05) and significantly depressed photosynthetic pigments (P < 0.05). However, plant growth was not significantly affected (P > 0.05). NPs completely precipitated at the bottom of the container at 8 h except for the portions of dissolution and aggregation on the roots. ZnO NPs at a concentration of 50 mg L(-1) can adversely affect S. natans, and their stress is affected by their aggregation and dissolution.

  8. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, A.; Divsalar, D.; Yao, K.

    2004-01-01

    In this paper we propose an innovative channel coding scheme called Accumulate Repeat Accumulate codes. This class of codes can be viewed as trubo-like codes, namely a double serial concatenation of a rate-1 accumulator as an outer code, a regular or irregular repetition as a middle code, and a punctured accumulator as an inner code.

  9. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter: Summary of FY2016 experiements

    SciTech Connect

    Fox, K.; Fowley, M.; Miller, D.

    2016-12-01

    Five experiments were completed with the full-scale, room temperature Hanford Waste Treatment and Immobilization Plant (WTP) high-level waste (HLW) melter riser test system to observe particle flow and settling in support of a crystal tolerant approach to melter operation. A prototypic pour rate was maintained based on the volumetric flow rate. Accumulation of particles was observed at the bottom of the riser and along the bottom of the throat after each experiment. Measurements of the accumulated layer thicknesses showed that the settled particles at the bottom of the riser did not vary in thickness during pouring cycles or idle periods.more » Some of the settled particles at the bottom of the throat were re-suspended during subsequent pouring cycles, and settled back to approximately the same thickness after each idle period. The cause of the consistency of the accumulated layer thicknesses is not year clear, but was hypothesized to be related to particle flow back to the feed tank. Additional experiments reinforced the observation of particle flow along a considerable portion of the throat during idle periods. Limitations of the system are noted in this report and may be addressed via future modifications. Follow-on experiments will be designed to evaluate the impact of pouring rate on particle re-suspension, the influence of feed tank agitation on particle accumulation, and the effect of changes in air lance positioning on the accumulation and re-suspension of particles at the bottom of the riser. A method for sampling the accumulated particles will be developed to support particle size distribution analyses. Thicker accumulated layers will be intentionally formed via direct addition of particles to select areas of the system to better understand the ability to continue pouring and re-suspend particles. Results from the room temperature system will be correlated with observations and data from the Research Scale Melter (RSM) at Pacific Northwest National

  10. Effect of empty fruit bunch to the accumulated plant height, mass of fresh and dry weight of tomato plant treated with organic and inorganic fertilizer

    NASA Astrophysics Data System (ADS)

    Elias, Aishah; Mutalib, Sahilah Abd.; Mustapha, Wan Aida Wan

    2016-11-01

    A glasshouse experiment was conducted to study the effect of different type of compost and fertilizers on the growth of tomato (Lycopersicon esculentum). The experiment consisted of sixteen treatments. Compost of Empty fruit bunch (EFB) and cow dung is mixed in the ratio of 3:2:1 (soil: compost: sand) and put into 25.4 mm2 polyethylene bag. Organic fertilizer of 10 ml were added twice a week, while inorganic fertilizer was applied at the rate of 3 g per polyethylene bag of soil three weeks after sowing. Treatment without fertilizer application was established as a control. The treatments were laid in a split-split plot design with three replications. Plant growth was assessed using accumulating plant height, fresh weight and dry weight. The application of organic plus inorganic fertilizer had significant effects on plant height. The application of organic fertilizer combination with cow dung gave significant difference to plant mass (fresh and dry). The data obtained from these treatments were significantly higher than the data obtained from the control (without fertilizer). In conclusion, the type of compost did not gave significant difference towards plant height while it only gave significant difference towards plant mass.

  11. High relative air humidity influences mineral accumulation and growth in iron deficient soybean plants

    PubMed Central

    Roriz, Mariana; Carvalho, Susana M. P.; Vasconcelos, Marta W.

    2014-01-01

    Iron (Fe) deficiency chlorosis (IDC) in soybean results in severe yield losses. Cultivar selection is the most commonly used strategy to avoid IDC but there is a clear interaction between genotype and the environment; therefore, the search for quick and reliable tools to control this nutrient deficiency is essential. Several studies showed that relative humidity (RH) may influence the long distance transport of mineral elements and the nutrient status of plants. Thus, we decided to analyze the response of an “Fe-efficient” (EF) and an “Fe-inefficient” (INF) soybean accession grown under Fe-sufficient and deficient conditions under low (60%) and high (90%) RH, evaluating morphological, and physiological parameters. Furthermore, the mineral content of different plant organs was analyzed. Our results showed beneficial effects of high RH in alleviating IDC symptoms as seen by increased SPAD values, higher plant dry weight (DW), increased plant height, root length, and leaf area. This positive effect of RH in reducing IDC symptoms was more pronounced in the EF accession. Also, Fe content in the different plant organs of the EF accession grown under deficient conditions increased with RH. The lower partitioning of Fe to roots and stems of the EF accessions relative to dry matter also supported our hypothesis, suggesting a greater capacity of this accession in Fe translocation to the aerial parts under Fe deficient conditions, when grown under high RH. PMID:25566297

  12. Deposition, accumulation, and alteration of Cl−, NO3−, ClO4− and ClO3− salts in a hyper-arid polar environment: Mass balance and isotopic constraints

    USGS Publications Warehouse

    Jackson, Andrew; Davila, Alfonso F.; Böhlke, John Karl; Sturchio, Neil C.; Sevanthi, Ritesh; Estrada, Nubia; Brundrett, Maeghan; Lacelle, Denis; McKay, Christopher P.; Poghosyan, Armen; Pollard, Wayne; Zacny, Kris

    2016-01-01

    The salt fraction in permafrost soils/sediments of the McMurdo Dry Valleys (MDV) of Antarctica can be used as a proxy for cold desert geochemical processes and paleoclimate reconstruction. Previous analyses of the salt fraction in MDV permafrost soils have largely been conducted in coastal regions where permafrost soils are variably affected by aqueous processes and mixed inputs from marine and stratospheric sources. We expand upon this work by evaluating permafrost soil/sediments in University Valley, located in the ultraxerous zone where both liquid water transport and marine influences are minimal. We determined the abundances of Cl−, NO3−, ClO4− and ClO3− in dry and ice-cemented soil/sediments, snow and glacier ice, and also characterized Cl− and NO3−isotopically. The data are not consistent with salt deposition in a sublimation till, nor with nuclear weapon testing fall-out, and instead point to a dominantly stratospheric source and to varying degrees of post depositional transformation depending on the substrate, from minimal alteration in bare soils to significant alteration (photodegradation and/or volatilization) in snow and glacier ice. Ionic abundances in the dry permafrost layer indicate limited vertical transport under the current climate conditions, likely due to percolation of snowmelt. Subtle changes in ClO4−/NO3− ratios and NO3− isotopic composition with depth and location may reflect both transport related fractionation and depositional history. Low molar ratios of ClO3−/ClO4− in surface soils compared to deposition and other arid systems suggest significant post depositional loss of ClO3−, possibly due to reduction by iron minerals, which may have important implications for oxy-chlorine species on Mars. Salt accumulation varies with distance along the valley and apparent accumulation times based on multiple methods range from ∼10 to 30 kyr near the glacier to 70–200 kyr near the valley mouth. The relatively young age

  13. Deposition, Accumulation, and Alteration of Cl(-), NO3(-), ClO4(-) and ClO3(-) Salts in a Hyper-Arid Polar Environment: Mass Balance and Isotopic Constraints

    NASA Technical Reports Server (NTRS)

    Jackson, Andrew; Davila, Alfonso F.; Boehlke, J. K.; Sturchio, Neil C.; Sevanthi, Ritesh; Estrada, Nubia; Brundrette, Megan; Lacell, Denis; McKay, Christopher P.; Poghosyan, Armen; hide

    2016-01-01

    The salt fraction in permafrost soils/sediments of the McMurdo Dry Valleys (MDV) of Antarctica can be used as a proxy for cold desert geochemical processes and paleoclimate reconstruction. Previous analyses of the salt fraction in MDV permafrost soils have largely been conducted in coastal regions where permafrost soils are variably affected by aqueous processes and mixed inputs from marine and stratospheric sources. We expand upon this work by evaluating permafrost soil/sediments in University Valley, located in the ultraxerous zone where both liquid water transport and marine influences are minimal. We determined the abundances of Cl(-), NO3(-, ClO4(-)and ClO3(-)in dry and ice-cemented soil/sediments, snow and glacier ice, and also characterized Cl(-) and NO3(-) isotopically. The data are not consistent with salt deposition in a sublimation till, nor with nuclear weapon testing fall-out, and instead point to a dominantly stratospheric source and to varying degrees of post depositional transformation depending on the substrate, from minimal alteration in bare soils to significant alteration (photodegradation and/or volatilization) in snow and glacier ice. Ionic abundances in the dry permafrost layer indicate limited vertical transport under the current climate conditions, likely due to percolation of snowmelt. Subtle changes in ClO4(-)/NO3(-) ratios and NO3(-) isotopic composition with depth and location may reflect both transport related fractionation and depositional history. Low molar ratios of ClO3(-)/ClO4(-) in surface soils compared to deposition and other arid systems suggest significant post depositional loss of ClO3(-), possibly due to reduction by iron minerals, which may have important implications for oxy-chlorine species on Mars. Salt accumulation varies with distance along the valley and apparent accumulation times based on multiple methods range from approximately 10 to 30 kyr near the glacier to 70-200 kyr near the valley mouth. The relatively

  14. Deposition, accumulation, and alteration of Cl-, NO3-, ClO4- and ClO3- salts in a hyper-arid polar environment: Mass balance and isotopic constraints

    NASA Astrophysics Data System (ADS)

    Jackson, Andrew; Davila, Alfonso F.; Böhlke, John Karl; Sturchio, Neil C.; Sevanthi, Ritesh; Estrada, Nubia; Brundrett, Maeghan; Lacelle, Denis; McKay, Christopher P.; Poghosyan, Armen; Pollard, Wayne; Zacny, Kris

    2016-06-01

    The salt fraction in permafrost soils/sediments of the McMurdo Dry Valleys (MDV) of Antarctica can be used as a proxy for cold desert geochemical processes and paleoclimate reconstruction. Previous analyses of the salt fraction in MDV permafrost soils have largely been conducted in coastal regions where permafrost soils are variably affected by aqueous processes and mixed inputs from marine and stratospheric sources. We expand upon this work by evaluating permafrost soil/sediments in University Valley, located in the ultraxerous zone where both liquid water transport and marine influences are minimal. We determined the abundances of Cl-, NO3-, ClO4- and ClO3- in dry and ice-cemented soil/sediments, snow and glacier ice, and also characterized Cl- and NO3- isotopically. The data are not consistent with salt deposition in a sublimation till, nor with nuclear weapon testing fall-out, and instead point to a dominantly stratospheric source and to varying degrees of post depositional transformation depending on the substrate, from minimal alteration in bare soils to significant alteration (photodegradation and/or volatilization) in snow and glacier ice. Ionic abundances in the dry permafrost layer indicate limited vertical transport under the current climate conditions, likely due to percolation of snowmelt. Subtle changes in ClO4-/NO3- ratios and NO3- isotopic composition with depth and location may reflect both transport related fractionation and depositional history. Low molar ratios of ClO3-/ClO4- in surface soils compared to deposition and other arid systems suggest significant post depositional loss of ClO3-, possibly due to reduction by iron minerals, which may have important implications for oxy-chlorine species on Mars. Salt accumulation varies with distance along the valley and apparent accumulation times based on multiple methods range from ∼10 to 30 kyr near the glacier to 70-200 kyr near the valley mouth. The relatively young age of the salts and

  15. Crystal accumulation in the Hanford Waste Treatment Plant high level waste melter: Summary of 2017 experiments

    SciTech Connect

    Fox, K.; Fowley, M.

    A full-scale, transparent mock-up of the Hanford Tank Waste Treatment and Immobilization Project High Level Waste glass melter riser and pour spout has been constructed to allow for testing with visual feedback of particle settling, accumulation, and resuspension when operating with a controlled fraction of crystals in the glass melt. Room temperature operation with silicone oil and magnetite particles simulating molten glass and spinel crystals, respectively, allows for direct observation of flow patterns and settling patterns. The fluid and particle mixture is recycled within the system for each test.

  16. The accumulation of elements in plants growing spontaneously on small heaps left by the historical Zn-Pb ore mining.

    PubMed

    Stefanowicz, Anna M; Stanek, Małgorzata; Woch, Marcin W; Kapusta, Paweł

    2016-04-01

    The study evaluated the levels of nine metals, namely Ca, Cd, Fe, K, Mg, Mn, Pb, Tl, and Zn, in soils and tissues of ten plant species growing spontaneously on heaps left by historical mining for Zn-Pb ores. The concentrations of Cd, Pb, Tl, and Zn in heap soils were much higher than in control soils. Plants growing on heaps accumulated excessive amounts of these elements in tissues, on average 1.3-52 mg Cd kg(-1), 9.4-254 mg Pb kg(-1), 0.06-23 mg Tl kg(-1) and 134-1479 mg Zn kg(-1) in comparison to 0.5-1.1 mg Cd kg(-1), 2.1-11 mg Pb kg(-1), 0.02-0.06 mg Tl kg(-1), and 23-124 mg Zn kg(-1) in control plants. The highest concentrations of Cd, Pb, and Zn were found in the roots of Euphorbia cyparissias, Fragaria vesca, and Potentilla arenaria, and Tl in Plantago lanceolata. Many species growing on heaps were enriched in K and Mg, and depleted in Ca, Fe, and Mn. The concentrations of all elements in plant tissues were dependent on species, organ (root vs. shoot), and species-organ interactions. Average concentrations of Ca, K, and Mg were generally higher in shoots than in roots or similar in the two organs, whereas Cd, Fe, Pb, Tl, and Zn were accumulated predominantly in the roots. Our results imply that heaps left by historical mining for Zn-Pb ores may pose a potential threat to the environment and human health.

  17. Monochromatic green light induces an aberrant accumulation of geranylgeranyled chlorophylls in plants.

    PubMed

    Materová, Zuzana; Sobotka, Roman; Zdvihalová, Barbora; Oravec, Michal; Nezval, Jakub; Karlický, Václav; Vrábl, Daniel; Štroch, Michal; Špunda, Vladimír

    2017-07-01

    Light quality is an important environmental factor affecting the biosynthesis of photosynthetic pigments whose production seems to be affected not only quantitatively but also qualitatively. In this work, we set out to identify unusual pigment detected in leaves of barley (Hordeum vulgare L.) and explain its presence in plants grown under monochromatic green light (GL; 500-590 nm). The chromatographic analysis (HPLC-DAD) revealed that a peak belonging to this unknown pigment is eluted between chlorophyll (Chl) a and b. This pigment exhibited the same absorption spectrum and fluorescence excitation and emission spectra as Chl a. It was negligible in control plants cultivated under white light of the same irradiance (photosynthetic photon flux density of 240 μmol m -2  s -1 ). Mass spectrometry analysis of this pigment (ions m/z = 889 [M-H] - ; m/z = 949 [M+acetic acid-H] - ) indicates that it is Chl a with a tetrahydrogengeranylgeraniol side chain (containing two double bonds in a phytyl side chain; Chl a THGG ), which is an intermediate in Chl a synthesis. In plants grown under GL, the proportion of Chl a THGG to total Chl content rose to approximately 8% and 16% after 7 and 14 days of cultivation, respectively. Surprisingly, plants cultivated under GL exhibited drastically increased concentration of the enzyme geranylgeranyl reductase, which is responsible for the reduction of phytyl chain double bonds in the Chl synthesis pathway. This indicates impaired activity of this enzyme in GL-grown plants. A similar effect of GL on Chl synthesis was observed for distinct higher plant species. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Host-pathogen interactions. XV. Fungal glucans which elicit phytoalexin accumulation in soybean also elicit the accumulation of phytoalexins in other plants

    SciTech Connect

    Cline, K.; Wade, M.; Albersheim, P.

    1978-01-01

    A ..beta..-glucan isolated from the mycelial walls of Phytophthora megasperma var. sojae and a glucan purified from yeast extract stimulate the accumulation of phytoalexins in red kidney bean, Phaseolus vulgaris, and stimulate the accumulation of the phytoalexin, rishitin, in potato tubers, Solanum tuberosum. Treatment of kidney bean cotyledons with the glucan elicitors resulted in the accumulation of at least five fungistatic compounds. These compounds migrate during thin layer chromatography identically to the fungistatic compounds which accumulate in kidney beans which have been inoculated with Colletotrichum lindemuthianum, a fungal pathogen of kidney beans. Potatoes accumulate as much as 29 micrograms ofmore » rishitin per gram fresh weight following exposure to the glucan from Phytophthora megasperma va. sojae and as much as 19.5 micrograms of rishitin per gram fresh weight following exposure to yeast glucan.« less

  19. Influence of sulfur on the accumulation of mercury in rice plant (Oryza sativa L.) growing in mercury contaminated soils.

    PubMed

    Li, Yunyun; Zhao, Jiating; Guo, Jingxia; Liu, Mengjiao; Xu, Qinlei; Li, Hong; Li, Yu-Feng; Zheng, Lei; Zhang, Zhiyong; Gao, Yuxi

    2017-09-01

    Sulfur (S) is an essential element for plant growth and its biogeochemical cycling is strongly linked to the species of heavy metals in soil. In this work, the effects of S (sulfate and elemental sulfur) treatment on the accumulation, distribution and chemical forms of Hg in rice growing in Hg contaminated soil were investigated. It was found that S could promote the formation of iron plaque on the root surface and decrease total mercury (T-Hg) and methylmercury (MeHg) accumulation in rice grains, straw, and roots. Hg in the root was dominated in the form of RS-Hg-SR. Sulfate treatment increased the percentage of RS-Hg-SR to T-Hg in the rice root and changed the Hg species in soil. The dominant Hg species (70%) in soil was organic substance bound fractions. Sulfur treatment decreased Hg motility in the rhizosphere soils by promoting the conversion of RS-Hg-SR to HgS. This study is significant since it suggests that low dose sulfur treatment in Hg-containing water irrigated soil can decrease both T-Hg and MeHg accumulation in rice via inactivating Hg in the soil and promoting the formation of iron plaque in rice root, which may reduce health risk for people consuming those crops. Copyright © 2017. Published by Elsevier Ltd.

  20. Control of Aspergillus section Flavi growth and aflatoxin accumulation by plant essential oils.

    PubMed

    Bluma, R; Amaiden, M R; Daghero, J; Etcheverry, M

    2008-07-01

    The antifungal effect of Pimpinella anisum (anise), Pëumus boldus (boldus), Mentha piperita (peppermint), Origanum vulgare (oregano) and Minthosthachys verticillata (peperina) essential oils against Aspergillus section Flavi (two isolates of Aspergillus parasiticus and two isolates of Aspergillus flavus) was evaluated in maize meal extract agar at 0.982 and 0.955 water activities, at 25 degrees C. The percentage of germination, germ-tube elongation rate, growth rate and aflatoxin B(1) (AFB(1)) accumulation at different essential oils concentrations were evaluated. Anise and boldus essential oils were the most inhibitory at 500 mg kg(-1) to all growth parameters of the fungus. These essential oils inhibited the percentage of germination, germ-tube elongation rate and fungal growth. AFB(1) accumulation was completely inhibited by anise, boldus and oregano essential oils. Peperina and peppermint essential oils inhibited AFB(1) production by 85-90% in all concentrations assayed. Anise and boldus essential oils could be considered as effective fungitoxicans for Aspergillus section flavi. Our results suggest that these phytochemical compounds could be used alone or in conjunction with other substances to control the presence of aflatoxigenic fungi in stored maize.

  1. Impacts of rapeseed dregs on Cd availability in contaminated acid soil and Cd translocation and accumulation in rice plants.

    PubMed

    Yang, Wen-Tao; Gu, Jiao-Feng; Zou, Jia-Ling; Zhou, Hang; Zeng, Qing-Ru; Liao, Bo-Han

    2016-10-01

    The objective of the present study was to investigate the effects of rapeseed dregs (RSD, a commonly organic fertilizer in rural China) at application rates of 0, 0.75, 1.5, and 3.0 % on Cd availability in soil and its accumulation in rice plants (Oryza sativa L., Xiangwanxian 12 # , and Weiyou 46 # ) by means of a pot experiment. The results showed that application of RSD resulted in a sharp decrease in the soil TCLP-extractable Cd content. However, the soil TCLP-extractable Cd content in amended soil gradually increased during the rice growing period. Application of RSD significantly increased Cd transport from root to shoot and the amount of Cd accumulated in the aerial part. RSD was an effective organic additive for increasing rice grain yield, but total Cd content in rice grain was also increased. At an application rate of 1.5-3.0 % RSD, the total Cd content in Weiyou 46 # brown rice was 0.27-0.31 mg kg -1 , which exceeded the standard safe limit (0.2 mg kg -1 ) and was also higher than that of Xiangwanxian 12 # (0.04-0.14 mg kg -1 ). Therefore, Weiyou 46 # had a higher dietary risk than Xiangwanxian 12 # with RSD application. We do not recommend planting Weiyou 46 # and applying more than 0.75 % RSD in Cd-contaminated paddy fields.

  2. Removal of triclocarban and triclosan in a wastewater treatment plant and their accumulations onto the solids

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to investigate the fate of Triclosan (5-chloro-2-[2,4-dichloro-phenoxy]-phenol (TCS) and triclocarban (N-(4-chlorophenyl)-N’-(3,4-dichlorophenyl)urea) (TCC) within a wastewater treatment plant (WWTP). TCS and TCC are bactericidal compounds that have been detected in ...

  3. In-Situ Decontamination of Metal-Polluted Soils by Metal-Accumulator Plants

    DTIC Science & Technology

    1993-04-01

    McGrath & R. D. Reeves (1993). In situ phytoremediation of metal-contaminated soils: potentials and future prospects. Paper delivered to the...their Germani , and Bill territory. Agriculture has gobbled Berti have planted up more than 90 percent of the kit more of the weeds foxes’ former

  4. Integrating Phytoextraction and Biofortification: Fungal Accumulation of Selenium in Plant Materials from Phytoremediation of Agricultural Drainage

    USDA-ARS?s Scientific Manuscript database

    The phytomanagement of Se-polluted soil and water is one strategy that may be environmentally sustainable and cost-effective for soils and waters enriched with natural-occurring Se. Several plant species, including Indian mustard (Brassica juncea), pickleweed (Salicornia bigelovii), and other salt/S...

  5. Directed plant cell-wall accumulation of iron: embedding co-catalyst for efficient biomass conversion

    Treesearch

    Chien-Yuan Lin; Joseph E. Jakes; Bryon S. Donohoe; Peter N. Ciesielski; Haibing Yang; Sophie-Charlotte Gleber; Stefan Vogt; Shi-You Ding; Wendy A. Peer; Angus S. Murphy; Maureen C. McCann; Michael E. Himmel; Melvin P. Tucker; Hui Wei

    2016-01-01

    Background: Plant lignocellulosic biomass is an abundant, renewable feedstock for the production of biobased fuels and chemicals. Previously, we showed that iron can act as a co-catalyst to improve the deconstruction of lignocellulosic biomass. However, directly adding iron catalysts into biomass prior to pretreatment is diffusion limited,...

  6. Effects of arsenic on nutrient accumulation and distribution in selected ornamental plants

    USDA-ARS?s Scientific Manuscript database

    In Miami, Florida 95% of residential and 33% commercial soils exceed the Florida Department of Environmental Protection goals for cleanup of arsenic contamination. Ornamental plants have not been fully investigated as a mechanism for phytoremediation of low level As contaminated soil. This study eva...

  7. Effects of Mulching Tolerant Plant Straw on Soil Surface on Growth and Cadmium Accumulation of Galinsoga parviflora

    PubMed Central

    Lin, Lijin; Liao, Ming’an; Ren, Yajun; Luo, Li; Zhang, Xiao; Yang, Daiyu; He, Jing

    2014-01-01

    Pot and field experiments were conducted to study the effects of mulching with straw of cadmium (Cd) tolerant plants (Ranunculus sieboldii, Mazus japonicus, Clinopodium confine and Plantago asiatica) on growth and Cd accumulation of Galinsoga parviflora in Cd-contaminated soil. In the pot experiment, mulching with M. japonicus straw increased the root biomass, stem biomass, leaf biomass, shoot biomass, plant height and activities of antioxidant enzymes (superoxide dismutase, peroxidase and catalase) of G. parviflora compared with the control, whereas mulching with straws of R. sieboldii, C. confine and P. asiatica decreased these parameters. Straws of the four Cd-tolerant plants increased the Cd content in roots of G. parviflora compared with the control. However, only straws of M. japonicus and P. asiatica increased the Cd content in shoots of G. parviflora, reduced the soil pH, and increased the soil exchangeable Cd concentration. Straw of M. japonicus increased the amount of Cd extraction in stems, leaves and shoots of G. parviflora by 21.11%, 29.43% and 24.22%, respectively, compared with the control, whereas straws of the other three Cd-tolerant plants decreased these parameters. In the field experiment, the M. japonicus straw also increased shoot biomass, Cd content in shoots, and amount of Cd extraction in shoots of G. parviflora compared with the control. Therefore, straw of M. japonicus can be used to improve the Cd extraction ability of G. parviflora from Cd-contaminated soil. PMID:25490210

  8. Significant accumulation of C(4)-specific pyruvate, orthophosphate dikinase in a C(3) plant, rice.

    PubMed

    Fukayama, H; Tsuchida, H; Agarie, S; Nomura, M; Onodera, H; Ono, K; Lee, B H; Hirose, S; Toki, S; Ku, M S; Makino, A; Matsuoka, M; Miyao, M

    2001-11-01

    The C(4)-Pdk gene encoding the C(4) enzyme pyruvate, orthophosphate dikinase (PPDK) of maize (Zea mays cv Golden Cross Bantam) was introduced into the C(3) plant, rice (Oryza sativa cv Kitaake). When the intact maize C(4)-Pdk gene, containing its own promoter and terminator sequences and exon/intron structure, was introduced, the PPDK activity in the leaves of some transgenic lines was greatly increased, in one line reaching 40-fold over that of wild-type plants. In a homozygous line, the PPDK protein accounted for 35% of total leaf-soluble protein or 16% of total leaf nitrogen. In contrast, introduction of a chimeric gene containing the full-length cDNA of the maize PPDK fused to the maize C(4)-Pdk promoter or the rice Cab promoter only increased PPDK activity and protein level slightly. These observations suggest that the intron(s) or the terminator sequence of the maize gene, or a combination of both, is necessary for high-level expression. In maize and transgenic rice plants carrying the intact maize gene, the level of transcript in the leaves per copy of the maize C(4)-Pdk gene was comparable, and the maize gene was expressed in a similar organ-specific manner. These results suggest that the maize C(4)-Pdk gene behaves in a quantitatively and qualitatively similar way in maize and transgenic rice plants. The activity of the maize PPDK protein expressed in rice leaves was light/dark regulated as it is in maize. This is the first reported evidence for the presence of an endogenous PPDK regulatory protein in a C(3) plant.

  9. Tissue-Specific, Development-Dependent Phenolic Compounds Accumulation Profile and Gene Expression Pattern in Tea Plant [Camellia sinensis

    PubMed Central

    Li, Weiwei; Zhao, Lei; Meng, Fei; Wang, Yunsheng; Tan, Huarong; Yang, Hua; Wei, Chaoling; Wan, Xiaochun; Gao, Liping; Xia, Tao

    2013-01-01

    Phenolic compounds in tea plant [Camellia sinensis (L.)] play a crucial role in dominating tea flavor and possess a number of key pharmacological benefits on human health. The present research aimed to study the profile of tissue-specific, development-dependent accumulation pattern of phenolic compounds in tea plant. A total of 50 phenolic compounds were identified qualitatively using liquid chromatography in tandem mass spectrometry technology. Of which 29 phenolic compounds were quantified based on their fragmentation behaviors. Most of the phenolic compounds were higher in the younger leaves than that in the stem and root, whereas the total amount of proanthocyanidins were unexpectedly higher in the root. The expression patterns of 63 structural and regulator genes involved in the shikimic acid, phenylpropanoid, and flavonoid pathways were analyzed by quantitative real-time polymerase chain reaction and cluster analysis. Based on the similarity of their expression patterns, the genes were classified into two main groups: C1 and C2; and the genes in group C1 had high relative expression level in the root or low in the bud and leaves. The expression patterns of genes in C2-2-1 and C2-2-2-1 groups were probably responsible for the development-dependent accumulation of phenolic compounds in the leaves. Enzymatic analysis suggested that the accumulation of catechins was influenced simultaneously by catabolism and anabolism. Further research is recommended to know the expression patterns of various genes and the reason for the variation in contents of different compounds in different growth stages and also in different organs. PMID:23646127

  10. Diverging temperature responses of CO2 assimilation and plant development explain the overall effect of temperature on biomass accumulation in wheat leaves and grains.

    PubMed

    Collins, Nicholas C; Parent, Boris

    2017-01-09

    There is a growing consensus in the literature that rising temperatures influence the rate of biomass accumulation by shortening the development of plant organs and the whole plant and by altering rates of respiration and photosynthesis. A model describing the net effects of these processes on biomass would be useful, but would need to reconcile reported differences in the effects of night and day temperature on plant productivity. In this study, the working hypothesis was that the temperature responses of CO 2 assimilation and plant development rates were divergent, and that their net effects could explain observed differences in biomass accumulation. In wheat (Triticum aestivum) plants, we followed the temperature responses of photosynthesis, respiration and leaf elongation, and confirmed that their responses diverged. We measured the amount of carbon assimilated per "unit of plant development" in each scenario and compared it to the biomass that accumulated in growing leaves and grains. Our results suggested that, up to a temperature optimum, the rate of any developmental process increased with temperature more rapidly than that of CO 2 assimilation and that this discrepancy, summarised by the CO 2 assimilation rate per unit of plant development, could explain the observed reductions in biomass accumulation in plant organs under high temperatures. The model described the effects of night and day temperature equally well, and offers a simple framework for describing the effects of temperature on plant growth. Published by Oxford University Press on behalf of the Annals of Botany Company.

  11. Diverging temperature responses of CO2 assimilation and plant development explain the overall effect of temperature on biomass accumulation in wheat leaves and grains

    PubMed Central

    Lohraseb, Iman; Collins, Nicholas C.

    2017-01-01

    Abstract There is a growing consensus in the literature that rising temperatures influence the rates of biomass accumulation by shortening the development of plant organs and the whole plant and by altering the rates of respiration and photosynthesis. A model describing the net effects of these processes on biomass would be useful, but would need to reconcile reported differences in the effects of night and day temperature on plant productivity. In this study, the working hypothesis was that the temperature responses of CO2 assimilation and plant development rates were divergent, and that their net effects could explain observed differences in biomass accumulation. In wheat (Triticum aestivum) plants, we followed the temperature responses of photosynthesis, respiration and leaf elongation, and confirmed that their responses diverged. We measured the amount of carbon assimilated per ‘unit of plant development’ in each scenario and compared it to the biomass that accumulated in growing leaves and grains. Our results suggested that, up to a temperature optimum, the rate of any developmental process increased with temperature more rapidly than that of CO2 assimilation and that this discrepancy, summarised by the CO2 assimilation rate per unit of plant development, could explain the observed reductions in biomass accumulation in plant organs under high temperatures. The model described the effects of night and day temperature equally well, and offers a simple framework for describing the effects of temperature on plant growth. PMID:28069595

  12. Cadmium accumulation and tolerance of Macleaya cordata: a newly potential plant for sustainable phytoremediation in Cd-contaminated soil.

    PubMed

    Nie, Jian; Liu, Yunguo; Zeng, Guangming; Zheng, Bohong; Tan, Xiaofei; Liu, Huan; Xie, Jieli; Gan, Chao; Liu, Wei

    2016-05-01

    Heavy metal pollution is a major concern of the public due to their threats to the safety of food chains. A 60-day pot experiment was conducted using Macleaya cordata as plant material to investigate the phytoremediation potential and anti-oxidative responses of M. cordata under different Cd stress. Significant growth inhibition phenomenon and toxic symptoms were not detected in the experiment. The high biomass of the plant provided high accumulation capacity for Cd with an average dry weight of 3.6 g. The maximum extraction amount of Cd was 393 μg·plant(-1), suggesting that this species had potential for phytoremediation of Cd-contaminated soil. A slight increase of chlorophyll (CHL) content was observed in Cd10 treatment. The plant was confirmed to have relatively high tolerance to the Cd stress on the basis of tolerance indexes (TI), relative water content, and CHLa/CHLb ratio. M. cordata could maintain high level of superoxide dismutase (SOD) activity under Cd stress, indicating strong tolerance capacity for reactive oxygen species (ROS) in plant cells. Catalase (CAT) activity show a certain range of decline in the experiment compare to the control. And peroxidase (POD) activity in leaves changed irregularly when compared to the control. The malondialdehyde (MDA) content increased as Cd concentration elevated compared to the control. In addition, as an inedible crop with relatively high economic value, M. cordata have shown the advantage of high biomass and high tolerance under Cd stress, which can provide a new plant resource for sustainable phytoremediation.

  13. Plasticity of Sorghum Stem Biomass Accumulation in Response to Water Deficit: A Multiscale Analysis from Internode Tissue to Plant Level

    PubMed Central

    Perrier, Lisa; Rouan, Lauriane; Jaffuel, Sylvie; Clément-Vidal, Anne; Roques, Sandrine; Soutiras, Armelle; Baptiste, Christelle; Bastianelli, Denis; Fabre, Denis; Dubois, Cécile; Pot, David; Luquet, Delphine

    2017-01-01

    Sorghum is increasingly used as a biomass crop worldwide. Its genetic diversity provides a large range of stem biochemical composition suitable for various end-uses as bioenergy or forage. Its drought tolerance enables it to reasonably sustain biomass production under water limited conditions. However, drought effect on the accumulation of sorghum stem biomass remains poorly understood which limits progress in crop improvement and management. This study aimed at identifying the morphological, biochemical and histological traits underlying biomass accumulation in the sorghum stem and its plasticity in response to water deficit. Two hybrids (G1, G4) different in stem biochemical composition (G4, more lignified, less sweet) were evaluated during 2 years in the field in Southern France, under two water treatments differentiated during stem elongation (irrigated; 1 month dry-down until an average soil water deficit of -8.85 bars). Plant phenology was observed weekly. At the end of the water treatment and at final harvest, plant height, stem and leaf dry-weight and the size, biochemical composition and tissue histology of internodes at 2–4 positions along the stem were measured. Stem biomass accumulation was significantly reduced by drought (in average 42% at the end of the dry-down). This was due to the reduction of the length, but not diameter, of the internodes expanded during water deficit. These internodes had more soluble sugar but lower lignin and cellulose contents. This was associated with a decrease of the areal proportion of lignified cell wall in internode outer zone whereas the areal proportion of this zone was not affected. All internodes for a given genotype and environment followed a common histochemical dynamics. Hemicellulose content and the areal proportion of inner vs. outer internode tissues were set up early during internode growth and were not drought responsive. G4 exhibited a higher drought sensitivity than G1 for plant height only. At final

  14. Accumulation of Metals and Boron in Phragmites australis Planted in Constructed Wetlands Polishing Real Electroplating Wastewater.

    PubMed

    Sochacki, Adam; Guy, Bernard; Faure, Olivier; Surmacz-Górska, Joanna

    2015-01-01

    The concentration of metals (Al, Cu, Fe, Mn, Ni, Zn) and B were determined in the above- and belowground biomass of Phragmites australis collected from the microcosm constructed wetland system used for the polishing of real electroplating wastewater. Translocation factor and bioconcentration factor were determined. Pearson correlation test was used to determine correlation between metal concentration in substrate and above- and belowground parts of Phragmites australis. The obtained results suggested that Phragmites australis did not play a major role as an accumulator of metals. It was observed also that the substrate could have exerted an effect on the translocation of Ni, Cu, Zn and Mn. The analysed concentrations of metals and B in biomass were in the range or even below the concentrations reported in the literature with the exception of Ni. The aboveground biomass was found suitable as a composting input in terms of metals concentrations.

  15. Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions

    PubMed Central

    Hahlbrock, Klaus; Bednarek, Pawel; Ciolkowski, Ingo; Hamberger, Björn; Heise, Andreas; Liedgens, Hiltrud; Logemann, Elke; Nürnberger, Thorsten; Schmelzer, Elmon; Somssich, Imre E.; Tan, Jianwen

    2003-01-01

    Disease resistance of plants involves two distinct forms of chemical communication with the pathogen: recognition and defense. Both are essential components of a highly complex, multifaceted defense response, which begins with non-self recognition through the perception of pathogen-derived signal molecules and results in the production, inter alia, of antibiotically active compounds (phytoalexins) and cell wall-reinforcing material around the infection site. To elucidate the molecular details and the genomic basis of the underlying chains of events, we used two different experimental systems: suspension-cultured cells of Petroselinum crispum (parsley) and wild-type as well as mutant plants of Arabidopsis thaliana. Particular emphasis was placed on the structural and functional identification of signal and defense molecules, and on the mechanisms of signal perception, intracellular signal transduction and transcriptional reprogramming, including the structural and functional characterization of the responsible cis-acting gene promoter elements and transacting regulatory proteins. Comparing P. crispum and A. thaliana allows us to distinguish species-specific defense mechanisms from more universal responses, and furthermore provides general insights into the nature of the interactions. Despite the complexity of the pathogen defense response, it is experimentally tractable, and knowledge gained so far has opened up a new realm of gene technology-assisted strategies for resistance breeding of crop plants. PMID:12704242

  16. [Energy accumulation and allocation of main plant populations in Aneurolepidium chinense grassland in Songnen Plain].

    PubMed

    Qu, Guohui; Wen, Mingzhang; Guo, Jixun

    2003-05-01

    The calorific value of plants is dependent on their biological characteristics and energy-containing materials. The allocation of calorific value in different organs of Aneurolepidium chinese, Calamagrostic epigejos, Puccinellia tenuiflora and Chloris virgata was inflorescence > leaf > stem > dead standing. The seasonal dynamics of standing crop energy of aboveground part of four plant populations showed single-peak curve, and the energy production was Aneurolepidium chinense > Calamagrostic epigejos > Chloris virgata > Puccinellia tenuiflora. Energy increasing rate showed double-peak curve, with the first peak at heading stage and the second peak at maturing stage of seeds. Energy increasing rate was negative at the final stage of growth. The horizontal distribution of energy of aboveground part was that the allocation ratio of different organs at different growth stages was different. There existed a similar trend for vertical distribution of energy among four plant populations, i.e., was the vertical distribution of energy of aboveground part showed a tower shape, with the maximum value in 10-30 cm height. The vertical distribution of energy of underground part showed an inverted tower shape from soil surface to deeper layer, with the maximum value in 0-10 cm depth. The standing crop energy of underground part was about 3-4 times than that of aboveground part.

  17. Accumulation of K{sup +} and Cs{sup +} in Tropical Plant Species

    SciTech Connect

    Velasco, H.; Rizzotto, M.; Lacerda, T.

    2010-08-04

    Concentrations of K{sup +} and {sup 137}Cs{sup +} in tissues of the Citrus aurantifolia were measured both by gamma spectrometry and neutron activation analysis, aiming to understand the behavior of monovalent inorganic cations in plants as well as its capability to store these elements. In contrast to K{sup +},Cs{sup +} ions are not essential elements to plants, what might explain the difference in bioavailability. However, our results have shown that {sup 137}Cs{sup +} is positively correlated to {sup 40}K{sup +} concentration within tropical plant species, suggesting that these elements might be assimilated in a similar way, and that they passmore » through the biological cycle together. A simple mathematical model was also proposed to describe the temporal evolution of {sup 40}K activity concentration in such tropical woody fruit species. This model exhibited close agreement with the {sup 40}K experimental results in the fruit ripening processes of lemon trees.« less

  18. Arabinogalactan Proteins Accumulate in the Cell Walls of Searching Hyphae of the Stem Parasitic Plants, Cuscuta campestris and Cuscuta japonica.

    PubMed

    Hozumi, Akitaka; Bera, Subhankar; Fujiwara, Daiki; Obayashi, Takeshi; Yokoyama, Ryusuke; Nishitani, Kazuhiko; Aoki, Koh

    2017-11-01

    Stem parasitic plants (Cuscuta spp.) develop a specialized organ called a haustorium to penetrate their hosts' stem tissues. To reach the vascular tissues of the host plant, the haustorium needs to overcome the physical barrier of the cell wall, and the parasite-host interaction via the cell wall is a critical process. However, the cell wall components responsible for the establishment of parasitic connections have not yet been identified. In this study, we investigated the spatial distribution patterns of cell wall components at a parasitic interface using parasite-host complexes of Cuscuta campestris-Arabidopsis thaliana and Cuscuta japonica-Glycine max. We focused on arabinogalactan proteins (AGPs), because AGPs accumulate in the cell walls of searching hyphae of both C. campestris and C. japonica. We found more AGPs in elongated haustoria than in pre haustoria, indicating that AGP accumulation is developmentally regulated. Using in situ hybridization, we identified five genes in C. campestris that encode hyphal-expressed AGPs that belong to the fasciclin-like AGP (FLA) family, which were named CcFLA genes. Three of the five CcFLA genes were expressed in the holdfast, which develops on the Cuscuta stem epidermis at the attachment site for the host's stem epidermis. Our results suggest that AGPs are involved in hyphal elongation and adhesion to host cells, and in the adhesion between the epidermal tissues of Cuscuta and its host. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants.

