Science.gov

Sample records for hyperaccumulator plant berkheya

  1. Elemental distribution in reproductive and neural organs of the Epilachna nylanderi (Coleoptera: Coccinellidae), a phytophage of nickel hyperaccumulator Berkheya coddii (Asterales: Asteraceae) by micro-PIXE.

    PubMed

    Mesjasz-Przybyłowicz, Jolanta; Orłowska, Elżbieta; Augustyniak, Maria; Nakonieczny, Mirosław; Tarnawska, Monika; Przybyłowicz, Wojciech; Migula, Paweł

    2014-01-01

    The phenomenon of metal hyperaccumulation by plants is often explained by a pathogen or herbivore defense hypothesis. However, some insects feeding on metal hyperaccumulating plants are adapted to the high level of metals in plant tissues. Former studies on species that feed on the leaves of Berkheya coddii Roessler 1958 (Asteraceae), a nickel-hyperaccumulating plant, demonstrated several protective mechanisms involved in internal distribution, immobilization, and elimination of Ni from the midgut and Malpighian tubules. These species are mainly coleopterans, including the lady beetle, Epilachna nylanderi (Mulsant 1850) (Coleoptera: Coccinellidae), collected from the ultramafic ecosystem near Barberton in South Africa. By performing particle-induced X-ray emission microanalysis elemental microanalysis (PIXE), this study examined whether Ni may be harmful to internal body systems that decide on insect reactivity (central nervous system [CNS]), their reproduction, and the relationships between Ni and other micronutrients. Data on elemental distribution of nine selected elements in target organs of E. nylanderi were compared with the existing data for other insect species adapted to the excess of metals. Micro-PIXE maps of seven regions of the CNS showed Ni mainly in the neural connectives, while cerebral ganglia were better protected. Concentrations of other bivalent metals were lower than those of Ni. Testis, compared with other reproductive organs, showed low amounts of Ni. Zn was effectively regulated at physiological dietary levels. In insects exposed to excess dietary Zn, it was also accumulated in the reproductive organs. Comparison of E. nylanderii with other insects that ingest hyperaccumulating plants, especially chrysomelid Chrysolina clathrata (Clark) (Coleoptera: Chrysomelidae), showed lower protection of the CNS and reproductive organs. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  2. Metal hyperaccumulation in plants.

    PubMed

    Krämer, Ute

    2010-01-01

    During the history of life on Earth, tectonic and climatic change repeatedly generated large territories that were virtually devoid of life and exhibited harsh environmental conditions. The ability of a few specialist pioneer plants to colonize such hostile environments was thus of paramount ecological importance for the continuous maintenance of primary production over time. Yet, we know very little about how extreme traits evolve and function in plants. Recent breakthroughs have given first insights into the molecular basis underlying the complex extreme model trait of metal hyperaccumulation and associated metal hypertolerance. This review gives an introduction into the hyperaccumulator research field and its history; provides an overview of hyperaccumulator germplasm; describes the state of the art of our understanding of the physiological, molecular, and genetic basis underlying metal hyperaccumulation and its evolution; and highlights future research needs and opportunities.

  3. Molecular mechanisms of metal hyperaccumulation in plants.

    PubMed

    Verbruggen, Nathalie; Hermans, Christian; Schat, Henk

    2009-03-01

    Metal hyperaccumulator plants accumulate and detoxify extraordinarily high concentrations of metal ions in their shoots. Metal hyperaccumulation is a fascinating phenomenon, which has interested scientists for over a century. Hyperaccumulators constitute an exceptional biological material for understanding mechanisms regulating plant metal homeostasis as well as plant adaptation to extreme metallic environments.Our understanding of metal hyperaccumulation physiology has recently increased as a result of the development of molecular tools. This review presents key aspects of our current understanding of plant metal – in particular cadmium (Cd),nickel (Ni) and zinc (Zn) – hyperaccumulation.

  4. Ecological aspects of plant selenium hyperaccumulation.

    PubMed

    El Mehdawi, A F; Pilon-Smits, E A H

    2012-01-01

    Hyperaccumulators are plants that accumulate toxic elements to extraordinary levels. Selenium (Se) hyperaccumulators can contain 0.1-1.5% of their dry weight as Se, levels toxic to most other organisms. In this review we summarise what is known about the ecological functions and implications of Se (hyper)accumulation by plants. Selenium promotes hyperaccumulator growth and also offers a plant several ecological advantages through negative effects on Se-sensitive partners. High tissue Se levels reduce herbivory and pathogen infection, and high-Se litter deposition can inhibit neighbouring plants. There is no evidence for a cost of hyperaccumulation in terms of reproductive functions or pollinator visitation. Hyperaccumulators offer a niche for Se-tolerant herbivores, pollinators, microbes and neighbouring plants. They may even facilitate these partners through Se enrichment: neighbouring plants with elevated Se levels enjoy enhanced growth and reduced herbivory. Through combined negative and positive effects on ecological partners, Se hyperaccumulators likely affect local plant, microbial and animal species composition and richness, favouring Se-tolerant species at different trophic levels. By locally concentrating Se and altering its chemical form, Se hyperaccumulators likely play an important role in Se entry into, and Se cycling through, seleniferous ecosystems. These findings are of significance since they provide insight into the ecological reverberations of Se hyperaccumulation, and shed light on the possible selection pressures that have led to the evolution of this fascinating phenomenon. Better ecological insight will also help in the management of seleniferous areas and the agricultural production of Se-rich crops for phytoremediation or biofortification. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  5. Metal Hyperaccumulation Armors Plants against Disease

    PubMed Central

    Fones, Helen; Davis, Calum A. R.; Rico, Arantza; Fang, Fang; Smith, J. Andrew C.; Preston, Gail M.

    2010-01-01

    Metal hyperaccumulation, in which plants store exceptional concentrations of metals in their shoots, is an unusual trait whose evolutionary and ecological significance has prompted extensive debate. Hyperaccumulator plants are usually found on metalliferous soils, and it has been proposed that hyperaccumulation provides a defense against herbivores and pathogens, an idea termed the ‘elemental defense’ hypothesis. We have investigated this hypothesis using the crucifer Thlaspi caerulescens, a hyperaccumulator of zinc, nickel, and cadmium, and the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm). Using leaf inoculation assays, we have shown that hyperaccumulation of any of the three metals inhibits growth of Psm in planta. Metal concentrations in the bulk leaf and in the apoplast, through which the pathogen invades the leaf, were shown to be sufficient to account for the defensive effect by comparison with in vitro dose–response curves. Further, mutants of Psm with increased and decreased zinc tolerance created by transposon insertion had either enhanced or reduced ability, respectively, to grow in high-zinc plants, indicating that the metal affects the pathogen directly. Finally, we have shown that bacteria naturally colonizing T. caerulescens leaves at the site of a former lead–zinc mine have high zinc tolerance compared with bacteria isolated from non-accumulating plants, suggesting local adaptation to high metal. These results demonstrate that the disease resistance observed in metal-exposed T. caerulescens can be attributed to a direct effect of metal hyperaccumulation, which may thus be functionally analogous to the resistance conferred by antimicrobial metabolites in non-accumulating plants. PMID:20838462

  6. Metal hyperaccumulation armors plants against disease.

    PubMed

    Fones, Helen; Davis, Calum A R; Rico, Arantza; Fang, Fang; Smith, J Andrew C; Preston, Gail M

    2010-09-09

    Metal hyperaccumulation, in which plants store exceptional concentrations of metals in their shoots, is an unusual trait whose evolutionary and ecological significance has prompted extensive debate. Hyperaccumulator plants are usually found on metalliferous soils, and it has been proposed that hyperaccumulation provides a defense against herbivores and pathogens, an idea termed the 'elemental defense' hypothesis. We have investigated this hypothesis using the crucifer Thlaspi caerulescens, a hyperaccumulator of zinc, nickel, and cadmium, and the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm). Using leaf inoculation assays, we have shown that hyperaccumulation of any of the three metals inhibits growth of Psm in planta. Metal concentrations in the bulk leaf and in the apoplast, through which the pathogen invades the leaf, were shown to be sufficient to account for the defensive effect by comparison with in vitro dose-response curves. Further, mutants of Psm with increased and decreased zinc tolerance created by transposon insertion had either enhanced or reduced ability, respectively, to grow in high-zinc plants, indicating that the metal affects the pathogen directly. Finally, we have shown that bacteria naturally colonizing T. caerulescens leaves at the site of a former lead-zinc mine have high zinc tolerance compared with bacteria isolated from non-accumulating plants, suggesting local adaptation to high metal. These results demonstrate that the disease resistance observed in metal-exposed T. caerulescens can be attributed to a direct effect of metal hyperaccumulation, which may thus be functionally analogous to the resistance conferred by antimicrobial metabolites in non-accumulating plants.

  7. Compartmentation and complexation of metals in hyperaccumulator plants

    PubMed Central

    Leitenmaier, Barbara; Küpper, Hendrik

    2013-01-01

    Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their “strange” behavior in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defense against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites (e.g., nicotianamine) and possibly for export of Cu in Cd/Zn hyperaccumulators [metallothioneins (MTs)]. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e., detoxified by binding to strong ligands such as MTs. PMID:24065978

  8. Compartmentation and complexation of metals in hyperaccumulator plants.

    PubMed

    Leitenmaier, Barbara; Küpper, Hendrik

    2013-09-20

    Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their "strange" behavior in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defense against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites (e.g., nicotianamine) and possibly for export of Cu in Cd/Zn hyperaccumulators [metallothioneins (MTs)]. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e., detoxified by binding to strong ligands such as MTs.

  9. The proteomics of heavy metal hyperaccumulation by plants.

    PubMed

    Visioli, Giovanna; Marmiroli, Nelson

    2013-02-21

    Hyperaccumulators are distinguished from non-hyperaccumulators on the basis of their capacity to extract heavy metal ions from the soil, their more efficient root-to-shoot translocation of these ions and their greater ability to detoxify and sequester heavy metals in the shoot. The understanding of the mechanisms underlying metal ion accumulation has progressed beyond the relevant biochemistry and physiology to encompass the genetic and molecular regulatory systems which differentiate hyperaccumulators from non-hyperaccumulators. This paper reviews the literature surrounding the application of proteomics technology to plant metal hyperaccumulation, in particular involving the elements As, Cd, Cu, Ni, Pb and Zn. The hyperaccumulation process across a number of unrelated plant species appears to be associated with proteins involved in energy metabolism, the oxidative stress response and abiotic and biotic stress. The relevance of transducers of the metal stress response to the phenomenon of hyperaccumulation is summarized. Proteomic data complement the more voluminous genomic and transcriptomic data sets in providing a more nuanced picture of the process, and should therefore help in the identification of the major genetic determinants of the hyperaccumulation phenomenon. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Effects of selenium hyperaccumulation on plant-plant interactions: evidence for elemental allelopathy?

    PubMed

    El Mehdawi, Ali F; Quinn, Colin F; Pilon-Smits, Elizabeth A H

    2011-07-01

    • Few studies have investigated plant-plant interactions involving hyperaccumulator plants. Here, we investigated the effect of selenium (Se) hyperaccumulation on neighboring plants. • Soil and litter Se concentrations were determined around the hyperaccumulators Astragalus bisulcatus and Stanleya pinnata and around the nonhyperaccumulators Medicago sativa and Helianthus pumilus. We also compared surrounding vegetative cover, species composition and Se concentration in two plant species (Artemisia ludoviciana and Symphyotrichum ericoides) growing either close to or far from Se hyperaccumulators. Then, Arabidopsis thaliana germination and growth were compared on soils collected next to the hyperaccumulators and the nonhyperaccumulators. • Soil collected around hyperaccumulators contained more Se (up to 266 mg Se kg(-1) ) than soil collected around nonhyperaccumulators. Vegetative ground cover was 10% lower around Se hyperaccumulators compared with nonhyperaccumulators. The Se concentration was higher in neighboring species A. ludoviciana and S. ericoides when growing close to, compared with far from, Se hyperaccumulators. A. thaliana showed reduced germination and growth, and higher Se accumulation, when grown on soil collected around Se hyperaccumulators compared with soil collected around nonaccumulators. • In conclusion, Se hyperaccumulators may increase the surrounding soil Se concentration (phytoenrichment). The enhanced soil Se contents around hyperaccumulators can impair the growth of Se-sensitive plant species, pointing to a possible role of Se hyperaccumulation in elemental allelopathy. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  11. Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants.

    PubMed

    Deng, Teng-Hao-Bo; Cloquet, Christophe; Tang, Ye-Tao; Sterckeman, Thibault; Echevarria, Guillaume; Estrade, Nicolas; Morel, Jean-Louis; Qiu, Rong-Liang

    2014-10-21

    Until now, there has been little data on the isotope fractionation of nickel (Ni) in higher plants and how this can be affected by plant Ni and zinc (Zn) homeostasis. A hydroponic cultivation was conducted to investigate the isotope fractionation of Ni and Zn during plant uptake and translocation processes. The nonaccumulator Thlaspi arvense, the Ni hyperaccumulator Alyssum murale and the Ni and Zn hyperaccumulator Noccaea caerulescens were grown in low (2 μM) and high (50 μM) Ni and Zn solutions. Results showed that plants were inclined to absorb light Ni isotopes, presumably due to the functioning of low-affinity transport systems across root cell membrane. The Ni isotope fractionation between plant and solution was greater in the hyperaccumulators grown in low Zn treatments (Δ(60)Ni(plant-solution) = -0.90 to -0.63‰) than that in the nonaccumulator T. arvense (Δ(60)Ni(plant-solution) = -0.21‰), thus indicating a greater permeability of the low-affinity transport system in hyperaccumulators. Light isotope enrichment of Zn was observed in most of the plants (Δ(66)Zn(plant-solution) = -0.23 to -0.10‰), but to a lesser extent than for Ni. The rapid uptake of Zn on the root surfaces caused concentration gradients, which induced ion diffusion in the rhizosphere and could result in light Zn isotope enrichment in the hyperaccumulator N. caerulescens. In high Zn treatment, Zn could compete with Ni during the uptake process, which reduced Ni concentration in plants and decreased the extent of Ni isotope fractionation (Δ(60)Ni(plant-solution) = -0.11 to -0.07‰), indicating that plants might take up Ni through a low-affinity transport system of Zn. We propose that isotope composition analysis for transition elements could become an empirical tool to study plant physiological processes.

  12. Plant homeostasis of foliar manganese sinks: specific variation in hyperaccumulators.

    PubMed

    Fernando, Denise R; Woodrow, Ian E; Baker, Alan J M; Marshall, Alan T

    2012-11-01

    Plant manganese (Mn) hyperaccumulation provides unusual insight into homeostasis of this essential micronutrient, in particular its excessive storage in shoot tissues. The compartmentation of hyperaccumulated foliar Mn appears exceptional among metal hyperaccumulators, since it occurs via specific microdistribution patterns. Here, three associated Mn hyperaccumulators, Virotia neurophylla, Maytenus fournieri, and Garcinia amplexicaulis exhibiting distinctly different Mn detoxification strategies were examined. Non-invasive sample preparation in conjunction with cryo scanning electron microscopy (SEM) was used to obtain in vivo quantitative microprobe X-ray and anatomical data from fully hydrated cells. Highly vacuolated large palisade mesophyll cells in V. neurophylla leaves were found to contain around 650 mM Mn. The large non-photosynthetic hypodermal cells of M. fournieri leaves, also with high vacuolar content, and the main site for Mn disposal, had an estimated mean vacuolar Mn concentration of around 600 mM. Previous qualitative X-ray mapping had shown Mn to be almost evenly sequestered across the entire leaf cross section of G. amplexicaulis. However, quantitative data obtained here showed a marked variation in localised concentrations that ranged between ~15 and >800 mM. Notable among these were mean values of >600 mM in spongy mesophyll cells, and ~800 mM within cells of a narrow sub epidermal layer preceding the palisade mesophyll. This study demonstrated the extraordinary Mn carrying capacities of different types of leaf cell vacuoles.

  13. Molecular dissection of the cellular mechanisms involved in nickel hyperaccumulation in plants. 1998 annual progress report

    SciTech Connect

    Salt, D.

    1998-06-01

    'Phytoremediation, the use of plants for environmental cleanup of pollutants, including toxic metals, holds the potential to allow the economic restoration of heavy metal and radionuclide contaminated sites. A number of terrestrial plants are known to naturally accumulate high levels of metals in their shoots (1--2% dry weight), and these plants have been termed metal-hyperaccumulators. Clearly, the genetic traits that determine metal-hyperaccumulation offers the potential for the development of practical phytoremediation processes. The long-term objective is to rationally design and generate plants ideally suited for phytoremediation using this unique genetic material. Initially, the strategy will focus on isolating and characterizing the key genetic information needed for expression of the metal-hyperaccumulation phenotype. Recently, histidine has been shown to play a major role in Ni hyperaccumulation. Based on this information the authors propose to investigate, at the molecular level, the role of histidine biosynthesis in Ni hyperaccumulation in Thlaspi goesingense, a Ni hyperaccumulator species.'

  14. Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements.

    PubMed

    Branquinho, Cristina; Serrano, Helena Cristina; Pinto, Manuel João; Martins-Loução, Maria Amélia

    2007-03-01

    The several established criteria to define a hyperaccumulator plant were applied to a rare and endangered species, Plantago almogravensis, and to the 3rd most abundant element in the earth crust, Al. Using the most common criteria, P. almogravensis undoubtedly is an Al hyperaccumulator plant. If the recent proposed requirements were considered, most of them matching those for a plant to be used in phytoextraction, it can only be considered an unusual accumulator of Al. A discussion is made concerning the several criteria of a hyperaccumulator plant in order to include rare and endemic ones and abundant elements. In ecological terms, the enrichment in Al and Fe observed may account for the differences in the vegetation pattern. Due to the rarity and endangered nature of this plant, the contribution of this work is also relevant for the ecological understanding and the development of conservation options of this endemic species.

  15. Molecular Dissection of the Cellular Mechanisms Involved in Nickel Hyperaccumulation in Plants

    SciTech Connect

    Salt, David E.

    1999-06-01

    Phytoremediation, the use of plants for environmental cleanup of pollutants, including toxic metals, holds the potential to allow the economic restoration of heavy metal and radionuclide contaminated sites. A number of terrestrial plants are known to naturally accumulate high levels of metals in their shoots (1-2% dry weight), and these plants have been termed metal-hyperaccumulators. Clearly, the genetic traits that determines metal-hyperaccumulation offers the potential for the development of practical phytoremediation processes. Our long-term objective is to rationally design and generate plants ideally suited for phytoremediation using this unique genetic material. Initially, our strategy will focus on isolating and characterizing the key genetic information needed for expression of the metal-hyperaccumulation phenotype. Recently, histidine has been shown to play a major role in Ni hyperaccumulation. Based on this information we propose to investigate, at the molecular level, the role of histidine biosynthesis in Ni hyperaccumulation in Thlaspi goesingense, a Ni hyperaccumulator species. We will clone key genes involved in histidine biosynthesis. We will characterize their transcriptional and post transcriptional regulation by histidine, Ni. We will determine if any of these genes are essential and sufficient for Ni hyperaccumulation by their expression in the non-hyperaccumulator Arabidopsis thaliana.

  16. Molecular Dissection of The Cellular Mechanisms Involved In Nickel Hyperaccumulation in Plants

    SciTech Connect

    David E. Salt

    2002-04-08

    Hyperaccumulator plant species are able to accumulate between 1-5% of their biomass as metal. However, these plants are often small, slow growing, and do not produce a high biomass. Phytoextraction, a cost-effective, in situ, plant based approach to soil remediation takes advantage of the remarkable ability of hyperaccumulating plants to concentrate metals from the soil and accumulate them in their harvestable, above-ground tissues. However, to make use of the valuable genetic resources identified in metal hyperaccumulating species, it will be necessary to transfer this material to high biomass rapidly growing crop plants. These plants would then be ideally suited to the phytoremediation process, having the ability to produce large amount of metal-rich plant biomass for rapid harvest and soil cleanup. Although progress is being made in understanding the genetic basis of metal hyperaccumulation a more complete understanding will be necessary before we can take full advantage of the genetic potential of these plants.

  17. Accumulation and hyperaccumulation of copper in plants

    NASA Astrophysics Data System (ADS)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species

  18. Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics.

    PubMed

    Hanikenne, Marc; Nouet, Cécile

    2011-06-01

    In the course of evolution, plants adapted to widely differing metal availabilities in soils and therefore represent an important source of natural variation of metal homeostasis networks. Research on plant metal homeostasis can thus provide insights into the functioning, regulation and adaptation of biological networks. Here, we describe major recent breakthroughs in the understanding of the genetic and molecular basis of metal hyperaccumulation and associated hypertolerance, a naturally selected complex trait which represents an extreme adaptation of the metal homeostasis network. Investigations in this field reveal further the molecular alterations underlying the evolution of natural phenotypic diversity and provide a highly relevant framework for comparative genomics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Interactive effects of Cd and PAHs on contaminants removal from co-contaminated soil planted with hyperaccumulator plant Sedum alfredii

    USDA-ARS?s Scientific Manuscript database

    Soil contamination by multiple organic and inorganic contaminants is common but its remediation by hyperaccumulator plants is rarely reported. The growth of a cadmium (Cd) hyperaccumulator Sedum alfredii and removal of contaminants from Cd and polycyclic aromatic hydrocarbons(PAHs) co-contaminated s...

  20. Feasibility of using hyperaccumulating plants to bioremediate metal-contaminated soil

    SciTech Connect

    Kelly, R.J.; Guerin, T.F.

    1995-12-31

    A feasibility study was carried out to determine whether selected plants were capable of hyperaccumulating anthropogenic sources of metals found in soils from three contaminated sites. A trial was conducted using the previously reported hyperaccumulators, Armeria maritima (thrift), Impatiens balsamina (balsam), Alyssum saxatile (gold dust), and the control species, Brassica oleracea (cabbage). Although none of these plants showed any substantial hyperaccumulation of Cu, Zn, Pb, and Cd, it was established that there is an optimum period in the life-cycle of these plants in which the metal concentration reaches a maximum. This period was dependent on the metal, soil, and plant type. The current paper describes the data obtained for Zn and Cu uptake by thrift.

  1. Hyperaccumulator straw improves the cadmium phytoextraction efficiency of emergent plant Nasturtium officinale.

    PubMed

    Li, Keqiang; Lin, Lijin; Wang, Jin; Xia, Hui; Liang, Dong; Wang, Xun; Liao, Ming'an; Wang, Li; Liu, Li; Chen, Cheng; Tang, Yi

    2017-08-01

    With the development of economy, the heavy metal contamination has become an increasingly serious problem, especially the cadmium (Cd) contamination. The emergent plant Nasturtium officinale R. Br. is a Cd-accumulator with low phytoremediation ability. To improve Cd phytoextraction efficiency of N. officinale, the straw from Cd-hyperaccumulator plants Youngia erythrocarpa, Galinsoga parviflora, Siegesbeckia orientalis, and Bidens pilosa was applied to Cd-contaminated soil and N. officinale was then planted; the study assessed the effect of hyperaccumulator straw on the growth and Cd accumulation of N. officinale. The results showed that application of hyperaccumulator species straws increased the biomass and photosynthetic pigment content and reduced the root/shoot ratio of N. officinale. All straw treatments significantly increased Cd content in roots, but significantly decreased Cd content in shoots of N. officinale. Applying hyperaccumulator straw significantly increased the total Cd accumulation in the roots, shoots, and whole plants of N. officinale. Therefore, application of straw from four hyperaccumulator species promoted the growth of N. officinale and improved the phytoextraction efficiency of N. officinale in Cd-contaminated paddy field soil; the straw of Y. erythrocarpa provided the most improvement.

  2. Recent advances in the analysis of metal hyperaccumulation and hypertolerance in plants using proteomics.

    PubMed

    Dalcorso, Giovanni; Fasani, Elisa; Furini, Antonella

    2013-01-01

    Hyperaccumulator/hypertolerant plant species have evolved strategies allowing them to grow in metal-contaminated soils, where they accumulate high concentrations of heavy metals in their shoots without signs of toxicity. The mechanisms that allow enhanced metal uptake, root-to-shoot translocation and detoxification in these species are not fully understood. Complementary approaches such as transcriptomic-based DNA microarrays and proteomics have recently been used to gain insight into the molecular pathways evolved by metal hyperaccumulator/hypertolerant species. Proteomics has the advantage of focusing on the translated portion of the genome and it allows to analyze complex networks of proteins. This review discusses the recent analysis of metal hyperaccumulator/hypertolerant plant species using proteomics. Changes in photosynthetic proteins, sulfur, and glutathione metabolism, transport, biotic and xenobiotic defenses as well as the differential regulation of proteins involved in signaling and secondary metabolism are discussed in relation to metal hyperaccumulation. We also consider the potential contribution of several proteins to the hyperaccumulation phenotype.

  3. Recent advances in the analysis of metal hyperaccumulation and hypertolerance in plants using proteomics

    PubMed Central

    DalCorso, Giovanni; Fasani, Elisa; Furini, Antonella

    2013-01-01

    Hyperaccumulator/hypertolerant plant species have evolved strategies allowing them to grow in metal-contaminated soils, where they accumulate high concentrations of heavy metals in their shoots without signs of toxicity. The mechanisms that allow enhanced metal uptake, root-to-shoot translocation and detoxification in these species are not fully understood. Complementary approaches such as transcriptomic-based DNA microarrays and proteomics have recently been used to gain insight into the molecular pathways evolved by metal hyperaccumulator/hypertolerant species. Proteomics has the advantage of focusing on the translated portion of the genome and it allows to analyze complex networks of proteins. This review discusses the recent analysis of metal hyperaccumulator/hypertolerant plant species using proteomics. Changes in photosynthetic proteins, sulfur, and glutathione metabolism, transport, biotic and xenobiotic defenses as well as the differential regulation of proteins involved in signaling and secondary metabolism are discussed in relation to metal hyperaccumulation. We also consider the potential contribution of several proteins to the hyperaccumulation phenotype. PMID:23898342

  4. Actephila alanbakeri (Phyllanthaceae): a new nickel hyperaccumulating plant species from localised ultramafic outcrops in Sabah (Malaysia).

    PubMed

    van der Ent, Antony; van Balgooy, Max; van Welzen, Peter

    2015-12-01

    The Malaysian state of Sabah on the Island of Borneo is emerging as a hotspot for nickel hyperaccumulator species with at least 25 such species discovered to date. New discoveries of the hyperaccumulation trait in described taxa, as well as taxonomical novelties that are nickel hyperaccumulators, continue to be made. Here we describe a new nickel hyperaccumulating species of Actephila (Phyllanthaceae) originating from two known populations on ultramafic soils in Sabah. The most characteristic feature of Actephila alanbakeri are its knobbly fruits, but other diagnostic morphological characters are discussed and information about its ecology and rhizosphere and plant tissue chemistry is provided. This new species is one of the strongest known nickel hyperaccumulator plants in Southeast Asia with up to 14,700 μg g(-1) (1.47 %) nickel in its leaves. The occurrences of Actephila alanbakeri on just two sites, both of which lie outside protected areas and are disturbed by recurring forest fires, combined with the small total numbers of individuals, render this species Endangered (EN) on the basis of IUCN Red List Criteria.

  5. Uncoupling of reactive oxygen species accumulation and defence signalling in the metal hyperaccumulator plant Noccaea caerulescens.

    PubMed

    Fones, Helen N; Eyles, Chris J; Bennett, Mark H; Smith, J Andrew C; Preston, Gail M

    2013-09-01

    The metal hyperaccumulator plant Noccaea caerulescens is protected from disease by the accumulation of high concentrations of metals in its aerial tissues, which are toxic to many pathogens. As these metals can lead to the production of damaging reactive oxygen species (ROS), metal hyperaccumulator plants have developed highly effective ROS tolerance mechanisms, which might quench ROS-based signals. We therefore investigated whether metal accumulation alters defence signalling via ROS in this plant. We studied the effect of zinc (Zn) accumulation by N. caerulescens on pathogen-induced ROS production, salicylic acid accumulation and downstream defence responses, such as callose deposition and pathogenesis-related (PR) gene expression, to the bacterial pathogen Pseudomonas syringae pv. maculicola. The accumulation of Zn caused increased superoxide production in N. caerulescens, but inoculation with P. syringae did not elicit the defensive oxidative burst typical of most plants. Defences dependent on signalling through ROS (callose and PR gene expression) were also modified or absent in N. caerulescens, whereas salicylic acid production in response to infection was retained. These observations suggest that metal hyperaccumulation is incompatible with defence signalling through ROS and that, as metal hyperaccumulation became effective as a form of elemental defence, normal defence responses became progressively uncoupled from ROS signalling in N. caerulescens. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  6. The metal hyperaccumulators from New Caledonia can broaden our understanding of nickel accumulation in plants

    PubMed Central

    Jaffré, Tanguy; Pillon, Yohan; Thomine, Sébastien; Merlot, Sylvain

    2013-01-01

    While an excess of metals such as zinc, cadmium or nickel (Ni) is toxic for most plants, about 500 plant species called hyperaccumulators are able to accumulate high amounts of these metals. These plants and the underlying mechanisms are receiving an increasing interest because of their potential use in sustainable biotechnologies such as biofortification, phytoremediation, and phytomining. Among hyperaccumulators, about 400 species scattered in 40 families accumulate Ni. Despite this wide diversity, our current knowledge of the mechanisms involved in Ni accumulation is still limited and mostly restricted to temperate herbaceous Brassicaceae. New Caledonia is an archipelago of the tropical southwest pacific with a third of its surface (5500 km2) covered by Ni-rich soils originating from ultramafic rocks. The rich New Caledonia flora contains 2145 species adapted to these soils, among which 65 are Ni hyperaccumulators, including lianas, shrubs or trees, mostly belonging to the orders Celastrales, Oxalidales, Malpighiales, and Gentianales. We present here our current knowledge on Ni hyperaccumulators from New Caledonia and the latest molecular studies developed to better understand the mechanisms of Ni accumulation in these plants. PMID:23898341

  7. Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata.

    PubMed

    Freeman, John L; Zhang, Li Hong; Marcus, Matthew A; Fakra, Sirine; McGrath, Steve P; Pilon-Smits, Elizabeth A H

    2006-09-01

    Astragalus bisulcatus and Stanleya pinnata hyperaccumulate selenium (Se) up to 1% of plant dry weight. In the field, Se was mostly present in the young leaves and reproductive tissues of both hyperaccumulators. Microfocused scanning x-ray fluorescence mapping revealed that Se was hyperaccumulated in trichomes in young leaves of A. bisulcatus. None of 10 other elements tested were accumulated in trichomes. Micro x-ray absorption spectroscopy and liquid chromatography-mass spectrometry showed that Se in trichomes was present in the organic forms methylselenocysteine (MeSeCys; 53%) and gamma-glutamyl-MeSeCys (47%). In the young leaf itself, there was 30% inorganic Se (selenate and selenite) in addition to 70% MeSeCys. In young S. pinnata leaves, Se was highly concentrated near the leaf edge and surface in globular structures that were shown by energy-dispersive x-ray microanalysis to be mainly in epidermal cells. Liquid chromatography-mass spectrometry revealed both MeSeCys (88%) and selenocystathionine (12%) inside leaf edges. In contrast, both the Se accumulator Brassica juncea and the nonaccumulator Arabidopsis thaliana accumulated Se in their leaf vascular tissues and mesophyll cells. Se in hyperaccumulators appears to be mobile in both the xylem and phloem because Se-treated S. pinnata was found to be highly toxic to phloem-feeding aphids, and MeSeCys was present in the vascular tissues of a S. pinnata young leaf petiole as well as in guttation fluid. The compartmentation of organic selenocompounds in specific storage areas in the plant periphery appears to be a unique property of Se hyperaccumulators. The high concentration of Se in the plant periphery may contribute to Se tolerance and may also serve as an elemental plant defense mechanism.

  8. Hyperaccumulation of nickel by hairy roots of alyssum species: comparison with whole regenerated plants.

    PubMed

    Nedelkoska, T V; Doran, P M

    2001-01-01

    Hairy roots were used to investigate nickel uptake by the hyperaccumulator species, Alyssum bertolonii, A. tenium, and A. troodii. The Ni biosorption capacity of A. tenium hairy roots was lower than for other types of biomass such as bacteria and algae; in short-term (9-h) equilibrium studies, the highest Ni content measured in the roots was 17 500 microg g(-1) dry weight at a liquid concentration of about 4000 ppm. Using long-term hairy root cultures, it was demonstrated that Ni tolerance and hyperaccumulation do not necessarily depend on the presence of shoots or root-shoot translocation. A. bertolonii hairy roots remained healthy in appearance and continued to grow in the presence of 20-100 ppm Ni, accumulating up to 7200 microg g(-1) dry weight Ni. In contrast, hairy roots of Nicotiana tabacum turned dark brown at 20 ppm Ni and growth was negligible. The ability to grow at high external Ni concentrations allowed hyperaccumulator hairy roots to remove much greater amounts of heavy metals from the culture liquid than nonhyperaccumulator hairy roots, even though biomass Ni concentrations were similar. Although hairy roots proved to be a useful tool for investigating Ni hyperaccumulation, there were significant differences in the Ni uptake capacity of hairy roots and whole plants. Regenerated plants of A. tenium were much more tolerant of Ni and capable of accumulating higher Ni concentrations than hairy roots of this species.

  9. Cadmium leaching from micro-lysimeters planted with the hyperaccumulator Thlaspi caerulescens: experimental findings and modeling.

    PubMed

    Ingwersen, Joachim; Bücherl, Barbara; Neumann, Günter; Streck, Thilo

    2006-01-01

    The use of heavy metal hyperaccumulating plants has the potential to become a promising new technique to remediate contaminated sites. We investigated the role of metal mobilization in the Cd hyperaccumulation of Thlaspi caerulescens (J. & C. Presl, 'Ganges'). In a micro-lysimeter experiment we investigated the dynamics of Cd concentration of leachate as well as Cd removal by plant uptake in four treatments: (i) Control (bare soil), (ii) T. caerulescens, (iii) nonhyperaccumulator Brassica juncea (L.) Czern. ('PI 426308'), and (iv) co-cropping of the hyperaccumulator and nonhyperaccumulator. The experimental findings were analyzed using one- and two-site rate-limited desorption models. Co-cropping of T. caerulescens and B. juncea did not enhance metal uptake by B. juncea. Although Cd uptake of T. caerulescens was 10 times higher than that of B. juncea, the Cd concentration of leachate of the T. caerulescens treatment did not decrease below that of the B. juncea treatment. The Cd depletion in leachate was well reproduced by the two-site rate-limited desorption model. The optimized desorption coefficient was three orders of magnitude higher in the rhizosphere than in the bulk soil. Our results indicate that T. caerulescens accelerates the resupply of Cd from soil pointing to an important role of kinetic desorption in the hyperaccumulation by T. caerulescens.

  10. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?

    PubMed

    Rascio, Nicoletta; Navari-Izzo, Flavia

    2011-02-01

    The term "hyperaccumulator" describes a number of plants that belong to distantly related families, but share the ability to grow on metalliferous soils and to accumulate extraordinarily high amounts of heavy metals in the aerial organs, far in excess of the levels found in the majority of species, without suffering phytotoxic effects. Three basic hallmarks distinguish hyperaccumulators from related non-hyperaccumulating taxa: a strongly enhanced rate of heavy metal uptake, a faster root-to-shoot translocation and a greater ability to detoxify and sequester heavy metals in leaves. An interesting breakthrough that has emerged from comparative physiological and molecular analyses of hyperaccumulators and related non-hyperaccumulators is that most key steps of hyperaccumulation rely on different regulation and expression of genes found in both kinds of plants. In particular, a determinant role in driving the uptake, translocation to leaves and, finally, sequestration in vacuoles or cell walls of great amounts of heavy metals, is played in hyperaccumulators by constitutive overexpression of genes encoding transmembrane transporters, such as members of ZIP, HMA, MATE, YSL and MTP families. Among the hypotheses proposed to explain the function of hyperaccumulation, most evidence has supported the "elemental defence" hypothesis, which states that plants hyperaccumulate heavy metals as a defence mechanism against natural enemies, such as herbivores. According to the more recent hypothesis of "joint effects", heavy metals can operate in concert with organic defensive compounds leading to enhanced plant defence overall. Heavy metal contaminated soils pose an increasing problem to human and animal health. Using plants that hyperaccumulate specific metals in cleanup efforts appeared over the last 20 years. Metal accumulating species can be used for phytoremediation (removal of contaminant from soils) or phytomining (growing plants to harvest the metals). In addition, as many

  11. De novo transcriptome assemblies of four accessions of the metal hyperaccumulator plant Noccaea caerulescens

    PubMed Central

    Blande, Daniel; Halimaa, Pauliina; Tervahauta, Arja I; Aarts, Mark G.M.; Kärenlampi, Sirpa O

    2017-01-01

    Noccaea caerulescens of the Brassicaceae family has become the key model plant among the metal hyperaccumulator plants. Populations/accessions of N. caerulescens from geographic locations with different soil metal concentrations differ in their ability to hyperaccumulate and hypertolerate metals. Comparison of transcriptomes in several accessions provides candidates for detailed exploration of the mechanisms of metal accumulation and tolerance and local adaptation. This can have implications in the development of plants for phytoremediation and improved mineral nutrition. Transcriptomes from root and shoot tissues of four N. caerulescens accessions with contrasting Zn, Cd and Ni hyperaccumulation and tolerance traits were sequenced with Illumina Hiseq2000. Transcriptomes were assembled using the Trinity de novo assembler and were annotated and the protein sequences predicted. The comparison against the BUSCO plant early release dataset indicated high-quality assemblies. The predicted protein sequences have been clustered into ortholog groups with closely related species. The data serve as important reference sequences in whole transcriptome studies, in analyses of genetic differences between the accessions and other species, and for primer design. PMID:28140388

  12. X-ray elemental mapping techniques for elucidating the ecophysiology of hyperaccumulator plants.

    PubMed

    van der Ent, Antony; Przybyłowicz, Wojciech J; de Jonge, Martin D; Harris, Hugh H; Ryan, Chris G; Tylko, Grzegorz; Paterson, David J; Barnabas, Alban D; Kopittke, Peter M; Mesjasz-Przybyłowicz, Jolanta

    2017-10-10

    Contents I. II. III. IV. V. VI. References SUMMARY: Hyperaccumulators are attractive models for studying metal(loid) homeostasis, and probing the spatial distribution and coordination chemistry of metal(loid)s in their tissues is important for advancing our understanding of their ecophysiology. X-ray elemental mapping techniques are unique in providing in situ information, and with appropriate sample preparation offer results true to biological conditions of the living plant. The common platform of these techniques is a reliance on characteristic X-rays of elements present in a sample, excited either by electrons (scanning/transmission electron microscopy), protons (proton-induced X-ray emission) or X-rays (X-ray fluorescence microscopy). Elucidating the cellular and tissue-level distribution of metal(loid)s is inherently challenging and accurate X-ray analysis places strict demands on sample collection, preparation and analytical conditions, to avoid elemental redistribution, chemical modification or ultrastructural alterations. We compare the merits and limitations of the individual techniques, and focus on the optimal field of applications for inferring ecophysiological processes in hyperaccumulator plants. X-ray elemental mapping techniques can play a key role in answering questions at every level of metal(loid) homeostasis in plants, from the rhizosphere interface, to uptake pathways in the roots and shoots. Further improvements in technological capabilities offer exciting perspectives for the study of hyperaccumulator plants into the future. © 2017 University of Queensland. New Phytologist © 2017 New Phytologist Trust.

  13. On the way to unravel zinc hyperaccumulation in plants: a mini review.

    PubMed

    Marquès, Laurence; Oomen, Ronald J F J

    2011-12-01

    Zinc (Zn) is an essential element for plants that can be accumulated to very high levels in shoots of some special plant species named hyperaccumulators. Various strategies have been used in recent years to unravel the molecular bases of such an unusual Zn transport and storage, especially in Brassicacea species. In these studies, several Zn transporters and chelators have been identified that exist both in sensitive and hyperaccumulating Brassicacea species allowing the construction of a general model for Zn homeostasis. However, some determinants involved in shoot Zn tolerance are still missing. We have previously shown that defensins confer Zn tolerance and have recently studied the sub-cellular localisation of a leaf A. halleri defensin. In this mini review, we explain why we propose that family 1 defensins could play a role in the protection of the endoplasmic reticulum functioning in leaves during a Zn overload.

  14. Hyperaccumulation of lead, zinc, and cadmium in plants growing on a lead/zinc outcrop in Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Wang, S. L.; Liao, W. B.; Yu, F. Q.; Liao, B.; Shu, W. S.

    2009-08-01

    A field survey was conducted to identify potential hyperaccumulators of Pb, Zn or Cd in the Beichang Pb/Zn mine outcrop in Yunnan Province, China. The average total concentrations of Pb, Zn, and Cd in the soils were up to 28,438, 5,109, and 52 mg kg-1, respectively. A total of 68 plant species belonging to 60 genera of 37 families naturally colonizing the outcrop were recorded. According to metal accumulation in the plants and translocation factor (TF), Silene viscidula was identified as potential hyperaccumulator of Pb, Zn, and Cd with mean shoot concentrations of 3,938 mg kg-1 of Pb (TF = 1.2), 11,155 mg kg-1 of Zn (TF = 1.8) and 236 mg kg-1 of Cd (TF = 1.1), respectively; S. gracilicanlis (Pb 3,617 mg kg-1, TF = 1.2) and Onosma paniculatum (Pb 1,837 mg kg-1, TF = 1.9) were potential Pb hyperaccumulators. Potentilla griffithii (Zn 8,748 mg kg-1, TF = 1.5) and Gentiana sp. (Zn 19,710 mg kg-1, TF = 2.7) were potential Zn hyperaccumulators. Lysimachia deltoides (Cd 212 mg kg-1, TF = 3.2) was a potential Cd hyperaccumulator. These new plant resources could be used to explore the mechanisms of Pb, Zn and/or Cd hyperaccumulation, and the findings could be applied for the phytoremediation of Pb, Zn and/or Cd-contaminated soils.

  15. Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae).

    PubMed

    Xue, S G; Chen, Y X; Reeves, Roger D; Baker, Alan J M; Lin, Q; Fernando, Denise R

    2004-10-01

    The perennial herb Phytolacca acinosa Roxb. (Phytolaccaceae), which occurs in Southern China, has been found to be a new manganese hyperaccumulator by means of field surveys on Mn-rich soils and by glasshouse experiments. This species not only has remarkable tolerance to Mn but also has extraordinary uptake and accumulation capacity for this element. The maximum Mn concentration in the leaf dry matter was 19,300 microg/g on Xiangtan Mn tailings wastelands, with a mean of 14,480 microg/g. Under nutrient solution culture conditions, P. acinosa could grow normally with Mn supplied at a concentration of 8000 micromol/l, although with less biomass than in control samples supplied with Mn at 5 micromol/l. Manganese concentration in the shoots increased with increasing external Mn levels, but the total mass of Mn accumulated in the shoots first increased and then decreased. At an Mn concentration of 5000 micromol/l in the culture solution, the Mn accumulation in the shoot dry matter was highest (258 mg/plant). However, the Mn concentration in the leaves reached its highest value (36,380 microg/g) at an Mn supply level of 12,000 micromol/l. These results confirm that P. acinosa is an Mn hyperaccumulator which grows rapidly, has substantial biomass, wide distribution and a broad ecological amplitude. This species provides a new plant resource for exploring the mechanism of Mn hyperaccumulation, and has potential for use in the phytoremediation of Mn-contaminated soils.

  16. Local adaptation is associated with zinc tolerance in Pseudomonas endophytes of the metal-hyperaccumulator plant Noccaea caerulescens.

    PubMed

    Fones, H N; McCurrach, H; Mithani, A; Smith, J A C; Preston, G M

    2016-05-11

    Metal-hyperaccumulating plants, which are hypothesized to use metals for defence against pests and pathogens, provide a unique context in which to study plant-pathogen coevolution. Previously, we demonstrated that the high concentrations of zinc found in leaves of the hyperaccumulator Noccaea caerulescens provide protection against bacterial pathogens, with a potential trade-off between metal-based and pathogen-induced defences. We speculated that an evolutionary arms race between zinc-based defences in N. caerulescens and zinc tolerance in pathogens might have driven the development of the hyperaccumulation phenotype. Here, we investigate the possibility of local adaptation by bacteria to the zinc-rich environment of N. caerulescens leaves and show that leaves sampled from the contaminated surroundings of a former mine site harboured endophytes with greater zinc tolerance than those within plants of an artificially created hyperaccumulating population. Experimental manipulation of zinc concentrations in plants of this artificial population influenced the zinc tolerance of recovered endophytes. In laboratory experiments, only endophytic bacteria isolated from plants of the natural population were able to grow to high population densities in any N. caerulescens plants. These findings suggest that long-term coexistence with zinc-hyperaccumulating plants leads to local adaptation by endophytic bacteria to the environment within their leaves. © 2016 The Author(s).

  17. Do selenium hyperaccumulators affect selenium speciation in neighboring plants and soil? An X-Ray Microprobe Analysis.

    PubMed

    El Mehdawi, Ali F; Lindblom, Stormy D; Cappa, Jennifer J; Fakra, Sirine C; Pilon-Smits, Elizabeth A H

    2015-01-01

    Neighbors of Se hyperaccumulators Stanleya pinnata and Astragalus bisulcatus were found earlier to have elevated Se levels. Here we investigate whether Se hyperaccumulators affect Se localization and speciation in surrounding soil and neighboring plants. X-ray fluorescence mapping and X-ray absorption near-edge structure spectroscopy were used to analyze Se localization and speciation in leaves of Artemisia ludoviciana, Symphyotrichum ericoides and Chenopodium album growing next to Se hyperaccumulators or non-accumulators at a seleniferous site. Regardless of neighbors, A. ludoviciana, S. ericoides and C. album accumulated predominantly (73-92%) reduced selenocompounds with XANES spectra similar to the C-Se-C compounds selenomethionine and methyl-selenocysteine. Preliminary data indicate that the largest Se fraction (65-75%), both in soil next to hyperaccumulator S. pinnata and next to nonaccumulator species was reduced Se with spectra similar to C-Se-C standards. These same C-Se-C forms are found in hyperaccumulators. Thus, hyperaccumulator litter may be a source of organic soil Se, but soil microorganisms may also contribute. These findings are relevant for phytoremediation and biofortification since organic Se is more readily accumulated by plants, and more effective for dietary Se supplementation.

  18. Local adaptation is associated with zinc tolerance in Pseudomonas endophytes of the metal-hyperaccumulator plant Noccaea caerulescens

    PubMed Central

    Fones, H. N.; McCurrach, H.; Mithani, A.; Smith, J. A. C.

    2016-01-01

    Metal-hyperaccumulating plants, which are hypothesized to use metals for defence against pests and pathogens, provide a unique context in which to study plant–pathogen coevolution. Previously, we demonstrated that the high concentrations of zinc found in leaves of the hyperaccumulator Noccaea caerulescens provide protection against bacterial pathogens, with a potential trade-off between metal-based and pathogen-induced defences. We speculated that an evolutionary arms race between zinc-based defences in N. caerulescens and zinc tolerance in pathogens might have driven the development of the hyperaccumulation phenotype. Here, we investigate the possibility of local adaptation by bacteria to the zinc-rich environment of N. caerulescens leaves and show that leaves sampled from the contaminated surroundings of a former mine site harboured endophytes with greater zinc tolerance than those within plants of an artificially created hyperaccumulating population. Experimental manipulation of zinc concentrations in plants of this artificial population influenced the zinc tolerance of recovered endophytes. In laboratory experiments, only endophytic bacteria isolated from plants of the natural population were able to grow to high population densities in any N. caerulescens plants. These findings suggest that long-term coexistence with zinc-hyperaccumulating plants leads to local adaptation by endophytic bacteria to the environment within their leaves. PMID:27170725

  19. The potential of phytoremediation using hyperaccumulator plants: a case study at a lead-zinc mine site.

    PubMed

    Lorestani, Bahareh; Cheraghi, Mehrdad; Yousefi, Nafiseh

    2012-09-01

    Contamination with heavy metals is one of the most pressing threats to water and soil resources, as well as human health. Phytoremediation might potentially be used to remediate metal-contaminated sites. A major advance in the development of phytoremediation for heavy metal affected soils was the discovery of heavy metal hyperaccumulation in plants. This study applied several established criteria to identify hyperaccumulator plants. A case study was conducted at a mining area in the Hamedan province in the west central region of Iran. The results indicated that plant metal accumulation differed among species and plant parts. Plant species grown in substrata with elevated metal levels contained significantly higher metal levels. Using the most common criteria, Euphorbia macroclada and Centaurea virgata can be classified as hyperaccumulators of specific heavy metals measured in this study and they might potentially be used for the phytoremediation of contaminated soils.

  20. Recovery of zinc from hyperaccumulator plants: Sedum plumbizincicola.

    PubMed

    Yang, Jian-Guang; Yang, Jian-Ying; Peng, Chang-Hong; Tang, Chao-Bo; Zhou, Ke-Cao

    2009-06-01

    Hyperaccumulator biomass harvested after heavy-metal phytoremediation must be considered as hazardous waste that should be contained or treated appropriately before disposal or reuse. As a potential method to detoxify the biomass and to convert this material to a suitable fertilizer or mulch, leaching of heavy metals from Sedum plumbizincicola biomass was studied by using ammonia-ammonium chloride solution as a leaching agent. The research was carried out in two phases: (i) a leaching study to determine the heavy metal:zinc extraction efficiency of this leaching agent and (ii) a thermodynamic analysis to identify the likely reactions and stable Zn(II) species formed in the leaching systems. Experimentally, a Taguchi orthogonal experiment with four variable parameter elements: leaching temperature, nNH4Cl:nNH3 ratio, leaching time and solid-liquid ratio, each at three levels, was used to optimize the experimental parameters by the analysis of variances. Application of the Taguchi technique significantly reduced the time and cost required for the experimental investigation. The findings indicate that leaching temperature had the most dominant effect on metal extraction performance, followed by nNH4Cl:nNH3 ratio, solid-liquid ratio and leaching time. Accordingly, the optimum leaching conditions were determined as temperature: 60 degrees C, nNH4Cl:nNH3 = 0.6, leaching time: 2 h and solid/liquid ratio: 5:1. The total zinc removal after leaching under the optimum conditions reached 97.95%. The thermodynamic study indicated that the dominant species produced by the leaching process should be the soluble species Zn(NH3)4(2+).

  1. Exogenous treatments with phytohormones can improve growth and nickel yield of hyperaccumulating plants.

    PubMed

    Cabello-Conejo, M I; Prieto-Fernández, A; Kidd, P S

    2014-10-01

    The application of plant growth regulators (PGRs) or phytohormones could be an interesting option for stimulating biomass production of hyperaccumulating plants and, consequently, their metal phytoextraction capacity. The effect of exogenous applications of phytohormones (PGR) on the Ni phytoextraction capacity of four Ni hyperaccumulating species (Alyssum corsicum, Alyssum malacitanum, Alyssum murale and Noccaea goesingense) was evaluated. Four different commercially available phytohormones (B, C, K and P) based on gibberellins, cytokinins and auxins were applied to the plant aerial tissues. Each product was applied at three different concentrations (B1-3, C1-3, K1-3 and P1-3). The effect on biomass production was dependent on the species, the PGR type and the concentration at which it was applied. Two of the four products (K and P) consistently increased biomass production compared to untreated control plants in all four plant species. On the other hand, all four products led to a significant increase in the number of branches (and leaves in the case of N. goesingense) of all four species compared to control plants. Application of phytohormones generally led to a reduction in shoot Ni concentration. Nonetheless, in some cases as a consequence of the increase observed in biomass after the application of phytohormones a significant increase in the Ni phytoextraction efficiency was also observed (but this was species- and PGR type-dependent). The results show that PGRs can be successfully used to improve the growth and biomass production of hyperaccumulating species such as Alyssum and Noccaea. However, an increase in biomass did not always lead to a higher Ni removal, and the most effective PGR for increasing Ni removal was the IAA-based product. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Identification of nickel chelators in three hyperaccumulating plants: an X-ray spectroscopic study.

    PubMed

    Montargès-Pelletier, Emmanuelle; Chardot, Vanessa; Echevarria, Guillaume; Michot, Laurent J; Bauer, Allan; Morel, Jean-Louis

    2008-05-01

    We have investigated the accumulation of nickel in a hyperaccumulating plant from the Brassicacae family Leptoplax emarginata (Boiss.) O.E. Schulz. Two supplementary hyperaccumulating plants, which have been the subject of a high number of publications, Alyssum murale Waldst. & Kit and Thlaspi caerulescens J.&C. Presl, and a nonaccumulating species Aurinia saxatilis were also studied for reference. The plants were grown during 4 months in specific rhizoboxes with Ni-bearing minerals as a source of nickel. Nickel speciation was analyzed through X-ray absorption spectroscopy at Ni K-edge (X-ray absorption near edge spectroscopy and extended X-ray absorption fine structure spectroscopy) in the different parts of the plants (leaves, stems and roots) and compared with aqueous solutions containing different organo-Ni(II) complexes. Carboxylic acids (citrate, malate) appeared as the main ligands responsible of nickel transfer within those plants. Citrate was found as the predominant ligand for Ni in stems of Leptoplax and Alyssum, whereas in leaves of the three plants, malate appeared as the chelating organic acid of accumulated metal. Histidine could not be detected either in leaves, stems nor roots of any studied plant sample.

  3. Mn accumulation and tolerance in Celosia argentea Linn.: a new Mn-hyperaccumulating plant species.

    PubMed

    Liu, Jie; Shang, Weiwei; Zhang, Xuehong; Zhu, Yinian; Yu, Ke

    2014-02-28

    Identifying a hyperaccumulator is an important groundwork for the phytoextraction of heavy metal-contaminated soil. Celosia argentea Linn., which grew on a Mn tailing wasteland, was found to hyperaccumulate Mn (14 362mgkg(-1) in leaf dry matter) in this study. To investigate Mn tolerance and accumulation in C. argentea, a hydroponic culture experiment was conducted in a greenhouse. Results showed that the biomass and the relative growth rate of C. argentea were insignificantly different (p>0.05) at the Mn supply level ranging from 2.5mgL(-1) (control) to 400mgL(-1). Manganese concentrations in leaves, stems, and roots reached maxima of 20228, 8872, and 2823mgkg(-1) at 600mgMnL(-1), respectively. The relative rate of Mn accumulation increased by 91.2% at 400mgMnL(-1). Over 95% of the total Mn taken up by C. argentea was translocated to shoots. Thus, C. argentea exhibits the basic characteristics of a Mn-hyperaccumulator. This species has great potential to remediate Mn-contaminated soil cheaply and can also aid the studies of Mn uptake, translocation, speciation, distribution and detoxification in plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Engineering copper hyperaccumulation in plants by expressing a prokaryotic copC gene.

    PubMed

    Rodríguez-Llorente, Ignacio D; Lafuente, Alejandro; Doukkali, Bouchra; Caviedes, Miguel A; Pajuelo, Eloisa

    2012-11-06

    In this work, engineering Cu-hyperaccumulation in plants was approached. First, the copC gene from Pseudomonas sp. Az13, encoding a periplasmic Cu-binding protein, was expressed in Arabidopsis thaliana driven by the CaMV35S promoter (transgenic lines 35S-copC). 35S-copC lines showed up to 5-fold increased Cu accumulation in roots (up to 2000 μg Cu. g(-1)) and shoots (up to 400 μg Cu. g(-1)), compared to untransformed plants, over the limits established for Cu-hyperaccumulators. 35S lines showed enhanced Cu sensitivity. Second, copC was engineered under the control of the cab1 (chlorophyll a/b binding protein 1) promoter, in order to drive copC expression to the shoots (transgenic lines cab1-copC). cab1-copC lines showed increased Cu translocation factors (twice that of wild-type plants) and also displayed enhanced Cu sensitivity. Finally, subcellular targeting the CopC protein to plant vacuoles was addressed by expressing a modified copC gene containing specific vacuole sorting determinants (transgenic lines 35S-copC-V). Unexpectedly, increased Cu-accumulation was not achieved-neither in roots nor in shoots-when compared to 35S-copC lines. Conversely, 35S-copC-V lines did display greatly enhanced Cu-hypersensitivity. Our results demonstrate the feasibility of obtaining Cu-hyperaccumulators by engineering a prokaryotic Cu-binding protein, but they highlight the difficulty of altering the exquisite Cu homeostasis in plants.

  5. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties.

    PubMed

    Sura-de Jong, Martina; Reynolds, Ray J B; Richterova, Klara; Musilova, Lucie; Staicu, Lucian C; Chocholata, Iva; Cappa, Jennifer J; Taghavi, Safiyh; van der Lelie, Daniel; Frantik, Tomas; Dolinova, Iva; Strejcek, Michal; Cochran, Alyssa T; Lovecka, Petra; Pilon-Smits, Elizabeth A H

    2015-01-01

    Selenium (Se)-rich plants may be used to provide dietary Se to humans and livestock, and also to clean up Se-polluted soils or waters. This study focused on endophytic bacteria of plants that hyperaccumulate selenium (Se) to 0.5-1% of dry weight. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to compare the diversity of endophytic bacteria of hyperaccumulators Stanleya pinnata (Brassicaceae) and Astragalus bisulcatus (Fabaceae) with those from related non-accumulators Physaria bellii (Brassicaceae) and Medicago sativa (Fabaceae) collected on the same, seleniferous site. Hyperaccumulators and non-accumulators showed equal T-RF diversity. Parsimony analysis showed that T-RFs from individuals of the same species were more similar to each other than to those from other species, regardless of plant Se content or spatial proximity. Cultivable endophytes from hyperaccumulators S. pinnata and A. bisulcatus were further identified and characterized. The 66 bacterial morphotypes were shown by MS MALDI-TOF Biotyper analysis and 16S rRNA gene sequencing to include strains of Bacillus, Pseudomonas, Pantoea, Staphylococcus, Paenibacillus, Advenella, Arthrobacter, and Variovorax. Most isolates were highly resistant to selenate and selenite (up to 200 mM) and all could reduce selenite to red elemental Se, reduce nitrite and produce siderophores. Seven isolates were selected for plant inoculation and found to have plant growth promoting properties, both in pure culture and when co-cultivated with crop species Brassica juncea (Brassicaceae) or M. sativa. There were no effects on plant Se accumulation. We conclude that Se hyperaccumulators harbor an endophytic bacterial community in their natural seleniferous habitat that is equally diverse to that of comparable non-accumulators. The hyperaccumulator endophytes are characterized by high Se resistance, capacity to produce elemental Se and plant growth promoting properties.

  6. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties

    PubMed Central

    Sura-de Jong, Martina; Reynolds, Ray J. B.; Richterova, Klara; Musilova, Lucie; Staicu, Lucian C.; Chocholata, Iva; Cappa, Jennifer J.; Taghavi, Safiyh; van der Lelie, Daniel; Frantik, Tomas; Dolinova, Iva; Strejcek, Michal; Cochran, Alyssa T.; Lovecka, Petra; Pilon-Smits, Elizabeth A. H.

    2015-01-01

    Selenium (Se)-rich plants may be used to provide dietary Se to humans and livestock, and also to clean up Se-polluted soils or waters. This study focused on endophytic bacteria of plants that hyperaccumulate selenium (Se) to 0.5–1% of dry weight. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to compare the diversity of endophytic bacteria of hyperaccumulators Stanleya pinnata (Brassicaceae) and Astragalus bisulcatus (Fabaceae) with those from related non-accumulators Physaria bellii (Brassicaceae) and Medicago sativa (Fabaceae) collected on the same, seleniferous site. Hyperaccumulators and non-accumulators showed equal T-RF diversity. Parsimony analysis showed that T-RFs from individuals of the same species were more similar to each other than to those from other species, regardless of plant Se content or spatial proximity. Cultivable endophytes from hyperaccumulators S. pinnata and A. bisulcatus were further identified and characterized. The 66 bacterial morphotypes were shown by MS MALDI-TOF Biotyper analysis and 16S rRNA gene sequencing to include strains of Bacillus, Pseudomonas, Pantoea, Staphylococcus, Paenibacillus, Advenella, Arthrobacter, and Variovorax. Most isolates were highly resistant to selenate and selenite (up to 200 mM) and all could reduce selenite to red elemental Se, reduce nitrite and produce siderophores. Seven isolates were selected for plant inoculation and found to have plant growth promoting properties, both in pure culture and when co-cultivated with crop species Brassica juncea (Brassicaceae) or M. sativa. There were no effects on plant Se accumulation. We conclude that Se hyperaccumulators harbor an endophytic bacterial community in their natural seleniferous habitat that is equally diverse to that of comparable non-accumulators. The hyperaccumulator endophytes are characterized by high Se resistance, capacity to produce elemental Se and plant growth promoting properties. PMID:25784919

  7. Leaf-age and soil-plant relationships: key factors for reporting trace-elements hyperaccumulation by plants and design applications.

    PubMed

    Losfeld, Guillaume; L'Huillier, Laurent; Fogliani, Bruno; Mc Coy, Stéphane; Grison, Claude; Jaffré, Tanguy

    2015-04-01

    Relationships between the trace-elements (TE) content of plants and associated soil have been widely investigated especially to understand the ecology of TE hyperaccumulating species to develop applications using TE phytoextraction. Many studies have focused on the possibility of quantifying the soil TE fraction available to plants, and used bioconcentration (BC) as a measure of the plants ability to absorb TE. However, BC only offers a static view of the dynamic phenomenon of TE accumulation. Accumulation kinetics are required to fully account for TE distributions in plants. They are also crucial to design applications where maximum TE concentrations in plant leaves are needed. This paper provides a review of studies of BC (i.e. soil-plant relationships) and leaf-age in relation to TE hyperaccumulation. The paper focuses of Ni and Mn accumulators and hyperaccumulators from New Caledonia who were previously overlooked until recent Ecocatalysis applications emerged for such species. Updated data on Mn hyperaccumulators and accumulators from New Caledonia are also presented and advocate further investigation of the hyperaccumulation of this element. Results show that leaf-age should be considered in the design of sample collection and allowed the reclassification of Grevillea meisneri known previously as a Mn accumulator to a Mn hyperaccumulator.

  8. The impact of Ni on the physiology of a Mediterranean Ni-hyperaccumulating plant.

    PubMed

    Roccotiello, Enrica; Serrano, Helena Cristina; Mariotti, Mauro Giorgio; Branquinho, Cristina

    2016-06-01

    High nickel (Ni) levels exert toxic effects on plant growth and plant water content, thus affecting photosynthesis. In a pot experiment, we investigated the effect of the Ni concentration on the physiological characteristics of the Ni hyperaccumulator Alyssoides utriculata when grown on a vermiculite substrate in the presence of different external Ni concentrations (0-500 mg Ni L(-1)). The results showed that the Ni concentration was higher in leaves than in roots, as evidenced by a translocation factor = 3 and a bioconcentration factor = 10. At the highest concentration tested (500 mg Ni L(-1)), A. utriculata accumulated 1100 mg Ni per kilogram in its leaves, without an effects on its biomass. Plant water content increased significantly with Ni accumulation. Ni treatment did not, or only slightly, affected chlorophyll fluorescence parameters. The photosynthetic efficiency (FV/FM) of A. utriculata was stable between Ni treatments (always ≥ 0.8) and the photosynthetic performance of the plant under Ni stress remained high (performance index = 1.5). These findings support that A. utriculata has several mechanisms to avoid severe damage to its photosynthetic apparatus, confirming the tolerance of this species to Ni under hyperaccumulation.

  9. Evaluation of hyperaccumulator plant species grown in metalliferous sites in Albania

    NASA Astrophysics Data System (ADS)

    Babani, F.; Civici, N.; Mullaj, A.; Kongjika, E.; Ylli, A.

    2007-04-01

    Heavy metal contamination of soils causes serious problems to our society. A small number of interesting plant species have been identified that can grow in soils containing high levels of heavy metals, and can also accumulate these metals to high concentrations in the shoot. The heavy metal contents in root, shoot, leaves and flowers of spontaneous plants grown in metalliferous sites in Albania together with the elemental composition of the native soils were determined by X-ray fluorescence spectrometry. Efficiency of photosynthetic apparatus of analyzed ecotypes was evaluated via chlorophyll fluorescence imaging during induction kinetics. Response of plant root system to the presence of metals, the available pools of metals to plants, effect of plant biomass to phytoextraction, photosynthetic pigment metabolism and chlorophyll fluorescence signature of leaves allowed to characterize hyperaccumulator properties and to detect the variation between selected ecotypes to heavy metal accumulation.

  10. Multi-element concentrations in plant parts and fluids of Malaysian nickel hyperaccumulator plants and some economic and ecological considerations.

    PubMed

    van der Ent, Antony; Mulligan, David

    2015-04-01

    Information about multi-elemental concentrations in different plant parts of tropical Ni hyperaccumulator species has the potential to provide insight into their unusual metabolism relative to a range of essential and non-essential elements, but this information is scant in the literature. As Ni hyperaccumulation, and possibly co-accumulation of other toxic elements, has been hypothesized to provide herbivore (insect) protection, there is a need to quantify a range of these elements in plant tissues and transport fluids to at least verify the possibility of this explanation. In this study, multiple elements were analyzed in a range of different plant parts and transport fluids from Ni hyperaccumulator species collected from Sabah (Malaysia). The results show preferential accumulation of Ni in leaves over woody parts, but the highest concentrations were found in the phloem tissue (up to 7.9 % in Rinorea bengalensis) and phloem sap (up to 16.9 % in Phyllanthus balgooyi), visible by a bright green coloration in the field fresh material. The amount of Ni contained in one mature R. bengalensis tree was calculated at 4.77 kg. The high Ni concentration in the flowers of Phyllanthus securinegoides could affect insect floral visitors and pollination. High concentrations of Ni in the seeds of this species also could supply the seedling with Ni and aid in herbivory protection during the first stages of development. Foliar Ca and Ni in P. cf. securinegoides and R. bengalensis are positively correlated. Low accumulation of Ca is desirable for phytomining but concentrations of Ca are high in most Ni hyperaccumulators examined, and this could have consequences for the economic viability of Ni extraction from bio ore if these species were to be used as 'metal crops'.

  11. Phytoremediation of uranium-contaminated soils: Role of organic acids in triggering uranium hyperaccumulation in plants

    SciTech Connect

    Huang, J.W.; Blaylock, M.J.; Kapulnik, Y.; Ensley, B.D.

    1998-07-01

    Uranium phytoextraction, the use of plants to extract U from contaminated soils, is an emerging technology. The authors report on the development of this technology for the cleanup of U-contaminated soils. In this research, they investigated the effects of various soil amendments on U desorption from soil to soil solution, studied the physiological characteristics of U uptake and accumulation in plants, and developed techniques to trigger U hyperaccumulation in plants. A key to the success of U phytoextraction is to increase soil U availability to plants. The authors have found that some organic acids can be added to soils to increase U desorption from soil to soil solution and to trigger a rapid U accumulation in plants. Of the organic acids (acetic acid, citric acid, and malic acid) tested, citric acid was the most effective in enhancing U accumulation in plants. Shoot U concentrations of Brassica juncea and Brassica chinensis grown in a U-contaminated soil increased from less than 5 mg kg{sup {minus}1} to more than 5,000 mg kg{sup {minus}1} in citric acid-treated soils. To their knowledge, this is the highest shoot U concentration reported for plants grown on U-contaminated soils. Using this U hyperaccumulation technique, they are now able to increase U accumulation in shoots of selected plant species grown in two U-contaminated soils by more than 1,000-fold within a few days. The results suggest that U phytoextraction may provide an environmentally friendly alternative for the cleanup of U-contaminated soils.

  12. Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii.

    PubMed

    Tian, Shengke; Lu, Lingli; Labavitch, John; Yang, Xiaoe; He, Zhenli; Hu, Hening; Sarangi, Ritimukta; Newville, Matt; Commisso, Joel; Brown, Patrick

    2011-12-01

    Spatial imaging of cadmium (Cd) in the hyperaccumulator Sedum alfredii was investigated in vivo by laser ablation inductively coupled plasma mass spectrometry and x-ray microfluorescence imaging. Preferential Cd accumulation in the pith and cortex was observed in stems of the Cd hyperaccumulating ecotype (HE), whereas Cd was restricted to the vascular bundles in its contrasting nonhyperaccumulating ecotype. Cd concentrations of up to 15,000 μg g(-1) were measured in the pith cells, which was many fold higher than the concentrations in the stem epidermis and vascular bundles in the HE plants. In the leaves of the HE, Cd was mainly localized to the mesophyll and vascular cells rather than the epidermis. The distribution pattern of Cd in both stems and leaves of the HE was very similar to calcium but not zinc, irrespective of Cd exposure levels. Extended x-ray absorption fine structure spectroscopy analysis showed that Cd in the stems and leaves of the HE was mainly associated with oxygen ligands, and a larger proportion (about 70% in leaves and 47% in stems) of Cd was bound with malic acid, which was the major organic acid in the shoots of the plants. These results indicate that a majority of Cd in HE accumulates in the parenchyma cells, especially in stems, and is likely associated with calcium pathways and bound with organic acid (malate), which is indicative of a critical role of vacuolar sequestration of Cd in the HE S. alfredii.

  13. Arsenic-hyperaccumulator Pteris vittata efficiently solubilized phosphate rock to sustain plant growth and As uptake.

    PubMed

    Fu, Jing-Wei; Liu, Xue; Han, Yong-He; Mei, Hanyi; Cao, Yue; de Oliveira, Letuzia M; Liu, Yungen; Rathinasabapathi, Bala; Chen, Yanshan; Ma, Lena Q

    2017-01-31

    Phosphorus (P) is one of the most important nutrients for phytoremediation of arsenic (As)-contaminated soils. In this study, we demonstrated that As-hyperaccumulator Pteris vittata was efficient in acquiring P from insoluble phosphate rock (PR). When supplemented with PR as the sole P source in hydroponic systems, P. vittata accumulated 49% and 28% higher P in the roots and fronds than the -P treatment. In contrast, non-hyperaccumulator Pteris ensiformis was unable to solubilize P from PR. To gain insights into PR solubilization by plants, organic acids in plant root exudates were analyzed by HPLC. The results showed that phytic acid was the predominant (>90%) organic acid in P. vittata root exudates whereas only oxalic acid was detected in P. ensiformis. Moreover, P. vittata secreted more phytic acid in -P and PR treatments. Compared to oxalic acid, phytic acid was more effective in solubilizing PR, suggesting that phytic acid was critical for PR utilization. Besides, secretion of phytic acid by P. vittata was not inhibited by arsenate. Our data indicated that phytic acid played an important role in efficient use of insoluble PR by P. vittata, shedding light on using insoluble PR to enhance phytoremediation of As-contaminated soils.

  14. Cellular Sequestration of Cadmium in the Hyperaccumulator Plant Species Sedum alfredii

    SciTech Connect

    Tian, Shengke; Lu, Lingli; Labavitch, John M.; Yang, Xiaoe; He, Zhenli; Hu, Hening; Sarangi, Ritimukta; Newville, Matt; Commisso, Joel; Brown, Patrick Hugh

    2012-07-23

    Spatial imaging of cadmium (Cd) in the hyperaccumulator Sedum alfredii was investigated in vivo by laser ablation inductively coupled plasma mass spectrometry and x-ray microfluorescence imaging. Preferential Cd accumulation in the pith and cortex was observed in stems of the Cd hyperaccumulating ecotype (HE), whereas Cd was restricted to the vascular bundles in its contrasting nonhyperaccumulating ecotype. Cd concentrations of up to 15,000 {micro}g g{sup -1} were measured in the pith cells, which was many fold higher than the concentrations in the stem epidermis and vascular bundles in the HE plants. In the leaves of the HE, Cd was mainly localized to the mesophyll and vascular cells rather than the epidermis. The distribution pattern of Cd in both stems and leaves of the HE was very similar to calcium but not zinc, irrespective of Cd exposure levels. Extended x-ray absorption fine structure spectroscopy analysis showed that Cd in the stems and leaves of the HE was mainly associated with oxygen ligands, and a larger proportion (about 70% in leaves and 47% in stems) of Cd was bound with malic acid, which was the major organic acid in the shoots of the plants. These results indicate that a majority of Cd in HE accumulates in the parenchyma cells, especially in stems, and is likely associated with calcium pathways and bound with organic acid (malate), which is indicative of a critical role of vacuolar sequestration of Cd in the HE S. alfredii.

  15. Cellular Sequestration of Cadmium in the Hyperaccumulator Plant Species Sedum alfredii1[C][W

    PubMed Central

    Tian, Shengke; Lu, Lingli; Labavitch, John; Yang, Xiaoe; He, Zhenli; Hu, Hening; Sarangi, Ritimukta; Newville, Matt; Commisso, Joel; Brown, Patrick

    2011-01-01

    Spatial imaging of cadmium (Cd) in the hyperaccumulator Sedum alfredii was investigated in vivo by laser ablation inductively coupled plasma mass spectrometry and x-ray microfluorescence imaging. Preferential Cd accumulation in the pith and cortex was observed in stems of the Cd hyperaccumulating ecotype (HE), whereas Cd was restricted to the vascular bundles in its contrasting nonhyperaccumulating ecotype. Cd concentrations of up to 15,000 μg g−1 were measured in the pith cells, which was many fold higher than the concentrations in the stem epidermis and vascular bundles in the HE plants. In the leaves of the HE, Cd was mainly localized to the mesophyll and vascular cells rather than the epidermis. The distribution pattern of Cd in both stems and leaves of the HE was very similar to calcium but not zinc, irrespective of Cd exposure levels. Extended x-ray absorption fine structure spectroscopy analysis showed that Cd in the stems and leaves of the HE was mainly associated with oxygen ligands, and a larger proportion (about 70% in leaves and 47% in stems) of Cd was bound with malic acid, which was the major organic acid in the shoots of the plants. These results indicate that a majority of Cd in HE accumulates in the parenchyma cells, especially in stems, and is likely associated with calcium pathways and bound with organic acid (malate), which is indicative of a critical role of vacuolar sequestration of Cd in the HE S. alfredii. PMID:22025609

  16. Constitutively High Expression of the Histidine Biosynthetic Pathway Contributes to Nickel Tolerance in Hyperaccumulator PlantsW⃞

    PubMed Central

    Ingle, Robert A.; Mugford, Sam T.; Rees, Jonathan D.; Campbell, Malcolm M.; Smith, J. Andrew C.

    2005-01-01

    Plants that hyperaccumulate Ni exhibit an exceptional degree of Ni tolerance and the ability to translocate Ni in large amounts from root to shoot. In hyperaccumulator plants in the genus Alyssum, free His is an important Ni binding ligand that increases in the xylem proportionately to root Ni uptake. To determine the molecular basis of the His response and its contribution to Ni tolerance, transcripts representing seven of the eight enzymes involved in His biosynthesis were investigated in the hyperaccumulator species Alyssum lesbiacum by RNA gel blot analysis. None of the transcripts changed in abundance in either root or shoot tissue when plants were exposed to Ni, but transcript levels were constitutively higher in A. lesbiacum than in the congeneric nonaccumulator A. montanum, especially for the first enzyme in the biosynthetic pathway, ATP-phosphoribosyltransferase (ATP-PRT). Comparison with the weak hyperaccumulator A. serpyllifolium revealed a close correlation between Ni tolerance, root His concentration, and ATP-PRT transcript abundance. Overexpression of an A. lesbiacum ATP-PRT cDNA in transgenic Arabidopsis thaliana increased the pool of free His up to 15-fold in shoot tissue, without affecting the concentration of any other amino acid. His-overproducing lines also displayed elevated tolerance to Ni but did not exhibit increased Ni concentrations in either xylem sap or shoot tissue, suggesting that additional factors are necessary to recapitulate the complete hyperaccumulator phenotype. These results suggest that ATP-PRT expression plays a major role in regulating the pool of free His and contributes to the exceptional Ni tolerance of hyperaccumulator Alyssum species. PMID:15923352

  17. Characterization of rhizosphere fungi from selenium hyperaccumulator and nonhyperaccumulator plants along the eastern Rocky Mountain Front Range.

    PubMed

    Wangeline, Ami L; Valdez, J Rodolfo; Lindblom, Stormy Dawn; Bowling, Keri L; Reeves, F Brent; Pilon-Smits, Elizabeth A H

    2011-07-01

    Selenium-hyperaccumulator plants can store over 1% (dry mass) Se in their tissues, despite the toxicity of this element at high concentrations across eukaryotes. These levels of Se can have widespread effects on the plant's ecological partners, including herbivores and pathogens. Still other partners seem to have coevolved Se tolerance. This is the first known study addressing the rhizosphere mycoflora of Se hyperaccumulators and aims to evaluate the rhizospheric fungal diversity and Se tolerance to further the knowledge of how these organisms interact with their host plants and survive in these extreme habitats. Rhizosphere fungi were isolated from Se-hyperaccumulator and nonaccumulator plant species collected from five sites in Colorado and Wyoming; four seleniferous sites and one nonseleniferous site. 259 isolates were identified to genus or species and evaluated for Se tolerance. Among the 24 represented genera, 11 comprised 86% of the isolates. The majority of isolates from the seleniferous sites were unaffected by 10 mg·L(-1) Se, irrespective of host plant (hyperaccumulator vs. nonaccumulator), while rhizosphere fungi from a control, nonseleniferous site were highly sensitive to Se at 10 mg·L(-1) and as a group were significantly less (α = 0.05) tolerant than the isolates from the seleniferous sites. Even though Se is a commonly used antifungal agent, these results suggest that rhizosphere fungi from seleniferous habitats have widespread Se tolerance, likely an adaptive advantage in their Se-rich habitat.

  18. Waste or substrate for metal hyperaccumulating plants - The potential of phytomining on waste incineration bottom ash.

