Sample records for hyperammonemia

  1. The Pharmabiotic Approach to Treat Hyperammonemia

    PubMed Central

    Liu, Jing; Lkhagva, Enkhchimeg; Chung, Hea-Jong; Kim, Hyeon-Jin; Hong, Seong-Tshool

    2018-01-01

    Ammonia is constantly produced as a metabolic waste from amino acid catabolism in mammals. Ammonia, the toxic waste metabolite, is resolved in the liver where the urea cycle converts free ammonia to urea. Liver malfunctions cause hyperammonemia that leads to central nervous system (CNS) dysfunctions, such as brain edema, convulsions, and coma. The current treatments for hyperammonemia, such as antibiotics or lactulose, are designed to decrease the intestinal production of ammonia and/or its absorption into the body and are not effective, besides being often accompanied by side effects. In recent years, increasing evidence has shown that modifications of the gut microbiota could be used to treat hyperammonemia. Considering the role of the gut microbiota and the physiological characteristics of the intestine, the removal of ammonia from the intestine by modulating the gut microbiota would be an ideal approach to treat hyperammonemia. In this review, we discuss the significance of hyperammonemia and its related diseases and the efficacy of the current management methods for hyperammonemia to understand the mechanism of ammonia transport in the human body. The possibility to use the gut microbiota as pharmabiotics to treat hyperammonemia and its related diseases is also explored. PMID:29382084

  2. Hyperammonemia associated with distal renal tubular acidosis or urinary tract infection: a systematic review.

    PubMed

    Clericetti, Caterina M; Milani, Gregorio P; Lava, Sebastiano A G; Bianchetti, Mario G; Simonetti, Giacomo D; Giannini, Olivier

    2018-03-01

    Hyperammonemia usually results from an inborn error of metabolism or from an advanced liver disease. Individual case reports suggest that both distal renal tubular acidosis and urinary tract infection may also result in hyperammonemia. A systematic review of the literature on hyperammonemia secondary to distal renal tubular acidosis and urinary tract infection was conducted. We identified 39 reports on distal renal tubular acidosis or urinary tract infections in association with hyperammonemia published between 1980 and 2017. Hyperammonemia was detected in 13 children with distal renal tubular acidosis and in one adult patient with distal renal tubular acidosis secondary to primary hyperparathyroidism. In these patients a negative relationship was observed between circulating ammonia and bicarbonate levels (P < 0.05). In 31 patients (19 children, 12 adults), an acute urinary tract infection was complicated by acute hyperammonemia and symptoms and signs of acute neuronal dysfunction, such as an altered level of consciousness, convulsions and asterixis, often associated with signs of brain edema, such as anorexia and vomiting. Urea-splitting bacteria were isolated in 28 of the 31 cases. The urinary tract was anatomically or functionally abnormal in 30 of these patients. This study reveals that both altered distal renal tubular acidification and urinary tract infection may be associated with relevant hyperammonemia in both children and adults.

  3. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-κB–mediated mechanism

    PubMed Central

    Qiu, Jia; Thapaliya, Samjhana; Runkana, Ashok; Yang, Yu; Tsien, Cynthia; Mohan, Maradumane L.; Narayanan, Arvind; Eghtesad, Bijan; Mozdziak, Paul E.; McDonald, Christine; Stark, George R.; Welle, Stephen; Naga Prasad, Sathyamangla V.; Dasarathy, Srinivasan

    2013-01-01

    Loss of muscle mass, or sarcopenia, is nearly universal in cirrhosis and adversely affects patient outcome. The underlying cross-talk between the liver and skeletal muscle mediating sarcopenia is not well understood. Hyperammonemia is a consistent abnormality in cirrhosis due to impaired hepatic detoxification to urea. We observed elevated levels of ammonia in both plasma samples and skeletal muscle biopsies from cirrhotic patients compared with healthy controls. Furthermore, skeletal muscle from cirrhotics had increased expression of myostatin, a known inhibitor of skeletal muscle accretion and growth. In vivo studies in mice showed that hyperammonemia reduced muscle mass and strength and increased myostatin expression in wild-type compared with postdevelopmental myostatin knockout mice. We postulated that hyperammonemia is an underlying link between hepatic dysfunction in cirrhosis and skeletal muscle loss. Therefore, murine C2C12 myotubes were treated with ammonium acetate resulting in intracellular concentrations similar to those in cirrhotic muscle. In this system, we demonstrate that hyperammonemia stimulated myostatin expression in a NF-κB–dependent manner. This finding was also observed in primary murine muscle cell cultures. Hyperammonemia triggered activation of IκB kinase, NF-κB nuclear translocation, binding of the NF-κB p65 subunit to specific sites within the myostatin promoter, and stimulation of myostatin gene transcription. Pharmacologic inhibition or gene silencing of NF-κB abolished myostatin up-regulation under conditions of hyperammonemia. Our work provides unique insights into hyperammonemia-induced myostatin expression and suggests a mechanism by which sarcopenia develops in cirrhotic patients. PMID:24145431

  4. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-κB-mediated mechanism.

    PubMed

    Qiu, Jia; Thapaliya, Samjhana; Runkana, Ashok; Yang, Yu; Tsien, Cynthia; Mohan, Maradumane L; Narayanan, Arvind; Eghtesad, Bijan; Mozdziak, Paul E; McDonald, Christine; Stark, George R; Welle, Stephen; Naga Prasad, Sathyamangla V; Dasarathy, Srinivasan

    2013-11-05

    Loss of muscle mass, or sarcopenia, is nearly universal in cirrhosis and adversely affects patient outcome. The underlying cross-talk between the liver and skeletal muscle mediating sarcopenia is not well understood. Hyperammonemia is a consistent abnormality in cirrhosis due to impaired hepatic detoxification to urea. We observed elevated levels of ammonia in both plasma samples and skeletal muscle biopsies from cirrhotic patients compared with healthy controls. Furthermore, skeletal muscle from cirrhotics had increased expression of myostatin, a known inhibitor of skeletal muscle accretion and growth. In vivo studies in mice showed that hyperammonemia reduced muscle mass and strength and increased myostatin expression in wild-type compared with postdevelopmental myostatin knockout mice. We postulated that hyperammonemia is an underlying link between hepatic dysfunction in cirrhosis and skeletal muscle loss. Therefore, murine C2C12 myotubes were treated with ammonium acetate resulting in intracellular concentrations similar to those in cirrhotic muscle. In this system, we demonstrate that hyperammonemia stimulated myostatin expression in a NF-κB-dependent manner. This finding was also observed in primary murine muscle cell cultures. Hyperammonemia triggered activation of IκB kinase, NF-κB nuclear translocation, binding of the NF-κB p65 subunit to specific sites within the myostatin promoter, and stimulation of myostatin gene transcription. Pharmacologic inhibition or gene silencing of NF-κB abolished myostatin up-regulation under conditions of hyperammonemia. Our work provides unique insights into hyperammonemia-induced myostatin expression and suggests a mechanism by which sarcopenia develops in cirrhotic patients.

  5. Recurrent Hyperammonemia After Abernethy Malformation Type 2 Closure: a Case Report.

    PubMed

    Li, Hui; Ma, Zhi; Xie, Ying; Tian, Feng

    The Abernethy malformation is a rare congenital malformation defined by the presence of an extrahepatic portosystemic shunt. Although most patients are asymptomatic, clinical encephalopathy is present in 15% of cases. We present a patient with type 2 Abernethy malformation, hyperammonemia, and encephalopathy. Shunt closure was performed successfully using interventional angiography; however, hyperammonemia recurred 3 months later. The diagnosis of Abernethy malformation can be made easily, but the ideal patient management strategy has not yet been established. This is the first reported patient with recurrence of hyperammonemia after interventional treatment; we discuss the therapeutic options for Abernethy malformation.

  6. Hyperammonemia Syndrome After Lung Transplantation: A Single Center Experience.

    PubMed

    Chen, Catherine; Bain, Karen B; Iuppa, Jennifer A; Yusen, Roger D; Byers, Derek E; Patterson, George A; Trulock, Elbert P; Hachem, Ramsey R; Witt, Chad A

    2016-03-01

    Hyperammonemia is a rare, often fatal complication after transplantation. The etiology is unknown, but recognition and rapid treatment may help to improve the survival of this unusual syndrome. We present the largest case series to date of hyperammonemia after lung transplantation (LTx) and discuss a treatment protocol that has been developed at our institution. We conducted a retrospective cohort series of patients who underwent LTx between January 1, 2000, and December 31, 2013. Patients who developed hyperammonemia syndrome in the posttransplantation period, which was defined as symptoms of encephalopathy and plasma ammonia level exceeding 200 μmol/L on at least 1 occasion, were included. Data including demographics, antimicrobial and immunosuppression regimens, ammonia levels and other pertinent laboratory data, treatments administered, and outcomes were recorded. Eight of 807 lung transplant recipients developed hyperammonemia syndrome postoperatively during this time period. Median time to onset was 9.0 days, and median peak ammonia level was 370 μmol/L. All 8 patients were treated with hemodialysis, 7 of 8 patients were treated with bowel decontamination, and 5 of 8 patients were treated with nitrogen scavenging agents. Six of the 8 patients died. The incidence of hyperammonemia syndrome in LTx patients was approximately 1%. Future research is needed to determine the efficacy of treatment, including hemodialysis, bowel decontamination, antibiotics, and the use of nitrogen scavenging agents in lung recipients with hyperammonemia.

  7. Hyperammonemia in children: on the crossroad of different disorders.

    PubMed

    Paprocka, Justyna; Jamroz, Ewa

    2012-09-01

    Symptoms of hyperammonemia occur in patients irrespective of the kind of metabolic diseases. Age, metabolic and nutritional status, and decompensation factors such as infections influence clinical manifestations. Prolonged, untreated hyperammonemia leads to brain injury and intellectual disability. Treatment is directed at lowering plasma ammonia. Brain ammonium concentrations are 1.5 to 3.0 times higher than that in blood. The authors discuss the pathophysiology of the symptoms and consequences of hyperammonemia in children, focusing on the metabolic disorders leading to an increased level of ammonia. Ammonia toxicity has been investigated for a long time. According to the main hypotheses, the neurological alterations are connected to alterations in glutamatergic neurotransmission.

  8. Disseminated Ureaplasma infection as a cause of fatal hyperammonemia in humans

    PubMed Central

    Bharat, Ankit; Cunningham, Scott A.; Scott Budinger, G. R.; Kreisel, Daniel; DeWet, Charl J.; Gelman, Andrew E.; Waites, Ken; Crabb, Donna; Xiao, Li; Bhorade, Sangeeta; Ambalavanan, Namasivayam; Dilling, Daniel F.; Lowery, Erin M.; Astor, Todd; Hachem, Ramsey; Krupnick, Alexander S.; DeCamp, Malcolm M.; Ison, Michael G.; Patel, Robin

    2015-01-01

    Hyperammonemia syndrome is a fatal complication affecting immunosuppressed patients. Frequently refractory to treatment, it is characterized by progressive elevations in serum ammonia of unknown etiology, ultimately leading to cerebral edema and death. In mammals, ammonia produced during amino acid metabolism is primarily cleared through the hepatic production of urea, which is eliminated in the kidney. Ureaplasma species, commensals of the urogenital tract, are Mollicutes dependent on urea hydrolysis to ammonia and carbon dioxide for energy production. We hypothesized that systemic infection with Ureaplasma species might pose a unique challenge to human ammonia metabolism by liberating free ammonia resulting in the hyperammonemia syndrome. We used polymerase chain reaction, specialized culture, and molecular resistance profiling to identify systemic Ureaplasma infection in lung transplant recipients with hyperammonemia syndrome, but did not detect it in any lung transplant recipients with normal ammonia concentrations. Administration of Ureaplasma-directed antimicrobials to patients with hyperammonemia syndrome resulted in biochemical and clinical resolution of the disorder. Relapse in one patient was accompanied by recurrent Ureaplasma bacteremia with antimicrobial resistance. Our results provide evidence supporting a causal relationship between Ureaplasma infection and hyperammonemia, suggesting a need to test for this organism and provide empiric antimicrobial treatment while awaiting microbiological confirmation. PMID:25904745

  9. [A Case of Hyperammonemia Caused by Urinary Tract Infection Due to Urease-Producing Bacteria].

    PubMed

    Emura, Masahiro; Tsuchihashi, Kazunari; Shimizu, Yosuke; Kanamaru, Sojun; Matoba, Shun; Ito, Noriyuki

    2016-08-01

    We present here a rare case of hyperammonemia without liver dysfunction or portal-systemic shunting. The patient was an 80-year-old woman with a history of neurogenic bladder. She was admitted to a nearby hospital for vomiting, diarrhea and consciousness disturbance. Two days after admission, she was transferred to our hospital because of persistant consciousness disturbance. Laboratory data revealed hyperammonemia, but there was no indication of liver dysfunction. Moreover abdominal computed tomography did not reveal any clear finding of liver disease or portal-systemic shunting, but we noted multiple large bladder diverticula. Antibiotic therapy, tracheal intubation, ventilator management and bladder catheterization were performed. The patient's level of consciousness improved rapidly. Urinary culture revealed Bacteroides ureolyticus (urease-producing bacteria). The patient was diagnosed with hyperammonemia and a urinary tract infection due to urease-producing bacteria. Thus, physicians should be aware that obstructive urinary tract infections due to urease-producing bacteria can also be the cause of hyperammonemia.

  10. Disseminated Ureaplasma infection as a cause of fatal hyperammonemia in humans.

    PubMed

    Bharat, Ankit; Cunningham, Scott A; Scott Budinger, G R; Kreisel, Daniel; DeWet, Charl J; Gelman, Andrew E; Waites, Ken; Crabb, Donna; Xiao, Li; Bhorade, Sangeeta; Ambalavanan, Namasivayam; Dilling, Daniel F; Lowery, Erin M; Astor, Todd; Hachem, Ramsey; Krupnick, Alexander S; DeCamp, Malcolm M; Ison, Michael G; Patel, Robin

    2015-04-22

    Hyperammonemia syndrome is a fatal complication affecting immunosuppressed patients. Frequently refractory to treatment, it is characterized by progressive elevations in serum ammonia of unknown etiology, ultimately leading to cerebral edema and death. In mammals, ammonia produced during amino acid metabolism is primarily cleared through the hepatic production of urea, which is eliminated in the kidney. Ureaplasma species, commensals of the urogenital tract, are Mollicutes dependent on urea hydrolysis to ammonia and carbon dioxide for energy production. We hypothesized that systemic infection with Ureaplasma species might pose a unique challenge to human ammonia metabolism by liberating free ammonia resulting in the hyperammonemia syndrome. We used polymerase chain reaction, specialized culture, and molecular resistance profiling to identify systemic Ureaplasma infection in lung transplant recipients with hyperammonemia syndrome, but did not detect it in any lung transplant recipients with normal ammonia concentrations. Administration of Ureaplasma-directed antimicrobials to patients with hyperammonemia syndrome resulted in biochemical and clinical resolution of the disorder. Relapse in one patient was accompanied by recurrent Ureaplasma bacteremia with antimicrobial resistance. Our results provide evidence supporting a causal relationship between Ureaplasma infection and hyperammonemia, suggesting a need to test for this organism and provide empiric antimicrobial treatment while awaiting microbiological confirmation. Copyright © 2015, American Association for the Advancement of Science.

  11. Hyperammonemia in Urinary Tract Infections.

    PubMed

    Kenzaka, Tsuneaki; Kato, Ken; Kitao, Akihito; Kosami, Koki; Minami, Kensuke; Yahata, Shinsuke; Fukui, Miho; Okayama, Masanobu

    2015-01-01

    The present study investigated the incidence of hyperammonemia in urinary tract infections and explored the utility of urinary obstruction relief and antimicrobial administration to improve hyperammonemia. This was an observational study. Subjects were patients who were diagnosed with urinary tract infection and hospitalized between June 2008 and June 2009. We measured plasma ammonia levels on admission in patients who were clinically diagnosed with urinary tract infection and hospitalized. We assessed each patient's level of consciousness on admission using the Glasgow Coma Scale (GCS) and performed urine and blood cultures. We also assessed hearing prior to hospitalization using the Eastern Cooperative Oncology Group performance status (ECOG-PS). In cases with high ammonia levels on admission, plasma ammonia and GCS were measured 24 hours and 5-7 days later. Sixty-seven candidates were enrolled; of these, 60 cases (89.6%) with bacterial cell counts ≥10(4) CFU/mL were studied. Five cases (8.3%) presented with high plasma ammonia levels. Cases with hyperammonemia were significantly more likely to present with low GCS scores and urinary retention rate. All five cases received antimicrobial therapy with an indwelling bladder catheter to relieve urinary retention. The case 5 patient died shortly after admission due to complicated aspiration pneumonia; in the remaining cases, plasma ammonia levels were rapidly normalized and the level of consciousness improved. The occurrence of hyperammonemia in urinary tract infections is not rare. The cause of hyperammonemia is urinary retention obstruction. Therefore, along with antimicrobial administration, relief of obstruction is important for the treatment of hyperammonemia caused by this mechanism.

  12. Control of acute, chronic, and constitutive hyperammonemia by wild-type and genetically engineered Lactobacillus plantarum in rodents.

    PubMed

    Nicaise, Charles; Prozzi, Deborah; Viaene, Eric; Moreno, Christophe; Gustot, Thierry; Quertinmont, Eric; Demetter, Pieter; Suain, Valérie; Goffin, Philippe; Devière, Jacques; Hols, Pascal

    2008-10-01

    Hyperammonemia is a common complication of acute and chronic liver diseases. Often accompanied with side effects, therapeutic interventions such as antibiotics or lactulose are generally targeted to decrease the intestinal production and absorption of ammonia. In this study, we aimed to modulate hyperammonemia in three rodent models by administration of wild-type Lactobacillus plantarum, a genetically engineered ammonia hyperconsuming strain, and a strain deficient for the ammonia transporter. Wild-type and metabolically engineered L. plantarum strains were administered in ornithine transcarbamoylase-deficient Sparse-fur mice, a model of constitutive hyperammonemia, in a carbon tetrachloride rat model of chronic liver insufficiency and in a thioacetamide-induced acute liver failure mice model. Constitutive hyperammonemia in Sparse-fur mice and hyperammonemia in a rat model of chronic hepatic insufficiency were efficiently decreased by Lactobacillus administration. In a murine thioacetamide-induced model of acute liver failure, administration of probiotics significantly increased survival and decreased blood and fecal ammonia. The ammonia hyperconsuming strain exhibited a beneficial effect at a lower dose than its wild-type counterpart. Improved survival in the acute liver failure mice model was associated with lower blood ammonia levels but also with a decrease of astrocyte swelling in the brain cortex. Modulation of ammonia was abolished after administration of the strain deficient in the ammonium transporter. Intestinal pH was clearly lowered for all strains and no changes in gut flora were observed. Hyperammonemia in constitutive model or after acute or chronic induced liver failure can be controlled by the administration of L. plantarum with a significant effect on survival. The mechanism involved in this ammonia decrease implicates direct ammonia consumption in the gut.

  13. Rapid resolution of hyperammonemia in neonates using extracorporeal membrane oxygenation as a platform to drive hemodialysis.

    PubMed

    Robinson, Jamie R; Conroy, Patricia C; Hardison, Daphne; Hamid, Rizwan; Grubb, Peter H; Pietsch, John B; Lovvorn, Harold N

    2018-02-21

    We aimed to clarify the impact of extracorporeal membrane oxygenation (ECMO) as a platform to drive hemodialysis (HD) for ammonia clearance on outcomes of neonates with severe hyperammonemia. All neonates treated for hyperammonemia at a single children's hospital between 1992 and 2016 were identified. Patient characteristics and outcomes were compared between those receiving medical management or ECMO/HD. Twenty-five neonates were treated for hyperammonemia, of which 13 (52%) received ECMO/HD. Peak ammonia levels among neonates treated with ECMO/HD were significantly higher than those medically managed (1041 [IQR 902-1581] μmol/L versus 212 [IQR 110-410] μmol/L; p = 0.009). Serum ammonia levels in the ECMO/HD cohort declined to the median of medically managed within 4.5 (IQR 2.9-7.0) hours and normalized within 7.3 (IQR 3.6-13.5) hours. All neonates survived ECMO/HD, and nine (69.2%) survived to discharge. ECMO/HD is an effective adjunct to rapidly clear severe hyperammonemia in newborns, reducing potential neurodevelopmental morbidity.

  14. Current state of knowledge of hepatic encephalopathy (part I): newer treatment strategies for hyperammonemia in liver failure.

    PubMed

    Kristiansen, Rune Gangsoy

    2016-12-01

    Alterations in interorgan metabolism of ammonia play an important role in the onset of hyperammonemia in liver failure. Glutamine synthetase (GS) in muscle is an important target for ammonia removal strategies in hyperammonemia. Ornithine Phenylacetate (OP) is hypothesized to remove ammonia by providing glutamate as a substrate for increased GS activity and hence glutamine production. The newly generated glutamine conjugates with phenylacetate forming phenylacetylglutamine which can be excreted in the urine, providing an excretion pathway for ammonia. We have also shown that OP targets glycine metabolism, providing an additional ammonia reducing effect.

  15. High incidence of symptomatic hyperammonemia in children with acute lymphoblastic leukemia receiving pegylated asparaginase.

    PubMed

    Heitink-Pollé, Katja M J; Prinsen, Berthil H C M T; de Koning, Tom J; van Hasselt, Peter M; Bierings, Marc B

    2013-01-01

    Asparaginase is a mainstay of treatment of childhood acute lymphoblastic leukemia. Pegylation of asparaginase extends its biological half-life and has been introduced in the newest treatment protocols aiming to further increase treatment success. Hyperammonemia is a recognized side effect of asparaginase treatment, but little is known about its incidence and clinical relevance. Alerted by a patient with severe hyperammonemia after introduction of the new acute lymphoblastic leukemia protocol, we analyzed blood samples and clinical data of eight consecutive patients receiving pegylated asparaginase (PEG-asparaginase) during their treatment of acute lymphoblastic leukemia. All patients showed hyperammonemia (>50 μmol/L) and seven patients (88 %) showed ammonia concentrations > 100 μmol/L. Maximum ammonia concentrations ranged from 89 to 400 μmol/L. Symptoms varied from mild anorexia and nausea to headache, vomiting, dizziness, and lethargy and led to early interruption of PEG-asparaginase in three patients. No evidence of urea cycle malfunction was found, so overproduction of ammonia through hydrolysis of plasma asparagine and glutamine seems to be the main cause. Interestingly, ammonia concentrations correlated with triglyceride values (r = 0.68, p < 0.0001), suggesting increased overall toxicity.The prolonged half-life of PEG-asparaginase may be responsible for the high incidence of hyperammonemia and warrants future studies to define optimal dosing schedules based on ammonia concentrations and individual asparagine and asparaginase measurements.

  16. Remittent hyperammonemia in congenital portosystemic shunt.

    PubMed

    Ferrero, Giovanni Battista; Porta, Francesco; Biamino, Elisa; Mussa, Alessandro; Garelli, Emanuela; Chiappe, Francesca; Veltri, Andrea; Silengo, Margherita Cirillo; Gennari, Fabrizio

    2010-03-01

    Congenital portosystemic shunts (PSS) are rare vascular anomalies with different gross anatomy. Persistent patent ductus venosus (PDV) represents an uncommon cause of intrahepatic PSS. The diagnosis of this condition may not be obvious because of its wide spectrum of clinical manifestations, ranging from asymptomatic to life-threatening disease. We report the case of three boys with neuropsychological symptoms associated with mild fasting hyperammonemia. An oral protein load allowed the detection of a detoxication defect due to PSS related to PDV. This simple procedure can be worthwhile of attention in patients with mental retardation, behavior disturbances, and learning difficulties after exclusion of common causes of inherited hyperammonemia, namely, urea cycle disorders, organic acidemias, and fatty acid oxidation defects.

  17. Ureaplasma Transmitted From Donor Lungs Is Pathogenic After Lung Transplantation.

    PubMed

    Fernandez, Ramiro; Ratliff, Amy; Crabb, Donna; Waites, Ken B; Bharat, Ankit

    2017-02-01

    Hyperammonemia is a highly fatal syndrome in lung recipients that is usually refractory to medical therapy. We recently reported that infection by a Mollicute, Ureaplasma, is causative for hyperammonemia and can be successfully treated with antimicrobial agents. However, it remains unknown whether the pathogenic strain of Ureaplasma is donor or recipient derived. Here we provide evidence that donor-derived Ureaplasma infection can be pathogenic. As such, we uncover a previously unknown lethal donor-derived opportunistic infection in lung recipients. Given the high mortality associated with hyperammonemia, strategies for routine donor screening or prophylaxis should be further evaluated in prospective studies. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  18. A biphasic dialytic strategy for the treatment of neonatal hyperammonemia

    PubMed Central

    Avasare, Sonal; Tsai, Eileen; Yadin, Ora; Zaritsky, Joshua

    2018-01-01

    Background Neonates with inborn errors of metabolism (IEM) often develop hyperammonemia which, if not corrected quickly, may result in poor neurologic outcomes. As pharmacologic therapy cannot rapidly lower ammonia levels, dialysis is frequently required. Both hemodialysis (HD) and standard-dose continuous renal replacement therapy (CRRT) are effective; however, HD may be followed by post-dialytic ammonia rebound, and standard-dose CRRT may not effect a rapid enough decrease in ammonia levels. Case-Diagnosis/Treatment We present two cases of IEM-associated neonatal hyperammonemia in which we employed a biphasic, high-dose CRRT treatment strategy, initially using dialysate flow rates of 5,000 mL/h (approximately 40,000 mL/h/1.73 m2) in order to rapidly decrease ammonia levels, then decreasing the dialysate flow rates to 500 mL/h (approximately 4,000 mL/h/1.73 m2) in order to prevent ammonia rebound. Conclusions This biphasic dialytic treatment strategy for neonatal hyperammonemia effected rapid ammonia reduction without rebound and accomplished during a single dialysis run without equipment changes. PMID:24122260

  19. Hyperammonemia induces glial activation, neuroinflammation and alters neurotransmitter receptors in hippocampus, impairing spatial learning: reversal by sulforaphane.

    PubMed

    Hernández-Rabaza, Vicente; Cabrera-Pastor, Andrea; Taoro-González, Lucas; Malaguarnera, Michele; Agustí, Ana; Llansola, Marta; Felipo, Vicente

    2016-02-16

    Patients with liver cirrhosis and minimal hepatic encephalopathy (MHE) show mild cognitive impairment and spatial learning dysfunction. Hyperammonemia acts synergistically with inflammation to induce cognitive impairment in MHE. Hyperammonemia-induced neuroinflammation in hippocampus could contribute to spatial learning impairment in MHE. Two main aims of this work were: (1) to assess whether chronic hyperammonemia increases inflammatory factors in the hippocampus and if this is associated with microglia and/or astrocytes activation and (2) to assess whether hyperammonemia-induced neuroinflammation in the hippocampus is associated with altered membrane expression of glutamate and GABA receptors and spatial learning impairment. There are no specific treatments for cognitive alterations in patients with MHE. A third aim was to assess whether treatment with sulforaphane enhances endogenous the anti-inflammatory system, reduces neuroinflammation in the hippocampus of hyperammonemic rats, and restores spatial learning and if normalization of receptor membrane expression is associated with learning improvement. We analyzed the following in control and hyperammonemic rats, treated or not with sulforaphane: (1) microglia and astrocytes activation by immunohistochemistry, (2) markers of pro-inflammatory (M1) (IL-1β, IL-6) and anti-inflammatory (M2) microglia (Arg1, YM-1) by Western blot, (3) membrane expression of GABA, AMPA, and NMDA receptors using the BS3 cross-linker, and (4) spatial learning using the radial maze. The results reported show that hyperammonemia induces astrocytes and microglia activation in the hippocampus, increasing pro-inflammatory cytokines IL-1β and IL-6. This is associated with altered membrane expression of AMPA, NMDA, and GABA receptors which would be responsible for altered neurotransmission and impairment of spatial learning in the radial maze. Treatment with sulforaphane promotes microglia differentiation from pro-inflammatory M1 to anti-inflammatory M2 phenotype and reduces activation of astrocytes in hyperammonemic rats. This reduces neuroinflammation, normalizes membrane expression of glutamate and GABA receptors, and restores spatial learning in hyperammonemic rats. Hyperammonemia-induced neuroinflammation impairs glutamatergic and GABAergic neurotransmission by altering membrane expression of glutamate and GABA receptors, resulting in impaired spatial learning. Sulforaphane reverses all these effects. Treatment with sulforaphane could be useful to improve cognitive function in cirrhotic patients with minimal or clinical hepatic encephalopathy.

  20. Feasibility of adjunct therapeutic hypothermia treatment for hyperammonemia and encephalopathy due to urea cycle disorders and organic acidemias.

    PubMed

    Lichter-Konecki, Uta; Nadkarni, Vinay; Moudgil, Asha; Cook, Noah; Poeschl, Johannes; Meyer, Michael T; Dimmock, David; Baumgart, Stephen

    2013-08-01

    Children with urea cycle disorders (UCDs) or organic acidemias (OAs) and acute hyperammonemia and encephalopathy are at great risk for neurological injury, developmental delay, intellectual disability, and death. Nutritional support, intravenous alternative pathway therapy, and dialysis are used to treat severe hyperammonemia associated with UCDs and nutritional support and dialysis are used to treat severe hyperammonemia in OAs. Brain protective treatment while therapy is initiated may improve neurological and cognitive function for the lifetime of the child. Animal experiments and small clinical trials in hepatic encephalopathy caused by acute liver failure suggest that therapeutic hypothermia provides neuroprotection in hyperammonemia associated encephalopathy. We report results of an ongoing pilot study that assesses if whole body cooling during rescue treatment of neonates with acute hyperammonemia and encephalopathy is feasible and can be conducted safely. Adjunct whole body therapeutic hypothermia was conducted in addition to standard treatment in acutely encephalopathic, hyperammonemic neonates with UCDs and OAs requiring dialysis. Therapeutic hypothermia was initiated using cooling blankets as preparations for dialysis were underway. Similar to standard therapeutic hypothermia treatment for neonatal hypoxic ischemic encephalopathy, patients were maintained at 33.5°C±1°C for 72h, they were then slowly rewarmed by 0.5°C every 3h over 18h. In addition data of age-matched historic controls were collected for comparison. Seven patients were cooled using the pilot study protocol and data of seven historic controls were reviewed. All seven patients survived the initial rescue and cooling treatment, 6 patients were discharged home 2-4weeks after hospitalization, five of them feeding orally. The main complication observed in a majority of patients was hypotension. Adjunct therapeutic hypothermia for neonates with UCDs and OAs receiving standard treatment was feasible and could be conducted safely in pediatric and neonatal intensive care units experienced in the application of therapeutic hypothermia in critically ill neonates. However, including adjunct therapeutic hypothermia in the already involved treatment regimen of critically ill patients with hyperammonemia and encephalopathy adds to the complexity of care and should not be done unless it is proven efficacious in a randomized clinical trial. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Endovascular diagnosis and intervention in patients with isolated hyperammonemia, with or without ascites, after liver transplantation.

    PubMed

    Belenky, Alexander; Igov, Igor; Konstantino, Youval; Bachar, Gil N; Mor, Eitan; Graif, Franklyn; Ben-Ari, Ziv; Tur-Kaspa, Ran; Atar, Eli

    2009-02-01

    Hyperammonemia with or without ascites with normal synthetic liver functions after liver transplantation might indicate the presence of anastomotic stenosis of the portal or hepatic vein or the existence of a patent portosystemic shunt. The authors describe six patients, three children after split-liver transplantation and three adults after cadaver liver transplantation, who presented with hyperammonemia. Three patients had ascites. All lesions were successfully treated percutaneously; stents were placed in patients with anastomotic stenoses and coil embolization was performed in patients with patent portosystemic shunts--with either transhepatic or transjugular approaches according to the site of the abnormality. Ammonia levels returned to normal, and ascites had regressed completely for at least 3 months.

  2. Impact of intestinal mannitol on hyperammonemia, oxidative stress and severity of hepatic encephalopathy in the ED.

    PubMed

    Montes-Cortés, Daniel H; Novelo-Del Valle, José L; Olivares-Corichi, Ivonne M; Rosas-Barrientos, José V; Jara, Luis J; Cruz-Domínguez, María Pilar

    2018-01-10

    Hyperammonemia results from hepatic inability to remove nitrogenous products generated by protein metabolism of intestinal microbiota, which leads to hepatic encephalopathy (HE) in chronic liver disease (CLD). In ammonium neurotoxicity, oxidative stress (OxS) plays a pathogenic role. Our objective was to evaluate if intestinal mannitol is as effective and safe as conventional treatment for diminishing hyperammonemia, OxS, and HE in patients with CLD. We included 30 patients with HE classified by "Haven Criteria for Hepatic Encephalopathy". They were randomized into two groups: 1) Mannitol Group (MG) with mannitol 20% administered into the intestine by an enema, 2) conventional group (CG) with lactulose 40 g enema both substances were diluted in 800 mL of double distilled solution every 6 h; all patients received neomycin. We evaluated ammonia concentration, plasma oxidative stress, HE severity, intestinal discomfort and adverse effects. Hyperammonemia (171 ± 104 vs 79 ± 49 μmol ammonia/L, p < 0.01), and oxidative stress (MDA 29 vs 27%, formazan 15 vs 11%, carbonyls 16 vs 9% and dityrosines 10 vs 5%) were reduced in MG and CG respectively. The HE severity decreased by two degrees compared to baseline values in both groups. Intestinal discomfort and electrolyte plasma alterations were less frequent (p < 0.05) in MG than CG. Intestinal mannitol is as effective and safe as conventional treatment for reducing hyperammonemia, oxidative stress, and hepatic encephalopathy of CLD patients in the emergency room. Likewise, mannitol is better tolerated than conventional treatment. Copyright © 2018. Published by Elsevier Inc.

  3. Case Report: Valproic Acid and Risperidone Treatment Leading to Development of Hyperammonemia and Mania

    ERIC Educational Resources Information Center

    Carlson, Teri; Reynolds, Charles A.; Caplan, Rochelle

    2007-01-01

    This case report describes two children who developed hyperammonemia together with frank manic behavior during treatment with a combination of valproic acid and risperidone. One child had been maintained on valproic acid for years and risperidone was added. In the second case, valproic acid was introduced to a child who had been treated with…

  4. Clinical Relevance and Cost-Savings of Levocarnitine Versus Ammonul in the Management Of Hyperammonemia in a Cancer Patient: The Impact of a Clinical Pharmacist.

    PubMed

    Anyanwu, Chukwuma; Ezeudu, Chinonso; Le, Hoa; Egwim, Oliver

    2018-01-01

    Hyperammonemia, a relatively uncommon condition characterized by elevated ammonia levels in the blood, presents with varied physiological etiologies that may send patients to the intensive care unit (ICU) with encephalopathy. An immediate decrease in ammonia levels is necessary to avert neurological damage. However, due to the multifaceted nature of hyperammonemia, a definite determination of etiology is not always possible. This case report examines the clinical and economic impact of a pharmacist in managing acute hyperammonemia of unknown etiology in a 62-year-old Hispanic man who had recently been diagnosed with metastatic medullary thyroid cancer and associated hypercalcemia. The patient was treated with levocarnitine after the failure of several other treatments. Levocarnitine therapy controlled the patient's ammonia levels, which had progressively reached extremely high levels. His mental status, which had deteriorated severely, returned to baseline. This case illustrates the importance of having a clinical pharmacist in the ICU. The pharmacist's expertise and knowledge helped avert adverse clinical consequences and promoted considerable cost-savings. This case also shows that levocarnitine may be an effective treatment for certain cases of hyperammonia-induced encephalopathy with unknown etiology.

  5. The Role of Ammonia in the Metabolic Effects of Hydrazine.

    DTIC Science & Technology

    various experiments, various doses of hydrazine were given. The dogs given high doses developed hyperammonemia, respiratory alkalosis , coma and...The acute effects of administration of hydrazine on plasma ammonia, blood urea nitrogen, pH, pCO2, and respiratory rate were studied in dogs. In...convulsions. Relatively little change in blood urea nitrogen was found. Since brain function is adversely affected by hyperammonemia and alkalosis , it is

  6. Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia.

    PubMed

    Hernandez-Rabaza, Vicente; Cabrera-Pastor, Andrea; Taoro-Gonzalez, Lucas; Gonzalez-Usano, Alba; Agusti, Ana; Balzano, Tiziano; Llansola, Marta; Felipo, Vicente

    2016-04-18

    Hyperammonemia induces neuroinflammation and increases GABAergic tone in the cerebellum which contributes to cognitive and motor impairment in hepatic encephalopathy (HE). The link between neuroinflammation and GABAergic tone remains unknown. New treatments reducing neuroinflammation and GABAergic tone could improve neurological impairment. The aims were, in hyperammonemic rats, to assess whether: (a) Enhancing endogenous anti-inflammatory mechanisms by sulforaphane treatment reduces neuroinflammation and restores learning and motor coordination. (b) Reduction of neuroinflammation by sulforaphane normalizes extracellular GABA and glutamate-NO-cGMP pathway and identify underlying mechanisms. (c) Identify steps by which hyperammonemia-induced microglial activation impairs cognitive and motor function and how sulforaphane restores them. We analyzed in control and hyperammonemic rats, treated or not with sulforaphane, (a) learning in the Y maze; (b) motor coordination in the beam walking; (c) glutamate-NO-cGMP pathway and extracellular GABA by microdialysis; (d) microglial activation, by analyzing by immunohistochemistry or Western blot markers of pro-inflammatory (M1) (IL-1b, Iba-1) and anti-inflammatory (M2) microglia (Iba1, IL-4, IL-10, Arg1, YM-1); and (e) membrane expression of the GABA transporter GAT-3. Hyperammonemia induces activation of astrocytes and microglia in the cerebellum as assessed by immunohistochemistry. Hyperammonemia-induced neuroinflammation is associated with increased membrane expression of the GABA transporter GAT-3, mainly in activated astrocytes. This is also associated with increased extracellular GABA in the cerebellum and with motor in-coordination and impaired learning ability in the Y maze. Sulforaphane promotes polarization of microglia from the M1 to the M2 phenotype, reducing IL-1b and increasing IL-4, IL-10, Arg1, and YM-1 in the cerebellum. This is associated with astrocytes deactivation and normalization of GAT-3 membrane expression, extracellular GABA, glutamate-nitric oxide-cGMP pathway, and learning and motor coordination. Neuroinflammation increases GABAergic tone in the cerebellum by increasing GAT-3 membrane expression. This impairs motor coordination and learning in the Y maze. Sulforaphane could be a new therapeutic approach to improve cognitive and motor function in hyperammonemia, hepatic encephalopathy, and other pathologies associated with neuroinflammation by promoting microglia differentiation from M1 to M2.

  7. [Hyperammonemia type II as an example of urea cycle disorder].

    PubMed

    Hawrot-Kawecka, Anna M; Kawecki, Grzegorz P; Duława, Jan

    2006-01-01

    Ornithine transcarbamylase deficiency is the most common inherited urea cycle disorder. Its clinical manifestations as lethargy, vomites, coma and cerebral edema are the effect of the higher concentration of the ammonia in plasma. Hyperammonemia, caused by mutation in ornithine transcarbamylase gene, is often considered as a reason of coma by pediatricians but skipped by internist, although it is the third reason of hepatic coma in adults. This article is the recapitulation of published studies and their implication on everyday clinical practice.

  8. Brain MRS glutamine as a biomarker to guide therapy of hyperammonemic coma.

    PubMed

    O'Donnell-Luria, Anne H; Lin, Alexander P; Merugumala, Sai K; Rohr, Frances; Waisbren, Susan E; Lynch, Rebecca; Tchekmedyian, Vatche; Goldberg, Aaron D; Bellinger, Andrew; McFaline-Figueroa, J Ricardo; Simon, Tracey; Gershanik, Esteban F; Levy, Bruce D; Cohen, David E; Samuels, Martin A; Berry, Gerard T; Frank, Natasha Y

    2017-05-01

    Acute idiopathic hyperammonemia in an adult patient is a life-threatening condition often resulting in a rapid progression to irreversible cerebral edema and death. While ammonia-scavenging therapies lower blood ammonia levels, in comparison, clearance of waste nitrogen from the brain may be delayed. Therefore, we used magnetic resonance spectroscopy (MRS) to monitor cerebral glutamine levels, the major reservoir of ammonia, in a gastric bypass patient with hyperammonemic coma undergoing therapy with N-carbamoyl glutamate and the ammonia-scavenging agents, sodium phenylacetate and sodium benzoate. Improvement in mental status mirrored brain glutamine levels, as coma persisted for 48h after plasma ammonia normalized. We hypothesize that the slower clearance for brain glutamine levels accounts for the delay in improvement following initiation of treatment in cases of chronic hyperammonemia. We propose MRS to monitor brain glutamine as a noninvasive approach to be utilized for diagnostic and therapeutic monitoring purposes in adult patients presenting with idiopathic hyperammonemia. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. L-Arginine in the treatment of valproate overdose - five clinical cases.

    PubMed

    Schrettl, Verena; Felgenhauer, Norbert; Rabe, Christian; Fernando, Malkanthi; Eyer, Florian

    2017-04-01

    Valproic acid and its metabolites - particularly valproyl-CoA - are inhibitors of the enzyme N-acetylglutamate synthetase. The amino acid l-arginine can stimulate N-acetylglutamate synthetase activity and could be potentially used therapeutically to correct hyperammonemia caused by valproate therapy or overdose. Severely valproic-acid-poisoned patients are usually treated with l-carnitine or hemodialysis in order to decrease hyperammonemia. We herein report of five cases, in which l-arginine was administered. Observational study on five cases. Patients with hyperammonemia (i.e., ammonia 80 > μg/dL) and symptoms consistent with valproate overdose (i.e., drowsiness, coma) were selected for treatment with l-arginine. Data was collected retrospectively. l-Arginine decreased ammonia levels in a close temporal relation (case I ammonia in EDTA-plasma [μg/dL] decreased from 381 to 39; case II from 281 to 50; case III from 669 to 74; case IV from 447 to 56; case V from 202 to 60). In cases I and II, hemodialysis was performed and l-carnitine was given before the administration of l-arginine. In case III, hemodialysis was performed after the administration of l-arginine was already started. In cases IV and V, treatment with l-arginine was the sole measure to decrease ammonia levels in plasma. The results suggest that l-arginine may be beneficial in selected cases of valproate overdose complicated by hyperammonemia. l-Arginine could extend our conventional treatment options for valproic acid overdose.

  10. Ureaplasma parvum causes hyperammonemia in a pharmacologically immunocompromised murine model.

    PubMed

    Wang, X; Greenwood-Quaintance, K E; Karau, M J; Block, D R; Mandrekar, J N; Cunningham, S A; Mallea, J M; Patel, R

    2017-03-01

    A relationship between hyperammonemia and Ureaplasma infection has been shown in lung transplant recipients. We have demonstrated that Ureaplasma urealyticum causes hyperammonemia in a novel immunocompromised murine model. Herein, we determined whether Ureaplasma parvum can do the same. Male C3H mice were given mycophenolate mofetil, tacrolimus, and prednisone for 7 days, and then challenged with U. parvum intratracheally (IT) and/or intraperitoneally (IP), while continuing immunosuppression over 6 days. Plasma ammonia concentrations were determined and compared using Wilcoxon rank-sum tests. Plasma ammonia concentrations of immunosuppressed mice challenged IT/IP with spent broth (median, 188 μmol/L; range, 102-340 μmol/L) were similar to those of normal (median, 226 μmol/L; range, 154-284 μmol/L, p > 0.05), uninfected immunosuppressed (median, 231 μmol/L; range, 122-340 μmol/L, p > 0.05), and U. parvum IT/IP challenged immunocompetent (median, 226 μmol/L; range, 130-330 μmol/L, p > 0.05) mice. Immunosuppressed mice challenged with U. parvum IT/IP (median 343 μmol/L; range 136-1,000 μmol/L) or IP (median 307 μmol/L; range 132-692 μmol/L) had higher plasma ammonia concentrations than those challenged IT/IP with spent broth (p < 0.001). U. parvum can cause hyperammonemia in pharmacologically immunocompromised mice.

  11. Infectious precipitants of acute hyperammonemia are associated with indicators of increased morbidity in patients with urea cycle disorders.

    PubMed

    McGuire, Peter J; Lee, Hye-Seung; Summar, Marshall L

    2013-12-01

    To prospectively characterize acute hyperammonemic episodes in patients with urea cycle disorders (UCDs) in terms of precipitating factors, treatments, and use of medical resources. This was a prospective, longitudinal observational study of hyperammonemic episodes in patients with UCD enrolled in the National Institutes of Health-sponsored Urea Cycle Disorders Consortium Longitudinal Study. An acute hyperammonemic event was defined as plasma ammonia level >100 μmol/L. Physician-reported data regarding the precipitating event and laboratory and clinical variables were recorded in a central database. In our study population, 128 patients with UCD experienced a total of 413 hyperammonemia events. Most patients experienced between 1 and 3 (65%) or between 4 and 6 (23%) hyperammonemia events since study inception, averaging fewer than 1 event/year. The most common identifiable precipitant was infection (33%), 24% of which were upper/lower respiratory tract infections. Indicators of increased morbidity were seen with infection, including increased hospitalization rates (P = .02), longer hospital stays (+2.0 days; P = .003), and increased use of intravenous ammonia scavengers (+45%-52%; P = .003-.03). Infection is the most common precipitant of acute hyperammonemia in patients with UCD and is associated with indicators of increased morbidity (ie, hospitalization rate, length of stay, and use of intravenous ammonia scavengers). These findings suggest that the catabolic and immune effects of infection may be a target for clinical intervention in inborn errors of metabolism. Published by Mosby, Inc.

  12. Commiphora molmol Modulates Glutamate-Nitric Oxide-cGMP and Nrf2/ARE/HO-1 Pathways and Attenuates Oxidative Stress and Hematological Alterations in Hyperammonemic Rats

    PubMed Central

    Alqahtani, Sultan; Othman, Sarah I.; Germoush, Mousa O.; Hussein, Omnia E.; Al-Basher, Gadh; Khim, Jong Seong; Al-Qaraawi, Maha A.; Al-Harbi, Hanan M.; Fadel, Abdulmannan; Allam, Ahmed A.

    2017-01-01

    Hyperammonemia is a serious complication of liver disease and may lead to encephalopathy and death. This study investigated the effects of Commiphora molmol resin on oxidative stress, inflammation, and hematological alterations in ammonium chloride- (NH4Cl-) induced hyperammonemic rats, with an emphasis on the glutamate-NO-cGMP and Nrf2/ARE/HO-1 signaling pathways. Rats received NH4Cl and C. molmol for 8 weeks. NH4Cl-induced rats showed significant increase in blood ammonia, liver function markers, and tumor necrosis factor-alpha (TNF-α). Concurrent supplementation of C. molmol significantly decreased circulating ammonia, liver function markers, and TNF-α in hyperammonemic rats. C. molmol suppressed lipid peroxidation and nitric oxide and enhanced the antioxidant defenses in the liver, kidney, and cerebrum of hyperammonemic rats. C. molmol significantly upregulated Nrf2 and HO-1 and decreased glutamine and nitric oxide synthase, soluble guanylate cyclase, and Na+/K+-ATPase expression in the cerebrum of NH4Cl-induced hyperammonemic rats. Hyperammonemia was also associated with hematological and coagulation system alterations. These alterations were reversed by C. molmol. Our findings demonstrated that C. molmol attenuates ammonia-induced liver injury, oxidative stress, inflammation, and hematological alterations. This study points to the modulatory effect of C. molmol on glutamate-NO-cGMP and Nrf2/ARE/HO-1 pathways in hyperammonemia. Therefore, C. molmol might be a promising protective agent against hyperammonemia. PMID:28744340

  13. Successful early management of a female patient with a metabolic stroke due to ornithine transcarbamylase deficiency.

    PubMed

    Tummolo, Albina; Favia, Vito; Bellantuono, Rosa; Bellino, Vito; Ranieri, Antonio; Morrone, Amelia; De Palo, Tommaso; Papadia, Francesco

    2013-05-01

    Ornithine transcarbamylase deficiency (OTC-D) is a urea cycle disorder caused by dysfunction of ornithine transcarbamylase, which frequently leads to hyperammonemia. Hyperammonemia represents a medical emergency requiring prompt treatment to reduce plasma ammonia levels and prevent severe neurological damage, coma, and death, particularly in patients with acute decompensation-related coma. The clinical symptoms of OTC-D can manifest themselves either at an early stage, which is often associated with severe symptoms, or in later life (late-onset OTC-D), when symptoms may be less severe. There is currently little agreement over diagnostic signs of the condition or the most appropriate therapeutic approach. Hyperammonemia is usually treated with ammonia scavengers, continuous venovenous hemodialysis, and dietary changes. N-carbamylglutamate is approved for the treatment of hyperammonemia in N-acetylglutamate synthetase deficiency and may have efficacy in other urea cycle disorders. Here, we report a 13-year-old girl who was diagnosed with OTC-D at the age of 3 years. On this occasion, the patient presented with vomiting, lethargy, and mental confusion. Despite biochemical parameters being within normal ranges, she was comatose within a few hours. She was promptly treated with a combined therapy of continuous venovenous hemodialysis and N-carbamylglutamate, resulting in a gradual normalization of clinical symptoms within 30 hours. No neurological damage was apparent at 18 months after treatment. This case demonstrates that clinical benefits can be obtained by beginning aggressive treatment of OTC-D within a few hours of the onset of severe neurological symptoms even in the absence of altered biochemical markers.

  14. Umbelliferone prevents oxidative stress, inflammation and hematological alterations, and modulates glutamate-nitric oxide-cGMP signaling in hyperammonemic rats.