    PubMed

    Chen, Rui; Zhang, Changbo; Zhao, Yanling; Huang, Yongchun; Liu, Zhongqi

    2018-01-01

    Nano-silicon (Si) may be more effective than regular fertilizers in protecting plants from cadmium (Cd) stress. A field experiment was conducted to study the effects of nano-Si on Cd accumulation in grains and other organs of rice plants (Oryza sativa L. cv. Xiangzaoxian 45) grown in Cd-contaminated farmland. Foliar application with 5~25 mM nano-Si at anthesis stage reduced Cd concentrations in grains and rachises at maturity stage by 31.6~64.9 and 36.1~60.8%, respectively. Meanwhile, nano-Si application significantly increased concentrations of potassium (K), magnesium (Mg), and iron (Fe) in grains and rachises, but imposed little effect on concentrations of calcium (Ca), zinc (Zn), and manganese (Mn) in them. Uppermost nodes under panicles displayed much higher Cd concentration (4.50~5.53 mg kg -1 ) than other aerial organs. After foliar application with nano-Si, translocation factors (TFs) of Cd ions from the uppermost nodes to rachises significantly declined, but TFs of K, Mg, and Fe from the uppermost nodes to rachises increased significantly. High dose of nano-Si (25 mM) was more effective than low dose of nano-Si in reducing TFs of Cd from roots to the uppermost nodes and from the uppermost nodes to rachises. These findings indicate that nano-Si supply reduces Cd accumulation in grains by inhibiting translocation of Cd and, meanwhile, promoting translocation of K, Mg, and Fe from the uppermost nodes to rachises in rice plants.

  20. Hyper-X Program Status

    NASA Technical Reports Server (NTRS)

    McClinton, Charles R.; Rausch, Vincent L.; Sitz, Joel; Reukauf, Paul

    2001-01-01

    This paper provides an overview of the objectives and status of the Hyper-X program, which is tailored to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. The first Hyper-X research vehicle (HXRV), designated X-43, is being prepared at the Dryden Flight Research Center for flight at Mach 7. Extensive risk reduction activities for the first flight are completed, and non-recurring design activities for the Mach 10 X-43 (3rd flight) are nearing completion. The Mach 7 flight of the X-43, in the spring of 2001, will be the first flight of an airframe-integrated scramjet-powered vehicle. The Hyper-X program is continuing to plan follow-on activities to focus an orderly continuation of hypersonic technology development through flight research.

  1. Hyper-X Program Status

    NASA Technical Reports Server (NTRS)

    McClinton, Charles R.; Reubush, David E.; Sitz, Joel; Reukauf, Paul

    2001-01-01

    This paper provides an overview of the objectives and status of the Hyper-X program, which is tailored to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. The first Hyper-X research vehicle (HXRV), designated X-43, is being prepared at the Dryden Flight Research Center for flight at Mach 7. Extensive risk reduction activities for the first flight are completed, and non-recurring design activities for the Mach 10 X-43 (third flight) are nearing completion. The Mach 7 flight of the X-43, in the spring of 2001, will be the first flight of an airframe-integrated scramjet-powered vehicle. The Hyper-X program is continuing to plan follow-on activities to focus an orderly continuation of hypersonic technology development through flight research.

  2. Traffic-related heavy metals uptake by wild plants grow along two main highways in Hunan Province, China: effects of soil factors, accumulation ability, and biological indication potential.

    PubMed

    Zhai, Yunbo; Dai, Qingyun; Jiang, Kang; Zhu, Yun; Xu, Bibo; Peng, Chuan; Wang, Tengfei; Zeng, Guangming

    2016-07-01

    This study was performed to investigate pollution of traffic-related heavy metals (HMs-Zn, Pb, Cu, Cr, and Cd) in roadside soils and their uptake by wild plants growing along highways in Hunan Province, China. For this, we analyzed the concentration and chemical fractionation of HMs in soils and plants. Soil samples were collected with different depths in the profile and different distances from highway edge. And leaves and barks of six high-frequency plants were collected. Results of the modified European Community Bureau of Reference (BCR) showed that the mobile fraction of these HMs was in the order of Cd > Pb > Zn > Cu > Cr. A high percentage of the mobile fraction indicates Cd, Pb, and Zn were labile and available for uptake by wild plants. The total concentration and values of risk assessment code (RAC) showed that Cd was the main risk factor, which were in the range high to very high risk. The accumulation ability of HMs in plants was evaluated by the biological accumulation factor (BAF) and the metal accumulation index (MAI), and the results showed that all those plant species have good phyto-extraction ability, while accumulation capacity for most HMs plants tissues was bark > leaf. The highest MAI value (5.99) in Cinnamomum camphora (L) Presl indicates the potential for bio-monitoring and a good choice for planting along highways where there is contamination with HMs.

  3. Accumulation of N-Acetylglucosamine Oligomers in the Plant Cell Wall Affects Plant Architecture in a Dose-Dependent and Conditional Manner1[W][OPEN

    PubMed Central

    Vanholme, Bartel; Vanholme, Ruben; Turumtay, Halbay; Goeminne, Geert; Cesarino, Igor; Goubet, Florence; Morreel, Kris; Rencoret, Jorge; Bulone, Vincent; Hooijmaijers, Cortwa; De Rycke, Riet; Gheysen, Godelieve; Ralph, John; De Block, Marc; Meulewaeter, Frank; Boerjan, Wout

    2014-01-01

    To study the effect of short N-acetylglucosamine (GlcNAc) oligosaccharides on the physiology of plants, N-ACETYLGLUCOSAMINYLTRANSFERASE (NodC) of Azorhizobium caulinodans was expressed in Arabidopsis (Arabidopsis thaliana). The corresponding enzyme catalyzes the polymerization of GlcNAc and, accordingly, β-1,4-GlcNAc oligomers accumulated in the plant. A phenotype characterized by difficulties in developing an inflorescence stem was visible when plants were grown for several weeks under short-day conditions before transfer to long-day conditions. In addition, a positive correlation between the oligomer concentration and the penetrance of the phenotype was demonstrated. Although NodC overexpression lines produced less cell wall compared with wild-type plants under nonpermissive conditions, no indications were found for changes in the amount of the major cell wall polymers. The effect on the cell wall was reflected at the transcriptome level. In addition to genes encoding cell wall-modifying enzymes, a whole set of genes encoding membrane-coupled receptor-like kinases were differentially expressed upon GlcNAc accumulation, many of which encoded proteins with an extracellular Domain of Unknown Function26. Although stress-related genes were also differentially expressed, the observed response differed from that of a classical chitin response. This is in line with the fact that the produced chitin oligomers were too small to activate the chitin receptor-mediated signal cascade. Based on our observations, we propose a model in which the oligosaccharides modify the architecture of the cell wall by acting as competitors in carbohydrate-carbohydrate or carbohydrate-protein interactions, thereby affecting noncovalent interactions in the cell wall or at the interface between the cell wall and the plasma membrane. PMID:24664205

  4. Evaluation of heavy metal and polycyclic aromatic hydrocarbons accumulation in plants from typical industrial sites: potential candidate in phytoremediation for co-contamination.

    PubMed

    Sun, Lu; Liao, Xiaoyong; Yan, Xiulan; Zhu, Ganghui; Ma, Dong

    2014-11-01

    The heavy metal and polycyclic aromatic hydrocarbons (PAHs) contents were evaluated in surface soil and plant samples of 18 wild species collected from 3 typical industrial sites in South Central China. The accumulative characteristics of the plant species for both heavy metal and PAHs were discussed. The simultaneous accumulation of heavy metal and PAHs in plant and soil was observed at all the investigated sites, although disparities in spatial distributions among sites occurred. Both plant and soil samples were characterized by high accumulation for heavy metal at smelting site, moderate enrichment at coke power and coal mining sites, whereas high level of PAHs (16 priority pollutants according to US Environmental Protection Agency) at coke power site, followed sequentially by coal mining and smelting sites. Based on the differences of heavy metal and PAH accumulation behaviors of the studied plant species, heavy metal and PAH accumulation strategies were suggested: Pteris vittata L. and Pteris cretica L. for As and PAHs, Boehmeria nivea (L.) Gaud for Pb, As, and PAHs, and Miscanthus floridulu (Labnll.) Warb for Cu and PAHs. These native plant species could be proposed as promising materials for heavy metal and PAHs combined pollution remediation.

  5. Effects of Warming on Chlorophyll Degradation and Carbohydrate Accumulation of Alpine Herbaceous Species during Plant Senescence on the Tibetan Plateau

    PubMed Central

    Shi, Changguang; Sun, Geng; Zhang, Hongxuan; Xiao, Bingxue; Ze, Bai; Zhang, Nannan; Wu, Ning

    2014-01-01

    Plant senescence is a critical life history process accompanied by chlorophyll degradation and has large implications for nutrient resorption and carbohydrate storage. Although photoperiod governs much of seasonal leaf senescence in many plant species, temperature has also been shown to modulate this process. Therefore, we hypothesized that climate warming would significantly impact the length of the plant growing season and ultimate productivity. To test this assumption, we measured the effects of simulated autumn climate warming paradigms on four native herbaceous species that represent distinct life forms of alpine meadow plants on the Tibetan Plateau. Conditions were simulated in open-top chambers (OTCs) and the effects on the degradation of chlorophyll, nitrogen (N) concentration in leaves and culms, total non-structural carbohydrate (TNC) in roots, growth and phenology were assessed during one year following treatment. The results showed that climate warming in autumn changed the senescence process only for perennials by slowing chlorophyll degradation at the beginning of senescence and accelerating it in the following phases. Warming also increased root TNC storage as a result of higher N concentrations retained in leaves; however, this effect was species dependent and did not alter the growing and flowering phenology in the following seasons. Our results indicated that autumn warming increases carbohydrate accumulation, not only by enhancing activities of photosynthetic enzymes (a mechanism proposed in previous studies), but also by affecting chlorophyll degradation and preferential allocation of resources to different plant compartments. The different responses to warming can be explained by inherently different growth and phenology patterns observed among the studied species. The results implied that warming leads to changes in the competitive balance among life forms, an effect that can subsequently shift vegetation distribution and species composition

  6. Nucleoporin MOS7/Nup88 contributes to plant immunity and nuclear accumulation of defense regulators.

    PubMed

    Wiermer, Marcel; Germain, Hugo; Cheng, Yu Ti; García, Ana V; Parker, Jane E; Li, Xin

    2010-01-01

    Controlled nucleocytoplasmic trafficking is an important feature for fine-tuning signaling pathways in eukaryotic organisms. Nuclear pore complexes (NPCs) composed of nucleoporin proteins (Nups) are essential for the exchange of macromolecules across the nuclear envelope. A recent genetic screen in our laboratory identified a partial loss-of-function mutation in Arabidopsis MOS7/Nup88 that causes defects in basal immunity, Resistance (R) protein-mediated defense and systemic acquired resistance. In Drosophila and mammalian cells, exportin-mediated nuclear export of activated Rel/NFκB transcription factors is enhanced in nup88 mutants resulting in immune response failure. Consistent with Nup88 promoting nuclear retention of NFκB, our functional analyses revealed that MOS7/Nup88 is required for appropriate nuclear accumulation of the autoactivated R protein snc1, as well as the key immune regulators EDS1 and NPR1. These results suggest that controlling the nuclear concentrations of specific immune regulators is fundamental for defining defense outputs.

  7. Variations in the accumulation, localization and rate of metabolization of selenium in mature Zea mays plants supplied with selenite or selenate.

    PubMed

    Longchamp, Mélanie; Castrec-Rouelle, Maryse; Biron, Philippe; Bariac, Thierry

    2015-09-01

    Quantification of selenium bioavailability from foods is a key challenge following the discovery of the antioxidant role of this micronutrient in human health. This study presents the uptake, accumulation and rate of metabolization in mature Zea mays plants grown in hydroponic solution supplemented with selenate or selenite. Selenium content was lower in plants supplemented with selenate and accumulated mainly in the leaves compared with selenite-treated plants where the selenium was retained in the roots. Selenite-treated grains accumulated more selenium. Selenate was metabolized less than selenite in whole plants, but in grains selenium was present exclusively as organic selenium compounds. For humans, the bioavailability of organic selenium was evaluated at 90% compared with only 50% for inorganic forms. Our results show that the potential for selenium bioavailability is increased with selenite treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effects of acidification on metal accumulation by aquatic plants and invertebrates. 1. Constructed wetlands

    SciTech Connect

    Albers, P.H.; Camardese, M.B.

    1993-06-01

    Compared were concentrations of Al,Cd,Ca,Cu,Fe,Hg,Pb,Mg,Mn,Ni,P, and Zn in water, plants and aquatic insects of three acidified (pH [approximately] 5.0) and three nonacidified (pH [approximately] 6.5) constructed wetlands. Concentrations of Zn in water and bur-reed (Sparganium americanum) were higher in acidified wetlands than in nonacidified wetlands. Floating nonrooted plants contained mean concentrations of Fe, Mg, and Mn that were higher than recommended maximum levels for poultry feed. The mean concentrations of all metals in insects were below recommended maximum levels for poultry feed and below levels that cause toxic effects in wild birds. Smaller than expected increases of metal concentrations inmore » the water of acidified wetlands were probably due to limited mobilization of metals from the sediments and insignificant changes in sedimentation of aqueous metals. Calcium was lower in acidified than in nonacidified wetland water, but the Ca content of insects and bur-reed was not lower. Low concentrations of Ca in aquatic insects from both groups of wetlands indicated that calcium-rich crustaceans and mollusks are probably important to female waterfowl and their young during the spring, when invertebrates make up the majority of the diet. Although toxic effects from metal ingestion seem to be unlikely consequences of wetland acidification, the adverse effect of low pH on the occurrence of crustaceans and mollusks could threatened egg production and development of young.« less

  9. Aluminium localization in root tips of the aluminium-accumulating plant species buckwheat (Fagopyrum esculentum Moench)

    PubMed Central

    Klug, Benjamin; Specht, André; Horst, Walter J.

    2011-01-01

    Aluminium (Al) uptake and transport in the root tip of buckwheat is not yet completely understood. For localization of Al in root tips, fluorescent dyes and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were compared. The staining of Al with morin is an appropriate means to study qualitatively the radial distribution along the root tip axis of Al which is complexed by oxalate and citrate in buckwheat roots. The results compare well with the distribution of total Al determined by LA-ICP-MS which could be reliably calibrated to compare with Al contents by conventional total Al determination using graphite furnace atomic absorption spectrometry. The Al localization in root cross-sections along the root tip showed that in buckwheat Al is highly mobile in the radial direction. The root apex predominantly accumulated Al in the cortex. The subapical root section showed a homogenous Al distribution across the whole section. In the following root section Al was located particularly in the pericycle and the xylem parenchyma cells. With further increasing distance from the root apex Al could be detected only in individual xylem vessels. The results support the view that the 10 mm apical root tip is the main site of Al uptake into the symplast of the cortex, while the subapical 10–20 mm zone is the main site of xylem loading through the pericycle and xylem parenchyma cells. Progress in the better molecular understanding of Al transport in buckwheat will depend on the consideration of the tissue specificity of Al transport and complexation. PMID:21831842

  10. Cytosolic ppGpp accumulation induces retarded plant growth and development.

    PubMed

    Ihara, Yuta; Masuda, Shinji

    2016-01-01

    In bacteria a second messenger, guanosine 5'-diphosphate 3'-diphosphate (ppGpp), synthesized upon nutrient starvation, controls many gene expressions and enzyme activities, which is necessary for growth under changeable environments. Recent studies have shown that ppGpp synthase and hydrolase are also conserved in eukaryotes, although their functions are not well understood. We recently showed that ppGpp-overaccumulation in Arabidopsis chloroplasts results in robust growth under nutrient-limited conditions, demonstrating that the bacterial-like stringent response at least functions in plastids. To test if ppGpp also functions in the cytosol, we constructed the transgenic Arabidopsis expressing Bacillus subtilis ppGpp synthase gene yjbM. Upon induction of the gene, the mutant synthesizes ∼10-20-fold higher levels of ppGpp, and its fresh weight was reduced to ˜80% that of the wild type. These results indicate that cytosolic ppGpp negatively regulates plant growth and development.

  11. Effects of acidification on metal accumulation by aquatic plants and invertebrates. 1. Constructed wetlands

    USGS Publications Warehouse

    Albers, P.H.; Camardese, M.B.

    1993-01-01

    The pH of lake water is often inversely correlated with concentrations of trace metals in the water column. Concentrations of Al, Cd, Ca, Cu, Fe, Hg, Pb, Mg, Mn, Ni, P, and Zn were compared in water, plants, and aquatic insects from three acidified (pH 5.0) and three nonacidified (pH 6.5) constructed wetlands. Concentrations of Zn in water and bur-reed (Sparganium americanum) were higher in acidified wetlands than in nonacidified wetlands. Floating nonrooted plants contained mean concentrations of Fe, Mg, and Mn that were higher than recommended maximum levels for poultry feed. The mean concentrations of all metals in insects were below recommended maximum levels for poultry feed and below levels that cause toxic effects in wild birds. Smaller than expected increases of metal concentrations in the water of acidified wetlands were probably due to limited mobilization of metals from the sediments and insignificant changes in sedimentation of aqueous metals. Calcium was lower in acidified than in nonacidified wetland water, but the Ca content of insects and bur-reed was not lower. Low concentrations of Ca in aquatic insects from both groups of wetlands indicate that calcium-rich crustaceans and mollusks are probably important to female waterfowl and their young during the spring, when invertebrates make up the majority of the diet. Although toxic effects from metal ingestion seem to be unlikely consequences of wetland acidification, the adverse effect of low pH on the occurrence of crustaceans and mollusks could threaten egg production and development of young.

  12. Host-Pathogen interactions. 25. Endopolygalacturonic acid lyase from Erwinia carotovora elicits phytoalexin accumulation by releasing plant cell wall fragments

    SciTech Connect

    Davis, K.R.; Lyon, G.D.; Darvill, A.G.

    1984-01-01

    Heat-labile elicitors of phytoalexin accumulation in soybeans (Glycine max L. Merr. cv Wayne) were detected in culture filtrates of Erwinia carotovora grown on a defined medium containing citrus pectin as the sole carbon source. The heat-labile elicitors were highly purified by cation-exchange chromatography on a CM-Sephadex (C-50) column, followed by agarose-affinity chromatography on a Bio-Gel A-0.5m gel filtration column. The heat-labile elicitor activity co-purified with two ..cap alpha..-1,4-endopolygalacturonic acid lyases (EC 4 x 2 x 2 x 2). Endopolygalacturonic acid lyase activity appeared to be necessary for elicitor activity because heat-inactivated enzyme preparations did not elicit phytoalexins. The purified endopolygalacturonicmore » acid lyases elicited pterocarpan phytoalexins at microbial-inhibitory concentrations in the soybean-cotyledon bioassay when applied at a concentration of 55 nanograms per milliliter (1 x 10/sup -9/ molar). One of these lyases released heat-stable elicitors from soybean cell walls, citrus pectin, and sodium polypectate. The heat-stable elicitor-active material solubilized from soybean cell walls by the lyase was composed of at least 90% (w/v) uronosyl residues. These results demonstrate that endopolygalacturonic acid lyase elicits phytoalexin accumulation by releasing fragments from pectic polysaccharides in plant cell walls.« less

  13. Phytotoxicity and accumulation of chromium in carrot plants and the derivation of soil thresholds for Chinese soils.

    PubMed

    Ding, Changfeng; Li, Xiaogang; Zhang, Taolin; Ma, Yibing; Wang, Xingxiang

    2014-10-01

    Soil environmental quality standards in respect of heavy metals for farmlands should be established considering both their effects on crop yield and their accumulation in the edible part. A greenhouse experiment was conducted to investigate the effects of chromium (Cr) on biomass production and Cr accumulation in carrot plants grown in a wide range of soils. The results revealed that carrot yield significantly decreased in 18 of the total 20 soils with Cr addition being the soil environmental quality standard of China. The Cr content of carrot grown in the five soils with pH>8.0 exceeded the maximum allowable level (0.5mgkg(-1)) according to the Chinese General Standard for Contaminants in Foods. The relationship between carrot Cr concentration and soil pH could be well fitted (R(2)=0.70, P<0.0001) by a linear-linear segmented regression model. The addition of Cr to soil influenced carrot yield firstly rather than the food quality. The major soil factors controlling Cr phytotoxicity and the prediction models were further identified and developed using path analysis and stepwise multiple linear regression analysis. Soil Cr thresholds for phytotoxicity meanwhile ensuring food safety were then derived on the condition of 10 percent yield reduction. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Cadmium Accumulation Risk in Vegetables and Rice in Southern China: Insights from Solid-Solution Partitioning and Plant Uptake Factor.

    PubMed

    Yang, Yang; Wang, Meie; Chen, Weiping; Li, Yanling; Peng, Chi

    2017-07-12

    Solid-solution partitioning coefficient (K d ) and plant uptake factor (PUF) largely determine the solubility and mobility of soil Cd to food crops. A four-year regional investigation was conducted in contaminated vegetable and paddy fields of southern China to quantify the variability in K d and PUF. The distributions of K d and PUF characterizing transfers of Cd from soil to vegetable and rice are probabilistic in nature. Dynamics in soil pH and soil Zn greatly affected the variations of K d . In addition to soil pH, soil organic matter had a major influence on PUF variations in vegetables. Heavy leaching of soil Mn caused a higher Cd accumulation in rice grain. Dietary ingestion of 85.5% of the locally produced vegetable and rice would have adverse health risks, with rice consumption contributing 97.2% of the risk. A probabilistic risk analysis based on derived transfer function reveals the amorphous Mn oxide content exerts a major influence on Cd accumulation in rice in pH conditions below 5.5. Risk estimation and field experiments show that to limit the Cd concentration in rice grains, soil management strategies should include improving the pH and soil Mn concentration to around 6.0 and 345 mg kg -1 , respectively. Our work illustrates that re-establishing a balance in trace elements in soils' labile pool provides an effective risk-based approach for safer crop practices.

  15. Arsenic, Zinc, and Aluminium Removal from Gold Mine Wastewater Effluents and Accumulation by Submerged Aquatic Plants (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata)

    PubMed Central

    Yusoff, Ismail; Fatt, Ng Tham; Othman, Faridah; Ashraf, Muhammad Aqeel

    2013-01-01

    The potential of three submerged aquatic plant species (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata) to be used for As, Al, and Zn phytoremediation was tested. The plants were exposed for 14 days under hydroponic conditions to mine waste water effluents in order to assess the suitability of the aquatic plants to remediate elevated multi-metals concentrations in mine waste water. The results show that the E. densa and H. verticillata are able to accumulate high amount of arsenic (95.2%) and zinc (93.7%) and resulted in a decrease of arsenic and zinc in the ambient water. On the other hand, C. piauhyensis shows remarkable aluminium accumulation in plant biomass (83.8%) compared to the other tested plants. The ability of these plants to accumulate the studied metals and survive throughout the experiment demonstrates the potential of these plants to remediate metal enriched water especially for mine drainage effluent. Among the three tested aquatic plants, H. verticillata was found to be the most applicable (84.5%) and suitable plant species to phytoremediate elevated metals and metalloid in mine related waste water. PMID:24102060

  16. Helping Students Design HyperCard Stacks.

    ERIC Educational Resources Information Center

    Dunham, Ken

    1995-01-01

    Discusses how to teach students to design HyperCard stacks. Highlights include introducing HyperCard, developing storyboards, introducing design concepts and scripts, presenting stacks, evaluating storyboards, and continuing projects. A sidebar presents a HyperCard stack evaluation form. (AEF)

  17. Engineering software development with HyperCard

    NASA Technical Reports Server (NTRS)

    Darko, Robert J.

    1990-01-01

    The successful and unsuccessful techniques used in the development of software using HyperCard are described. The viability of the HyperCard for engineering is evaluated and the future use of HyperCard by this particular group of developers is discussed.

  18. HyperCard--A Science Teaching Tool.

    ERIC Educational Resources Information Center

    Parker, Carol

    1992-01-01

    Discussion of new technological resources available for science instruction focuses on the use of the HyperCard software for the Macintosh to design customized materials. Topics addressed include general features of HyperCard, designing HyperCard stacks, graphics, and designing buttons (i.e., links for moving through the stacks). Several sample…

  19. HyperCard for Educators. An Introduction.

    ERIC Educational Resources Information Center

    Bull, Glen L.; Harris, Judi

    This guide is designed to provide a quick introduction to the basic elements of HyperCard for teachers who are familiar with other computer applications but may not have worked with hypermedia applications; previous familiarity with HyperCard or with Macintosh computers is not necessary. It is noted that HyperCard is a software construction…

  20. The HyperCard Launching Pad.

    ERIC Educational Resources Information Center

    Aufdenspring, Gary; Aufdenspring, Deborah

    1992-01-01

    Describes how HyperCard software can be used to direct students to databases, applications, and explanations in an online environment. The use of HyperCard with other software is discussed; using HyperCard to set up tutorials is explained; and limitations are addressed, including the amount of memory needed and the speed of the hardware. (LRW)

  1. Engineering temporal accumulation of a low recalcitrance polysaccharide leads to increased C6 sugar content in plant cell walls.

    PubMed

    Vega-Sánchez, Miguel E; Loqué, Dominique; Lao, Jeemeng; Catena, Michela; Verhertbruggen, Yves; Herter, Thomas; Yang, Fan; Harholt, Jesper; Ebert, Berit; Baidoo, Edward E K; Keasling, Jay D; Scheller, Henrik V; Heazlewood, Joshua L; Ronald, Pamela C

    2015-09-01

    Reduced cell wall recalcitrance and increased C6 monosaccharide content are desirable traits for future biofuel crops, as long as these biomass modifications do not significantly alter normal growth and development. Mixed-linkage glucan (MLG), a cell wall polysaccharide only present in grasses and related species among flowering plants, is comprised of glucose monomers linked by both β-1,3 and β-1,4 bonds. Previous data have shown that constitutive production of MLG in barley (Hordeum vulgare) severely compromises growth and development. Here, we used spatio-temporal strategies to engineer Arabidopsis thaliana plants to accumulate significant amounts of MLG in the cell wall by expressing the rice CslF6 MLG synthase using secondary cell wall and senescence-associated promoters. Results using secondary wall promoters were suboptimal. When the rice MLG synthase was expressed under the control of a senescence-associated promoter, we obtained up to four times more glucose in the matrix cell wall fraction and up to a 42% increase in saccharification compared to control lines. Importantly, these plants grew and developed normally. The induction of MLG deposition at senescence correlated with an increase of gluconic acid in cell wall extracts of transgenic plants in contrast to the other approaches presented in this study. MLG produced in Arabidopsis has an altered structure compared to the grass glucan, which likely affects its solubility, while its molecular size is unaffected. The induction of cell wall polysaccharide biosynthesis in senescing tissues offers a novel engineering alternative to enhance cell wall properties of lignocellulosic biofuel crops. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Engineering temporal accumulation of a low recalcitrance polysaccharide leads to increased C6 sugar content in plant cell walls

    SciTech Connect

    Vega-Sánchez, Miguel E.; Loqué, Dominique; Lao, Jeemeng

    Reduced cell wall recalcitrance and increased C6 monosaccharide content are desirable traits for future biofuel crops, as long as these biomass modifications do not significantly alter normal growth and development. Mixed-linkage glucan (MLG), a cell wall polysaccharide only present in grasses and related species among flowering plants, is comprised of glucose monomers linked by both β-1,3 and β-1,4 bonds. Previous data have shown that constitutive production of MLG in barley (Hordeum vulgare) severely compromises growth and development. Here, we used spatio-temporal strategies to engineer Arabidopsis thaliana plants to accumulate significant amounts of MLG in the cell wall by expressing themore » rice CslF6 MLG synthase using secondary cell wall and senescence-associated promoters. Results using secondary wall promoters were suboptimal. When the rice MLG synthase was expressed under the control of a senescence-associated promoter, we obtained up to four times more glucose in the matrix cell wall fraction and up to a 42% increase in saccharification compared to control lines. Importantly, these plants grew and developed normally. The induction of MLG deposition at senescence correlated with an increase of gluconic acid in cell wall extracts of transgenic plants in contrast to the other approaches presented in this study. MLG produced in Arabidopsis has an altered structure compared to the grass glucan, which likely affects its solubility, while its molecular size is unaffected. The induction of cell wall polysaccharide biosynthesis in senescing tissues offers a novel engineering alternative to enhance cell wall properties of lignocellulosic biofuel crops.« less

  3. Identity and ecophysiology of uncultured actinobacterial polyphosphate-accumulating organisms in full-scale enhanced biological phosphorus removal plants.

    PubMed

    Kong, Yunhong; Nielsen, Jeppe Lund; Nielsen, Per Halkjaer

    2005-07-01

    Microautoradiography combined with fluorescence in situ hybridization (MAR-FISH) was used to screen for potential polyphosphate-accumulating organisms (PAO) in a full-scale enhanced biological phosphorus removal (EBPR) plant. The results showed that, in addition to uncultured Rhodocyclus-related PAO, two morphotypes hybridizing with gene probes for the gram-positive Actinobacteria were also actively involved in uptake of orthophosphate (Pi). Clone library analysis and further investigations by MAR-FISH using two new oligonucleotide probes revealed that both morphotypes, cocci in clusters of tetrads and short rods in clumps, were relatively closely related to the genus Tetrasphaera within the family Intrasporangiaceae of the Actinobacteria (93 to 98% similarity in their 16S rRNA genes). FISH analysis of the community biomass in the treatment plant investigated showed that the short rods (targeted by probe Actino-658) were the most abundant (12% of all Bacteria hybridizing with general bacterial probes), while the cocci in tetrads (targeted by probe Actino-221) made up 7%. Both morphotypes took up P(i) aerobically only if, in a previous anaerobic phase, they had taken up organic matter from wastewater or a mixture of amino acids. They could not take up short-chain fatty acids (e.g., acetate), glucose, or ethanol under anaerobic or aerobic conditions. The storage compound produced during the anaerobic period was not polyhydroxyalkanoates, as for Rhodocyclus-related PAO, and its identity is still unknown. Growth and uptake of Pi took place in the presence of oxygen and nitrate but not nitrite, indicating a lack of denitrifying ability. A survey of the occurrence of these actinobacterial PAO in 10 full-scale EBPR plants revealed that both morphotypes were widely present, and in several plants more abundant than the Rhodocyclus-related PAO, thus playing a very important role in the EBPR process.

  4. Accumulation and distribution of iron, cadmium, lead and nickel in cucumber plants grown in hydroponics containing two different chelated iron supplies.

    PubMed

    Csog, Árpád; Mihucz, Victor G; Tatár, Eniko; Fodor, Ferenc; Virág, István; Majdik, Cornelia; Záray, Gyula

    2011-07-01

    Cucumber plants grown in hydroponics containing 10 μM Cd(II), Ni(II) and Pb(II), and iron supplied as Fe(III) EDTA or Fe(III) citrate in identical concentrations, were investigated by total-reflection X-ray fluorescence spectrometry with special emphasis on the determination of iron accumulation and distribution within the different plant compartments (root, stem, cotyledon and leaves). The extent of Cd, Ni and Pb accumulation and distribution were also determined. Generally, iron and heavy-metal contaminant accumulation was higher when Fe(III) citrate was used. The accumulation of nickel and lead was higher by about 20% and 100%, respectively, if the iron supply was Fe(III) citrate. The accumulation of Cd was similar. In the case of Fe(III) citrate, the total amounts of Fe taken up were similar in the control and heavy-metal-treated plants (27-31 μmol/plant). Further, the amounts of iron transported from the root towards the shoot of the control, lead- and nickel-contaminated plants were independent of the iron(III) form. Although Fe mobility could be characterized as being low, its distribution within the shoot was not significantly affected by the heavy metals investigated. Copyright © 2011 Elsevier GmbH. All rights reserved.

  5. HyperCard Monitor System.

    ERIC Educational Resources Information Center

    Harris, Julian; Maurer, Hermann

    An investigation into high level event monitoring within the scope of a well-known multimedia application, HyperCard--a program on the Macintosh computer, is carried out. A monitoring system is defined as a system which automatically monitors usage of some activity and gathers statistics based on what is has observed. Monitor systems can give the…

  6. The HyperSign Project.

    ERIC Educational Resources Information Center

    Abdulezer, Susan

    This report describes ongoing activities and results of the HyperSign Immersion Project developed at the Public School for the Deaf in New York City, New York. The project's objectives were to: (1) provide a means to enable Deaf students to assume a self-directed role in education; (2) provide an on-site prototype of a technologically supportive…

  7. Exploiting genotypic variation in plant nutrient accumulation to alleviate micronutrient deficiency in populations.

    PubMed

    Genc, Yusuf; Humphries, Julia M; Lyons, Graham H; Graham, Robin D

    2005-01-01

    More than 2 billion people consume diets that are less diverse than 30 years ago, leading to deficiencies in micronutrients, especially iron (Fe), zinc (Zn), selenium (Se), iodine (I), and also vitamin A. A strategy that exploits genetic variability to breed staple crops with enhanced ability to fortify themselves with micronutrients (genetic biofortification) offers a sustainable, cost-effective alternative to conventional supplementation and fortification programs. This is more likely to reach those most in need, has the added advantages of requiring no change in current consumer behaviour to be effective, and is transportable to a range of countries. Research by our group, along with studies elsewhere, has demonstrated conclusively that substantial genotypic variation exists in nutrient (e.g. Fe, Zn) and nutrient promotor (e.g. inulin) concentrations in wheat and other staple foods. A rapid screening technique has been developed for lutein content of wheat and triticale, and also for pro-vitamin A carotenoids in bread wheat. This will allow cost-effective screening of a wider range of genotypes that may reveal greater genotypic variation in these traits. Moreover, deeper understanding of genetic control mechanisms and development of molecular markers will facilitate breeding programs. We suggest that a combined strategy utilising plant breeding for higher micronutrient density; maximising the effects of nutritional promoters (e.g. inulin, vitamin C) by promoting favourable dietary combinations, as well as by plant breeding; and agronomic biofortification (e.g. adding iodide or iodate as fertiliser; applying selenate to cereal crops by spraying or adding to fertiliser) is likely to be the most effective way to improve the nutrition of populations. Furthermore, the importance of detecting and exploiting beneficial interactions is illustrated by our discovery that in Fe-deficient chickens, circulating Fe concentrations can be restored to normal levels by lutein

  8. Organochlorine accumulation by Sentinel Mallards at the Winston-Thomas sewage treatment plant, Bloomington, Indiana

    USGS Publications Warehouse

    Custer, T.W.; Sparks, D.W.; Sobiech, S.A.; Hines, R.K.; Melancon, M.J.

    1996-01-01

    Farm-raised l2-month-old female mallards (Anas platyrhynchos) were released at the Winston-Thomas sewage treatment plant, Bloomington, Indiana. Five mallards were sacrificed at the start of the study and at approximately 10-day intervals through day 100. Concentrations of polychlorinated biphenyls (PCBs) in carcasses increased linearly with time of exposure and exceeded 16 mcg/g wet weight by day 100; PCBs in breast muscle exceeded 3.9 mcg/g by day 100. These PCB values are among the highest recorded for wild or sentinel waterfowl. PCB concentrations in breast muscle (26-523 mcg/g lipid weight) were 50-1,000 times greater than human consumption guidelines for edible poultry in Canada (0.5 mcg/g lipid weight) and 9-176 times greater than consumption guidelines for edible poultry in the United States (3.0 mcg/g lipid weight). Additionally, PCB concentrations in carcass and breast muscle exceeded the threshold of the Great Lakes Sport Fish Consumption Advisory 'do not eat' category (1.9 mcg/g wet weight) by day 20 and day 50, respectively. Hepatic cytochrome P450-associated monooxygenases including BROD (benzyloxyresorufin-O-dealkylase), EROD (ethoxyresorufin-O-dealkylase), and PROD (pentoxyresorufin-O-dealkylase) were induced over 5-fold compared to reference mallards. BROD, EROD, and PROD were each significantly correlated to total PCBs and to the toxicity of selected PCB congeners, relative to 2,3,7,8-tetrachlorodibenzo-p-dioxin.

  9. Organochlorine accumulation by sentinel mallards at the Winston-Thomas sewage treatment plant, Bloomington, Indiana

    USGS Publications Warehouse

    Custer, T.W.; Sparks, D.W.; Sobiech, S.A.; Hines, R.K.; Melancon, M.J.

    1996-01-01

    Farm-raised 12-month-old female mallards (Anas platyrhynchos) were released at the Winston-Thomas sewage treatment plant, Bloomington, Indiana. Five mallards were sacrificed at the start of the study and at approximately 10-day intervals through day 100. Concentrations of polychlorinated biphenyls (PCBs) in carcasses increased linearly with time of exposure and exceeded 16 g/g wet weight by day 100; PCBs in breast muscle exceeded 3.9 g/g by day 100. These PCB values are among the highest recorded for wild or sentinel waterfowl. PCB concentrations in breast muscle (26a??523 g/g lipid weight) were 50a??1,000 times greater than human consumption guidelines for edible poultry in Canada (0.5 g/g lipid weight) and 9a??176 times greater than consumption guidelines for edible poultry in the United States (3.0 g/g lipid weight). Additionally, PCB concentrations in carcass and breast muscle exceeded the threshold of the Great Lakes Sport Fish Consumption Advisory do not eat category (1.9 g/g wet weight) by day 20 and day 50, respectively. Hepatic cytochrome P450-associated monooxygenases including BROD (benzyloxyresorufin-O-dealkylase), EROD (ethoxyresorufin-O-dealkylase), and PROD (pentoxyresorufin-O-dealkylase) were induced over 5-fold compared to reference mallards. BROD, EROD, and PROD were each significantly correlated to total PCBs and to the toxicity of selected PCB congeners, relative to 2,3,7,8-tetrachlorodibenzo-p-dioxin.

  10. Screening of native plants and algae growing on fly-ash affected areas near National Thermal Power Corporation, Tanda, Uttar Pradesh, India for accumulation of toxic heavy metals.

    PubMed

    Dwivedi, S; Srivastava, S; Mishra, S; Dixit, B; Kumar, A; Tripathi, R D

    2008-10-30

    The present investigation was carried out to screen native plants growing in fly-ash (FA) contaminated areas near National Thermal Power Corporation, Tanda, Uttar Pradesh, India with a view to using them for the eco-restoration of the area. A total number of 17 plants (9 aquatic, 6 terrestrial and 2 algal species) were collected and screened for heavy metal (Fe, Zn, Cu, Mo, B, Si, Al, Cr, Pb, Cd, Hg and As) accumulation. Differential accumulation of various heavy metals by different species of plants was observed. Hydrilla verticillata was found to be the most efficient metal accumulator among 9 aquatic plants, Eclipta alba among 6 terrestrial plants and Phormedium papyraceum between 2 algal species. In general, the maximum levels of most metals were found in terrestrial plants while the lowest in algal species. However, translocation of the metals from root to shoot was found to be higher in aquatic plants than terrestrial ones. These results suggest that various aquatic, terrestrial and algal species of plants may be used in a synergistic way to remediate and restore the FA contaminated areas.

  11. Impact assessment of mercury accumulation and biochemical and molecular response of Mentha arvensis: a potential hyperaccumulator plant.

    PubMed

    Manikandan, R; Sahi, S V; Venkatachalam, P

    2015-01-01

    The present study was focused on examining the effect of Hg oxidative stress induced physiochemical and genetic changes in M. arvensis seedlings. The growth rate of Hg treated seedlings was decreased to 56.1% and 41.5% in roots and shoots, respectively, compared to the control. Accumulation of Hg level in both roots and shoots was increased with increasing the concentration of Hg. Superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities were found to be increased with increasing the Hg concentration up to 20 mg/L; however, it was decreased at 25 mg/L Hg concentration. The POX enzyme activity was positively correlated with Hg dose. The changes occurring in the random amplification of ploymorphic DNA (RAPD) profiles generated from Hg treated seedlings included variations in band intensity, disappearance of bands, and appearance of new bands compared with the control seedlings. It was concluded that DNA polymorphisms observed with RAPD profile could be used as molecular marker for the evaluation of heavy metal induced genotoxic effects in plant species. The present results strongly suggested that Mentha arvensis could be used as a potential phytoremediator plant in mercury polluted environment.

  12. Impact Assessment of Mercury Accumulation and Biochemical and Molecular Response of Mentha arvensis: A Potential Hyperaccumulator Plant

    PubMed Central

    Manikandan, R.; Sahi, S. V.; Venkatachalam, P.

    2015-01-01

    The present study was focused on examining the effect of Hg oxidative stress induced physiochemical and genetic changes in M. arvensis seedlings. The growth rate of Hg treated seedlings was decreased to 56.1% and 41.5% in roots and shoots, respectively, compared to the control. Accumulation of Hg level in both roots and shoots was increased with increasing the concentration of Hg. Superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities were found to be increased with increasing the Hg concentration up to 20 mg/L; however, it was decreased at 25 mg/L Hg concentration. The POX enzyme activity was positively correlated with Hg dose. The changes occurring in the random amplification of ploymorphic DNA (RAPD) profiles generated from Hg treated seedlings included variations in band intensity, disappearance of bands, and appearance of new bands compared with the control seedlings. It was concluded that DNA polymorphisms observed with RAPD profile could be used as molecular marker for the evaluation of heavy metal induced genotoxic effects in plant species. The present results strongly suggested that Mentha arvensis could be used as a potential phytoremediator plant in mercury polluted environment. PMID:25654134

  13. Phytoextraction and accumulation of mercury in three plant species: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata).