    PubMed

    Rosenkranz, Theresa; Kisser, Johannes; Wenzel, Walter W; Puschenreiter, Markus

    2017-01-01

    Phytomining could represent an innovative low-cost technology for the selective recovery of valuable trace elements from secondary resources. In this context the potential of phytomining from waste incineration bottom ash was tested in a pot experiment. Fresh bottom ash was acidified, leached to reduce salinity and amended with organic material to obtain a suitable substrate for plant growth. Two hyperaccumulator species, Alyssum serpyllifolium subsp. lusitanicum and Sedum plumbizincicola as well as three metal tolerant species, Brassica napus, B. juncea and Nicotiana tabacum were tested for their phytomining potential on the pre-treated and amended bottom ashes from municipal solid waste and hazardous waste incineration. The hyperaccumulators had severe difficulties to establish on the bottom ash and to produce sufficient biomass, likely due to salinity and Cu toxicity. Nevertheless, concentrations of Ni in A. serpyllifolium and Zn in S. plumbizincicola were high, but total metal removal was limited by the low biomass production and was clearly less than on metalliferous soils. The Brassica species proved to be more tolerant to salinity and high Cu concentrations and produced considerably higher biomass, but total metal removal was limited by rather low shoot concentrations. The observed limitations of the phytomining process along with currently low market prices of Ni and Zn suggest that further optimisation of the process is required in order to make phytomining economically feasible on the tested waste incineration bottom ashes.

  19. Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China

    NASA Astrophysics Data System (ADS)

    Cui, Shuang; Zhou, Qixing; Chao, Lei

    2007-01-01

    The absorption and accumulation of Pb, Zn, Cu and Cd in some endurant weed plant species that survived in an old smeltery in Liaoning, China, were systematically investigated. Potential hyperaccumulative characteristics of these species were also discussed. The results showed that metal accumulation in plants differed with species, tissues and metals. Endurant weed plants growing in this contaminated site exhibited high metal adaptability. Both the metal exclusion and detoxification tolerance strategies were involved in the species studied. Seven species for Pb and four species for Cd were satisfied for the concentration time level standard for hyperaccumulator. Considering translocation factor (TF) values, one species for Pb, seven species for Zn, two species for Cu and five species for Cd possessed the characteristic of hyperaccumulator. Particularly, Abutilon theophrasti Medic, exhibited strong accumulative ability to four heavy metals. Although enrichment coefficients of all samples were lesser than 1 and the absolute concentrations didn’t reach the standard, species mentioned above were primarily believed to be potential hyperaccumulators.

  20. Spatial Imaging, Speciation, and Quantification of Selenium in theHyperaccumulator Plants Astragalus bisulcatus and Stanleya pinnata

    SciTech Connect

    Freeman, J.L.; Zhang, L.H.; Marcus, M.A.; Fakra, S.; McGrath,S.P.; Pilon-Smits, E.A.H.

    2006-09-01

    Astragalus bisulcatus and Stanleya pinnata hyperaccumulate selenium (Se) up to 1% of plant dry weight. In the field, Se was mostly present in the young leaves and reproductive tissues of both hyperaccumulators. Microfocused scanning x-ray fluorescence mapping revealed that Se was hyperaccumulated in trichomes in young leaves of A. bisulcatus. None of 10 other elements tested were accumulated in trichomes. Micro x-ray absorption spectroscopy and liquid chromatography-mass spectrometry showed that Se in trichomes was present in the organic forms methylselenocysteine (MeSeCys; 53%) and {gamma}-glutamyl-MeSeCys (47%). In the young leaf itself, there was 30% inorganic Se (selenate and selenite) in addition to 70% MeSeCys. In young S. pinnata leaves, Se was highly concentrated near the leaf edge and surface in globular structures that were shown by energy-dispersive x-ray microanalysis to be mainly in epidermal cells. Liquid chromatography-mass spectrometry revealed both MeSeCys (88%) and selenocystathionine (12%) inside leaf edges. In contrast, both the Se accumulator Brassica juncea and the nonaccumulator Arabidopsis thaliana accumulated Se in their leaf vascular tissues and mesophyll cells. Se in hyperaccumulators appears to be mobile in both the xylem and phloem because Se-treated S. pinnata was found to be highly toxic to phloem-feeding aphids, and MeSeCys was present in the vascular tissues of a S. pinnata young leaf petiole as well as in guttation fluid. The compartmentation of organic selenocompounds in specific storage areas in the plant periphery appears to be a unique property of Se hyperaccumulators. The high concentration of Se in the plant periphery may contribute to Se tolerance and may also serve as an elemental plant defense mechanism.

  1. Spatial Imaging, Speciation, and Quantification of Selenium in the Hyperaccumulator Plants Astragalus bisulcatus and Stanleya pinnata1

    PubMed Central

    Freeman, John L.; Zhang, Li Hong; Marcus, Matthew A.; Fakra, Sirine; McGrath, Steve P.; Pilon-Smits, Elizabeth A.H.

    2006-01-01

    Astragalus bisulcatus and Stanleya pinnata hyperaccumulate selenium (Se) up to 1% of plant dry weight. In the field, Se was mostly present in the young leaves and reproductive tissues of both hyperaccumulators. Microfocused scanning x-ray fluorescence mapping revealed that Se was hyperaccumulated in trichomes in young leaves of A. bisulcatus. None of 10 other elements tested were accumulated in trichomes. Micro x-ray absorption spectroscopy and liquid chromatography-mass spectrometry showed that Se in trichomes was present in the organic forms methylselenocysteine (MeSeCys; 53%) and γ-glutamyl-MeSeCys (47%). In the young leaf itself, there was 30% inorganic Se (selenate and selenite) in addition to 70% MeSeCys. In young S. pinnata leaves, Se was highly concentrated near the leaf edge and surface in globular structures that were shown by energy-dispersive x-ray microanalysis to be mainly in epidermal cells. Liquid chromatography-mass spectrometry revealed both MeSeCys (88%) and selenocystathionine (12%) inside leaf edges. In contrast, both the Se accumulator Brassica juncea and the nonaccumulator Arabidopsis thaliana accumulated Se in their leaf vascular tissues and mesophyll cells. Se in hyperaccumulators appears to be mobile in both the xylem and phloem because Se-treated S. pinnata was found to be highly toxic to phloem-feeding aphids, and MeSeCys was present in the vascular tissues of a S. pinnata young leaf petiole as well as in guttation fluid. The compartmentation of organic selenocompounds in specific storage areas in the plant periphery appears to be a unique property of Se hyperaccumulators. The high concentration of Se in the plant periphery may contribute to Se tolerance and may also serve as an elemental plant defense mechanism. PMID:16920881

  2. Addition of straw from hyperaccumulator plants to cadmium-contaminated soil increases cadmium uptake by loquat seedlings.

    PubMed

    Lin, Lijin; Liao, Ming'an; Lv, Xiulan; Liang, Dong; Xia, Hui; Wang, Jin; Wang, Xun

    2017-05-01

    The straw from three different cadmium (Cd) hyperaccumulators (Galinsoga parviflora, Youngia erythrocarpa, and Solanum photeinocarpum) was added to Cd-contaminated soil, and its effects on plant growth and Cd accumulation in loquat seedlings were evaluated. Straw from each of G. parviflora, Y. erythrocarpa, and S. photeinocarpum was added to Cd-contaminated soil before planting seedlings of two varieties of loquat (Dawuxing and Chuanzao). Addition of straw from G. parviflora and S. photeinocarpum increased the root and shoot biomasses of both loquat varieties, compared with that in the control. Addition of straw also increased Cd uptake by loquat seedlings. The treatments could be ranked, from highest Cd contents in roots and shoots of loquat seedlings to lowest, as follows: S. photeinocarpum straw > Y. erythrocarpa straw > G. parviflora straw > control. All three types of hyperaccumulator straw increased the amount of Cd extracted by shoots of two loquat seedlings, with the maximum effect in the S. photeinocarpum straw treatment. Addition of hyperaccumulator straw also resulted in increased soil invertase, urease, and catalase activities to varying degrees. Among the three types of hyperaccumulator straw, S. photeinocarpum straw was the most effective to increase Cd accumulation in loquat seedlings. Therefore, this material has the potential to increase the phytoremediation capacity of loquat seedlings in Cd-contaminated orchards.

  3. Bacterial Communities Associated with Flowering Plants of the Ni Hyperaccumulator Thlaspi goesingense

    PubMed Central

    Idris, Rughia; Trifonova, Radoslava; Puschenreiter, Markus; Wenzel, Walter W.; Sessitsch, Angela

    2004-01-01

    Thlaspi goesingense is able to hyperaccumulate extremely high concentrations of Ni when grown in ultramafic soils. Recently it has been shown that rhizosphere bacteria may increase the heavy metal concentrations in hyperaccumulator plants significantly, whereas the role of endophytes has not been investigated yet. In this study the rhizosphere and shoot-associated (endophytic) bacteria colonizing T. goesingense were characterized in detail by using both cultivation and cultivation-independent techniques. Bacteria were identified by 16S rRNA sequence analysis, and isolates were further characterized regarding characteristics that may be relevant for a beneficial plant-microbe interaction—Ni tolerance, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and siderophore production. In the rhizosphere a high percentage of bacteria belonging to the Holophaga/Acidobacterium division and α-Proteobacteria were found. In addition, high-G+C gram-positive bacteria, Verrucomicrobia, and microbes of the Cytophaga/Flexibacter/Bacteroides division colonized the rhizosphere. The community structure of shoot-associated bacteria was highly different. The majority of clones affiliated with the Proteobacteria, but also bacteria belonging to the Cytophaga/Flexibacter/Bacteroides division, the Holophaga/Acidobacterium division, and the low-G+C gram-positive bacteria, were frequently found. A high number of highly related Sphingomonas 16S rRNA gene sequences were detected, which were also obtained by the cultivation of endophytes. Rhizosphere isolates belonged mainly to the genera Methylobacterium, Rhodococcus, and Okibacterium, whereas the majority of endophytes showed high levels of similarity to Methylobacterium mesophilicum. Additionally, Sphingomonas spp. were abundant. Isolates were resistant to Ni concentrations between 5 and 12 mM; however, endophytes generally tolerated higher Ni levels than rhizosphere bacteria. Almost all bacteria were able to produce siderophores

  4. Phytomining of valuable metals from waste incineration residues using hyperaccumulator plants

    NASA Astrophysics Data System (ADS)

    Rosenkranz, Theresa; Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika; Puschenreiter, Markus

    2015-04-01

    Worldwide the availability of primary sources of certain economically important metals is decreasing, resulting in high supply risks and increasing prices for this materials. Therefore, an alternative way of retrieving these high valuable technical metals is the recycling and use of anthropogenic secondary sources, such as waste incineration residues. Phytomining offers an environmentally sound and cheap technology to recover such metals from secondary sources. Thus, the aim of our research work is to investigate the potential of phytomining from waste incineration slags by growing metal hyperaccumulating plants on this substrates and use the metal enriched biomass as a bio-ore. As a first stage, material from Vienna's waste incineration plants was sampled and analyzed. Residues from municipal wastes as well as residues from hazardous waste incineration and sewage sludge incineration were analyzed. In general, the slags can be characterized by a very high pH, high salinity and high heavy metal concentrations. Our work is targeting the so-called critical raw materials defined by the European Commission in 2014. Thus, the target metal species in our project are amongst others cobalt, chromium, antimony, tungsten, gallium, nickel and selected rare earth elements. This elements are present in the slags at moderate to low concentrations. In order to optimize the substrate for plant growth the high pH and salt content as well as the low nitrogen content in the slags need to be controlled. Thus, different combinations of amendments, mainly from the waste industry, as well as different acidifying agents were tested for conditioning the substrate. Washing the slags with diluted nitric acid turned out to be effective for lowering the pH. The acid treated substrate in combination with material from mechanical biological waste treatment and biochar, is currently under investigation in a greenhouse pot experiment. The experimental setup consists of a full factorial design

  5. Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv.

    PubMed

    Fuente, V; Rufo, L; Juárez, B H; Menéndez, N; García-Hernández, M; Salas-Colera, E; Espinosa, A

    2016-01-01

    We report a detailed work of composition and location of naturally formed iron biominerals in plant cells tissues grown in iron rich environments as Imperata cylindrica. This perennial grass grows on the Tinto River banks (Iberian Pyritic Belt) in an extreme acidic ecosystem (pH∼2.3) with high concentration of dissolved iron, sulphate and heavy metals. Iron biominerals were found at the cellular level in tissues of root, stem and leaf both in collected and laboratory-cultivated plants. Iron accumulated in this plant as a mix of iron compounds (mainly as jarosite, ferrihydrite, hematite and spinel phases) was characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy (MS), magnetometry (SQUID), electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX; TEM-EDX; HRSTEM). A low fraction of phosphorous was detected in this iron hyperaccumulator plant. Root and rhizomes tissues present a high proportion of ferromagnetic iron oxide compounds. Iron oxides-rich zones are localized in electron dense intra and inter-cellular aggregates that appear as dark deposits covering the inner membrane and organelles of the cell. This study aims to contribute to a better understanding of the mechanisms of accumulation, transport, distribution of iron in Imperata cylindrica.

  6. Effects of bacteria on cadmium bioaccumulation in the cadmium hyperaccumulator plant Beta vulgaris var. cicla L.

    PubMed

    Chen, Su; Chao, Lei; Sun, Lina; Sun, Tieheng

    2013-01-01

    To investigate the effects of two cadmium-tolerant bacteria, Staphylococcus pasteuri (S. pasteuri X1) and Agrobacterium tumefaciens (A. tumefaciens X2), on cadmium uptake by the cadmium hyperaccumulator plant Beta vulgaris var. cicla L., a pot experiment with artificially contaminated soil was conducted. The results demonstrated that both cadmium-tolerant bacteria enhanced the dry weight of Beta vulgaris var. cicla L. The total dry weights of plants in the control CK20, S. pasteuri X1 and A. tumefaciens X2 treatments were 0.85, 1.13, and 1.38 g/pot, respectively. Compared with the control CK20 findings, the total dry weight of plants was increased by 32.8 and 61.1% after inoculation with S. pasteuri X1 and A. tumefaciens X2, respectively, indicating that A. tumefaciens X2 more strongly promoted the growth of Beta vulgaris var. cicla L. than S. pasteuri X1. In addition, inoculation with S. pasteuri X1 and A. tumefaciens X2 significantly (p < 0.05) promoted cadmium uptake by plants and improved the bioaccumulation of cadmium by the plants from the soil. Moreover, the inoculation of S. pasteuri X1 and A. tumefaciens X2 effectively facilitated the transfer of cadmium in the soil from the Fe-Mn oxide and residual fractions to the soluble plus exchangeable and weakly specially adsorbed fractions in the rhizosphere soils of plants. The bacterial enhancement of cadmium phytoavailability might provide a potential and promising method to increase the efficiency of phytoextraction.

  7. Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant.

    PubMed

    Buendía-González, L; Orozco-Villafuerte, J; Cruz-Sosa, F; Barrera-Díaz, C E; Vernon-Carter, E J

    2010-08-01

    The bioaccumulation of Cr(VI) and Cd(II) in Prosopis laevigata and the effect of these heavy metals on plant growth were assessed. P. laevigata seeds were cultured during 50 days on modified Murashige-Skoog medium supplemented with four different concentrations of Cr(VI) (0-3.4mM) and Cd(II) (0-2.2mM), respectively. Heavy metals did not stop germination, but smaller plants with fewer leaves and secondary roots were produced. Seedlings showed an accumulation of 8176 and 21,437 mg Cd kg(-1) and of 5461 and 8090 mg Cr kg(-1) dry weight, in shoot and root, when cultured with 0.65 mM Cd(II) and 3.4mM Cr(VI), respectively. These results indicated that significant translocation from the roots unto aerial parts took place. A bioaccumulation factor greater than 100 for Cd and 24 for Cr was exhibited by the seedlings. P. laevigata can be considered as a potential hyperaccumulator of Cd(II) and Cr(VI) species and considered as a promising candidate for phytoremediation purposes. (c) 2010 Elsevier Ltd. All rights reserved.

  8. Evaluation of specimen preparation techniques for micro-PIXE localisation of elements in hyperaccumulating plants

    NASA Astrophysics Data System (ADS)

    Kachenko, Anthony G.; Siegele, Rainer; Bhatia, Naveen P.; Singh, Balwant; Ionescu, Mihail

    2008-04-01

    Hybanthus floribundus subsp. floribundus, a rare Australian Ni-hyperaccumulating shrub and Pityrogramma calomelanos var. austroamericana, an Australian naturalized As-hyperaccumulating fern are promising species for use in phytoremediation of contaminated sites. Micro-proton-induced X-ray emission (μ-PIXE) spectroscopy was used to map the elemental distribution of the accumulated metal(loid)s, Ca and K in leaf or pinnule tissues of the two plant species. Samples were prepared by two contrasting specimen preparation techniques: freeze-substitution in tetrahydrofuran (THF) and freeze-drying. The specimens were analysed to compare the suitability of each technique in preserving (i) the spatial elemental distribution and (ii) the tissue structure of the specimens. Further, the μ-PIXE results were compared with concentration of elements in the bulk tissue obtained by ICP-AES analysis. In H. floribundus subsp. floribundus, μ-PIXE analysis revealed Ni, Ca and K concentrations in freeze-dried leaf tissues were at par with bulk tissue concentrations. Elemental distribution maps illustrated that Ni was preferentially localised in the adaxial epidermal tissues (1% DW) and least concentration was found in spongy mesophyll tissues (0.53% DW). Conversely, elemental distribution maps of THF freeze-substituted tissues indicated significantly lower Ni, Ca and K concentrations than freeze-dried specimens and bulk tissue concentrations. Moreover, Ni concentrations were uniform across the whole specimen and no localisation was observed. In P. calomelanos var. austroamericana freeze-dried pinnule tissues, μ-PIXE revealed statistically similar As, Ca and K concentrations as compared to bulk tissue concentrations. Elemental distribution maps showed that As localisation was relatively uniform across the whole specimen. Once again, THF freeze-substituted tissues revealed a significant loss of As compared to freeze-dried specimens and the concentrations obtained by bulk tissue analysis

  9. Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea.

    PubMed

    Usman, Adel R A; Lee, Sang Soo; Awad, Yasser M; Lim, Kyoung Jae; Yang, Jae E; Ok, Yong Sik

    2012-05-01

    In recent decades, heavy metal contamination in soil adjacent to chromated copper arsenate (CCA) treated wood has received increasing attention. This study was conducted to determine the pollution level (PL) based on the concentrations of Cr, Cu and As in soils and to evaluate the remediative capacity of native plant species grown in the CCA contaminated site, Gangwon Province, Korea. The pollution index (PI), integrated pollution index (IPI), bioaccumulation factors (BAF(shoots) and BAF(roots)) and translocation factor (TF) were determined to ensure soil contamination and phytoremediation availability. The 19 soil samples from 10 locations possibly contaminated with Cr, Cu and As were collected. The concentrations of Cr, Cu and As in the soil samples ranged from 50.56-94.13 mg kg(-1), 27.78-120.83 mg kg(-1), and 0.13-9.43 mg kg(-1), respectively. Generally, the metal concentrations decreased as the distance between the CCA-treated wood structure and sampling point increased. For investigating phytoremediative capacity, the 19 native plant species were also collected in the same area with soil samples. Our results showed that only one plant species of Iris ensata, which presented the highest accumulations of Cr (1120 mg kg(-1)) in its shoot, was identified as a hyperaccumulator. Moreover, the relatively higher values of BAF(shoot) (3.23-22.10) were observed for Typha orientalis, Iris ensata and Scirpus radicans Schk, suggesting that these plant species might be applicable for selective metal extraction from the soils. For phytostabilization, the 15 plant species with BAF(root) values>1 and TF values<1 were suitable; however, Typha orientalis was the best for Cr.

  10. The Puccinia species of Berkheya (Asteraceae) with description of four new species from South Africa.

    PubMed

    Berndt, Reinhard

    2010-01-01

    Puccinia species (rust fungi, Pucciniales, formerly Uredinales) occurring on Berkheya (syn. Stobaea) of Asteraceae are critically evaluated. Puccinia berkheyicola, P. stobaeae var. stobaeae and P. stobaeae var. woodii are recognized as valid species and varieties, while P. berkheyae is relegated to a synonym of P. stobaeae var. stobaeae. Lectotypes are selected for P. stobaeae var. stobaeae and P. stobaeae var. woodii. P. clanwilliamensis, P. garstfonteinii and P. monsfontium are proposed as new species for three rust fungi previously assigned to P. stobaeae; P. berkheyaephila is described as new on B. bipinnatifida. A key to the accepted species is presented.

  11. Assessment of plants from the Brassicaceae family as genetic models for the study of nickel and zinc hyperaccumulation.

    PubMed

    Peer, Wendy Ann; Mahmoudian, Mehrzad; Freeman, John L; Lahner, Brett; Richards, Elizabeth L; Reeves, Roger D; Murphy, Angus S; Salt, David E

    2006-01-01

    We report on the second phase of a programme to select a relative of Arabidopsis thaliana for use in large-scale molecular genetic studies of nickel (Ni) and zinc (Zn) hyperaccumulation. We also report on the relatedness among Thlaspi caerulescens accessions and the utility of using O-acetyl-L-serine as a marker for Ni and Zn hyperaccumulation potential. Twenty-seven new accessions of metal-accumulating species collected in the Czech Republic, France, Greece, Italy, Slovenia and the USA during Spring-Summer 2002 were evaluated. The criteria established for selection were hyperaccumulation of metals (Ni and Zn); compact growth habit; reasonable time to flowering; production of > or = 1000 seeds per plant; self-fertility; compact diploid genome; high sequence similarity to A. thaliana; > or = 0.1% transformation efficiency with easy selection. We conclude that the best candidate identified in the first phase was the best candidate overall: T. caerulescens accession St Félix de Pallières.

  12. Facultative hyperaccumulation of heavy metals and metalloids.

    PubMed

    Pollard, A Joseph; Reeves, Roger D; Baker, Alan J M

    2014-03-01

    Approximately 500 species of plants are known to hyperaccumulate heavy metals and metalloids. The majority are obligate metallophytes, species that are restricted to metalliferous soils. However, a smaller but increasing list of plants are "facultative hyperaccumulators" that hyperaccumulate heavy metals when occurring on metalliferous soils, yet also occur commonly on normal, non-metalliferous soils. This paper reviews the biology of facultative hyperaccumulators and the opportunities they provide for ecological and evolutionary research. The existence of facultative hyperaccumulator populations across a wide edaphic range allows intraspecific comparisons of tolerance and uptake physiology. This approach has been used to study zinc and cadmium hyperaccumulation by Noccaea (Thlaspi) caerulescens and Arabidopsis halleri, and it will be instructive to make similar comparisons on species that are distributed even more abundantly on normal soil. Over 90% of known hyperaccumulators occur on serpentine (ultramafic) soil and accumulate nickel, yet there have paradoxically been few experimental studies of facultative nickel hyperaccumulation. Several hypotheses suggested to explain the evolution of hyperaccumulation seem unlikely when most populations of a species occur on normal soil, where plants cannot hyperaccumulate due to low metal availability. In such species, it may be that hyperaccumulation is an ancestral phylogenetic trait or an anomalous manifestation of physiological mechanisms evolved on normal soils, and may or may not have direct adaptive benefits. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar.

    PubMed

    Rees, Frédéric; Sterckeman, Thibault; Morel, Jean Louis

    2016-01-01

    Biochar may be used as an amendment in contaminated soils in phytoremediation processes. The mechanisms controlling plant metal uptake in biochar-amended soils remain however unclear. This work aimed at evaluating the influence of biochar on root development and its consequence on plant metal uptake, for two non-hyperaccumulating plants (Zea mays and Lolium perenne) and one hyperaccumulator of Cd and Zn (Noccaea caerulescens). We conducted rhizobox experiments using one acidic and one alkaline soil contaminated with Cd, Pb and Zn. Biochar was present either homogeneously in the whole soil profile or localized in specific zones. A phenomenon of root proliferation specific to biochar-amended zones was seen on the heterogeneous profiles of the acidic soil and interpreted by a decrease of soil phytotoxicity in these zones. Biochar amendments also favored root growth in the alkaline soil as a result of the lower availability of certain nutrients in the amended soil. This increase of root surface led to a higher accumulation of metals in roots of Z.mays in the acidic soil and in shoots of N. caerulescens in the alkaline soil. In conclusion, biochar can have antagonist effects on plant metal uptake by decreasing metal availability, on one hand, and by increasing root surface and inducing root proliferation, on the other hand. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Hyperaccumulator of Pb in native plants growing on Peruvian mine tailings

    NASA Astrophysics Data System (ADS)

    Bech, Jaume; Roca, Nuria; Boluda, Rafael; Tume, Pedro; Duran, Paola; Poma, Wilfredo; Sanchez, Isidoro

    2014-05-01

    samples were taken at four locations (CA1, CA2, CA3, CA4) with different levels of Pb. The Pb soil content (mean ± standard deviation) in mg•kg-1 is as follows: CA1 3992 ± 301; CA2 10128 ± 2247, CA3 14197 ± 895, CA4 16060 ± 810. The non-polluted value around the mine was Pb 124 mg•kg-1. Unusual elevated concentrations of Pb (over 1000 mg kg-1) and TF greater than one were detected in shoots of 6 different plants species (Ageratina sp., Achirodine alata, Cortaderia apalothica, Epilobium denticulatum, Taraxacum officinalis and Trifolium repens). The location CA4 has the maximum content of Pb in the shoots of Ageratina sp. (5045±77 mg•kg-1), C. apalothica (3367±188 mg•kg-1), E. denticulatum (13599±848 mg•kg-1), T. officinalis (2533±47 mg•kg-1) and T. repens (2839±231 mg•kg-1). However, the BF (Bioaccumulation Factor) was smaller than one. Despite the low BF index, the great TFs for Pb indicate that these plant species effectively translocate this metal (i.e., 2.4 for Ageratina sp., 2.3 for C. apalothica, 1.6 for T. repens, 1.5 for A. alata, 1.3 for T. officinalis and 1.2 for E. denticulatum). It seems that the BF is not a reliable index when the metal soil concentration is extremely large. Controlled-environment studies must be performed to definitively confirm the Pb hyperaccumulation character of cited plant species.

  15. Cd-induced changes in leaf proteome of the hyperaccumulator plant Phytolacca americana.

    PubMed

    Zhao, Le; Sun, Yong-Le; Cui, Su-Xia; Chen, Mei; Yang, Hao-Meng; Liu, Hui-Min; Chai, Tuan-Yao; Huang, Fang

    2011-09-01

    Cadmium (Cd) is highly toxic to all organisms. Soil contamination by Cd has become an increasing problem worldwide due to the intensive use of Cd-containing phosphate fertilizers and industrial zinc mining. Phytolacca americana L. is a Cd hyperaccumulator plant that can grow in Cd-polluted areas. However, the molecular basis for its remarkable Cd resistance is not known. In this study, the effects of Cd exposure on protein expression patterns in P.americana was investigated by 2-dimensional gel electrophoresis (2-DE). 2-DE profiles of leaf proteins from both control and Cd-treated (400μM, 48h) seedlings were compared quantitatively using ImageMaster software. In total, 32 differentially expressed protein spots were identified using MALDI-TOF/TOF mass spectrometry coupled to protein database search, corresponding to 25 unique gene products. Of those 14 were enhanced/induced while 11 reduced under Cd treatment. The alteration pattern of protein expression was verified for several key proteins involved in distinct metabolic pathways by immuno-blot analysis. Major changes were found for the proteins involved in photosynthetic pathways as well as in the sulfur- and GSH-related metabolisms. One-third of the up-regulated proteins were attributed to transcription, translation and molecular chaperones including a protein belonging to the calreticulin family. Other proteins include antioxidative enzymes such as 2-cys-peroxidase and oxidoreductases. The results of this proteomic analysis provide the first and primary information regarding the molecular basis of Cd hypertolerance in P. americana. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Lewis acid catalysis and Green oxidations: sequential tandem oxidation processes induced by Mn-hyperaccumulating plants.

    PubMed

    Escande, Vincent; Renard, Brice-Loïc; Grison, Claude

    2015-04-01

    Among the phytotechnologies used for the reclamation of degraded mining sites, phytoextraction aims to diminish the concentration of polluting elements in contaminated soils. However, the biomass resulting from the phytoextraction processes (highly enriched in polluting elements) is too often considered as a problematic waste. The manganese-enriched biomass derived from native Mn-hyperaccumulating plants of New Caledonia was presented here as a valuable source of metallic elements of high interest in chemical catalysis. The preparation of the catalyst Eco-Mn1 and reagent Eco-Mn2 derived from Grevillea exul exul and Grevillea exul rubiginosa was investigated. Their unusual polymetallic compositions allowed to explore new reactivity of low oxidative state of manganese-Mn(II) for Eco-Mn1 and Mn(IV) for Eco-Mn2. Eco-Mn1 was used as a Lewis acid to catalyze the acetalization/elimination of aldehydes into enol ethers with high yields; a new green and stereoselective synthesis of (-)-isopulegol via the carbonyl-ene cyclization of (+)-citronellal was also performed with Eco-Mn1. Eco-Mn2 was used as a mild oxidative reagent and controlled the oxidation of aliphatic alcohols into aldehydes with quantitative yields. Oxidative cleavage was interestingly noticed when Eco-Mn2 was used in the presence of a polyol. Eco-Mn2 allowed direct oxidative iodination of ketones without using iodine, which is strongly discouraged by new environmental legislations. Finally, the combination of the properties in the Eco-Mn catalysts and reagents gave them an unprecedented potential to perform sequential tandem oxidation processes through new green syntheses of p-cymene from (-)-isopulegol and (+)-citronellal; and a new green synthesis of functionalized pyridines by in situ oxidation of 1,4-dihydropyridines.

  17. Fixation of metals in soil constituents and potential remobilization by hyperaccumulating and non-hyperaccumulating plants: results from an isotopic dilution study.

    PubMed

    Hammer, Daniel; Keller, Catherine; McLaughlin, Michael J; Hamon, Rebecca E

    2006-10-01

    In this study isotopic dilution methods were used to investigate the hypothesis that access to metals associated with specific chemical components in the soil that are not available to non-accumulator species could be involved in hyperaccumulation. The hyperaccumulator Thlaspi caerulescens and a non-accumulator species, Brassica napus, were grown in Cd and Zn enriched soil components calcite, goethite, charcoal and cryptomelane. The metal enriched components were aged to allow transformation of a proportion of added metals to non-labile forms. Results from the isotopic dilution L value method showed that despite taking up more metals, T. caerulescens accessed the same pool of metals as B. napus. Hence differential access to different solid-phase pools of metals appears to be an unlikely mechanism underlying metal hyperaccumulation. For all components except charcoal, L values for Cd and Zn were greater than the corresponding E values suggesting that E values may tend to underestimate the bioavailable fraction of metals in soils.

  18. Do high-nickel leaves shed by the nickel hyperaccumulator Alyssum murale inhibit seed germination of competing plants?

    PubMed

    Zhang, Lan; Angle, J Scott; Chaney, Rufus L

    2007-01-01

    Elemental allelopathy suggests that nickel (Ni)-rich leaves shed by hyperaccumulators inhibit the germination and growth of nearby plant species. Here, the germination of eight herbaceous species following addition of Alyssum murale biomass or Ni(NO3)2, with the same Ni level added to soil, was assessed. The distribution of Ni in soil was tested by determining Ni phytoavailability and speciation over time. Phytoavailable Ni in soil amended with biomass declined rapidly over time due to Ni binding to iron (Fe)/manganese (Mn) oxides in the soil. No significant effects on seed germination were observed. Unlike the Ni complex in Alyssum biomass, more Ni remained soluble and phytoavailable in soil amended with Ni(NO3)2, thus significantly inhibiting seed germination. High-Ni leaves shed by hyperaccumulators did not appear to create a 'toxic zone' around the plants and inhibit germination or growth of competing plants. The lack of an allelopathic effect was probably related to low Ni availability.

  19. Elucidating the selenium and arsenic metabolic pathways following exposure to the non-hyperaccumulating Chlorophytum comosum, spider plant

    PubMed Central

    Afton, Scott E.; Catron, Brittany; Caruso, Joseph A.

    2009-01-01

    Although many studies have investigated the metabolism of selenium and arsenic in hyperaccumulating plants for phytoremediation purposes, few have explored non-hyperaccumulating plants as a model for general contaminant exposure to plants. In addition, the result of simultaneous supplementation with selenium and arsenic has not been investigated in plants. In this study, Chlorophytum comosum, commonly known as the spider plant, was used to investigate the metabolism of selenium and arsenic after single and simultaneous supplementation. Size exclusion and ion-pairing reversed phase liquid chromatography were coupled to an inductively coupled plasma mass spectrometer to obtain putative metabolic information of the selenium and arsenic species in C. comosum after a mild aqueous extraction. The chromatographic results depict that selenium and arsenic species were sequestered in the roots and generally conserved upon translocation to the leaves. The data suggest that selenium was directly absorbed by C. comosum roots when supplemented with SeVI, but a combination of passive and direct absorption occurred when supplemented with SeIV due to the partial oxidation of SeIV to SeVI in the rhizosphere. Higher molecular weight selenium species were more prevalent in the roots of plants supplemented with SeIV, but in the leaves of plants supplemented with SeVI due to an increased translocation rate. When supplemented as AsIII, arsenic is proposed to be passively absorbed as AsIII and partially oxidized to AsV in the plant root. Although total elemental analysis demonstrates a selenium and arsenic antagonism, a compound containing selenium and arsenic was not present in the general aqueous extract of the plant. PMID:19273464

  20. Elucidating the selenium and arsenic metabolic pathways following exposure to the non-hyperaccumulating Chlorophytum comosum, spider plant.

    PubMed

    Afton, Scott E; Catron, Brittany; Caruso, Joseph A

    2009-01-01

    Although many studies have investigated the metabolism of selenium and arsenic in hyperaccumulating plants for phytoremediation purposes, few have explored non-hyperaccumulating plants as a model for general contaminant exposure to plants. In addition, the result of simultaneous supplementation with selenium and arsenic has not been investigated in plants. In this study, Chlorophytum comosum, commonly known as the spider plant, was used to investigate the metabolism of selenium and arsenic after single and simultaneous supplementation. Size exclusion and ion-pairing reversed phase liquid chromatography were coupled to an inductively coupled plasma mass spectrometer to obtain putative metabolic information of the selenium and arsenic species in C. comosum after a mild aqueous extraction. The chromatographic results depict that selenium and arsenic species were sequestered in the roots and generally conserved upon translocation to the leaves. The data suggest that selenium was directly absorbed by C. comosum roots when supplemented with Se(VI), but a combination of passive and direct absorption occurred when supplemented with Se(IV) due to the partial oxidation of Se(IV) to Se(VI) in the rhizosphere. Higher molecular weight selenium species were more prevalent in the roots of plants supplemented with Se(IV), but in the leaves of plants supplemented with Se(VI) due to an increased translocation rate. When supplemented as As(III), arsenic is proposed to be passively absorbed as As(III) and partially oxidized to As(V) in the plant root. Although total elemental analysis demonstrates a selenium and arsenic antagonism, a compound containing selenium and arsenic was not present in the general aqueous extract of the plant.

  1. Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum

    NASA Astrophysics Data System (ADS)

    Krämer, U.; Grime, G. W.; Smith, J. A. C.; Hawes, C. R.; Baker, A. J. M.

    1997-07-01

    Certain terrestrial plants are able to accumulate metals such as zinc, manganese, nickel, cobalt, or copper in their above-ground biomass. The largest group of these so-called "metal hyperaccumulators" is to be found among certain species in the family Brassicaceae endemic to ultramafic soils. For example, nickel concentrations in members of the genus Alyssum can reach 3% of the leaf dry biomass. However, nickel levels in the root tissue of these plants are low, suggesting that hyperaccumulation is associated with effective metal translocation from root to shoot and sequestration of the metal in non-toxic form within the leaves. To investigate the sites of nickel localization within A. lesbiacum, leaf cross-sections were examined by nuclear microscopy using PIXE and RBS on the Oxford Scanning Proton Microprobe (SPM) with a spatial resolution of 1 μm. This paper describes the sample preparation and analysis methods and presents some preliminary results indicating that nickel is sequestered to a considerable degree within the epidermal trichomes on the leaf surface.

  2. Characterization of a selenium-tolerant rhizosphere strain from a novel Se-hyperaccumulating plant Cardamine hupingshanesis.

    PubMed

    Tong, Xinzhao; Yuan, Linxi; Luo, Lei; Yin, Xuebin

    2014-01-01

    A novel selenium- (Se-) hyperaccumulating plant, Cardamine hupingshanesis, accumulating Se as a form of SeCys2, was discovered in Enshi, Hubei, China, which could not be explained by present selenocysteine methyltransferase (SMT) theory. However, it is interesting to investigate if rhizosphere bacteria play some roles during SeCys2 accumulation. Here, one Se-tolerant rhizosphere strain, Microbacterium oxydans, was isolated from C. hupingshanesis. Phylogenetic analysis and 16S rRNA gene sequences determined the strain as a kind of Gram positive bacillus and belonged to the family Brevibacterium frigoritolerans. Furthermore, Se tolerance test indicated the strain could grow in extreme high Se level of 15.0 mg Se L(-1). When exposed to 1.5 mg Se L(-1), SeCys2 was the predominant Se species in the bacteria, consistent with the Se species in C. hupingshanesis. This coincidence might reveal that this strain played some positive effect in SeCys2 accumulation of C. hupingshanesis. Moreover, when exposed to 1.5 mg Se L(-1) or 15.0 mg Se L(-1), As absorption diminished in the logarithmic phase. In contrast, As absorption increased when exposed to 7.5 mg Se L(-1), indicating As metabolism processes could be affected by Se on this strain. The present study provided a sight on the role of rhizosphere bacteria during Se accumulation for Se-hyperaccumulating plant.

  3. Phytochelatin synthesis plays a similar role in shoots of the cadmium hyperaccumulator Sedum alfredii as in non-resistant plants.

    PubMed

    Zhang, Zhong-Chun; Chen, Bo-Xia; Qiu, Bao-Sheng

    2010-08-01

    Phytochelatin (PC) synthesis is considered necessary for Cd tolerance in non-resistant plants, but roles for PCs in hyper-accumulating species are currently unknown. In the present study, the relationship between PC synthesis and Cd accumulation was investigated in the Cd hyperaccumulator Sedum alfredii Hance. PCs were most abundant in leaves followed by stems, but hardly detected by the reversed-phase high-performance liquid chromatography (HPLC) in roots. Both PC synthesis and Cd accumulation were time-dependent and a linear correlation between the two was established with about 1:15 PCs : Cd stoichiometry in leaves. PCs were found in the elution fractions, which were responsible for Cd peaks in the anion exchange chromatograph assay. About 5% of the total Cd was detected in these elution fractions as PCs were found. Most Cd was observed in the cell wall and intercellular space of leaf vascular cells. These results suggest that PCs do not detoxify Cd in roots of S. alfredii. However, like in non-resistant plants, PCs might act as the major intracellular Cd detoxification mechanism in shoots of S. alfredii.

  4. NanoSIMS and EPMA analysis of nickel localisation in leaves of the hyperaccumulator plant Alyssum lesbiacum

    NASA Astrophysics Data System (ADS)

    Smart, K. E.; Kilburn, M. R.; Salter, C. J.; Smith, J. A. C.; Grovenor, C. R. M.

    2007-02-01

    Certain plants known as `metal hyperaccumulators' can accumulate exceptional concentrations of elements such as zinc, manganese, nickel, cobalt, copper, selenium, cadmium or arsenic in their above ground tissue. In members of the genus Alyssum, nickel concentrations can reach values as high as 3% of leaf dry biomass. These plants must possess very effective mechanisms for the transport, chelation and sequestration of such elements within their tissues to avoid the toxic effects of free metal ions. Evidence from a number of different techniques suggests that nickel is concentrated primarily in the outermost, epidermal tissue of leaves of Alyssum hyperaccumulators, but there is currently no consensus on the principal sites of nickel sequestration. In this study, high resolution secondary ion mass spectrometry (NanoSIMS) analysis has been performed on longitudinal sections of Alyssum lesbiacum leaves. Elemental maps were obtained which revealed the high concentrations of nickel in the peripheral regions of the large unicellular stellate leaf hairs (trichomes) and in the epidermal cell layer. Electron probe microanalysis (EPMA) was used to provide independent confirmation of elemental distribution in the specimens, but the superior spatial resolution and high chemical sensitivity of the NanoSIMS technique provided a more detailed image of elemental distribution in these biological specimens at the cellular level.

  5. Recovering metals from sewage sludge, waste incineration residues and similar substances with hyperaccumulative plants

    NASA Astrophysics Data System (ADS)

    Kisser, Johannes; Gattringer, Heinz; Iordanopoulos-Kisser, Monika

    2015-04-01

    observed in so-called hyperaccumulating metalophytes, which are studied for its suitability to be incorporated in metal recovery processes of elements that diffusely occur in different waste streams. In a systematic series of tests under laboratory conditions the accumulation behaviour for many different elements including rare earth metals of a selection of candidate plants growing on sewage sludge, incineration residues and industrial leftovers was assessed (quantitavely and qualitatively). Growth performance of these plants as well as the most suitable substrate properties were evaluated. The results of this project provided the groundwork for further research and development steps that might bring to practical implementation a technological option with potentially huge benefits: The recovery of valuable metal resources from sewage sludge, incineration ashes and metal rich wastewaters by environmentally friendly and low energy means. Simultaneous decontamination of the input substrates from heavy metals, opening the possibility for these nutrient streams to be redirected to biological regeneration processes (for example use as fertilizers in agriculture) without fear of polluting soils with heavy metal loads. Generation of biomass on contaminated substrates can yield usable energy surplus through incineration during or after processing.

  6. A native Zn/Cd transporting P1B ATPase from natural overexpression in a hyperaccumulator plant reveals post-translational processing

    USDA-ARS?s Scientific Manuscript database

    TcHMA4 is a P1B-type ATPase that is highly expressed in the Cd/Zn hyperaccumulator plant Thlaspi caerulescens and contains a C-terminal 9-histidine repeat. After isolation from roots, we purified TcHMA4 protein via metal affinity chromatography. The purified protein exhibited Cd- and Zn activated AT...

  7. Efficient xylem transport and phloem remobilization of Zn in the hyperaccumulator plant species Sedum alfredii.

    PubMed

    Lu, Lingli; Tian, Shengke; Zhang, Jie; Yang, Xiaoe; Labavitch, John M; Webb, Samuel M; Latimer, Matthew; Brown, Patrick H

    2013-05-01

    Sedum alfredii is one of a few species known to hyperaccumulate zinc (Zn) and cadmium (Cd). Xylem transport and phloem remobilization of Zn in hyperaccumulating (HP) and nonhyperaccumulating (NHP) populations of S. alfredii were compared. Micro-X-ray fluorescence (μ-XRF) images of Zn in the roots of the two S. alfredii populations suggested an efficient xylem loading of Zn in HP S. alfredii, confirmed by the seven-fold higher Zn concentrations detected in the xylem sap collected from HP, when compared with NHP, populations. Zn was predominantly transported as aqueous Zn (> 55.9%), with the remaining proportion (36.7-42.3%) associated with the predominant organic acid, citric acid, in the xylem sap of HP S. alfredii. The stable isotope (68)Zn was used to trace Zn remobilization from mature leaves to new growing leaves for both populations. Remobilization of (68)Zn was seven-fold higher in HP than in NHP S. alfredii. Subsequent analysis by μ-XRF, combined with LA-ICPMS (laser ablation-inductively coupled plasma mass spectrometry), confirmed the enhanced ability of HP S. alfredii to remobilize Zn and to preferentially distribute the metal to mesophyll cells surrounding phloem in the new leaves. The results suggest that Zn hyperaccumulation by HP S. alfredii is largely associated with enhanced xylem transport and phloem remobilization of the metal. To our knowledge, this report is the first to reveal enhanced remobilization of metal by phloem transport in hyperaccumulators. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. Selenium hyperaccumulator plants Stanleya pinnata and Astragalus bisulcatus are colonized by Se-resistant, Se-excluding wasp and beetle seed herbivores.

    PubMed

    Freeman, John L; Marcus, Matthew A; Fakra, Sirine C; Devonshire, Jean; McGrath, Steve P; Quinn, Colin F; Pilon-Smits, Elizabeth A H

    2012-01-01

    Selenium (Se) hyperaccumulator plants can concentrate the toxic element Se up to 1% of shoot (DW) which is known to protect hyperaccumulator plants from generalist herbivores. There is evidence for Se-resistant insect herbivores capable of feeding upon hyperaccumulators. In this study, resistance to Se was investigated in seed chalcids and seed beetles found consuming seeds inside pods of Se-hyperaccumulator species Astragalus bisulcatus and Stanleya pinnata. Selenium accumulation, localization and speciation were determined in seeds collected from hyperaccumulators in a seleniferous habitat and in seed herbivores. Astragalus bisulcatus seeds were consumed by seed beetle larvae (Acanthoscelides fraterculus Horn, Coleoptera: Bruchidae) and seed chalcid larvae (Bruchophagus mexicanus, Hymenoptera: Eurytomidae). Stanleya pinnata seeds were consumed by an unidentified seed chalcid larva. Micro X-ray absorption near-edge structure (µXANES) and micro-X-Ray Fluorescence mapping (µXRF) demonstrated Se was mostly organic C-Se-C forms in seeds of both hyperaccumulators, and S. pinnata seeds contained ∼24% elemental Se. Liquid chromatography-mass spectrometry of Se-compounds in S. pinnata seeds detected the C-Se-C compound seleno-cystathionine while previous studies of A. bisulcatus seeds detected the C-Se-C compounds methyl-selenocysteine and γ-glutamyl-methyl-selenocysteine. Micro-XRF and µXANES revealed Se ingested from hyperaccumulator seeds redistributed throughout seed herbivore tissues, and portions of seed C-Se-C were biotransformed into selenocysteine, selenocystine, selenodiglutathione, selenate and selenite. Astragalus bisulcatus seeds contained on average 5,750 µg Se g(-1), however adult beetles and adult chalcid wasps emerging from A. bisulcatus seed pods contained 4-6 µg Se g(-1). Stanleya pinnata seeds contained 1,329 µg Se g(-1) on average; however chalcid wasp larvae and adults emerging from S. pinnata seed pods contained 9 and 47 µg Se g(-1). The

  9. Selenium Hyperaccumulator Plants Stanleya pinnata and Astragalus bisulcatus Are Colonized by Se-Resistant, Se-Excluding Wasp and Beetle Seed Herbivores

    PubMed Central

    Freeman, John L.; Marcus, Matthew A.; Fakra, Sirine C.; Devonshire, Jean; McGrath, Steve P.; Quinn, Colin F.; Pilon-Smits, Elizabeth A. H.

    2012-01-01

    Selenium (Se) hyperaccumulator plants can concentrate the toxic element Se up to 1% of shoot (DW) which is known to protect hyperaccumulator plants from generalist herbivores. There is evidence for Se-resistant insect herbivores capable of feeding upon hyperaccumulators. In this study, resistance to Se was investigated in seed chalcids and seed beetles found consuming seeds inside pods of Se-hyperaccumulator species Astragalus bisulcatus and Stanleya pinnata. Selenium accumulation, localization and speciation were determined in seeds collected from hyperaccumulators in a seleniferous habitat and in seed herbivores. Astragalus bisulcatus seeds were consumed by seed beetle larvae (Acanthoscelides fraterculus Horn, Coleoptera: Bruchidae) and seed chalcid larvae (Bruchophagus mexicanus, Hymenoptera: Eurytomidae). Stanleya pinnata seeds were consumed by an unidentified seed chalcid larva. Micro X-ray absorption near-edge structure (µXANES) and micro-X-Ray Fluorescence mapping (µXRF) demonstrated Se was mostly organic C-Se-C forms in seeds of both hyperaccumulators, and S. pinnata seeds contained ∼24% elemental Se. Liquid chromatography–mass spectrometry of Se-compounds in S. pinnata seeds detected the C-Se-C compound seleno-cystathionine while previous studies of A. bisulcatus seeds detected the C-Se-C compounds methyl-selenocysteine and γ-glutamyl-methyl-selenocysteine. Micro-XRF and µXANES revealed Se ingested from hyperaccumulator seeds redistributed throughout seed herbivore tissues, and portions of seed C-Se-C were biotransformed into selenocysteine, selenocystine, selenodiglutathione, selenate and selenite. Astragalus bisulcatus seeds contained on average 5,750 µg Se g−1, however adult beetles and adult chalcid wasps emerging from A. bisulcatus seed pods contained 4–6 µg Se g−1. Stanleya pinnata seeds contained 1,329 µg Se g−1 on average; however chalcid wasp larvae and adults emerging from S. pinnata seed pods contained 9 and 47 µg Se g−1

  10. Tonoplast- and Plasma Membrane-Localized Aquaporin-Family Transporters in Blue Hydrangea Sepals of Aluminum Hyperaccumulating Plant

    PubMed Central

    Negishi, Takashi; Oshima, Kenshiro; Hattori, Masahira; Kanai, Masatake; Mano, Shoji; Nishimura, Mikio; Yoshida, Kumi

    2012-01-01

    Hydrangea (Hydrangea macrophylla) is tolerant of acidic soils in which toxicity generally arises from the presence of the soluble aluminum (Al) ion. When hydrangea is cultivated in acidic soil, its resulting blue sepal color is caused by the Al complex formation of anthocyanin. The concentration of vacuolar Al in blue sepal cells can reach levels in excess of approximately 15 mM, suggesting the existence of an Al-transport and/or storage system. However, until now, no Al transporter has been identified in Al hyperaccumulating plants, animals or microorganisms. To identify the transporter being responsible for Al hyperaccumulation, we prepared a cDNA library from blue sepals according to the sepal maturation stage, and then selected candidate genes using a microarray analysis and an in silico study. Here, we identified the vacuolar and plasma membrane-localized Al transporters genes vacuolar Al transporter (VALT) and plasma membrane Al transporter 1 (PALT1), respectively, which are both members of the aquaporin family. The localization of each protein was confirmed by the transient co-expression of the genes. Reverse transcription-PCR and immunoblotting results indicated that VALT and PALT1 are highly expressed in sepal tissue. The overexpression of VALT and PALT1 in Arabidopsis thaliana conferred Al-tolerance and Al-sensitivity, respectively. PMID:22952644

  11. Arsenic-induced plant growth of arsenic-hyperaccumulator Pteris vittata: Impact of arsenic and phosphate rock.

    PubMed

    Han, Yong-He; Yang, Guang-Mei; Fu, Jing-Wei; Guan, Dong-Xing; Chen, Yanshan; Ma, Lena Q

    2016-04-01

    Phosphate rock (PR) has been shown to promote plant growth and arsenic (As) uptake by As-hyperaccumulator Pteris vittata (PV). However, little is known about its behaviors in agricultural soils. In this study, impact of 50 mg kg(-1) As and/or 1.5% PR amendment on plant As accumulation and growth was investigated by growing PV for 90 d in three agricultural soils. While As amendment significantly increased plant As uptake and substantially promoted PV growth, the opposite was observed with PR amendment. Arsenic amendment increased plant frond As from 16.9-265 to 961-6017 mg kg(-1),whereas PR amendment lowered frond As to 10.2-216 mg kg(-1). The As-induced plant growth stimulation was 69-71%. While PR amendment increased plant Ca and P uptake, As amendment showed opposite results. The PV biomass was highly correlated with plant As at r = 0.82, but with weak correlations with plant Ca or P at r < 0.30. This study confirmed that 1) As significantly promoted PV growth, probably independent of Ca or P uptake, 2) PR amendment didn't enhance plant growth or As uptake by PV in agricultural soils with adequate available P, and 3) PV effluxed arsenite (AsIII) growing in agricultural soils.

  12. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant.

    PubMed

    Stolpe, Clemens; Giehren, Franziska; Krämer, Ute; Müller, Caroline

    2017-07-01

    Plants that are able to hyperaccumulate heavy metals show increased concentrations of these metals in their leaf tissue. However, little is known about the concentrations of heavy metals and of organic defence metabolites in the phloem sap of these plants in response to either heavy metal-amendment of the soil or biotic challenges such as aphid-infestation. In this study, we investigated the effects of heavy metal-exposure and of aphid-infestation on phloem exudate composition of the metal hyperaccumulator species Arabidopsis halleri L. O'Kane & Al-Shehbaz (Brassicaceae). The concentrations of elements and of organic defence compounds, namely glucosinolates, were measured in phloem exudates of young and old (mature) leaves of plants challenged either by amendment of the soil with cadmium and zinc and/or by an infestation with the generalist aphid Myzus persicae. Metal-amendment of the soil led to increased concentrations of Cd and Zn, but also of two other elements and one indole glucosinolate, in phloem exudates. This enhanced defence in the phloem sap of heavy metal-hyperaccumulating plants can thus potentially act as effective protection against aphids, as predicted by the elemental defence hypothesis. Aphid-infestation also caused enhanced Cd and Zn concentrations in phloem exudates. This result provides first evidence that metal-hyperaccumulating plants can increase heavy metal concentrations tissue-specifically in response to an attack by phloem-sucking herbivores. Overall, the concentrations of most elements, including the heavy metals, and glucosinolates were higher in phloem exudates of young leaves than in those of old leaves. This defence distribution highlights that the optimal defence theory, which predicts more valuable tissue to be better defended, is applicable for both inorganic and organic defences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata.

    PubMed

    Xu, Jia-Yi; Han, Yong-He; Chen, Yanshan; Zhu, Ling-Jia; Ma, Lena Q

    2016-02-01

    The ability of As-resistant endophytic bacteria in As transformation and plant growth promotion was determined. The endophytes were isolated from As-hyperaccumulator Pteris vittata (PV) after growing for 60 d in a soil containing 200 mg kg(-1) arsenate (AsV). They were isolated in presence of 10 mM AsV from PV roots, stems, and leaflets, representing 4 phyla and 17 genera. All endophytes showed at least one plant growth promoting characteristics including IAA synthesis, siderophore production and P solubilization. The root endophytes had higher P solubilization ability than the leaflet (60.0 vs. 18.3 mg L(-1)). In presence of 10 mM AsV, 6 endophytes had greater growth than the control, suggesting As-stimulated growth. Furthermore, root endophytes were more resistant to AsV while the leaflet endophytes were more tolerant to arsenite (AsIII), which corresponded to the dominant As species in PV tissues. Bacterial As resistance was positively correlated to their ability in AsV reduction but not AsIII oxidation. The roles of those endophytes in promoting plant growth and As resistance in P. vittata warrant further investigation.

  14. Arsenic Hyperaccumulation Strategies: An Overview

    PubMed Central

    Souri, Zahra; Karimi, Naser; Sandalio, Luisa M.

    2017-01-01

    Arsenic (As) pollution, which is on the increase around the world, poses a growing threat to the environment. Phytoremediation, an important green technology, uses different strategies, including As uptake, transport, translocation, and detoxification, to remediate this metalloid. Arsenic hyperaccumulator plants have developed various strategies to accumulate and tolerate high concentrations of As. In these plants, the formation of AsIII complexes with GSH and phytochelatins and their transport into root and shoot vacuoles constitute important mechanisms for coping with As stress. The oxidative stress induced by reactive oxygen species (ROS) production is one of the principal toxic effects of As; moreover, the strong antioxidative defenses in hyperaccumulator plants could constitute an important As detoxification strategy. On the other hand, nitric oxide activates antioxidant enzyme and phytochelatins biosynthesis which enhances As stress tolerance in plants. Although several studies have focused on transcription, metabolomics, and proteomic changes in plants induced by As, the mechanisms involved in As transport, translocation, and detoxification in hyperaccumulator plants need to be studied in greater depth. This review updates recent progress made in the study of As uptake, translocation, chelation, and detoxification in As hyperaccumulator plants. PMID:28770198

  15. Arsenic Hyperaccumulation Strategies: An Overview.

    PubMed

    Souri, Zahra; Karimi, Naser; Sandalio, Luisa M

    2017-01-01

    Arsenic (As) pollution, which is on the increase around the world, poses a growing threat to the environment. Phytoremediation, an important green technology, uses different strategies, including As uptake, transport, translocation, and detoxification, to remediate this metalloid. Arsenic hyperaccumulator plants have developed various strategies to accumulate and tolerate high concentrations of As. In these plants, the formation of AsIII complexes with GSH and phytochelatins and their transport into root and shoot vacuoles constitute important mechanisms for coping with As stress. The oxidative stress induced by reactive oxygen species (ROS) production is one of the principal toxic effects of As; moreover, the strong antioxidative defenses in hyperaccumulator plants could constitute an important As detoxification strategy. On the other hand, nitric oxide activates antioxidant enzyme and phytochelatins biosynthesis which enhances As stress tolerance in plants. Although several studies have focused on transcription, metabolomics, and proteomic changes in plants induced by As, the mechanisms involved in As transport, translocation, and detoxification in hyperaccumulator plants need to be studied in greater depth. This review updates recent progress made in the study of As uptake, translocation, chelation, and detoxification in As hyperaccumulator plants.

  16. Arsenic uptake, arsenite efflux and plant growth in hyperaccumulator Pteris vittata: Role of arsenic-resistant bacteria.

    PubMed

    Han, Yong-He; Fu, Jing-Wei; Chen, Yanshan; Rathinasabapathi, Bala; Ma, Lena Q

    2016-02-01

    Bacteria-mediated arsenic (As) transformation and their impacts on As and P uptake and plant growth in As-hyperaccumulator Pteris vittata (PV) were investigated under sterile condition. All As-resistant bacteria (9 endophytic and 6 rhizospheric) were As-reducers except one As-oxidizer. After growing two months in media with 37.5 mg kg(-1) AsV, As concentrations in the fronds and roots were 3655-5389 (89-91% AsIII) and 971-1467 mg kg(-1) (41-73% AsIII), corresponding to 22-52% decrease in the As in the media. Bacterial inoculation enhanced As and P uptake by up to 47 and 69%, and PV growth by 20-74%, which may be related to elevated As and P in plants (r = 0.88-0.97, p < 0.05). Though AsV was supplied, 95% of the As in the bacteria-free media was AsIII, suggesting efficient efflux of AsIII by PV roots (120 µg g(-1) root fw). This was supported by the fact that no AsV was detected in media inoculated with As-reducers while 95% of AsV was detected with As-oxidizer. Our data showed that, under As-stress, PV reduced As toxicity by efficient AsIII efflux into media and AsIII translocation to the fronds, and bacteria benefited PV growth probably via enhanced As and P uptake.

  17. A native Zn/Cd pumping P(1B) ATPase from natural overexpression in a hyperaccumulator plant.

    PubMed

    Parameswaran, Aravind; Leitenmaier, Barbara; Yang, Mingjie; Kroneck, Peter M H; Welte, Wolfram; Lutz, Gabriela; Papoyan, Ashot; Kochian, Leon V; Küpper, Hendrik

    2007-11-09

    We report here the first purification of a P(1B) type ATPase, a group of transporters that occurs in bacteria, plants and animals incl. humans, from a eukaryotic organism in native state. TcHMA4 is a P(1B) type ATPase that is highly expressed in the Cd/Zn hyperaccumulator plant Thlaspi caerulescens and contains a C-terminal 9-histidine repeat. After isolation from roots, we purified TcHMA4 protein via metal affinity chromatography. The purified protein exhibited Cd- and Zn-activated ATPase activity after reconstitution into lipid vesicles, showing that it was in its native state. Gels of crude root extract and of the purified protein revealed TcHMA4-specific bands of about 50 and 60kDa, respectively, while the TcHMA4 mRNA predicts a single protein with a size of 128kDa. This indicates the occurrence of post-translational processing; the properties of the two bands were characterised by their activity and binding properties.

  18. Zinc Isotope Fractionation in the Hyperaccumulator Noccaea caerulescens and the Nonaccumulating Plant Thlaspi arvense at Low and High Zn Supply.

    PubMed

    Tang, Ye-Tao; Cloquet, Christophe; Deng, Teng-Hao-Bo; Sterckeman, Thibault; Echevarria, Guillaume; Yang, Wen-Jun; Morel, Jean-Louis; Qiu, Rong-Liang

    2016-08-02

    On the basis of our previous field survey, we postulate that the pattern and degree of zinc (Zn) isotope fractionation in the Zn hyperaccumulator Noccaea caerulescens (J. & C. Presl) F. K. Mey may reflect a relationship between Zn bioavailability and plant uptake strategies. Here, we investigated Zn isotope discrimination during Zn uptake and translocation in N. caerulescens and in a nonaccumulator Thlaspi arvense L. with a contrasting Zn accumulation ability in response to low (Zn-L) and high (Zn-H) Zn supplies. The average isotope fractionations of the N. caerulescens plant as a whole, relative to solution (Δ(66)Znplant-solution), were -0.06 and -0.12‰ at Zn-L-C and Zn-H-C, respectively, indicative of the predominance of a high-affinity (e.g., ZIP transporter proteins) transport across the root cell membrane. For T. arvense, plants were more enriched in light isotopes under Zn-H-A (Δ(66)Znplant-solution = -0.26‰) than under Zn-L-A and N. caerulescens plants, implying that a low-affinity (e.g., ion channel) transport might begin to function in the nonaccumulating plants when external Zn supply increases. Within the root tissues of both species, the apoplast fractions retained up to 30% of Zn mass under Zn-H. Moreover, the highest δ(66)Zn (0.75‰-0.86‰) was found in tightly bound apoplastic Zn, pointing to the strong sequestration in roots (e.g., binding to high-affinity ligands/precipitation with phosphate) when plants suffer from high Zn stress. During translocation, the magnitude of isotope fractionation was significantly greater at Zn-H (Δ(66)Znroot-shoot = 0.79‰) than at Zn-L, indicating that fractionation mechanisms associated with root-shoot translocation might be identical to the two plant species. Hence, we clearly demonstrated that Zn isotope fractionation could provide insight into the internal sequestration mechanisms of roots when plants respond to low and high Zn supplies.

  19. The long-term variation of Cd and Zn hyperaccumulation by Noccaea spp and Arabidopsis halleri plants in both pot and field conditions.

    PubMed

    Tlustoš, Pavel; Břendová, Kateřina; Száková, Jiřina; Najmanová, Jana; Koubová, Kateřina

    2016-01-01

    Three Cd and Zn hyperaccumulating plant species Noccaea caerulescens Noccaea praecox and Arabidopsis halleri (Brassicacceae) were cultivated in seven subsequent vegetation seasons in both pot and field conditions in soil highly contaminated with Cd, Pb, and Zn. The results confirmed the hyperaccumulation ability of both plant species, although A. halleri showed lower Cd uptake compared to N. caerulescens. Conversely, Pb phytoextraction was negligible for both species in this case. Because of the high variability in plant yield and element contents in the aboveground biomass of plants, great variation in Cd and Zn accumulation was observed during the experiment. The extraction ability in field conditions varied in the case of Cd from 0.2 to 2.9 kg ha(-1) (N. caerulescens) and up to 0.15 kg ha(-1) (A. halleri), and in the case of Zn from 0.2 to 6.4 kg ha(-1) (N. caerulescens) and up to 13.8 kg.ha(-1) (A. halleri). Taking into account the 20 cm root zone of the soil, the plants were able to extract up to 4.1% Cd and 0.2% Zn in one season. However, cropping measures should be optimized to improve and stabilize the long-term phytoextraction potential of these plants.

  20. Hyper-accumulation of starch and oil in a Chlamydomonas mutant affected in a plant-specific DYRK kinase.

    PubMed

    Schulz-Raffelt, Miriam; Chochois, Vincent; Auroy, Pascaline; Cuiné, Stéphan; Billon, Emmanuelle; Dauvillée, David; Li-Beisson, Yonghua; Peltier, Gilles

    2016-01-01

    Because of their high biomass productivity and their ability to accumulate high levels of energy-rich reserve compounds such as oils or starch, microalgae represent a promising feedstock for the production of biofuel. Accumulation of reserve compounds takes place when microalgae face adverse situations such as nutrient shortage, conditions which also provoke a stop in cell division, and down-regulation of photosynthesis. Despite growing interest in microalgal biofuels, little is known about molecular mechanisms controlling carbon reserve formation. In order to discover new regulatory mechanisms, and identify genes of interest to boost the potential of microalgae for biofuel production, we developed a forward genetic approach in the model microalga Chlamydomonas reinhardtii. By screening an insertional mutant library on the ability of mutants to accumulate and re-mobilize reserve compounds, we isolated a Chlamydomonas mutant (starch degradation 1, std1) deficient for a dual-specificity tyrosine-phosphorylation-regulated kinase (DYRK). The std1 mutant accumulates higher levels of starch and oil than wild-type and maintains a higher photosynthetic activity under nitrogen starvation. Phylogenetic analysis revealed that this kinase (named DYRKP) belongs to a plant-specific subgroup of the evolutionarily conserved DYRK kinase family. Furthermore, hyper-accumulation of storage compounds occurs in std1 mostly under low light in photoautotrophic condition, suggesting that the kinase normally acts under conditions of low energy status to limit reserve accumulation. The DYRKP kinase is proposed to act as a negative regulator of the sink capacity of photosynthetic cells that integrates nutrient and energy signals. Inactivation of the kinase strongly boosts accumulation of reserve compounds under photoautotrophic nitrogen deprivation and allows maintaining high photosynthetic activity. The DYRKP kinase therefore represents an attractive target for improving the energy density

  1. Manganese (Mn) stress toward hyperaccumulators plants combination (HPC) using Jatropha curcas and lamtoro gung (L. leucocephala) in mychorrizal addition on soybean (Glycine max) seedling stage

    NASA Astrophysics Data System (ADS)

    Darmawan, Tania Sylviana; Zahroh, Tata Taqiyyatuz; Merindasya, Mirza; Masfaridah, Ririn; Hartanti, Dyah Ayu Sri; Arum, Sekar; Nurhatika, Sri; Muhibuddin, Anton; Surtiningsih, Tini; Arifiyanto, Achmad

    2017-06-01

    Heavy metals were a metal bracket which had a specific gravity greater than 5 g / cm3. Manganese was one of them because it has a specific gravity of 7.4 g / cm3. Together with widespread cases of soil contamination caused by heavy metals as well as increased development of the science of breeding ground rapidly, then the alternative rehabilitation techniques were relatively cheap and effective it needs to be developed and even some cases of contaminated management soil using a combination of plants with microorganisms to be more effective. Thus it was necessary to develop research on plants that were able to accumulate heavy metals and other toxic materials, such as Mn so that the land becomes safe for health and the environment. Based on above reason this research aimed to see the influence of hyperaccumulators combination of plants using Jatropha curcas and lamtoro gung (L. leucocephala) in mychorrizal addition to stressed by manganese (Mn) on soybean (Glycine max). Observations of growth, chlorophyll content and heavy metals analysis performed on nine treatments (P1-P9) and one control (P0). The results showed a combination of hyperaccumulators under mychorrizal helped overcome the stress of manganese (Mn) in the leaves of soybean (G. max). It gave an influence on the number of leaves and chlorophyll content of soybean (G. max), but no effect performed on the height and the roots of soybean (G. max). The use of plants in small amounts hyperaccumulators (P1;1 jatropha and 1 lamtoro) was sufficient to cope with stress of Mn in the leaves of soybean (G. max).

  2. Potential use of metal hyperaccumulators

    SciTech Connect

    Chaney, R.; Li, Yin-Ming; Green, C.

    1996-12-31

    Experiments involving biological accumulation of metal contaminants are summarized in the article. The focus is on identification of hyperaccumulating plant species for cadmium and zinc. Two of the studies examined Thlaspi caerulescens (alpine pennycress) as a bioadsorbent; the third study compared different species of Thlaspi. The T. caerulescens accumulated both metals, but with low yields. Other plant species were identified which adsorbed cadmium or zinc, but not both metals.

  3. Plant response to heavy metal toxicity: comparative study between the hyperaccumulator Thlaspi caerulescens (ecotype Ganges) and nonaccumulator plants: lettuce, radish, and alfalfa.

    PubMed

    Benzarti, Saoussen; Mohri, Shino; Ono, Yoshiro

    2008-10-01

    Thlaspi caerulescens (alpine pennycress) is one of the best-known heavy metal (HM) hyperaccumulating plant species. It exhibits the ability to extract and accumulate various HM at extremely high concentrations. In this hydroponic study, the performance of T. caerulescens (ecotype Ganges) to accumulate Cd, Zn, and Cu was compared with that of three nonaccumulator plants: alfalfa (Medicago sativa), radish (Raphanus sativus), and lettuce (Lactuca sativa). Plants were exposed to the separately dissolved HM salts for 7 days at a wide range of increasing concentrations: 0 (control: 1/5 Hoagland nutrient solution), 0.1, 1, 10, 100, and 1000 microM. The comparative study combined chemical, physiological, and ecotoxicological assessments. Excessive concentrations of HM (100 and 1000 microM) affected plant growth, photosynthesis, and phytoaccumulation efficiency. Root exudation for all plant species was highly and significantly correlated to HM concentration in exposure solutions and proved its importance to counter effect toxicity. T. caerulescens resisted better the phytotoxic effects of Cd and Zn (at 1000 microM each), and translocated them significantly within tissues (366 and 1290 microg g(-1), respectively). At the same HM level, T. caerulescens exhibited lower performances in accumulating Cu when compared with the rest of plant species, mainly alfalfa (298 microg g(-1)). Root elongation inhibition test confirmed the selective aptitude of T. caerulescens to better cope with Cd and Zn toxicities. MetPLATE bioassay showed greater sensitivity to HM toxicity with much lower EC(50) values for beta-galactosidase activity in E. coli. Nevertheless, exaggerated HM concentrations coupled with relatively short exposure time did not allow for an efficient metal phytoextraction thus a significant reduction of ecotoxicity.

  4. Zinc tolerance and hyperaccumulation are genetically independent characters.

    PubMed

    Macnair, M R; Bert, V; Huitson, S B; Saumitou-Laprade, P; Petit, D

    1999-11-07

    The hyperaccumulation of metals by a rare class of plants is a fascinating and little understood phenomenon. No genetic analysis has been possible since no intraspecific variation is known for this character. Here, we report on crosses between the zinc-hyperaccumulating and -tolerant species Arabidopsis halleri and the non-hyperaccumulating, non-tolerant species Arabidopsis petraea. The F2 segregates for both characters and it appears that the two characters are genetically independent. The data for tolerance are consistent with a single major gene for this character (although the number of genes for hyperaccumulation cannot be determined), and is probably not very large.

  5. Zinc tolerance and hyperaccumulation are genetically independent characters.

    PubMed Central

    Macnair, M R; Bert, V; Huitson, S B; Saumitou-Laprade, P; Petit, D

    1999-01-01

    The hyperaccumulation of metals by a rare class of plants is a fascinating and little understood phenomenon. No genetic analysis has been possible since no intraspecific variation is known for this character. Here, we report on crosses between the zinc-hyperaccumulating and -tolerant species Arabidopsis halleri and the non-hyperaccumulating, non-tolerant species Arabidopsis petraea. The F2 segregates for both characters and it appears that the two characters are genetically independent. The data for tolerance are consistent with a single major gene for this character (although the number of genes for hyperaccumulation cannot be determined), and is probably not very large. PMID:10649632

  6. Differential generation of hydrogen peroxide upon exposure to zinc and cadmium in the hyperaccumulating plant specie (Sedum alfredii Hance)*

    PubMed Central

    Chao, Yue-en; Zhang, Min; Tian, Sheng-ke; Lu, Ling-li; Yang, Xiao-e

    2008-01-01

    Sedum alfredii Hance has been identified as zinc (Zn) and cadmium (Cd) co-hyperaccumulator. In this paper the relationships of Zn or Cd hyperaccumulation to the generation and the role of H2O2 in Sedum alfredii H. were examined. The results show that Zn and Cd contents in the shoots of Sedum alfredii H. treated with 1000 μmol/L Zn2+ and/or 200 μmol/L Cd2+ increased linearly within 15 d. Contents of total S, glutathione (GSH) and H2O2 in shoots also increased within 15 d, and then decreased. Total S and GSH contents in shoots were higher under Cd2+ treatment than under Zn2+ treatment. However, reverse trends of H2O2 content in shoots were obtained, in which much higher H2O2 content was observed in Zn2+-treated shoots than in Cd2+-treated shoots. Similarly, the microscopic imaging of H2O2 accumulation in leaves using H2O2 probe technique showed that much higher H2O2 accumulation was observed in the Zn2+-treated leaf than in the Cd2+-treated one. These results suggest that there are different responses in the generation of H2O2 upon exposure to Zn2+ and Cd2+ for the hyperaccumulator Sedum alfredii H. And this is the first report that the generation of H2O2 may play an important role in Zn hyperaccumulation in the leaves. Our results also imply that GSH may play an important role in the detoxification of dissociated Zn/Cd and the generation of H2O2. PMID:18357627

  7. Differential generation of hydrogen peroxide upon exposure to zinc and cadmium in the hyperaccumulating plant species (Sedum alfredii Hance).

    PubMed

    Chao, Yue-en; Zhang, Min; Tian, Sheng-ke; Lu, Ling-li; Yang, Xiao-e

    2008-03-01

    Sedum alfredii Hance has been identified as zinc (Zn) and cadmium (Cd) co-hyperaccumulator. In this paper the relationships of Zn or Cd hyperaccumulation to the generation and the role of H2O2 in Sedum alfredii H. were examined. The results show that Zn and Cd contents in the shoots of Sedum alfredii H. treated with 1000 micromol/L Zn2+ and/or 200 micromol/L Cd2+ increased linearly within 15 d. Contents of total S, glutathione (GSH) and H2O2 in shoots also increased within 15 d, and then decreased. Total S and GSH contents in shoots were higher under Cd2+ treatment than under Zn2+ treatment. However, reverse trends of H2O2 content in shoots were obtained, in which much higher H2O2 content was observed in Zn2+-treated shoots than in Cd2+-treated shoots. Similarly, the microscopic imaging of H2O2 accumulation in leaves using H2O2 probe technique showed that much higher H2O2 accumulation was observed in the Zn2+-treated leaf than in the Cd2+-treated one. These results suggest that there are different responses in the generation of H2O2 upon exposure to Zn2+ and Cd2+ for the hyperaccumulator Sedum alfredii H. And this is the first report that the generation of H2O2 may play an important role in Zn hyperaccumulation in the leaves. Our results also imply that GSH may play an important role in the detoxification of dissociated Zn/Cd and the generation of H2O2.

  8. Prospecting for hyperaccumulators of trace elements: a review.

    PubMed

    Krzciuk, Karina; Gałuszka, Agnieszka

    2015-01-01

    Specific plant species that can take up and accumulate abnormally high concentrations of elements in their aboveground tissues are referred to as "hyperaccumulators". The use of this term is justified in the case of enormous element-binding capacity of plants growing in their natural habitats and showing no toxicity symptoms. An increasing interest in the study of hyperaccumulators results from their potential applications in environmental biotechnology (phytoremediation, phytomining) and their emerging role in nanotechnology. The highest number of plant species with confirmed hyperaccumulative properties has been reported for hyperaccumulators of nickel, cadmium, zinc, manganese, arsenic and selenium. More limited data exist for plants accumulating other elements, including common pollutants (chromium, lead and boron) or elements of commercial value, such as copper, gold and rare earth elements. Different approaches have been used for the study of hyperaccumulators - geobotanical, chemical, biochemical and genetic. The chemical approach is the most important in screening for new hyperaccumulators. This article presents and critically reviews current trends in new hyperaccumulator research, emphasizing analytical methodology that is applied in identification of new hyperaccumulators of trace elements and its future perspectives.

  9. Effective selenium detoxification in the seed proteins of a hyperaccumulator plant: the analysis of selenium-containing proteins of monkeypot nut (Lecythis minor) seeds.

    PubMed

    Németh, Anikó; Dernovics, Mihály

    2015-01-01

    A shotgun proteomic approach was applied to characterize the selenium (Se)-containing proteins of the selenium hyperaccumulator monkeypot nut (Lecythis minor) seeds. The exceptionally high Se content (>4,000 mg kg(-1)) of the sample enabled a straightforward procedure without the need for multiple preconcentration and fractionation steps. The proteins identified were sulfur-rich seed proteins, namely, 11S globulin (Q84ND2), 2S albumin (B6EU54), 2S sulfur-rich seed storage proteins (P04403 and P0C8Y8) and a 11S globulin-like protein (A0EM48). Database directed search for theoretically selenium-containing peptides was assisted by manual spectra evaluation to achieve around 25% coverage on sulfur analogues. Remarkable detoxification mechanisms on the proteome level were revealed in the form of multiple selenomethionine-methionine substitution and the lack of selenocysteine residues. The degree of selenomethionine substitution could be characterized by an exponential function that implies the inhibition of protein elongation by selenomethionine. Our results contribute to the deeper understanding of selenium detoxification procedures in hyperaccumulator plants.

  10. Identification and validation of heavy metal and radionuclide hyperaccumulating terrestrial plant species, Quarterly technical progress report, December 20, 1995--March 20, 1995

    SciTech Connect

    Kochian, L.; Brady, D.; Last, M.; Ebbs, S.

    1995-12-01

    Although the period covered by this progress report began on December 20, 1994, which was the date that DOE approved the Interagency Agreement, the agreement was not approved by USDA until January 9, 1995 and the first scientists working on the project were not hired until February 1, 1995. The first goal of the research supported by the Interagency Agreement is to use hydroponic techniques to identify plant species and genotypes with potential for heavy metal hyperaccumulation for planting on a test site at Silverbow Creek and for radionuclide ({sup 90}Sr and {sup 137}Cs) accumulation on a test site at INEL, Idaho, later this year. The second goal of this research is to identify soil amendment procedures that will enhance the bioavailability of heavy metals and radionuclides in the soil without increasing the movement of the contaminants of concern (COC`s) into the groundwater. Our initial research covered in this report focuses on the first goal.

  11. Enhanced Cd extraction of oilseed rape (Brassica napus) by plant growth-promoting bacteria isolated from Cd hyperaccumulator Sedum alfredii Hance.