    PubMed

    Germoush, Mousa O; Othman, Sarah I; Al-Qaraawi, Maha A; Al-Harbi, Hanan M; Hussein, Omnia E; Al-Basher, Gadh; Alotaibi, Mohammed F; Elgebaly, Hassan A; Sandhu, Mansur A; Allam, Ahmed A; Mahmoud, Ayman M

    2018-06-01

    Hepatic encephalopathy (HE) is a serious neuropsychiatric complication that occurs as a result of liver failure. Umbelliferone (UMB; 7-hydroxycoumarin) is a natural product with proven hepatoprotective activity; however, nothing has yet been reported on its protective effect against hyperammonemia, the main culprit behind the symptoms of HE. Here, we evaluated the effect of UMB against ammonium chloride (NH 4 Cl)-induced hyperammonemia, oxidative stress, inflammation and hematological alterations in rats. We demonstrated the modulatory role of UMB on the glutamate-nitric oxide (NO)-cGMP pathways in the cerebrum of rats. Rats received intraperitoneal injections of NH 4 Cl (3 times/week) for 8 weeks and concomitantly received 50 mg/kg UMB. NH 4 Cl-induced rats showed significantly elevated blood ammonia and liver function markers. Lipid peroxidation and NO were increased in the liver and cerebrum of rats while the antioxidant defenses were declined. UMB significantly reduced blood ammonia, liver function markers, lipid peroxidation and NO, and enhanced the antioxidant defenses in NH 4 Cl-induced rats. UMB significantly prevented anemia, leukocytosis, thrombocytopenia and prolongation of PT and aPTT. Hyperammonemic rats showed elevated levels of cerebral TNF-α, IL-1β and glutamine as well as increased activity and expression of Na + /K + -ATPase, effects that were significantly reversed by UMB. In addition, UMB down-regulated nitric oxide synthase and soluble guanylate cyclase in the cerebrum of hyperammonemic rats. In conclusion, this study provides evidence that UMB protects against hyperammonemia via attenuation of oxidative stress and inflammation. UMB prevents hyperammonemia associated hematological alterations and therefore represents a promising protective agent against the deleterious effects of excess ammonia. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. MRI findings in acute hyperammonemic encephalopathy resulting from decompensated chronic liver disease.

    PubMed

    Sureka, Jyoti; Jakkani, Ravi Kanth; Panwar, Sanuj

    2012-06-01

    Hyperammonemic encephalopathy is a type of metabolic encephalopathy with diversified etiology. Hyperammonemia is the end result of several metabolic disorders such as congenital deficiencies of urea cycle enzymes, hepatic encephalopathy, Reye's syndrome and other toxic encephalopathies. Non-specific clinical presentation poses a great challenge in early diagnosis of this entity. Irrespective of the underlying etiology, hyperammonemia causes a distinctive pattern of brain parenchymal injury. The cingulate gyrus and insular cortex are more vulnerable to this type of toxic insult. Characteristic magnetic resonance imaging findings in combination with laboratory parameters can help to differentiate this entity from other metabolic encephalopathy and thus aiding in early diagnosis and treatment.

  16. Successful embolization using interlocking detachable coils for a congenital extrahepatic portosystemic venous shunt in a child.

    PubMed

    Yamagami, Takuji; Yoshimatsu, Rika; Matsumoto, Tomohiro; Terayama, Koshi; Nishiumra, Akira; Maeda, Yousuke; Nishimura, Tsunehiko

    2007-11-01

    The authors report the case of a 6-year-old boy with a congenital extrahepatic portosystemic venous shunt. He had hyperammonemia. The shunt was 18 mm in diameter and located between the inferior mesenteric vein and the left internal iliac vein. The flow in the shunt was very rapid. After decreasing blood flow by inflating a balloon catheter inserted into the left internal iliac vein from the femoral vein, a microcatheter was coaxially advanced to the shunt to embolize the shunt. Embolization was successfully performed with interlocking detachable coils and microcoils without any complication. This patient's hyperammonemia resolved soon after the procedure.

  17. Inborn Errors of Metabolism with Hyperammonemia: Urea Cycle Defects and Related Disorders.

    PubMed

    Summar, Marshall L; Mew, Nicholas Ah

    2018-04-01

    The urea cycle disorders are a group of inherited biochemical diseases caused by a complete or partial deficiency of any one of the enzymes or transport proteins required to convert toxic ammonia into urea and to produce arginine and citrulline. The clinical manifestations of these disorders are mostly the result of acute or chronic hyperammonemia, which affects the central nervous system. Affected individuals can also develop hepatic dysfunction. These disorders can present at any age from the immediate newborn to later in life. Early diagnosis and treatment are key to improving outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Congenital intrahepatic portosystemic venous shunt presenting with paraparesis as the initial symptom.

    PubMed

    Torigoe, Masataka; Maeshima, Keisuke; Takeshita, Yasushi

    2013-01-01

    An 85-year-old woman was hospitalized with rapidly progressive paraparesis without altered consciousness, although she was not definitively diagnosed. She developed acute drowsiness and disorientation several days later. An intrahepatic portosystemic venous shunt (IPSVS) was observed on enhanced computed tomography, and hyperammonemia suggested leakage of neurotoxins from the shunt as the etiology of the patient's symptoms. Her neurological symptoms and hyperammonemia improved following transcatheter shunt embolization. We diagnosed her with hepatic myelopathy, which is a rare complication of liver cirrhosis and portosystemic venous shunts. Hepatic myelopathy resulting from a congenital IPSVS has not been previously reported. A diagnosis of hepatic myelopathy should be ruled out in diagnostically difficult cases of paraparesis.

  19. [Hyperammonemia due to ornithine transcarbamylase deficiency--a cause of lethal metabolic crisis during the newborn period and infancy (author's transl)].

    PubMed

    Schuchmann, L; Colombo, J P; Fischer, H

    1980-05-01

    A severe hyperammonemia is the characteristic finding in patients with enzyme defects in urea cycle and one of the main causes of the acute metabolic crisis dsuring the newborn period and infancy. A case report is given about two male infants, who died in the age of one and of seven months respectively. In the second child the blood ammonia concentration raised up to 833 micrograms/100 ml, and, OTC deficiency was diagnosed due to enzyme determination in liver biopsie. Probably, the first child, that also died as newborn, suffered from the same disease. In this case, only post mortem findings are available.

  20. Albumin/asparaginase capsules prepared by ultrasound to retain ammonia.

    PubMed

    Tinoco, Ana; Ribeiro, Artur; Oliveira, César; Parpot, Pier; Gomes, Andreia; Cavaco-Paulo, Artur

    2016-11-01

    Asparaginase reduces the levels of asparagine in blood, which is an essential amino acid for the proliferation of lymphoblastic malign cells. Asparaginase converts asparagine into aspartic acid and ammonia. The accumulation of ammonia in the bloodstream leads to hyperammonemia, described as one of the most significant side effects of asparaginase therapy. Therefore, there is a need for asparaginase formulations with the potential to reduce hyperammonemia. We incorporated 2 % of therapeutic enzyme in albumin-based capsules. The presence of asparaginase in the interface of bovine serum albumin (BSA) capsules showed the ability to hydrolyze the asparagine and retain the forming ammonia at the surface of the capsules. The incorporation of Poloxamer 407 in the capsule formulation further increased the ratio aspartic acid/ammonia from 1.92 to 2.46 (and 1.10 from the free enzyme), decreasing the levels of free ammonia. This capacity to retain ammonia can be due to electrostatic interactions and retention of ammonia at the surface of the capsules. The developed BSA/asparaginase capsules did not cause significant cytotoxic effect on mouse leukemic macrophage cell line RAW 264.7. The new BSA/asparaginase capsules could potentially be used in the treatment of acute lymphoblastic leukemia preventing hyperammonemia associated with acute lymphoblastic leukemia (ALL) treatment with asparaginase.

  1. A case of hyperammonemia with obstructive urinary tract infection by urease-producing bacteria.

    PubMed

    Goda, Toshiaki; Watanabe, Kotaro; Kobayashi, Junya; Nagai, Yasuharu; Ohara, Nobuyuki; Takahashi, Daisuke

    2017-03-28

    A 79-year-old woman was admitted emergently for disturbance of consciousness. Her consciousness level was Japan coma scale 20, and she presented with hypermyotonia. Brain magnetic resonance imaging and cerebrospinal fluid examination showed normal findings. Her blood tests showed an increased ammonia level of 291 μg/dl with normal liver function. We catheterized the bladder for urinary retention. Eight hours after admission, the blood level of ammonia decreased to 57 μg/dl and the patient's consciousness level improved. Corynebacterium pseudodiphtheriticum, which is a bacteria producing urease, was detected from a urine culture. It is important to recognize that obstructive urinary tract infection caused by urease-producing bacteria can cause hyperammonemia.

  2. Unmasked adult-onset urea cycle disorders in the critical care setting.

    PubMed

    Summar, Marshall L; Barr, Frederick; Dawling, Sheila; Smith, Wendy; Lee, Brendan; Singh, Rani H; Rhead, William J; Sniderman King, Lisa; Christman, Brian W

    2005-10-01

    Most often, urea cycle disorders have been described as acute onset hyperammonemia in the newborn period; however, there is a growing awareness that urea cycle disorders can present at almost any age, frequently in the critical care setting. This article presents three cases of adult-onset hyperammonemia caused by inherited defects in nitrogen processing in the urea cycle, and reviews the diagnosis, management, and pathophysiology of adult-onset urea cycle disorders. Individuals who have milder molecular urea cycle defects can lead a relatively normal life until a severe environmental stress triggers a hyperammonemic crisis. Comorbid conditions such as physical trauma often delay the diagnosis of the urea cycle defect. Prompt recognition and treatment are essential in determining the outcome of these patients.

  3. A Proposed Physiopathological Pathway to Hyperammonemic Encephalopathy in a Non-Cirrhotic Patient with Fibrolamellar Hepatocellular Carcinoma without Ornithine Transcarbamylase (OTC) Mutation.

    PubMed

    Surjan, Rodrigo C; Dos Santos, Elizabeth S; Basseres, Tiago; Makdissi, Fabio F; Machado, Marcel A

    2017-03-08

    BACKGROUND Hyperammonemic encephalopathy is a potentially fatal condition that may progress to irreversible neuronal damage and is usually associated with liver failure or portosystemic shunting. However, other less common conditions can lead to hyperammonemia in adults, such as fibrolamellar hepatocellular carcinoma. Clinical awareness of hyperammonemic encephalopathy in patients with normal liver function is paramount to timely diagnosis, but understanding the underlying physiopathology is decisive to initiate adequate treatment for complete recovery. CASE REPORT A 31-year-old male with fibrolamellar carcinoma and peritoneal carcinomatosis presented with rapid onset hyperammonemic encephalopathy. Despite usual treatment for hepatic encephalopathy, his hyperammonemia was aggravated. A physiopathological pathway to encephalopathy resulting from hepatocellular dysfunction or portosystemic shunting was suspected and proper treatment was initiated, which resulted in complete remission of encephalopathy. Thus, we propose there is a physiopathology path to hyperammonemic encephalopathy in non-cirrhotic patients with fibrolamellar carcinoma independent of ornithine transcarbamylase (OTC) mutation. An ornithine metabolism imbalance resulting from overexpression of Aurora Kinase A as a result of a single, recurrent heterozygous deletion on chromosome 19, common to all fibrolamellar carcinomas, can lead to a c-Myc and ornithine decarboxylase overexpression that results in ornithine transcarboxylase dysfunction with urea cycle disorder and subsequent hyperammonemia. CONCLUSIONS The identification of a physiopathological pathway allowed adequate medical treatment and full patient recovery from severe hyperammonemic encephalopathy.

  4. Genetics Home Reference: N-acetylglutamate synthase deficiency

    MedlinePlus

    ... Hyperammonemia due to N-acetylglutamate synthase deficiency Screening, Technology and Research in Genetics Patient Support and Advocacy Resources (4 links) Children Living with Inherited Metabolic Diseases National Organization for ...

  5. Genetics Home Reference: pyruvate carboxylase deficiency

    MedlinePlus

    ... infants have severe lactic acidosis, a buildup of ammonia in the blood (hyperammonemia), and liver failure. They ... carboxylase allows compounds such as lactic acid and ammonia to build up and damage organs and tissues. ...

  6. Hyperammonemic Coma—Barking Up the Wrong Tree

    PubMed Central

    Kruzel-Davila, Eti; Dori, Guy; Baron, Elzbieta; Bitterman, Haim

    2007-01-01

    Hepatic encephalopathy and myxedema coma share clinical features: coma, ascites, anemia, impaired liver functions, and a “metabolic” electroencephalogram (EEG). Hyperammonemia, a hallmark of hepatic encephalopathy, has also been described in hypothyroidism. Differentiation between the 2 conditions, recognition of their possible coexistence, and the consequent therapeutic implications are of utmost importance. We describe a case of an 82-year-old woman with a history of mild chronic liver disease who presented with hyperammonemic coma unresponsive to conventional therapy. Further investigation disclosed severe hypothyroidism. Thyroid hormone replacement resulted in gain of consciousness and normalization of hyperammonemia. In patients with an elevated ammonia level, altered mental status, and liver disease, who do not have a clear inciting event for liver disease decompensation, overwhelming evidence of hepatic decompensation, or who do not respond to appropriate therapy for hepatic encephalopathy, hypothyroidism should be considered and evaluated. PMID:17372808

  7. Severe valproate induced hyperammonemic encephalopathy successfully managed with peritoneal dialysis.

    PubMed

    Kumar, Amandeep; Suri, Ashish; Sharma, Bhawani S

    2014-07-01

    Valproic acid (VPA) is a commonly used drug for epilepsy, psychiatric disorders and migraine and is frequently used in neurosurgical intensive care units. Though most of its side-effects are mild and transient, certain idiosyncratic side-effects have been attributed to VPA. Valproate induced hyperammonemia (VIH) is one such side-effect. VIH can produce symptoms of encephalopathy known as valproate induced hyperammonemic encephalopathy (VHE). VIH and VHE usually respond to withdrawal of VPA. However, in some cases VHE can be unresponsive to supportive measures and severe enough to be life-threatening. In such cases, dialysis can be used to rapidly reverse hyperammonemia and VHE and can prove to be a lifesaving measure. We report such a case of VIH and life-threatening VHE in a postoperative neurosurgical patient that was managed successfully with peritoneal dialysis.

  8. Genetics Home Reference: gyrate atrophy of the choroid and retina

    MedlinePlus

    ... disorder. Occasionally, newborns with gyrate atrophy develop excess ammonia in the blood (hyperammonemia), which may lead to ... which processes excess nitrogen (in the form of ammonia) that is generated when protein is broken down ...

  9. Human recombinant arginase enzyme reduces plasma arginine in mouse models of arginase deficiency

    PubMed Central

    Burrage, Lindsay C.; Sun, Qin; Elsea, Sarah H.; Jiang, Ming-Ming; Nagamani, Sandesh C.S.; Frankel, Arthur E.; Stone, Everett; Alters, Susan E.; Johnson, Dale E.; Rowlinson, Scott W.; Georgiou, George; Lee, Brendan H.

    2015-01-01

    Arginase deficiency is caused by deficiency of arginase 1 (ARG1), a urea cycle enzyme that converts arginine to ornithine. Clinical features of arginase deficiency include elevated plasma arginine levels, spastic diplegia, intellectual disability, seizures and growth deficiency. Unlike other urea cycle disorders, recurrent hyperammonemia is typically less severe in this disorder. Normalization of plasma arginine levels is the consensus treatment goal, because elevations of arginine and its metabolites are suspected to contribute to the neurologic features. Using data from patients enrolled in a natural history study conducted by the Urea Cycle Disorders Consortium, we found that 97% of plasma arginine levels in subjects with arginase deficiency were above the normal range despite conventional treatment. Recently, arginine-degrading enzymes have been used to deplete arginine as a therapeutic strategy in cancer. We tested whether one of these enzymes, a pegylated human recombinant arginase 1 (AEB1102), reduces plasma arginine in murine models of arginase deficiency. In neonatal and adult mice with arginase deficiency, AEB1102 reduced the plasma arginine after single and repeated doses. However, survival did not improve likely, because this pegylated enzyme does not enter hepatocytes and does not improve hyperammonemia that accounts for lethality. Although murine models required dosing every 48 h, studies in cynomolgus monkeys indicate that less frequent dosing may be possible in patients. Given that elevated plasma arginine rather than hyperammonemia is the major treatment challenge, we propose that AEB1102 may have therapeutic potential as an arginine-reducing agent in patients with arginase deficiency. PMID:26358771

  10. Effects of ammonia and hepatic failure on the net efflux of endogenous glutamate, aspartate and taurine from rat cerebrocortical slices: modulation by elevated K+ concentrations.

    PubMed

    Zielińska, M; Hilgier, W; Law, R O; Gorynski, P; Albrecht, J

    2002-01-01

    Cerebrocortical minislices derived from control rats ("control slices") and from rats with thioacetamide (TAA)-induced hepatic failure showing moderate hyperammonemia and symptoms of hepatic encephalopathy (HE) ("HE slices"), were incubated with physiological saline in the absence or presence of 5 mM ammonium acetate ("ammonia"), at potassium ion (K+) concentrations ranging from 5 to 15 mM. The efflux of endogenous aspartate (Asp), glutamate (Glu) and taurine (Tau) to the incubation medium was assayed by HPLC. At 5 mM K+, perfusion of control slices with ammonia did not affect Glu and slightly depressed Asp efflux. Raising K+ concentrations in the incubation medium to 7.5 led to inhibition of Glu and Asp efflux by ammonia and the inhibitory effect was further potentiated at 10 mM K+. The inhibition was also significant at 15 mM K+. This suggests that, depression of excitatory neurotransmission associated with acute hyperammonemia is more pronounced under conditions of intense neuronal activity than in the resting state. HE moderately increased the efflux of Glu and Asp, and the stimulatory effect of HE on Glu and Asp efflux showed virtually no variation upon changing K+ concentration up to 15 mM. Ammonia strongly, and HE moderately, increased Tau efflux at 5 mM K+. However, both the ammonia- and HE-dependent Tau efflux decreased with increasing K+ concentration in the medium and was no longer significant at 10 mM concentration, indicating that intense neuronal activity obliterates the neuroprotective functions of this amino acid triggered by hyperammonemia.

  11. Carbamazepine-induced hyperammonemia.

    PubMed

    Adams, Erin N; Marks, Alla; Lizer, Mitsi H

    2009-08-15

    A case of carbamazepine-induced hyperammonemia is presented. A 26-year-old man with bipolar disorder, seizures, and mild mental retardation secondary to a traumatic brain injury began treatment with carbamazepine for aggression and seizure control. After three weeks of carbamazepine therapy, the patient arrived at the emergency department (ED) with severe agitation and aggressive behavior. His oral medications included topiramate, carbamazepine, olanzapine, quetiapine, guanfacine, and desmopressin acetate. The patient's medications had been stable for at least six months except for the addition of carbamazepine one month before his arrival at the ED. Upon admission, the patient's vital signs were found to be within normal limits, as were his liver profile results, complete blood count, thyroid-stimulating-hormone level, and serum chemistry panel. His serum carbamazepine concentration was 3.9 microg/mL (reference range, 4-12 microg/mL), and his serum ammonia concentration was 127 microg/dL (reference range, 19-60 microg/dL). Carbamazepine was discontinued upon admission, and the patient was treated with oral lactulose. Since carbamazepine was discontinued and had been prescribed for bipolar disorder, his olanzapine dosage was increased, and trazodone was added at bedtime for insomnia. Of note, the patient had been on carbamazepine therapy one year earlier and had experienced the same adverse event. He had also developed elevated serum ammonia levels while on valproic acid. The patient's serum ammonia level returned to normal by hospital day 4, and he was discharged to his group home. A 26-year-old man with bipolar disorder developed hyperammonemia three weeks after initiating carbamazepine therapy.

  12. [Liver transplantation for the treatment of hyperammonemia due to urea cycle disorder: report of four cases].

    PubMed

    Zhu, Zhijun; Sun, Liying; Wei, Lin; Qu, Wei; Zeng, Zhigui; Liu, Ying; Zhang, Liang; He, Enhui; Wang, Dong

    2015-02-01

    To analyze clinical efficacy and prognosis of liver transplantation in children with hyperammonemia caused by urea cycle disorders. A retrospective analysis was performed on the occurrence of disease, operation and the follow-up post liver transplantation in 4 patients with urea cycle disorders who underwent liver transplantation during June 2001 to May 2014. Four girls were diagnosed with ornithine carbamoyl transferase deficiency by genetic test. They had the clinical onset at the age of 1.5 to 3.0 years. Liver transplantation had been performed at their age of 53.9 months, 40.6 months, 40.3 months and 22.8 months, respectively. The grafts of case 1 and case 2 were from left lateral lobe of liver of cadaveric donor, the graft of case 3 was from left lateral lobe of liver of a living donor, the graft of case 4 was a whole liver of a dead child. The liver function of 4 patients gradually returned to normal, blood ammonia levels were normal and restored the normal diet, 4 children were discharged on postoperative 25-30 days. Regular follow-up was done, the liver function, biochemical features and growth status have been followed up for 162.2 months, 124.2 months, 12.0 months and 4.8 months after liver transplantation, respectively. Now, all the four cases are healthy and growth is normal. Liver transplantation is an important way to the patients with severe hyperammonemia caused by urea cycle disorders. In this study, the patients with ornithine carbamoyl transferase defect got satisfactory long-term outcome after liver transplantation.

  13. Genetics Home Reference: ornithine translocase deficiency

    MedlinePlus

    ... Diagnosis of Japanese patients with HHH syndrome by molecular genetic analysis: a common mutation, R179X. J Hum Genet. ... M, Fariello G, Dionisi-Vici C. Clinical and molecular findings in hyperornithinemia-hyperammonemia-homocitrullinuria ... Bulletins Genetics Home Reference Celebrates Its ...

  14. Rett Syndrome.

    ERIC Educational Resources Information Center

    Culbert, Linda A.

    This pamphlet reviews the historical process involved in initially recognizing Rett Syndrome as a specific disorder in girls. Its etiology is unknown, but studies have considered factors as hyperammonemia, a two-step mutation, a fragile X chromosome, metabolic disorder, environmental causation, dopamine deficiency, and an inactive X chromosome.…

  15. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis

    PubMed Central

    Kumar, Avinash; Davuluri, Gangarao; deSilva, Rafaella Nasciemento; Engelen, Marielle PKJ; TenHave, Gabrie; Prayson, Richard; Deutz, Nicolaas EP; Dasarathy, Srinivasan

    2017-01-01

    Sarcopenia or skeletal muscle loss is a frequent, potentially reversible complication in cirrhosis that adversely affects clinical outcomes. Hyperammonemia is a consistent abnormality in cirrhosis that results in impaired skeletal muscle protein synthesis and breakdown (proteostasis). Despite availability of effective ammonia lowering therapies, whether lowering ammonia restores proteostasis and reverses muscle mass is unknown. Myotube diameter, protein synthesis and molecular responses in C2C12 murine myotubes to withdrawal of ammonium acetate following 24 h exposure to 10mM ammonium acetate were complemented by in vivo studies in the hyperammonemic portacaval anastomosis rat (PCA) and sham operated, pair-fed (SO) Sprague- Dawley rats treated with ammonia lowering therapy by L-ornithine L-aspartate and rifaximin orally for 4 weeks. We observed reduced myotube diameter, impaired protein synthesis and increased autophagy flux in response to hyperammonemia that were partially reversed following 24h and 48h withdrawal of ammonium acetate. Consistently, 4 weeks of ammonia lowering therapy resulted in significant lowering of blood and skeletal muscle ammonia, increase in lean body mass, improved grip strength and higher skeletal muscle mass, diameter and an increase in type II fibers in the treated compared to untreated PCA rats. Increased skeletal muscle myostatin expression, reduced mTORC1 function, and the hyperammonemic stress response including autophagy markers were also reversed in the PCA rats treated with ammonia lowering therapy. Despite significant improvement, molecular and functional readouts were not completely reversed by ammonia lowering measures. Conclusions Ammonia lowering therapy results in improvement in skeletal muscle phenotype, function and molecular perturbations of hyperammonemia. These preclinical studies complement previous studies on ammonia induced skeletal muscle loss and lay the foundation for prolonged ammonia lowering therapy to reverse sarcopenia of cirrhosis. PMID:28195332

  16. In vivo administration of extracellular cGMP normalizes TNF-α and membrane expression of AMPA receptors in hippocampus and spatial reference memory but not IL-1β, NMDA receptors in membrane and working memory in hyperammonemic rats.

    PubMed

    Cabrera-Pastor, Andrea; Hernandez-Rabaza, Vicente; Taoro-Gonzalez, Lucas; Balzano, Tiziano; Llansola, Marta; Felipo, Vicente

    2016-10-01

    Patients with hepatic encephalopathy (HE) show working memory and visuo-spatial orientation deficits. Hyperammonemia is a main contributor to cognitive impairment in HE. Hyperammonemic rats show impaired spatial learning and learning ability in the Y maze. Intracerebral administration of extracellular cGMP restores learning in the Y-maze. The underlying mechanisms remain unknown. It also remains unknown whether extracellular cGMP improves neuroinflammation or restores spatial learning in hyperammonemic rats and if it affects differently reference and working memory. The aims of this work were: Spatial working and reference memory were assessed using the radial and Morris water mazes and neuroinflammation by immunohistochemistry and Western blot. Membrane expression of NMDA and AMPA receptor subunits was analyzed using the BS3 crosslinker. Extracellular cGMP was administered intracerebrally using osmotic minipumps. Chronic hyperammonemia induces neuroinflammation in hippocampus, with astrocytes activation and increased IL-1β, which are associated with increased NMDA receptors membrane expression and impaired working memory. This process is not affected by extracellular cGMP. Hyperammonemia also activates microglia and increases TNF-α, alters membrane expression of AMPA receptor subunits (increased GluA1 and reduced GluA2) and impairs reference memory. All these changes are reversed by extracellular cGMP. These results show that extracellular cGMP modulates spatial reference memory but not working memory. This would be mediated by modulation of TNF-α levels and of membrane expression of GluA1 and GluA2 subunits of AMPA receptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Liver failure with coagulopathy, hyperammonemia and cyclic vomiting in a toddler revealed to have combined heterozygosity for genes involved with ornithine transcarbamylase deficiency and Wilson disease.

    PubMed

    Mira, Valerie; Boles, Richard G

    2012-01-01

    A girl with a 2 month history of cyclic episodes of vomiting, diarrhea, and lethargy lasting 2-3 days each presented with acute hepatopathy (ALT 3,500 IU/L) with coagulopathy (PT 55 s) and hyperammonemia (207 μmol/L) at age 1½ years. Biochemical and molecular analyzes revealed ornithine transcarbamylase (OTC) deficiency. While laboratory signs of mild hepatocellular dysfunction are common in OTC deficiency, substantial liver failure with coagulopathy is generally not seen, although four others cases have been reported, three of which presented with cyclic vomiting. Further evaluation in our case revealed elevated urine (198.8 μg/g creatinine) and liver (103 μg/g dry weight) copper content, and a heterozygous mutation in the Wilson disease gene, ATP7B. Our patient, now aged 5 years, has remained in excellent health with normal growth and development on fasting avoidance, a modified vegan diet, and sodium phenylbutyrate.These five cases demonstrate that generalized liver dysfunction/failure is a potential serious complication of OTC deficiency, although not a common one, and suggests that an ALT and PT should be obtained in OTC patients during episodes of hyperammonemia. Cyclic vomiting is a known presentation of OTC deficiency; it is not known if comorbid liver failure predisposes toward this phenotype. We propose that the heterozygote state in ATP7B increases the liver copper content, thus predisposing our patient with OTC deficiency to develop liver failure during a hyperammonemic episode. Our present case is an example of the opportunity of molecular diagnostics to identify putative modifier genes in patients with atypical presentations of genetic disorders.

  18. Staged Transcatheter Treatment of Portal Hypoplasia and Congenital Portosystemic Shunts in Children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruckheimer, Elchanan, E-mail: elchananb@bezeqint.net; Dagan, Tamir; Atar, Eli

    2013-12-15

    Purpose: Congenital portosystemic shunts (CPSS) with portal venous hypoplasia cause hyperammonemia. Acute shunt closure results in portal hypertension. A transcatheter method of staged shunt reduction to afford growth of portal vessels followed by shunt closure is reported. Methods: Pressure measurements and angiography in the CPSS or superior mesenteric artery (SMA) during temporary occlusion of the shunt were performed. If vessels were diminutive and the pressure was above 18 mmHg, a staged approach was performed, which included implantation of a tailored reducing stent to reduce shunt diameter by {approx}50 %. Recatheterization was performed approximately 3 months later. If the portal pressuremore » was below 18 mmHg and vessels had developed, the shunt was closed with a device. Results: Six patients (5 boys, 1 girl) with a median age of 3.3 (range 0.5-13) years had CPSS portal venous hypoplasia and hyperammonemia. Five patients underwent staged closure. One patient tolerated acute closure. One patient required surgical shunt banding because a reducing stent could not be positioned. At median follow-up of 3.8 (range 2.2-8.4) years, a total of 21 procedures (20 transcatheter, 1 surgical) were performed. In all patients, the shunt was closed with a significant reduction in portal pressure (27.7 {+-} 11.3 to 10.8 {+-} 1.8 mmHg; p = 0.016), significant growth of the portal vessels (0.8 {+-} 0.5 to 4.0 {+-} 2.4 mm; p = 0.037), and normalization of ammonia levels (202.1 {+-} 53.6 to 65.7 {+-} 9.6 {mu}mol/L; p = 0.002) with no complications. Conclusion: Staged CPSS closure is effective in causing portal vessel growth and treating hyperammonemia.« less

  19. Staged transcatheter treatment of portal hypoplasia and congenital portosystemic shunts in children.

    PubMed

    Bruckheimer, Elchanan; Dagan, Tamir; Atar, Eli; Schwartz, Michael; Kachko, Ludmila; Superina, Riccardo; Amir, Gabriel; Shapiro, Rivka; Birk, Einat

    2013-12-01

    Congenital portosystemic shunts (CPSS) with portal venous hypoplasia cause hyperammonemia. Acute shunt closure results in portal hypertension. A transcatheter method of staged shunt reduction to afford growth of portal vessels followed by shunt closure is reported. Pressure measurements and angiography in the CPSS or superior mesenteric artery (SMA) during temporary occlusion of the shunt were performed. If vessels were diminutive and the pressure was above 18 mmHg, a staged approach was performed, which included implantation of a tailored reducing stent to reduce shunt diameter by ~50 %. Recatheterization was performed approximately 3 months later. If the portal pressure was below 18 mmHg and vessels had developed, the shunt was closed with a device. Six patients (5 boys, 1 girl) with a median age of 3.3 (range 0.5-13) years had CPSS portal venous hypoplasia and hyperammonemia. Five patients underwent staged closure. One patient tolerated acute closure. One patient required surgical shunt banding because a reducing stent could not be positioned. At median follow-up of 3.8 (range 2.2-8.4) years, a total of 21 procedures (20 transcatheter, 1 surgical) were performed. In all patients, the shunt was closed with a significant reduction in portal pressure (27.7 ± 11.3 to 10.8 ± 1.8 mmHg; p = 0.016), significant growth of the portal vessels (0.8 ± 0.5 to 4.0 ± 2.4 mm; p = 0.037), and normalization of ammonia levels (202.1 ± 53.6 to 65.7 ± 9.6 μmol/L; p = 0.002) with no complications. Staged CPSS closure is effective in causing portal vessel growth and treating hyperammonemia.

  20. Survival after treatment with phenylacetate and benzoate for urea-cycle disorders.

    PubMed

    Enns, Gregory M; Berry, Susan A; Berry, Gerard T; Rhead, William J; Brusilow, Saul W; Hamosh, Ada

    2007-05-31

    The combination of intravenous sodium phenylacetate and sodium benzoate has been shown to lower plasma ammonium levels and improve survival in small cohorts of patients with historically lethal urea-cycle enzyme defects. We report the results of a 25-year, open-label, uncontrolled study of sodium phenylacetate and sodium benzoate therapy (Ammonul, Ucyclyd Pharma) in 299 patients with urea-cycle disorders in whom there were 1181 episodes of acute hyperammonemia. Overall survival was 84% (250 of 299 patients). Ninety-six percent of the patients survived episodes of hyperammonemia (1132 of 1181 episodes). Patients over 30 days of age were more likely than neonates to survive an episode (98% vs. 73%, P<0.001). Patients 12 or more years of age (93 patients), who had 437 episodes, were more likely than all younger patients to survive (99%, P<0.001). Eighty-one percent of patients who were comatose at admission survived. Patients less than 30 days of age with a peak ammonium level above 1000 micromol per liter (1804 microg per deciliter) were least likely to survive a hyperammonemic episode (38%, P<0.001). Dialysis was also used in 56 neonates during 60% of episodes and in 80 patients 30 days of age or older during 7% of episodes. Prompt recognition of a urea-cycle disorder and treatment with both sodium phenylacetate and sodium benzoate, in conjunction with other therapies, such as intravenous arginine hydrochloride and the provision of adequate calories to prevent catabolism, effectively lower plasma ammonium levels and result in survival in the majority of patients. Hemodialysis may also be needed to control hyperammonemia, especially in neonates and older patients who do not have a response to intravenous sodium phenylacetate and sodium benzoate. Copyright 2007 Massachusetts Medical Society.

  1. Peak hyperammonemia and atypical acute liver failure: The eruption of an urea cycle disorder during hyperemesis gravidarum.

    PubMed

    Weiss, Nicolas; Mochel, Fanny; Rudler, Marika; Demeret, Sophie; Lebray, Pascal; Conti, Filomena; Galanaud, Damien; Ottolenghi, Chris; Bonnefont, Jean-Paul; Dommergues, Marc; Bernuau, Jacques; Thabut, Dominique

    2017-09-20

    Inborn urea cycle disorders are under-recognised metabolic causes of hyperammonemia in adults. A 28-year-old primigravida, seven weeks pregnant, affected by hyperemesis gravidarum developed acute liver injury (ALI) and then acute liver failure (ALF) in less than 48 h. Because the patient developed atypical features, especially mildly elevated aminotransferases contrasting with very high blood ammonia levels (281 μmol/L), concomitant with normal serum creatinine, an inborn error of metabolism was suspected. We performed emergency metabolic analyses, stopped all protein intake and started with intravenous (i.v.) high caloric intake, nitrogen scavenger drugs and haemodialysis. The neurological and hepatic status of the patient quickly improved together with normalisation of her ammonemia levels. High plasma glutamine and urinary orotic acid, alongside low plasma arginine, citrulline and ornithine were suggestive of an ornithine transcarbamylase deficiency, later confirmed by molecular analyses. Foetal sex was female, as determined by foetal DNA analysis in maternal blood, and foetal development was unremarkable throughout the pregnancy. Delivery was induced at 39 weeks with a close monitoring of ammonemia levels and i.v. perfusion of carbohydrates and lipids during labour and immediately post-partum to avoid hypercatabolism. Delivery was uneventful and the patient delivered a healthy female baby. Urea cycle disorders should be contemplated in non-jaundiced patients with ALI or ALF, severe hyperammonemia and normal serum creatinine regardless of serum aminotransferase levels. The prompt recognition of this rare condition and the rapid initiation of adequate metabolic therapy are mandatory to prevent irreversible neurological sequelae and to avoid liver transplantation. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  2. Engineering the gut microbiota to treat hyperammonemia.

    PubMed

    Shen, Ting-Chin David; Albenberg, Lindsey; Bittinger, Kyle; Chehoud, Christel; Chen, Ying-Yu; Judge, Colleen A; Chau, Lillian; Ni, Josephine; Sheng, Michael; Lin, Andrew; Wilkins, Benjamin J; Buza, Elizabeth L; Lewis, James D; Daikhin, Yevgeny; Nissim, Ilana; Yudkoff, Marc; Bushman, Frederic D; Wu, Gary D

    2015-07-01

    Increasing evidence indicates that the gut microbiota can be altered to ameliorate or prevent disease states, and engineering the gut microbiota to therapeutically modulate host metabolism is an emerging goal of microbiome research. In the intestine, bacterial urease converts host-derived urea to ammonia and carbon dioxide, contributing to hyperammonemia-associated neurotoxicity and encephalopathy in patients with liver disease. Here, we engineered murine gut microbiota to reduce urease activity. Animals were depleted of their preexisting gut microbiota and then inoculated with altered Schaedler flora (ASF), a defined consortium of 8 bacteria with minimal urease gene content. This protocol resulted in establishment of a persistent new community that promoted a long-term reduction in fecal urease activity and ammonia production. Moreover, in a murine model of hepatic injury, ASF transplantation was associated with decreased morbidity and mortality. These results provide proof of concept that inoculation of a prepared host with a defined gut microbiota can lead to durable metabolic changes with therapeutic utility.

  3. Urea Cycle Defects: Early-Onset Disease Associated with A208T Mutation in OTC Gene-Expanding the Clinical Phenotype.

    PubMed

    Sánchez, Ana Isabel; Rincón, Alejandra; García, Mary; Suárez-Obando, Fernando

    2017-01-01

    Ornithine transcarbamylase deficiency (OMIM: 311250) is the most common disorder of urea cycle disorders, accounting for nearly 50% of all cases. We report a case of a two-month- old male patient, who attends our medical genetics consultation because of low citrulline levels and elevated glutamine to citrulline ratio detected by expanded newborn screening with tandem mass spectrometry. He is an asymptomatic male with a normal physical examination and appropriate neurodevelopmental milestones. The patient has a family history of one older brother who died at 18 months old from severe and sudden hyperammonemia and a maternal aunt who suddenly died at two years old. He had high plasma ammonium concentration and a confirmed OTC mutation (p.A208T). Usually, this mutation causes OTC deficiency of late onset in adult males. However, this report raises awareness about mutations previously described as a late-onset causing disease, which can cause severe hyperammonemia and high risk of dying at an early age.

  4. Hyperammonemic encephalopathy due to suture line breakdown after bladder operation.

    PubMed

    Boogerd, W; Zoetmulder, F A; Moffie, D

    1990-01-01

    A patient is described with a severe encephalopathy and hyperammonemia in absence of liver dysfunction, attributed to urine absorption into the systemic circulation due to suture line breakdown after bladder dome resection. At autopsy characteristic Alzheimer type II astrocytes were found in the basal ganglia.

  5. Hepatic encephalopathy secondary to a splenorenal shunt that manifested a long time after a liver transplantation.

    PubMed

    Tomás Pujante, Paula; Jiménez Sánchez, Andrés Francisco; Iglesias Jorquera, Elena; Pons Miñano, José Antonio

    2018-04-24

    Splenorenal shunts are a rare cause of hyperammonemia and hepatic encephalopathy in the absence of cirrhosis. We report the case of a woman, who presented hepatic encephalopathy, with a normal functioning graft, after 14 years of liver transplantation, confirmed by liver biopsy.

  6. Aggravation of cyclophosphamide-induced acute neurological disorders under conditions of artificial acidification of chyme in rats.

    PubMed

    Schaefer, T V; Rejuniuk, V L; Malakhovsky, V N; Ivnitsky, Ju Ju

    2012-10-01

    The effect of artificial acidification of the intestinal content on neurological manifestations of acute severe cyclophosphamide intoxication was studied in rats. The animals were gavaged with 20 ml/kg sulfuric (0.05 M), hydrochloric, boric, or lactic acids (0.1 M) 3 h before intraperitoneal injections of the cytostatic in doses of 0, 200, 600, or 1000 mg/kg. The decrease in pH (by.0) and ammonia-producing activity of the cecal chyme developed within 3 h after administration of acids. Cyclophosphamide caused hyperammonemia; glutamine/ammonia and urea/ammonia ratios in the blood decreased. These changes augmented after administration of acids (boric acid produced maximum and lactic acid minimum effects). Acid treatment resulted in greatest elevation of ammonia level in the portal venous blood and a lesser elevation in the vena cava posterior blood. Acid treatment promoted manifestation of cyclophosphamide neurotoxic effect and animal death. Hence, acidification of the chyme inhibited the formation of ammonia in it, while ammonia release from the gastrointestinal tract into the blood increased; the treatment augmented hyperammonemia and aggravated the neurological manifestations of cyclophosphamide intoxication.

  7. The Effects of Acute Copper and Ammonia Challenges on Ammonia and Urea Excretion by the Blue Crab Callinectes sapidus.

    PubMed

    Zimmer, Alex M; Jorge, Marianna Basso; Wood, Chris M; Martins, Camila M G; Bianchini, Adalto

    2017-04-01

    Copper (Cu) is a persistent environmental contaminant that elicits several physiological disturbances in aquatic organisms, including a disruption in ammonia regulation. We hypothesized that exposure to Cu in a model crustacean (blue crab, Callinectes sapidus) acclimated to brackish water (2 ppt) would lead to hyperammonemia by stimulating an increase in ammonia production and/or by inhibiting ammonia excretion. We further hypothesized that urea production would represent an ammonia detoxification strategy in response to Cu. In a pilot experiment, exposure to 0, 100, and 200 µg/L Cu for 6 h caused significant concentration-dependent increases in ammonia excretion (J amm ). Based on these results, an acute 24-h 100 µg/L Cu exposure was conducted and this similarly caused an overall stimulation of J amm during the 24-h period, indicative of an increase in ammonia production. Terminal haemolymph total ammonia content (T amm ) was unchanged, suggesting that while ammonia production was increased, there was no inhibition of the excretion mechanism. In support of our second hypothesis, urea excretion (J urea ) increased in response to Cu exposure; haemolymph [urea] was unaffected. This suggested that urea production also was increased. To further test the hypothesis that J urea increased to prevent hyperammonemia during Cu exposure, crabs were exposed to high environmental ammonia (HEA; 2.5 mmol/L NH 4 HCO 3 ) for 12 h in a separate experiment. This led to a fourfold increase in haemolymph T amm , whereas J urea increased only transiently and haemolymph [urea] was unchanged, indicating that urea production likely does not contribute to the attenuation of hyperammonemia in blue crabs. Overall, Cu exposure in blue crabs led to increased ammonia and urea production, which were both eliminated by excretion. These results may have important implications in aquaculture systems where crabs may be exposed to elevated Cu and/or ammonia.

  8. Adult onset urea cycle disorder in a patient with presumed hepatic encephalopathy.

    PubMed

    Atiq, Muslim; Holt, Andrew F; Safdar, Kamran; Weber, Frederick; Ravinuthala, Ravi; Jonas, Mark E; Neff, Guy W

    2008-02-01

    Deficiency of any of the 5 enzymes in the urea cycle results in the accumulation of ammonia, leading to encephalopathy; which if untreated, can be lethal and produce devastating neurologic sequelae in long-term survivors. We hereby present an interesting case that presented with hyperammonemia and encephalopathy; later found to have an urea cycle defect.

  9. Ammonia Induces Autophagy through Dopamine Receptor D3 and MTOR

    PubMed Central

    Li, Zhiyuan; Ji, Xinmiao; Wang, Wenchao; Liu, Juanjuan; Liang, Xiaofei; Wu, Hong; Liu, Jing; Eggert, Ulrike S.; Liu, Qingsong

    2016-01-01

    Hyperammonemia is frequently seen in tumor microenvironments as well as in liver diseases where it can lead to severe brain damage or death. Ammonia induces autophagy, a mechanism that tumor cells may use to protect themselves from external stresses. However, how cells sense ammonia has been unclear. Here we show that culture medium alone containing Glutamine can generate milimolar of ammonia at 37 degrees in the absence of cells. In addition, we reveal that ammonia acts through the G protein-coupled receptor DRD3 (Dopamine receptor D3) to induce autophagy. At the same time, ammonia induces DRD3 degradation, which involves PIK3C3/VPS34-dependent pathways. Ammonia inhibits MTOR (mechanistic target of Rapamycin) activity and localization in cells, which is mediated by DRD3. Therefore, ammonia has dual roles in autophagy: one to induce autophagy through DRD3 and MTOR, the other to increase autophagosomal pH to inhibit autophagic flux. Our study not only adds a new sensing and output pathway for DRD3 that bridges ammonia sensing and autophagy induction, but also provides potential mechanisms for the clinical consequences of hyperammonemia in brain damage, neurodegenerative diseases and tumors. PMID:27077655

  10. Resveratrol Prevents Ammonia Toxicity in Astroglial Cells

    PubMed Central

    Guerra, Maria Cristina; Leite, Marina Concli; Souza, Diogo Onofre; Gonçalves, Carlos-Alberto; Gottfried, Carmem

    2012-01-01

    Ammonia is implicated as a neurotoxin in brain metabolic disorders associated with hyperammonemia. Acute ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and nitric oxide (NO) production. Astrocytes interact with neurons, providing metabolic support and protecting against oxidative stress and excitotoxicity. Astrocytes also convert excess ammonia and glutamate into glutamine via glutamine synthetase (GS). Resveratrol, a polyphenol found in grapes and red wines, exhibits antioxidant and anti-inflammatory properties and modulates glial functions, such as glutamate metabolism. We investigated the effect of resveratrol on the production of reactive oxygen species (ROS), GS activity, S100B secretion, TNF-α, IL-1β and IL-6 levels in astroglial cells exposed to ammonia. Ammonia induced oxidative stress, decreased GS activity and increased cytokines release, probably by a mechanism dependent on protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways. Resveratrol prevented ammonia toxicity by modulating oxidative stress, glial and inflammatory responses. The ERK and nuclear factor-κB (NF-κB) are involved in the protective effect of resveratrol on cytokines proinflammatory release. In contrast, other antioxidants (e.g., ascorbic acid and trolox) were not effective against hyperammonemia. Thus, resveratrol could be used to protect against ammonia-induced neurotoxicity. PMID:23284918

  11. Detoxification of ammonia in mouse cortical GABAergic cell cultures increases neuronal oxidative metabolism and reveals an emerging role for release of glucose-derived alanine.

    PubMed

    Leke, Renata; Bak, Lasse K; Anker, Malene; Melø, Torun M; Sørensen, Michael; Keiding, Susanne; Vilstrup, Hendrik; Ott, Peter; Portela, Luis V; Sonnewald, Ursula; Schousboe, Arne; Waagepetersen, Helle S

    2011-04-01

    Cerebral hyperammonemia is believed to play a pivotal role in the development of hepatic encephalopathy (HE), a debilitating condition arising due to acute or chronic liver disease. In the brain, ammonia is thought to be detoxified via the activity of glutamine synthetase, an astrocytic enzyme. Moreover, it has been suggested that cerebral tricarboxylic acid (TCA) cycle metabolism is inhibited and glycolysis enhanced during hyperammonemia. The aim of this study was to characterize the ammonia-detoxifying mechanisms as well as the effects of ammonia on energy-generating metabolic pathways in a mouse neuronal-astrocytic co-culture model of the GABAergic system. We found that 5 mM ammonium chloride affected energy metabolism by increasing the neuronal TCA cycle activity and switching the astrocytic TCA cycle toward synthesis of substrate for glutamine synthesis. Furthermore, ammonia exposure enhanced the synthesis and release of alanine. Collectively, our results demonstrate that (1) formation of glutamine is seminal for detoxification of ammonia; (2) neuronal oxidative metabolism is increased in the presence of ammonia; and (3) synthesis and release of alanine is likely to be important for ammonia detoxification as a supplement to formation of glutamine.

  12. Urea cycle disorders: brain MRI and neurological outcome.

    PubMed

    Bireley, William R; Van Hove, Johan L K; Gallagher, Renata C; Fenton, Laura Z

    2012-04-01

    Urea cycle disorders encompass several enzyme deficiencies that can result in cerebral damage, with a wide clinical spectrum from asymptomatic to severe. The goal of this study was to correlate brain MRI abnormalities in urea cycle disorders with clinical neurological sequelae to evaluate whether MRI abnormalities can assist in guiding difficult treatment decisions. We performed a retrospective chart review of patients with urea cycle disorders and symptomatic hyperammonemia. Brain MRI images were reviewed for abnormalities that correlated with severity of clinical neurological sequelae. Our case series comprises six urea cycle disorder patients, five with ornithine transcarbamylase deficiency and one with citrullinemia type 1. The observed trend in distribution of brain MRI abnormalities as the severity of neurological sequelae increased was the peri-insular region first, extending into the frontal, parietal, temporal and, finally, the occipital lobes. There was thalamic restricted diffusion in three children with prolonged hyperammonemia. Prior to death, this site is typically reported to be spared in urea cycle disorders. The pattern and extent of brain MRI abnormalities correlate with clinical neurological outcome in our case series. This suggests that brain MRI abnormalities may assist in determining prognosis and helping clinicians with subsequent treatment decisions.

  13. Severe Hyperammonemic Encephalopathy Requiring Dialysis Aggravated by Prolonged Fasting and Intermittent High Fat Load in a Ramadan Fasting Month in a Patient with CPTII Homozygous Mutation.

    PubMed

    Phowthongkum, P; Ittiwut, C; Shotelersuk, V

    2017-11-21

    Carnitine palmitoyltransferase II (CPTII) deficiency is a mitochondrial fatty acid oxidation disorder that can present antenatally as congenital brain malformations, or postnatally with lethal neonatal, severe infantile, or the most common adult myopathic forms. No case of severe hyperammonemia without liver dysfunction has been reported. We described a 23-year-old man who presented to the emergency department with seizures and was found to have markedly elevation of serum ammonia. Continuous renal replacement therapy was initiated with successfully decreased ammonia to a safety level. He had a prolonged history of epilepsies and encephalopathic attacks that was associated with high ammonia level. Molecular diagnosis revealed a homozygous mutation in CPTII. The plasma acylcarnitine profile was consistent with the diagnosis. Failure to produce acetyl-CoA, the precursor of urea cycle from fatty acid in prolonged fasting state in Ramadan month, worsening mitochondrial functions from circulating long chain fatty acid and valproate toxicities were believed to contribute to this critical metabolic decompensation. Fatty acid oxidation disorders should be considered in the differential diagnosis of hyperammonemia even without liver dysfunction. To our knowledge, this is the first case of CPTII deficiency presented with severe hyperammonemic encephalopathy required dialysis after prolonged religious related fasting.

  14. [A case of hyperammonemia resulting from urinary tract infection caused by urease-producing bacteria in a Parkinson's disease patient with drug-induced urinary retention].

    PubMed

    Yasunishi, Masahiro; Koumura, Akihiro; Hayashi, Yuichi; Nishida, Shohei; Inuzuka, Takashi

    2017-01-01

    A 71-year-old woman with a 9-year history of Parkinson's disease was admitted to our hospital emergently because of consciousness disturbance. Her consciousness level was 200 on the Japan coma scale (JCS), and she presented with tenderness and distension of the lower abdomen. Brain computed tomography showed normal findings. Blood tests showed an increased ammonia level (209 μg/dl) with normal AST and ALT levels. We catheterized the bladder for urinary retention. Five hours after admission, the blood ammonia level decreased to 38 μg/dl, and her consciousness level improved dramatically. Corynebacterium urearyticum, a bacterial species that produces urease, was detected by urine culture. Therefore, she was diagnosed with hyperammonemic encephalopathy resulting from urinary tract infection caused by urease-producing bacteria. In this case, urologic active agents had been administered to treat neurogenic bladder. We suspect that these drugs caused urinary obstruction and urinary tract infection. It is important to recognize that obstructive urinary tract infection caused by urease-producing bacteria can cause hyperammonemia. Neurological disorders, such as Parkinson's disease, tend to complicate neurogenic bladder. This disease should be considered in elderly patients with Parkinson's disease who are receiving urologic active drugs.

  15. Proton Resonance Spectroscopy Study of the Effects of L-Ornithine-L-Aspartate on the Development of Encephalopathy, Using Localization Pulses with Reduced Specific Absorption Rate

    NASA Astrophysics Data System (ADS)

    Slotboom, J.; Vogels, B. A. P. M.; Dehaan, J. G.; Creyghton, J. H. N.; Quack, G.; Chamuleau, R. A. F. M.; Bovee, W. M. M. J.