    PubMed

    Su, Yi; Han, Fengxiang X; Chen, Jian; Sridhar, B B Maruthi; Monts, David L

    2008-01-01

    The objective of this research was to screen and search for suitable plant species to phytoextract mercury-contaminated soil. Our effort focused on using some of the known metal-accumulating wild-type plants since no natural plant species with mercury-hyperaccumulat ing properties has yet been identified. Three plant species were evaluated for their uptake efficiency for mercury: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata). Four sets of experiments were conducted to evaluate the phytoremediation potential of these three plant species: a pot study with potting mix where mercury was provided daily as HgCl2 solution; experiments with freshly mercury-spiked soil; and a study with aged soils contaminated with different mercury sources (HgCl2, Hg(NO3)2, and HgS). Homemade sunlit chambers were also used to study foliar uptake of Hg from ambient air. Among the three plant species, Chinese brake fern showed the least stress symptoms resulting from mercury exposure and had the highest mercury accumulation. Our results indicate that Chinese brake fern may be a potential candidate for mercury phytoextraction. We found that mercury contamination is biologically available for plant uptake and accumulation, even if the original and predominating mercury form is HgS, and also after multiple phytoremediation cycles.

  14. Effects of nutrient and lime additions in mine site rehabilitation strategies on the accumulation of antimony and arsenic by native Australian plants.

    PubMed

    Wilson, Susan C; Leech, Calvin D; Butler, Leo; Lisle, Leanne; Ashley, Paul M; Lockwood, Peter V

    2013-10-15

    The effects of nutrient and lime additions on antimony (Sb) and arsenic (As) accumulation by native Australian and naturalised plants growing in two contaminated mine site soils (2,735 mg kg(-1) and 4,517 mg kg(-1) Sb; 826 mg kg(-1) and 1606 As mgkg(-1)) was investigated using a glasshouse pot experiment. The results indicated an increase in soil solution concentrations with nutrient addition in both soils and also with nutrient+lime addition for Sb in one soil. Metalloid concentrations in plant roots were significantly greater than concentrations in above ground plant parts. The metalloid transfer to above ground plant parts from the roots and from the soil was, however, low (ratio of leaf concentration/soil concentration≪1) for all species studied. Eucalyptus michaeliana was the most successful at colonisation with lowest metalloid transfer to above ground plant parts. Addition of nutrients and nutrients+lime to soils, in general, increased plant metalloid accumulation. Relative As accumulation was greater than that of Sb. All the plant species studied were suitable for consideration in the mine soil phytostabilisation strategies but lime additions should be limited and longer term trials also recommended. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Microbial Community Composition of Polyhydroxyalkanoate-Accumulating Organisms in Full-Scale Wastewater Treatment Plants Operated in Fully Aerobic Mode

    PubMed Central

    Oshiki, Mamoru; Onuki, Motoharu; Satoh, Hiroyasu; Mino, Takashi

    2013-01-01

    The removal of biodegradable organic matter is one of the most important objectives in biological wastewater treatments. Polyhydroxyalkanoate (PHA)-accumulating organisms (PHAAOs) significantly contribute to the removal of biodegradable organic matter; however, their microbial community composition is mostly unknown. In the present study, the microbial community composition of PHAAOs was investigated at 8 full-scale wastewater treatment plants (WWTPs), operated in fully aerobic mode, by fluorescence in situ hybridization (FISH) analysis and post-FISH Nile blue A (NBA) staining techniques. Our results demonstrated that 1) PHAAOs were in the range of 11–18% in the total number of cells, and 2) the microbial community composition of PHAAOs was similar at the bacterial domain/phylum/class/order level among the 8 full-scale WWTPs, and dominant PHAAOs were members of the class Alphaproteobacteria and Betaproteobacteria. The microbial community composition of α- and β-proteobacterial PHAAOs was examined by 16S rRNA gene clone library analysis and further by applying a set of newly designed oligonucleotide probes targeting 16S rRNA gene sequences of α- or β-proteobacterial PHAAOs. The results demonstrated that the microbial community composition of PHAAOs differed in the class Alphaproteobacteria and Betaproteobacteria, which possibly resulted in a different PHA accumulation capacity among the WWTPs (8.5–38.2 mg-C g-VSS−1 h−1). The present study extended the knowledge of the microbial diversity of PHAAOs in full-scale WWTPs operated in fully aerobic mode. PMID:23257912

  16. Diversity of Arbuscular Mycorrhizal Fungi Associated with a Sb Accumulator Plant, Ramie (Boehmeria nivea), in an Active Sb Mining.

    PubMed

    Wei, Yuan; Chen, ZhiPeng; Wu, FengChang; Li, JiNing; ShangGuan, YuXian; Li, FaSheng; Zeng, Qing Ru; Hou, Hong

    2015-08-01

    Arbuscular mycorrhizal fungi (AMF) have great potential for assisting heavy metal hyperaccumulators in the remediation of contaminated soils. However, little information is available about the symbiosis of AMF associated with an antimony (Sb) accumulator plant under natural conditions. Therefore, the objective of this study was to investigate the colonization and molecular diversity of AMF associated with the Sb accumulator ramie (Boehmeria nivea) growing in Sb-contaminated soils. Four Sb mine spoils and one adjacent reference area were selected from Xikuangshan in southern China. PCR-DGGE was used to analyze the AMF community composition in ramie roots. Morphological identification was also used to analyze the species in the rhizosphere soil of ramie. Results obtained showed that mycorrhizal symbiosis was established successfully even in the most heavily polluted sites. From the unpolluted site Ref to the highest polluted site T4, the spore numbers and AMF diversity increased at first and then decreased. Colonization increased consistently with the increasing Sb concentrations in the soil. A total of 14 species were identified by morphological analysis. From the total number of species, 4 (29%) belonged to Glomus, 2 (14%) belonged to Acaulospora, 2 (14%) belonged to Funneliformis, 1 (7%) belonged to Claroideoglomus, 1 (7%) belonged to Gigaspora, 1 (7%) belonged to Paraglomus, 1 (7%) belonging to Rhizophagus, 1 (7%) belonging to Sclervocystis, and 1 (7%) belonged to Scutellospora. Some AMF sequences were present even in the most polluted site. Morphological identification and phylogenetic analysis both revealed that most species were affiliated withGlomus, suggesting that Glomus was the dominant genus in this AMF community. This study demonstrated that ramie associated with AMF may have great potential for remediation of Sb-contaminated soils.

  17. NASA's Hyper-X Program

    NASA Technical Reports Server (NTRS)

    Rausch, Vincent L.; McClinton, Charles R.; Sitz, Joel; Reukauf, Paul

    2000-01-01

    This paper provides an overview of the objectives and status of the Hyper-X program which is tailored to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment, the last stage preceding prototype development. The first Hyper-X research vehicle (HXRV), designated X-43, is being prepared at the Dryden Flight Research Center for flight at Mach 7 in the near future. In addition, the associated booster and vehicle-to-booster adapter are being prepared for flight and flight test preparations are well underway. Extensive risk reduction activities for the first flight and non-recurring design for the Mach 10 X-43 (3rd flight) are nearing completion. The Mach 7 flight of the X-43 will be the first flight of an airframe-integrated scramjet-powered vehicle.

  18. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  19. Accumulation of Monoterpenoid Indole Alkaloids in Periwinkle Seedlings ("Catharanthus roseus") as a Model for the Study of Plant-Environment Interactions

    ERIC Educational Resources Information Center

    Miranda-Ham, Maria de Lourdes; Islas-Flores, Ignacio; Vazquez-Flota, Felipe

    2007-01-01

    Alkaloids are part of the chemical arsenal designed to protect plants against an adverse environment. Therefore, their synthesis and accumulation are frequently induced in response to certain environmental conditions and are mediated by chemical signals, which are formed as the first responses to the external stimulus. A set of experiments using…

  20. Transient Transcriptional Regulation of the CYS-C1 Gene and Cyanide Accumulation upon Pathogen Infection in the Plant Immune Response1[C][W

    PubMed Central

    García, Irene; Rosas, Tábata; Bejarano, Eduardo R.; Gotor, Cecilia; Romero, Luis C.

    2013-01-01

    Cyanide is produced concomitantly with ethylene biosynthesis. Arabidopsis (Arabidopsis thaliana) detoxifies cyanide primarily through the enzyme β-cyanoalanine synthase, mainly by the mitochondrial CYS-C1. CYS-C1 loss of function is not toxic for the plant and leads to an increased level of cyanide in cys-c1 mutants as well as a root hairless phenotype. The classification of genes differentially expressed in cys-c1 and wild-type plants reveals that the high endogenous cyanide content of the cys-c1 mutant is correlated with the biotic stress response. Cyanide accumulation and CYS-C1 gene expression are negatively correlated during compatible and incompatible plant-bacteria interactions. In addition, cys-c1 plants present an increased susceptibility to the necrotrophic fungus Botrytis cinerea and an increased tolerance to the biotrophic Pseudomonas syringae pv tomato DC3000 bacterium and Beet curly top virus. The cys-c1 mutation produces a reduction in respiration rate in leaves, an accumulation of reactive oxygen species, and an induction of the alternative oxidase AOX1a and pathogenesis-related PR1 expression. We hypothesize that cyanide, which is transiently accumulated during avirulent bacterial infection and constitutively accumulated in the cys-c1 mutant, uncouples the respiratory electron chain dependent on the cytochrome c oxidase, and this uncoupling induces the alternative oxidase activity and the accumulation of reactive oxygen species, which act by stimulating the salicylic acid-dependent signaling pathway of the plant immune system. PMID:23784464

  1. Accumulation and Translocation of Essential and Nonessential Elements by Tomato Plants (Solanum lycopersicum) Cultivated in Open-Air Plots under Organic or Conventional Farming Techniques.

    PubMed

    Liñero, Olaia; Cidad, Maite; Carrero, Jose Antonio; Nguyen, Christophe; de Diego, Alberto

    2015-11-04

    A 5-month experiment was performed to study the accumulation of several inorganic elements in tomato plants cultivated using organic or synthetic fertilizer. Plants were harvested in triplicate at six sampling dates during their life cycle. Statistical and chemometric analysis of data indicated the sequestration of toxic elements and of Na, Zn, Fe, and Co in roots, while the rest of the elements, including Cd, were mainly translocated to aboveground organs. A general decreasing trend in element concentrations with time was observed for most of them. A negative correlation between some element concentrations and ripening stage of fruits was identified. Conventionally grown plants seemed to accumulate more Cd and Tl in their tissues, while organic ones were richer in some nutrients. However, there was no clear effect of the fertilizer used (organic vs synthetic) on the elemental composition of fruits.

  2. Congener specificity in the accumulation of dioxins and dioxin-like compounds in zucchini plants grown hydroponically.

    PubMed

    Inui, Hideyuki; Wakai, Taketo; Gion, Keiko; Yamazaki, Kiyoshi; Kim, Yun-Seok; Eun, Heesoo

    2011-01-01

    Zucchini cultivars Cucurbita pepo subsp. ovifera cv. Patty Green and subsp. pepo cv. Gold Rush were cultivated hydroponically in a nutrient solution supplemented with a mixture of dioxins and dioxin-like compounds. Patty Green and Gold Rush showed low and high accumulation of these compounds in the aerial parts respectively. In both cultivars, the accumulation of each congener negatively depended on its hydrophobicity. This suggests that desorption and solubilization were partly responsible for congener specificity of accumulation, since this was not found in soil experiments. In contrast, no clear difference in accumulation in the roots was observed between the cultivars, whereas the translocation factors, which are indicators of efficient translocation from the roots to the aerial parts, differed among the congeners hydrophobicity-dependently. There were positive correlations between accumulation in the roots and the hydrophobicity of the polychlorinated biphenyl congeners in both cultivars. These results indicate that translocation was also partly responsible for the congener specificity and accumulation concentrations.

  3. Salts and nutrients present in regenerated waters induce changes in water relations, antioxidative metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants.

    PubMed

    Acosta-Motos, José R; Alvarez, Sara; Barba-Espín, Gregorio; Hernández, José A; Sánchez-Blanco, María J

    2014-12-01

    The use of reclaimed water (RW) constitutes a valuable strategy for the efficient management of water and nutrients in landscaping. However, RW may contain levels of toxic ions, affecting plant production or quality, a very important aspect for ornamental plants. The present paper evaluates the effect of different quality RWs on physiological and biochemical parameters and the recovery capacity in Myrtus communis L. plants. M. communis plants were submitted to 3 irrigation treatments with RW from different sources (22 weeks): RW1 (1.7 dS m(-1)), RW2 (4.0 dS m(-1)) and RW3 (8.0 dS m(-1)) and one control (C, 0.8 dS m(-1)). During a recovery period of 11 weeks, all plants were irrigated with the control water. The RW treatments did not negatively affect plant growth, while RW2 even led to an increase in biomass. After recovery,only plants irrigated with RW3 showed some negative effects on growth, which was related to a decrease in the net photosynthesis rate, higher Na accumulation and a reduction in K levels. An increase in salinity was accompanied by decreases in leaf water potential, relative water content and gas exchange parameters, and increases in Na and Cl uptake. Plants accumulated Na in roots and restricted its translocation to the aerial part. The highest salinity levels produced oxidative stress, as seen from the rise in electrolyte leakage and lipid peroxidation. The use of regenerated water together with carefully managed drainage practices, which avoid the accumulation of salt by the substrate, will provide economic and environmental benefits.

  4. The Educator's Guide to HyperCard and HyperTalk. A Longwood Professional Book.

    ERIC Educational Resources Information Center

    Culp, George H.; Watkins, G. Morgan

    This book and three accompanying floppy disks introduce HyperCard 2.1 for the Macintosh microcomputer and its programming component, HyperTalk, to educators. The first four chapters introduce the basics of HyperCard, including its structure, which is based on a hierarchy of units; the use of tools and graphics; and ways of linking information…

  5. Biosolids accumulation and biodegradation of domestic wastewater treatment plant sludge by developed liquid state bioconversion process using a batch fermenter.

    PubMed

    Alam, Md Zahangir; Fakhru'l-Razi, A; Molla, Abul H

    2003-09-01

    The biosolids accumulation and biodegradation of domestic wastewater treatment plant (DWTP) sludge by filamentous fungi have been investigated in a batch fermenter. The filamentous fungi Aspergillus niger and Penicillium corylophilum isolated from wastewater and DWTP sludge was used to evaluate the treatment performance. The optimized mixed inoculum (A. niger and P. corylophilum) and developed process conditions (co-substrate and its concentration, temperature, initial pH, inoculum size, and aeration and agitation rate) were incorporated to accelerate the DWTP sludge treatment process. The results showed that microbial treatment of higher strength of DWTP sludge (4% w/w of TSS) was highly influenced by the liquid state bioconversion (LSB) process. In developed bioconversion processes, 93.8 g/kg of biosolids was enriched with fungal biomass protein of 30 g/kg. Enrichment of nutrients such as nitrogen (N), phosphorous (P), potassium (K) in biosolids was recorded in 6.2% (w/w), 3.1% (w/w) and 0.15% (w/w) from its initial values of 4.8% (w/w), 2.0% (w/w) and 0.08% (w/w) respectively after 10 days of fungal treatment. The biodegradation results revealed that 98.8% of TSS, 98.2% of TDS, 97.3% of turbidity, 80.2% of soluble protein, 98.8% of reducing sugar and 92.7% of COD in treated DWTP sludge supernatant were removed after 8 days of microbial treatment. The specific resistance to filtration (SRF) in treated sludge (1.4x10(12) m/kg) was decreased tremendously by the microbial treatment of DWTP sludge after 6 days of fermentation compared to untreated sample (85x10(12) m/kg).

  6. A trial of production of the plant-derived high-value protein in a plant factory: photosynthetic photon fluxes affect the accumulation of recombinant miraculin in transgenic tomato fruits.

    PubMed

    Kato, Kazuhisa; Maruyama, Shinichiro; Hirai, Tadayoshi; Hiwasa-Tanase, Kyoko; Mizoguchi, Tsuyoshi; Goto, Eiji; Ezura, Hiroshi

    2011-08-01

    One of the ultimate goals of plant science is to test a hypothesis obtained by basic science and to apply it to agriculture and industry. A plant factory is one of the ideal systems for this trial. Environmental factors affect both plant yield and the accumulation of recombinant proteins for industrial applications within transgenic plants. However, there have been few reports studying plant productivity for recombinant protein in closed cultivation systems called plant factories. To investigate the effects of photosynthetic photon flux (PPF) on tomato fruit yield and the accumulation of recombinant miraculin, a taste-modifying glycoprotein, in transgenic tomato fruits, plants were cultivated at various PPFs from 100 to 400 (µmol m(-2) s(-)1) in a plant factory. Miraculin production per unit of energy used was highest at PPF100, although miraculin production per unit area was highest at PPF300. The commercial productivity of recombinant miraculin in transgenic tomato fruits largely depended on light conditions in the plant factory. Our trial will be useful to consider the trade-offs between the profits from production of high-value materials in plants and the costs of electricity.

  7. Carbon stocks and accumulation rates in Pacific Northwest forests: role of stand age, plant community, and productivity

    Treesearch

    Andrew N. Gray; Thomas R. Whittier; Mark E. Harmon

    2016-01-01

    Forest ecosystems are removing significant amounts of carbon from the atmosphere. Both abiotic resource availability and biotic interactions during forest succession affect C accumulation rates and maximum C stocks. However, the timing and controls on the peak and decline in C accumulation rates as stands age, trees increase in size, and canopy gaps become prevalent...

  8. Increased gluconeogenesis in hyper-G stressed rats

    NASA Technical Reports Server (NTRS)

    Daligcon, B. C.; Oyama, J.

    1982-01-01

    The role of gluconeogenesis in the altered carbohydrate metabolism in rats exposed to hyper-G stress is investigated. The blood levels of the substrates and hormones involved in gluconeogenesis were determined in rats exposed to 3.1 G for various time periods (0.25 to 24 hr). It is found that hyper-G stressed rats showed an immediate increase in plasma glucose at the onset of centrifugation which persisted throughout all the exposure periods. A substantial part of the initial rise in blood glucose is attributed to an increased rate of gluconeogenesis. An increase in liver glycogen deposition was observed in centrifuged rats as early as 0.50 hr exposure time, with progressively larger amounts accumulated as the exposure time was extended to 24 hr. It is concluded that the increase in gluconeogenic activity of hyper-G stressed rats is due to an increase in the mobilization of gluconeogenic substrates from perpheral tissues to the liver as a result of increases in circulating catecholamines and glucagon.

  9. Phytotoxicity and accumulation of zinc oxide nanoparticles on the aquatic plants Hydrilla verticillata and Phragmites Australis: leaf-type-dependent responses.

    PubMed

    Song, Uhram; Lee, Sunryung

    2016-05-01

    The phytotoxicity and accumulation of zinc oxide nanoparticles (ZnO NPs) on aquatic plant Hydrilla verticillata and Phragmites australis were investigated using mesocosms. The percentage of dissolved Zn in the ZnO NP treatment solutions was measured along with plant shoot growth, antioxidant enzyme activity, chlorophyll content, and Zn content. The dissolution rate of ZnO NPs in Hoagland solution was inversely related to the concentration. The submerged aquatic plant H. verticillata, growth was reduced during the early stages of the experiment when exposed to the highest ZnO NP concentration (1000 mg/L), whereas the emerged aquatic plant P. australis began to show significantly reduced growth after a few weeks. The measurements of chlorophyll content, antioxidant enzyme activity, and Zn accumulation showed that P. australis was adversely affected by NPs and absorbed more Zn than H. verticillata. The results indicated that physiological differences among aquatic plants, such as whether they use leaves or roots for nutrient and water uptake, led to differences in nanoparticle toxicity. Overall, High ZnO NP concentrations caused significant phytotoxicity on aquatic plants, and low concentrations caused unpredictable phytotoxicity. Therefore, the use and disposal of zinc oxide nanoparticles should be carefully monitored.

  10. What Are HyperCard? (Part 2).

    ERIC Educational Resources Information Center

    Marcus, Stephen

    1989-01-01

    Presents the second article in a two-part series on HyperCard materials (computer software used to build structures that create patterns and connections) designed for English and language arts classes. Suggests assignments for use with early HyperCard software that can be adapted to a variety of nonverbal "stackware." (MM)

  11. NETL's Hybrid Performance, or Hyper, facility

    ScienceCinema

    None

    2018-02-13

    NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.

  12. Systematic in J-PARC/Hyper-K

    SciTech Connect

    Minamino, Akihiro

    The Hyper-Kamiokande (Hyper-K) detector is a next generation underground water Chrenkov detector. The J-PARC to Hyper-K experiment has good potential for precision measurements of neutrino oscillation parameters and discovery reach for CP violation in the lepton sector. With a total exposure of 10 years to a neutrino beam produced by the 750 kW J-PARC proton synchrotron, it is expected that the CP phase δ can be determined to better than 18 degree for all possible values of δ if sin{sup 2} 2θ{sub 13} > 0.03 and the mass hierarchy is known. Control of systematic uncertainties is critical to make maximummore » use of the Hyper-K potential. Based on learning from T2K experience, a strategy to reduce systematic uncertainties in J-PARC/Hyper-K are developed.« less

  13. Nocturnal Accumulation of Malic Acid Occurs in Mesophyll Tissue without Proton Transport to Epidermal Tissue in the Inducible Crassulacean Acid Metabolism Plant Mesembryanthemum crystallinum1

    PubMed Central

    Winter, Klaus; Edwards, Gerald E.; Holtum, Joseph A. M.

    1981-01-01

    The inducible Crassulacean acid metabolism plant, Mesembryanthemum crystallinum, accumulates malic acid, i.e. equivalent amounts of malate anions and protons in the mesophyll cells at night. Levels of malate and titratable acidity are low in the epidermal tissue and do not change significantly during the day/night cycle. This result is in contrast to a recent report (Bloom 1979 Plant Physiol 64: 919-923) that the synthesis of malic acid during dark CO2 fixation is associated with an equivalent exchange of inorganic cations from epidermal tissue with protons in the mesophyll cells. PMID:16661916

  14. Alleviation of environmental risks associated with severely contaminated mine tailings using amendments: Modeling of trace element speciation, solubility, and plant accumulation.

    PubMed

    Pardo, Tania; Bes, Cleménce; Bernal, Maria Pilar; Clemente, Rafael

    2016-11-01

    Tailings are considered one of the most relevant sources of contamination associated with mining activities. Phytostabilization of mine spoils may need the application of the adequate combination of amendments to facilitate plant establishment and reduce their environmental impact. Two pot experiments were set up to assess the capability of 2 inorganic materials (calcium carbonate and a red mud derivate, ViroBind TM ), alone or in combination with organic amendments, for the stabilization of highly acidic trace element-contaminated mine tailings using Atriplex halimus. The effects of the treatments on tailings and porewater physico-chemical properties and trace-element accumulation by the plants, as well as the processes governing trace elements speciation and solubility in soil solution and their bioavailability were modeled. The application of the amendments increased tailings pH and decreased (>99%) trace elements solubility in porewater, but also changed the speciation of soluble Cd, Cu, and Pb. All the treatments made A. halimus growth in the tailings possible; organic amendments increased plant biomass and nutritional status, and reduced trace-element accumulation in the plants. Tailings amendments modified trace-element speciation in porewater (favoring the formation of chlorides and/or organo-metallic forms) and their solubility and plant uptake, which were found to be mainly governed by tailing/porewater pH, electrical conductivity, and organic carbon content, as well as soluble/available trace-element concentrations. Environ Toxicol Chem 2016;35:2874-2884. © 2016 SETAC. © 2016 SETAC.

  15. Differences in Copper Absorption and Accumulation between Copper-Exclusion and Copper-Enrichment Plants: A Comparison of Structure and Physiological Responses

    PubMed Central

    Fu, Lei; Chen, Chen; Wang, Bin; Zhou, Xishi; Li, Shuhuan; Guo, Pan; Shen, Zhenguo; Wang, Guiping; Chen, Yahua

    2015-01-01

    Differences in copper (Cu) absorption and transport, physiological responses and structural characteristics between two types of Cu-resistant plants, Oenothera glazioviana (Cu-exclusion type) and Elsholtzia haichowensis (Cu-enrichment type), were investigated in the present study. The results indicated the following: (1) After 50 μM Cu treatment, the Cu ratio in the xylem vessels of E. haichowensis increased by 60%. A Cu adsorption experiment indicated that O. glazioviana exhibited greater resistance to Cu, and Cu absorption and the shoot/root ratio of Cu were significantly lower in O. glazioviana than in E. haichowensis. (2) An analysis of the endogenous abscisic acid (ABA) variance and exogenous ABA treatment demonstrated that the ABA levels of both plants did not differ; exogenous ABA treatment clearly reduced Cu accumulation in both plants. (3) The leaf stomatal density of O. glazioviana was significantly less than that of E. haichowensis. Guard cells in E. haichowensis plants were covered with a thick cuticle layer, the epidermal hair was more numerous and longer, and the number of xylem conduits in the root was small. (4) The transpiration rate and the stomatal conductance of O. glazioviana were both significantly lower than those of E. haichowensis, regardless of whether the plants were treated with Cu. Taken together, these results indicate that the differences in the structural characteristics between these two plant species, particularly in the characteristics related to plant transpiration, are important factors that govern whether plants acquire or exclude Cu. PMID:26207743

  16. Differences in Copper Absorption and Accumulation between Copper-Exclusion and Copper-Enrichment Plants: A Comparison of Structure and Physiological Responses.

    PubMed

    Fu, Lei; Chen, Chen; Wang, Bin; Zhou, Xishi; Li, Shuhuan; Guo, Pan; Shen, Zhenguo; Wang, Guiping; Chen, Yahua

    2015-01-01

    Differences in copper (Cu) absorption and transport, physiological responses and structural characteristics between two types of Cu-resistant plants, Oenothera glazioviana (Cu-exclusion type) and Elsholtzia haichowensis (Cu-enrichment type), were investigated in the present study. The results indicated the following: (1) After 50 μM Cu treatment, the Cu ratio in the xylem vessels of E. haichowensis increased by 60%. A Cu adsorption experiment indicated that O. glazioviana exhibited greater resistance to Cu, and Cu absorption and the shoot/root ratio of Cu were significantly lower in O. glazioviana than in E. haichowensis. (2) An analysis of the endogenous abscisic acid (ABA) variance and exogenous ABA treatment demonstrated that the ABA levels of both plants did not differ; exogenous ABA treatment clearly reduced Cu accumulation in both plants. (3) The leaf stomatal density of O. glazioviana was significantly less than that of E. haichowensis. Guard cells in E. haichowensis plants were covered with a thick cuticle layer, the epidermal hair was more numerous and longer, and the number of xylem conduits in the root was small. (4) The transpiration rate and the stomatal conductance of O. glazioviana were both significantly lower than those of E. haichowensis, regardless of whether the plants were treated with Cu. Taken together, these results indicate that the differences in the structural characteristics between these two plant species, particularly in the characteristics related to plant transpiration, are important factors that govern whether plants acquire or exclude Cu.

  17. Effects of long-term fertilization practices on heavy metal cadmium accumulation in the surface soil and rice plants of double-cropping rice system in Southern China.

    PubMed

    Xu, Yilan; Tang, Haiming; Liu, Tangxing; Li, Yifeng; Huang, Xinjie; Pi, Jun

    2018-05-08

    Fertilizer regime is playing an important role in heavy metal cadmium (Cd) accumulation in paddy soils and crop plant. It is necessary to assess the Cd accumulation in soils and rice (Oryza sativa L.) plants under long-term fertilization managements, and the results which help to assess the environmental and food risk in Southern China. However, the effects of different organic manure and chemical fertilizers on Cd accumulation in soils and rice plant remain unclear under intensively cultivated rice conditions. Therefore, the objective was to explore Cd accumulation in paddy soils and rice plant at mature stage under different long-term fertilization managements in the double-cropping rice system. Cd accumulation in the surface soils (0-20 cm) and rice plant with chemical fertilizer alone (MF), rice straw residue and chemical fertilizer (RF), 30% organic matter and 70% chemical fertilizer (LOM), 60% organic matter and 40% chemical fertilizer (HOM), and without fertilizer input (CK) basis on 32 years long-term fertilization experiment were analyzed. The results showed that the soil total Cd content was increased by 0.296 and 0.351 mg kg -1 and 0.261 and 0.340 mg kg -1 under LOM and HOM treatments at early and late rice mature stages, respectively, compared with the CK treatment. And the soil available Cd content was increased by 0.073 and 0.137 mg kg -1 and 0.102 and 0.160 mg kg -1 under LOM and HOM treatments at early and late rice mature stages, respectively, compared with the CK treatment. The bioconcentration factor of Cd across different parts of rice plant was the highest in root, followed by stem and grain, and the lowest in leaves. At early and late rice mature stages, the root Cd concentration of rice plant was increased by 0.689 and 0.608 mg kg -1 with HOM treatment, the stem Cd concentration of rice plant was increased by 0.666 and 0.758 mg kg -1 with RF treatment, and the leaf and grain Cd concentration of rice plant was increased 0.094 and

  18. The Combined Effects of Arbuscular Mycorrhizal Fungi (AMF) and Lead (Pb) Stress on Pb Accumulation, Plant Growth Parameters, Photosynthesis, and Antioxidant Enzymes in Robinia pseudoacacia L.

    PubMed Central

    Liang, Yan; Ghosh, Amit; Chen, Jie; Tang, Ming

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) are considered as a potential biotechnological tool for improving phytostabilization efficiency and plant tolerance to heavy metal-contaminated soils. However, the mechanisms through which AMF help to alleviate metal toxicity in plants are still poorly understood. A greenhouse experiment was conducted to evaluate the effects of two AMF species (Funneliformis mosseae and Rhizophagus intraradices) on the growth, Pb accumulation, photosynthesis and antioxidant enzyme activities of a leguminous tree (Robinia pseudoacacia L.) at Pb addition levels of 0, 500, 1000 and 2000 mg kg-1 soil. AMF symbiosis decreased Pb concentrations in the leaves and promoted the accumulation of biomass as well as photosynthetic pigment contents. Mycorrhizal plants had higher gas exchange capacity, non-photochemistry efficiency, and photochemistry efficiency compared with non-mycorrhizal plants. The enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidases (APX) and glutathione peroxidase (GPX) were enhanced, and hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents were reduced in mycorrhizal plants. These findings suggested that AMF symbiosis could protect plants by alleviating cellular oxidative damage in response to Pb stress. Furthermore, mycorrhizal dependency on plants increased with increasing Pb stress levels, indicating that AMF inoculation likely played a more important role in plant Pb tolerance in heavily contaminated soils. Overall, both F. mosseae and R. intraradices were able to maintain efficient symbiosis with R. pseudoacacia in Pb polluted soils. AMF symbiosis can improve photosynthesis and reactive oxygen species (ROS) scavenging capabilities and decrease Pb concentrations in leaves to alleviate Pb toxicity in R. pseudoacacia. Our results suggest that the application of the two AMF species associated with R. pseudoacacia could be a promising strategy for enhancing the phytostabilization efficiency of Pb contaminated

  19. Ecologically relevant UV-B dose combined with high PAR intensity distinctly affect plant growth and accumulation of secondary metabolites in leaves of Centella asiatica L. Urban.

    PubMed

    Müller, Viola; Albert, Andreas; Barbro Winkler, J; Lankes, Christa; Noga, Georg; Hunsche, Mauricio

    2013-10-05

    We investigated the effects of environmentally relevant dose of ultraviolet (UV)-B and photosynthetic active radiation (PAR) on saponin accumulation in leaves on the example of Centella asiatica L. Urban. For this purpose, plants were exposed to one of four light regimes i.e., two PAR intensities with or without UV-B radiation. The experiment was conducted in technically complex sun simulators under almost natural irradiance and climatic conditions. As observed, UV-B radiation increased herb and leaf production as well as the content of epidermal flavonols, which was monitored by non-destructive fluorescence measurements. Specific fluorescence indices also indicate an increase in the content of anthocyanins under high PAR; this increase was likewise observed for the saponin concentrations. In contrast, UV-B radiation had no distinct effects on saponin and sapogenin concentrations. Our findings suggest that besides flavonoids, also saponins were accumulated under high PAR protecting the plant from oxidative damage. Furthermore, glycosylation of sapogenins seems to be important either for the protective function and/or for compartmentalization of the compounds. Moreover, our study revealed that younger leaves contain higher amounts of saponins, while in older leaves the sapogenins were the most abundant constituents. Concluding, our results proof that ambient dose of UV-B and high PAR intensity distinctly affect the accumulation of flavonoids and saponins, enabling the plant tissue to adapt to the light conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Heavy metal accumulation by Corchorus olitorius L. irrigated with wastewater.

    PubMed

    Ahmed, Dalia A; Slima, Dalia F

    2018-05-01

    Many agricultural soils in Egypt irrigated with untreated wastewater. Herein, we investigated the effect of untreated industrial wastewater irrigation on the soil and fodder plant Corchorus olittorius (Jew mallow). It also aimed to assess its effect on the growth measurements as well as analyses of soils, irrigation waters, and plants for heavy metal and nutrient concentrations. Significant differences between irrigation waters and soil irrigated with fresh and wastewater were recognized. Wastewater irrigation leads to remarkable reduction in the growth parameters and reduced its vegetative biomass. The concentration of Pb, Cd, Cr, Cu, Fe, and Zn were high significant and above phytotoxic concentrations in leaves (edible part) and roots of wastewater-irrigated plant. The present study indicated that Jew mallow plant tends to phytostabilize (Cd, Ni, and Mn) in its root and had the ability to translocate (Pb, Cu, Cr, Fe, and Zn) to its leaves. Higher concentrations of Cd, Cu, Cr, Pb, Fe, Mn, Ni, and Zn in the roots than leaves indicate that the roots are hyper-accumulators for Pb, Cr, Cu, Fe, and Zn more than the leaves. The research study recommended that there is a need to protect the soil from contamination through regular monitoring and not to cultivate Jew mallow in wastewater-irrigated soil and that it had a high capacity to accumulate heavy metals in its edible part and causes several harmful health effects for consumers.

  1. Accumulation and distribution of Zn in the shoots and reproductive structures of the halophyte plant species Kosteletzkya virginica as a function of salinity.

    PubMed

    Han, Ruiming; Quinet, Muriel; André, Emilie; van Elteren, Johannes Teun; Destrebecq, Florence; Vogel-Mikuš, Katarina; Cui, Guangling; Debeljak, Marta; Lefèvre, Isabelle; Lutts, Stanley

    2013-09-01

    Kosteletzkya virginica is a wetland halophyte that is a good candidate for rehabilitation of degraded salt marshes and production of oil as biodiesel. Salt marshes are frequently contaminated by heavy metals. The distribution of Zn in vegetative and reproductive organs of adult plants, and the NaCl influence on this distribution remain unknown and were thus explored in the present study. Plants were cultivated in a nutrient film technique system, from seedling stage until seed maturation in a control, Zn (100 μM), NaCl (50 mM) or Zn + NaCl medium. Photosynthesis, ion nutrition, malondialdehyde and non-protein thiol concentrations were quantified. Zinc distribution in reproductive organs was estimated by a laser ablation-inductively coupled plasma-mass spectrometry procedure (LA-ICP-MS). Adult plants accumulated up to 2 mg g(-1) DW Zn in the shoots. Zinc reduced plant growth, inhibited photosynthesis and reduced seed yield. Zinc accumulation in the seeds was only two times higher in Zn-treated plants than in controls. Exogenous NaCl neutralized the damaging action of Zn and modified the Zn distribution through a preferential accumulation of toxic ions in older leaves. Zinc was present in seed testa, endosperm and, to a lower extent, in embryo. Additional NaCl induced a chalazal retention of Zn during seed maturation and reduced final Zn seed content. It is concluded that NaCl 50 mM had a positive impact on the response of K. virginica to Zn toxicity and acts through a modification in Zn distribution rather than a decrease in Zn absorption.

  2. Accumulation of Cr, Cd, Pb, Cu, and Zn by plants in tanning sludge storage sites: opportunities for contamination bioindication and phytoremediation.

    PubMed

    Yuan, Yongqiang; Yu, Shen; Bañuelos, G S; He, Yunfeng

    2016-11-01

    Tanning sludge enriched with high concentrations of Cr and other metals has adverse effects on the environment. Plants growing in the metalliferous soils may have the ability to cope with high metal concentrations. This study focuses on potentials of using native plants for bioindication and/or phytoremediation of Cr-contaminated sites. In the study, we characterized plants and soils from six tanning sludge storage sites. Soil in these sites exhibited toxic levels of Cr (averaged 16,492 mg kg -1 ) and other metals (e.g., 48.3 mg Cu kg -1 , 2370 mg Zn kg -1 , 44.9 mg Pb kg -1 , and 0.59 mg Cd kg -1 ). Different metal tolerance and accumulation patterns were observed among the sampled plant species. Phragmites australis, Zephyranthes candida, Cynodon dactylon, and Alternanthera philoxeroides accumulated moderate-high concentrations of Cr and other metals, which could make them good bioindicators of heavy metal pollution. High Cr and other metal concentrations (e.g., Cd and Pb) were found in Chenopodium rubrum (372 mg Cr kg -1 ), Aster subulatus (310 mg Cr kg -1 ), and Brassica chinensis (300 mg Cr kg -1 ), being considered as metal accumulators. In addition, Nerium indicum and Z. candida were able to tolerate high concentrations of Cr and other metals, and they may be used as preferable pioneer species to grow or use for restoration in Cr-contaminated sites. This study can be useful for establishing guidelines to select the most suitable plant species to revegetate and remediate metals in tanning sludge-contaminated fields.

  3. Distribution and accumulation of selenium in wild plants growing naturally in the Gumuskoy (Kutahya) mining area, Turkey.

    PubMed

    Sasmaz, Merve; Akgül, Bunyamin; Sasmaz, Ahmet

    2015-05-01

    This study investigated selenium uptake and transport from the soil to 12 plant species in the mining area of Gumuskoy (Kutahya), Turkey. Plant samples and their associated soils were collected and analyzed for Se content by ICP-MS. Mean Se values in the soils, roots, and shoots of all plants were 0.9, 0.6, and 0.8 mg kg(-1), respectively. The mean enrichment coefficients for roots (ECR) and shoots (ECS) of these plants were 0.78 and 0.97. The mean translocation factors (TLF) were 1.33. These values indicate that all 12 plant species had the ability to transfer Se from the roots to the shoot, but that transfer was more efficient in plants with higher ECR and ECS. Therefore, these plants may be useful in phytoremediation in rehabilitating areas contaminated by Se because their ECR, ECS and TLFs are >1.

  4. Single particle ICP-MS method development for the determination of plant uptake and accumulation of CeO2 nanoparticles.

    PubMed

    Dan, Yongbo; Ma, Xingmao; Zhang, Weilan; Liu, Kun; Stephan, Chady; Shi, Honglan

    2016-07-01

    Cerium dioxide nanoparticles (CeO2NPs) are among the most broadly used engineered nanoparticles that will be increasingly released into the environment. Thus, understanding their uptake, transportation, and transformation in plants, especially food crops, is critical because it represents a potential pathway for human consumption. One of the primary challenges for the endeavor is the inadequacy of current analytical methodologies to characterize and quantify the nanomaterial in complex biological samples at environmentally relevant concentrations. Herein, a method was developed using single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) technology to simultaneously detect the size and size distribution of particulate Ce, particle concentration, and dissolved cerium in the shoots of four plant species including cucumber, tomato, soybean, and pumpkin. An enzymatic digestion method with Macerozyme R-10 enzyme previously used for gold nanoparticle extraction from the tomato plant was adapted successfully for CeO2NP extraction from all four plant species. This study is the first to report and demonstrate the presence of dissolved cerium in plant seedling shoots exposed to CeO2NPs hydroponically. The extent of plant uptake and accumulation appears to be dependent on the plant species, requiring further systematic investigation of the mechanisms.

  5. Melatonin confers plant tolerance against cadmium stress via the decrease of cadmium accumulation and reestablishment of microRNA-mediated redox homeostasis.

    PubMed

    Gu, Quan; Chen, Ziping; Yu, Xiuli; Cui, Weiti; Pan, Jincheng; Zhao, Gan; Xu, Sheng; Wang, Ren; Shen, Wenbiao

    2017-08-01

    Although melatonin-alleviated cadmium (Cd) toxicity both in animals and plants have been well studied, little is known about its regulatory mechanisms in plants. Here, we discovered that Cd stress stimulated the production of endogenous melatonin in alfalfa seedling root tissues. The pretreatment with exogenous melatonin not only increased melatonin content, but also alleviated Cd-induced seedling growth inhibition. The melatonin-rich transgenic Arabidopsis plants overexpressing alfalfa SNAT (a melatonin synthetic gene) exhibited more tolerance than wild-type plants under Cd conditions. Cd content was also reduced in root tissues. In comparison with Cd stress alone, ABC transporter and PCR2 transcripts in alfalfa seedlings, PDR8 and HMA4 in Arabidopsis, were up-regulated by melatonin. By contrast, Nramp6 transcripts were down-regulated. Changes in above transporters were correlated with the less accumulation of Cd. Additionally Cd-triggered redox imbalance was improved by melatonin. These could be supported by the changes of the Cu/Zn Superoxide Dismutase gene regulated by miR398a and miR398b. Histochemical staining, laser scanning confocal microscope, and H 2 O 2 contents analyses showed the similar tendencies. Taking together, we clearly suggested that melatonin enhanced Cd tolerance via decreasing cadmium accumulation and reestablishing the microRNAs-mediated redox homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Mercury Retention and Accumulation by Plants at the Abandoned New Idria Mine Site - a Preliminary micro-XRF and micro-XRD Study

    NASA Astrophysics Data System (ADS)

    Siebner, H.; Webb, S. M.; Brown, G. E.