    PubMed

    Pan, Fengshan; Meng, Qian; Luo, Sha; Shen, Jing; Chen, Bao; Khan, Kiran Yasmin; Japenga, Jan; Ma, Xiaoxiao; Yang, Xiaoe; Feng, Ying

    2017-03-04

    Four plant growth-promoting bacteria (PGPB) were used as study materials, among them two heavy metal-tolerant rhizosphere strains SrN1 (Arthrobacter sp.) and SrN9 (Bacillus altitudinis) were isolated from rhizosphere soil, while two endophytic strains SaN1 (Bacillus megaterium) and SaMR12 (Sphingomonas) were identified from roots of the cadmium (Cd)/zinc (Zn) hyperaccumulator Sedum alfredii Hance. A pot experiment was carried out to investigate the effects of these PGPB on plant growth and Cd accumulation of oilseed rape (Brassica napus) plants grown on aged Cd-spiked soil. The results showed that the four PGPB significantly boosted oilseed rape shoot biomass production, improved soil and plant analyzer development (SPAD) value, enhanced Cd uptake of plant and Cd translocation to the leaves. By fluorescent in situ hybridization (FISH) and green fluorescent protein (GFP), we demonstrated the studied S. alfredii endophytic bacterium SaMR12 were able to colonize successfully in the B. napus roots. However, all four PGPB could increase seed Cd accumulation. Due to its potential to enhance Cd uptake by the plant and to restrict Cd accumulation in the seeds, SaMR12 was selected as the most promising microbial partner of B. napus when setting up a plant-microbe fortified remediation system.

  12. Accumulation of heavy metals in soils and plants of Polar Urals and South Chukotka in contrast geochemical conditions in connection with the search for hyperaccumulator species

    NASA Astrophysics Data System (ADS)

    Alexeeva-Popova, Natalja Vadimovna; Bech, Jaume; Drozdova, Irina Valeryevna; Roca, Núria

    2017-04-01

    This study highlights the heavy metals (HM) distribution in soils and their uptake by wild plants that grow to the soils formed on the ultramafic and acid rocks of Polar Urals and South Chukotka in Arctic Russia. The contents of Fe, Mn, Zn, Cu, Ni, Cr, and Co have been determined by the atomic absorption spectrometry more than in 100 plant species of 25 families and in 92 soil samples. The data indicate that the levels of Fe, Cr and especially Ni in the soils on the ultramafic rocks exceeded those on acid rocks. It has been found that the mineral composition of plant species varies depending on edaphic conditions. Greater variability was noticed in the uptake of HM by various plant species on the studied soils. Taxon-specific features in the accumulation of heavy metals in plants of these regions have been revealed for the first time. Plants accumulation results showed that species Thlaspi cochleariforme and Alyssum obovatum (Brassicaceae) could act as hyperaccumulators Ni. The excessive concentrations of Cr and Ni in some plants species can be used for mineral prospecting. The excess of Ni is serious environmental problem and health risks in the inhabitants of the study areas.

  13. Identification and validation of heavy metal and radionuclide hyperaccumulating terrestrial plant species. Quarterly technical progress report, March 20, 1997--June 19, 1997

    SciTech Connect

    Kochian, L.

    1997-11-01

    This laboratory has been involved in a collaborative project focusing on a range of issues related to the phytoremediation of heavy metal-and radionuclide- contaminated soils. While much of the research has been fundamental in nature, involving physiological and molecular characterizations of the mechanisms of hyperaccumulation in plants, the laboratory is also investigating more practical issues related to phytoremediation. A central issue in this latter research has been the identification of amendments capable of increasing the bioavailability and subsequent phytoextraction of radionuclides. The results described here detail these efforts for uranium and Cs-137. A study was also conducted on a Cs-137 contaminated site at Brookhaven National Laboratory (BNL), which allowed application of the laboratory and greenhouse results to a field setting.

  14. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals.

    PubMed

    Miransari, Mohammad

    2011-01-01

    Use of plants, with hyperaccumulating ability or in association with soil microbes including the symbiotic fungi, arbuscular mycorrhiza (AM), are among the most common biological methods of treating heavy metals in soil. Both hyperaccumulating plants and AM fungi have some unique abilities, which make them suitable to treat heavy metals. Hyperaccumulator plants have some genes, being expressed at the time of heavy metal pollution, and can accordingly localize high concentration of heavy metals to their tissues, without showing the toxicity symptoms. A key solution to the issue of heavy metal pollution may be the proper integration of hyperaccumulator plants and AM fungi. The interactions between the soil microbes and the host plant can also be important for the treatment of soils polluted with heavy metals.

  15. Cadmium sorption characteristics of soil amendments and its relationship with the cadmium uptake by hyperaccumulator and normal plants in amended soils.

    PubMed

    Sun, Yan; Wu, Qi-Tang; Lee, Charles C C; Li, Baoqin; Long, Xinxian

    2014-01-01

    In order to select appropriate amendments for cropping hyperaccumulator or normal plants on contaminated soils and establish the relationship between Cd sorption characteristics of soil amendments and their capacity to reduce Cd uptake by plants, batch sorption experiments with 11 different clay minerals and organic materials and a pot experiment with the same amendments were carried out. The pot experiment was conducted with Sedum alfredii and maize (Zea mays) in a co-cropping system. The results showed that the highest sorption amount was by montmorillonite at 40.82 mg/g, while mica was the lowest at only 1.83 mg/g. There was a significant negative correlation between the n value of Freundlich equation and Cd uptake by plants, and between the logarithm of the stability constant K of the Langmuir equation and plant uptake. Humic acids (HAs) and mushroom manure increased Cd uptake by S. alfredii, but not maize, thus they are suitable as soil amendments for the co-cropping S. alfredii and maize. The stability constant K in these cases was 0.14-0.16 L/mg and n values were 1.51-2.19. The alkaline zeolite and mica had the best fixation abilities and significantly decreased Cd uptake by the both plants, with K > or = 1.49 L/mg and n > or = 3.59.

  16. Cadmium Sorption Characteristics of Soil Amendments and its Relationship with the Cadmium Uptake by Hyperaccumulator and Normal Plants in Amended Soils

    PubMed Central

    Sun, Yan; Wu, Qi-Tang; Lee, Charles C.C.; Li, Baoqin; Long, Xinxian

    2013-01-01

    In order to select appropriate amendments for cropping hyperaccumulator or normal plants on contaminated soils and establish the relationship between Cd sorption characteristics of soil amendments and their capacity to reduce Cd uptake by plants, batch sorption experiments with 11 different clay minerals and organic materials and a pot experiment with the same amendments were carried out. The pot experiment was conducted with Sedum alfredii and maize (Zea mays) in a co-cropping system. The results showed that the highest sorption amount was by montmorillonite at 40.82 mg/g, while mica was the lowest at only 1.83 mg/g. There was a significant negative correlation between the n value of Freundlich equation and Cd uptake by plants, and between the logarithm of the stability constant K of the Langmuir equation and plant uptake. Humic acids (HAs) and mushroom manure increased Cd uptake by S. alfredii, but not maize, thus they are suitable as soil amendments for the co-cropping S. alfredii and maize. The stability constant K in these cases was 0.14–0.16 L/mg and n values were 1.51–2.19. The alkaline zeolite and mica had the best fixation abilities and significantly decreased Cd uptake by the both plants, with K ≥ 1.49 L/mg and n ≥ 3.59. PMID:24912231

  17. Stable isotope tracing: a powerful tool for selenium speciation and metabolic studies in non-hyperaccumulator plants (ryegrass Lolium perenne L.).

    PubMed

    Di Tullo, Pamela; Versini, Antoine; Bueno, Maïté; Le Hécho, Isabelle; Thiry, Yves; Biron, Philippe; Castrec-Rouelle, Maryse; Pannier, Florence

    2015-12-01

    Selenium is both essential and toxic for mammals; the range between the two roles is narrow and not only dose-dependent but also related to the chemical species present in foodstuff. Unraveling the metabolism of Se in plants as a function of Se source may thus lead to ways to increase efficiency of fertilization procedures in selenium deficient regions. In this study, stable-isotope tracing was applied for the first time in plants to simultaneously monitor the bio-incorporation of two inorganic Se species commonly used as foodstuff enrichment sources. Occurrence and speciation of Se coming from different Se sources were investigated in root and leaf extracts of ryegrass (Lolium perenne L.), which had been co-exposed to two labeled Se species ((77)SeIV and (82)SeVI). Although the plant absorbed similar amounts of Se when supplied in the form of selenite or selenate, the results evidenced marked differences in speciation and tissues allocation. Selenite was converted into organic forms incorporated mostly into high molecular weight compounds with limited translocation to leaves, whereas selenate was highly mobile being little assimilated into organic forms. Double-spike isotopic tracer methodology makes it possible to compare the metabolism of two species-specific Se sources simultaneously in a single experiment and to analyze Se behavior in not-hyperaccumulator plants, the ICP-MS sensitivity being improved by the use of enriched isotopes.

  18. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation.

    PubMed

    Yang, Xiaoe; Feng, Ying; He, Zhenli; Stoffella, Peter J

    2005-01-01

    A relatively small group of hyperaccumulator plants is capable of sequestering heavy metals in their shoot tissues at high concentrations. In recent years, major scientific progress has been made in understanding the physiological mechanisms of metal uptake and transport in these plants. However, relatively little is known about the molecular bases of hyperaccumulation. In this paper, current progresses on understanding cellular/molecular mechanisms of metal tolerance/hyperaccumulation by plants are reviewed. The major processes involved in hyperaccumulation of trace metals from the soil to the shoots by hyperaccumulators include: (a) bioactivation of metals in the rhizosphere through root-microbe interaction; (b) enhanced uptake by metal transporters in the plasma membranes; (c) detoxification of metals by distributing to the apoplasts like binding to cell walls and chelation of metals in the cytoplasm with various ligands, such as phytochelatins, metallothioneins, metal-binding proteins; (d) sequestration of metals into the vacuole by tonoplast-located transporters. The growing application of molecular-genetic technologies led to the well understanding of mechanisms of heavy metal tolerance/accumulation in plants, and subsequently many transgenic plants with increased resistance and uptake of heavy metals were developed for the purpose of phytoremediation. Once the rate-limiting steps for uptake, translocation, and detoxification of metals in hyperaccumulating plants are identified, more informed construction of transgenic plants would result in improved applicability of the phytoremediation technology.

  19. Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies.

    PubMed

    de la Rosa, Guadalupe; Peralta-Videa, Jose R; Montes, Milka; Parsons, Jason G; Cano-Aguilera, Irene; Gardea-Torresdey, Jorge L

    2004-06-01

    Cadmium is a heavy metal, which, even at low concentrations, can be highly toxic to the growth and development of both plants and animals. Plant species vary extensively in their tolerance to excess cadmium in a growth medium and very few cadmium-tolerant species have been identified. In this study, tumbleweed plants (Salsola kali) grown in an agar-based medium with 20 mgl(-1) of Cd(II) did not show phytotoxicity, and their roots had the most biomass (4.5 mg) (P < 0.05) compared to the control plants (2.7 mg) as well as other treated plants. These plants accumulated 2696, 2075, and 2016 mg Cd kg(-1) of dry roots, stems, and leaves, respectively. The results suggest that there is no restricted cadmium movement in tumbleweed plants. In addition, the amount of Cd found in the dry leaf tissue suggests that tumbleweed could be considered as potential cadmium hyperaccumulating species. X-ray absorption spectroscopy studies demonstrated that in roots, cadmium was bound to oxygen while in stems and leaves, the metal was attached to oxygen and sulfur groups. This might imply that some small organic acids are responsible for Cd transport from roots to stems and leaves. In addition, it might be possible that the plant synthesizes phytochelatins in the stems, later coordinating the absorbed cadmium for transport and storage in cell structures. Thus, it is possible that in the leaves, Cd either exists as a Cd-phytochelatin complex or bound to cell wall structures. Current studies are being performed in order to elucidate the proposed hypothesis.

  20. Cadmium hyperaccumulation and reproductive traits in natural Thlaspi caerulescens populations.

    PubMed

    Basic, N; Keller, C; Fontanillas, P; Vittoz, P; Besnard, G; Galland, N

    2006-01-01

    During the last decade, the metal hyperaccumulating plants have attracted considerable attention because of their potential use in decontamination of heavy metal contaminated soils. However, in most species, little is known regarding the function, the ecological and the evolutionary significances of hyperaccumulation. In our study, we investigated the parameters influencing the Cd concentration in plants as well as the biological implications of Cd hyperaccumulation in nine natural populations of Thlaspi caerulescens. First, we showed that Cd concentration in the plant was positively correlated with plant Zn, Fe, and Cu concentrations. This suggested that the physiological and/or molecular mechanisms for uptake, transport and/or accumulation of these four heavy metals interact with each other. Second, we specified a measure of Cd hyperaccumulation capacity by populations and showed that T. caerulescens plants originating from populations with high Cd hyperaccumulation capacity had better growth, by developing more and bigger leaves, taller stems, and produced more fruits and heavier seeds. These results suggest a tolerance/disposal role of Cd hyperaccumulation in this species.

  1. Characteristics of metal-tolerant plant growth-promoting yeast (Cryptococcus sp. NSE1) and its influence on Cd hyperaccumulator Sedum plumbizincicola.

    PubMed

    Liu, Wuxing; Wang, Beibei; Wang, Qingling; Hou, Jinyu; Wu, Longhua; Wood, Jennifer L; Luo, Yongming; Franks, Ashley E

    2016-09-01

    Plant growth-promoting yeasts are often over looked as a mechanism to improve phytoremediation of heavy metals. In this study, Cryptococcus sp. NSE1, a Cd-tolerant yeast with plant growth capabilities, was isolated from the rhizosphere of the heavy metal hyperaccumulator Sedum plumbizincicola. The yeast exhibited strong tolerance to a range of heavy metals including Cd, Cu, and Zn on plate assays. The adsorption rate Cd, Cu, Zn by NSE1 was 26.1, 13.2, and 25.2 %, respectively. Irregular spines were formed on the surface of NSE1 when grown in MSM medium supplemented with 200 mg L(-1) Cd. NSE1 was capable of utilizing 1-aminocyclopropane-1-carboxylate (ACC) as a sole nitrogen source and was capable of solubilization of inorganic phosphate at rates of 195.2 mg L(-1). Field experiments demonstrated that NSE1 increased phytoremediation by increasing the biomass of Cd hyperaccumulator S. plumbizincicola (46 %, p < 0.05) during phytoremediation. Overall, Cd accumulation by S. plumbizincicola was increased from 19.6 to 31.1 mg m(-2) though no difference in the concentration of Cd in the shoot biomass was observed between NSE1 and control. A Cd accumulation ratio of 38.0 % for NSE1 and 17.2 % for control was observed. The HCl-extractable Cd and CaCl2-extractable Cd concentration in the soil of the NSE1 treatment were reduced by 39.2 and 29.5 %, respectively. Community-level physiology profiling, assessed using Biolog Eco plates, indicated functional changes to the rhizosphere community inoculated with NSE1 by average well color development (AWCD) and measurement of richness (diversity). Values of Shannon-Weiner index, Simpson index, and McIntosh index showed a slight but no significant increases. These results indicate that inoculation of NSE1 could increase the shoot biomass of S. plumbizincicola, enhance the Cd accumulation in S. plumbizincicola, and decrease the available heavy metal content in soils significantly without overall significant changes to the

  2. Development of suitable hydroponics system for phytoremediation of arsenic-contaminated water using an arsenic hyperaccumulator plant Pteris vittata.

    PubMed

    Huang, Yi; Miyauchi, Keisuke; Inoue, Chihiro; Endo, Ginro

    2016-01-01

    In this study, we found that high-performance hydroponics of arsenic hyperaccumulator fern Pteris vittata is possible without any mechanical aeration system, if rhizomes of the ferns are kept over the water surface level. It was also found that very low-nutrition condition is better for root elongation of P. vittata that is an important factor of the arsenic removal from contaminated water. By the non-aeration and low-nutrition hydroponics for four months, roots of P. vittata were elongated more than 500 mm. The results of arsenate phytofiltration experiments showed that arsenic concentrations in water declined from the initial concentrations (50 μg/L, 500 μg/L, and 1000 μg/L) to lower than the detection limit (0.1 μg/L) and about 80% of arsenic removed was accumulated in the fern fronds. The improved hydroponics method for P. vittata developed in this study enables low-cost phytoremediation of arsenic-contaminated water and high-affinity removal of arsenic from water.

  3. Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance.

    PubMed

    Zhang, Jie; Zhang, Min; Shohag, Md Jahidul Islam; Tian, Shengke; Song, Haiyan; Feng, Ying; Yang, Xiaoe

    2016-03-01

    The enhanced expression of a P 1B -type ATPase gene ( SaHMA3 ) is essential for Cd hyperaccumulation and hypertolerance in Sedum alfredii Hance. A functional understanding of the mechanism through which hyperaccumulator plants accumulate and tolerate extremely toxic metals is a prerequisite for the development of novel strategies for improving phytoremediation using engineered plants or natural hyperaccumulators as well as biofortification and food crop safety. Most hyperaccumulator species, however, are small and slow-growing, and their potential for large-scale decontamination of polluted soils is limited. Sedum alfredii Hance, the only one metal hyperaccumulator from the Crassulaceae family, is an ideal candidate for gaining a functional understanding of the intra-family hyperaccumulation mechanisms as well as their potential applications. In the present study, we isolated and functionally characterized a P1B-type ATPase gene (SaHMA3) from S. alfredii Hance. SaHMA3 alleles from a hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) were constitutively expressed in both shoot and root and encoded tonoplast-localized proteins, but showed differences in transport substrate specificity and expression level. SaHMA3 h from the HE plant was a Cd transporter. In contrast, SaHMA3n from NHE plants was able to transport both Zn and Cd. SaHMA3 showed a significantly higher constitutive expression level in HE plants than in NHE plants. Furthermore, the expression level of SaHMA3 in the shoots of HE plants was considerably higher than in the roots. Overexpression of SaHMA3h in tobacco plants significantly enhanced Cd tolerance and accumulation and greatly increased the root sequestration of Cd. In summary, our data suggested that SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator S. alfredii Hance.

  4. Effects of arsenic on nitrogen metabolism in arsenic hyperaccumulator and non-hyperaccumulator ferns

    USDA-ARS?s Scientific Manuscript database

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of two four-month old fern plants, Pteris vittata, an arsenic-hyperaccumulator, and Pteris ensiformis, ...

  5. Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn Hyperaccumulator, Sedum alfredii H.

    PubMed

    Wang, Yuyan; Yang, Xiaoe; Zhang, Xincheng; Dong, Lanxue; Zhang, Jie; Wei, Yanyan; Feng, Ying; Lu, Lingli

    2014-02-26

    This study is to investigate the possibility of zinc (Zn) biofortification in the grains of rice (Oryza sativa L.) by inoculation of endophytic strains isolated from a Zn hyperaccumulator, Sedum alfredii Hance. Five endophytic strains, Burkholderia sp. SaZR4, Burkholderia sp. SaMR10, Sphingomonas sp. SaMR12, Variovorax sp. SaNR1, and Enterobacter sp. SaCS20, isolated from S. alfredii, were inoculated in the roots of Japonica rice Nipponbare under hydroponic condition. Fluorescence images showed that endophytic strains successfully colonized rice roots after 72 h. Improved root morphology and plant growth of rice was observed after inoculation with endophytic strains especially SaMR12 and SaCS20. Under hydroponic conditions, endophytic inoculation with SaMR12 and SaCS20 increased Zn concentration by 44.4% and 51.1% in shoots, and by 73.6% and 83.4% in roots, respectively. Under soil conditions, endophytic inoculation with SaMR12 and SaCS20 resulted in an increase of grain yields and elevated Zn concentrations by 20.3% and 21.9% in brown rice and by 13.7% and 11.2% in polished rice, respectively. After inoculation of SaMR12 and SaCS20, rhizosphere soils of rice plants contained higher concentration of DTPA-Zn by 10.4% and 20.6%, respectively. In situ micro-X-ray fluorescence mapping of Zn confirmed the elevated Zn content in the rhizosphere zone of rice treated with SaMR12 as compared with the control. The above results suggested that endophytic microbes isolated from S. alfredii could successfully colonize rice roots, resulting in improved root morphology and plant growth, increased Zn bioavailability in rhizosphere soils, and elevated grain yields and Zn densities in grains.

  6. Roles of rhizobial symbionts in selenium hyperaccumulation in Astragalus (Fabaceae).

    PubMed

    Alford, Élan R; Lindblom, Stormy D; Pittarello, Marco; Freeman, John L; Fakra, Sirine C; Marcus, Matthew A; Broeckling, Corey; Pilon-Smits, Elizabeth A H; Paschke, Mark W

    2014-11-01

    Are there dimensions of symbiotic root interactions that are overlooked because plant mineral nutrition is the foundation and, perhaps too often, the sole explanation through which we view these relationships? In this paper we investigate how the root nodule symbiosis in selenium (Se) hyperaccumulator and nonaccumulator Astragalus species influences plant selenium (Se) accumulation. In greenhouse studies, Se was added to nodulated and nonnodulated hyperaccumulator and nonaccumulator Astragalus plants, followed by investigation of nitrogen (N)-Se relationships. Selenium speciation was also investigated, using x-ray microprobe analysis and liquid chromatography-mass spectrometry (LC-MS). Nodulation enhanced biomass production and Se to S ratio in both hyperaccumulator and nonaccumulator plants. The hyperaccumulator contained more Se when nodulated, while the nonaccumulator contained less S when nodulated. Shoot [Se] was positively correlated with shoot N in Se-hyperaccumulator species, but not in nonhyperaccumulator species. The x-ray microprobe analysis showed that hyperaccumulators contain significantly higher amounts of organic Se than nonhyperaccumulators. LC-MS of A. bisulcatus leaves revealed that nodulated plants contained more γ-glutamyl-methylselenocysteine (γ-Glu-MeSeCys) than nonnodulated plants, while MeSeCys levels were similar. Root nodule mutualism positively affects Se hyperaccumulation in Astragalus. The microbial N supply particularly appears to contribute glutamate for the formation of γ-Glu-MeSeCys. Our results provide insight into the significance of symbiotic interactions in plant adaptation to edaphic conditions. Specifically, our findings illustrate that the importance of these relationships are not limited to alleviating macronutrient deficiencies. © 2014 Botanical Society of America, Inc.

  7. Reciprocal grafting separates the roles of the root and shoot in zinc hyperaccumulation in Thlaspi caerulescens.

    PubMed

    de Guimarães, Marcelo A; Gustin, Jeffery L; Salt, David E

    2009-10-01

    * The extreme phenotype of zinc (Zn) hyperaccumulation, which is found in several Brassicaceae species, is determined by mechanisms that promote elevated Zn tolerance and high Zn accumulation in shoots. * We used reciprocal grafting between a Zn hyperaccumulator, Thlaspi caerulescens, and a Zn nonaccumulator, Thlaspi perfoliatum, to determine the relative importance of roots and shoots in Zn hyperaccumulation and hypertolerance. * Leaves from plants with a T. perfoliatum rootstock and a T. caerulescens shoot scion did not hyperaccumulate Zn, whereas plants with a T. caerulescens rootstock and a T. perfoliatum shoot scion did hyperaccumulate Zn. However, although leaves from plants with a T. caerulescens rootstock and a T. perfoliatum shoot scion hyperaccumulated Zn, at high Zn loads these leaves showed significant symptoms of Zn toxicity, unlike leaves of self grafted T. caerulescens. * Hyperaccumulation of Zn in leaves of the hyperaccumulator T. caerulescens is pri-marily dictated by root processes. Further, the mechanisms controlling Zn hypertolerance in the hyperaccumulator T. caerulescens are driven primarily by shoot processes.

  8. Reciprocal grafting separates the roles of the root and shoot in zinc hyperaccumulation in Thlaspi caerulescens

    PubMed Central

    de A Guimarães, Marcelo; Gustin, Jeffery L; Salt, David E

    2009-01-01

    The extreme phenotype of zinc (Zn) hyperaccumulation, which is found in several Brassicaceae species, is determined by mechanisms that promote elevated Zn tolerance and high Zn accumulation in shoots. We used reciprocal grafting between a Zn hyperaccumulator, Thlaspi caerulescens, and a Zn nonaccumulator, Thlaspi perfoliatum, to determine the relative importance of roots and shoots in Zn hyperaccumulation and hypertolerance. Leaves from plants with a T. perfoliatum rootstock and a T. caerulescens shoot scion did not hyperaccumulate Zn, whereas plants with a T. caerulescens rootstock and a T. perfoliatum shoot scion did hyperaccumulate Zn. However, although leaves from plants with a T. caerulescens rootstock and a T. perfoliatum shoot scion hyperaccumulated Zn, at high Zn loads these leaves showed significant symptoms of Zn toxicity, unlike leaves of self grafted T. caerulescens. Hyperaccumulation of Zn in leaves of the hyperaccumulator T. caerulescens is pri-marily dictated by root processes. Further, the mechanisms controlling Zn hypertolerance in the hyperaccumulator T. caerulescens are driven primarily by shoot processes. PMID:19656301

  9. Protein Biochemistry and Expression Regulation of Cadmium/Zinc Pumping ATPases in the Hyperaccumulator Plants Arabidopsis halleri and Noccaea caerulescens

    PubMed Central

    Mishra, Seema; Mishra, Archana; Küpper, Hendrik

    2017-01-01

    P1B-ATPases are decisive for metal accumulation phenotypes, but mechanisms of their regulation are only partially understood. Here, we studied the Cd/Zn transporting ATPases NcHMA3 and NcHMA4 from Noccaea caerulescens as well as AhHMA3 and AhHMA4 from Arabidopsis halleri. Protein biochemistry was analyzed on HMA4 purified from roots of N. caerulescens in active state. Metal titration of NcHMA4 protein with an electrochromic dye as charge indicator suggested that HMA4 reaches maximal ATPase activity when all internal high-affinity Cd2+ binding sites are occupied. Although HMA4 was reported to be mainly responsible for xylem loading of heavy metals for root to shoot transport, the current study revealed high expression of NcHMA4 in shoots as well. Further, there were additional 20 and 40 kD fragments at replete Zn2+ and toxic Cd2+, but not at deficient Zn2+ concentrations. Altogether, the protein level expression analysis suggested a more multifunctional role of NcHMA4 than previously assumed. Organ-level transcription analysis through quantitative PCR of mRNA in N. caerulescens and A. halleri confirmed the strong shoot expression of both NcHMA4 and AhHMA4. Further, in shoots NcHMA4 was more abundant in 10 μM Zn2+ and AhHMA4 in Zn2+ deficiency. In roots, NcHMA4 was up-regulated in response to deficient Zn2+ when compared to replete Zn2+ and toxic Cd2+ treatment. In both species, HMA3 was much more expressed in shoots than in roots, and HMA3 transcript levels remained rather constant regardless of Zn2+ supply, but were up-regulated by 10 μM Cd2+. Analysis of cellular expression by quantitative mRNA in situ hybridisation showed that in A. halleri, both HMA3 and HMA4 mRNA levels were highest in the mesophyll, while in N. caerulescens they were highest in the bundle sheath of the vein. This is likely related to the different final storage sites for hyperaccumulated metals in both species: epidermis in N. caerulescens, mesophyll in A. halleri. PMID:28588597

  10. Selenium hyperaccumulators facilitate selenium-tolerant neighbors via phytoenrichment and reduced herbivory.

    PubMed

    El Mehdawi, Ali F; Quinn, Colin F; Pilon-Smits, Elizabeth A H

    2011-09-13

    Soil surrounding selenium (Se) hyperaccumulator plants was shown earlier to be enriched in Se, impairing the growth of Se-sensitive plant species. Because Se levels in neighbors of hyperaccumulators were higher and Se has been shown to protect plants from herbivory, we investigate here the potential facilitating effect of Se hyperaccumulators on Se-tolerant neighboring species in the field. We measured growth and herbivory of Artemisia ludoviciana and Symphyotrichum ericoides as a function of their Se concentration and proximity to hyperaccumulators Astragalus bisulcatus and Stanleya pinnata. When growing next to hyperaccumulators, A. ludoviciana and S. ericoides contained 10- to 20-fold higher Se levels (800-2,000 mg kg(-1) DW) than when growing next to nonaccumulators. The roots of both species were predominantly (70%-90%) directed toward hyperaccumulator neighbors, not toward other neighbors. Moreover, neighbors of hyperaccumulators were 2-fold bigger, showed 2-fold less herbivory damage, and harbored 3- to 4-fold fewer arthropods. When used in laboratory choice and nonchoice grasshopper herbivory experiments, Se-rich neighbors of hyperaccumulators experienced less herbivory and caused higher grasshopper Se accumulation (10-fold) and mortality (4-fold). Enhanced soil Se levels around hyperaccumulators can facilitate growth of Se-tolerant plant species through reduced herbivory and enhanced growth. This study is the first to show facilitation via enrichment with a nonessential element. It is interesting that Se enrichment of hyperaccumulator neighbors may affect competition in two ways, by reducing growth of Se-sensitive neighbors while facilitating Se-tolerant neighbors. Via these competitive and facilitating effects, Se hyperaccumulators may affect plant community composition and, consequently, higher trophic levels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related nonaccumulators.

    PubMed

    Galeas, Miriam L; Zhang, Li Hong; Freeman, John L; Wegner, Mellissa; Pilon-Smits, Elizabeth A H

    2007-01-01

    Some plants hyperaccumulate selenium (Se) up to 1% of dry weight. This study was performed to obtain insight into whole-plant Se fluxes in hyperaccumulators. Selenium hyperaccumulators Astragalus bisulcatus and Stanleya pinnata were monitored over two growing seasons for seasonal fluctuations in concentrations of Se and the chemically similar element sulfur (S). The related nonhyperaccumulators Astragalus sericoleucus, Oxytropis sericea and Thlaspi montanum were included for comparison. In both hyperaccumulators leaf Se decreased from April to October, coinciding with Se hyperaccumulation in flowers and seeds. Root Se levels were lowest in summer. Selenium concentration decreased with leaf age in both hyperaccumulators. Leaf S levels peaked in summer in all plant species, as did Se levels in nonhyperaccumulators. Selenium and S levels tended to be negatively correlated in hyperaccumulators, and positively correlated in nonhyperaccumulators. These results suggest a specific flow of Se in hyperaccumulator plants over the growing season, from root to young leaves in spring, followed by remobilization from aging leaves to reproductive tissues in summer, and back to roots in the autumn.

  12. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    PubMed Central

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  13. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri.

    PubMed

    Muehe, E Marie; Weigold, Pascal; Adaktylou, Irini J; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas; Behrens, Sebastian

    2015-03-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a "native" and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, "Candidatus Chloracidobacterium") of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. The investigation of the possibility for using some wild and cultivated plants as hyperaccumulators of heavy metals from contaminated soil.

    PubMed

    Maric, Miroslava; Antonijevic, Milan; Alagic, Sladjana

    2013-02-01

    The copper production in Bor (East Serbia) during the last 100 years presents an important source of the pollution of environment. Dust, waste waters, tailing, and air pollutants influence the quality of soil, water, and air. Over 2,000 ha of fertile soil have been damaged by the flotation tailing from Bor's facilities. The goal of the present work has been to determine the content of Pb, Cu, and Fe in wild plants (17 species) naturally growing in the damaged soil and in fodder crops (nine species) planted at the same place. The content of Pb, Cu, and Fe has been analyzed in damaged soil as well. This study has also searched for native (wild) and cultivated plants which are able to grow in contaminated soil in the area of the intense industrial activity of copper production in Bor, which means that they can accumulate and tolerate heavy metals in their above-ground tissues. It has been found out that the content of all metals in contaminated soil decreases considerably at the end of the experiment. As it has been expected, all plant species could accumulate investigated metals. All tested plants, both wild-growing and cultivated plants, seem to be quite healthy on the substrate which contained extremely high concentrations of copper.

  15. The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana.

    PubMed

    Zhao, Huijun; Wu, Liangqi; Chai, Tuanyao; Zhang, Yuxiu; Tan, Jinjuan; Ma, Shengwen

    2012-09-01

    Synchrotron radiation X-ray fluorescence (SRXRF) and inductively coupled plasma mass spectrometry were used to estimate major, minor and trace elements in Cu-, Zn- and Mn-treated Phytolacca americana. The effects of the addition of Cu, Zn and Mn on morphological parameters, such as root length, shoot height, and fresh and dry weights of shoots and roots, were also examined. In addition, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidases (GPX) and catalase (CAT) and the expression of Fe-SOD, Cu/Zn-SOD, metallothionein-2 and glutathione S-transferase (GST) exposed to the highest amounts of Cu, Zn or Mn were detected. Our results confirmed the following: (1) Zn supplementation leads to chlorosis, disturbed elemental homeostasis and decreased concentrations of micro- and macroelements such as Fe, Mg, Mn, Ca and K. Cu competed with Fe, Mn and Zn uptake in plants supplemented with 25 μM Cu. However, no antagonistic interactions took place between Cu, Zn, Mn and Fe uptake in plants supplemented with 100 μM Cu. Mn supplementation at various concentrations had no negative effects on elemental deficits. Mn was co-located with high concentrations of Fe and Zn in mature leaves and the concentrations of macro elements were unchanged. (2) P. americana supplemented with increased concentrations of Zn and Cu exhibited lower biomass production and reduced plant growth. (3) When plants were supplemented with the highest Zn and Cu concentrations, symptoms of toxicity corresponded to decreased SOD or CAT activities and increased APX and GPX activities. However, Mn tolerance corresponded to increased SOD and CAT activities and decreased POD and APX activities. Our study revealed that heavy metals partially exert toxicity by disturbing the nutrient balance and modifying enzyme activities that induce damage in plants. However, P. americana has evolved hyper accumulating mechanisms to maintain elemental balance and redox homeostasis under

  16. Immunocytochemical analysis of the subcellular distribution of ferritin in Imperata cylindrica (L.) Raeuschel, an iron hyperaccumulator plant.

    PubMed

    de la Fuente, Vicenta; Rodríguez, Nuria; Amils, Ricardo

    2012-05-01

    Ferritin is of interest at the structural and functional level not only as storage for iron, a critical element, but also as a means to prevent cell damage produced by oxidative stress. The main objective of this work was to confirm by immunocytochemistry the presence and the subcellular distribution of the ferritin detected by Mösbauer spectroscopy in Imperata cylindrica, a plant which accumulates large amounts of iron. The localization of ferritin was performed in epidermal, parenchymal and vascular tissues of shoots and leaves of I. cylindrica. The highest density of immunolabeling in shoots appeared in the intracellular space of cell tissues, near the cell walls and in the cytoplasm. In leaves, ferritin was detected in the proximity of the dense network of the middle lamella of cell walls, following a similar path to that observed in shoots. Immunolabeling was also localized in chloroplasts. The abundance of immunogold labelling in mitochondria for I. cylindrica was rather low, probably because the study dealt with tissues from old plants. These results further expand the localization of ferritin in cell components other than chloroplasts and mitochondria in plants.

  17. Selenium hyperaccumulation - Astragalus bisulcatus, Cardamine hupingshanensis and Stanleya pinnata - may be useful for agromining selenium-rich soils

    USDA-ARS?s Scientific Manuscript database

    Selenium hyperaccumulator plants like Stanleya pinnata, Astragalus bisulcatus and the newly discovered Se-accumulator Cardamine hupingshanensis may play an important role in the Se cycle from soil to plant to human in China. Se-hyperaccumulators can be used for agromining or for phytoremediation of ...

  18. Erato polymnioides - A novel Hg hyperaccumulator plant in ecuadorian rainforest acid soils with potential of microbe-associated phytoremediation.

    PubMed

    Chamba, Irene; Rosado, Daniel; Kalinhoff, Carolina; Thangaswamy, Selvaraj; Sánchez-Rodríguez, Aminael; Gazquez, Manuel Jesús

    2017-12-01

    Mercury (Hg) accumulation capacity was assessed in three plant species (Axonopus compressus, Erato polymnioides, and Miconia zamorensis) that grow on soils polluted by artisanal small-scale gold mines in the Ecuadorian rainforest. Individuals of three species were collected at two sampling zones: i) an intensive zone (IZ, 4.8 mg Hg kg(-1) of soil) where gold extraction continues to occur, and ii) a natural zone (NZ, 0.19 mg Hg kg(-1) of soil). In addition, the percentage of arbuscular mycorrhizal fungi (AMF) colonization was determined in plant roots and seven fungal morphotypes isolated from rhizospheric soil. Results suggest a facilitation role of native and pollution adapted AMF on Hg phytoaccumulation. E.g., E. polymnioides increased Hg accumulation when growing with greater AMF colonization. We concluded that E. polymnioides is a good candidate for the design of microbe-assisted strategies for Hg remediation at gold mining areas. The consortia between E. polymnioides and the AMF isolated in this study could be instrumental to get a deeper understanding of the AMF role in Hg phytoaccumulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Impact assessment of mercury accumulation and biochemical and molecular response of Mentha arvensis: a potential hyperaccumulator plant.

    PubMed

    Manikandan, R; Sahi, S V; Venkatachalam, P

    2015-01-01

    The present study was focused on examining the effect of Hg oxidative stress induced physiochemical and genetic changes in M. arvensis seedlings. The growth rate of Hg treated seedlings was decreased to 56.1% and 41.5% in roots and shoots, respectively, compared to the control. Accumulation of Hg level in both roots and shoots was increased with increasing the concentration of Hg. Superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities were found to be increased with increasing the Hg concentration up to 20 mg/L; however, it was decreased at 25 mg/L Hg concentration. The POX enzyme activity was positively correlated with Hg dose. The changes occurring in the random amplification of ploymorphic DNA (RAPD) profiles generated from Hg treated seedlings included variations in band intensity, disappearance of bands, and appearance of new bands compared with the control seedlings. It was concluded that DNA polymorphisms observed with RAPD profile could be used as molecular marker for the evaluation of heavy metal induced genotoxic effects in plant species. The present results strongly suggested that Mentha arvensis could be used as a potential phytoremediator plant in mercury polluted environment.

  20. Impact Assessment of Mercury Accumulation and Biochemical and Molecular Response of Mentha arvensis: A Potential Hyperaccumulator Plant

    PubMed Central

    Manikandan, R.; Sahi, S. V.; Venkatachalam, P.

    2015-01-01

    The present study was focused on examining the effect of Hg oxidative stress induced physiochemical and genetic changes in M. arvensis seedlings. The growth rate of Hg treated seedlings was decreased to 56.1% and 41.5% in roots and shoots, respectively, compared to the control. Accumulation of Hg level in both roots and shoots was increased with increasing the concentration of Hg. Superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities were found to be increased with increasing the Hg concentration up to 20 mg/L; however, it was decreased at 25 mg/L Hg concentration. The POX enzyme activity was positively correlated with Hg dose. The changes occurring in the random amplification of ploymorphic DNA (RAPD) profiles generated from Hg treated seedlings included variations in band intensity, disappearance of bands, and appearance of new bands compared with the control seedlings. It was concluded that DNA polymorphisms observed with RAPD profile could be used as molecular marker for the evaluation of heavy metal induced genotoxic effects in plant species. The present results strongly suggested that Mentha arvensis could be used as a potential phytoremediator plant in mercury polluted environment. PMID:25654134

  1. Abnormal accumulation of trace metals by plants

    SciTech Connect

    Reeves, R.D.; Brooks, R.R.; Baker, A.J.M.

    1996-12-31

    The article describes the hyperaccumulation of metals by plants. Ranges for low, normal, high, and hyperaccumulating uptake are established. A partial list of hyperaccumulator species and their localities is included. Studies are reviewed and summarized for zinc, cadmium and lead, nickel, cobalt and copper, selenium, and cadmium and manganese hyperaccumulation.

  2. Constitutively Elevated Salicylic Acid Signals Glutathione-Mediated Nickel Tolerance in Thlaspi Nickel Hyperaccumulators1

    PubMed Central

    Freeman, John L.; Garcia, Daniel; Kim, Donggiun; Hopf, Amber; Salt, David E.

    2005-01-01

    Progress is being made in understanding the biochemical and molecular basis of nickel (Ni)/zinc (Zn) hyperaccumulation in Thlaspi; however, the molecular signaling pathways that control these mechanisms are not understood. We observed that elevated concentrations of salicylic acid (SA), a molecule known to be involved in signaling induced pathogen defense responses in plants, is a strong predictor of Ni hyperaccumulation in the six diverse Thlaspi species investigated, including the hyperaccumulators Thlaspi goesingense, Thlaspi rosulare, Thlaspi oxyceras, and Thlaspi caerulescens and the nonaccumulators Thlaspi arvense and Thlaspi perfoliatum. Furthermore, the SA metabolites phenylalanine, cinnamic acid, salicyloyl-glucose, and catechol are also elevated in the hyperaccumulator T. goesingense when compared to the nonaccumulators Arabidopsis (Arabidopsis thaliana) and T. arvense. Elevation of free SA levels in Arabidopsis, both genetically and by exogenous feeding, enhances the specific activity of serine acetyltransferase, leading to elevated glutathione and increased Ni resistance. Such SA-mediated Ni resistance in Arabidopsis phenocopies the glutathione-based Ni tolerance previously observed in Thlaspi, suggesting a biochemical linkage between SA and Ni tolerance in this genus. Intriguingly, the hyperaccumulator T. goesingense also shows enhanced sensitivity to the pathogen powdery mildew (Erysiphe cruciferarum) and fails to induce SA biosynthesis after infection. Nickel hyperaccumulation reverses this pathogen hypersensitivity, suggesting that the interaction between pathogen resistance and Ni tolerance and hyperaccumulation may have played a critical role in the evolution of metal hyperaccumulation in the Thlaspi genus. PMID:15734913

  3. Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators.

    PubMed

    Freeman, John L; Garcia, Daniel; Kim, Donggiun; Hopf, Amber; Salt, David E

    2005-03-01

    Progress is being made in understanding the biochemical and molecular basis of nickel (Ni)/zinc (Zn) hyperaccumulation in Thlaspi; however, the molecular signaling pathways that control these mechanisms are not understood. We observed that elevated concentrations of salicylic acid (SA), a molecule known to be involved in signaling induced pathogen defense responses in plants, is a strong predictor of Ni hyperaccumulation in the six diverse Thlaspi species investigated, including the hyperaccumulators Thlaspi goesingense, Thlaspi rosulare, Thlaspi oxyceras, and Thlaspi caerulescens and the nonaccumulators Thlaspi arvense and Thlaspi perfoliatum. Furthermore, the SA metabolites phenylalanine, cinnamic acid, salicyloyl-glucose, and catechol are also elevated in the hyperaccumulator T. goesingense when compared to the nonaccumulators Arabidopsis (Arabidopsis thaliana) and T. arvense. Elevation of free SA levels in Arabidopsis, both genetically and by exogenous feeding, enhances the specific activity of serine acetyltransferase, leading to elevated glutathione and increased Ni resistance. Such SA-mediated Ni resistance in Arabidopsis phenocopies the glutathione-based Ni tolerance previously observed in Thlaspi, suggesting a biochemical linkage between SA and Ni tolerance in this genus. Intriguingly, the hyperaccumulator T. goesingense also shows enhanced sensitivity to the pathogen powdery mildew (Erysiphe cruciferarum) and fails to induce SA biosynthesis after infection. Nickel hyperaccumulation reverses this pathogen hypersensitivity, suggesting that the interaction between pathogen resistance and Ni tolerance and hyperaccumulation may have played a critical role in the evolution of metal hyperaccumulation in the Thlaspi genus.

  4. Genetic and Molecular Dissection of Arsenic Hyperaccumulation in the fern Pteris vittata.

    SciTech Connect

    Jo Ann Banks; David Salt

    2008-04-04

    Pteris vittata is a fern that is extraordinary in its ability to tolerate hyperaccumulate high levels of arsenic (As). The goals of the proposed research, to identify the genes that are necessary for As hyperaccumulation in P. vittata using molecular and genetic approaches and to understand the physiology of arsenic uptake and distribution in the living plant, were accomplished during the funding period. The genes that have been identified may ultimately enable the engineering or selection of other plants capable of As hyperaccumulation. This is important for the phytoremediation of arsenic-contaminated soils in areas where P. vittata cannot grow.

  5. Selenium hyperaccumulation offers protection from cell disruptor herbivores

    PubMed Central

    2010-01-01

    Background Hyperaccumulation, the rare capacity of certain plant species to accumulate toxic trace elements to levels several orders of magnitude higher than other species growing on the same site, is thought to be an elemental defense mechanism against herbivores and pathogens. Previous research has shown that selenium (Se) hyperaccumulation protects plants from a variety of herbivores and pathogens. Selenium hyperaccumulating plants sequester Se in discrete locations in the leaf periphery, making them potentially more susceptible to some herbivore feeding modes than others. In this study we investigate the protective function of Se in the Se hyperaccumulators Stanleya pinnata and Astragalus bisulcatus against two cell disrupting herbivores, the western flower thrips (Frankliniella occidentalis) and the two-spotted spider mite (Tetranychus urticae). Results Astragalus bisulcatus and S. pinnata with high Se concentrations (greater than 650 mg Se kg-1) were less subject to thrips herbivory than plants with low Se levels (less than 150 mg Se kg-1). Furthermore, in plants containing elevated Se levels, leaves with higher concentrations of Se suffered less herbivory than leaves with less Se. Spider mites also preferred to feed on low-Se A. bisulcatus and S. pinnata plants rather than high-Se plants. Spider mite populations on A. bisulcatus decreased after plants were given a higher concentration of Se. Interestingly, spider mites could colonize A. bisulcatus plants containing up to 200 mg Se kg-1 dry weight, concentrations which are toxic to many other herbivores. Selenium distribution and speciation studies using micro-focused X-ray fluorescence (μXRF) mapping and Se K-edge X-ray absorption spectroscopy revealed that the spider mites accumulated primarily methylselenocysteine, the relatively non-toxic form of Se that is also the predominant form of Se in hyperaccumulators. Conclusions This is the first reported study investigating the protective effect of

  6. Selenium hyperaccumulation offers protection from cell disruptor herbivores.

    PubMed

    Quinn, Colin F; Freeman, John L; Reynolds, Ray J B; Cappa, Jennifer J; Fakra, Sirine C; Marcus, Matthew A; Lindblom, Stormy D; Quinn, Erin K; Bennett, Lindsay E; Pilon-Smits, Elizabeth A H

    2010-08-27

    Hyperaccumulation, the rare capacity of certain plant species to accumulate toxic trace elements to levels several orders of magnitude higher than other species growing on the same site, is thought to be an elemental defense mechanism against herbivores and pathogens. Previous research has shown that selenium (Se) hyperaccumulation protects plants from a variety of herbivores and pathogens. Selenium hyperaccumulating plants sequester Se in discrete locations in the leaf periphery, making them potentially more susceptible to some herbivore feeding modes than others. In this study we investigate the protective function of Se in the Se hyperaccumulators Stanleya pinnata and Astragalus bisulcatus against two cell disrupting herbivores, the western flower thrips (Frankliniella occidentalis) and the two-spotted spider mite (Tetranychus urticae). Astragalus bisulcatus and S. pinnata with high Se concentrations (greater than 650 mg Se kg(-1)) were less subject to thrips herbivory than plants with low Se levels (less than 150 mg Se kg(-1)). Furthermore, in plants containing elevated Se levels, leaves with higher concentrations of Se suffered less herbivory than leaves with less Se. Spider mites also preferred to feed on low-Se A. bisulcatus and S. pinnata plants rather than high-Se plants. Spider mite populations on A. bisulcatus decreased after plants were given a higher concentration of Se. Interestingly, spider mites could colonize A. bisulcatus plants containing up to 200 mg Se kg(-1) dry weight, concentrations which are toxic to many other herbivores. Selenium distribution and speciation studies using micro-focused X-ray fluorescence (μXRF) mapping and Se K-edge X-ray absorption spectroscopy revealed that the spider mites accumulated primarily methylselenocysteine, the relatively non-toxic form of Se that is also the predominant form of Se in hyperaccumulators. This is the first reported study investigating the protective effect of hyperaccumulated Se against cell

  7. Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system.

    PubMed

    Milner, Matthew J; Kochian, Leon V

    2008-07-01

    Metal-hyperaccumulating plant species are plants that are endemic to metalliferous soils and are able to tolerate and accumulate metals in their above-ground tissues to very high concentrations. One such hyperaccumulator, Thlaspi caerulescens, has been widely studied for its remarkable properties to tolerate toxic levels of zinc (Zn), cadmium (Cd) and sometimes nickel (Ni) in the soil, and accumulate these metals to very high levels in the shoot. The increased awareness regarding metal-hyperaccumulating plants by the plant biology community has helped spur interest in the possible use of plants to remove heavy metals from contaminated soils, a process known as phytoremediation. Hence, there has been a focus on understanding the mechanisms that metal-hyperaccumulator plant species such as Thlaspi caerulescens employ to absorb, detoxify and store metals in order to use this information to develop plants better suited for the phytoremediation of metal-contaminated soils. In this review, an overview of the findings from recent research aimed at better understanding the physiological mechanisms of Thlaspi caerulescens heavy-metal hyperaccumulation as well as the underlying molecular and genetic determinants for this trait will be discussed. Progress has been made in understanding some of the fundamental Zn and Cd transport physiology in T. caerulescens. Furthermore, some interesting metal-related genes have been identified and characterized in this plant species, and regulation of the expression of some of these genes may be important for hyperaccumulation. Thlaspi caerulescens is a fascinating and useful model system not only for studying metal hyperaccumulation, but also for better understanding micronutrient homeostasis and nutrition. Considerable future research is still needed to elucidate the molecular, genetic and physiological bases for the extreme metal tolerance and hyperaccumulation exhibited by plant species such as T. caerulescens.

  8. Investigating Heavy-metal Hyperaccumulation using Thlaspi caerulescens as a Model System

    PubMed Central

    Milner, Matthew J.; Kochian, Leon V.

    2008-01-01

    Background Metal-hyperaccumulating plant species are plants that are endemic to metalliferous soils and are able to tolerate and accumulate metals in their above-ground tissues to very high concentrations. One such hyperaccumulator, Thlaspi caerulescens, has been widely studied for its remarkable properties to tolerate toxic levels of zinc (Zn), cadmium (Cd) and sometimes nickel (Ni) in the soil, and accumulate these metals to very high levels in the shoot. The increased awareness regarding metal-hyperaccumulating plants by the plant biology community has helped spur interest in the possible use of plants to remove heavy metals from contaminated soils, a process known as phytoremediation. Hence, there has been a focus on understanding the mechanisms that metal-hyperaccumulator plant species such as Thlaspi caerulescens employ to absorb, detoxify and store metals in order to use this information to develop plants better suited for the phytoremediation of metal-contaminated soils. Scope In this review, an overview of the findings from recent research aimed at better understanding the physiological mechanisms of Thlaspi caerulescens heavy-metal hyperaccumulation as well as the underlying molecular and genetic determinants for this trait will be discussed. Progress has been made in understanding some of the fundamental Zn and Cd transport physiology in T. caerulescens. Furthermore, some interesting metal-related genes have been identified and characterized in this plant species, and regulation of the expression of some of these genes may be important for hyperaccumulation. Conclusions Thlaspi caerulescens is a fascinating and useful model system not only for studying metal hyperaccumulation, but also for better understanding micronutrient homeostasis and nutrition. Considerable future research is still needed to elucidate the molecular, genetic and physiological bases for the extreme metal tolerance and hyperaccumulation exhibited by plant species such as T

  9. Selenium protects the hyperaccumulator Stanleya pinnata against black-tailed prairie dog herbivory in native seleniferous habitats.

    PubMed

    Freeman, John L; Quinn, Colin F; Lindblom, Stormy Dawn; Klamper, Erin M; Pilon-Smits, Elizabeth A H

    2009-06-01

    Elemental hyperaccumulation in plants is hypothesized to represent a plant defense mechanism. The objective of this study was to determine whether selenium (Se) hyperaccumulation offers plants long-term protection from the black-tailed prairie dog (Cynomys ludovicianus). Prairie dogs are a keystone species. The hyperaccumulator Stanleya pinnata (prince's plume) co-occurs with prairie dogs in seleniferous areas in the western United States. Stanleya pinnata plants pretreated with high or low Se concentrations were planted on two prairie dog towns with different levels of herbivory pressure, and herbivory of these plants was monitored over 2 years. Throughout this study, plants with elevated Se levels suffered less herbivory and survived better than plants with low leaf Se concentrations. This study indicates that the Se in hyperaccumulator S. pinnata protects the plant in its natural habitat from herbivory by the black-tailed prairie dog. The results from this study support the hypothesis that herbivory by prairie dogs or similar small mammals has been a contributing selection pressure for the evolution of plant Se hyperaccumulation in North America. This study is the first to test the ecological significance of hyperaccumulation over a long period in a hyperaccumulator's natural habitat.

  10. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies.

    PubMed

    Chaney, Rufus L; Angle, J Scott; Broadhurst, C Leigh; Peters, Carinne A; Tappero, Ryan V; Sparks, Donald L

    2007-01-01

    This paper reviews progress in phytoextraction of soil elements and illustrates the key role of hyperaccumulator plant species in useful phytoextraction technologies. Much research has focused on elements which are not practically phytoextracted (Pb); on addition of chelating agents which cause unacceptable contaminant leaching and are cost prohibitive; and on plant species which offer no useful phytoextraction capability (e.g., Brassica juncea Czern). Nickel phytoextraction by Alyssum hyperaccumulator species, which have been developed into a commercial phytomining technology, is discussed in more detail. Nickel is ultimately accumulated in vacuoles of leaf epidermal cells which prevents metal toxicity and provides defense against some insect predators and plant diseases. Constitutive up-regulation of trans-membrane element transporters appears to be the key process that allows these plants to achieve hyperaccumulation. Cadmium phytoextraction is needed for rice soils contaminated by mine wastes and smelter emissions with 100-fold more soil Zn than Cd. Although many plant species can accumulate high levels of Cd in the absence of Zn, when Cd/Zn>100, only Thlaspi caerulescens from southern France has demonstrated the ability to phytoextract useful amounts of Cd. Production of element-enriched biomass with value as ore or fertilizer or improved food (Se) or feed supplement may offset costs of phytoextraction crop production. Transgenic phytoextraction plants have been achieved for Hg, but not for other elements. Although several researchers have been attempting to clone all genes required for effective hyperaccumulation of several elements, success appears years away; such demonstrations will be needed to prove we have identified all necessary processes in hyperaccumulation.

  11. Selenium distribution and speciation in the hyperaccumulator Astragalus bisulcatus and associated ecological partners.

    PubMed

    Valdez Barillas, José R; Quinn, Colin F; Freeman, John L; Lindblom, Stormy D; Fakra, Sirine C; Marcus, Matthew A; Gilligan, Todd M; Alford, Élan R; Wangeline, Ami L; Pilon-Smits, Elizabeth A H

    2012-08-01

    The goal of this study was to investigate how plant selenium (Se) hyperaccumulation may affect ecological interactions and whether associated partners may affect Se hyperaccumulation. The Se hyperaccumulator Astragalus bisulcatus was collected in its natural seleniferous habitat, and x-ray fluorescence mapping and x-ray absorption near-edge structure spectroscopy were used to characterize Se distribution and speciation in all organs as well as in encountered microbial symbionts and herbivores. Se was present at high levels (704-4,661 mg kg(-1) dry weight) in all organs, mainly as organic C-Se-C compounds (i.e. Se bonded to two carbon atoms, e.g. methylselenocysteine). In nodule, root, and stem, up to 34% of Se was found as elemental Se, which was potentially due to microbial activity. In addition to a nitrogen-fixing symbiont, the plants harbored an endophytic fungus that produced elemental Se. Furthermore, two Se-resistant herbivorous moths were discovered on A. bisulcatus, one of which was parasitized by a wasp. Adult moths, larvae, and wasps all accumulated predominantly C-Se-C compounds. In conclusion, hyperaccumulators live in association with a variety of Se-resistant ecological partners. Among these partners, microbial endosymbionts may affect Se speciation in hyperaccumulators. Hyperaccumulators have been shown earlier to negatively affect Se-sensitive ecological partners while apparently offering a niche for Se-resistant partners. Through their positive and negative effects on different ecological partners, hyperaccumulators may influence species composition and Se cycling in seleniferous ecosystems.

  12. Biochar provides a safe and value-added solution for hyperaccumulating plant disposal: A case study of Phytolacca acinosa Roxb. (Phytolaccaceae).

    PubMed

    Wang, Shengsen; Gao, Bin; Li, Yuncong; Ok, Yong Sik; Shen, Chaofeng; Xue, Shengguo

    2017-07-01

    In this work, an innovative approach using biochar technology for hyperaccumulator disposal was developed and evaluated. The heavy metal enriched P. acinosa biomass (PBM) was pyrolyzed to produce biochar (PBC). Both PBM and PBC were characterized with X-ray diffraction (XRD) for crystal phases, scanning electron microscopy (SEM) for surface topography, and analyzed for elemental composition and mobility. The results revealed that whewellite, a dominant crystal form in biomass, was decomposed to calcite after pyrolysis. Elemental analysis indicated that 91-99% total non-volatile elements in the biomass were retained in the biochar. The toxicity characteristic leaching procedure (TCLP) results revealed that 94.6% and 0.15% of total Mn was extracted for biomass and biochar, respectively. This suggests that mobility and bioavailability of Mn in biochar was much lower relative to pristine biomass. Batch sorption experiment showed that excellent removal of aqueous silver, lead, cadmium, and copper ions can be achieved with PBC. Findings from this work indicated that biochar technology can provide a value-added solution for hyperaccumulator disposal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Selenium hyperaccumulation by Astragalus (Fabaceae) does not inhibit root nodule symbiosis.

    PubMed

    Alford, Elan R; Pilon-Smits, Elizabeth A H; Fakra, Sirine C; Paschke, Mark W

    2012-12-01

    A survey of the root-nodule symbiosis in Astragalus and its interaction with selenium (Se) has not been conducted before. Such studies can provide insight into how edaphic conditions modify symbiotic interactions and influence partner coevolution. In this paper plant-organ Se concentration ([Se]) was investigated to assess potential Se exposure to endophytes. • Selenium distribution and molecular speciation of root nodules from Se-hyperaccumulators Astragalus bisulcatus, A. praelongus, and A. racemosus was determined by Se K-edge x-ray absorption spectroscopy. A series of greenhouse experiments were conducted to characterize the response of root-nodule symbiosis in Se-hyperaccumulators and nonhyperaccumulators. • Nodules in three Se-hyperaccumulators (Astragalus crotalariae, A. praelongus, and A. preussii) are reported for the first time. Leaves, flowers, and fruits from Se-hyperaccumulators were routinely above the hyperaccumulator threshold (1,000 µg Se g(-1) DW), but root samples rarely contained that amount, and nodules never exceeded 110 µg Se g(-1) DW. Nodules from A. bisulcatus, A. praelongus, and A. racemosus had Se throughout, with a majority stored in C-Se-C form. Finally, an evaluation of nodulation in Se-hyperaccumulators and nonhyperaccumulators indicated that there was no nodulation inhibition because of plant Se tolerance. Rather, we found that in Se-hyperaccumulators higher levels of Se treatment (up to 100 µM Se) corresponded with higher nodule counts, indicating a potential role for dinitrogen fixation in Se-hyperaccumulation. The effect was not found in nonhyperaccumulators. • As the evolution of Se hyperaccumulation in Astragalus developed, root-nodule symbiosis may have played an integral role.

  14. Microbeam methodologies as powerful tools in manganese hyperaccumulation research: present status and future directions

    PubMed Central

    Fernando, Denise R.; Marshall, Alan; Baker, Alan J. M.; Mizuno, Takafumi

    2013-01-01

    Microbeam studies over the past decade have garnered unique insight into manganese (Mn) homeostasis in plant species that hyperaccumulate this essential mineral micronutrient. Electron- and/or proton-probe methodologies employed to examine tissue elemental distributions have proven highly effective in illuminating excess foliar Mn disposal strategies, some apparently unique to Mn hyperaccumulating plants. When applied to samples prepared with minimal artefacts, these are powerful tools for extracting true ‘snapshot’ data of living systems. For a range of reasons, Mn hyperaccumulation is particularly suited to in vivo interrogation by this approach. Whilst microbeam investigation of metallophytes is well documented, certain methods originally intended for non-biological samples are now widely applied in biology. This review examines current knowledge about Mn hyperaccumulators with reference to microbeam methodologies, and discusses implications for future research into metal transporters. PMID:23970891

  15. Transient Influx of nickel in root mitochondria modulates organic acid and reactive oxygen species production in nickel hyperaccumulator Alyssum murale.

    PubMed

    Agrawal, Bhavana; Czymmek, Kirk J; Sparks, Donald L; Bais, Harsh P

    2013-03-08

    Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation.

  16. Transient Influx of Nickel in Root Mitochondria Modulates Organic Acid and Reactive Oxygen Species Production in Nickel Hyperaccumulator Alyssum murale*

    PubMed Central

    Agrawal, Bhavana; Czymmek, Kirk J.; Sparks, Donald L.; Bais, Harsh P.

    2013-01-01

    Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation. PMID:23322782

  17. Enhanced cadmium efflux and root-to-shoot translocation are conserved in the hyperaccumulator Sedum alfredii (Crassulaceae family).

    PubMed

    Zhang, Zhongchun; Yu, Qi; Du, Hanying; Ai, Wenli; Yao, Xuan; Mendoza-Cózatl, David G; Qiu, Baosheng

    2016-06-01

    Investigation on the molecular mechanisms of cadmium hyperaccumulation has been mostly focused on members of the Brassicaceae family. Here, we show using hyperaccumulating (HP) and nonhyperaccumulating (NHP) populations of Sedum alfredii (Crassulaceae), that Cd hypertolerance correlates with higher Cd efflux rates and less cadmium accumulation in suspension cells and roots. The heavy metal ATPase HMA2, but not HMA4, was highly expressed in suspension cultures and roots from HP plants compared to NHP cells and plants. Reciprocal grafting also showed that Cd translocation is more efficient in HP plants. These results suggest that cadmium efflux is a conserved mechanism among natural cadmium hyperaccumulator species. © 2016 Federation of European Biochemical Societies.

  18. Increased glutathione biosynthesis plays a role in nickel tolerance in thlaspi nickel hyperaccumulators.

    PubMed

    Freeman, John L; Persans, Michael W; Nieman, Ken; Albrecht, Carrie; Peer, Wendy; Pickering, Ingrid J; Salt, David E

    2004-08-01

    Worldwide more than 400 plant species are now known that hyperaccumulate various trace metals (Cd, Co, Cu, Mn, Ni, and Zn), metalloids (As) and nonmetals (Se) in their shoots. Of these, almost one-quarter are Brassicaceae family members, including numerous Thlaspi species that hyperaccumulate Ni up to 3% of there shoot dry weight. We observed that concentrations of glutathione, Cys, and O-acetyl-l-serine (OAS), in shoot tissue, are strongly correlated with the ability to hyperaccumulate Ni in various Thlaspi hyperaccumulators collected from serpentine soils, including Thlaspi goesingense, T. oxyceras, and T. rosulare, and nonaccumulator relatives, including T. perfoliatum, T. arvense, and Arabidopsis thaliana. Further analysis of the Austrian Ni hyperaccumulator T. goesingense revealed that the high concentrations of OAS, Cys, and GSH observed in this hyperaccumulator coincide with constitutively high activity of both serine acetyltransferase (SAT) and glutathione reductase. SAT catalyzes the acetylation of l-Ser to produce OAS, which acts as both a key positive regulator of sulfur assimilation and forms the carbon skeleton for Cys biosynthesis. These changes in Cys and GSH metabolism also coincide with the ability of T. goesingense to both hyperaccumulate Ni and resist its damaging oxidative effects. Overproduction of T. goesingense SAT in the nonaccumulator Brassicaceae family member Arabidopsis was found to cause accumulation of OAS, Cys, and glutathione, mimicking the biochemical changes observed in the Ni hyperaccumulators. In these transgenic Arabidopsis, glutathione concentrations strongly correlate with increased resistance to both the growth inhibitory and oxidative stress induced effects of Ni. Taken together, such evidence supports our conclusion that elevated GSH concentrations, driven by constitutively elevated SAT activity, are involved in conferring tolerance to Ni-induced oxidative stress in Thlaspi Ni hyperaccumulators.

  19. The bacterial rhizobiome of hyperaccumulators: future perspectives based on omics analysis and advanced microscopy

    PubMed Central

    Visioli, Giovanna; D'Egidio, Sara; Sanangelantoni, Anna M.

    2015-01-01

    Hyperaccumulators are plants that can extract heavy metal ions from the soil and translocate those ions to the shoots, where they are sequestered and detoxified. Hyperaccumulation depends not only on the availability of mobilized metal ions in the soil, but also on the enhanced activity of metal transporters and metal chelators which may be provided by the plant or its associated microbes. The rhizobiome is captured by plant root exudates from the complex microbial community in the soil, and may colonize the root surface or infiltrate the root cortex. This community can increase the root surface area by inducing hairy root proliferation. It may also increase the solubility of metals in the rhizosphere and promote the uptake of soluble metals by the plant. The bacterial rhizobiome, a subset of specialized microorganisms that colonize the plant rhizosphere and endosphere, makes an important contribution to the hyperaccumulator phenotype. In this review, we discuss classic and more recent tools that are used to study the interactions between hyperaccumulators and the bacterial rhizobiome, and consider future perspectives based on the use of omics analysis and microscopy to study plant metabolism in the context of metal accumulation. Recent data suggest that metal-resistant bacteria isolated from the hyperaccumulator rhizosphere and endosphere could be useful in applications such as phytoextraction and phytoremediation, although more research is required to determine whether such properties can be transferred successfully to non-accumulator species. PMID:25709609

  20. Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata.

    PubMed

    Sagner, S; Kneer, R; Wanner, G; Cosson, J P; Deus-Neumann, B; Zenk, M H

    1998-02-01

    The nickel content in different parts of the hyperaccumulating tree Sebertia acuminata was analysed by atomic absorption spectroscopy. Nickel was found to be mainly located in laticifers. The total nickel content of a single mature tree was estimated to be 37 kg. By gel filtration and NMR spectroscopy, citric acid was unequivocally identified as counter ion for about 40% of this metal present. Nitrate was assumed to be a further partner for a complete ionic balance. Phytochelatins were not found to be involved in nickel detoxification in Sebertia. The localization of nickel complexes inside the laticifers was demonstrated by light microscopy as well as by scanning electron microscopy in combination with an EDX system for the analysis of elements. A repellent effect of the plant sap was observed on the fruit fly Drosophila melanogaster indicating that in hyperaccumulating plants nickel functions as an agent to prevent predation.

  1. Microbial communities and functional genes associated with soil arsenic contamination and the rhizosphere of the arsenic-hyperaccumulating plant Pteris vittata L.

    PubMed

    Xiong, Jinbo; Wu, Liyou; Tu, Shuxin; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Wang, Gejiao

    2010-11-01

    To understand how microbial communities and functional genes respond to arsenic contamination in the rhizosphere of Pteris vittata, five soil samples with different arsenic contamination levels were collected from the rhizosphere of P. vittata and nonrhizosphere areas and investigated by Biolog, geochemical, and functional gene microarray (GeoChip 3.0) analyses. Biolog analysis revealed that the uncontaminated soil harbored the greatest diversity of sole-carbon utilization abilities and that arsenic contamination decreased the metabolic diversity, while rhizosphere soils had higher metabolic diversities than did the nonrhizosphere soils. GeoChip 3.0 analysis showed low proportions of overlapping genes across the five soil samples (16.52% to 45.75%). The uncontaminated soil had a higher heterogeneity and more unique genes (48.09%) than did the arsenic-contaminated soils. Arsenic resistance, sulfur reduction, phosphorus utilization, and denitrification genes were remarkably distinct between P. vittata rhizosphere and nonrhizosphere soils, which provides evidence for a strong linkage among the level of arsenic contamination, the rhizosphere, and the functional gene distribution. Canonical correspondence analysis (CCA) revealed that arsenic is the main driver in reducing the soil functional gene diversity; however, organic matter and phosphorus also have significant effects on the soil microbial community structure. The results implied that rhizobacteria play an important role during soil arsenic uptake and hyperaccumulation processes of P. vittata.

  2. Selenium-tolerant diamondback moth disarms hyperaccumulator plantdefense

    SciTech Connect

    Freeman, J.L.; Quinn, C.F.; Marcus, M.A.; Fakra, S.; Pilon-Smits,E.A.H.

    2006-11-20

    Background Some plants hyperaccumulate the toxic element selenium (Se) to extreme levels, up to 1% of dry weight. The function of this intriguing phenomenon is obscure. Results Here, we show that the Se in the hyperaccumulator prince's plume (Stanleya pinnata) protects it from caterpillar herbivory because of deterrence and toxicity. In its natural habitat, however, a newly discovered variety of the invasive diamondback moth (Plutella xylostella) has disarmed this elemental defense. It thrives on plants containing highly toxic Se levels and shows no oviposition or feeding deterrence, in contrast to related varieties. Interestingly, a Se-tolerant wasp (Diadegma insulare) was found to parasitize the tolerant moth. The insect's Se tolerance mechanism was revealed by X-ray absorption spectroscopy and liquid chromatography--mass spectroscopy, which showed that the Se-tolerant moth and its parasite both accumulate methylselenocysteine, the same form found in the hyperaccumulator plant, whereas related sensitive moths accumulate selenocysteine. The latter is toxic because of its nonspecific incorporation into proteins. Indeed, the Se-tolerant diamondback moth incorporated less Se into protein. Additionally, the tolerant variety sequestered Se in distinct abdominal areas, potentially involved in detoxification and larval defense to predators. Conclusions Although Se hyperaccumulation protects plants from herbivory by some invertebrates, it can give rise to the evolution of unique Se-tolerant herbivores and thus provide a portal for Se into the local ecosystem. In a broader context, this study provides insight into the possible ecological implications of using Se-enriched crops as a source of anti-carcinogenic selenocompounds and for the remediation of Se-polluted environments.

  3. Comparative transcriptome analysis of the metal hyperaccumulator Noccaea caerulescens

    PubMed Central

    Halimaa, Pauliina; Blande, Daniel; Aarts, Mark G. M.; Tuomainen, Marjo; Tervahauta, Arja; Kärenlampi, Sirpa

    2014-01-01

    The metal hyperaccumulator Noccaea caerulescens is an established model to study the adaptation of plants to metalliferous soils. Various comparators have been used in these studies. The choice of suitable comparators is important and depends on the hypothesis to be tested and methods to be used. In high-throughput analyses such as microarray, N. caerulescens has been compared to non-tolerant, non-accumulator plants like Arabidopsis thaliana or Thlaspi arvense rather than to the related hypertolerant or hyperaccumulator plants. An underutilized source is N. caerulescens populations with considerable variation in their capacity to accumulate and tolerate metals. Whole transcriptome sequencing (RNA-Seq) is revealing interesting variation in their gene expression profiles. Combining physiological characteristics of N. caerulescens accessions with their RNA-Seq has a great potential to provide detailed insight into the underlying molecular mechanisms, including entirely new gene products. In this review we will critically consider comparative transcriptome analyses carried out to explore metal hyperaccumulation and hypertolerance of N. caerulescens, and demonstrate the potential of RNA-Seq analysis as a tool in evolutionary genomics. PMID:24904610

  4. Growth and metal accumulation of an Alyssum murale nickel hyperaccumulator ecotype co-cropped with Alyssum montanum or perennial ryegrass in serpentine soil

    USDA-ARS?s Scientific Manuscript database

    More than 400 plant species naturally accumulate high levels of metals such as Cd, Cu, Co, Mn, Ni, and Zn. The genus Alyssum (Brassicaceae) contains the greatest number of reported Ni hyperaccumulators (50), many of which can achieve 3 wt% Ni in dry leaves. Some Alyssum hyperaccumulators are viabl...

  5. Molecular dissection of the cellular mechanisms involved in nickel hyperaccumulation. 1997 annual progress report

    SciTech Connect

    Salt, D.E.

    1997-10-28

    'Phytoremediation, the use of plants for environmental cleanup of pollutants, including toxic metals, holds the potential to allow the economic restoration of heavy metal and radionuclide contaminated sites. A number of terrestrial plants are known to naturally accumulate high levels of metals in their shoots (1--2% dry weight), and these plants have been termed metal-hyperaccumulators. Clearly, the genetic traits that determine metal-hyperaccumulation offers the potential for the development of practical phytoremediation processes. The long-term objective is to rationally design and generate plants ideally suited for phytoremediation using this unique genetic material. Initially, the strategy will focus on isolating and characterizing the key genetic information needed for expression of the metal-hyperaccumulation phenotype. Recently, histidine has been shown to play a major role in Ni hyperaccumulation. Based on this information the authors propose to investigate, at the molecular level, the role of histidine biosynthesis in Ni hyperaccumuIation in Thlaspi goesingense, a Ni hyperaccumulator species.'

  6. Interactions of selenium hyperaccumulators and nonaccumulators during cocultivation on seleniferous or nonseleniferous soil--the importance of having good neighbors.

    PubMed

    Mehdawi, Ali F El; Cappa, Jennifer J; Fakra, Sirine C; Self, James; Pilon-Smits, Elizabeth A H

    2012-04-01

    • This study investigated how selenium (Se) affects relationships between Se hyperaccumulator and nonaccumulator species, particularly how plants influence their neighbors' Se accumulation and growth. • Hyperaccumulators Astragalus bisulcatus and Stanleya pinnata and nonaccumulators Astragalus drummondii and Stanleya elata were cocultivated on seleniferous or nonseleniferous soil, or on gravel supplied with different selenate concentrations. The plants were analyzed for growth, Se accumulation and Se speciation. Also, root exudates were analyzed for Se concentration. • The hyperaccumulators showed 2.5-fold better growth on seleniferous than on nonseleniferous soil, and up to fourfold better growth with increasing Se supply; the nonaccumulators showed the opposite results. Both hyperaccumulators and nonaccumulators could affect growth (up to threefold) and Se accumulation (up to sixfold) of neighboring plants. Nonaccumulators S. elata and A. drummondii accumulated predominantly (88-95%) organic C-Se-C; the remainder was selenate. S. elata accumulated relatively more C-Se-C and less selenate when growing adjacent to S. pinnata. Both hyperaccumulators released selenocompounds from their roots. A. bisulcatus exudate contained predominantly C-Se-C compounds; no speciation data could be obtained for S. pinnata. • Thus, plants can affect Se accumulation in neighbors, and soil Se affects competition and facilitation between plants. This helps to explain why hyperaccumulators are found predominantly on seleniferous soils. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  7. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance.

    PubMed

    Zhang, Xincheng; Lin, Li; Chen, Mingyue; Zhu, Zhiqiang; Yang, Weidong; Chen, Bao; Yang, Xiaoe; An, Qianli

    2012-08-30

    Low biomass and shallow root systems limit the application of heavy metal phytoextraction by hyperaccumulators. Plant growth-promoting microbes may enhance hyperaccumulators'phytoextraction. A heavy metal-resistant fungus belonged to the Fusarium oxysporum complex was isolated from the Zn/Cd co-hyperaccumulator Sedum alfredii Hance grown in a Pb/Zn mined area. This Fusarium fungus was not pathogenic to plants but promoted host growth. Hydroponic experiments showed that 500 μM Zn(2+) or 50 μM Cd(2+) combined with the fungus increased root length, branches, and surface areas, enhanced nutrient uptake and chlorophyll synthesis, leading to more vigorous hyperaccumulators with greater root systems. Soil experiments showed that the fungus increased root and shoot biomass and S. alfredii-mediated heavy metal availabilities, uptake, translocation or concentrations, and thus increased phytoextraction of Zn (144% and 44%), Cd (139% and 55%), Pb (84% and 85%) and Cu (63% and 77%) from the original Pb/Zn mined soil and a multi-metal contaminated paddy soil. Together, the nonpathogenic Fusarium fungus was able to increase S. alfredii root systems and function, metal availability and accumulation, plant biomass, and thus phytoextraction efficiency. This study showed a great application potential for culturable indigenous fungi other than symbiotic mycorrhizas to enhance the phytoextraction by hyperaccumulators.

  8. The Metal Hyperaccumulator Alyssum murale Uses Nitrogen and Oxygen Donor Ligands for Ni Transport and Storage

    USDA-ARS?s Scientific Manuscript database

    The Kotodesh genotype of the nickel (Ni) hyperaccumulator Alyssum murale was examined to determine the compartmentalization and internal speciation of Ni, and other elements, in an effort to ascertain the mechanism used by this plant to tolerate extremely high shoot Ni concentrations. Plants were g...

  9. Analysis of selenium accumulation, speciation and tolerance of potential selenium hyperaccumulator Symphyotrichum ericoides.

    PubMed

    El Mehdawi, Ali F; Reynolds, Ray Jason B; Prins, Christine N; Lindblom, Stormy D; Cappa, Jennifer J; Fakra, Sirine C; Pilon-Smits, Elizabeth A H

    2014-09-01

    Symphyotrichum ericoides was shown earlier to contain hyperaccumulator levels of selenium (Se) in the field (>1000 mg kg(-1) dry weight (DW)), but only when growing next to other Se hyperaccumulators. It was also twofold larger next to hyperaccumulators and suffered less herbivory. This raised two questions: whether S. ericoides is capable of hyperaccumulation without neighbor assistance, and whether its Se-derived benefit is merely ecological or also physiological. Here, in a comparative greenhouse study, Se accumulation and tolerance of S. ericoides were analyzed in parallel with hyperaccumulator Astragalus bisulcatus, Se accumulator Brassica juncea and related Asteraceae Machaeranthera tanacetifolia. Symphyotrichum ericoides and M. tanacetifolia accumulated Se up to 3000 and 1500 mg Se kg(-1) DW, respectively. They were completely tolerant to these Se levels and even grew 1.5- to 2.5-fold larger with Se. Symphyotrichum ericoides showed very high leaf Se/sulfur (S) and shoot/root Se concentration ratios, similar to A. bisulcatus and higher than M. tanacetifolia and B. juncea. Se X-ray absorption near-edge structure spectroscopy showed that S. ericoides accumulated Se predominantly (86%) as C-Se-C compounds indistinguishable from methyl-selenocysteine, which may explain its Se tolerance. Machaeranthera tanacetifolia accumulated 55% of its Se as C-Se-C compounds; the remainder was inorganic Se. Thus, in this greenhouse study S. ericoides displayed all of the characteristics of a hyperaccumulator. The larger size of S. ericoides when growing next to hyperaccumulators may be explained by a physiological benefit, in addition to the ecological benefit demonstrated earlier. © 2014 Scandinavian Plant Physiology Society.