    Using the SADLOVE ( single-shot adiabatic localized volume excitation) localization technique with reduced specific absorption rate phase-compensated 2π pulses for localization, in vivo rat brain spectra were obtained in order to study the possible beneficial effects of L-ornithine-L-aspartate (OA) on the development of encephalopathy induced by hyperammonemia in portacaval shunted rats, an experimental model for subacute hepatic encephalopathy. The in vivo1H spectra were quantified using a conjugate-gradient-based frequency-domain fitting procedure. OA treatment resulted in an about threefold lower increase in train lactate ( P < 0.0001) and a slower increase of brain glutamine ( P = 0.022) concentration. However, these changes in brain metabolism, including a significantly lower ammonia concentration during OA treatment, were not associated with a sig significant improvement in clinical symptoms of encephalopathy, suggesting either insufficient decrease in brain ammonia concentration or another effect of OA treatment counteracting the lowering effect on blood and brain ammonia and on brain glutamine and lactate. It is concluded that localized in vivo1H MRS of the brain in combination with other analytical techniques, such as in vivo microdialysis, is helpful in explaining pathophysiological changes during hyperammonemia-induced encephalopathy.

  16. Central nervous system hyperexcitability associated with glutamate dehydrogenase gain of function mutations.

    PubMed

    Raizen, David M; Brooks-Kayal, Amy; Steinkrauss, Linda; Tennekoon, Gihan I; Stanley, Charles A; Kelly, Andrea

    2005-03-01

    To describe seizure phenotypes associated with the hyperinsulinism/hyperammonemia syndrome (HI/HA), which is caused by gain of function mutations in the enzyme glutamate dehydrogenase (GDH). A retrospective review of records of 14 patients with HI/HA. Nine patients had seizures as the first symptom of HI/HA, and six had seizures in the absence of hypoglycemia. No electroencephalogram (EEG) background abnormalities were identified. In four patients, EEG recordings during seizures in the setting of normal blood glucose contained generalized epileptiform discharges. EEGs of three of these patients showed 0.5- to 2-second generalized irregular spike-and-wave discharge at 3 to 6 Hz corresponding to eye blinks, eye rolling, or staring. The EEG of the fourth patient consisted of 20 seconds of generalized regular spike-and-wave discharge at 3 Hz in the clinical context of staring and unresponsiveness. In two patients, seizure control worsened with carbamezapine or oxcarbezapine treatment. In patients with HI/HA, generalized seizures are common and can occur in the absence of hypoglycemia. The drugs carbamazepine and oxcarbazepine should be used with caution for treatment. Pathogenesis of epilepsy in these patients may be related to effects of GDH mutations in the brain, perhaps in combination with effects of recurrent hypoglycemia and chronic hyperammonemia.

  17. Pronounced reversible hyperammonemic encephalopathy associated with combined valproate-topiramate therapy in a 7-year-old girl.

    PubMed

    Weise, Sebastian; Syrbe, Steffen; Preuss, Matthias; Bertsche, Astrid; Merkenschlager, Andreas; Bernhard, Matthias K

    2015-01-01

    Valproate is one of the most frequently used anticonvulsive drugs in children and adults. Valproate is a generally well tolerated medication. However, encephalopathy with or without hyperammonemia is one of its rare adverse events. We present a 7-year-old girl who suffered from epilepsy with generalized tonic-clonic seizures and absence epilepsy. She was initially treated with topiramate. Methylprednisolone pulse therapy and long-term therapy with valproate were initiated due to an increase of seizure frequency. At day 5 of therapy, a further increase of seizure frequency was observed followed by lethargy and somnolence. Liver enzymes remained within normal range, but ammonia serum levels increased to a maximum of 544 mmol/l. Discontinuing valproate and starting potassium-benzoate and sodium-phenylbutyrate improved the clinical condition and ammonia serum levels. Haemodialysis was not required. Cranial magnetic resonance imaging ruled out brain edema. The patient was further on successfully treated with a combination of both, topiramate and levetiracetam. Seizures did not recur and development was normal until now (3 years later). To the best of our knowledge, we observed the highest ammonia serum levels ever reported in valproate-induced hyperammonemia with a complete remission of the subsequent encephalopathy. Topiramate might increase the risk of valproate-induced encephalopathy by carbonic anhydrase inhibition.

  18. Targeting CPS1 in the treatment of Carbamoyl phosphate synthetase 1 (CPS1) deficiency, a urea cycle disorder.

    PubMed

    Diez-Fernandez, Carmen; Häberle, Johannes

    2017-04-01

    Carbamoyl phosphate synthetase 1 (CPS1) deficiency (CPS1D) is a rare autosomal recessive urea cycle disorder (UCD), which can lead to life-threatening hyperammonemia. Unless promptly treated, it can result in encephalopathy, coma and death, or intellectual disability in surviving patients. Over recent decades, therapies for CPS1D have barely improved leaving the management of these patients largely unchanged. Additionally, in many cases, current management (protein-restriction and supplementation with citrulline and/or arginine and ammonia scavengers) is insufficient for achieving metabolic stability, highlighting the importance of developing alternative therapeutic approaches. Areas covered: After describing UCDs and CPS1D, we give an overview of the structure- function of CPS1. We then describe current management and potential novel treatments including N-carbamoyl-L-glutamate (NCG), pharmacological chaperones, and gene therapy to treat hyperammonemia. Expert opinion: Probably, the first novel CPS1D therapies to reach the clinics will be the already commercial substance NCG, which is the standard treatment for N-acetylglutamate synthase deficiency and has been proven to rescue specific CPS1D mutations. Pharmacological chaperones and gene therapy are under development too, but these two technologies still have key challenges to be overcome. In addition, current experimental therapies will hopefully add further treatment options.

  19. Dysregulation of C/EBPalpha by mutant Huntingtin causes the urea cycle deficiency in Huntington's disease.

    PubMed

    Chiang, Ming-Chang; Chen, Hui-Mei; Lee, Yi-Hsin; Chang, Hao-Hung; Wu, Yi-Chih; Soong, Bing-Wen; Chen, Chiung-Mei; Wu, Yih-Ru; Liu, Chin-San; Niu, Dau-Ming; Wu, Jer-Yuarn; Chen, Yuan-Tsong; Chern, Yijuang

    2007-03-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a CAG trinucleotide expansion in the Huntingtin (Htt) gene. Using two mouse models of HD, we demonstrate that the urea cycle deficiency characterized by hyperammonemia, high blood citrulline and suppression of urea cycle enzymes is a prominent feature of HD. The resultant ammonia toxicity might exacerbate the neurological deficits of HD. Suppression of C/EBPalpha, a crucial transcription factor for the transcription of urea cycle enzymes, appears to mediate the urea cycle deficiency in HD. We found that in the presence of mutant Htt, C/EBPalpha loses its ability to interact with an important cofactor (CREB-binding protein). Moreover, mutant Htt recruited C/EBPalpha into aggregates, as well as suppressed expression of the C/EBPalpha gene. Consumption of protein-restricted diets not only led to the restoration of C/EBPalpha's activity, and repair of the urea cycle deficiency and hyperammonemia, but also ameliorated the formation of Htt aggregates, the motor deterioration, the suppression of striatal brain-derived neurotrophic factor and the normalization of three protein chaperones (Hsp27, Hsp70 and Hsp90). Treatments aimed at repairing the urea cycle deficiency may provide a new strategy for dealing with HD.

  20. Refeeding syndrome in a young woman with argininosuccinate lyase deficiency.

    PubMed

    Stuy, M; Chen, G-F; Masonek, J M; Scharschmidt, B F

    2015-09-01

    A severely chronically protein and calorie restricted young woman with argininosuccinate lyase deficiency developed transient refeeding syndrome (RFS) and hyperammonemia after modest diet liberalization following initiation of glycerol phenylbutyrate (GPB). The patient required IV supportive care and supplementation with potassium, magnesium and calcium. She is now doing well on GPB and an appropriate maintenance diet. Susceptibility to RFS should be considered in chronically nutritionally restricted patients with metabolic disorders after liberalization of diet.

  1. Encephalopathy in acute liver failure resulting from acetaminophen intoxication: new observations with potential therapy.

    PubMed

    Brusilow, Saul W; Cooper, Arthur J L

    2011-11-01

    Hyperammonemia is a major contributing factor to the encephalopathy associated with liver disease. It is now generally accepted that hyperammonemia leads to toxic levels of glutamine in astrocytes. However, the mechanism by which excessive glutamine is toxic to astrocytes is controversial. Nevertheless, there is strong evidence that glutamine-induced osmotic swelling, especially in acute liver failure, is a contributing factor: the osmotic gliopathy theory. The object of the current communication is to present evidence for the osmotic gliopathy theory in a hyperammonemic patient who overdosed on acetaminophen. Case report. Johns Hopkins Hospital. A 22-yr-old woman who, 36 hrs before admission, ingested 15 g acetaminophen was admitted to the Johns Hopkins Hospital. She was treated with N-acetylcysteine. Physical examination was unremarkable; her mental status was within normal limits and remained so until approximately 72 hrs after ingestion when she became confused, irritable, and agitated. She was intubated, ventilated, and placed on lactulose. Shortly thereafter, she was noncommunicative, unresponsive to painful stimuli, and exhibited decerebrate posturing. A clinical diagnosis of cerebral edema and increased intracranial pressure was made. She improved very slowly until 180 hrs after ingestion when she moved all extremities. She woke up shortly thereafter. Despite the fact that hyperammonemia is a major contributing factor to the encephalopathy observed in acute liver failure, the patient's plasma ammonia peaked when she exhibited no obvious neurologic deficit. Thereafter, her plasma ammonia decreased precipitously in parallel with a worsening neurologic status. She was deeply encephalopathic during a period when her liver function and plasma ammonia had normalized. Plasma glutamine levels in this patient were high but began to normalize several hours after plasma ammonia had returned to normal. The patient only started to recover as her plasma glutamine began to return to normal. We suggest that the biochemical data are consistent with the osmotic gliopathy theory--high plasma ammonia leads to high plasma glutamine--an indicator of excess glutamine in astrocytes (the site of brain glutamine synthesis). This excess glutamine leads to osmotic stress in these cells. The lag in recovery of brain function presumably reflects time taken for the astrocyte glutamine concentration to return to normal. We hypothesize that an inhibitor of brain glutamine synthesis may be an effective treatment modality for acute liver failure.

  2. Central Role of Glutamate Metabolism in the Maintenance of Nitrogen Homeostasis in Normal and Hyperammonemic Brain

    PubMed Central

    Cooper, Arthur J. L.; Jeitner, Thomas M.

    2016-01-01

    Glutamate is present in the brain at an average concentration—typically 10–12 mM—far in excess of those of other amino acids. In glutamate-containing vesicles in the brain, the concentration of glutamate may even exceed 100 mM. Yet because glutamate is a major excitatory neurotransmitter, the concentration of this amino acid in the cerebral extracellular fluid must be kept low—typically µM. The remarkable gradient of glutamate in the different cerebral compartments: vesicles > cytosol/mitochondria > extracellular fluid attests to the extraordinary effectiveness of glutamate transporters and the strict control of enzymes of glutamate catabolism and synthesis in well-defined cellular and subcellular compartments in the brain. A major route for glutamate and ammonia removal is via the glutamine synthetase (glutamate ammonia ligase) reaction. Glutamate is also removed by conversion to the inhibitory neurotransmitter γ-aminobutyrate (GABA) via the action of glutamate decarboxylase. On the other hand, cerebral glutamate levels are maintained by the action of glutaminase and by various α-ketoglutarate-linked aminotransferases (especially aspartate aminotransferase and the mitochondrial and cytosolic forms of the branched-chain aminotransferases). Although the glutamate dehydrogenase reaction is freely reversible, owing to rapid removal of ammonia as glutamine amide, the direction of the glutamate dehydrogenase reaction in the brain in vivo is mainly toward glutamate catabolism rather than toward the net synthesis of glutamate, even under hyperammonemia conditions. During hyperammonemia, there is a large increase in cerebral glutamine content, but only small changes in the levels of glutamate and α-ketoglutarate. Thus, the channeling of glutamate toward glutamine during hyperammonemia results in the net synthesis of 5-carbon units. This increase in 5-carbon units is accomplished in part by the ammonia-induced stimulation of the anaplerotic enzyme pyruvate carboxylase. Here, we suggest that glutamate may constitute a buffer or bulwark against changes in cerebral amine and ammonia nitrogen. Although the glutamate transporters are briefly discussed, the major emphasis of the present review is on the enzymology contributing to the maintenance of glutamate levels under normal and hyperammonemic conditions. Emphasis will also be placed on the central role of glutamate in the glutamine-glutamate and glutamine-GABA neurotransmitter cycles between neurons and astrocytes. Finally, we provide a brief and selective discussion of neuropathology associated with altered cerebral glutamate levels. PMID:27023624

  3. A model of blood-ammonia homeostasis based on a quantitative analysis of nitrogen metabolism in the multiple organs involved in the production, catabolism, and excretion of ammonia in humans.

    PubMed

    Levitt, David G; Levitt, Michael D

    2018-01-01

    Increased blood ammonia (NH 3 ) is an important causative factor in hepatic encephalopathy, and clinical treatment of hepatic encephalopathy is focused on lowering NH 3 . Ammonia is a central element in intraorgan nitrogen (N) transport, and modeling the factors that determine blood-NH 3 concentration is complicated by the need to account for a variety of reactions carried out in multiple organs. This review presents a detailed quantitative analysis of the major factors determining blood-NH 3 homeostasis - the N metabolism of urea, NH 3 , and amino acids by the liver, gastrointestinal system, muscle, kidney, and brain - with the ultimate goal of creating a model that allows for prediction of blood-NH 3 concentration. Although enormous amounts of NH 3 are produced during normal liver amino-acid metabolism, this NH 3 is completely captured by the urea cycle and does not contribute to blood NH 3 . While some systemic NH 3 derives from renal and muscle metabolism, the primary site of blood-NH 3 production is the gastrointestinal tract, as evidenced by portal vein-NH 3 concentrations that are about three times that of systemic blood. Three mechanisms, in order of quantitative importance, release NH 3 in the gut: 1) hydrolysis of urea by bacterial urease, 2) bacterial protein deamination, and 3) intestinal mucosal glutamine metabolism. Although the colon is conventionally assumed to be the major site of gut-NH 3 production, evidence is reviewed that indicates that the stomach (via Helicobacter pylori metabolism) and small intestine and may be of greater importance. In healthy subjects, most of this gut NH 3 is removed by the liver before reaching the systemic circulation. Using a quantitative model, loss of this "first-pass metabolism" due to portal collateral circulation can account for the hyperammonemia observed in chronic liver disease, and there is usually no need to implicate hepatocyte malfunction. In contrast, in acute hepatic necrosis, hyperammonemia results from damaged hepatocytes. Although muscle-NH 3 uptake is normally negligible, it can become important in severe hyperammonemia. The NH 3 -lowering actions of intestinal antibiotics (rifaximin) and lactulose are discussed in detail, with particular emphasis on the seeming lack of importance of the frequently emphasized acidifying action of lactulose in the colon.

  4. Encephalopathy in acute liver failure resulting from acetaminophen intoxication: New observations with potential therapy

    PubMed Central

    Brusilow, Saul W; Cooper, Arthur J.L.

    2011-01-01

    Objective Hyperammonemia is a major contributing factor to the encephalopathy associated with liver disease. It is now generally accepted that hyperammonemia leads to toxic levels of glutamine in astrocytes. However, the mechanism by which excessive glutamine is toxic to astrocytes is controversial. Nevertheless, there is strong evidence that glutamine-induced osmotic swelling, especially in acute liver failure (ALF), is a contributing factor – the osmotic gliopathy theory. The object of the current communication is to present evidence for the osmotic gliopathy theory in a hyperammonemic patient who overdosed on acetaminophen. Design Case report. Setting Johns Hopkins Hospital. Patient A 22-year old white female who, 36 hours prior to admission, ingested 15 grams of acetaminophen was admitted to the Johns Hopkins Hospital. Physical examination was unremarkable; her mental status was within normal limits and remained so until approximately 72 hours after ingestion when she became confused, irritable and agitated. Interventions She was intubated, ventilated and placed on lactulose. Shortly thereafter she was non-communicative, unresponsive to painful stimuli and exhibited decerebrate posturing. A clinical diagnosis of cerebral edema and increased intracranial pressure (ICP) was made. She improved very slowly until 180 hours after ingestion when she moved all extremities. She woke up shortly thereafter. Measurements and main results Despite the fact that hyperammonemia is a major contributing factor to the encephalopathy observed in ALF the patient’s plasma ammonia peaked when she exhibited no obvious neurological deficit. Thereafter, her plasma ammonia decreased precipitously in parallel with a worsening neurological status. She was deeply encephalopathic during a period when her liver function and plasma ammonia had normalized. Plasma glutamine levels in this patient were high, but began to normalize several hours after plasma ammonia had returned to normal. The patient only commenced to recover as her plasma glutamine began to return to normal. Conclusions We suggest that the biochemical data are consistent with the osmotic gliopathy theory – high plasma ammonia leads to high plasma glutamine – an indicator of excess glutamine in astrocytes (the site of brain glutamine synthesis). This excess glutamine leads to osmotic stress in these cells. The lag in recovery of brain function presumably reflects time taken for the astrocyte glutamine concentration to return to normal. We hypothesize that an inhibitor of brain glutamine synthesis may be an effective treatment modality for ALF. PMID:21705899

  5. Refeeding syndrome in a young woman with argininosuccinate lyase deficiency☆

    PubMed Central

    Stuy, M.; Chen, G.-F.; Masonek, J.M.; Scharschmidt, B.F.

    2015-01-01

    A severely chronically protein and calorie restricted young woman with argininosuccinate lyase deficiency developed transient refeeding syndrome (RFS) and hyperammonemia after modest diet liberalization following initiation of glycerol phenylbutyrate (GPB). The patient required IV supportive care and supplementation with potassium, magnesium and calcium. She is now doing well on GPB and an appropriate maintenance diet. Susceptibility to RFS should be considered in chronically nutritionally restricted patients with metabolic disorders after liberalization of diet. PMID:26937403

  6. Novel ETF dehydrogenase mutations in a patient with mild glutaric aciduria type II and complex II-III deficiency in liver and muscle

    PubMed Central

    Wolfe, Lynne A.; He, Miao; Vockley, Jerry; Payne, Nicole; Rhead, William; Hoppel, Charles; Spector, Elaine; Gernert, Kim; Gibson, K. Michael

    2014-01-01

    We describe a 22-year-old male who developed severe hypoglycemia and lethargy during an acute illness at 4 months of age and subsequently grew and developed normally. At age 4 years he developed recurrent vomiting with mild hyperammonemia and dehydration requiring frequent hospitalizations. Glutaric aciduria Type II was suspected based upon biochemical findings and managed with cornstarch, carnitine and riboflavin supplements. He did not experience metabolic crises between ages 4-12 years. He experienced recurrent vomiting, mild hyperammonemia, and generalized weakness associated with acute illnesses and growth spurts. At age 18 years, he developed exercise intolerance and proximal muscle weakness leading to the identification of multiple acyl-CoAdehydrogenase and complex II/III deficiencies in both skeletal muscle and liver. Subsequent molecular characterization of the ETFDH gene revealed novel heterozygous mutations, p.G274X:c.820 G>T (exon 7) and p.P534L: c.1601 C>T (exon 12), the latter within the iron sulfur-cluster and predicted to affect ubiquinone reductase activity of ETFDH and the docking of ETF to ETFDH. Our case supports the concept of a structural interaction between ETFDH and other enzyme partners, and suggests that the conformational change upon ETF binding to ETFDH may play a key role in linking ETFDH to II/III super-complex formation. PMID:21088898

  7. Novel ETF dehydrogenase mutations in a patient with mild glutaric aciduria type II and complex II-III deficiency in liver and muscle.

    PubMed

    Wolfe, Lynne A; He, Miao; Vockley, Jerry; Payne, Nicole; Rhead, William; Hoppel, Charles; Spector, Elaine; Gernert, Kim; Gibson, K Michael

    2010-12-01

    We describe a 22-year-old male who developed severe hypoglycemia and lethargy during an acute illness at 4 months of age and subsequently grew and developed normally. At age 4 years he developed recurrent vomiting with mild hyperammonemia and dehydration requiring frequent hospitalizations. Glutaric aciduria Type II was suspected based upon biochemical findings and managed with cornstarch, carnitine and riboflavin supplements. He did not experience metabolic crises between ages 4-12 years. He experienced recurrent vomiting, mild hyperammonemia, and generalized weakness associated with acute illnesses and growth spurts. At age 18 years, he developed exercise intolerance and proximal muscle weakness leading to the identification of multiple acyl-CoA dehydrogenase and complex II/III deficiencies in both skeletal muscle and liver. Subsequent molecular characterization of the ETFDH gene revealed novel heterozygous mutations, p.G274X:c.820 G > T (exon 7) and p.P534L: c.1601 C > T (exon 12), the latter within the iron sulfur-cluster and predicted to affect ubiquinone reductase activity of ETFDH and the docking of ETF to ETFDH. Our case supports the concept of a structural interaction between ETFDH and other enzyme partners, and suggests that the conformational change upon ETF binding to ETFDH may play a key role in linking ETFDH to II/III super-complex formation.

  8. Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat.

    PubMed

    Luo, Jia; Wang, Tao; Liang, Shan; Hu, Xu; Li, Wei; Jin, Feng

    2014-03-01

    Evidence suggests that the hyperammonemia (HA)-induced neuroinflammation and alterations in the serotonin (5-HT) system may contribute to cognitive decline and anxiety disorder during hepatic encephalopathy (HE). Probiotics that maintain immune system homeostasis and regulate the 5-HT system may be potential treatment for HA-mediated neurological disorders in HE. In this study, we tested the efficacy of probiotic Lactobacillus helveticus strain NS8 in preventing cognitive decline and anxiety-like behavior in HA rats. Chronic HA was induced by intraperitoneal injection of ammonium acetate for four weeks in male Sprague-Dawley rats. HA rats were then given Lactobacillus helveticus strain NS8 (10(9) CFU mL(-1)) in drinking water as a daily supplementation. The Morris water maze task assessed cognitive function, and the elevated plus maze test evaluated anxiety-like behavior. Neuroinflammation was assessed by measuring the inflammatory markers: inducible nitric oxide synthase, prostaglandin E2, and interleukin-1 β in the brain. 5-HT system activity was evaluated by measuring 5-HT and its metabolite, 5-HIAA, and the 5-HT precursor, tryptophan. Probiotic treatment of HA rats significantly reduced the level of inflammatory markers, decreased 5-HT metabolism, restored cognitive function and improved anxiety-like behavior. These results indicate that probiotic L. helveticus strain NS8 is beneficial for the treatment of cognitive decline and anxiety-like behavior in HA rats.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ming; Smith, Christopher J.; Walker, Matthew T.

    Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate using NAD(P){sup +} as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently discovered hyperinsulinism/hyperammonemia disorder showed that the loss of allosteric inhibition of GDH by GTP causes excessive secretion of insulin. Subsequent studies demonstrated that wild-type and hyperinsulinemia/hyperammonemia forms of GDH are inhibited by the green tea polyphenols, epigallocatechin gallate and epicatechin gallate. This was followed by high throughput studies that identified more stable inhibitors, including hexachlorophene, GW5074, and bithionol. Shownmore » here are the structures of GDH complexed with these three compounds. Hexachlorophene forms a ring around the internal cavity in GDH through aromatic stacking interactions between the drug and GDH as well as between the drug molecules themselves. In contrast, GW5074 and bithionol both bind as pairs of stacked compounds at hexameric 2-fold axes between the dimers of subunits. The internal core of GDH contracts when the catalytic cleft closes during enzymatic turnover. None of the drugs cause conformational changes in the contact residues, but all bind to key interfaces involved in this contraction process. Therefore, it seems likely that the drugs inhibit enzymatic turnover by inhibiting this transition. Indeed, this expansion/contraction process may play a major role in the inter-subunit communication and allosteric regulation observed in GDH.« less

  10. Mouse Model for Human Arginase Deficiency

    PubMed Central

    Iyer, Ramaswamy K.; Yoo, Paul K.; Kern, Rita M.; Rozengurt, Nora; Tsoa, Rosemarie; O'Brien, William E.; Yu, Hong; Grody, Wayne W.; Cederbaum, Stephen D.

    2002-01-01

    Deficiency of liver arginase (AI) causes hyperargininemia (OMIM 207800), a disorder characterized by progressive mental impairment, growth retardation, and spasticity and punctuated by sometimes fatal episodes of hyperammonemia. We constructed a knockout mouse strain carrying a nonfunctional AI gene by homologous recombination. Arginase AI knockout mice completely lacked liver arginase (AI) activity, exhibited severe symptoms of hyperammonemia, and died between postnatal days 10 and 14. During hyperammonemic crisis, plasma ammonia levels of these mice increased >10-fold compared to those for normal animals. Livers of AI-deficient animals showed hepatocyte abnormalities, including cell swelling and inclusions. Plasma amino acid analysis showed the mean arginine level in knockouts to be approximately fourfold greater than that for the wild type and threefold greater than that for heterozygotes; the mean proline level was approximately one-third and the ornithine level was one-half of the proline and ornithine levels, respectively, for wild-type or heterozygote mice—understandable biochemical consequences of arginase deficiency. Glutamic acid, citrulline, and histidine levels were about 1.5-fold higher than those seen in the phenotypically normal animals. Concentrations of the branched-chain amino acids valine, isoleucine, and leucine were 0.4 to 0.5 times the concentrations seen in phenotypically normal animals. In summary, the AI-deficient mouse duplicates several pathobiological aspects of the human condition and should prove to be a useful model for further study of the disease mechanism(s) and to explore treatment options, such as pharmaceutical administration of sodium phenylbutyrate and/or ornithine and development of gene therapy protocols. PMID:12052859

  11. Ammonia-induced mitochondrial dysfunction and energy metabolism disturbances in isolated brain and liver mitochondria, and the effect of taurine administration: relevance to hepatic encephalopathy treatment

    PubMed Central

    Niknahad, Hossein; Jamshidzadeh, Akram; Zarei, Mahdi; Ommati, Mohammad Mehdi

    2017-01-01

    Introduction Ammonia-induced oxidative stress, mitochondrial dysfunction, and energy crisis are known as some the major mechanisms of brain injury in hepatic encephalopathy (HE). Hyperammonemia also affects the liver and hepatocytes. Therefore, targeting mitochondria seems to be a therapeutic point of intervention in the treatment of HE. Taurine is an abundant amino acid in the human body. Several biological functions including the mitochondrial protective properties are attributed to this amino acid. The aim of this study is to evaluate the effect of taurine administration on ammonia-induced mitochondrial dysfunction. Material and methods Isolated mice liver and brain mitochondria were exposed to different concentrations of ammonia (1, 5, 10, and 20 mM) and taurine (1, 5, and 10 mM), and several mitochondrial indices were assessed. Results It was found that ammonia inhibited mitochondrial dehydrogenases activity caused collapse of mitochondrial membrane potential (MMP), induced mitochondrial swelling (MPP), and increased reactive oxygen species (ROS) in isolated liver and brain mitochondria. Furthermore, a significant amount of lipid peroxidation (LPO), along with glutathione (GSH) and ATP depletion, was detected in ammonia exposed mitochondria. Taurine administration (5 and 10 mM) mitigated ammonia-induced mitochondrial dysfunction. Conclusions The current investigation demonstrates that taurine is instrumental in preserving brain and liver mitochondrial function in a hyperammonemic environment. The data suggest taurine as a potential protective agent with a therapeutic capability against hepatic encephalopathy and hyperammonemia. PMID:29062904

  12. Nutrition and Muscle in Cirrhosis.

    PubMed

    Anand, Anil C

    2017-12-01

    As the cirrhosis progresses, development of complication like ascites, hepatic encephalopathy, variceal bleeding, kidney dysfunction, and hepatocellular carcinoma signify increasing risk of short term mortality. Malnutrition and muscle wasting (sarcopenia) is yet other complications that negatively impact survival, quality of life, and response to stressors, such as infection and surgery in patients with cirrhosis. Conventionally, these are not routinely looked for, because nutritional assessment can be a difficult especially if there is associated fluid retention and/or obesity. Patients with cirrhosis may have a combination of loss of skeletal muscle and gain of adipose tissue, culminating in the condition of "sarcopenic obesity." Sarcopenia in cirrhotic patients has been associated with increased mortality, sepsis complications, hyperammonemia, overt hepatic encephalopathy, and increased length of stay after liver transplantation. Assessment of muscles with cross-sectional imaging studies has become an attractive index of nutritional status evaluation in cirrhosis, as sarcopenia, the major component of malnutrition, is primarily responsible for the adverse clinical consequences seen in patients with liver disease. Cirrhosis is a state of accelerated starvation, with increased gluconeogenesis that requires amino acid diversion from other metabolic functions. Protein homeostasis is disturbed in cirrhosis due to several factors such as hyperammonemia, hormonal, and cytokine abnormalities, physical inactivity and direct effects of ethanol and its metabolites. New approaches to manage sarcopenia are being evolved. Branched chain amino acid supplementation, Myostatin inhibitors, and mitochondrial protective agents are currently in various stages of evaluation in preclinical studies to prevent and reverse sarcopenia, in cirrhosis.

  13. [Clinical effect of stem cell transplantation via hepatic artery in the treatment of type II hyperammonemia: a report on 6 cases].

    PubMed

    DU, Kan; Luan, Zuo; Qu, Su-Qing; Yang, Hui; Yang, Yin-Xiang; Wang, Zhao-Yan; Jin, Hui-Yu; Liu, Wei-Peng

    2013-11-01

    This study aimed to investigate the clinical effect of transplantation of CD133⁺ peripheral blood stem cells or umbilical cord mesenchymal stem cells via the hepatic artery in children with type II hyperammonemia and its possible action mechanism. Umbilical cord mesenchymal stem cells were obtained by collecting cord blood (100-150 mL) from healthy fetuses and separating stem cell suspension (5 mL) from the cord blood by hydroxyethyl starch sedimentation. CD133⁺ peripheral blood stem cells were obtained by mobilizing peripheral blood from the fathers of sick children using recombinant human granulocyte colony-stimulating factor for 5 days, collecting mononuclear cells (120 mL), and separating out CD133⁺ cells by sorting. With catheterization and percutaneous puncture, the obtained stem cells were slowly injected into the liver of sick children via the hepatic artery. The changes in clinical symptoms and laboratory indices such as blood ammonia, liver function, and arginine and citrulline concentrations were observed. After stem cell transplantation via the hepatic artery, the 6 children showed significantly decreased blood ammonia levels, and their blood ammonia levels slowly increased 1 to 2 weeks later, but remained below 100 μmol/L, and changes in glutamic-pyruvic transaminase levels were similar to blood ammonia. Plasma citrulline and arginine concentrations increased significantly after transplantation and the increase in citrulline level exceeded the increase in arginine level. An 8 months follow-up visit for one typical patient showed that the weight and height increased after transplantation and sleep was improved without night crying. The child could actively gaze at interesting objects instead of responding indifferently and started to say simple words. With regard to fine motor skills, the child could pinch things with the thumb and middle finger instead of displaying a lack of hand-eye coordination and progress was also made in gross motor skills. Gesell test showed that the child made progress for an average of 3.82 months in all areas. It was concluded that after stem cell transplantation, children with type II hyperammonemia have decreased blood ammonia levels, stable and improved liver function and steadily increased plasma citrulline and arginine concentrations. They display a progressive trend in such aspects as movement, language and environmental adaptability. It is hypothesized that stem cell transplantation via the hepatic artery partially or totally activates, or provides supplementary ornithine carbamoyl transferase, so that plasma citrulline and arginine concentrations increase and urea cycle disorder can be corrected to some extent.

  14. Unilateral basal-ganglia involvement likely due to valproate-induced hyperammonemic encephalopathy.

    PubMed

    Joardar, Swarnali; Das, Shubhadeep; Chatterjee, Rita; Guha, Gautam; Hasmi, M A

    2012-08-01

    A male child suffering from generalized tonic clonic epilepsy, on treatment with valproate, developed fulminant hepatic failure, hyperammonemia and encephalopathy due to drug toxicity. The most extraordinary feature was his MRI (FLAIR image) of brain which showed unilateral hyperintensities in right putamen and caudate nucleus. The patient recovered on withdrawal of valproate with mild residual left sided athetotic movements during remission. Repeat investigation confirmed an improved MRI imaging and normalised blood ammonia levels. The case report is unique because of unilateral involvement of basal ganglia due to valproate-induced encephalopathy.

  15. Diagnosis and high incidence of hyperornithinemia-hyperammonemia-homocitrullinemia (HHH) syndrome in northern Saskatchewan.

    PubMed

    Sokoro, AbdulRazaq A H; Lepage, Joyce; Antonishyn, Nick; McDonald, Ryan; Rockman-Greenberg, Cheryl; Irvine, James; Lehotay, Denis C

    2010-12-01

    Mutations in the SLC25A15 gene, encoding the human inner mitochondrial membrane ornithine transporter, are thought to be responsible for hyperornithinemia-hyperammonemia-homocitrullinemia (HHH) syndrome, a rare autosomal recessive condition. HHH syndrome has been detected in several small, isolated communities in northern Saskatchewan (SK). To determine the incidence of HHH syndrome in these communities, a PCR method was set up to detect F188Δ, the common French-Canadian mutation. Neonatal blood spots collected from all newborns from the high risk area were genotyped for the F188Δ mutation for seven consecutive years. Using DNA analysis, we estimated that the heterozygote frequency for the mutant allele for HHH syndrome to be about 1 in 19 individuals, predicting one affected child with HHH syndrome for approximately every 1,500 individuals (1 in 1,550 live births; 1 child every 12 years) in this isolated population. The frequency for the mutant allele for HHH syndrome in this isolated community is probably the highest in the world for this rare disorder. We determined that ornithine levels, by tandem mass spectrometry, were not abnormal in newborns with F188Δ mutation, carriers and normals. Ornithine rises to abnormally high levels at some time after birth well past the time that the newborn screening blood spot is collected. The timing or the reasons for the delayed rise of ornithine in affected children with HHH syndrome have not been determined. Newborn screening for HHH Syndrome in this high risk population is only possible by detection of the mutant allele using DNA analysis.

  16. Activation of NMDA receptor by elevated homocysteine in chronic liver disease contributes to encephalopathy.

    PubMed

    Choudhury, Sabanum; Borah, Anupom

    2015-07-01

    Liver diseases lead to a complex syndrome characterized by neurological, neuro-psychiatric and motor complications, called hepatic encephalopathy, which is prevalent in patients and animal models of acute, sub-chronic and chronic liver failure. Although alterations in GABAergic, glutamatergic, cholinergic and serotonergic neuronal functions have been implicated in HE, the molecular mechanisms that lead to HE in chronic liver disease (CLD) is least illustrated. Due to hepatocellular failure, levels of ammonia and homocysteine (Hcy), in addition to others, are found to increase in the brain as well as plasma. Hcy, a non-protein forming amino acid and an excitotoxin, activates ionotropic glutamate (n-methyl-d-aspartate; NMDA) receptors, and thereby leads to influx of Ca(2+) into neurons, which in turn activates several pathways that trigger oxidative stress, inflammation and apoptosis, collectively called excitotoxicity. Elevated levels of Hcy in the plasma and brain, a condition called Hyperhomocysteinemia (HHcy), and the resultant NMDA receptor-mediated excitotoxicity has been implicated in several diseases, including Parkinson's disease and Alzheimer's disease. Although, hyperammonemia has been shown to cause excitotoxicity, the role of HHcy in the development of behavioral and neurochemical alterations that occur in HE has not been illustrated yet. It is hypothesized that CLD-induced HHcy plays a major role in the development of HE through activation of NMDA receptors. It is further hypothesized that HHcy synergizes with hyperammonemia to activate NMDA receptor in the brain, and thereby cause oxidative stress, inflammation and apoptosis, and neuronal loss that leads to HE. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Brain purine metabolism and xanthine dehydrogenase/oxidase conversion in hyperammonemia are under control of NMDA receptors and nitric oxide.

    PubMed

    Kaminsky, Yury; Kosenko, Elena

    2009-10-19

    In hyperammonemia, a decrease in brain ATP can be a result of adenine nucleotide catabolism. Xanthine dehydrogenase (XD) and xanthine oxidase (XO) are the end steps in the purine catabolic pathway and directly involved in depletion of the adenylate pool in the cell. Besides, XD can easily be converted to XO to produce reactive oxygen species in the cell. In this study, the effects of acute ammonia intoxication in vivo on brain adenine nucleotide pool and xanthine and hypoxanthine, the end degradation products of adenine nucleotides, during the conversion of XD to XO were studied. Injection of rats with ammonium acetate was shown to lead to the dramatic decrease in the ATP level, adenine nucleotide pool size and adenylate energy charge and to the great increase in hypoxanthine and xanthine 11 min after the lethal dose indicating rapid degradation of adenylates. Conversion of XD to XO in hyperammonemic rat brain was evidenced by elevated XO/XD activity ratio. Injection of MK-801, a NMDA receptor blocker, prevented ammonia-induced catabolism of adenine nucleotides and conversion of XD to XO suggesting that in vivo these processes are mediated by activation of NMDA receptors. The in vitro dose-dependent effects of sodium nitroprusside, a NO donor, on XD and XO activities are indicative of the direct modification of the enzymes by nitric oxide. This is the first report evidencing the increase in brain xanthine and hypoxanthine levels and adenine nucleotide breakdown in acute ammonia intoxication and NMDA receptor-mediated prevention of these alterations.

  18. At the intersection of toxicology, psychiatry, and genetics: a diagnosis of ornithine transcarbamylase deficiency.

    PubMed

    Sloas, Harold Andrew; Ence, Thomas C; Mendez, Donna R; Cruz, Andrea T

    2013-09-01

    Ornithine transcarbamylase (OTC) deficiency is a genetic disorder involving a mutation of the ornithine transcarbamylase gene, located on the short arm of the X chromosome (Xp21.1). This makes the expression of the gene most common in homozygous males, but heterozygous females can also be affected and may be more likely to suffer from serious morbidity. Most males present early in the neonatal period with more devastating outcomes than their female counterparts. Up to 34% will present in the first 30 days of life (J Pediatr 2001;138:S30). Females often have partially functioning mitochondria due to uneven distribution of the mutant gene secondary to lyonization (“X-chromosome Inactivation”. Genetics Home Reference, 2012). Occasionally, symptomatic females may not even present until they are placed under metabolic stress such as a severe illness, fasting, pregnancy, or new medication (Roth KS, Steiner RD. “Ornithine Transcarbamylase Deficiency”. EMedicine, 2012). The urea cycle is the body's primary tool for the disposal of excess nitrogen, which is generated by the routine metabolism of proteins and amino acids. Mitochondrial dysfunction impairs urea production and result in hyperammonemia (Semin Neonatol 2002;7:27). The sine qua non among all degrees of OTC deficiency at presentation is hyperammonemia. As in adults, children will have similar symptoms of encephalopathy, but this may be expressed differently depending on the child's developmental level. We present an unusual case of OTC deficiency in an older child with undifferentiated symptoms of an anticholinergic toxidrome, liver failure, iron overdose, and mushroom poisoning.

  19. Cerebral glutamine metabolism under hyperammonemia determined in vivo by localized 1H and 15N NMR spectroscopy

    PubMed Central

    Cudalbu, Cristina; Lanz, Bernard; Duarte, João MN; Morgenthaler, Florence D; Pilloud, Yves; Mlynárik, Vladimir; Gruetter, Rolf

    2012-01-01

    Brain glutamine synthetase (GS) is an integral part of the glutamate–glutamine cycle and occurs in the glial compartment. In vivo Magnetic Resonance Spectroscopy (MRS) allows noninvasive measurements of the concentrations and synthesis rates of metabolites. 15N MRS is an alternative approach to 13C MRS. Incorporation of labeled 15N from ammonia in cerebral glutamine allows to measure several metabolic reactions related to nitrogen metabolism, including the glutamate–glutamine cycle. To measure 15N incorporation into the position 5N of glutamine and position 2N of glutamate and glutamine, we developed a novel 15N pulse sequence to simultaneously detect, for the first time, [5-15N]Gln and [2-15N]Gln+Glu in vivo in the rat brain. In addition, we also measured for the first time in the same experiment localized 1H spectra for a direct measurement of the net glutamine accumulation. Mathematical modeling of 1H and 15N MRS data allowed to reduce the number of assumptions and provided reliable determination of GS (0.30±0.050 μmol/g per minute), apparent neurotransmission (0.26±0.030 μmol/g per minute), glutamate dehydrogenase (0.029±0.002 μmol/g per minute), and net glutamine accumulation (0.033±0.001 μmol/g per minute). These results showed an increase of GS and net glutamine accumulation under hyperammonemia, supporting the concept of their implication in cerebral ammonia detoxification. PMID:22167234

  20. Clinical outcomes of neonatal onset proximal versus distal urea cycle disorders do not differ.

    PubMed

    Ah Mew, Nicholas; Krivitzky, Lauren; McCarter, Robert; Batshaw, Mark; Tuchman, Mendel

    2013-02-01

    To compare the clinical course and outcome of patients diagnosed with one of 4 neonatal-onset urea cycle disorders (UCDs): deficiency of carbamyl phosphate synthase 1 (CPSD), ornithine transcarbamylase (OTCD), argininosuccinate synthase (ASD), or argininosuccinate lyase (ALD). Clinical, biochemical, and neuropsychological data from 103 subjects with neonatal-onset UCDs were derived from the Longitudinal Study of Urea Cycle Disorders, an observational protocol of the Urea Cycle Disorders Consortium, one of the Rare Disease Clinical Research Networks. Some 88% of the subjects presented clinically by age 7 days. Peak ammonia level was 963 μM in patients with proximal UCDs (CPSD or OTCD), compared with 589 μM in ASD and 573 μM in ALD. Roughly 25% of subjects with CPSD or OTCD, 18% of those with ASD, and 67% of those with ALD had a "honeymoon period," defined as the time interval from discharge from initial admission to subsequent admission for hyperammonemia, greater than 1 year. The proportion of patients with a poor outcome (IQ/Developmental Quotient <70) was greatest in ALD (68%), followed by ASD (54%) and CPSD/OTCD (47%). This trend was not significant, but was observed in both patients aged <4 years and those aged ≥ 4 years. Poor cognitive outcome was not correlated with peak ammonia level or duration of initial admission. Neurocognitive outcomes do not differ between patients with proximal UCDs and those with distal UCDs. Factors other than hyperammonemia may contribute to poor neurocognitive outcome in the distal UCDs. Copyright © 2013 Mosby, Inc. All rights reserved.

  1. Frequency and Pathophysiology of Acute Liver Failure in Ornithine Transcarbamylase Deficiency (OTCD)

    PubMed Central

    Laemmle, Alexander; Gallagher, Renata C.; Keogh, Adrian; Stricker, Tamar; Gautschi, Matthias; Nuoffer, Jean-Marc; Baumgartner, Matthias R.; Häberle, Johannes

    2016-01-01

    Background Acute liver failure (ALF) has been reported in ornithine transcarbamylase deficiency (OTCD) and other urea cycle disorders (UCD). The frequency of ALF in OTCD is not well-defined and the pathogenesis is not known. Aim To evaluate the prevalence of ALF in OTCD, we analyzed the Swiss patient cohort. Laboratory data from 37 individuals, 27 females and 10 males, diagnosed between 12/1991 and 03/2015, were reviewed for evidence of ALF. In parallel, we performed cell culture studies using human primary hepatocytes from a single patient treated with ammonium chloride in order to investigate the inhibitory potential of ammonia on hepatic protein synthesis. Results More than 50% of Swiss patients with OTCD had liver involvement with ALF at least once in the course of disease. Elevated levels of ammonia often correlated with (laboratory) coagulopathy as reflected by increased values for international normalized ratio (INR) and low levels of hepatic coagulation factors which did not respond to vitamin K. In contrast, liver transaminases remained normal in several cases despite massive hyperammonemia and liver involvement as assessed by pathological INR values. In our in vitro studies, treatment of human primary hepatocytes with ammonium chloride for 48 hours resulted in a reduction of albumin synthesis and secretion by approximately 40%. Conclusion In conclusion, ALF is a common complication of OTCD, which may not always lead to severe symptoms and may therefore be underdiagnosed. Cell culture experiments suggest an ammonia-induced inhibition of hepatic protein synthesis, thus providing a possible pathophysiological explanation for hyperammonemia-associated ALF. PMID:27070778

  2. Ammonia mediates cortical hemichannel dysfunction in rodent models of chronic liver disease

    PubMed Central

    Hadjihambi, Anna; De Chiara, Francesco; Hosford, Patrick S.; Habtetion, Abeba; Karagiannis, Anastassios; Davies, Nathan

    2017-01-01

    The pathogenesis of hepatic encephalopathy (HE) in cirrhosis is multifactorial and ammonia is thought to play a key role. Astroglial dysfunction is known to be present in HE. Astrocytes are extensively connected by gap junctions formed of connexins, which also exist as functional hemichannels allowing exchange of molecules between the cytoplasm and the extracellular milieu. The astrocyte‐neuron lactate shuttle hypothesis suggests that neuronal activity is fueled (at least in part) by lactate provided by neighboring astrocytes. We hypothesized that in HE, astroglial dysfunction could impair metabolic communication between astrocytes and neurons. In this study, we determined whether hyperammonemia leads to hemichannel dysfunction and impairs lactate transport in the cerebral cortex using rat models of HE (bile duct ligation [BDL] and induced hyperammonemia) and also evaluated the effect of ammonia‐lowering treatment (ornithine phenylacetate [OP]). Plasma ammonia concentration in BDL rats was significantly reduced by OP treatment. Biosensor recordings demonstrated that HE is associated with a significant reduction in both tonic and hypoxia‐induced lactate release in the cerebral cortex, which was normalized by OP treatment. Cortical dye loading experiments revealed hemichannel dysfunction in HE with improvement following OP treatment, while the expression of key connexins was unaffected. Conclusion: The results of the present study demonstrate that HE is associated with central nervous system hemichannel dysfunction, with ammonia playing a key role. The data provide evidence of a potential neuronal energy deficit due to impaired hemichannel‐mediated lactate transport between astrocytes and neurons as a possible mechanism underlying pathogenesis of HE. (Hepatology 2017;65:1306‐1318) PMID:28066916

  3. Pathogenesis of Hepatic Encephalopathy

    PubMed Central

    Ciećko-Michalska, Irena; Szczepanek, Małgorzata; Słowik, Agnieszka; Mach, Tomasz

    2012-01-01

    Hepatic encephalopathy can be a serious complication of acute liver failure and chronic liver diseases, predominantly liver cirrhosis. Hyperammonemia plays the most important role in the pathogenesis of hepatic encephalopathy. The brain-blood barrier disturbances, changes in neurotransmission, neuroinflammation, oxidative stress, GABA-ergic or benzodiazepine pathway abnormalities, manganese neurotoxicity, brain energetic disturbances, and brain blood flow abnormalities are considered to be involved in the development of hepatic encephalopathy. The influence of small intestine bacterial overgrowth (SIBO) on the induction of minimal hepatic encephalopathy is recently emphasized. The aim of this paper is to present the current views on the pathogenesis of hepatic encephalopathy. PMID:23316223

  4. Congenital portosystemic venous shunt in a preterm Rh-isoimmunized infant.

    PubMed

    Thukral, Anu; Arora, Kamaldeep; Das, Rashmi Ranjan; Arora, Arundeep; Gamanagatti, Shivanand; Agarwal, Ramesh K

    2013-12-01

    The authors report a preterm infant with Rh-isoimmunization, who had persistent hepato-splenomegaly with conjugated hyperbilirubinemia, transaminitis, and hyperammonemia. Ultrasound abdomen revealed an intrahepatic portosystemic venous shunt (PSVS). The child was managed conservatively. On follow up at 2.4 y of age, the child is having normal growth and development, but with persisting shunt. Severe Rh-isoimmunisation in a neonate can sometimes share some of the features of congenital PSVS and delay the diagnosis of the latter. The index case had shunt ratio >80 % during the neonatal period but did not require any intervention.

  5. Hyperammonemia in anorectic tumor-bearing rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chance, W.T.; Cao, L.; Nelson, J.L.

    1988-01-01

    Plasma ammonia concentrations were significantly elevated by 150% in anorectic rats bearing methylcholanthrene sarcomas. Assessment of ammonia levels in blood draining these sarcomas indicated nearly a 20-fold increase as compared with venous blood in control rats, suggesting the tumor mass as the source of this increase in ammonia. Infusing increasing concentrations of ammonium salts produced anorexia and alterations in brain amino acids in normal rats that were similar to those observed in anorectic tumor-bearing rats. Therefore, these results suggest that ammonia released by tumor tissue may be an important factor in the etiology of cancer anorexia.

  6. Urea cycle disorder--argininosuccinic lyase deficiency.

    PubMed

    Mehta, Neeta; Kirk, Pia Chatterjee; Holder, Ray; Precheur, Harry V

    2012-01-01

    An increased level of ammonia in the bloodstream, or hyperammonemia, is a symptom associated with metabolic disorders referred to as inborn errors of metabolism. Urea cycle disorder is a congenital abnormality or absence of one of the six enzymes involved in the elimination of ammonia. Administration of certain medications, high protein diet, excessive exercise, surgical procedures, or trauma can precipitate symptoms of mental confusion, seizure-like activity, and ataxia. This paper reviews the literature with insight into current treatment and management options of the disorder and modification of treatment for the dental patient. © 2012 Special Care Dentistry Association and Wiley Periodicals, Inc.

  7. Medium-chain triglycerides supplement therapy with a low-carbohydrate formula can supply energy and enhance ammonia detoxification in the hepatocytes of patients with adult-onset type II citrullinemia.