    2008-12-01

    Due to its high toxicity and increasing levels in ecosystems, Hg pollution has become a serious global problem. A lot of research has been conducted with regard to Hg biogeochemical cycles in aquatic systems. Much less is known about terrestrial Hg-cycles in general and in plants specifically. Plants play an important role in these cycles; they are known to be an important sink for both atmospheric and soil Hg, the vegetative cover significantly influences soil erosion and migration of contaminants into aquatic systems. However, the processes involved in the interactions of Hg with plants and plants products are poorly studied. Information concerning the interaction of Hg in plants at the molecular level is sparse. The present study is intended to provide new information on Hg retention, translocation, and accumulation in plants associated with mercury mine wastes in central California. We present here preliminary results of Hg distribution in root and leave samples, taken from different plant species, which have adapted to the hostile environment at the New Idria site. Samples were taken at two locations that differ in water acidity and flooding regime. The distribution of Hg appears to be affected by plant species, growing conditions, and development stage. Micro-XRF images of root sections show that Hg is mainly associated with Fe plaque at the outer surfaces and epidermis, but is distributed differently in roots of the two plants. Micro-XRD showed evidence for mineralogical changes in the plaque through the sections. Mercury in leaves was found to be highly diffuse in its distribution, and is not associated with Fe-rich particles attached to the outer surface of the leaf. This finding implies that Hg is assimilated in the leaf tissue. Further examination of Fe plaque characteristics and associated Hg, as well as Hg speciation in the different organs of these plants, is being conducted in our lab.

  7. Phytochelatin Synthesis Promotes Leaf Zn Accumulation of Arabidopsis thaliana Plants Grown in Soil with Adequate Zn Supply and is Essential for Survival on Zn-Contaminated Soil.

    PubMed

    Kühnlenz, Tanja; Hofmann, Christian; Uraguchi, Shimpei; Schmidt, Holger; Schempp, Stefanie; Weber, Michael; Lahner, Brett; Salt, David E; Clemens, Stephan

    2016-11-01

    Phytochelatin (PC) synthesis is essential for the detoxification of non-essential metals such as cadmium (Cd). In vitro experiments with Arabidopsis thaliana seedlings had indicated a contribution to zinc (Zn) tolerance as well. We addressed the physiological role of PC synthesis in Zn homeostasis of plants under more natural conditions. Growth responses, PC accumulation and leaf ionomes of wild-type and AtPCS1 mutant plants cultivated in different soils representing adequate Zn supply, Zn deficiency and Zn excess were analyzed. Growth on Zn-contaminated soil triggers PC synthesis and is strongly impaired in PC-deficient mutants. In fact, the contribution of AtPCS1 to tolerating Zn excess is comparable with that of the major Zn tolerance factor MTP1. For plants supplied with a normal level of Zn, a significant reduction in leaf Zn accumulation of AtPCS1 mutants was detected. In contrast, AtPCS1 mutants grown under Zn-limited conditions showed wild-type levels of Zn accumulation, suggesting the operation of distinct Zn translocation pathways. Contrasting phenotypes of the tested AtPCS1 mutant alleles upon growth in Zn- or Cd-contaminated soil indicated differential activation of PC synthesis by these metals. Experiments with truncated versions identified a part of the AtPCS1 protein required for the activation by Zn but not by Cd. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  9. A comparative study of the effect of some nutritional medicinal plants effect on lead accumulation in the liver following different modes of administration

    PubMed Central

    Nwokocha, Chukwuemeka; Younger-Coleman, Novie; Nwokocha, Magdalene; Owu, Daniel; Iwuala, Moses

    2014-01-01

    Context and Objectives: Lead (Pb) toxicity leads to cell damage in many organs of the body. Using different treatment interventions and modes of administration we comparatively examined the protective ability of some medicinal plants on liver Pb accumulation. Materials and Methods: Rats were fed on either 7% w/w Zingiber officinale, 7% w/w Allium sativum, 10% w/w Lycopersicon esculentum, 5%, w/w Garcinia kola (all in rat chow), while Pb (100 ppm) was given in drinking water. The additives were administered together with (mode 1), a week after exposure to (mode 2) or a week before metal exposure to (mode 3) the metal for a period of 6 weeks. The metal accumulations in the liver were determined using atomic absorption spectrometry and compared using analysis of variance. Results: Some additives significantly (P < 0.05) reduced, while others enhanced Pb accumulation. Mode 2 yielded the highest mean % protection and mode 3 the lowest, no significant interaction between modes of administration and time of measurement in their relationships to percentage protection, but there was statistically significant (P < 0.05) interaction between modes of administration and additive used in their relationships to percentage protection. Conclusion: Protective effects of medicinal plants are varied and depend on the nature of lead exposure. PMID:25276068

  10. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils.

    PubMed

    Wen, Bei; Wu, Yali; Zhang, Hongna; Liu, Yu; Hu, Xiaoyu; Huang, Honglin; Zhang, Shuzhen

    2016-09-01

    The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in seven species of plants from biosolids-amended soils were investigated. The PFOS and PFOA root concentration factors (Croot/Csoil) ranged from 1.37 to 4.68 and 1.69 to 10.3 (ng/groot)/(ng/gsoil), respectively, while the translocation factors (Cshoot/Croot) ranged from 0.055 to 0.16 and 0.093 to 1.8 (ng/gshoot)/(ng/groot), respectively. The PFOS and PFOA accumulations in roots correlated positively with root protein contents (P < 0.05), while negatively with root lipid contents (P < 0.05). These suggested the promotion effects of protein and inhibition effects of lipid on root uptake. The translocation factors correlated positively with the ratios between protein contents in shoots to those in roots (P < 0.05), showing the importance of protein on PFOS and PFOA translocation. This study is the first to reveal the different roles of protein and lipid in the accumulation and distribution of PFOS and PFOA in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effects of salicylic acid, Fe(II) and plant growth-promoting bacteria on Cd accumulation and toxicity alleviation of Cd tolerant and sensitive tomato genotypes.

    PubMed

    Wei, Ting; Lv, Xin; Jia, HongLei; Hua, Li; Xu, HuiHui; Zhou, Ran; Zhao, Jin; Ren, XinHao; Guo, JunKang

    2018-05-15

    In this study, we investigated the ameliorative effects of salicylic acid (SA), metal ion (Fe(II)), and plant growth-promoting bacteria Burkholderia sp. D54 (B) on two tomato genotypes with different Cd tolerances under Cd stress, viz. Liger (Cd tolerant) and Tabd (Cd sensitive). The plant biomass, Cd accumulation, antioxidative response, pigment content and photosynthetic performance were determined. According to the results, exogenous application of SA, Fe(II) and Burkholderia sp. D54 or their complex effectively reduced Cd accumulation and increased biomass of root, stem and leaves in both Cd sensitive and Cd tolerant genotypes. Among all treatments, SA+Fe+B exerted the best performance. Burkholderia sp. D54 effectively alleviated Cd-induced oxidative toxicity in both tomato genotypes, while SA ameliorated oxidative stress in Cd sensitive genotype. Photosynthetic pigment content and photosynthetic rate of Cd tolerant genotype was increased by all treatments, but only SA and Burkholderia sp. D54 treatment increased pigment contents and photosynthetic performance in Cd sensitive genotypes. All treatments significantly decreased Cd accumulation in both tomato genotypes. The effect of Cd reduction was Fe+SA+B>SA>Fe>B. Taken together, our results indicated that exogenous application of SA, Fe(II) and Burkholderia sp. D54 could alleviate the Cd toxicity in both Cd sensitive and Cd tolerant genotypes, although the extent varies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Disruption of the human CGI-58 homologue in Arabidopsis results in lipid droplet accumulation in the cytosol of plant cells

    USDA-ARS?s Scientific Manuscript database

    CGI-58 has been identified as the causative gene in the human neutral lipid storage disease called Chanarin-Dorfman Syndrome. This disorder results in accumulation of intracellular lipid droplets in non-adipose tissues. Here we show that disruption of the homologous CGI-58 gene in Arabidopsis thal...

  13. Intelligent tutoring using HyperCLIPS

    NASA Technical Reports Server (NTRS)

    Hill, Randall W., Jr.; Pickering, Brad

    1990-01-01

    HyperCard is a popular hypertext-like system used for building user interfaces to databases and other applications, and CLIPS is a highly portable government-owned expert system shell. We developed HyperCLIPS in order to fill a gap in the U.S. Army's computer-based instruction tool set; it was conceived as a development environment for building adaptive practical exercises for subject-matter problem-solving, though it is not limited to this approach to tutoring. Once HyperCLIPS was developed, we set out to implement a practical exercise prototype using HyperCLIPS in order to demonstrate the following concepts: learning can be facilitated by doing; student performance evaluation can be done in real-time; and the problems in a practical exercise can be adapted to the individual student's knowledge.

  14. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  15. Trace element and nutrient accumulation in sunflower plants two years after the Aznalcóllar mine spill.

    PubMed

    Madejón, P; Murillo, J M; Marañón, T; Cabrera, F; Soriano, M A

    2003-05-20

    The failure of a tailing pond dam at the Aznalcóllar pyrite mine (SW Spain) in April 1998 released a toxic spill affecting approximately 4300 ha along the Agrio and Guadiamar valleys. Two years later, we have studied yield and concentration of mineral nutrients and trace elements in sunflower plants grown in the spill-affected soil, and in an adjacent unaffected soil as comparison. The study has been carried out in plants at seedling (V4) and mature (R8) stages. Shoot and root biomass of sunflower seedlings was significantly smaller in the affected soil than in the unaffected soil, but there was no significant difference at the mature stage. Oil production was greater in the spill-affected plants. We have not detected any 'fertilising' effect caused by the acid waters of the spill on the main nutrient (N, P and Ca) acquisition, as documented in 1998 for sunflower plants flooded by the spill. Sunflower plants growing in the spill-affected soil reached adequate levels of nutrients. None of the trace elements measured-As, Cd, Cu, Pb and Tl-reached levels either phytotoxic or toxic for humans or animals in seeds and the above-ground part of the spill-affected plants. We evaluate the potential use of sunflower plants for phytoremediation. The potential for phytoextraction is very low; however, it may be used for soil conservation. The production of oil (usable for industrial purposes) may add some value to this crop.

  16. Fenton process-affected transformation of roxarsone in paddy rice soils: Effects on plant growth and arsenic accumulation in rice grain.

    PubMed

    Qin, Junhao; Li, Huashou; Lin, Chuxia

    2016-08-01

    Batch and greenhouse experiments were conducted to examine the effects of Fenton process on transformation of roxarsone in soils and its resulting impacts on the growth of and As uptake by a rice plant cultivar. The results show that addition of Fenton reagent markedly accelerated the degradation of roxarsone and produced arsenite, which was otherwise absent in the soil without added Fenton reagent. Methylation of arsenate was also enhanced by Fenton process in the earlier part of the experiment due to abundant supply of arsenate from Roxarsone degradation. Overall, addition of Fenton reagent resulted in the predominant presence of arsenate in the soils. Fenton process significantly improved the growth of rice in the maturity stage of the first crop, The concentration of methylated As species in the rice plant tissues among the different growth stages was highly variable. Addition of Fenton reagent into the soils led to reduced uptake of soil-borne As by the rice plants and this had a significant effect on reducing the accumulation of As in rice grains. The findings have implications for understanding As biogeochemistry in paddy rice field receiving rainwater-borne H2O2 and for development of mitigation strategies to reduce accumulation of As in rice grains. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The Combined Effects of Arbuscular Mycorrhizal Fungi (AMF) and Lead (Pb) Stress on Pb Accumulation, Plant Growth Parameters, Photosynthesis, and Antioxidant Enzymes in Robinia pseudoacacia L.

    DOE PAGES

    Yang, Yurong; Han, Xiaozhen; Liang, Yan; ...

    2015-12-23

    Arbuscular mycorrhizal fungi (AMF) are considered as a potential biotechnological tool for improving phytostabilization efficiency and plant tolerance to heavy metal-contaminated soils. However, the mechanisms through which AMF help to alleviate metal toxicity in plants are still poorly understood. A greenhouse experiment was conducted to evaluate the effects of two AMF species (Funneliformis mosseae and Rhizophagus intraradices) on the growth, Pb accumulation, photosynthesis and antioxidant enzyme activities of a leguminous tree (Robinia pseudoacacia L.) at Pb addition levels of 0, 500, 1000 and 2000 mg kg -1 soil. AMF symbiosis decreased Pb concentrations in the leaves and promoted the accumulationmore » of biomass as well as photosynthetic pigment contents. Mycorrhizal plants had higher gas exchange capacity, non-photochemistry efficiency, and photochemistry efficiency compared with non-mycorrhizal plants. The enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidases (APX) and glutathione peroxidase (GPX) were enhanced, and hydrogen peroxide (H 2O 2) and malondialdehyde (MDA) contents were reduced in mycorrhizal plants. These findings suggested that AMF symbiosis could protect plants by alleviating cellular oxidative damage in response to Pb stress. Furthermore, mycorrhizal dependency on plants increased with increasing Pb stress levels, indicating that AMF inoculation likely played a more important role in plant Pb tolerance in heavily contaminated soils. Overall, both F. mosseae and R. intraradices were able to maintain efficient symbiosis with R. pseudoacacia in Pb polluted soils. AMF symbiosis can improve photosynthesis and reactive oxygen species (ROS) scavenging capabilities and decrease Pb concentrations in leaves to alleviate Pb toxicity in R. pseudoacacia. In conclusion, our results suggest that the application of the two AMF species associated with R. pseudoacacia could be a promising strategy for enhancing the phytostabilization

  18. The Combined Effects of Arbuscular Mycorrhizal Fungi (AMF) and Lead (Pb) Stress on Pb Accumulation, Plant Growth Parameters, Photosynthesis, and Antioxidant Enzymes in Robinia pseudoacacia L.

    SciTech Connect

    Yang, Yurong; Han, Xiaozhen; Liang, Yan

    Arbuscular mycorrhizal fungi (AMF) are considered as a potential biotechnological tool for improving phytostabilization efficiency and plant tolerance to heavy metal-contaminated soils. However, the mechanisms through which AMF help to alleviate metal toxicity in plants are still poorly understood. A greenhouse experiment was conducted to evaluate the effects of two AMF species (Funneliformis mosseae and Rhizophagus intraradices) on the growth, Pb accumulation, photosynthesis and antioxidant enzyme activities of a leguminous tree (Robinia pseudoacacia L.) at Pb addition levels of 0, 500, 1000 and 2000 mg kg -1 soil. AMF symbiosis decreased Pb concentrations in the leaves and promoted the accumulationmore » of biomass as well as photosynthetic pigment contents. Mycorrhizal plants had higher gas exchange capacity, non-photochemistry efficiency, and photochemistry efficiency compared with non-mycorrhizal plants. The enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidases (APX) and glutathione peroxidase (GPX) were enhanced, and hydrogen peroxide (H 2O 2) and malondialdehyde (MDA) contents were reduced in mycorrhizal plants. These findings suggested that AMF symbiosis could protect plants by alleviating cellular oxidative damage in response to Pb stress. Furthermore, mycorrhizal dependency on plants increased with increasing Pb stress levels, indicating that AMF inoculation likely played a more important role in plant Pb tolerance in heavily contaminated soils. Overall, both F. mosseae and R. intraradices were able to maintain efficient symbiosis with R. pseudoacacia in Pb polluted soils. AMF symbiosis can improve photosynthesis and reactive oxygen species (ROS) scavenging capabilities and decrease Pb concentrations in leaves to alleviate Pb toxicity in R. pseudoacacia. In conclusion, our results suggest that the application of the two AMF species associated with R. pseudoacacia could be a promising strategy for enhancing the phytostabilization

  19. Free and Conjugated Benzoic Acid in Tobacco Plants and Cell Cultures. Induced Accumulation upon Elicitation of Defense Responses and Role as Salicylic Acid Precursors1

    PubMed Central

    Chong, Julie; Pierrel, Marie-Agnès; Atanassova, Rossitza; Werck-Reichhart, Danièle; Fritig, Bernard; Saindrenan, Patrick

    2001-01-01

    Salicylic acid (SA) is a key endogenous component of local and systemic disease resistance in plants. In this study, we investigated the role of benzoic acid (BA) as precursor of SA biosynthesis in tobacco (Nicotiana tabacum cv Samsun NN) plants undergoing a hypersensitive response following infection with tobacco mosaic virus or in tobacco cell suspensions elicited with β-megaspermin, an elicitor from Phytophthora megasperma. We found a small pool of conjugated BA in healthy leaves and untreated cell suspensions of tobacco, whereas free BA levels were barely detectable. Infection of plants with tobacco mosaic virus or elicitation of cells led to a rapid de novo synthesis and accumulation of conjugated BA, whereas free BA was weakly induced. In presence of diphenylene iodonium, an inhibitor of superoxide anion formation, SA accumulation was abolished in elicited cells and much higher BA levels were concomitantly induced, mainly as a conjugated form. Furthermore, piperonylic acid, an inhibitor of cinnamate-4-hydroxylase was used as a powerful tool to redirect the metabolic flow from the main phenylpropanoid pathway into the SA biosynthetic branch. Under these conditions, in vivo labeling and radioisotope dilution experiments with [14C]trans-cinnamic acid as precursor clearly indicated that the free form of BA produced in elicited tobacco cells is not the major precursor of SA biosynthesis. The main conjugated form of BA accumulating after elicitation of tobacco cells was identified for the first time as benzoyl-glucose. Our data point to the likely role of conjugated forms of BA in SA biosynthesis. PMID:11154339

  20. Impacts of C-uptake by plants on the spatial distribution of 14C accumulated in vegetation around a nuclear facility-Application of a sophisticated land surface 14C model to the Rokkasho reprocessing plant, Japan.

    PubMed

    Ota, Masakazu; Katata, Genki; Nagai, Haruyasu; Terada, Hiroaki

    2016-10-01

    The impacts of carbon uptake by plants on the spatial distribution of radiocarbon ( 14 C) accumulated in vegetation around a nuclear facility were investigated by numerical simulations using a sophisticated land surface 14 C model (SOLVEG-II). In the simulation, SOLVEG-II was combined with a mesoscale meteorological model and an atmospheric dispersion model. The model combination was applied to simulate the transfer of 14 CO 2 and to assess the radiological impact of 14 C accumulation in rice grains during test operations of the Rokkasho reprocessing plant (RRP), Japan, in 2007. The calculated 14 C-specific activities in rice grains agreed with the observed activities in paddy fields around the RRP within a factor of four. The annual effective dose delivered from 14 C in the rice grain was estimated to be less than 0.7 μSv, only 0.07% of the annual effective dose limit of 1 mSv for the public. Numerical experiments of hypothetical continuous atmospheric 14 CO 2 release from the RRP showed that the 14 C-specific activities of rice plants at harvest differed from the annual mean activities in the air. The difference was attributed to seasonal variations in the atmospheric 14 CO 2 concentration and the growth of the rice plant. Accumulation of 14 C in the rice plant significantly increased when 14 CO 2 releases were limited during daytime hours, compared with the results observed during the nighttime. These results indicated that plant growth stages and diurnal photosynthesis should be considered in predictions of the ingestion dose of 14 C for long-term chronic releases and short-term diurnal releases of 14 CO 2 , respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Greater soil carbon accumulation in deeper soils in native- than in exotic-dominated grassland plantings in the southern Plains

    NASA Astrophysics Data System (ADS)

    Wilsey, B. J.; Xu, X.; Polley, H. W.; Hofmockel, K. S.

    2017-12-01

    Global change includes invasion by non-native plant species, and invasion may affect carbon cycling and storage. We tested predictions in central Texas in an experiment that compares mixtures of all exotic or all native species under two summer irrigation treatments (128 or 0 mm) that varies the amount of summer drought stress. At the end of the eighth growing season after establishment, soils were sampled in 10 cm increments to 100 cm depth to determine if soil C differed among treatments, and if treatments differentially affected soil C in deeper soils. Soil C content was significantly (5%) higher under native plantings than under exotic species plantings (P < 0.001). The difference between native and exotic plantings increased with depth, and native plantings had higher soil C in deeper soil layers than in surface layers (native-exotic x depth, P < 0.001). Exotic plantings had decreasing soil C with depth. Soil C:N ratio and δ13C/12C were also significantly affected by native-exotic status, with soils in exotic plots having a significantly greater C4 contribution than native soils. Soil C was unaffected by summer irrigation treatments. Our results suggest that a significant amount of carbon could be sequestered by replacing exotic plant species with native species in the southern Plains, and that more work should be conducted at deeper soil depths. If we had restricted our analyses to surface soil layers (e.g. top 30 cm), we would have failed to detect depth differences between natives and exotics.

  2. Effect of metal tolerant plant growth promoting bacteria on growth and metal accumulation in Zea mays plants grown in fly ash amended soil.

    PubMed

    Kumar, Kalpna V; Patra, D D

    2013-01-01

    The present study was undertaken to examine the effect of the application of fly ash (FA) into Garden soil (GS), with and without inoculation of plant growth promoting bacteria (PGPB), on the growth and metal uptake by Zea mays plants. Three FA tolerant PGPB strains, Pseudomonas sp. PS5, PS14, and Bacillus sp. BC29 were isolated from FA contaminated soils and assessed for their plant growth promoting features on the Z. mays plants. All three strains were also examined for their ability to solubilize phosphate and to produce Indole Acetic Acid (IAA), siderophores, and hydrogencynide acid (HCN) production. Although inoculation of all strains significantly enhanced the growth of plants at both the concentration of FA but maximum growth was observed in plants inoculated with BC29 and PS14 at low level (25%) of FA concentration. The experimental results explored the plant growth promoting features of selected strains which not only enhanced growth and biomass of plants but also protected them from toxicity of FA.

  3. Accumulation of sulfur and heavy metals in soil and tree leaves sampled from the surroundings of Tuncbilek Thermal Power Plant.

    PubMed

    Cicek, A; Koparal, A S

    2004-11-01

    In this study, the quantities of sulfur and heavy metals, resulting from the Tuncbilek Thermal Power Plant (TPP) in Turkey, have been assessed in tree leaves and soil samples within a 10 km radius of the plant. Leaves of Salix alba L., Populus tremula L., Robinia pseudoacacia L., Quercus infectoria L., Pinus nigra Arn. ssp. pallasiana (Lamb) Holmboe. trees have been used with the aim of determining how far the gas and particles emitted from the TPP are carried, and for assessment of environmental impact. The results obtained from locations chosen at various distances to the TPP, indicate that the contaminating agents are very dense and effective; particularly in the prevailing wind direction and within 10 km of the plant. They gradually lose their density and effect beyond this distance. The sulfur and heavy metal analyses made in soils taken from these locations indicate a similarity with the data obtained from the leaves.

  4. Downregulation of transcription factor aflR in Aspergillus flavus confers reduction to aflatoxin accumulation in transgenic maize with alteration of host plant architecture.

    PubMed

    Masanga, Joel Okoyo; Matheka, Jonathan Mutie; Omer, Rasha Adam; Ommeh, Sheila Cecily; Monda, Ethel Oranga; Alakonya, Amos Emitati

    2015-08-01

    We report success of host-induced gene silencing in downregulation of aflatoxin biosynthesis in Aspergillus flavus infecting maize transformed with a hairpin construct targeting transcription factor aflR. Infestation of crops by aflatoxin-producing fungi results in economic losses as well as negative human and animal health effects. Currently, the control strategies against aflatoxin accumulation are not effective to the small holder farming systems in Africa and this has led to widespread aflatoxin exposure especially in rural populations of sub-Saharan Africa that rely on maize as a staple food crop. A recent strategy called host-induced gene silencing holds great potential for developing aflatoxin-resistant plant germplasm for the African context where farmers are unable to make further investments other than access to the germplasm. We transformed maize with a hairpin construct targeting the aflatoxin biosynthesis transcription factor aflR. The developed transgenic maize were challenged with an aflatoxigenic Aspergillus flavus strain from Eastern Kenya, a region endemic to aflatoxin outbreaks. Our results indicated that aflR was downregulated in A. flavus colonizing transgenic maize. Further, maize kernels from transgenic plants accumulated significantly lower levels of aflatoxins (14-fold) than those from wild type plants. Interestingly, we observed that our silencing cassette caused stunting and reduced kernel placement in the transgenic maize. This could have been due to "off-target" silencing of unintended genes in transformed plants by aflR siRNAs. Overall, this work indicates that host-induced gene silencing has potential in developing aflatoxin-resistant germplasm.

  5. Investigation of effects of time of measurement and modes of administration on cadmium accumulation in rat liver under some medicinal plants food supplemented diet

    PubMed Central

    Nwokocha, Chukwuemeka R.; Younger-Coleman, Novie; Nwokocha, Magdalene; Owu, Daniel U.; Iwuala, Moses

    2014-01-01

    Context and Objectives: Cadmium (Cd) toxicity leads to cell and organ damage, we comparatively examined the protection ability of different medicinal plants on Cd liver accumulation following different treatment interventions and modes of administration. Materials and Methods: Rats were fed either 7% w/w Zingiber officinale, 7% w/w Allium Sativum, 10% w/w Lycopersicon esculentum, 5%, w/w Garcinia kola (all in rat chow), while Cd (200 ppm) was given in drinking water. Additives were administered together with (mode 1), a week after (mode 2) or a week before metal exposure (mode 3) for a period of six weeks. Cd liver was determined using AAS and compared using analysis of variance (ANOVA). Results: All additives significantly (P <0.5) reduced the accumulation of Cd in the liver. After adjusting for time and mode of administration, mean %protection for week 4 was significantly lower by 14.1% (P=0.02) from that for week 2 but the means did not differ with respect to additive used or mode of administration, no statistically significant interaction between modes of administration and either of additives used or time of administration in their respective relationships to percentage protection from Cd. Conclusion: Additives significantly reduced Cd accumulation through a reduction in absorption and enhancement of metal excretion. PMID:25002805

  6. Investigation of effects of time of measurement and modes of administration on cadmium accumulation in rat liver under some medicinal plants food supplemented diet.

    PubMed

    Nwokocha, Chukwuemeka R; Younger-Coleman, Novie; Nwokocha, Magdalene; Owu, Daniel U; Iwuala, Moses

    2014-07-01

    Cadmium (Cd) toxicity leads to cell and organ damage, we comparatively examined the protection ability of different medicinal plants on Cd liver accumulation following different treatment interventions and modes of administration. Rats were fed either 7% w/w Zingiber officinale, 7% w/w Allium Sativum, 10% w/w Lycopersicon esculentum, 5%, w/w Garcinia kola (all in rat chow), while Cd (200 ppm) was given in drinking water. Additives were administered together with (mode 1), a week after (mode 2) or a week before metal exposure (mode 3) for a period of six weeks. Cd liver was determined using AAS and compared using analysis of variance (ANOVA). All additives significantly (P <0.5) reduced the accumulation of Cd in the liver. After adjusting for time and mode of administration, mean %protection for week 4 was significantly lower by 14.1% (P=0.02) from that for week 2 but the means did not differ with respect to additive used or mode of administration, no statistically significant interaction between modes of administration and either of additives used or time of administration in their respective relationships to percentage protection from Cd. Additives significantly reduced Cd accumulation through a reduction in absorption and enhancement of metal excretion.

  7. The endogenous plant hormones and ratios regulate sugar and dry matter accumulation in Jerusalem artichoke in salt-soil.

    PubMed

    Li, Lingling; Shao, Tianyun; Yang, Hui; Chen, Manxia; Gao, Xiumei; Long, Xiaohua; Shao, Hongbo; Liu, Zhaopu; Rengel, Zed

    2017-02-01

    The changes in content of endogenous hormones in stolons and tubers of Jerusalem artichoke (Helianthus tuberosus L.) regulate tuber growth, but the specific knowledge about the importance of balance among the endogenous hormones is lacking. Two varieties of Jerusalem artichoke (NY-1 and QY-2) were tested for the endogenous zeatin (ZT), auxins (IAA), gibberellins (GA 3 ) and abscisic acid (ABA) in regulating sugar and dry matter accumulation in tubers. The dry matter content and sugar accumulation in tubers were correlated positively with endogenous ZT and negatively with GA 3 content and GA 3 /ABA and IAA/ABA content ratios. Throughout the tuber formation, ZT content was higher in NY-1 than QY-2 tubers, whereas ABA content was higher in QY-2 than NY-1 tubers. The content ratios GA 3 /ABA and IAA/ABA were greater in NY-1 than QY-2 before tuber initiation, but QY-2 surpassed NY-1 during the tuber growth stage. The GA 3 /ABA and IAA/ABA content ratios declined during tuber growth. The results suggested that a dynamic balance of endogenous hormones played an important role in tuber development. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation.

    PubMed

    Wang, Wei; Tang, Ke; Yang, Hao-Ru; Wen, Peng-Fei; Zhang, Ping; Wang, Hui-Ling; Huang, Wei-Dong

    2010-01-01

    Current research indicated that the resveratrol was mainly accumulated in the skin of grape berry, however, little is yet known about the distribution of resveratrol, as well as the regulation mechanism at protein level and the localization of stilbene synthase (malonyl-CoA:4-coumaroyl-CoA malonyltransferase; EC 2.3.1.95; STS), a key enzyme of resveratrol biosynthesis, in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon). Resveratrol, whose constitutive level ranged from 0.2 mg kg(-1) FW to 16.5 mg kg(-1) FW, could be detected in stem, axillary bud, shoot tip, petiole, root and leaf of grape plants. Among them, stem phloems presented the most abundant of resveratrol, and the leaves presented the lowest. Interestingly, the level of STS mRNA and protein were highest in grape leaves. And the analysis of immunohistochemical showed the tissue-specific distribution of STS in different organs, presenting the similar results compared with the amount of protein. And the subcellular localization revealed that the cell wall in different tissues processed the most golden particles representing STS. Subjecting to UV-C irradiation, resveratrol and STS were both intensely stimulated in grape leaves, with the similar response pattern. Results above indicated that distribution of resveratrol and STS in grape was organ-specific and tissue-specific. And the accumulation of resveratrol induced by UV-C was regulated by transcriptional and translational level of STS. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  9. Expression of TpNRAMP5, a metal transporter from Polish wheat (Triticum polonicum L.), enhances the accumulation of Cd, Co and Mn in transgenic Arabidopsis plants.

    PubMed

    Peng, Fan; Wang, Chao; Zhu, Jianshu; Zeng, Jian; Kang, Houyang; Fan, Xing; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong; Wang, Yi

    2018-06-01

    TpRNAMP5 is mainly expressed in the plasma membrane of roots and basal stems. It functions as a metal transporter for Cd, Mn and Co accumulation. Numerous natural resistance-associated macrophage proteins (NRAMPs) have been functionally identified in various plant species, including Arabidopsis, rice, soybean and tobacco, but no information is available on NRAMP genes in wheat. In this study, we isolated a TpNRAMP5 from dwarf Polish wheat (DPW, Triticum polonicum L.), a species with high tolerance to Cd and Zn. Expression pattern analysis revealed that TpNRAMP5 is mainly expressed in roots and basal stems of DPW. TpNRAMP5 was localized at the plasma membrane of Arabidopsis leaf protoplast. Expression of TpNRAMP5 in yeast significantly increased yeast sensitivity to Cd and Co, but not Zn, and enhanced Cd and Co concentrations. Expression of TpNRAMP5 in Arabidopsis significantly increased Cd, Co and Mn concentrations in roots, shoots and whole plants, but had no effect on Fe and Zn concentrations. These results indicate that TpNRAMP5 is a metal transporter enhancing the accumulation of Cd, Co and Mn, but not Zn and Fe. Genetic manipulation of TpNRAMP5 can be applied in the future to limit the transfer of Cd from soil to wheat grains, thereby protecting human health.

  10. Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants.

    PubMed

    Chandra Rai, Avinash; Singh, Major; Shah, Kavita

    2012-12-01

    Water stress often leads to the accumulation of reactive oxygen species (ROS) and their excessive production alters the activities of enzymes involved in their removal. ZAT12 is a member of stress-responsive C(2)H(2) type Zinc Finger Protein (ZFP) reported to control the expression of several stress-activated genes in plants through ROS signaling. The ZAT12-transformed tomato lines (cv. H-86 variety Kashi Vishesh) when subjected to water withdrawal for 7, 14 and 21 days revealed significant and consistent changes in activities of enzymes SOD, CAT, APX, GR and POD paralleled with an increased proline levels. Unlike that in wild-type tomato, the leaf superoxide anion and hydrogen peroxide concentrations in the transformed tomato plants did not alter much, suggesting a well regulated formation of free radicals suppressing oxidative stress in the latter. Results suggest BcZAT12-transformed tomato lines ZT1, ZT2 and ZT6 to be better adapted to drought stress tolerance by accumulation of osmolyte proline and increased antioxidant response triggered by the ZAT12 gene. Therefore, the ZAT12-transformed tomato cv. H-86 lines will prove useful for higher yield of tomato crop in regions affected with severe drought stress. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Influence of simulated Quinclorac drift on the accumulation and movement of herbicide in tomato (Lycopersicon esculentum) plants.

    PubMed

    Lovelace, Michael L; Hoagland, Robert E; Talbert, Ronald E; Scherder, Eric F

    2009-07-22

    Quinclorac (3,7-dichloro-8-quinolinecarboxylic acid) is a herbicide commonly used in rice, and its drift has been suspected of causing injury to off-target tomato fields throughout Arkansas. Studies were conducted to evaluate the effects of single and multiple simulated quinclorac drift applications on tomato plant growth and development. Residues extracted from tomato plants treated with 0.42 g of ai ha(-1) were below the detection limit of liquid chromatography-double mass spectrometry (LC-MS/MS) analysis. Quinclorac residue levels and half-lives in tomato tissue increased as the application rate and number of applications increased. From 3 to 72 h after (14)C-quinclorac treatment of plants, most of the absorbed (14)C was retained in the treated leaf, and translocations of (14)C out of the treated leaf of vegetative and flowering tomato plant tissues were similar. Of the (14)C that translocated out of the treated leaf, the greatest movement was acropetally. The flower cluster contained 1% of the total absorbed (14)C, which suggests the potential for quinclorac translocation into tomato fruit. More extensive research will be required to understand the impact that quinclorac may have on tomato production in the area.

  12. Accumulation of arsenic by aquatic plants in large-scale field conditions: opportunities for phytoremediation and bioindication.

    PubMed

    Favas, Paulo J C; Pratas, João; Prasad, M N V

    2012-09-01

    This work focuses on the potential of aquatic plants for bioindication and/or phytofiltration of arsenic from contaminated water. More than 71 species of aquatic plants were collected at 200 sampling points in running waters. The results for the 18 most representative plant species are presented here. The species Ranunculus trichophyllus, Ranunculus peltatus subsp. saniculifolius, Lemna minor, Azolla caroliniana and the leaves of Juncus effusus showed a very highly significant (P<0.001) positive correlation with the presence of arsenic in the water. These species may serve as arsenic indicators. The highest concentration of arsenic was found in Callitriche lusitanica (2346 mg/kg DW), Callitriche brutia (523 mg/kg DW), L. minor (430 mg/kg DW), A. caroliniana (397 mg/kg DW), R. trichophyllus (354 mg/kg DW), Callitriche stagnalis (354 mg/kg DW) and Fontinalis antipyretica (346 mg/kg DW). These results indicate the potential application of these species for phytofiltration of arsenic through constructed treatment wetlands or introduction of these plant species into natural water bodies. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Arbuscular Mycorrhizal Symbiosis with Arundo donax Decreases Root Respiration and Increases Both Photosynthesis and Plant Biomass Accumulation.

    PubMed

    Romero-Munar, Antònia; Del-Saz, Néstor Fernández; Ribas-Carbó, Miquel; Flexas, Jaume; Baraza, Elena; Florez-Sarasa, Igor; Fernie, Alisdair Robert; Gulías, Javier

    2017-07-01

    The effect of arbuscular mycorrhiza (AM) symbiosis on plant growth is associated with the balance between costs and benefits. A feedback regulation loop has been described in which the higher carbohydrate cost to plants for AM symbiosis is compensated by increases in their photosynthetic rates. Nevertheless, plant carbon balance depends both on photosynthetic carbon uptake and respiratory carbon consumption. The hypothesis behind this research was that the role of respiration in plant growth under AM symbiosis may be as important as that of photosynthesis. This hypothesis was tested in Arundo donax L. plantlets inoculated with Rhizophagus irregularis and Funneliformis mosseae. We tested the effects of AM inoculation on both photosynthetic capacity and in vivo leaf and root respiration. Additionally, analyses of the primary metabolism and ion content were performed in both leaves and roots. AM inoculation increased photosynthesis through increased CO 2 diffusion and electron transport in the chloroplast. Moreover, respiration decreased only in AM roots via the cytochrome oxidase pathway (COP) as measured by the oxygen isotope technique. This decline in the COP can be related to the reduced respiratory metabolism and substrates (sugars and tricarboxylic acid cycle intermediates) observed in roots. © 2017 John Wiley & Sons Ltd.

  14. Hexanoic Acid Treatment Prevents Systemic MNSV Movement in Cucumis melo Plants by Priming Callose Deposition Correlating SA and OPDA Accumulation.

    PubMed

    Fernández-Crespo, Emma; Navarro, Jose A; Serra-Soriano, Marta; Finiti, Iván; García-Agustín, Pilar; Pallás, Vicente; González-Bosch, Carmen

    2017-01-01

    Unlike fungal and bacterial diseases, no direct method is available to control viral diseases. The use of resistance-inducing compounds can be an alternative strategy for plant viruses. Here we studied the basal response of melon to Melon necrotic spot virus (MNSV) and demonstrated the efficacy of hexanoic acid (Hx) priming, which prevents the virus from systemically spreading. We analysed callose deposition and the hormonal profile and gene expression at the whole plant level. This allowed us to determine hormonal homeostasis in the melon roots, cotyledons, hypocotyls, stems and leaves involved in basal and hexanoic acid-induced resistance (Hx-IR) to MNSV. Our data indicate important roles of salicylic acid (SA), 12-oxo-phytodienoic acid (OPDA), jasmonic-isoleucine, and ferulic acid in both responses to MNSV. The hormonal and metabolites balance, depending on the time and location associated with basal and Hx-IR, demonstrated the reprogramming of plant metabolism in MNSV-inoculated plants. The treatment with both SA and OPDA prior to virus infection significantly reduced MNSV systemic movement by inducing callose deposition. This demonstrates their relevance in Hx-IR against MNSV and a high correlation with callose deposition. Our data also provide valuable evidence to unravel priming mechanisms by natural compounds.

  15. Hexanoic Acid Treatment Prevents Systemic MNSV Movement in Cucumis melo Plants by Priming Callose Deposition Correlating SA and OPDA Accumulation

    PubMed Central

    Fernández-Crespo, Emma; Navarro, Jose A.; Serra-Soriano, Marta; Finiti, Iván; García-Agustín, Pilar; Pallás, Vicente; González-Bosch, Carmen

    2017-01-01

    Unlike fungal and bacterial diseases, no direct method is available to control viral diseases. The use of resistance-inducing compounds can be an alternative strategy for plant viruses. Here we studied the basal response of melon to Melon necrotic spot virus (MNSV) and demonstrated the efficacy of hexanoic acid (Hx) priming, which prevents the virus from systemically spreading. We analysed callose deposition and the hormonal profile and gene expression at the whole plant level. This allowed us to determine hormonal homeostasis in the melon roots, cotyledons, hypocotyls, stems and leaves involved in basal and hexanoic acid-induced resistance (Hx-IR) to MNSV. Our data indicate important roles of salicylic acid (SA), 12-oxo-phytodienoic acid (OPDA), jasmonic-isoleucine, and ferulic acid in both responses to MNSV. The hormonal and metabolites balance, depending on the time and location associated with basal and Hx-IR, demonstrated the reprogramming of plant metabolism in MNSV-inoculated plants. The treatment with both SA and OPDA prior to virus infection significantly reduced MNSV systemic movement by inducing callose deposition. This demonstrates their relevance in Hx-IR against MNSV and a high correlation with callose deposition. Our data also provide valuable evidence to unravel priming mechanisms by natural compounds. PMID:29104580

  16. Metal accumulation potential of wild plants in tannery effluent contaminated soil of Kasur, Pakistan: field trials for toxic metal cleanup using Suaeda fruticosa.