  10. Role of sulfur assimilation pathway in cadmium hyperaccumulation by Sedum alfredii Hance.

    PubMed

    Liang, Jun; Shohag, M J I; Yang, Xiaoe; Tian, Shengke; Zhang, Yibin; Feng, Ying; He, Zhenli

    2014-02-01

    Sedum alfredii Hance is a promising cadmium (Cd) hyperaccumulating plant recently identified in China. However, the physiological and molecular mechanisms underlying Cd accumulation, which differentiate hyperaccumulating ecotype (HE) from non-hyperaccumulating ecotype (NHE) has not been elucidated yet. A hydroponic experiment was conducted to investigate the role of sulfur assimilation pathway in Cd hyperaccumulation by the S. alfredii Hance, by analyzing gene expression pattern in sulfur assimilation pathway and the concentration of some sulfur containing compounds. The results show that, sulfur assimilation pathway was affected by Cd differently in HE and NHE S. alfredii Hance. The gene expression pattern of sulfur assimilation pathway was regulated differently in HE and NHE plants, especially the nicotianamine synthase (NAS). NAS transcript levels in root of HE was 141-fold higher than NHE, while in shoots of HE only 0.31-fold higher than NHE. In HE roots, NAS expression level was maximum 3171-fold higher than shoots, while in NHE plants roots NAS expression level was maximum 45.3-fold higher than shoots. In HE plant roots, sulfur, cysteine and methionine concentrations increased 30%, 46% and 835% respectively, by Cd treatment, but in NHE plants roots, sulfur concentration increased less than 1%, cysteine and methionine concentrations decreased 78.5% and 13.3% respectively, by Cd. Cd exposure increased glutathione levels by 142% in HE but less than 10% in NHE plant roots. © 2013 Published by Elsevier Inc.

  11. Elevated Nicotianamine Levels in Arabidopsis halleri Roots Play a Key Role in Zinc Hyperaccumulation[W

    PubMed Central

    Deinlein, Ulrich; Weber, Michael; Schmidt, Holger; Rensch, Stefan; Trampczynska, Aleksandra; Hansen, Thomas H.; Husted, Søren; Schjoerring, Jan K.; Talke, Ina N.; Krämer, Ute; Clemens, Stephan

    2012-01-01

    Zn deficiency is among the leading health risk factors in developing countries. Breeding of Zn-enriched crops is expected to be facilitated by molecular dissection of plant Zn hyperaccumulation (i.e., the ability of certain plants to accumulate Zn to levels >100-fold higher than normal plants). The model hyperaccumulators Arabidopsis halleri and Noccaea caerulescens share elevated nicotianamine synthase (NAS) expression relative to nonaccumulators among a core of alterations in metal homeostasis. Suppression of Ah-NAS2 by RNA interference (RNAi) resulted in strongly reduced root nicotianamine (NA) accumulation and a concomitant decrease in root-to-shoot translocation of Zn. Speciation analysis by size-exclusion chromatography coupled to inductively coupled plasma mass spectrometry showed that the dominating Zn ligands in roots were NA and thiols. In NAS2-RNAi plants, a marked increase in Zn-thiol species was observed. Wild-type A. halleri plants cultivated on their native soil showed elemental profiles very similar to those found in field samples. Leaf Zn concentrations in NAS2-RNAi lines, however, did not reach the Zn hyperaccumulation threshold. Leaf Cd accumulation was also significantly reduced. These results demonstrate a role for NAS2 in Zn hyperaccumulation also under near-natural conditions. We propose that NA forms complexes with Zn(II) in root cells and facilitates symplastic passage of Zn(II) toward the xylem. PMID:22374395

  12. Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation.

    PubMed

    Deinlein, Ulrich; Weber, Michael; Schmidt, Holger; Rensch, Stefan; Trampczynska, Aleksandra; Hansen, Thomas H; Husted, Søren; Schjoerring, Jan K; Talke, Ina N; Krämer, Ute; Clemens, Stephan

    2012-02-01

    Zn deficiency is among the leading health risk factors in developing countries. Breeding of Zn-enriched crops is expected to be facilitated by molecular dissection of plant Zn hyperaccumulation (i.e., the ability of certain plants to accumulate Zn to levels >100-fold higher than normal plants). The model hyperaccumulators Arabidopsis halleri and Noccaea caerulescens share elevated nicotianamine synthase (NAS) expression relative to nonaccumulators among a core of alterations in metal homeostasis. Suppression of Ah-NAS2 by RNA interference (RNAi) resulted in strongly reduced root nicotianamine (NA) accumulation and a concomitant decrease in root-to-shoot translocation of Zn. Speciation analysis by size-exclusion chromatography coupled to inductively coupled plasma mass spectrometry showed that the dominating Zn ligands in roots were NA and thiols. In NAS2-RNAi plants, a marked increase in Zn-thiol species was observed. Wild-type A. halleri plants cultivated on their native soil showed elemental profiles very similar to those found in field samples. Leaf Zn concentrations in NAS2-RNAi lines, however, did not reach the Zn hyperaccumulation threshold. Leaf Cd accumulation was also significantly reduced. These results demonstrate a role for NAS2 in Zn hyperaccumulation also under near-natural conditions. We propose that NA forms complexes with Zn(II) in root cells and facilitates symplastic passage of Zn(II) toward the xylem.

  13. Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia).

    PubMed

    van der Ent, Antony; Callahan, Damien L; Noller, Barry N; Mesjasz-Przybylowicz, Jolanta; Przybylowicz, Wojciech J; Barnabas, Alban; Harris, Hugh H

    2017-02-16

    The extraordinary level of accumulation of nickel (Ni) in hyperaccumulator plants is a consequence of specific metal sequestering and transport mechanisms, and knowledge of these processes is critical for advancing an understanding of transition element metabolic regulation in these plants. The Ni biopathways were elucidated in three plant species, Phyllanthus balgooyi, Phyllanthus securinegioides (Phyllanthaceae) and Rinorea bengalensis (Violaceae), that occur in Sabah (Malaysia) on the Island of Borneo. This study showed that Ni is mainly concentrated in the phloem in roots and stems (up to 16.9% Ni in phloem sap in Phyllanthus balgooyi) in all three species. However, the species differ in their leaves - in P. balgooyi the highest Ni concentration is in the phloem, but in P. securinegioides and R. bengalensis in the epidermis and in the spongy mesophyll (R. bengalensis). The chemical speciation of Ni(2+) does not substantially differ between the species nor between the plant tissues and transport fluids, and is unambiguously associated with citrate. This study combines ion microbeam (PIXE and RBS) and metabolomics techniques (GC-MS, LC-MS) with synchrotron methods (XAS) to overcome the drawbacks of the individual techniques to quantitatively determine Ni distribution and Ni(2+) chemical speciation in hyperaccumulator plants.

  14. Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia)

    NASA Astrophysics Data System (ADS)

    van der Ent, Antony; Callahan, Damien L.; Noller, Barry N.; Mesjasz-Przybylowicz, Jolanta; Przybylowicz, Wojciech J.; Barnabas, Alban; Harris, Hugh H.

    2017-02-01

    The extraordinary level of accumulation of nickel (Ni) in hyperaccumulator plants is a consequence of specific metal sequestering and transport mechanisms, and knowledge of these processes is critical for advancing an understanding of transition element metabolic regulation in these plants. The Ni biopathways were elucidated in three plant species, Phyllanthus balgooyi, Phyllanthus securinegioides (Phyllanthaceae) and Rinorea bengalensis (Violaceae), that occur in Sabah (Malaysia) on the Island of Borneo. This study showed that Ni is mainly concentrated in the phloem in roots and stems (up to 16.9% Ni in phloem sap in Phyllanthus balgooyi) in all three species. However, the species differ in their leaves – in P. balgooyi the highest Ni concentration is in the phloem, but in P. securinegioides and R. bengalensis in the epidermis and in the spongy mesophyll (R. bengalensis). The chemical speciation of Ni2+ does not substantially differ between the species nor between the plant tissues and transport fluids, and is unambiguously associated with citrate. This study combines ion microbeam (PIXE and RBS) and metabolomics techniques (GC-MS, LC-MS) with synchrotron methods (XAS) to overcome the drawbacks of the individual techniques to quantitatively determine Ni distribution and Ni2+ chemical speciation in hyperaccumulator plants.

  15. Nickel biopathways in tropical nickel hyperaccumulating trees from Sabah (Malaysia)

    PubMed Central

    van der Ent, Antony; Callahan, Damien L.; Noller, Barry N.; Mesjasz-Przybylowicz, Jolanta; Przybylowicz, Wojciech J.; Barnabas, Alban; Harris, Hugh H.

    2017-01-01

    The extraordinary level of accumulation of nickel (Ni) in hyperaccumulator plants is a consequence of specific metal sequestering and transport mechanisms, and knowledge of these processes is critical for advancing an understanding of transition element metabolic regulation in these plants. The Ni biopathways were elucidated in three plant species, Phyllanthus balgooyi, Phyllanthus securinegioides (Phyllanthaceae) and Rinorea bengalensis (Violaceae), that occur in Sabah (Malaysia) on the Island of Borneo. This study showed that Ni is mainly concentrated in the phloem in roots and stems (up to 16.9% Ni in phloem sap in Phyllanthus balgooyi) in all three species. However, the species differ in their leaves – in P. balgooyi the highest Ni concentration is in the phloem, but in P. securinegioides and R. bengalensis in the epidermis and in the spongy mesophyll (R. bengalensis). The chemical speciation of Ni2+ does not substantially differ between the species nor between the plant tissues and transport fluids, and is unambiguously associated with citrate. This study combines ion microbeam (PIXE and RBS) and metabolomics techniques (GC-MS, LC-MS) with synchrotron methods (XAS) to overcome the drawbacks of the individual techniques to quantitatively determine Ni distribution and Ni2+ chemical speciation in hyperaccumulator plants. PMID:28205587

  16. Identification and validation of heavy metal and radionuclide hyperaccumulating terrestrial plant species. Quarterly technical progress report, March 20, 1995--June 20, 1995

    SciTech Connect

    Kochian, L.

    1995-12-01

    The biological accumulation of heavy metals and cesium, strontium, and uranium in plants is discussed. The role of nutrient deficiencies and foliar treatments of manganese and iron compounds is described.

  17. Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii.

    PubMed

    Sun, Qin; Ye, Zhi Hong; Wang, Xiao Rong; Wong, Ming Hung

    2007-11-01

    Sedum alfredii has been reported to be a cadmium (Cd) hyperaccumulator. Phytochelatins (PCs) and other thiol (SH)-containing compounds have been proposed to play an important role in the detoxification and tolerance of some heavy metals, but it is not clear whether PCs are responsible for Cd hyperaccumulation and tolerance in S. alfredii. In this study, two geographically isolated populations of S. alfredii were studied: one population grew on an old Pb/Zn mine site, while the other on a non-mine site. The mine population of this species exhibited a stronger heavy metal tolerance than in the other population. Root-to-shoot transport of Cd was higher in population located at the mine site than at the non-mine site. Considerable amounts of Cd were accumulated in leaves and stems of mine plants, while most Cd was distributed in roots of non-mine plants. Non-protein SH in plant tissues of two populations were further investigated by a HPLC pre-column derivatization system. Upon exposure to Cd, no PCs were detected in all tissues of mine population, while an appreciable amount of glutathione (GSH) was observed in the descending order of stem>root>leaf. The concentrations of GSH consistently increased with the increase of exogenous Cd concentrations and time. On the contrary, Cd exposure strongly induced the production of PCs (mainly PC(2) and PC(3)) and GSH in plant tissues of non-mine population, and the concentrations of GSH showed an initial drop over the duration of 7-d exposure. The present results provided strong evidence that PCs are not involved in Cd transport, hyperaccumulation and tolerance in mine population of S. alfredii.

  18. Is it worth hyperaccumulating Ni on non-serpentine soils? Decomposition dynamics of mixed-species litters containing hyperaccumulated Ni across serpentine and non-serpentine environments.

    PubMed

    Adamidis, George C; Kazakou, Elena; Aloupi, Maria; Dimitrakopoulos, Panayiotis G

    2016-06-01

    potential selective advantages acquired by metal-hyperaccumulating plants through litter decomposition on serpentine soils. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Zinc hyperaccumulation and uptake by Potentilla griffithii Hook.

    PubMed

    Qiu, Rongliang; Fang, Xiaohang; Tang, Yetao; Du, Suojun; Zeng, Xiaowen; Brewer, Eric

    2006-01-01

    The ability of Potentilla griffithii Hook var. velutina Cardot to hypaeraccumulate zinc (Zn) was identified through field survey and hydroponic experiments. Our results showed that P. griffithii could be classified as a new Zn hyperaccumulator. Zn concentrations in the shoots of P. griffithii averaged 6250 mg kg(-1) (3870-8530 mg kg(-1)) growing in Zn-rich soils. The highest Zn concentration was observed in the leaves of P. griffithii at 22,990 mg kg(-1). The fact that P. griffithii was able to grow in a mining soil with a Zn concentration of 193,000 mg kg(-1) without showing a major sign of phytotoxicity demonstrated its high tolerance to Zn. When growing in hydroponic systems, P. griffithii accumulated a maximum 26700 mg kg(-1) zinc concentration in the shoots, indicating the ability of this species to effectively take up and translocate Zn. Translocation factors (the ratio of Zn concentration in shoot to root) of 1.1 to 1.6 were obtained. Compared to the control, dry biomass of P. griffithii in 160 mg L(-1) Zn treatment increased 66.6% (P < 0.05). The time-course experiment showed that the maximum Zn concentration at 100 mg L(-1) Zn treatment was found at 16 d, much later than that of the 10 mg L(-1) Zn treatment, which might be an attribution of a accumulating mechanism or detoxification of a plant. The report of a new Zn hyperaccumulator provides a new plant species for the phytoremediation of contaminated soil and for the research on mechanisms of Zn hyperaccumulation in plants.

  20. Organic acids rather than histidine predominate in Ni chelation in Alyssum hyperaccumulator xylem exudate

    USDA-ARS?s Scientific Manuscript database

    A better understanding of Ni uptake mechanisms by hyperaccumulator plants is necessary to improve Ni uptake efficiency for phytoremediation technologies i.e. phytomining. It is known that an important aspect of Ni translocation involves Ni chelation with organic ligands. However, it is still not cle...

  1. Zinc tolerance and hyperaccumulation in F1 and F2 offspring from intra and interecotype crosses of Thlaspi caerulescens.

    PubMed

    Frérot, H; Lefèbvre, C; Petit, C; Collin, C; Dos Santos, A; Escarré, J

    2005-01-01

    The relationship between zinc (Zn) tolerance and hyperaccumulation in Thlaspi caerulescens was investigated from F1 and F2 crosses within and among metallicolous and nonmetallicolous Mediterranean populations. F1 offspring were grown on increasingly Zn-enriched soils to test Zn enrichment effects, and many families of F2 offspring were grown on a Zn-rich soil. Tolerance of F1 offspring depended on stress intensity. Tolerance of interecotype crosses was intermediate between that of the intraecotype crosses. No difference in Zn accumulation appeared among the F1 offspring from the three crosses involving metallicolous parents. Otherwise, none of these offspring exceeded the Zn hyperaccumulation threshold (10,000 mg kg(-1)), unlike the nonmetallicolous ones. The latter also showed the highest mortality. In some F2 families from interecotype crosses, hyperaccumulation values exceeded 15,000 mg kg(-1) in nontolerant offspring, whereas tolerant offspring displayed lower values (c. 10,000 mg kg(-1)). There was no difference between tolerant and nontolerant offspring when they showed low hyperaccumulation. Therefore, the relationship between tolerance and hyperaccumulation in F1 and F2 crosses depended on the hyperaccumulation level of plants.

  2. Transcriptome Comparison Reveals the Adaptive Evolution of Two Contrasting Ecotypes of Zn/Cd Hyperaccumulator Sedum alfredii Hance

    PubMed Central

    Yang, Qianying; Shohag, M. J. I.; Feng, Ying; He, Zhenli; Yang, Xiaoe

    2017-01-01

    Hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of Sedum alfredii Hance belong to the same species but exhibit contrasting characteristics regarding hyperaccumulation and hypertolerance to cadmium and zinc. The Illumina Hiseq 2500 platform was employed to sequence HE and NHE to study the genetic evolution of this contrasting trait. Greater than 90 million clean reads were obtained and 118,479/228,051 unigenes of HE/NHE were annotated based on seven existing databases. We identified 149,668/319,830 single nucleotide polymorphisms (SNPs) and 12,691/14,428 simple sequence repeats (SSRs) of HE/NHE. We used a branch-site model to identify 18 divergent orthologous genes and 57 conserved orthologous genes of S. alfredii Hance. The divergent orthologous genes were mainly involved in the transcription and translation processes, protein metabolism process, calcium (Ca2+) pathway, stress response process and signal transduction process. To the best of our knowledge, this is the first study to use RNA-seq to compare the genetic evolution of hyperaccumulating and non-hyperaccumulating plants from the same species. In addition, this study made the sole concrete for further studies on molecular markers and divergent orthologous genes to depict the evolution process and formation of the hyperaccumulation and hypertolerance traits in S. alfredii Hance. PMID:28439276

  3. Prosopis pubescens (screw bean mesquite) seedlings are hyperaccumulators of copper.

    PubMed

    Zappala, Marian N; Ellzey, Joanne T; Bader, Julia; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge

    2013-08-01

    Due to health reasons, toxic metals must be removed from soils contaminated by mine tailings and smelter activities. The phytoremediation potential of Prosopis pubescens (screw bean mesquite) was examined by use of inductively-coupled plasma optical emission spectroscopy. Transmission electron microscopy was used to observe ultrastructural changes of parenchymal cells of leaves in the presence of copper. Elemental analysis was used to localize copper within leaves. A 600-ppm copper sulfate exposure to seedlings for 24 days resulted in 31,000 ppm copper in roots, 17,000 ppm in stems, 11,000 in cotyledons and 20 ppm in the true leaves. For a plant to be considered a hyperaccumulator, the plant must accumulate a leaf-to-root ratio <1. Screw bean mesquite exposed to copper had a leaf-to-root ratio of 0.355 when cotyledons were included. We showed that P. pubescens grown in soil is a hyperaccumulator of copper. We recommend that this plant should be field tested.

  4. Successful micropropagation of the cadmium hyperaccumulator Viola baoshanensis (Violaceae).

    PubMed

    Li, Jin-Tian; Deng, Dong-Mei; Peng, Guang-Tian; Deng, Jin-Chuan; Zhang, Jun; Liao, Bin

    2010-01-01

    Viola baoshanensis is one of the most rare cadmium (Cd) hyperaccumulators, however, it is hard to propagate. Micropropagation has been applied to solve the problems with propagation of a few heavy metal hyperaccumulators. Therefore there is a high likelihood that micropropagation may offer a suitable method for large-scale propagation of V. baoshanensis To test this hypothesis, three types of explants were used for shoot regeneration and various combinations of four plant growth regulators were used to improve shoot regeneration efficiency from leaflet of V. baoshanensis. Best shoot regeneration efficiency was obtained by incubating leaflet in a 1/2 MS medium supplemented with 2.5 oM BA + 2.5 microM IBA, therein shoot regeneration rate was 70.9% and the number of shoots formation per explant was 22.4. Rooting was achieved from almost all regenerated shoot growing on 1/2 MS medium without plant growth regulator. Micropropagated seedlings were acclimatized under greenhouse conditions and 95% of them survived and showed no visible morphological variation compared to their donor plant. Furthermore, there were no significant differences between regenerated and seed-germinated V. baoshanensis in Cd tolerance and accumulation. These results suggested that an efficient and rapid micropropogation system was successfully developed for V. baoshanensis.

  5. Identification and validation of heavy metal and radionuclide hyperaccumulating terrestrial plant species. Quarterly progress report, July 1, 1996--September 30, 1996

    SciTech Connect

    Kochian, L.

    1997-05-01

    Potential for phytoremediation of an aged radiocesium-contaminated soil from Brookhaven National Laboratory was investigated in three phases: (1) hydroponic screening for plant species capable of accumulating elevated levels of cesium in shoots, (2) amending contaminated soil to enhance {sup 137}Cs bioavailability, and (3) phytoextracting radiocesium with plant roots and its removal in harvested shoots. The bioaccumulation ratio of Cs in shoots of hydroponically grown plants ranged between 38 and 165. From solution, dicot species accumulated 2- to 4-fold more cesium in shoots than grasses. The effect of several chemical compounds on {sup 137}Cs desorption from the contaminated soil was investigated. Ammonium salts were the most effective at desorbing Cs from contaminated soil, but only 25% of radiocesium could be desorbed. Although release of radiocesium from the soil was concentration-dependent, this effect appeared to level off above 0.2 M ammonium in solution. In a pot study, from the soil contaminated with 400 pCi g{sup -1} soil, the greatest amount of {sup 137}Cs, 140 pCi, was removed in shoots of cabbage (Brassica oleracea var. capitata). {sup 137}Cs accumulation in shoots was significantly increased by the addition of 40 NH{sub 4}NO{sub 3} kg{sup -1} soil. Increasing NH{sub 4}NO{sub 3} application from 40 to 80 mmoles kg{sup -1} soil did not further increase radiocesium phytoextraction. The ability to accumulate radiocesium from soil in shoots was significantly different among species tested. This ability increased in order: reed Canary grass (Phalaris arundinacea) < Indian mustard (Brassica juncea) < tepary bean (Phaseolus acutifolius) < cabbage.

  6. Complexation and Toxicity of Copper in Higher Plants. II. Different Mechanisms for Copper versus Cadmium Detoxification in the Copper-Sensitive Cadmium/Zinc Hyperaccumulator Thlaspi caerulescens (Ganges Ecotype)1[OA

    PubMed Central

    Mijovilovich, Ana; Leitenmaier, Barbara; Meyer-Klaucke, Wolfram; Kroneck, Peter M.H.; Götz, Birgit; Küpper, Hendrik

    2009-01-01

    The cadmium/zinc hyperaccumulator Thlaspi caerulescens is sensitive toward copper (Cu) toxicity, which is a problem for phytoremediation of soils with mixed contamination. Cu levels in T. caerulescens grown with 10 μm Cu2+ remained in the nonaccumulator range (<50 ppm), and most individuals were as sensitive toward Cu as the related nonaccumulator Thlaspi fendleri. Obviously, hyperaccumulation and metal resistance are highly metal specific. Cu-induced inhibition of photosynthesis followed the “sun reaction” type of damage, with inhibition of the photosystem II reaction center charge separation and the water-splitting complex. A few individuals of T. caerulescens were more Cu resistant. Compared with Cu-sensitive individuals, they recovered faster from inhibition, at least partially by enhanced repair of chlorophyll-protein complexes but not by exclusion, since the content of Cu in their shoots was increased by about 25%. Extended x-ray absorption fine structure (EXAFS) measurements on frozen-hydrated leaf samples revealed that a large proportion of Cu in T. caerulescens is bound by sulfur ligands. This is in contrast to the known binding environment of cadmium and zinc in the same species, which is dominated by oxygen ligands. Clearly, hyperaccumulators detoxify hyperaccumulated metals differently compared with nonaccumulated metals. Furthermore, strong features in the Cu-EXAFS spectra ascribed to metal-metal contributions were found, in particular in the Cu-resistant specimens. Some of these features may be due to Cu binding to metallothioneins, but a larger proportion seems to result from biomineralization, most likely Cu(II) oxalate and Cu(II) oxides. Additional contributions in the EXAFS spectra indicate complexation of Cu(II) by the nonproteogenic amino acid nicotianamine, which has a very high affinity for Cu(II) as further characterized here. PMID:19692532

  7. Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype).

    PubMed

    Mijovilovich, Ana; Leitenmaier, Barbara; Meyer-Klaucke, Wolfram; Kroneck, Peter M H; Götz, Birgit; Küpper, Hendrik

    2009-10-01

    The cadmium/zinc hyperaccumulator Thlaspi caerulescens is sensitive toward copper (Cu) toxicity, which is a problem for phytoremediation of soils with mixed contamination. Cu levels in T. caerulescens grown with 10 microm Cu(2+) remained in the nonaccumulator range (<50 ppm), and most individuals were as sensitive toward Cu as the related nonaccumulator Thlaspi fendleri. Obviously, hyperaccumulation and metal resistance are highly metal specific. Cu-induced inhibition of photosynthesis followed the "sun reaction" type of damage, with inhibition of the photosystem II reaction center charge separation and the water-splitting complex. A few individuals of T. caerulescens were more Cu resistant. Compared with Cu-sensitive individuals, they recovered faster from inhibition, at least partially by enhanced repair of chlorophyll-protein complexes but not by exclusion, since the content of Cu in their shoots was increased by about 25%. Extended x-ray absorption fine structure (EXAFS) measurements on frozen-hydrated leaf samples revealed that a large proportion of Cu in T. caerulescens is bound by sulfur ligands. This is in contrast to the known binding environment of cadmium and zinc in the same species, which is dominated by oxygen ligands. Clearly, hyperaccumulators detoxify hyperaccumulated metals differently compared with nonaccumulated metals. Furthermore, strong features in the Cu-EXAFS spectra ascribed to metal-metal contributions were found, in particular in the Cu-resistant specimens. Some of these features may be due to Cu binding to metallothioneins, but a larger proportion seems to result from biomineralization, most likely Cu(II) oxalate and Cu(II) oxides. Additional contributions in the EXAFS spectra indicate complexation of Cu(II) by the nonproteogenic amino acid nicotianamine, which has a very high affinity for Cu(II) as further characterized here.

  8. Evolution of nickel hyperaccumulation and serpentine adaptation in the Alyssum serpyllifolium species complex.

    PubMed

    Sobczyk, M K; Smith, J A C; Pollard, A J; Filatov, D A

    2017-01-01

    Metal hyperaccumulation is an uncommon but highly distinctive adaptation found in certain plants that can grow on metalliferous soils. Here we review what is known about evolution of metal hyperaccumulation in plants and describe a population-genetic analysis of the Alyssum serpyllifolium (Brassicaceae) species complex that includes populations of nickel-hyperaccumulating as well as non-accumulating plants growing on serpentine (S) and non-serpentine (NS) soils, respectively. To test whether the S and NS populations belong to the same or separate closely related species, we analysed genetic variation within and between four S and four NS populations from across the Iberian peninsula. Based on microsatellites, genetic variation was similar in S and NS populations (average Ho=0.48). The populations were significantly differentiated from each other (overall FST=0.23), and the degree of differentiation between S and NS populations was similar to that within these two groups. However, high S versus NS differentiation was observed in DNA polymorphism of two genes putatively involved in adaptation to serpentine environments, IREG1 and NRAMP4, whereas no such differentiation was found in a gene (ASIL1) not expected to play a specific role in ecological adaptation in A. serpyllifolium. These results indicate that S and NS populations belong to the same species and that nickel hyperaccumulation in A. serpyllifolium appears to represent a case of adaptation to growth on serpentine soils. Further functional and evolutionary genetic work in this system has the potential to significantly advance our understanding of the evolution of metal hyperaccumulation in plants.

  9. Synergistic effects of arbuscular mycorrhizal fungi and phosphate rock on heavy metal uptake and accumulation by an arsenic hyperaccumulator.

    PubMed

    Leung, H M; Wu, F Y; Cheung, K C; Ye, Z H; Wong, M H

    2010-09-15

    The effects of arbuscular mycorrhizal (AM) fungi and phosphate rock on the phytorextraction efficiency of a hyperaccumulator (Pteris vittata) and a non-hyperaccumulator (Cynodon dactylon) plant were studied. Both seedlings were planted in As contaminated soil under different treatments [(1) control (contaminated soil only), (2) indigenous mycorrhizas (IM), (3) mixed AM inoculum [indigenous mycorrhiza + Glomus mosseae (IM/Gm)] and (4) IM/Gm + phosphate rock (P rock)] with varying intensities (40%, 70% and 100%) of water moisture content (WMC). Significant As reduction in soil (23.8% of soil As reduction), increase in plant biomass (17.8 g/pot) and As accumulation (2054 mg/kg DW) were observed for P. vittata treated with IM/Gm + PR at 100% WMC level. The overall results indicated that the synergistic effect of mycorrhiza and P rock affected As subcellular distribution of the hyperaccumulator and thereby altered its As removal efficiency under well-watered conditions.

  10. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China.

    PubMed

    Yanqun, Zu; Yuan, Li; Jianjun, Chen; Haiyan, Chen; Li, Qin; Schvartz, Christian

    2005-07-01

    A field survey of herbaceous growing on lead-zinc mining area in Yunnan, China were conducted to identify species accumulating exceptionally large concentrations of Pb, Zn and Cd in shoots. In total, 220 plant samples of 129 species of 50 families and 220 soil samples in which the plants were growing were collected. According to accumulation concentration in plant shoots and the concentration time levels compared to plants from non-polluted environments, 21 plant samples of 16 species were chosen as best-performing specimens, 11 plant samples of 10 species for Pb, 5 plant samples of 4 species for Zn and 5 plant samples of 5 species for Cd. Sonchus asper (L.) Hill in Qilinkeng had hyperaccumulation capacity to Pb and Zn. Corydalis pterygopetala Franch in Paomaping had hyperaccumulation capacity to Zn and Cd. All 5 Cd hyperaccumulators came from Lanping lead-zinc mining area. Out of 11 Pb hyperaccumulators, 7 came from Minbingying of Huice lead-zinc mining area. The average of the concentration time levels compared to plants from non-polluted environments were higher than 10 times in all plant samples, the concentration time levels changed from 203 times to 620 times for Pb, from 50 times to 70 times for Zn and from 145 times to 330 times for Cd. Out of 21 plant samples, translocation factor changed from 0.35 to 1.90, only translocation factor of 7 plant samples were higher than 1. Enrichment coefficients of all samples were lower than 1. These plant species were primarily heavy metal hyperaccumulator, and will be used in phytoremediation of the metallic pollutants in soils after further research in accumulation mechanism.

  11. A newly found manganese hyperaccumulator--Polygonum lapathifolium Linn.

    PubMed

    Liu, Kehui; Yu, Fangming; Chen, Menglin; Zhou, Zhenming; Chen, Chaoshu; Li, Ming Shun; Zhu, Jing

    2016-01-01

    In the present work, both field investigation and laboratory experiment were carried out to testify whether Polygonum lapathifolium L. is a potential manganese (Mn) hyperaccumulator. Results from field investigation showed that P. lapathifolium had great tolerance and accumulation to Mn. Mn concentrations in leaves were the highest, varied from 6889.2 mg kg-1 dry weight (DW) to 18841.7 mg kg(-1) DW with the average of 12180.6 mg kg(-1). The values of translocation factor (the concentrations of Mn in leaf to that in root) ranged from 5.72 to 9.53. Results from laboratory experiment illuminated that P. lapathifolium could grow well and show no toxic symptoms even under high Mn stress (16 mmol L(-1)). Although the changes of antioxidant enzymes activities were triggered under Mn stress, the alterations of pigments were not significant (P > 0.05) as compared with control. Total plant biomass and plant height increased with increasing Mn supply. Mn concentrations in leaves and stems were constantly greater than those in roots, the ratio of concentrations in leaves to that in roots were 2.58-6.72 and the corresponding values in stems to that in roots were 1.45-3.18. The results showed that P. lapathifolium is a Mn-hyperaccumulator.

  12. Selenium Distribution and Speciation in the Hyperaccumulator Astragalus bisulcatus and Associated Ecological Partners1[W][OA

    PubMed Central

    Valdez Barillas, José R.; Quinn, Colin F.; Freeman, John L.; Lindblom, Stormy D.; Fakra, Sirine C.; Marcus, Matthew A.; Gilligan, Todd M.; Alford, Élan R.; Wangeline, Ami L.; Pilon-Smits, Elizabeth A.H.

    2012-01-01

    The goal of this study was to investigate how plant selenium (Se) hyperaccumulation may affect ecological interactions and whether associated partners may affect Se hyperaccumulation. The Se hyperaccumulator Astragalus bisulcatus was collected in its natural seleniferous habitat, and x-ray fluorescence mapping and x-ray absorption near-edge structure spectroscopy were used to characterize Se distribution and speciation in all organs as well as in encountered microbial symbionts and herbivores. Se was present at high levels (704–4,661 mg kg−1 dry weight) in all organs, mainly as organic C-Se-C compounds (i.e. Se bonded to two carbon atoms, e.g. methylselenocysteine). In nodule, root, and stem, up to 34% of Se was found as elemental Se, which was potentially due to microbial activity. In addition to a nitrogen-fixing symbiont, the plants harbored an endophytic fungus that produced elemental Se. Furthermore, two Se-resistant herbivorous moths were discovered on A. bisulcatus, one of which was parasitized by a wasp. Adult moths, larvae, and wasps all accumulated predominantly C-Se-C compounds. In conclusion, hyperaccumulators live in association with a variety of Se-resistant ecological partners. Among these partners, microbial endosymbionts may affect Se speciation in hyperaccumulators. Hyperaccumulators have been shown earlier to negatively affect Se-sensitive ecological partners while apparently offering a niche for Se-resistant partners. Through their positive and negative effects on different ecological partners, hyperaccumulators may influence species composition and Se cycling in seleniferous ecosystems. PMID:22645068

  13. Exogenous cytokinin treatments of a Ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: Implications for phytoextraction

    USDA-ARS?s Scientific Manuscript database

    Application of exogenous plant growth regulators was examined as a viable technique to increase the efficiency of plant metal phytoextraction from contaminated soils. The aim of this study was to investigate the alteration of Ni phytoextraction by Alyssum murale, a Ni hyperaccumulator, following the...

  14. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L.

    PubMed

    Tu, Cong; Ma, Lena Q

    2005-05-01

    Pteris vittata was the first terrestrial plant known to hyperaccumulate arsenic (As). However, it is unclear how As hyperaccumulation influences nutrient uptake by this plant. P. vittata fern was grown in soil spiked with 0-500 mg As kg(-1) in the greenhouse for 24 weeks. The concentrations of essential macro- (P, K, Ca, and Mg) and micro- (Fe, Mn, Cu, Zn, B and Mo) elements in the fronds of different age were examined. Both macro- and micronutrients in the fronds were found to be within the normal concentration ranges for non-hyperaccumulators. However, As hyperaccumulation did influence the elemental distribution among fronds of different age of P. vittata. Arsenic-induced P and K enhancements in the fronds contributed to the As-induced growth stimulation at low As levels. The frond P/As molar ratios of 1.0 can be used as the threshold value for normal growth of P. vittata. Potassium may function as a counter-cation for As in the fronds as shown by the As-induced K increases in the fronds. The present findings not only demonstrate that P. vittata has the ability to maintain adequate concentrations of essential nutrients while hyperaccumulating As from the soil, but also have implications for soil management (fertilization in particular) of P. vittata in As phytoextraction practice.

  15. Transcriptomic Analysis of Cadmium Stress Response in the Heavy Metal Hyperaccumulator Sedum alfredii Hance

    PubMed Central

    Yang, Xiaoe; Liu, Jian-Xiang

    2013-01-01

    The Sedum alfredii Hance hyperaccumulating ecotype (HE) has the ability to hyperaccumulate cadmium (Cd), as well as zinc (Zn) and lead (Pb) in above-ground tissues. Although many physiological studies have been conducted with these plants, the molecular mechanisms underlying their hyper-tolerance to heavy metals are largely unknown. Here we report on the generation of 9.4 gigabases of adaptor-trimmed raw sequences and the assembly of 57,162 transcript contigs in S. alfredii Hance (HE) shoots by the combination of Roche 454 and Illumina/Solexa deep sequencing technologies. We also have functionally annotated the transcriptome and analyzed the transcriptome changes upon Cd hyperaccumulation in S. alfredii Hance (HE) shoots. There are 110 contigs and 123 contigs that were up-regulated (Fold Change ≧2.0) and down-regulated (Fold Change ≦0.5) by chronic Cd treatment in S. alfredii Hance (HE) at q-value cutoff of 0.005, respectively. Quantitative RT-PCR was employed to compare gene expression patterns between S. alfredii Hance (HE) and non-hyperaccumulating ecotype (NHE). Our results demonstrated that several genes involved in cell wall modification, metal translocation and remobilization were more induced or constitutively expressed at higher levels in HE shoots than that in NHE shoots in response to Cd exposure. Together, our study provides large-scale expressed sequence information and genome-wide transcriptome profiling of Cd responses in S. alfredii Hance (HE) shoots. PMID:23755133

  16. Nickel hyperaccumulation as an elemental defense of Streptanthus polygaloides (Brassicaceae): influence of herbivore feeding mode.

    PubMed

    Jhee, Edward M; Boyd, Robert S; Eubanks, Micky D

    2005-11-01

    No study of a single nickel (Ni) hyperaccumulator species has investigated the impact of hyperaccumulation on herbivores representing a variety of feeding modes. Streptanthus polygaloides plants were grown on high- or low-Ni soils and a series of no-choice and choice feeding experiments was conducted using eight arthropod herbivores. Herbivores used were two leaf-chewing folivores (the grasshopper Melanoplus femurrubrum and the lepidopteran Evergestis rimosalis), a dipteran rhizovore (the cabbage maggot Delia radicum), a xylem-feeder (the spittlebug Philaenus spumarius), two phloem-feeders (the aphid, Lipaphis erysimi and the spidermite Trialeurodes vaporariorum) and two cell-disruptors (the bug Lygus lineolaris and the whitefly Tetranychus urticae). Hyperaccumulated Ni significantly decreased survival of the leaf-chewers and rhizovore, and significantly reduced population growth of the whitefly cell-disruptor. However, vascular tissue-feeding insects were unaffected by hyperaccumulated Ni, as was the bug cell-disruptor. We conclude that Ni can defend against tissue-chewing herbivores but is ineffective against vascular tissue-feeding herbivores. The effects of Ni on cell-disruptors varies, as a result of either variation of insect Ni sensitivity or the location of Ni in S. polygaloides cells and tissues.

  17. Tissue Fractions of Cadmium in Two Hyperaccumulating Jerusalem Artichoke Genotypes

    PubMed Central

    Long, Xiaohua; Ni, Ni; Liu, Zhaopu; Rengel, Zed; Jiang, Xin; Shao, Hongbo

    2014-01-01

    In order to investigate the mechanisms in two Jerusalem artichoke (Helianthus tuberosus L.) genotypes that hyperaccumulate Cd, a sand-culture experiment was carried out to characterize fractionation of Cd in tissue of Cd-hyperaccumulating genotypes NY2 and NY5. The sequential extractants were: 80% v/v ethanol (FE), deionized water (FW), 1 M NaCl (FNaCl), 2% v/v acetic acid (FAcet), and 0.6 M HCl (FHCl). After 20 days of treatments, NY5 had greater plant biomass and greater Cd accumulation in tissues than NY2. In both genotypes the FNaCl fraction was the highest in roots and stems, whereas the FAcet and FHCl fractions were the highest in leaves. With an increase in Cd concentration in the culture solution, the content of every Cd fraction also increased. The FW and FNaCl ratios in roots were lower in NY5 than in NY2, while the amount of other Cd forms was higher. It implied that, in high accumulator, namely, NY5, the complex of insoluble phosphate tends to be shaped more easily which was much better for Cd accumulation. Besides, translocation from plasma to vacuole after combination with protein may be one of the main mechanisms in Cd-accumulator Jerusalem artichoke genotypes. PMID:24883399

  18. Tissue fractions of cadmium in two hyperaccumulating Jerusalem artichoke genotypes.

    PubMed

    Long, Xiaohua; Ni, Ni; Liu, Zhaopu; Rengel, Zed; Jiang, Xin; Shao, Hongbo

    2014-01-01

    In order to investigate the mechanisms in two Jerusalem artichoke (Helianthus tuberosus L.) genotypes that hyperaccumulate Cd, a sand-culture experiment was carried out to characterize fractionation of Cd in tissue of Cd-hyperaccumulating genotypes NY2 and NY5. The sequential extractants were: 80% v/v ethanol (FE), deionized water (FW), 1 M NaCl (FNaCl), 2% v/v acetic acid (FAcet), and 0.6 M HCl (FHCl). After 20 days of treatments, NY5 had greater plant biomass and greater Cd accumulation in tissues than NY2. In both genotypes the FNaCl fraction was the highest in roots and stems, whereas the FAcet and FHCl fractions were the highest in leaves. With an increase in Cd concentration in the culture solution, the content of every Cd fraction also increased. The FW and FNaCl ratios in roots were lower in NY5 than in NY2, while the amount of other Cd forms was higher. It implied that, in high accumulator, namely, NY5, the complex of insoluble phosphate tends to be shaped more easily which was much better for Cd accumulation. Besides, translocation from plasma to vacuole after combination with protein may be one of the main mechanisms in Cd-accumulator Jerusalem artichoke genotypes.

  19. Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis).

    PubMed

    Jiang, R F; Ma, D Y; Zhao, F J; McGrath, S P

    2005-09-01

    Metal hyperaccumulation has been proposed as a plant defensive strategy. Here, we investigated whether cadmium (Cd) hyperaccumulation protected Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). Two ecotypes differing in Cd accumulation, Ganges (high) and Prayon (low), were grown in compost amended with 0-1000 mg Cd kg(-1) in two experiments under glasshouse conditions. F2 and F3 plants from the Prayon x Ganges crosses were grown with 5 mg Cd kg(-1). Plants were naturally colonized by thrips and the leaf feeding damage index (LFDI) was assessed. The LFDI decreased significantly with increasing Cd in both ecotypes, and correlated with shoot Cd concentration in a log-linear fashion. Prayon was more attractive to thrips than Ganges, but the ecotypic difference in the LFDI was largely accounted for by the shoot Cd concentration. In the F2 and F3 plants, the LFDI correlated significantly and negatively with shoot Cd, but not with shoot zinc (Zn) or sulphur (S) concentrations. We conclude that Cd hyperaccumulation deters thrips from feeding on T. caerulescens leaves, which may offer an adaptive benefit to the plant.

  20. Zinc and cadmium hyperaccumulation act as deterrents towards specialist herbivores and impede the performance of a generalist herbivore.

    PubMed

    Kazemi-Dinan, Ardeshir; Thomaschky, Sina; Stein, Ricardo J; Krämer, Ute; Müller, Caroline

    2014-04-01

    Extraordinarily high leaf metal concentrations in metal hyperaccumulator plants may serve as an elemental defence against herbivores. However, mixed results have been reported and studies using comparative approaches are missing. We investigated the deterrent and toxic potential of metals employing the hyperaccumulator Arabidopsis halleri. Effects of zinc (Zn) and cadmium (Cd) on the preferences of three Brassicaceae specialists were tested in paired-choice experiments using differently treated plant material, including transgenic plants. In performance tests, we determined the toxicity and joint effects of both metals incorporated in an artificial diet on the survival of a generalist. Feeding by all specialists was significantly reduced by metal concentrations from above 1000 μg Zn g(-1) DW and 18 μg Cd g(-1) DW. By contrast, metals did not affect oviposition. Generalist survival decreased with increasing concentrations of individual metals, whereby the combination of Zn and Cd had an additive toxic effect even at the lowest applied concentrations of 100 μg Zn g(-1) and 2 μg Cd g(-1) . Metal hyperaccumulation protects plants from herbivory resulting from deterrence and toxicity against a wide range of herbivores. The combination of metals exacerbates toxicity through joint effects and enhances elemental defence. Thus, metal hyperaccumulation is ecologically beneficial for plants. © 2014 The Authors. New Phytologist © 2013 New Phytologist Trust.

  1. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata

    USDA-ARS?s Scientific Manuscript database

    Amending soils with Se-hyperaccumulator plant derived sources of selenium (Se) may be useful for increasing Se content in food crops in Se-deficient regions of the world. In this study, we evaluated total Se and the different chemical species of Se in broccoli and carrots grown in soils amended with...

  2. Pb hyperaccumulation and tolerance in common buckwheat (Fagopyrum esculentum Moench).

    PubMed

    Tamura, Hideo; Honda, Munechika; Sato, Takeshi; Kamachi, Hiroyuki

    2005-10-01

    Common buckwheat grown in Pb-contaminated soil was found to accumulate a large amount of Pb in its leaves (8,000 mg/kg DW), stem (2,000 mg/kg DW), and roots (3,300 mg/kg DW), without significant damage. This indicates that buckwheat is a newly recognized Pb hyperaccumulator, which is defined as a plant containing over 1,000 mg/kg of Pb in its shoots on a dry-weight basis. Moreover, it was shown that application of the biodegradable chelator methylglycinediacetic acid trisodium salt at concentrations of up to 20 mmol/kg resulted in a more than five times higher concentration of Pb in the shoot without notable growth inhibitation at up to 10 mmol/kg. These results indicate that buckwheat is a potential phytoremediator of Pb-contaminated soils.

  3. Effects of cadmium hyperaccumulation on the concentrations of four trace elements in Lonicera japonica Thunb.

    PubMed

    Liu, Zhouli; He, Xingyuan; Chen, Wei

    2011-06-01

    Hyperaccumulators are important in the phytoremediation of cadmium (Cd)-contaminated soil. In this study, Cd accumulation and the interactions between Cd and four other trace elements (Fe, Mn, Cu, and Zn) in Lonicera japonica Thunb. were investigated. As a result of exposure to soil containing 50 mg kg(-1) Cd, stem and shoot Cd concentrations reached 344.49 ± 0.71 and 286.12 ± 9.38 μg g(-1) DW respectively, without showing symptoms of visible damage to the plants. This suggests that L. japonica has a strong tolerance to Cd. It is proposed that trace metal elements are involved in the Cd-detoxification mechanisms shown by hyperaccumulators. There is a synergistic interaction in accumulation and translocation between Cd and Fe and a significantly negative correlation between Cd and Cu or Zn concentrations in L. japonica plant tissues. The imbalanced trace element concentrations influences detoxification processes to Cd, therefore, L. japonica could be considered as a new Cd-hyperaccumulator model to investigate the metal tolerance strategies of plants.

  4. [Characteristics of 23 species of weed in northeast of China hyperaccumulating PAHs in contaminated soils].

    PubMed

    Zhang, Min; Liang, Hong; Gao, Da-Wen; Zhang, Bai-Hui; Li, Xin-Ping; Guo, Xiao-Hu

    2011-10-01

    Pot experiments were conducted to investigate the 23 species of weed accumulation characteristics of phenanthrene, as a representative of polycyclic aromatic hydrocarbons (PAHs), from soil in the northeast of China. The result indicated that among the 23 species, the bioconcentration factors of Taraxacum ohwianum K., Potentilla aiscolor B. and Chelidonium majus L. were all higher than 1, which were 1.01, 4.98, 38.24 respectively. The phenanthrene concentrations in roots were 2.83, 16.34 and 9.66 mg/kg which were lower than those in aboveground part with phenanthrene concentrations were 15.18, 74.70 and 573.62 mg/kg, respectively. The hyperaccumulators were indicated by strong conveyance of phenanthrene from root to aboveground part. The analysis of phenanthrene concentration in aboveground weed and aboveground plant biomass showed that the accumulation of phenanthrene in plant were not correlated with their biomass. It concluded that Taraxacum ohwianum K., Potentilla aiscolor B. and Chelidonium majus L. had hyperaccumulative characteristics of phenanthrene, and it is possible to screen out plants with high biomass and hyperaccumulation capability.

  5. The arsenic hyperaccumulator fern Pteris vittata L.

    PubMed

    Xie, Qing-En; Yan, Xiu-Lan; Liao, Xiao-Yong; Li, Xia

    2009-11-15

    Arsenic (As) contaminated soils and waters are becoming major global environmental and human health risks. The identification of natural hyperaccumulators of As opens the door for phytoremediation of the arsenic contaminant. Pteris vittata is the first identified naturally evolving As hyperaccumulator. More than a decade after its discovery, we have made great progress in understanding the uptake, transport, and detoxification of As in the fern. The molecular mechanisms controlling As accumulation in P. vittata are now beginning to be recognized. In this review, we will try to summarize what we have learned about this As accumulator, with particular emphasis on the current knowledge of the physiological and molecular mechanisms of arsenic phytoremediation. We also discuss the potential strategies to further enhance phytoextraction abilities of P. vittata.

  6. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake.

    PubMed

    Vogel-Mikus, Katarina; Pongrac, Paula; Kump, Peter; Necemer, Marijan; Regvar, Marjana

    2006-01-01

    Plants of the Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen (Brassicaceae) inoculated or not with indigenous arbuscular mycorrhizal (AM) fungal mixture were grown in a highly Cd, Zn and Pb contaminated substrate in order to evaluate the functionality of symbiosis and assess the possible impact of AM colonisation on heavy metal uptake and tolerance. The results suggest AM development in the metal hyperaccumulating T. praecox is favoured at elevated nutrient demands, e.g. during the reproductive period. AM colonisation parameters positively correlated with total soil Cd and Pb. Colonised plants showed significantly improved nutrient and a decreased Cd and Zn uptake as revealed by TRXRF, thus confirming the functionality of the symbiosis. Reduced heavy metal uptake, especially at higher soil metal contents, indicates a changed metal tolerance strategy in colonised T. praecox plants. This is to our knowledge the first report on AM colonisation of the Zn, Cd and Pb hyperaccumulator T. praecox in a greenhouse experiment.

  7. The metal transporter PgIREG1 from the hyperaccumulator Psychotria gabriellae is a candidate gene for nickel tolerance and accumulation.

    PubMed

    Merlot, Sylvain; Hannibal, Laure; Martins, Sara; Martinelli, Laëtitia; Amir, Hamid; Lebrun, Michel; Thomine, Sébastien

    2014-04-01

    Nickel is an economically important metal and phytotechnologies are being developed to limit the impact of nickel mining on the environment. More than 300 plant species are known to hyperaccumulate nickel. However, our knowledge of the mechanisms involved in nickel accumulation in plants is very limited because it has not yet been possible to study these hyperaccumulators at the genomic level. Here, we used next-generation sequencing technologies to sequence the transcriptome of the nickel hyperaccumulator Psychotria gabriellae of the Rubiaceae family, and used yeast and Arabidopsis as heterologous systems to study the activity of identified metal transporters. We characterized the activity of three metal transporters from the NRAMP and IREG/FPN families. In particular, we showed that PgIREG1 is able to confer nickel tolerance when expressed in yeast and in transgenic plants, where it localizes in the tonoplast. In addition, PgIREG1 shows higher expression in P. gabriellae than in the related non-accumulator species Psychotria semperflorens. Our results designate PgIREG1 as a candidate gene for nickel tolerance and hyperaccumulation in P. gabriellae. These results also show how next-generation sequencing technologies can be used to access the transcriptome of non-model nickel hyperaccumulators to identify the underlying molecular mechanisms.

  8. Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance exhibited by a Cd-hyperaccumulating ecotype of Thlaspi caerulescens

    USDA-ARS?s Scientific Manuscript database

    Cadmium (Cd) is a highly toxic heavy metal for plants, but several unique Cd hyperaccumulating plant species are able to accumulate this metal to extraordinary concentrations in the above-ground tissues without showing any toxic symptoms. However, the molecular mechanisms underlying this hyper-tole...

  9. Investigation of heavy metal hyperaccumulation at the cellular level: development and characterization of Thlaspi caerulescens suspension cell lines.

    PubMed

    Klein, Melinda A; Sekimoto, Hitoshi; Milner, Matthew J; Kochian, Leon V

    2008-08-01

    The ability of Thlaspi caerulescens, a zinc (Zn)/cadmium (Cd) hyperaccumulator, to accumulate extremely high foliar concentrations of toxic heavy metals requires coordination of uptake, transport, and sequestration to avoid damage to the photosynthetic machinery. The study of these metal hyperaccumulation processes at the cellular level in T. caerulescens has been hampered by the lack of a cellular system that mimics the whole plant, is easily transformable, and competent for longer term studies. Therefore, to better understand the contribution of the cellular physiology and molecular biology to Zn/Cd hyperaccumulation in the intact plant, T. caerulescens suspension cell lines were developed. Differences in cellular metal tolerance and accumulation between the cell lines of T. caerulescens and the related nonhyperaccumulator, Arabidopsis (Arabidopsis thaliana), were examined. A number of Zn/Cd transport-related differences between T. caerulescens and Arabidopsis cell lines were identified that also are seen in the whole plant. T. caerulescens suspension cell lines exhibited: (1) higher growth requirements for Zn; (2) much greater Zn and Cd tolerance; (3) enhanced expression of specific metal transport-related genes; and (4) significant differences in metal fluxes compared with Arabidopsis. One interesting feature exhibited by the T. caerulescens cell lines was that they accumulated less Zn and Cd than the Arabidopsis cell lines, most likely due to a greater metal efflux. This finding suggests that the T. caerulescens suspension cells represent cells of the Zn/Cd transport pathway between the root epidermis and leaf. We also show it is possible to stably transform T. caerulescens suspension cells, which will allow us to alter the expression of candidate hyperaccumulation genes and thus dissect the molecular and physiological processes underlying metal hyperaccumulation in T. caerulescens.

  10. Investigation of Heavy Metal Hyperaccumulation at the Cellular Level: Development and Characterization of Thlaspi caerulescens Suspension Cell Lines1[OA

    PubMed Central

    Klein, Melinda A.; Sekimoto, Hitoshi; Milner, Matthew J.; Kochian, Leon V.

    2008-01-01

    The ability of Thlaspi caerulescens, a zinc (Zn)/cadmium (Cd) hyperaccumulator, to accumulate extremely high foliar concentrations of toxic heavy metals requires coordination of uptake, transport, and sequestration to avoid damage to the photosynthetic machinery. The study of these metal hyperaccumulation processes at the cellular level in T. caerulescens has been hampered by the lack of a cellular system that mimics the whole plant, is easily transformable, and competent for longer term studies. Therefore, to better understand the contribution of the cellular physiology and molecular biology to Zn/Cd hyperaccumulation in the intact plant, T. caerulescens suspension cell lines were developed. Differences in cellular metal tolerance and accumulation between the cell lines of T. caerulescens and the related nonhyperaccumulator, Arabidopsis (Arabidopsis thaliana), were examined. A number of Zn/Cd transport-related differences between T. caerulescens and Arabidopsis cell lines were identified that also are seen in the whole plant. T. caerulescens suspension cell lines exhibited: (1) higher growth requirements for Zn; (2) much greater Zn and Cd tolerance; (3) enhanced expression of specific metal transport-related genes; and (4) significant differences in metal fluxes compared with Arabidopsis. One interesting feature exhibited by the T. caerulescens cell lines was that they accumulated less Zn and Cd than the Arabidopsis cell lines, most likely due to a greater metal efflux. This finding suggests that the T. caerulescens suspension cells represent cells of the Zn/Cd transport pathway between the root epidermis and leaf. We also show it is possible to stably transform T. caerulescens suspension cells, which will allow us to alter the expression of candidate hyperaccumulation genes and thus dissect the molecular and physiological processes underlying metal hyperaccumulation in T. caerulescens. PMID:18550685

  11. Contrasted zinc hyperaccumulation levels between metallicolous and non-metallicolous populations of Arabidopsis halleri is driven by divergent selection

    NASA Astrophysics Data System (ADS)

    Babst-Kostecka, Alicja; Waldmann, Patrik; Pauwels, Maxime; Schat, Henk; Bourceaux, Angélique; Saumitou-Laprade, Pierre; Grodzińska, Krystyna; Frérot, Hélène

    2017-04-01

    Approximately 400 species that can survive and reproduce in metalliferous environments have developed "metal hyperaccumulation" capacity, allowing them to allocate large amounts of trace elements to their aerial parts without showing severe toxicity symptoms. The potential of hyperaccumulators to be applied in phytoremediation efforts is of great research and commercial interest. Yet, the genetic basis and evolutionary significance of this trait are to date insufficiently understood. This lack of knowledge limits the efficiency and large-scale use of such plants in reducing soil pollution through "green and clean technologies" (phytoremediation). In this context, the objective of this study was to find some evidence of selection acting on metal hyperaccumulation, thus supporting the existence of genetic adaptation for this trait. Here, we collected six metallicolous and five non-metallicolous populations of the pseudometallophyte model species Arabidopsis halleri in Poland that are genetically and geographically close. We asexually propagated genotypes that were sampled in natural populations to produce several clones of each individual. These were subsequently used in a soil culture experiment with artificially zinc-contaminated compost for accumulation assessment. The zinc content of shoots was determined after five weeks of culture using the colorimetric reagent zincon. The heritability and the genetic differentiation of the zinc accumulation trait were estimated (Qst statistic) and the latter was compared to the differentiation at neutral molecular markers (Fst statistic). Despite significantly (P<0.001) lower zinc concentrations in metallicolous compared to non-metallicolous plants, we observed a rather continuous range of zinc hyperaccumulation capacities with multiple genotypes from both edaphic types in between. Overall, zinc concentrations were high in most plants, with only a few metallicolous individuals not reaching the threshold concentration for zinc

  12. Endogenous jasmonic and salicylic acids levels in the Cd-hyperaccumulator Noccaea (Thlaspi) praecox exposed to fungal infection and/or mechanical stress.

    PubMed

    Llugany, M; Martin, S R; Barceló, J; Poschenrieder, C

    2013-08-01

    Sensitivity to Erysiphe in Noccaea praecox with low metal supply is related to the failure in enhancing SA. Cadmium protects against fungal-infection by direct toxicity and/or enhanced fungal-induced JA signaling. Metal-based defense against biotic stress is an attractive hypothesis on evolutionary advantages of plant metal hyperaccumulation. Metals may compensate for a defect in biotic stress signaling in hyperaccumulators (metal-therapy) by either or both direct toxicity to pathogens and by metal-induced alternative signaling pathways. Jasmonic acid (JA) and salicylic acid (SA) are well-established components of stress signaling pathways. However, few studies evaluate the influence of metals on endogenous concentrations of these defense-related hormones. Even less data are available for metal hyperaccumulators. To further test the metal-therapy hypothesis we analyzed endogenous SA and JA concentrations in Noccaea praecox, a cadmium (Cd) hyperaccumulator. Plants treated or not with Cd, were exposed to mechanical wounding, expected to enhance JA signaling, and/or to infection by biotrophic fungus Erysiphe cruciferarum for triggering SA. JA and SA were analyzed in leaf extracts using LC-ESI(-)-MS/MS. Plants without Cd were more susceptible to fungal attack than plants receiving Cd. Cadmium alone tended to increase leaf SA but not JA. Either or both fungal attack and mechanical wounding decreased SA levels and enhanced JA in the Cd-rich leaves of plants exposed to Cd. High leaf Cd in N. praecox seems to hamper biotic-stress-induced SA, while triggering JA signaling in response to fungal attack and wounding. To the best of our knowledge, this is the first report on the endogenous JA and SA levels in a Cd-hyperaccumulator exposed to different biotic and abiotic stresses. Our results support the view of a defect in SA stress signaling in Cd hyperaccumulating N. praecox.

  13. Relationships of nicotianamine and other amino acids with nickel, zinc and iron in Thlaspi hyperaccumulators.

    PubMed

    Callahan, Damien L; Kolev, Spas D; O'Hair, Richard A J; Salt, David E; Baker, Alan J M

    2007-01-01

    Experimental evidence suggests that nicotianamine (NA) is involved in the complexation of metal ions in some metal-hyperaccumulating plants. Closely-related nickel (Ni)- and zinc (Zn)-hyperaccumulating species were studied to determine whether a correlation exists between the Ni and Zn concentrations and NA in foliar tissues. A liquid chromatography-mass spectrometry (LC-MS) procedure was developed to quantify the NA and amino acid contents using the derivatizing agent 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. A strong correlation emerged between Ni and NA, but not between Zn and NA. Concentrations of NA and L-histidine (His) also increased in response to higher Ni concentrations in the hydroponic solution supplied to a serpentine population of Thlaspi caerulescens. An inversely proportional correlation was found between the iron (Fe) and Ni concentrations in the leaves. Correlations were also found between Zn and asparagine. The results obtained in this study suggest that NA is involved in hyperaccumulation of Ni but not Zn. The inverse proportionality between the Ni and Fe concentrations in the leaf may suggest that Ni and Fe compete for complexation to NA.

  14. Application of rhizosphere interaction of hyperaccumulator Noccaea caerulescens to remediate cadmium-contaminated agricultural soil.

    PubMed

    Yang, Yong; Jiang, Rong-Feng; Wang, Wei; Li, Hua-Fen

    2011-10-01

    There is an urgent requirement for selecting appropriate technologies to solve food safety problems due to soil contamination. In this study, the hyperaccumulator Noccaea caerulescens and a high Cd accumulator pakchoi cultivar (Brassica rapa L. spp. Chinenesis cv.) were grown in a moderately Cd-contaminated soil with three planting systems (monocrop, inter-crop, and crop-rotation) and three growing durations (25, 50, and 75 days) to study the role of rhizosphere interaction of both species on the uptake of Cd. The Cd accumulations in the shoot of pakchoi were significantly reduced in the inter-crop treatment, also the decreased percentage increased with rhizosphere interaction between the two species. In the inter-crop systems of 75 days, the Cd concentration and amount in the shoot of pakchoi represented 54% and 83% reduction, respectively, while the total depletion of Cd decreased by approximate 19%. Although the Cd concentration and amount in the shoot of pakchoi were significantly reduced by 52% and 44%, respectively, in the crop-rotation treatment, the decreased percentage were markedly lower than in the inter-crop treatment. Therefore, the rhizosphere interaction of hyperaccumulator with non-hyperaccumulator may reduce the risk of vegetable contamination during making full use of or remediating the contaminated soil.

  15. Relationship between metal and pigment concentrations in the Fe-hyperaccumulator moss Scopelophila ligulata.

    PubMed

    Nakajima, Hiromitsu; Itoh, Kiminori

    2017-01-01

    Scopelophila ligulata is known to be a Fe-hyperaccumulator moss; however, its mechanism of accumulation and the effects of Fe on pigments remain unclear. To clarify the effects, we measured its metal and pigment concentrations. The Fe concentration in S. ligulata was 10-61 times higher than that in normal mosses, confirming that the moss is a Fe-hyperaccumulator. The black samples of S. ligulata had the highest Fe concentration (2.9 wt%) and the second in the order of decreasing Fe concentration (2.2 wt%), which explains their color and indicates that the excess amount of Fe is distributed through the plant body. Moreover, we observed that the concentration of Ca is negatively correlated with the concentrations of pigments and, conversely, that the concentration of K is positively correlated with the concentrations of pigments. This inverse relationship between Ca and K can be explained by the reduced uptake of K in S. ligulata in response to Ca stress, which is supported by the fact that the concentration of Ca is negatively correlated with that of K. These findings provide a better understanding of the relationships between metals and pigments in the Fe-hyperaccumulator moss S. ligulata.

  16. Quantitative micro-PIXE comparison of elemental distribution in Ni-hyperaccumulating and non-accumulating genotypes of Senecio coronatus

    NASA Astrophysics Data System (ADS)

    Mesjasz-Przybyłowicz, J.; Przybyłowicz, W. J.; Prozesky, V. M.; Pineda, C. A.

    1997-07-01

    The Ni hyperaccumulator, plant species Senecio coronatus (Thunb.) Harv., Asteraceae is an example of plant adaptation mechanisms to different ecological conditions. This widespread species can inter alia be found on serpentine outcrops and the genotypes growing in serpentine soils show different ways of adaptation. The populations from two distant localities take up and translocate Ni in concentrations which are normally phytotoxic, while plants growing on a different site, in the vicinity of another hyperaccumulating species, absorb amounts which are typical for most of the plants found on serpentine soils. The NAC nuclear microprobe was used to compare the distribution of Ni and other elements in selected organs and cells with simultaneous use of PIXE and proton BackScattering (BS). Quantitative maps of stems showed large differences in concentrations and distributions of major and trace elements. In hyperaccumulating genotypes Ni is present everywhere within stem tissues, but the highest concentrations were found in the epidermis, cortex and phloem. In non-accumulating plants Ni was concentrated in the phloem. In the leaf epidermis Ni was concentrated in the cell walls for both accumulating and non-accumulating plants. These results suggest that biochemical diversity is more than morphological, because investigated genotypes belong to the same taxon.

  17. Inoculation of Astragalus racemosus and Astragalus convallarius with selenium-hyperaccumulator rhizosphere fungi affects growth and selenium accumulation.

    PubMed

    Lindblom, Stormy Dawn; Fakra, Sirine C; Landon, Jessica; Schulz, Paige; Tracy, Benjamin; Pilon-Smits, Elizabeth A H

    2013-03-01

    Little is known about how fungi affect plant selenium (Se) accumulation. Here we investigate the effects of two fungi on Se accumulation, translocation, and chemical speciation in the hyperaccumulator Astragalus racemosus and the non-accumulator Astragalus convallarius. The fungi, Alternaria astragali (A3) and Fusarium acuminatum (F30), were previously isolated from Astragalus hyperaccumulator rhizosphere. A3-inoculation enhanced growth of A. racemosus yet inhibited growth of A. convallarius. Selenium treatment negated these effects. F30 reduced shoot-to-root Se translocation in A. racemosus. X-ray microprobe analysis showed no differences in Se speciation between inoculation groups. The Astragalus species differed in Se localization and speciation. A. racemosus root-Se was distributed throughout the taproot and lateral root and was 90 % organic in the lateral root. The related element sulfur (S) was present as a mixture of organic and inorganic forms in the hyperaccumulator. Astragalus convallarius root-Se was concentrated in the extreme periphery of the taproot. In the lateral root, Se was exclusively in the vascular core and was only 49 % organic. These findings indicate differences in Se assimilation between the two species and differences between Se and S speciation in the hyperaccumulator. The finding that fungi can affect translocation may have applications in phytoremediation and biofortification.

  18. Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level.

    PubMed

    Cosio, Claudia; Martinoia, Enrico; Keller, Catherine

    2004-02-01

    Vacuolar compartmentalization or cell wall binding in leaves could play a major role in hyperaccumulation of heavy metals. However, little is known about the physiology of intracellular cadmium (Cd) sequestration in plants. We investigated the role of the leaf cells in allocating metal in hyperaccumulating plants by measuring short-term (109)Cd and (65)Zn uptake in mesophyll protoplasts of Thlaspi caerulescens "Ganges" and Arabidopsis halleri, both hyperaccumulators of zinc (Zn) and Cd, and T. caerulescens "Prayon," accumulating Cd at a lower degree. The effects of low temperature, several divalent cations, and pre-exposure of the plants to metals were investigated. There was no significant difference between the Michaelis-Menten kinetic constants of the three plants. It indicates that differences in metal uptake cannot be explained by different constitutive transport capacities at the leaf protoplast level and that plasma and vacuole membranes of mesophyll cells are not responsible for the differences observed in heavy metal allocation. This suggests the existence of regulation mechanisms before the plasma membrane of leaf mesophyll protoplasts. However, pre-exposure of the plants to Cd induced an increase in Cd accumulation in protoplasts of "Ganges," whereas it decreased Cd accumulation in A. halleri protoplasts, indicating that Cd-permeable transport proteins are differentially regulated. The experiment with competitors has shown that probably more than one single transport system is carrying Cd in parallel into the cell and that in T. caerulescens "Prayon," Cd could be transported by a Zn and Ca pathway, whereas in "Ganges," Cd could be transported mainly by other pathways.

  19. Fractionation of Stable Cadmium Isotopes in the Cadmium Tolerant Ricinus communis and Hyperaccumulator Solanum nigrum

    PubMed Central

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Liu, Congqiang; Yang, Junxing; Peters, Marc; Hu, Jian; Zhu, Guangxu; Zhang, Hanzhi; Tian, Liyan; Han, Xiaokun; Ma, Jie; Zhu, Chuanwei; Wan, Yingxin

    2016-01-01

    Cadmium (Cd) isotopes provide new insights into Cd uptake, transport and storage mechanisms in plants. Therefore, the present study adopted the Cd-tolerant Ricinus communis and Cd-hyperaccumulator Solanum nigrum, which were cultured under controlled conditions in a nutrient solution with variable Cd supply, to test the isotopic fractionation of Cd during plant uptake. The Cd isotope compositions of nutrient solutions and organs of the plants were measured by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). The mass balance of Cd isotope yields isotope fractionations between plant and Cd source (δ114/110Cdorgans-solution) of −0.70‰ to −0.22‰ in Ricinus communis and −0.51‰ to −0.33‰ in Solanum nigrum. Moreover, Cd isotope fractionation during Cd transport from stem to leaf differs between the Cd-tolerant and -hyperaccumulator species. Based on these results, the processes (diffusion, adsorption, uptake or complexation), which may induce Cd isotope fractionation in plants, have been discussed. Overall, the present study indicates potential applications of Cd isotopes for investigating plant physiology. PMID:27076359

  20. Fractionation of Stable Cadmium Isotopes in the Cadmium Tolerant Ricinus communis and Hyperaccumulator Solanum nigrum.

    PubMed

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Liu, Congqiang; Yang, Junxing; Peters, Marc; Hu, Jian; Zhu, Guangxu; Zhang, Hanzhi; Tian, Liyan; Han, Xiaokun; Ma, Jie; Zhu, Chuanwei; Wan, Yingxin

    2016-04-14

    Cadmium (Cd) isotopes provide new insights into Cd uptake, transport and storage mechanisms in plants. Therefore, the present study adopted the Cd-tolerant Ricinus communis and Cd-hyperaccumulator Solanum nigrum, which were cultured under controlled conditions in a nutrient solution with variable Cd supply, to test the isotopic fractionation of Cd during plant uptake. The Cd isotope compositions of nutrient solutions and organs of the plants were measured by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). The mass balance of Cd isotope yields isotope fractionations between plant and Cd source (δ(114/110)Cdorgans-solution) of -0.70‰ to -0.22‰ in Ricinus communis and -0.51‰ to -0.33‰ in Solanum nigrum. Moreover, Cd isotope fractionation during Cd transport from stem to leaf differs between the Cd-tolerant and -hyperaccumulator species. Based on these results, the processes (diffusion, adsorption, uptake or complexation), which may induce Cd isotope fractionation in plants, have been discussed. Overall, the present study indicates potential applications of Cd isotopes for investigating plant physiology.

  1. Fractionation of Stable Cadmium Isotopes in the Cadmium Tolerant Ricinus communis and Hyperaccumulator Solanum nigrum

    NASA Astrophysics Data System (ADS)

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Liu, Congqiang; Yang, Junxing; Peters, Marc; Hu, Jian; Zhu, Guangxu; Zhang, Hanzhi; Tian, Liyan; Han, Xiaokun; Ma, Jie; Zhu, Chuanwei; Wan, Yingxin

    2016-04-01

    Cadmium (Cd) isotopes provide new insights into Cd uptake, transport and storage mechanisms in plants. Therefore, the present study adopted the Cd-tolerant Ricinus communis and Cd-hyperaccumulator Solanum nigrum, which were cultured under controlled conditions in a nutrient solution with variable Cd supply, to test the isotopic fractionation of Cd during plant uptake. The Cd isotope compositions of nutrient solutions and organs of the plants were measured by multiple collector inductively coupled plasma mass spectrometry (MC-ICPMS). The mass balance of Cd isotope yields isotope fractionations between plant and Cd source (δ114/110Cdorgans-solution) of ‑0.70‰ to ‑0.22‰ in Ricinus communis and ‑0.51‰ to ‑0.33‰ in Solanum nigrum. Moreover, Cd isotope fractionation during Cd transport from stem to leaf differs between the Cd-tolerant and -hyperaccumulator species. Based on these results, the processes (diffusion, adsorption, uptake or complexation), which may induce Cd isotope fractionation in plants, have been discussed. Overall, the present study indicates potential applications of Cd isotopes for investigating plant physiology.

  2. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    PubMed

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Christie, Peter

    2013-10-15

    Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5-50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Cadmium-accumulating plants.

    PubMed

    Küpper, Hendrik; Leitenmaier, Barbara

    2013-01-01

    Plants are categorized in three groups concerning their uptake of heavy metals: indicator, excluder, and hyperaccumulator plants, which we explain in this chapter, the former two groups briefly and the hyperaccumulators in detail. The ecological role of hyperaccumulation, for example, the prevention of herbivore attacks and a possible substitution of Zn by Cd in an essential enzyme, is discussed. As the mechanisms of cadmium hyperaccumulation are a very interesting and challenging topic and many aspects are studied worldwide, we provide a broad overview over compartmentation strategies, expression and function of metal transporting proteins and the role of ligands for uptake, transport, and storage of cadmium. Hyperaccumulators are not without reason a topic of great interest, they can be used biotechnologically for two main purposes which we discuss here for Cd: phytoremediation, dealing with the cleaning of anthropogenically contaminated soils as well as phytomining, i.e., the use of plants for commercial metal extraction. Finally, the outlook deals with topics for future research in the fields of biochemistry/biophysics, molecular biology, and biotechnology. We discuss which knowledge is still missing to fully understand Cd hyperaccumulation by plants and to use that phenomenon even more successfully for both environmental and economical purposes.

  4. Hyperaccumulator oilcake manure as an alternative for chelate-induced phytoremediation of heavy metals contaminated alluvial soils.

    PubMed

    Mani, Dinesh; Kumar, Chitranjan; Patel, Niraj Kumar

    2015-01-01

    The ability of hyperaccumulator oilcake manure as compared to chelates was investigated by growing Calendula officinalis L for phytoremediation of cadmium and lead contaminated alluvial soil. The combinatorial treatment T6 [2.5 g kg(-1) oilcake manure+5 mmol kg(-1) EDDS] caused maximum cadmium accumulation in root, shoot and flower up to 5.46, 4.74 and 1.37 mg kg(-1) and lead accumulation up to 16.11, 13.44 and 3.17 mg kg(-1), respectively at Naini dump site, Allahabad (S3). The treatment showed maximum remediation efficiency for Cd (RR=0.676%) and Pb (RR=0.202%) at Mumfordganj contaminated site (S2). However, the above parameters were also observed at par with the treatment T5 [2.5 g kg(-1) oilcake manure +2 g kg(-1) humic acid]. Applied EDDS altered chlorophyll-a, chlorophyll-b, and carotene contents of plants while application of oilcake manure enhanced their contents in plant by 3.73-8.65%, 5.81-17.65%, and 7.04-17.19%, respectively. The authors conclude that Calendula officinalis L has potential to be safely grown in moderately Cd and Pb-contaminated soils and application of hyperaccumulator oilcake manure boosts the photosynthetic pigments of the plant, leading to enhanced clean-up of the cadmium and lead-contaminated soils. Hence, the hyperaccumulator oilcake manure should be preferred over chelates for sustainable phytoremediation through soil-plant rhizospheric process.

  5. Characterization of the high affinity Zn transporter from Noccaea caerulescens, NcZNT1, and dissection of its promoter for its role in Zn uptake and hyperaccumulation

    USDA-ARS?s Scientific Manuscript database

    In this paper, we conducted a detailed analysis of the ZIP family transporter, NcZNT1, in the Zn/Cd hyperaccumulating plant species, Noccaea caerulescens, formerly known as Thlaspi caerulescens. NcZNT1 was previously suggested to be the primary root Zn/Cd uptake transporter. Both a characterization ...

  6. Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L.

    PubMed

    Trotta, A; Falaschi, P; Cornara, L; Minganti, V; Fusconi, A; Drava, G; Berta, G

    2006-09-01

    Phytoremediation techniques are receiving more attention as decontaminating strategies. Phytoextraction makes use of plants to transfer contaminants from soil to the aboveground biomass. This research is devoted to study the effects of arbuscular mycorrhizae (AM) on growth and As hyperaccumulation in the Chinese brake fern Pteris vittata. We grew for 45 days P. vittata sporophytes, infected or not infected with the AM fungi Glomus mosseae or Gigaspora margarita, in a hydroponic system on quartz sand. As-treated plants were weekly fed with 25 ppm As. The As treatment produced a dramatic increase of As concentration in pinnae and a much lower increase in roots of both mycorrhizal and control plants. Mycorrhization increased pinnae dry weight (DW) (G. margarita = G. mosseae) and leaf area (G. margarita > G. mosseae), strongly reduced root As concentration (G. mosseae > G. margarita), and increased the As translocation factor (G. mosseae > G. margarita). The concentration of phosphorus in pinnae and roots was enhanced by both fungi (G. margarita > G. mosseae). The quantitatively different effects of the two AM fungi on plant growth as well as on As and P distribution in the fern suggest that the As hyperaccumulation in P. vittata can be optimized by a careful choice of the symbiont.

  7. Nickel, Zn and Cd localisation in seeds of metal hyperaccumulators using μ-PIXE spectroscopy

    NASA Astrophysics Data System (ADS)

    Kachenko, Anthony G.; Bhatia, Naveen P.; Siegele, Rainer; Walsh, Kerry B.; Singh, Balwant

    2009-06-01

    Metal hyperaccumulators are a rare group of plant species that accumulate exceptionally high concentrations of metals in above ground tissues without showing symptoms of phytotoxicity. Quantitative localisation of the accumulated metals in seed tissues is of considerable interest to help understand the eco-physiology of these unique plant species. We investigated the spatial localisation of metals within seeds of Ni hyperaccumulating Hybanthus floribundus subsp. adpressus, H. floribundus subsp. floribundus and Pimelea leptospermoides and dual-metal (Cd and Zn) hyperaccumulating Thlaspi caerulescens using quantitative micro-proton induced X-ray emission (μ-PIXE) spectroscopy. Intact seeds were hand-sectioned, sandwiched between Formvar films and irradiated using the 3 MeV high energy heavy ion microprobe at ANSTO. Elemental maps of whole H. floribundus subsp. adpressus seeds showed an average Ni concentration of 5.1 × 10 3 mg kg -1 dry weight (DW) with highest Ni concentration in cotyledonary tissues (7.6 × 10 3 mg kg -1 DW), followed by the embryonic axis (4.4 × 10 3 mg kg -1 DW). Nickel concentration in whole H. floribundus subsp. floribundus seeds was 3.5 × 10 2 mg kg -1 DW without a clear pattern of Ni localisation. The average Ni concentration in whole P. leptospermoides seeds was 2.6 × 10 2 mg kg -1 DW, and Ni was preferentially localised in the embryonic axis (4.3 × 10 2 mg kg -1 DW). In T. caerulescens, Cd concentrations were similar in cotyledon (4.5 × 10 3 mg kg -1 DW) and embryonic axis (3.3 × 10 3 mg kg -1 DW) tissues, whereas Zn was highest in cotyledonary tissues (1.5 × 10 3 mg kg -1 DW). In all species, the presence of the accumulated metal within the cotyledonary and embryonic axis tissues indicates that the accumulated metal was able to move apoplastically within the seed.

  8. Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens

    PubMed Central

    Visioli, Giovanna; Vamerali, Teofilo; Mattarozzi, Monica; Dramis, Lucia; Sanangelantoni, Anna M.