    PubMed

    Hayasaka, Kiyoshi; Numakura, Chikahiko; Yamakawa, Mitsunori; Mitsui, Tetsuo; Watanabe, Hisayoshi; Haga, Hiroaki; Yazaki, Masahide; Ohira, Hiromasa; Ochiai, Yasuo; Tahara, Toshiyuki; Nakahara, Tamio; Yamashiki, Noriyo; Nakayama, Takahiro; Kon, Takashi; Mitsubuchi, Hiroshi; Yoshida, Hiroshi

    2018-04-12

    Citrin, encoded by SLC25A13, constitutes the malate-aspartate shuttle, the main NADH-shuttle in the liver. Citrin deficiency causes neonatal intrahepatic cholestasis (NICCD) and adult-onset type II citrullinemia (CTLN2). Citrin deficiency is predicted to impair hepatic glycolysis and de novo lipogenesis, resulting in hepatic energy deficit. Secondary decrease in hepatic argininosuccinate synthetase (ASS1) expression has been considered a cause of hyperammonemia in CTLN2. We previously reported that medium-chain triglyceride (MCT) supplement therapy with a low-carbohydrate formula was effective in CTLN2 to prevent a relapse of hyperammonemic encephalopathy. We present the therapy for six CTLN2 patients. All the patients' general condition steadily improved and five patients with hyperammonemic encephalopathy recovered from unconsciousness in a few days. Before the treatment, plasma glutamine levels did not increase over the normal range and rather decreased to lower than the normal range in some patients. The treatment promptly decreased the blood ammonia level, which was accompanied by a decrease in plasma citrulline levels and an increase in plasma glutamine levels. These findings indicated that hyperammonemia was not only caused by the impairment of ureagenesis at ASS1 step, but was also associated with an impairment of glutamine synthetase (GS) ammonia-detoxification system in the hepatocytes. There was no decrease in the GS expressing hepatocytes. MCT supplement with a low-carbohydrate formula can supply the energy and/or substrates for ASS1 and GS, and enhance ammonia detoxification in hepatocytes. Histological improvement in the hepatic steatosis and ASS1-expression was also observed in a patient after long-term treatment.

  8. Inhibition of Carbamyl Phosphate Synthetase-I and Glutamine Synthetase by Hepatotoxic Doses of Acetaminophen in Mice

    PubMed Central

    Gupta, Sanjiv; Rogers, Lynette K.; Taylor, Sarah K.; Smith, Charles V.

    2016-01-01

    The primary mechanisms proposed for acetaminophen-induced hepatic necrosis should deplete protein thiols, either by covalent binding and thioether formation or by oxidative reactions such as S-thiolations. However, in previous studies we did not detect significant losses of protein thiol contents in response to administration of hepatotoxic doses of acetaminophen in vivo. In the present study we employed derivatization with the thiol-specific agent monobromobimane and separation of proteins by SDS–PAGE to investigate the possible loss of specific protein thiols during the course of acetaminophen-induced hepatic necrosis. Fasted adult male mice were given acetaminophen, and protein thiol status was examined subsequently in subcellular fractions isolated by differential centrifugation. No decreases in protein thiol contents were indicated, with the exception of a marked decrease in the fluorescent intensity, but not of protein content, as indicated by staining with Coomassie blue, of a single band of approximately 130 kDa in the mitochondrial fractions of acetaminophen-treated mice. This protein was identified by isolation and N-terminal sequence analysis as carbamyl phosphate synthetase-I (CPS-I) (EC 6.3.4.16). Hepatic CPS-I activities were decreased in mice given hepatotoxic doses of acetaminophen. In addition, hepatic glutamine synthetase activities were lower, and plasma ammonia levels were elevated in mice given hepatotoxic doses of acetaminophen. The observed hyperammonemia may contribute to the adverse effects of toxic doses of acetaminophen, and elucidation of the specific mechanisms responsible for the hyperammonemia may prove to be useful clinically. However, the preferential depletion of protein thiol content of a mitochondrial protein by chemically reactive metabolites generated in the endoplasmic reticulum presents a challenging and potentially informative mechanistic question. PMID:9344900

  9. Association between the blood concentrations of ammonia and carnitine/amino acid of schizophrenic patients treated with valproic acid.

    PubMed

    Ando, Masazumi; Amayasu, Hideaki; Itai, Takahiro; Yoshida, Hisahiro

    2017-01-01

    Administration of valproic acid (VPA) is complicated with approximately 0.9% of patients developing hyperammonemia, but the pathogenesis of this adverse effect remains to be clarified. The aim of the present study was to search for mechanisms associated with VPA-induced hyperammonemia in the light of changes in serum amino acids concentrations associated with the urea cycle of schizophrenic patients. Blood samples (10 mL) were obtained from 37 schizophrenic patients receiving VPA for the prevention of violent behaviors in the morning after overnight fast. Blood concentrations of ammonia, VPA, free carnitine, acyl-carnitine, and 40 amino acids including glutamate and citrulline were measured for each patient. Univariate and multivariate regression analyses were performed to identify amino acids or concomitantly administered drugs that were associated with variability in the blood concentrations of ammonia. The blood ammonia level was positively correlated with the serum glutamate concentration ( r  = 0.44, p  < 0.01) but negatively correlated with glutamine ( r  = -0.41, p  = 0.01), citrulline ( r  = -0.42, p  = 0.01), and glycine concentrations ( r  = -0.54, p  < 0.01). It was also revealed that the concomitant administration of the mood stabilizers ( p  = 0.04) risperidone ( p  = 0.03) and blonanserin ( p  < 0.01) was positively associated with the elevation of the blood ammonia level. We hypothisized that VPA would elevate the blood ammonia level of schizophrenic patients. The observed changes in serum amino acids are compatible with urea cycle dysfunction, possibly due to reduced carbamoyl-phosphate synthase 1 (CPS1) activity. We conclude that VPA should be prudently prescribed to schizophrenic patients, particularly those receiving mood stabilizers or certain antipsychotics.

  10. Keto analogue and amino acid supplementation and its effects on ammonemia and performance under thermoneutral conditions.

    PubMed

    Camerino, Saulo Rodrigo Alves e Silva; Lima, Rafaela Carvalho Pereira; França, Thássia Casado Lima; Herculano, Edla de Azevedo; Rodrigues, Daniela Souza Araújo; Gouveia, Marcos Guilherme de Sousa; Cameron, L C; Prado, Eduardo Seixas

    2016-02-01

    Alterations of cerebral function, fatigue and disturbance in cognitive-motor performance can be caused by hyperammonemia and/or hot environmental conditions during exercise. Exercise-induced hyperammonemia can be reduced through supplementation with either amino acids or combined keto analogues and amino acids (KAAA) to improve exercise tolerance. In the present study, we evaluated KAAA supplementation on ammonia metabolism and cognitive-motor performance after high-intensity exercise under a low heat stress environment. Sixteen male cyclists received a ketogenic diet for 2 d and were divided into two groups, KAAA (KEx) or placebo (CEx) supplementation. The athletes performed a 2 h cycling session followed by a maximum test (MAX), and blood samples were obtained at rest and during exercise. Cognitive-motor tasks were performed before and after the protocol, and the exhaustion time was used to evaluate physical performance. The hydration status was also evaluated. The CEx group showed a significant increase (∼ 70%) in ammonia concentration at MAX, which did not change in the KEx group. The non-supplemented group showed a significant increase in uremia. Both the groups had a significant increase in blood urate concentrations at 120 min, and an early significant increase from 120 min was observed in the CEx group. There was no change in the glucose concentrations of the two groups. A significant increase in lactate was observed at the MAX moment in both groups. There was no significant difference in the exhaustion times between the groups. No changes were observed in the cognitive-motor tasks after the protocol. We suggest that KAAA supplementation decreases ammonia concentration during high-intensity exercise but does not affect physical or cognitive-motor performances under a low heat stress environment.

  11. Breakfast improves cognitive function in cirrhotic patients with cognitive impairment.

    PubMed

    Vaisman, Nachum; Katzman, Helena; Carmiel-Haggai, Michal; Lusthaus, Michal; Niv, Eva

    2010-07-01

    Cognitive disturbances are relatively common in patients with liver disease. High protein load precipitates hepatic encephalopathy in cirrhotic patients. Minimal hepatic encephalopathy (MHE) is a prevalent neurocognitive complication of cirrhosis. Because the influence of nutritional factors on the progression of cognitive impairment has not been explored in depth, this study aimed to investigate the effect on cognition of acute metabolic changes induced by breakfast consumption. Twenty-one subjects (10 women) with Child A cirrhosis and 21 age- and sex-matched healthy controls were enrolled. Patients and controls were divided into 2 groups: those receiving a breakfast of 500 kcal and 21 g protein and those receiving no breakfast. Serum ammonia concentrations and cognitive functions were studied (Mindstreams; NeuroTrax, Fresh Meadows, NY) before and 2 h after breakfast. A mixed model was used to analyze the data. At baseline, cirrhotic patients had significantly lower total scores and significantly lower subscores (P < 0.015 global cognitive score) in 4 of 7 cognitive categories, which is indicative of MHE. Patients with hyperammonemia (>85 mug/dL) scored significantly lower for attention than did patients with normal serum ammonia concentrations (P < 0.003). After 2 h, MHE patients and controls responded differently to breakfast consumption with regard to attention and executive functions (P < 0.003 and P < 0.04, respectively). Although patients' scores improved after breakfast consumption, despite an increase in serum ammonia, healthy controls who continued to fast performed better. Chronic hyperammonemia may negatively affect attention. Eating breakfast improves attention and executive functions of patients with MHE. Prolonged periods of starvation may be partly responsible for these changes. This trial was registered at clinicaltrials.gov as NCT01083446.

  12. Efficacy and safety of rifaximin in Japanese patients with hepatic encephalopathy: A phase II/III, multicenter, randomized, evaluator-blinded, active-controlled trial and a phase III, multicenter, open trial.

    PubMed

    Suzuki, Kazuyuki; Endo, Ryujin; Takikawa, Yasuhiro; Moriyasu, Fuminori; Aoyagi, Yutaka; Moriwaki, Hisataka; Terai, Shuji; Sakaida, Isao; Sakai, Yoshiyuki; Nishiguchi, Shuhei; Ishikawa, Toru; Takagi, Hitoshi; Naganuma, Atsushi; Genda, Takuya; Ichida, Takafumi; Takaguchi, Koichi; Miyazawa, Katsuhiko; Okita, Kiwamu

    2018-05-01

    The efficacy and safety of rifaximin in the treatment of hepatic encephalopathy (HE) are widely known, but they have not been confirmed in Japanese patients with HE. Thus, two prospective, randomized studies (a phase II/III study and a phase III study) were carried out. Subjects with grade I or II HE and hyperammonemia were enrolled. The phase II/III study, which was a randomized, evaluator-blinded, active-comparator, parallel-group study, was undertaken at 37 institutions in Japan. Treatment periods were 14 days. Eligible patients were randomized to the rifaximin group (1200 mg/day) or the lactitol group (18-36 g/day). The phase III study was carried out in the same patients previously enrolled in the phase II/III study, and they were all treated with rifaximin (1200 mg/day) for 10 weeks. In the phase II/III study, 172 patients were enrolled. Blood ammonia (B-NH 3 ) concentration was significantly improved in the rifaximin group, but the difference between the two groups was not significant. The portal systemic encephalopathy index (PSE index), including HE grade, was significantly improved in both groups. In the phase III study, 87.3% of enrolled patients completed the treatment. The improved B-NH 3 concentration and PSE index were well maintained from the phase II/III study during the treatment period of the phase III study. Adverse drug reactions (ADRs) were seen in 13.4% of patients who received rifaximin, but there were no severe ADRs leading to death. The efficacy of rifaximin is sufficient and treatment is well tolerated in Japanese patients with HE and hyperammonemia. © 2017 The Japan Society of Hepatology.

  13. ARGININOSUCCINATE SYNTHASE CONDITIONS THE RESPONSE TO ACUTE AND CHRONIC ETHANOL-INDUCED LIVER INJURY IN MICE

    PubMed Central

    Yan, Wei; Morón-Concepción, Jose A.; Ward, Stephen C.; Ge, Xiaodong; de la Rosa, Laura Conde; Nieto, Natalia

    2012-01-01

    Background and Aim Argininosuccinate synthase (ASS) is the rate-limiting enzyme in both the urea and the l-citrulline/nitric oxide (NO·) cycles regulating protein catabolism, ammonia levels and NO· generation (1-2). Since a proteomics analysis identified ASS and nitric oxide synthase-2 (NOS2) as co-induced in rat hepatocytes by chronic ethanol consumption, which also occurred in alcoholic liver disease (ALD) and in cirrhotic patients, we hypothesized that ASS could play a role in ethanol binge and chronic ethanol-induced liver damage. Methods To investigate the contribution of ASS to the pathophysiology of ALD, wild-type (WT) and Ass+/− mice (Ass−/− are lethal due to hyperammonemia) were exposed to an ethanol binge or to chronic ethanol drinking. Results Compared with WT, Ass+/− mice given an ethanol binge exhibited decreased steatosis, lower NOS2 induction and less 3-nitrotyrosine (3-NT) protein residues, indicating that reducing nitrosative stress via the l-citrulline/NO· pathway plays a significant role in preventing liver damage. However, chronic ethanol treated Ass+/− mice displayed enhanced liver injury compared with WT mice. This was due to hyperammonemia, lower phosphorylated AMP-activated protein kinase (pAMPKα) to total AMPKα ratio, decreased sirtuin (Sirt-1) and peroxisomal proliferator-activated receptor coactivator-1α (Pgc1α) mRNAs, lower fatty acid β-oxidation due to down-regulation of carnitine palmitoyl transferase-II (CPT-II), decreased antioxidant defense and elevated lipid peroxidation end-products in spite of comparable nitrosative stress but likely reduced NOS3. Conclusion Partial Ass ablation protects only in acute ethanol-induced liver injury by decreasing nitrosative stress but not in a more chronic scenario where oxidative stress and impaired fatty acid β-oxidation are key events. PMID:22213272

  14. Waste nitrogen excretion via amino acid acylation: benzoate and phenylacetate in lysinuric protein intolerance.

    PubMed

    Simell, O; Sipilä, I; Rajantie, J; Valle, D L; Brusilow, S W

    1986-11-01

    Benzoate and phenylacetate improve prognosis in inherited urea cycle enzyme deficiencies by increasing waste nitrogen excretion as amino acid acylation products. We studied metabolic changes caused by these substances and their pharmacokinetics in a biochemically different urea cycle disorder, lysinuric protein intolerance (LPI), under strictly standardized induction of hyperammonemia. Five patients with LPI received an intravenous infusion of 6.6 mmol/kg L-alanine alone and separately with 2.0 mmol/kg of benzoate or phenylacetate in 90 min. Blood for ammonia, serum urea and creatinine, plasma benzoate, hippurate, phenylacetate, phenylacetylglutamine, and amino acids was obtained at 0, 120, 180, and 270 min. Urine was collected in four consecutive 6-h periods. Alanine caused hyperammonemia: maximum increase 107, 28-411 microM (geometric mean, 95% confidence interval); ammonia increments were nearly identical after alanine + benzoate (60, 17-213 microM) and alanine + phenylacetate (79, 13-467 microM) (NS). Mean plasma benzoate was 6.0 mM when extrapolated to the end of alanine + benzoate infusions; phenylacetate was 4.9 mM at the end of alanine + phenylacetate. Transient toxicity (dizziness, nausea, vomiting) occurred in four patients at the end of combined infusions, and we suggest upper therapeutic plasma concentrations of 4.5 mM for benzoate and 3.5 mM for phenylacetate. Benzoate and phenylacetate then decreased following first-order kinetics with t1/2S of 273 and 254 min, respectively. Maximal plasma hippurate (0.24, 0.14-0.40 mM) was lower than maximal phenylacetylglutamine (0.48, 0.22-1.06 mM, p = 0.008).(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Argininosuccinate synthase conditions the response to acute and chronic ethanol-induced liver injury in mice.

    PubMed

    Leung, Tung Ming; Lu, Yongke; Yan, Wei; Morón-Concepción, Jose A; Ward, Stephen C; Ge, Xiaodong; Conde de la Rosa, Laura; Nieto, Natalia

    2012-05-01

    Argininosuccinate synthase (ASS) is the rate-limiting enzyme in both the urea and the L-citrulline/nitric oxide (NO·) cycles regulating protein catabolism, ammonia levels, and NO· generation. Because a proteomics analysis identified ASS and nitric oxide synthase-2 (NOS2) as coinduced in rat hepatocytes by chronic ethanol consumption, which also occurred in alcoholic liver disease (ALD) and in cirrhosis patients, we hypothesized that ASS could play a role in ethanol binge and chronic ethanol-induced liver damage. To investigate the contribution of ASS to the pathophysiology of ALD, wildtype (WT) and Ass(+/-) mice (Ass(-/-) are lethal due to hyperammonemia) were exposed to an ethanol binge or to chronic ethanol drinking. Compared with WT, Ass(+/-) mice given an ethanol binge exhibited decreased steatosis, lower NOS2 induction, and less 3-nitrotyrosine (3-NT) protein residues, indicating that reducing nitrosative stress by way of the L-citrulline/NO· pathway plays a significant role in preventing liver damage. However, chronic ethanol-treated Ass(+/-) mice displayed enhanced liver injury compared with WT mice. This was due to hyperammonemia, lower phosphorylated AMP-activated protein kinase alpha (pAMPKα) to total AMPKα ratio, decreased sirtuin-1 (Sirt-1) and peroxisomal proliferator-activated receptor coactivator-1α (Pgc1α) messenger RNAs (mRNAs), lower fatty acid β-oxidation due to down-regulation of carnitine palmitoyl transferase-II (CPT-II), decreased antioxidant defense, and elevated lipid peroxidation end-products in spite of comparable nitrosative stress but likely reduced NOS3. Partial Ass ablation protects only in acute ethanol-induced liver injury by decreasing nitrosative stress but not in a more chronic scenario where oxidative stress and impaired fatty acid β-oxidation are key events. Copyright © 2011 American Association for the Study of Liver Diseases.

  16. A sportomics strategy to analyze the ability of arginine to modulate both ammonia and lymphocyte levels in blood after high-intensity exercise.

    PubMed

    Gonçalves, Luis Carlos; Bessa, Artur; Freitas-Dias, Ricardo; Luzes, Rafael; Werneck-de-Castro, João Pedro Saar; Bassini, Adriana; Cameron, Luiz-Claudio

    2012-06-26

    Exercise is an excellent tool to study the interactions between metabolic stress and the immune system. Specifically, high-intensity exercises both produce transient hyperammonemia and influence the distribution of white blood cells. Carbohydrates and glutamine and arginine supplementation were previously shown to effectively modulate ammonia levels during exercise. In this study, we used a short-duration, high-intensity exercise together with a low carbohydrate diet to induce a hyperammonemia state and better understand how arginine influences both ammonemia and the distribution of leukocytes in the blood. Brazilian Jiu-Jitsu practitioners (men, n = 39) volunteered for this study. The subjects followed a low-carbohydrate diet for four days before the trials and received either arginine supplementation (100 mg·kg-1 of body mass·day-1) or a placebo. The intergroup statistical significance was calculated by a one-way analysis of variance, followed by Student's t-test. The data correlations were calculated using Pearson's test. In the control group, ammonemia increased during matches at almost twice the rate of the arginine group (25 mmol·L-1·min-1 and 13 μmol·L-1·min-1, respectively). Exercise induced an increase in leukocytes of approximately 75%. An even greater difference was observed in the lymphocyte count, which increased 2.2-fold in the control group; this increase was partially prevented by arginine supplementation. The shape of the ammonemia curve suggests that arginine helps prevent increases in ammonia levels. These data indicate that increases in lymphocytes and ammonia are simultaneously reduced by arginine supplementation. We propose that increased serum lymphocytes could be related to changes in ammonemia and ammonia metabolism.

  17. A sportomics strategy to analyze the ability of arginine to modulate both ammonia and lymphocyte levels in blood after high-intensity exercise

    PubMed Central

    2012-01-01

    Background Exercise is an excellent tool to study the interactions between metabolic stress and the immune system. Specifically, high-intensity exercises both produce transient hyperammonemia and influence the distribution of white blood cells. Carbohydrates and glutamine and arginine supplementation were previously shown to effectively modulate ammonia levels during exercise. In this study, we used a short-duration, high-intensity exercise together with a low carbohydrate diet to induce a hyperammonemia state and better understand how arginine influences both ammonemia and the distribution of leukocytes in the blood. Methods Brazilian Jiu-Jitsu practitioners (men, n = 39) volunteered for this study. The subjects followed a low-carbohydrate diet for four days before the trials and received either arginine supplementation (100 mg·kg-1 of body mass·day-1) or a placebo. The intergroup statistical significance was calculated by a one-way analysis of variance, followed by Student’s t-test. The data correlations were calculated using Pearson’s test. Results In the control group, ammonemia increased during matches at almost twice the rate of the arginine group (25 mmol·L-1·min-1 and 13 μmol·L-1·min-1, respectively). Exercise induced an increase in leukocytes of approximately 75%. An even greater difference was observed in the lymphocyte count, which increased 2.2-fold in the control group; this increase was partially prevented by arginine supplementation. The shape of the ammonemia curve suggests that arginine helps prevent increases in ammonia levels. Conclusions These data indicate that increases in lymphocytes and ammonia are simultaneously reduced by arginine supplementation. We propose that increased serum lymphocytes could be related to changes in ammonemia and ammonia metabolism. PMID:22734448

  18. Further Concerns About Glutamine: A Case Report on Hyperammonemic Encephalopathy.

    PubMed

    Cioccari, Luca; Gautschi, Matthias; Etter, Reto; Weck, Anja; Takala, Jukka

    2015-10-01

    We report a case of a woman with hyperammonemic encephalopathy following glutamine supplementation. Case report. Plasma amino acid analysis suggestive of a urea cycle defect and initiation of a treatment with lactulose and the two ammonia scavenger drugs sodium benzoate and phenylacetate. Together with a restricted protein intake ammonia and glutamine plasma levels decreased with subsequent improvement of the neurological status. Massive catabolism and exogenous glutamine administration may have contributed to hyperammonemia and hyperglutaminemia in this patient. This case adds further concerns regarding glutamine administration to critically ill patients and implies the importance of monitoring ammonia and glutamine serum levels in such patients.

  19. Ammonia toxicity: from head to toe?

    PubMed

    Dasarathy, Srinivasan; Mookerjee, Rajeshwar P; Rackayova, Veronika; Rangroo Thrane, Vinita; Vairappan, Balasubramaniyan; Ott, Peter; Rose, Christopher F

    2017-04-01

    Ammonia is diffused and transported across all plasma membranes. This entails that hyperammonemia leads to an increase in ammonia in all organs and tissues. It is known that the toxic ramifications of ammonia primarily touch the brain and cause neurological impairment. However, the deleterious effects of ammonia are not specific to the brain, as the direct effect of increased ammonia (change in pH, membrane potential, metabolism) can occur in any type of cell. Therefore, in the setting of chronic liver disease where multi-organ dysfunction is common, the role of ammonia, only as neurotoxin, is challenged. This review provides insights and evidence that increased ammonia can disturb many organ and cell types and hence lead to dysfunction.

  20. Congenital intrahepatic portosystemic venous shunt and liver mass in a child patient: successful endovascular treatment with an amplatzer vascular plug (AVP).

    PubMed

    Lee, Sae Ah; Lee, Young Seok; Lee, Kun Song; Jeon, Gyeong Sik

    2010-01-01

    A congenital intrahepatic portosystemic shunt is a rare anomaly; but, the number of diagnosed cases has increased with advanced imaging tools. Symptomatic portosystemic shunts, especially those that include hyperammonemia, should be treated; and various endovascular treatment methods other than surgery have been reported. Hepatic masses with either an intra- or extrahepatic shunt also have been reported, and the mass is another reason for treatment. Authors report a case of a congenital intrahepatic portosystemic shunt with a hepatic mass that was successfully treated using a percutaneous endovascular approach with vascular plugs. By the time the first short-term follow-up was conducted, the hepatic mass had disappeared.

  1. Late-onset urea cycle disorder in adulthood unmasked by severe malnutrition.

    PubMed

    Wells, Diana L; Thomas, Jillian B; Sacks, Gordon S; Zouhary, L Anna

    2014-01-01

    Urea cycle disorders (UCDs) most often involve inherited deficiencies in genes that code for enzymes normally used by the urea cycle to breakdown nitrogen. UCDs lead to serious metabolic complications, including severe neurologic decompensation related to hyperammonemia. Although the majority of UCDs are revealed soon after birth, stressful events in adulthood can lead to unmasking of a partial, late-onset UCDs. In this report, we describe a late-onset UCD unmasked by severe malnutrition. Early, specialized nutrition therapy is a fundamental aspect of treating hyperammonemic crises in patients with UCD. The case presented here demonstrates the importance of early recognition of UCD and appropriate interventions with nutrition support. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Ammonia modifies enteric neuromuscular transmission through glial γ-aminobutyric acid signaling.

    PubMed

    Fried, David E; Watson, Ralph E; Robson, Simon C; Gulbransen, Brian D

    2017-12-01

    Impaired gut motility may contribute, at least in part, to the development of systemic hyperammonemia and systemic neurological disorders in inherited metabolic disorders, or in severe liver and renal disease. It is not known whether enteric neurotransmission regulates intestinal luminal and hence systemic ammonia levels by induced changes in motility. Here, we propose and test the hypothesis that ammonia acts through specific enteric circuits to influence gut motility. We tested our hypothesis by recording the effects of ammonia on neuromuscular transmission in tissue samples from mice, pigs, and humans and investigated specific mechanisms using novel mutant mice, selective drugs, cellular imaging, and enzyme-linked immunosorbent assays. Exogenous ammonia increased neurogenic contractions and decreased neurogenic relaxations in segments of mouse, pig, and human intestine. Enteric glial cells responded to ammonia with intracellular Ca 2+ responses. Inhibition of glutamine synthetase and the deletion of glial connexin-43 channels in hGFAP :: Cre ER T2+/- /connexin43 f/f mice potentiated the effects of ammonia on neuromuscular transmission. The effects of ammonia on neuromuscular transmission were blocked by GABA A receptor antagonists, and ammonia drove substantive GABA release as did the selective pharmacological activation of enteric glia in GFAP::hM3Dq transgenic mice. We propose a novel mechanism whereby local ammonia is operational through GABAergic glial signaling to influence enteric neuromuscular circuits that regulate intestinal motility. Therapeutic manipulation of these mechanisms may benefit a number of neurological, hepatic, and renal disorders manifesting hyperammonemia. NEW & NOTEWORTHY We propose that local circuits in the enteric nervous system sense and regulate intestinal ammonia. We show that ammonia modifies enteric neuromuscular transmission to increase motility in human, pig, and mouse intestine model systems. The mechanisms underlying the effects of ammonia on enteric neurotransmission include GABAergic pathways that are regulated by enteric glial cells. Our new data suggest that myenteric glial cells sense local ammonia and directly modify neurotransmission by releasing GABA. Copyright © 2017 the American Physiological Society.

  3. Successful use of alternate waste nitrogen agents and hemodialysis in a patient with hyperammonemic coma after heart-lung transplantation.

    PubMed

    Berry, G T; Bridges, N D; Nathanson, K L; Kaplan, P; Clancy, R R; Lichtenstein, G R; Spray, T L

    1999-04-01

    Lethal hyperammonemic coma has been reported in 2 adults after lung transplantation. It was associated with a massive elevation of brain glutamine levels, while plasma glutamine levels were normal or only slightly elevated. In liver tissue, glutamine synthetase activity was markedly reduced, and the histologic findings resembled those of Reye syndrome. The adequacy of therapy commonly used for inherited disorders of the urea cycle has not been adequately evaluated in patients with this form of secondary hyperammonemia. To determine whether hemodialysis, in conjunction with intravenous sodium phenylacetate, sodium benzoate, and arginine hydrochloride therapy, would be efficacious in a patient with hyperammonemic coma after solid-organ transplantation. Case report. A children's hospital. A 41-year-old woman with congenital heart disease developed a hyperammonemic coma with brain edema 19 days after undergoing a combined heart and lung transplantation. Ammonium was measured in plasma. Amino acids were quantitated in plasma and cerebrospinal fluid by column chromatography. The effectiveness of therapy was assessed by measuring plasma ammonium levels and intracranial pressure and performing sequential neurological examinations. The patient had the anomalous combination of increased cerebrospinal fluid and decreased plasma glutamine levels. To our knowledge, she is the first patient with this complication after solid-organ transplantation to survive after combined therapy with sodium phenylacetate, sodium benzoate, arginine hydrochloride, and hemodialysis. Complications of the acute coma included focal motor seizures, which were controlled with carbamazepine, and difficulty with short-term memory. The aggressive use of hemodialysis in conjunction with intravenous sodium phenylacetate, sodium benzoate, and arginine hydrochloride therapy may allow survival in patients after solid-organ transplantation. An acute acquired derangement in extra-central nervous system glutamine metabolism may play a role in the production of hyperammonemia in this illness that resembles Reye syndrome, and, as in other hyperammonemic disorders, the duration and degree of elevation of brain glutamine levels may be the important determining factors in responsiveness to therapy.

  4. Report of 3 Patients With Urea Cycle Defects Treated With Related Living-Donor Liver Transplant.

    PubMed

    Özçay, Figen; Barış, Zeren; Moray, Gökhan; Haberal, Nihan; Torgay, Adnan; Haberal, Mehmet

    2015-11-01

    Urea cycle defects are a group of metabolic disorders caused by enzymatic disruption of the urea cycle pathway, transforming nitrogen to urea for excretion from the body. Severe cases present in early infancy with life-threatening metabolic decompensation, and these episodes of hyperammonemia can be fatal or result in permanent neurologic damage. Despite the progress in pharmacologic treatment, long-term survival is poor especially for severe cases. Liver transplant is an alternative treatment option, providing sufficient enzymatic activity and decreasing the risk of metabolic decompensation. Three patients with urea cycle defects received related living-donor liver transplants at our hospital. Patients presented with late-onset ornithine transcarbamylase deficiency, argininosuccinate lyase deficiency, and citrullinemia. Maximum pretransplant ammonia levels were between 232 and 400 μmol/L (normal range is 18-72 μmol/L), and maximum posttransplant values were 52 to 94 μmol/L. All patients stopped medical treatment and dietary protein restriction for urea cycle defects after transplant. The patient with late-onset ornithine transcarbamylase deficiency already had motor deficits related to recurrent hyperammonemia attacks pretransplant. A major improvement could not be achieved, and he is wheelchair dependent at the age of 6 years. The other 2 patients had normal motor and mental skills before transplant, which have continued 12 and 14 months after transplant. Hepatic artery thrombosis in the patient with the ornithine transcarbamylase deficiency, intraabdominal infection in the patient with argininosuccinate lyase deficiency, and posterior reversible encephalopathy syndrome in the patient with citrullinemia were early postoperative complications. Histopathologic changes in livers explanted from patients with ornithine transcarbamylase deficiency and citrullinemia were nonspecific. The argininosuccinate lyase-deficient patient had portoportal fibrosis and cirrhotic nodule formation. In conclusion, liver transplant was a lifesaving procedure for our patients. Proper timing for transplant is important because high ammonia levels may result in permanent neurologic damage; however, transplant at younger ages also may increase morbidity.

  5. Argininosuccinate lyase deficiency-argininosuccinic aciduria and beyond.

    PubMed

    Erez, Ayelet; Nagamani, Sandesh C Sreenath; Lee, Brendan

    2011-02-15

    The urea cycle consists of six consecutive enzymatic reactions that convert waste nitrogen into urea. Deficiencies of any of these enzymes of the cycle result in urea cycle disorders (UCD), a group of inborn errors of hepatic metabolism that often result in life threatening hyperammonemia. Argininosuccinate lyase (ASL) is a cytosolic enzyme which catalyzes the fourth reaction in the cycle and the first degradative step, that is, the breakdown of argininosuccinic acid to arginine and fumarate. Deficiency of ASL results in an accumulation of argininosuccinic acid in tissues, and excretion of argininosuccinic acid in urine leading to the condition argininosuccinic aciduria (ASA). ASA is an autosomal recessive disorder and is the second most common UCD. In addition to the accumulation of argininosuccinic acid, ASL deficiency results in decreased synthesis of arginine, a feature common to all UCDs except argininemia. Arginine is not only the precursor for the synthesis of urea and ornithine as part of the urea cycle but it is also the substrate for the synthesis of nitric oxide, polyamines, proline, glutamate, creatine, and agmatine. Hence, while ASL is the only enzyme in the body able to generate arginine, at least four enzymes use arginine as substrate: arginine decarboxylase, arginase, nitric oxide synthetase (NOS) and arginine/glycine aminotransferase. In the liver, the main function of ASL is ureagenesis, and hence, there is no net synthesis of arginine. In contrast, in most other tissues, its role is to generate arginine that is designated for the specific cell's needs. While patients with ASA share the acute clinical phenotype of hyperammonemia, encephalopathy, and respiratory alkalosis common to other UCD, they also present with unique chronic complications most probably caused by a combination of tissue specific deficiency of arginine and/or elevation of argininosuccinic acid. This review article summarizes the clinical characterization, biochemical, enzymatic, and molecular features of this disorder. Current treatment, prenatal diagnosis, diagnosis through the newborn screening as well as hypothesis driven future treatment modalities are discussed. Copyright © 2011 Wiley-Liss, Inc.

  6. Setting up an emergency stock for metabolic diseases.

    PubMed

    Fernandez-Llamazares, C M; Serrano, M L; Manrique-Rodríguez, S; Sanjurjo-Sáez, M

    2010-01-01

    Therapeutic management of inborn errors of metabolism (IEMs) is complicated. The drugs involved are classified as orphan, and their supply depends on whether they are orphan medicines, investigational drugs, or need to be prepared as a compounded formula. We analyzed emergency criteria, availability, and permanent location of metabolic drugs within the hospital. Information on therapeutic usage, administration, and dosage was also recorded. A stock for treating IEMs should include chelating agents, drugs to treat deficiencies, enzyme supplements, and other specific treatments. Hyperammonemia was considered to be life-threatening; therefore, an emergency supply of drugs to treat this condition should be kept permanently in the hospitalization unit. Emergency drug stocks are highly recommended in tertiary hospitals in order to improve care for patients susceptible to IEM.

  7. Congenital Intrahepatic Portosystemic Venous Shunt and Liver Mass in a Child Patient: Successful Endovascular Treatment with an Amplatzer Vascular Plug (AVP)

    PubMed Central

    Lee, Sae Ah; Lee, Young Seok; Lee, Kun Song

    2010-01-01

    A congenital intrahepatic portosystemic shunt is a rare anomaly; but, the number of diagnosed cases has increased with advanced imaging tools. Symptomatic portosystemic shunts, especially those that include hyperammonemia, should be treated; and various endovascular treatment methods other than surgery have been reported. Hepatic masses with either an intra- or extrahepatic shunt also have been reported, and the mass is another reason for treatment. Authors report a case of a congenital intrahepatic portosystemic shunt with a hepatic mass that was successfully treated using a percutaneous endovascular approach with vascular plugs. By the time the first short-term follow-up was conducted, the hepatic mass had disappeared. PMID:20808706

  8. Multiple acquired portosystemic shunts secondary to primary hypoplasia of the portal vein in a cat.

    PubMed

    Sugimoto, Satoko; Maeda, Shingo; Tsuboi, Masaya; Saeki, Kohei; Chambers, James K; Yonezawa, Tomohiro; Fukushima, Kenjiro; Fujiwara, Reina; Uchida, Kazuyuki; Tsujimoto, Hajime; Matsuki, Naoaki; Ohno, Koichi

    2018-06-06

    A 6-year 5-month-old spayed female Scottish Fold cat presented with a one-month history of gait abnormalities, increased salivation, and decreased activity. A blood test showed hyperammonemia and increased serum bile acids. Imaging tests revealed multiple shunt vessels indicating acquired portosystemic shunt. Histopathologic analysis of liver biopsy showed features consistent with liver hypoperfusion, such as a barely recognizable portal vein, increased numbers of small arterioles, and diffuse vacuolar degeneration of hepatocytes. These findings supported the diagnosis of primary hypoplasia of the portal vein/microvascular dysplasia, (PHPV/MVD). To our knowledge, this is the first case of feline PHPV/MVD that developed multiple acquired portosystemic shunts and presented with hepatic encephalopathy.

  9. Considerations in the difficult-to-manage urea cycle disorder patient.

    PubMed

    Lee, Brendan; Singh, Rani H; Rhead, William J; Sniderman King, Lisa; Smith, Wendy; Summar, Marshall L

    2005-10-01

    Today, patients with urea cycle disorder (UCD) may survive well beyond infancy. The goal of keeping them in consistent nitrogen balance can be undermined by changing metabolic needs throughout various stages of life, resulting in hyperammonemia in the short term, and poor growth and development in the long term. The specific UCD genotype can affect the risk of metabolic destabilization and management difficulties, as can variable protein tolerance secondary to changing growth demands, biochemical complications, and environmental influences. Preventing catabolic stress is as important as controlling dietary protein intake for avoiding metabolic decompensation. Optimal treatment, specifically pharmacologic therapy, possible branched chain amino acid (BCAA) supplementation, accurate laboratory monitoring, and psychosocial support, requires thorough understanding and careful application of each component.

  10. The metabolic role of isoleucine in detoxification of ammonia in cultured mouse neurons and astrocytes.

    PubMed

    Johansen, Maja L; Bak, Lasse K; Schousboe, Arne; Iversen, Peter; Sørensen, Michael; Keiding, Susanne; Vilstrup, Hendrik; Gjedde, Albert; Ott, Peter; Waagepetersen, Helle S

    2007-06-01

    Cerebral hyperammonemia is a hallmark of hepatic encephalopathy, a debilitating condition arising secondary to liver disease. Pyruvate oxidation including tricarboxylic acid (TCA) cycle metabolism has been suggested to be inhibited by hyperammonemia at the pyruvate and alpha-ketoglutarate dehydrogenase steps. Catabolism of the branched-chain amino acid isoleucine provides both acetyl-CoA and succinyl-CoA, thus by-passing both the pyruvate dehydrogenase and the alpha-ketoglutarate dehydrogenase steps. Potentially, this will enable the TCA cycle to work in the face of ammonium-induced inhibition. In addition, this will provide the alpha-ketoglutarate carbon skeleton for glutamate and glutamine synthesis by glutamate dehydrogenase and glutamine synthetase (astrocytes only), respectively, both reactions fixing ammonium. Cultured cerebellar neurons (primarily glutamatergic) or astrocytes were incubated in the presence of either [U-13C]glucose (2.5 mM) and isoleucine (1 mM) or [U-13C]isoleucine and glucose. Cell cultures were treated with an acute ammonium chloride load of 2 (astrocytes) or 5 mM (neurons and astrocytes) and incorporation of 13C-label into glutamate, aspartate, glutamine and alanine was determined employing mass spectrometry. Labeling from [U-13C]glucose in glutamate and aspartate increased as a result of ammonium-treatment in both neurons and astrocytes, suggesting that the TCA cycle was not inhibited. Labeling in alanine increased in neurons but not in astrocytes, indicating elevated glycolysis in neurons. For both neurons and astrocytes, labeling from [U-13C]isoleucine entered glutamate and aspartate albeit to a lower extent than from [U-13C]glucose. Labeling in glutamate and aspartate from [U-13C]isoleucine was decreased by ammonium treatment in neurons but not in astrocytes, the former probably reflecting increased metabolism of unlabeled glucose. In astrocytes, ammonia treatment resulted in glutamine production and release to the medium, partially supported by catabolism of [U-13C]isoleucine. In conclusion, i) neuronal and astrocytic TCA cycle metabolism was not inhibited by ammonium and ii) isoleucine may provide the carbon skeleton for synthesis of glutamate/glutamine in the detoxification of ammonium.

  11. Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors.

    PubMed

    Lai, J C; Cooper, A J

    1986-11-01

    The substrate and cofactor requirements and some kinetic properties of the alpha-ketoglutarate dehydrogenase complex (KGDHC; EC 1.2.4.2, EC 2.3.1.61, and EC 1.6.4.3) in purified rat brain mitochondria were studied. Brain mitochondrial KGDHC showed absolute requirement for alpha-ketoglutarate, CoA and NAD, and only partial requirement for added thiamine pyrophosphate, but no requirement for Mg2+ under the assay conditions employed in this study. The pH optimum was between 7.2 and 7.4, but, at pH values below 7.0 or above 7.8, KGDHC activity decreased markedly. KGDHC activity in various brain regions followed the rank order: cerebral cortex greater than cerebellum greater than or equal to midbrain greater than striatum = hippocampus greater than hypothalamus greater than pons and medulla greater than olfactory bulb. Significant inhibition of brain mitochondrial KGDHC was noted at pathological concentrations of ammonia (0.2-2 mM). However, the purified bovine heart KGDHC and KGDHC activity in isolated rat heart mitochondria were much less sensitive to inhibition. At 5 mM both beta-methylene-D,L-aspartate and D,L-vinylglycine (inhibitors of cerebral glucose oxidation) inhibited the purified heart but not the brain mitochondrial enzyme complex. At approximately 10 microM, calcium slightly stimulated (by 10-15%) the brain mitochondrial KGDHC. At concentrations above 100 microM, calcium (IC50 = 1 mM) inhibited both brain mitochondrial and purified heart KGDHC. The present results suggest that some of the kinetic properties of the rat brain mitochondrial KGDHC differ from those of the purified bovine heart and rat heart mitochondrial enzyme complexes. They also suggest that the inhibition of KGDHC by ammonia and the consequent effect on the citric acid cycle fluxes may be of pathophysiological and/or pathogenetic importance in hyperammonemia and in diseases (e.g., hepatic encephalopathy, inborn errors of urea metabolism, Reye's syndrome) where hyperammonemia is a consistent feature. Brain accumulation of calcium occurs in a number of pathological conditions. Therefore, it is possible that such a calcium accumulation may have a deleterious effect on KGDHC activity.

  12. Correction of mouse ornithine transcarbamylase deficiency by gene transfer into the germ line.

    PubMed Central

    Cavard, C; Grimber, G; Dubois, N; Chasse, J F; Bennoun, M; Minet-Thuriaux, M; Kamoun, P; Briand, P

    1988-01-01

    The sparse fur with abnormal skin and hair (Spf-ash) mouse is a model for the human X-linked hereditary disorder, ornithine transcarbamylase (OTC) deficiency. In Spf-ash mice, both OTC mRNA and enzyme activity are 5% of control values resulting in hyperammonemia, pronounced orotic aciduria and an abnormal phenotype characterized by growth retardation and sparse fur. Using microinjection, we introduced a construction containing rat OTC cDNA linked to the SV40 early promoter into fertilized eggs of Spf-ash mice. The expression of the transgene resulted in the development of a transgenic mouse whose phenotype and orotic acid excretion are fully normalized. Thus, the possibility of correcting hereditary enzymatic defect by gene transfer of heterologous cDNA coding for the normal enzyme has been demonstrated. Images PMID:3162766

  13. Presentation of an acquired urea cycle disorder post liver transplantation.

    PubMed

    Ghabril, Marwan; Nguyen, Justin; Kramer, David; Genco, Trina; Mai, Martin; Rosser, Barry G

    2007-12-01

    The liver's role as the largest organ of metabolism and the unique and often critical function of liver-specific enzyme pathways imply a greater risk to the recipient of acquiring a donor metabolic disease with liver transplants versus other solid organ transplants. With clinical consequences rarely reported, the frequency of solid organ transplant transfer of metabolic disease is not known. Ornithine transcarbamylase deficiency (OTCD), although rare, is the most common of the urea cycle disorders (UCDs). Because of phenotypic heterogeneity, OTCD may go undiagnosed into adulthood. With over 5000 liver transplant procedures annually in the United States, the likelihood of unknowingly transmitting OTCD through liver transplantation is very low. We describe the clinical course of a liver transplant recipient presenting with acute hyperammonemia and encephalopathy after receiving a liver graft form a donor with unrecognized OTCD. Copyright (c) 2007 AASLD.

  14. Hepatic encephalopathy in acute-on-chronic liver failure.

    PubMed

    Lee, Guan-Huei

    2015-10-01

    The presence of hepatic encephalopathy (HE) within 4 weeks is part of the criteria for defining acute-on-chronic liver failure (ACLF). The pathophysiology of HE is complex, and hyperammonemia and cerebral hemodynamic dysfunction appear to be central in the pathogenesis of encephalopathy. Recent data also suggest that inflammatory mediators may have a significant role in modulating the cerebral effect of ammonia. Multiple prospective and retrospective studies have shown that hepatic encephalopathy in ACLF patients is associated with higher mortality, especially in those with grade III-IV encephalopathy, similar to that of acute liver failure (ALF). Although significant cerebral edema detected by CT in ACLF patients appeared to be less common, specialized MRI imaging was able to detect cerebral edema even in low grade HE. Ammonia-focused therapy constitutes the basis of current therapy, as in the treatment of ALF. Emerging treatment strategies focusing on modulating the gut-liver-circulation-brain axis are discussed.

  15. 3-Methylglutaconic aciduria, a frequent but underrecognized finding in carbamoyl phosphate synthetase I deficiency.

    PubMed

    Rokicki, Dariusz; Pajdowska, Magdalena; Trubicka, Joanna; Thong, Meow-Keong; Ciara, Elżbieta; Piekutowska-Abramczuk, Dorota; Pronicki, Maciej; Sikora, Roman; Haidar, Rijad; Ołtarzewski, Mariusz; Jabłońska, Ewa; Muthukumarasamy, Premala; Sthaneswar, Pavai; Gan, Chin-Seng; Krajewska-Walasek, Małgorzata; Carrozzo, Rosalba; Verrigni, Daniela; Semeraro, Michela; Rizzo, Cristiano; Taurisano, Roberta; Alhaddad, Bader; Kovacs-Nagy, Reka; Haack, Tobias B; Dionisi-Vici, Carlo; Pronicka, Ewa; Wortmann, Saskia B

    2017-08-01

    The urea cycle disorder carbamoyl phosphate synthetase I deficiency is an important differential diagnosis in the encephalopathic neonate. This intoxication type inborn error of metabolism often leads to neonatal death or severe and irreversible damage of the central nervous system, even despite appropriate treatment. Timely diagnosis is crucial, but can be difficult on routine metabolite level. Here, we report ten neonates from eight families (finally) diagnosed with CPS1 deficiency at three tertiary metabolic centres. In seven of them the laboratory findings were dominated by significantly elevated urinary 3-methylglutaconic acid levels which complicated the diagnostic process. Our findings are both important for the differential diagnosis of patients with urea cycle disorders and also broaden the differential diagnosis of hyperammonemia associated with 3-methylglutaconic aciduria, which was earlier only reported in TMEM70 and SERAC1 defect. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. One Year Experience of Pheburane(®) (Sodium Phenylbutyrate) Treatment in a Patient with Argininosuccinate Lyase Deficiency.

    PubMed

    Uçar, Sema Kalkan; Ozbaran, Burcu; Altinok, Yasemin Atik; Kose, Melis; Canda, Ebru; Kagnici, Mehtap; Coker, Mahmut

    2015-01-01

    Argininosuccinate lyase deficiency (ASLD) is a urea cycle disorder (UCD) treated with dietary adjustment and nitrogen scavenging agents. "Pheburane(®)" is a new tasteless and odour-free formulation of sodium phenylbutyrate, indicated in the treatment of UCD.A male patient diagnosed with ASLD was put on treatment with the new formulation of sodium phenylbutyrate (granules) for a period of one year, at 500 mg/kg orally in 3 intakes/day. Plasma glutamine, arginine, citrulline, argininosuccinate, serum sodium, potassium, liver function tests and urine orotate all remained unchanged over this period. There was no difference in mean ammonia levels before and after treatment, and no hyperammonemia episode occurred during treatment with Pheburane(®). An improvement in a measurement of quality of life (QOL) was noted after treatment with Pheburane(®). Good metabolic control and improved QOL were achieved throughout the treatment period.

  17. Prolonged exclusive breast-feeding from vegan mother causing an acute onset of isolated methylmalonic aciduria due to a mild mutase deficiency.

    PubMed

    Ciani, F; Poggi, G M; Pasquini, E; Donati, M A; Zammarchi, E

    2000-04-01

    We describe a case of methylmalonic aciduria (MMA) occurred in a 22-month-old boy whose diet was exclusively based upon breast-feeding from a mother following a long-lasting strict vegetarian diet. Clinical picture showed a dramatic onset, with a profound drowsiness associated with a severe metabolic acidosis, hyperammonemia, macrocytic anemia, ketonuria, and massive methylmalonic aciduria without homocystinuria. Both symptoms and biochemical findings quickly improved thanks to prompt vitamin B(12)parenteral therapy. Biochemical and enzymatic findings allowed a diagnosis of mild mutase deficiency, which only and inadequate dietary B(12)contribution might have revealed. Our case highlights the risk of a prolonged strictly vegetarian diet of lactating mother for providing inadequate amounts of some nutrients to the breast-fed baby. Moreover, such a dietary behaviour could dramatically unmask otherwise clinically unapparent metabolic defects in the baby. Copyright 2000 Harcourt Publishers Ltd.

  18. A morphological method for ammonia detection in liver

    PubMed Central

    Gutiérrez-de-Juan, Virginia; López de Davalillo, Sergio; Fernández-Ramos, David; Barbier-Torres, Lucía; Zubiete-Franco, Imanol; Fernández-Tussy, Pablo; Simon, Jorge; Lopitz-Otsoa, Fernando; de las Heras, Javier; Iruzubieta, Paula; Arias-Loste, María Teresa; Villa, Erica; Crespo, Javier; Andrade, Raúl; Lucena, M. Isabel; Varela-Rey, Marta; Lu, Shelly C.; Mato, José M.; Delgado, Teresa Cardoso

    2017-01-01

    Hyperammonemia is a metabolic condition characterized by elevated levels of ammonia and a common event in acute liver injury/failure and chronic liver disease. Even though hepatic ammonia levels are potential predictive factors of patient outcome, easy and inexpensive methods aiming at the detection of liver ammonia accumulation in the clinical setting remain unavailable. Thus, herein we have developed a morphological method, based on the utilization of Nessler´s reagent, to accurately and precisely detect the accumulation of ammonia in biological tissue. We have validated our method against a commercially available kit in mouse tissue samples and, by using this modified method, we have confirmed the hepatic accumulation of ammonia in clinical and animal models of acute and chronic advanced liver injury as well as in the progression of fatty liver disease. Overall, we propose a morphological method for ammonia detection in liver that correlates well with the degree of liver disease severity and therefore can be potentially used to predict patient outcome. PMID:28319158

  19. Unexpected side effect in mCRC: A care-compliant case report of regorafenib-induced hyperammonemic encephalopathy.

    PubMed

    Quirino, Michela; Rossi, Sabrina; Schinzari, Giovanni; Basso, Michele; Strippoli, Antonia; Cassano, Alessandra; Barone, Carlo

    2017-04-01

    Regorafenib represents a treatment option in heavily pretreated patients affected by metastatic colorectal cancer (mCRC). Its safety profile is typical of small-molecule tyrosine-kinase inhibitors (TKIs) and most adverse events are manageable. A 56 years-old Caucasian man affected by mCRC with normal hepatic reserve was treated with regorafenib as second-line treatment. After only 2 days of therapy, the patient presented to the emergency department due to impairment of both spatial and temporal orientation and motor function with bradylalia. Serum ammonia level was 191 mmol/L, liver function tests and complete blood count were normal. Regorafenib was withheld and branched chain amino acids and lactulose were administered. Serum ammonia level returned within the normal range, but when regorafenib was restarted at a lower dose level, a new episode of acute confusion arised. Discontinuation of regorafenib after confirmation of hyperammonemia is strongly recommended; reintroduction of the therapy at lower doses after resolution of symptoms related to hyperammonemic encephalopathy has to be discouraged.