    PubMed

    Firdaus-e Bareen; Tahira, Syeda Anjum

    2011-02-15

    The tannery effluent contaminated lands, adjacent to Depalpur Road, Kasur, Pakistan, have been rendered infertile due to long term effluent logging from the leather industry. The area has been colonized by twelve plant species among which Suaeda fruticosa, Salvadora oleoides and Calatropis procera have been found to be the most common and high biomass producing plants. S. fruticosa was subjected to further experimentation because of its high biomass and phytoextraction capabilities for metals. The pot and field experiments were carried out simultaneously. Pot experiments were conducted using the same field soil in column pots with stoppard bottoms to obtain the leachate. EDTA treatment caused a greater solubility of Cr in the soil pore water. In higher doses more amount of the heavy metal was leached. The increase in the amount of EDTA significantly caused a decrease in the biomass of plants without toxicity symptoms. A higher biomass of plants was observed in the field as compared to the pot experiment. The greatest amount of Na was accumulated by leaves of S. fruticosa followed by stem and roots. Similarly, the greatest amount of Cr was bioaccumulated by leaves of S. fruticosa, but followed by roots and then stem. S. fruticosa can be employed in rehabilitation of tannery effluent contaminated soil using small doses of EDTA. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation

    PubMed Central

    Bojórquez-Quintal, Emanuel; Velarde-Buendía, Ana; Ku-González, Ángela; Carillo-Pech, Mildred; Ortega-Camacho, Daniela; Echevarría-Machado, Ileana; Pottosin, Igor; Martínez-Estévez, Manuel

    2014-01-01

    Despite its economic relevance, little is known about salt tolerance mechanisms in pepper plants. To address this question, we compared differences in responses to NaCl in two Capsicum chinense varieties: Rex (tolerant) and Chichen-Itza (sensitive). Under salt stress (150 mM NaCl over 7 days) roots of Rex variety accumulated 50 times more compatible solutes such as proline compared to Chichen-Itza. Mineral analysis indicated that Na+ is restricted to roots by preventing its transport to leaves. Fluorescence analysis suggested an efficient Na+ compartmentalization in vacuole-like structures and in small intracellular compartments in roots of Rex variety. At the same time, Na+ in Chichen-Itza plants was compartmentalized in the apoplast, suggesting substantial Na+ extrusion. Rex variety was found to retain more K+ in its roots under salt stress according to a mineral analysis and microelectrode ion flux estimation (MIFE). Vanadate-sensitive H+ efflux was higher in Chichen-Itza variety plants, suggesting a higher activity of the plasma membrane H+-ATPase, which fuels the extrusion of Na+, and, possibly, also the re-uptake of K+. Our results suggest a combination of stress tolerance mechanisms, in order to alleviate the salt-induced injury. Furthermore, Na+ extrusion to apoplast does not appear to be an efficient strategy for salt tolerance in pepper plants. PMID:25429292

  18. Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation.

    PubMed

    Bojórquez-Quintal, Emanuel; Velarde-Buendía, Ana; Ku-González, Angela; Carillo-Pech, Mildred; Ortega-Camacho, Daniela; Echevarría-Machado, Ileana; Pottosin, Igor; Martínez-Estévez, Manuel

    2014-01-01

    Despite its economic relevance, little is known about salt tolerance mechanisms in pepper plants. To address this question, we compared differences in responses to NaCl in two Capsicum chinense varieties: Rex (tolerant) and Chichen-Itza (sensitive). Under salt stress (150 mM NaCl over 7 days) roots of Rex variety accumulated 50 times more compatible solutes such as proline compared to Chichen-Itza. Mineral analysis indicated that Na(+) is restricted to roots by preventing its transport to leaves. Fluorescence analysis suggested an efficient Na(+) compartmentalization in vacuole-like structures and in small intracellular compartments in roots of Rex variety. At the same time, Na(+) in Chichen-Itza plants was compartmentalized in the apoplast, suggesting substantial Na(+) extrusion. Rex variety was found to retain more K(+) in its roots under salt stress according to a mineral analysis and microelectrode ion flux estimation (MIFE). Vanadate-sensitive H(+) efflux was higher in Chichen-Itza variety plants, suggesting a higher activity of the plasma membrane H(+)-ATPase, which fuels the extrusion of Na(+), and, possibly, also the re-uptake of K(+). Our results suggest a combination of stress tolerance mechanisms, in order to alleviate the salt-induced injury. Furthermore, Na(+) extrusion to apoplast does not appear to be an efficient strategy for salt tolerance in pepper plants.

  19. Acyl CoA profiles of transgenic plants that accumulate medium-chain fatty acids indicate inefficient storage lipid synthesis in developing oilseeds.

    PubMed

    Larson, Tony R; Edgell, Teresa; Byrne, James; Dehesh, Katayoon; Graham, Ian A

    2002-11-01

    Several Brassica napus lines transformed with genes responsible for the synthesis of medium- or long-chain fatty acids were examined to determine limiting factor(s) for the subsequent accumulation of these fatty acids in seed lipids. Examination of a decanoic acid (10:0) accumulating line revealed a disproportionately high concentration of 10:0 CoA during seed development compared to long-chain acyl CoAs isolated from the same tissues, suggesting that poor incorporation of 10:0 CoA into seed lipids limits 10:0 fatty acid accumulation. This relationship was also seen for dodecanoyl (12:0) CoA and fatty acid in a high 12:0 line, but not for octadecanoic (18:0) CoA and fatty acid in a high 18:0 line. Comparison of 10:0 CoA and fatty acid proportions from seeds at different developmental stages for transgenic B. napus and Cuphea hookeriana, the source plant for the medium-chain thioesterase and 3-ketoacyl-ACP synthase transgenes, revealed that C. hookeriana incorporates 10:0 CoA into seed lipids more efficiently than transgenic B. napus. Furthermore, beta-oxidation and glyoxylate cycle activities were not increased above wild type levels during seed development in the 8:0/10:0 line, suggesting that lipid catabolism was not being induced in response to the elevated 10:0 CoA concentrations. Taken together, these data suggest that transgenic plants that are engineered to synthesize medium-chain fatty acids may lack the necessary mechanisms, such as specific acyltransferases, to incorporate these fatty acids efficiently into seed lipids.

  20. Low Night Temperature Affects the Phloem Ultrastructure of Lateral Branches and Raffinose Family Oligosaccharide (RFO) Accumulation in RFO-Transporting Plant Melon (Cucumismelo L.) during Fruit Expansion

    PubMed Central

    Hao, Jinghong; Gu, Fengying; Zhu, Jie; Lu, Shaowei; Liu, Yifei; Li, Yunfei; Chen, Weizhi; Wang, Liping; Fan, Shuangxi; Xian, Cory J.

    2016-01-01

    Due to the importance and complexity of photo assimilate transport in raffinose family oligosaccharide (RFO)-transporting plants such as melon, it is important to study the features of the transport structure (phloem) particularly of the lateral branches connecting the source leaves and the sink fruits, and its responses to environmental challenges. Currently, it is unclear to what extents the cold environmental temperature stress would alter the phloem ultrastructure and RFO accumulation in RFO-transporting plants. In this study, we firstly utilized electron microscopy to investigate the changes in the phloem ultrastructure of lateral branches and RFO accumulation in melons after being subjected to low night temperatures (12°C and 9°C). The results demonstrated that exposure to 9°C and 12°C altered the ultrastructure of the phloem, with the effect of 9°C being more obvious. The most obvious change was the appearance of plasma membrane invaginations in 99% companion cells and intermediary cells. In addition, phloem parenchyma cells contained chloroplasts with increased amounts of starch grains, sparse cytoplasm and reduced numbers of mitochondria. In the intermediary cells, the volume of cytoplasm was reduced by 50%, and the central vacuole was present. Moreover, the treatment at 9°C during the night led to RFO accumulation in the vascular bundles of the lateral branches and fruit carpopodiums. These ultrastructural changes of the transport structure (phloem) following the treatment at 9°C represented adaptive responses of melons to low temperature stresses. Future studies are required to examine whether these responses may affect phloem transport. PMID:27501301

  1. Low Night Temperature Affects the Phloem Ultrastructure of Lateral Branches and Raffinose Family Oligosaccharide (RFO) Accumulation in RFO-Transporting Plant Melon (Cucumismelo L.) during Fruit Expansion.

    PubMed

    Hao, Jinghong; Gu, Fengying; Zhu, Jie; Lu, Shaowei; Liu, Yifei; Li, Yunfei; Chen, Weizhi; Wang, Liping; Fan, Shuangxi; Xian, Cory J

    2016-01-01

    Due to the importance and complexity of photo assimilate transport in raffinose family oligosaccharide (RFO)-transporting plants such as melon, it is important to study the features of the transport structure (phloem) particularly of the lateral branches connecting the source leaves and the sink fruits, and its responses to environmental challenges. Currently, it is unclear to what extents the cold environmental temperature stress would alter the phloem ultrastructure and RFO accumulation in RFO-transporting plants. In this study, we firstly utilized electron microscopy to investigate the changes in the phloem ultrastructure of lateral branches and RFO accumulation in melons after being subjected to low night temperatures (12°C and 9°C). The results demonstrated that exposure to 9°C and 12°C altered the ultrastructure of the phloem, with the effect of 9°C being more obvious. The most obvious change was the appearance of plasma membrane invaginations in 99% companion cells and intermediary cells. In addition, phloem parenchyma cells contained chloroplasts with increased amounts of starch grains, sparse cytoplasm and reduced numbers of mitochondria. In the intermediary cells, the volume of cytoplasm was reduced by 50%, and the central vacuole was present. Moreover, the treatment at 9°C during the night led to RFO accumulation in the vascular bundles of the lateral branches and fruit carpopodiums. These ultrastructural changes of the transport structure (phloem) following the treatment at 9°C represented adaptive responses of melons to low temperature stresses. Future studies are required to examine whether these responses may affect phloem transport.

  2. Dual regulation of root hydraulic conductivity and plasma membrane aquaporins by plant nitrate accumulation and high-affinity nitrate transporter NRT2.1.

    PubMed

    Li, Guowei; Tillard, Pascal; Gojon, Alain; Maurel, Christophe

    2016-04-01

    The water status and mineral nutrition of plants critically determine their growth and development. Nitrate (NO3(-)), the primary nitrogen source of higher plants, is known to impact the water transport capacity of roots (root hydraulic conductivity, Lpr). To explore the effects and mode of action of NO3(-) on Lpr, we used an extended set of NO3(-) transport (nrt1.1, nrt1.2, nrt1.5 and nrt2.1), signaling (nrt1.1 and nrt2.1) and metabolism (nia) mutants in Arabidopsis, grown under various NO3(-) conditions. First, a strong positive relationship between Lpr and NO3(-) accumulation, in shoots rather than in roots, was revealed. Secondly, a specific 30% reduction of Lpr in nrt2.1 plants unraveled a major role for the high-affinity NO3(-) transporter NRT2.1 in increasing Lpr These results indicate that NO3(-)signaling rather than nitrogen assimilation products governs Lpr in Arabidopsis. Quantitative real-time reverse transcription-PCR and enzyme-linked immunosorbent assays (ELISAs) were used to investigate the effects of NO3(-) availability on plasma membrane aquaporin (plasma membrane intrinsic protein; PIP) expression. Whereas PIP regulation mostly occurs at the post-translational level in wild-type plants, a regulation of PIPs at both the transcriptional and translational levels was uncovered in nrt2.1 plants. In conclusion, this work reveals that control of Arabidopsis Lpr and PIP functions by NO3(-) involves novel shoot to root signaling and NRT2.1-dependent functions. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Accumulation of acidic SK₃ dehydrins in phloem cells of cold- and drought-stressed plants of the Solanaceae.

    PubMed

    Szabala, Bartosz Mieczyslaw; Fudali, Sylwia; Rorat, Tadeusz

    2014-04-01

    The role of acidic SK(n) dehydrins in stress tolerance of important crop and model species of the Solanaceae remains unknown. We have previously shown that the acidic SK₃ dehydrin DHN24 from Solanum sogarandinum is constitutively expressed and its expression is associated with cold acclimation. Here we found that DHN24 is specifically localized to phloem cells of vegetative organs of non-acclimated plants. More precise localization of DHN24 revealed that it is primarily found in sieve elements (SEs) and companion cells (CCs) of roots and stems. In cold-acclimated plants, DHN24 is mainly present in all cell types of the phloem. Dhn24 transcripts are also predominantly localized to phloem cells of cold-acclimated stems. Immunoelectron microscopy localized DHN24 to the cytosol and close to organelle membranes of phloem cells, the lumen with phloem protein filaments, parietal cytoplasm of SEs and the nucleoplasm of some nuclei. Cell fractionation experiments revealed that DHN24 was detected in the cytosolic, nuclear and microsomal fractions. We also determined whether homologous members of the acidic subclass dehydrins from Capsicum annuum and Lycopersicon chilense share the characteristics of DHN24. We showed that they are also constitutively expressed, but their protein level is upregulated preferentially by drought stress. Immunofluorescent localization revealed that they are detected in SEs and CCs of unstressed plants and throughout the phloem in drought-stressed plants. These results suggest that one of the primary roles of DHN24 and its homologs may be the protection of the phloem region from adverse effects of abiotic stresses.

  4. Fluorescent pseudomonads occurring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants.

    PubMed

    Duponnois, R; Kisa, M; Assigbetse, K; Prin, Y; Thioulouse, J; Issartel, M; Moulin, P; Lepage, M

    2006-11-01

    Cd-tolerant bacterial strains of fluorescent pseudomonads, mostly belonging to Pseudomonas monteillii, were isolated from termite mound soil (Macrotermes subhyalinus, a litter-forager and fungus-growing termite), in a Sudanese shrubby savanna, Burkina Faso. Such large mounds appeared as sites of great bacterial diversity and could be considered as hot spots of metal-tolerant fluorescent pseudomonads. Microbial isolates were inoculated to Sorghum plants (S. bicolor) in glasshouse experiments with soil amended with CdCl(2) (560 mg Cd kg(-1) soil). Microbial functional diversity was assessed at the end of the experiment by measurement of in situ patterns of catabolic potentials. All the bacteria isolates significantly improved the shoot and total biomass of sorghum plants compared to the control. Results concerning root biomass were not significant with some strains. Arbuscular mycorrhiza (AM) was greatly reduced by CdCl(2) amendment, and fluorescent pseudomonad inoculation significantly increased AM colonisation in the contaminated soil. The bacterial inoculation significantly improved Cd uptake by sorghum plants. Measurement of catabolic potentials on 16 substrates showed that the microbial communities were different according to the soil amendment. Soils samples inoculated with pseudomonad strains presented a higher use of ketoglutaric and hydroxybutiric acids, as opposed to fumaric acid in soil samples not inoculated. It is suggested that fluorescent pseudomonads could act indirectly in such metabolic processes by involving a lower rate of degradation of citric acid, in line with the effect of small organic acid on phytoextraction of heavy metals from soil. This is a first contribution to bioremediation of metal-contaminated sites with soil-to-plant transfer, using termite built structures. Further data are required on the efficiency of the bacterial strains isolated and on the processes involved.

  5. Soil characteristics and heavy metal accumulation by native plants in a Mn mining area of Guangxi, South China.

    PubMed

    Liu, Jie; Zhang, Xue-hong; Li, Tian-yu; Wu, Qing-xin; Jin, Zhen-jiang

    2014-04-01

    Revegetation and ecological restoration of a Mn mineland are important concerns in southern China. To determine the major constraints for revegetation and select suitable plants for phytorestoration, pedological and botanical characteristics of a Mn mine in Guangxi, southern China were investigated. All the soils were characterized by low pH and low nitrogen and phosphorus levels except for the control soil, suggesting that soil acidity and poor nutrition were disadvantageous to plant growth. In general, the studied mine soils had normal organic matter (OM) and cation exchange capacity (CEC). However, OM (8.9 g/kg) and CEC (7.15 cmol/kg) were very low in the soils from tailing dumps. The sandy texture and nutrient deficiency made it difficult to establish vegetation on tailing dumps. Mn and Cd concentrations in all soils and Cr and Zn concentrations in three soils exceeded the pollution threshold. Soil Mn and Cd were above phytotoxic levels, indicating that they were considered to be the major constraints for phytorestoration. A botanical survey of the mineland showed that 13 plant species grew on the mineland without obvious toxicity symptoms. High Mn and Cd concentrations have been found in the aerial parts of Polygonum pubescens, Celosia argentea, Camellia oleifera, and Solanum nigrum, which would be interesting for soil phytoremediation. Miscanthus floridulus, Erigeron acer, Eleusina indica, and Kummerowia striata showed high resistance to the heavy metal and harsh condition of the soils. These species could be well suited to restore local degraded land in a phytostabilization strategy.

  6. Natural establishment and selenium accumulation of herbaceous plant species in soils with elevated concentrations of selenium and salinity under irrigation and tillage practices.

    PubMed

    Wu, L; Enberg, A; Tanji, K K

    1993-04-01

    The effects of irrigation and tillage practices were studied on species richness, biomass, and selenium accumulation of naturally established herbaceous plants in soils with elevated levels of selenium (Se) and salinity at Kesterson Reservoir, Merced County, California. The four different irrigation-tillage practice combinations were (1) no irrigation, no tillage; (2) irrigation, no tillage; (3) no irrigation, tillage; and (4) irrigation, tillage. The fields were allowed to become colonized naturally by herbaceous plant species. For the Mediterranean climate in the study site, irrigation was conducted biweekly through the summer months, and tillage was done in 3-month intervals. Biomass and Se accumulation of Atriplex patula L, Bassia hyssopifolia Kuntze, Rev. Gen. Pl., Melilotus indica (L.) All., and Salsola kali L. were substantially affected by irrigation. The degree and direction of the effects were found to be species dependent. The field plots which were tilled at 3-month intervals remained bare throughout the experiment. The total soil Se concentrations in the top 15 cm soil horizon were found to be in the range of 40 to 70 mg kg-1 dry wt. Soil Se concentrations below 25 cm soil depth were much lower and within a range of 2 to 4 mg kg-1. Less than 1/10th of the total soil Se inventory in the top soil horizon was water extractable, and the distribution of the Se inventory did not change significantly over the period of 1990 and 1991 despite the irrigation and tillage practices suggesting that a large portion of the Se inventory was not remobilized. The water-extractable soil Se concentration was found to be significantly lower in soils with the greatest biomass production suggesting an effective bioextraction of soil selenium by the native herbaceous plants.

  7. More than ten million years of hyper-aridity recorded in the Atacama Gravels

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Bao, Huiming; Reich, Martin; Hemming, Sidney R.

    2018-04-01

    The Atacama Desert's hyper-aridity is closely linked to the development of world-class copper and nitrate/iodine ores and to regional tectonics and global paleoclimate changes in the Cenozoic era. The timing when the hyper-aridity commenced remains controversial, with proposed ages ranging from Late Oligocene to Pleistocene. In this study, we provide an independent constraint on the initiation of Atacama hyper-aridity utilizing a 100-m deep profile within the Atacama Gravels and underneath porphyry copper deposit in Spence, northern Chile. The overall high concentration of sulfate (up to 10 wt%) and a multimodal distribution of water soluble salt (sulfates, chlorides and nitrates) indicate multiple generations of sedimentation and salt accumulation events under semi-arid to hyper-arid climate conditions. The multiple sulfate isotope compositions (Δ17O, δ18O, δ34S) of the upper section (-15.0 to -34.5 m) are close to those of modern hyperarid surface sulfates, while the lower section (-34.5 to -65 m) displays a depth dependent isotope trend that is best interpreted as marking a period of climate change from semi-arid to hyper-arid. When these data are combined with new chronological 40Ar/39Ar dates obtained from a volcanic ash layer at depth of -28.0 m, our results show that hyper-arid condition in the Atacama Desert was prevailing at least prior to 9.47 Ma and may go back as old as the middle Miocene.

  8. Cell surfaces in plant-microorganism interactions. I. A structural investigation of cell wall hydroxyproline-rich glycoproteins which accumulate in fungus-infected plants

    SciTech Connect

    Esquerre-Tugaye, M.T.; Lamport, D.T.A.

    1979-08-01

    Infection of muskmelon Cucumis melo seedlings by the fungus Colletotrichum lagenarium causes a 10-fold increase in the amount of cell wall hydroxyproline-rich glycoprotein. Evidence for this increase was provided by studying two specific markers of this glycoprotein, namely hydroxyproline and glycosylated serine. The lability of the O-glycosidic linkage of wall-bound glycosylated serine in the presence of hydrazine was used to determine the amount of serine which is glycosylated. A large increase in the hydroxyproline content of infected plants is shown, but the ratios of glycosylated serine to hydroxyproline are similar in healthy and infected plants. As far as these markersmore » are concerned, the hydroxyproline-rich glycoproteins secreted into the wall as a result of the disease are similar to those of healthy plants. In addition, the extent of glycosylation of the wall serine, in both healthy and infected plants, decreases as the plant ages. Serine- and hydroxyproline-rich (glyco)peptides were also isolated after trypsinolysis of the wall. These (glyco)peptides include the galactosyl-containing pentapeptide, serine-hydroxyproline. This pentapeptide is characteristic of cell wall protein.« less

  9. Heat shock transcription factor 3 regulates plant immune response through modulation of salicylic acid accumulation and signaling in cassava.

    PubMed

    Wei, Yunxie; Liu, Guoyin; Chang, Yanli; He, Chaozu; Shi, Haitao

    2018-04-16

    As the terminal components of signal transduction, heat stress transcription factors (Hsfs) mediate the activation of multiple genes responsive to various stresses. However, the information and functional analysis are very limited in non-model plants, especially in cassava (Manihot esculenta), one of the most important crops in the tropical area. In this study, 32 MeHsfs were identified from cassava genome, the evolutionary tree, gene structures and motifs were also analyzed. Gene expression analysis found that MeHsfs were commonly regulated by Xanthomonas axonopodis pv manihotis (Xam). Among these MeHsfs, MeHsf3 was specifically located in the cell nucleus and had transcriptional activated activity on HSEs. Through transient expression in Nicotiana benthamiana leaves and virus-induced gene silencing (VIGS) in cassava, we identified the essential role of MeHsf3 in plant disease resistance, by regulating the transcripts of Enhanced Disease Susceptibility 1 (EDS1) and pathogen-related gene 4 (PR4). Notably, as regulators of defense susceptibility, MeEDS1 and MePR4 were identified as direct targets of MeHsf3. Moreover, the disease sensitivity of MeHsf3- and MeEDS1-silenced plants could be restored by exogenous salicylic acid (SA) treatment. Taken together, this study highlights the involvement of MeHsf3 in defense resistance through the transcription activation on MeEDS1 and MePR4. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  10. Comparative study of plant growth of two poplar tree species irrigated with treated wastewater, with particular reference to accumulation of heavy metals (Cd, Pb, As, and Ni).

    PubMed

    Houda, Zarati; Bejaoui, Zoubeir; Albouchi, Ali; Gupta, Dharmendra K; Corpas, Francisco J

    2016-02-01

    Water is a scarce natural resource around the world which can hamper the socio-economic development of many countries. The Mediterranean area, especially north Africa, is known for its semi-arid to arid climate, causing serious water supply problems. Treated wastewater (TWW) is being used as an alternative strategy for recycling wastewater. It is also a potential source of nutrients for reforestation with certain plant species such as poplar trees, a useful wood resource, and even for phytoremediation purposes. In the present study, we used treated wastewater to irrigate two clones of 1-year-old poplar trees (Populus nigra cv. I-488 and Populus alba cv. MA-104) for 90 days. After a stipulated time, a comparative study was made of the effects of TWW on growth parameters, acquisition of essential minerals (Na, Fe and Zn) and pollutants (Cd, Pb, As and Ni) as well as the enrichment of secondary metabolites such as polyphenolic, flavonoid and tannin compounds which could contribute to the growth and development of poplar plants. The results of this study show that the use of TWW increased P. alba's biomass production by 36% and also enhanced its Cd and Pb accumulation capacity. We also found that P. alba has considerable potential to be used as an alternative plant species for reforestation and/or phytoremediation of toxic metals from contaminated water or effluent.

  11. Accumulation and environmental risk assessment of heavy metals in soil and plants of four different ecosystems in a former polymetallic ores mining and smelting area (Slovakia).

    PubMed

    Demková, Lenka; Árvay, Július; Bobuľská, Lenka; Tomáš, Ján; Stanovič, Radovan; Lošák, Tomáš; Harangozo, Luboš; Vollmannová, Alena; Bystrická, Judita; Musilová, Janette; Jobbágy, Ján

    2017-04-16

    Heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in soils and plants of four different ecosystems (forest, grassland, agro and urban ecosystem) at different distances from the source of the pollution were analyzed in order to assess and compare soil contamination in the various ecosystems and determine the potential accumulation of plants depending on the place they inhabit. Correlation relationships among heavy metals in soils differ depending on the ecosystem, and between soil and plant, the heavy metals showed significant correlation for Cu, Mn, Ni, Pb and Zn. Contamination factor (C f ), degree of contamination (C d ) and pollution load index (PLI) were used in order to determine the level of environmental contamination of the study area. All studied ecosystems were rated as moderately contaminated (except agroecosystem, which was found as low contamination ecosystem) according to C d and extremely polluted according to PLI. The highest pollution in both cases was found in urban ecosystem, and Cd, Cu and Fe were determined as the biggest pollutants.

  12. Accumulation of free polyamines enhances the antioxidant response in fruits of grafted tomato plants under water stress.

    PubMed

    Sánchez-Rodríguez, E; Romero, L; Ruiz, J M

    2016-01-15

    Polyamines, small aliphatic polycations, have been suggested to play key roles in a number of biological processes. In this paper, attempts were made to investigate the possibility of improving antioxidant response of tomato fruits in relation with endogenous free polyamines content. We studied the reactive oxygen species and polyamines content, and antioxidant and polyamine-biosynthesis enzyme activities in fruits of ungrafted and grafted tomato plants under moderate water stress. We used a drought-tolerant cultivar (Zarina) and drought-sensitive cultivar (Josefina) to obtain reciprocal graft, selfgraft and ungraft plants. Fruits contained higher endogenous polyamine content during the course of the experiment relative to the control, coupled with higher arginine decarboxylase and spermine synthase activities in Zarina ungrafted and ZarxJos. In these cultivars, tomato fruits showed a lower reactive oxygen species generation and higher catalase and superoxide dismutase activities, suggesting that a higher content in polyamines (especially spermine) exerted a positive effect on antioxidant systems. All of these data suggest that spermine leads to more effective reactive oxygen species scavenging (less tissue damage) in tomato fruits, which may function collectively to enhance dehydration tolerance. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. A hyper-temporal remote sensing protocol for detecting ecosystem disturbance, classifying ecological state, and assessing soil resilience

    USDA-ARS?s Scientific Manuscript database

    Hyper-temporal remote sensing is capable of detecting detailed information on vegetation dynamics relating to plant functional types (PFT), a useful proxy for estimating soil physical and chemical properties. A central concept of PFT is that plant morphological and physiological adaptations are link...

  14. Plastids and Carotenoid Accumulation.

    PubMed

    Li, Li; Yuan, Hui; Zeng, Yunliu; Xu, Qiang

    Plastids are ubiquitously present in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids, except proplastids, can synthesize carotenoids. However, plastid types have a profound effect on carotenoid accumulation and stability. In this chapter, we discuss carotenoid biosynthesis and regulation in various plastids with a focus on carotenoids in chromoplasts. Plastid transition related to carotenoid biosynthesis and the different capacity of various plastids to sequester carotenoids and the associated effect on carotenoid stability are described in light of carotenoid accumulation in plants.

  15. Growth and elemental accumulation of plants grown in acidic soil amended with coal fly ash-sewage sludge co-compost

    SciTech Connect

    Wong, J.W.C.; Selvam, A.

    2009-10-15

    A greenhouse experiment was conducted to evaluate the growth and heavy-metal accumulation of Brassica chinensis and Agropyron elongatum in 10 and 25% ash-sludge co-compost (ASC)-amended loamy acidic soil (pH 4.51) at two different application rates: 20% and 40% (v/v). Soil pH increased, whereas electrical conductivity decreased with the amendment of ASC to soil. Bioavailable Cu, Zn, and Mn contents of ASC-amended soil decreased, whereas Ni, Pb, and B contents increased. Concentrations of bioavailable Cu, Zn, and Mn in sludge compost (SC)-amended soils were 5.57, 20.8, and 8.19 mg kg{sup -1}, respectively. These concentrations were significantly lower than those in soilmore » receiving an application rate of 20 or 25% ASC as 2.64, 8.48, and 5.26 mg kg(-1), respectively. Heavy metals and B contents of the composting mass significantly increased with an increase in ASC application rate from 20 to 40% (6.2 to 16.6 mg kg{sup -1} for 10% ASC- and 9.4 to 18.6 mg kg{sup -1} for 25% ASC-amended soil. However, when the ash content in co-compost increased from 10 to 25% during composting, bioavailable heavy-metal contents decreased. However, B contents increased with an increase in ash content. Addition of co-composts increased the dry-weight yield of the plants, and this increase was more obvious as the ash amendment rate in the co-composts and the ASC application rate increased. In case of B. chinensis, the biomass of 2.84 g/plant for 40% application of 25% ASC was significantly higher than SC (0.352 g/plant), which was 40% application of 10% ASC (0.434 g/plant) treatments. However, in A. elongatum, the differences between biomass of plants grown with 10% (1.34-1.94 g/ plant) and 25% ASC (2.12-2.21 g/plant) were not significantly different. ASC was favorable in increasing the growth of B. chinensis and A. elongatum. The optimal ash amendment to the sludge composting and ASC application rates were at 25 and 20%, respectively.« less

  16. Plum pox virus accumulates mutations in different genome parts during a long-term maintenance in Prunus host plants and passage in Nicotiana benthamiana.

    PubMed

    Vozárová, Z; Kamencayová, M; Glasa, M; Subr, Z

    2013-01-01

    Plum pox virus (PPV) isolates of the strain PPV-M prevalently infect peaches under natural conditions in Middle Europe. Comparison of complete genome sequences obtained from subisolates of a PPV-M isolate maintained experimentally over a 6-year period in different Prunus host species and passaged in Nicotiana benthamiana was performed with the aim to highlight the mutations potentially connected with the virus-host adaptation. The results showed that the lowest number of non-silent mutations was accumulated in PPV-M maintained in peach (original host species), approximately two times higher diversity was recorded in plum, apricot and N. benthamiana, indicating the genetic determination of the PPV host preference. The sequence variability of Prunus subisolates was distributed more or less evenly along the PPV genome and no amino acid motif could be outlined as responsible for the host adaptation. In N. benthamiana the mutations were accumulated notably in the P1 and P3 genes indicating their non-essentiality in the infection of this experimental host plant.

  17. Root endophytic bacteria of a (137)Cs and Mn accumulator plant, Eleutherococcus sciadophylloides, increase (137)Cs and Mn desorption in the soil.

    PubMed

    Yamaji, Keiko; Nagata, Satoshi; Haruma, Toshikatsu; Ohnuki, Toshihiko; Kozaki, Tamotsu; Watanabe, Naoko; Nanba, Kenji

    2016-03-01

    We found that root endophytes of (137)Cs accumulator plant produce siderophores, resulting in the desorption of (137)Cs from the contaminated soil collected at Fukushima, Japan. We selected an endemic Japanese deciduous tree, Eleutherococcus sciadophylloides (Franch. et Sav), that accumulates high concentrations of (137)Cs and Mn. Root endophytic bacteria were isolated from E. sciadophylloides and microbial siderophore production was evaluated via chrome azurol S (CAS) Fe and CAS Al assays. Of the 463 strains that we isolated, 107 (23.1%) produced the siderophores. Using eight strains that showed high siderophore production in our assays, we examined desorption of (137)Cs, Mn, Fe and Al by the bacterial culture filtrates from (137)Cs-contaminated soil after decomposing the soil organic matter using hydrogen peroxide. We found (137)Cs and Mn desorption concomitant with Al and Fe desorption, as well as a decrease of pH. We also detected succinic acid, a well-known siderophore, in the bacterial culture filtrates of our two root endophytic bacteria. Our results strongly suggest that the root endophytic bacteria of E. sciadophylloides produce the siderophores that enhance (137)Cs and Mn desorption in the rhizosphere, making the resulting (137)Cs and Mn ions easier for E. sciadophylloides to absorb from the rhizosphere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Translocation and accumulation of trace metals from the rhizosphere to the tomato and topinambur plants in a contaminated area of South Italy

    NASA Astrophysics Data System (ADS)

    Papa, Stefania; Bartoli, Giovanni; Álvarez-Romero, Marta; Zornoza, Raúl; Carillo, Petronia; Fioretto, Antonietta

    2017-04-01

    According to a survey of the Italian Environmental Monitoring Agency (ARPA), there are different critical sites in Campania region (South Italy) (e.i. legal or illegal landfills, countryside lands, abandoned farms, parking lots and regular streets). Literature data show that about half of the lead, cadmium and mercury contents, ingested through food, is due to the plant products (fruit, vegetables and grains) (Kachenko and Singh 2006; Liu et al 2012; Chang et al 2014; Wong et al 2002). In the health protection programs, the knowledge of heavy metals translocation from soils to plants used as food are very important with research on metal uptake by plants of food interest cultivated in contaminated soils. The goal of this work was to evaluate the translocation and accumulation of trace metals from the rhizosphere to the different parts of the plant (roots, stems, leaves, fruit) of Topinambur (Helianthus tuberosus) and tomato (Solanum lycopersicum) sampled in the coast area of Castel Volturno (Campania region, South Italy). This area is one of the critical sites according to a survey of the Environmental Monitoring Agency ARPA. In addition to these measures, malondialdehyde (MDA) activity was assayed to evaluate the stress state of the plant. The results showed that the trace metals concentration determinated in different organs of each species studied were more present in the roots than the other plant's parts, suggesting a probable block at root level. The only exception were Cu and Hg in tomato and topinambur plants respectively, that were mainly present in the leaves. The metals block at the root induced no alteration of MDA. However, the correlation between this activity and Cd, Pb, V and Hg seemed to attest to a possible synergy. Keywords: "Helianthus tuberosus", "Solanum lycopersicum", trace metal, traslocation Reference -Kachenko AG, Singh B, 2006 Heavy Metals Contamination in Vegetables Grown in Urban and Metal Smelter Contaminated Sites in Australia. Water

  19. Hyper-resistive forced magnetic reconnection

    SciTech Connect

    Vekstein, G., E-mail: g.vekstein@manchester.ac.uk

    We study Taylor's model of forced magnetic reconnection mediated by plasma hyper-resistivity. This includes both linear and nonlinear regimes of the process. It is shown how the onset of plasmoid instability occurs in the strongly nonlinear regime of forced reconnection.

  20. Genetics Home Reference: isolated hyperCKemia

    MedlinePlus

    ... signaling and maintenance of the cell structure. CAV3 gene mutations result in a shortage of caveolin-3 protein ... this condition. In addition to isolated hyperCKemia , CAV3 gene mutations can cause other caveolinopathies including CAV3 -related distal ...

  1. Business Japanese, a HyperCard Simulation.

    ERIC Educational Resources Information Center

    Saito-Abbott, Yoshiko; Abbott, Thomas

    This paper describes Business Japanese (BJ), a HyperCard based tutorial designed as courseware for use in a third-year Japanese course at the University of Texas, Austin (UTA). A major objective was to develop good courseware based on proven language learning theory that would integrate theory, practice, and technology. BJ stresses a realistic and…

  2. Talent in autism: hyper-systemizing, hyper-attention to detail and sensory hypersensitivity

    PubMed Central

    Baron-Cohen, Simon; Ashwin, Emma; Ashwin, Chris; Tavassoli, Teresa; Chakrabarti, Bhismadev

    2009-01-01

    We argue that hyper-systemizing predisposes individuals to show talent, and review evidence that hyper-systemizing is part of the cognitive style of people with autism spectrum conditions (ASC). We then clarify the hyper-systemizing theory, contrasting it to the weak central coherence (WCC) and executive dysfunction (ED) theories. The ED theory has difficulty explaining the existence of talent in ASC. While both hyper-systemizing and WCC theories postulate excellent attention to detail, by itself excellent attention to detail will not produce talent. By contrast, the hyper-systemizing theory argues that the excellent attention to detail is directed towards detecting ‘if p, then q’ rules (or [input–operation–output] reasoning). Such law-based pattern recognition systems can produce talent in systemizable domains. Finally, we argue that the excellent attention to detail in ASC is itself a consequence of sensory hypersensitivity. We review an experiment from our laboratory demonstrating sensory hypersensitivity detection thresholds in vision. We conclude that the origins of the association between autism and talent begin at the sensory level, include excellent attention to detail and end with hyper-systemizing. PMID:19528020

  3. Accumulation and transfer of 137Cs and 90Sr in the plants of the forest ecosystem near the Ignalina Nuclear Power Plant.

    PubMed

    Lukšienė, B; Marčiulionienė, D; Gudelienė, I; Schönhofer, F

    2013-02-01

    The radioecological state of the forest ecosystem in the vicinity of the Ignalina Power Plant prior to decommissioning was analysed with specific emphasis on (137)Cs and (90)Sr activity concentrations in plant species growing in two reference sampling sites (Tilze and Grikiniskes). In the period of 1996-2008 the mean contamination of plants with (137)Cs was from 45 to 119 Bq/kg and with (90)Sr - from 3 to 42 Bq/kg. Measured (137)Cs TF values for soil-root transfer mainly ranged between 1.0-1.4, except for Calamagrostis arundinacea which had a TF value of 0.1. On average, the (137)Cs TF value from root to shoot was 1.7 fold higher than for soil to root transfer. (90)Sr TF values (soil-root) were in the range of 1.2-1.8 but for Calluna vulgaris it was 0.2. The mean root to shoot TF value for (90)Sr was 7.7 fold higher. These results indicate the higher (90)Sr bioavailability than that of (137)Cs in the forested area. The Grikiniskes reference site is located nearby the Ignalina NPP, specifically the heated water outlet channel, which results in altered microclimatic conditions. These specific microclimatic conditions result in relationships between (137)Cs TF (soil-root) values and pH, moisture and organic matter content in the soil at Grikiniskes which appear to be different to those at the Tilze reference sampling site. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Kanazawa, S.; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.; Space Agriculture Task Force, J.

    Manned Mars exploration requires recycle of materials to support human life A conceptual design is developed for space agriculture which is driven by the biologically regenerative function Hyper-thermophilic aerobic composting bacterial ecology is the core of materials recycling system to process human metabolic waste and inedible biomass and convert them to fertilizer for plants cultivation A photosynthetic reaction of plants will be driven by solar energy Water will be recycled by cultivation of plants and passing it through plant bodies Sub-surface water and atmospheric carbon dioxide are the natural resource available on Mars and these resources will be converted to oxygen and foods We envision that the agricultural system will be scaled up by importing materials from Martian environment Excess oxygen will be obtained from growing trees for structural and other components Minor elements including N P K and other traces will be introduced as fertilizers or nutrients into the agricultural materials circulation Nitrogen will be collected from Martian atmosphere We will assess biological fixation of nitrogen using micro-organisms responsible in Earth biosphere Hyper-thermophilic aerobic bacterial ecology is effective to convert waste materials into useful forms to plants This microbial technology has been well established on ground for processing sewage and waste materials For instance the hyper-thermophilic bacterial system is applied to a composting machine in a size of a trash box in home kitchen Since such a home electronics

  5. Accumulation of polycyclic aromatic hydrocarbons and trace elements in the bioindicator plants Tillandsia capillaris and Lolium multiflorum exposed at PM10 monitoring stations in Stuttgart (Germany).

    PubMed

    Rodriguez, J H; Pignata, M L; Fangmeier, A; Klumpp, A

    2010-06-01

    The accumulation of polycyclic aromatic hydrocarbons (PAHs) in Tillandsia capillaris Ruiz and Pav. form capillaris and trace elements in T. capillaris and Lolium multiflorum (LAM) cv. Lema was assessed and evaluated in the city of Stuttgart, Germany. Several sites (urban, suburban and rural) categorized according to type and intensity of vehicular traffic were investigated. At these sites, plants of T. capillaris and standardized cultures of L. multiflorum were exposed to ambient air. Foliar concentrations of PAHs (16 priority pollutants according to US-EPA) and of the trace elements Br, Co, Cu, Fe, Mn, Ni, Pb and Zn were determined. A high level of vehicular traffic was associated with the largest concentrations of PM(10) in ambient air and with the highest contents of PAHs and heavy metals in the bioindicator plants. The results showed a similar pattern between T. capillaris and the standardized biomonitor L. multiflorum. Therefore, these results allow us to propose T. capillaris as a suitable bioindicator to assess the distribution of pollution impacts caused by PAHs and trace elements in different subtropical and tropical regions. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in southwest Europe (Galicia, NW Spain).

    PubMed

    Nóvoa-Muñoz, J C; Pontevedra-Pombal, X; Martínez-Cortizas, A; García-Rodeja Gayoso, E

    2008-05-15

    This study was carried out to determine total Hg concentrations (HgT) in acid soils and main plant species in forest ecosystems located in the river Sor catchment, which is located 20 km to the NE of the biggest coal-fired power-plant in southwestern Europe (Galicia, NW Spain). Mercury enrichment factors and Hg inventories were also determined in the soils, which were regularly sampled between 1992 and 2001. The presence of elemental Hg was estimated by simple thermal desorption at 105 degrees C. The highest HgT concentrations occurred in upper soil layers (O and A horizons) with values up to 300 ng g(-1). HgT decreased with depth, achieving the lowest values in the bottommost horizons (i.e. the soil parent material, <6 ng g(-1)), except in podzolic soils. A similar trend occurred for Hg enrichment factors (HgEF) which showed values from 40 to 76 in topsoils. Upper soil mineral horizons (A or AB) made the largest contribution (>50%) to the HgT inventory despite showing lower concentrations than the organic horizons. The role of vegetation in capturing atmospheric Hg and subsequent deposition to soil agrees with the sequence of HgT in plant material: woodaccumulation in the studied acid soils.