    2015-01-01

    This study assesses the effects of specific bacterial endophytes on the phytoextraction capacity of the Ni-hyperaccumulator Noccaea caerulescens, spontaneously growing in a serpentine soil environment. Five metal-tolerant endophytes had already been selected for their high Ni tolerance (6 mM) and plant growth promoting ability. Here we demonstrate that individual bacterial inoculation is ineffective in enhancing Ni translocation and growth of N. caerulescens in serpentine soil, except for specific strains Ncr-1 and Ncr-8, belonging to the Arthrobacter and Microbacterium genera, which showed the highest indole acetic acid production and 1-aminocyclopropane-1-carboxylic acid-deaminase activity. Ncr-1 and Ncr-8 co-inoculation was even more efficient in promoting plant growth, soil Ni removal, and translocation of Ni, together with that of Fe, Co, and Cu. Bacteria of both strains densely colonized the root surfaces and intercellular spaces of leaf epidermal tissue. These two bacterial strains also turned out to stimulate root length, shoot biomass, and Ni uptake in Arabidopsis thaliana grown in MS agar medium supplemented with Ni. It is concluded that adaptation of N. caerulescens in highly Ni-contaminated serpentine soil can be enhanced by an integrated community of bacterial endophytes rather than by single strains; of the former, Arthrobacter and Microbacterium may be useful candidates for future phytoremediation trials in multiple metal-contaminated sites, with possible extension to non-hyperaccumulator plants. PMID:26322074

  9. Growth and Metal Accumulation of an Alyssum murale Nickel Hyperaccumulator Ecotype Co-cropped with Alyssum montanum and Perennial Ryegrass in Serpentine Soil

    PubMed Central

    Broadhurst, Catherine L.; Chaney, Rufus L.

    2016-01-01

    The genus Alyssum (Brassicaceae) contains Ni hyperaccumulators (50), many of which can achieve 30 g kg−1 Ni in dry leaf. Some Alyssum hyperaccumulators are viable candidates for commercial Ni phytoremediation and phytomining technologies. It is not known whether these species secrete organic and/or amino acids into the rhizosphere to solubilize Ni, or can make use of such acids within the soil to facilitate uptake. It has been hypothesized that in fields with mixed plant species, mobilization of metals by phytosiderophores secreted by Graminaceae plants could affect Alyssum Ni, Fe, Cu, and Mn uptake. We co-cropped the Ni hyperaccumulator Alyssum murale, non-hyperaccumulator A. montanum and perennial ryegrass in a natural serpentine soil. All treatments had standard inorganic fertilization required for ryegrass growth and one treatment was compost amended. After 4 months A. murale leaves and stems contained 3600 mg kg−1 Ni which did not differ significantly with co-cropping. Overall Ni and Mn concentrations were significantly higher in A. murale than in A. montanum or L. perenne. Copper was not accumulated by either Alyssum species, but L. perenne accumulated up to 10 mg kg−1. A. montanum could not compete with either A. murale or ryegrass, and neither Alyssum species survived in the compost-amended soil. Co-cropping with ryegrass reduced Fe and Mn concentrations in A. murale but not to the extent of either increasing Ni uptake or affecting plant nutrition. The hypothesized Alyssum Ni accumulation in response to phytosiderophores secreted by co-cropped grass did not occur. Our data do not support increased mobilization of Mn by a phytosiderophore mechanism either, but the converse: mobilization of Mn by the Alyssum hyperaccumulator species significantly increased Mn levels in L. perenne. Tilling soil to maximize root penetration, adequate inorganic fertilization and appropriate plant densities are more important for developing efficient phytoremediation and

  10. Growth and Metal Accumulation of an Alyssum murale Nickel Hyperaccumulator Ecotype Co-cropped with Alyssum montanum and Perennial Ryegrass in Serpentine Soil.

    PubMed

    Broadhurst, Catherine L; Chaney, Rufus L

    2016-01-01

    The genus Alyssum (Brassicaceae) contains Ni hyperaccumulators (50), many of which can achieve 30 g kg(-1) Ni in dry leaf. Some Alyssum hyperaccumulators are viable candidates for commercial Ni phytoremediation and phytomining technologies. It is not known whether these species secrete organic and/or amino acids into the rhizosphere to solubilize Ni, or can make use of such acids within the soil to facilitate uptake. It has been hypothesized that in fields with mixed plant species, mobilization of metals by phytosiderophores secreted by Graminaceae plants could affect Alyssum Ni, Fe, Cu, and Mn uptake. We co-cropped the Ni hyperaccumulator Alyssum murale, non-hyperaccumulator A. montanum and perennial ryegrass in a natural serpentine soil. All treatments had standard inorganic fertilization required for ryegrass growth and one treatment was compost amended. After 4 months A. murale leaves and stems contained 3600 mg kg(-1) Ni which did not differ significantly with co-cropping. Overall Ni and Mn concentrations were significantly higher in A. murale than in A. montanum or L. perenne. Copper was not accumulated by either Alyssum species, but L. perenne accumulated up to 10 mg kg(-1). A. montanum could not compete with either A. murale or ryegrass, and neither Alyssum species survived in the compost-amended soil. Co-cropping with ryegrass reduced Fe and Mn concentrations in A. murale but not to the extent of either increasing Ni uptake or affecting plant nutrition. The hypothesized Alyssum Ni accumulation in response to phytosiderophores secreted by co-cropped grass did not occur. Our data do not support increased mobilization of Mn by a phytosiderophore mechanism either, but the converse: mobilization of Mn by the Alyssum hyperaccumulator species significantly increased Mn levels in L. perenne. Tilling soil to maximize root penetration, adequate inorganic fertilization and appropriate plant densities are more important for developing efficient phytoremediation and

  11. Arsenic complexes in the arsenic hyperaccumulator Pteris vittata (Chinese brake fern).

    PubMed

    Zhang, Weihua; Cai, Yong; Downum, Kelsey R; Ma, Lena Q

    2004-07-23

    Pteris vittata (Chinese brake fern), the first reported arsenic (As) hyperaccumulating plant, can be potentially applied in the phytoremediation As-contaminated sites. Understanding the mechanisms of As tolerance and detoxification in this plant is critical to further enhance its capability of As hyperaccumulation. In this study, an unknown As species, other than arsenite (AsIII) or arsenate (AsV) was found in leaflets by using anion-exchange chromatography-hydride generation-atomic fluorescence spectroscopy and size-exclusion chromatography-atomic fluorescence spectrometry. The chromatographic behavior of this unknown As species and its stability suggest that it is likely an As complex. Although phytochelatin with two subunits (PC2) was the only major thiol in P. vittata under As exposure, this unknown As complex was unlikely to be an AsIII-PC2 complex by comparison of their chromatographic behaviors, stability at different pHs and charge states. The complex is sensitive to temperature and metal ions, but relatively insensitive to pH. In buffer solution of pH 5.9, it is present in a neutral form.

  12. Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum leaf trichomes.

    PubMed

    Broadhurst, C Leigh; Chaney, Rufus L; Angle, J Scott; Maugel, Timothy K; Erbe, Eric F; Murphy, Charles A

    2004-11-01

    We have developed commercially viable phytoremediation/phytomining technologies employing Alyssum Ni-hyperaccumulator species to quantitatively extract Ni from soils. The majority of Ni is stored either in Alyssum leaf epidermal cell vacuoles or in the basal portions only of the numerous stellate trichomes. Here, we report simultaneous and region-specific localization of high levels of Ni, Mn, and Ca within Alyssum trichomes as determined by scanning electron microscopy/energy-dispersive X-ray analysis (SEM/EDX). Plants were grown in high Ni soil, achieving up to 48 400 microg g(-1) Ni in total leaf concentration; however, Ca and Mn were not enriched in the experimental soils. The region-specific localization of hyperaccumulated Ca, Mn, and Ni occurred in three soil types, five Alyssum species/ecotypes, and over a wide range of soil Ni concentrations. The metal concentration in the trichome basal compartment was approximately 15-20% dry weight, the highest ever reported for healthy vascular plant tissue.

  13. Extreme nickel hyperaccumulation in the vascular tracts of the tree Phyllanthus balgooyi from Borneo.

    PubMed

    Mesjasz-Przybylowicz, Jolanta; Przybylowicz, Wojciech; Barnabas, Alban; van der Ent, Antony

    2016-03-01

    Phyllanthus balgooyi (Phyllanthaceae), one of > 20 nickel (Ni) hyperaccumulator plant species known in Sabah (Malaysia) on the island of Borneo, is remarkable because it contains > 16 wt% Ni in its phloem sap, the second highest concentration of Ni in any living material in the world (after Pycnandra acuminata (Sapotaceae) from New Caledonia with 25 wt% Ni in latex). This study focused on the tissue-level distribution of Ni and other elements in the leaves, petioles and stem of P. balgooyi using nuclear microprobe imaging (micro-PIXE). The results show that in the stems and petioles of P. balgooyi Ni concentrations were very high in the phloem, while in the leaves there was significant enrichment of this element in the major vascular bundles. In the leaves, cobalt (Co) was codistributed with Ni, while the distribution of manganese (Mn) was different. The highest enrichment of calcium (Ca) in the stems was in the periderm, the epidermis and subepidermis of the petiole, and in the palisade mesophyll of the leaf. Preferential accumulation of Ni in the vascular tracts suggests that Ni is present in a metabolically active form. The elemental distribution of P. balgooyi differs from those of many other Ni hyperaccumulator plant species from around the world where Ni is preferentially accumulated in leaf epidermal cells. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  14. Phytofiltration of arsenic from drinking water using arsenic-hyperaccumulating ferns.

    PubMed

    Huang, Jianwei W; Poynton, Charissa Y; Kochian, Leon V; Elless, Mark P

    2004-06-15

    Arsenic contamination of drinking water poses serious health risks to millions of people worldwide. Current technologies used to clean arsenic-contaminated water have significant drawbacks, such as high cost and generation of large volumes of toxic waste. In this study, we investigated the potential of using recently identified arsenic-hyperaccumulating ferns to remove arsenic from drinking water. Hydroponically cultivated, two arsenic-hyperaccumulating fern species (Pteris vittata and Pteris cretica cv. Mayii) and a nonaccumulating fern species (Nephrolepis exaltata) were suspended in water containing 73As-labeled arsenic with initial arsenic concentrations ranging from 20 to 500 microg L(-1). The efficiency of arsenic phytofiltration by these fern species was determined by continuously monitoring the depletion of 73As-labeled arsenic concentration in the water. With an initial water arsenic concentration of 200 microg L(-1), P. vittata reduced the arsenic concentration by 98.6% to 2.8 microg L(-1) in 24 h. When the initial water arsenic was 20 microg L(-1), P. vittata reduced the arsenic concentration to 7.2 microg L(-1) in 6 h and to 0.4 microg L(-1) in 24 h. At similar plant ages, both P. vittata and P. cretica had similar arsenic phytofiltration efficiency and were able to rapidly remove arsenic from water to achieve arsenic levels below the new drinking water limit of 10 microg L(-1). However, N. exaltata failed to reduce water arsenic to achieve the limit under the same experimental conditions. The significantly higher efficiency of arsenic phytofiltration by arsenic-hyperaccumulating fern species is associated with their ability to rapidly translocate absorbed arsenic from roots to shoots. The nonaccumulating fern N. exaltata was unable to translocate the absorbed arsenic to the shoots. Our results demonstrate that the arsenic-phytofiltration technique may provide the basis for a solar-powered hydroponic technique that enables small-scale cleanup of arsenic

  15. The apoplasmic pathway via the root apex and lateral roots contributes to Cd hyperaccumulation in the hyperaccumulator Sedum alfredii

    PubMed Central

    Tao, Qi; Jupa, Radek; Luo, Jipeng; Lux, Alexander; Kováč, Ján; Wen, Yue; Zhou, Yimei; Jan, Japenga; Liang, Yongchao

    2017-01-01

    Abstract Although the significance of apoplasmic barriers in roots with regards to the uptake of toxic elements is generally known, the contribution of apoplasmic bypasses (ABs) to cadmium (Cd) hyperaccumulation is little understood. Here, we employed a combination of stable isotopic tracer techniques, an ABs tracer, hydraulic measurements, suberin lamellae staining, metabolic inhibitors, and antitranspirants to investigate and quantify the impact of the ABs on translocation of Cd to the xylem in roots of a hyperaccumulating (H) ecotype and a non-hyperaccumulating (NH) ecotype of Sedum alfredii. In the H ecotype, the Cd content in the xylem sap was proportional to hydrostatic pressure, which was attributed to pressure-driven flow via the ABs. The contribution of the ABs to Cd transportation to the xylem was dependent on the Cd concentration applied to the H ecotype (up to 37% at the highest concentration used). Cd-treated H ecotype roots showed significantly higher hydraulic conductance compared with the NH ecotype (76 vs 52 × 10–8 m s–1MPa–1), which is in accordance with less extensive suberization due to reduced expression of suberin-related genes. The main entry sites of apoplasmically transported Cd were localized in the root apexes and lateral roots of the H ecotype, where suberin lamellae were not well developed. These findings highlight the significance of the apoplasmic bypass in Cd hyperaccumulation in hyperaccumulating ecotypes of S. alfredii. PMID:28204505

  16. The apoplasmic pathway via the root apex and lateral roots contributes to Cd hyperaccumulation in the hyperaccumulator Sedum alfredii.

    PubMed

    Tao, Qi; Jupa, Radek; Luo, Jipeng; Lux, Alexander; Kováč, Ján; Wen, Yue; Zhou, Yimei; Jan, Japenga; Liang, Yongchao; Li, Tingqiang

    2016-12-16

    Although the significance of apoplasmic barriers in roots with regards to the uptake of toxic elements is generally known, the contribution of apoplasmic bypasses (ABs) to cadmium (Cd) hyperaccumulation is little understood. Here, we employed a combination of stable isotopic tracer techniques, an ABs tracer, hydraulic measurements, suberin lamellae staining, metabolic inhibitors, and antitranspirants to investigate and quantify the impact of the ABs on translocation of Cd to the xylem in roots of a hyperaccumulating (H) ecotype and a non-hyperaccumulating (NH) ecotype of Sedum alfredii In the H ecotype, the Cd content in the xylem sap was proportional to hydrostatic pressure, which was attributed to pressure-driven flow via the ABs. The contribution of the ABs to Cd transportation to the xylem was dependent on the Cd concentration applied to the H ecotype (up to 37% at the highest concentration used). Cd-treated H ecotype roots showed significantly higher hydraulic conductance compared with the NH ecotype (76 vs 52 × 10(-8) m s(-1)MPa(-1)), which is in accordance with less extensive suberization due to reduced expression of suberin-related genes. The main entry sites of apoplasmically transported Cd were localized in the root apexes and lateral roots of the H ecotype, where suberin lamellae were not well developed. These findings highlight the significance of the apoplasmic bypass in Cd hyperaccumulation in hyperaccumulating ecotypes of S. alfredii.

  17. Phytoremediation of cadmium-contaminated farmland soil by the hyperaccumulator Beta vulgaris L. var. cicla.

    PubMed

    Song, Xueying; Hu, Xiaojun; Ji, Puhui; Li, Yushuang; Chi, Guangyu; Song, Yufang

    2012-04-01

    A field study was conducted to evaluate the phytoremediation efficiency of cadmium (Cd) contaminated soil utilizing the Cd hyperaccumulator Beta vulgaris L. var. cicla during one growing season (about 2 months) on farmland in Zhangshi Irrigation Area, the representative wastewater irrigation area in China. Results showed that B. vulgaris L. var. cicla is a promising plant in the phytoremediation of Cd contaminated farmland soil. The maximum of Cd phytoremediation efficiency by B. vulgaris L. var. cicla reached 144.6 mg/ha during one growing season. Planting density had a significant effect on the plant biomass and the overall Cd phytoremediation efficiency (p < 0.05). The amendment of organic manure promoted the biomass increase of B. vulgaris L. var. cicla (p < 0.05) but inhibited the Cd phytoremediation efficiency.

  18. Characterization of Zinc and Cadmium Hyperaccumulation in Three Noccaea (Brassicaceae) Populations from Non-metalliferous Sites in the Eastern Pyrenees

    PubMed Central

    Martos, Soledad; Gallego, Berta; Sáez, Llorenç; López-Alvarado, Javier; Cabot, Catalina; Poschenrieder, Charlotte

    2016-01-01

    The Southern slope of the Pyrenees is the meridional limit for the distribution of several Noccaea populations. However, the systematic description of these populations and their hyperaccumulation mechanisms are not well established. Morphological and genetic analysis (ITS and 3 chloroplast regions) were used to identify Noccaea populations localized on non-metallicolous soils during a survey in the Catalonian Pyrenees. Cd and Zn concentrations were analyzed in soils and plants both sampled in the field and grown hydroponically. The expression of selected metal transporter genes was assessed by quantitative PCR. The populations were identified as Noccaea brachypetala (Jord.) F.K. Mey by conspicuous morphological traits. Principal component analysis provided a clear separation among N. brachypetala, Noccaea caerulescens J. Presl & C. Presl and Noccaea occitanica (Jord.) F.K. Mey., three Noccaea species reported in the Pyrenees. Contrastingly, ITS and cpDNA analyses were unable to clearly differentiate these taxa. Differences in the expression of the metal transporter genes HMA3, HMA4, and MTP1 between N. caerulescens and N. brachypetala, and those amongst the N. brachypetala populations suggest differences in the strategies for handling enhanced Cd and Zn availability. This is the first report demonstrating Cd and Zn hyperaccumulation by N. brachypetala both in the field and in hydroponics. This comprehensive study based on taxonomic, molecular, and physiological data allows both the correct identification of this species and the characterization of population differences in hyperaccumulation and tolerance of Zn and Cd. PMID:26904085

  19. Characterization of Zinc and Cadmium Hyperaccumulation in Three Noccaea (Brassicaceae) Populations from Non-metalliferous Sites in the Eastern Pyrenees.

    PubMed

    Martos, Soledad; Gallego, Berta; Sáez, Llorenç; López-Alvarado, Javier; Cabot, Catalina; Poschenrieder, Charlotte

    2016-01-01

    The Southern slope of the Pyrenees is the meridional limit for the distribution of several Noccaea populations. However, the systematic description of these populations and their hyperaccumulation mechanisms are not well established. Morphological and genetic analysis (ITS and 3 chloroplast regions) were used to identify Noccaea populations localized on non-metallicolous soils during a survey in the Catalonian Pyrenees. Cd and Zn concentrations were analyzed in soils and plants both sampled in the field and grown hydroponically. The expression of selected metal transporter genes was assessed by quantitative PCR. The populations were identified as Noccaea brachypetala (Jord.) F.K. Mey by conspicuous morphological traits. Principal component analysis provided a clear separation among N. brachypetala, Noccaea caerulescens J. Presl & C. Presl and Noccaea occitanica (Jord.) F.K. Mey., three Noccaea species reported in the Pyrenees. Contrastingly, ITS and cpDNA analyses were unable to clearly differentiate these taxa. Differences in the expression of the metal transporter genes HMA3, HMA4, and MTP1 between N. caerulescens and N. brachypetala, and those amongst the N. brachypetala populations suggest differences in the strategies for handling enhanced Cd and Zn availability. This is the first report demonstrating Cd and Zn hyperaccumulation by N. brachypetala both in the field and in hydroponics. This comprehensive study based on taxonomic, molecular, and physiological data allows both the correct identification of this species and the characterization of population differences in hyperaccumulation and tolerance of Zn and Cd.

  20. Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens

    SciTech Connect

    Nedelkoska, T.V.; Doran, P.M.

    2000-03-05

    Hairy roots were used to investigate cadmium uptake by Thlaspi caerulescens, a metal hyperaccumulator plant with potential applications in phytoremediation and phytomining. Experiments were carried out in nutrient media under conditions supporting root growth. Accumulation of Cd in short-term (9-h) experiments varied with initial medium pH and increased after treating the roots with H{sup +}-ATPase inhibitor. The highest equilibrium Cd content measured in T. caerulescens roots was 62,800 {micro}g g{sup {minus}1} dry weight, or 6.3% dry weight, at a liquid Cd concentration of 3,710 ppm. Cd levels in live T. caerulescens roots were 1.5- to 1.7-fold those in hairy roots of nonhyperaccumulator species exposed to the same Cd concentration, but similar to the Cd content of auto-claved T. caerulescens roots. The ability to grow at Cd concentrations of up to 100 ppm clearly distinguished T. caerulescens hairy roots from the nonhyperaccumulators. The specific growth rate of T. caerulescens roots was essentially unaffected by 20 to 50 ppm Cd in the culture medium; in contrast, N. tabacum roots turned dark brown at 20 ppm and growth was negligible. Up to 10,600 {micro}g g{sup {minus}1} dry weight Cd was accumulated by growing T. caerulescens hairy roots. Measurement of Cd levels in while roots and in the cell wall fraction revealed significant differences in the responses of T. caerulescens and N. tabacum roots to 20 ppm Cd. Most metal was transported directly into the symplasm of N. tabacum roots within 3 days of exposure; in contrast, T. caerulescens roots stored virtually all of their Cd in the wall fraction for the first 7 to 10 days. This delay in transmembrane uptake may represent an important defensive strategy against Cd poisoning in T. caerulescens, allowing time for activation of intracellular mechanisms for heavy metal detoxification.

  1. Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation.

    PubMed

    Milner, Matthew J; Mitani-Ueno, Namiki; Yamaji, Naoki; Yokosho, Kengo; Craft, Eric; Fei, Zhangjun; Ebbs, Stephen; Clemencia Zambrano, M; Ma, Jian Feng; Kochian, Leon V

    2014-05-01

    The Zn/Cd hyperaccumulator, Noccaea caerulescens, has been studied extensively for its ability to accumulate high levels of Zn and Cd in its leaves. Previous studies have indicated that the Zn and Cd hyperaccumulation trait exhibited by this species involves different transport and tolerance mechanisms. It has also been well documented that certain ecotypes of N. caerulescens are much better Cd hyperaccumulators than others. However, there does not seem to be much ecotypic variation for Zn hyperaccumulation in N. caerulescens. In this study we employed a comparative transcriptomics approach to look at root and shoot gene expression in Ganges and Prayon plants in response to Cd stress to identify transporter genes that were more highly expressed in either the roots or shoots of the superior Cd accumulator, Ganges. Comparison of the transcriptomes from the two ecotypes of Noccaea caerulescens identified a number of genes that encoded metal transporters that were more highly expressed in the Ganges ecotype in response to Cd stress. Characterization of one of these transporters, NcNramp1, showed that it is involved in the influx of Cd across the endodermal plasma membrane and thus may play a key role in Cd flux into the stele and root-to-shoot Cd transport. NcNramp1 may be one of the main transporters involved in Cd hyperaccumulation in N. caerulescens and copy number variation appears to be the main reason for high NcNramp1 gene expression underlying the increased Cd accumulation in the Ganges ecotype. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  2. Hyperaccumulation of Cadmium and Zinc in Thlaspi caerulescens and Arabidopsis halleri at the Leaf Cellular Level1

    PubMed Central

    Cosio, Claudia; Martinoia, Enrico; Keller, Catherine

    2004-01-01

    Vacuolar compartmentalization or cell wall binding in leaves could play a major role in hyperaccumulation of heavy metals. However, little is known about the physiology of intracellular cadmium (Cd) sequestration in plants. We investigated the role of the leaf cells in allocating metal in hyperaccumulating plants by measuring short-term 109Cd and 65Zn uptake in mesophyll protoplasts of Thlaspi caerulescens “Ganges” and Arabidopsis halleri, both hyperaccumulators of zinc (Zn) and Cd, and T. caerulescens “Prayon,” accumulating Cd at a lower degree. The effects of low temperature, several divalent cations, and pre-exposure of the plants to metals were investigated. There was no significant difference between the Michaelis-Menten kinetic constants of the three plants. It indicates that differences in metal uptake cannot be explained by different constitutive transport capacities at the leaf protoplast level and that plasma and vacuole membranes of mesophyll cells are not responsible for the differences observed in heavy metal allocation. This suggests the existence of regulation mechanisms before the plasma membrane of leaf mesophyll protoplasts. However, pre-exposure of the plants to Cd induced an increase in Cd accumulation in protoplasts of “Ganges,” whereas it decreased Cd accumulation in A. halleri protoplasts, indicating that Cd-permeable transport proteins are differentially regulated. The experiment with competitors has shown that probably more than one single transport system is carrying Cd in parallel into the cell and that in T. caerulescens “Prayon,” Cd could be transported by a Zn and Ca pathway, whereas in “Ganges,” Cd could be transported mainly by other pathways. PMID:14730081

  3. Mechanisms of efficient As solubilization in soils and As accumulation by As-hyperaccumulator Pteris vittata.

    PubMed

    Han, Yong-He; Liu, Xue; Rathinasabapathi, Bala; Li, Hong-Bo; Chen, Yanshan; Ma, Lena Q

    2017-08-01

    Arsenic (As) in soils is of major environmental concern due to its ubiquity and carcinogenicity. Pteris vittata (Chinese brake fern) is the first known As-hyperaccumulator, which is highly efficient in extracting As from soils and translocating it to the fronds, making it possible to be used for phytoremediation of As-contaminated soils. In addition, P. vittata has served as a model plant to study As metabolisms in plants. Based on the recent advances, we reviewed the mechanisms of efficient As solubilization and transformation in rhizosphere soils of P. vittata and effective As uptake, translocation and detoxification in P. vittata. We also provided future research perspectives to further improve As phytoremediation by P. vittata. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Chelator effects on bioconcentration and translocation of cadmium by hyperaccumulators, Tagetes patula and Impatiens walleriana.

    PubMed

    Wei, Jhen-Lian; Lai, Hung-Yu; Chen, Zueng-Sang

    2012-10-01

    French marigold (Tagetes patula) and impatiens (Impatiens walleriana) can act as hyperaccumulator plants for removal of cadmium (Cd) from contaminated sites. In this study, an exponential decay model was used to predict the maximum removal of Cd from artificially spiked soils by impatiens. Application of a chelator, EDTA, was also assessed for effects on the bioconcentration (BCF) and translocation (TF) factors of the two species with four replicates. Exposure to Cd significantly decreased the biomass of two plant species. Impatiens and French marigold accumulated Cd at a rate of 200-1200 mg Cd kg(-1) in shoots, with BCFs and TFs of 8.5-15 and 1.7-2.6, respectively.

  5. Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations.

    PubMed

    Delorme, T A; Gagliardi, J V; Angle, J S; Chaney, R L

    2001-08-01

    Metal hyperaccumulator plants like Thlaspi caerulescens J. & C. Presl. are used for phytoremediation of contaminated soils. Since little is known about the rhizosphere of hyperaccumulators, the influence of T. caerulescens was compared with the effects of Trifolium pratense L. on soil microbes. High- and low-metal soils were collected near a zinc smelter in Palmerton, Penn. Soil pH was adjusted to 5.8 and 6.8 by the addition of Ca(OH)2. Liming increased bacterial populations and decreased metal toxicity to levels allowing growth of both plants. The effects of the plants on total (culturable) bacteria, total fungi, as well as cadmium- and zinc-resistant populations were assessed in nonrhizosphere and rhizosphere soil. Both plants increased microbial populations in rhizosphere soil compared with nonrhizosphere soil. Microbial populations were higher in soils planted with T. pratense, but higher ratios of metal-resistant bacteria were found in the presence of T. caerulescens. We hypothesize that T. caerutescens acidifies its rhizosphere. Soil acidification in the rhizosphere of T. caerulescens would affect metal uptake by increasing available metals around the roots and consequently, increase the selection for metal-resistant bacteria. Soil acidification may be part of the hyperaccumulation process enhancing metal uptake from soil.

  6. Hyperaccumulation of zinc by Noccaea caerulescens results in a cascade of stress responses and changes in the elemental profile.

    PubMed

    Foroughi, Siavash; Baker, Alan J M; Roessner, Ute; Johnson, Alexander A T; Bacic, Antony; Callahan, Damien L

    2014-09-01

    Noccaea caerulescens (J. & C. Presl) F. K. Meyer is a metal hyperaccumulating plant which can accumulate more than 2% zinc (Zn) dry tissue mass in its aerial tissues. At this concentration Zn is toxic to most plants due to inhibition of enzyme function, oxidative damage and mineral deficiencies. In this study the elemental and metabolite profiles of N. caerulescens plants grown in four different Zn concentrations were measured. This revealed broad changes in the metabolite and elemental profiles with the hyperaccumulation of Zn. The Zn treated plants exhibited no typical signs of stress such as chlorosis or reduced biomass, however, a range of metabolic stress responses, such as the modification of galactolipids and the major membrane lipids of plastids, and increases in oxylipins, which are precursors to the signalling molecules jasmonic and abscisic acids, as well as the increased synthesis of glucosinolates, was observed. Increases in particular organic acids and the ubiquitous metal cation chelator nicotianamine were also observed. The small molecule metabolite changes observed, however, did not account for the extreme Zn concentrations in the leaf tissue showing that the increase in nicotianamine production most likely negates Fe deficiency. The elemental analyses also revealed significant changes in other essential micronutrients, in particular, significantly lower Mn concentrations in the high Zn accumulating plants, yet higher Fe concentrations. This comprehensive elemental and metabolite analysis revealed novel metabolite responses to Zn and offers evidence against organic acids as metal-storage ligands in N. caerulescens.

  7. Metal accumulation in tobacco expressing Arabidopsis halleri metal hyperaccumulation gene depends on external supply

    PubMed Central

    Barabasz, Anna; Krämer, Ute; Hanikenne, Marc; Rudzka, Justyna; Antosiewicz, Danuta Maria

    2010-01-01

    Engineering enhanced transport of zinc to the aerial parts of plants is a major goal in bio-fortification. In Arabidopsis halleri, high constitutive expression of the AhHMA4 gene encoding a metal pump of the P1B-ATPase family is necessary for both Zn hyperaccumulation and the full extent of Zn and Cd hypertolerance that are characteristic of this species. In this study, an AhHMA4 cDNA was introduced into N. tabacum var. Xanthi for expression under the control of its endogenous A. halleri promoter known to confer high and cell-type specific expression levels in both A. halleri and the non-hyperaccumulator A. thaliana. The transgene was expressed at similar levels in both roots and shoots upon long-term exposure to low Zn, control, and increased Zn concentrations. A down-regulation of AhHMA4 transcript levels was detected with 10 μM Zn resupply to tobacco plants cultivated in low Zn concentrations. In general, a transcriptional regulation of AhHMA4 in tobacco contrasted with the constitutively high expression previously observed in A. halleri. Differences in root/shoot partitioning of Zn and Cd between transgenic lines and the wild type were strongly dependent on metal concentrations in the hydroponic medium. Under low Zn conditions, an increased Zn accumulation in the upper leaves in the AhHMA4-expressing lines was detected. Moreover, transgenic plants exposed to cadmium accumulated less metal than the wild type. Both modifications of zinc and cadmium accumulation are noteworthy outcomes from the biofortification perspective and healthy food production. Expression of AhHMA4 may be useful in crops grown on soils poor in Zn. PMID:20484319

  8. Metal accumulation in tobacco expressing Arabidopsis halleri metal hyperaccumulation gene depends on external supply.

    PubMed

    Barabasz, Anna; Krämer, Ute; Hanikenne, Marc; Rudzka, Justyna; Antosiewicz, Danuta Maria

    2010-06-01

    Engineering enhanced transport of zinc to the aerial parts of plants is a major goal in bio-fortification. In Arabidopsis halleri, high constitutive expression of the AhHMA4 gene encoding a metal pump of the P(1B)-ATPase family is necessary for both Zn hyperaccumulation and the full extent of Zn and Cd hypertolerance that are characteristic of this species. In this study, an AhHMA4 cDNA was introduced into N. tabacum var. Xanthi for expression under the control of its endogenous A. halleri promoter known to confer high and cell-type specific expression levels in both A. halleri and the non-hyperaccumulator A. thaliana. The transgene was expressed at similar levels in both roots and shoots upon long-term exposure to low Zn, control, and increased Zn concentrations. A down-regulation of AhHMA4 transcript levels was detected with 10 muM Zn resupply to tobacco plants cultivated in low Zn concentrations. In general, a transcriptional regulation of AhHMA4 in tobacco contrasted with the constitutively high expression previously observed in A. halleri. Differences in root/shoot partitioning of Zn and Cd between transgenic lines and the wild type were strongly dependent on metal concentrations in the hydroponic medium. Under low Zn conditions, an increased Zn accumulation in the upper leaves in the AhHMA4-expressing lines was detected. Moreover, transgenic plants exposed to cadmium accumulated less metal than the wild type. Both modifications of zinc and cadmium accumulation are noteworthy outcomes from the biofortification perspective and healthy food production. Expression of AhHMA4 may be useful in crops grown on soils poor in Zn.

  9. A Newly Identified Passive Hyperaccumulator Eucalyptus grandis × E. urophylla under Manganese Stress.

    PubMed

    Xie, Qingqing; Li, Zhenji; Yang, Limin; Lv, Jing; Jobe, Timothy O; Wang, Qiuquan

    2015-01-01

    Manganese (Mn) is an essential micronutrient needed for plant growth and development, but can be toxic to plants in excess amounts. However, some plant species have detoxification mechanisms that allow them to accumulate Mn to levels that are normally toxic, a phenomenon known as hyperaccumulation. These species are excellent candidates for developing a cost-effective remediation strategy for Mn-polluted soils. In this study, we identified a new passive Mn-hyperaccumulator Eucalyptus grandis × E. urophylla during a field survey in southern China in July 2010. This hybrid can accumulate as much as 13,549 mg/kg DW Mn in its leaves. Our results from Scanning Electron Microscope (SEM) X-ray microanalysis indicate that Mn is distributed in the entire leaf and stem cross-section, especially in photosynthetic palisade, spongy mesophyll tissue, and stem xylem vessels. Results from size-exclusion chromatography coupled with ICP-MS (Inductively coupled plasma mass spectrometry) lead us to speculate that Mn associates with relatively high molecular weight proteins and low molecular weight organic acids, including tartaric acid, to avoid Mn toxicity. Our results provide experimental evidence that both proteins and organic acids play important roles in Mn detoxification in Eucalyptus grandis × E. urophylla. The key characteristics of Eucalyptus grandis × E. urophylla are an increased Mn translocation facilitated by transpiration through the xylem to the leaves and further distribution throughout the leaf tissues. Moreover, the Mn-speciation profile obtained for the first time in different cellular organelles of Eucalyptus grandis × E. urophylla suggested that different organelles have differential accumulating abilities and unique mechanisms for Mn-detoxification.

  10. A Newly Identified Passive Hyperaccumulator Eucalyptus grandis × E. urophylla under Manganese Stress

    PubMed Central

    Xie, Qingqing; Li, Zhenji; Yang, Limin; Lv, Jing; Jobe, Timothy O.; Wang, Qiuquan

    2015-01-01

    Manganese (Mn) is an essential micronutrient needed for plant growth and development, but can be toxic to plants in excess amounts. However, some plant species have detoxification mechanisms that allow them to accumulate Mn to levels that are normally toxic, a phenomenon known as hyperaccumulation. These species are excellent candidates for developing a cost-effective remediation strategy for Mn-polluted soils. In this study, we identified a new passive Mn-hyperaccumulator Eucalyptus grandis × E. urophylla during a field survey in southern China in July 2010. This hybrid can accumulate as much as 13,549 mg/kg DW Mn in its leaves. Our results from Scanning Electron Microscope (SEM) X-ray microanalysis indicate that Mn is distributed in the entire leaf and stem cross-section, especially in photosynthetic palisade, spongy mesophyll tissue, and stem xylem vessels. Results from size-exclusion chromatography coupled with ICP-MS (Inductively coupled plasma mass spectrometry) lead us to speculate that Mn associates with relatively high molecular weight proteins and low molecular weight organic acids, including tartaric acid, to avoid Mn toxicity. Our results provide experimental evidence that both proteins and organic acids play important roles in Mn detoxification in Eucalyptus grandis × E. urophylla. The key characteristics of Eucalyptus grandis × E. urophylla are an increased Mn translocation facilitated by transpiration through the xylem to the leaves and further distribution throughout the leaf tissues. Moreover, the Mn-speciation profile obtained for the first time in different cellular organelles of Eucalyptus grandis × E. urophylla suggested that different organelles have differential accumulating abilities and unique mechanisms for Mn-detoxification. PMID:26327118

  11. Cadmium tolerance and accumulation of Althaea rosea Cav. and its potential as a hyperaccumulator under chemical enhancement.

    PubMed

    Liu, Jia Nv; Zhou, Qi Xing; Wang, Song; Sun, Ting

    2009-02-01

    The role of ornamental plants has drawn much attention as the urban pollution levels exacerbate. Althaea rosea Cav. had showed its strong tolerance and accumulation ability of Cd in our previous work, thus, the effects of ethylenediamine triacetic acid (EDTA), ethylenegluatarotriacetic acid (EGTA) and sodium dodecyl sulfate (SDS) on its Cd phytoremediation capacity were further investigated in this work. It reconfirmed that the species had strong tolerance and accumulation ability of Cd. Particularly, the species can be regarded as a potential Cd-hyperaccumulator through applying chemical agents. However, different chelators and surfactants had great differences in affecting hyperaccumulating characteristics of the species. EGTA and SDS could not only increase the dry biomass of the plants, but also promote Cd accumulation in shoots and roots. On the contrary, EDTA was toxic to the species by restraining the growth of plants, although it could promote Cd accumulation in shoots and roots of the plants to a certain extent. Thus, EGTA and SDS were effective in enhancing phytoremediation with Althaea rosea Cav. for Cd contaminated soils, while EDTA is ineffective in this regard.

  12. Nickel localization on tissues of hyperaccumulator species of phyllanthus L. (Euphorbiaceae) from ultramafic areas of Cuba.

    PubMed

    Berazaín, R; de la Fuente, V; Sánchez-Mata, D; Rufo, L; Rodríguez, N; Amils, R

    2007-01-01

    Two species of perennial Phyllanthus (Euphorbiaceae) (Phyllanthus orbicularis and Phyllanthus discolor, both endemic to ultramafic areas of Cuba, and their natural hybrid, Phyllanthus xpallidus) were selected for metal localization microanalysis. Different plant tissues were analyzed by X-ray fluorescence, inductively coupled plasma-atomic emission spectroscopy, and scanning electron microscopy coupled with an energy-dispersive X-ray probe. All of the studied taxa are nickel (Ni) hyperaccumulators and significant concentrations of this element were found in different leaf and stem tissues. The highest Ni content was found in the laticifer tubes, whereas leaf epidermis Ni content resulted to be much more relevant in terms of total metal storage. Calcium and magnesium were found more evenly distributed in leaf and stem tissues.

  13. Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic.

    PubMed

    Srivastava, Mrittunjai; Ma, Lena Q; Singh, Nandita; Singh, Shraddha

    2005-05-01

    Plant species capable of hyper-accumulating heavy metals are of considerable interest for phytoremediation, and differ in their ability to accumulate metals from the environment. This work aims to examine (i) arsenic accumulation in three fern species [Chinese brake fern (Pteris vittata L.), slender brake fern (Pteris ensiformis Burm. f.), and Boston fern (Nephrolepis exaltata L.)], which were exposed to 0, 150, or 300 muM of arsenic (Na(2)HAsO(4).7H(2)O), and (ii) the role of anti-oxidative metabolism in arsenic tolerance in these fern species. Arsenic accumulation increased with an increase in arsenic concentration in the growth medium, the most being found in P. vittata fronds showing no toxicity symptoms. In addition, accumulation was highest in the fronds, followed by the rhizome, and finally the roots, in all three fern species. Thiobarbituric acid-reacting substances, indicators of stress in plants, were found to be lowest in P. vittata, which corresponds with its observed tolerance to arsenic. All three ferns responded differentially to arsenic exposure in terms of anti-oxidative defence. Higher levels of superoxide dismutase, catalase, and ascorbate peroxidase were observed in P. vittata than in P. ensiformis and N. exaltata, showing their active involvement in the arsenic detoxification mechanism. However, no significant increase was observed in either guaiacol peroxides or glutathione reductase in arsenic-treated P. vittata. Higher activity of anti-oxidative enzymes and lower thiobarbituric acid-reacting substances in arsenic-treated P. vittata correspond with its arsenic hyper-accumulation and no symptoms of toxicity.

  14. QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens.

    PubMed

    Deniau, A X; Pieper, B; Ten Bookum, W M; Lindhout, P; Aarts, M G M; Schat, H

    2006-09-01

    Thlaspi caerulescens (Tc; 2n = 14) is a natural Zn, Cd and Ni hyperaccumulator species belonging to the Brassicaceae family. It shares 88% DNA identity in the coding regions with Arabidopsis thaliana (At) (Rigola et al. 2006). Although the physiology of heavy metal (hyper)accumulation has been intensively studied, the molecular genetics are still largely unexplored. We address this topic by constructing a genetic map based on AFLP markers and expressed sequence tags (ESTs). To establish a genetic map, an F(2) population of 129 individuals was generated from a cross between a plant from a Pb/Cd/Zn-contaminated site near La Calamine, Belgium, and a plant from a comparable site near Ganges (GA), France. These two accessions show different degrees of Zn and, particularly, Cd accumulation. We analyzed 181 AFLP markers (of which 4 co-dominant) and 13 co-dominant EST sequences-based markers and mapped them to seven linkage groups (LGs), presumably corresponding to the seven chromosomes of T. caerulescens. The total length of the genetic map is 496 cM with an average density of one marker every 2.5 cM. This map was used for Quantitative Trait Locus (QTL) mapping in the F(2). For Zn as well as Cd concentration in root we mapped two QTLs. Three QTLs and one QTL were mapped for Zn and Cd concentration in shoot, respectively. These QTLs explain 23.8-60.4% of the total variance of the traits measured. We found only one common locus (LG6) for Zn and Cd (concentration in root) and one common locus for shoot and root concentrations of Zn (LG1) and of Cd (LG3). For all QTLs, the GA allele increased the trait value except for two QTLs for Zn accumulation in shoot (LG1 and LG4) and one for Zn concentration in root (LG1).

  15. Enhancement of Cd phytoextraction by hyperaccumulator Sedum alfredii using electrical field and organic amendments.

    PubMed

    Xiao, Wendan; Li, Dan; Ye, Xuezhu; Xu, Haizhou; Yao, Guihua; Wang, Jingwen; Zhang, Qi; Hu, Jing; Gao, Na

    2017-02-01

    The combined use of organic amendment-assisted phytoextraction and electrokinetic remediation to decontaminate Cd-polluted soil was demonstrated in a laboratory-scale experiment. The plant species selected was the hyperaccumulator Sedum alfredii. Prior to the pot experiment, the loamy soil was treated with 15 g kg(-1) of pig manure compost, 10 g kg(-1) of humic acid, or 5 mmol kg(-1) of EDTA, and untreated soil without application of any amendment was the control. Two conditions were applied to each treatment: no voltage (without an electrical field) and a direct current (DC) electrical field (1 V cm(-1) with switching polarity every day). Results indicated that Cd concentrations in S. alfredii were significantly (p < 0.05) increased by application of the electrical field and soil amendments (pig manure compost, humic acid, and EDTA). By switching the polarity of the DC electrical field, significant pH variation from anode to cathode can be avoided, and no significant impact was observed on shoot biomass production. Electrical field application increased DTPA-extractable Cd in soils and the Cd accumulation in shoots by 6.06-15.64 and 24.53-52.31%, respectively. The addition of pig manure compost and humic acid enhanced shoot Cd accumulation by 1.54- to 1.92- and 1.38- to 1.64-fold because of their simultaneous enhancement of Cd concentration in shoots and biomass production. However, no enhancement of Cd accumulation was found in the EDTA treatment, which can be ascribed to the inhibition of plant growth caused by EDTA. In conclusion, pig manure compost or humic acid addition in combination with the application of a switched-polarity DC electrical field could significantly enhance Cd phytoextraction by hyperaccumulator S. alfredii.

  16. A comprehensive set of transcript sequences of the heavy metal hyperaccumulator Noccaea caerulescens

    PubMed Central

    Lin, Ya-Fen; Severing, Edouard I.; te Lintel Hekkert, Bas; Schijlen, Elio; Aarts, Mark G. M.

    2014-01-01

    Noccaea caerulescens is an extremophile plant species belonging to the Brassicaceae family. It has adapted to grow on soils containing high, normally toxic, concentrations of metals such as nickel, zinc, and cadmium. Next to being extremely tolerant to these metals, it is one of the few species known to hyperaccumulate these metals to extremely high concentrations in their aboveground biomass. In order to provide additional molecular resources for this model metal hyperaccumulator species to study and understand the mechanism of adaptation to heavy metal exposure, we aimed to provide a comprehensive database of transcript sequences for N. caerulescens. In this study, 23,830 transcript sequences (isotigs) with an average length of 1025 bp were determined for roots, shoots and inflorescences of N. caerulescens accession “Ganges” by Roche GS-FLEX 454 pyrosequencing. These isotigs were grouped into 20,378 isogroups, representing potential genes. This is a large expansion of the existing N. caerulescens transcriptome set consisting of 3705 unigenes. When translated and compared to a Brassicaceae proteome set, 22,232 (93.2%) of the N. caerulescens isotigs (corresponding to 19,191 isogroups) had a significant match and could be annotated accordingly. Of the remaining sequences, 98 isotigs resembled non-plant sequences and 1386 had no significant similarity to any sequence in the GenBank database. Among the annotated set there were many isotigs with similarity to metal homeostasis genes or genes for glucosinolate biosynthesis. Only for transcripts similar to Metallothionein3 (MT3), clear evidence for an additional copy was found. This comprehensive set of transcripts is expected to further contribute to the discovery of mechanisms used by N. caerulescens to adapt to heavy metal exposure. PMID:24999345

  17. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata.

    PubMed

    Bañuelos, Gary S; Arroyo, Irvin; Pickering, Ingrid J; Yang, Soo In; Freeman, John L

    2015-01-01

    Amending soils with Se-hyperaccumulator plant derived sources of selenium (Se) may be useful for increasing the Se content in food crops in Se-deficient regions of the world. In this study we evaluated total Se and the different chemical species of Se in broccoli and carrots grown in soils amended with ground shoots of the Se-hyperaccumulator Stanleyapinnata. With increasing application rates of S. pinnata, total plant Se concentrations increased to nutritionally ideal levels inside edible parts. Selenium compounds in aqueous extracts were analyzed by SAX-HPLC-ICPMS and identified as a variety of mainly organic-Se forms. Together with bulk Se K-edge X-ray absorption near-edge structure (XANES) analysis performed on broccoli florets, carrot roots and shoots, dried ground S. pinnata, and the amended soil at post-plant, we demonstrate that Se-enriched S. pinnata is valuable as a soil amendment for enriching broccoli and carrots with healthful forms of organic-Se.

  18. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid* #

    PubMed Central

    Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Peng, Hong-yun; Li, Ting-qiang

    2013-01-01

    The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils. Organic acid has been suggested to be involved in toxic metallic element tolerance, translocation, and accumulation in plants. The impact of exogenous organic acids on cadmium (Cd) uptake and translocation in the zinc (Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study. By the addition of organic acids, short-term (2 h) root uptake of 109Cd increased significantly, and higher 109Cd contents in roots and shoots were noted 24 h after uptake, when compared to controls. About 85% of the 109Cd taken up was distributed to the shoots in plants with citric acid (CA) treatments, as compared with 75% within controls. No such effect was observed for tartaric acid (TA). Reduced growth under Cd stress was significantly alleviated by low CA. Long-term application of the two organic acids both resulted in elevated Cd in plants, but the effects varied with exposure time and levels. The results imply that CA may be involved in the processes of Cd uptake, translocation and tolerance in S. alfredii, whereas the impact of TA is mainly on the root uptake of Cd. PMID:23365009

  19. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola.

    PubMed

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Zhang, Hao; Christie, Peter

    2014-06-01

    A cadmium/zinc hyperaccumulator extracted metals from four contaminated soils over three years in a glasshouse experiment. Changes in plant metal uptake and soil total (aqua regia-extractable) and available metals were investigated. Plant Cd concentrations in a high-Cd acid soil and plant Zn concentrations in two acid soils decreased during repeated phytoextraction and were predicted by soil available metal concentrations. However, on repeated phytoextraction, plant Cd concentrations remained constant in lightly Cd-polluted acid soils, as did plant Cd and Zn in alkaline soils, although soil available metal concentrations decreased markedly. After phytoextraction acid soils showed much higher total metal removal efficiencies, indicating possible suitability of phytoextraction for acid soils. However, DGT-testing, which takes soil metal re-supply into consideration, showed substantial removal of available metal and distinct decreases in metal supply capacity in alkaline soils after phytoextraction, suggesting that a strategy based on lowering the bioavailable contaminant might be feasible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Effect of soil pH on as hyperaccumulation capacity in fern species, Pityrogramma calomelanos.

    PubMed

    Anh, B T Kim; Kim, D D; Kuschk, P; Tua, T V; Hue, N T; Minh, N N

    2013-03-01

    Arsenic uptake by hyperaccumulator plant species depends on many different environmental factors. Soil pH is one of the most important factors due to its combined effect on both chemical and biological processes. In greenhouse experiment, the effect of pH (within the pH range 3.6 - 8.9) on As uptake as well as biomass of Pityrogramma calomelanos was evaluated. The plants were grown in mining soil containing 645.6 mg As kg(-1) for 14 weeks. Within this time, the plant biomass growth was 3.78 - 8.64 g d. wt. per plant and the removal amounted 6.3-18.4 mg As per plant. Translocation factor (ratio of As in fronds to roots) of the fern was 3.6 - 9.7, indicating its potential in phytoremediation of As contaminated soil. Influence of pH on As bioavailability was visible as the available As concentration was higher in acidic soil compared to alkaline soil. Furthermore, it was found that As accumulation by Pityrogramma calomelanos was optimum in the soil of pH 3.6. Nevertheless, the results of this study demonstrate that remediation of As-contaminated mining soils, by this fern, can be improved by changing the soil pH from 4.6 to 6.8.

  1. Inoculation of selenium hyperaccumulator Stanleya pinnata and related non-accumulator Stanleya elata with hyperaccumulator rhizosphere fungi--investigation of effects on Se accumulation and speciation.

    PubMed

    Lindblom, Stormy Dawn; Fakra, Sirine C; Landon, Jessica; Schulz, Paige; Tracy, Ben; Pilon-Smits, Elizabeth A H

    2014-01-01

    Little is known about how fungi affect elemental accumulation in hyperaccumulators (HAs). Here, two rhizosphere fungi from selenium (Se) HA Stanleya pinnata, Alternaria seleniiphila (A1) and Aspergillus leporis (AS117), were used to inoculate S. pinnata and related non-HA Stanleya elata. Growth and Se and sulfur (S) accumulation were analyzed. Furthermore, X-ray microprobe analysis was used to investigate elemental distribution and speciation. Growth of S. pinnata was not affected by inoculation or by Se. Stanleya elata growth was negatively affected by AS117 and by Se, but combination of both did not reduce growth. Selenium translocation was reduced in inoculated S. pinnata, and inoculation reduced S translocation in both species. Root Se distribution and speciation were not affected by inoculation in either species; both species accumulated mainly (90%) organic Se. Sulfur, in contrast, was present equally in organic and inorganic forms in S. pinnata roots. Thus, these rhizosphere fungi can affect growth and Se and/or S accumulation, depending on host species. They generally enhanced root accumulation and reduced translocation. These effects cannot be attributed to altered plant Se speciation but may involve altered rhizosphere speciation, as these fungi are known to produce elemental Se. Reduced Se translocation may be useful in applications where toxicity to herbivores and movement of Se into the food chain is a concern. The finding that fungal inoculation can enhance root Se accumulation may be useful in Se biofortification or phytoremediation using root crop species. © 2013 Scandinavian Plant Physiology Society.

  2. Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata L.).

    PubMed

    Tu, Cong; Ma, Lena Q; Zhang, Weihua; Cai, Yong; Harris, Willie G

    2003-01-01

    Arsenic speciation is important not only for understanding the mechanisms of arsenic accumulation and detoxification by hyperaccumulators, but also for designing disposal options of arsenic-rich biomass. The primary objective of this research was to understand the speciation and leachability of arsenic in the fronds of Chinese brake (Pteris vittata L.), an arsenic hyperaccumulator, with an emphasis on the implications for arsenic-rich biomass disposal. Chinese brake was grown for 18 weeks in a soil spiked with 50 mg As kg(-1) as arsenate (AsO4(3-)), arsenite (AsO3(3-)), dimethylarsinic acid (DMA), or methylarsonic acid (MMA). Plant samples were extracted with methanol/water (1:1) and arsenic speciation was performed using high performance liquid chromatography coupled with atomic fluorescence spectrometry. The impacts of air-drying on arsenic species and leachability in the fronds were examined in the laboratory. After 18 weeks, water-soluble arsenic in soil was mainly present as arsenate with little detectable organic species or arsenite regardless of arsenic species added to the soil. However, arsenic in the fronds was primarily present as inorganic arsenite with an average of 94%. Arsenite re-oxidation occurred in the old fronds and the excised dried tissues. Arsenic species in the fronds were slightly influenced by arsenic forms added to the soil. Air-drying of the fronds resulted in leaching of substantial amounts of arsenic. These findings can be of significance when looking at disposal options of arsenic-rich biomass from the point of view of secondary contamination.

  3. Genome assembly and annotation of Arabidopsis halleri, a model for heavy metal hyperaccumulation and evolutionary ecology.

    PubMed

    Briskine, Roman V; Paape, Timothy; Shimizu-Inatsugi, Rie; Nishiyama, Tomoaki; Akama, Satoru; Sese, Jun; Shimizu, Kentaro K

    2016-09-27

    The self-incompatible species Arabidopsis halleri is a close relative of the self-compatible model plant Arabidopsis thaliana. The broad European and Asian distribution and heavy metal hyperaccumulation ability make A. halleri a useful model for ecological genomics studies. We used long-insert mate-pair libraries to improve the genome assembly of the A. halleri ssp. gemmifera Tada mine genotype (W302) collected from a site with high contamination by heavy metals in Japan. After five rounds of forced selfing, heterozygosity was reduced to 0.04%, which facilitated subsequent genome assembly. Our assembly now covers 196 Mb or 78% of the estimated genome size and achieved scaffold N50 length of 712 kb. To validate assembly and annotation, we used synteny of A. halleri Tada mine with a previously published high-quality reference assembly of a closely related species, Arabidopsis lyrata. Further validation of the assembly quality comes from synteny and phylogenetic analysis of the HEAVY METAL ATPASE4 (HMA4) and METAL TOLERANCE PROTEIN1 (MTP1) regions using published sequences from European A. halleri for comparison. Three tandemly duplicated copies of HMA4, key gene involved in cadmium and zinc hyperaccumulation, were assembled on a single scaffold. The assembly will enhance the genomewide studies of A. halleri as well as the allopolyploid Arabidopsis kamchatica derived from A. lyrata and A. halleri. © 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  4. Speciation and localization of Zn in the hyperaccumulator Sedum alfredii by extended X-ray absorption fine structure and micro-X-ray fluorescence.

    PubMed

    Lu, Lingli; Liao, Xingcheng; Labavitch, John; Yang, Xiaoe; Nelson, Erik; Du, Yonghua; Brown, Patrick H; Tian, Shengke

    2014-11-01

    Differences in metal homeostasis among related plant species can give important information of metal hyperaccumulation mechanisms. Speciation and distribution of Zn were investigated in a hyperaccumulating population of Sedum alfredii by using extended X-ray absorption fine structure and micro-synchrotron X-ray fluorescence (μ-XRF), respectively. The hyperaccumulator uses complexation with oxygen donor ligands for Zn storage in leaves and stems, and variations in the Zn speciation was noted in different tissues. The dominant chemical form of Zn in leaves was most probably a complex with malate, the most prevalent organic acid in S. alfredii leaves. In stems, Zn was mainly associated with malate and cell walls, while Zn-citrate and Zn-cell wall complexes dominated in the roots. Two-dimensional μ-XRF images revealed age-dependent differences in Zn localization in S. alfredii stems and leaves. In old leaves of S. alfredii, Zn was high in the midrib, margin regions and the petiole, whereas distribution of Zn was essentially uniform in young leaves. Zinc was preferentially sequestered by cells near vascular bundles in young stems, but was highly localized to vascular bundles and the outer cortex layer of old stems. The results suggest that tissue- and age-dependent variations of Zn speciation and distribution occurred in the hyperaccumulator S. alfredii, with most of the Zn complexed with malate in the leaves, but a shift to cell wall- and citric acid-Zn complexes during transportation and storage in stems and roots. This implies that biotransformation in Zn complexation occurred during transportation and storage processes in the plants of S. alfredii.

  5. Biofortification of tomato (Solanum lycopersicum) fruit with the anticancer compound methylselenocysteine using a selenocysteine methyltransferase from a selenium hyperaccumulator.

    PubMed

    Brummell, David A; Watson, Lyn M; Pathirana, Ranjith; Joyce, Nigel I; West, Phillip J; Hunter, Donald A; McKenzie, Marian J

    2011-10-26

    Methylselenocysteine (MeSeCys) is an amino acid derivative that possesses potent anticancer activity in animals. Plants that can tolerate growth on soils with high Se content, known as Se hyperaccumulators, do so by converting inorganic Se to MeSeCys by the enzyme selenocysteine methyltransferase (SMT). A cDNA encoding the SMT from a Se hyperaccumulator was overexpressed in tomato (Solanum lycopersicum). Transgenic plants were provided with selenite or selenate to the roots during fruit development, and liquid chromatography-mass spectrometry was used to show that MeSeCys accumulated in the fruit but not in the leaves. Depending on the transgenic line and Se treatment, up to 16% of the total Se in the fruit was present as MeSeCys. MeSeCys was produced more effectively from selenite on a percentage conversion basis, but greater accumulation of MeSeCys could be achieved from selenate due to its better translocation from the roots. MeSeCys was heat stable and survived processing of the fruit to tomato juice.

  6. Characterization of arsenic-resistant endophytic bacteria from hyperaccumulators Pteris vittata and Pteris multifida.

    PubMed

    Zhu, Ling-Jia; Guan, Dong-Xing; Luo, Jun; Rathinasabapathi, Bala; Ma, Lena Q

    2014-10-01

    We isolated and characterized As-resistant endophytic bacteria (AEB) from two arsenic hyperaccumulators. Their plant growth promoting traits and the relation between As tolerance and transformation were evaluated. A total of 41 and 33 AEB were isolated from Pteris vittata (PV) and Pteris multifida (PM) respectively. PV AEB represented 2genera while PM AEB comprised of 12 genera, with Bacillus sp. being the most dominant bacteria from both plants. All AEB had limited ability in solubilizing P and producing indole acetic acid (IAA) and siderophore. All isolates tolerated 10mM arsenate (As(V)), with PV isolates being more tolerant to As(V) and PM more tolerant to arsenite (As(III)). Bacterial arsenic tolerance was related to their ability in As(III) oxidation and As(V) reduction as well as their ability to retain As in the biomass to a varying extent. Though AEB showed limited plant growth promoting traits, they were important in arsenic tolerance and speciation in plants.

  7. Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae).

    PubMed

    Sidhu, Gagan Preet Singh; Singh, Harminder Pal; Batish, Daizy R; Kohli, Ravinder Kumar

    2017-01-01

    The potential of a wild, unpalatable plant Coronopus didymus was investigated for the first time in terms of its capability to tolerate and accumulate cadmium (Cd) for phytoremediation purposes. A screenhouse experiment for 6 weeks was conducted to evaluate the effect of Cd from 100 to 400mgkg(-1) on growth, biomass, photosynthetic apparatus, Cd uptake and accumulation in C. didymus plants. Application of Cd facilitates the growth of the plants whereas at higher levels a slight reduction was noticed. The concentration of Cd in roots and shoots reached a maximum of 867.2 and 864.5mgkg(-1) DW respectively, at 400mgkg(-1)Cd treatment. Cd exposure increased the generation of superoxide anion (O2(•-)), H2O2 content, MDA level and antioxidative response (SOD, CAT and POD) in roots and shoots of C. didymus. However, a slight decline in SOD and CAT activities were noticed in roots at highest Cd treatment (400mgkg(-1)). The bioconcentration (BCF) values for all the concentrations were ˃1 and the translocation factor (TF) values were ˂ 1 at lower level but reached 1 at highest Cd concentration. Thus, C. didymus satisfies the conditions required for hyperaccumulator plants and may be practically employed to alleviate Cd from contaminated soils. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Effects of selenium on arsenic uptake in arsenic hyperaccumulator Pteris vittata L.

    PubMed

    Srivastava, Mrittunjai; Ma, Lena Q; Rathinasabapathi, Bala; Srivastava, Pratibha

    2009-02-01

    Selenium (Se) is a non-metallic element, which has the capability to increase the antioxidative capacity and stress tolerance of plants to heavy metals. Plants vary considerably in their physiological response to Se. The reported research investigated the effects of Se on arsenic (As) uptake by As hyperaccumulator Pteris vittata L. and determined possible mechanisms of interaction. Pteris vittata plants were exposed hydroponically to 0, 150 or 300 microM of Na(2)HAsO(4) in the presence of 0, 5 or 10 microM of Na(2)SeO(4) for 5 or 10d. Application of 5 microM Se enhanced As concentration by P. vittata fronds by 7-45%. At 5 microM, Se acted as an antioxidant, inhibiting lipid peroxidation (reduced by 26-42% in the fronds) via increased levels of thiols and glutathione (increased by 24% in the fronds). The results suggest that Se is either an antioxidant or it activates plant protective mechanisms, thereby alleviating oxidative stress and improving arsenic uptake in P. vittata.

  9. Molybdenum accumulation, tolerance and molybdenum-selenium-sulfur interactions in Astragalus selenium hyperaccumulator and nonaccumulator species.

    PubMed

    DeTar, Rachael Ann; Alford, Élan R; Pilon-Smits, Elizabeth A H

    2015-07-01

    Some species hyperaccumulate selenium (Se) upwards of 0.1% of dry weight. This study addressed whether Se hyperaccumulators also accumulate and tolerate more molybdenum (Mo). A field survey revealed on average 2-fold higher Mo levels in three hyperaccumulator Astragali compared to three nonaccumulator Astragali, which were not significantly different. Next, a controlled study was performed where hyperaccumulators Astragalus racemosus and Astragalus bisulcatus were compared with nonaccumulators Astragalus drummondii and Astragalus convallarius for Mo accumulation and tolerance, alone or in the presence of Se. When grown on agar media with 0, 12, 24 or 48 mg L(-1) molybdate and/or 0, 1.6 or 3.2 mg L(-1) selenate, all species decreased in biomass with increasing Mo supply. Selenium did not impact biomass at the supplied levels. All Astragali accumulated Mo upwards of 0.1% of dry weight. Selenium levels were up to 0.08% in Astragalus racemosus and 0.04% Se in the other species. Overall, there was no correlation between Se hyperaccumulation and Mo accumulation capacity. However, the hyperaccumulators and nonaccumulators differed in some respects. While none of the species had a higher tissue Mo to sulfur (S) ratio than the growth medium, nonaccumulators had a higher Mo/S ratio than hyperaccumulators. Also, while molybdate and selenate reduced S accumulation in nonaccumulators, it did not in hyperaccumulators. Furthermore, A. racemosus had a higher Se/S ratio than its medium, while the other species did not. Additionally, Mo and Se treatment affected S levels in nonaccumulators, but not in hyperaccumulators. In conclusion, there is no evidence of a link between Se and Mo accumulation and tolerance in Astragalus. Sulfate transporters in hyperaccumulating Astragali appear to have higher sulfate specificity over other oxyanions, compared to nonaccumulators, and A. racemosus may have a transporter with enhanced selenate specificity relative to sulfate or molybdate.

  10. A hyperaccumulation pathway to three-dimensional hierarchical porous nanocomposites for highly robust high-power electrodes

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Shan, Yu; Wang, Tao; Sun, Hongtao; Zhao, Zipeng; Mei, Lin; Fan, Zheng; Xu, Zhi; Shakir, Imran; Huang, Yu; Lu, Bingan; Duan, Xiangfeng

    2016-11-01

    Natural plants consist of a hierarchical architecture featuring an intricate network of highly interconnected struts and channels that not only ensure extraordinary structural stability, but also allow efficient transport of nutrients and electrolytes throughout the entire plants. Here we show that a hyperaccumulation effect can allow efficient enrichment of selected metal ions (for example, Sn2+, Mn2+) in the halophytic plants, which can then be converted into three-dimensional carbon/metal oxide (3DC/MOx) nanocomposites with both the composition and structure hierarchy. The nanocomposites retain the 3D hierarchical porous network structure, with ultrafine MOx nanoparticles uniformly distributed in multi-layers of carbon derived from the cell wall, cytomembrane and tonoplast. It can simultaneously ensure efficient electron and ion transport and help withstand the mechanical stress during the repeated electrochemical cycles, enabling the active material to combine high specific capacities typical of batteries and the cycling stability of supercapacitors.

  11. A hyperaccumulation pathway to three-dimensional hierarchical porous nanocomposites for highly robust high-power electrodes

    PubMed Central

    Zhu, Jian; Shan, Yu; Wang, Tao; Sun, Hongtao; Zhao, Zipeng; Mei, Lin; Fan, Zheng; Xu, Zhi; Shakir, Imran; Huang, Yu; Lu, Bingan; Duan, Xiangfeng

    2016-01-01

    Natural plants consist of a hierarchical architecture featuring an intricate network of highly interconnected struts and channels that not only ensure extraordinary structural stability, but also allow efficient transport of nutrients and electrolytes throughout the entire plants. Here we show that a hyperaccumulation effect can allow efficient enrichment of selected metal ions (for example, Sn2+, Mn2+) in the halophytic plants, which can then be converted into three-dimensional carbon/metal oxide (3DC/MOx) nanocomposites with both the composition and structure hierarchy. The nanocomposites retain the 3D hierarchical porous network structure, with ultrafine MOx nanoparticles uniformly distributed in multi-layers of carbon derived from the cell wall, cytomembrane and tonoplast. It can simultaneously ensure efficient electron and ion transport and help withstand the mechanical stress during the repeated electrochemical cycles, enabling the active material to combine high specific capacities typical of batteries and the cycling stability of supercapacitors. PMID:27853174

  12. Hormesis phenomena under Cd stress in a hyperaccumulator--Lonicera japonica Thunb.

    PubMed

    Jia, Lian; He, Xingyuan; Chen, Wei; Liu, Zhouli; Huang, Yanqing; Yu, Shuai

    2013-04-01

    A hydroponic experiment was carried out to investigate possible hormetic response induced by cadmium (Cd) in a potential hyperaccumulator-Lonicera japonica Thunb. The results showed that Cd at low concentrations induced a significant increase in plant growth, leaf water content and content of photosynthetic pigments in L. japonica, but decreased them at high concentrations, displayed inverted U-shaped dose response curves, confirming a typical biphasic hormetic response. The U-shaped dose response curves were displayed in malondialdehyde (MDA) and electrolyte leakage in leaves at low doses of Cd, indicating reduce oxidative stress and toxic effect. The increase of superoxide dismutase (SOD) and catalase (CAT) activities was observed along with the increased Cd concentration, indicative of increase in anti-oxidative capacity that ensures redox homeostasis is maintained. After 28 days exposure to 10 mg L(-1) Cd, stem and leaf Cd concentrations reached 502.96 ± 28.90 and 103.22 ± 5.62 mg kg(-1) DW, respectively and the plant had high bioaccumulation coefficient (BC) and translocation factor (TF'). Moreover, the maximum TF value was found at 2.5 mg L(-1) Cd treatment, implying that low Cd treatment improved the ability to transfer Cd from medium via roots to aerial structures. Taking together, L. japonica could be considered as a new plant to investigate the underlying mechanisms of hormesis and Cd tolerance. Our results suggest that hormetic effects should be taken into consideration in phytoremediation of Cd-contaminated soil.

  13. Effect of elevated CO2 concentration on photosynthetic characteristics of hyperaccumulator Sedum alfredii under cadmium stress.

    PubMed

    Li, Tingqiang; Tao, Qi; Di, Zhenzhen; Lu, Fan; Yang, Xiaoe

    2015-07-01

    The combined effects of elevated CO2 and cadmium (Cd) on photosynthetic rate, chlorophyll fluorescence and Cd accumulation in hyperaccumulator Sedum alfredii Hance were investigated to predict plant growth under Cd stress with rising atmospheric CO2 concentration. Both pot and hydroponic experiments were conducted and the plants were grown under ambient (350 µL L(-1)) or elevated (800 µL L(-1)) CO2 . Elevated CO2 significantly (P < 0.05) increased Pn (105%-149%), Pnmax (38.8%-63.0%) and AQY (20.0%-34.8%) of S. alfredii in all the Cd treatments, but reduced chlorophyll concentration, dark respiration and photorespiration. After 10 days growth in medium with 50 µM Cd under elevated CO2 , PSII activities were significantly enhanced (P < 0.05) with Pm, Fv/Fm, Φ(II) and qP increased by 66.1%, 7.5%, 19.5% and 16.4%, respectively, as compared with ambient-grown plants. Total Cd uptake in shoot of S. alfredii grown under elevated CO2 was increased by 44.1%-48.5%, which was positively correlated with the increase in Pn. These results indicate that elevated CO2 promoted the growth of S. alfredii due to increased photosynthetic carbon uptake rate and photosynthetic light-use efficiency, and showed great potential to improve the phytoextraction of Cd by S. alfredii. © 2014 Institute of Botany, Chinese Academy of Sciences.

  14. Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria.

    PubMed

    He, Lin-Yan; Chen, Zhao-Jin; Ren, Gai-Di; Zhang, Yan-Feng; Qian, Meng; Sheng, Xia-Fang

    2009-07-01

    Two cadmium (Cd)-resistant strains Pseudomonas sp. RJ10 and Bacillus sp. RJ16 were investigated for their effects on the soil Cd and lead (Pb) solubilization and promotion of plant growth and Cd and Pb uptakes of a Cd-hyperaccumulator tomato. In the heavy metal-contaminated inoculated soil, the CaCl(2)-extractable Cd and Pb were increased by 58-104% and 67-93%, respectively, compared to the uninoculation control. The bacteria produced indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. Root elongation assay conducted on tomato under gnotobiotic conditions demonstrated increase in root elongation of inoculated tomato seedlings compared to the control plants. An increase in Cd and Pb contents of above-ground tissues varied from 92% to 113% and from 73% to 79% in inoculated plants growing in heavy metal-contaminated soil compared to the uninoculation control, respectively. These results show that the bacteria could be exploited for bacteria enhanced-phytoextraction of Cd- and Pb-polluted soils.

  15. Using Arabidopsis to explore zinc tolerance and hyperaccumulation.

    PubMed

    Roosens, Nancy H C J; Willems, Glenda; Saumitou-Laprade, Pierre

    2008-05-01

    Identifying the particular gene or genes underlying a specific adaptation is a major challenge in modern biology. Currently, the study of naturally occurring variation in Arabidopsis thaliana provides a bridge between functional genetics and evolutionary analyses. Nevertheless, the use of A. thaliana to study adaptation is limited to those traits that have undergone selection. Therefore, to understand fully the genetics of adaptation, the vast arsenal of genetic resources developed in A. thaliana must be extended to other species that display traits absent in this model species. Here, we discuss how A. thaliana resources can significantly enhance the study of heavy-metal tolerance and hyperaccumulation in the wild species Arabidopsis halleri.

  16. Heavy metal contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and toxicity in plants.

    PubMed

    Boularbah, Ali; Schwartz, Christophe; Bitton, Gabriel; Aboudrar, Wafae; Ouhammou, Ahmed; Morel, Jean Louis

    2006-05-01

    Metalliferous soils cover a relatively large surface area in Morocco, and up to now no hyperaccumulating plants have been identified on these mining or these industrial sites. The aim of this work was to assess the extent of metal accumulation by plants found in three mining areas in southern Morocco with the ultimate goal of finding metal hyperaccumulating species by using the MetPAD biotest. The biotest helps to obtain information on the selective metal toxicity of aqueous extracts from the plants. A strong metal toxicity, as revealed by the biotest is an indication of a hyperaccumulating plant. Toxicity tests were run concurrently with chemicals analyses of metals in plants and their water extracts. The chemical analyses allow the determination of the hyperaccumulated metal(s). Specimens of the plant species mainly growing on and in the vicinity of the three mines were sampled with their corresponding soils. The results show that all plants analyzed had lower heavy metal content and toxicity despite the relatively very high soil concentrations. A comparison of our results with the criterion used to classify the hyperaccumulator plants indicates that plants we collected from mining sites were hypertolerant but not hyperaccumulators. This was confirmed by transfer factors generally lower than 1. Nevertheless, these tolerant plants species can be used as tools for revegetation for erosion control in metals-contaminated sites (phytostabilization).

  17. Characterization of arsenate reductase in the extract of roots and fronds of Chinese brake fern, an arsenic hyperaccumulator.

    PubMed

    Duan, Gui-Lan; Zhu, Yong-Guan; Tong, Yi-Ping; Cai, Chao; Kneer, Ralf

    2005-05-01

    Root extracts from the arsenic (As) hyperaccumulating Chinese brake fern (Pteris vittata) were shown to be able to reduce arsenate to arsenite. An arsenate reductase (AR) in the fern showed a reaction mechanism similar to the previously reported Acr2p, an AR from yeast (Saccharomyces cerevisiae), using glutathione as the electron donor. Substrate specificity as well as sensitivity toward inhibitors for the fern AR (phosphate as a competitive inhibitor, arsenite as a noncompetitive inhibitor) was also similar to Acr2p. Kinetic analysis showed that the fern AR had a Michaelis constant value of 2.33 mM for arsenate, 15-fold lower than the purified Acr2p. The AR-specific activity of the fern roots treated with 2 mM arsenate for 9 d was at least 7 times higher than those of roots and shoots of plant species that are known not to tolerate arsenate. A T-DNA knockout mutant of Arabidopsis (Arabidopsis thaliana) with disruption in the putative Acr2 gene had no AR activity. We could not detect AR activity in shoots of the fern. These results indicate that (1) arsenite, the previously reported main storage form of As in the fern fronds, may come mainly from the reduction of arsenate in roots; and (2) AR plays an important role in the detoxification of As in the As hyperaccumulating fern.

  18. Characterization of Arsenate Reductase in the Extract of Roots and Fronds of Chinese Brake Fern, an Arsenic Hyperaccumulator1

    PubMed Central

    Duan, Gui-Lan; Zhu, Yong-Guan; Tong, Yi-Ping; Cai, Chao; Kneer, Ralf

    2005-01-01

    Root extracts from the arsenic (As) hyperaccumulating Chinese brake fern (Pteris vittata) were shown to be able to reduce arsenate to arsenite. An arsenate reductase (AR) in the fern showed a reaction mechanism similar to the previously reported Acr2p, an AR from yeast (Saccharomyces cerevisiae), using glutathione as the electron donor. Substrate specificity as well as sensitivity toward inhibitors for the fern AR (phosphate as a competitive inhibitor, arsenite as a noncompetitive inhibitor) was also similar to Acr2p. Kinetic analysis showed that the fern AR had a Michaelis constant value of 2.33 mm for arsenate, 15-fold lower than the purified Acr2p. The AR-specific activity of the fern roots treated with 2 mm arsenate for 9 d was at least 7 times higher than those of roots and shoots of plant species that are known not to tolerate arsenate. A T-DNA knockout mutant of Arabidopsis (Arabidopsis thaliana) with disruption in the putative Acr2 gene had no AR activity. We could not detect AR activity in shoots of the fern. These results indicate that (1) arsenite, the previously reported main storage form of As in the fern fronds, may come mainly from the reduction of arsenate in roots; and (2) AR plays an important role in the detoxification of As in the As hyperaccumulating fern. PMID:15834011

  19. Interaction of cadmium and zinc on accumulation and sub-cellular distribution in leaves of hyperaccumulator Potentilla griffithii.

    PubMed

    Qiu, Rong-Liang; Thangavel, Palaniswamy; Hu, Peng-Jie; Senthilkumar, Palaninaicker; Ying, Rong-Rong; Tang, Ye-Tao

    2011-02-28

    Potentilla griffithii Hook is a newly found hyperaccumulator plant capable of high tolerance and accumulation of Zn and Cd. We investigated the interactive effects between Cd and Zn on accumulation and vacuolar sequestration in P. griffithii. Stimulatory effect of growth was noted at 0.2 mM Cd and 1.25 and 2.5 mM Zn tested. Accumulation of Zn and Cd in roots, petioles and leaves were increased significantly with addition of these metals individually. However, the Zn supplement decreased root Cd accumulation but increased the concentration of Cd in petioles and leaves. The results from sub-cellular distribution showed that up to 94% and 70% of the total Zn and Cd in the leaves were present in the protoplasts, and more than 90% Cd and Zn in the protoplasts were localized in the vacuoles. Nearly, 88% and 85% of total Cd and Zn were extracted in the cell sap of the leaves suggesting that most of the Cd and Zn in the leaves were available in soluble form. The present results indicate that Zn supplement significantly enhanced the petiole accumulation of Cd and further vacuolar sequestration plays an important role in tolerance, detoxification and hyperaccumulation of these metals in P. griffithii. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population).

    PubMed

    Küpper, Hendrik; Kochian, Leon V

    2010-01-01

    We investigated changes in mineral nutrient uptake and cellular expression levels for metal transporter genes in the cadmium (Cd)/zinc (Zn) hyperaccumulator, Thlaspi caerulescens during whole plant and leaf ontogenesis under different long-term treatments with Zn and Cd. Quantitative mRNA in situ hybridization (QISH) revealed that transporter gene expression changes not only dependent on metal nutrition/toxicity, but even more so during plant and leaf development. The main mRNA abundances found were: ZNT1, mature leaves of young plants; ZNT5, young leaves of young plants; MTP1 (= ZTP1 = ZAT), young leaves of both young and mature plants. Surprisingly different cellular expression patterns were found for ZNT1 and ZNT5, both belonging to the ZIP family of transition metal transporters: ZNT1, photosynthetic mesophyll and bundle sheath cells; ZNT5, nonphotosynthetic epidermal metal storage cells and bundle sheath cells. Thus, ZNT1 may function in micronutrient nutrition while ZNT5 may be involved in metal storage associated with hyperaccumulation. Cadmium inhibited the uptake of Zn, iron (Fe) and manganese (Mn), probably by competing for transporters or by interfering with the regulation of transporter gene expression. Cadmium-induced changes in cellular expression for ZNT1, ZNT5 and MTP1 could also be part of plant acclimatization to Cd toxicity. Defence against Cd toxicity involved enhanced uptake of magnesium (Mg), calcium (Ca) and sulphur (S).