  20. Factors contributing to the development of overt encephalopathy in liver cirrhosis patients.

    PubMed

    Iwasa, Motoh; Sugimoto, Ryosuke; Mifuji-Moroka, Rumi; Hara, Nagisa; Yoshikawa, Kyoko; Tanaka, Hideaki; Eguchi, Akiko; Yamamoto, Norihiko; Sugimoto, Kazushi; Kobayashi, Yoshinao; Hasegawa, Hiroshi; Takei, Yoshiyuki

    2016-10-01

    The aim of this study was to clarify the relationships among psychometric testing results, blood ammonia (NH3) levels, electrolyte abnormalities, and degree of inflammation, and their associations with the development of overt hepatic encephalopathy (HE) in liver cirrhosis (LC) patients. The relationships between covert HE and blood NH3, sodium (Na), and C-reactive protein (CRP) were examined in 40 LC patients. The effects of elevated NH3, hyponatremia, and elevated CRP on the development of overt HE were also investigated. The covert HE group had significantly lower serum Na levels and significantly higher serum CRP levels. During the median observation period of 11 months, 10 patients developed overt HE, and the results of multivariate analysis showed that covert HE and elevated blood NH3 were factors contributing to the development of overt HE. Electrolyte abnormalities and mild inflammation are involved in the pathogenesis of HE. Abnormal psychometric testing results and hyperammonemia are linked to subsequent development of overt HE.

  1. The Angiocrine Factor Rspondin3 Is a Key Determinant of Liver Zonation.

    PubMed

    Rocha, Ana Sofia; Vidal, Valerie; Mertz, Marjolijn; Kendall, Timothy J; Charlet, Aurelie; Okamoto, Hitoshi; Schedl, Andreas

    2015-12-01

    Liver zonation, the spatial separation of different metabolic pathways along the liver sinusoids, is fundamental for proper functioning of this organ, and its disruption can lead to the development of metabolic disorders such as hyperammonemia. Metabolic zonation involves the induction of β-catenin signaling around the central veins, but how this patterned activity is established and maintained is unclear. Here, we show that the signaling molecule Rspondin3 is specifically expressed within the endothelial compartment of the central vein. Conditional deletion of Rspo3 in mice disrupts activation of central fate, demonstrating its crucial role in determining and maintaining β-catenin-dependent zonation. Moreover, ectopic expression of Rspo1, a close family member of Rspo3, induces the expression of pericentral markers, demonstrating Rspondins to be sufficient to imprint a more central fate. Thus, Rspo3 is a key angiocrine factor that controls metabolic zonation of liver hepatocytes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Ablation of Steroid Receptor Coactivator-3 resembles the human CACT metabolic myopathy

    PubMed Central

    York, Brian; Reineke, Erin L.; Sagen, Jørn V.; Nikolai, Bryan C.; Zhou, Suoling; Louet, Jean-Francois; Chopra, Atul R.; Chen, Xian; Reed, Graham; Noebels, Jeffrey; Adesina, Adekunle M.; Yu, Hui; Wong, Lee-Jun C.; Tsimelzon, Anna; Hilsenbeck, Susan; Stevens, Robert D.; Wenner, Brett R.; Ilkayeva, Olga; Xu, Jianming; Newgard, Christopher B.; O’Malley, Bert W.

    2012-01-01

    Summary Oxidation of lipid substrates is essential for survival in fasting and other catabolic conditions, sparing glucose for the brain and other glucose-dependent tissues. Here we show Steroid Receptor Coactivator-3 (SRC-3) plays a central role in long chain fatty acid metabolism by directly regulating carnitine/acyl-carnitine translocase (CACT) gene expression. Genetic deficiency of CACT in humans is accompanied by a constellation of metabolic and toxicity phenotypes including hypoketonemia, hypoglycemia, hyperammonemia, and impaired neurologic, cardiac and skeletal muscle performance, each of which is apparent in mice lacking SRC-3 expression. Consistent with human cases of CACT deficiency, dietary rescue with short chain fatty acids drastically attenuates the clinical hallmarks of the disease in mice devoid of SRC-3. Collectively, our results position SRC-3 as a key regulator of β-oxidation. Moreover, these findings allow us to consider platform coactivators such as the SRCs as potential contributors to syndromes such as CACT deficiency, previously considered as monogenic. PMID:22560224

  3. Paracentric Inversion of Chromosome 21 Leading to Disruption of the HLCS Gene in a Family with Holocarboxylase Synthetase Deficiency.

    PubMed

    Quinonez, Shane C; Seeley, Andrea H; Lam, Cindy; Glover, Thomas W; Barshop, Bruce A; Keegan, Catherine E

    2017-01-01

    Holocarboxylase synthetase (HLCS) deficiency is a rare autosomal recessive disorder that presents with multiple life-threatening metabolic derangements including metabolic acidosis, ketosis, and hyperammonemia. A majority of HLCS deficiency patients respond to biotin therapy; however, some patients show only a partial or no response to biotin therapy. Here, we report a neonatal presentation of HLCS deficiency with partial response to biotin therapy. Sequencing of HLCS showed a novel heterozygous mutation in exon 5, c.996G>C (p.Gln332His), which likely abolishes the normal intron 6 splice donor site. Cytogenetic analysis revealed that the defect of the other allele is a paracentric inversion on chromosome 21 that disrupts HLCS. This case illustrates that in addition to facilitating necessary family testing, a molecular diagnosis can optimize management by providing a better explanation of the enzyme's underlying defect. It also emphasizes the potential benefit of a karyotype in cases in which molecular genetic testing fails to provide an explanation.

  4. Modelling urea-cycle disorder citrullinemia type 1 with disease-specific iPSCs.

    PubMed

    Yoshitoshi-Uebayashi, Elena Yukie; Toyoda, Taro; Yasuda, Katsutaro; Kotaka, Maki; Nomoto, Keiko; Okita, Keisuke; Yasuchika, Kentaro; Okamoto, Shinya; Takubo, Noriyuki; Nishikubo, Toshiya; Soga, Tomoyoshi; Uemoto, Shinji; Osafune, Kenji

    2017-05-06

    Citrullinemia type 1 (CTLN1) is a urea cycle disorder (UCD) caused by mutations of the ASS1 gene, which is responsible for production of the enzyme argininosuccinate synthetase (ASS), and classically presented as life-threatening hyperammonemia in newborns. Therapeutic options are limited, and neurological sequelae may persist. To understand the pathophysiology and find novel treatments, induced pluripotent stem cells (iPSCs) were generated from a CTLN1 patient and differentiated into hepatocyte-like cells (HLCs). CTLN1-HLCs have lower ureagenesis, recapitulating part of the patient's phenotype. l-arginine, an amino acid clinically used for UCD treatment, improved this phenotype in vitro. Metabolome analysis revealed an increase in tricarboxylic acid (TCA) cycle metabolites in CTLN1, suggesting a connection between CTLN1 and the TCA cycle. This CTLN1-iPSC model improves the understanding of CTLN1 pathophysiology and can be used to pursue new therapeutic approaches. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Neonatal liver failure and Leigh syndrome possibly due to CoQ-responsive OXPHOS deficiency.

    PubMed

    Leshinsky-Silver, E; Levine, A; Nissenkorn, A; Barash, V; Perach, M; Buzhaker, E; Shahmurov, M; Polak-Charcon, S; Lev, D; Lerman-Sagie, T

    2003-08-01

    CoQ transfers electrons from complexes I and II of the mitochondrial respiratory chain to complex III. There are very few reports on human CoQ deficiency. The clinical presentation is usually characterized by: epilepsy, muscle weakness, ataxia, cerebellar atrophy, migraine, myogloblinuria and developmental delay. We describe a patient who presented with neonatal liver and pancreatic insufficiency, tyrosinemia and hyperammonemia and later developed sensorineural hearing loss and Leigh syndrome. Liver biopsy revealed markedly reduced complex I+III and II+III. Addition of CoQ to the liver homogenate restored the activities, suggesting CoQ depletion. Histological staining showed prominent bridging; septal fibrosis and widening of portal spaces with prominent mixed inflammatory infiltrate, associated with interface hepatitis, bile duct proliferation with numerous bile plugs. Electron microscopy revealed a large number of mitochondria, which were altered in shape and size, widened and disordered intercristal spaces. This may be the first case of Leigh syndrome with liver and pancreas insufficiency, possibly caused by CoQ responsive oxphos deficiency.

  6. A morphological method for ammonia detection in liver.

    PubMed

    Gutiérrez-de-Juan, Virginia; López de Davalillo, Sergio; Fernández-Ramos, David; Barbier-Torres, Lucía; Zubiete-Franco, Imanol; Fernández-Tussy, Pablo; Simon, Jorge; Lopitz-Otsoa, Fernando; de Las Heras, Javier; Iruzubieta, Paula; Arias-Loste, María Teresa; Villa, Erica; Crespo, Javier; Andrade, Raúl; Lucena, M Isabel; Varela-Rey, Marta; Lu, Shelly C; Mato, José M; Delgado, Teresa Cardoso; Martínez-Chantar, María-Luz

    2017-01-01

    Hyperammonemia is a metabolic condition characterized by elevated levels of ammonia and a common event in acute liver injury/failure and chronic liver disease. Even though hepatic ammonia levels are potential predictive factors of patient outcome, easy and inexpensive methods aiming at the detection of liver ammonia accumulation in the clinical setting remain unavailable. Thus, herein we have developed a morphological method, based on the utilization of Nessler´s reagent, to accurately and precisely detect the accumulation of ammonia in biological tissue. We have validated our method against a commercially available kit in mouse tissue samples and, by using this modified method, we have confirmed the hepatic accumulation of ammonia in clinical and animal models of acute and chronic advanced liver injury as well as in the progression of fatty liver disease. Overall, we propose a morphological method for ammonia detection in liver that correlates well with the degree of liver disease severity and therefore can be potentially used to predict patient outcome.

  7. Mitochondrial DNA 8993T>G mutation in a child with ornithine transcarbamylase deficiency and leigh syndrome: an unexpected association.

    PubMed

    Henriques, Margarida; Diogo, Luísa; Garcia, Paula; Pratas, João; Simões, Marta; Grazina, Manuela

    2012-08-01

    MC, female, is the third child of a nonconsanguineous Portuguese couple, born after an uneventful pregnancy and delivery. A positive family history of ornithine transcarbamylase deficiency, associated with the IVS8+1 G>A mutation in the ornithine transcarbamylase gene, prompted prenatal diagnosis with identification of the same mutation in the proband. During an episode of Klebsiella pneumoniae sepsis at 1.5 months of age, lactic acidosis and moderate hyperammonemia were noticed. After a short asymptomatic period, progressive neurologic symptoms, with normal ammonemia, persistent hyperlactacidemia, and typical lesions in brain computed tomography (CT) scan led to a diagnosis of Leigh syndrome. Mitochondrial respiratory chain complex V was reduced in the liver. The mtDNA 8993T>G mutation was identified in the liver, muscle, and blood (82%-87% heteroplasmy). She died at 6 months of age. This case represents a benign phenotype of ornithine transcarbamylase deficiency, associated with a severe mitochondrial respiratory chain disorder due to an mtDNA pathogenic mutation.

  8. Ammonium Is Toxic for Aging Yeast Cells, Inducing Death and Shortening of the Chronological Lifespan

    PubMed Central

    Santos, Júlia

    2012-01-01

    Here we show that in aging Saccharomyces cerevisiae (budding yeast) cells, NH4 + induces cell death associated with shortening of chronological life span. This effect is positively correlated with the concentration of NH4 + added to the culture medium and is particularly evident when cells are starved for auxotrophy-complementing amino acids. NH4 +-induced cell death is accompanied by an initial small increase of apoptotic cells followed by extensive necrosis. Autophagy is inhibited by NH4 +, but this does not cause a decrease in cell viability. We propose that the toxic effects of NH4 + are mediated by activation of PKA and TOR and inhibition of Sch9p. Our data show that NH4 + induces cell death in aging cultures through the regulation of evolutionary conserved pathways. They may also provide new insights into longevity regulation in multicellular organisms and increase our understanding of human disorders such as hyperammonemia as well as effects of amino acid deprivation employed as a therapeutic strategy. PMID:22615903

  9. High-Flux Hemodialysis and Levocarnitine in the Treatment of Severe Valproic Acid Intoxication

    PubMed Central

    Temel, V.; Arikan, Müge; Temel, G.

    2013-01-01

    Valproic acid (VPA) intoxication incidence is increasing, because of the use of VPA in psychiatric disorders. The most common finding of VPA intoxication is central nervous system depression which leads to coma and respiratory depression. Pancreatitis, hyperammonemia, metabolic, and bone marrow failure (thrombocytopenia and leukopenia) have also been described. Treatment is mainly supportive. We present the case of an 18-year-old female patient, who made an attempt to autolysis with VPA. Our patient's VPA plasma level was very high (924 μg/mL), confirming that it was a severe intoxication. Our treatment including levocarnitine (50 mg/kg per day for 3 days), and high-flux hemodialysis was performed for four hours. The patient's hemodynamic status and mental function improved in conjunction with the acute reduction in VPA concentrations. Her subsequent hospital course was complicated by transient thrombocytopenia and levocarnitine induced hypophosphatemia. By day 6, the patient's laboratory values had completely normalized, and she was transferred to an inpatient psychiatric facility for continuing therapy. PMID:23762657

  10. Efficacy and safety of i.v. sodium benzoate in urea cycle disorders: a multicentre retrospective study.

    PubMed

    Husson, Marie-Caroline; Schiff, Manuel; Fouilhoux, Alain; Cano, Aline; Dobbelaere, Dries; Brassier, Anais; Mention, Karine; Arnoux, Jean-Baptiste; Feillet, François; Chabrol, Brigitte; Guffon, Nathalie; Elie, Caroline; de Lonlay, Pascale

    2016-09-23

    The efficacy and safety of intra-venous (i.v.) sodium benzoate for treating acute episodes of hyperammonemia in urea cycle enzyme disorders (UCD) is well known. However, published data do not provide a clear picture of the benefits and risks of this drug. We report a retrospective multicentre study on the use of i.v. sodium benzoate in patients treated for UCD between 2000 and 2010 in the 6 French reference centres for metabolic diseases. Sixty-one patients with UCDs - 22 ornithine transcarbamylase (20 confirmed, 2 suspected), 18 arginino-succinate synthetase, 15 carbamoyl phosphate synthetase, 3 arginosuccinate lyase, 1 arginase deficiency, 1 N-acetylglutamate synthetase, 1 HHH syndrome - required i.v. sodium benzoate over the course of 95 acute episodes (NH3 > 100 μmol/L or high-risk situations, i.e., gastroenteritis, surgery). Forty out of 61 patients experienced only one episode of decompensation (neonatal coma, 68.6 %). The most frequent cause of late decompensation was infection (55.5 %). A loading dose of i.v. sodium benzoate (median 250 mg/kg over 2 h) was administered for 41/95 acute episodes. The median maintenance dose was 246.1 mg/kg/day, administered via peripheral venous infusion in all cases except one via a central line. The total median duration of i.v. sodium benzoate treatment per episode was 2 days (0-13 days). The median durations of hospitalization in intensive care and metabolic units were 4 days (0-17 days) and 10 days (0-70 days), respectively. Eight patients died during the neonatal coma (n = 6) or surgery (n = 2). The median plasma ammonium level before treatment was 245.5 μmol/L (20.0-2274.0 μmol/L); it decreased to 40.0 μmol/L in patients who were alive (13.0-181.0 μmol/L) at the end of treatment with i.v. sodium benzoate. A decrease in ammonium level to ≤ 100 μmol/L was obtained in 92.8 % of episodes (64/69 of the episodes recorded for the 53 surviving patients). Five patients required another treatment for hyperammonemia (sodium phenylacetate + sodium benzoate, haemofiltration). Eighteen side effects were reported related to the i.v. infusion (local diffusion, oedema). This 10-year retrospective study shows that i.v. sodium benzoate associated with an emergency regimen is an effective and safe treatment for acute episodes of UCD.

  11. Living donor liver transplantation for congenital absence of the portal vein.

    PubMed

    Sanada, Y; Mizuta, K; Kawano, Y; Egami, S; Hayashida, M; Wakiya, T; Mori, M; Hishikawa, S; Morishima, K; Fujiwara, T; Sakuma, Y; Hyodo, M; Yasuda, Y; Kobayashi, E; Kawarasaki, H

    2009-12-01

    The congenital absence of the portal vein (CAPV) is a rare venous malformation in which mesenteric venous blood drains directly into the systemic circulation. Liver transplantation (OLT) may be indicated for patients with symptomatic CAPV refractory to medical treatment, especially due to hyperammonemia, portosystemic encephalopathy, hepatopulmonary syndrome, or hepatic tumors. Because portal hypertension and collateral circulation do not occur with CAPV, significant splanchnic congestion may occur when the portocaval shunt is totally clamped during portal vein (PV) reconstruction in OLT. This phenomenon results in severe bowel edema and hemodynamic instability, which negatively impact the patient's condition and postoperative recovery. We have successfully reconstructed the PV in living donor liver transplantation (LDLT) using a venous interposition graft, which was anastomosed end-to-side to the portocaval shunt by a partial side-clamp, using a patent round ligament of the liver, which was anastomosed end-to-end to the graft PV with preservation of both the portal and caval blood flows. Owing to the differences in anatomy among patients, at LDLT for CAPV liver transplant surgeons should seek to preserve both portal and caval blood flows.

  12. Diagnosis and treatment of urea cycle disorder in Japan.

    PubMed

    Nakamura, Kimitoshi; Kido, Jun; Mitsubuchi, Hiroshi; Endo, Fumio

    2014-08-01

    Urea cycle disorder (UCD) is an inborn error of the metabolic pathway producing urea from ammonia, which occurs primarily in the liver. Decreased excretion of nitrogen in the urea cycle due to deficiency of carbamoyl phosphate synthase I (CPSI), ornithine transcarbamylase (OTC), argininosuccinate synthase (ASS), argininosuccinate lyase (ASL), and N-acetyl glutamate synthase (NAGS) causes hyperammonemia. We examined the clinical manifestations, treatment, and prognosis of 177 patients with UCD from January 1999 to March 2009 in Japan. Compared with a previous study conducted in Japan, a larger number of patients survived without mental retardation, even when the peak blood ammonia was >360 μmol/L. In those with peak blood ammonia >360 μmol/L, an indicator of poor prognosis, the frequency of convulsions, mental retardation, brain abnormality on magnetic resonance imaging, hemodialysis, liver transplantation, and intake of non-protein formulas was significantly higher than in those with peak blood ammonia <360 μmol/L. In this article, we have reported the current state of UCD to evaluate prognosis and its relationship with peak blood ammonia and hemodialysis. © 2014 Japan Pediatric Society.

  13. Contrasting Features of Urea Cycle Disorders in Human Patients and Knockout Mouse Models

    PubMed Central

    Deignan, Joshua L.; Cederbaum, Stephen D.; Grody, Wayne W.

    2009-01-01

    The urea cycle exists for the removal of excess nitrogen from the body. Six separate enzymes comprise the urea cycle, and a deficiency in any one of them causes a urea cycle disorder (UCD) in humans. Arginase is the only urea cycle enzyme with an alternate isoform, though no known human disorder currently exists due to a deficiency in the second isoform. While all of the UCDs usually present with hyperammonemia in the first few days to months of life, most disorders are distinguished by a characteristic profile of plasma amino acid alterations that can be utilized for diagnosis. While enzyme assay is possible, an analysis of the underlying mutation is preferable for an accurate diagnosis. Mouse models for each of the urea cycle disorders exist (with the exception of NAGS deficiency), and for almost all of them, their clinical and biochemical phenotypes rather closely resemble the phenotypes seen in human patients. Consequently, all of the current mouse models are highly useful for future research into novel pharmacological and dietary treatments and gene therapy protocols for the management of urea cycle disorders. PMID:17933574

  14. Contrasting features of urea cycle disorders in human patients and knockout mouse models.

    PubMed

    Deignan, Joshua L; Cederbaum, Stephen D; Grody, Wayne W

    2008-01-01

    The urea cycle exists for the removal of excess nitrogen from the body. Six separate enzymes comprise the urea cycle, and a deficiency in any one of them causes a urea cycle disorder (UCD) in humans. Arginase is the only urea cycle enzyme with an alternate isoform, though no known human disorder currently exists due to a deficiency in the second isoform. While all of the UCDs usually present with hyperammonemia in the first few days to months of life, most disorders are distinguished by a characteristic profile of plasma amino acid alterations that can be utilized for diagnosis. While enzyme assay is possible, an analysis of the underlying mutation is preferable for an accurate diagnosis. Mouse models for each of the urea cycle disorders exist (with the exception of NAGS deficiency), and for almost all of them, their clinical and biochemical phenotypes rather closely resemble the phenotypes seen in human patients. Consequently, all of the current mouse models are highly useful for future research into novel pharmacological and dietary treatments and gene therapy protocols for the management of urea cycle disorders.

  15. Restoring Ureagenesis in Hepatocytes by CRISPR/Cas9-mediated Genomic Addition to Arginase-deficient Induced Pluripotent Stem Cells.

    PubMed

    Lee, Patrick C; Truong, Brian; Vega-Crespo, Agustin; Gilmore, W Blake; Hermann, Kip; Angarita, Stephanie Ak; Tang, Jonathan K; Chang, Katherine M; Wininger, Austin E; Lam, Alex K; Schoenberg, Benjamen E; Cederbaum, Stephen D; Pyle, April D; Byrne, James A; Lipshutz, Gerald S

    2016-11-29

    Urea cycle disorders are incurable enzymopathies that affect nitrogen metabolism and typically lead to hyperammonemia. Arginase deficiency results from a mutation in Arg1, the enzyme regulating the final step of ureagenesis and typically results in developmental disabilities, seizures, spastic diplegia, and sometimes death. Current medical treatments for urea cycle disorders are only marginally effective, and for proximal disorders, liver transplantation is effective but limited by graft availability. Advances in human induced pluripotent stem cell research has allowed for the genetic modification of stem cells for potential cellular replacement therapies. In this study, we demonstrate a universally-applicable CRISPR/Cas9-based strategy utilizing exon 1 of the hypoxanthine-guanine phosphoribosyltransferase locus to genetically modify and restore arginase activity, and thus ureagenesis, in genetically distinct patient-specific human induced pluripotent stem cells and hepatocyte-like derivatives. Successful strategies restoring gene function in patient-specific human induced pluripotent stem cells may advance applications of genetically modified cell therapy to treat urea cycle and other inborn errors of metabolism.

  16. Robust regulation of hepatic pericentral amination by glutamate dehydrogenase kinetics.

    PubMed

    Bera, Soumen; Lamba, Sanjay; Rashid, Mubasher; Sharma, Anuj K; Medvinsky, Alexander B; Acquisti, Claudia; Chakraborty, Amit; Li, Bai-Lian

    2016-11-07

    Impaired glutamate dehydrogenase (GDH) sensitivity to its inhibitors causes excessive insulin secretion by pancreatic beta-cells and defective ammonia metabolism in the liver. These symptoms are commonly associated with hyperinsulinism/hyperammonemia syndrome (HI/HA), which causes recurrent hypoglycaemia in early infancy. Hepatic localization of GDH amination and deamination activities linked with the urea cycle is known to be involved in ammonia metabolism and detoxification. Although deamination activities of hepatic GDH in the periportal zones of liver lobules and its connection to the urea cycle have been exhaustively investigated, physiological roles of GDH amination activity observed at pericentral zones have often been overlooked. Using kinetic modelling approaches, here we report a new role for hepatic GDH amination kinetics in maintaining ammonia homeostasis under an excess intrahepatocyte input of ammonium. We have shown that α-ketoglutarate substrate inhibition kinetics of GDH, which include both random and obligatory ordered association/dissociation reactions, robustly control the ratio between glutamate and ammonium under a wide range of intracellular substrate variation. Dysregulation of this activity under pericentral nitrogen insufficiency contributes to the breaking down of ammonia homeostasis and thereby can significantly affect HI/HA syndrome.

  17. SAXS fingerprints of aldehyde dehydrogenase oligomers.

    PubMed

    Tanner, John J

    2015-12-01

    Enzymes of the aldehyde dehydrogenase (ALDH) superfamily catalyze the nicotinamide adenine dinucleotide-dependent oxidation of aldehydes to carboxylic acids. ALDHs are important in detoxification of aldehydes, amino acid metabolism, embryogenesis and development, neurotransmission, oxidative stress, and cancer. Mutations in genes encoding ALDHs cause metabolic disorders, including alcohol flush reaction (ALDH2), Sjögren-Larsson syndrome (ALDH3A2), hyperprolinemia type II (ALDH4A1), γ-hydroxybutyric aciduria (ALDH5A1), methylmalonic aciduria (ALDH6A1), pyridoxine dependent epilepsy (ALDH7A1), and hyperammonemia (ALDH18A1). We previously reported crystal structures and small-angle X-ray scattering (SAXS) analyses of ALDHs exhibiting dimeric, tetrameric, and hexameric oligomeric states (Luo et al., Biochemistry 54 (2015) 5513-5522; Luo et al., J. Mol. Biol. 425 (2013) 3106-3120). Herein I provide the SAXS curves, radii of gyration, and distance distribution functions for the three types of ALDH oligomer. The SAXS curves and associated analysis provide diagnostic fingerprints that allow rapid identification of the type of ALDH oligomer that is present in solution. The data sets provided here serve as a benchmark for characterizing oligomerization of ALDHs.

  18. L-ornithine-L-aspartate infusion efficacy in hepatic encephalopathy.

    PubMed

    Ahmad, Irfan; Khan, Anwaar A; Alam, Altaf; Dilshad, Akif; Butt, Arshad Kamal; Shafqat, Farzana; Malik, Kashif; Sarwar, Shahid

    2008-11-01

    To determine the efficacy of L-ornithine-L-aspartate in treatment of hepatic encephalopathy. Randomized, placebo-controlled trial. Department of Gastroenterology and Hepatology, Sheikh Zayed Hospital, Lahore, from February to August 2005. Cirrhotic patients with hyperammonemia and overt hepatic encephalopathy were enrolled. Eighty patients were randomized to two treatment groups, L-ornithine-L-aspartate (20 g/d) or placebo, both dissolved in 250 mL of 5% dextrose water and infused intravenously for four hours a day for five consecutive days with 0.5 g/kg dietary protein intake at the end of daily treatment period. Outcome variables were postprandial blood ammonia and mental state grade. Adverse reactions and mortality were also determined. Both treatment groups were comparable regarding age, gender, etiology of cirrhosis, Child-Pugh class, mental state grade and blood ammonia at baseline. Although, improvement occurred in both groups, there was a greater improvement in L-ornithine-L-aspartate group with regard to both variables. Four patients in the placebo group and 2 in L-ornithine-L-aspartate group died. L-ornithine-L-aspartate infusions were found to be effective in cirrhotic patients with hepatic encephalopathy.

  19. Blood Ammonia as a Possible Etiological Agent for Alzheimer’s Disease

    PubMed Central

    Jin, Yan Yan; Singh, Parul; Chung, Hea-Jong; Hong, Seong-Tschool

    2018-01-01

    Alzheimer’s disease (AD), characterized by cognitive decline and devastating neurodegeneration, is the most common age-related dementia. Since AD is a typical example of a complex disease that is affected by various genetic and environmental factors, various factors could be involved in preventing and/or treating AD. Extracellular accumulation of beta-amyloid peptide (Aβ) and intracellular accumulation of tau undeniably play essential roles in the etiology of AD. However, interestingly enough, medications targeting Aβ or tau all failed and the only clinically efficient medications for AD are drugs targeting the cholinergic pathway. Also, a very intriguing discovery in AD is that the Mediterranean diet (MeDi), containing an unusually large quantity of Lactobacilli, is very effective in preventing AD. Based on recently emerging findings, it is our opinion that the reduction of blood ammonia levels by Lactobacilli in MeDi is the therapeutic agent of MeDi for AD. The recent evidence of Lactobacilli lowering blood ammonia level not only provides a link between AD and MeDi but also provides a foundation of pharmabiotics for hyperammonemia as well as various neurological diseases. PMID:29734664

  20. Blood Ammonia as a Possible Etiological Agent for Alzheimer's Disease.

    PubMed

    Jin, Yan Yan; Singh, Parul; Chung, Hea-Jong; Hong, Seong-Tschool

    2018-05-04

    Alzheimer’s disease (AD), characterized by cognitive decline and devastating neurodegeneration, is the most common age-related dementia. Since AD is a typical example of a complex disease that is affected by various genetic and environmental factors, various factors could be involved in preventing and/or treating AD. Extracellular accumulation of beta-amyloid peptide (Aβ) and intracellular accumulation of tau undeniably play essential roles in the etiology of AD. However, interestingly enough, medications targeting Aβ or tau all failed and the only clinically efficient medications for AD are drugs targeting the cholinergic pathway. Also, a very intriguing discovery in AD is that the Mediterranean diet (MeDi), containing an unusually large quantity of Lactobacilli, is very effective in preventing AD. Based on recently emerging findings, it is our opinion that the reduction of blood ammonia levels by Lactobacilli in MeDi is the therapeutic agent of MeDi for AD. The recent evidence of Lactobacilli lowering blood ammonia level not only provides a link between AD and MeDi but also provides a foundation of pharmabiotics for hyperammonemia as well as various neurological diseases.

  1. Creatine and the Liver: Metabolism and Possible Interactions.

    PubMed

    Barcelos, R P; Stefanello, S T; Mauriz, J L; Gonzalez-Gallego, J; Soares, F A A

    2016-01-01

    The process of creatine synthesis occurs in two steps, catalyzed by L-arginine:glycine amidinotransferase (AGAT) and guanidinoacetate N-methyltransferase (GAMT), which take place mainly in kidney and liver, respectively. This molecule plays an important energy/pH buffer function in tissues, and to guarantee the maintenance of its total body pool, the lost creatine must be replaced from diet or de novo synthesis. Creatine administration is known to decrease the consumption of Sadenosyl methionine and also reduce the homocysteine production in liver, diminishing fat accumulation and resulting in beneficial effects in fatty liver and non-alcoholic liver disease. Different studies have shown that creatine supplementation could supply brain energy, presenting neuroprotective effects against the encephalopathy induced by hyperammonemia in acute liver failure. Creatine is also taken by many athletes for its ergogenic properties. However, little is known about the adverse effects of creatine supplementation, which are barely described in the literature, with reports of mainly hypothetical effects arising from a small number of scientific publications. Antioxidant effects have been found in several studies, although one of the theories regarding the potential for toxicity from creatine supplementation is that it can increase oxidative stress and potentially form carcinogenic compounds.

  2. The Effect of Cisplatin on Blood Ammonia Elevation by Alanyl-Glutamine Supplementation.

    PubMed

    Obayashi, Yoko; Kajiwara, Kenta; Nakamura, Eiji

    2018-01-01

    Although there are many clinical studies in which the beneficial effect of glutamine formulation on mucositis induced by chemo/radiotherapy was evaluated, the results are sometimes conflicting with the report of clinical deterioration. Then, we hypothesized that chemotherapy may increase the incidence of hyperammonemia without comparable change of major parameters of hepatic/renal disorder. To verify our hypothesis, we examined the increase in blood ammonia level with 1-h intravenous infusion of alanyl-glutamine on day 1-4 after cisplatin (CDDP) administration in rats and assessed the correlation with hepatic/renal parameters. Hepatic parameters (glutamate-oxaloacetic transaminase [GOT] and glutamic-pyruvic transaminase [GPT]) with CDDP did not change until day 3 and only GOT increased on day 4. Renal parameters (plasma creatinine, blood urea nitrogen) with CDDP continuously increased up to day 4. Alanyl-glutamine infusion significantly elevated blood ammonia level of CDDP rats with the peak on day 3, although the same dose did not change that of control rats. These results indicates that CDDP enhances the increase in blood ammonia level by glutamine supplementation without correlating with primary parameters for hepatic/renal dysfunction. © 2018 S. Karger AG, Basel.

  3. A novel mutation in the SLC25A15 gene in a Turkish patient with HHH syndrome: Functional analysis of the mutant protein

    PubMed Central

    Ersoy Tunalı, Nagehan; Marobbio, Carlo M.T.; Tiryakioğlu, N. Ozan; Punzi, Giuseppe; Saygılı, Seha K.; Önal, Hasan; Palmieri, Ferdinando

    2014-01-01

    The hyperornithinemia–hyperammonemia–homocitrullinuria syndrome is a rare autosomal recessive disorder caused by the functional deficiency of the mitochondrial ornithine transporter 1 (ORC1). ORC1 is encoded by the SLC25A15 gene and catalyzes the transport of cytosolic ornithine into mitochondria in exchange for citrulline. Although the age of onset and the severity of the symptoms vary widely, the disease usually manifests in early infancy. The typical clinical features include protein intolerance, lethargy, episodic confusion, cerebellar ataxia, seizures and mental retardation. In this study, we identified a novel p.Ala15Val (c.44C > T) mutation by genomic DNA sequencing in a Turkish child presenting severe tantrum, confusion, gait disturbances and loss of speech abilities in addition to hyperornithinemia, hyperammonemia and homocitrullinuria. One hundred Turkish control chromosomes did not possess this variant. The functional effect of the novel mutation was assessed by both complementation of the yeast ORT1 null mutant and transport assays. Our study demonstrates that the A15V mutation dramatically interferes with the transport properties of ORC1 since it was shown to inhibit ornithine transport nearly completely. PMID:24721342

  4. Rifaximin, but not growth factor 1, reduces brain edema in cirrhotic rats

    PubMed Central

    Òdena, Gemma; Miquel, Mireia; Serafín, Anna; Galan, Amparo; Morillas, Rosa; Planas, Ramon; Bartolí, Ramon

    2012-01-01

    AIM: To compare rifaximin and insulin-like growth factor (IGF)-1 treatment of hyperammonemia and brain edema in cirrhotic rats with portal occlusion. METHODS: Rats with CCl4-induced cirrhosis with ascites plus portal vein occlusion and controls were randomized into six groups: Cirrhosis; Cirrhosis + IGF-1; Cirrhosis + rifaximin; Controls; Controls + IGF-1; and Controls + rifaximin. An oral glutamine-challenge test was performed, and plasma and cerebral ammonia, glucose, bilirubin, transaminases, endotoxemia, brain water content and ileocecal cultures were measured and liver histology was assessed. RESULTS: Rifaximin treatment significantly reduced bacterial overgrowth and endotoxemia compared with cirrhosis groups, and improved some liver function parameters (bilirubin, alanine aminotransferase and aspartate aminotransferase). These effects were associated with a significant reduction in cerebral water content. Blood and cerebral ammonia levels, and area-under-the-curve values for oral glutamine-challenge tests were similar in rifaximin-treated cirrhotic rats and control group animals. By contrast, IGF-1 administration failed to improve most alterations observed in cirrhosis. CONCLUSION: By reducing gut bacterial overgrowth, only rifaximin was capable of normalizing plasma and brain ammonia and thereby abolishing low-grade brain edema, alterations associated with hepatic encephalopathy. PMID:22563196

  5. Ebselen Reversibly Inhibits Human Glutamate Dehydrogenase at the Catalytic Site.

    PubMed

    Jin, Yanhong; Li, Di; Lu, Shiying; Zhao, Han; Chen, Zhao; Hou, Wei; Ruan, Benfang Helen

    Human glutamate dehydrogenase (GDH) plays an important role in neurological diseases, tumor metabolism, and hyperinsulinism-hyperammonemia syndrome (HHS). However, there are very few inhibitors known for human GDH. Recently, Ebselen was reported to crosslink with Escherichia coli GDH at the active site cysteine residue (Cys321), but the sequence alignment showed that the corresponding residue is Ala329 in human GDH. To investigate whether Ebselen could be an inhibitor for human GDH, we cloned and expressed an N-terminal His-tagged human GDH in E. coli. The recombinant human GDH enzyme showed expected properties such as adenosine diphosphate activation and nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate dual recognition. Further, we developed a 2-(3-(2-methoxy-4-nitrophenyl)-2-(4-nitrophenyl)-2H-tetrazol-3-ium-5-yl) benzenesulfonate sodium salt (EZMTT)-based assay for human GDH, which was highly sensitive and is suitable for high-throughput screening for potent GDH inhibitors. In addition, ForteBio binding assays demonstrated that Ebselen is a reversible active site inhibitor for human GDH. Since Ebselen is a multifunctional organoselenium compound in Phase III clinical trials for inflammation, an Ebselen-based GDH inhibitor might be valuable for future drug discovery for HHS patients.

  6. The role of liver transplantation for congenital extrahepatic portosystemic shunt.

    PubMed

    Sakamoto, Seisuke; Shigeta, Takanobu; Fukuda, Akinari; Tanaka, Hideaki; Nakazawa, Atsuko; Nosaka, Shunsuke; Uemoto, Shinji; Kasahara, Mureo

    2012-06-27

    Congenital extrahepatic portosystemic shunt (CEPS) is reported more frequently because of advances in imaging techniques. Liver transplantation (LT) is a therapeutic option, although the indications for LT are still controversial. This study reviewed 34 cases of LT for CEPS, including 30 cases reported in the English medical literature and the patients treated in our department, to collect the clinical data associated with LT. The median age at diagnosis and LT was 3.7 and 6.8 years, respectively. Hepatic encephalopathy, including persistent hyperammonemia, was the most common indication of LT. Pulmonary complications, including hepatopulmonary syndrome and pulmonary hypertension, were the second most common indications of LT, and those patients underwent LT soon after the diagnosis. Although a shunt directly draining into the inferior vena cava was the most common type and managed by a simple direct anastomosis of the portal vein at LT, some cases required the modification of the portal vein reconstruction, such as interposition. Thirty patients were alive with a median follow-up period of 18 months. LT for CEPS showed an excellent outcome. The development of pulmonary complications is an early indication for LT. Precise planning of portal vein reconstruction is required before LT.

  7. Efficient synthesis and activity of beneficial intestinal flora of two lactulose-derived oligosaccharides.

    PubMed

    Zhu, Zhen-Yuan; Cui, Di; Gao, Hui; Dong, Feng-Ying; Liu, Xiao-cui; Liu, Fei; Chen, Lu; Zhang, Yong-min

    2016-05-23

    Lactulose is considered as a prebiotic because it promotes the intestinal proliferation of Lactobacillus acidophilus which is added to various milk products. Moreover, lactulose is used in pharmaceuticals as a gentle laxative and to treat hyperammonemia. This study was aimed at the total synthesis of two Lactulose-derived oligosaccharides: one is 3-O-β-d-galactopyranosyl-d-fructose, d-fructose and β-d-galactose bounded together with β-1,3-glycosidic bound, the other is 1-O-β-d-galactopyranosyl-d-fructose, d-fructose and β-d-galactose bounded together with β-1,1-glycosidic bound, which were accomplished in seven steps from d-fructose and β-d-galactose and every step of yield above 75%. This synthetic route provided a practical and effective synthetic strategy for galactooligosaccharides, starting from commercially available monosaccharides. Then we evaluated on their prebiotic properties in the search for potential agents of regulating and improving the intestinal flora of human. The result showed that the prebiotic properties of Lactulose-derived oligosaccharides was much better than Lactulose. Among them, 3-O-β-d-galactopyranosyl-d-fructose displayed the most potent activity of proliferation of L. acidophilus. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Hyperammonemic syndrome after Roux-en-Y gastric bypass.

    PubMed

    Fenves, Andrew Z; Shchelochkov, Oleg A; Mehta, Ankit

    2015-04-01

    Hyperammonemic encephalopathy is an uncommon but severe complication of the Roux-en-Y gastric bypass surgery for obesity. Mechanisms underlying this complication are incompletely understood, resulting in delayed recognition and management. This study evaluated common laboratory findings and possible etiology of hyperammonemic encephalopathy after successful Roux-en-Y gastric bypass surgery. A retrospective review of 20 patients identified through our own clinical practice was conducted, with the addition of similar cases from other institutions identified through the review of literature. Patients presenting with hyperammonemic encephalopathy after Roux-en-Y gastric bypass surgery presented with overlapping clinical and laboratory findings. Common features included: (1) weight loss following successful Roux-en-Y gastric bypass for obesity; (2) hyperammonemic encephalopathy accompanied by elevated plasma glutamine levels; (3) absence of cirrhosis; (4) hypoalbuminemia; and (5) low plasma zinc levels. The mortality rate was 50%. Ninety-five percent of patients were women. Three patients were diagnosed with proximal urea cycle disorders. One patient experienced improvement in the hyperammonemia after surgical correction of spontaneous splenorenal shunt. Hyperammonemic encephalopathy after Roux-en-Y gastric bypass surgery is a newly recognized, potentially fatal syndrome with diverse pathophysiologic mechanisms encompassing genetic and nongenetic causes. © 2015 The Obesity Society.

  9. Multiple Acyl-CoA Dehydrogenation Deficiency (Glutaric Aciduria Type II) with a Novel Mutation of Electron Transfer Flavoprotein-Dehydrogenase in a Cat.

    PubMed

    Wakitani, Shoichi; Torisu, Shidow; Yoshino, Taiki; Hattanda, Kazuhisa; Yamato, Osamu; Tasaki, Ryuji; Fujita, Haruo; Nishino, Koichiro

    2014-01-01

    Multiple acyl-CoA dehydrogenation deficiency (MADD; also known as glutaric aciduria type II) is a human autosomal recessive disease classified as one of the mitochondrial fatty-acid oxidation disorders. MADD is caused by a defect in the electron transfer flavoprotein (ETF) or ETF dehydrogenase (ETFDH) molecule, but as yet, inherited MADD has not been reported in animals. Here we present the first report of MADD in a cat. The affected animal presented with symptoms characteristic of MADD including hypoglycemia, hyperammonemia, vomiting, diagnostic organic aciduria, and accumulation of medium- and long-chain fatty acids in plasma. Treatment with riboflavin and L-carnitine ameliorated the symptoms. To detect the gene mutation responsible for MADD in this case, we determined the complete cDNA sequences of feline ETFα, ETFβ, and ETFDH. Finally, we identified the feline patient-specific mutation, c.692T>G (p.F231C) in ETFDH. The affected animal only carries mutant alleles of ETFDH. p.F231 in feline ETFDH is completely conserved in eukaryotes, and is located on the apical surface of ETFDH, receiving electrons from ETF. This study thus identified the mutation strongly suspected to have been the cause of MADD in this cat.

  10. Interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in minimal hepatic encephalopathy.

    PubMed

    Llansola, Marta; Montoliu, Carmina; Agusti, Ana; Hernandez-Rabaza, Vicente; Cabrera-Pastor, Andrea; Gomez-Gimenez, Belen; Malaguarnera, Michele; Dadsetan, Sherry; Belghiti, Majedeline; Garcia-Garcia, Raquel; Balzano, Tiziano; Taoro, Lucas; Felipo, Vicente

    2015-09-01

    The cognitive and motor alterations in hepatic encephalopathy (HE) are the final result of altered neurotransmission and communication between neurons in neuronal networks and circuits. Different neurotransmitter systems cooperate to modulate cognitive and motor function, with a main role for glutamatergic and GABAergic neurotransmission in different brain areas and neuronal circuits. There is an interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in HE. This interplay may occur: (a) in different brain areas involved in specific neuronal circuits; (b) in the same brain area through cross-modulation of glutamatergic and GABAergic neurotransmission. We will summarize some examples of the (1) interplay between glutamatergic and GABAergic neurotransmission alterations in different areas in the basal ganglia-thalamus-cortex circuit in the motor alterations in minimal hepatic encephalopathy (MHE); (2) interplay between glutamatergic and GABAergic neurotransmission alterations in cerebellum in the impairment of cognitive function in MHE through altered function of the glutamate-nitric oxide-cGMP pathway. We will also comment the therapeutic implications of the above studies and the utility of modulators of glutamate and GABA receptors to restore cognitive and motor function in rats with hyperammonemia and hepatic encephalopathy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Simultaneous LC-MS/MS determination of phenylbutyrate, phenylacetate benzoate and their corresponding metabolites phenylacetylglutamine and hippurate in blood and urine.

    PubMed

    Laryea, Maurice D; Herebian, Diran; Meissner, Thomas; Mayatepek, Ertan

    2010-12-01

    Inborn errors of urea metabolism result in hyperammonemia. Treatment of urea cycle disorders can effectively lower plasma ammonium levels and results in survival in the majority of patients. Available medications for treating urea cycle disorders include sodium benzoate (BA), sodium phenylacetate (PAA), and sodium phenylbutyrate (PBA) and are given to provide alternate routes for disposition of waste nitrogen excretion. In this study, we develop and validate a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for simultaneous determination of benzoic acid, phenylacetic acid, phenylbutyric acid, phenylacetylglutamine, and hippuric acid in plasma and urine from children with inborn errors of urea synthesis. Plasma extracts and diluted urine samples were injected on a reverse-phase column and identified and quantified by selected reaction monitoring (SRM) in negative ion mode. Deuterated analogues served as internal standards. Analysis time was 7 min. Assay precision, accuracy, and linearity and sample stability were determined using enriched samples. Quantification limits of the method were 100 ng/ml (0.3-0.8 μmol/L) for all analytes, and recoveries were >90%. Inter- and intraday relative standard deviations were <10%. Our newly developed LC-MS/MS represents a robust, sensitive, and rapid method that allows simultaneous determination of the five compounds in plasma and urine.

  12. Pediatric drug formulation of sodium benzoate extended-release granules.

    PubMed

    Combescot, E; Morat, G; de Lonlay, P; Boudy, V

    2016-01-01

    Urea cycle disorders are a group of inherited orphan diseases leading to hyperammonemia. Current therapeutic strategy includes high doses of sodium benzoate leading to three or four oral intakes per day. As this drug is currently available in capsules or in solution, children are either unable to swallow the capsule or reluctant to take the drug due to its strong bitter taste. The objective of the present study was to develop solid, multiparticulate formulations of sodium benzoate, which are suitable for pediatric patients (i.e. flavor-masked, easy to swallow and with a dosing system). Drug layering and coating in a fluidized bed were applied for preparing sustained-release granules. Two types of inert cores (GalenIQ® and Suglets®) and three different polymers (Kollicoat®, Aquacoat® and Eudragit®) were tested in order to select the most appropriate polymer and starter core for our purpose. Physical characteristics and drug release profiles of the pellets were evaluated. A Suglets® core associated with a Kollicoat® coating seems to be the best combination for an extended release of sodium benzoate. A curing period of 8 h was necessary to complete film formation and the resulting drug release pattern was found to be dependent of the acidity of the release medium.

  13. Effect of the herbal medicine Dai-kenchu-to for serum ammonia in hepatectomized patients.

    PubMed

    Kaiho, Takashi; Tanaka, Toshikazu; Tsuchiya, Shunichi; Yanagisawa, Shnji; Takeuchi, Osamu; Miura, Masami; Saigusa, Naoki; Miyazaki, Masaru

    2005-01-01

    Prolonged paralytic ileus occurring in hepatectomized patients may induce hyperammonemia or bacterial translocation, which injures the remnant liver function and sometimes causes post-resection liver failure. We examined the effectiveness of the herbal medicine, Dai-kenchu-to (DKT), on postoperative serum ammonia levels in patients with liver resection and compared it with lactulose. Patients with liver resection were divided into three groups. Lactulose group (n=31), 16g of lactulose was administered orally three times a day from the first postoperative day. DKT group (n=27), 5g of DKT was administered in the same fashion. Control group (n=26), neither lactulose nor DKT was administered. In all three groups, 16g of lactulose was administered three times a day for three days preoperatively. There was no significant difference among the groups in age, gender and preoperative hepatic functional values, such as ICG-R15 or galactose tolerance test. There was also no difference in parenchymal hepatic resection rate, operative time and amount of intraoperative bleeding volume. Postoperative serum ammonia levels were significantly lower in the DKT group than control and lactulose groups. Instances of delayed flatulence and occurrence of diarrhea were also fewer in the DKT group. DKT may become a more effective and safe agent than lactulose in postoperative management of liver resection.

  14. Gap Junction Intercellular Communication Mediates Ammonia-Induced Neurotoxicity.

    PubMed

    Bobermin, Larissa Daniele; Arús, Bernardo Assein; Leite, Marina Concli; Souza, Diogo Onofre; Gonçalves, Carlos-Alberto; Quincozes-Santos, André

    2016-02-01

    Astrocytes are important brain targets of ammonia, a neurotoxin implicated in the development of hepatic encephalopathy. During hyperammonemia, the pivotal role of astrocytes in brain function and homeostasis is impaired. These cells are abundantly interconnected by gap junctions (GJ), which are intercellular channels that allow the exchange of signaling molecules and metabolites. This communication may also increase cellular vulnerability during injuries, while GJ uncoupling could limit the extension of a lesion. Therefore, the current study was performed to investigate whether astrocyte coupling through GJ contributes to ammonia-induced cytotoxicity. We found that carbenoxolone (CBX), an effective GJ blocker, prevented the following effects induced by ammonia in astrocyte primary cultures: (1) decrease in cell viability and membrane integrity; (2) increase in reactive oxygen species production; (3) decrease in GSH intracellular levels; (4) GS activity; (5) pro-inflammatory cytokine release. On the other hand, CBX had no effect on C6 astroglial cells, which are poorly coupled via GJ. To our knowledge, this study provides the first evidence that GJ play a role in ammonia-induced cytotoxicity. Although more studies in vivo are required to confirm our hypothesis, our data suggest that GJ communication between astrocytes may transmit damage signals and excitotoxic components from unhealthy to normal cells, thereby contributing to the propagation of the neurotoxicity of ammonia.

  15. Population Pharmacokinetic Modeling and Dosing Simulations of Nitrogen-Scavenging Compounds: Disposition of Glycerol Phenylbutyrate and Sodium Phenylbutyrate in Adult and Pediatric Patients with Urea Cycle Disorders

    PubMed Central

    Monteleone, Jon P. R.; Mokhtarani, M.; Diaz, G. A.; Rhead, W.; Lichter-Konecki, U.; Berry, S. A.; LeMons, C.; Dickinson, K.; Coakley, D.; Lee, B.; Scharschmidt, B. F.