  7. Hyper III on ramp, front view

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Hyper III was a low-cost test vehicle for an advanced lifting-body shape. Like the earlier M2-F1, it was a 'homebuilt' research aircraft, i.e., built at the Flight Research Center (FRC), later redesignated the Dryden Flight Research Center. It had a steel-tube frame covered with Dacron, a fiberglass nose, sheet aluminum fins, and a wing from an HP-11 sailplane. Construction was by volunteers at the FRC. Although the Hyper III was to be flown remotely in its initial tests, it was fitted with a cockpit for a pilot. On the Hyper III's only flight, it was towed aloft attached to a Navy SH-3 helicopter by a 400-foot cable. NASA research pilot Bruce Peterson flew the SH-3. After he released the Hyper III from the cable, NASA research pilot Milt Thompson flew the vehicle by radio control until the final approach when Dick Fischer took over control using a model-airplane radio-control box. The Hyper III flared, then landed and slid to a stop on Rogers Dry Lakebed. The Flight Research Center (FRC--as Dryden was named from 1959 until 1976) already had experience with testing small-scale aircraft using model-airplane techniques, but the first true remotely piloted research vehicle was the Hyper III, which flew only once in December 1969. At that time, the Center was engaged in flight research with a variety of reentry shapes called lifting bodies, and there was a desire both to expand the flight research experience with maneuverable reentry vehicles, including a high-performance, variable-geometry craft, and to investigate a remotely piloted flight research technique that made maximum use of a research pilot's skill and experience by placing him 'in the loop' as if he were in the cockpit. (There have been, as yet, no female research pilots assigned to Dryden.) The Hyper III as originally conceived was a stiletto-shaped lifting body that had resulted from a study at NASA's Langley Research Center in Hampton, Virginia. It was one of a number of hypersonic, cross

  8. High-level accumulation of oleyl oleate in plant seed oil by abundant supply of oleic acid substrates to efficient wax ester synthesis enzymes.

    PubMed

    Yu, Dan; Hornung, Ellen; Iven, Tim; Feussner, Ivo

    2018-01-01

    Biotechnology enables the production of high-valued industrial feedstocks from plant seed oil. The plant-derived wax esters with long-chain monounsaturated acyl moieties, like oleyl oleate, have favorite properties for lubrication. For biosynthesis of wax esters using acyl-CoA substrates, expressions of a fatty acyl reductase (FAR) and a wax synthase (WS) in seeds are sufficient. For optimization of the enzymatic activity and subcellular localization of wax ester synthesis enzymes, two fusion proteins were created, which showed wax ester-forming activities in Saccharomyces cerevisiae . To promote the formation of oleyl oleate in seed oil, WSs from Acinetobactor baylyi ( Ab WSD1) and Marinobacter aquaeolei ( Ma WS2), as well as the two created fusion proteins were tested in Arabidopsis to evaluate their abilities and substrate preference for wax ester production. The tested seven enzyme combinations resulted in different yields and compositions of wax esters. Expression of a FAR of Marinobacter aquaeolei ( Ma FAR) with Ab WSD1 or Ma WS2 led to a high incorporation of C 18 substrates in wax esters. The Ma FAR/TM Mm AWAT2- Ab WSD1 combination resulted in the incorporation of more C 18:1 alcohol and C 18:0 acyl moieties into wax esters compared with Ma FAR/ Ab WSD1. The fusion protein of a WS from Simmondsia chinensis ( Sc WS) with MaFAR exhibited higher specificity toward C 20:1 substrates in preference to C 18:1 substrates. Expression of Ma FAR/ Ab WSD1 in the Arabidopsis fad2 fae1 double mutant resulted in the accumulation of oleyl oleate (18:1/18:1) in up to 62 mol% of total wax esters in seed oil, which was much higher than the 15 mol% reached by Ma FAR/ Ab WSD1 in Arabidopsis Col-0 background. In order to increase the level of oleyl oleate in seed oil of Camelina , lines expressing Ma FAR/ Sc WS were crossed with a transgenic high oleate line. The resulting plants accumulated up to >40 mg g seed -1 of wax esters, containing 27-34 mol% oleyl oleate. The

  9. Accumulation of three important bioactive compounds in different plant parts of Withania somnifera and its determination by the LC-ESI-MS-MS (MRM) method.

    PubMed

    Gajbhiye, Narendra A; Makasana, Jayanti; Kumar, Satyanshu

    2015-01-01

    A comprehensive experiment was conducted to study the accumulation pattern and determination of three important bioactive compounds namely withaferin-A (WA), 12-deoxywithastramonolide (WO) and withanolide-A (WD) and its determination by the liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS) method in root, stem, fruits and leaves of Withania somnifera. A rapid and sensitive LC-ESI-MS-MS method was developed and validated for the determination of these three important bioactive compounds, having same molecular weight. The multiple reaction monitoring method was established by two transitions for each analyte and intense transition used for quantification. Separation of the three analytes was achieved within a run time of 5 min on an RP-18 column using a mobile phase consisting of acetonitrile and 0.1% acetic acid in water in an isocratic condition. The developed method was validated as per the ICH guidelines. The developed method was found to be suitable for identification and quantification of WA, WO and WD in different plant parts such as roots, stems, fruits and leaves of W. somnifera. The accumulation of WA was highest in leaves samples (8.84 ± 0.37 mg/g) and it was 2.23, 5.85 and 27.26 times higher than its concentration in fruits, stems and roots, respectively. WO and WD contents were highest (0.44 ± 0.016 and 0.72 ± 0.016 mg/g, respectively) in root. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Tracing Cadmium from Culture to Spikelet: Noninvasive Imaging and Quantitative Characterization of Absorption, Transport, and Accumulation of Cadmium in an Intact Rice Plant1[W][OA

    PubMed Central

    Fujimaki, Shu; Suzui, Nobuo; Ishioka, Noriko S.; Kawachi, Naoki; Ito, Sayuri; Chino, Mitsuo; Nakamura, Shin-ichi

    2010-01-01

    We characterized the absorption and short-term translocation of cadmium (Cd) in rice (Oryza sativa ‘Nipponbare’) quantitatively using serial images observed with a positron-emitting tracer imaging system. We fed a positron-emitting 107Cd (half-life of 6.5 h) tracer to the hydroponic culture solution and noninvasively obtained serial images of Cd distribution in intact rice plants at the vegetative stage and at the grain-filling stage every 4 min for 36 h. The rates of absorption of Cd by the root were proportional to Cd concentrations in the culture solution within the tested range of 0.05 to 100 nm. It was estimated that the radial transport from the culture to the xylem in the root tissue was completed in less than 10 min. Cd moved up through the shoot organs with velocities of a few centimeters per hour at both stages, which was obviously slower than the bulk flow in the xylem. Finally, Cd arrived at the panicles 7 h after feeding and accumulated there constantly, although no Cd was observed in the leaf blades within the initial 36 h. The nodes exhibited the most intensive Cd accumulation in the shoot at both stages, and Cd transport from the basal nodes to crown root tips was observed at the vegetative stage. We conclude that the nodes are the central organ where xylem-to-phloem transfer takes place and play a pivotal role in the half-day travel of Cd from the soil to the grains at the grain-filling stage. PMID:20172965

  11. HyperPASS, a New Aeroassist Tool

    NASA Technical Reports Server (NTRS)

    Gates, Kristin; McRonald, Angus; Nock, Kerry

    2005-01-01

    A new software tool designed to perform aeroassist studies has been developed by Global Aerospace Corporation (GAC). The Hypersonic Planetary Aeroassist Simulation System (HyperPASS) [1] enables users to perform guided aerocapture, guided ballute aerocapture, aerobraking, orbit decay, or unguided entry simulations at any of six target bodies (Venus, Earth, Mars, Jupiter, Titan, or Neptune). HyperPASS is currently being used for trade studies to investigate (1) aerocapture performance with alternate aeroshell types, varying flight path angle and entry velocity, different gload and heating limits, and angle of attack and angle of bank variations; (2) variable, attached ballute geometry; (3) railgun launched projectile trajectories, and (4) preliminary orbit decay evolution. After completing a simulation, there are numerous visualization options in which data can be plotted, saved, or exported to various formats. Several analysis examples will be described.

  12. Neutrophil hyper-responsiveness in periodontitis.

    PubMed

    Matthews, J B; Wright, H J; Roberts, A; Ling-Mountford, N; Cooper, P R; Chapple, I L C

    2007-08-01

    Peripheral neutrophil hyper-responsiveness in chronic periodontitis leads to excessive reactive oxygen species (ROS) production. We aimed to determine whether neutrophil hyper-responsiveness was constitutive or reactive, and to discover the effect of non-surgical therapy. Peripheral blood neutrophils from patients (n = 19), before and 3 months after therapy, and matched control individuals were Fc gamma-receptor-stimulated with/without priming with P. gingivalis and F. nucleatum. Total and extracellular ROS were determined by luminol/isoluminol chemiluminescence. The high total ROS generation of patients' neutrophils compared with that of control individuals (P = 0.016) continued at a reduced level post-therapy (P = 0.059). Reduced activity post-therapy was also seen with priming. Unstimulated total ROS levels did not differ between patients and control individuals before or after therapy. However, the high unstimulated, extracellular ROS production by patients' neutrophils compared with control individuals (P < 0.05) continued post-therapy and was unaffected by priming. Therapy reduced Fc gamma-receptor-stimulated total ROS production, but not unstimulated extracellular radical release, suggesting that constitutive and reactive mechanisms underlie neutrophil hyper-responsiveness.

  13. Impacts of nitrogen fertilization and plant species diversity on soil C accumulation in a lignocellulosic bioenergy cropping system nine years following land conversion

    NASA Astrophysics Data System (ADS)

    De Graaff, M. A.; Jastrow, J. D.

    2017-12-01

    Ethanol production from second generation biofuel feedstocks, including the perennial grasses switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerardii) has expanded rapidly, with the aim to reduce greenhouse gas emissions. However, land conversion for bioenergy production releases carbon (C) stored in soil to the atmosphere as CO2, and creates a C debt in ecosystems. If biofuels are to aid in curbing atmospheric CO2 concentrations, it is important that this initial C debt be repaid rapidly. A variety of management approaches aimed at increasing NPP and soil C input may be used to accelerate the repayment of soil C. We conducted a long-term field experiment located at the Fermilab National Environmental Research Park in IL, that compares a variety of approaches for perennial feedstock production following conversion of an old-field dominated by C3 grasses to a grassland dominated by C4 perennial grasses. Treatments included a variety of big bluestem and switchgrass cultivars grown in monoculture, diversity manipulated at both the species- and cultivar level, and nitrogen (N) applied at two levels (0 and 67 kg/ha). Previous results from this experiment indicated that four years following initiation of this experiment, only choice of plant species significantly affected the rate of bulk soil C-debt repayment. Here we quantified how nine years of fertilization, plant species, and inter- and intra-specific diversity treatments affect soil C accumulation. To increase our detection of changes in soil C and our mechanistic understanding of the processes that drive C accumulation in this experiment, we used the natural abundance C isotope ratio technique to estimate the contribution and fate of root-derived C to soil organic matter pools. Additionally, we evaluated how the different management approaches affected the ecological sustainability of bioenergy production, by quantifying impacts of the treatments on soil micro-and meso fauna abundance and diversity

  14. HyperART: non-invasive quantification of leaf traits using hyperspectral absorption-reflectance-transmittance imaging.

    PubMed

    Bergsträsser, Sergej; Fanourakis, Dimitrios; Schmittgen, Simone; Cendrero-Mateo, Maria Pilar; Jansen, Marcus; Scharr, Hanno; Rascher, Uwe

    2015-01-01

    Combined assessment of leaf reflectance and transmittance is currently limited to spot (point) measurements. This study introduces a tailor-made hyperspectral absorption-reflectance-transmittance imaging (HyperART) system, yielding a non-invasive determination of both reflectance and transmittance of the whole leaf. We addressed its applicability for analysing plant traits, i.e. assessing Cercospora beticola disease severity or leaf chlorophyll content. To test the accuracy of the obtained data, these were compared with reflectance and transmittance measurements of selected leaves acquired by the point spectroradiometer ASD FieldSpec, equipped with the FluoWat device. The working principle of the HyperART system relies on the upward redirection of transmitted and reflected light (range of 400 to 2500 nm) of a plant sample towards two line scanners. By using both the reflectance and transmittance image, an image of leaf absorption can be calculated. The comparison with the dynamically high-resolution ASD FieldSpec data showed good correlation, underlying the accuracy of the HyperART system. Our experiments showed that variation in both leaf chlorophyll content of four different crop species, due to different fertilization regimes during growth, and fungal symptoms on sugar beet leaves could be accurately estimated and monitored. The use of leaf reflectance and transmittance, as well as their sum (by which the non-absorbed radiation is calculated) obtained by the HyperART system gave considerably improved results in classification of Cercospora leaf spot disease and determination of chlorophyll content. The HyperART system offers the possibility for non-invasive and accurate mapping of leaf transmittance and absorption, significantly expanding the applicability of reflectance, based on mapping spectroscopy, in plant sciences. Therefore, the HyperART system may be readily employed for non-invasive determination of the spatio-temporal dynamics of various plant

  15. Assessing plant water relations based on hidden in formation in the hyper-spectral signatures: Parameterization of olive leaf P-V curve and estimation of water potential components

    NASA Astrophysics Data System (ADS)

    Rallo, Giovanni; Provenzano, Giuseppe; Jones, Hamlyn G.

    2015-04-01

    The Soil Plant Atmosphere Continuum (SPAC) is characterized by complex structures and biophysical processes acting over a wide range of temporal and spatial scales. Additionally, in olive grove systems, the plant adaptive strategies to respond to soil water-limited conditions make the system even more complex. One of the greatest challenges in hydrological research is to quantify changing plant water relations. A promising new technology is provided by the advent of new field spectroscopy detectors, characterized by very high resolution over the spectral range between 300 and 2500 nm, allowing the detection of narrow reflectance or absorptance peaks, to separate close lying peaks and to discover new information, hidden at lower resolutions. The general objective of the present research was to investigate a range of plant state function parameters in a non-destructive and repeatable manner and to improve methodologies aimed to parameterize hydrological models describing the entire SPAC, or each single compartment (soil or plant). We have investigated the use of hyperspectral sensing for the parameterization of the hydraulic pressure-volume curve (P-V) for olive leaf and for the indirect estimation of the two principal leaf water potential components, i.e. turgor and osmotic potentials. Experiments were carried out on an olive grove in Sicily, during the mature phase of the first vegetative flush. Leaf spectral signatures and associated P-V measurements were acquired on olive leaves collected from well-irrigated plants and from plants maintained under moderate or severe water stress. Leaf spectral reflectance was monitored with a FieldSpec 4 spectro-radiometer (Analytical Spectral Device, Inc.), in a range of wavelengths from VIS to SWIR (350-2500 nm), with sampling intervals of 1.4 nm and 2.0 nm, respectively in the regions from 350 to 1000 nm and from 1000 to 2500 nm. Measurements required the use of contact probe and leaf clip (Analytical Spectral Device, Inc

  16. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  17. Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area, China.

    PubMed

    Shen, Zhang Jun; Xu, De Cong; Chen, Yan Song; Zhang, Zhen

    2017-09-01

    Fengdan (Paeonia ostii) is one of Chinese 34 famous medicinal materials. This study investigated the concentrations of Arsenic (As), Chromium (Cr), Cadmium (Cd), Copper (Cu), Lead (Pb), Iron (Fe), Manganese (Mn), and Zinc (Zn) in rhizosphere soils, cortex mouton and seeds of Fengdan planted in a metal mining area, China. The mean concentrations of As, Cd, Cu, and Zn in the rhizosphere soils were above the limits set by the Chinese Soil Environmental Quality Standard (GB 15618-1995). The contamination factor (CF) of Cd was >5, while it was >2for As, Cu, Pb, and Zn in all the soils. The integrated pollution index for all the soils was >3 and ˂ 5. Metal concentrations in the edible parts of Fengdan were in the following decreasing order: Mn>Fe>Zn>Cu>Pb>As>Cr≥Cd. The transfer factor mean values for As, Cu, Cd and Fe in the cortex moutan of old Fengdan (over 6 years) were significantly higher than in young Fengdan. Available metal concentrations, pH and soil organic matter content influenced the metal concentrations of the cortex moutan. The results indicated that mining and smelting operations have led to heavy metals contamination of soils and medicinal parts of Fengdan. The major metal pollutants were elemental Cd, Cu, Pb, and Zn. Heavy metals mainly accumulated in the cortex moutan of Fengdan. The mean concentrations of Cd, Cu, and Pb in the old cortex moutan (over 6 years) were above those of the Chinese Green Trade Standards for Medicinal Plants and Preparations in Foreign Trade (WM/T2-2004). Copyright © 2017. Published by Elsevier Inc.

  18. [Effects of arsenic from soil and irrigation-water on As accumulation on the root surfaces and in mature rice plants (Oryza sativa L.)].

    PubMed

    Liu, Wen-ju; Zhu, Yong-guan; Hu, Ying; Zhao, Quan-li

    2008-04-01

    A compartmented soil-glass bead culture system was used to investigate characteristics of arsenic accumulation in iron plaque and in mature rice plants irrigated using water with arsenic in greenhouse. Arsenic was supplied as a solution of Na3AsO4 * 12H2O at the following stages: tillering, stem elongation, booting, flowering and grain filling. The whole plant was separated into four parts and As concentrations were analyzed in DCB (dithionite-citrate-bicarbonate)-extraction, root, straw, rice husk and grain respectively. The results show that irrigation-water with arsenic has no significant effect on biomass of straw and grain. Arsenic concentrations are distributed in different components of mature rice with the ranking of iron plaque > root > straw > husk > grain. Arsenic in straw and grain just derive from soil in control, and derive from soil and irrigation-water in arsenic treatment. About 76.5% and 71.0% of total arsenic in rice straw are from soil for lines of YY-1 and 94D-64 respectively. There is no significant difference between two lines. However, about 33.6% of total arsenic in grain of YY-1 comes from irrigation-water with arsenic, and only 15.2% of total arsenic in grain of 94D1-64 is from irrigation-water with arsenic. There is a significant difference between YY-1 and 94D-64. Arsenic concentrations in rice grain are lower than the food safety limitation in China (0.7 mg x kg(-1)).

  19. ON THE EFFECT OF ETHYLENEDIAMINETETRAACETATE (EDTA) ON THE ACCUMULATION COEFFICIENT OF DIFFERENT RADIOISOTOPES FROM AQUEOUS SOLUTION BY FRESH-WATER PLANTS (in Russian)

    SciTech Connect

    Timofeeva-Resovskaya, E.A.; Timofeev-Resovskii, N.V.

    1960-01-01

    The effects of ethylenediaminetetraacetate on the accumulation coefficients of Ce/sup 144/, Co/sup 60/, Cs/sup 137/, Fe/sup 59/, Nb /sup 95/, Ru/ sup 106/, S/sup 35/, Sr/sup 90/, Y/sup 91/, Zn/sup 65/, and Zr/sup 95/ from aqueous solutions were studied. Eight grams of elodea (Elodea canadinsis Rich,), aquatic plant (Ceratophyllum demersum L), duckweed (Lemna minor L.), and chara (Chara fragilis Desw.) were placed in three liters of water containirg 400 mg of EDTA per liter. Tabulated data show 4 groups of isotopic reactions to EDTA. The first group includes strontium and cesium (whose uptake increases in the presence of EDTA), themore » second is represented hy sulfur (which does not react to EDTA), the third group consists of zirconium, niobium, and ruthenium (whose uptake is reduced 2 to 3 fold in the presence of EDTA), and the fourth group contains iron, cobalt, zinc, yttrium, and cerium (whose uptake is reduced 10 to 100 fold). (R.V.J.)« less

  20. The Microvine, a plant model to study the effect of vine-shoot extract on the accumulation of glycosylated aroma precursors in grapes.

    PubMed

    Sánchez-Gómez, Rosario; Torregrosa, Laurent; Zalacain, Amaya; Ojeda, Hernán; Bouckenooghe, Virginie; Schneider, Rémi; Alonso, Gonzalo L; Salinas, María Rosario

    2018-06-01

    The Microvine plant model displays unique reproductive organ behavior and is suitable for grapevine fruit physiological studies, allowing one to undertake studies up to five times more rapidly than the current situation with grapevines. Recently, vine-shoot aqueous extracts, which have an interesting phenolic and aroma composition, have been proposed as viticultural biostimulants, since their post-veraison foliar application to grapevines impacts the wine aroma profile. Using Microvines, the aim of this study was to determine the effect of vine-shoot extract foliar application on 21 stages of grape development. The application was carried out from BBCH 53 (inflorescences clearly visible) to BBCH 85 (softening of berries) to reveal stage-specific responses of the accumulation of glycosylated aroma precursors at BBCH 89 (berries ripe for harvest), the phenological stage selected to study the treatment effect. Microvine use made it possible to carry out 15 sampling time points during 86 days of the experiment, which were established by the cumulative degree days (CDD) parameter. The results confirmed that vine-shoot extract treatment had a positive impact on total glycosylated compounds, especially aglycones such as alcohols, terpenes and C 13 -norisoprenoids, with a higher effect when the treatment was applied during ripening. Extrapolation of the results to grapevines suggests that vine-shoot extract treatment could modulate the synthesis of grape glycosylated aroma precursors. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Expression of the human UDP-galactose transporter gene hUGT1 in tobacco plants' enhanced plant hardness.

    PubMed

    Abedi, Tayebeh; Khalil, Mohamed Farouk Mohamed; Koike, Kanae; Hagura, Yoshio; Tazoe, Yuma; Ishida, Nobuhiro; Kitamura, Kenji; Tanaka, Nobukazu

    2018-04-09

    We reported previously that tobacco plants transformed with the human UDP-galactose transporter 1 gene (hUGT1) had enhanced growth, displayed characteristic traits, and had an increased proportion of galactose (hyper-galactosylation) in the cell wall matrix polysaccharides. Here, we report that hUGT1-transgenic plants have an enhanced hardness. As determined by breaking and bending tests, the leaves and stems of hUGT1-transgenic plants were harder than those of control plants. Transmission electron microscopy revealed that the cell walls of palisade cells in leaves, and those of cortex cells and xylem fibers in stems of hUGT1-transgenic plants, were thicker than those of control plants. The increased amounts of total cell wall materials extracted from the leaves and stems of hUGT1-transgenic plants supported the increased cell wall thickness. In addition, the cell walls of the hUGT1-transgenic plants showed an increased lignin contents, which was supported by the up-regulation of lignin biosynthetic genes. Thus, the heterologous expression of hUGT1 enhanced the accumulation of cell wall materials, which was accompanied by the increased lignin content, resulting in the increased hardness of the leaves and stems of hUGT1-trangenic plants. The enhanced accumulation of cell wall materials might be related to the hyper-galactosylation of cell wall matrix polysaccharides, most notably arabinogalactan, because of the enhanced UDP-galactose transport from the cytosol to the Golgi apparatus by hUGT1, as suggested in our previous report. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. The rotation of white lupin (Lupinus albus L.) with metal-accumulating plant crops: a strategy to increase the benefits of soil phytoremediation.

    PubMed

    Fumagalli, Pietro; Comolli, Roberto; Ferrè, Chiara; Ghiani, Alessandra; Gentili, Rodolfo; Citterio, Sandra

    2014-12-01

    Most of the plants employed to remove metals from contaminated soils are annuals and have a seed-to-seed life cycle of a few months, usually over spring and summer. Consequently, for most of the year, fields are not actively cleaned but are completely bare and subject to erosion by water and wind. The objective of this study was to evaluate the benefits of using Lupinus albus as a winter crop in a rotation sequence with a summer crop ideally selected for phytoextraction, such as industrial hemp. Lupin plants were grown in two alkaline soil plots (heavy metal-contaminated and uncontaminated) of approximately 400 m(2) each after the cultivation and harvest of industrial hemp. A smaller-scale parallel pot experiment was also performed to better understand the lupin behavior in increasing concentrations of Cd, Cu, Ni and Zn. White lupin grew well in alkaline conditions, covering the soil during the winter season. In few months plants were approximately 40-50 cm high in both control and contaminated plots. In fields where the bioavailable fraction of metals was low (less than 12%), plants showed a high tolerance to these contaminants. However, their growth was affected in some pot treatments in which the concentrations of assimilable Cu, Zn and Ni were higher, ranging from approximately 40-70% of the total concentrations. The lupin's ability to absorb heavy metals and translocate them to shoots was negligible with respect to the magnitude of contamination, suggesting that this plant is not suitable for extending the period of phytoextraction. However, it is entirely exploitable as green manure, avoiding the application of chemical amendments during phytoremediation. In addition, in polluted fields, white lupin cultivation increased the soil concentration of live bacteria and the bioavailable percentage of metals. On average live bacteria counts per gram of soil were 65×10(6)±18×10(6) and 99×10(6)±22*10(6) before and after cultivation, respectively. The percentages

  3. The Development of Hyper-MNP: Hyper-Media Navigational Performance Scale

    ERIC Educational Resources Information Center

    Firat, Mehmet; Yurdakul, Isil Kabakci

    2016-01-01

    The present study aimed at developing a scale to evaluate navigational performance as a whole, which is one of the factors influencing learning in hyper media. In line with this purpose, depending on the related literature, an item pool of 15 factors was prepared, and these variables were decreased to 5 based on the views of 38 field experts. In…

  4. Optimizing Motion Planning for Hyper Dynamic Manipulator

    NASA Astrophysics Data System (ADS)

    Aboura, Souhila; Omari, Abdelhafid; Meguenni, Kadda Zemalache

    2012-01-01

    This paper investigates the optimal motion planning for an hyper dynamic manipulator. As case study, we consider a golf swing robot which is consisting with two actuated joint and a mechanical stoppers. Genetic Algorithm (GA) technique is proposed to solve the optimal golf swing motion which is generated by Fourier series approximation. The objective function for GA approach is to minimizing the intermediate and final state, minimizing the robot's energy consummation and maximizing the robot's speed. Obtained simulation results show the effectiveness of the proposed scheme.

  5. STUDIES ON PLANT ACCUMULATION OF FISSION PRODUCTS UNDER SWEDISH CONDITIONS. III. ACCUMULATION OF Sr-89 IN THE AERIAL PARTS OF DIFFERENT WEED SPECIES AT VARYING Ca-LEVEL IN SOIL

    SciTech Connect

    Fredriksson, L.; Eriksson, B.; Eriksson, A.

    1961-03-01

    The influence of liming on the accurnulation of Sr/sup 89/ in the aerial parte of a number of weed species, grown on a natnralla calcium deficient soil in pot experiments, was studied. Liming decreased the accumulation of Sr/sup 89/ in all of the weed species used. At one and the same Ca content in soil great differences were found in Sr/sup 89/ activity in the dry matter of the different weed species. (auth)

  6. Extensibility in local sensor based planning for hyper-redundant manipulators (robot snakes)

    NASA Technical Reports Server (NTRS)

    Choset, Howie; Burdick, Joel

    1994-01-01

    Partial Shape Modification (PSM) is a local sensor feedback method used for hyper-redundant robot manipulators, in which the redundancy is very large or infinite such as that of a robot snake. This aspect of redundancy enables local obstacle avoidance and end-effector placement in real time. Due to the large number of joints or actuators in a hyper-redundant manipulator, small displacement errors of such easily accumulate to large errors in the position of the tip relative to the base. The accuracy could be improved by a local sensor based planning method in which sensors are distributed along the length of the hyper-redundant robot. This paper extends the local sensor based planning strategy beyond the limitations of the fixed length of such a manipulator when its joint limits are met. This is achieved with an algorithm where the length of the deforming part of the robot is variable. Thus , the robot's local avoidance of obstacles is improved through the enhancement of its extensibility.

  7. Hyper-X Mach 10 Trajectory Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Martin, John G.; Tartabini, Paul V.; Thornblom, Mark N.

    2005-01-01

    This paper discusses the formulation and development of a trajectory reconstruction tool for the NASA X-43A/Hyper-X high speed research vehicle, and its implementation for the reconstruction and analysis of flight test data. Extended Kalman filtering techniques are employed to reconstruct the trajectory of the vehicle, based upon numerical integration of inertial measurement data along with redundant measurements of the vehicle state. The equations of motion are formulated in order to include the effects of several systematic error sources, whose values may also be estimated by the filtering routines. Additionally, smoothing algorithms have been implemented in which the final value of the state (or an augmented state that includes other systematic error parameters to be estimated) and covariance are propagated back to the initial time to generate the best-estimated trajectory, based upon all available data. The methods are applied to the problem of reconstructing the trajectory of the Hyper-X vehicle from data obtained during the Mach 10 test flight, which occurred on November 16th 2004.

  8. Hyper-X Vehicle Model - Side View

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A side-view of an early desk-top model of NASA's X-43A 'Hyper-X,' or Hypersonic Experimental Vehicle, which has been developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic

  9. Hyper-X Vehicle Model - Front View

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A front view of an early desk-top model of NASA's X-43A 'Hyper-X,' or Hypersonic Experimental Vehicle, which has been developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic

  10. Hyper-X Vehicle Model - Side View

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Sleek lines are apparent in this side-view of an early desk-top model of NASA's X-43A 'Hyper-X,' or Hypersonic Experimental Vehicle, which has been developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry

  11. Principles for Instructional Stack Development in HyperCard.

    ERIC Educational Resources Information Center

    McEneaney, John E.

    The purpose of this paper is to provide information about obtaining and using HyperCard stacks that introduce users to principles of stack development. The HyperCard stacks described are available for downloading free of charge from a server at Indiana University South Bend. Specific directions are given for stack use, with advice for beginners. A…

  12. (Relatively) Painless Computer-Assisted Instruction with HyperStudio.

    ERIC Educational Resources Information Center

    Pina, Anthony A.

    The College of the Desert (California) has created a multi-station technology training and development facility for faculty. HyperStudio has been adopted as the introductory tool for multimedia/hypermedia authoring for the following reasons: (1) the card/stack metaphor used by HyperStudio is easy for novices to understand and familiar to users of…

  13. Teaching with HyperCard in Place of a Textbook.

    ERIC Educational Resources Information Center

    Mackey, Neosha; And Others

    1992-01-01

    To alleviate the staffing pressures of increased demands for tours and classes at the Duane G. Meyer Library, Southwest Missouri State University, two HyperCard programs were developed--a library instruction text and a library orientation tour. A study of the relative effectiveness of the HyperCard text with paper texts for bibliographic…

  14. A Tour of the Stacks--HyperCard for Libraries.

    ERIC Educational Resources Information Center

    Ertel, Monica; Oros, Jane

    1989-01-01

    Description of HyperCard, a software package that runs on Macintosh microcomputers, focuses on its use in the Apple Computer, Inc., Library as a user guide to the library. Examples of screen displays are given, and a list of resources is included to help use and understand HyperCard more completely. (LRW)

  15. Hyper-Activity in Children Having Behavior Disorders

    ERIC Educational Resources Information Center

    Childers, A. T.

    2009-01-01

    Frequently, child guidance clinics, pediatricians, teachers, and others have brought to their attention children who manifest hyper-activity as an outstanding feature and of such a degree as to be regarded outside the bounds of normal conduct. The literature on this subject, except for hyper-activity in infancy, has mostly to do with the…

  16. Scattering and cloaking of binary hyper-particles in metamaterials.

    PubMed

    Alexopoulos, A; Yau, K S B

    2010-09-13

    We derive the d-dimensional scattering cross section for homogeneous and composite hyper-particles inside a metamaterial. The polarizability of the hyper-particles is expressed in multi-dimensional form and is used in order to examine various scattering characteristics. We introduce scattering bounds that display interesting results when d --> ∞ and in particular consider the special limit of hyper-particle cloaking in some detail. We demonstrate cloaking via resonance for homogeneous particles and show that composite hyper-particles can be used in order to obtain electromagnetic cloaking with either negative or all positive constitutive parameters respectively. Our approach not only considers cloaking of particles of integer dimension but also particles with non-integer dimension such as fractals. Theoretical results are compared to full-wave numerical simulations for two interacting hyper-particles in a medium.

  17. Effects of Spatial N nutrient mobility relevant to plants, soils and microtopograhy on plant growth and soil organic matter accumulation by using coupled CLM-PFLOTRAN biogeochemical model in an Area in NGEE-Arctic Intensive Study Sites, Barrow, AK.

    NASA Astrophysics Data System (ADS)

    Yuan, F.; Thornton, P. E.; Tang, G.; Xu, X.; Kumar, J.; Iversen, C. M.; Bisht, G.; Hammond, G. E.; Mills, R. T.; Wullschleger, S. D.

    2015-12-01

    At fine-scale spatially-explicit reactive-transport (RT) and hydrological coupled modeling for likely soil nutrient N transport mechanisms driven by gradients, soil properties and micro-topography is critical to spatial distribution of plants and thus soil organic matter stocks accumulation or changes. In this study we successfully carried out a fully coupled fine-scale CLM-PFLOTRAN soil biogeochemical (BGC) RT model simulation on Titan at 2.5mx2.5m resolution for the Area C of 100mx100m in the NGEE-Arctic Intensive Study Sites, Barrow, AK. The Area spatially varies in terms of plant function types (PFT) and soil thermal-hydraulic properties associated with locally polygonal landscape features. The spatially explicit CLM-PFLOTRAN coupled RT model allows soil N nutrient mobility driven either by diffusion or by advection or both. The modeling experiments are conducted with three soil nutrient N (NH4+ and NO3-) mobility mechanisms within the CLM-PFLOTAN: no transport, diffusion only, and diffusion and advection in 3-D soils. It shows that CLM-PFLOTRAN model simulated higher SOM C density in both lower troughs and neighbored areas when transport mechanism allowed, compared to no-transport, although with similar ranges (about 0.1~20 kgC m-3). It also simulates slightly higher LAI (0.16~0.84 vs. 0.11~0.85) in growing season, especially in lower troughs and neighbored regions. It's likely because CLM-PFLOTRAN can explicitly simulate transport of nutrients and others both vertically and laterally. So it can more mechanically mimic plant root N extract caused relatively low concentration in root zone and thus allow transport from surrounding high N concentration regions. The lateral mobility also implies that N nutrient can transport from initially high-production columns to the neighbored low-production area where then production could be improved. The results suggest that taking account of locally mobility of soil N nutrients may be critical to plant growth and thus long

  18. Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi.

    PubMed

    Khan, Abdur Rahim; Ullah, Ihsan; Waqas, Muhammad; Park, Gun-Seok; Khan, Abdul Latif; Hong, Sung-Jun; Ullah, Rehman; Jung, Byung Kwon; Park, Chang Eon; Ur-Rehman, Shafiq; Lee, In-Jung; Shin, Jae-Ho

    2017-02-01

    Current investigation conducted to evaluate the associated fungal endophyte interactions of a Cd hyper-accumulator Solanum nigrum Korean ecotype under varying concentrations of Cd. Two indole-3-acetic acid (IAA) producing fungal strains, RSF-4L and RSF-6L, isolated from the leaves of S. nigrum, were initially screened for Cd tolerance and accumulation potential. In terms of dry biomass production, the strain RSF-6L showed higher tolerance and accumulation capacity for Cd toxicity in comparison to RSF-4L. Therefore, RSF-6L was applied in vivo to S. nigrum and grown for six weeks under Cd concentrations of 0, 10, and 30mgKg -1 of dry sand. The effect of fungal inoculation assessed by plant physiological responses, endogenous biochemical regulations, and Cd profile in different tissues. Significant increase were observed in plant growth attributes such as shoot length, root length, dry biomass, leaf area, and chlorophyll contents in inoculated RSF-6L plants in comparison to non-inoculated plants with or without Cd contamination. RSF-6L inoculation decreased uptake of Cd in roots and above ground parts, as evidenced by a low bio-concentration factor (BCF) and improved tolerance index (TI). However, Cd concentration in the leaves remained the same for inoculated and non-inoculated plants under Cd spiking. Fungal inoculation protected the host plants, as evidenced by low peroxidase (POD) and polyphenol peroxidase (PPO) activities and high catalase (CAT) activity. Application of appropriate fungal inoculation that can improve tolerance mechanisms of hyper-accumulators and reduce Cd uptake can be recommended for phyto-stabilisation/immobilisation of heavy metals in crop fields. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Accumulation of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) in indigenous and agricultural plants grown in HMX-contaminated anti-tank firing-range soil.

    PubMed

    Groom, Carl A; Halasz, Annamaria; Paquet, Louise; Morris, Neil; Olivier, Lucie; Dubois, Charles; Hawari, Jalal

    2002-01-01

    To investigate their potential for phytoremediation, selected agricultural and indigenous terrestrial plants were examined fortheir capacity to accumulate and degrade the explosive octahydro-1 ,3,5,7-tetra nitro-1,3,5,7-tetrazocine (HMX). Plant tissue and soil extracts were analyzed for the presence of HMX and possible degradative metabolites using high-performance liquid chromatography with diode-array UV detection (HPLC-UV), micellar electrokinetic chromatography with diode-array UV detection (MEKC-UV), and HPLC with electrospray ionization mass spectrometry (LC-MS). The pattern of HMX accumulation for alfalfa (Medicago sativa), bush bean (Phaseolus vulgaris), canola (Brassica rapa), wheat (Triticum aestivum), and perennial ryegrass (Loliumperenne) grown in a controlled environment on contaminated soil from an anti-tank firing range was similar to that observed for plants (wild bergamot (Monarda fistulosa), western wheat grass (Agropyron smithii), brome grass (Bromus sitchensis), koeleria (Koeleria gracilis), goldenrod (Solidago sp.), blueberry (Vaccinium sp.), anemone (Anemone sp.), common thistle (Circium vulgare), wax-berry (Symphoricarpos albus), western sage (Artemisia gnaphalodes), and Drummond's milk vetch (Astragalus drummondii)) collected from the range. No direct evidence of plant-mediated HMX (bio)chemical transformation was provided by the available analytical methods. Traces of mononitroso-HMX were found in contaminated soil extracts and were also observed in leaf extracts. The dominant mechanism for HMX translocation and accumulation in foliar tissue was concluded to be aqueous transpirational flux and evaporation. The accumulation of HMX in the leaves of most of the selected species to levels significantly above soil concentration is relevant to the assessment of both phytoremediation potential and environmental risks.

  20. The NASA Hyper-X Program

    NASA Technical Reports Server (NTRS)

    Freeman, Delman C., Jr.; Reubush, Daivd E.; McClinton, Charles R.; Rausch, Vincent L.; Crawford, J. Larry

    1997-01-01

    This paper provides an overview of NASA's Hyper-X Program; a focused hypersonic technology effort designed to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. This paper presents an overview of the flight test program, research objectives, approach, schedule and status. Substantial experimental database and concept validation have been completed. The program is currently concentrating on the first, Mach 7, vehicle development, verification and validation in preparation for wind-tunnel testing in 1998 and flight testing in 1999. Parallel to this effort the Mach 5 and 10 vehicle designs are being finalized. Detailed analytical and experimental evaluation of the Mach 7 vehicle at the flight conditions is nearing completion, and will provide a database for validation of design methods once flight test data are available.

  1. The Hyper Suprime-Cam software pipeline

    SciTech Connect

    Bosch, James; Armstrong, Robert; Bickerton, Steven

    Here in this article, we describe the optical imaging data processing pipeline developed for the Subaru Telescope’s Hyper Suprime-Cam (HSC) instrument. The HSC Pipeline builds on the prototype pipeline being developed by the Large Synoptic Survey Telescope’s Data Management system, adding customizations for HSC, large-scale processing capabilities, and novel algorithms that have since been reincorporated into the LSST codebase. While designed primarily to reduce HSC Subaru Strategic Program (SSP) data, it is also the recommended pipeline for reducing general-observer HSC data. The HSC pipeline includes high-level processing steps that generate coadded images and science-ready catalogs as well as low-level detrendingmore » and image characterizations.« less

  2. Enhanced photon traps for Hyper-Kamiokande

    NASA Astrophysics Data System (ADS)

    Rott, Carsten; In, Seongjin; Retière, Fabrice; Gumplinger, Peter

    2017-11-01

    Hyper-Kamiokande, the next generation large water Cherenkov detector in Japan, is planning to use approximately 80,000 20-inch photomultiplier tubes (PMTs). They are one of the major cost factors of the experiment. We propose a novel enhanced photon trap design based on a smaller and more economical PMT in combination with wavelength shifters, dichroic mirrors, and broadband mirrors. GEANT4 is utilized to obtain photon collection efficiencies and timing resolution of the photon traps. We compare the performance of different trap configurations and sizes. Our simulations indicate an enhanced photon trap with a 12-inch PMT can match a 20-inch PMT's collection efficiency, however at a cost of reduced timing resolution. The photon trap might be suitable as detection module for the outer detector with large photo coverage area.