  1. In-Situ Decontamination of Metal-Polluted Soils by Metal-Accumulator Plants

    DTIC Science & Technology

    1993-04-01

    heavy metals . This contaminated soil was used to compare the extraction efficiencies of several plant species known as " hyperaccumulators ". A range of...5. Glasshouse Experiment Not all the hyperaccumulator genotypes are capable of accumulating heavy metals to the same great extent. 4 In order to...OF METAL -POLLUTED SOILS BY METAL -ACCUMULATOR PLANTS By F. Lodico and S.P. McGrath Rothamsted Experimental Station Harpenden, Herts., AL5 2JQ, U.K. 4

  2. A significant positive correlation between endogenous trans-zeatin content and total arsenic in arsenic hyperaccumulator Pteris cretica var. nervosa.

    PubMed

    Zhang, Xuemei; Yang, Xiaoyan; Wang, Hongbin; Li, Qinchun; Wang, Haijuan; Li, Yanyan

    2017-04-01

    A pot experiment was conducted to compare the content of endogenous trans-zeatin (Z), plant arsenic (As) uptake and physiological indices in the fronds of As-hyperaccumulator (Pteris cretica var. nervosa) and non-hyperaccumulator (Pteris ensiformis). Furthermore, a stepwise regression method was used to study the relationship among determined indices, and the time-course effect of main indices was also investigated under 100mg/kg As stress with time extension. In the 100-200mg/kg As treatments, plant height showed no significant difference and endogenous Z content significantly increased in P. cretica var. nervosa compared to the control, but a significant decrease of height and endogenous Z was observed in P. ensiformis. The concentrations of As (III) and As (V) increased significantly in the fronds of two plants, but this increase was much higher in P. cretica var. nervosa. Compared to the control, the contents of chlorophyll and soluble protein were significantly increased in P. cretica var. nervosa but decreased in P. ensiformis in the 200mg/kg As treatment, respectively. A significant positive correlation was found between the contents of endogenous Z and total As in P. cretica var. nervosa, but such a correlation was not found in P. ensiformis. Additionally, in the time-course effect experiment, a peak value of each index was appeared in the 43rd day in two plants, except for chlorophyll in P. ensiformis, but this value was significantly higher in P. cretica var. nervosa than that in P. ensiformis. In conclusion, a higher endogenous Z content contributed to As accumulation of P. cretica var. nervosa under As stress.

  3. Phytoremediation of Groundwater at Air Force Plant 4, Carswell, Texas

    DTIC Science & Technology

    2003-09-01

    microbial associations within the plant rhizosphere; • Hyperaccumulation or sequestering of inorganic contaminants within plant parts; • Binding of...including petroleum hydrocarbons, chlorinated solvents, pesticides, metals , radionuclides, explosives, and excess nutrients. In addition, plants have...understood for plants used for the purpose of extracting and accumulating heavy metals and radionuclides. Unlike metals , some research has shown that

  4. High expression in leaves of the zinc hyperaccumulator Arabidopsis halleri of AhMHX, a homolog of an Arabidopsis thaliana vacuolar metal/proton exchanger.

    PubMed

    Elbaz, Benayahu; Shoshani-Knaani, Noa; David-Assael, Ora; Mizrachy-Dagri, Talya; Mizrahi, Keren; Saul, Helen; Brook, Emil; Berezin, Irina; Shaul, Orit

    2006-06-01

    Zn hyperaccumulator plants sequester Zn into their shoot vacuoles. To date, the only transporters implicated in Zn sequestration into the vacuoles of hyperaccumulator plants are cation diffusion facilitators (CDFs). We investigated the expression in Arabidopsis halleri of a homolog of AtMHX, an A. thaliana tonoplast transporter that exchanges protons with Mg, Zn and Fe ions. A. halleri has a single copy of a homologous gene, encoding a protein that shares 98% sequence identity with AtMHX. Western blot analysis with vacuolar-enriched membrane fractions suggests localization of AhMHX in the tonoplast. The levels of MHX proteins are much higher in leaves of A. halleri than in leaves of the non-accumulator plant A. thaliana. At the same time, the levels of MHX transcripts are similar in leaves of the two species. This suggests that the difference in MHX levels is regulated at the post-transcriptional level. In vitro translation studies indicated that the difference between AhMHX and AtMHX expression is not likely to result from the variations in the sequence of their 5' untranslated regions (5'UTRs). The high expression of AhMHX in A. halleri leaves is constitutive and not significantly affected by the metal status of the plants. In both species, MHX transcript levels are higher in leaves than in roots, but the difference is higher in A. halleri. Metal sequestration into root vacuoles was suggested to inhibit hyperaccumulation in the shoot. Our data implicate AhMHX as a candidate gene in metal accumulation or tolerance in A. halleri.

  5. Plant defense using toxic inorganic ions: conceptual models of the defensive enhancement and joint effects hypotheses.

    PubMed

    Boyd, Robert S

    2012-10-01

    The concept of plant defense using toxic mineral elements originated as an explanation for extremely elevated concentrations of some elements (termed hyperaccumulation) in some plant tissues. The Defensive Enhancement Hypothesis suggests that hyperaccumulation evolved because, after an initial defensive benefit accrued from a relatively low initial concentration, increased concentration of an element provided increased plant fitness and drove evolution of higher element concentrations until hyperaccumulation was achieved. The Joint Effects Hypothesis postulates that additive or synergistic effects between element-based defenses, or between toxic element and organic chemical defenses, may have contributed to the evolution of hyperaccumulation. By lessening the concentration of an element necessary to provide an initial defensive benefit to a plant, joint effects could decrease the level of an element that provides an initial defensive benefit, allowing additive or synergistic defensive enhancement to take effect. Recent experimental tests have demonstrated defense at relatively low element concentrations, and tests of metal/metal and metal/organic compound combinations have shown joint effects. These hypotheses suggest how hyperaccumulator plants may have evolved in response to plant-herbivore interactions, and suggest that toxic element levels below those used to define hyperaccumulation may be ecologically effective. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Sulfur-selenium-molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata from non-hyperaccumulator Brassica juncea (Brassicaceae).

    PubMed

    Harris, Jonathan; Schneberg, Kathryn A; Pilon-Smits, Elizabeth A H

    2014-02-01

    Long-term sulfate, selenate and molybdate accumulation and translocation were investigated in two ecotypes of Stanleya pinnata and non-hyperaccumulator Brassica juncea under different levels of applied sulfate and selenate. Morphological differences were observed between the ecotypes of S. pinnata, but few differences in selenium (Se) and sulfur (S) accumulation were measured. Se-to-S ratios were nearly identical between the ecotypes under all treatments. When compared with B. juncea, several unique trends were observed in the hyperaccumulators. While both S. pinnata ecotypes showed no significant effect on Se content of young leaves when the supplied sulfate in the growth medium was increased tenfold (from 0.5 to 5 mM), the Se levels in B. juncea decreased 4- to 12-fold with increased sulfate in the growth medium. Furthermore, S. pinnata’s S levels decreased slightly with high levels of supplied Se, suggesting competitive inhibition of uptake, while B. juncea showed higher S levels with increasing Se, possibly due to up-regulation of sulfate transporters. Both ecotypes of S. pinnata showed much larger Se concentrations in young leaves, while B. juncea showed slightly higher levels of Se in older leaves relative to young. Molybdenum (Mo) levels significantly decreased in S. pinnata with increasing sulfate and selenate in the medium; B. juncea did not show the same trends. These findings support the hypothesis that S. pinnata contains a modified sulfate transporter with a higher specificity for selenate.

  7. Evolutionary lineages of nickel hyperaccumulation and systematics in European Alysseae (Brassicaceae): evidence from nrDNA sequence data.

    PubMed

    Cecchi, Lorenzo; Gabbrielli, Roberto; Arnetoli, Miluscia; Gonnelli, Cristina; Hasko, Agim; Selvi, Federico

    2010-11-01

    Nickel (Ni) hyperaccumulation is a rare form of physiological specialization shared by a small number of angiosperms growing on ultramafic soils. The evolutionary patterns of this feature among European members of tribe Alysseae (Brassicaceae) are investigated using a phylogenetic approach to assess relationships among Ni hyperaccumulators at the genus, species and below-species level. Internal transcribed spacer (ITS) sequences were generated for multiple accessions of Alysseae. Phylogenetic trees were obtained for the genera of the tribe and Alyssum sect. Odontarrhena. All accessions and additional herbarium material were tested for Ni hyperaccumulation with the dimethylglyoxime colorimetric method. Molecular data strongly support the poorly known hyperaccumulator endemic Leptoplax (Peltaria) emarginata as sister to hyperaccumulator species of Bornmuellera within Alysseae. This is contrary to current assumptions of affinity between L. emarginata and the non-hyperaccumulator Peltaria in Thlaspideae. The lineage Bornmuellera-Leptoplax is, in turn, sister to the two non-hyperaccumulator Mediterranean endemics Ptilotrichum rupestre and P. cyclocarpum. Low ITS sequence variation was found within the monophyletic Alyssum sect. Odontarrhena and especially in A. murale sensu lato. Nickel hyperaccumulation was not monophyletic in any of three main clades retrieved, each consisting of hyperaccumulators and non-hyperaccumulators of different geographical origin. Nickel hyperaccumulation in Alysseae has a double origin, but it did not evolve in Thlaspideae. In Bornmuellera-Leptoplax it represents an early synapomorphy inherited from an ancestor shared with the calcicolous, sister clade of Mediterranean Ptilotrichum. In Alyssum sect. Odontarrhena it has multiple origins even within the three European clades recognized. Lack of geographical cohesion suggests that accumulation ability has been lost or gained over the different serpentine areas of south Europe through

  8. Evolutionary lineages of nickel hyperaccumulation and systematics in European Alysseae (Brassicaceae): evidence from nrDNA sequence data

    PubMed Central

    Cecchi, Lorenzo; Gabbrielli, Roberto; Arnetoli, Miluscia; Gonnelli, Cristina; Hasko, Agim; Selvi, Federico

    2010-01-01

    Background and Aims Nickel (Ni) hyperaccumulation is a rare form of physiological specialization shared by a small number of angiosperms growing on ultramafic soils. The evolutionary patterns of this feature among European members of tribe Alysseae (Brassicaceae) are investigated using a phylogenetic approach to assess relationships among Ni hyperaccumulators at the genus, species and below-species level. Methods Internal transcribed spacer (ITS) sequences were generated for multiple accessions of Alysseae. Phylogenetic trees were obtained for the genera of the tribe and Alyssum sect. Odontarrhena. All accessions and additional herbarium material were tested for Ni hyperaccumulation with the dimethylglyoxime colorimetric method. Key Results Molecular data strongly support the poorly known hyperaccumulator endemic Leptoplax (Peltaria) emarginata as sister to hyperaccumulator species of Bornmuellera within Alysseae. This is contrary to current assumptions of affinity between L. emarginata and the non-hyperaccumulator Peltaria in Thlaspideae. The lineage Bornmuellera–Leptoplax is, in turn, sister to the two non-hyperaccumulator Mediterranean endemics Ptilotrichum rupestre and P. cyclocarpum. Low ITS sequence variation was found within the monophyletic Alyssum sect. Odontarrhena and especially in A. murale sensu lato. Nickel hyperaccumulation was not monophyletic in any of three main clades retrieved, each consisting of hyperaccumulators and non-hyperaccumulators of different geographical origin. Conclusions Nickel hyperaccumulation in Alysseae has a double origin, but it did not evolve in Thlaspideae. In Bornmuellera–Leptoplax it represents an early synapomorphy inherited from an ancestor shared with the calcicolous, sister clade of Mediterranean Ptilotrichum. In Alyssum sect. Odontarrhena it has multiple origins even within the three European clades recognized. Lack of geographical cohesion suggests that accumulation ability has been lost or gained over the

  9. Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase.

    PubMed

    Papoyan, Ashot; Kochian, Leon V

    2004-11-01

    Thlaspi caerulescens is a heavy metal hyperaccumulator plant species that is able to accumulate extremely high levels of zinc (Zn) and cadmium (Cd) in its shoots (30,000 microg g(-1) Zn and 10,000 microg g(-1) Cd), and has been the subject of intense research as a model plant to gain a better understanding of the mechanisms of heavy metal hyperaccumulation and tolerance and as a source of genes for developing plant species better suited for the phytoremediation of metal-contaminated soils. In this study, we report on the results of a yeast (Saccharomyces cerevisae) complementation screen aimed at identifying candidate heavy metal tolerance genes in T. caerulescens. A number of Thlaspi genes that conferred Cd tolerance to yeast were identified, including possible metal-binding ligands from the metallothionein gene family, and a P-type ATPase that is a member of the P1B subfamily of purported heavy metal-translocating ATPases. A detailed characterization of the Thlaspi heavy metal ATPase, TcHMA4, demonstrated that it mediates yeast metal tolerance via active efflux of a number of different heavy metals (Cd, Zn, lead [Pb], and copper [Cu]) out of the cell. However, in T. caerulescens, based on differences in tissue-specific and metal-responsive expression of this transporter compared with its homolog in Arabidopsis (Arabidopsis thaliana), we suggest that it may not be involved in metal tolerance. Instead, we hypothesize that it may play a role in xylem loading of metals and thus could be a key player in the hyperaccumulation phenotype expressed in T. caerulescens. Additionally, evidence is presented showing that the C terminus of the TcHMA4 protein, which contains numerous possible heavy metal-binding His and Cys repeats residues, participates in heavy metal binding. When partial peptides from this C-terminal domain were expressed in yeast, they conferred an extremely high level of Cd tolerance and Cd hyperaccumulation. The possibilities for enhancing the metal

  10. Identification of Thlaspi caerulescens Genes That May Be Involved in Heavy Metal Hyperaccumulation and Tolerance. Characterization of a Novel Heavy Metal Transporting ATPase1

    PubMed Central

    Papoyan, Ashot; Kochian, Leon V.

    2004-01-01

    Thlaspi caerulescens is a heavy metal hyperaccumulator plant species that is able to accumulate extremely high levels of zinc (Zn) and cadmium (Cd) in its shoots (30,000 μg g−1 Zn and 10,000 μg g−1 Cd), and has been the subject of intense research as a model plant to gain a better understanding of the mechanisms of heavy metal hyperaccumulation and tolerance and as a source of genes for developing plant species better suited for the phytoremediation of metal-contaminated soils. In this study, we report on the results of a yeast (Saccharomyces cerevisae) complementation screen aimed at identifying candidate heavy metal tolerance genes in T. caerulescens. A number of Thlaspi genes that conferred Cd tolerance to yeast were identified, including possible metal-binding ligands from the metallothionein gene family, and a P-type ATPase that is a member of the P1B subfamily of purported heavy metal-translocating ATPases. A detailed characterization of the Thlaspi heavy metal ATPase, TcHMA4, demonstrated that it mediates yeast metal tolerance via active efflux of a number of different heavy metals (Cd, Zn, lead [Pb], and copper [Cu]) out of the cell. However, in T. caerulescens, based on differences in tissue-specific and metal-responsive expression of this transporter compared with its homolog in Arabidopsis (Arabidopsis thaliana), we suggest that it may not be involved in metal tolerance. Instead, we hypothesize that it may play a role in xylem loading of metals and thus could be a key player in the hyperaccumulation phenotype expressed in T. caerulescens. Additionally, evidence is presented showing that the C terminus of the TcHMA4 protein, which contains numerous possible heavy metal-binding His and Cys repeats residues, participates in heavy metal binding. When partial peptides from this C-terminal domain were expressed in yeast, they conferred an extremely high level of Cd tolerance and Cd hyperaccumulation. The possibilities for enhancing the metal tolerance

  11. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens.

    PubMed

    Lasat, M M; Pence, N S; Garvin, D F; Ebbs, S D; Kochian, L V

    2000-01-01

    In this manuscript, recent research from this laboratory into physiological and molecular aspects of heavy metal (Zn) transport in the hyperaccumulating plant species, Thlaspi caerulescens is reviewed. This research is aimed at elucidating the processes that underlie the accumulation of extraordinarily high levels of Zn in the T. caerulescens shoot (up to 3% Zn dry wt.) without any associated toxicity symptom. Physiological studies focused on the use of radiotracer flux techniques (65Zn2+) to characterize zinc transport and compartmentation in the root, and translocation and accumulation in the shoot of T. caerulescens in comparison with a related non-accumulator, T. arvense. These studies indicated that Zn transport was stimulated at a number of sites in T. caerulescens, contributing to the hyperaccumulation trait. The transport processes that were stimulated included Zn influx into both root and leaf cells, and Zn loading into the xylem. The 4- to 5-fold stimulation of Zn influx into the root was hypothesized to be due to an increased abundance of Zn transporters in T. caerulescens root cells. Additionally, compartmental analysis (radiotracer wash out or efflux techniques) was used to show that Zn was sequestered in the vacuoles of T. arvense root cells which retarded Zn translocation to the shoot in this non-accumulator species. Molecular studies have focused on the cloning and characterization of Zn transport genes in T. caerulescens. Complementation of a yeast Zn transport-defective mutant with a T. caerulescens cDNA library resulted in the recovery of a cDNA, ZNT1, that encodes a Zn transporter. Sequence analysis of ZNT1 indicated it is a member of a recently discovered micronutrient transport gene family which includes the Arabidopsis Fe transporter, IRT1, and the ZIP Zn transporters. Expression of ZNT1 in yeast allowed for a physiological characterization of this transporter. It was shown to encode a high affinity Zn transporter which can also mediate low

  12. Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.).

    PubMed

    Al Agely, Abid; Sylvia, David M; Ma, Lena Q

    2005-01-01

    Chinese brake fern (Pteris vittata L.) is a hyperaccumulator of arsenic (As) that grows naturally on soils in the southern United States. It is reasonable to expect that mycorrhizal symbiosis may be involved in As uptake by this fern. This is because arbuscular mycorrhizal (AM) fungi have a well-documented role in increasing plant phosphorus (P) uptake, P and As have similar chemical properties, and ferns are known to be colonized by AM fungi. We conducted a factorial greenhouse experiment with three levels of As (0, 50, and 100 mg kg(-1)) and P (0, 25, and 50 mg kg(-1)) and with and without Chinese brake fern colonized by a community of AM fungi from an As-contaminated site. We found that the AM fungi not only tolerated As amendment, but their presence increased frond dry mass at the highest As application rate. Furthermore, the AM fungi increased As uptake across a range of P levels, while P uptake was generally increased only when there was no As amendment. These data indicate that AM fungi have an important role in arsenic accumulation by Chinese brake fern. Therefore, to effectively phytoremediate As-contaminated soils, the mycorrhizal status of ferns needs to be taken into account.

  13. Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern).

    PubMed

    Zhang, Weihua; Cai, Yong; Downum, Kelsey R; Ma, Lena Q

    2004-10-01

    Pteris vittata (Chinese brake fern) has potential for phytoremediation of As-contaminated sites. In this study, the synthesis of total thiols and acid-soluble thiols in P. vittata was investigated under arsenic exposure. The strong and positive correlation between As concentration and acid-soluble thiols in plant leaflets suggests that acid-soluble thiols may play a role in As detoxification. A major As-induced thiol was purified and characterized. A molecular ion (M + 1) of 540 m/z suggests that the thiol was a phytochelatin (PC) with two base units (PC(2)). However, the ratios of acid-soluble thiols to As in leaflets exposed to As ranged from 0.012 to 0.026, suggesting that only a very small part of As is complexed by PC(2). PCs could play a minor detoxification role in this hyperaccumulator. A PC-independent mechanism appears to be mainly involved in As tolerance, while PC-dependent detoxification seems to be a supplement.

  14. A proteomics approach to investigate the process of Zn hyperaccumulation in Noccaea caerulescens (J & C. Presl) F.K. Meyer.

    PubMed

    Schneider, Thomas; Persson, Daniel Pergament; Husted, Søren; Schellenberg, Maja; Gehrig, Peter; Lee, Youngsook; Martinoia, Enrico; Schjoerring, Jan K; Meyer, Stefan

    2013-01-01

    Zinc (Zn) is an essential trace element in all living organisms, but is toxic in excess. Several plant species are able to accumulate Zn at extraordinarily high concentrations in the leaf epidermis without showing any toxicity symptoms. However, the molecular mechanisms of this phenomenon are still poorly understood. A state-of-the-art quantitative 2D liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS) proteomics approach was used to investigate the abundance of proteins involved in Zn hyperaccumulation in leaf epidermal and mesophyll tissues of Noccaea caerulescens. Furthermore, the Zn speciation in planta was analyzed by a size-exclusion chromatography/inductively coupled plasma mass spectrometer (SEC-ICP-MS) method, in order to identify the Zn-binding ligands and mechanisms responsible for Zn hyperaccumulation. Epidermal cells have an increased capability to cope with the oxidative stress that results from excess Zn, as indicated by a higher abundance of glutathione S-transferase proteins. A Zn importer of the ZIP family was more abundant in the epidermal tissue than in the mesophyll tissue, but the vacuolar Zn transporter MTP1 was equally distributed. Almost all of the Zn located in the mesophyll was stored as Zn-nicotianamine complexes. In contrast, a much lower proportion of the Zn was found as Zn-nicotianamine complexes in the epidermis. However, these cells have higher concentrations of malate and citrate, and these organic acids are probably responsible for complexation of most epidermal Zn. Here we provide evidence for a cell type-specific adaptation to excess Zn conditions and an increased ability to transport Zn into the epidermal vacuoles. © 2012 The Authors The Plant Journal © 2012 Blackwell Publishing Ltd.

  15. Expression of the ZNT1 Zinc Transporter from the Metal Hyperaccumulator Noccaea caerulescens Confers Enhanced Zinc and Cadmium Tolerance and Accumulation to Arabidopsis thaliana.

    PubMed

    Lin, Ya-Fen; Hassan, Zeshan; Talukdar, Sangita; Schat, Henk; Aarts, Mark G M

    2016-01-01

    Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis. We examined if the NcZNT1 function contributes to the metal hyperaccumulation of N. caerulescens. NcZNT1 was found to be a plasma-membrane located metal transporter. Constitutive overexpression of NcZNT1 in A. thaliana conferred enhanced tolerance to exposure to excess Zn and Cd supply, as well as increased accumulation of Zn and Cd and induction of the Fe deficiency response, when compared to non-transformed wild-type plants. Promoters of both genes were induced by Zn deficiency in roots and shoots of A. thaliana. In A. thaliana, the AtZIP4 and NcZNT1 promoters were mainly active in cortex, endodermis and pericycle cells under Zn deficient conditions. In N. caerulescens, the promoters were active in the same tissues, though the activity of the NcZNT1 promoter was higher and not limited to Zn deficient conditions. Common cis elements were identified in both promoters by 5' deletion analysis. These correspond to the previously determined Zinc Deficiency Responsive Elements found in A. thaliana to interact with two redundantly acting transcription factors, bZIP19 and bZIP23, controlling the Zn deficiency response. In conclusion, these results suggest that NcZNT1 is an important factor in contributing to Zn and Cd hyperaccumulation in N. caerulescens. Differences in cis- and trans-regulators are likely to account for the differences in expression between A. thaliana and N. caerulescens. The high, constitutive NcZNT1 expression in the stele of N. caerulescens roots implicates its involvement in long distance root-to-shoot metal transport by maintaining a Zn/Cd influx into cells responsible for xylem loading.

  16. Elevated salicylic acid levels conferred by increased expression of ISOCHORISMATE SYNTHASE 1 contribute to hyperaccumulation of SUMO1 conjugates in the Arabidopsis mutant early in short days 4.

    PubMed

    Villajuana-Bonequi, Mitzi; Elrouby, Nabil; Nordström, Karl; Griebel, Thomas; Bachmair, Andreas; Coupland, George

    2014-07-01

    Post-translational modification of proteins by attachment of small ubiquitin-like modifier (SUMO) is essential for plant growth and development. Mutations in the SUMO protease early in short days 4 (ESD4) cause hyperaccumulation of conjugates formed between SUMO and its substrates, and phenotypically are associated with extreme early flowering and impaired growth. We performed a suppressor mutagenesis screen of esd4 and identified a series of mutants called suppressor of esd4 (sed), which delay flowering, enhance growth and reduce hyperaccumulation of SUMO conjugates. Genetic mapping and genome sequencing indicated that one of these mutations (sed111) is in the gene salicylic acid induction-deficient 2 (SID2), which encodes ISOCHORISMATE SYNTHASE I, an enzyme required for biosynthesis of salicylic acid (SA). Analyses showed that compared with wild-type plants, esd4 contains higher levels of SID2 mRNA and about threefold more SA, whereas sed111 contains lower SA levels. Other sed mutants also contain lower SA levels but are not mutant for SID2, although most reduce SID2 mRNA levels. Therefore, higher SA levels contribute to the small size, early flowering and elevated SUMO conjugate levels of esd4. Our results support previous data indicating that SUMO homeostasis influences SA biosynthesis in wild-type plants, and also demonstrate that elevated levels of SA strongly increase the abundance of SUMO conjugates.

  17. Mechanics of water collection in plants via morphology change of conical hairs

    NASA Astrophysics Data System (ADS)

    Ito, Fuyu; Komatsubara, Satoshi; Shigezawa, Naoki; Morikawa, Hideaki; Murakami, Yasushi; Yoshino, Katsumi; Yamanaka, Shigeru

    2015-03-01

    In an arid area like the Namib Desert, plants and animals obtain moisture needed for life from mist in the air. There, some plants have hairs or fibrous structures on their leaf surface that reportedly collect fresh water from the air. We examined the morphology and function of leaf hairs of plants during water collection under different circumstances. We studied the water collecting mechanics of several plants having fibrous hairs on their leaves: tomato, balsam pear, Berkheya purpurea, and Lychnis sieboldii. This plant was selected for detailed investigation as a model because this plant originated from dry grassland near Mount Aso in Kyusyu, Japan. We found a unique feature of water collection and release in this plant. The cone-shaped hairs having inner microfibers were reversibly converted to crushed plates that were twisted perpendicularly in dry conditions. Microfibers found in the hairs seem to be responsible for water storage and release. Their unique reciprocal morphological changes, cone-shaped hairs transformed into perpendicularly twisted shapes, depend on the moisture level in the air, and water stored during wet external conditions was released onto the leaf in drier conditions. These morphological changes were recorded as a movie. Simulations explained the formation of the twisted structure. In theoretical analyses, twisted structures were found to give higher mechanical strength. Similar phenomena were found in the other plants described above. These findings pave the way to new bioinspired technology for alleviating global water shortages.

  18. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4.

    PubMed

    Hanikenne, Marc; Talke, Ina N; Haydon, Michael J; Lanz, Christa; Nolte, Andrea; Motte, Patrick; Kroymann, Juergen; Weigel, Detlef; Krämer, Ute

    2008-05-15

    Little is known about the types of mutations underlying the evolution of species-specific traits. The metal hyperaccumulator Arabidopsis halleri has the rare ability to colonize heavy-metal-polluted soils, and, as an extremophile sister species of Arabidopsis thaliana, it is a powerful model for research on adaptation. A. halleri naturally accumulates and tolerates leaf concentrations as high as 2.2% zinc and 0.28% cadmium in dry biomass. On the basis of transcriptomics studies, metal hyperaccumulation in A. halleri has been associated with more than 30 candidate genes that are expressed at higher levels in A. halleri than in A. thaliana. Some of these genes have been genetically mapped to broad chromosomal segments of between 4 and 24 cM co-segregating with Zn and Cd hypertolerance. However, the in planta loss-of-function approaches required to demonstrate the contribution of a given candidate gene to metal hyperaccumulation or hypertolerance have not been pursued to date. Using RNA interference to downregulate HMA4 (HEAVY METAL ATPASE 4) expression, we show here that Zn hyperaccumulation and full hypertolerance to Cd and Zn in A. halleri depend on the metal pump HMA4. Contrary to a postulated global trans regulatory factor governing high expression of numerous metal hyperaccumulation genes, we demonstrate that enhanced expression of HMA4 in A. halleri is attributable to a combination of modified cis-regulatory sequences and copy number expansion, in comparison to A. thaliana. Transfer of an A. halleri HMA4 gene to A. thaliana recapitulates Zn partitioning into xylem vessels and the constitutive transcriptional upregulation of Zn deficiency response genes characteristic of Zn hyperaccumulators. Our results demonstrate the importance of cis-regulatory mutations and gene copy number expansion in the evolution of a complex naturally selected extreme trait. The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies

  19. Classification and identification of metal-accumulating plant species by cluster analysis.

    PubMed

    Yang, Wenhao; Li, He; Zhang, Taoxiang; Sen, Lin; Ni, Wuzhong

    2014-09-01

    Identification and classification of metal-accumulating plant species is essential for phytoextraction. Cluster analysis is used for classifying individuals based on measured characteristics. In this study, classification of plant species for metal accumulation was conducted using cluster analysis based on a practical survey. Forty plant samples belonging to 21 species were collected from an ancient silver-mining site. Five groups such as hyperaccumulator, potential hyperaccumulator, accumulator, potential accumulator, and normal accumulating plant were graded. For Cd accumulation, the ancient silver-mining ecotype of Sedum alfredii was treated as a Cd hyperaccumulator, and the others were normal Cd-accumulating plants. For Zn accumulation, S. alfredii was considered as a potential Zn hyperaccumulator, Conyza canadensis and Artemisia lavandulaefolia were Zn accumulators, and the others were normal Zn-accumulating plants. For Pb accumulation, S. alfredii and Elatostema lineolatum were potential Pb hyperaccumulators, Rubus hunanensis, Ajuga decumbens, and Erigeron annuus were Pb accumulators, C. canadensis and A. lavandulaefolia were potential Pb accumulators, and the others were normal Pb-accumulating plants. Plant species with the potential for phytoextraction were identified such as S. alfredii for Cd and Zn, C. canadensis and A. lavandulaefolia for Zn and Pb, and E. lineolatum, R. hunanensis, A. decumbens, and E. annuus for Pb. Cluster analysis is effective in the classification of plant species for metal accumulation and identification of potential species for phytoextraction.

  20. Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge.

    PubMed

    Lange, Bastien; van der Ent, Antony; Baker, Alan John Martin; Echevarria, Guillaume; Mahy, Grégory; Malaisse, François; Meerts, Pierre; Pourret, Olivier; Verbruggen, Nathalie; Faucon, Michel-Pierre

    2017-01-01

    This review synthesizes contemporary understanding of copper-cobalt (Cu-Co) tolerance and accumulation in plants. Accumulation of foliar Cu and Co to > 300 μg g(-1) is exceptionally rare globally, and known principally from the Copperbelt of Central Africa. Cobalt accumulation is also observed in a limited number of nickel (Ni) hyperaccumulator plants occurring on ultramafic soils around the world. None of the putative Cu or Co hyperaccumulator plants appears to comply with the fundamental principle of hyperaccumulation, as foliar Cu-Co accumulation is strongly dose-dependent. Abnormally high plant tissue Cu concentrations occur only when plants are exposed to high soil Cu with a low root to shoot translocation factor. Most Cu-tolerant plants are Excluders sensu Baker and therefore setting nominal threshold values for Cu hyperaccumulation is not informative. Abnormal accumulation of Co occurs under similar circumstances in the Copperbelt of Central Africa as well as sporadically in Ni hyperaccumulator plants on ultramafic soils; however, Co-tolerant plants behave physiologically as Indicators sensu Baker. Practical application of Cu-Co accumulator plants in phytomining is limited due to their dose-dependent accumulation characteristics, although for Co field trials may be warranted on highly Co-contaminated mineral wastes because of its relatively high metal value.

  1. Identification and characterization of selenate- and selenite-responsive genes in a Se-hyperaccumulator Astragalus racemosus.

    PubMed

    Hung, Chiu-Yueh; Holliday, Bronwyn M; Kaur, Harvinder; Yadav, Ruchi; Kittur, Farooqahmed S; Xie, Jiahua

    2012-07-01

    Plants with capacity to accumulate high levels of selenium (Se) are desired for phytoremediation and biofortification. Plants of genus Astragalus accumulate and tolerate high levels of Se, but their slow growth, low biomass and non-edible properties limit their direct utilization. Genetic engineering may be an alternative way to produce edible or high biomass Se-accumulating plants. The first step towards this goal is to isolate genes that are responsible for Se accumulation and tolerance. Later, these genes can be introduced into other edible and high biomass plants. In the present study, we applied fluorescent differential display to analyze the transcript profile of Se-hyperaccumulator A. racemosus treated with 20 μM selenate (K(2)SeO(4)) for 2 weeks. Among 125 identified Se-responsive candidate genes, the expression levels of nine were induced or suppressed more than twofold by selenate treatment in two independent experiments while 14 showed such changes when treated with selenite (K(2)SeO(3)). Six of them were found to respond to both selenate and selenite treatments. A novel gene CEJ367 was found to be highly induced by both selenate (1,920-fold) and selenite (579-fold). Root- or shoot-preferential expression of nine genes was further investigated. These identified genes may allow us to create Se-enriched transgenic plants.

  2. [Effects of Soil Moisture on Phytoremediation of As-Containinated Soils Using As-Hyperaccumulator Pteris vittata L].

    PubMed

    Liu, Qiu-xin; Yan, Xiu-lan; Liao, Xiao-yong; Lin, Long-yong; Yang, Jing

    2015-08-01

    A pot experiment was carried out to study the effects of soil moisture on the growth and arsenic uptake of As-hyperaccumulator Pteris vittata L. The results showed that the remediation efficiency of As was the highest when the soil moisture was between 35%-45%. P. vittata grew best under 45% water content, and its aboveground and underground plant dry weights were 2.95 g x plant(-1) and 11.95 g x plant(-1), respectively; the arsenic concentration in aboveground and roots was the highest under 35% water content, and 40% content was the best for accumulation of arsenic in P. vittata. Moreover, controlling the soil moisture to 35%-45% enhanced the conversion of As(V) to As(III) in aboveground plant, and promoted arsenic detoxification in P. vittata. These above results showed that soil moisture played an important role in the absorption and transport of arsenic by P. vittata. The results of this study can provide important guidance for the large-scale planting of P. vittata and the moisture management measures in engineering application.

  3. Low molecular weight thiols in arsenic hyperaccumulator Pteris vittata upon exposure to arsenic and other trace elements.

    PubMed

    Cai, Yong; Su, Jinhui; Ma, Lena Q

    2004-05-01

    Low molecular weight thiol-containing compounds have been reported to play an important role in metal detoxification and accumulation in some higher plants. The formation of these low molecular weight thiols in the recently discovered arsenic hyperaccumulator, Chinese Brake fern (Pteris vittata) upon exposure to arsenic and other trace metals was investigated. In addition to cysteine and glutathione, an unidentified thiol was observed in the plants exposed to arsenic, which was not found in the control. The concentration of the unidentified thiol showed a very strong and positive correlation with arsenic concentration in the leaflets. The unidentified thiol was low in rachises and undetectable in the roots for As-treated plants. Total and acid-soluble thiols were also measured and the results indicated that arsenic mainly stimulated the synthesis of acid-soluble thiol in Chinese Brake. The investigations of other trace elements (Cd, Cu, Cr, Zn, Pb, Hg, and Se) showed that these elements were not accumulated in Chinese Brake to high levels and the synthesis of the unidentified thiol in the plant was not observed. Our study suggests that the unidentified thiol was induced specifically by arsenic and the distribution patterns of the unidentified thiol and arsenic in the plant were consistent, indicating that the synthesis of this compound was related to As exposure.

  4. Hyperaccumulation of metals by Thlaspi caerulescens as affected by root development and Cd-Zn/Ca-Mg interactions.

    PubMed

    Saison, Carine; Schwartz, Christophe; Morel, Jean-Louis

    2004-01-01

    The aim of this work was to study, in a rhizobox experiment, the phytoextraction of metals by the hyperaccumulator plant Thlaspi caerulescens in relation to the heterogeneity of metal pollution. Six treatments were designed with soils containing various levels of metals. Homogeneous soils and inclusions of soils in other soil matrices were prepared in order to vary metal concentration and localization. Growth parameters of the plant (rosette diameter and shoot biomass) and localization of roots and shoot uptake of Zn, Cd, Ca, and Mg were determined after 10 weeks of growth. The plants grown on the polluted industrial soils provided a larger biomass and had lower mortality rates than those grown on the agricultural soil. Moreover, these plants accumulated more Zn and Cd (up to 17,516 and 375 mg kg(-1) DM, respectively) than plants grown on the agricultural soil (up to 7300 mg Zn kg(-1) and 83 mg Cd kg(-1) DM). The roots preferentially explored metal-contaminated areas. The exploration of polluted soil inclusions by the roots was associated with a higher extraction of metals. Zinc and Cd in the shoots of Thlaspi caerulescens were negatively correlated with Ca and Mg concentrations; however, the soil supply for these two elements was identical. This suggests that there is competition for the uptake of these elements and that Zn is preferentially accumulated.

  5. The Hyperaccumulator Alyssum murale uses Complexation with Nitrogen and Oxygen Donor Ligands for Ni Transport and Storage

    SciTech Connect

    McNear, Jr., D.; Chanay, R; Sparks, D

    2010-01-01

    The Kotodesh genotype of the nickel (Ni) hyperaccumulator Alyssum murale was examined to determine the compartmentalization and internal speciation of Ni, and other elements, in an effort to ascertain the mechanism used by this plant to tolerate extremely high shoot (stem and leaf) Ni concentrations. Plants were grown either hydroponically or in Ni enriched soils from an area surrounding an historic Ni refinery in Port Colborne, Ontario, Canada. Electron probe micro-analysis (EPMA) and synchrotron based micro X-ray fluorescence ({mu}-SXRF) spectroscopy were used to determine the metal distribution and co-localization and synchrotron X-ray and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopies were used to determine the Ni speciation in plant parts and extracted sap. Nickel is concentrated in the dermal leaf and stem tissues of A. murale bound primarily to malate along with other low molecular weight organic ligands and possibly counter anions (e.g., sulfate). Ni is present in the plant sap and vasculature bound to histidine, malate and other low molecular weight compounds. The data presented herein supports a model in which Ni is transported from the roots to the shoots complexed with histidine and stored within the plant leaf dermal tissues complexed with malate, and other low molecular weight organic acids or counter-ions.

  6. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.

    PubMed

    Ma, Ying; Oliveira, Rui S; Nai, Fengjiao; Rajkumar, Mani; Luo, Yongming; Rocha, Inês; Freitas, Helena

    2015-06-01

    Endophyte-assisted phytoremediation has recently been suggested as a successful approach for ecological restoration of metal contaminated soils, however little information is available on the influence of endophytic bacteria on the phytoextraction capacity of metal hyperaccumulating plants in multi-metal polluted soils. The aims of our study were to isolate and characterize metal-resistant and 1-aminocyclopropane-1-carboxylate (ACC) utilizing endophytic bacteria from tissues of the newly discovered Zn/Cd hyperaccumulator Sedum plumbizincicola and to examine if these endophytic bacterial strains could improve the efficiency of phytoextraction of multi-metal contaminated soils. Among a collection of 42 metal resistant bacterial strains isolated from the tissues of S. plumbizincicola grown on Pb/Zn mine tailings, five plant growth promoting endophytic bacterial strains (PGPE) were selected due to their ability to promote plant growth and to utilize ACC as the sole nitrogen source. The five isolates were identified as Bacillus pumilus E2S2, Bacillus sp. E1S2, Bacillus sp. E4S1, Achromobacter sp. E4L5 and Stenotrophomonas sp. E1L and subsequent testing revealed that they all exhibited traits associated with plant growth promotion, such as production of indole-3-acetic acid and siderophores and solubilization of phosphorus. These five strains showed high resistance to heavy metals (Cd, Zn and Pb) and various antibiotics. Further, inoculation of these ACC utilizing strains significantly increased the concentrations of water extractable Cd and Zn in soil. Moreover, a pot experiment was conducted to elucidate the effects of inoculating metal-resistant ACC utilizing strains on the growth of S. plumbizincicola and its uptake of Cd, Zn and Pb in multi-metal contaminated soils. Out of the five strains, B. pumilus E2S2 significantly increased root (146%) and shoot (17%) length, fresh (37%) and dry biomass (32%) of S. plumbizincicola as well as plant Cd uptake (43%), whereas

  7. Evolution of selenium hyperaccumulation in Stanleya (Brassicaceae) as inferred from phylogeny, physiology and X-ray microprobe analysis.

    PubMed

    Cappa, Jennifer J; Yetter, Crystal; Fakra, Sirine; Cappa, Patrick J; DeTar, Rachael; Landes, Corbett; Pilon-Smits, Elizabeth A H; Simmons, Mark P

    2015-01-01

    Past studies have identified herbivory as a likely selection pressure for the evolution of hyperaccumulation, but few have tested the origin(s) of hyperaccumulation in a phylogenetic context. We focused on the evolutionary history of selenium (Se) hyperaccumulation in Stanleya (Brassicaceae). Multiple accessions were collected for all Stanleya taxa and two outgroup species. We sequenced four nuclear gene regions and performed a phylogenetic analysis. Ancestral reconstruction was used to predict the states for Se-related traits in a parsimony framework. Furthermore, we tested the taxa for Se localization and speciation using X-ray microprobe analyses. True hyperaccumulation was found in three taxa within the S. pinnata/bipinnata clade. Tolerance to hyperaccumulator Se concentrations was found in several taxa across the phylogeny, including the hyperaccumulators. X-ray analysis revealed two distinct patterns of leaf Se localization across the genus: marginal and vascular. All taxa accumulated predominantly (65-96%) organic Se with the C-Se-C configuration. These results give insight into the evolution of Se hyperaccumulation in Stanleya and suggest that Se tolerance and the capacity to produce organic Se are likely prerequisites for Se hyperaccumulation in Stanleya. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  8. Genome Structure of the Heavy Metal Hyperaccumulator Noccaea caerulescens and Its Stability on Metalliferous and Nonmetalliferous Soils1[OPEN

    PubMed Central

    Mandáková, Terezie; Singh, Vasantika; Krämer, Ute; Lysak, Martin A.

    2015-01-01

    Noccaea caerulescens (formerly known as Thlaspi caerulescens), an extremophile heavy metal hyperaccumulator model plant in the Brassicaceae family, is a morphologically and phenotypically diverse species exhibiting metal tolerance and leaf accumulation of zinc, cadmium, and nickel. Here, we provide a detailed genome structure of the approximately 267-Mb N. caerulescens genome, which has descended from seven chromosomes of the ancestral proto-Calepineae Karyotype (n = 7) through an unusually high number of pericentric inversions. Genome analysis in two other related species, Noccaea jankae and Raparia bulbosa, showed that all three species, and thus probably the entire Coluteocarpeae tribe, have descended from the proto-Calepineae Karyotype. All three analyzed species share the chromosome structure of six out of seven chromosomes and an unusually high metal accumulation in leaves, which remains moderate in N. jankae and R. bulbosa and is extreme in N. caerulescens. Among these species, N. caerulescens has the most derived karyotype, with species-specific inversions on chromosome NC6, which grouped onto its bottom arm functionally related genes of zinc and iron metal homeostasis comprising the major candidate genes NICOTIANAMINE SYNTHASE2 and ZINC-INDUCED FACILITATOR-LIKE1. Concurrently, copper and organellar metal homeostasis genes, which are functionally unrelated to the extreme traits characteristic of N. caerulescens, were grouped onto the top arm of NC6. Compared with Arabidopsis thaliana, more distal chromosomal positions in N. caerulescens were enriched among more highly expressed metal homeostasis genes but not among other groups of genes. Thus, chromosome rearrangements could have facilitated the evolution of enhanced metal homeostasis gene expression, a known hallmark of metal hyperaccumulation. PMID:26195571

  9. Increased ecological risk due to the hyperaccumulation of As in Pteris cretica during the phytoremediation of an As-contaminated site.

    PubMed

    Jeong, Seulki; Moon, Hee Sun; Nam, Kyoungphile

    2015-03-01

    Ecological risk due to the hyperaccumulation of As in Pteris cretica during phytoremediation was evaluated at an abandoned As-contaminated site. Five receptor groups representing terrestrial invertebrates, avian insectivores, small mammals, herbivores, and omnivores were selected as potentially affected ecological receptors. Soil and food ingestion were considered as major exposure pathways. Phytoremediation was performed with P.cretica only and with both P.cretica and siderophores to enhance plant uptake of As. Ecological hazard index (EHI) values for the small mammal greatly exceeded 1.0 even after three weeks of growth regardless of siderophore application, probably due to its limited home range. For the mammalian herbivore, which mainly consumes plant foliage, the EHI values were greater than 5.73 after seven weeks without siderophore application, but the value increased sharply to 29.3 at seven weeks when siderophores were applied. This increased risk could be attributed to the facilitated translocation of As from roots to stems and leaves in P.cretica. Our results suggest that, when a phytoremediation strategy is considered for metals remediation, its ecological consequences should be taken into account to prevent the spread of hyperaccumulated heavy metals throughout the food chain of ecological receptors. Uncertainties involved in the ecological risk assessment process were also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Transformation of TNT by Aquatic Plants,

    DTIC Science & Technology

    1996-01-01

    present knowledge of metal to absorb, concentrate and precipitate toxic metals from polluted hyperaccumulator plants in order to identify those with the...Plant University of Sheffield, UK Sciences, University of Sheffield, UK Session I n a Cot.minans 1:45 Metal -Accumulating Plants: The Biological Resource...University University of Sheffield, UK Toxic metal pollution of waters and soils is a major environmental All plants take up metals to varying degrees

  11. TcOPT3, a Member of Oligopeptide Transporters from the Hyperaccumulator Thlaspi caerulescens, Is a Novel Fe/Zn/Cd/Cu Transporter

    PubMed Central

    Hu, Yi Ting; Ming, Feng; Chen, Wei Wei; Yan, Jing Ying; Xu, Zheng Yu; Li, Gui Xin; Xu, Chun Yan; Yang, Jian Li; Zheng, Shao Jian

    2012-01-01

    Background Thlaspi caerulescens is a natural selected heavy metal hyperaccumulator that can not only tolerate but also accumulate extremely high levels of heavy metals in the shoots. Thus, to identify the transportors involved in metal long-distance transportation is very important for understanding the mechanism of heavy metal accumulation in this hyperaccumulator. Methodology/Principal Findings We cloned and characterized a novel gene TcOPT3 of OPT family from T. caerulescens. TcOPT3 was pronouncedly expressed in aerial parts, including stem and leaf. Moreover, in situ hybridization analyses showed that TcOPT3 expressed in the plant vascular systems, especially in the pericycle cells that may be involved in the long-distance transportation. The expression of TcOPT3 was highly induced by iron (Fe) and zinc (Zn) deficiency, especially in the stem and leaf. Sub-cellular localization showed that TcOPT3 was a plasma membrane-localized protein. Furthermore, heterogonous expression of TcOPT3 by mutant yeast (Saccharomyces cerevisiae) complementation experiments demonstrated that TcOPT3 could transport Fe2+ and Zn2+. Moreover, expression of TcOPT3 in yeast increased metal (Fe, Zn, Cu and Cd) accumulation and resulted in an increased sensitivity to cadmium (Cd) and copper (Cu). Conclusions Our data demonstrated that TcOPT3 might encode an Fe/Zn/Cd/Cu influx transporter with broad-substrate. This is the first report showing that TcOPT3 may be involved in metal long-distance transportation and contribute to the heavy metal hyperaccumulation. PMID:22761683

  12. Selection and Validation of Reference Genes for Real-Time Quantitative PCR in Hyperaccumulating Ecotype of Sedum alfredii under Different Heavy Metals Stresses

    PubMed Central

    Liu, Mingying; Qiao, Guirong; Jiang, Jing; Zhuo, Renying

    2013-01-01

    Real-time Quantitative PCR (RT-qPCR) has become an effective method for accurate analysis of gene expression in several biological systems as well as under different experimental conditions. Although with high sensitivity, specificity and broad dynamic range, this method requires suitable reference genes for transcript normalization in order to guarantee reproducible and meaningful results. In the present study, we evaluated five traditional housekeeping genes and five novel reference genes in Hyperaccumulating ecotype of Sedum alfredii, a well known hyperaccumulator for heavy metals phytoremediation, under Cd, Pb, Zn and Cu stresses of seven different durations. The expression stability of these ten candidates were determined with three programs - geNorm, NormFinder and BestKeeper. The results showed that all the selected reference genes except for SAND could be used for RT-qPCR normalization. Among them UBC9 and TUB were ranked as the most stable candidates across all samples by three programs together. For the least stable reference genes, however, BestKeeper produced different results compared with geNorm and NormFinder. Meanwhile, the expression profiles of PCS under Cd, Pb, Zn and Cu stresses were assessed using UBC9 and TUB respectively, and similar trends were obtained from the results of the two groups. The distinct expression patterns of PCS indicated that various strategies could be taken by plants in adaption to different heavy metals stresses. This study will provide appropriate reference genes for further gene expression quantification using RT-qPCR in Hyperaccumulator S. alfredii. PMID:24340067

  13. TcOPT3, a member of oligopeptide transporters from the hyperaccumulator Thlaspi caerulescens, is a novel Fe/Zn/Cd/Cu transporter.

    PubMed

    Hu, Yi Ting; Ming, Feng; Chen, Wei Wei; Yan, Jing Ying; Xu, Zheng Yu; Li, Gui Xin; Xu, Chun Yan; Yang, Jian Li; Zheng, Shao Jian

    2012-01-01

    Thlaspi caerulescens is a natural selected heavy metal hyperaccumulator that can not only tolerate but also accumulate extremely high levels of heavy metals in the shoots. Thus, to identify the transportors involved in metal long-distance transportation is very important for understanding the mechanism of heavy metal accumulation in this hyperaccumulator. We cloned and characterized a novel gene TcOPT3 of OPT family from T. caerulescens. TcOPT3 was pronouncedly expressed in aerial parts, including stem and leaf. Moreover, in situ hybridization analyses showed that TcOPT3 expressed in the plant vascular systems, especially in the pericycle cells that may be involved in the long-distance transportation. The expression of TcOPT3 was highly induced by iron (Fe) and zinc (Zn) deficiency, especially in the stem and leaf. Sub-cellular localization showed that TcOPT3 was a plasma membrane-localized protein. Furthermore, heterogonous expression of TcOPT3 by mutant yeast (Saccharomyces cerevisiae) complementation experiments demonstrated that TcOPT3 could transport Fe(2+) and Zn(2+). Moreover, expression of TcOPT3 in yeast increased metal (Fe, Zn, Cu and Cd) accumulation and resulted in an increased sensitivity to cadmium (Cd) and copper (Cu). Our data demonstrated that TcOPT3 might encode an Fe/Zn/Cd/Cu influx transporter with broad-substrate. This is the first report showing that TcOPT3 may be involved in metal long-distance transportation and contribute to the heavy metal hyperaccumulation.

  14. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases.

    PubMed

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-09-28

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction.

  15. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    PubMed Central

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-01-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5–8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5–8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5–8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction. PMID:26412036

  16. Successful seed germination of the nickel hyperaccumulator Stackhousia tryonii.

    PubMed

    Bhatia, Naveen P; Nkang, Ani E; Walsh, Kerry B; Baker, Alan J M; Ashwath, Nanjappa; Midmore, David J

    2005-07-01

    Stackhousia tryonii, a rare nickel hyperaccumulating herb, is endemic to ultramafic (serpentine) soils of central Queensland, Australia. The effects of eight dormancy-relieving treatments on germination of stored seeds of Stackhousia tryonii were investigated under controlled light and temperature conditions. * The treatments were: untreated (control i), leached and dehydrated (primed control ii), treating with gibberellic acid (150 and 300 microM), smoke extract (5 and 10 %, v/v) and potassium cyanide (40 and 80 mM). * Freshly harvested seeds did not germinate. Germination percentage increased with time of storage for up to 18 months (38.3 %). Gibberellin, smoke extract and cyanide treatments did not significantly improve germination. Light did not affect seed germination and there was no interaction between dormancy-relieving treatments and light. A significant inhibition of germination occurred in seeds treated with 5 % (but not 10 %) aqueous smoke extract. Saturated fatty acids, predominantly tridecanoic (C13:0), constituted about 90 % of the total fatty acids in the oil of freshly harvested seeds. In contrast, there was increased accumulation (>75 %) of mono-unsaturated (oleic, c18:1) and poly-unsaturated (linoleic, c18:2; linolenic, c18:3) fatty acids in the oil of stored seeds. * Seeds of S. tryonii require an after-ripening period for germination.

  17. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens.

    PubMed

    Whiting, S N; de Souza, M P; Terry, N

    2001-08-01

    Thlaspi caerulescens has a remarkable ability to hyperaccumulate Zn from soils containing mostly nonlabile Zn. The present study shows that rhizosphere microbes play an important role in increasing the availability of water-soluble Zn in soil, thus enhancing Zn accumulation by T. caerulescens. The addition of bacteria to surface-sterilized seeds of T. caerulescens sown in autoclaved soil increased the Zn concentration in shoots 2-fold as compared to axenic controls; the total accumulation of Zn was enhanced 4-fold. When the same experiment was conducted with Thlaspi arvense, a nonaccumulator, bacteria had no effect on shoot Zn accumulation although they increased water-soluble Zn concentrations available to both Thlaspi species by 22-67% as compared to the axenic controls. Further evidence that bacteria increase the availability of water-soluble Zn in soil was obtained when liquid media that had supported bacterial growth mobilized 1.3-1.8-fold more Zn from soil as compared to axenic media. Other experiments with agar media showed that bacteria did not facilitate an increase in the rate of soluble Zn transport into the root nor did they enlarge the surface area of the roots of either Thlaspi species. Thus, the bacterially mediated increase in the dissolution of Zn from the nonlabile phase in soil may enhance Zn accumulation in T. caerulescens shoots.

  18. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    NASA Astrophysics Data System (ADS)

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-09-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction.

  19. Pb and Zn accumulation in a Cd-hyperaccumulator (Viola baoshanensis).

    PubMed

    Wu, Chuan; Liao, Bin; Wang, Sheng-Long; Zhang, Jun; Li, Jin-Tian

    2010-08-01

    Viola baoshanensis has been identified as a Cd-hyperaccumulator, however, its ability to accumulate Pb or Zn is less certain. Therefore, this study focused on determining whether or not V. baoshanensis can accumulate Pb or Zn, by means of field survey, hydroponic and pot experiments. In addition, we also tried to obtain further information on the Cd hyperaccumulating characteristics of this species. Under field conditions, V. baoshanensis accumulated on average 1090 mg Cd kg(-1), 1902 mg Pb kg(-1) and 3428 mg Zn kg(-1) in its shoots, respectively. In hydroponic and pot experiments, V. baoshanensis showed high tolerance to Cd, Pb, and Zn, as well as the ability to accumulate exceptionally high concentrations of the three elements in its shoots (> 2% Cd, > 1% Pb, and > 0.5% Zn on a dry matter basis). These results, taken together, suggested that V. baoshanensis is not only a Cd-hyperaccumulator, but also a strong accumulator of Pb and Zn.

  20. Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella.

    PubMed

    Borovicka, Jan; Randa, Zdenek; Jelínek, Emil; Kotrba, Pavel; Dunn, Colin E

    2007-11-01

    Two ectomycorrhizal macrofungal Amanita species of the section Lepidella, A. strobiliformis and A. solitaria, were found to hyperaccumulate silver (Ag). All samples were collected from non-argentiferous areas with background Ag content in soils (0.07-1.01 mgkg(-1) Ag). The Ag contents of both Amanita species were mostly in the range of 200-700 mgkg(-1)D.W. with the highest Ag content of 1253 mgkg(-1) in one sample of A. strobiliformis. Silver concentrations in macrofungal fruit bodies were commonly 800-2500 times higher than in underlying soils. A. strobiliformis and A. solitaria are the first eukaryotic organisms known to hyperaccumulate Ag.

  1. Selection of appropriate organic additives for enhancing Zn and Cd phytoextraction by hyperaccumulators.

    PubMed

    Wu, Qi-tang; Deng, Jin-chuan; Long, Xin-xian; Morel, Jean-louis; Schwartz, Christophe

    2006-01-01

    Chelant-enhanced phytoextraction is one of the most promising technologies to remove heavy metals from soil. The key of the technology is to choose suitable additives in combination with a suitable plant. In the present study, laboratory batch experiment of metal solubilization, cress seeds germination were undertaken to investigate the metal-mobilizing capability and the phytotoxicity of organic additives, including ethylene diamine triacetic acid (EDTA), citric acid, acetic acid, oxalic acid, glutamine and monosodium glutamate waste liquid (MGWL) from food industry. Experiments in pots were carried out to study the effects of the additives on Zn and Cd phytoextraction. Furthermore, a leaching experiment with lysimeter was performed to evaluate the environmental risks of additive-induced leaching to underground water. The results showed that EDTA had a strong mobilizing ability for Zn and Cd, followed by mixed reagent (MR) and MGWL. MGWL and acetic acid at 5 mmol equivalent per liter resulted in seed germination index less than 2%. Experiments in pots verified the phytotoxicity of acetic acid and MGWL. Addition of the mixed reagent at 6-10 mmol/kg significantly increased Zn phytoextraction by Thlaspi caerulescens. The same for EDTA and the mixed reagent at 10 mmol/kg by Sedum alfredii. But only mixed reagents could significantly increase Cd phytoextraction by the studied hyperaccumulators. This suggested that the strong chelant was not always the good agent to enhance phytoextraction. S. alfredii combined with 2-10 mmol/kg soil MR was preferred for phytoremediation of Cd/Zn contaminated soils in southern China, this could result in high phytoextraction of Cd/Zn and reduce the leaching risk to underground water than EDTA assisted phytoextration.

  2. Chromate and phosphate inhibited each other's uptake and translocation in arsenic hyperaccumulator Pteris vittata L.

    PubMed

    de Oliveira, Letúzia M; Lessl, Jason T; Gress, Julia; Tisarum, Rujira; Guilherme, Luiz R G; Ma, Lena Q

    2015-02-01

    We investigated the effects of chromate (CrVI) and phosphate (P) on their uptake and translocation in As-hyperaccumulator Pteris vittata (PV). Plants were exposed to 1) 0.10 mM CrVI and 0, 0.25, 1.25, or 2.50 mM P or 2) 0.25 mM P and 0, 0.50, 2.5 or 5.0 mM CrVI for 24 h in hydroponics. PV accumulated 2919 mg/kg Cr in the roots at CrVI₀.₁₀, and 5100 and 3500 mg/kg P in the fronds and roots at P₀.₂₅. When co-present, CrVI and P inhibited each other's uptake in PV. Increasing P concentrations reduced Cr root concentrations by 62-82% whereas increasing CrVI concentrations reduced frond P concentrations by 52-59% but increased root P concentrations by 11-15%. Chromate reduced P transport, with more P being accumulated in PV roots. Though CrVI was supplied, 64-78% and 92-93% CrIII were in PV fronds and roots. Based on X-ray diffraction, Cr₂O₃ was detected in the roots confirming CrVI reduction to CrIII by PV. In short, CrVI and P inhibited each other in uptake and translocation by PV, and CrVI reduction to CrIII in PV roots served as its detoxification mechanism. The finding helps to understand the interactions of P and Cr during their uptake in PV.

  3. Hyperaccumulation of Zn by Thlaspi caerulescens can ameliorate Zn toxicity in the rhizosphere of cocropped Thlaspi arvense.

    PubMed

    Whiting, S N; Leake, J R; McGrath, S P; Baker, A J

    2001-08-01

    The metal hyperaccumulating plant Thlaspi caerulescens is effective in depleting plant-available metals from the soil. We hypothesized that this reduction of toxic metals in the rhizosphere of T. caerulescens would increase the growth of less metal-tolerant plants with their roots permitted to intermingle and develop coincident rhizospheres. The extent of rhizosphere interaction between T. caerulescens and a coplanted nonaccumulator species, Thlaspi arvense, was controlled using barriers. Two media with elevated concentrations of water-extractable Zn were prepared by enriching one soil with zinc oxide (ZnO) or zinc sulfide (ZnS). The shoot mass of T. arvense was increased by 30% when its roots were permitted to intermingle with those of T. caerulescens in the ZnO treatment. The concomitant 2-3-fold reduction in shoot Zn concentration in T. arvense confirmed that its improved growth was associated with reduced uptake and phytotoxicity of Zn. Thlaspi arvense also showed increased growth and reduced metal uptake when cocropped with T. caerulescens in the ZnS treatment. We conclude that the strong Zn accumulation by T. caerulescens might enhance the establishment and development of surrounding less-tolerant species on soils that are naturally- or anthropogenically-enriched with metals.

  4. Microbial siderophores and root exudates enhanced goethite dissolution and Fe/As uptake by As-hyperaccumulator Pteris vittata.

    PubMed

    Liu, Xue; Fu, Jing-Wei; Da Silva, Evandro; Shi, Xiao-Xia; Cao, Yue; Rathinasabapathi, Bala; Chen, Yanshan; Ma, Lena Q

    2017-04-01

    Arsenic (As) in soils is often adsorbed on Fe-(hydro)oxides surface, rendering them more resistant to dissolution, which is undesirable for phytoremediation of As-contaminated soils. Arsenic hyperaccumulator Pteris vittata prefers to grow in calcareous soils where available Fe and As are low. To elucidate its mechanisms of acquiring Fe and As from insoluble sources in soils, we investigated dissolution of goethite with pre-adsorbed arsenate (AsV; As-goethite) in presence of four organic ligands, including two root exudates (oxalate and phytate, dominant in P. vittata) and two microbial siderophores (PG12-siderophore and desferrioxamine B). Their presence increased As solubilization from As-goethite from 0.03 to 0.27-5.33 mg L(-1) compared to the control. The siderophore/phytate bi-ligand treatment released 7.42 mg L(-1) soluble Fe, which was 1.2-fold that of the sum of siderophore and phytate, showing a synergy in promoting As-goethite dissolution. In the ligand-mineral-plant system, siderophore/phytate was most effective in releasing As and Fe from As-goethite. Moreover, the continuous plant uptake induced more As-goethite dissolution. The continued release of As and Fe significantly enhanced their plant uptake (from 0.01 to 0.43 mg plant(-1) As and 2.7-14.8 mg plant(-1) Fe) and plant growth (from 1.2 to 3.1 g plant(-1) fw) in P. vittata. Since microbial siderophores and root exudates often coexist in soil rhizosphere, their synergy in enhancing dissolution of insoluble As-Fe minerals may play an important role in efficient phytoremediation of As-contaminated soils.

  5. Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors.

    PubMed

    Weber, Michael; Harada, Emiko; Vess, Christoph; Roepenack-Lahaye, Edda v; Clemens, Stephan

    2004-01-01

    The hyperaccumulation of zinc (Zn) and cadmium (Cd) is a constitutive property of the metallophyte Arabidopsis halleri. We therefore used Arabidopsis GeneChips to identify genes more active in roots of A. halleri as compared to A. thaliana under control conditions. The two genes showing highest expression in A. halleri roots relative to A. thaliana roots out of more than 8000 genes present on the chip encode a nicotianamine (NA) synthase and a putative Zn2+ uptake system. The significantly higher activity of these and other genes involved in metal homeostasis under various growth conditions was confirmed by Northern and RT-PCR analyses. A. halleri roots also show higher NA synthase protein levels. Furthermore, we developed a capillary liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (CapLC-ESI-QTOF-MS)-based NA analysis procedure and consistently found higher NA levels in roots of A. halleri. Expression of a NA synthase in Zn2+-hypersensitive Schizosaccharomyces pombe cells demonstrated that formation of NA can confer Zn2+ tolerance. Taken together, these observations implicate NA in plant Zn homeostasis and NA synthase in the hyperaccumulation of Zn by A. halleri. Furthermore, the results show that comparative microarray analysis of closely related species can be a valuable tool for the elucidation of phenotypic differences between such species.

  6. Nitrate facilitates cadmium uptake, transport and accumulation in the hyperaccumulator Sedum plumbizincicola.

    PubMed

    Hu, Pengjie; Yin, Yong-Gen; Ishikawa, Satoru; Suzui, Nobuo; Kawachi, Naoki; Fujimaki, Shu; Igura, Masato; Yuan, Cheng; Huang, Jiexue; Li, Zhu; Makino, Tomoyuki; Luo, Yongming; Christie, Peter; Wu, Longhua

    2013-09-01

    The aims of this study are to investigate whether and how the nitrogen form (nitrate (NO3 (-)) versus ammonium (NH4 (+))) influences cadmium (Cd) uptake and translocation and subsequent Cd phytoextraction by the hyperaccumulator species Sedum plumbizincicola. Plants were grown hydroponically with N supplied as either NO3 (-) or NH4 (+). Short-term (36 h) Cd uptake and translocation were determined innovatively and quantitatively using a positron-emitting (107)Cd tracer and positron-emitting tracer imaging system. The results show that the rates of Cd uptake by roots and transport to the shoots in the NO3 (-) treatment were more rapid than in the NH4 (+) treatment. After uptake for 36 h, 5.6 (0.056 μM) and 29.0 % (0.290 μM) of total Cd in the solution was non-absorbable in the NO3 (-) and NH4 (+) treatments, respectively. The local velocity of Cd transport was approximately 1.5-fold higher in roots (3.30 cm h(-1)) and 3.7-fold higher in shoots (10.10 cm h(-1)) of NO3 (-)- than NH4 (+)-fed plants. Autoradiographic analysis of (109)Cd reveals that NO3 (-) nutrition enhanced Cd transportation from the main stem to branches and young leaves. Moreover, NO3 (-) treatment increased Cd, Ca and K concentrations but inhibited Fe and P in the xylem sap. In a 21-day hydroponic culture, shoot biomass and Cd concentration were 1.51 and 2.63 times higher in NO3 (-)- than in NH4 (+)-fed plants. We conclude that compared with NH4 (+), NO3 (-) promoted the major steps in the transport route followed by Cd from solution to shoots in S. plumbizincicola, namely its uptake by roots, xylem loading, root-to-shoot translocation in the xylem and uploading to the leaves. S. plumbizincicola prefers NO3 (-) nutrition to NH4 (+) for Cd phytoextraction.

  7. High-throughput fluorescence-activated cell sorting for lipid hyperaccumulating Chlamydomonas reinhardtii mutants.

    PubMed

    Xie, Bo; Stessman, Dan; Hart, Jason H; Dong, Haili; Wang, Yingjun; Wright, David A; Nikolau, Basil J; Spalding, Martin H; Halverson, Larry J

    2014-09-01

    The genetically tractable microalga Chlamydomonas reinhardtii has many advantages as a model for renewable bioproducts and/or biofuels production. However, one limitation of C. reinhardtii is its relatively low-lipid content compared with some other algal species. To overcome this limitation, we combined ethane methyl sulfonate mutagenesis with fluorescence-activated cell sorting (FACS) of cells stained with the lipophilic stain Nile Red to isolate lipid hyperaccumulating mutants of C. reinhardtii. By manipulating the FACS gates, we sorted mutagenized cells with extremely high Nile Red fluorescence signals that were rarely detected in nonmutagenized populations. This strategy successfully isolated several putative lipid hyperaccumulating mutants exhibiting 23% to 58% (dry weight basis) higher fatty acid contents than their progenitor strains. Significantly, for most mutants, nitrogen starvation was not required to attain high-lipid content nor was there a requirement for a deficiency in starch accumulation. Microscopy of Nile Red stained cells revealed that some mutants exhibit an increase in the number of lipid bodies, which correlated with TLC analysis of triacyglycerol content. Increased lipid content could also arise through increased biomass production. Collectively, our findings highlight the ability to enhance intracellular lipid accumulation in algae using random mutagenesis in conjunction with a robust FACS and lipid yield verification regime. Our lipid hyperaccumulating mutants could serve as a genetic resource for stacking additional desirable traits to further increase lipid production and for identifying genes contributing to lipid hyperaccumulation, without lengthy lipid-induction periods.

  8. The leguminous species Anthyllis vulneraria as a Zn-hyperaccumulator and eco-Zn catalyst resources.

    PubMed

    Grison, Claire M; Mazel, Marine; Sellini, Amandine; Escande, Vincent; Biton, Jacques; Grison, Claude

    2015-04-01

    Anthyllis vulneraria was highlighted here as a Zn-hyperaccumulator for the development of a pilot phytoextraction process in the mine site of Les Avinières in the district of Saint-Laurent-Le-Minier. A. vulneraria appeared to hyperaccumulate the highest concentration of Zn in shoots with a better metal selectivity relative to Cd and Pb than the reference Zn-hyperaccumulator Noccea caerulescens. A bigger biomass production associated to a higher Zn concentration conducted A. vulneraria to the highest total zinc gain per hectare per year. As a legume, A. vulneraria was infected by rhizobia symbionts. Inoculation of A. vulneraria seeds showed a positive impact on Zn hyperaccumulation. A large-scale culture process of symbiotic rhizobia of A. vulneraria was investigated and optimized to allow large-scale inoculation process. Contaminated shoots of A. vulneraria were not considered as wastes and were recovered as Eco-Zn catalyst in particular, examples of organic synthesis, electrophilic aromatic substitution. Eco-Zn catalyst was much more efficient than conventional catalysts and allowed greener chemical processes.

  9. Zinc hyperaccumulation substitutes for defense failures beyond salicylate and jasmonate signaling pathways of Alternaria brassicicola attack in Noccaea caerulescens.

    PubMed

    Gallego, Berta; Martos, Soledad; Cabot, Catalina; Barceló, Juan; Poschenrieder, Charlotte

    2017-04-01

    The hypothesis of metal defense as a substitute for a defective biotic stress signaling system in metal hyperaccumulators was tested using the pathosystem Alternaria brassicicola-Noccaea caerulescens under low (2 µM), medium (12 µM) and high (102 µM) Zn supply. Regardless the Zn supply, N. caerulescens responded to fungal attack with the activation of both HMA4 coding for a Zn transporter, and biotic stress signaling pathways. Salicylate, jasmonate, abscisic acid and indoleacetic acid concentrations, as well as biotic stress marker genes (PDF1.2, CHIB, LOX2, PR1 and BGL2) were activated 24 h upon inoculation. Based on the activation of defense genes 24 h after the inoculation an incompatible fungal-plant interaction could be predicted. Nonetheless, in the longer term (7 days) no effective protection against A. brassicicola was achieved in plants exposed to low and medium Zn supply. After 1 week the biotic stress markers were even further increased in these plants, and this compatible interaction was apparently not caused by a failure in the signaling of the fungal attack, but due to the lack of specificity in the type of the activated defense mechanisms. Only plants receiving high Zn exhibited an incompatible fungal interaction. High Zn accumulation in these plants, possibly in cooperation with high glucosinolate concentrations, substituted for the ineffective defense system and the interaction turned into incompatible. In a threshold-type response, these joint effects efficiently hampered fungal spread and, consequently decreased the biotic stress signaling. © 2016 Scandinavian Plant Physiology Society.

  10. Disruption of a rice gene for α-glucan water dikinase, OsGWD1, leads to hyperaccumulation of starch in leaves but exhibits limited effects on growth

    PubMed Central

    Hirose, Tatsuro; Aoki, Naohiro; Harada, Yusuke; Okamura, Masaki; Hashida, Yoichi; Ohsugi, Ryu; Akio, Miyao; Hirochika, Hirohiko; Terao, Tomio

    2013-01-01

    To identify potential regulators of photoassimilate partitioning, we screened for rice mutant plants that accumulate high levels of starch in the leaf blades, and a mutant line leaf starch excess 1 (LSE1) was obtained and characterized. The starch content in the leaf blades of LSE1 was more than 10-fold higher than that in wild-type plants throughout the day, while the sucrose content was unaffected. The gene responsible for the LSE1 phenotype was identified by gene mapping to be a gene encoding α-glucan water dikinase, OsGWD1 (Os06g0498400), and a 3.4-kb deletion of the gene was found in the mutant plant. Despite the hyperaccumulation of starch in their leaf blades, LSE1 plants exhibited no significant change in vegetative growth, presenting a clear contrast to the reported mutants of Arabidopsis thaliana and Lotus japonicus in which disruption of the genes for α-glucan water dikinase leads to marked inhibition of vegetative growth. In reproductive growth, however, LSE1 exhibited fewer panicles per plant, lower percentage of ripened grains and smaller grains; consequently, the grain yield was lower in LSE1 plants than in wild-type plants by 20~40%. Collectively, although α-glucan water dikinase was suggested to have universal importance in leaf starch degradation in higher plants, the physiological priority of leaf starch in photoassimilate allocation may vary among plant species. PMID:23750161

  11. Quantitative elemental localisation in leaves and stems of nickel hyperaccumulating shrub Hybanthusfloribundus subsp. floribundus using micro-PIXE spectroscopy

    NASA Astrophysics Data System (ADS)

    Kachenko, Anthony G.; Singh, Balwant; Bhatia, Naveen P.; Siegele, Rainer

    2008-02-01

    Hybanthusfloribundus (Lindl.) F.Muell. subsp. floribundus is a native Australian nickel (Ni) hyperaccumulating shrub and a promising species for rehabilitation and phytoremediation of Ni tailings. Spatial localisation and quantification of Ni in leaf and stem tissues of H.floribundus subsp. floribundus was studied using micro-proton-induced X-ray emission (micro-PIXE) spectroscopy. Young plants, grown in a potting mix under controlled glasshouse conditions were exposed to Ni concentrations of 0 and 26 mM kg-1 for 20 weeks. Leaf and stem samples were hand-sectioned and freeze-dried prior to micro-PIXE analysis. Elemental distribution maps of leaves revealed Ni concentration of 7800 mg kg-1 dry weight (DW) in whole leaf sections, which was identical to the bulk tissue analysis. Elemental maps showed that Ni was preferentially localised in the adaxial epidermis (10,000 mg kg-1 DW) and reached a maximum of up to 10,000 mg kg-1 DW in the leaf margin. Freeze-dried stem sections from the same plants contained lower Ni than leaf tissues (1800 mg kg-1 versus 7800 mg kg-1 DW, respectively), however did not resolve a clear pattern of compartmentalisation across different anatomical regions. Our results suggest localisation in epidermal cells is an important physiological mechanism involved in Ni accumulation and tolerance in leaves of H.floribundus subsp. floribundus.

  12. Pint-sized plants pack a punch in fight against heavy metals

    SciTech Connect

    Boyd, V.

    1996-05-01

    USDA researchers are experimenting with plants that naturally scavenge heavy metals such as cadmium and zinc from the soil. Known as hyperaccumulators, the plants can store up to 2.5% of their dry weight in heavy metals in leaves without yield reductions. They can be grown, harvested, and dried. The dried material is then burned, and the metal ore can be recovered. As well as discussing the history of hyperaccumulators, this article focuses on the plant pennycress and work on improving its metal uptake.

  13. Sulfate and chromate increased each other's uptake and translocation in As-hyperaccumulator Pteris vittata.

    PubMed

    de Oliveira, Letúzia M; Gress, Julia; De, Jaysankar; Rathinasabapathi, Bala; Marchi, Giuliano; Chen, Yanshan; Ma, Lena Q

    2016-03-01

    We investigated the effects of chromate (CrVI) and sulfate on their uptake and translocation in As-hyperaccumulator Pteris vittata. Plants were exposed to 1) 0.1 mM CrVI and 0, 0.25, 1.25 or 2.5 mM sulfate or 2) 0.25 mM sulfate and 0, 0.5, 2.5 or 5.0 mM CrVI for 1 d in hydroponics. P. vittata accumulated 26 and 1261 mg kg(-1) Cr in the fronds and roots at CrVI0.1, and 2197 and 1589 mg kg(-1) S in the fronds and roots at S0.25. Increasing sulfate concentrations increased Cr root concentrations by 16-66% and helped CrVI reduction to CrIII whereas increasing CrVI concentrations increased frond sulfate concentrations by 3-27%. Increasing sulfate concentrations enhanced TBARS concentrations in the biomass, indicating oxidative stress caused lipid peroxidation in plant cell membranes. However, addition of 0.25-2.5 mM sulfate alleviated CrVI's toxic effects and decreased TBARS from 23.5 to 9.46-12.3 μmol g(-1) FW. Though CrVI was supplied, 78-96% of CrIII was in the biomass, indicating efficient CrVI reduction to CrIII by P. vittata. The data indicated the amazing ability of P. vittata in Cr uptake at 289 mg kg(-1) h(-1) with little translocation to the fronds. These results indicated that P. vittata had potential in Cr phytoremediation in contaminated sites but further studies are needed to evaluate this potential. The facts that CrVI and sulfate helped each other in uptake by P. vittata suggest that CrVI was not competing with sulfate uptake in P. vittata. However, the mechanisms of how sulfate and CrVI enhance each other's accumulation in P. vittata need further investigation.

  14. The fascinating facets of plant selenium accumulation - biochemistry, physiology, evolution and ecology.

    PubMed

    Schiavon, Michela; Pilon-Smits, Elizabeth A H

    2017-03-01

    Contents 1582 I. 1582 II. 1583 III. 1588 IV. 1590 V. 1592 1592 References 1592 SUMMARY: The importance of selenium (Se) for medicine, industry and the environment is increasingly apparent. Se is essential for many species, including humans, but toxic at elevated concentrations. Plant Se accumulation and volatilization may be applied in crop biofortification and phytoremediation. Topics covered here include beneficial and toxic effects of Se on plants, mechanisms of Se accumulation and tolerance in plants and algae, Se hyperaccumulation, and ecological and evolutionary aspects of these processes. Plant species differ in the concentration and forms of Se accumulated, Se partitioning at the whole-plant and tissue levels, and the capacity to distinguish Se from sulfur. Mechanisms of Se hyperaccumulation and its adaptive significance appear to involve constitutive up-regulation of sulfate/selenate uptake and assimilation, associated with elevated concentrations of defense-related hormones. Hyperaccumulation has evolved independently in at least three plant families, probably as an elemental defense mechanism and perhaps mediating elemental allelopathy. Elevated plant Se protects plants from generalist herbivores and pathogens, but also gives rise to the evolution of Se-resistant specialists. Plant Se accumulation affects ecological interactions with herbivores, pollinators, neighboring plants, and microbes. Hyperaccumulation tends to negatively affect Se-sensitive ecological partners while facilitating Se-resistant partners, potentially affecting species composition and Se cycling in seleniferous ecosystems.