    2014-01-01

    Sodium phenylbutyrate and glycerol phenylbutyrate mediate waste nitrogen excretion in the form of urinary phenylacetylglutamine (PAGN) in patients with urea cycle disorders (UCDs); rare genetic disorders characterized by impaired urea synthesis and hyperammonemia. Sodium phenylbutyrate is approved for UCD treatment; the development of glycerol phenylbutyrate afforded the opportunity to characterize the pharmacokinetics (PK) of both compounds. A population PK model was developed using data from four Phase II/III trials that collectively enrolled patients ages 2 months to 72 years. Dose simulations were performed with particular attention to phenylacetic acid (PAA), which has been associated with adverse events in non-UCD populations. The final model described metabolite levels in plasma and urine for both drugs and was characterized by (a) partial presystemic metabolism of phenylbutyric acid (PBA) to PAA and/or PAGN, (b) slower PBA absorption and greater presystemic conversion with glycerol phenylbutyrate, (c) similar systemic disposition with saturable conversion of PAA to PAGN for both drugs, and (d) body surface area (BSA) as a significant covariate accounting for age-related PK differences. Dose simulations demonstrated similar PAA exposure following mole-equivalent PBA dosing of both drugs and greater PAA exposure in younger patients based on BSA. PMID:23775211

  16. Population pharmacokinetic modeling and dosing simulations of nitrogen-scavenging compounds: disposition of glycerol phenylbutyrate and sodium phenylbutyrate in adult and pediatric patients with urea cycle disorders.

    PubMed

    Monteleone, Jon P R; Mokhtarani, M; Diaz, G A; Rhead, W; Lichter-Konecki, U; Berry, S A; Lemons, C; Dickinson, K; Coakley, D; Lee, B; Scharschmidt, B F

    2013-07-01

    Sodium phenylbutyrate and glycerol phenylbutyrate mediate waste nitrogen excretion in the form of urinary phenylacetylglutamine (PAGN) in patients with urea cycle disorders (UCDs); rare genetic disorders characterized by impaired urea synthesis and hyperammonemia. Sodium phenylbutyrate is approved for UCD treatment; the development of glycerol phenylbutyrate afforded the opportunity to characterize the pharmacokinetics (PK) of both compounds. A population PK model was developed using data from four Phase II/III trials that collectively enrolled patients ages 2 months to 72 years. Dose simulations were performed with particular attention to phenylacetic acid (PAA), which has been associated with adverse events in non-UCD populations. The final model described metabolite levels in plasma and urine for both drugs and was characterized by (a) partial presystemic metabolism of phenylbutyric acid (PBA) to PAA and/or PAGN, (b) slower PBA absorption and greater presystemic conversion with glycerol phenylbutyrate, (c) similar systemic disposition with saturable conversion of PAA to PAGN for both drugs, and (d) body surface area (BSA) as a significant covariate accounting for age-related PK differences. Dose simulations demonstrated similar PAA exposure following mole-equivalent PBA dosing of both drugs and greater PAA exposure in younger patients based on BSA. © The Author(s) 2013.

  17. Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering

    PubMed Central

    Thrane, Vinita Rangroo; Thrane, Alexander S; Wang, Fushun; Cotrina, Maria L; Smith, Nathan A; Chen, Michael; Xu, Qiwu; Kang, Ning; Fujita, Takumi; Nagelhus, Erlend A; Nedergaard, Maiken

    2013-01-01

    Ammonia is a ubiquitous waste product of protein metabolism that can accumulate in numerous metabolic disorders, causing neurological dysfunction ranging from cognitive impairment to tremor, ataxia, seizures, coma and death1. The brain is especially vulnerable to ammonia as it readily crosses the blood-brain barrier in its gaseous form, NH3, and rapidly saturates its principal removal pathway located in astrocytes2. Thus, we wanted to determine how astrocytes contribute to the initial deterioration of neurological functions characteristic of hyperammonemia in vivo. Using a combination of two-photon imaging and electrophysiology in awake head-restrained mice, we show that ammonia rapidly compromises astrocyte potassium buffering, increasing extracellular potassium concentration and overactivating the Na+-K+-2Cl− cotransporter isoform 1 (NKCC1) in neurons. The consequent depolarization of the neuronal GABA reversal potential (EGABA) selectively impairs cortical inhibitory networks. Genetic deletion of NKCC1 or inhibition of it with the clinically used diuretic bumetanide potently suppresses ammonia-induced neurological dysfunction. We did not observe astrocyte swelling or brain edema in the acute phase, calling into question current concepts regarding the neurotoxic effects of ammonia3,4. Instead, our findings identify failure of potassium buffering in astrocytes as a crucial mechanism in ammonia neurotoxicity and demonstrate the therapeutic potential of blocking this pathway by inhibiting NKCC1. PMID:24240184

  18. Hepato- and neuro-protective influences of biopropolis on thioacetamide-induced acute hepatic encephalopathy in rats.

    PubMed

    Mostafa, Rasha E; Salama, Abeer A A; Abdel-Rahman, Rehab F; Ogaly, Hanan A

    2017-05-01

    Hepatic encephalopathy (HE) is a neuropsychiatric syndrome that ultimately occurs as a complication of acute or chronic liver failure; accompanied by hyperammonemia. This study aimed to evaluate the potential of biopropolis as a hepato- and neuro-protective agent using thioacetamide (TAA)-induced acute HE in rats as a model. Sixty Wistar rats were divided into 5 groups: Group 1 (normal control) received only saline and paraffin oil. Group 2 (hepatotoxic control) received TAA (300 mg/kg, once). Groups 3, 4, and 5 received TAA followed by vitamin E (100 mg/kg) and biopropolis (100 and 200 mg/kg), respectively, daily for 30 days. Evidences of HE were clearly detected in TAA-hepatotoxic group including significant elevation in the serum level of ammonia, liver functions, increased oxidative stress in liver and brain, apoptotic DNA fragmentation and overexpression of iNOS gene in brain tissue. The findings for groups administered biopropolis, highlighted its efficacy as a hepato- and neuro-protectant through improving the liver functions, oxidative status and DNA fragmentation as well as suppressing the brain expression of iNOS gene. In conclusion, biopropolis, at a dose of 200 mg/kg per day protected against TAA-induced HE through its antioxidant and antiapoptotic influence; therefore, it can be used as a protective natural product.

  19. Bacterial infections and hepatic encephalopathy in liver cirrhosis-prophylaxis and treatment.

    PubMed

    Piotrowski, Damian; Boroń-Kaczmarska, Anna

    2017-09-01

    Infections are common among patients with liver cirrhosis. They occur more often in cirrhotic patient groups than in the general population and result in higher mortality. One reason for this phenomenon is bacterial translocation from the intestinal lumen that occurs as a consequence of intestinal bacterial overgrowth, increased permeability and decreased motility. The most common infections in cirrhotic patients are spontaneous bacterial peritonitis and urinary tract infections, followed by pneumonia, skin and soft tissue infections. Intestinal bacterial overgrowth is also responsible for hyperammonemia, which leads to hepatic encephalopathy. All of these complications make this group of patients at high risk for mortality. The role of antibiotics in liver cirrhosis is to treat and in some cases to prevent the development of infectious complications. Based on our current knowledge, antibiotic prophylaxis should be administered to patients with gastrointestinal hemorrhage, low ascitic fluid protein concentration combined with liver or renal failure, and spontaneous bacterial peritonitis as a secondary prophylaxis, as well as after hepatic encephalopathy episodes (also as a secondary prophylaxis). In some cases, the use of non-antibiotic prophylaxis can also be considered. Current knowledge of the treatment of infections allows the choice of a preferred antibiotic for empiric therapy depending on the infection location and whether the source of the disease is nosocomial or community-acquired. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  20. Secondary NAD+ deficiency in the inherited defect of glutamine synthetase.

    PubMed

    Hu, Liyan; Ibrahim, Khalid; Stucki, Martin; Frapolli, Michele; Shahbeck, Noora; Chaudhry, Farrukh A; Görg, Boris; Häussinger, Dieter; Penberthy, W Todd; Ben-Omran, Tawfeg; Häberle, Johannes

    2015-11-01

    Glutamine synthetase (GS) deficiency is an ultra-rare inborn error of amino acid metabolism that has been described in only three patients so far. The disease is characterized by neonatal onset of severe encephalopathy, low levels of glutamine in blood and cerebrospinal fluid, chronic moderate hyperammonemia, and an overall poor prognosis in the absence of an effective treatment. Recently, enteral glutamine supplementation was shown to be a safe and effective therapy for this disease but there are no data available on the long-term effects of this intervention. The amino acid glutamine, severely lacking in this disorder, is central to many metabolic pathways in the human organism and is involved in the synthesis of nicotinamide adenine dinucleotide (NAD(+)) starting from tryptophan or niacin as nicotinate, but not nicotinamide. Using fibroblasts, leukocytes, and immortalized peripheral blood stem cells (PBSC) from a patient carrying a GLUL gene point mutation associated with impaired GS activity, we tested whether glutamine deficiency in this patient results in NAD(+) depletion and whether it can be rescued by supplementation with glutamine, nicotinamide or nicotinate. The present study shows that congenital GS deficiency is associated with NAD(+) depletion in fibroblasts, leukocytes and PBSC, which may contribute to the severe clinical phenotype of the disease. Furthermore, it shows that NAD(+) depletion can be rescued by nicotinamide supplementation in fibroblasts and leukocytes, which may open up potential therapeutic options for the treatment of this disorder.

  1. Late-Onset N-Acetylglutamate Synthase Deficiency: Report of a Paradigmatic Adult Case Presenting with Headaches and Review of the Literature

    PubMed Central

    Cavicchi, Catia; Chilleri, Chiara; Fioravanti, Antonella; Ferri, Lorenzo; Ripandelli, Francesco; Costa, Cinzia; Calabresi, Paolo; Prontera, Paolo; Pochiero, Francesca; Pasquini, Elisabetta; Funghini, Silvia; la Marca, Giancarlo; Donati, Maria Alice

    2018-01-01

    N-acetylglutamate synthase deficiency (NAGSD) is an extremely rare urea cycle disorder (UCD) with few adult cases so far described. Diagnosis of late-onset presentations is difficult and delayed treatment may increase the risk of severe hyperammonemia. We describe a 52-year-old woman with recurrent headaches who experienced an acute onset of NAGSD. As very few papers focus on headaches in UCDs, we also report a literature review of types and pathophysiologic mechanisms of UCD-related headaches. In our case, headaches had been present since puberty (3–4 days a week) and were often accompanied by nausea, vomiting, or behavioural changes. Despite three previous episodes of altered consciousness, ammonia was measured for the first time at 52 years and levels were increased. Identification of the new homozygous c.344C>T (p.Ala115Val) NAGS variant allowed the definite diagnosis of NAGSD. Bioinformatic analysis suggested that an order/disorder alteration of the mutated form could affect the arginine-binding site, resulting in poor enzyme activation and late-onset presentation. After optimized treatment for NAGSD, ammonia and amino acid levels were constantly normal and prevented other headache bouts. The manuscript underlies that headache may be the presenting symptom of UCDs and provides clues for the rapid diagnosis and treatment of late-onset NAGSD. PMID:29364180

  2. Wet, volatile, and dry biomarkers of exercise-induced muscle fatigue.

    PubMed

    Finsterer, Josef; Drory, Vivian E

    2016-01-21

    The physiological background of exercise-induced muscle fatigue(EIMUF) is only poorly understood. Thus, monitoring of EIMUF by a single or multiple biomarkers(BMs) is under debate. After a systematic literature review 91 papers were included. EIMUF is mainly due to depletion of substrates, increased oxidative stress, muscle membrane depolarisation following potassium depletion, muscle hyperthermia, muscle damage, impaired oxygen supply to the muscle, activation of an inflammatory response, or impaired calcium-handling. Dehydration, hyperammonemia, mitochondrial biogenesis, and genetic responses are also discussed. Since EIMUF is dependent on age, sex, degree of fatigue, type, intensity, and duration of exercise, energy supply during exercise, climate, training status (physical fitness), and health status, BMs currently available for monitoring EIMUF have limited reliability. Generally, wet, volatile, and dry BMs are differentiated. Among dry BMs of EIMUF the most promising include power output measures, electrophysiological measures, cardiologic measures, and questionnaires. Among wet BMs of EIMUF those most applicable include markers of ATP-metabolism, of oxidative stress, muscle damage, and inflammation. VO2-kinetics are used as a volatile BM. Though the physiology of EIMUF remains to be fully elucidated, some promising BMs have been recently introduced, which together with other BMs, could be useful in monitoring EIMUF. The combination of biomarkers seems to be more efficient than a single biomarker to monitor EIMUF. However, it is essential that efficacy, reliability, and applicability of each BM candidate is validated in appropriate studies.

  3. Management and classification of type II congenital portosystemic shunts.

    PubMed

    Lautz, Timothy B; Tantemsapya, Niramol; Rowell, Erin; Superina, Riccardo A

    2011-02-01

    Congenital portosystemic shunts (PSS) with preserved intrahepatic portal flow (type II) present with a range of clinical signs. The indications for and benefits of repair of PSS remain incompletely understood. A more comprehensive classification may also benefit comparative analyses from different institutions. All children treated at our institution for type II congenital PSS from 1999 through 2009 were reviewed for presentation, treatment, and outcome. Ten children (7 boys) with type II PSS were identified at a median age of 5.5 years. Hyperammonemia with varying degrees of neurocognitive dysfunction occurred in 80%. The shunt arose from a branch of the portal vein (type IIa; n = 2), from the main portal vein (type IIb; n = 7), or from a splenic or mesenteric vein (type IIc; n = 1). Management included operative ligation (n = 6), endovascular occlusion (n = 3), or a combined approach (n = 1). Shunt occlusion was successful in all cases. Serum ammonia decreased from 130 ± 115 μmol/L preoperatively to 31 ± 15 μmol/L postoperatively (P = .03). Additional benefits included resolution of neurocognitive dysfunction (n = 3), liver nodules (n = 1), and vaginal bleeding (n = 1). Correction of type II PSS relieves a wide array of symptoms. Surgery is indicated for patients with clinically significant shunting. A refined classification system will permit future comparison of patients with similar physiology. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Valproate for agitation in critically ill patients: A retrospective study.

    PubMed

    Gagnon, David J; Fontaine, Gabriel V; Smith, Kathryn E; Riker, Richard R; Miller, Russell R; Lerwick, Patricia A; Lucas, F L; Dziodzio, John T; Sihler, Kristen C; Fraser, Gilles L

    2017-02-01

    The purpose was to describe the use of valproate therapy for agitation in critically ill patients, examine its safety, and describe its relationship with agitation and delirium. This retrospective cohort study evaluated critically ill adults treated with valproate for agitation from December 2012 through February 2015. Information on valproate prescribing practices and safety was collected. Incidence of agitation, delirium, and concomitant psychoactive medication use was compared between valproate day 1 and valproate day 3. Concomitant psychoactive medication use was analyzed using mixed models. Fifty-three patients were evaluated. The median day of valproate therapy initiation was ICU day 7, and it was continued for a median of 7 days. The median maintenance dose was 1500 mg/d (23 mg/kg/d). The incidence of agitation (96% vs 61%, P < .0001) and delirium (68% vs 49%, P = .012) significantly decreased by valproate day 3. Treatment with opioids (77% vs 65%, P = .02) and dexmedetomidine (47% vs 24%, P = .004) also decreased. In mixed models analyses, valproate therapy was associated with reduced fentanyl equivalents (-185 μg/d, P = .0003) and lorazepam equivalents (-2.1 mg/d, P = .0004). Hyperammonemia (19%) and thrombocytopenia (13%) were the most commonly observed adverse effects. Valproate therapy was associated with a reduction in agitation, delirium, and concomitant psychoactive medication use within 48 hours of initiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Orthotopic Liver Transplantation for Urea Cycle Enzyme Deficiency

    PubMed Central

    Todo, Satoru; Starzl, Thomas E.; Tzakis, Andreas; Benkov, Keith J.; Kalousek, Frantisek; Saheki, Takeyori; Tanikawa, Kyuichi; Fenton, Wayne A.

    2010-01-01

    Hyperammonemia, abnormalities in plasma amino acids and abnormalities of standard liver functions were corrected by orthotopic liver transplantation in a 14-day-old boy with carbamyl phosphate synthetase-I deficiency and in a 35-yr-old man with argininosuccinic acid synthetase deficiency. The first patient had high plasma glutamine levels and no measureable citrulline, whereas citrulline values were markedly increased in Patient 2. Enzyme analysis of the original livers showed undetectable activity of carbamyl phosphate synthetase-I in Patient 1 and arginosuccinic acid synthetase in Patient 2. Both patients were comatose before surgery. Intellectual recovery of patient 1 has been slightly retarded because of a brain abscess caused by Aspergillus infection after surgery. Both patients are well at 34 and 40 mo, respectively, after surgery. Our experience has shown that orthotopic liver transplantation corrects the life-threatening metabolic abnormalities caused by deficiencies in the urea cycle enzymes carbamyl phosphate synthetase-I and arginosuccinic acid synthetase. Seven other patients–six with ornithine transcarbamylase deficiency and another with carbamyl phosphate synthetase-I deficiency–are known to have been treated elsewhere with liver transplantation 1½ yr or longer ago. Four of these seven recipients also are well, with follow-ups of 1½ to 5 yr. Thus liver transplantation corrects the metabolic abnormalities of three of the six urea cycle enzyme deficiencies, and presumably would correct all. PMID:1544622

  6. Development and characterization of a mouse with profound biotinidase deficiency: a biotin-responsive neurocutaneous disorder.

    PubMed

    Pindolia, Kirit; Jordan, Megan; Guo, Caiying; Matthews, Nell; Mock, Donald M; Strovel, Erin; Blitzer, Miriam; Wolf, Barry

    2011-02-01

    Biotinidase deficiency is the primary enzymatic defect in biotin-responsive, late-onset multiple carboxylase deficiency. Untreated children with profound biotinidase deficiency usually exhibit neurological symptoms including lethargy, hypotonia, seizures, developmental delay, sensorineural hearing loss and optic atrophy; and cutaneous symptoms including skin rash, conjunctivitis and alopecia. Although the clinical features of the disorder markedly improve or are prevented with biotin supplementation, some symptoms, once they occur, such as developmental delay, hearing loss and optic atrophy, are usually irreversible. To prevent development of symptoms, the disorder is screened for in the newborn period in essentially all states and in many countries. In order to better understand many aspects of the pathophysiology of the disorder, we have developed a transgenic biotinidase-deficient mouse. The mouse has a null mutation that results in no detectable serum biotinidase activity or cross-reacting material to antibody prepared against biotinidase. When fed a biotin-deficient diet these mice develop neurological and cutaneous symptoms, carboxylase deficiency, mild hyperammonemia, and exhibit increased urinary excretion of 3-hydroxyisovaleric acid and biotin and biotin metabolites. The clinical features are reversed with biotin supplementation. This biotinidase-deficient animal can be used to study systematically many aspects of the disorder and the role of biotinidase, biotin and biocytin in normal and in enzyme-deficient states. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. High hepatotoxic dose of paracetamol produces generalized convulsions and brain damage in rats. A counteraction with the stable gastric pentadecapeptide BPC 157 (PL 14736).

    PubMed

    Ilic, S; Drmic, D; Zarkovic, K; Kolenc, D; Coric, M; Brcic, L; Klicek, R; Radic, B; Sever, M; Djuzel, V; Ivica, M; Boban Blagaic, A; Zoricic, Z; Anic, T; Zoricic, I; Djidic, S; Romic, Z; Seiwerth, S; Sikiric, P

    2010-04-01

    We focused on stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, MW 1419, an anti-ulcer peptide efficient in inflammatory bowel disease trials (PL 14736), no toxicity reported) because of its hepatoprotective effects. We investigate a particular aspect of the sudden onset of encephalopathy with extreme paracetamol overdose (5 g/kg intraperitoneally) so far not reported: rapidly induced progressive hepatic encephalopathy with generalized convulsions in rats. BPC 157 therapy (10 microg, 10 ng, 10 pg/kg, intraperitoneally or intragastrically) was effective (microg-ng range) against paracetamol toxicity, given in early (BPC 157 immediately after paracetamol, prophylactically) or advanced stage (BPC 157 at 3 hours after paracetamol, therapeutically). At 25 min post-paracetamol increased ALT, AST and ammonium serum values precede liver lesion while in several brain areas, significant damage became apparent, accompanied by generalized convulsions. Through the next 5 hour seizure period and thereafter, the brain damage, liver damage enzyme values and hyperammonemia increased, particularly throughout the 3-24 h post-paracetamol period. BPC 157 demonstrated clinical (no convulsions (prophylactic application) or convulsions rapidly disappeared (therapeutic effect within 25 min)), microscopical (markedly less liver and brain lesions) and biochemical (enzyme and ammonium serum levels decreased) counteraction. Both, the prophylactic and therapeutic benefits (intraperitoneally and intragastrically) clearly imply BPC 157 (microg-ng range) as a highly effective paracetamol antidote even against highly advanced damaging processes induced by an extreme paracetamol over-dose.

  8. Effects of arginine treatment on nutrition, growth and urea cycle function in seven Japanese boys with late-onset ornithine transcarbamylase deficiency.

    PubMed

    Nagasaka, Hironori; Yorifuji, Tohru; Murayama, Kei; Kubota, Mitsuru; Kurokawa, Keiji; Murakami, Tomoko; Kanazawa, Masaki; Takatani, Tomozumi; Ogawa, Atsushi; Ogawa, Emi; Yamamoto, Shigenori; Adachi, Masanori; Kobayashi, Kunihiko; Takayanagi, Masaki

    2006-09-01

    The aim of this study was to investigate the effects of arginine on nutrition, growth and urea cycle function in boys with late-onset ornithine transcarbamylase deficiency (OTCD). Seven Japanese boys with late-onset OTCD enrolled in this study resumed arginine treatment after the cessation of this therapy for a few years. Clinical presentations such as vomiting and unconsciousness, plasma amino acids and urinary orotate excretion were followed chronologically to evaluate urea cycle function and protein synthesis with and without this therapy. In addition to height and body weight, blood levels of proteins, lipids, growth hormone (GH), insulin-like growth factor-I (IGF-I) and IGF-binding protein -3 (IGFBP-3) were monitored. The frequency of hyperammonemic attacks and urinary orotate excretion decreased significantly following the resumption of arginine treatment. Despite showing no marked change in body weight, height increased gradually. Extremely low plasma arginine increased to normal levels, while plasma glutamine and alanine levels decreased considerably. Except for a slight increase in high-density lipoprotein cholesterol level, blood levels of markers for nutrition did not change. In contrast, low serum IGF-I and IGFBP-3 levels increased to age-matched control levels, and normal urinary GH secretion became greater than the level observed in the controls. Arginine treatment is able to reduces attacks of hyperammonemia in boys with late-onset OTCD and to increase their growth.

  9. Recurrent Muscle Weakness with Rhabdomyolysis, Metabolic Crises, and Cardiac Arrhythmia Due to Bi-allelic TANGO2 Mutations

    PubMed Central

    Lalani, Seema R.; Liu, Pengfei; Rosenfeld, Jill A.; Watkin, Levi B.; Chiang, Theodore; Leduc, Magalie S.; Zhu, Wenmiao; Ding, Yan; Pan, Shujuan; Vetrini, Francesco; Miyake, Christina Y.; Shinawi, Marwan; Gambin, Tomasz; Eldomery, Mohammad K.; Akdemir, Zeynep Hande Coban; Emrick, Lisa; Wilnai, Yael; Schelley, Susan; Koenig, Mary Kay; Memon, Nada; Farach, Laura S.; Coe, Bradley P.; Azamian, Mahshid; Hernandez, Patricia; Zapata, Gladys; Jhangiani, Shalini N.; Muzny, Donna M.; Lotze, Timothy; Clark, Gary; Wilfong, Angus; Northrup, Hope; Adesina, Adekunle; Bacino, Carlos A.; Scaglia, Fernando; Bonnen, Penelope E.; Crosson, Jane; Duis, Jessica; Maegawa, Gustavo H.B.; Coman, David; Inwood, Anita; McGill, Jim; Boerwinkle, Eric; Graham, Brett; Beaudet, Art; Eng, Christine M.; Hanchard, Neil A.; Xia, Fan; Orange, Jordan S.; Gibbs, Richard A.; Lupski, James R.; Yang, Yaping

    2016-01-01

    The underlying genetic etiology of rhabdomyolysis remains elusive in a significant fraction of individuals presenting with recurrent metabolic crises and muscle weakness. Using exome sequencing, we identified bi-allelic mutations in TANGO2 encoding transport and Golgi organization 2 homolog (Drosophila) in 12 subjects with episodic rhabdomyolysis, hypoglycemia, hyperammonemia, and susceptibility to life-threatening cardiac tachyarrhythmias. A recurrent homozygous c.460G>A (p.Gly154Arg) mutation was found in four unrelated individuals of Hispanic/Latino origin, and a homozygous ∼34 kb deletion affecting exons 3–9 was observed in two families of European ancestry. One individual of mixed Hispanic/European descent was found to be compound heterozygous for c.460G>A (p.Gly154Arg) and the deletion of exons 3–9. Additionally, a homozygous exons 4–6 deletion was identified in a consanguineous Middle Eastern Arab family. No homozygotes have been reported for these changes in control databases. Fibroblasts derived from a subject with the recurrent c.460G>A (p.Gly154Arg) mutation showed evidence of increased endoplasmic reticulum stress and a reduction in Golgi volume density in comparison to control. Our results show that the c.460G>A (p.Gly154Arg) mutation and the exons 3–9 heterozygous deletion in TANGO2 are recurrent pathogenic alleles present in the Latino/Hispanic and European populations, respectively, causing considerable morbidity in the homozygotes in these populations. PMID:26805781

  10. Enzymatic analysis of α-ketoglutaramate—A biomarker for hyperammonemia

    PubMed Central

    Halámková, Lenka; Mailloux, Shay; Halámek, Jan; Cooper, Arthur J.L.; Katz, Evgeny

    2012-01-01

    Two enzymatic assays were developed for the analysis of α-ketoglutaramate (KGM)—an important biomarker of hepatic encephalopathy and other hyperammonemic diseases. In both procedures, KGM is first converted to α-ketoglutarate (KTG) via a reaction catalyzed by ω-amidase (AMD). In the first procedure, KTG generated in the AMD reaction initiates a biocatalytic cascade in which the concerted action of alanine transaminase and lactate dehydrogenase results in the oxidation of NADH. In the second procedure, KTG generated from KGM is reductively aminated, with the concomitant oxidation of NADH, in a reaction catalyzed by L-glutamic dehydrogenase. In both assays, the decrease in optical absorbance (λ=340 nm) corresponding to NADH oxidation is used to quantify concentrations of KGM. The two analytical procedures were applied to 50% (v/v) human serum diluted with aqueous solutions containing the assay components and spiked with concentrations of KGM estimated to be present in normal human plasma and in plasma from hyperammonemic patients. Since KTG is the product of AMD-catalyzed hydrolysis of KGM, in a separate study, this compound was used as a surrogate for KGM. Statistical analyses of samples mimicking the concentration of KGM assumed to be present in normal and pathological concentration ranges were performed. Both enzymatic assays for KGM were confirmed to discriminate between the predicted normal and pathophysiological concentrations of the analyte. The present study is the first step toward the development of a clinically useful probe for KGM analysis in biological fluids. PMID:23141304

  11. Chronic postnatal ornithine administration to rats provokes learning deficit in the open field task.

    PubMed

    Viegas, Carolina Maso; Busanello, Estela Natacha Brandt; Tonin, Anelise Miotti; Grings, Mateus; Moura, Alana Pimentel; Ritter, Luciana; Zanatta, Angela; Knebel, Lisiane Aurélio; Lobato, Vannessa Araujo; Pettenuzzo, Letícia Ferreira; Vargas, Carmen Regla; Leipnitz, Guilhian; Wajner, Moacir

    2012-12-01

    Hyperornithinemia is the biochemical hallmark of hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, an inherited metabolic disease clinically characterized by mental retardation whose pathogenesis is still poorly known. In the present work, we produced a chemical animal model of hyperornithinemia induced by a subcutaneous injection of saline-buffered Orn (2-5 μmol/g body weight) to rats. High brain Orn concentrations were achieved, indicating that Orn is permeable to the blood brain barrier. We then investigated the effect of early chronic postnatal administration of Orn on physical development and on the performance of adult rats in the open field, the Morris water maze and in the step down inhibitory avoidance tasks. Chronic Orn treatment had no effect on the appearance of coat, eye opening or upper incisor eruption, nor on the free-fall righting reflex and on the adult rat performance in the Morris water maze and in the inhibitory avoidance tasks, suggesting that physical development, aversive and spatial localization were not changed by Orn. However, Orn-treated rats did not habituate to the open field apparatus, implying a deficit of learning/memory. Motor activity was the same for Orn- and saline- injected animals. We also verified that Orn subcutaneous injections provoked lipid peroxidation in the brain, as determined by a significant increase of thiobarbituric acid-reactive substances levels. Our results indicate that chronic early postnatal hyperornithinemia may impair the central nervous system, causing minor disabilities which result in specific learning deficiencies.

  12. Mild orotic aciduria in UMPS heterozygotes: a metabolic finding without clinical consequences.

    PubMed

    Wortmann, Saskia B; Chen, Margaret A; Colombo, Roberto; Pontoglio, Alessandro; Alhaddad, Bader; Botto, Lorenzo D; Yuzyuk, Tatiana; Coughlin, Curtis R; Descartes, Maria; Grűnewald, Stephanie; Maranda, Bruno; Mills, Philippa B; Pitt, James; Potente, Catherine; Rodenburg, Richard; Kluijtmans, Leo A J; Sampath, Srirangan; Pai, Emil F; Wevers, Ron A; Tiller, George E

    2017-05-01

    Elevated urinary excretion of orotic acid is associated with treatable disorders of the urea cycle and pyrimidine metabolism. Establishing the correct and timely diagnosis in a patient with orotic aciduria is key to effective treatment. Uridine monophosphate synthase is involved in de novo pyrimidine synthesis. Uridine monophosphate synthase deficiency (or hereditary orotic aciduria), due to biallelic mutations in UMPS, is a rare condition presenting with megaloblastic anemia in the first months of life. If not treated with the pyrimidine precursor uridine, neutropenia, failure to thrive, growth retardation, developmental delay, and intellectual disability may ensue. We identified mild and isolated orotic aciduria in 11 unrelated individuals with diverse clinical signs and symptoms, the most common denominator being intellectual disability/developmental delay. Of note, none had blood count abnormalities, relevant hyperammonemia or altered plasma amino acid profile. All individuals were found to have heterozygous alterations in UMPS. Four of these variants were predicted to be null alleles with complete loss of function. The remaining variants were missense changes and predicted to be damaging to the normal encoded protein. Interestingly, family screening revealed heterozygous UMPS variants in combination with mild orotic aciduria in 19 clinically asymptomatic family members. We therefore conclude that heterozygous UMPS-mutations can lead to mild and isolated orotic aciduria without clinical consequence. Partial UMPS-deficiency should be included in the differential diagnosis of mild orotic aciduria. The discovery of heterozygotes manifesting clinical symptoms such as hypotonia and developmental delay are likely due to ascertainment bias.

  13. Ebselen: Mechanisms of Glutamate Dehydrogenase and Glutaminase Enzyme Inhibition.

    PubMed

    Yu, Yan; Jin, Yanhong; Zhou, Jie; Ruan, Haoqiang; Zhao, Han; Lu, Shiying; Zhang, Yue; Li, Di; Ji, Xiaoyun; Ruan, Benfang Helen

    2017-12-15

    Ebselen modulates target proteins through redox reactions with selenocysteine/cysteine residues, or through binding to the zinc finger domains. However, a recent contradiction in ebselen inhibition of kidney type glutaminase (KGA) stimulated our interest in investigating its inhibition mechanism with glutamate dehydrogenase (GDH), KGA, thioredoxin reductase (TrxR), and glutathione S-transferase. Fluorescein- or biotin-labeled ebselen derivatives were synthesized for mechanistic analyses. Biomolecular interaction analyses showed that only GDH, KGA, and TrxR proteins can bind to the ebselen derivative, and the binding to GDH and KGA could be competed off by glutamine or glutamate. From the gel shift assays, the fluorescein-labeled ebselen derivative could co-migrate with hexameric GDH and monomeric/dimeric TrxR in a dose-dependent manner; it also co-migrated with KGA but disrupted the tetrameric form of the KGA enzyme at a high compound concentration. Further proteomic analysis demonstrated that the ebselen derivative could cross-link with proteins through a specific cysteine at the active site of GDH and TrxR proteins, but for KGA protein, the binding site is at the N-terminal appendix domain outside of the catalytic domain, which might explain why ebselen is not a potent KGA enzyme inhibitor in functional assays. In conclusion, ebselen could inhibit enzyme activity by binding to the catalytic domain or disruption of the protein complex. In addition, ebselen is a relatively potent selective GDH inhibitor that might provide potential therapeutic opportunities for hyperinsulinism-hyperammonemia syndrome patients who have the mutational loss of GTP inhibition.

  14. Sodium Phenylbutyrate Enhances Astrocytic Neurotrophin Synthesis via Protein Kinase C (PKC)-mediated Activation of cAMP-response Element-binding Protein (CREB)

    PubMed Central

    Corbett, Grant T.; Roy, Avik; Pahan, Kalipada

    2013-01-01

    Neurotrophins, such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), are believed to be genuine molecular mediators of neuronal growth and homeostatic synapse activity. However, levels of these neurotrophic factors decrease in different brain regions of patients with Alzheimer disease (AD). Induction of astrocytic neurotrophin synthesis is a poorly understood phenomenon but represents a plausible therapeutic target because neuronal neurotrophin production is aberrant in AD and other neurodegenerative diseases. Here, we delineate that sodium phenylbutyrate (NaPB), a Food and Drug Administration-approved oral medication for hyperammonemia, induces astrocytic BDNF and NT-3 expression via the protein kinase C (PKC)-cAMP-response element-binding protein (CREB) pathway. NaPB treatment increased the direct association between PKC and CREB followed by phosphorylation of CREB (Ser133) and induction of DNA binding and transcriptional activation of CREB. Up-regulation of markers for synaptic function and plasticity in cultured hippocampal neurons by NaPB-treated astroglial supernatants and its abrogation by anti-TrkB blocking antibody suggest that NaPB-induced astroglial neurotrophins are functionally active. Moreover, oral administration of NaPB increased the levels of BDNF and NT-3 in the CNS and improved spatial learning and memory in a mouse model of AD. Our results highlight a novel neurotrophic property of NaPB that may be used to augment neurotrophins in the CNS and improve synaptic function in disease states such as AD. PMID:23404502

  15. Sodium phenylbutyrate enhances astrocytic neurotrophin synthesis via protein kinase C (PKC)-mediated activation of cAMP-response element-binding protein (CREB): implications for Alzheimer disease therapy.

    PubMed

    Corbett, Grant T; Roy, Avik; Pahan, Kalipada

    2013-03-22

    Neurotrophins, such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), are believed to be genuine molecular mediators of neuronal growth and homeostatic synapse activity. However, levels of these neurotrophic factors decrease in different brain regions of patients with Alzheimer disease (AD). Induction of astrocytic neurotrophin synthesis is a poorly understood phenomenon but represents a plausible therapeutic target because neuronal neurotrophin production is aberrant in AD and other neurodegenerative diseases. Here, we delineate that sodium phenylbutyrate (NaPB), a Food and Drug Administration-approved oral medication for hyperammonemia, induces astrocytic BDNF and NT-3 expression via the protein kinase C (PKC)-cAMP-response element-binding protein (CREB) pathway. NaPB treatment increased the direct association between PKC and CREB followed by phosphorylation of CREB (Ser(133)) and induction of DNA binding and transcriptional activation of CREB. Up-regulation of markers for synaptic function and plasticity in cultured hippocampal neurons by NaPB-treated astroglial supernatants and its abrogation by anti-TrkB blocking antibody suggest that NaPB-induced astroglial neurotrophins are functionally active. Moreover, oral administration of NaPB increased the levels of BDNF and NT-3 in the CNS and improved spatial learning and memory in a mouse model of AD. Our results highlight a novel neurotrophic property of NaPB that may be used to augment neurotrophins in the CNS and improve synaptic function in disease states such as AD.

  16. Carnitine deficiency presenting with a decreased mental state in a patient with amyotrophic lateral sclerosis receiving long-term tube feeding: a case report.

    PubMed

    Isse, Naohi; Miura, Yoh; Obata, Toshiyuki; Takahara, Noriko

    2013-12-30

    L-carnitine is an important metabolic mediator involved in fatty acid transport. It is obtained from the diet, particularly from animal products, such as red meat. Previous reports have revealed that long-term tube feeding with a commercial product containing no or low levels of carnitine can lead to an altered mental state caused by hyperammonemia. A 72-year-old Japanese man had a 12-year history of amyotrophic lateral sclerosis. He was bedridden and had required mechanical ventilation and enteral tube feeding for 10 years at home. His main enteral solution was a commercial product that contained low carnitine levels, and he sometimes received coffee and homemade products such as miso soup. Our patient's ability to communicate gradually deteriorated over a period of one year. His serum total carnitine level was abnormally low, at 26.7μmol/L (normal range, 45 to 91μmol/L), but his ammonium level was normal. His mental state improved dramatically after starting L-carnitine supplementation (600mg twice daily). This case highlights the importance of avoiding carnitine deficiency in patients with amyotrophic lateral sclerosis undergoing long-term tube feeding. These patients experience progressive muscle atrophy that might cause impaired carnitine storage and might manifest as communication difficulties. Carnitine deficiency can be misdiagnosed as a progression of systemic muscle atrophy. Clinicians should be aware of this disorder and should consider periodically measuring carnitine levels, regardless of the patient's serum ammonium levels.

  17. Hepatic encephalopathy in patients with acute decompensation of cirrhosis and acute-on-chronic liver failure.

    PubMed

    Romero-Gómez, Manuel; Montagnese, Sara; Jalan, Rajiv

    2015-02-01

    Hepatic encephalopathy in a hospitalized cirrhotic patient is associated with a high mortality rate and its presence adds further to the mortality of patients with acute-on-chronic liver failure (ACLF). The exact pathophysiological mechanisms of HE in this group of patients are unclear but hyperammonemia, systemic inflammation (including sepsis, bacterial translocation, and insulin resistance) and oxidative stress, modulated by glutaminase gene alteration, remain as key factors. Moreover, alcohol misuse, hyponatremia, renal insufficiency, and microbiota are actively explored. HE diagnosis requires exclusion of other causes of neurological, metabolic and psychiatric dysfunction. Hospitalization in the ICU should be considered in every patient with overt HE, but particularly if this is associated with ACLF. Precipitating factors should be identified and treated as required. Evidence-based specific management options are limited to bowel cleansing and non-absorbable antibiotics. Ammonia lowering drugs, such as glycerol phenylbutyrate and ornithine phenylacetate show promise but are still in clinical trials. Albumin dialysis may be useful in refractory cases. Antibiotics, prebiotics, and treatment of diabetes reduce systemic inflammation. Where possible and not contraindicated, large portal-systemic shunts may be embolized but liver transplantation is the most definitive step in the management of HE in this setting. HE in patients with ACLF appears to be clinically and pathophysiologically distinct from that of acute decompensation and requires further studies and characterization. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  18. Characteristics of NO cycle coupling with urea cycle in non-hyperammonemic carriers of ornithine transcarbamylase deficiency.

    PubMed

    Nagasaka, Hironori; Yorifuji, Tohru; Egawa, Hiroto; Inui, Ayano; Fujisawa, Tomoo; Komatsu, Haruki; Tsukahara, Hirokazu; Uemoto, Shinji; Inomata, Yukihiro

    2013-07-01

    Urea cycle deficient patients with prominent hyperammonemic often exhibit abnormal production of nitric oxide (NO), which reduces vascular tone, along with amino acid abnormalities. However, information related to the metabolic changes in heterozygotes of ornithine transcarbamylase deficiency (OTCD) lacking overt hyperammonemia is quite limited. We examined vascular mediators and amino acids in non-hyperammonemic heterozygotes. Twenty-four heterozygous OTCD adult females without hyperammonemic bouts, defined as non-hyperammonemic carriers, were enrolled. We measured blood amino acids constituting urea cycle and nitric oxide (NO) cycle. Blood concentrations of nitrate/nitrite (NOx) as stable NO-metabolites, asymmetric dimethylarginine (ADMA) inhibiting NO synthesis, and endothelin-1 (ET-1) raising vascular tone were also determined. NOx concentrations were significantly lower in non-hyperammonemic carriers (p < 0.01). However, ADMA and ET-1 levels in this group were comparable to those in the age-matched control group. Arginine and citrulline levels were also significantly lower in non-hyperammonemic carriers than in controls (p < 0.01). Of the 24 non-hyperammonemic carriers, 10 often developed headaches. Their daily NOx and arginine levels were significantly lower than those in headache-free carriers (p < 0.05). In three carriers receiving oral l-arginine, blood NOx concentrations were significantly higher. In two of those three, the occurrence of headaches was decreased. These results suggest that NO cycle coupling with the urea cycle is altered substantially even in non-hyperammonemic OTCD carriers, predisposing them to headaches. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Arginase-1 deficiency.

    PubMed

    Sin, Yuan Yan; Baron, Garrett; Schulze, Andreas; Funk, Colin D

    2015-12-01

    Arginase-1 (ARG1) deficiency is a rare autosomal recessive disorder that affects the liver-based urea cycle, leading to impaired ureagenesis. This genetic disorder is caused by 40+ mutations found fairly uniformly spread throughout the ARG1 gene, resulting in partial or complete loss of enzyme function, which catalyzes the hydrolysis of arginine to ornithine and urea. ARG1-deficient patients exhibit hyperargininemia with spastic paraparesis, progressive neurological and intellectual impairment, persistent growth retardation, and infrequent episodes of hyperammonemia, a clinical pattern that differs strikingly from other urea cycle disorders. This review briefly highlights the current understanding of the etiology and pathophysiology of ARG1 deficiency derived from clinical case reports and therapeutic strategies stretching over several decades and reports on several exciting new developments regarding the pathophysiology of the disorder using ARG1 global and inducible knockout mouse models. Gene transfer studies in these mice are revealing potential therapeutic options that can be exploited in the future. However, caution is advised in extrapolating results since the lethal disease phenotype in mice is much more severe than in humans indicating that the mouse models may not precisely recapitulate human disease etiology. Finally, some of the functions and implications of ARG1 in non-urea cycle activities are considered. Lingering questions and future areas to be addressed relating to the clinical manifestations of ARG1 deficiency in liver and brain are also presented. Hopefully, this review will spark invigorated research efforts that lead to treatments with better clinical outcomes.

  20. Ammonia causes decreased brain monoamines in fathead minnows (Pimephales promelas)

    USGS Publications Warehouse

    Ronan, Patrick J.; Gaikowski, Mark P.; Hamilton, Steven J.; Buhl, Kevin J.; Summers, Cliff H.

    2007-01-01

    Hyperammonemia, arising from variety of disorders, leads to severe neurological dysfunction. The mechanisms of ammonia toxicity in brain are not completely understood. This study investigated the effects of ammonia on monoaminergic systems in brains of fathead minnows (Pimephales promelas). Fish serve as a good model system to investigate hyperammonemic effects on brain function since no liver manipulations are necessary to increase endogenous ammonia concentrations. Using high performance liquid chromatography with electrochemical detection, monoamines and some associated metabolites were measured from whole brain homogenate. Adult males were exposed for 48 h to six different concentrations of ammonia (0.01–2.36 mg/l unionized) which bracketed the 96-h LC50 for this species. Ammonia concentration-dependent decreases were found for the catecholamines (norepinephrine and dopamine) and the indoleamine serotonin (5-HT). After an initial increase in the 5-HT precursor 5-hydroxytryptophan it too decreased with increasing ammonia concentrations. There were also significant increases in the 5-HIAA/5-HT and DOPAC/DA ratios, often used as measures of turnover. There were no changes in epinephrine (Epi) or monoamine catabolites (DOPAC, 5-HIAA) at any ammonia concentrations tested. Results suggest that ammonia causes decreased synthesis while also causing increased release and degradation. Increased release may underlie behavioral reactions to ammonia exposure in fish. This study adds weight to a growing body of evidence demonstrating that ammonia leads to dysfunctional monoaminergic systems in brain which may underlie neurological symptoms associated with human disorders such as hepatic encephalopathy.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Changhong; Li, Ming; Chen, Pan

    Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and, in animals, is extensively regulated by a number of metabolites. Gain of function mutations in GDH that abrogate GTP inhibition cause the hyperinsulinism/hyperammonemia syndrome (HHS), resulting in increased pancreatic {beta}-cell responsiveness to leucine and susceptibility to hypoglycemia following high protein meals. We have previously shown that two of the polyphenols from green tea (epigallocatechin gallate (EGCG) and epicatechin gallate (ECG)) inhibit GDH in vitro and that EGCG blocks GDH-mediated insulin secretion in wild type rat islets. Using structural and site-directed mutagenesis studies, we demonstrate that ECG binds to the samemore » site as the allosteric regulator, ADP. Perifusion assays using pancreatic islets from transgenic mice expressing a human HHS form of GDH demonstrate that the hyperresponse to glutamine caused by dysregulated GDH is blocked by the addition of EGCG. As observed in HHS patients, these transgenic mice are hypersensitive to amino acid feeding, and this is abrogated by oral administration of EGCG prior to challenge. Finally, the low basal blood glucose level in the HHS mouse model is improved upon chronic administration of EGCG. These results suggest that this common natural product or some derivative thereof may prove useful in controlling this genetic disorder. Of broader clinical implication is that other groups have shown that restriction of glutamine catabolism via these GDH inhibitors can be useful in treating various tumors. This HHS transgenic mouse model offers a highly useful means to test these agents in vivo.« less

  2. Roles of renal ammonia metabolism other than in acid-base homeostasis

    PubMed Central

    Weiner, I. David

    2016-01-01

    The importance of renal ammonia metabolism in acid-base homeostasis is well known. However, the effects of renal ammonia metabolism other than in acid-base homeostasis are not as widely recognized. First, ammonia differs from almost all other solutes in the urine in that it does not result from arterial delivery. Instead, ammonia is produced by the kidney and only a portion of the ammonia produced is excreted in the urine. The remainder is returned to the systemic circulation through the renal veins. In normal individuals, systemic ammonia addition is metabolized efficiently by the liver, but in patients with either acute or chronic liver disease, conditions that increase renal ammonia addition to the systemic circulation can cause precipitation and/or worsening of hyperammonemia. Second, ammonia appears to serve as an intra-renal paracrine signaling molecule. Hypokalemia increases proximal tubule ammonia production and secretion and it increases reabsorption in the thick ascending limb of the loop of Henle, thereby increasing delivery to the renal interstitium and the collecting duct. In the collecting duct, ammonia decreases potassium secretion and stimulates potassium reabsorption, thereby decreasing urinary potassium excretion and enabling feedback correction of the initiating hypokalemia. Finally, hypokalemia’s stimulation of renal ammonia metabolism and hypokalemia contributes to development of metabolic alkalosis, which can stimulate NaCl reabsorption and thereby contribute to the intravascular volume expansion, increased blood pressure and diuretic resistance that can develop with hypokalemia. In this review, we discuss the evidence supporting these novel non-acid-base roles of renal ammonia metabolism. PMID:27169421

  3. Roles of renal ammonia metabolism other than in acid-base homeostasis.

    PubMed

    Weiner, I David

    2017-06-01

    The importance of renal ammonia metabolism in acid-base homeostasis is well known. However, the effects of renal ammonia metabolism other than in acid-base homeostasis are not as widely recognized. First, ammonia differs from almost all other solutes in the urine in that it does not result from arterial delivery. Instead, ammonia is produced by the kidney, and only a portion of the ammonia produced is excreted in the urine, with the remainder returned to the systemic circulation through the renal veins. In normal individuals, systemic ammonia addition is metabolized efficiently by the liver, but in patients with either acute or chronic liver disease, conditions that increase the addition of ammonia of renal origin to the systemic circulation can result in precipitation and/or worsening of hyperammonemia. Second, ammonia appears to serve as an intrarenal paracrine signaling molecule. Hypokalemia increases proximal tubule ammonia production and secretion as well as reabsorption in the thick ascending limb of the loop of Henle, thereby increasing delivery to the renal interstitium and the collecting duct. In the collecting duct, ammonia decreases potassium secretion and stimulates potassium reabsorption, thereby decreasing urinary potassium excretion and enabling feedback correction of the initiating hypokalemia. Finally, the stimulation of renal ammonia metabolism by hypokalemia may contribute to the development of metabolic alkalosis, which in turn can stimulate NaCl reabsorption and contribute to the intravascular volume expansion, increased blood pressure and diuretic resistance that can develop with hypokalemia. The evidence supporting these novel non-acid-base roles of renal ammonia metabolism is discussed in this review.

  4. Genomic organization of the human gene (CA5) and pseudogene for mitochondrial carbonic anhydrase V and their localization to chromosomes 16q and 16p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagao, Yoshiro; Sly, W.S.; Batanian, J.R.

    1995-08-10

    Carbonic anhydrase V (CA V) is expressed in mitochondrial matrix in liver and several other tissues. It is of interest for its putative roles in providing bicarbonate to carbamoyl phosphate synthetase for ureagenesis and to pyruvate carboxylase for gluconeogenesis and its possible importance in explaining certain inherited metabolic disorders with hyperammonemia and hypoglycemia. Following the recent characterization of the cDNA for human CA V, we report the isolation of the human gene from two {lambda} genomic libraries and its characterization. The CA V gene (CA5) is approximately 50 kb long and contains 7 exons and 6 introns. The exon-intron boundariesmore » are found in positions identical to those determined for the previously described CA II, CA III, and CA VII genes. Like the CA VII gene, CA5 does not contain typical TATA and CAAT promoter elements in the 5{prime} flanking region but does contain a TTTAA sequence 147 nucleotides upstream of the initiation codon. CA5 also contains a 12-bp GT-rich segment beginning 13 bp downstream of the polyadenylation signal in the 3{prime} untranslated region of exon 7. FISH analysis allowed CA5 to be assigned to chromosome 16q24.3. An unprocessed pseudogene containing sequence homologous to exons 3-7 and introns 3-6 was also isolated and was assigned by FISH analysis to chromosome 16p11.2-p12. 22 refs., 4 figs., 1 tab.« less

  5. Ameliorative effects of rutin on hepatic encephalopathy-induced by thioacetamide or gamma irradiation.

    PubMed

    Mansour, Somaya Z; El-Marakby, Seham M; Moawed, Fatma S M

    2017-07-01

    Hepatic encephalopathy (HE) is a syndrome resulting from acute or chronic liver failure. This study was designed to evaluate the effect of rutin on thioacetamide (TAA) or γ-radiation-induced HE model. Animals were received with TAA (200mg/kg, i.p.) twice weekly for four weeks or exposed to 6Gy of γ-radiation to induce HE then groups orally treated with rutin (50mg/kg b.wt.) for four weeks. At the end of experiment, blood, liver and brain samples were collected to assess biochemical and biophysical markers as well histopathological investigations. TAA or γ-radiation exposed rats experienced increases in serum activities of ALT, AST, ALP and ammonia level. Also an alteration in relative permeability and conductivity of erythrocytes was observed. Furthermore, cytokines levels and AChE activity were induced whereas the activities of HO-1 and neurotransmitters contents were depleted. TAA or γ-radiation caused distortion of hepatic and brain architecture as shown by histopathological examination. Treatment with rutin resulted in improvement in liver function by the decline in serum AST and ALT activities and reduction in serum ammonia level. In addition, the administration of rutin significantly modulated the alteration in cytokines levels and neurotransmitters content. Histopathological examinations of liver and brain tissues showed that administration of rutin has attenuate TAA or radiation-induced damage and improve tissue architecture. Consequently, rutin has been a powerful hepatoprotective effect to combat hepatic encephalopathy associated hyperammonemia and its consequential damage in liver and brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Hepatotoxicity After Continuous Amiodarone Infusion in a Postoperative Cardiac Infant

    PubMed Central

    Kicker, Jennifer S.; Haizlip, Julie A.; Buck, Marcia L.