  3. The Hyper Suprime-Cam software pipeline

    NASA Astrophysics Data System (ADS)

    Bosch, James; Armstrong, Robert; Bickerton, Steven; Furusawa, Hisanori; Ikeda, Hiroyuki; Koike, Michitaro; Lupton, Robert; Mineo, Sogo; Price, Paul; Takata, Tadafumi; Tanaka, Masayuki; Yasuda, Naoki; AlSayyad, Yusra; Becker, Andrew C.; Coulton, William; Coupon, Jean; Garmilla, Jose; Huang, Song; Krughoff, K. Simon; Lang, Dustin; Leauthaud, Alexie; Lim, Kian-Tat; Lust, Nate B.; MacArthur, Lauren A.; Mandelbaum, Rachel; Miyatake, Hironao; Miyazaki, Satoshi; Murata, Ryoma; More, Surhud; Okura, Yuki; Owen, Russell; Swinbank, John D.; Strauss, Michael A.; Yamada, Yoshihiko; Yamanoi, Hitomi

    2018-01-01

    In this paper, we describe the optical imaging data processing pipeline developed for the Subaru Telescope's Hyper Suprime-Cam (HSC) instrument. The HSC Pipeline builds on the prototype pipeline being developed by the Large Synoptic Survey Telescope's Data Management system, adding customizations for HSC, large-scale processing capabilities, and novel algorithms that have since been reincorporated into the LSST codebase. While designed primarily to reduce HSC Subaru Strategic Program (SSP) data, it is also the recommended pipeline for reducing general-observer HSC data. The HSC pipeline includes high-level processing steps that generate coadded images and science-ready catalogs as well as low-level detrending and image characterizations.

  4. Hyper-spectral Atmospheric Sounding. Appendixes 1

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Zhou, D. K.; Revercomb, H. E.; Huang, H. L.; Antonelli, P.; Mango, S. A.

    2002-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) is the first hyper-spectral remote sounding system to be orbited aboard a geosynchronous satellite. The GETS is designed to obtain revolutionary observations of the four dimensional atmospheric temperature, moisture, and wind structure as well as the distribution of the atmospheric trace gases, CO and O3. Although GIFTS will not be orbited until 2006-2008, a glimpse at the its measurement capabilities has been obtained by analyzing data from the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Test-bed-Interferometer (NAST-I) and Aqua satellite Atmospheric Infrared Sounder (AIRS). In this paper we review the GIFTS experiment and empirically assess measurement expectations based on meteorological profiles retrieved from the NAST aircraft and Aqua satellite AIRS spectral radiances.

  5. The Hyper Suprime-Cam software pipeline

    DOE PAGES

    Bosch, James; Armstrong, Robert; Bickerton, Steven; ...

    2017-10-12

    Here in this article, we describe the optical imaging data processing pipeline developed for the Subaru Telescope’s Hyper Suprime-Cam (HSC) instrument. The HSC Pipeline builds on the prototype pipeline being developed by the Large Synoptic Survey Telescope’s Data Management system, adding customizations for HSC, large-scale processing capabilities, and novel algorithms that have since been reincorporated into the LSST codebase. While designed primarily to reduce HSC Subaru Strategic Program (SSP) data, it is also the recommended pipeline for reducing general-observer HSC data. The HSC pipeline includes high-level processing steps that generate coadded images and science-ready catalogs as well as low-level detrendingmore » and image characterizations.« less

  6. (Hyper)thermophilic enzymes: production and purification.

    PubMed

    Falcicchio, Pierpaolo; Levisson, Mark; Kengen, Servé W M; Koutsopoulos, Sotirios

    2014-01-01

    The discovery of thermophilic and hyperthermophilic microorganisms, thriving at environmental temperatures near or above 100 °C, has revolutionized our ideas about the upper temperature limit at which life can exist. The characterization of (hyper)thermostable proteins has broadened our understanding and presented new opportunities for solving one of the most challenging problems in biophysics: how is structural stability and biological function maintained at high temperatures where "normal" proteins undergo dramatic structural changes? In our laboratory we have purified and studied many thermostable and hyperthermostable proteins in an attempt to determine the molecular basis of heat stability. Here, we present methods to express such proteins and enzymes in E. coli and provide a general protocol for overproduction and purification. The ability to produce enzymes that retain their stability and activity at elevated temperatures creates exciting opportunities for a wide range of biocatalytic applications.

  7. Moving towards Hyper-Resolution Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Rouf, T.; Maggioni, V.; Houser, P.; Mei, Y.

    2017-12-01

    Developing a predictive capability for terrestrial hydrology across landscapes, with water, energy and nutrients as the drivers of these dynamic systems, faces the challenge of scaling meter-scale process understanding to practical modeling scales. Hyper-resolution land surface modeling can provide a framework for addressing science questions that we are not able to answer with coarse modeling scales. In this study, we develop a hyper-resolution forcing dataset from coarser resolution products using a physically based downscaling approach. These downscaling techniques rely on correlations with landscape variables, such as topography, roughness, and land cover. A proof-of-concept has been implemented over the Oklahoma domain, where high-resolution observations are available for validation purposes. Hourly NLDAS (North America Land Data Assimilation System) forcing data (i.e., near-surface air temperature, pressure, and humidity) have been downscaled to 500m resolution over the study area for 2015-present. Results show that correlation coefficients between the downscaled temperature dataset and ground observations are consistently higher than the ones between the NLDAS temperature data at their native resolution and ground observations. Not only correlation coefficients are higher, but also the deviation around the 1:1 line in the density scatterplots is smaller for the downscaled dataset than the original one with respect to the ground observations. Results are therefore encouraging as they demonstrate that the 500m temperature dataset has a good agreement with the ground information and can be adopted to force the land surface model for soil moisture estimation. The study has been expanded to wind speed and direction, incident longwave and shortwave radiation, pressure, and precipitation. Precipitation is well known to vary dramatically with elevation and orography. Therefore, we are pursuing a downscaling technique based on both topographical and vegetation

  8. [Preventive effects of 4 Se-enriched plants on rat stomach cancer induced by MNNG--3. Se accumulation and distribution in rats of different selenium resources for prevention of stomach cancer].

    PubMed

    Yang, Wenije; Chen, Jing; Li, Weidong; Chen, Xiaobin

    2008-07-01

    To investigate the accumulation and distribution of blood and tissue Se in rats with long-term and high-dose of Se supplementation by four Se-enriched plants (Se-enriched garlic, Se-enriched broccoli, Se-enriched green kale and Se-enriched red kale) in the N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced stomach cancer model. Ninety rats were fed by basal diet for a week, divided equally into the control, MNNG and seven Se supplementation groups. Rats were daily given 15 mg/kg bw of MNNG for ten days except those in the control group, and rats in five Se-enriched plant treatment groups were daily given 150 or 300 microg Se/kg of bw of the plant suspension by gavage for 17 weeks. Rats were sacrificed at the end of 18th week, the Se contents of blood, red blood cell, plasma, liver, kidney, spleen, heart, brain and testicle were determined. The Se contents of liver and kidney in rats supplemented by Se-enriched garlic were significantly lower than those in rats supplemented by Se-enriched broccoli and two Se-enriched kales, and the Se contents of red blood cell and spleen higher than those in rats supplemented by Se-enriched broccoli and two Se-enriched kales. The data primarily shows that the differences of the accumulation and distribution of blood and tissue Se in rats are related to the supplemented plant Se components, and that lower Se accumulation of the liver and kidney in rats supplemented by Se-enriched garlic than by other plants may be one of Se safety indices of Se-enriched garlic.

  9. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Space Agriculture Task Force; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.

    Manned Mars exploration, especially for extended periods of time, will require recycle of materials to support human life. Here, a conceptual design is developed for a Martian agricultural system driven by biologically regenerative functions. One of the core biotechnologies function is the use of hyper-thermophilic aerobic composting bacterial ecology. These thermophilic bacteria can play an important role in increasing the effectiveness of the processing of human metabolic waste and inedible biomass and of converting them to fertilizer for the cultivation of plants. This microbial technology has been already well established for the purpose of processing sewage and waste materials for small local communities in Japan. One of the characteristics of the technology is that the metabolic heat release that occurs during bacterial fermentation raises the processing temperature sufficiently high at 80 100 °C to support hyper-thermophilic bacteria. Such a hyper-thermophilic system is found to have great capability of decomposing wastes including even their normally recalcitrant components, in a reasonably short period of time and of providing a better quality of fertilizer as an end-product. High quality compost has been shown to be a key element in creating a healthy regenerative food production system. In ground-based studies, the soil microbial ecology after the addition of high quality compost was shown to improve plant growth and promote a healthy symbiosis of arbuscular mycorrhizal fungi. Another advantage of such high processing temperature is the ability to sterilize the pathogenic organisms through the fermentation process and thus to secure the hygienic safety of the system. Plant cultivation is one of the other major systems. It should fully utilize solar energy received on the Martian surface for supplying energy for photosynthesis. Subsurface water and atmospheric carbon dioxide mined on Mars should be also used in the plant cultivation system. Oxygen and

  10. Systematics for T2K/Hyper-K (Review Talk)

    NASA Astrophysics Data System (ADS)

    Shah, Raj

    Hyper-Kamiokande is a proposed next generation underground water Cherenkov detector. Presented here is a review of sensitivities and dominant uncertainties associated with measurements of CP violation and non-maximal mixing in the 2-3 sector.

  11. Genetics Home Reference: autosomal recessive hyper-IgE syndrome

    MedlinePlus

    ... collapse boxes. Description Autosomal recessive hyper-IgE syndrome (AR-HIES) is a disorder of the immune system. ... pus (abscesses), open sores, and scaling. People with AR-HIES also tend to have frequent bouts of ...

  12. Self-assembled tunable photonic hyper-crystals

    PubMed Central

    Smolyaninova, Vera N.; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E.; Smolyaninov, Igor I.

    2014-01-01

    We demonstrate a novel artificial optical material, the “photonic hyper-crystal”, which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing. PMID:25027947

  13. Self-assembled tunable photonic hyper-crystals.

    PubMed

    Smolyaninova, Vera N; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2014-07-16

    We demonstrate a novel artificial optical material, the "photonic hyper-crystal", which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.

  14. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil

    USDA-ARS?s Scientific Manuscript database

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and...

  15. Accumulation, speciation, and coordination of arsenic in an inbred line and a wild type cultivar of the desert plant species Chilopsis linearis (Desert willow).

    PubMed

    Castillo-Michel, Hiram A; Zuverza-Mena, Nubia; Parsons, Jason G; Dokken, Kenneth M; Duarte-Gardea, Maria; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2009-03-01

    This study investigated the absorption of arsenic (As), sulfur (S), and phosphorus (P) in the desert plant Chilopsis linearis (Desert willow). A comparison between an inbred line (red flowered) and wild type (white flowered) plants was performed to look for differential responses to As treatment. One month old seedlings were treated for 7 days with arsenate (As(2)O(5), As(V)) at 0, 20, and 40 mg As(V)L(-1). Results from the ICP-OES analysis showed that at 20mg As(V)L(-1), red flowered plants had 280+/-11 and 98+/-7 mg As kg(-1) dry wt in roots and stems, respectively, while white flowered plants had 196+/-30 and 103+/-13 mg As kg(-1) dry wt for roots and stems. At this treatment level, the concentration of As in leaves was below detection limits for both plants. In red flowered plants treated with 40 mg As(V)L(-1), As was at 290+/-77 and 151+/-60 mg As kg(-1) in roots and stems, respectively, and not detected in leaves, whereas white flowered plants had 406+/-36, 213+/-12, and 177+/-40 mg As kg(-1) in roots, stems, and leaves. The concentration of S increased in all As treated plants, while the concentration of P decreased in roots and stems of both types of plants and in leaves of red flowered plants. X-ray absorption spectroscopy analyses demonstrated partial reduction of arsenate to arsenite in the form of As-(SX)(3) species in both types of plants.

  16. Accumulated Expression Level of Cytosolic Glutamine Synthetase 1 Gene (OsGS1;1 or OsGS1;2) Alter Plant Development and the Carbon-Nitrogen Metabolic Status in Rice

    PubMed Central

    Bao, Aili; Zhao, Zhuqing; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2014-01-01

    Maintaining an appropriate balance of carbon to nitrogen metabolism is essential for rice growth and yield. Glutamine synthetase is a key enzyme for ammonium assimilation. In this study, we systematically analyzed the growth phenotype, carbon-nitrogen metabolic status and gene expression profiles in GS1;1-, GS1;2-overexpressing rice and wildtype plants. Our results revealed that the GS1;1-, GS1;2-overexpressing plants exhibited a poor plant growth phenotype and yield and decreased carbon/nitrogen ratio in the stem caused by the accumulation of nitrogen in the stem. In addition, the leaf SPAD value and photosynthetic parameters, soluble proteins and carbohydrates varied greatly in the GS1;1-, GS1;2-overexpressing plants. Furthermore, metabolite profile and gene expression analysis demonstrated significant changes in individual sugars, organic acids and free amino acids, and gene expression patterns in GS1;1-, GS1;2-overexpressing plants, which also indicated the distinct roles that these two GS1 genes played in rice nitrogen metabolism, particularly when sufficient nitrogen was applied in the environment. Thus, the unbalanced carbon-nitrogen metabolic status and poor ability of nitrogen transportation from stem to leaf in GS1;1-, GS1;2-overexpressing plants may explain the poor growth and yield. PMID:24743556

  17. Parallel Evolution of Sperm Hyper-Activation Ca2+ Channels

    PubMed Central

    Phadnis, Nitin

    2017-01-01

    Abstract Sperm hyper-activation is a dramatic change in sperm behavior where mature sperm burst into a final sprint in the race to the egg. The mechanism of sperm hyper-activation in many metazoans, including humans, consists of a jolt of Ca2+ into the sperm flagellum via CatSper ion channels. Surprisingly, all nine CatSper genes have been independently lost in several animal lineages. In Drosophila, sperm hyper-activation is performed through the cooption of the polycystic kidney disease 2 (pkd2) Ca2+ channel. The parallels between CatSpers in primates and pkd2 in Drosophila provide a unique opportunity to examine the molecular evolution of the sperm hyper-activation machinery in two independent, nonhomologous calcium channels separated by > 500 million years of divergence. Here, we use a comprehensive phylogenomic approach to investigate the selective pressures on these sperm hyper-activation channels. First, we find that the entire CatSper complex evolves rapidly under recurrent positive selection in primates. Second, we find that pkd2 has parallel patterns of adaptive evolution in Drosophila. Third, we show that this adaptive evolution of pkd2 is driven by its role in sperm hyper-activation. These patterns of selection suggest that the evolution of the sperm hyper-activation machinery is driven by sexual conflict with antagonistic ligands that modulate channel activity. Together, our results add sperm hyper-activation channels to the class of fast evolving reproductive proteins and provide insights into the mechanisms used by the sexes to manipulate sperm behavior. PMID:28810709

  18. Resting Energy Expenditure of Rats Acclimated to Hyper-Gravity

    NASA Technical Reports Server (NTRS)

    Wade, Charles E.; Moran, Megan M.; Oyama, Jiro; Schwenke, David; Dalton, Bonnie P. (Technical Monitor)

    2000-01-01

    To determine the influence of body mass and age on resting energy expenditure (EE) following acclimation to hyper-gravity, oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured to calculate resting energy expenditure (EE), in male rats, ages 40 to 400 days, acclimated to 1.23 or 4.1 G for a minimum of two weeks. Animals were maintained on a centrifuge to produce the hyper-gravity environment. Measurements were made over three hours in hyper-gravity during the period when the lights were on, the inactive period of rats. In rats matched for body mass (approximately 400 g) hyper-gravity increased VO2 by 18% and VCO2 by 27% compared to controls, resulting in an increase in RER, 0.80 to 0.87. There were increases in resting EE with an increase in gravity. This increase was greater when the mass of the rat was larger. Rating EE for 400g animals were increased from 47 +/- 1 kcal/kg/day at 1 G, to 57 +/- 1.5 and 5.8 +/- 2.2 kcal/kg/day at 2,3 and 4.1 G, respectively. There was no difference between the two hyper-gravity environments. When differences in age of the animals were accounted for, the increase in resting EE adjusted for body mass was increased by over 36% in older animals due to exposure to hyper-gravity. Acclimation to hyper-gravity increases the resting EE of rats, dependent upon body mass and age, and appears to alter substrate metabolism. Increasing the level of hyper-gravity, from 2.3 to 4.1 G, produced no further changes raising questions as to a dose effect of gravity level on resting metabolism.

  19. Parallel Evolution of Sperm Hyper-Activation Ca2+ Channels.

    PubMed

    Cooper, Jacob C; Phadnis, Nitin

    2017-07-01

    Sperm hyper-activation is a dramatic change in sperm behavior where mature sperm burst into a final sprint in the race to the egg. The mechanism of sperm hyper-activation in many metazoans, including humans, consists of a jolt of Ca2+ into the sperm flagellum via CatSper ion channels. Surprisingly, all nine CatSper genes have been independently lost in several animal lineages. In Drosophila, sperm hyper-activation is performed through the cooption of the polycystic kidney disease 2 (pkd2) Ca2+ channel. The parallels between CatSpers in primates and pkd2 in Drosophila provide a unique opportunity to examine the molecular evolution of the sperm hyper-activation machinery in two independent, nonhomologous calcium channels separated by > 500 million years of divergence. Here, we use a comprehensive phylogenomic approach to investigate the selective pressures on these sperm hyper-activation channels. First, we find that the entire CatSper complex evolves rapidly under recurrent positive selection in primates. Second, we find that pkd2 has parallel patterns of adaptive evolution in Drosophila. Third, we show that this adaptive evolution of pkd2 is driven by its role in sperm hyper-activation. These patterns of selection suggest that the evolution of the sperm hyper-activation machinery is driven by sexual conflict with antagonistic ligands that modulate channel activity. Together, our results add sperm hyper-activation channels to the class of fast evolving reproductive proteins and provide insights into the mechanisms used by the sexes to manipulate sperm behavior. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Toxoplasmosis Presenting as Hyper Viscosity Syndrome due to Polyclonal Gammopathy.

    PubMed

    Puranik, Shaila C; Rathod, Kalpana B; Kudrimoti, Jyoti K

    2014-03-01

    We are presenting a rare case of toxoplasma lymphadenopathy with hyper viscosity syndrome due to polyclonal gammopathy. A 30 year old female presented with generalized lymphadenopathy. Lymph node biopsy findings suggestive of toxoplasmosis were confirmed on serology. Bone marrow aspiration showed 50 % plasma cells. On serum electrophoresis broad, diffuse band noted, indicative of polyclonal gammopathy. M band was absent. The patient was immunocompetent and presented with hyper viscosity syndrome masking the symptoms of underlying toxoplasmosis.

  1. Self-assembled Tunable Photonic Hyper-crystals

    DTIC Science & Technology

    2014-07-16

    a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to...monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing. 2 Approved for public release...assembly of photonic hyper crystals has been achieved by application of external magnetic field to a cobalt nanoparticle based ferrofluid. Unique spectral

  2. Molecular mechanisms behind the accumulation of adenosine triphosphate (ATP) and H2O2 in citrus plants in response to ‘Candidatus Liberibacter asiaticus’ infection

    USDA-ARS?s Scientific Manuscript database

    Candidatus Liberibacter asiaticus (Las) is a fastidious, phloem-restricted pathogen with a significantly reduced genome, and attacks all citrus species with no immune cultivars documented to date. Like other plant bacterial pathogens, Las deploys effector proteins into the organelles of plant cells,...

  3. Monogamy in a Hyper-Symbiotic Shrimp

    PubMed Central

    Baeza, J. Antonio; Simpson, Lunden; Ambrosio, Louis J.; Guéron, Rodrigo; Mora, Nathalia

    2016-01-01

    Theory predicts that monogamy is adaptive in resource-specialist symbiotic crustaceans inhabiting relatively small and morphologically simple hosts in tropical environments where predation risk away from hosts is high. We tested this prediction in Pontonia manningi, a hyper-symbiotic shrimp that dwells in the mantle cavity of the Atlantic winged oyster Pteria colymbus that, in turn, infects gorgonians from the genus Pseudopterogorgia in the Caribbean Sea. In agreement with theory, P. manningi were found dwelling as heterosexual pairs in oysters more frequently than expected by chance alone. Males and females also inhabited the same host individual independent of the female gravid condition or of the developmental stage of brooded embryos. While the observations above argue in favor of monogamy in P. manningi, there is evidence to suggest that males of the studied species are moderately promiscuous. That females found living solitary in oysters most often brooded embryos, and that males allocated more to weaponry (major claw size) than females at any given size suggest that males might be roaming among host individuals in search of and, fighting for, receptive females. All available information depicts a rather complex mating system in P. manningi: primarily monogamous but with moderately promiscuous males. PMID:26934109

  4. Hyper-binding: a unique age effect.

    PubMed

    Campbell, Karen L; Hasher, Lynn; Thomas, Ruthann C

    2010-03-01

    Previous work has shown that older adults encode lexical and semantic information about verbal distractors and use that information to facilitate performance on subsequent tasks. In this study, we investigated whether older adults also form associations between distractors and co-occurring targets. In two experiments, participants performed a 1-back task on pictures superimposed with irrelevant words; 10 min later, participants were given a paired-associates memory task without reference to the 1-back task. The study list included preserved and re-paired (disrupted) pairs from the 1-back task. Older adults showed a memory advantage for preserved pairs and a disadvantage for disrupted pairs, whereas younger adults performed similarly across pair types. These results suggest the existence of a hyper-binding phenomenon in which older adults encode seemingly extraneous co-occurrences in the environment and transfer this knowledge to subsequent tasks. This increased knowledge of how events covary may be the reason why real-world decision-making ability is retained, or even enhanced, with age.

  5. Hyper-dendritic nanoporous zinc foam anodes

    SciTech Connect

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore » to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  6. Framework for analyzing hyper-viscoelastic polymers

    NASA Astrophysics Data System (ADS)

    Trivedi, Akash; Siviour, Clive

    2017-06-01

    Hyper-viscoelastic polymers have multiple areas of application including aerospace, biomedicine, and automotive. Their mechanical responses are therefore extremely important to understand, particularly because they exhibit strong rate and temperature dependence, including a low temperature brittle transition. Relationships between the response at various strain rates and temperatures are investigated and a framework developed to predict response at rates where experiments are unfeasible. A master curve of the storage modulus's rate dependence at a reference temperature is constructed using a DMA test of the polymer. A frequency sweep spanning two decades and a temperature range from pre-glass transition to pre-melt is used. A fractional derivative model is fitted to the experimental data, and this model's parameters are used to derive stress-strain relationships at a desired strain rate. Finite element simulations with this constitutive model are used for verification with experimental data. This material is based upon work supported by the Air Force Office of Scientific Research, Air Force Materiel Command, USAF under Award No. FA9550-15-1-0448.

  7. A Plasma Drag Hypervelocity Particle Accelerator (HYPER)

    NASA Technical Reports Server (NTRS)

    Best, Steve R.; Rose, M. Frank

    1998-01-01

    Current debris models are able to predict the growth of the space debris problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now and that the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The velocity distribution of the man-made component peaks at 9-10 km/s with maximum velocity in the 14-16 km/s range. Experience in space has verified that the "high probability of impact" particles are in the microgram to milligram range. These particles can have very significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the impact events. In this paper, the HYPER facility is described which produces a reasonable simulation of the man-made space debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility has been used to study impact phenomena on Space Station Freedom's solar array structure, the calibration of space debris collectors, other solar array materials, potential structural materials for use in space, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on surfaces which have been exposed in space.

  8. Persistent HyperCKemia in Athletes

    PubMed Central

    Brancaccio, Paola; Maffulli, Nicola; Politano, Luisa; Lippi, Giuseppe; Limongelli, Francesco Mario

    2011-01-01

    Summary We compared the effects of exercise on serum levels of creatin kinase (CK) in athletes with persistent hyperCKemia at rest (CK group) and in healthy athletes (control group). Prospective controlled study. Eighteen male Caucasian athletes with high serum CK levels at rest (CK between 80 and 150 U/L) and 25 male Caucasian athletes with normal serum CK levels at rest (CK between 10 and 80 U/L) Main Outcome Measures Blood samples were collected at rest, 30 minutes, 6 hours, 24 hours, 48 hours and 72 hours after a progressive cycloergometer test to exhaustion. The levels of serum CK and its isoenzymes were measured. In the control group, serum CK values at rest were normal (48.18 ± 14.14 U/L). After exercise, they increased slightly, though they always remained <80 U/L, decreasing to the rest level after 48 hours. The CK group had serum CK levels at rest higher than normal (116.56 ± 33.30 U/L). Serum CK levels were still outwith the normal range after 48 hours (130.11 ± 46.95 U/L) and 72 hours (116.55 ± 24.84 U/L). Serum CK levels were significantly different in both groups both before and after progressive cycloergometer test to exhaustion. In athletes with high serum CK levels at rest, serum CK levels remained elevated and had a different kinetics after exercise when compared with healthy athletes. PMID:23738242

  9. Hyper-dendritic nanoporous zinc foam anodes

    DOE PAGES

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; ...

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore » to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  10. Tracking down hyper-boosted top quarks

    DOE PAGES

    Larkoski, Andrew J.; Maltoni, Fabio; Selvaggi, Michele

    2015-06-05

    The identification of hadronically decaying heavy states, such as vector bosons, the Higgs, or the top quark, produced with large transverse boosts has been and will continue to be a central focus of the jet physics program at the Large Hadron Collider (LHC). At a future hadron collider working at an order-of-magnitude larger energy than the LHC, these heavy states would be easily produced with transverse boosts of several TeV. At these energies, their decay products will be separated by angular scales comparable to individual calorimeter cells, making the current jet substructure identification techniques for hadronic decay modes not directlymore » employable. In addition, at the high energy and luminosity projected at a future hadron collider, there will be numerous sources for contamination including initial- and final-state radiation, underlying event, or pile-up which must be mitigated. We propose a simple strategy to tag such "hyper-boosted" objects that defines jets with radii that scale inversely proportional to their transverse boost and combines the standard calorimetric information with charged track-based observables. By means of a fast detector simulation, we apply it to top quark identification and demonstrate that our method efficiently discriminates hadronically decaying top quarks from light QCD jets up to transverse boosts of 20 TeV. Lastly, our results open the way to tagging heavy objects with energies in the multi-TeV range at present and future hadron colliders.« less

  11. Monogamy in a Hyper-Symbiotic Shrimp.

    PubMed

    Baeza, J Antonio; Simpson, Lunden; Ambrosio, Louis J; Guéron, Rodrigo; Mora, Nathalia

    2016-01-01

    Theory predicts that monogamy is adaptive in resource-specialist symbiotic crustaceans inhabiting relatively small and morphologically simple hosts in tropical environments where predation risk away from hosts is high. We tested this prediction in Pontonia manningi, a hyper-symbiotic shrimp that dwells in the mantle cavity of the Atlantic winged oyster Pteria colymbus that, in turn, infects gorgonians from the genus Pseudopterogorgia in the Caribbean Sea. In agreement with theory, P. manningi were found dwelling as heterosexual pairs in oysters more frequently than expected by chance alone. Males and females also inhabited the same host individual independent of the female gravid condition or of the developmental stage of brooded embryos. While the observations above argue in favor of monogamy in P. manningi, there is evidence to suggest that males of the studied species are moderately promiscuous. That females found living solitary in oysters most often brooded embryos, and that males allocated more to weaponry (major claw size) than females at any given size suggest that males might be roaming among host individuals in search of and, fighting for, receptive females. All available information depicts a rather complex mating system in P. manningi: primarily monogamous but with moderately promiscuous males.

  12. Occurrence and growth characteristics of Escherichia coli and enterococci within the accumulated fluid of the northern pitcher plant (Sarracenia purpurea L.).

    PubMed

    Whitman, Richard L; Byers, Stacey E; Shively, Dawn A; Ferguson, Donna M; Byappanahalli, Muruleedhara

    2005-12-01

    Sarracenia purpurea L., a carnivorous bog plant (also known as the pitcher plant), represents an excellent model of a well-defined, self-contained ecosystem; the individual pitchers of the plant serve as a microhabitat for a variety of micro- and macro-organisms. Previously, fecal indicator bacteria (Escherichia coli and enterococci) were shown as incidental contaminants in pitcher fluid; however, whether their occurrence in pitcher fluid is incidental or common has not been established. The purpose of this study was to investigate the occurrence, distribution, and growth potential of E. coli and enterococci in pitcher plant fluid from a protected bog in northwest Indiana. Escherichia coli and enterococci were recovered in pitcher fluids (n=43 plants), with mean densities (log CFU mL-1) of 1.28+/-0.23 and 1.97+/-0.27, respectively. In vitro experiments showed that E. coli growth in fluid not containing insects or indigenous organisms was directly proportional to the fluid concentration (growth was 10-fold in 24 h in 100% fluid); however, in the presence of other indigenous organisms, E. coli and enterococci were only sustained for 5 days at 26 degrees C. Pulsed-field gel electrophoresis (PFGE) analysis showed that the plant Enterococcus faecalis isolates were genetically distinct from the human isolates; identical PFGE patterns were observed among plant isolates that fell into one of six clonal groups. These findings suggest that (i) E. coli and enterococci occurrence in pitcher plants is rather common in the bog studied, although their originating source is unclear, and (ii) the pitcher fluid contains adequate nutrients, especially carbon and energy sources, to promote the growth of indicator bacteria; however, under natural conditions, the biotic factors (e.g., competition for nutrients) may restrict their growth.

  13. Occurrence and growth characteristics of Escherichia coli and enterococci within the accumulated fluid of the northern pitcher plant (Sarracenia purpurea L.)

    USGS Publications Warehouse

    Whitman, Richard L.; Byers, Stacey E.; Shively, Dawn A.; Ferguson, Donna M.; Byappanahalli, Muruleedhara N.

    2005-01-01

    Sarracenia purpurea L., a carnivorous bog plant (also known as the pitcher plant), represents an excellent model of a well-defined, self-contained ecosystem; the individual pitchers of the plant serve as a microhabitat for a variety of micro- and macro-organisms. Previously, fecal indicator bacteria (Escherichia coli and enterococci) were shown as incidental contaminants in pitcher fluid; however, whether their occurrence in pitcher fluid is incidental or common has not been established. The purpose of this study was to investigate the occurrence, distribution, and growth potential of E. coli and enterococci in pitcher plant fluid from a protected bog in northwest Indiana. Escherichia coli and enterococci were recovered in pitcher fluids (n = 43 plants), with mean densities (log CFU mL-1) of 1.28 ± 0.23 and 1.97 ± 0.27, respectively. In vitro experiments showed that E. coli growth in fluid not containing insects or indigenous organisms was directly proportional to the fluid concentration (growth was 10-fold in 24 h in 100% fluid); however, in the presence of other indigenous organisms, E. coli and enterococci were only sustained for 5 days at 26 °C. Pulsed-field gel electrophoresis (PFGE) analysis showed that the plant Enterococcus faecalis isolates were genetically distinct from the human isolates; identical PFGE patterns were observed among plant isolates that fell into one of six clonal groups. These findings suggest that (i) E. coli and enterococci occurrence in pitcher plants is rather common in the bog studied, although their originating source is unclear, and (ii) the pitcher fluid contains adequate nutrients, especially carbon and energy sources, to promote the growth of indicator bacteria; however, under natural conditions, the biotic factors (e.g., competition for nutrients) may restrict their growth.

  14. Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum.

    PubMed

    Agarie, Sakae; Shimoda, Toshifumi; Shimizu, Yumi; Baumann, Kathleen; Sunagawa, Haruki; Kondo, Ayumu; Ueno, Osamu; Nakahara, Teruhisa; Nose, Akihiro; Cushman, John C

    2007-01-01

    The aerial surfaces of the common or crystalline ice plant Mesembryanthemum crystallinum L., a halophytic, facultative crassulacean acid metabolism species, are covered with specialized trichome cells called epidermal bladder cells (EBCs). EBCs are thought to serve as a peripheral salinity and/or water storage organ to improve survival under high salinity or water deficit stress conditions. However, the exact contribution of EBCs to salt tolerance in the ice plant remains poorly understood. An M. crystallinum mutant lacking EBCs was isolated from plant collections mutagenized by fast neutron irradiation. Light and electron microscopy revealed that mutant plants lacked EBCs on all surfaces of leaves and stems. Dry weight gain of aerial parts of the mutant was almost half that of wild-type plants after 3 weeks of growth at 400 mM NaCl. The EBC mutant also showed reduced leaf succulence and leaf and stem water contents compared with wild-type plants. Aerial tissues of wild-type plants had approximately 1.5-fold higher Na(+) and Cl(-) content than the mutant grown under 400 mM NaCl for 2 weeks. Na(+) and Cl(-) partitioning into EBCs of wild-type plants resulted in lower concentrations of these ions in photosynthetically active leaf tissues than in leaves of the EBC-less mutant, particularly under conditions of high salt stress. Potassium, nitrate, and phosphate ion content decreased with incorporation of NaCl into tissues in both the wild type and the mutant, but the ratios of Na(+)/K(+) and Cl(-)/NO(3)(-)content were maintained only in the leaf and stem tissues of wild-type plants. The EBC mutant showed significant impairment in plant productivity under salt stress as evaluated by seed pod and seed number and average seed weight. These results clearly show that EBCs contribute to succulence by serving as a water storage reservoir and to salt tolerance by maintaining ion sequestration and homeostasis within photosynthetically active tissues of M. crystallinum.

  15. Hyper-Rayleigh scattering in centrosymmetric systems

    SciTech Connect

    Williams, Mathew D.; Ford, Jack S.; Andrews, David L., E-mail: david.andrews@physics.org

    Hyper-Rayleigh scattering (HRS) is an incoherent mechanism for optical second harmonic generation. The frequency-doubled light that emerges from this mechanism is not emitted in a laser-like manner, in the forward direction; it is scattered in all directions. The underlying theory for this effect involves terms that are quadratic in the incident field and involves an even-order optical susceptibility (for a molecule, its associated hyperpolarizability). In consequence, HRS is often regarded as formally forbidden in centrosymmetric media. However, for the fundamental three-photon interaction, theory based on the standard electric dipole approximation, representable as E1{sup 3}, does not account for all experimentalmore » observations. The relevant results emerge upon extending the theory to include E1{sup 2}M1 and E1{sup 2}E2 contributions, incorporating one magnetic dipolar or electric quadrupolar interaction, respectively, to a consistent level of multipolar expansion. Both additional interactions require the deployment of higher orders in the multipole expansion, with the E1{sup 2}E2 interaction analogous in rank and parity to a four-wave susceptibility. To elicit the correct form of response from fluid or disordered media invites a tensor representation which does not oversimplify the molecular components, yet which can produce results to facilitate the interpretation of experimental observations. The detailed derivation in this work leads to results which are summarized for the following: perpendicular detection of polarization components both parallel and perpendicular to the pump radiation, leading to distinct polarization ratio results, as well as a reversal ratio for forward scattered circular polarizations. The results provide a route to handling data with direct physical interpretation, to enable the more sophisticated design of molecules with sought nonlinear optical properties.« less

  16. Hyper Suprime-Cam: Camera dewar design

    NASA Astrophysics Data System (ADS)

    Komiyama, Yutaka; Obuchi, Yoshiyuki; Nakaya, Hidehiko; Kamata, Yukiko; Kawanomoto, Satoshi; Utsumi, Yousuke; Miyazaki, Satoshi; Uraguchi, Fumihiro; Furusawa, Hisanori; Morokuma, Tomoki; Uchida, Tomohisa; Miyatake, Hironao; Mineo, Sogo; Fujimori, Hiroki; Aihara, Hiroaki; Karoji, Hiroshi; Gunn, James E.; Wang, Shiang-Yu

    2018-01-01

    This paper describes the detailed design of the CCD dewar and the camera system which is a part of the wide-field imager Hyper Suprime-Cam (HSC) on the 8.2 m Subaru Telescope. On the 1.°5 diameter focal plane (497 mm in physical size), 116 four-side buttable 2 k × 4 k fully depleted CCDs are tiled with 0.3 mm gaps between adjacent chips, which are cooled down to -100°C by two pulse tube coolers with a capability to exhaust 100 W heat at -100°C. The design of the dewar is basically a natural extension of Suprime-Cam, incorporating some improvements such as (1) a detailed CCD positioning strategy to avoid any collision between CCDs while maximizing the filling factor of the focal plane, (2) a spherical washers mechanism adopted for the interface points to avoid any deformation caused by the tilt of the interface surface to be transferred to the focal plane, (3) the employment of a truncated-cone-shaped window, made of synthetic silica, to save the back focal space, and (4) a passive heat transfer mechanism to exhaust efficiently the heat generated from the CCD readout electronics which are accommodated inside the dewar. Extensive simulations using a finite-element analysis (FEA) method are carried out to verify that the design of the dewar is sufficient to satisfy the assigned errors. We also perform verification tests using the actually assembled CCD dewar to supplement the FEA and demonstrate that the design is adequate to ensure an excellent image quality which is key to the HSC. The details of the camera system, including the control computer system, are described as well as the assembling process of the dewar and the process of installation on the telescope.

  17. Hyper-Rayleigh scattering in centrosymmetric systems

    NASA Astrophysics Data System (ADS)

    Williams, Mathew D.; Ford, Jack S.; Andrews, David L.

    2015-09-01

    Hyper-Rayleigh scattering (HRS) is an incoherent mechanism for optical second harmonic generation. The frequency-doubled light that emerges from this mechanism is not emitted in a laser-like manner, in the forward direction; it is scattered in all directions. The underlying theory for this effect involves terms that are quadratic in the incident field and involves an even-order optical susceptibility (for a molecule, its associated hyperpolarizability). In consequence, HRS is often regarded as formally forbidden in centrosymmetric media. However, for the fundamental three-photon interaction, theory based on the standard electric dipole approximation, representable as E13, does not account for all experimental observations. The relevant results emerge upon extending the theory to include E12M1 and E12E2 contributions, incorporating one magnetic dipolar or electric quadrupolar interaction, respectively, to a consistent level of multipolar expansion. Both additional interactions require the deployment of higher orders in the multipole expansion, with the E12E2 interaction analogous in rank and parity to a four-wave susceptibility. To elicit the correct form of response from fluid or disordered media invites a tensor representation which does not oversimplify the molecular components, yet which can produce results to facilitate the interpretation of experimental observations. The detailed derivation in this work leads to results which are summarized for the following: perpendicular detection of polarization components both parallel and perpendicular to the pump radiation, leading to distinct polarization ratio results, as well as a reversal ratio for forward scattered circular polarizations. The results provide a route to handling data with direct physical interpretation, to enable the more sophisticated design of molecules with sought nonlinear optical properties.

  18. Impacts of coal fly ash on plant growth and accumulation of essential nutrients and trace elements by alfalfa (Medicago sativa) grown in a loessial soil.

    PubMed

    He, Honghua; Dong, Zhigang; Peng, Qi; Wang, Xia; Fan, Chenbin; Zhang, Xingchang

    2017-07-15

    Coal fly ash (CFA) is a problematic solid waste all over the world. One distinct beneficial reuse of CFA is its utilization in land application as a soil amendment. A pot experiment was carried out to assess the feasibility of using CFA to improve plant growth and increase the supply of plant-essential elements and selenium (Se) of a loessial soil for agricultural purpose. Plants of alfalfa (Medicago sativa) were grown in a loessial soil amended with different rates (5%, 10%, 20% and 40%) of CFA for two years and subjected to four successive cuttings. Dry mass of shoots and roots, concentrations of plant-essential elements and Se in plants were measured. Shoot dry mass and root dry mass were always significantly increased by 5%, 10% and 20% CFA treatments, and by 40% CFA treatment in all harvests except the first one. The CFA had a higher supply of exchangeable phosphorus (P), magnesium (Mg), copper (Cu), zinc (Zn), molybdenum (Mo), and Se than the loessial soil. Shoot P, calcium (Ca), Mg, Mo, boron (B), and Se concentrations were generally markedly increased, but shoot potassium (K), Cu, and Zn concentrations were generally reduced. The CFA can be a promising source of some essential elements and Se for plants grown in the loessial soil, and an application rate of not higher than 5% should be safe for agricultural purpose without causing plant toxicity symptoms in the studied loessial soil and similar soils. Field trials will be carried out to confirm the results of the pot experiment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Hyper-Resolution Groundwater Modeling using MODFLOW 6

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Langevin, C.

    2017-12-01

    MODFLOW 6 is the latest version of the U.S. Geological Survey's modular hydrologic model. MODFLOW 6 was developed to synthesize many of the recent versions of MODFLOW into a single program, improve the way different process models are coupled, and to provide an object-oriented framework for adding new types of models and packages. The object-oriented framework and underlying numerical solver make it possible to tightly couple any number of hyper-resolution models within coarser regional models. The hyper-resolution models can be used to evaluate local-scale groundwater issues that may be affected by regional-scale forcings. In MODFLOW 6, hyper-resolution meshes can be maintained as separate model datasets, similar to MODFLOW-LGR, which simplifies the development of a coarse regional model with imbedded hyper-resolution models from a coarse regional model. For example, the South Atlantic Coastal Plain regional water availability model was converted from a MODFLOW-2000 model to a MODFLOW 6 model. The horizontal discretization of the original model is approximately 3,218 m x 3,218 m. Hyper-resolution models of the Aiken and Sumter County water budget areas in South Carolina with a horizontal discretization of approximately 322 m x 322 m were developed and were tightly coupled to a modified version of the original coarse regional model that excluded these areas. Hydraulic property and aquifer geometry data from the coarse model were mapped to the hyper-resolution models. The discretization of the hyper-resolution models is fine enough to make detailed analyses of the effect that changes in groundwater withdrawals in the production aquifers have on the water table and surface-water/groundwater interactions. The approach used in this analysis could be applied to other regional water availability models that have been developed by the U.S. Geological Survey to evaluate local scale groundwater issues.