  15. Evidence of various mechanisms of Cd sequestration in the hyperaccumulator Arabidopsis halleri, the non-accumulator Arabidopsis lyrata, and their progenies by combined synchrotron-based techniques.

    PubMed

    Isaure, Marie-Pierre; Huguet, Stéphanie; Meyer, Claire-Lise; Castillo-Michel, Hiram; Testemale, Denis; Vantelon, Delphine; Saumitou-Laprade, Pierre; Verbruggen, Nathalie; Sarret, Géraldine

    2015-06-01

    Arabidopsis halleri is a model plant for Zn and Cd hyperaccumulation. The objective of this study was to determine the relationship between the chemical forms of Cd, its distribution in leaves, and Cd accumulation and tolerance. An interspecific cross was carried out between A. halleri and the non-tolerant and non-hyperaccumulating relative A. lyrata providing progenies segregating for Cd tolerance and accumulation. Cd speciation and distribution were investigated using X-ray absorption spectroscopy and microfocused X-ray fluorescence. In A. lyrata and non-tolerant progenies, Cd was coordinated by S atoms only or with a small contribution of O groups. Interestingly, the proportion of O ligands increased in A. halleri and tolerant progenies, and they were predominant in most of them, while S ligands were still present. Therefore, the binding of Cd with O ligands was associated with Cd tolerance. In A. halleri, Cd was mainly located in the xylem, phloem, and mesophyll tissue, suggesting a reallocation process for Cd within the plant. The distribution of the metal at the cell level was further discussed. In A. lyrata, the vascular bundles were also Cd enriched, but the epidermis was richer in Cd as compared with the mesophyll. Cd was identified in trichomes of both species. This work demonstrated that both Cd speciation and localization were related to the tolerance character of the plant. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Identification of a novel pathway involving a GATA transcription factor in yeast and possibly plant Zn uptake and homeostasis

    USDA-ARS?s Scientific Manuscript database

    To gain a better understanding of the regulation of Zn homeostasis in plants and the degree of conservation of Zn homeostasis between plants and yeast, a cDNA library from the Zn/Cd hyperaccumulating plant species, Nocceae caerulescens, was screened for its ability to restore growth under Zn limitin...

  17. Expression of the ZNT1 Zinc Transporter from the Metal Hyperaccumulator Noccaea caerulescens Confers Enhanced Zinc and Cadmium Tolerance and Accumulation to Arabidopsis thaliana

    PubMed Central

    Schat, Henk; Aarts, Mark G. M.

    2016-01-01

    Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis. We examined if the NcZNT1 function contributes to the metal hyperaccumulation of N. caerulescens. NcZNT1 was found to be a plasma-membrane located metal transporter. Constitutive overexpression of NcZNT1 in A. thaliana conferred enhanced tolerance to exposure to excess Zn and Cd supply, as well as increased accumulation of Zn and Cd and induction of the Fe deficiency response, when compared to non-transformed wild-type plants. Promoters of both genes were induced by Zn deficiency in roots and shoots of A. thaliana. In A. thaliana, the AtZIP4 and NcZNT1 promoters were mainly active in cortex, endodermis and pericycle cells under Zn deficient conditions. In N. caerulescens, the promoters were active in the same tissues, though the activity of the NcZNT1 promoter was higher and not limited to Zn deficient conditions. Common cis elements were identified in both promoters by 5’ deletion analysis. These correspond to the previously determined Zinc Deficiency Responsive Elements found in A. thaliana to interact with two redundantly acting transcription factors, bZIP19 and bZIP23, controlling the Zn deficiency response. In conclusion, these results suggest that NcZNT1 is an important factor in contributing to Zn and Cd hyperaccumulation in N. caerulescens. Differences in cis- and trans-regulators are likely to account for the differences in expression between A. thaliana and N. caerulescens. The high, constitutive NcZNT1 expression in the stele of N. caerulescens roots implicates its involvement in long distance root-to-shoot metal transport by maintaining a Zn/Cd influx into cells responsible for xylem loading. PMID:26930473

  18. Rinorea niccolifera (Violaceae), a new, nickel-hyperaccumulating species from Luzon Island, Philippines

    PubMed Central

    Fernando, Edwino S.; Quimado, Marilyn O.; Doronila, Augustine I.

    2014-01-01

    Abstract A new, nickel-hyperaccumulating species of Rinorea (Violaceae), Rinorea niccolifera Fernando, from Luzon Island, Philippines, is described and illustrated. This species is most similar to the widespread Rinorea bengalensis by its fasciculate inflorescences and smooth subglobose fruits with 3 seeds, but it differs by its glabrous ovary with shorter style (5 mm long), the summit of the staminal tube sinuate to entire and the outer surface smooth, generally smaller leaves (3–8 cm long × 2–3 cm wide), and smaller fruits (0.6–0.8 cm diameter). Rinorea niccolifera accumulates to >18,000 µg g-1 of nickel in its leaf tissues and is thus regarded as a Ni hyperaccumulator. PMID:24843295

  19. Rinorea niccolifera (Violaceae), a new, nickel-hyperaccumulating species from Luzon Island, Philippines.

    PubMed

    Fernando, Edwino S; Quimado, Marilyn O; Doronila, Augustine I

    2014-01-01

    A new, nickel-hyperaccumulating species of Rinorea (Violaceae), Rinorea niccolifera Fernando, from Luzon Island, Philippines, is described and illustrated. This species is most similar to the widespread Rinorea bengalensis by its fasciculate inflorescences and smooth subglobose fruits with 3 seeds, but it differs by its glabrous ovary with shorter style (5 mm long), the summit of the staminal tube sinuate to entire and the outer surface smooth, generally smaller leaves (3-8 cm long × 2-3 cm wide), and smaller fruits (0.6-0.8 cm diameter). Rinorea niccolifera accumulates to >18,000 µg g(-1) of nickel in its leaf tissues and is thus regarded as a Ni hyperaccumulator.

  20. Localization of nickel in tissues of Streptanthus polygaloides Gray (Cruciferae) and endemic nickel hyperaccumulators from California.

    PubMed

    Sánchez-Mata, Daniel; de la Fuente, Vicenta; Rufo, Lourdes; Rodríguez, Nuria; Amils, Ricardo

    2014-01-01

    The genus Streptanthus Nutt. is one of the most important indicators of ultramafic floras in western North America. This genus contains taxa that are endemic or tolerant of ultramafic soils. Streptanthus polygaloides is an annual nickel hyperaccumulator strictly confined to ultramafic soils throughout the Californian Sierra Nevada foothills. Nickel concentration in S. polygaloides populations was evaluated by elemental microanalysis using inductively coupled plasma mass spectrometry (ICP-MS). Representative samples of S. polygaloides roots, stems, leaves, flowers, and fruits were studied by scanning electron microscopy (SEM) coupled to an energy-dispersive X-ray probe (SEM-EDX). Results show Ni accumulation values between 0.09 and 1.18 %, and a distribution pattern similar to that observed in other Ni hyperaccumulator taxa, with the leaf epidermis accumulating the largest concentrations.

  1. Effects of elevated CO₂ on rhizosphere characteristics of Cd/Zn hyperaccumulator Sedum alfredii.

    PubMed

    Li, Tingqiang; Tao, Qi; Han, Xuan; Yang, Xiaoe

    2013-06-01

    The effects of elevated CO2 on the metal bioavailability and the rhizosphere characteristics of hyperaccumulator are not well understood. In this study, soil pot experiment was carried out to contrast the effects of elevated CO2 on rhizosphere characteristics between a hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of Sedum alfredii grown under ambient (350 μL L(-1)) or elevated (800 μL L(-1)) CO2. Elevated CO2 facilitated the growth of both ecotypes of S. alfredii, but the promotion in the HE was much greater than in the NHE. No significant (P<0.05) changes in soil pH, dissolved organic matter (DOM) and microbial biomass (Cmic) were observed in the rhizosphere of NHE under both CO2 level. For HE, however, elevated CO2 reduced soil pH by 0.3 units, increased DOM (especially for hydrophilic acid (HiA) fractions) by 19.2% and Cmic by 19%, as compared to ambient CO2. Mobile Cd and Zn (extractable with 1M NH4NO3) in the rhizosphere of HE decreased considerably, but the decreases were greater under ambient CO2 than under elevated CO2. Phytoextraction efficiency of Cd and Zn by HE was increased significantly by elevated CO2 (P<0.05). The results suggest that elevated CO2 can change soil microenvironment, increase bioavailability of Cd and Zn and thus facilitate metal uptake by the HE. This work highlights that elevated CO2 may be a useful way to improve phytoremediation efficiency of Cd/Zn-contaminated soil by hyperaccumulating ecotype S. alfredii. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Genetic architecture of zinc hyperaccumulation in Arabidopsis halleri: the essential role of QTL x environment interactions.

    PubMed

    Frérot, Hélène; Faucon, Michel-Pierre; Willems, Glenda; Godé, Cécile; Courseaux, Adeline; Darracq, Aude; Verbruggen, Nathalie; Saumitou-Laprade, Pierre

    2010-07-01

    This study sought to determine the main genomic regions that control zinc (Zn) hyperaccumulation in Arabidopsis halleri and to examine genotype x environment effects on phenotypic variance. To do so, quantitative trait loci (QTLs) were mapped using an interspecific A. halleri x Arabidopsis lyrata petraea F(2) population. *The F(2) progeny as well as representatives of the parental populations were cultivated on soils at two different Zn concentrations. A linkage map was constructed using 70 markers. *In both low and high pollution treatments, zinc hyperaccumulation showed high broad-sense heritability (81.9 and 74.7%, respectively). Five significant QTLs were detected: two QTLs specific to the low pollution treatment (chromosomes 1 and 4), and three QTLs identified at both treatments (chromosomes 3, 6 and 7). These QTLs explained 50.1 and 36.5% of the phenotypic variance in low and high pollution treatments, respectively. Two QTLs identified at both treatments (chromosomes 3 and 6) showed significant QTL x environment interactions. *The QTL on chromosome 3 largely colocalized with a major QTL previously identified for Zn and cadmium (Cd) tolerance. This suggests that Zn tolerance and hyperaccumulation share, at least partially, a common genetic basis and may have simultaneously evolved on heavy metal-contaminated soils.

  3. A more complete picture of metal hyperaccumulation through next-generation sequencing technologies

    PubMed Central

    Verbruggen, Nathalie; Hanikenne, Marc; Clemens, Stephan

    2013-01-01

    The mechanistic understanding of metal hyperaccumulation has benefitted immensely from the use of molecular genetics tools developed for Arabidopsis thaliana. The revolution in DNA sequencing will enable even greater strides in the near future, this time not restricted to the family Brassicaceae. Reference genomes are within reach for many ecologically interesting species including heterozygous outbreeders. They will allow deep RNA-seq transcriptome studies and the re-sequencing of contrasting individuals to unravel the genetic basis of phenotypic variation. Cell-type specific transcriptome analyses, which will be essential for the dissection of metal translocation pathways in hyperaccumulators, can be achieved through the combination of RNA-seq and translatome approaches. Affordable high-resolution genotyping of many individuals enables the elucidation of quantitative trait loci in intra- and interspecific crosses as well as through genome-wide association mapping across large panels of accessions. Furthermore, genome-wide scans have the power to detect loci under recent selection. Together these approaches will lead to a detailed understanding of the evolutionary path towards the emergence of hyperaccumulation traits. PMID:24098304

  4. Thermal Characteristics of Hyperaccumulator and Fate of Heavy Metals during Thermal Treatment of Sedum plumbizincicola.

    PubMed

    Zhong, Daoxu; Zhong, Zhaoping; Wu, Longhua; Xue, Hui; Song, Zuwei; Luo, Yongming

    2015-01-01

    Thermal treatment is one of the most promising disposal techniques for heavy metal- (HM)-enriched hyperaccumulators. However, the thermal characteristics and fate of HMs during thermal treatment of hyperaccumulator biomass need to be known in detail. A horizontal tube furnace was used to analyze the disposal process of hyperaccumulator biomass derived from a phyto-extracted field in which the soil was moderately contaminated with heavy metals. Different operational conditions regarding temperature and gas composition were tested. A thermo-dynamic analysis by advanced system for process engineering was performed to predict HM speciation during thermal disposal and SEM-EDS, XRD and sequential chemical extraction were used to characterize the heavy metals. The recovery of Zn, Pb and Cd in bottom ash decreased with increasing temperature but recovery increased in the fly ash. Recovery of Zn, Pb and Cd fluctuated with increasing air flow rate and the metal recovery rates were higher in the fly ash than the bottom ash. Most Cl, S, Fe, Al and SiO2 were found as alkali oxides, SO2, Fe2(SO4)3, iron oxide, Ca3Al2O6, K2SiO3 and SiO2 instead of reacting with HMs. Thus, the HMs were found to occur as the pure metals and their oxides during the combustion process and as the sulfides during the reducing process.

  5. Hyperaccumulator Alyssum murale Relies on a Different Metal Storage Mechanism for Cobalt than for Nickel

    SciTech Connect

    Tappero, R.; Peltier, E; Grafe, M; Heidel, K; Ginder-Vogel, M; Livi, K; Rivers, M; Marcus, M; Chaney, R; Sparks, D

    2007-01-01

    The nickel (Ni) hyperaccumulator Alyssum murale has been developed as a commercial crop for phytoremediation/phytomining Ni from metal-enriched soils. Here, metal co-tolerance, accumulation and localization were investigated for A. murale exposed to metal co-contaminants. A. murale was irrigated with Ni-enriched nutrient solutions containing basal or elevated concentrations of cobalt (Co) or zinc (Zn). Metal localization and elemental associations were investigated in situ with synchrotron X-ray microfluorescence (SXRF) and computed-microtomography (CMT). A. murale hyperaccumulated Ni and Co (> 1000 {micro}g g{sup -1} dry weight) from mixed-metal systems. Zinc was not hyperaccumulated. Elevated Co or Zn concentrations did not alter Ni accumulation or localization. SXRF images showed uniform Ni distribution in leaves and preferential localization of Co near leaf tips/margins. CMT images revealed that leaf epidermal tissue was enriched with Ni but devoid of Co, that Co was localized in the apoplasm of leaf ground tissue and that Co was sequestered on leaf surfaces near the tips/margins. Cobalt-rich mineral precipitate(s) form on leaves of Co-treated A. murale. Specialized biochemical processes linked with Ni (hyper)tolerance in A. murale do not confer (hyper)tolerance to Co. A. murale relies on a different metal storage mechanism for Co (exocellular sequestration) than for Ni (vacuolar sequestration).

  6. Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation

    USDA-ARS?s Scientific Manuscript database

    The Zn/Cd hyperaccumulator, Noccaea caerulescens, has been studied extensively for its ability to accumulate Zn and Cd in its leaves to extremely high levels. Previous studies have indicated that the Zn and Cd hyperaccumulation trait exhibited by this species involves different transport and toleran...

  7. Transcriptional up-regulation of genes involved in photosynthesis of the Zn/Cd hyperaccumulator Sedum alfredii in response to zinc and cadmium.

    PubMed

    Tang, Lu; Yao, Aijun; Ming Yuan; Tang, Yetao; Liu, Jian; Liu, Xi; Qiu, Rongliang

    2016-12-01

    Zinc (Zn) and cadmium (Cd) are two closely related chemical elements with very different biological roles in photosynthesis. Zinc plays unique biochemical functions in photosynthesis. Previous studies suggested that in some Zn/Cd hyperaccumulators, many steps in photosynthesis may be Cd tolerant or even Cd stimulated. Using RNA-seq data, we found not only that Cd and Zn both up-regulated the CA1 gene, which encodes a β class carbonic anhydrase (CA) in chloroplasts, but that a large number of other Zn up-regulated genes in the photosynthetic pathway were also significantly up-regulated by Cd in leaves of the Zn/Cd hyperaccumulator Sedum alfredii. These genes also include chloroplast genes involved in transcription and translation (rps18 and rps14), electron transport and ATP synthesis (atpF and ccsA), Photosystem II (PSBI, PSBM, PSBK, PSBZ/YCF9, PSBO-1, PSBQ, LHCB1.1, LHCB1.4, LHCB2.1, LHCB4.3 and LHCB6) and Photosystem I (PSAE-1, PSAF, PSAH2, LHCA1 and LHCA4). Cadmium and Zn also up-regulated the VAR1 gene, which encodes the ATP-dependent zinc metalloprotease FTSH 5 (a member of the FtsH family), and the DAG gene, which influences chloroplast differentiation and plastid development, and the CP29 gene, which supports RNA processing in chloroplasts and has a potential role in signal-dependent co-regulation of chloroplast genes. Further morphological parameters (dry biomass, cross-sectional thickness, chloroplast size, chlorophyll content) and chlorophyll fluorescence parameters confirmed that leaf photosynthesis of S. alfredii responded to Cd much as it did to Zn, which will contribute to our understanding of the positive effects of Zn and Cd on growth of this plant.

  8. Selenium accumulation by plants

    PubMed Central

    White, Philip J.

    2016-01-01

    Background Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg–1 dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg–1 dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000–15 000 mg Se kg–1 dry matter and are called Se hyperaccumulators. Scope This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. Conclusions The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated

  9. Selenium accumulation by plants.

    PubMed

    White, Philip J

    2016-02-01

    Selenium (Se) is an essential mineral element for animals and humans, which they acquire largely from plants. The Se concentration in edible plants is determined by the Se phytoavailability in soils. Selenium is not an essential element for plants, but excessive Se can be toxic. Thus, soil Se phytoavailability determines the ecology of plants. Most plants cannot grow on seleniferous soils. Most plants that grow on seleniferous soils accumulate <100 mg Se kg(-1) dry matter and cannot tolerate greater tissue Se concentrations. However, some plant species have evolved tolerance to Se, and commonly accumulate tissue Se concentrations >100 mg Se kg(-1) dry matter. These plants are considered to be Se accumulators. Some species can even accumulate Se concentrations of 1000-15 000 mg Se kg(-1 )dry matter and are called Se hyperaccumulators. This article provides an overview of Se uptake, translocation and metabolism in plants and highlights the possible genetic basis of differences in these between and within plant species. The review focuses initially on adaptations allowing plants to tolerate large Se concentrations in their tissues and the evolutionary origin of species that hyperaccumulate Se. It then describes the variation in tissue Se concentrations between and within angiosperm species and identifies genes encoding enzymes limiting the rates of incorporation of Se into organic compounds and chromosomal loci that might enable the development of crops with greater Se concentrations in their edible portions. Finally, it discusses transgenic approaches enabling plants to tolerate greater Se concentrations in the rhizosphere and in their tissues. The trait of Se hyperaccumulation has evolved several times in separate angiosperm clades. The ability to tolerate large tissue Se concentrations is primarily related to the ability to divert Se away from the accumulation of selenocysteine and selenomethionine, which might be incorporated into non-functional proteins

  10. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens.

    PubMed

    van de Mortel, Judith E; Schat, Henk; Moerland, Perry D; Ver Loren van Themaat, Emiel; van der Ent, Sjoerd; Blankestijn, Hetty; Ghandilyan, Artak; Tsiatsiani, Styliani; Aarts, Mark G M

    2008-03-01

    Cadmium (Cd) is a widespread, naturally occurring element present in soil, rock, water, plants and animals. Cd is a non-essential element for plants and is toxic at higher concentrations. Transcript profiles of roots of Arabidopsis thaliana (Arabidopsis) and Thlaspi caerulescens plants exposed to Cd and zinc (Zn) are examined, with the main aim to determine the differences in gene expression between the Cd-tolerant Zn-hyperaccumulator T. caerulescens and the Cd-sensitive non-accumulator Arabidopsis. This comparative transcriptional analysis emphasized the role of genes involved in lignin, glutathione and sulphate metabolism. Furthermore the transcription factors MYB72 and bHLH100 were studied for their involvement in metal homeostasis, as they showed an altered expression after exposure to Cd. The Arabidopsis myb72 knockout mutant was more sensitive to excess Zn or iron (Fe) deficiency than wild type, while Arabidopsis transformants overexpressing bHLH100 showed increased tolerance to high Zn and nickel (Ni) compared to wild-type plants, confirming their role in metal homeostasis in Arabidopsis.

  11. Micropropagation of Myriophyllum alterniflorum (Haloragaceae) for stream rehabilitation: first in vitro culture and reintroduction assays of a heavy-metal hyperaccumulator immersed macrophyte.

    PubMed

    Delmail, David; Labrousse, Pascal; Hourdin, Philippe; Larcher, Laure; Moesch, Christian; Botineau, Michel

    2013-01-01

    Nowadays, submersed aquatic macrophytes play a key role in stream ecology and they are often used as biomonitors of freshwater quality. So, these plants appear as natural candidates to stream rehabilitation experiments. Among them, the stream macrophyte Myriophyllum alterniflorum is used recently as biomonitor and is potentially useful for the restoration of heavy-metal contaminated localities. The best way to obtain a mass production of watermilfoil plants is micropropagation. We developed in vitro culture of M. alterniflorum and the effects of five media on the plant development were assessed. Five morphological and four physiological endpoints were examined leading to the recommendation of the Murashige and Skoog medium for ecotoxicological studies on chlorophyllous parts, and of the Gaudet medium for root cytotoxicity and phytoremediation studies. Micropropagated clones were acclimatized in a synthetic medium and in situ reintroduction was performed efficiently. This is the first report of micropropagated plants transplantation in streams. The successful establishment of watermilfoil beds even in polluted areas strongly suggested that ecological restoration using micropropagated watermilfoil is a promising biotechnology for phytoremediation and rehabilitation of degraded areas. Moreover, high bioconcentration factors evidenced that watermilfoil hyperaccumulates Cd and Cu, and could be potentially used in phytoremediation studies.

  12. Effect of CO, NOx and SO2 on ROS production, photosynthesis and ascorbate-glutathione pathway to induce Fragaria×annasa as a hyperaccumulator.

    PubMed

    Muneer, Sowbiya; Kim, Tae Hwan; Choi, Byung Chul; Lee, Beom Seon; Lee, Jeong Hyun

    2014-01-01

    A study was conducted to determine the effect of carbon monoxide (CO), nitroxide (NOx) and sulfur dioxide (SO2) on ROS production, photosynthesis and ascorbate-glutathione pathway in strawberry plants. The results showed that both singlet oxygen (O2(-1)) and hydrogen peroxide (H2O2) content increased in CO, NOx and SO2 treated strawberry leaves. A drastic reduction of primary metabolism of plants (photosynthesis), with the closure of stomata, resulted in a reduction of protein, carbohydrate and sucrose content due to production of reactive oxygen species (ROS) under prolonged exposure of gas stress. The resulting antioxidant enzymes were increased under a low dose of gas stress, whereas they were decreased due to a high dose of gas stress. Our results indicate that increased ROS may act as a signal to induce defense responses to CO, NOx and SO2 gas stress. The increased level of antioxidant enzymes plays a significant role in plant protection due to which strawberry plants can be used as a hyperaccumulator to maintain environmental pollution, however, the defense capacity cannot sufficiently alleviate oxidative damage under prolonged exposure of CO, NOx and SO2 stress.

  13. Metal-accumulating plants: The biological resource and its commercial exploitation is soil clean-up technology

    SciTech Connect

    Baker, A.J.M.; Reeves, R.D.

    1996-12-31

    This presentation provides a broad overview of metal hyperaccumulator plants and biological accumulation technology. Plants that have been identified as having the greatest potentials for development as phytoremediator crops for metal-contaminated soils are very briefly discussed. Phytoextraction, rhizofiltration, and phytostabilization are briefly defined. Issues pertinent to large scale phytoremediation of soils are discussed, including biological and technological constraints.

  14. Accumulation of an organic anticancer selenium compound in a transgenic Solanaceous species shows wider applicability of the selenocysteine methyltransferase transgene from selenium hyperaccumulators.

    PubMed

    McKenzie, Marian J; Hunter, Donald A; Pathirana, Ranjith; Watson, Lyn M; Joyce, Nigel I; Matich, Adam J; Rowan, Daryl D; Brummell, David A

    2009-06-01

    Tolerance to high selenium (Se) soils in Se-hyperaccumulating plant species is correlated with the ability to biosynthesise methylselenocysteine (MeSeCys), due to the activity of selenocysteine methyltransferase (SMT). In mammals, inclusion of MeSeCys in the diet reduces the incidence of certain cancers, so increasing the range of crop plants that can produce this compound is an attractive biotechnology target. However, in the non-Se accumulator Arabidopsis, overexpression of SMT does not result in biosynthesis of MeSeCys from selenate because the rate at which selenate is reduced to selenite by ATP sulfurylase (ATPS) is low. This limitation is less problematic in other species of the Brassicaceae that can produce MeSeCys naturally. We investigated the potential for biosynthesis of MeSeCys in other plant families using Nicotiana tabacum L., a member of the Solanaceae. When plants were watered with 200 microM selenate, overexpression of a SMT transgene caused a 2- to 4-fold increase in Se accumulation (resulting in increased numbers of leaf lesions and areas of necrosis), production of MeSeCys (up to 20% of total Se) and generation of volatile dimethyl diselenide derived directly from MeSeCys. Despite the greatly increased accumulation of total Se, this did not result in increased Se toxicity effects on growth. Overexpression of ATPS did not increase Se accumulation from selenate. Accordingly, lines overexpressing both ATPS and SMT did not show a further increase in total Se accumulation or in leaf toxicity symptoms relative to overexpression of SMT alone, but directed a greater proportion of Se into MeSeCys. This work demonstrates that the production of the cancer-preventing compound MeSeCys in plants outside the Brassicaceae is possible. We conclude that while the SMT gene from Se hyperaccumulators can probably be utilised universally to increase the metabolism of Se into MeSeCys, the effects of enhancing ATPS activity will vary depending on the species involved.

  15. Extraction and isolation of the salidroside-type metabolite from zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance*

    PubMed Central

    Xing, Yan; Peng, Hong-yun; Li, Xia; Zhang, Meng-xi; Gao, Ling-ling; Yang, Xiao-e

    2012-01-01

    The active metabolite in the post-harvested biomass of zinc (Zn) and cadmium (Cd) hyperaccumulator Sedum alfredii Hance from phytoextraction is of great interest in China. The current study demonstrates that a salidroside-type metabolite can be yielded from the Zn/Cd hyperaccumulator S. alfredii biomass by means of sonication/ethanol extraction and macroporous resin column (AB-8 type) isolation. The concentrations of Zn and Cd in the salidroside-type metabolite were below the limitation of the national standards. PMID:23024051

  16. Conserved but Attenuated Parental Gene Expression in Allopolyploids: Constitutive Zinc Hyperaccumulation in the Allotetraploid Arabidopsis kamchatica.

    PubMed

    Paape, Timothy; Hatakeyama, Masaomi; Shimizu-Inatsugi, Rie; Cereghetti, Teo; Onda, Yoshihiko; Kenta, Tanaka; Sese, Jun; Shimizu, Kentaro K

    2016-11-01

    Allopolyploidization combines parental genomes and often confers broader species distribution. However, little is known about parentally transmitted gene expression underlying quantitative traits following allopolyploidization because of the complexity of polyploid genomes. The allopolyploid species Arabidopsis kamchatica is a natural hybrid of the zinc hyperaccumulator Arabidopsis halleri and of the nonaccumulator Arabidopsis lyrata We found that A. kamchatica retained the ability to hyperaccumulate zinc from A. halleri and grows in soils with both low and high metal content. Hyperaccumulation of zinc by A. kamchatica was reduced to about half of A. halleri, but is 10-fold greater than A. lyrata Homeologs derived from A. halleri had significantly higher levels of expression of genes such as HEAVY METAL ATPASE4 (HMA4), METAL TRANSPORTER PROTEIN1 and other metal ion transporters than those derived from A. lyrata, which suggests cis-regulatory differences. A. kamchatica has on average about half the expression of these genes compared with A. halleri due to fixed heterozygosity inherent in allopolyploids. Zinc treatment significantly changed the ratios of expression of 1% of homeologous pairs, including genes putatively involved in metal homeostasis. Resequencing data showed a significant reduction in genetic diversity over a large genomic region (290 kb) surrounding the HMA4 locus derived from the A. halleri parent compared with the syntenic A. lyrata-derived region, which suggests different evolutionary histories. We also estimated that three A. halleri-derived HMA4 copies are present in A. kamchatica Our findings support a transcriptomic model in which environment-related transcriptional patterns of both parents are conserved but attenuated in the allopolyploids. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Conserved but Attenuated Parental Gene Expression in Allopolyploids: Constitutive Zinc Hyperaccumulation in the Allotetraploid Arabidopsis kamchatica

    PubMed Central

    Paape, Timothy; Hatakeyama, Masaomi; Shimizu-Inatsugi, Rie; Cereghetti, Teo; Onda, Yoshihiko; Kenta, Tanaka; Sese, Jun; Shimizu, Kentaro K.

    2016-01-01

    Allopolyploidization combines parental genomes and often confers broader species distribution. However, little is known about parentally transmitted gene expression underlying quantitative traits following allopolyploidization because of the complexity of polyploid genomes. The allopolyploid species Arabidopsis kamchatica is a natural hybrid of the zinc hyperaccumulator Arabidopsis halleri and of the nonaccumulator Arabidopsis lyrata. We found that A. kamchatica retained the ability to hyperaccumulate zinc from A. halleri and grows in soils with both low and high metal content. Hyperaccumulation of zinc by A. kamchatica was reduced to about half of A. halleri, but is 10-fold greater than A. lyrata. Homeologs derived from A. halleri had significantly higher levels of expression of genes such as HEAVY METAL ATPASE4 (HMA4), METAL TRANSPORTER PROTEIN1 and other metal ion transporters than those derived from A. lyrata, which suggests cis-regulatory differences. A. kamchatica has on average about half the expression of these genes compared with A. halleri due to fixed heterozygosity inherent in allopolyploids. Zinc treatment significantly changed the ratios of expression of 1% of homeologous pairs, including genes putatively involved in metal homeostasis. Resequencing data showed a significant reduction in genetic diversity over a large genomic region (290 kb) surrounding the HMA4 locus derived from the A. halleri parent compared with the syntenic A. lyrata-derived region, which suggests different evolutionary histories. We also estimated that three A. halleri-derived HMA4 copies are present in A. kamchatica. Our findings support a transcriptomic model in which environment-related transcriptional patterns of both parents are conserved but attenuated in the allopolyploids. PMID:27413047

  18. Molecular Mechanisms of Selenium Tolerance and Hyperaccumulation in Stanleya pinnata1[W][OA

    PubMed Central

    Freeman, John L.; Tamaoki, Masanori; Stushnoff, Cecil; Quinn, Colin F.; Cappa, Jennifer J.; Devonshire, Jean; Fakra, Sirine C.; Marcus, Matthew A.; McGrath, Steve P.; Van Hoewyk, Doug; Pilon-Smits, Elizabeth A.H.

    2010-01-01

    The molecular mechanisms responsible for selenium (Se) tolerance and hyperaccumulation were studied in the Se hyperaccumulator Stanleya pinnata (Brassicaceae) by comparing it with the related secondary Se accumulator Stanleya albescens using a combination of physiological, structural, genomic, and biochemical approaches. S. pinnata accumulated 3.6-fold more Se and was tolerant to 20 μm selenate, while S. albescens suffered reduced growth, chlorosis and necrosis, impaired photosynthesis, and high levels of reactive oxygen species. Levels of ascorbic acid, glutathione, total sulfur, and nonprotein thiols were higher in S. pinnata, suggesting that Se tolerance may in part be due to increased antioxidants and up-regulated sulfur assimilation. S. pinnata had higher selenocysteine methyltransferase protein levels and, judged from liquid chromatography-mass spectrometry, mainly accumulated the free amino acid methylselenocysteine, while S. albescens accumulated mainly the free amino acid selenocystathionine. S. albescens leaf x-ray absorption near-edge structure scans mainly detected a carbon-Se-carbon compound (presumably selenocystathionine) in addition to some selenocysteine and selenate. Thus, S. albescens may accumulate more toxic forms of Se in its leaves than S. pinnata. The species also showed different leaf Se sequestration patterns: while S. albescens showed a diffuse pattern, S. pinnata sequestered Se in localized epidermal cell clusters along leaf margins and tips, concentrated inside of epidermal cells. Transcript analyses of S. pinnata showed a constitutively higher expression of genes involved in sulfur assimilation, antioxidant activities, defense, and response to (methyl)jasmonic acid, salicylic acid, or ethylene. The levels of some of these hormones were constitutively elevated in S. pinnata compared with S. albescens, and leaf Se accumulation was slightly enhanced in both species when these hormones were supplied. Thus, defense-related phytohormones

  19. Tandem quadruplication of HMA4 in the zinc (Zn) and cadmium (Cd) hyperaccumulator Noccaea caerulescens.

    PubMed

    Ó Lochlainn, Seosamh; Bowen, Helen C; Fray, Rupert G; Hammond, John P; King, Graham J; White, Philip J; Graham, Neil S; Broadley, Martin R

    2011-03-10

    Zinc (Zn) and cadmium (Cd) hyperaccumulation may have evolved twice in the Brassicaceae, in Arabidopsis halleri and in the Noccaea genus. Tandem gene duplication and deregulated expression of the Zn transporter, HMA4, has previously been linked to Zn/Cd hyperaccumulation in A. halleri. Here, we tested the hypothesis that tandem duplication and deregulation of HMA4 expression also occurs in Noccaea.A Noccaea caerulescens genomic library was generated, containing 36,864 fosmid pCC1FOS™ clones with insert sizes ∼20-40 kbp, and screened with a PCR-generated HMA4 genomic probe. Gene copy number within the genome was estimated through DNA fingerprinting and pooled fosmid pyrosequencing. Gene copy numbers within individual clones was determined by PCR analyses with novel locus specific primers. Entire fosmids were then sequenced individually and reads equivalent to 20-fold coverage were assembled to generate complete whole contigs.Four tandem HMA4 repeats were identified in a contiguous sequence of 101,480 bp based on sequence overlap identities. These were flanked by regions syntenous with up and downstream regions of AtHMA4 in Arabidopsis thaliana. Promoter-reporter β-glucuronidase (GUS) fusion analysis of a NcHMA4 in A. thaliana revealed deregulated expression in roots and shoots, analogous to AhHMA4 promoters, but distinct from AtHMA4 expression which localised to the root vascular tissue.This remarkable consistency in tandem duplication and deregulated expression of metal transport genes between N. caerulescens and A. halleri, which last shared a common ancestor >40 mya, provides intriguing evidence that parallel evolutionary pathways may underlie Zn/Cd hyperaccumulation in Brassicaceae.

  20. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri.

    PubMed

    Küpper, H; Lombi, E; Zhao, F J; McGrath, S P

    2000-12-01

    The cellular compartmentation of elements was analysed in the Zn hyperaccumulator Arabidopsis halleri (L.) O'Kane & Al-Shehbaz (=Cardaminopsis halleri) using energy-dispersive X-ray microanalysis of frozen-hydrated tissues. Quantitative data were obtained using oxygen as an internal standard in the analyses of vacuoles, whereas a peak/background ratio method was used for quantification of elements in pollen and dehydrated trichomes. Arabidopsis halleri was found to hyperaccumulate not only Zn but also Cd in the shoot biomass. While large concentrations of Zn and Cd were found in the leaves and roots, flowers contained very little. In roots grown hydroponically, Zn and Cd accumulated in the cell wall of the rhizodermis (root epidermis), mainly due to precipitation of Zn/Cd phosphates. In leaves, the trichomes had by far the largest concentrations of Zn and Cd. Inside the trichomes there was a striking sub-cellular compartmentation, with almost all the Zn and Cd being accumulated in a narrow ring in the trichome base. This distribution pattern was very different from that for Ca and P. The epidermal cells other than trichomes were very small and contained lower concentrations of Zn and Cd than mesophyll cells. In particular, the concentrations of Cd and Zn in the mesophyll cells increased markedly in response to increasing Zn and Cd concentrations in the nutrient solution. This indicates that the mesophyll cells in the leaves of A. halleri are the major storage site for Zn and Cd, and play an important role in their hyperaccumulation.

  1. Tandem Quadruplication of HMA4 in the Zinc (Zn) and Cadmium (Cd) Hyperaccumulator Noccaea caerulescens

    PubMed Central

    Ó Lochlainn, Seosamh; Bowen, Helen C.; Fray, Rupert G.; Hammond, John P.; King, Graham J.; White, Philip J.; Graham, Neil S.; Broadley, Martin R.

    2011-01-01

    Zinc (Zn) and cadmium (Cd) hyperaccumulation may have evolved twice in the Brassicaceae, in Arabidopsis halleri and in the Noccaea genus. Tandem gene duplication and deregulated expression of the Zn transporter, HMA4, has previously been linked to Zn/Cd hyperaccumulation in A. halleri. Here, we tested the hypothesis that tandem duplication and deregulation of HMA4 expression also occurs in Noccaea. A Noccaea caerulescens genomic library was generated, containing 36,864 fosmid pCC1FOS™ clones with insert sizes ∼20–40 kbp, and screened with a PCR-generated HMA4 genomic probe. Gene copy number within the genome was estimated through DNA fingerprinting and pooled fosmid pyrosequencing. Gene copy numbers within individual clones was determined by PCR analyses with novel locus specific primers. Entire fosmids were then sequenced individually and reads equivalent to 20-fold coverage were assembled to generate complete whole contigs. Four tandem HMA4 repeats were identified in a contiguous sequence of 101,480 bp based on sequence overlap identities. These were flanked by regions syntenous with up and downstream regions of AtHMA4 in Arabidopsis thaliana. Promoter-reporter β-glucuronidase (GUS) fusion analysis of a NcHMA4 in A. thaliana revealed deregulated expression in roots and shoots, analogous to AhHMA4 promoters, but distinct from AtHMA4 expression which localised to the root vascular tissue. This remarkable consistency in tandem duplication and deregulated expression of metal transport genes between N. caerulescens and A. halleri, which last shared a common ancestor >40 mya, provides intriguing evidence that parallel evolutionary pathways may underlie Zn/Cd hyperaccumulation in Brassicaceae. PMID:21423774

  2. Mobilization of cadmium by dissolved organic matter in the rhizosphere of hyperaccumulator Sedum alfredii.

    PubMed

    Li, Tingqiang; Liang, Chengfeng; Han, Xuan; Yang, Xiaoe

    2013-05-01

    Pot experiments were conducted to investigate the role of dissolved organic matter (DOM) in the Cd speciation in the rhizosphere of hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) of Sedum alfredii and its effects on Cd mobility. After growing HE S. alfredii, the rhizosphere soil solution pH of heavily polluted soil (HPS) and slightly polluted soil (SPS) was reduced by 0.49 and 0.40 units, respectively, due to enhanced DOC derived from root exudation. The total Cd concentration in soil solution decreased significantly but the decrease accounted for less than 1% of the total Cd uptake in the shoots of HE S. alfredii. Visual MINTEQ speciation predicted that Cd-DOM complexes were the dominant Cd species in soil solutions after the growth of S. alfredii for both soils, followed by the free metal Cd(2+) species. However, Cd-DOM complexes fraction in the rhizosphere soil solution of HE S. alfredii (89.1% and 74.6% for HPS and SPS, respectively) were much greater than NHE S. alfredii (82.8% and 64.7% for HPS and SPS, respectively). Resin equilibration experiment results indicated that DOM from the rhizosphere (R-DOM) of both ecotypes of S. alfredii had the ability to form complexes with Cd, whereas the degree of complexation was significantly higher for HE-R-DOM (79-89%) than NHE-R-DOM (63-74%) in the undiluted sample. The addition of HE-R-DOM significantly (P<0.05) increased the solubility of four Cd minerals while NHE-R-DOM was not as effective at the same concentration. It was concluded that DOM in the rhizosphere of hyperaccumulating ecotype of S. alfredii could significantly increase Cd mobility through the formation of soluble DOM-metal complexes.

  3. Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation.

    PubMed

    Filatov, Victor; Dowdle, John; Smirnoff, Nicholas; Ford-Lloyd, Brian; Newbury, H John; Macnair, Mark R

    2006-09-01

    One of the challenges of comparative genomics is to identify specific genetic changes associated with the evolution of a novel adaptation or trait. We need to be able to disassociate the genes involved with a particular character from all the other genetic changes that take place as lineages diverge. Here we show that by comparing the transcriptional profile of segregating families with that of parent species differing in a novel trait, it is possible to narrow down substantially the list of potential target genes. In addition, by assuming synteny with a related model organism for which the complete genome sequence is available, it is possible to use the cosegregation of markers differing in transcription level to identify regions of the genome which probably contain quantitative trait loci (QTLs) for the character. This novel combination of genomics and classical genetics provides a very powerful tool to identify candidate genes. We use this methodology to investigate zinc hyperaccumulation in Arabidopsis halleri, the sister species to the model plant, Arabidopsis thaliana. We compare the transcriptional profile of A. halleri with that of its sister nonaccumulator species, Arabidopsis petraea, and between accumulator and nonaccumulator F(3)s derived from the cross between the two species. We identify eight genes which consistently show greater expression in accumulator phenotypes in both roots and shoots, including two metal transporter genes (NRAMP3 and ZIP6), and cytoplasmic aconitase, a gene involved in iron homeostasis in mammals. We also show that there appear to be two QTLs for zinc accumulation, on chromosomes 3 and 7.

  4. Arsenic accumulation pattern in 12 Indian ferns and assessing the potential of Adiantum capillus-veneris, in comparison to Pteris vittata, as arsenic hyperaccumulator.

    PubMed

    Singh, Nandita; Raj, Anshita; Khare, P B; Tripathi, R D; Jamil, Sarah

    2010-12-01

    The present study was undertaken to evaluate the ability of some Indian ferns to accumulate and tolerate arsenic. Twelve species of Indian ferns were exposed to 10 mg L(-1) arsenic as sodium arsenate for 15 days in hydroponic system. Depending on the arsenic uptake in the plant parts--Pteris vittata, Pteris cretica, Adiantum capillus-veneris and Nephrolepis exaltata may be categorised as arsenic accumulator. Further, A. capillus-veneris plants were grown in arsenic contaminated soil (200-600 mg kg(-1)) under green-house condition, to assess its arsenic accumulation and tolerance mechanism, in comparison to known As-hyperaccumulator--P. vittata Linn., growing in the same conditions. The experiment identified A. capillus-veneris having a potential to tolerate arsenic up to 500 mg kg(-1). The plants were analysed for the extent of oxidative stress, as a result of arsenic accumulation. A. capillus-veneris was able to detoxify the arsenic stress through induction of anti-oxidant defence system.

  5. Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation.

    PubMed

    Luo, Sheng-lian; Chen, Liang; Chen, Jue-liang; Xiao, Xiao; Xu, Tao-ying; Wan, Yong; Rao, Chan; Liu, Cheng-bin; Liu, Yu-tang; Lai, Cui; Zeng, Guang-ming

    2011-11-01

    This study investigates the heavy metal-resistant bacterial endophytes of Cd-hyperaccumulator Solanum nigrum L. grown on a mine tailing by using cultivation-dependent technique. Thirty Cd-tolerant bacterial endophytes were isolated from roots, stems, and leaves of S. nigrum L. and classified by amplified ribosomal DNA-restriction analysis into 18 different types. Phylogenetic analysis based on 16S rDNA sequences showed that these isolates belonged to four groups: Actinobacteria (43%), Proteobacteria (23%), Bacteroidetes (27%) and Firmicutes (7%). All the isolates were then characterized for their plant growth promoting traits as well as their resistances to different heavy metals; and the actual plant growth promotion and colonization ability were also assessed. Four isolates were re-introduced into S. nigrum L. under Cd stress and resulted in Cd phytotoxicity decrease, as dry weights of roots increased from 55% to 143% and dry weights of above-ground from 64% to 100% compared to the uninoculated ones. The total Cd accumulation of inoculated plants increased from 66% to 135% (roots) and from 22% to 64% (above-ground) compared to the uninoculated ones. Our research suggests that bacterial endophytes are a most promising resource and may be the excellent candidates of bio-inoculants for enhancing the phytoremediation efficiency.

  6. Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri.

    PubMed

    Cornu, Jean-Yves; Deinlein, Ulrich; Höreth, Stephan; Braun, Manuel; Schmidt, Holger; Weber, Michael; Persson, Daniel P; Husted, Søren; Schjoerring, Jan K; Clemens, Stephan

    2015-04-01

    Elevated nicotianamine synthesis in roots of Arabidopsis halleri has been established as a zinc (Zn) hyperaccumulation factor. The main objective of this study was to elucidate the mechanism of nicotianamine-dependent root-to-shoot translocation of metals. Metal tolerance and accumulation in wild-type (WT) and AhNAS2-RNA interference (RNAi) plants were analysed. Xylem exudates were subjected to speciation analysis and metabolite profiling. Suppression of root nicotianamine synthesis had no effect on Zn and cadmium (Cd) tolerance but rendered plants nickel (Ni)-hypersensitive. It also led to a reduction of Zn root-to-shoot translocation, yet had the opposite effect on Ni mobility, even though both metals form coordination complexes of similar stability with nicotianamine. Xylem Zn concentrations were positively, yet nonstoichiometrically, correlated with nicotianamine concentrations. Two fractions containing Zn coordination complexes were detected in WT xylem. One of them was strongly reduced in AhNAS2-suppressed plants and coeluted with (67) Zn-labelled organic acid complexes. Organic acid concentrations were not responsive to nicotianamine concentrations and sufficiently high to account for complexing the coordinated Zn. We propose a key role for nicotianamine in controlling the efficiency of Zn xylem loading and thereby the formation of Zn coordination complexes with organic acids, which are the main Zn ligands in the xylem but are not rate-limiting for Zn translocation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  7. Selenium accumulation protects plants from herbivory by Orthoptera via toxicity and deterrence.

    PubMed

    Freeman, John L; Lindblom, Stormy Dawn; Quinn, Colin F; Fakra, Sirine; Marcus, Matthew A; Pilon-Smits, Elizabeth A H

    2007-01-01

    To investigate whether selenium (Se) accumulation in plants provides a chemical defense against generalist insect herbivores, the feeding preference and performance of a mix of orthopteran species were investigated. The selenium hyperaccumulator Stanleya pinnata and accumulator Brassica juncea were used in herbivory studies in the laboratory, and S. pinnata was also used in a manipulative field experiment. In laboratory studies, both crickets and grasshoppers avoided plants pretreated with selenate, while those given no choice died after eating leaves with elevated Se (447 +/- 68 and 230 +/- 68 microg Se g(-1) DW, respectively). B. juncea has previously been shown to accumulate selenate, while S. pinnata hyperaccumulates methyl-selenocysteine. Thus, these findings demonstrate that both inorganic and organic forms of selenium protect plants from herbivory. Grasshoppers fed S. pinnata contained methylselenocysteine in their midgut and absorbed this form into surrounding tissues. In a manipulative field experiment, methylselenocysteine protected S. pinnata from invertebrate herbivory and increased its long-term survival rate over an entire growth season. * In native habitats of selenium hyperaccumulators, orthopterans represent a major group of insect herbivores. Protection offered by organic selenium accumulation against these herbivores may have promoted the evolution of selenium hyperaccumulation in plants.

  8. Comparison of root absorption, translocation and tolerance of arsenic in the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula.

    PubMed

    Caille, N; Zhao, F J; McGrath, S P

    2005-03-01

    * Several fern species can hyperaccumulate arsenic, although the mechanisms are not fully understood. Here we investigate the roles of root absorption, translocation and tolerance in As hyperaccumulation by comparing the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula. * The two species were grown in a pot experiment with 0-500 mg As kg-1 added as arsenate, and in a short-term (8 h) uptake experiment with 5 microM arsenate under phosphorus-sufficient conditions. * In the pot experiment, P. vittata accumulated up to 2500 mg As kg-1 frond d. wt and suffered no phytotoxicity. P. tremula accumulated<100 mg As kg-1 frond d. wt and suffered severe phytotoxicity with additions of >or=25 mg As kg-1. In the short-term uptake experiment, P. vittata had a 2.2-fold higher rate of arsenate uptake than P. tremula, and distributed more As taken up to the fronds (76%) than did P. tremula (9%). * Our results show that enhanced root uptake, efficient root-to-shoot translocation, and a much elevated tolerance through internal detoxification all contribute to As hyperaccumulation in P. vittata.

  9. Nickel and Manganese Accumulation, Interaction and Localization in Leaves of the Ni Hyperaccumulators Alyssum murale and Alyssum corsicum

    USDA-ARS?s Scientific Manuscript database

    The genus Alyssum contains >50 Ni hyperaccumulator species; many can achieve 3% Ni in dry leaf. In soils with normal Mn levels, Alyssum trichome bases were observed previously to accumulate Ni and Mn to high levels. Here we report concentration and localization patterns in A. murale and A. corsicum...

  10. Zinc adsorption and desorption characteristics in root cell wall involving zinc hyperaccumulation in Sedum alfredii Hance.

    PubMed

    Li, Ting-qiang; Yang, Xiao-e; Meng, Fan-hua; Lu, Ling-li

    2007-02-01

    Radiotracer techniques were employed to characterize (65)Zn adsorption and desorption in root-cell-wall of hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) species of Sedum alfredii Hance. The results indicated that at the end of a 30 min short time radioisotope loading period, comparable amounts of (65)Zn were accumulated in the roots of the two ecotypes Sedum alfredii, whereas 2.1-fold more (65)Zn remains in NHE root after 45-min desorption. At the end of 60 min uptake period, no difference of (65)Zn accumulation was observed in undesorbed root-cell-wall of Sedum alfredii. However, 3.0-fold more (65)Zn accumulated in desorbed root-cell-wall of NHE. Zn(2+) binding in root-cell-wall preparations of NHE was greater than that in HE under high Zn(2+) concentration. All these results suggested that root-cell-wall of the two ecotypes Sedum alfredii had the same ability to adsorb Zn(2+), whereas the desorption characteristics were different, and with most of (65)Zn binding on root of HE being available for loading into the xylem, as a result, more (65)Zn was translocated to the shoot.

  11. A quantitative trait loci analysis of zinc hyperaccumulation in Arabidopsis halleri.

    PubMed

    Filatov, Victor; Dowdle, John; Smirnoff, Nicholas; Ford-Lloyd, Brian; Newbury, H John; Macnair, Mark R

    2007-01-01

    The mechanisms of metal hyperaccumulation are still not understood, so we conducted a quantitative trait locus (QTL) analysis of zinc (Zn) hyperaccumulation in Arabidopsis halleri, in a cross between this and its sister species, A. petraea, in order to determine the number and approximate location of the genomic regions significantly contributing to this adaptation. An F2 cross between the two species was made, and the leaf Zn concentration of 92 individuals was measured at both low (10 microm) and high (100 microm) Zn concentrations. Twenty-five markers were established that were distributed on all of the eight chromosomes. Mapping of the markers established that they were essentially collinear with previous studies. QTLs exceeding a logarithm to the base 10 of the odds (LOD) value of 3 were found on chromosomes 4 (low Zn), 6 (high Zn) and 7 (both high and low Zn). Evidence for a QTL on chromosome 3 (low Zn) was also found. This analysis validates a previously used method of QTL analysis, based on microarray analysis of segregating families. Genes that have altered during the evolution of this character should also be QTL: this analysis calls into question a number of candidate genes from consideration as such primary genes because they do not appear to be associated with QTLs.

  12. Hyperaccumulation of zinc by Corydalis davidii in Zn-polluted soils.

    PubMed

    Lin, Wenjie; Xiao, Tangfu; Wu, Yunying; Ao, Ziqiang; Ning, Zengping

    2012-02-01

    A field survey was conducted to identify potential Zn accumulators from an artisanal Zn smelting area in southwest China's Guizhou Province. Hydroponic and soil culture experiments were performed to investigate the accumulation ability of Zn in Corydalis davidii. Zn concentrations in roots, stems and leaves of C. davidii in the smelting site were 1.1-3.5, 1.2-11.2, and 3.3-14 mg g(-)(1), respectively, whereas Zn concentrations in roots, stems and leaves of C. davidii in the contaminated site impacted by the Zn smelting were 1.0-2.4, 1.9-6.5, and 3.0-1.1 mg g(-1), respectively. Zn concentrations in leaves and stems of C. davidii were observed at above 10 mg g(-1) that refers to the threshold of Zn hyperaccumulator. The concentration distribution of Zn in C. davidii was leaf>stem>root, and the Zn bioaccumulation factors of C. davidii were above 1. It is concluded that C. davidii has high tolerance to concentrate Zn stress, and that C. davidii is a newly discovered Zn-hyperaccumulator with high biomass in the aboveground parts. Based on the cultivation experiments, C. davidii could reduce Zn concentration by 26.6, 21.2, and 10.2 mg kg(-1)yr(-1) by phytoextraction from the smelting slag, Zn-contaminated soil, and background soil, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Molecular dissection of the role of histidine in nickel hyperaccumulation in Thalspi goesingense (Halacsy)

    SciTech Connect

    Persans, M.W.; Yan, X.; Patnoe, J.M.M.L.; Kraemer, U.; Salt, D.E.

    1999-12-01

    To understand the role of free histidine (His) in Ni hyperaccumulation in Thlaspi goesingense, the authors investigated the regulation of His biosynthesis at both the molecular and biochemical levels. Three T. goesingense cDNAs encoding the following His biosynthetic enzymes, ATP phosphoribosyltransferase, imidazoleglycerol phosphate dehydratase, and histidinol dehydrogenase, were isolated by functional complementation of Escherichia coli His autotrophs. Northern analysis of THJG1, THD1, and THB1 gene expression revealed that each gene is expressed in both roots and shoots, but at the concentrations and dosage times of Ni treatment used in this study, these genes failed to show any regulation by Ni. The authors were also unable to observe any increases in the concentration of free His in root, shoot, or xylem sap of T. goesingense in response to Ni exposure. X-ray absorption spectroscopy of root and shoot tissue from T. goesingense and the non-accumulator species Thlaspi reverse revealed no major differences in the coordination of Ni by His in these tissues. They therefore conclude that the Ni hyperaccumulation phenotype in T. goesingense is not determined by the overproduction of His in response to Ni.

  14. Using elevated CO2 to increase the biomass of a Sorghum vulgare x Sorghum vulgare var. sudanense hybrid and Trifolium pratense L. and to trigger hyperaccumulation of cesium.

    PubMed

    Wu, Huibin; Tang, Shirong; Zhang, Ximei; Guo, Junkang; Song, Zhengguo; Tian, Shuai; Smith, Donald L

    2009-10-30

    The most important challenge to use phytoremediation is how to improve its efficiency by increasing the accumulation of metals in plants, or by improving key plant biological traits that should enhance metal uptake. In this paper, we used open-top chambers to investigate the effects of elevated CO2 (860 microL L(-1)) on biomass and Cs uptake by a Sorghum vulgare x Sorghum vulgare var. sudanense hybrid and Trifolium pratense L. growing on soils spiked with various levels of cesium (0, 300, 1500 and 3000 mg Cs kg(-1)). The results showed that elevated CO2 not only increased aboveground biomass of the Sorghum and Trifolium species by 32-111%, and by 8-11%, respectively, compared to the ambient CO2 treatment, but also caused more accumulation of Cs by Sorghum species (up to 73%) than Trifolium species (up to 43%). It was speculated that the increase in biomass and the improvement in Cs accumulation ability at elevated CO2 could be related to lowered soil pH values, and changes in number and kind of microorganisms in the rhizospheres of the two tested species. This is the first report of a link among elevated CO2, increased biomass and hyperaccumulation of Cs by Sorghum and Trifolium species.

  15. Mechanisms of nickel uptake, and hyperaccumulation by plants and implications to soil remediation

    USDA-ARS?s Scientific Manuscript database

    Soil contamination by heavy metals like Ni was originally restricted to metalliferous soils but in recent years it has become a general problem due to the increasingly frequent anthropogenic activities. Because of the characteristics of cost-effectiveness, environmental friendliness, and fewer side...

  16. Exploring the importance of sulfate transporters and ATP sulphurylases for selenium hyperaccumulation-a comparison of Stanleya pinnata and Brassica juncea (Brassicaceae).

    PubMed

    Schiavon, Michela; Pilon, Marinus; Malagoli, Mario; Pilon-Smits, Elizabeth A H

    2015-01-01

    Selenium (Se) hyperaccumulation, the capacity of some species to concentrate Se to levels upwards of 0.1% of dry weight, is an intriguing phenomenon that is only partially understood. Questions that remain to be answered are: do hyperaccumulators have one or more Se-specific transporters? How are these regulated by Se and sulfur (S)? In this study, hyperaccumulator Stanleya pinnata was compared with related non-hyperaccumulator Brassica juncea with respect to S-dependent selenate uptake and translocation, as well as for the expression levels of three sulfate/selenate transporters (Sultr) and three ATP sulphurylases (APS). Selenium accumulation went down ~10-fold with increasing sulfate supply in B. juncea, while S. pinnata only had a 2-3-fold difference in Se uptake between the highest (5 mM) and lowest sulfate (0 mM) treatments. The Se/S ratio was generally higher in the hyperaccumulator than the non-hyperaccumulator, and while tissue Se/S ratio in B. juncea largely reflected the ratio in the growth medium, S. pinnata enriched itself up to 5-fold with Se relative to S. The transcript levels of Sultr1;2 and 2;1 and APS1, 2, and 4 were generally much higher in S. pinnata than B. juncea, and the species showed differential transcript responses to S and Se supply. These results indicate that S. pinnata has at least one transporter with significant selenate specificity over sulfate. Also, the hyperaccumulator has elevated expression levels of several sulfate/selenate transporters and APS enzymes, which likely contribute to the Se hyperaccumulation and hypertolerance phenotype.

  17. Enhancement of phosphate absorption by garden plants by genetic engineering: a new tool for phytoremediation.

    PubMed

    Matsui, Keisuke; Togami, Junichi; Mason, John G; Chandler, Stephen F; Tanaka, Yoshikazu

    2013-01-01

    Although phosphorus is an essential factor for proper plant growth in natural environments, an excess of phosphate in water sources causes serious pollution. In this paper we describe transgenic plants which hyperaccumulate inorganic phosphate (Pi) and which may be used to reduce environmental water pollution by phytoremediation. AtPHR1, a transcription factor for a key regulator of the Pi starvation response in Arabidopsis thaliana, was overexpressed in the ornamental garden plants Torenia, Petunia, and Verbena. The transgenic plants showed hyperaccumulation of Pi in leaves and accelerated Pi absorption rates from hydroponic solutions. Large-scale hydroponic experiments indicated that the enhanced ability to absorb Pi in transgenic torenia (AtPHR1) was comparable to water hyacinth a plant that though is used for phytoremediation causes overgrowth problems.

  18. Enhancement of Phosphate Absorption by Garden Plants by Genetic Engineering: A New Tool for Phytoremediation

    PubMed Central

    Togami, Junichi; Mason, John G.; Chandler, Stephen F.; Tanaka, Yoshikazu

    2013-01-01

    Although phosphorus is an essential factor for proper plant growth in natural environments, an excess of phosphate in water sources causes serious pollution. In this paper we describe transgenic plants which hyperaccumulate inorganic phosphate (Pi) and which may be used to reduce environmental water pollution by phytoremediation. AtPHR1, a transcription factor for a key regulator of the Pi starvation response in Arabidopsis thaliana, was overexpressed in the ornamental garden plants Torenia, Petunia, and Verbena. The transgenic plants showed hyperaccumulation of Pi in leaves and accelerated Pi absorption rates from hydroponic solutions. Large-scale hydroponic experiments indicated that the enhanced ability to absorb Pi in transgenic torenia (AtPHR1) was comparable to water hyacinth a plant that though is used for phytoremediation causes overgrowth problems. PMID:23984322

  19. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy

    SciTech Connect

    Salt, D.E.; Prince, R.C.; Baker, A.J.M.; Raskin, I.; Pickering, I.J.

    1999-03-01

    Using the noninvasive technique of X-ray absorption spectroscopy (XAS), the authors have been able to determine the ligand environment of Zn in different tissues of the Zn-hyperaccumulator Thlaspi caerulescens. The majority of intracellular Zn in roots of T. caerulescens was found to be coordinated with histidine. In the xylem sap Zn was found to be transported mainly as the free hydrated Zn{sup 2+} cation with a smaller proportion coordinated with organic acids. In the shoots, Zn coordination occurred mainly via organic acids, with a smaller proportion present as the hydrated cation and coordinated with histidine and the cell wall. Their data suggest that histidine plays an important role in Zn homeostasis in the roots, whereas organic acids are involved in xylem transport and Zn storage in shoots.

  20. Role of transpiration in arsenic accumulation of hyperaccumulator Pteris vittata L.

    PubMed

    Wan, Xiao-ming; Lei, Mei; Chen, Tong-bin; Yang, Jun-xing; Liu, Hong-tao; Chen, Yang

    2015-11-01

    Mechanisms of Pteris vittata L. to hyperaccumulate arsenic (As), especially the efficient translocation of As from rhizoids to fronds, are not clear yet. The present study aims to investigate the role of transpiration in the accumulation of As from the aspects of transpiration regulation and ecotypic difference. Results showed that As accumulation of P. vittata increased proportionally with an increase in the As exposure concentration. Lowering the transpiration rate by 28∼67% decreased the shoot As concentration by 19∼56%. Comparison of As distribution under normal treatment and shade treatment indicated that transpiration determines the distribution pattern of As in pinnae. In terms of the ecotypic difference, the P. vittata ecotype from moister and warmer habitat had 40% higher transpiration and correspondingly 40% higher shoot As concentration than the ecotype from drier and cooler habitat. Results disclosed that transpiration is the main driver for P. vittata to accumulate and re-distribute As in pinnae.

  1. Selenium uptake by edible oyster mushrooms (Pleurotus sp.) from selenium-hyperaccumulated wheat straw.

    PubMed

    Bhatia, Poonam; Prakash, Ranjana; Prakash, N Tejo

    2013-01-01

    In an effort to produce selenium (Se)-fortifying edible mushrooms, five species of oyster mushroom (Pleurotus sp.), were cultivated on Se-rich wheat straw collected from a seleniferous belt of Punjab, India. Total selenium was analyzed in the selenium hyperaccumulated wheat straw and the fruiting bodies. Significantly high levels (p<0.0001) of Se uptake were observed in fruiting bodies of all mushrooms grown on Se-rich wheat straw. To the best of our knowledge, accumulation and quantification of selenium in mushrooms has hitherto not been reported with substrates naturally enriched with selenium. The results demonstrate the potential of selenium-rich agricultural residues as substrates for production of Se-enriched mushrooms and the ability of different species of oyster mushrooms to absorb and fortify selenium. The study envisages potential use of selenium-rich agricultural residues towards cultivation of Se-enriched mushrooms for application in selenium supplementation or neutraceutical preparations.

  2. The Pb-hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb(2+) by increasing phytochelatins via changes in SmPCS expression and in phytochelatin synthase activity.

    PubMed

    Estrella-Gómez, N; Mendoza-Cózatl, D; Moreno-Sánchez, R; González-Mendoza, D; Zapata-Pérez, O; Martínez-Hernández, A; Santamaría, J M

    2009-03-09

    The relationship between accumulation of Pb(2+) and the activation of chelation and metal sequestration mechanisms mediated by phytochelatins (PC) was analyzed in the Pb(2+) hyperaccumulator aquatic fern Salvinia minima, after exposure to 40microM Pb(NO(3))(2). The tissue accumulation pattern of lead and the phytochelatin biosynthesis responses were analyzed in both, S. minima submerged root-like modified fronds (here named "roots"), and in its aerial leaf-like fronds ("leaves"). S. minima roots accumulated a significantly higher concentrations of Pb(+2) than leaves did. Accumulation of Pb(2+) in roots was bi-phasic with a first uptake phase reached after 3h exposure and a second higher uptake phase reached after 24h exposure. In leaves, a single delayed, smaller uptake phase was attained only after 9h of exposure. In roots lead accumulation correlated with an increased phytochelatin synthase (PCS) activity and an enhanced PC production. A higher proportion of polymerized PC(4) was observed in both tissues of exposed S. minima plants relative to unexposed ones, although a higher concentration of PC(4) was found in roots than in leaves. PCS activity and Pb(2+) accumulation was also higher in roots than in leaves. The expression levels of the S. minima PCS gene (SmPCS), in response to Pb(2+) treatment, were also evaluated. In S. minima leaves, the accumulation of Pb(2+) correlated with a marked increase in expression of SmPCS, suggesting a transcriptional regulation in the PCS activation and PC accumulation in this S. minima tissue. However, in roots, the basal expression of SmPCS was down-regulated after Pb(2+) treatment. This fact did not correlate with the later but strong increase in both, PCS activity and PC production; suggesting that the PC biosynthesis activation in S. minima roots occurs only by post-translational activation of PCS. Taken together, our data suggest that the accumulation of PC in S. minima is a direct response to Pb(2+) accumulation, and

  3. Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals?

    PubMed

    January, Mary C; Cutright, Teresa J; Van Keulen, Harry; Wei, Robert

    2008-01-01

    Sundance sunflowers were subjected to contaminated solutions containing 3, 4, or 5 heavy metals, with and without EDTA. The sunflowers exhibited a metal uptake preference of Cd=Cr>Ni, Cr>Cd>Ni>As and Fe>As>Cd>Ni>Cr without EDTA and Cr>Cd>Ni, Fe>As>Cd>Cr>Ni with EDTA. As uptake was not affected by other metals, but it decreased Cd and Ni concentration in the stems. The presence of Fe improved the translocation of the other metals regardless of whether EDTA was present. In general, EDTA served as a hindrance to metal uptake. For the experiment with all five heavy metals, EDTA decreased Cd in the roots and stems from 2.11 to 1.36 and from 2.83 to 2.3 2mg g(-1) biomass, respectively. For the same conditions, Ni in the stems decreased from 1.98 to 0.94 mg g(-1) total metal uptake decreased from 14.95 mg to 13.89 mg, and total biomass decreased from 2.38 g to 1.99 g. These results showed an overall negative effect in addition of EDTA. However it is unknown whether the negative effect was due to toxicity posed by EDTA or the breaking of phytochelatin-metal bonds. The most important finding was the ability of Sundance sunflowers to achieve hyperaccumulator status for both As and Cd under all conditions studied. Ni hyperaccumulator status was only achieved in the presence of three metals without EDTA.

  4. Ultrastructural changes, zinc hyperaccumulation and its relation with antioxidants in two ecotypes of Sedum alfredii Hance.

    PubMed

    Jin, Xiao Fen; Yang, Xiao E; Islam, Ejazul; Liu, Dan; Mahmood, Qaisar; Li, Hong; Li, Junying

    2008-11-01

    Zn phytotoxicity and its possible detoxifying responses in two ecotypes of Sedum alfredii Hance, i.e. hyperaccumulating ecotype (HE) and non-hyperaccumulating ecotype (NHE) were investigated. HE grew better with high Zn concentrations of 29.11gkg(-1) DW in shoots when exposed to 500microM Zn2+. Toxicity symptoms caused by Zn in root cells of both ecotypes mainly included plasmolysis, disruption of plasma membranes and increased cell vacuolation. At high supplied Zn concentration, chloroplasts suffered from structural disorganization in both ecotypes. Zn-induced hydrogen peroxide (H2O2) and superoxide radical (O(2)-) productions in leaves were determined by a histochemical method, which revealed that Zn stress may have involved NADPH oxidase, protein phosphatases and intracellular Ca2+ to activate the reactive oxygen species production. Inhibition of glutathione synthesis may have led to increased H2O2 and O(2)- accumulations in leaves of HE. In response to higher Zn concentrations, ascorbic acid significantly increased in both ecotypes and levels of glutathione increased in both leaves and roots of HE and in roots of NHE without any change in the leaves of NHE. The enzymatic activities like those of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), guaiacol peroxidase (GPX, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (GR, EC 1.6.4.2) in leaves of HE were all enhanced at supplied Zn concentration of 500microM, which may account for its better growth.

  5. Hyperaccumulation of vanadium in the Antarctic polychaete Perkinsiana littoralis as a natural chemical defense against predation.

    PubMed

    Fattorini, Daniele; Notti, Alessandra; Nigro, Marco; Regoli, Francesco

    2010-01-01

    Exceptionally high levels of trace metals have been reported in specific tissues of certain polychaetes. In the present study, the Antarctic fan worm Perkinsiana littoralis was shown to hyperaccumulate vanadium in the branchial tissues, and the hypothesis of an antipredatory strategy has been investigated. Trace metals (Ag, Al, As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V, Zn) were measured by atomic absorption spectrophotometry in tissues of P. littoralis and, only for V, in two Antarctic bivalves and in various Mediterranean polychaetes. Subcellular distribution of vanadium was investigated in P. littoralis after differential centrifugations; feeding trials with the Antarctic rock cod Trematomus berancchii were performed to test the palatability of P. littoralis. Analyses of trace metals in tissues of P. littoralis confirmed the naturally high bioavailability of cadmium due to upwelling phenomena in the investigated area and revealed extremely high concentrations of vanadium up to 10,000 microg/g, in the branchial crowns; much lower concentrations were measured in the body portions and even less in the Antarctic bivalves and in Mediterranean polychaetes. The subcellular distribution indicated that this metal was associated in branchial crowns with both heavy components and vanadium binding proteins; the latter predominated in body tissues, although with a different pattern of molecular weight. Feeding trials suggested that the elevated levels of vanadium in branchial crown of P. littoralis act as chemical deterrents against predation in more exposed tissues. The hyperaccumulation of toxic metals might represent a common antipredatory strategy for unpalatable branchial crowns of sabellid polychaetes, as recently hypothesized also for the high concentrations of arsenic in the Mediterranean Sabella spallanzanii. The evolution of such adaptation and the reasons behind the possibility for different species to accumulate different metals represent a stimulating

  6. Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense.

    PubMed

    Persans, M W; Nieman, K; Salt, D E

    2001-08-14

    The ability of Thlaspi goesingense to hyperaccumulate Ni seems to be governed in part by enhanced accumulation of Ni within leaf vacuoles. We have characterized genes from T. goesingense encoding putative vacuolar metal ion transport proteins, termed metal tolerance proteins (TgMTPs). These proteins contain all of the features of cation-efflux family members, and evidence indicates they are derived from a single genomic sequence (TgMTP1) that gives rise to an unspliced (TgMTP1t1) and a spliced (TgMTP1t2) transcript. Heterologous expression of these transcripts in yeast lacking the TgMTP1 orthologues COT1 and ZRC1 complements the metal sensitivity of these yeast strains, suggesting that TgMTP1s are able to transport metal ions into the yeast vacuole in a manner similar to COT1 and ZRC1. The unspliced and spliced TgMTP1 variants differ within a histidine-rich putative metal-binding domain, and these sequence differences are reflected as alterations in the metal specificities of these metal ion transporters. When expressed in yeast, TgMTP1t1 confers the highest level of tolerance to Cd, Co, and Zn, whereas TgMTP1t2 confers the highest tolerance to Ni. TgMTP1 transcripts are highly expressed in T. goesingense compared with orthologues in the nonaccumulators Arabidopsis thaliana, Thlaspi arvense, and Brassica juncea. We propose that the high-level expression of TgMTP1 in T. goesingense accounts for the enhanced ability of this hyperaccumulator to accumulate metal ions within shoot vacuoles.

  7. Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes.

    PubMed

    Zhu, Zhi-qiang; Yang, Xiao-e; Wang, Kai; Huang, Hua-gang; Zhang, Xincheng; Fang, Hua; Li, Ting-qiang; Alva, A K; He, Zhen-li

    2012-10-15

    The development of an integrated strategy for the remediation of soil co-contaminated by heavy metals and persistent organic pollutants is a major research priority for the decontamination of soil slated for use in agricultural production. The objective of this study was to develop a bioremediation strategy for fields co-contaminated with cadmium (Cd), dichlorodiphenyltrichloroethane (DDT), and its metabolites 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethylene (DDE) and 1, 1-dichloro-2, 2-bis (4-chlorophenyl) ethane (DDD) (DDT, DDE, and DDD are collectively called DDs) using an identified Cd-hyperaccumulator plant Sedum alfredii (SA) and DDT-degrading microbes (DDT-1). Initially, inoculation with DDT-1 was shown to increase SA root biomass in a pot experiment. When SA was applied together with DDT-1, the levels of Cd and DDs in the co-contaminated soil decreased by 32.1-40.3% and 33.9-37.6%, respectively, in a pot experiment over 18 months compared to 3.25% and 3.76% decreases in soil Cd and DDs, respectively, in unplanted, untreated controls. A subsequent field study (18-month duration) in which the levels of Cd and DDs decreased by 31.1% and 53.6%, respectively, confirmed the beneficial results of this approach. This study demonstrates that the integrated bioremediation strategy is effective for the remediation of Cd-DDs co-contaminated soils.

  8. Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase genes in rhizosphere of As-hyperaccumulator Pteris vittata.

    PubMed

    Han, Yong-He; Fu, Jing-Wei; Xiang, Ping; Cao, Yue; Rathinasabapathi, Bala; Chen, Yanshan; Ma, Lena Q

    2017-01-05

    Microbially-mediated arsenic (As) transformation in soils affects As speciation and plant uptake. However, little is known about the impacts of As on bacterial communities and their functional genes in the rhizosphere of As-hyperaccumulator Pteris vittata. In this study, arsenite (AsIII) oxidase genes (aroA-like) and arsenate (AsV) reductase genes (arsC) were amplified from three soils, which were amended with 50mgkg(-1) As and/or 1.5% phosphate rock (PR) and grew P. vittata for 90 d. The aroA-like genes in the rhizosphere were 50 times more abundant than arsC genes, consistent with the dominance of AsV in soils. According to functional gene alignment, most bacteria belonged to α-, β- and γ-Proteobacteria. Moreover, aroA-like genes showed a higher biodiversity than arsC genes based on clone library analysis and could be grouped into nine clusters based on terminal restriction fragment length polymorphism (T-RFLP) analysis. Besides, AsV amendment elevated aroA-like gene diversity, but decreased arsC gene diversity. Redundancy analysis indicated that soil pH, available Ca and P, and AsV concentration were key factors driving diverse compositions in aroA-like gene community. This work identified new opportunities to screen for As-oxidizing and/or -reducing bacteria to aid phytoremediation of As-contaminated soils.

  9. Interaction of As and Sb in the hyperaccumulator Pteris vittata L.: changes in As and Sb speciation by XANES.

    PubMed

    Wan, Xiaoming; Lei, Mei; Chen, Tongbin

    2016-10-01

    Arsenic (As) and antimony (Sb) are chemical analogs that display similar characteristics in the environment. The As hyperaccumulator Pteris vittata L. is a potential As-Sb co-accumulating species. However, when this plant is exposed to different As and Sb speciation, the associated accumulating mechanisms and subsequent assimilation processes of As and Sb remain unclear. A 2-week hydroponic experiment was conducted by exposing P. vittata to single AsIII, AsV, SbIII, and SbV or the co-existence of AsIII and SbIII and AsV and SbV. P. vittata could co-accumulate As and Sb in the pinna (>1000 mg kg(-1)) with high translocation (>1) of As and Sb from the root to the pinna. P. vittata displayed apparent preference to the trivalent speciation of As and Sb than to the pentavalent speciation. Under the single exposure of AsIII or SbIII, the pinna concentration of As and Sb was 84 and 765 % higher than that under the single exposure of AsV or SbV, respectively. Despite the provided As speciation, the main speciation of As in the root was AsV, whereas the main speciation of As in the pinna was AsIII. The Sb in the roots comprised SbV and SbIII when exposed to SbV but was exclusively SbIII when exposed to SbIII. The Sb in the pinna was a mixture of SbV and SbIII regardless of the provided Sb speciation. Compared with the single exposure of As, the co-existence of As and Sb increased the As concentration in the pinna of P. vittata by 50-66 %, accompanied by a significant increase in the AsIII percentage in the root. Compared with the single exposure of Sb, the co-existence of Sb and As also increased the Sb concentration in the pinna by 51-100 %, but no significant change in Sb speciation was found in P. vittata.

  10. Selective uptake, distribution, and redistribution of (109)Cd, (57)Co, (65)Zn, (63)Ni, and (134)Cs via xylem and phloem in the heavy metal hyperaccumulator Solanum nigrum L.

    PubMed

    Wei, Shuhe; Anders, Iwona; Feller, Urs

    2014-06-01

    The focus of this article was to explore the translocation of (109)Cd, (57)Co, (65)Zn, (63)Ni, and (134)Cs via xylem and phloem in the newly found hyperaccumulator Solanum nigrum L. Two experiments with the uptake via the roots and transport of (109)Cd, (57)Co, and (65)Zn labeled by roots, and the redistribution of (109)Cd, (65)Zn, (57)Co, (63)Ni, and (134)Cs using flap label in S. nigrum in a hydroponic culture with a standard nutrient solution were conducted. The results showed that (109)Cd added for 24 h to the nutrient medium of young plants was rapidly taken up, transferred to the shoot, and accumulated in the cotyledons and the oldest leaves but was not efficiently redistributed within the shoot afterward leading to a rather low content in the fruits. In contrast, (57)Co was more slowly taken up and released to the shoot, but afterward, this element was redistributed from older leaves to younger leaves and maturing fruits. (65)Zn was rapidly taken up and transferred to the shoot (mainly to the youngest leaves and not to the cotyledons). Afterward, this radionuclide was redistributed within the shoot to the youngest organs and finally accumulated in the maturing fruits. After flap labeling, all five heavy metals tested ((109)Cd, (57)Co, (65)Zn, (63)Ni, (134)Cs) were exported from the labeled leaf and redistributed within the plant. The accumulation in the fruits was most pronounced for (63)Ni and (65)Zn, while a relatively high percentage of (57)Co was finally found in the roots. (134)Cs was roughly in the middle of them. The transport of (109)Cd differed from that previously reported for wheat or lupin and might be important for the potential of S. nigrum to hyperaccumulate cadmium.

  11. Simultaneous hyperaccumulation of multiple heavy metals by Helianthus annuus grown in a contaminated sandy-loam soil.