    2012-01-01

    A former 34-week-old female infant with Down syndrome underwent surgical correction of a congenital heart defect at 5 months of age. Her postoperative course was complicated by severe pulmonary hypertension and junctional ectopic tachycardia. Following treatment with amiodarone infusion, she developed laboratory indices of acute liver injury. At their peak, liver transaminase levels were 19 to 35 times greater than the upper limit of normal. Transaminitis was accompanied by coagulopathy, hyperammonemia, and high serum lactate and lipid levels. Hepatic laboratory abnormalities began to resolve within 48 hr of stopping amiodarone infusion. Heart rate control was achieved concurrently with discovery of laboratory test result abnormalities, and no further antiarrhythmic therapy was required. The intravenous formulation of amiodarone contains the diluent polysorbate 80, which may have hepatotoxic effects. Specifically, animal studies suggest that polysorbate 80 may destabilize cell membranes and predispose to fatty change within liver architecture. Polysorbate was implicated in infant fatalities from E-ferol use in the 1980s. This case illustrates a possible adverse event by the Naranjo probability scale. Given the extent of clinically apparent hepatic injury, this patient was not rechallenged with amiodarone during the remainder of her hospitalization. With amiodarone now used as first-line pharmacologic therapy for critical tachyarrhythmia in this population, the number of children exposed to this drug should be expected to increase. Laboratory indices of liver function should be evaluated at initiation of amiodarone therapy, as well as frequently throughout duration of therapy. Consideration should be given to polysorbate-free formulation of intravenous amiodarone for use in the cohort with congenital cardiac disease. PMID:23118673

  7. Hepatotoxicity after continuous amiodarone infusion in a postoperative cardiac infant.

    PubMed

    Kicker, Jennifer S; Haizlip, Julie A; Buck, Marcia L

    2012-04-01

    A former 34-week-old female infant with Down syndrome underwent surgical correction of a congenital heart defect at 5 months of age. Her postoperative course was complicated by severe pulmonary hypertension and junctional ectopic tachycardia. Following treatment with amiodarone infusion, she developed laboratory indices of acute liver injury. At their peak, liver transaminase levels were 19 to 35 times greater than the upper limit of normal. Transaminitis was accompanied by coagulopathy, hyperammonemia, and high serum lactate and lipid levels. Hepatic laboratory abnormalities began to resolve within 48 hr of stopping amiodarone infusion. Heart rate control was achieved concurrently with discovery of laboratory test result abnormalities, and no further antiarrhythmic therapy was required. The intravenous formulation of amiodarone contains the diluent polysorbate 80, which may have hepatotoxic effects. Specifically, animal studies suggest that polysorbate 80 may destabilize cell membranes and predispose to fatty change within liver architecture. Polysorbate was implicated in infant fatalities from E-ferol use in the 1980s. This case illustrates a possible adverse event by the Naranjo probability scale. Given the extent of clinically apparent hepatic injury, this patient was not rechallenged with amiodarone during the remainder of her hospitalization. With amiodarone now used as first-line pharmacologic therapy for critical tachyarrhythmia in this population, the number of children exposed to this drug should be expected to increase. Laboratory indices of liver function should be evaluated at initiation of amiodarone therapy, as well as frequently throughout duration of therapy. Consideration should be given to polysorbate-free formulation of intravenous amiodarone for use in the cohort with congenital cardiac disease.

  8. Variable X-chromosome inactivation and enlargement of pericentral glutamine synthetase zones in the liver of heterozygous females with OTC deficiency.

    PubMed

    Musalkova, Dita; Sticova, Eva; Reboun, Martin; Sokolova, Jitka; Krijt, Jakub; Honzikova, Jitka; Gurka, Jiri; Neroldova, Magdalena; Honzik, Tomas; Zeman, Jiri; Jirsa, Milan; Dvorakova, Lenka; Hrebicek, Martin

    2018-06-01

    Ornithine transcarbamylase (OTC) deficiency is an X-linked disorder that causes recurrent and life-threatening episodes of hyperammonemia. The clinical picture in heterozygous females is highly diverse and derives from the genotype and the degree of inactivation of the mutated X chromosome in hepatocytes. Here, we describe molecular genetic, biochemical, and histopathological findings in the livers explanted from two female patients with late-onset OTC deficiency. Analysis of X-inactivation ratios by DNA methylation-based assays showed remarkable intra-organ variation ranging from 46:54 to 82:18 (average 70:30, n = 37), in favor of the active X chromosome carrying the mutation c.583G>C (p.G195R), in the first patient and from 75:25 to 90:10 (average 82:18, n = 20) in favor of the active X chromosome carrying the splicing mutation c.663+1G>A in the second patient. The X-inactivation ratios in liver samples correlated highly with the proportions of OTC-positive hepatocytes calculated from high-resolution image analyses of the immunohistochemically detected OTC in frozen sections that was performed on total area > 5 cm 2 . X-inactivation ratios in blood in both female patients corresponded to the lower limit of the liver values. Our data indicate that the proportion of about 20-30% of hepatocytes expressing the functional OTC protein is not sufficient to maintain metabolic stability. X-inactivation ratios assessed in liver biopsies taken from heterozygous females with X-linked disorders should not be considered representative of the whole liver.

  9. Congenital portosystemic shunt: characterization of a multisystem disease.

    PubMed

    Sokollik, Christiane; Bandsma, Robert H J; Gana, Juan C; van den Heuvel, Meta; Ling, Simon C

    2013-06-01

    Congenital portosystemic shunts (CPSSs) are rare but increasingly recognized as a cause of important multisystem morbidity. We present new cases and a systematic literature review and propose an algorithm for the identification and care of affected patients. We reviewed the charts of consecutive patients seen in our pediatric liver clinic between 2003 and 2010 and systematically reviewed the literature of cases with CPSS. We identified 316 published cases and 12 patients in our own clinic. Of the published cases (177 male), 185 had an extrahepatic and 131 an intrahepatic portosystemic shunt. Diagnosis was made at any age, from prenatal to late adulthood. Cardiac anomalies were found in 22% of patients. The main complications were hyperammonemia/neurological abnormalities (35%), liver tumors (26%), and pulmonary hypertension or hepatopulmonary syndrome (18%). The spectrum of neurological involvement ranged from changes in brain imaging, subtle abnormalities on neuropsychological testing, through learning disabilities to overt encephalopathy. Spontaneous shunt closure occurred mainly in infants with intrahepatic shunts. Therapeutic interventions included shunt closure by surgery or interventional radiology techniques (35%) and liver transplantation (10%) leading to an improvement of symptoms in the majority. These findings mirror the observations in our own patients. In this largest review of the reported clinical experience, we identify that children with CPSS may present with otherwise unexplained developmental delay, encephalopathy, pulmonary hypertension, hypoxemia, or liver tumors. When CPSS is diagnosed, children should be screened for all of these complications. Spontaneous closure of intrahepatic shunts may occur in infancy. Closure of the shunt is indicated in symptomatic patients and is associated with a favorable outcome.

  10. Congenital Portosystemic Shunts: Clinic Heterogeneity Requires an Individual Management of the Patient.

    PubMed

    Chocarro, Gloria; Amesty, María Virginia; Encinas, Jose Luis; Vilanova Sánchez, Alejandra; Hernandez, Francisco; Andres, Ane M; Gamez, Manolo; Tovar, Juan Antonio; Lopez Santamaria, Manuel

    2016-02-01

    Congenital portosystemic shunt (CPSS) is a rare entity without insufficiency in treatment issues. The aim of this article is to show our experience in the heterogeneity of this condition. A retrospective study of 25 CPSS in the period 1995 to 2014 was conducted. Description of the morphology, clinical impact, and treatment is given. According to the imaging techniques (IT), the shunt was apparently intrahepatic in 14 patients, extrahepatic in 10 patients, and mixed in 1 patient. In 14 children, IT showed hepatic portal circulation. In total shunts in which radiological examination was performed, invasive radiological techniques were able to demonstrate intrahepatic portal vein. In other patients, it was not investigated as they are asymptomatic. A child presented multiorgan failure with fulminant hepatic failure at birth. The shunt was radiologically closed and clinical impairment reversed rapidly. He is now asymptomatic with no longer images of CPSS in ultrasound scan controls. Also, seven children are asymptomatic at this time and are monitored periodically. Seven children had prenatal diagnosis, in five the shunt closed spontaneously. Nine children were symptomatic in their evolution (hyperammonemia, regenerative nodules, cholestasis, gastrointestinal bleeding). Of these, in five we performed balloon test occlusion, tolerated in all patients, followed by radiological closure. In our experience, the advancement of interventional radiology techniques avoided surgery to close the shunt. Morphologically, the CPSS is extremely heterogeneous, with multiple possible connections established. CPSS has multiple clinical presentations, from asymptomatic patients to acute liver failure. The therapeutic approach should be individualized and therefore held in overspecialized centers. Georg Thieme Verlag KG Stuttgart · New York.

  11. Ammonia and amino acid profiles in liver cirrhosis: effects of variables leading to hepatic encephalopathy.

    PubMed

    Holecek, Milan

    2015-01-01

    Hyperammonemia and severe amino acid imbalances play central role in hepatic encephalopathy (HE). In the article is demonstrated that the main source of ammonia in cirrhotic subjects is activated breakdown of glutamine (GLN) in enterocytes and the kidneys and the main source of GLN is ammonia detoxification to GLN in the brain and skeletal muscle. Branched-chain amino acids (BCAA; valine, leucine, and isoleucine) decrease due to activated GLN synthesis in muscle. Aromatic amino acids (AAA; phenylalanine, tyrosine, and tryptophan) and methionine increase due to portosystemic shunts and reduced ability of diseased liver. The effects on aminoacidemia of the following variables that may affect the course of liver disease are discussed: nutritional status, starvation, protein intake, inflammation, acute hepatocellular damage, bleeding from varices, portosystemic shunts, hepatic cancer, and renal failure. It is concluded that (1) neither ammonia nor amino acid concentrations correlate closely with the severity of liver disease; (2) BCAA/AAA ratio could be used as a good index of liver impairment and for early detection of derangements in amino acid metabolism; (3) variables potentially leading to overt encephalopathy exert substantial but uneven effects; and (4) careful monitoring of ammonia and aminoacidemia may discover important break points in the course of liver disease and indicate appropriate therapeutic approach. Of special importance might be isoleucine deficiency in bleeding from varices, arginine deficiency in sepsis, and a marked rise of GLN and ammonia levels that may appear in all events leading to HE. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Blocking NMDA receptors delays death in rats with acute liver failure by dual protective mechanisms in kidney and brain.

    PubMed

    Cauli, Omar; González-Usano, Alba; Cabrera-Pastor, Andrea; Gimenez-Garzó, Carla; López-Larrubia, Pilar; Ruiz-Sauri, Amparo; Hernández-Rabaza, Vicente; Duszczyk, Malgorzata; Malek, Michal; Lazarewicz, Jerzy W; Carratalá, Arturo; Urios, Amparo; Miguel, Alfonso; Torregrosa, Isidro; Carda, Carmen; Montoliu, Carmina; Felipo, Vicente

    2014-06-01

    Treatment of patients with acute liver failure (ALF) is unsatisfactory and mortality remains unacceptably high. Blocking NMDA receptors delays or prevents death of rats with ALF. The underlying mechanisms remain unclear. Clarifying these mechanisms will help to design more efficient treatments to increase patient's survival. The aim of this work was to shed light on the mechanisms by which blocking NMDA receptors delays rat's death in ALF. ALF was induced by galactosamine injection. NMDA receptors were blocked by continuous MK-801 administration. Edema and cerebral blood flow were assessed by magnetic resonance. The time course of ammonia levels in brain, muscle, blood, and urine; of glutamine, lactate, and water content in brain; of glomerular filtration rate and kidney damage; and of hepatic encephalopathy (HE) and intracranial pressure was assessed. ALF reduces kidney glomerular filtration rate (GFR) as reflected by reduced inulin clearance. GFR reduction is due to both reduced renal perfusion and kidney tubular damage as reflected by increased Kim-1 in urine and histological analysis. Blocking NMDA receptors delays kidney damage, allowing transient increased GFR and ammonia elimination which delays hyperammonemia and associated changes in brain. Blocking NMDA receptors does not prevent cerebral edema or blood-brain barrier permeability but reduces or prevents changes in cerebral blood flow and brain lactate. The data show that dual protective effects of MK-801 in kidney and brain delay cerebral alterations, HE, intracranial pressure increase and death. NMDA receptors antagonists may increase survival of patients with ALF by providing additional time for liver transplantation or regeneration.

  13. Methylmalonic acidemia (MMA) in pregnancy: a case series and literature review.

    PubMed

    Raval, Donna B; Merideth, Melissa; Sloan, Jennifer L; Braverman, Nancy E; Conway, Robert L; Manoli, Irini; Venditti, Charles P

    2015-09-01

    Women with inherited metabolic disorders, including those with previously life-limiting conditions such as MMA, are reaching child-bearing age more often due to advances in early diagnosis and improved pediatric care. Information surrounding maternal and fetal complications associated with the underlying disorders remains largely unexplored. Pregnancies affected by maternal MMA were ascertained through study 04-HG-0127 "Clinical and Basic Investigations of Methylmalonic Acidemia and Related Disorders" (clinicaltrials.gov identifier: NCT00078078) and via literature review. Prenatal and delivery records in study participants were reviewed. Seventeen pregnancies were identified in women with isolated MMA, including three abortions, one termination, and 13 completed pregnancies [three cases with cblA (four pregnancies), four cases of mut- (one cobalamin responsive, three non-responsive), five cases with unknown type of MMA]. Seventeen percent (3/17) of the pregnancies resulted in a first trimester abortion, while 38.5% (5/13) of the completed pregnancies resulted in preterm deliveries. A cesarean delivery rate of 53.8% (7/13) was noted among the cohort. Fetal distress or nonreassuring fetal status was the indication for 57% (4/7) cesarean deliveries. One patient was reported to have metabolic crisis as well as episodes of mild hyperammonemia. Malformations or adverse outcomes in the progeny were not observed. Although there have been a small number of pregnancies identified in women with MMA, the cumulative results suggest that the majority of pregnancies can be complicated by cesarean delivery and increased risk of prematurity. A pregnancy registry could clarify perinatal complications and define management approaches needed to ensure optimal maternal and fetal outcomes in this growing patient population.

  14. Short-term rescue of neonatal lethality in a mouse model of propionic acidemia by gene therapy.

    PubMed

    Hofherr, Sean E; Senac, Julien S; Chen, Christopher Y; Palmer, Donna J; Ng, Philip; Barry, Michael A

    2009-02-01

    Propionic acidemia (PA) is a metabolic disorder that causes mental retardation and that can be fatal if untreated. PA is inherited in an autosomal recessive fashion involving mutations in PCCA or PCCB encoding the alpha and beta subunits of propionyl-CoA carboxylase (PCC). Current treatment is based on dietary restriction of substrate amino acids, which attenuates symptoms. However, patients still experience episodes of hyperammonemia that can cause progressive neurologic damage. In this paper, we have tested gene therapy approaches to PA in a stringent mouse model of PCCA deficiency, in which homozygous knockout mice are born but die within 36 hr. In this work, we have delivered first-generation and helper-dependent adenovirus serotype 5 (Ad5) vectors expressing the human PCCA cDNA by intraperitoneal injection into newborn mice. Unmodified Ad5 vectors mediated extensive transduction of the peritoneum with weak liver transduction as determined by luciferase imaging and dsRed expression. In contrast, modification of Ad5 with polyethylene glycol detargeted the virus from the peritoneum and retargeted it for transduction in the liver. When vectors expressing PCCA were injected, significant increases in life span were observed for both the unmodified and polyethylene glycol (PEG)-modified Ad5 vectors. However, this rescue was transient. Similarly, adeno-associated virus serotype 8-mediated transduction also produced only transient rescue. These data show first proof of principle for gene therapy of PA and demonstrate the potential utility of PEG to modify viral tropism in an actual gene therapy application.

  15. The Etiology of Cirrhosis is a Strong Determinant of Brain Reserve: A Multi-modal MR Imaging Study

    PubMed Central

    Ahluwalia, Vishwadeep; Wade, James B; Moeller, F Gerard; White, Melanie B; Unser, Ariel B; Gavis, Edith A; Sterling, Richard K; Stravitz, R Todd; Sanyal, Arun J; Siddiqui, Mohammad S; Puri, Puneet; Luketic, Velimir; Heuman, Douglas M; Fuchs, Michael; Matherly, Scott; Bajaj, Jasmohan S

    2015-01-01

    Background Poor brain reserve in alcoholic cirrhosis could worsen insight regarding disease severity and increase the patients’ vulnerability towards further deterioration. Aim To analyze brain reserve in abstinent alcoholic (Alc) compared to non-alcoholic (Nalc) cirrhosis patients in the context of hepatic encephalopathy (HE) and evaluate relative change in brain reserve between groups over time and before/after elective TIPS placement. Methods Cross-sectional study 46 Alc and 102 Nalc outpatients with or without HE. Cognitive tests followed by magnetic resonance (MR) imaging including 1-H MR Spectroscopy (MRS), Diffusion tensor (DTI) and T1-weighted imaging. Prospective study MRS on subset of 10 patients before/after TIPS placement. Another subset of 26 patients underwent MRS at least one year apart. Results Cross-sectional study Alc patients were worse on cognitive tests than Nalc. MR results suggest a greater effect of hyperammonemia, brain edema and significantly higher cortical damage in Alc as compared to Nalc patients. Effect of HE status on cognitive tests and brain reserve was more marked in Nalc than in Alc group. TIPS study Nalc patients showed a greater adverse relative change after TIPS compared to Alc group. 1-year follow-up Both groups remained stable between the two visits. However, Alc patients continued to show poor brain reserve than Nalc over time. Conclusions Patients with alcoholic cirrhosis, despite abstinence, have a poor brain reserve while, non-alcoholic cirrhosis patients have a greater potential for brain reserve deterioration after HE and TIPS. Information regarding the brain reserve in cirrhosis could assist medical teams to refine their communication and monitoring strategies for different etiologies. PMID:25939692

  16. Relationship between oxidative stress and brain swelling in goldfish (Carassius auratus) exposed to high environmental ammonia.

    PubMed

    Lisser, David F J; Lister, Zachary M; Pham-Ho, Phillip Q H; Scott, Graham R; Wilkie, Michael P

    2017-01-01

    Buildups of ammonia can cause potentially fatal brain swelling in mammals, but such swelling is reversible in the anoxia- and ammonia-tolerant goldfish (Carassius auratus). We investigated brain swelling and its possible relationship to oxidative stress in the brain and liver of goldfish acutely exposed to high external ammonia (HEA; 5 mmol/l NH 4 Cl) at two different acclimation temperatures (14°C, 4°C). Exposure to HEA at 14°C for 72h resulted in increased internal ammonia and glutamine concentrations in the brain, and it caused cellular oxidative damage in the brain and liver. However, oxidative damage was most pronounced in brain, in which there was a twofold increase in thiobarbituric acid-reactive substances, a threefold increase in protein carbonylation, and a 20% increase in water volume (indicative of brain swelling). Increased activities of catalase, glutathione peroxidase, and glutathione reductase in the brain suggested that goldfish upregulate their antioxidant capacity to partially offset oxidative stress during hyperammonemia at 14°C. Notably, acclimation to colder (4°C) water completely attenuated the oxidative stress response to HEA in both tissues, and there was no change in brain water volume despite similar increases in internal ammonia. We suggest that ammonia-induced oxidative stress may be responsible for the swelling of goldfish brain during HEA, but further studies are needed to establish a mechanistic link between reactive oxygen species production and brain swelling. Nevertheless, a high capacity to withstand oxidative stress in response to variations in internal ammonia likely explains why goldfish are more resilient to this stressor than most other vertebrates. Copyright © 2017 the American Physiological Society.

  17. Relationship between oxidative stress and brain swelling in goldfish (Carassius auratus) exposed to high environmental ammonia

    PubMed Central

    Lisser, David F. J.; Lister, Zachary M.; Pham-Ho, Phillip Q. H.; Scott, Graham R.

    2017-01-01

    Buildups of ammonia can cause potentially fatal brain swelling in mammals, but such swelling is reversible in the anoxia- and ammonia-tolerant goldfish (Carassius auratus). We investigated brain swelling and its possible relationship to oxidative stress in the brain and liver of goldfish acutely exposed to high external ammonia (HEA; 5 mmol/l NH4Cl) at two different acclimation temperatures (14°C, 4°C). Exposure to HEA at 14°C for 72h resulted in increased internal ammonia and glutamine concentrations in the brain, and it caused cellular oxidative damage in the brain and liver. However, oxidative damage was most pronounced in brain, in which there was a twofold increase in thiobarbituric acid–reactive substances, a threefold increase in protein carbonylation, and a 20% increase in water volume (indicative of brain swelling). Increased activities of catalase, glutathione peroxidase, and glutathione reductase in the brain suggested that goldfish upregulate their antioxidant capacity to partially offset oxidative stress during hyperammonemia at 14°C. Notably, acclimation to colder (4°C) water completely attenuated the oxidative stress response to HEA in both tissues, and there was no change in brain water volume despite similar increases in internal ammonia. We suggest that ammonia-induced oxidative stress may be responsible for the swelling of goldfish brain during HEA, but further studies are needed to establish a mechanistic link between reactive oxygen species production and brain swelling. Nevertheless, a high capacity to withstand oxidative stress in response to variations in internal ammonia likely explains why goldfish are more resilient to this stressor than most other vertebrates. PMID:27784686

  18. Organ distribution of 13N following intravenous injection of [13N]ammonia into portacaval-shunted rats

    PubMed Central

    Cruz, Nancy F.; Dienel, Gerald A.; Patrick, Tricia A.; Cooper, Arthur J. L.

    2016-01-01

    Ammonia is neurotoxic, and chronic hyperammonemia is thought to be a major contributing factor to hepatic encephalopathy in patients with liver disease. Portacaval shunting of rats is used as an animal model to study the detrimental metabolic effects of elevated ammonia levels on body tissues, particularly brain and testes that are deleteriously targeted by high blood ammonia. In normal adult rats, the initial uptake of label (expressed as relative concentration) in these organs was relatively low following a bolus intravenous injection of [13N]ammonia compared with lungs, kidneys, liver, and some other organs. The objective of the present study was to determine the distribution of label following intravenous administration of [13N]ammonia among 14 organs in portacaval-shunted rats at 12 weeks after shunt construction. At an early time point (12 sec) following administration of [13N]ammonia the relative concentration of label was highest in lung with lower, but still appreciable relative concentrations in kidney and heart. Clearance of 13N from blood and kidney tended to be slower in portacaval-shunted rats versus normal rats during the 2–10 min interval after the injection. At later times post injection, brain and testes tended to have higher-than-normal 13N levels, whereas many other tissues had similar levels in both groups. Thus, reduced removal of ammonia from circulating blood by the liver diverts more ammonia to extrahepatic tissues, including brain and testes, and alters the nitrogen homeostasis in these tissues. These results emphasize the importance of treatment paradigms designed to reduce blood ammonia levels in patients with liver disease. PMID:27822667

  19. Organ Distribution of 13N Following Intravenous Injection of [13N]Ammonia into Portacaval-Shunted Rats.

    PubMed

    Cruz, Nancy F; Dienel, Gerald A; Patrick, Patricia A; Cooper, Arthur J L

    2017-06-01

    Ammonia is neurotoxic, and chronic hyperammonemia is thought to be a major contributing factor to hepatic encephalopathy in patients with liver disease. Portacaval shunting of rats is used as an animal model to study the detrimental metabolic effects of elevated ammonia levels on body tissues, particularly brain and testes that are deleteriously targeted by high blood ammonia. In normal adult rats, the initial uptake of label (expressed as relative concentration) in these organs was relatively low following a bolus intravenous injection of [ 13 N]ammonia compared with lungs, kidneys, liver, and some other organs. The objective of the present study was to determine the distribution of label following intravenous administration of [ 13 N]ammonia among 14 organs in portacaval-shunted rats at 12 weeks after shunt construction. At an early time point (12 s) following administration of [ 13 N]ammonia the relative concentration of label was highest in lung with lower, but still appreciable relative concentrations in kidney and heart. Clearance of 13 N from blood and kidney tended to be slower in portacaval-shunted rats versus normal rats during the 2-10 min interval after the injection. At later times post injection, brain and testes tended to have higher-than-normal 13 N levels, whereas many other tissues had similar levels in both groups. Thus, reduced removal of ammonia from circulating blood by the liver diverts more ammonia to extrahepatic tissues, including brain and testes, and alters the nitrogen homeostasis in these tissues. These results emphasize the importance of treatment paradigms designed to reduce blood ammonia levels in patients with liver disease.

  20. Management of Neurologic Manifestations in Patients with Liver Disease.

    PubMed

    Ferro, José M; Viana, Pedro; Santos, Patrícia

    2016-08-01

    Liver disease, both in its acute and chronic forms, can be associated with a wide spectrum of neurologic manifestations, both central and peripheral, ranging in severity from subclinical changes to neurocritical conditions. Neurologists are frequently consulted to participate in their management. In this review, we present an overview of management strategies for patients with hepatic disease whose clinical course is complicated by neurologic manifestations. Type A hepatic encephalopathy (HE), which occurs in acute liver failure, is a neurologic emergency, and multiple measures should be taken to prevent and treat cerebral edema. In Type C HE, which occurs in chronic liver disease, management should be aimed at correcting precipitant factors and hyperammonemia. There is an increasing spectrum of drug treatments available to minimize ammonia toxicity. Acquired hepatocerebral degeneration is a rare complication of the chronic form of HE, with typical clinical and brain MRI findings, whose most effective treatment is liver transplantation. Epilepsy is frequent and of multifactorial cause in patients with hepatic disease, and careful considerations should be made regarding choice of the appropriate anti-epileptic drugs. Several mechanisms increase the risk of stroke in hepatic disease, but many of the drugs used to treat and prevent stroke are contraindicated in severe hepatic failure. Hepatitis C infection increases the risk of ischemic stroke. Hemorrhagic stroke is more frequent in patients with liver disease of alcoholic etiology. Viral hepatitis is associated with a wide range of immune-mediated complications, mostly in the peripheral nervous system, which respond to different types of immunomodulatory treatment. Several drugs used to treat hepatic disease, such as the classical and the new direct-acting antivirals, may have neurologic complications which in some cases preclude its continued use.

  1. A case of fatal intoxication with ammonium sulfate and a toxicological study using rabbits.

    PubMed

    Sato, A; Gonmori, K; Yoshioka, N

    1999-04-26

    Agricultural fertilizers such as ammonium sulfate are widely used in house gardens as well as in agriculture, but few case reports or toxicological studies of ingested fertilizers have been reported. This paper investigates a fatal case of ammonium sulfate poisoning and demonstrates its clinical and biochemical findings in rabbits. An 85-year-old woman was found dead lying on the ground outside her house in the middle of March, but the autopsy could not determine the cause of her death. Examination at the police laboratory of the solution in the beer can found next to her showed that it was very likely ammonium sulfate. Our measurement showed a significant increase of ammonium and sulfate ions in serum and gastric contents. The cause of her death was determined as poisoning by ammonium sulfate. The total dose of 1500 mg/kg of ammonium sulfate was administered to three rabbits, all of which showed similar symptoms such as mydriasis, irregular respiratory rhythms, local and general convulsions, until they fell into respiratory failure with cardiac arrest. EEG showed slow, suppressive waves and high-amplitude slowing wave pattern, which is generally observed clinically in hyperammonemia in man and animal. There was a remarkable increase in the concentration of ammonium ion and inorganic sulfate ion in serum, and blood gas analysis showed severe metabolic acidosis. These results, mainly findings by EEG, have shown that a rapid increase in ammonium ions in blood can cause damaging the central nervous system without microscopic change. When the cause of death can not be determined, measurement of ammonium ion, inorganic ion and electrolytes in blood as well as in stomach contents at forensic autopsy is necessary.

  2. Profile of sodium phenylbutyrate granules for the treatment of urea-cycle disorders: patient perspectives.

    PubMed

    Peña-Quintana, Luis; Llarena, Marta; Reyes-Suárez, Desiderio; Aldámiz-Echevarria, Luis

    2017-01-01

    Urea-cycle disorders are a group of rare hereditary metabolic diseases characterized by deficiencies of one of the enzymes and transporters involved in the urea cycle, which is necessary for the removal of nitrogen produced from protein breakdown. These hereditary metabolic diseases are characterized by hyperammonemia and life-threatening hyperammonemic crises. Pharmacological treatment of urea-cycle disorders involves alternative nitrogen-scavenging pathways. Sodium benzoate combines with glycine and phenylacetate/phenylbutyrate with glutamine, forming, respectively, hippuric acid and phenylacetylglutamine, which are eliminated in the urine. Among the ammonia-scavenging drugs, sodium phenylbutyrate is a well-known long-term treatment of urea-cycle disorders. It has been used since 1987 as an investigational new drug, and was approved for marketing in the US in 1996 and the EU in 1999. However, sodium phenylbutyrate has an aversive odor and taste, which may compromise patients' compliance, and many patients have reported difficulty in taking this drug. Sodium phenylbutyrate granules are a new tasteless and odor-free formulation of sodium phenylbutyrate, which is indicated in the treatment of urea-cycle disorders. This recently developed taste-masked formulation of sodium phenylbutyrate granules was designed to overcome the considerable issues that taste has on adherence to therapy. Several studies have reported the clinical experience of patients with urea-cycle disorders treated with this new tasteless formulation of sodium phenylbutyrate. Analysis of the data indicated that this taste-masked formulation of sodium phenylbutyrate granules improved quality of life for urea-cycle disorder patients. Furthermore, a postmarketing report on the use of the product has confirmed the previous observations of improved compliance, efficacy, and safety with this taste-masked formulation of sodium phenylbutyrate.

  3. Biallelic Mutations in ATP5F1D , which Encodes a Subunit of ATP Synthase, Cause a Metabolic Disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oláhová, Monika; Yoon, Wan Hee; Thompson, Kyle

    ATP synthase, H + transporting, mitochondrial F1 complex, δ subunit (ATP5F1D; formerly ATP5D) is a subunit of mitochondrial ATP synthase and plays an important role in coupling proton translocation and ATP production. Here, we describe two individuals, each with homozygous missense variants in ATP5F1D, who presented with episodic lethargy, metabolic acidosis, 3-methylglutaconic aciduria, and hyperammonemia. Subject 1, homozygous for c.245C>T (p.Pro82Leu), presented with recurrent metabolic decompensation starting in the neonatal period, and subject 2, homozygous for c.317T>G (p.Val106Gly), presented with acute encephalopathy in childhood. Cultured skin fibroblasts from these individuals exhibited impaired assembly of F 1F O ATP synthase andmore » subsequent reduced complex V activity. Cells from subject 1 also exhibited a significant decrease in mitochondrial cristae. Knockdown of Drosophila ATPsynδ, the ATP5F1D homolog, in developing eyes and brains caused a near complete loss of the fly head, a phenotype that was fully rescued by wild-type human ATP5F1D. In contrast, expression of the ATP5F1D c.245C>T and c.317T>G variants rescued the head-size phenotype but recapitulated the eye and antennae defects seen in other genetic models of mitochondrial oxidative phosphorylation deficiency. Our data establish c.245C>T (p.Pro82Leu) and c.317T>G (p.Val106Gly) in ATP5F1D as pathogenic variants leading to a Mendelian mitochondrial disease featuring episodic metabolic decompensation.« less

  4. SLC25A13 c.1610_1612delinsAT mutation in an Indian patient and literature review of 79 cases of citrin deficiency for genotype-phenotype associations.

    PubMed

    Devi, A Radha Rama; Naushad, Shaik Mohammad

    2018-05-19

    Here, we report SLC25A13 c.1610_1612delinsAT mutation from India in a 13-year old boy who presented with recurrent episodes of delirium and hyperammonemia. This is the second case with this mutation; the first case was of Pakistani origin. The boy responded to diet modification, sodium benzoate and arginine supplementation. Furthermore, we have aimed to establish genotype-phenotype correlation of 79 cases of citrin deficiency (46 males and 33 females) reported in 24 studies from all over the world. Inverse association was observed between age of onset and jaundice (r = -0.73). Late age of onset was associated with delirium (r = 0.61), aggressive behaviour (r = 0.67), altered sensorium (r = 0.67) and tremors (r = 0.65). The most common mutations associated with citrin deficiency were c.851_854del4, IVS16ins3kb, 1638-1660dup with a frequency of 42.41%, 16.46% and 6.33%, respectively. The c.851_854del4 mutation showed positive association with alpha feto protein (r = 0.40), ammonia (r = 0.50) and tyrosine (r = 0.40) while showing inverse association with threonine (r = -0.55). The IVS16ins3kb mutation was associated with high total (r = 0.65) and conjugated bilirubin (r = 0.54) along with high aspartate transaminase (r = 0.49) while citrulline levels are lower (r = -0.36). To conclude, all cases of intrahepatic cholestasis and neuropsychiatric abnormalities should be evaluated for citrin deficiency. However, the ethnic group-specific mutation frequencies should be considered in implementing for screening. Copyright © 2017. Published by Elsevier B.V.

  5. Sudden unexpected fatal encephalopathy in adults with OTC gene mutations-Clues for early diagnosis and timely treatment

    PubMed Central

    2014-01-01

    Background X-linked Ornithine Transcarbamylase deficiency (OTCD) is often unrecognized in adults, as clinical manifestations are non-specific, often episodic and unmasked by precipitants, and laboratory findings can be normal outside the acute phase. It may thus be associated with significant mortality if not promptly recognized and treated. The aim of this study was to provide clues for recognition of OTCD in adults and analyze the environmental factors that, interacting with OTC gene mutations, might have triggered acute clinical manifestations. Methods We carried out a clinical, biochemical and molecular study on five unrelated adult patients (one female and four males) with late onset OTCD, who presented to the Emergency Department (ED) with initial fatal encephalopathy. The molecular study consisted of OTC gene sequencing in the probands and family members and in silico characterization of the newly detected mutations. Results We identified two new, c.119G>T (p.Arg40Leu) and c.314G>A (p.Gly105Glu), and three known OTC mutations. Both new mutations were predicted to cause a structural destabilization, correlating with late onset OTCD. We also identified, among the family members, 8 heterozygous females and 2 hemizygous asymptomatic males. Patients' histories revealed potential environmental triggering factors, including steroid treatment, chemotherapy, diet changes and hormone therapy for in vitro fertilization. Conclusions This report raises awareness of the ED medical staff in considering OTCD in the differential diagnosis of sudden neurological and behavioural disorders associated with hyperammonemia at any age and in both genders. It also widens the knowledge about combined effect of genetic and environmental factors in determining the phenotypic expression of OTCD. PMID:25026867

  6. Lactulose attenuates METH-induced neurotoxicity by alleviating the impaired autophagy, stabilizing the perturbed antioxidant system and suppressing apoptosis in rat striatum.

    PubMed

    Xie, Xiao-Li; He, Jie-Tao; Wang, Zheng-Tao; Xiao, Huan-Qin; Zhou, Wen-Tao; Du, Si-Hao; Xue, Ye; Wang, Qi

    2018-06-01

    Methamphetamine (METH) is a widely abused psychostimulant. Lactulose is a non-absorbable sugar, which effectively decreases METH-induced neurotoxicity in rat. However, the exact mechanisms need further investigation. In this study, 5-week-old male Sprague Dawley rats received METH (15 mg/kg, 8 intraperitoneal injections, 12-h interval) or saline and received lactulose (5.3 g/kg, oral gavage, 12-h interval) or vehicle 2 days prior to the METH administration. Compared to the control group, in the METH alone group, cytoplasmic vacuolar degeneration in hepatocytes, higher levels of alanine transaminase, aspartate transaminase and ammonia, overproduction of reactive oxygen species (ROS) and increase of superoxide dismutase activity in the blood were observed. Moreover, in rat striatum, expressions of nuclear factor erythroid 2-relatted factor-2 (Nrf2) and heme oxygenase-1 were suppressed in the nucleus, although over-expression of Nrf2 were observed in cytoplasm. Over-expressions of BECN1 and LC3-II indicated initiation of autophagy, while overproduction of p62 might suggest deficient autophagic vesicle turnover and impaired autophagy. Furthermore, accumulation of p62 cloud interact with Keap1 and then aggravate cytoplasmic accumulation of Nrf2. Consistently, over-expressions of cleaved caspase 3 and poly(ADP-ribose) polymerase-1 suggested the activation of apoptosis. The pretreatment with lactulose significantly decreased rat hepatic injury, suppressed hyperammonemia and ROS generation, alleviated the impaired autophagy in striatum, rescued the antioxidant system and repressed apoptosis. Taken together, with decreased blood ammonia, lactulose pretreatment reduced METH-induced neurotoxicity through alleviating the impaired autophagy, stabilizing the perturbed antioxidant system and suppressing apoptosis in rat striatum. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Rifaximin Exerts Beneficial Effects Independent of its Ability to Alter Microbiota Composition.

    PubMed

    Kang, Dae J; Kakiyama, Genta; Betrapally, Naga S; Herzog, Jeremy; Nittono, Hiroshi; Hylemon, Phillip B; Zhou, Huiping; Carroll, Ian; Yang, Jing; Gillevet, Patrick M; Jiao, Chunhua; Takei, Hajime; Pandak, William M; Iida, Takashi; Heuman, Douglas M; Fan, Sili; Fiehn, Oliver; Kurosawa, Takao; Sikaroodi, Masoumeh; Sartor, R B; Bajaj, Jasmohan S

    2016-08-25

    Rifaximin has clinical benefits in minimal hepatic encephalopathy (MHE) but the mechanism of action is unclear. The antibiotic-dependent and -independent effects of rifaximin need to be elucidated in the setting of MHE-associated microbiota. To assess the action of rifaximin on intestinal barrier, inflammatory milieu and ammonia generation independent of microbiota using rifaximin. Four germ-free (GF) mice groups were used (1) GF, (2) GF+rifaximin, (3) Humanized with stools from an MHE patient, and (4) Humanized+rifaximin. Mice were followed for 30 days while rifaximin was administered in chow at 100 mg/kg from days 16-30. We tested for ammonia generation (small-intestinal glutaminase, serum ammonia, and cecal glutamine/amino-acid moieties), systemic inflammation (serum IL-1β, IL-6), intestinal barrier (FITC-dextran, large-/small-intestinal expression of IL-1β, IL-6, MCP-1, e-cadherin and zonulin) along with microbiota composition (colonic and fecal multi-tagged sequencing) and function (endotoxemia, fecal bile acid deconjugation and de-hydroxylation). All mice survived until day 30. In the GF setting, rifaximin decreased intestinal ammonia generation (lower serum ammonia, increased small-intestinal glutaminase, and cecal glutamine content) without changing inflammation or intestinal barrier function. Humanized microbiota increased systemic/intestinal inflammation and endotoxemia without hyperammonemia. Rifaximin therapy significantly ameliorated these inflammatory cytokines. Rifaximin also favorably impacted microbiota function (reduced endotoxin and decreased deconjugation and formation of potentially toxic secondary bile acids), but not microbial composition in humanized mice. Rifaximin beneficially alters intestinal ammonia generation by regulating intestinal glutaminase expression independent of gut microbiota. MHE-associated fecal colonization results in intestinal and systemic inflammation in GF mice, which is also ameliorated with rifaximin.

  8. Aberrant expression and distribution of enzymes of the urea cycle and other ammonia metabolizing pathways in dogs with congenital portosystemic shunts.

    PubMed

    van Straten, Giora; van Steenbeek, Frank G; Grinwis, Guy C M; Favier, Robert P; Kummeling, Anne; van Gils, Ingrid H; Fieten, Hille; Groot Koerkamp, Marian J A; Holstege, Frank C P; Rothuizen, Jan; Spee, Bart

    2014-01-01

    The detoxification of ammonia occurs mainly through conversion of ammonia to urea in the liver via the urea cycle and glutamine synthesis. Congenital portosystemic shunts (CPSS) in dogs cause hyperammonemia eventually leading to hepatic encephalopathy. In this study, the gene expression of urea cycle enzymes (carbamoylphosphate synthetase (CPS1), ornithine carbamoyltransferase (OTC), argininosuccinate synthetase (ASS1), argininosuccinate lyase (ASL), and arginase (ARG1)), N-acetylglutamate synthase (NAGS), Glutamate dehydrogenase (GLUD1), and glutamate-ammonia ligase (GLUL) was evaluated in dogs with CPSS before and after surgical closure of the shunt. Additionally, immunohistochemistry was performed on urea cycle enzymes and GLUL on liver samples of healthy dogs and dogs with CPSS to investigate a possible zonal distribution of these enzymes within the liver lobule and to investigate possible differences in distribution in dogs with CPSS compared to healthy dogs. Furthermore, the effect of increasing ammonia concentrations on the expression of the urea cycle enzymes was investigated in primary hepatocytes in vitro. Gene-expression of CPS1, OTC, ASL, GLUD1 and NAGS was down regulated in dogs with CPSS and did not normalize after surgical closure of the shunt. In all dogs GLUL distribution was localized pericentrally. CPS1, OTC and ASS1 were localized periportally in healthy dogs, whereas in CPSS dogs, these enzymes lacked a clear zonal distribution. In primary hepatocytes higher ammonia concentrations induced mRNA levels of CPS1. We hypothesize that the reduction in expression of urea cycle enzymes, NAGS and GLUD1 as well as the alterations in zonal distribution in dogs with CPSS may be caused by a developmental arrest of these enzymes during the embryonic or early postnatal phase.

  9. Hyperammonemia and Systemic Inflammatory Response Syndrome Predicts Presence of Hepatic Encephalopathy in Dogs with Congenital Portosystemic Shunts

    PubMed Central

    Tivers, Mickey S.; Handel, Ian; Gow, Adam G.; Lipscomb, Vicky J.; Jalan, Rajiv; Mellanby, Richard J.

    2014-01-01

    Hepatic encephalopathy (HE) is an important cause of morbidity and mortality in patients with liver disease. The pathogenesis of he is incompletely understood although ammonia and inflammatory cytokines have been implicated as key mediators. To facilitate further mechanistic understanding of the pathogenesis of HE, a large number of animal models have been developed which often involve the surgical creation of an anastomosis between the hepatic portal vein and the caudal vena cava. One of the most common congenital abnormalities in dogs is a congenital portosystemic shunt (cpss), which closely mimics these surgical experimental models of HE. Dogs with a cPSS often have clinical signs which mimic clinical signs observed in humans with HE. Our hypothesis is that the pathogenesis of HE in dogs with a cPSS is similar to humans with HE. The aim of the study was to measure a range of clinical, haematological and biochemical parameters, which have been linked to the development of HE in humans, in dogs with a cPSS and a known HE grade. One hundred and twenty dogs with a cPSS were included in the study and multiple regression analysis of clinical, haematological and biochemical variables revealed that plasma ammonia concentrations and systemic inflammatory response syndrome scores predicted the presence of HE. Our findings further support the notion that the pathogenesis of canine and human HE share many similarities and indicate that dogs with cPSS may be an informative spontaneous model of human HE. Further investigations on dogs with cPSS may allow studies on HE to be undertaken without creating surgical models of HE thereby allowing the number of large animals used in animal experimentation to be reduced. PMID:24392080

  10. Hyperammonemia and systemic inflammatory response syndrome predicts presence of hepatic encephalopathy in dogs with congenital portosystemic shunts.

    PubMed

    Tivers, Mickey S; Handel, Ian; Gow, Adam G; Lipscomb, Vicky J; Jalan, Rajiv; Mellanby, Richard J

    2014-01-01

    Hepatic encephalopathy (HE) is an important cause of morbidity and mortality in patients with liver disease. The pathogenesis of he is incompletely understood although ammonia and inflammatory cytokines have been implicated as key mediators. To facilitate further mechanistic understanding of the pathogenesis of HE, a large number of animal models have been developed which often involve the surgical creation of an anastomosis between the hepatic portal vein and the caudal vena cava. One of the most common congenital abnormalities in dogs is a congenital portosystemic shunt (cpss), which closely mimics these surgical experimental models of HE. Dogs with a cPSS often have clinical signs which mimic clinical signs observed in humans with HE. Our hypothesis is that the pathogenesis of HE in dogs with a cPSS is similar to humans with HE. The aim of the study was to measure a range of clinical, haematological and biochemical parameters, which have been linked to the development of HE in humans, in dogs with a cPSS and a known HE grade. One hundred and twenty dogs with a cPSS were included in the study and multiple regression analysis of clinical, haematological and biochemical variables revealed that plasma ammonia concentrations and systemic inflammatory response syndrome scores predicted the presence of HE. Our findings further support the notion that the pathogenesis of canine and human HE share many similarities and indicate that dogs with cPSS may be an informative spontaneous model of human HE. Further investigations on dogs with cPSS may allow studies on HE to be undertaken without creating surgical models of HE thereby allowing the number of large animals used in animal experimentation to be reduced.

  11. Biallelic Mutations in ATP5F1D, which Encodes a Subunit of ATP Synthase, Cause a Metabolic Disorder.

    PubMed

    Oláhová, Monika; Yoon, Wan Hee; Thompson, Kyle; Jangam, Sharayu; Fernandez, Liliana; Davidson, Jean M; Kyle, Jennifer E; Grove, Megan E; Fisk, Dianna G; Kohler, Jennefer N; Holmes, Matthew; Dries, Annika M; Huang, Yong; Zhao, Chunli; Contrepois, Kévin; Zappala, Zachary; Frésard, Laure; Waggott, Daryl; Zink, Erika M; Kim, Young-Mo; Heyman, Heino M; Stratton, Kelly G; Webb-Robertson, Bobbie-Jo M; Snyder, Michael; Merker, Jason D; Montgomery, Stephen B; Fisher, Paul G; Feichtinger, René G; Mayr, Johannes A; Hall, Julie; Barbosa, Ines A; Simpson, Michael A; Deshpande, Charu; Waters, Katrina M; Koeller, David M; Metz, Thomas O; Morris, Andrew A; Schelley, Susan; Cowan, Tina; Friederich, Marisa W; McFarland, Robert; Van Hove, Johan L K; Enns, Gregory M; Yamamoto, Shinya; Ashley, Euan A; Wangler, Michael F; Taylor, Robert W; Bellen, Hugo J; Bernstein, Jonathan A; Wheeler, Matthew T

    2018-03-01

    ATP synthase, H + transporting, mitochondrial F1 complex, δ subunit (ATP5F1D; formerly ATP5D) is a subunit of mitochondrial ATP synthase and plays an important role in coupling proton translocation and ATP production. Here, we describe two individuals, each with homozygous missense variants in ATP5F1D, who presented with episodic lethargy, metabolic acidosis, 3-methylglutaconic aciduria, and hyperammonemia. Subject 1, homozygous for c.245C>T (p.Pro82Leu), presented with recurrent metabolic decompensation starting in the neonatal period, and subject 2, homozygous for c.317T>G (p.Val106Gly), presented with acute encephalopathy in childhood. Cultured skin fibroblasts from these individuals exhibited impaired assembly of F 1 F O ATP synthase and subsequent reduced complex V activity. Cells from subject 1 also exhibited a significant decrease in mitochondrial cristae. Knockdown of Drosophila ATPsynδ, the ATP5F1D homolog, in developing eyes and brains caused a near complete loss of the fly head, a phenotype that was fully rescued by wild-type human ATP5F1D. In contrast, expression of the ATP5F1D c.245C>T and c.317T>G variants rescued the head-size phenotype but recapitulated the eye and antennae defects seen in other genetic models of mitochondrial oxidative phosphorylation deficiency. Our data establish c.245C>T (p.Pro82Leu) and c.317T>G (p.Val106Gly) in ATP5F1D as pathogenic variants leading to a Mendelian mitochondrial disease featuring episodic metabolic decompensation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Imbalance of plasma amino acids, metabolites and lipids in patients with lysinuric protein intolerance (LPI).

    PubMed

    Kurko, Johanna; Tringham, Maaria; Tanner, Laura; Näntö-Salonen, Kirsti; Vähä-Mäkilä, Mari; Nygren, Heli; Pöhö, Päivi; Lietzen, Niina; Mattila, Ismo; Olkku, Anu; Hyötyläinen, Tuulia; Orešič, Matej; Simell, Olli; Niinikoski, Harri; Mykkänen, Juha

    2016-09-01

    Lysinuric protein intolerance (LPI [MIM 222700]) is an aminoaciduria with defective transport of cationic amino acids in epithelial cells in the small intestine and proximal kidney tubules due to mutations in the SLC7A7 gene. LPI is characterized by protein malnutrition, failure to thrive and hyperammonemia. Many patients also suffer from combined hyperlipidemia and chronic kidney disease (CKD) with an unknown etiology. Here, we studied the plasma metabolomes of the Finnish LPI patients (n=26) and healthy control individuals (n=19) using a targeted platform for analysis of amino acids as well as two analytical platforms with comprehensive coverage of molecular lipids and polar metabolites. Our results demonstrated that LPI patients have a dichotomy of amino acid profiles, with both decreased essential and increased non-essential amino acids. Altered levels of metabolites participating in pathways such as sugar, energy, amino acid and lipid metabolism were observed. Furthermore, of these metabolites, myo-inositol, threonic acid, 2,5-furandicarboxylic acid, galactaric acid, 4-hydroxyphenylacetic acid, indole-3-acetic acid and beta-aminoisobutyric acid associated significantly (P<0.001) with the CKD status. Lipid analysis showed reduced levels of phosphatidylcholines and elevated levels of triacylglycerols, of which long-chain triacylglycerols associated (P<0.01) with CKD. This study revealed an amino acid imbalance affecting the basic cellular metabolism, disturbances in plasma lipid composition suggesting hepatic steatosis and fibrosis and novel metabolites correlating with CKD in LPI. In addition, the CKD-associated metabolite profile along with increased nitrite plasma levels suggests that LPI may be characterized by increased oxidative stress and apoptosis, altered microbial metabolism in the intestine and uremic toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Biallelic Mutations in ATP5F1D , which Encodes a Subunit of ATP Synthase, Cause a Metabolic Disorder

    DOE PAGES

    Oláhová, Monika; Yoon, Wan Hee; Thompson, Kyle; ...