  20. Plants as Biofactories: Postharvest Stress-Induced Accumulation of Phenolic Compounds and Glucosinolates in Broccoli Subjected to Wounding Stress and Exogenous Phytohormones

    PubMed Central

    Villarreal-García, Daniel; Nair, Vimal; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A.

    2016-01-01

    Broccoli contains high levels of bioactive molecules and is considered a functional food. In this study, postharvest treatments to enhance the concentration of glucosinolates and phenolic compounds were evaluated. Broccoli whole heads were wounded to obtain florets and wounded florets (florets cut into four even pieces) and stored for 24 h at 20 °C with or without exogenous ethylene (ET, 1000 ppm) or methyl jasmonate (MeJA, 250 ppm). Whole heads were used as a control for wounding treatments. Regarding glucosinolate accumulation, ET selectively induced the 4-hydroxylation of glucobrassicin in whole heads, resulting in ∼223% higher 4-hydroxyglucobrassicin than time 0 h samples. Additionally, glucoraphanin was increased by ∼53% in whole heads treated with ET, while neoglucobrassicin was greatly accumulated in wounded florets treated with ET or MeJA, showing increases of ∼193 and ∼286%, respectively. On the other hand, although only whole heads stored without phytohormones showed higher concentrations of phenolic compounds, which was reflected in ∼33, ∼30, and ∼46% higher levels of 1,2,2-trisinapoylgentiobose, 1,2-diferulolylgentiobiose, and 1,2-disinapoyl-2-ferulolylgentiobiose, respectively; broccoli florets stored under air control conditions showed enhanced concentrations of 3-O-caffeoylquinic acid, 1,2-disinapoylgentiobiose, and 1,2-disinapoyl-2-ferulolylgentiobiose (∼22, ∼185, and ∼65% more, respectively). Furthermore, exogenous ET and MeJA impeded individual phenolics accumulation. Results allowed the elucidation of simple and effective postharvest treatment to enhance the content of individual glucosinolates and phenolic compounds in broccoli. The stressed-broccoli tissue could be subjected to downstream processing in order to extract and purify bioactive molecules with applications in the dietary supplements, agrochemical and cosmetics markets. PMID:26904036

  1. Heavy metal accumulation in lizards living near a phosphate treatment plant: possible transfer of contaminants from aquatic to terrestrial food webs.

    PubMed

    Nasri, Intissar; Hammouda, Abdessalam; Hamza, Foued; Zrig, Ahlem; Selmi, Slaheddine

    2017-05-01

    We investigated the accumulation of heavy metals in Bosk's fringe-toed lizards (Acanthodactylus boskianus) living in Gabès region (southeastern Tunisia), in relation to habitat, diet, and distance from the Gabès-Ghannouche factory complex of phosphate treatment. More specifically, we compared the concentrations of cadmium, lead, and zinc in the stomach contents and samples of the liver, kidney, and tail from lizards living in four sites corresponding to different combinations of habitat (coastal dunes vs backshore) and distance from the factory complex (<500 vs 20 km). Examination of stomach contents showed that lizards living on the coastal dunes mainly feed on littoral amphipods, while those living in the backshore feed exclusively on terrestrial invertebrates. The concentrations of heavy metals in lizard tissues were overall positively correlated with those in the preys they ingested. Moreover, there was a general tendency towards increased concentrations of cadmium, lead, and zinc in the samples from lizards living on coastal dunes compared to those from the other sites, although some differences still lacked statistical significance. These results suggest that the highest contamination of lizards living on coastal dunes was probably related to the ingestion of contaminated amphipods. Thus, amphipods and Bosk's fringe-toed lizards seem to provide an important link between the marine and terrestrial food webs, with higher concentrations appearing to accumulate from materials released into the sea rather than the terrestrial environment. With regard to metal distribution among tissues, our results were overall in agreement with previous findings in other reptiles. In particular, cadmium was most concentrated in the liver samples, stressing once more the role of the liver as a storage organ of Cd. Moreover, high concentrations of the three assessed metals were found in the kidney samples, showing the role of the kidney as an active site of heavy metal

  2. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R.

    2009-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower ( Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  3. Phenylphenalenones Accumulate in Plant Tissues of Two Banana Cultivars in Response to Herbivory by the Banana Weevil and Banana Stem Weevil.

    PubMed

    Hölscher, Dirk; Buerkert, Andreas; Schneider, Bernd

    2016-08-25

    Phenylphenalenone-type compounds accumulated in the tissues of two banana cultivars-Musa acuminata cv. "Grande Naine" (AAA) and Musa acuminata × balbisiana Colla cv. "Bluggoe" (ABB)-when these were fed on by the banana weevil (Cosmopolites sordidus (Germ.) (Coleoptera: Curculionidae)) and the banana stem weevil (Odoiporus longicollis (Oliver) (Coleoptera: Curculionidae)). The chemical constituents of the banana material were separated by means of chromatographic techniques and identified by NMR spectroscopy. One new compound, 2-methoxy-4-phenylphenalen-1-one, was found exclusively in the corm material of "Bluggoe" that had been fed on by the weevils.

  4. Phenylphenalenones Accumulate in Plant Tissues of Two Banana Cultivars in Response to Herbivory by the Banana Weevil and Banana Stem Weevil

    PubMed Central

    Hölscher, Dirk; Buerkert, Andreas; Schneider, Bernd

    2016-01-01

    Phenylphenalenone-type compounds accumulated in the tissues of two banana cultivars—Musa acuminata cv. “Grande Naine” (AAA) and Musa acuminata × balbisiana Colla cv. “Bluggoe” (ABB)—when these were fed on by the banana weevil (Cosmopolites sordidus (Germ.) (Coleoptera: Curculionidae)) and the banana stem weevil (Odoiporus longicollis (Oliver) (Coleoptera: Curculionidae)). The chemical constituents of the banana material were separated by means of chromatographic techniques and identified by NMR spectroscopy. One new compound, 2-methoxy-4-phenylphenalen-1-one, was found exclusively in the corm material of “Bluggoe” that had been fed on by the weevils. PMID:27571112

  5. Exploring the Brighter-fatter Effect with the Hyper Suprime-Cam

    NASA Astrophysics Data System (ADS)

    Coulton, William R.; Armstrong, Robert; Smith, Kendrick M.; Lupton, Robert H.; Spergel, David N.

    2018-06-01

    The brighter-fatter effect has been postulated to arise due to the build up of a transverse electric field, produced as photocharges accumulate in the pixels’ potential wells. We investigate the brighter-fatter effect in the Hyper Suprime-Cam by examining flat fields and moments of stars. We observe deviations from the expected linear relation in the photon transfer curve (PTC), luminosity-dependent correlations between pixels in flat-field images, and a luminosity-dependent point-spread function (PSF) in stellar observations. Under the key assumptions of translation invariance and Maxwell’s equations in the quasi-static limit, we give a first-principles proof that the effect can be parameterized by a translationally invariant scalar kernel. We describe how this kernel can be estimated from flat fields and discuss how this kernel has been used to remove the brighter-fatter distortions in Hyper Suprime-Cam images. We find that our correction restores the expected linear relation in the PTCs and significantly reduces, but does not completely remove, the luminosity dependence of the PSF over a wide range of magnitudes.

  6. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil.

    PubMed

    Gu, Hai-Hong; Qiu, Hao; Tian, Tian; Zhan, Shu-Shun; Deng, Teng-Hao-Bo; Chaney, Rufus L; Wang, Shi-Zhong; Tang, Ye-Tao; Morel, Jean-Louis; Qiu, Rong-Liang

    2011-05-01

    The mechanisms of stabilization by silicon-rich amendments of cadmium, zinc, copper and lead in a multi-metal contaminated acidic soil and the mitigation of metal accumulation in rice were investigated in this study. The results from a pot experiment indicated that the application of fly ash (20 and 40gkg(-1)) and steel slag (3 and 6gkg(-1)) increased soil pH from 4.0 to 5.0-6.4, decreased the phytoavailability of heavy metals by at least 60%, and further suppressed metal uptake by rice. Diffusion gradient in thin-film measurement showed the heavy metal diffusion fluxes from soil to solution decreased by greater than 84% after remediation. X-ray diffraction analysis indicated the mobile metals were mainly deposited as their silicates, phosphates and hydroxides in amended treatments. Moreover, it was found metal translocation from stem to leaf was dramatically restrained by adding amendments, which might be due to the increase of silicon concentration and co-precipitation with heavy metals in stem. Finally, a field experiment showed the trace element concentrations in polished rice treated with amendments complied with the food safety standards of China. These results demonstrated fly ash and steel slag could be effective in mitigating heavy metal accumulation in rice grown on multi-metal contaminated acidic soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Geometrical calibration of an AOTF hyper-spectral imaging system

    NASA Astrophysics Data System (ADS)

    Špiclin, Žiga; Katrašnik, Jaka; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2010-02-01

    Optical aberrations present an important problem in optical measurements. Geometrical calibration of an imaging system is therefore of the utmost importance for achieving accurate optical measurements. In hyper-spectral imaging systems, the problem of optical aberrations is even more pronounced because optical aberrations are wavelength dependent. Geometrical calibration must therefore be performed over the entire spectral range of the hyper-spectral imaging system, which is usually far greater than that of the visible light spectrum. This problem is especially adverse in AOTF (Acousto- Optic Tunable Filter) hyper-spectral imaging systems, as the diffraction of light in AOTF filters is dependent on both wavelength and angle of incidence. Geometrical calibration of hyper-spectral imaging system was performed by stable caliber of known dimensions, which was imaged at different wavelengths over the entire spectral range. The acquired images were then automatically registered to the caliber model by both parametric and nonparametric transformation based on B-splines and by minimizing normalized correlation coefficient. The calibration method was tested on an AOTF hyper-spectral imaging system in the near infrared spectral range. The results indicated substantial wavelength dependent optical aberration that is especially pronounced in the spectral range closer to the infrared part of the spectrum. The calibration method was able to accurately characterize the aberrations and produce transformations for efficient sub-pixel geometrical calibration over the entire spectral range, finally yielding better spatial resolution of hyperspectral imaging system.

  8. Hyper-heuristics with low level parameter adaptation.

    PubMed

    Ren, Zhilei; Jiang, He; Xuan, Jifeng; Luo, Zhongxuan

    2012-01-01

    Recent years have witnessed the great success of hyper-heuristics applying to numerous real-world applications. Hyper-heuristics raise the generality of search methodologies by manipulating a set of low level heuristics (LLHs) to solve problems, and aim to automate the algorithm design process. However, those LLHs are usually parameterized, which may contradict the domain independent motivation of hyper-heuristics. In this paper, we show how to automatically maintain low level parameters (LLPs) using a hyper-heuristic with LLP adaptation (AD-HH), and exemplify the feasibility of AD-HH by adaptively maintaining the LLPs for two hyper-heuristic models. Furthermore, aiming at tackling the search space expansion due to the LLP adaptation, we apply a heuristic space reduction (SAR) mechanism to improve the AD-HH framework. The integration of the LLP adaptation and the SAR mechanism is able to explore the heuristic space more effectively and efficiently. To evaluate the performance of the proposed algorithms, we choose the p-median problem as a case study. The empirical results show that with the adaptation of the LLPs and the SAR mechanism, the proposed algorithms are able to achieve competitive results over the three heterogeneous classes of benchmark instances.

  9. Micromechanics and Piezo Enhancements of HyperSizer

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Bednarcyk, Brett A.; Yarrington, Phillip; Collier, Craig S.

    2006-01-01

    The commercial HyperSizer aerospace-composite-material-structure-sizing software has been enhanced by incorporating capabilities for representing coupled thermal, piezoelectric, and piezomagnetic effects on the levels of plies, laminates, and stiffened panels. This enhancement is based on a formulation similar to that of the pre-existing HyperSizer capability for representing thermal effects. As a result of this enhancement, the electric and/or magnetic response of a material or structure to a mechanical or thermal load, or its mechanical response to an applied electric or magnetic field can be predicted. In another major enhancement, a capability for representing micromechanical effects has been added by establishment of a linkage between HyperSizer and Glenn Research Center s Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC) computer program, which was described in several prior NASA Tech Briefs articles. The linkage enables Hyper- Sizer to localize to the fiber and matrix level rather than only to the ply level, making it possible to predict local failures and to predict properties of plies from those of the component fiber and matrix materials. Advanced graphical user interfaces and database structures have been developed to support the new HyperSizer micromechanics capabilities.

  10. Heterologous co-expression of a yeast diacylglycerol acyltransferase (ScDGA1) and a plant oleosin (AtOLEO3) as an efficient tool for enhancing triacylglycerol accumulation in the marine diatom Phaeodactylum tricornutum.

    PubMed

    Zulu, Nodumo Nokulunga; Popko, Jennifer; Zienkiewicz, Krzysztof; Tarazona, Pablo; Herrfurth, Cornelia; Feussner, Ivo

    2017-01-01

    Microalgae are promising alternate and renewable sources for producing valuable products such as biofuel and essential fatty acids. Although this is the case, there are still challenges impeding on the effective commercial production of microalgal products. For instance, their product yield is still too low. Therefore, this study was oriented towards enhancing triacylglycerol (TAG) accumulation in the diatom Phaeodactylum tricornutum (strain Pt4). To achieve this, a type 2 acyl-CoA:diacylglycerol acyltransferase from yeast ( ScDGA1 ) and the lipid droplet (LD) stabilizing oleosin protein 3 from Arabidopsis thaliana ( AtOLEO3 ) were expressed in Pt4. The individual expression of ScDGA1 and AtOLEO3 in Pt4 resulted in a 2.3- and 1.4-fold increase in TAG levels, respectively, in comparison to the wild type. The co-expression of both, ScDGA1 and AtOLEO3 , was accompanied by a 3.6-fold increase in TAG content. On the cellular level, the lines co-expressing ScDGA1 and AtOLEO3 showed the presence of the larger and increased numbers of lipid droplets when compared to transformants expressing single genes and an empty vector. Under nitrogen stress, TAG productivity was further increased twofold in comparison to nitrogen-replete conditions. While TAG accumulation was enhanced in the analyzed transformants, the fatty acid composition remained unchanged neither in the total lipid nor in the TAG profile. The co-expression of two genes was shown to be a more effective strategy for enhancing TAG accumulation in P. tricornutum strain Pt4 than a single gene strategy. For the first time in a diatom, a LD protein from a vascular plant, oleosin, was shown to have an impact on TAG accumulation and on LD organization.

  11. Culture-Dependent and -Independent Identification of Polyphosphate-Accumulating Dechloromonas spp. Predominating in a Full-Scale Oxidation Ditch Wastewater Treatment Plant.

    PubMed

    Terashima, Mia; Yama, Ayano; Sato, Megumi; Yumoto, Isao; Kamagata, Yoichi; Kato, Souichiro

    2016-12-23

    The oxidation ditch process is one of the most economical approaches currently used to simultaneously remove organic carbon, nitrogen, and also phosphorus (P) from wastewater. However, limited information is available on biological P removal in this process. In the present study, microorganisms contributing to P removal in a full-scale oxidation ditch reactor were investigated using culture-dependent and -independent approaches. A microbial community analysis based on 16S rRNA gene sequencing revealed that a phylotype closely related to Dechloromonas spp. in the family Rhodocyclaceae dominated in the oxidation ditch reactor. This dominant Dechloromonas sp. was successfully isolated and subjected to fluorescent staining for polyphosphate, followed by microscopic observations and a spectrofluorometric analysis, which clearly demonstrated that the Dechloromonas isolate exhibited a strong ability to accumulate polyphosphate within its cells. These results indicate the potential key role of Dechloromonas spp. in efficient P removal in the oxidation ditch wastewater treatment process.

  12. Culture-Dependent and -Independent Identification of Polyphosphate-Accumulating Dechloromonas spp. Predominating in a Full-Scale Oxidation Ditch Wastewater Treatment Plant

    PubMed Central

    Terashima, Mia; Yama, Ayano; Sato, Megumi; Yumoto, Isao; Kamagata, Yoichi; Kato, Souichiro

    2016-01-01

    The oxidation ditch process is one of the most economical approaches currently used to simultaneously remove organic carbon, nitrogen, and also phosphorus (P) from wastewater. However, limited information is available on biological P removal in this process. In the present study, microorganisms contributing to P removal in a full-scale oxidation ditch reactor were investigated using culture-dependent and -independent approaches. A microbial community analysis based on 16S rRNA gene sequencing revealed that a phylotype closely related to Dechloromonas spp. in the family Rhodocyclaceae dominated in the oxidation ditch reactor. This dominant Dechloromonas sp. was successfully isolated and subjected to fluorescent staining for polyphosphate, followed by microscopic observations and a spectrofluorometric analysis, which clearly demonstrated that the Dechloromonas isolate exhibited a strong ability to accumulate polyphosphate within its cells. These results indicate the potential key role of Dechloromonas spp. in efficient P removal in the oxidation ditch wastewater treatment process. PMID:27867159

  13. Experimental Realization of Tunable Metamaterial Hyper-transmitter

    PubMed Central

    Yoo, Young Joon; Yi, Changhyun; Hwang, Ji Sub; Kim, Young Ju; Park, Sang Yoon; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2016-01-01

    We realized the tunable metamaterial hyper-transmitter in the microwave range utilizing simple planar meta-structure. The single-layer metamaterial hyper-transmitter shows that the transmission peak occurs at 14 GHz. In case of the dual-layer one, it is possible to control the transmission peak from 5 to 10 GHz. Moreover, all the transmission peaks reveal transmission over 100%. We experimentally and theoretically investigated these phenomena through 3-dimensional simulation and measurement. The reason for being over 100% is also elucidated. The suggested hyper-transmitter can be used, for example, in enhancing the operating distance of the electromagnetic wave in Wi-Fi, military radar, wireless power transfer and self-driving car. PMID:27629804

  14. A Comparison of Genetic Programming Variants for Hyper-Heuristics

    SciTech Connect

    Harris, Sean

    Modern society is faced with ever more complex problems, many of which can be formulated as generate-and-test optimization problems. General-purpose optimization algorithms are not well suited for real-world scenarios where many instances of the same problem class need to be repeatedly and efficiently solved, such as routing vehicles over highways with constantly changing traffic flows, because they are not targeted to a particular scenario. Hyper-heuristics automate the design of algorithms to create a custom algorithm for a particular scenario. Hyper-heuristics typically employ Genetic Programming (GP) and this project has investigated the relationship between the choice of GP and performance inmore » Hyper-heuristics. Results are presented demonstrating the existence of problems for which there is a statistically significant performance differential between the use of different types of GP.« less

  15. Experimental Realization of Tunable Metamaterial Hyper-transmitter

    NASA Astrophysics Data System (ADS)

    Yoo, Young Joon; Yi, Changhyun; Hwang, Ji Sub; Kim, Young Ju; Park, Sang Yoon; Kim, Ki Won; Rhee, Joo Yull; Lee, Youngpak

    2016-09-01

    We realized the tunable metamaterial hyper-transmitter in the microwave range utilizing simple planar meta-structure. The single-layer metamaterial hyper-transmitter shows that the transmission peak occurs at 14 GHz. In case of the dual-layer one, it is possible to control the transmission peak from 5 to 10 GHz. Moreover, all the transmission peaks reveal transmission over 100%. We experimentally and theoretically investigated these phenomena through 3-dimensional simulation and measurement. The reason for being over 100% is also elucidated. The suggested hyper-transmitter can be used, for example, in enhancing the operating distance of the electromagnetic wave in Wi-Fi, military radar, wireless power transfer and self-driving car.

  16. Molecular analysis of red maple (Acer rubrum) populations from a reclaimed mining region in Northern Ontario (Canada): soil metal accumulation and translocation in plants.

    PubMed

    Kalubi, K N; Mehes-Smith, M; Narendrula, R; Michael, P; Omri, A

    2015-04-01

    Red maple (Acer rubrum) species is one of the most widespread deciduous (hardwood) trees of eastern North America. It is among the dominant tree species in the Northern Ontario after land reclamation. To date, the effects of heavy metal contamination from the mining activities on terrestrial ecosystems are not well understood. The main objectives of the present study are (1) to determine the level of phytoavailable metal in soil and accumulation in A. rubrum, and (2) to compare the levels of genetic variation among and within A. rubrum populations from areas with different metal contents in a Northern Ontario region. The total heavy metal levels were found to be high but the availability of these metals were much lower. We found that red maple does not accumulate heavy metals in their leaves as other hardwood species. The translocation factors were 0.05, 0.21, 0.38, 0.90, and 2.8 for Cu, Ni, Fe, Zn, and Mg, respectively. The levels of genetic variation in red maple populations from reclaimed lands in Northern Ontario were moderate to high since the percentage of polymorphic loci varied between 51 and 67%. The mean values for observed number of alleles (Na), effective number of alleles (Ne), Nei's gene diversity (h), and Shannon's information index (I) were 1.60, 1.24, 0.15 and 0.24, respectively. The population differentiation (GST) among the fragmented populations was high (0.28) despite a high level of gene flow (Nm = 1.28). Nevertheless, all the populations within the targeted region were genetically closely related. A specific ISSR marker that was identified in all the samples from the reference sites was absent in most samples from metal contaminated. This specific band was cloned and sequenced. Overall, the present study confirms that red maple populations in Northern Ontario are genetically sustainable despite the high level of total metal content in soil.

  17. Concentration/time-dependent dissipation, partitioning and plant accumulation of hazardous current-used pesticides and 2-hydroxyatrazine in sand and soil.

    PubMed

    Neuwirthová, Natália; Bílková, Zuzana; Vašíčková, Jana; Hofman, Jakub; Bielská, Lucie

    2018-07-01

    The dissipation, partitioning dynamics and biouptake was measured for selected hazardous current-used pesticides (conazole fungicides: epoxiconazole, flusilazole, tebuconazole; prochloraz, chlorpyrifos, pendimethalin) and for a transformation product (2-hydroxyatrazine) in agricultural soil and quartz sand as representatives of a real and a worst-case scenario. Dissipation, uptake to Lactuca sativa and the freely dissolved concentration along with the organic carbon-normalized sorption coefficients (K oc ) were determined on days 12, 40, and 90 following the application of compounds at three fortification levels (0.1-1.0-10 mg/kg). Conazole fungicides showed similar dissipation patterns and were more persistent in soil than prochloraz, chlorpyrifos and pendimethalin. 2-Hydroxyatrazine showed a concentration-depended decrease in persistency in soil. Lettuce roots were shown to accumulate higher amounts than shoots where the extent of root uptake was driven by compound partitioning. This was evidenced by the ability of freely dissolved concentration (C free ) to reliably (r 2  = 0.94) predict root uptake. Concentration in leaves did not exceed the maximum residue levels (MRLs) for lettuce, which was likely given by the low root-to-shoot translocation factors (TFs) of the tested compounds varying between 0.007 and 0.14. K oc values were in the range of literature values. Sorption to soil was higher than to sand for all compounds, yet following the K oc dynamics compounds did not appear to be sequestered in soil with increasing residence time. From these results, it follows that the tested compounds may persist in soil but since they did not accumulate in lettuce above MRLs, contamination of the food web is unlikely. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Hepatitis B surface antigen (HBsAg) expression in plant cell culture: Kinetics of antigen accumulation in batch culture and its intracellular form.

    PubMed

    Smith, Mark L; Mason, Hugh S; Shuler, Michael L

    2002-12-30

    The production of edible vaccines in transgenic plants and plant cell culture may be improved through a better understanding of antigen processing and assembly. The hepatitis B surface antigen (HBsAg) was chosen for study because it undergoes substantial and complex post-translational modifications, which are necessary for its immunogenicity. This antigen was expressed in soybean (Glycine max L. Merr. cv Williams 82) and tobacco NT1 (Nicotiana tabacum L.) cell suspension cultures, and HBsAg production in batch culture was characterized. The plant-derived antigen consisted predominantly of disulfide cross-linked HBsAg protein (p24(s)) dimers, which were all membrane associated. Similar to yeast, the plant-expressed HBsAg was retained intracellularly. The maximal HBsAg titers were obtained with soybean suspension cultures (20-22 mg/L) with titers in tobacco cultures being approximately 10-fold lower. For soybean cells, electron microscopy and immunolocalization demonstrated that all the HBsAg was localized to the endoplasmic reticulum (ER) and provoked dilation and proliferation of the ER network. Sucrose gradient analysis of crude extracts showed that HBsAg had a complex size distribution uncharacteristic of the antigen's normal structure of uniform 22-nm virus-like particles. The extent of authentic epitope formation was assessed by comparing total p24(s) synthesized to that reactive by polyclonal and monoclonal immunoassays. Depending on culture age, between 40% and 100% of total p24(s) was polyclonal antibody reactive whereas between 6% and 37% was recognized by a commercial monoclonal antibody assay. Possible strategies to increase HBsAg production and improve post-translational processing are discussed. Copyright 2002 Wiley Periodicals, Inc.

  19. Accumulation pattern of endogenous cytokinins and phenolics in different organs of 1-year-old cytokinin pre-incubated plants: implications for conservation.

    PubMed

    Aremu, A O; Plačková, L; Gruz, J; Bíba, O; Šubrtová, M; Novák, O; Doležal, K; Van Staden, J

    2015-11-01

    A better understanding of phytohormone physiology can provide an essential basis to coherently achieve a conservation drive/strategy for valuable plant species. We evaluated the distribution pattern of cytokinins (CKs) and phenolic compounds in different organs of 1-year-old greenhouse-grown Tulbaghia simmleri pre-treated (during micropropagation) with three aromatic CKs (benzyladenine = BA, meta-topolin = mT, meta-topolin riboside = mTR). The test species is highly valuable due to its medicinal and ornamental uses. Based on UHPLC-MS/MS quantification, mT and mTR pre-treated plants had the highest total CK, mostly resulting from the isoprenoid CK-type, which occurred at highest concentrations in the roots. Although occurring in much lower concentrations when compared to isoprenoid CKs, aromatic CKs were several-fold more abundant in the root of mT pre-treated plants than with other treatments. Possibly related to the enhanced aromatic CKs, free bases and ribonucleotides, plants pre-treated with mT generally displayed better morphology than the other treatments. A total of 12 bioactive phenolic compounds, including four hydroxybenzoic acids, five hydroxycinnamic acids and three flavonoids at varying concentrations, were quantified in T. simmleri. The occurrence, distribution and levels of these phenolic compounds were strongly influenced by the CK pre-treatments, thereby confirming the importance of CKs in phenolic biosynthesis pathways. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Effect of Co-planted Purslane (Portulaca Oleracea L.) on Cd Accumulation by Sunflower in Different Levels of Cd Contamination and Salinity: A Pot Study.

    PubMed

    Ashrafi, Ali; Zahedi, Morteza; Soleimani, Mohsen

    2015-01-01

    Heavy metal bioaccumulation can be affected by various crop-weed interactions that potentially exist in agroecosystems. A pot experiment was conducted to evaluate the role of rhizosphere interaction of sunflower and purslane (Portulaca oleracea L.) weed on cadmium (Cd) uptake and its allocation to sunflower grains. The experimental treatments consisted of two cropping systems (mono and mixed culture), two adjusted salinity levels (0 and 0.5% NaCl) and three artificial levels of Cd in soil (Control, 3 and 6 mg kg(-1)). The results showed that the growth of sunflower in the presence of purslane in comparison to mono culture of sunflower led to change of total Cd content and Cd allocated to grains only in saline conditions. Promoting effects of salinity on Cd concentration of grain were alleviated where sunflower was co-planted with purslane. Besides, supply of Zn in grains of co-planted sunflower was strongly affected by salinity. Results of this study revealed that although co-planted purslane could alter conditions in the shared rhizosphere, it had no effect on enhancing Cd uptake by neighboring sunflower directly.

  1. ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters.

    PubMed

    Murcia, Germán; Pontin, Mariela; Reinoso, Herminda; Baraldi, Rita; Bertazza, Gianpaolo; Gómez-Talquenca, Sebastián; Bottini, Rubén; Piccoli, Patricia N

    2016-03-01

    Grape quality for winemaking depends on sugar accumulation and metabolism in berries. Abscisic acid (ABA) and gibberellins (GAs) have been reported to control sugar allocation in economically important crops, although the mechanisms involved are still unknown. The present study tested if ABA and gibberellin A3 (GA3) enhance carbon allocation in fruits of grapevines by modifying phloem loading, phloem area and expression of sugar transporters in leaves and berries. Pot-grown Vitis vinifera cv. Malbec plants were sprayed with ABA and GA3 solutions. The amount of soluble sugars in leaves and berries related to photosynthesis were examined at three points of berry growth: pre-veraison, full veraison and post-veraison. Starch levels and amylase activity in leaves, gene expression of sugar transporters in leaves and berries and phloem anatomy were examined at full veraison. Accumulation of glucose and fructose in berries was hastened in ABA-treated plants at the stage of full veraison, which was correlated with enhancement of Vitis vinifera HEXOSE TRANSPORTER 2 (VvHT2) and Vitis vinifera HEXOSE TRANSPORTER 6 (VvHT6) gene expression, increases of phloem area and sucrose content in leaves. On the other hand, GA3 increased the quantity of photoassimilates delivered to the stem thus increasing xylem growth. In conclusion, stimulation of sugar transport by ABA and GA3 to berries and stems, respectively, was due to build-up of non-structural carbohydrates in leaves, modifications in phloem tissue and modulation in gene expression of sugar transporters. © 2015 Scandinavian Plant Physiology Society.

  2. How did nature engineer the highest surface lipid accumulation among plants? Exceptional expression of acyl-lipid-associated genes for the assembly of extracellular triacylglycerol by Bayberry (Myrica pensylvanica) fruits.

    PubMed

    Simpson, Jeffrey P; Thrower, Nicholas; Ohlrogge, John B

    2016-09-01

    Bayberry (Myrica pensylvanica) fruits are covered with a remarkably thick layer of crystalline wax consisting of triacylglycerol (TAG) and diacylglycerol (DAG) esterified exclusively with saturated fatty acids. As the only plant known to accumulate soluble glycerolipids as a major component of surface waxes, Bayberry represents a novel system to investigate neutral lipid biosynthesis and lipid secretion by vegetative plant cells. The assembly of Bayberry wax is distinct from conventional TAG and other surface waxes, and instead proceeds through a pathway related to cutin synthesis (Simpson and Ohlrogge, 2016). In this study, microscopic examination revealed that the fruit tissue that produces and secretes wax (Bayberry knobs) is fully developed before wax accumulates and that wax is secreted to the surface without cell disruption. Comparison of transcript expression to genetically related tissues (Bayberry leaves, M. rubra fruits), cutin-rich tomato and cherry fruit epidermis, and to oil-rich mesocarp and seeds, revealed exceptionally high expression of 13 transcripts for acyl-lipid metabolism together with down-regulation of fatty acid oxidases and desaturases. The predicted protein sequences of the most highly expressed lipid-related enzyme-encoding transcripts in Bayberry knobs are 100% identical to the sequences from Bayberry leaves, which do not produce surface DAG or TAG. Together, these results indicate that TAG biosynthesis and secretion in Bayberry is achieved by both up and down-regulation of a small subset of genes related to the biosynthesis of cutin and saturated fatty acids, and also implies that modifications in gene expression, rather than evolution of new gene functions, was the major mechanism by which Bayberry evolved its specialized lipid metabolism. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Non-targeted Metabolomics in Diverse Sorghum Breeding Lines Indicates Primary and Secondary Metabolite Profiles Are Associated with Plant Biomass Accumulation and Photosynthesis

    DOE PAGES

    Turner, Marie F.; Heuberger, Adam L.; Kirkwood, Jay S.; ...

    2016-07-11

    Metabolomics is an emerging method to improve our understanding of how genetic diversity affects phenotypic variation in plants. Recent studies have demonstrated that genotype has a major influence on biochemical variation in several types of plant tissues, however, the association between metabolic variation and variation in morphological and physiological traits is largely unknown. Sorghum bicolor (L.) is an important food and fuel crop with extensive genetic and phenotypic variation. Sorghum lines have been bred for differing phenotypes beneficial for production of grain (food), stem sugar (food, fuel), and cellulosic biomass (forage, fuel), and these varying phenotypes are the end productsmore » of innate metabolic programming which determines how carbon is allocated during plant growth and development. Further, sorghum has been adapted among highly diverse environments. Because of this geographic and phenotypic variation, the sorghum metabolome is expected to be highly divergent; however, metabolite variation in sorghum has not been characterized. Here, we utilize a phenotypically diverse panel of sorghum breeding lines to identify associations between leaf metabolites and morpho-physiological traits. The panel (11 lines) exhibited significant variation for 21 morpho-physiological traits, as well as broader trends in variation by sorghum type (grain vs. biomass types). Variation was also observed for cell wall constituents (glucan, xylan, lignin, ash). Non-targeted metabolomics analysis of leaf tissue showed that 956 of 1181 metabolites varied among the lines (81%, ANOVA, FDR adjusted p < 0.05). Both univariate and multivariate analyses determined relationships between metabolites and morpho-physiological traits, and 384 metabolites correlated with at least one trait (32%, p < 0.05), including many secondary metabolites such as glycosylated flavonoids and chlorogenic acids. The use of metabolomics to explain relationships between two or more morpho

  4. Non-targeted Metabolomics in Diverse Sorghum Breeding Lines Indicates Primary and Secondary Metabolite Profiles Are Associated with Plant Biomass Accumulation and Photosynthesis

    SciTech Connect

    Turner, Marie F.; Heuberger, Adam L.; Kirkwood, Jay S.

    Metabolomics is an emerging method to improve our understanding of how genetic diversity affects phenotypic variation in plants. Recent studies have demonstrated that genotype has a major influence on biochemical variation in several types of plant tissues, however, the association between metabolic variation and variation in morphological and physiological traits is largely unknown. Sorghum bicolor (L.) is an important food and fuel crop with extensive genetic and phenotypic variation. Sorghum lines have been bred for differing phenotypes beneficial for production of grain (food), stem sugar (food, fuel), and cellulosic biomass (forage, fuel), and these varying phenotypes are the end productsmore » of innate metabolic programming which determines how carbon is allocated during plant growth and development. Further, sorghum has been adapted among highly diverse environments. Because of this geographic and phenotypic variation, the sorghum metabolome is expected to be highly divergent; however, metabolite variation in sorghum has not been characterized. Here, we utilize a phenotypically diverse panel of sorghum breeding lines to identify associations between leaf metabolites and morpho-physiological traits. The panel (11 lines) exhibited significant variation for 21 morpho-physiological traits, as well as broader trends in variation by sorghum type (grain vs. biomass types). Variation was also observed for cell wall constituents (glucan, xylan, lignin, ash). Non-targeted metabolomics analysis of leaf tissue showed that 956 of 1181 metabolites varied among the lines (81%, ANOVA, FDR adjusted p < 0.05). Both univariate and multivariate analyses determined relationships between metabolites and morpho-physiological traits, and 384 metabolites correlated with at least one trait (32%, p < 0.05), including many secondary metabolites such as glycosylated flavonoids and chlorogenic acids. The use of metabolomics to explain relationships between two or more morpho

  5. HyperCard and Other Macintosh Applications in Astronomy Education

    NASA Astrophysics Data System (ADS)

    Meisel, D.

    1992-12-01

    For the past six years, Macintosh computers have been used in introductory astronomy classes and laboratories with HyperCard and other commercial Macintosh software. I will review some of the available software that has been found particularly useful in undergraduate situations. The review will start with HyperCard (a programmable "index card" system) since it is a mature multimedia platform for the Macintosh. Experiences with the Voyager, the TS-24, MathCad, NIH Image, and other programs as used by the author and George Mumford (Tufts University) in courses and workshops will be described.

  6. Nickel and manganese transfer from soil to plant in lateritic mining soils from New Caledonia

    NASA Astrophysics Data System (ADS)

    Pouschat, P.; Rose, J.; Alliot, I.; Dominici, C.; Keller, C.; Laffont-Schwob, I.; Olivi, L.; Ambrosi, J.-P.

    2009-04-01

    New Caledonian ferritic soils (more than 50 % of iron) are naturally rich in metals (chromium, nickel, cobalt, and manganese), deficient in major nutrients (nitrogen, phosphorous, and potassium), and unbalanced for the calcium/magnesium ratio. Under these particular ecological conditions, New Caledonia, recognized as a hot-spot of biodiversity, is a natural laboratory to study and understand the adaptation strategies of plants to metalliferous soils, and particularly the tolerance and (hyper)accumulation of metals by plants. Moreover, understanding such mechanisms is essential to develop rehabilitation or phytoremediation techniques for polluted soils, as well as phytomining techniques. Thus, in order to understand the soil - plant relationship and metal mobility along a toposequence in a future nickel mining massif, field experiments were conducted in an isolated ultramafic massif of New Caledonia. Several plant species of two endemic and frequent plant genera were chosen: Tristaniopsis guillainii and T. calobuxus (Myrtaceae), and Phyllanthus serpentinus and P. favieri (Euphorbiaceae), because of their nickel and/or manganese accumulating or hyperaccumulating nature. Leaves, twigs, and roots of all plants were collected along the soil sequence and their associated rhizospheric and bulk soils were sampled. Next, a series of characterization techniques were adapted and then coupled to cryogenics. The combined use of those multiple techniques (cryo-microtomy, cryo-SEM, µXRF, cryo-XAS, and soil characterization) allowed to study co-location and speciation of nickel and manganese in the different plant organs and soils (rhizospheric and bulk). Bioaccumulated nickel and manganese had different distribution patterns. In leaves, Ni accumulated in non photosynthetic tissues (e.g. epidermis) whereas Mn preferentially accumulated in mesophyll whatever the plant species. Nevertheless, in spite of a different speciation in soils, nickel and manganese were both found as

  7. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots.

    PubMed

    Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan

    2016-07-20

    The objective of this study was to investigate Al(3+)-induced IAA transport, distribution, and the relation of these two processes to Al(3+)-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L(-1) IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al(3+)-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al(3+) stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al(3+)-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips.

  8. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots

    PubMed Central

    Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan

    2016-01-01

    The objective of this study was to investigate Al3+-induced IAA transport, distribution, and the relation of these two processes to Al3+-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L−1 IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al3+-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al3+ stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al3+-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips. PMID:27435109

  9. Accumulation and Transport of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) in Plants: Current Status, Considerations for Future Research and Agronomic Applications

    PubMed Central

    Vanderstraeten, Lisa; Van Der Straeten, Dominique

    2017-01-01

    1-aminocyclopropane-1-carboxylic acid (ACC) is a non-protein amino acid acting as the direct precursor of ethylene, a plant hormone regulating a wide variety of vegetative and developmental processes. ACC is the central molecule of ethylene biosynthesis. The rate of ACC formation differs in response to developmental, hormonal and environmental cues. ACC can be conjugated to three derivatives, metabolized in planta or by rhizobacteria using ACC deaminase, and is transported throughout the plant over short and long distances, remotely leading to ethylene responses. This review highlights some recent advances related to ACC. These include the regulation of ACC synthesis, conjugation and deamination, evidence for a role of ACC as an ethylene-independent signal, short and long range ACC transport, and the identification of a first ACC transporter. Although unraveling the complex mechanism of ACC transport is in its infancy, new questions emerge together with the identification of a first transporter. In the light of the future quest for additional ACC transporters, this review presents perspectives of the novel findings and includes considerations for future research toward applications in agronomy. PMID:28174583

  10. Accumulation and Transport of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) in Plants: Current Status, Considerations for Future Research and Agronomic Applications.

    PubMed

    Vanderstraeten, Lisa; Van Der Straeten, Dominique

    2017-01-01

    1-aminocyclopropane-1-carboxylic acid (ACC) is a non-protein amino acid acting as the direct precursor of ethylene, a plant hormone regulating a wide variety of vegetative and developmental processes. ACC is the central molecule of ethylene biosynthesis. The rate of ACC formation differs in response to developmental, hormonal and environmental cues. ACC can be conjugated to three derivatives, metabolized in planta or by rhizobacteria using ACC deaminase, and is transported throughout the plant over short and long distances, remotely leading to ethylene responses. This review highlights some recent advances related to ACC. These include the regulation of ACC synthesis, conjugation and deamination, evidence for a role of ACC as an ethylene-independent signal, short and long range ACC transport, and the identification of a first ACC transporter. Although unraveling the complex mechanism of ACC transport is in its infancy, new questions emerge together with the identification of a first transporter. In the light of the future quest for additional ACC transporters, this review presents perspectives of the novel findings and includes considerations for future research toward applications in agronomy.

  11. Accumulation of phenolic compounds in in vitro cultures and wild plants of Lavandula viridis L'Hér and their antioxidant and anti-cholinesterase potential.

    PubMed

    Costa, Patrícia; Gonçalves, Sandra; Valentão, Patrícia; Andrade, Paula B; Romano, Anabela

    2013-07-01

    In this study, we evaluated the phenolic profile, antioxidant and anti-cholinesterase potential of different extracts from wild plants and in vitro cultures of Lavandula viridis L'Hér. The HPLC-DAD analysis allowed the identification and quantifi