    PubMed

    Cutright, Teresa; Gunda, Nagaraju; Kurt, Firat

    2010-08-01

    Phytoremediation is a promising means for the treatment of contamination arising from heavy metal spills. Although several species have been identified as hyperaccumulators, most of the studies were performed with only one heavy metal. Experiments were conducted with two cultivars of H. annuus exposed to different combinations of metal contamination (30 mg/kg Cd, Cr, Ni, As, and/or Fe). Cultivar efficiency was based on total metal uptake, as well as translocation and selectivity of each metal. The results for each cultivar were also compared after 0.1 g/kg or 0.3 g/kg EDTA was added to enhance metal bioavailability. The key finding was that H. annuus achieved hyperaccumulator status for multiple metals simultaneously: Cd, Cr, and As.

  12. Evaluation of three ornamental plants for phytoremediation of Pb-contamined soil.

    PubMed

    Cui, Shuang; Zhang, Tingan; Zhao, Shanlin; Li, Ping; Zhou, Qixing; Zhang, Qianru; Han, Qing

    2013-01-01

    Characteristics of accumulation and tolerance of lead (Pb) in Quamolit pennata, Antirrhinum majus L. and Celosia cristata pyramidalis were investigated to identify Pb-accumulating plants. In this study, pot culture experiment was conducted to assess whether these plants are Pb-hyperaccumulators or accumulators. The results indicated that the Pb enrichment factor (concentration in plant/soil) and Pb translocation factor (concentration in shoot/root) of these plants were principally <1 in pot culture and concentration gradient experiments. However, the Pb concentration in Celosia cristata pyramidalis shoots was higher than 1000 mg kg(-1), the threshold concentration for a Pb-hyperaccumulator. Shoot biomass of Celosia cristata pyramidalis had no significantly (p < 0.05) variation compared to the control. Based on these results, only Celosia cristata pyramidalis could be identified as a Pb-accumulator.

  13. Characterization of the high affinity Zn transporter from Noccaea caerulescens, NcZNT1, and dissection of its promoter for its role in Zn uptake and hyperaccumulation.

    PubMed

    Milner, Matthew J; Craft, Eric; Yamaji, Naoki; Koyama, Emi; Ma, Jian Feng; Kochian, Leon V

    2012-07-01

    • In this paper, we conducted a detailed analysis of the ZIP family transporter, NcZNT1, in the zinc (Zn)/cadmium (Cd) hyperaccumulating plant species, Noccaea caerulescens, formerly known as Thlaspi caerulescens. NcZNT1 was previously suggested to be the primary root Zn/Cd uptake transporter. Both a characterization of NcZNT1 transport function in planta and in heterologous systems, and an analysis of NcZNT1 gene expression and NcZNT1 protein localization were carried out. • We show that NcZNT1 is not only expressed in the root epidermis, but also is highly expressed in the root and shoot vasculature, suggesting a role in long-distance metal transport. Also, NcZNT1 was found to be a plasma membrane transporter that mediates Zn but not Cd, iron (Fe), manganese (Mn) or copper (Cu) uptake into plant cells. • Two novel regions of the NcZNT1 promoter were identified which may be involved in both the hyperexpression of NcZNT1 and its ability to be regulated by plant Zn status. • In conclusion, we demonstrate here that NcZNT1 plays a role in Zn and not Cd uptake from the soil, and based on its strong expression in the root and shoot vasculature, could be involved in long-distance transport of Zn from the root to the shoot via the xylem. No claim to original US government works. New Phytologist © 2012 New Phytologist Trust.

  14. CATION EXCHANGER1 Cosegregates with Cadmium Tolerance in the Metal Hyperaccumulator Arabidopsis halleri and Plays a Role in Limiting Oxidative Stress in Arabidopsis Spp.

    PubMed

    Baliardini, Cecilia; Meyer, Claire-Lise; Salis, Pietrino; Saumitou-Laprade, Pierre; Verbruggen, Nathalie

    2015-09-01

    Arabidopsis halleri is a model species for the study of plant adaptation to extreme metallic conditions. In this species, cadmium (Cd) tolerance seems to be constitutive, and the mechanisms underlying the trait are still poorly understood. A previous quantitative trait loci (QTL) analysis performed on A. halleri × Arabidopsis lyrata backcross population1 identified the metal-pump gene Heavy Metal ATPase4 as the major genetic determinant for Cd tolerance. However, although necessary, Heavy Metal ATPase4 alone is not sufficient for determining this trait. After fine mapping, a gene encoding a calcium(2+)/hydrogen(+) antiporter, cation/hydrogen(+) exchanger1 (CAX1), was identified as a candidate gene for the second QTL of Cd tolerance in A. halleri. Backcross population1 individuals displaying the A. halleri allele for the CAX1 locus exhibited significantly higher CAX1 expression levels compared with the ones with the A. lyrata allele, and a positive correlation between CAX1 expression and Cd tolerance was observed. Here, we show that this QTL is conditional and that it is only detectable at low external Ca concentration. CAX1 expression in both roots and shoots was higher in A. halleri than in the close Cd-sensitive relative species A. lyrata and Arabidopsis thaliana. Moreover, CAX1 loss of function in A. thaliana led to higher Cd sensitivity at low concentration of Ca, higher sensitivity to methylviologen, and stronger accumulation of reactive oxygen species after Cd treatment. Overall, this study identifies a unique genetic determinant of Cd tolerance in the metal hyperaccumulator A. halleri and offers a new twist for the function of CAX1 in plants. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Aluminium Uptake and Translocation in Al Hyperaccumulator Rumex obtusifolius Is Affected by Low-Molecular-Weight Organic Acids Content and Soil pH

    PubMed Central

    Vondráčková, Stanislava; Száková, Jiřina; Drábek, Ondřej; Tejnecký, Václav; Hejcman, Michal; Müllerová, Vladimíra; Tlustoš, Pavel

    2015-01-01

    Background and Aims High Al resistance of Rumex obtusifolius together with its ability to accumulate Al has never been studied in weakly acidic conditions (pH > 5.8) and is not sufficiently described in real soil conditions. The potential elucidation of the role of organic acids in plant can explain the Al tolerance mechanism. Methods We established a pot experiment with R. obtusifolius planted in slightly acidic and alkaline soils. For the manipulation of Al availability, both soils were untreated and treated by lime and superphosphate. We determined mobile Al concentrations in soils and concentrations of Al and organic acids in organs. Results Al availability correlated positively to the extraction of organic acids (citric acid < oxalic acid) in soils. Monovalent Al cations were the most abundant mobile Al forms with positive charge in soils. Liming and superphosphate application were ambiguous measures for changing Al mobility in soils. Elevated transport of total Al from belowground organs into leaves was recorded in both lime-treated soils and in superphosphate-treated alkaline soil as a result of sufficient amount of Ca available from soil solution as well as from superphosphate that can probably modify distribution of total Al in R. obtusifolius as a representative of “oxalate plants.” The highest concentrations of Al and organic acids were recorded in the leaves, followed by the stem and belowground organ infusions. Conclusions In alkaline soil, R. obtusifolius is an Al-hyperaccumulator with the highest concentrations of oxalate in leaves, of malate in stems, and of citrate in belowground organs. These organic acids form strong complexes with Al that can play a key role in internal Al tolerance but the used methods did not allow us to distinguish the proportion of total Al-organic complexes to the free organic acids. PMID:25880431

  16. Aluminium uptake and translocation in Al hyperaccumulator Rumex obtusifolius is affected by low-molecular-weight organic acids content and soil pH.

    PubMed

    Vondráčková, Stanislava; Száková, Jiřina; Drábek, Ondřej; Tejnecký, Václav; Hejcman, Michal; Müllerová, Vladimíra; Tlustoš, Pavel

    2015-01-01

    High Al resistance of Rumex obtusifolius together with its ability to accumulate Al has never been studied in weakly acidic conditions (pH > 5.8) and is not sufficiently described in real soil conditions. The potential elucidation of the role of organic acids in plant can explain the Al tolerance mechanism. We established a pot experiment with R. obtusifolius planted in slightly acidic and alkaline soils. For the manipulation of Al availability, both soils were untreated and treated by lime and superphosphate. We determined mobile Al concentrations in soils and concentrations of Al and organic acids in organs. Al availability correlated positively to the extraction of organic acids (citric acid < oxalic acid) in soils. Monovalent Al cations were the most abundant mobile Al forms with positive charge in soils. Liming and superphosphate application were ambiguous measures for changing Al mobility in soils. Elevated transport of total Al from belowground organs into leaves was recorded in both lime-treated soils and in superphosphate-treated alkaline soil as a result of sufficient amount of Ca available from soil solution as well as from superphosphate that can probably modify distribution of total Al in R. obtusifolius as a representative of "oxalate plants." The highest concentrations of Al and organic acids were recorded in the leaves, followed by the stem and belowground organ infusions. In alkaline soil, R. obtusifolius is an Al-hyperaccumulator with the highest concentrations of oxalate in leaves, of malate in stems, and of citrate in belowground organs. These organic acids form strong complexes with Al that can play a key role in internal Al tolerance but the used methods did not allow us to distinguish the proportion of total Al-organic complexes to the free organic acids.

  17. Characterization of Mn-resistant endophytic bacteria from Mn-hyperaccumulator Phytolacca americana and their impact on Mn accumulation of hybrid penisetum.

    PubMed

    Zhang, Wen-Hui; Chen, Wei; He, Lin-Yan; Wang, Qi; Sheng, Xia-Fang

    2015-10-01

    Three hundred Mn-resistant endophytic bacteria were isolated from the Mn-hyperaccumulator, Phytolacca americana, grown at different levels of Mn (0, 1, and 10mM) stress. Under no Mn stress, 90%, 92%, and 11% of the bacteria produced indole acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase, respectively. Under Mn stress, 68-94%, 91-92%, and 21-81% of the bacteria produced IAA, siderophore, and ACC deaminase, respectively. Greater percentages of ACC deaminase-producing bacteria were found in the Mn-treated P. americana. Furthermore, the ratios of IAA- and siderophore-producing bacteria were significantly higher in the Mn treated plant leaves, while the ratio of ACC deaminase-producing bacteria was significantly higher in the Mn treated-roots. Based on 16S rRNA gene sequence analysis, Mn-resistant bacteria were affiliated with 10 genera. In experiments involving hybrid penisetum grown in soils treated with 0 and 1000mgkg(-1) of Mn, inoculation with strain 1Y31 was found to increase the root (ranging from 6.4% to 18.3%) and above-ground tissue (ranging from 19.3% to 70.2%) mass and total Mn uptake of above-ground tissues (64%) compared to the control. Furthermore, inoculation with strain 1Y31 was found to increase the ratio of IAA-producing bacteria in the rhizosphere and bulk soils of hybrid penisetum grown in Mn-added soils. The results showed the effect of Mn stress on the ratio of the plant growth-promoting factor-producing endophytic bacteria of P. americana and highlighted the potential of endophytic bacterium as an inoculum for enhanced phytoremediation of Mn-polluted soils by hybrid penisetum plants. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Simultaneous compartmentalization of lead and arsenic in co-hyperaccumulator Viola principis H. de Boiss.: an application of SRXRF microprobe.

    PubMed

    Lei, Mei; Chen, Tong-Bin; Huang, Ze-Chun; Wang, Yao-Dong; Huang, Yu-Ying

    2008-08-01

    The cellular distributions of Pb and As in the leaves of co-hyperaccumulator Viola principis H. de Boiss. were inspected by synchrotron X-ray fluorescence spectroscopy (SRXRF). The results revealed that Pb and As had similar compartmentalization patterns in the leaves. Both elements were enriched in the bundle sheath and the palisade mesophyll. In comparison with the sheath and the mesophyll, the vascular bundle and the epidermis contained lower levels of Pb and As. The palisade enrichment of Pb and As indicated that V. principis H. de Boiss. may have a special mechanism on detoxification of toxic metals within the mesophyll cells. Relative concentrations of both Pb and As in trichome bases were higher than those in trichome rays. The results of hierarchical cluster analysis and correlation analysis confirmed that the distribution of Pb was similar to that of As in the leaves, and their distribution patterns were different from the nutrient elements, such as K, Ca, Mn, Fe, Ni, Cu and Zn. In vivo cellular localization of Pb and As in the leaves provides insight into the physiological mechanisms of metal tolerance and hyperaccumulation in the hyperaccumulators.

  19. Selenium accumulation in plants--phytotechnological applications and ecological implications.

    PubMed

    Valdez Barillas, José Rodolfo; Quinn, Colin F; Pilon-Smits, Elizabeth A H

    2011-01-01

    Selenium (Se) is an essential trace element for many organisms including humans, yet toxic at higher levels. Both Se deficiency and toxicity are problems worldwide. Since plants readily accumulate and volatilize Se, they may be used both as a source of dietary Se and for removing excess Se from the environment. Plant species differ in their capacity to metabolize and accumulate Se, from non-Se accumulators (< 100 mg Se/kg DW), to Se-accumulators (100-1000 mg Se/kg DW) to Se hyperaccumulators (> 1,000 mg Se/kg DW). Here we review plant mechanisms of Se metabolism in these various plant types. We also summarize results from genetic engineering that have led to enhanced plant Se accumulation, volatilization, and/or tolerance, including field studies. Before using Se-accumulating plants at a large scale we need to evaluate the ecological implications. Research so far indicates that plant Se accumulation significantly affects the plant's ecological interactions below and above ground. Selenium canprotect plants from fungal pathogens and from a variety of invertebrate and vertebrate herbivores, due to both deterrence and toxicity. However, specialist (Se-tolerant herbivores), detritivores and endophytes appear to utilize Se hyperaccumulator plants as a resource. These findings are relevant for managing phytoremediation of Se and similar elements.

  20. Unveiling Zn hyperaccumulation in Juncus acutus: implications on the electronic energy fluxes and on oxidative stress with emphasis on non-functional Zn-chlorophylls.

    PubMed

    Santos, D; Duarte, B; Caçador, I

    2014-11-01

    Juncus acutus arises as possible hyperaccumulator specie, tolerating exogenous Zn concentrations as high as 60 mM. Zinc concentrations here detected in seedlings germinated in the presence high Zn concentrations, were above the described upper toxic levels for higher plants. Even at the highest Zn concentration, growth inhibition only accounted to approximately 30% of control seedlings biomass, presenting an EC₅₀ value in the range of 10-20 mM of metal. PSII quantum yields showed a marked decline, reflection of changes in the thylakoid structure on the PSII electron donor sites. In fact, the electron transport rate was severely affected by Zn in seedlings exposed to higher Zn concentrations leading to a decrease in their maximum electronic transport rate and consequently presenting lower light saturation and lower photosynthetic efficiencies. Although light absorption capacity was not affected by Zn exposure and uptake, energy trapping flux in the photosynthetic apparatus and transport throughout the electronic chain was severely impaired. This lack of efficiency is related with non-functional Zn-chlorophylls formation. There was a strong linear correlation between exogenous Zn concentration applied and the concentration actually verified in the seedlings tissue with the concentration of both ZnChl a and b. There was also a gradual loss of connectivity between the antennae of the PSII units being this more evident at the higher Zn concentrations and thus impairing the energetic transport. The reduction in light harvesting efficiency, leads inevitably to the accumulation of redox energy inside the cells. To counteract ROS generation, all anti-oxidant enzymatic activities (except catalase) showed a proportional response to exogenous and in vivo Zn concentrations. Not only this plant appears to be highly tolerant to high Zn concentrations, but also it can overcome efficiently the damage produced during this uptake by efficiently dissipating the excessive cellular

  1. Effect of different nitrogenous nutrients on the cadmium hyperaccumulation efficiency of Rorippa globosa (Turcz.) Thell.

    PubMed

    Wei, Shuhe; Ji, Dandan; Twardowska, Irena; Li, Yunmeng; Zhu, Jiangong

    2015-02-01

    This experiment was used to explore whether the 11 nitrogenous nutrients affect the hyperaccumulation of Rorippa globosa (Turcz.) Thell. to Cd. Pot culture experiments using soil spiked with Cd as CdCl2·2.5H2O and 11 nitrogen-containing chemicals were conducted to determine the efficiency of the accumulation of Cd by R. globosa. Application of all 11 nitrogenous nutrients significantly (p < 0.05) enhanced Cd accumulation by R. globosa (Turcz.) Thell. Two major modes of Cd accumulation were observed: (i) through increase of biomass yield without reduction of Cd uptake and (ii) through increase of Cd uptake efficiency in parallel with increase of biomass yield. Bicarbonate > phosphate > chloride compounds of NH4 enhanced the biomass yield to the greatest extent, while oxalate > nitrate > chloride > and bicarbonate caused a significant increase of Cd uptake by R. globosa. Competition between N and Cd translocation caused either significant reduction of Cd translocation factor or decrease of biomass yield. Of studied nutrients, ammonium bicarbonate NH4HCO3 and ammonium chloride NH4Cl exerted the best joint effect of these two processes on the efficiency of R. globosa as a Cd hyperaccumulator. Application of these chemicals caused increase of Cd concentrations in roots of R. globosa by 35.1 and 41.1 %, and in shoots by 13.9 and 56.4 %, while biomasses of roots increased by 5.8- and 3.8-fold and in shoots by 7.4-fold, and 6.4-fold, respectively, compared to the control. As a result, accumulated load (μg pot(-1)) of Cd in roots increased by 8.2- and 5.8-fold and in shoots by 8.6- and 10.6-fold in both pots. Consequently, chemicals (NH4HCO3 and NH4Cl) that enhanced both Cd enrichment and biomass yield had the greatest effect on the bioaccumulation capacity of R. globosa.

  2. Effect of simultaneous establishment of Sedum alfredii and Zea mays on heavy metal accumulation in plants.

    PubMed

    Liu, Xiaomei; Wu, Qitang; Banks, M Katherine

    2005-01-01

    Land application of biosolids to improve agricultural productivity is a cost-effective approach for resource recovery. Unfortunately, municipal biosolids often contain high concentrations of heavy metals, including zinc and copper. In this study, a co-cropping technique was investigated using a known zinc hyperaccumulator, Sedum alfredii with a grain crop, Zea mays. After a 3-mo growth trial, the results indicate that when Z. mays is co-cropped with S. alfredii, heavy metals accumulated in the grains were significantly reduced when compared to monoculture cropping. Co-cropping improved the growth of both plant species. In addition, the biosolids maintained stable pH, N-P-K concentrations, germination potential, and water content after the plant treatment, regardless of the plant species used in the trial. In conclusion, co-cropping with hyperaccumulators may be an effective approach to reducing the risk of contaminant uptake in edible crops.

  3. Differential regulation of serine acetyltransferase is involved in nickel hyperaccumulation in Thlaspi goesingense.

    PubMed

    Na, GunNam; Salt, David E

    2011-11-25

    When growing in its native habitat, Thlaspi goesingense can hyperaccumulate 1.2% of its shoot dry weight as nickel. We reported previously that both constitutively elevated activity of serine acetyltransferase (SAT) and concentration of glutathione (GSH) are involved in the ability of T. goesingense to tolerate nickel. A feature of SAT is its feedback inhibition by L-cysteine. To understand the role of this regulation of SAT by Cys on GSH-mediated nickel tolerance in T. goesingense, we characterized the enzymatic properties of SATs from T. goesingense. We demonstrate that all three isoforms of SAT in T. goesingense are insensitive to inhibition by Cys. Further, two amino acids (proline and alanine) in the C-terminal region of the cytosolic SAT (SAT-c) from T. goesingense are responsible for converting the enzyme from a Cys-sensitive to a Cys-insensitive form. Furthermore, the Cys-insensitive isoform of SAT-c confers elevated resistance to nickel when expressed in Escherichia coli and Arabidopsis thaliana, supporting a role for altered regulation of SAT by Cys in nickel tolerance in T. goesingense.

  4. Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction.

    PubMed

    Lombi, E; Zhao, F J; Dunham, S J; McGrath, S P

    2001-01-01

    A pot experiment was conducted to compare two strategies of phytoremediation: natural phytoextraction using the Zn and Cd hyperaccumulator Thlaspi caerulescens J. Presl & C. Presl versus chemically enhanced phytoextraction using maize (Zea mays L.) treated with ethylenediaminetetraacetic acid (EDTA). The study used an industrially contaminated soil and an agricultural soil contaminated with metals from sewage sludge. Three crops of T. caerulescens grown over 391 d removed more than 8 mg kg(-1) Cd and 200 mg kg(-1) Zn from the industrially contaminated soil, representing 43 and 7% of the two metals in the soil. In contrast, the high concentration of Cu in the agricultural soil severely reduced the growth of T. caerulescens, thus limiting its phytoextraction potential. The EDTA treatment greatly increased the solubility of heavy metals in both soils, but this did not result in a large increase in metal concentrations in the maize shoots. Phytoextraction of Cd and Zn by maize + EDTA was much smaller than that by T. caerulescens from the industrially contaminated soil, and was either smaller (Cd) or similar (Zn) from the agricultural soil. After EDTA treatment, soluble heavy metals in soil pore water occurred mainly as metal-EDTA complexes, which were persistent for several weeks. High concentrations of heavy metals in soil pore water after EDTA treatment could pose an environmental risk in the form of ground water contamination.

  5. Evaluation of novel starch-deficient mutants of Chlorella sorokiniana for hyper-accumulation of lipids

    PubMed Central

    Vonlanthen, Sofie; Dauvillée, David; Purton, Saul

    2015-01-01

    When green algae are exposed to physiological stresses such as nutrient deprivation, growth is arrested and the cells channel fixed carbon instead into storage compounds, accumulating first starch granules and then lipid bodies containing triacylglycerides. In recent years there has been significant interest in the commercial exploitation of algal lipids as a sustainable source of biodiesel. Since starch and lipid biosynthesis involves the same C3 precursor pool, it has been proposed that mutations blocking starch accumulation should result in increased lipid yields, and indeed several studies have supported this. The fast-growing, thermotolerant alga Chlorella sorokiniana represents an attractive strain for industrial cultivation. We have therefore generated and characterized starch-deficient mutants of C. sorokiniana and determined whether lipid levels are increased in these strains under stress conditions. One mutant (ST68) is shown to lack isoamylase, whilst two others (ST3 and ST12) are defective in starch phosphorylase. However, we find no significant change in the accumulation or profile of fatty acids in these mutants compared to the wild-type, suggesting that a failure to accumulate starch per se is not sufficient for the hyper-accumulation of lipid, and that more subtle regulatory steps underlie the partitioning of carbon to the two storage products. PMID:26865991

  6. Differential Regulation of Serine Acetyltransferase Is Involved in Nickel Hyperaccumulation in Thlaspi goesingense*

    PubMed Central

    Na, GunNam; Salt, David E.

    2011-01-01

    When growing in its native habitat, Thlaspi goesingense can hyperaccumulate 1.2% of its shoot dry weight as nickel. We reported previously that both constitutively elevated activity of serine acetyltransferase (SAT) and concentration of glutathione (GSH) are involved in the ability of T. goesingense to tolerate nickel. A feature of SAT is its feedback inhibition by l-cysteine. To understand the role of this regulation of SAT by Cys on GSH-mediated nickel tolerance in T. goesingense, we characterized the enzymatic properties of SATs from T. goesingense. We demonstrate that all three isoforms of SAT in T. goesingense are insensitive to inhibition by Cys. Further, two amino acids (proline and alanine) in the C-terminal region of the cytosolic SAT (SAT-c) from T. goesingense are responsible for converting the enzyme from a Cys-sensitive to a Cys-insensitive form. Furthermore, the Cys-insensitive isoform of SAT-c confers elevated resistance to nickel when expressed in Escherichia coli and Arabidopsis thaliana, supporting a role for altered regulation of SAT by Cys in nickel tolerance in T. goesingense. PMID:21930704

  7. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation.

    PubMed

    Caille, N; Swanwick, S; Zhao, F J; McGrath, S P

    2004-11-01

    Pot experiments were carried out to investigate the potential of phytoremediation with the arsenic hyperaccumulator Pteris vittata in a range of soils contaminated with As and other heavy metals, and the influence of phosphate and lime additions on As hyperaccumulation by P. vittata. The fern was grown in 5 soils collected from Cornwall (England) containing 67-4550 mg As kg(-1) and different levels of metals. All soils showed a similar distribution pattern of As in different fractions in a sequential extraction, with more than 60% of the total As being associated with the fraction thought to represent amorphous and poorly-crystalline hydrous oxides of Fe and Al. The concentration of As in the fronds ranged from 84 to 3600 mg kg(-1), with 0.9-3.1% of the total soil As being taken up by P. vittata. In one soil which contained 5500 mg Cu kg(-1) and 1242 mg Zn kg(-1), P. vittata suffered from phytotoxicity and accumulated little As (0.002% of total). In a separate experiment, neither phosphate addition (50mg P kg(-1) soil) nor liming (4.6 g CaCO3 kg(-1) soil) was found to affect the As concentration in the fronds of P. vittata, even though phosphate addition increased the As concentration in the soil pore water. Between 4 and 7% of the total soil As was taken up by P. vittata in 4 cuttings in this experiment. The results indicate that P. vittata can hyperaccumulate As from naturally contaminated soils, but may be suitable for phytoremediation only in the moderately contaminated soils.

  8. Effects of Cu on the content of chlorophylls and secondary metabolites in the Cu-hyperaccumulator lichen Stereocaulon japonicum.

    PubMed

    Nakajima, Hiromitsu; Hara, Kojiro; Yamamoto, Yoshikazu; Itoh, Kiminori

    2015-03-01

    Understanding the relationship between Cu and Cu-hyperaccumulator lichens is important for their application in monitoring and assessing heavy metal pollution. We investigated the Cu-hyperaccumulator lichen Stereocaulon japonicum at several Cu-polluted and control sites in Japan, and found the lichen to be widely distributed. Its concentrations of Cu, chlorophylls, and secondary metabolites, chlorophyll-related indices, and absorption spectra were measured, and we observed negative effects of Cu on these concentrations and indices. For highly Cu-polluted samples (>100ppm dry weight), however, we found significant linear correlations between Cu and chlorophyll concentrations. This can be considered as the response of the photobiont in S. japonicum to Cu stress. In highly Cu-polluted samples the chlorophyll-related indices and concentration of total secondary metabolites were almost constant regardless of Cu concentration. This suggests that the increase in chlorophyll concentration with the increase in Cu concentration enhances photosynthetic productivity per unit biomass, which will allow the production of extra structure and energy for maintaining the chlorophyll-related indices under Cu stress. The relationship between the increase in chlorophyll concentration of S. japonicum and the decrease in secondary metabolite concentration of the lichen can be explained by considering the balance of carbohydrates in the lichen. We found that a spectral index A372-A394 can be a useful index of the concentrations of Cu and total secondary metabolites in S. japonicum. These findings show the adjustment of the content of chlorophylls and secondary metabolites in S. japonicum to Cu stress, and provide a better understanding of the relationship between Cu and the Cu-hyperaccumulator lichen.

  9. In vivo localization of manganese in the hyperaccumulator Gossia bidwillii (Benth.) N. Snow & Guymer (Myrtaceae) by cryo-SEM/EDAX.

    PubMed

    Fernando, Denise R; Batianoff, George N; Baker, Alan J; Woodrow, Ian E

    2006-05-01

    Gossia bidwillii (Myrtaceae) is a manganese (Mn)-hyperaccumulating tree native to subtropical eastern Australia. It typically contains foliar Mn levels in excess of 1% dry weight. However, in G. bidwillii and other Mn-hyperaccumulating species, the cellular and subcellular localization of Mn has not been measured. Quantitative in vivo cryo-scanning electron microscopy (SEM)/energy dispersive X-ray analysis (EDAX) was used to localize Mn and other elements in tissue collected from mature trees growing in a natural population. Cryo-SEM showed that the leaf mesophyll is differentiated as a double-layer palisade mesophyll above spongy mesophyll. Transmission electron microscopy (TEM) revealed that the palisade and epidermal cells are highly vacuolated. EDAX data were used to estimate in situ vacuolar Mn concentrations of all cell types in fresh cryo-fixed leaf tissues. The highest average vacuolar Mn concentration of over 500 mM was found in the upper-layer palisade mesophyll, while the lowest concentration of around 100 mM was found in the spongy mesophyll. Qualitative in vivo cryo-SEM/EDAX was employed to further investigate the spatial distribution of Mn in fresh leaf tissues and young bark tissue, which was also found to have a high Mn concentration. It is concluded that Mn distribution in G. bidwillii is quantitatively different to metal distribution in other hyperaccumulating species where the highest localized concentrations of these elements occur in non-photosynthmetic tissues such as epidermal cells and associated dermal structures including trichomes and leaf hairs.

  10. Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator, Thlaspi caerulescens

    PubMed Central

    Hassinen, V. H.; Tuomainen, M.; Peräniemi, S.; Schat, H.; Kärenlampi, S. O.; Tervahauta, A. I.

    2009-01-01

    To study the role of metallothioneins (MTs) in Zn accumulation, the expression of TcMT2a, TcMT2b, and TcMT3 was analysed in three accessions and 15 F3 families of two inter-accession crosses of the Cd/Zn hyperaccumulator Thlaspi caerulescens, with different degrees of Zn accumulation. The highest expression levels were found in the shoots of a superior metal-accumulating calamine accession from St Laurent le Minier, with >10-fold TcMT3 expression compared with another calamine accession and a non-metallicolous accession. Moreover, F3 sibling lines from the inter-accession crosses that harboured the MT2a or MT3 allele from St Laurent le Minier had higher expression levels. However, there was no co-segregation of TcMT2a or TcMT3 expression and Zn accumulation. To examine the functions of TcMTs in plants, TcMT2a and TcMT3 were ectopically expressed in Arabidopsis. The transformant lines had reduced root length in control medium but not at high metal concentrations, suggesting that the ectopically expressed proteins interfered with the physiological availability of essential metals under limited supply. The Arabidopsis transformant lines did not show increased tolerance to Cd, Cu, or Zn, nor increased Cd or Zn accumulation. Immunohistochemical analysis indicated that in roots, MT2 protein is localized in the epidermis and root hairs of both T. caerulescens and Arabidopsis thaliana. The results suggest that TcMT2a, TcMT2b, and TcMT3 are not primarily involved in Zn accumulation as such. However, the elevated expression levels in the metallicolous accessions suggests that they do contribute to the metal-adapted phenotype, possibly through improving Cu homeostasis at high Zn and Cd body burdens. Alternatively, they might function as hypostatic enhancers of Zn or Cd tolerance. PMID:19033549

  11. Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator, Thlaspi caerulescens.

    PubMed

    Hassinen, V H; Tuomainen, M; Peräniemi, S; Schat, H; Kärenlampi, S O; Tervahauta, A I

    2009-01-01

    To study the role of metallothioneins (MTs) in Zn accumulation, the expression of TcMT2a, TcMT2b, and TcMT3 was analysed in three accessions and 15 F(3) families of two inter-accession crosses of the Cd/Zn hyperaccumulator Thlaspi caerulescens, with different degrees of Zn accumulation. The highest expression levels were found in the shoots of a superior metal-accumulating calamine accession from St Laurent le Minier, with >10-fold TcMT3 expression compared with another calamine accession and a non-metallicolous accession. Moreover, F(3) sibling lines from the inter-accession crosses that harboured the MT2a or MT3 allele from St Laurent le Minier had higher expression levels. However, there was no co-segregation of TcMT2a or TcMT3 expression and Zn accumulation. To examine the functions of TcMTs in plants, TcMT2a and TcMT3 were ectopically expressed in Arabidopsis. The transformant lines had reduced root length in control medium but not at high metal concentrations, suggesting that the ectopically expressed proteins interfered with the physiological availability of essential metals under limited supply. The Arabidopsis transformant lines did not show increased tolerance to Cd, Cu, or Zn, nor increased Cd or Zn accumulation. Immunohistochemical analysis indicated that in roots, MT2 protein is localized in the epidermis and root hairs of both T. caerulescens and Arabidopsis thaliana. The results suggest that TcMT2a, TcMT2b, and TcMT3 are not primarily involved in Zn accumulation as such. However, the elevated expression levels in the metallicolous accessions suggests that they do contribute to the metal-adapted phenotype, possibly through improving Cu homeostasis at high Zn and Cd body burdens. Alternatively, they might function as hypostatic enhancers of Zn or Cd tolerance.

  12. Inoculation with endophytic Bacillus megaterium 1Y31 increases Mn accumulation and induces the growth and energy metabolism-related differentially-expressed proteome in Mn hyperaccumulator hybrid pennisetum.

    PubMed

    Zhang, Wen-hui; He, Lin-yan; Wang, Qi; Sheng, Xia-Fang

    2015-12-30

    In this study, a hydroponic culture experiment was conducted in a greenhouse to investigate the molecular and microbial mechanisms involved in the endophytic Bacillus megaterium 1Y31-enhanced Mn tolerance and accumulation in Mn hyperaccumulator hybrid pennisetum. Strain 1Y31 significantly increased the dry weights (ranging from 28% to 94%) and total Mn uptake (ranging from 23% to 112%) of hybrid pennisetum treated with 0, 2, and 10mM Mn compared to the control. Total 98 leaf differentially expressed proteins were identified between the live and dead bacterial inoculated hybrid pennisetum. The major leaf differentially expressed proteins were involved in energy generation, photosynthesis, response to stimulus, metabolisms, and unknown function. Furthermore, most of the energy generation and photosynthesis-related proteins were up-regulated, whereas most of the response to stimulus and metabolism-related proteins were down-regulated under Mn stress. Notably, the proportion of indole-3-acetic acid (IAA)-producing endophytic bacteria was significantly higher in the bacterial inoculated plants under Mn stress. The results suggested that strain 1Y31 increased the growth and Mn uptake of hybrid pennisetum through increasing the efficiency of photosynthesis and energy metabolism as well as the proportion of plant growth-promoting endophytic bacteria in the plants. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Functional analysis of the three HMA4 copies of the metal hyperaccumulator Arabidopsis halleri

    PubMed Central

    Nouet, Cécile; Charlier, Jean-Benoit; Carnol, Monique; Bosman, Bernard; Farnir, Frédéric; Motte, Patrick; Hanikenne, Marc

    2015-01-01

    In Arabidopsis halleri, the HMA4 gene has an essential function in Zn/Cd hypertolerance and hyperaccumulation by mediating root-to-shoot translocation of metals. Constitutive high expression of AhHMA4 results from a tandem triplication and cis-activation of the promoter of all three copies. The three AhHMA4 copies possess divergent promoter sequences, but highly conserved coding sequences, and display identical expression profiles in the root and shoot vascular system. Here, an AhHMA4::GFP fusion was expressed under the control of each of the three A. halleri HMA4 promoters in a hma2hma4 double mutant of A. thaliana to individually examine the function of each AhHMA4 copy. The protein showed non-polar localization at the plasma membrane of the root pericycle cells of both A. thaliana and A. halleri. The expression of each AhHMA4::GFP copy complemented the severe Zn-deficiency phenotype of the hma2hma4 mutant by restoring root-to-shoot translocation of Zn. However, each copy had a different impact on metal homeostasis in the A. thaliana genetic background: AhHMA4 copies 2 and 3 were more highly expressed and provided higher Zn tolerance in roots and accumulation in shoots than copy 1, and AhHMA4 copy 3 also increased Cd tolerance in roots. These data suggest a certain extent of functional differentiation among the three A. halleri HMA4 copies, stemming from differences in expression levels rather than in expression profile. HMA4 is a key node of the Zn homeostasis network and small changes in expression level can have a major impact on Zn allocation to root or shoot tissues. PMID:26044091

  14. Functional analysis of the three HMA4 copies of the metal hyperaccumulator Arabidopsis halleri.

    PubMed

    Nouet, Cécile; Charlier, Jean-Benoit; Carnol, Monique; Bosman, Bernard; Farnir, Frédéric; Motte, Patrick; Hanikenne, Marc

    2015-09-01

    In Arabidopsis halleri, the HMA4 gene has an essential function in Zn/Cd hypertolerance and hyperaccumulation by mediating root-to-shoot translocation of metals. Constitutive high expression of AhHMA4 results from a tandem triplication and cis-activation of the promoter of all three copies. The three AhHMA4 copies possess divergent promoter sequences, but highly conserved coding sequences, and display identical expression profiles in the root and shoot vascular system. Here, an AhHMA4::GFP fusion was expressed under the control of each of the three A. halleri HMA4 promoters in a hma2hma4 double mutant of A. thaliana to individually examine the function of each AhHMA4 copy. The protein showed non-polar localization at the plasma membrane of the root pericycle cells of both A. thaliana and A. halleri. The expression of each AhHMA4::GFP copy complemented the severe Zn-deficiency phenotype of the hma2hma4 mutant by restoring root-to-shoot translocation of Zn. However, each copy had a different impact on metal homeostasis in the A. thaliana genetic background: AhHMA4 copies 2 and 3 were more highly expressed and provided higher Zn tolerance in roots and accumulation in shoots than copy 1, and AhHMA4 copy 3 also increased Cd tolerance in roots. These data suggest a certain extent of functional differentiation among the three A. halleri HMA4 copies, stemming from differences in expression levels rather than in expression profile. HMA4 is a key node of the Zn homeostasis network and small changes in expression level can have a major impact on Zn allocation to root or shoot tissues. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Daclatasvir inhibits hepatitis C virus NS5A motility and hyper-accumulation of phosphoinositides

    PubMed Central

    Chukkapalli, Vineela; Berger, Kristi L.; Kelly, Sean M.; Thomas, Meryl; Deiters, Alexander; Randall, Glenn

    2014-01-01

    Combinations of direct-acting antivirals (DAAs) against the hepatitis C virus (HCV) have the potential to revolutionize the HCV therapeutic regime. An integral component of DAA combination therapies are HCV NS5A inhibitors. It has previously been proposed that NS5A DAAs inhibit two functions of NS5A: RNA replication and virion assembly. In this study, we characterize the impact of a prototype NS5A DAA, daclatasvir (DCV), on HCV replication compartment formation. DCV impaired HCV replicase localization and NS5A motility. In order to characterize the mechanism behind altered HCV replicase localization, we examined the impact of DCV on the interaction of NS5A with its essential cellular cofactor, phosphatidylinositol-4-kinase III α (PI4KA). We observed that DCV does not inhibit PI4KA directly, nor does it impair early events of the NS5A-PI4KA interaction that can occur when NS5A is expressed alone. NS5A functions that are unaffected by DCV include PI4KA binding, as determined by co-immunoprecipitation, and a basal accumulation of the PI4KA product, PI4P. However, DCV impairs late steps in PI4KA activation that requires NS5A expressed in the context of the HCV polyprotein. These NS5A functions include hyper-stimulation of PI4P levels and appropriate replication compartment formation. The data are most consistent with a model wherein DCV inhibits conformational changes in the NS5A protein or protein complex formations that occur in the context of HCV polyprotein expression and stimulate PI4P hyper-accumulation and replication compartment formation. PMID:25546252

  16. Terrestrial Invertebrate Arsenic Accumulation Associated With an Arsenic Hyperaccumulating Fern, Pteris vittata (Polypodiales: Pteridaceae).

    PubMed

    Jaffe, B D; Ketterer, M E; Hofstetter, R W

    2016-10-01

    Arsenic (As) can play an important role in the contamination of soils, waters, and air. The toxicity of As to most organisms is well established, but little is known about the interactions between environmental As and terrestrial invertebrates and the fate of As through trophic levels. Pteris vittata L. (Polypodiales: Pteridaceae), a fern that hyperaccumulates arsenic, serves as a potential mechanism to facilitate interactions between environmental arsenic and other biota. We compared invertebrate arsenic concentrations (hereafter as [As]) and bioaccumulation factors associated with soil and fern [As] to elucidate relationships between invertebrate and environmental As exposure. We collected invertebrates in pitfall traps from field sites associated with P. vittata, and identified them to order for whole body arsenic analysis and subsequently family for classification into functional feeding groups. We found that overall [As] in invertebrates increased with soil [As], but not with fern [As]. The absence of a relationship between fern [As] and invertebrate [As] may indicate invertebrates are avoiding the fern. Individual taxonomic groups significantly differed in whole body [As], and individual taxa also varied in their relationship between whole body [As] relative to soil and fern [As]. Overall invertebrate abundance decreased as invertebrate [As] load increased but varied across taxa. One particular herbivore, Callopistria floridensis (Florida fern caterpillar), associated with relatively low environmental As exposure contained over 4,000 mg kg(-1) As. Our results show that As bioaccumulates into higher trophic levels and invertebrate body [As] covary with exposure to naturally occurring environmental [As] associated with P. vittata. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Advancing our understanding of plant adaptation to metal polluted environments - new insights from Biscutella laevigata

    NASA Astrophysics Data System (ADS)

    Babst-Kostecka, Alicja; Waldmann, Patrik; Frérot, Hélène; Vollenweider, Pierre

    2016-04-01

    The legacy of industrial pollution alters ecosystems, particularly at post-mining sites where metal trace elements have created toxic conditions that trigger rapid plant adaptation. Apart from the purely scientific merits, in-depth knowledge of the mechanisms underlying plant adaptation to metal contamination is beneficial for the economic and societal sectors because of its application in bioengineering (e.g. phytoremediation or biofortification). An important process is the evolution and/or enhancement of metal tolerance, a trait that has predominantly been studied by applying acute metal stress on species that allocate large quantities of certain metals to their foliage (so-called hyperaccumulators). As the vast majority of vascular plants does not hyperaccumulate metals, more efforts are needed to investigate non-hyperaccumulating species and thereby broaden understanding of biological mechanisms underlying metal tolerance. The pseudometallophyte Biscutella laevigata has shown potential in this respect, but its characteristics are insufficiently understood. We determined the zinc tolerance level and various plant responses to environmentally relevant zinc concentrations in ten metallicolous and non-metallicolous B. laevigata populations. In a two-phase hydroponic experiment, we scored multiple morphological and physiological traits (e.g. biomass, visible stress symptoms, element content in foliage) and assessed phenotypic variability within plant families. The structure of these quantitative traits was compared to that of neutral molecular markers to test, whether natural selection caused population differentiation in zinc tolerance. While all genotypes were tolerant compared to a zinc sensitive reference species, we found congruent trends toward higher tolerance in metallicolous compared to non-metallicolous plants. We identified the most indicative parameters for these differences and find that enhanced zinc tolerance in metallicolous populations is driven by

  18. Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dump site.

    PubMed

    Eid, Ebrahem M; Shaltout, Kamal H

    2016-11-01

    In the present study, nine native plant species were collected to determine their potential to clean up nine heavy metals from soil of a sewage sludge dump site. Almost all nine plant species grown at sewage sludge dump site showed multifold higher concentrations of heavy metals as compared to plants grown at the reference site. All the investigated species were characterized by a bioaccumulation factor (BF) > 1.0 for some heavy metals. BF was generally higher for Cd, followed by Pb, Co, Cr, Cu, Ni, Mn, Zn, and Fe. The translocation factor (TF) varied among plant species, and among heavy metals. For most studied heavy metals, TFs were <1.0. The present study proved that the concentrations of all heavy metals (except Cd, Co, and Pb) in most studied species were positively correlated with those in soil. Such correlations indicate that these species reflect the cumulative effects of environmental pollution from soil, and thereby suggesting their potential use in the biomonitoring of most heavy metals examined. In conclusion, all tissues of nine plant species could act as bioindicators, biomonitors, and remediates of most examined heavy metals. Moreover, Bassia indica, Solanum nigrum, and Pluchea dioscoridis are considered hyperaccumulators of Fe; Amaranthus viridis and Bassia indica are considered hyperaccumulators of Pb; and Portulaca oleracea is considered hyperaccumulator of Mn.

  19. Effectiveness of metal-metal and metal-organic compound combinations against Plutella xylostella: implications for plant elemental defense.

    PubMed

    Jhee, Edward M; Boyd, Robert S; Eubanks, Micky D

    2006-02-01

    Plants that contain elevated foliar metal concentrations can be categorized as accumulators or, if the accumulation is extreme, hyperaccumulators. The defense hypothesis suggests that these plants may be defended against folivore attack, and recent research has indicated that metal concentrations at or below the accumulator range may be defensively effective. This experiment explored the toxicity of four metals hyper-accumulated by plants (Cd, Ni, Pb, and Zn) and asked if combinations of metals, or metals and organic chemicals, might broaden the defensive effectiveness of metals. Metals were used alone and in certain metal + metal (Zn plus Ni, Pb, or Cd) and metal + organic defensive chemical (Ni plus tannic acid, atropine, or nicotine) combinations. Artificial diet amended with these treatments was fed to larvae of the crucifer specialist herbivore Plutella xylostella. Combinations of metals and metals + organic chemicals significantly decreased survival and pupation rates, compared to single treatments, for at least some concentrations in every experiment. Effects of combinations were additive rather than synergistic or antagonistic. Because Zn enhanced the toxicity of other metals and Ni enhanced the toxicity of organic defensive chemicals, our findings suggest that the defensive effects of metals are more widespread among plants than previously believed. They also support the hypothesis that herbivore defense may have led to the evolution of metal hyper-accumulation by increasing the preexisting defensive effects of metals at accumulator levels in plants.

  20. Use of synchrotron radiation to characterize metals in plants: the case of Cd in the hyperacumulator Arabidopsis halleri

    NASA Astrophysics Data System (ADS)

    Isaure, M.; Sarret, G.; Verbruggen, N.

    2010-12-01

    Phytoremediation uses plants to extract (phytoextraction) or stabilize (phytostabilization) metals accumulated in soils, and can be an alternative to invasive physico-chemical remediation techniques. Its development requires the knowledge of the mechanisms involved in metal tolerance and accumulation in plants, and particularly the way that plants transfer and store metals. In that context, synchrotron radiation based techniques such as micro-focused X-Ray Fluorescence (µXRF), and micro-focused X-ray Absorption Spectroscopy, including Extended X-ray Absorption Fine Structure and X-ray Absorption Near Edge Structure, are particularly suited to determine the localization and the chemical forms of metals in the different tissues, cells and sub-cellular compartments. Arabidopsis halleri is a Zn, Cd hyperaccumulating plant, naturally growing on contaminated sites, and is a model plant to investigate metal hyperaccumulation. This work presents the application of µXRF and Cd µXANES to determine the distribution and speciation of Cd in this species. Results showed that Cd was mainly located in the mesophyll and veins of leaves. It is bound to S ligands in some leaves and to O/N ligands in other ones, and the observed variations may be related to the age of the leaves. Cd speciation seems to differ from other metals, and particularly Zn, generally encountered in hyperaccumulators. High local Cd concentrations were also detected at the base of trichomes, epidermal hairs of leaves, associated to O/N ligands, probably to the cell wall. This phenomenon was also observed on non-hyperaccumulators and is clearly not the major sink for Cd, but trichomes might play a role in the detoxification process. This study illustrates the suitability of synchrotron radiation based techniques to investigate metal distribution and speciation in plants.

  1. Molecular Dissection of the Role of Histidine in Nickel Hyperaccumulation in Thlaspi goesingense (Hálácsy)1

    PubMed Central

    Persans, Michael W.; Yan, Xiange; Patnoe, Jean-Marc M.L.; Krämer, Ute; Salt, David E.

    1999-01-01

    To understand the role of free histidine (His) in Ni hyperaccumulation in Thlaspi goesingense, we investigated the regulation of His biosynthesis at both the molecular and biochemical levels. Three T. goesingense cDNAs encoding the following His biosynthetic enzymes, ATP phosphoribosyltransferase (THG1, GenBank accession no. AF003347), imidazoleglycerol phosphate dehydratase (THB1, GenBank accession no. AF023140), and histidinol dehydrogenase (THD1, GenBank accession no. AF023141) were isolated by functional complementation of Escherichia coli His auxotrophs. Northern analysis of THG1, THD1, and THB1 gene expression revealed that each gene is expressed in both roots and shoots, but at the concentrations and dosage times of Ni treatment used in this study, these genes failed to show any regulation by Ni. We were also unable to observe any increases in the concentration of free His in root, shoot, or xylem sap of T. goesingense in response to Ni exposure. X-ray absorption spectroscopy of root and shoot tissue from T. goesingense and the non-accumulator species Thlaspi arvense revealed no major differences in the coordination of Ni by His in these tissues. We therefore conclude that the Ni hyperaccumulation phenotype in T. goesingense is not determined by the overproduction of His in response to Ni. PMID:10594099

  2. Comparative transcriptome analysis of duckweed (Landoltia punctata) in response to cadmium provides insights into molecular mechanisms underlying hyperaccumulation.

    PubMed

    Xu, Hua; Yu, Changjiang; Xia, Xinli; Li, Mingliang; Li, Huiguang; Wang, Yu; Wang, Shumin; Wang, Congpeng; Ma, Yubin; Zhou, Gongke

    2017-09-30

    Cadmium (Cd) is a detrimental environmental pollutant. Duckweeds have been considered promising candidates for Cd phytoremediation. Although many physiological studies have been conducted, the molecular mechanisms underlying Cd hyperaccumulation in duckweeds are largely unknown. In this study, clone 6001 of Landoltia punctata, which showed high Cd tolerance, was obtained by large-scale screening of over 200 duckweed clones. Subsequently, its growth, Cd flux, Cd accumulation, and Cd distribution characteristics were investigated. To further explore the global molecular mechanism, a comprehensive transcriptome analysis was performed. For RNA-Seq, samples were treated with 20 μM CdCl2 for 0, 1, 3, and 6 days. In total, 9,461, 9,847, and 9615 differentially expressed unigenes (DEGs) were discovered between Cd-treated and control (0 day) samples. DEG clustering and enrichment analysis identified several biological processes for coping with Cd stress. Genes involved in DNA repair acted as an early response to Cd, while RNA and protein metabolism would be likely to respond as well. Furthermore, the carbohydrate metabolic flux tended to be modulated in response to Cd stress, and upregulated genes involved in sulfur and ROS metabolism might cause high Cd tolerance. Vacuolar sequestration most likely played an important role in Cd detoxification in L. punctata 6001. These novel findings provided important clues for molecular assisted screening and breeding of Cd hyperaccumulating cultivars for phytoremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Interaction of Nickel and Manganese in Accumulation and Localization in Leaves of the Ni Hyperaccumulators Alyssum murale and Alyssum corsicum

    SciTech Connect

    Broadhurst, C.; Tappero, R; Maugel, T; Erbe, E; Sparks, D; Chaney, R

    2009-01-01

    The genus Alyssum contains >50 Ni hyperaccumulator species; many can achieve >2.5% Ni in dry leaf. In soils with normal Mn levels, Alyssum trichome bases were previously observed to accumulate Ni and Mn to high levels. Here we report concentration and localization patterns in A. murale and A. corsicum grown in soils with nonphytotoxic factorial additions of Ni and Mn salts. Four leaf type subsets based on size and age accumulated Ni and Mn similarly. The greatest Mn accumulation (10 times control) was observed in A. corsicum with 40 mmol Mn kg-1 and 40 mmol Ni kg-1 added to potting soil. Whole leaf Ni concentrations decreased as Mn increased. Synchrotron X-ray fluorescence mapping of whole fresh leaves showed localized in distinct high-concentration Mn spots associated with trichomes, Ni and Mn distributions were strongly spatially correlated. Standard X-ray fluorescence point analysis/mapping of cryofractured and freeze-dried samples found that Ni and Mn were co-located and strongly concentrated only in trichome bases and in cells adjacent to trichomes. Nickel concentration was also strongly spatially correlated with sulfur. Results indicate that maximum Ni phytoextraction by Alyssum may be reduced in soils with higher phytoavailable Mn, and suggest that Ni hyperaccumulation in Alyssum species may have developed from a Mn handling system.

  4. Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii.

    PubMed

    Li, Tingqiang; Tao, Qi; Liang, Chengfeng; Shohag, M J I; Yang, Xiaoe; Sparks, Donald L

    2013-11-01

    The complexation of Zn, Cd and Pb with dissolved organic matter (DOM) in the rhizosphere of hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of Sedum alfredii was measured using resin equilibration method. After the growth of HE S. alfredii, the rhizosphere soil pH was reduced by 0.27-0.33 units, due to enhanced DOM derived from root exudation. For both ecotypes of S. alfredii, the fraction of free metal as a percentage of soluble metal varied from 22.1 to 42.5% for Zn(2+), from 8.1 to 15.5% for Cd(2+), and from 4.5 to 10.4% for Pb(2+). Resin equilibration experiment results indicated that HE-DOM had greater ability to form complexes with Zn, Cd and Pb than NHE-DOM, Visual MINTEQ model gave excellent predictions of the complexation of Zn and Cd by DOM (R(2) > 0.97). DOM in the rhizosphere of HE S. alfredii could significantly increase metal mobility through the formation of soluble DOM-metal complexes.

  5. Bioaccumulation of polycyclic aromatic hydrocarbons in the soil-plant systems of the northern-taiga biocenoses

    NASA Astrophysics Data System (ADS)

    Yakovleva, E. V.; Beznosikov, V. A.; Kondratenok, B. M.; Gabov, D. N.

    2012-03-01

    Regularities in the formation of the pool of priority polycyclic aromatic hydrocarbons (PAHs) in the soil-plant systems of the northern taiga forest biocenoses were revealed. In soils and plants, PAHs mainly consisted of 3- and 4-nuclear structures. The content of polyarenes in plants on technogenically contaminated areas exceeded the background values by 2-5 times. The maximum bioconsumption of polyarenes was observed for bilberry leaves and Siberian spruce sprouts 4-5 years old. The highest mass fraction of PAHs was found in Siberian spruce plants of a mixed spruce-birch forest of the northern taiga. It was revealed that bilberry plants are hyperaccumulators of light PAHs.

  6. Selenium uptake, translocation, assimilation and metabolic fate in plants.

    PubMed

    Sors, T G; Ellis, D R; Salt, D E

    2005-12-01

    The chemical and physical resemblance between selenium (Se) and sulfur (S) establishes that both these elements share common metabolic pathways in plants. The presence of isologous Se and S compounds indicates that these elements compete in biochemical processes that affect uptake, translocation and assimilation throughout plant development. Yet, minor but crucial differences in reactivity and other metabolic interactions infer that some biochemical processes involving Se may be excluded from those relating to S. This review examines the current understanding of physiological and biochemical relationships between S and Se metabolism by highlighting their similarities and differences in relation to uptake, transport and assimilation pathways as observed in Se hyperaccumulator and non-accumulator plant species. The exploitation of genetic resources used in bioengineering strategies of plants is illuminating the function of sulfate transporters and key enzymes of the S assimilatory pathway in relation to Se accumulation and final metabolic fate. These strategies are providing the basic framework by which to resolve questions relating to the essentiality of Se in plants and the mechanisms utilized by Se hyperaccumulators to circumvent toxicity. In addition, such approaches may assist in the future application of genetically engineered Se accumulating plants for environmental renewal and human health objectives.

  7. Utilization of a Model for Uptake of Cadmium by Plants as a Phytoremediation Assessment Tool

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Furbish, D. J.; Clarke, J.

    2008-12-01

    Some traditional methods of environmental remediation, such as removal and disposal of contaminated soil, are loosing economic favor and public acceptance, while others, such as in situ phytoremediation, are being carefully examined because of their attractiveness as environmentally friendly, low-cost solutions to site clean-up. The success of phytoremediation strategies, however, hinges on the ability of selected plants, or plant communities, to effectively uptake, accumulate and tolerate targeted contaminants. Heavy metals, specifically cadmium (Cd), are not essential nutrients to plants. However, chemically similar zinc (Zn) is a micronutrient and is actively taken up by hyperaccumulators. For this reason, the mechanisms involved in uptake of Cd parallel those of Zn. Ideally, Cd would be allocated to the stem, leaf, and/or flower, where it becomes harvestable. Our modeling work simulates the uptake and the storage of Cd in a growing hyperaccumulator. After uptake, Cd is partitioned between adsorption to plant tissue and upward movement to leaves driven by transpiration. Uptake, adsorption and transport are also regulated by phytotoxicity. Simulations suggest that a young plant with small biomass can quickly reach phytotoxicity, which shuts down the normal operation of the plant. Conversely, mature plants on a mildly contaminated site, if harvested before the plants die due to phytotoxicity or natural cause, not only survive but may occasionally thrive. The immediate aim is to estimate the effectiveness and limitations of Cd uptake by hyperaccumulators. The eventual goal of this study is to expand the model in spatial and temporal scales, from individual plants to the community scale, and from one harvest interval to several generations. Understanding the interface between physical and biological processes, specifically the uptake and release of contaminants, provides scientists and engineers tools to assess whether phytoremediation is a reasonable strategy for a

  8. Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens.

    PubMed

    Plaza, Sonia; Tearall, Kathryn L; Zhao, Fang-Jie; Buchner, Peter; McGrath, Steve P; Hawkesford, Malcolm J

    2007-01-01

    Zinc (Zn) hyperaccumulation is a constitutive property of Thlaspi caerulescens, whereas cadmium (Cd) hyperaccumulation varies greatly among different ecotypes. The molecular basis of this variation is unknown. Ecotypic differences in the sequences and expression of four representative ZIP family transporter genes were investigated. Genome analysis indicated the presence of at least two closely related copies of the TcIRT1 gene in both Ganges (high Cd accumulating) and Prayon (low Cd accumulating) ecotypes, with different copies being expressed in each, and, furthermore, the two genes potentially encode different length transcripts. The predominant transcript in Prayon was truncated, missing sequence coding for the putative metal-binding site and the five C-terminal transmembrane helices. The two ecotypes were grown hydroponically +/-Fe and Cd, and mRNA abundance determined for four ZIP genes. The four ZIP genes studied (TcIRT1, TcIRT2, TcZNT1, and TcZNT5) were expressed in roots only. TcIRT1 expression (full-length in Ganges, TcIRT1-1G; truncated in Prayon, TcIRT1-2P) was enhanced by Fe deficiency or by exposure to Cd. TcIRT2 expression was induced by Fe deficiency, but was unaffected by Cd exposure. TcZNT5-G showed greater expression in Prayon compared with Ganges. The functions of TcIRT1 from Ganges and Prayon and the Arabidopsis homologue were analysed by heterologous expression in yeast. All three IRT1 genes were able to facilitate growth on low Fe concentrations. Cd sensitivity of yeast was conferred in the order AtIRT1>TcIRT1-1G>TcIRT1-2P (truncated). Cd uptake after 4 h was only detectable following complementation by AtIRT1. The results suggest that although TcIRT1-G may be involved in Cd hyperaccumulation in the Ganges ecotype of T. caerulescens, the transporter expressed in yeast does not have an enhanced ability to transport Cd compared with AtIRT1. Therefore, the unique Cd-accumulating ability of the T. caerulescens Ganges ecotype must be due to the

  9. Elevated CO2 concentration increase the mobility of Cd and Zn in the rhizosphere of hyperaccumulator Sedum alfredii.

    PubMed

    Li, Tingqiang; Tao, Qi; Liang, Chengfeng; Yang, Xiaoe

    2014-05-01

    The effects of elevated CO2 on metal species and mobility in the rhizosphere of hyperaccumulator are not well understood. We report an experiment designed to compare the effects of elevated CO2 on Cd/Zn speciation and mobility in the rhizosphere of hyperaccumulating ecotype (HE) and a non-hyperaccumulating ecotype (NHE) of Sedum alfredii grown under ambient (350 μl l(-1)) or elevated (800 μl l(-1)) CO2 conditions. No difference in solution pH of NHE was observed between ambient and elevated CO2 treatments. For HE, however, elevated CO2 reduced soil solution pH by 0.22 unit, as compared to ambient CO2 conditions. Elevated CO2 increased dissolved organic carbon (DOC) and organic acid levels in soil solution of both ecotypes, but the increase in HE solution was much greater than in NHE solution. After the growth of HE, the concentrations of Cd and Zn in soil solution decreased significantly regardless of CO2 level. The visual MINTEQ speciation model predicted that Cd/Zn-DOM complexes were the dominant species in soil solutions, followed by free Cd(2+) and Zn(2+) species for both ecotypes. However, Cd/Zn-DOM complexes fraction in soil solution of HE was increased by the elevated CO2 treatment (by 8.01 % for Cd and 8.47 % for Zn, respectively). Resin equilibration experiment results indicated that DOM derived from the rhizosphere of HE under elevated CO2 (HE-DOM-E) (90 % for Cd and 73 % for Zn, respectively) showed greater ability to form complexes with Cd and Zn than those under ambient CO2 (HE-DOM-A) (82 % for Cd and 61 % for Zn, respectively) in the undiluted sample. HE-DOM-E showed greater ability to extract Cd and Zn from soil than HE-DOM-A. It was concluded that elevated CO2 could increase the mobility of Cd and Zn due to the enhanced formation of DOM-metal complexes in the rhizosphere of HE S. alfredii.

  10. Heavy metals in plants and phytoremediation.

    PubMed

    Cheng, Shuiping

    2003-01-01

    heavy metals on site. Based on knowledge of the heavy metal accumulation in plants, it is possible to select those species of crops and pasturage herbs, which accumulate fewer heavy metals, for food cultivation and fodder for animals; and to select those hyperaccumulation species for extracting heavy metals from soil and water. Studies on the mechanisms and application of hyperaccumulation are necessary in China for developing phytoremediation.

  11. Gibberellic acid, kinetin, and the mixture indole-3-acetic acid-kinetin assisted with EDTA-induced lead hyperaccumnulation in alfalfa plants.

    PubMed

    López, Martha L; Peralta-Videa, José R; Parsons, Jason G; Benitez, Tenoch; Gardea-Torresdey, Jorge L

    2007-12-01

    There are a few plant species considered potential hyperaccumulators for heavy metals, particularly lead (Pb). In this study, alfalfa plants grown in hydroponics were exposed to Pb at 40 mg/L, ethylenediaminetetraacetic acid (EDTA) equimolar to Pb, and 1, 10, and 100 microM concentrations of the phytohormones indole-3-acetic acid (IAA), gibberellic acid (GA), and kinetin (KN) and a mixture of IAA and KN at 100 microM each. Metal quantification by inductively coupled plasma/optical emission spectroscopy demonstrated that plants treated with Pb/EDTA plus KN at 1, 10, and 100 microM increased the Pb concentration in alfalfa leaves (compared to Pb alone) by factors of 17, 43, and 67, respectively, and by factors of 2, 5, and 8, respectively, compared to the Pb/EDTA treatment. The correlation coefficient between the Pb concentration in leaves and the concentrations of KN in the medium was 0.9993. In addition, the leaves of plants exposed to a Pb/EDTA/100 microM IAA-KN mixture had approximately 9500 mg of Pb/kg of dry weight, demonstrating that non-Pb hyperaccumulating plants could hyperaccumulate Pb when treated with EDTA and a mixture of IAA-KN. The X-ray absorption spectroscopic studies demonstrated that the absorption and translocation of Pb was in the same oxidation state as the supplied Pb(II).

  12. Seed germination of a newly discovered hyperaccumulator Solanum nigrum L. affected by illumination and seed-soaking reagent.

    PubMed

    Wei, Shuhe; Hu, Yahu; Srivastava, Mrittunjai; Zhou, Qixing; Niu, Rongcheng; Li, Yunmeng; Wu, Zhijie; Sun, Tieheng

    2009-10-30

    Solanum nigrum is a newly found Cd-hyperaccumulator which showed very high remediation efficiency in polluted soil. Seed germination experiments with different illumination and seed-soaking reagents were conducted in constant temperature box and greenhouse with soil as burgeon base. The results showed that the germination rate with alternating light/dark photoperiod was about twice of that without lighting (p < 0.05), suggesting that illumination is one of the important conditions for seed germination of S. nigrum. All treatments with seed-soaking reagents significantly increased the seed germination rate of S. nigrum (p < 0.05). Treatment with H2O2 (0.1%) had the shortest germination time. The germination rate of seeds that were not washed in water following soaking was 2-3 times higher than that of seeds that were washed after soaking.

  13. Analysis of Sulfur And Selenium Assimilation in 'Astragalus' Plants With Varying Capacities to Accumulate Selenium

    SciTech Connect

    Sors, T.G.; Ellis, D.R.; Na, G.Nam.; Lahner, B.; Lee, S.; Leustek, T.; Pickering, I.J.; Salt, D.E.; /Purdue U. /Rutgers U., Piscataway /Saskatchewan U.

    2007-08-08

    Several Astragalus species have the ability to hyperaccumulate selenium (Se) when growing in their native habitat. Given that the biochemical properties of Se parallel those of sulfur (S), we examined the activity of key S assimilatory enzymes ATP sulfurylase (ATPS), APS reductase (APR), and serine acetyltransferase (SAT), as well as selenocysteine methyltransferase (SMT), in eight Astragalus species with varying abilities to accumulate Se. Se hyperaccumulation was found to positively correlate with shoot accumulation of S-methylcysteine (MeCys) and Se-methylselenocysteine (MeSeCys), in addition to the level of SMT enzymatic activity. However, no correlation was observed between Se hyperaccumulation and ATPS, APR, and SAT activities in shoot tissue. Transgenic Arabidopsis thaliana overexpressing both ATPS and APR had a significant enhancement of selenate reduction as a proportion of total Se, whereas SAT overexpression resulted in only a slight increase in selenate reduction to organic forms. In general, total Se accumulation in shoots was lower in the transgenic plants overexpressing ATPS, PaAPR, and SAT. Root growth was adversely affected by selenate treatment in both ATPS and SAT overexpressors and less so in the PaAPR transgenic plants. Such observations support our conclusions that ATPS and APR are major contributors of selenate reduction in planta. However, Se hyperaccumulation in Astragalus is not driven by an overall increase in the capacity of these enzymes, but rather by either an increased Se flux through the S assimilatory pathway, generated by the biosynthesis of the sink metabolites MeCys or MeSeCys, or through an as yet unidentified Se assimilation pathway.

  14. Zinc, cadmium and lead accumulation and characteristics of rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance under natural conditions.

    PubMed

    Long, Xin-Xian; Zhang, Yu-Gang; Jun, Dai; Zhou, Qixing

    2009-04-01

    A field survey was conducted to study the characteristics of zinc, cadmium, and lead accumulation and rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance growing natively on an old lead/zinc mining site. We found significant hyperaccumulation of zinc and cadmium in field samples of S. alfredii, with maximal shoot concentrations of 9.10-19.61 g kg(-1) zinc and 0.12-1.23 g kg(-1) cadmium, shoot/root ratios ranging from 1.75 to 3.19 (average 2.54) for zinc, 3.36 to 4.43 (average 3.85) for cadmium, shoot bioaccumulation factors of zinc and cadmium being 1.46-4.84 and 7.35-17.41, respectively. While most of lead was retained in roots, thus indicating exclusion as a tolerance strategy for lead. Compared to the non-rhizosphere soil, organic matter and total nitrogen and phosphorus content, CEC and water extractable zinc, cadmium, and lead concentration were significantly higher, but pH was smaller in rhizosphere soil. The rhizosphere soil of S. alfredii harbored a wide variety of microorganism. In general, significantly higher numbers of culturable bacteria, actinomycetes, and fungi were found in the rhizosphere compared to bulk soil, confirming the stimulatory effect of the S. alfredii rhizosphere on microbial growth and proliferation. Analyses of BIOLOG data also showed that the growth of S. alfredii resulted in observable changes in BIOLOG metabolic profiles, utilization ability of different carbon substrates of microbial communities in the rhizosphere soil were also higher than the non-rhizosphere, confirming a functional effect of the rhizosphere of S. alfredii on bacterial population.

  15. Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance.

    PubMed

    Yang, Xiaoe; Li, Tingqiang; Yang, Juncheng; He, Zhenli; Lu, Lingli; Meng, Fanhua

    2006-06-01

    Sedum alfredii Hance can accumulate Zn in shoots over 2%. Leaf and stem Zn concentrations of the hyperaccumulating ecotype (HE) were 24- and 28-fold higher, respectively, than those of the nonhyperaccumulating ecotype (NHE), whereas 1.4-fold more Zn was accumulated in the roots of the NHE. Approximately 2.7-fold more Zn was stored in the root vacuoles of the NHE, and thus became unavailable for loading into the xylem and subsequent translocation to shoot. Long-term efflux of absorbed 65Zn indicated that 65Zn activity was 6.8-fold higher in shoots but 3.7-fold lower in roots of the HE. At lower Zn levels (10 and 100 microM), there were no significant differences in 65Zn uptake by leaf sections and intact leaf protoplasts between the two ecotypes except that 1.5-fold more 65Zn was accumulated in leaf sections of the HE than in those of the NHE after exposure to 100 microM for 48 h. At 1,000 microM Zn, however, approximately 2.1-fold more Zn was taken up by the HE leaf sections and 1.5-fold more 65Zn taken up by the HE protoplasts as compared to the NHE at exposure times >16 h and >10 min, respectively. Treatments with carbonyl cyanide m-chlorophenylhydrazone (CCCP) or ruptured protoplasts strongly inhibited 65Zn uptake into leaf protoplasts for both ecotypes. Citric acid and Val concentrations in leaves and stems significantly increased for the HE, but decreased or had minimal changes for the NHE in response to raised Zn levels. These results indicate that altered Zn transport across tonoplast in the root and stimulated Zn uptake in the leaf cells are the major mechanisms involved in the strong Zn hyperaccumulation observed in S. alfredii H.

  16. Mechanisms of arsenic tolerance and detoxification in plants and their application in transgenic technology: a critical appraisal.

    PubMed

    Srivastava, Sudhakar; Suprasanna, Penna; D'Souza, S F

    2012-01-01

    Arsenic (As) contamination of the environment has emerged as a serious problem. Consequently, there is an urge to understand plants' responses to As. The analysis of various hypertolerant and hyperaccumulator plants and comparison of their responses with non-tolerant and nonaccumulators have provided valuable information about the mechanisms of As tolerance and detoxification. Therefore, we understand why most of the pteridophytes are able to hyperacumulate As, why it is difficult to find hyperaccumulators among angiosperms and why rice is able to translocate As to its grains more efficiently than any other cereal crop. This information can be employed to generate As hyperaccumulators in angiosperms and to develop safe cultivars of rice for human consumption through biotechnological approaches. Although measurable success, in terms of application in the field, has so far not been achieved, transgenic research has yielded promising results, which shed light on the approaches to be taken up in future endeavor. In this review, we discuss the mechanisms of As tolerance and detoxification in plants and transgenic research conducted.

  17. Enhanced phytoremediation of cadmium polluted water through two aquatic plants Veronica anagallis-aquatica and Epilobium laxum.

    PubMed

    Ahmad, Ayaz; Hadi, Fazal; Ali, Nasir; Jan, Amin Ullah

    2016-09-01

    Toxic metal-contaminated water is a major threat to sustainable agriculture and environment. Plants have the natural ability to absorb and concentrate essential elements in its tissues from water solution, and this ability of plants can be exploited to remove heavy/toxic metals from the contaminated water. For this purpose, two plants Veronica anagallis-aquatica and Epilobium laxum were hydroponically studied. The effect of different fertilizers (NPK) and plant growth regulators (GA3 and IAA) were evaluated on growth, biomass, free proline, phenolics, and chlorophyll contents, and their role in Cd phytoaccumulation was investigated. Results showed that in both plants, fertilizer addition to media (treatment T4) produced the highest significant increase in growth, biomass (fresh and dry), cadmium concentration, proline, phenolics, and chlorophyll concentrations. The significant effect of GA3 in combination with NPK foliar spray (treatment T12) was observed on most of the growth parameters, Cd concentration, and proline and phenolic contents of the plants. The free proline and total phenolics showed positive correlation with cadmium concentration within plant tissues. Proline showed significantly positive correlation with phenolic contents of root and shoot. Veronica plant demonstrated the hyperaccumulator potential for cadmium as bioconcentration factor (BCF >1) which was much higher than 1, while Epilobium plant showed non-hyperaccumulator potential. It is recommended for further study to investigate the role of Veronica plant for other metals and to study the role of phenolics and proline contents in heavy metal phytoextraction by various plant species.

  18. Zinc tolerance and accumulation in stable cell suspension cultures and in vitro regenerated plants of the emerging model plant Arabidopsis halleri (Brassicaceae).

    PubMed

    Vera-Estrella, Rosario; Miranda-Vergara, Maria Cristina; Barkla, Bronwyn J

    2009-03-01

    Arabidopsis halleri is increasingly employed as a model plant for studying heavy metal hyperaccumulation. With the aim of providing valuable tools for studies on cellular physiology and molecular biology of metal tolerance and transport, this study reports the development of successful and highly efficient methods for the in vitro regeneration of A. halleri plants and production of stable cell suspension lines. Plants were regenerated from leaf explants of A. halleri via a three-step procedure: callus induction, somatic embryogenesis and shoot development. Efficiency of callus proliferation and regeneration depended on the initial callus induction media and was optimal in the presence of 1 mg L(-1) 2,4-dichlorophenoxyacetic acid, and 0.05 mg L(-1) benzylaminopurine. Subsequent shoot and root regeneration from callus initiated under these conditions reached levels of 100% efficiency. High friability of the callus supported the development of cell suspension cultures with minimal cellular aggregates. Characterization of regenerated plants and cell cultures determined that they maintained not only the zinc tolerance and requirement of the whole plant but also the ability to accumulate zinc; with plants accumulating up to 50.0 micromoles zinc g(-1) FW, and cell suspension cultures 30.9 micromoles zinc g(-1) DW. Together this work will provide the experimental basis for furthering our knowledge of A. halleri as a model heavy metal hyperaccumulating plant.

  19. Repressor-mediated tissue-specific gene expression in plants

    DOEpatents

    Meagher, Richard B.; Balish, Rebecca S.; Tehryung, Kim; McKinney, Elizabeth C.

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  20. Integration of small RNAs, degradome and transcriptome sequencing in hyperaccumulator Sedum alfredii uncovers a complex regulatory network and provides insights into cadmium phytoremediation.

    PubMed

    Han, Xiaojiao; Yin, Hengfu; Song, Xixi; Zhang, Yunxing; Liu, Mingying; Sang, Jiang; Jiang, Jing; Li, Jihong; Zhuo, Renying

    2016-06-01

    The hyperaccumulating ecotype of Sedum alfredii Hance is a cadmium (Cd)/zinc/lead co-hyperaccumulating species of Crassulaceae. It is a promising phytoremediation candidate accumulating substantial heavy metal ions without obvious signs of poisoning. However, few studies have focused on the regulatory roles of miRNAs and their targets in the hyperaccumulating ecotype of S. alfredii. Here, we combined analyses of the transcriptomics, sRNAs and the degradome to generate a comprehensive resource focused on identifying key regulatory miRNA-target circuits under Cd stress. A total of 87 721 unigenes and 356 miRNAs were identified by deep sequencing, and 79 miRNAs were differentially expressed under Cd stress. Furthermore, 754 target genes of 194 miRNAs were validated by degradome sequencing. A gene ontology (GO) enrichment analysis of differential miRNA targets revealed that auxin, redox-related secondary metabolism and metal transport pathways responded to Cd stress. An integrated analysis uncovered 39 pairs of miRNA targets that displayed negatively correlated expression profiles. Ten miRNA-target pairs also exhibited negative correlations according to a real-time quantitative PCR analysis. Moreover, a coexpression regulatory network was constructed based on profiles of differentially expressed genes. Two hub genes, ARF4 (auxin response factor 4) and AAP3 (amino acid permease 3), which might play central roles in the regulation of Cd-responsive genes, were uncovered. These results suggest that comprehensive analyses of the transcriptomics, sRNAs and the degradome provided a useful platform for investigating Cd hyperaccumulation in S. alfredii, and may provide new insights into the genetic engineering of phytoremediation.

  1. Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri.

    PubMed

    Talke, Ina N; Hanikenne, Marc; Krämer, Ute

    2006-09-01

    The metal hyperaccumulator Arabidopsis halleri exhibits naturally selected zinc (Zn) and cadmium (Cd) hypertolerance and accumulates extraordinarily high Zn concentrations in its leaves. With these extreme physiological traits, A. halleri phylogenetically belongs to the sister clade of Arabidopsis thaliana. Using a combination of genome-wide cross species microarray analysis and real-time reverse transcription-PCR, a set of candidate genes is identified for Zn hyperaccumulation, Zn and Cd hypertolerance, and the adjustment of micronutrient homeostasis in A. halleri. Eighteen putative metal homeostasis genes are newly identified to be more highly expressed in A. halleri than in A. thaliana, and 11 previously identified candidate genes are confirmed. The encoded proteins include HMA4, known to contribute to root-shoot transport of Zn in A. thaliana. Expression of either AtHMA4 or AhHMA4 confers cellular Zn and Cd tolerance to yeast (Saccharomyces cerevisiae). Among further newly implicated proteins are IRT3 and ZIP10, which have been proposed to contribute to cytoplasmic Zn influx, and FRD3 required for iron partitioning in A. thaliana. In A. halleri, the presence of more than a single genomic copy is a hallmark of several highly expressed candidate genes with possible roles in metal hyperaccumulation and metal hypertolerance. Both A. halleri and A. thaliana exert tight regulatory control over Zn homeostasis at the transcript level. Zn hyperaccumulation in A. halleri involves enhanced partitioning of Zn from roots into shoots. The transcriptional regulation of marker genes suggests that in the steady state, A. halleri roots, but not the shoots, act as physiologically Zn deficient under conditions of moderate Zn supply.

  2. Can metals defend plants against biotic stress?

    PubMed

    Poschenrieder, Charlotte; Tolrà, Roser; Barceló, Juan

    2006-06-01

    Farmers have used metal compounds in phytosanitary treatments for more than a century; however, it has recently been suggested that plants absorb high concentrations of metals from the substrate as a self-defense mechanism against pathogens and herbivores. This metal defense hypothesis is among the most attractive proposals for the 'reason to be' of metal hyperaccumulator species. On a molecular basis, metal defense against biotic stress seems to imply common and/or complementary pathways of signal perception, signal transduction and metabolism. This does not imply a broad band of co-resistance to different stress types but reflects a continuous cross talk during the coevolution of plants, pathogens and herbivores competing in an environment where efficient metal ion acquisition and ion homeostasis are essential for survival.

  3. Making phytoremediation work better: maximizing a plant's growth potential in the midst of adversity.

    PubMed

    Glick, Bernard R; Stearns, Jennifer C

    2011-01-01

    While a number of different plants can either breakdown a variety of organic contaminants or hyperaccumulate metals from the environment, even the most efficient of those plants is typically inhibited by the presence of the toxicant(s). The plant stress that is induced by the