    2018-02-22

    ATP synthase, H + transporting, mitochondrial F1 complex, δ subunit (ATP5F1D; formerly ATP5D) is a subunit of mitochondrial ATP synthase and plays an important role in coupling proton translocation and ATP production. Here, we describe two individuals, each with homozygous missense variants in ATP5F1D, who presented with episodic lethargy, metabolic acidosis, 3-methylglutaconic aciduria, and hyperammonemia. Subject 1, homozygous for c.245C>T (p.Pro82Leu), presented with recurrent metabolic decompensation starting in the neonatal period, and subject 2, homozygous for c.317T>G (p.Val106Gly), presented with acute encephalopathy in childhood. Cultured skin fibroblasts from these individuals exhibited impaired assembly of F 1F O ATP synthase andmore » subsequent reduced complex V activity. Cells from subject 1 also exhibited a significant decrease in mitochondrial cristae. Knockdown of Drosophila ATPsynδ, the ATP5F1D homolog, in developing eyes and brains caused a near complete loss of the fly head, a phenotype that was fully rescued by wild-type human ATP5F1D. In contrast, expression of the ATP5F1D c.245C>T and c.317T>G variants rescued the head-size phenotype but recapitulated the eye and antennae defects seen in other genetic models of mitochondrial oxidative phosphorylation deficiency. Our data establish c.245C>T (p.Pro82Leu) and c.317T>G (p.Val106Gly) in ATP5F1D as pathogenic variants leading to a Mendelian mitochondrial disease featuring episodic metabolic decompensation.« less

  14. Aberrant Expression and Distribution of Enzymes of the Urea Cycle and Other Ammonia Metabolizing Pathways in Dogs with Congenital Portosystemic Shunts

    PubMed Central

    van Straten, Giora; van Steenbeek, Frank G.; Grinwis, Guy C. M.; Favier, Robert P.; Kummeling, Anne; van Gils, Ingrid H.; Fieten, Hille; Groot Koerkamp, Marian J. A.; Holstege, Frank C. P.; Rothuizen, Jan; Spee, Bart

    2014-01-01

    The detoxification of ammonia occurs mainly through conversion of ammonia to urea in the liver via the urea cycle and glutamine synthesis. Congenital portosystemic shunts (CPSS) in dogs cause hyperammonemia eventually leading to hepatic encephalopathy. In this study, the gene expression of urea cycle enzymes (carbamoylphosphate synthetase (CPS1), ornithine carbamoyltransferase (OTC), argininosuccinate synthetase (ASS1), argininosuccinate lyase (ASL), and arginase (ARG1)), N-acetylglutamate synthase (NAGS), Glutamate dehydrogenase (GLUD1), and glutamate-ammonia ligase (GLUL) was evaluated in dogs with CPSS before and after surgical closure of the shunt. Additionally, immunohistochemistry was performed on urea cycle enzymes and GLUL on liver samples of healthy dogs and dogs with CPSS to investigate a possible zonal distribution of these enzymes within the liver lobule and to investigate possible differences in distribution in dogs with CPSS compared to healthy dogs. Furthermore, the effect of increasing ammonia concentrations on the expression of the urea cycle enzymes was investigated in primary hepatocytes in vitro. Gene-expression of CPS1, OTC, ASL, GLUD1 and NAGS was down regulated in dogs with CPSS and did not normalize after surgical closure of the shunt. In all dogs GLUL distribution was localized pericentrally. CPS1, OTC and ASS1 were localized periportally in healthy dogs, whereas in CPSS dogs, these enzymes lacked a clear zonal distribution. In primary hepatocytes higher ammonia concentrations induced mRNA levels of CPS1. We hypothesize that the reduction in expression of urea cycle enzymes, NAGS and GLUD1 as well as the alterations in zonal distribution in dogs with CPSS may be caused by a developmental arrest of these enzymes during the embryonic or early postnatal phase. PMID:24945279

  15. Effect of alternative pathway therapy on branched chain amino acid metabolism in urea cycle disorder patients.

    PubMed

    Scaglia, Fernando; Carter, Susan; O'Brien, William E; Lee, Brendan

    2004-04-01

    Urea cycle disorders (UCDs) are a group of inborn errors of hepatic metabolism caused by the loss of enzymatic activities that mediate the transfer of nitrogen from ammonia to urea. These disorders often result in life-threatening hyperammonemia and hyperglutaminemia. A combination of sodium phenylbutyrate and sodium phenylacetate/benzoate is used in the clinical management of children with urea cycle defects as a glutamine trap, diverting nitrogen from urea synthesis to alternatives routes of excretion. We have observed that patients treated with these compounds have selective branched chain amino acid (BCAA) deficiency despite adequate dietary protein intake. However, the direct effect of alternative therapy on the steady state levels of plasma branched chain amino acids has not been well characterized. We have measured steady state plasma branched chain and other essential non-branched chain amino acids in control subjects, untreated ornithine transcarbamylase deficiency females and treated null activity urea cycle disorder patients in the fed steady state during the course of stable isotope studies. Steady-state leucine levels were noted to be significantly lower in treated urea cycle disorder patients when compared to either untreated ornithine transcarbamylase deficiency females or control subjects (P<0.0001). This effect was reproduced in control subjects who had depressed leucine levels when treated with sodium phenylacetate/benzoate (P<0.0001). Our studies suggest that this therapeutic modality has a substantial impact on the metabolism of branched chain amino acids in urea cycle disorder patients. These findings suggest that better titration of protein restriction could be achieved with branched chain amino acid supplementation in patients with UCDs who are on alternative route therapy.

  16. In vivo monitoring of urea cycle activity with (13)C-acetate as a tracer of ureagenesis.

    PubMed

    Opladen, Thomas; Lindner, Martin; Das, Anibh M; Marquardt, Thorsten; Khan, Aneal; Emre, Sukru H; Burton, Barbara K; Barshop, Bruce A; Böhm, Thea; Meyburg, Jochen; Zangerl, Kathrin; Mayorandan, Sebene; Burgard, Peter; Dürr, Ulrich H N; Rosenkranz, Bernd; Rennecke, Jörg; Derbinski, Jens; Yudkoff, Marc; Hoffmann, Georg F

    2016-01-01

    The hepatic urea cycle is the main metabolic pathway for detoxification of ammonia. Inborn errors of urea cycle function present with severe hyperammonemia and a high case fatality rate. Long-term prognosis depends on the residual activity of the defective enzyme. A reliable method to estimate urea cycle activity in-vivo does not exist yet. The aim of this study was to evaluate a practical method to quantify (13)C-urea production as a marker for urea cycle function in healthy subjects, patients with confirmed urea cycle defect (UCD) and asymptomatic carriers of UCD mutations. (13)C-labeled sodium acetate was applied orally in a single dose to 47 subjects (10 healthy subjects, 28 symptomatic patients, 9 asymptomatic carriers). The oral (13)C-ureagenesis assay is a safe method. While healthy subjects and asymptomatic carriers did not differ with regards to kinetic variables for urea cycle flux, symptomatic patients had lower (13)C-plasma urea levels. Although the (13)C-ureagenesis assay revealed no significant differences between individual urea cycle enzyme defects, it reflected the heterogeneity between different clinical subgroups, including male neonatal onset ornithine carbamoyltransferase deficiency. Applying the (13)C-urea area under the curve can differentiate between severe from more mildly affected neonates. Late onset patients differ significantly from neonates, carriers and healthy subjects. This study evaluated the oral (13)C-ureagenesis assay as a sensitive in-vivo measure for ureagenesis capacity. The assay has the potential to become a reliable tool to differentiate UCD patient subgroups, follow changes in ureagenesis capacity and could be helpful in monitoring novel therapies of UCD. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Clinical course of 63 patients with neonatal onset urea cycle disorders in the years 2001-2013.

    PubMed

    Unsinn, Caroline; Das, Anibh; Valayannopoulos, Vassili; Thimm, Eva; Beblo, Skadi; Burlina, Alberto; Konstantopoulou, Vassiliki; Mayorandan, Sebene; de Lonlay, Pascale; Rennecke, Jörg; Derbinski, Jens; Hoffmann, Georg F; Häberle, Johannes

    2016-08-19

    Urea cycle disorders (UCDs) are rare inherited metabolic defects of ammonia detoxification. In about half of patients presenting with a UCD, the first symptoms appear within a few days after birth. These neonatal onset patients generally have a severe defect of urea cycle function and their survival and outcome prognoses are often limited. To understand better the current situation of neonatal onset in UCDs, we have performed a multicentre, retrospective, non-interventional case series study focussing on the most severe UCDs, namely defects of carbamoyl phosphate synthetase 1 (CPS1), ornithine transcarbamylase (OTC), and argininosuccinate synthetase (ASS). Data of 63 patients were collected (27 patients with ASS deficiency, 23 patients with OTC deficiency, and 12 patients with CPS1 deficiency, one patient definite diagnosis not documented). The majority of patients (43/63, 68 %) had an initial ammonia concentration exceeding 500 μmol/L (normal < 100), of which most (26/43, 60.5 %) were also encephalopathic and were treated with hemodialysis. In patients surviving the initial crisis, recurrence of hyperammonemic events within the first 1.5 years of life occurred frequently (mean 3.6 events, range 0-20). Of all patients, 16 (25.4 %) died during or immediately after the neonatal period. We observed in this cohort of neonatal onset UCD patients a high rate of initial life-threatening hyperammonemia and a high risk of recurrence of severe hyperammonemic crises. These corresponded to a high mortality rate during the entire study period (30.2 %) despite the fact that patients were treated in leading European metabolic centers. This underlines the need to critically re-evaluate the current treatment strategies in these patients.

  18. AMMONIA CONTROL AND NEUROCOGNITIVE OUTCOME AMONG UREA CYCLE DISORDER PATIENTS TREATED WITH GLYCEROL PHENYLBUTYRATE

    PubMed Central

    Diaz, George A.; Krivitzky, Lauren S.; Mokhtarani, Masoud; Rhead, William; Bartley, James; Feigenbaum, Annette; Longo, Nicola; Berquist, William; Berry, Susan A.; Gallagher, Renata; Lichter-Konecki, Uta; Bartholomew, Dennis; Harding, Cary O.; Cederbaum, Stephen; McCandless, Shawn E.; Smith, Wendy; Vockley, Gerald; Bart, Stephen A.; Korson, Mark S.; Kronn, David; Zori, Roberto; Merritt, J. Lawrence; Sreenath-Nagamani, Sandesh; Mauney, Joseph; LeMons, Cynthia; Dickinson, Klara; Moors, Tristen L.; Coakley, Dion F.; Scharschmidt, Bruce F.; Lee, Brendan

    2012-01-01

    Background Glycerol phenylbutyrate is under development for treatment of urea cycle disorders (UCDs), rare inherited metabolic disorders manifested by hyperammonemia and neurological impairment. Methods We report the results of a pivotal phase 3, randomized, double-blind, crossover trial comparing ammonia control, assessed as 24-hour area under the curve (NH3-AUC0-24hr), and pharmacokinetics during treatment with glycerol phenylbutyrate versus sodium phenylbutyrate (NaPBA) in adult UCD patients and the combined results of 4 studies involving short- and long-term glycerol phenylbutyrate treatment of UCD patients ages 6 and above. Results Glycerol phenylbutyrate was non-inferior to NaPBA with respect to ammonia control in the pivotal study, with mean (SD) NH3-AUC0-24hr of 866 (661) versus 977 (865) μmol·h/L for glycerol phenylbutyrate and NaPBA, respectively. Among 65 adult and pediatric patients completing 3 similarly designed short term comparisons of glycerol phenylbutyrate versus NaPBA, NH3-AUC0-24hr was directionally lower on glycerol phenylbutyrate in each study, similar among all subgroups, and significantly lower (p<0.05) in the pooled analysis, as was plasma glutamine. The 24-hour ammonia profiles were consistent with slow release behavior of glycerol phenylbutyrate and better overnight ammonia control. During 12 months of open label glycerol phenylbutyrate treatment, average ammonia was normal in adult and pediatric patients and executive function among pediatric patients, including behavioral regulation, goal setting, planning and self-monitoring, was significantly improved. Conclusions Glycerol phenylbutyrate exhibits favorable pharmacokinetics and ammonia control relative to NaPBA in UCD patients, and long-term glycerol phenylbutyrate treatment in pediatric patients was associated with improved executive function (ClinicalTrials.gov NCT00551200, NCT00947544, NCT00992459, NCT00947297). PMID:22961727

  19. Profile of sodium phenylbutyrate granules for the treatment of urea-cycle disorders: patient perspectives

    PubMed Central

    Peña-Quintana, Luis; Llarena, Marta; Reyes-Suárez, Desiderio; Aldámiz-Echevarria, Luis

    2017-01-01

    Urea-cycle disorders are a group of rare hereditary metabolic diseases characterized by deficiencies of one of the enzymes and transporters involved in the urea cycle, which is necessary for the removal of nitrogen produced from protein breakdown. These hereditary metabolic diseases are characterized by hyperammonemia and life-threatening hyperammonemic crises. Pharmacological treatment of urea-cycle disorders involves alternative nitrogen-scavenging pathways. Sodium benzoate combines with glycine and phenylacetate/phenylbutyrate with glutamine, forming, respectively, hippuric acid and phenylacetylglutamine, which are eliminated in the urine. Among the ammonia-scavenging drugs, sodium phenylbutyrate is a well-known long-term treatment of urea-cycle disorders. It has been used since 1987 as an investigational new drug, and was approved for marketing in the US in 1996 and the EU in 1999. However, sodium phenylbutyrate has an aversive odor and taste, which may compromise patients’ compliance, and many patients have reported difficulty in taking this drug. Sodium phenylbutyrate granules are a new tasteless and odor-free formulation of sodium phenylbutyrate, which is indicated in the treatment of urea-cycle disorders. This recently developed taste-masked formulation of sodium phenylbutyrate granules was designed to overcome the considerable issues that taste has on adherence to therapy. Several studies have reported the clinical experience of patients with urea-cycle disorders treated with this new tasteless formulation of sodium phenylbutyrate. Analysis of the data indicated that this taste-masked formulation of sodium phenylbutyrate granules improved quality of life for urea-cycle disorder patients. Furthermore, a postmarketing report on the use of the product has confirmed the previous observations of improved compliance, efficacy, and safety with this taste-masked formulation of sodium phenylbutyrate. PMID:28919721

  20. Urea cycle pathway targeted therapeutic action of naringin against ammonium chloride induced hyperammonemic rats.

    PubMed

    Ramakrishnan, Arumugam; Vijayakumar, Natesan

    2017-10-01

    Ammonia is a well-known neurotoxin that causes liver disease and urea cycle disorder. Excessive ammonia content in the blood leads to hyperammonemic condition and affects both excitatory and inhibitory neurotransmission including brain edema and coma. Naringin, a plant bioflavonoid present in various citrus fruits and mainly extracted from the grape fruit. This study was designed to assess the protective effect of naringin on ammonium chloride (NH 4 Cl) induced hyperammonemic rats. Experimental hyperammonemia was induced by intraperitoneal injections (i.p) of NH 4 Cl (100mg/kg body weight (b.w.)) thrice a week for 8 consecutive weeks. Hyperammonemic rats were treated with naringin (80mg/kg b.w.) via oral gavage. Naringin administration significantly augmented the level of blood ammonia and plasma urea. Naringin also upregulate the expression of urea cycle enzymes such as carbamoyl phosphate synthase I (CPS I) and ornithine transcarbamylase (OTC), arininosuccinate synthase (ASS), argininosuccinate lyase (ASL) and arginase I (ARG) and metabotropic glutamate receptors (mGluRs) such as mGluRs I and mGluRs V and down regulate the expression of inflammatory markers like tumor necrosis factor (TNF-α), nuclear factor kappa B (NF-kB), Interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS). In addition, to this, the protective effect of naringin was also revealed through the immunohistochemical changes in tissues. Thus our present study result suggest that naringin modulates the expression of proteins involved in urea cycle pathway and suppresses the expression of inflammatory markers and acts as a potential agent to treat condition in rats. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Hyperammonemic coma after craniotomy: Hepatic encephalopathy from upper gastrointestinal hemorrhage or valproate side effect?: Case report and literature review.

    PubMed

    Guo, Xiaopeng; Wei, Junji; Gao, Lu; Xing, Bing; Xu, Zhiqin

    2017-04-01

    Postoperative coma is not uncommon in patients after craniotomy. It generally presents as mental state changes and is usually caused by intracranial hematoma, brain edema, or swelling. Hyperammonemia can also result in postoperative coma; however, it is rarely recognized as a potential cause in coma patients. Hyperammonemic coma is determined through a complicated differential diagnosis, and although it can also be induced as a side effect of valproate (VPA), this cause is frequently unrecognized or confused with upper gastrointestinal hemorrhage (UGH)-induced hepatic encephalopathy. We herein present a case of valproate-induced hyperammonemic encephalopathy (VHE) to illustrate the rarity of such cases and emphasize the importance of correct diagnosis and proper treatment. A 61-year-old woman with meningioma was admitted into our hospital. Radical resection of the tumor was performed, and the patient recovered well as expected. After administration of valproate for 7 days, the patient was suddenly found in a deep coma, and her mental state deteriorated rapidly. The diagnoses of hepatic encephalopathy was confirmed. However, whether it origins from upper gastrointestinal hemorrhage or valproate side effect is uncertain. The patient's condition fluctuated without improvement during the subsequent 3 days under the treatment of reducing ammonia. With the discontinuation of valproate treatment, the patient regained complete consciousness within 48 hours, and her blood ammonia decreased to the normal range within 4 days. VHE is a rare but serious complication in patients after craniotomy and is diagnosed by mental state changes and elevated blood ammonia. Thus, the regular perioperative administration of VPA, which is frequently neglected as a cause of VHE, should be emphasized. In addition, excluding UGH prior to providing a diagnosis and immediately discontinuing VPA administration are recommended.

  2. Extracellular Protein Kinase A Modulates Intracellular Calcium/Calmodulin-Dependent Protein Kinase II, Nitric Oxide Synthase, and the Glutamate-Nitric Oxide-cGMP Pathway in Cerebellum. Differential Effects in Hyperammonemia.

    PubMed

    Cabrera-Pastor, Andrea; Llansola, Marta; Felipo, Vicente

    2016-12-21

    Extracellular protein kinases, including cAMP-dependent protein kinase (PKA), modulate neuronal functions including N-methyl-d-aspartate (NMDA) receptor-dependent long-term potentiation. NMDA receptor activation increases calcium, which binds to calmodulin and activates nitric oxide synthase (NOS), increasing nitric oxide (NO), which activates guanylate cyclase, increasing cGMP, which is released to the extracellular fluid, allowing analysis of this glutamate-NO-cGMP pathway in vivo by microdialysis. The function of this pathway is impaired in hyperammonemic rats. The aims of this work were to assess (1) whether the glutamate-NO-cGMP pathway is modulated in cerebellum in vivo by an extracellular PKA, (2) the role of phosphorylation and activity of calcium/calmodulin-dependent protein kinase II (CaMKII) and NOS in the pathway modulation by extracellular PKA, and (3) whether the effects are different in hyperammonemic and control rats. The pathway was analyzed by in vivo microdialysis. The role of extracellular PKA was analyzed by inhibiting it with a membrane-impermeable inhibitor. The mechanisms involved were analyzed in freshly isolated cerebellar slices from control and hyperammonemic rats. In control rats, inhibiting extracellular PKA reduces the glutamate-NO-cGMP pathway function in vivo. This is due to reduction of CaMKII phosphorylation and activity, which reduces NOS phosphorylation at Ser1417 and NOS activity, resulting in reduced guanylate cyclase activation and cGMP formation. In hyperammonemic rats, under basal conditions, CaMKII phosphorylation and activity are increased, increasing NOS phosphorylation at Ser847, which reduces NOS activity, guanylate cyclase activation, and cGMP. Inhibiting extracellular PKA in hyperammonemic rats normalizes CaMKII phosphorylation and activity, NOS phosphorylation, NOS activity, and cGMP, restoring normal function of the pathway.

  3. Recurrence of carbamoyl phosphate synthetase 1 (CPS1) deficiency in Turkish patients: characterization of a founder mutation by use of recombinant CPS1 from insect cells expression.

    PubMed

    Hu, Liyan; Diez-Fernandez, Carmen; Rüfenacht, Véronique; Hismi, Burcu Öztürk; Ünal, Özlem; Soyucen, Erdogan; Çoker, Mahmut; Bayraktar, Bilge Tanyeri; Gunduz, Mehmet; Kiykim, Ertugrul; Olgac, Asburce; Pérez-Tur, Jordi; Rubio, Vicente; Häberle, Johannes

    2014-12-01

    Carbamoyl phosphate synthetase 1 (CPS1) deficiency due to CPS1 mutations is a rare autosomal-recessive urea cycle disorder causing hyperammonemia that can lead to death or severe neurological impairment. CPS1 catalyzes carbamoyl phosphate formation from ammonia, bicarbonate and two molecules of ATP, and requires the allosteric activator N-acetyl-L-glutamate. Clinical mutations occur in the entire CPS1 coding region, but mainly in single families, with little recurrence. We characterized here the only currently known recurrent CPS1 mutation, p.Val1013del, found in eleven unrelated patients of Turkish descent using recombinant His-tagged wild type or mutant CPS1 expressed in baculovirus/insect cell system. The global CPS1 reaction and the ATPase and ATP synthesis partial reactions that reflect, respectively, the bicarbonate and the carbamate phosphorylation steps, were assayed. We found that CPS1 wild type and V1013del mutant showed comparable expression levels and purity but the mutant CPS1 exhibited no significant residual activities. In the CPS1 structural model, V1013 belongs to a highly hydrophobic β-strand at the middle of the central β-sheet of the A subdomain of the carbamate phosphorylation domain and is close to the predicted carbamate tunnel that links both phosphorylation sites. Haplotype studies suggested that p.Val1013del is a founder mutation. In conclusion, the mutation p.V1013del inactivates CPS1 but does not render the enzyme grossly unstable or insoluble. Recurrence of this particular mutation in Turkish patients is likely due to a founder effect, which is consistent with the frequent consanguinity observed in the affected population. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Leigh-Like Syndrome Due to Homoplasmic m.8993T>G Variant with Hypocitrullinemia and Unusual Biochemical Features Suggestive of Multiple Carboxylase Deficiency (MCD).

    PubMed

    Balasubramaniam, Shanti; Lewis, B; Mock, D M; Said, H M; Tarailo-Graovac, M; Mattman, A; van Karnebeek, C D; Thorburn, D R; Rodenburg, R J; Christodoulou, J

    2017-01-01

    Leigh syndrome (LS), or subacute necrotizing encephalomyelopathy, is a genetically heterogeneous, relentlessly progressive, devastating neurodegenerative disorder that usually presents in infancy or early childhood. A diagnosis of Leigh-like syndrome may be considered in individuals who do not fulfil the stringent diagnostic criteria but have features resembling Leigh syndrome.We describe a unique presentation of Leigh-like syndrome in a 3-year-old boy with elevated 3-hydroxyisovalerylcarnitine (C5-OH) on newborn screening (NBS). Subsequent persistent plasma elevations of C5-OH and propionylcarnitine (C3) as well as fluctuating urinary markers were suggestive of multiple carboxylase deficiency (MCD). Normal enzymology and mutational analysis of genes encoding holocarboxylase synthetase (HLCS) and biotinidase (BTD) excluded MCD. Biotin uptake studies were normal excluding biotin transporter deficiency. His clinical features at 13 months of age comprised psychomotor delay, central hypotonia, myopathy, failure to thrive, hypocitrullinemia, recurrent episodes of decompensation with metabolic keto-lactic acidosis and an episode of hyperammonemia. Biotin treatment from 13 months of age was associated with increased patient activity, alertness, and attainment of new developmental milestones, despite lack of biochemical improvements. Whole exome sequencing (WES) analysis failed to identify any other variants which could likely contribute to the observed phenotype, apart from the homoplasmic (100%) m.8993T>G variant initially detected by mitochondrial DNA (mtDNA) sequencing.Hypocitrullinemia has been reported in patients with the m.8993T>G variant and other mitochondrial disorders. However, persistent plasma elevations of C3 and C5-OH have previously only been reported in one other patient with this homoplasmic mutation. We suggest considering the m.8993T>G variant early in the diagnostic evaluation of MCD-like biochemical disturbances, particularly when associated with hypocitrullinemia on NBS and subsequent confirmatory tests. An oral biotin trial is also warranted.

  5. Insights into the Mutation-Induced HHH Syndrome from Modeling Human Mitochondrial Ornithine Transporter-1

    PubMed Central

    Wang, Jing-Fang; Chou, Kuo-Chen

    2012-01-01

    Human mitochondrial ornithine transporter-1 is reported in coupling with the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, which is a rare autosomal recessive disorder. For in-depth understanding of the molecular mechanism of the disease, it is crucially important to acquire the 3D structure of human mitochondrial ornithine transporter-1. Since no such structure is available in the current protein structure database, we have developed it via computational approaches based on the recent NMR structure of human mitochondrial uncoupling protein (Berardi MJ, Chou JJ, et al. Nature 2011, 476:109–113). Subsequently, we docked the ligand L-ornithine into the computational structure to search for the favorable binding mode. It was observed that the binding interaction for the most favorable binding mode is featured by six remarkable hydrogen bonds between the receptor and ligand, and that the most favorable binding mode shared the same ligand-binding site with most of the homologous mitochondrial carriers from different organisms, implying that the ligand-binding sites are quite conservative in the mitochondrial carriers family although their sequences similarity is very low with 20% or so. Moreover, according to our structural analysis, the relationship between the disease-causing mutations of human mitochondrial ornithine transporter-1 and the HHH syndrome can be classified into the following three categories: (i) the mutation occurs in the pseudo-repeat regions so as to change the region of the protein closer to the mitochondrial matrix; (ii) the mutation is directly affecting the substrate binding pocket so as to reduce the substrate binding affinity; (iii) the mutation is located in the structural region closer to the intermembrane space that can significantly break the salt bridge networks of the protein. These findings may provide useful insights for in-depth understanding of the molecular mechanism of the HHH syndrome and developing effective drugs against the disease. PMID:22292090

  6. The Study of Carbamoyl Phosphate Synthetase 1 Deficiency Sheds Light on the Mechanism for Switching On/Off the Urea Cycle.

    PubMed

    Díez-Fernández, Carmen; Gallego, José; Häberle, Johannes; Cervera, Javier; Rubio, Vicente

    2015-05-20

    Carbamoyl phosphate synthetase 1 (CPS1) deficiency (CPS1D) is an inborn error of the urea cycle having autosomal (2q34) recessive inheritance that can cause hyperammonemia and neonatal death or mental retardation. We analyzed the effects on CPS1 activity, kinetic parameters and enzyme stability of missense mutations reported in patients with CPS1 deficiency that map in the 20-kDa C-terminal domain of the enzyme. This domain turns on or off the enzyme depending on whether the essential allosteric activator of CPS1, N-acetyl-L-glutamate (NAG), is bound or is not bound to it. To carry out the present studies, we exploited a novel system that allows the expression in vitro and the purification of human CPS1, thus permitting site-directed mutagenesis. These studies have clarified disease causation by individual mutations, identifying functionally important residues, and revealing that a number of mutations decrease the affinity of the enzyme for NAG. Patients with NAG affinity-decreasing mutations might benefit from NAG site saturation therapy with N-carbamyl-L-glutamate (a registered drug, the analog of NAG). Our results, together with additional present and prior site-directed mutagenesis data for other residues mapping in this domain, suggest an NAG-triggered conformational change in the β4-α4 loop of the C-terminal domain of this enzyme. This change might be an early event in the NAG activation process. Molecular dynamics simulations that were restrained according to the observed effects of the mutations are consistent with this hypothesis, providing further backing for this structurally plausible signaling mechanism by which NAG could trigger urea cycle activation via CPS1. Copyright © 2015 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  7. Ammonia control and neurocognitive outcome among urea cycle disorder patients treated with glycerol phenylbutyrate.

    PubMed

    Diaz, George A; Krivitzky, Lauren S; Mokhtarani, Masoud; Rhead, William; Bartley, James; Feigenbaum, Annette; Longo, Nicola; Berquist, William; Berry, Susan A; Gallagher, Renata; Lichter-Konecki, Uta; Bartholomew, Dennis; Harding, Cary O; Cederbaum, Stephen; McCandless, Shawn E; Smith, Wendy; Vockley, Gerald; Bart, Stephen A; Korson, Mark S; Kronn, David; Zori, Roberto; Merritt, J Lawrence; C S Nagamani, Sandesh; Mauney, Joseph; Lemons, Cynthia; Dickinson, Klara; Moors, Tristen L; Coakley, Dion F; Scharschmidt, Bruce F; Lee, Brendan

    2013-06-01

    Glycerol phenylbutyrate is under development for treatment of urea cycle disorders (UCDs), rare inherited metabolic disorders manifested by hyperammonemia and neurological impairment. We report the results of a pivotal Phase 3, randomized, double-blind, crossover trial comparing ammonia control, assessed as 24-hour area under the curve (NH3 -AUC0-24hr ), and pharmacokinetics during treatment with glycerol phenylbutyrate versus sodium phenylbutyrate (NaPBA) in adult UCD patients and the combined results of four studies involving short- and long-term glycerol phenylbutyrate treatment of UCD patients ages 6 and above. Glycerol phenylbutyrate was noninferior to NaPBA with respect to ammonia control in the pivotal study, with mean (standard deviation, SD) NH3 -AUC0-24hr of 866 (661) versus 977 (865) μmol·h/L for glycerol phenylbutyrate and NaPBA, respectively. Among 65 adult and pediatric patients completing three similarly designed short-term comparisons of glycerol phenylbutyrate versus NaPBA, NH3 -AUC0-24hr was directionally lower on glycerol phenylbutyrate in each study, similar among all subgroups, and significantly lower (P < 0.05) in the pooled analysis, as was plasma glutamine. The 24-hour ammonia profiles were consistent with the slow-release behavior of glycerol phenylbutyrate and better overnight ammonia control. During 12 months of open-label glycerol phenylbutyrate treatment, average ammonia was normal in adult and pediatric patients and executive function among pediatric patients, including behavioral regulation, goal setting, planning, and self-monitoring, was significantly improved. Glycerol phenylbutyrate exhibits favorable pharmacokinetics and ammonia control relative to NaPBA in UCD patients, and long-term glycerol phenylbutyrate treatment in pediatric UCD patients was associated with improved executive function (ClinicalTrials.gov NCT00551200, NCT00947544, NCT00992459, NCT00947297). (HEPATOLOGY 2012). Copyright © 2012 American Association for the Study of Liver Diseases.

  8. Lysine supplementation is not effective for the prevention or treatment of feline herpesvirus 1 infection in cats: a systematic review.

    PubMed

    Bol, Sebastiaan; Bunnik, Evelien M

    2015-11-16

    Feline herpesvirus 1 is a highly contagious virus that affects many cats. Virus infection presents with flu-like signs and irritation of ocular and nasal regions. While cats can recover from active infections without medical treatment, examination by a veterinarian is recommended. Lysine supplementation appears to be a popular intervention (recommended by > 90 % of veterinarians in cat hospitals). We investigated the scientific merit of lysine supplementation by systematically reviewing all relevant literature. NCBI's PubMed database was used to search for published work on lysine and feline herpesvirus 1, as well as lysine and human herpesvirus 1. Seven studies on lysine and feline herpesvirus 1 (two in vitro studies and 5 studies with cats), and 10 publications on lysine and human herpesvirus 1 (three in vitro studies and 7 clinical trials) were included for qualitative analysis. There is evidence at multiple levels that lysine supplementation is not effective for the prevention or treatment of feline herpesvirus 1 infection in cats. Lysine does not have any antiviral properties, but is believed to act by lowering arginine levels. However, lysine does not antagonize arginine in cats, and evidence that low intracellular arginine concentrations would inhibit viral replication is lacking. Furthermore, lowering arginine levels is highly undesirable since cats cannot synthesize this amino acid themselves. Arginine deficiency will result in hyperammonemia, which may be fatal. In vitro studies with feline herpesvirus 1 showed that lysine has no effect on the replication kinetics of the virus. Finally, and most importantly, several clinical studies with cats have shown that lysine is not effective for the prevention or the treatment of feline herpesvirus 1 infection, and some even reported increased infection frequency and disease severity in cats receiving lysine supplementation. We recommend an immediate stop of lysine supplementation because of the complete lack of any scientific evidence for its efficacy.

  9. Sarcopenia in Alcoholic Liver Disease: Clinical and Molecular Advances.

    PubMed

    Dasarathy, Jaividhya; McCullough, Arthur J; Dasarathy, Srinivasan

    2017-08-01

    Despite advances in treatment of alcohol use disorders that focus on increasing abstinence and reducing recidivism, alcoholic liver disease (ALD) is projected to be the major cause of cirrhosis and its complications. Malnutrition is recognized as the most frequent complication in ALD, and despite the high clinical significance, there are no effective therapies to reverse malnutrition in ALD. Malnutrition is a relatively imprecise term, and sarcopenia or skeletal muscle loss, the major component of malnutrition, is primarily responsible for the adverse clinical consequences in patients with liver disease. It is, therefore, critical to define the specific abnormality (sarcopenia) rather than malnutrition in ALD, so that therapies targeting sarcopenia can be developed. Skeletal muscle mass is maintained by a balance between protein synthesis and proteolysis. Both direct effects of ethanol (EtOH) and its metabolites on the skeletal muscle and the consequences of liver disease result in disturbed proteostasis (protein homeostasis) and consequent sarcopenia. Once cirrhosis develops in patients with ALD, abstinence is unlikely to be effective in completely reversing sarcopenia, as other contributors including hyperammonemia, hormonal, and cytokine abnormalities aggravate sarcopenia and maintain a state of anabolic resistance initiated by EtOH. Cirrhosis is also a state of accelerated starvation, with increased gluconeogenesis that requires amino acid diversion from signaling and substrate functions. Novel therapeutic options are being recognized that are likely to supplant the current "deficiency replacement" approach and instead focus on specific molecular perturbations, given the increasing availability of small molecules that can target specific signaling components. Myostatin antagonists, leucine supplementation, and mitochondrial protective agents are currently in various stages of evaluation in preclinical studies to prevent and reverse sarcopenia, in cirrhosis in general, and ALD, specifically. Translation of these data to human studies and clinical application requires priority for allocation of resources. Copyright © 2017 by the Research Society on Alcoholism.

  10. Extracorporeal treatment for valproic acid poisoning: systematic review and recommendations from the EXTRIP workgroup.

    PubMed

    Ghannoum, Marc; Laliberté, Martin; Nolin, Thomas D; MacTier, Robert; Lavergne, Valery; Hoffman, Robert S; Gosselin, Sophie

    2015-06-01

    The EXtracorporeal TReatments In Poisoning (EXTRIP) workgroup presents its systematic review and clinical recommendations on the use of extracorporeal treatment (ECTR) in valproic acid (VPA) poisoning. The lead authors reviewed all of the articles from a systematic literature search, extracted the data, summarized the key findings, and proposed structured voting statements following a predetermined format. A two-round modified Delphi method was chosen to reach a consensus on voting statements and the RAND/UCLA Appropriateness Method was used to quantify disagreement. Anonymous votes were compiled, returned, and discussed in person. A second vote was conducted to determine the final workgroup recommendations. The latest literature search conducted in November 2014 retrieved a total of 79 articles for final qualitative analysis, including one observational study, one uncontrolled cohort study with aggregate analysis, 70 case reports and case series, and 7 pharmacokinetic studies, yielding a very low quality of evidence for all recommendations. Clinical data were reported for 82 overdose patients while pharmaco/toxicokinetic grading was performed in 55 patients. The workgroup concluded that VPA is moderately dialyzable (level of evidence = B) and made the following recommendations: ECTR is recommended in severe VPA poisoning (1D); recommendations for ECTR include a VPA concentration > 1300 mg/L (9000 μmol/L)(1D), the presence of cerebral edema (1D) or shock (1D); suggestions for ECTR include a VPA concentration > 900 mg/L (6250 μmol/L)(2D), coma or respiratory depression requiring mechanical ventilation (2D), acute hyperammonemia (2D), or pH ≤ 7.10 (2D). Cessation of ECTR is indicated when clinical improvement is apparent (1D) or the serum VPA concentration is between 50 and 100 mg/L (350-700 μmol/L)(2D). Intermittent hemodialysis is the preferred ECTR in VPA poisoning (1D). If hemodialysis is not available, then intermittent hemoperfusion (1D) or continuous renal replacement therapy (2D) is an acceptable alternative. VPA is moderately dialyzable in the setting of overdose. ECTR is indicated for VPA poisoning if at least one of the above criteria is present. Intermittent hemodialysis is the preferred ECTR modality in VPA poisoning.

  11. Extracellular vesicles from human liver stem cells restore argininosuccinate synthase deficiency.

    PubMed

    Herrera Sanchez, Maria Beatriz; Previdi, Sara; Bruno, Stefania; Fonsato, Valentina; Deregibus, Maria Chiara; Kholia, Sharad; Petrillo, Sara; Tolosano, Emanuela; Critelli, Rossana; Spada, Marco; Romagnoli, Renato; Salizzoni, Mauro; Tetta, Ciro; Camussi, Giovanni

    2017-07-27

    Argininosuccinate synthase (ASS)1 is a urea cycle enzyme that catalyzes the conversion of citrulline and aspartate to argininosuccinate. Mutations in the ASS1 gene cause citrullinemia type I, a rare autosomal recessive disorder characterized by neonatal hyperammonemia, elevated citrulline levels, and early neonatal death. Treatment for this disease is currently restricted to liver transplantation; however, due to limited organ availability, substitute therapies are required. Recently, extracellular vesicles (EVs) have been reported to act as intercellular transporters carrying genetic information responsible for cell reprogramming. In previous studies, we isolated a population of stem cell-like cells known as human liver stem cells (HLSCs) from healthy liver tissue. Moreover, EVs derived from HLSCs were reported to exhibit regenerative effects on the liver parenchyma in models of acute liver injury. The aim of this study was to evaluate whether EVs derived from normal HLSCs restored ASS1 enzymatic activity and urea production in hepatocytes differentiated from HLSCs derived from a patient with type I citrullinemia. HLSCs were isolated from the liver of a patient with type I citrullinemia (ASS1-HLSCs) and characterized by fluorescence-activated cell sorting (FACS), immunofluorescence, and DNA sequencing analysis. Furthermore, their differentiation capabilities in vitro were also assessed. Hepatocytes differentiated from ASS1-HLSCs were evaluated by the production of urea and ASS enzymatic activity. EVs derived from normal HLSCs were purified by differential ultracentrifugation followed by floating density gradient. The EV content was analyzed to identify the presence of ASS1 protein, mRNA, and ASS1 gene. In order to obtain ASS1-depleted EVs, a knockdown of the ASS1 gene in HLSCs was performed followed by EV isolation from these cells. Treating ASS1-HLSCs with EVs from HLSCs restored both ASS1 activity and urea production mainly through the transfer of ASS1 enzyme and mRNA. In fact, EVs from ASS1-knockdown HLSCs contained low amounts of ASS1 mRNA and protein, and were unable to restore urea production in hepatocytes differentiated from ASS1-HLSCs. Collectively, these results suggest that EVs derived from normal HLSCs may compensate the loss of ASS1 enzyme activity in hepatocytes differentiated from ASS1-HLSCs.

  12. ELEVATED PHENYLACETIC ACID LEVELS DO NOT CORRELATE WITH ADVERSE EVENTS IN PATIENTS WITH UREA CYCLE DISORDERS OR HEPATIC ENCEPHALOPATHY AND CAN BE PREDICTED BASED ON THE PLASMA PAA TO PAGN RATIO

    PubMed Central

    Mokhtarani, M.; Diaz, G.A.; Rhead, W.; Berry, S.A.; Lichter-Konecki, U.; Feigenbaum, A.; Schulze, A.; Longo, N.; Bartley, J.; Berquist, W.; Gallagher, R.; Smith, W.; McCandless, S.E.; Harding, C.; Rockey, D.C.; Vierling, J.M.; Mantry, P.; Ghabril, M.; Brown, R.S.; Dickinson, K.; Moors, T.; Norris, C.; Coakley, D.; Milikien, D.A.; Nagamani, SC; LeMons, C.; Lee, B.; Scharschmidt, B.F.

    2014-01-01

    Background Phenylacetic acid (PAA) is the active moiety in sodium phenylbutyrate (NaPBA) and glycerol phenylbutyrate (GPB, HPN-100), both are approved for treatment of urea cycle disorders (UCDs) - rare genetic disorders characterized by hyperammonemia. PAA is conjugated with glutamine in the liver to form phenylacetyleglutamine (PAGN), which is excreted in urine. PAA plasma levels ≥500 μg/dL have been reported to be associated with reversible neurological adverse events (AEs) in cancer patients receiving PAA intravenously. Therefore, we have investigated the relationship between PAA levels and neurological AEs in patients treated with these PAA pro-drugs as well as approaches to identifying patients most likely to experience high PAA levels. Methods The relationship between nervous system AEs, PAA levels and the ratio of plasma PAA to PAGN were examined in 4683 blood samples taken serially from: [1] healthy adults [2], UCD patients ≥2 months of age, and [3] patients with cirrhosis and hepatic encephalopathy (HE). The plasma ratio of PAA to PAGN was analyzed with respect to its utility in identifying patients at risk of high PAA values. Results Only 0.2% (11) of 4683 samples exceeded 500 ug/ml. There was no relationship between neurological AEs and PAA levels in UCD or HE patients, but transient AEs including headache and nausea that correlated with PAA levels were observed in healthy adults. Irrespective of population, a curvilinear relationship was observed between PAA levels and the plasma PAA:PAGN ratio, and a ratio > 2.5 (both in μg/mL) in a random blood draw identified patients at risk for PAA levels > 500 μg/ml. Conclusions The presence of a relationship between PAA levels and reversible AEs in healthy adults but not in UCD or HE patients may reflect intrinsic differences among the populations and/or metabolic adaptation with continued dosing. The plasma PAA:PAGN ratio is a functional measure of the rate of PAA metabolism and represents a useful dosing biomarker. PMID:24144944

  13. Elevated phenylacetic acid levels do not correlate with adverse events in patients with urea cycle disorders or hepatic encephalopathy and can be predicted based on the plasma PAA to PAGN ratio.

    PubMed

    Mokhtarani, M; Diaz, G A; Rhead, W; Berry, S A; Lichter-Konecki, U; Feigenbaum, A; Schulze, A; Longo, N; Bartley, J; Berquist, W; Gallagher, R; Smith, W; McCandless, S E; Harding, C; Rockey, D C; Vierling, J M; Mantry, P; Ghabril, M; Brown, R S; Dickinson, K; Moors, T; Norris, C; Coakley, D; Milikien, D A; Nagamani, S C; Lemons, C; Lee, B; Scharschmidt, B F

    2013-12-01

    Phenylacetic acid (PAA) is the active moiety in sodium phenylbutyrate (NaPBA) and glycerol phenylbutyrate (GPB, HPN-100). Both are approved for treatment of urea cycle disorders (UCDs) - rare genetic disorders characterized by hyperammonemia. PAA is conjugated with glutamine in the liver to form phenylacetyleglutamine (PAGN), which is excreted in urine. PAA plasma levels ≥ 500 μg/dL have been reported to be associated with reversible neurological adverse events (AEs) in cancer patients receiving PAA intravenously. Therefore, we have investigated the relationship between PAA levels and neurological AEs in patients treated with these PAA pro-drugs as well as approaches to identifying patients most likely to experience high PAA levels. The relationship between nervous system AEs, PAA levels and the ratio of plasma PAA to PAGN were examined in 4683 blood samples taken serially from: [1] healthy adults [2], UCD patients of ≥ 2 months of age, and [3] patients with cirrhosis and hepatic encephalopathy (HE). The plasma ratio of PAA to PAGN was analyzed with respect to its utility in identifying patients at risk of high PAA values. Only 0.2% (11) of 4683 samples exceeded 500 μg/ml. There was no relationship between neurological AEs and PAA levels in UCD or HE patients, but transient AEs including headache and nausea that correlated with PAA levels were observed in healthy adults. Irrespective of population, a curvilinear relationship was observed between PAA levels and the plasma PAA:PAGN ratio, and a ratio>2.5 (both in μg/mL) in a random blood draw identified patients at risk for PAA levels>500 μg/ml. The presence of a relationship between PAA levels and reversible AEs in healthy adults but not in UCD or HE patients may reflect intrinsic differences among the populations and/or metabolic adaptation with continued dosing. The plasma PAA:PAGN ratio is a functional measure of the rate of PAA metabolism and represents a useful dosing biomarker. © 2013.

  14. A neuronal disruption in redox homeostasis elicited by ammonia alters the glycine/glutamate (GABA) cycle and contributes to MMA-induced excitability.

    PubMed

    Royes, Luiz Fernando Freire; Gabbi, Patrícia; Ribeiro, Leandro Rodrigo; Della-Pace, Iuri Domingues; Rodrigues, Fernanda Silva; de Oliveira Ferreira, Ana Paula; da Silveira Junior, Mauro Eduardo Porto; da Silva, Luís Roberto Hart; Grisólia, Alan Barroso Araújo; Braga, Danielle Valente; Dobrachinski, Fernando; da Silva, Anderson Manoel Herculano Oliveira; Soares, Félix Alexandre Antunes; Marchesan, Sara; Furian, Ana Flavia; Oliveira, Mauro Schneider; Fighera, Michele Rechia

    2016-06-01

    Hyperammonemia is a common finding in children with methylmalonic acidemia. However, its contribution to methylmalonate-induced excitotoxicty is poorly understood. The aim of this study was to evaluate the mechanisms by which ammonia influences in the neurotoxicity induced by methylmalonate (MMA) in mice. The effects of ammonium chloride (NH4Cl 3, 6, and 12 mmol/kg; s.c.) on electroencephalographic (EEG) and behavioral convulsions induced by MMA (0.3, 0.66, and 1 µmol/2 µL, i.c.v.) were observed in mice. After, ammonia, TNF-α, IL1β, IL-6, nitrite/nitrate (NOx) levels, mitochondrial potential (ΔΨ), reactive oxygen species (ROS) generation, Methyl-Tetrazolium (MTT) reduction, succinate dehydrogenase (SDH), and Na(+), K(+)-ATPase activity levels were measured in the cerebral cortex. The binding of [(3)H]flunitrazepam, release of glutamate-GABA; glutamate decarboxylase (GAD) and glutamine synthetase (GS) activity and neuronal damage [opening of blood brain barrier (BBB) permeability and cellular death volume] were also measured. EEG recordings showed that an intermediate dose of NH4Cl (6 mmol/kg) increased the duration of convulsive episodes induced by MMA (0.66 μmol/2 μL i.c.v). NH4Cl (6 mmol/kg) administration also induced neuronal ammonia and NOx increase, as well as mitochondrial ROS generation throughout oxidation of 2,7-dichlorofluorescein diacetate (DCFH-DA) to DCF-RS, followed by GS and GAD inhibition. The NH4Cl plus MMA administration did not alter cytokine levels, plasma fluorescein extravasation, or neuronal damage. However, it potentiated DCF-RS levels, decreased the ΔΨ potential, reduced MTT, inhibited SDH activity, and increased Na(+), K(+)-ATPase activity. NH4Cl also altered the GABA cycle characterized by GS and GAD activity inhibition, [(3)H]flunitrazepam binding, and GABA release after MMA injection. On the basis of our findings, the changes in ROS and reactive nitrogen species (RNS) levels elicited by ammonia alter the glycine/glutamate (GABA) cycle and contribute to MMA-induced excitability.

  15. Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension.

    PubMed

    Jalan, Rajiv; De Chiara, Francesco; Balasubramaniyan, Vairappan; Andreola, Fausto; Khetan, Varun; Malago, Massimo; Pinzani, Massimo; Mookerjee, Rajeshwar P; Rombouts, Krista

    2016-04-01

    Hepatic stellate cells (HSCs) are vital to hepatocellular function and the liver response to injury. They share a phenotypic homology with astrocytes that are central in the pathogenesis of hepatic encephalopathy, a condition in which hyperammonemia plays a pathogenic role. This study tested the hypothesis that ammonia modulates human HSC activation in vitro and in vivo, and evaluated whether ammonia lowering, by using l-ornithine phenylacetate (OP), modifies HSC activation in vivo and reduces portal pressure in a bile duct ligation (BDL) model. Primary human HSCs were isolated and cultured. Proliferation (BrdU), metabolic activity (MTS), morphology (transmission electron, light and immunofluorescence microscopy), HSC activation markers, ability to contract, changes in oxidative status (ROS) and endoplasmic reticulum (ER) were evaluated to identify effects of ammonia challenge (50 μM, 100 μM, 300 μM) over 24-72 h. Changes in plasma ammonia levels, markers of HSC activation, portal pressure and hepatic eNOS activity were quantified in hyperammonemic BDL animals, and after OP treatment. Pathophysiological ammonia concentrations caused significant and reversible changes in cell proliferation, metabolic activity and activation markers of hHSC in vitro. Ammonia also induced significant alterations in cellular morphology, characterised by cytoplasmic vacuolisation, ER enlargement, ROS production, hHSC contraction and changes in pro-inflammatory gene expression together with HSC-related activation markers such as α-SMA, myosin IIa, IIb, and PDGF-Rβ. Treatment with OP significantly reduced plasma ammonia (BDL 199.1 μmol/L±43.65 vs. BDL+OP 149.27 μmol/L±51.1, p<0.05) and portal pressure (BDL 14±0.6 vs. BDL+OP 11±0.3 mmHg, p<0.01), which was associated with increased eNOS activity and abrogation of HSC activation markers. The results show for the first time that ammonia produces deleterious morphological and functional effects on HSCs in vitro. Targeting ammonia with the ammonia lowering drug OP reduces portal pressure and deactivates hHSC in vivo, highlighting the opportunity for evaluating ammonia lowering as a potential therapy in cirrhotic patients with portal hypertension. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  16. In vivo urea cycle flux distinguishes and correlates with phenotypic severity in disorders of the urea cycle

    PubMed Central

    Lee, Brendan; Yu, Hong; Jahoor, Farook; O'Brien, William; Beaudet, Arthur L.; Reeds, Peter

    2000-01-01

    Urea cycle disorders are a group of inborn errors of hepatic metabolism that result in often life-threatening hyperammonemia and hyperglutaminemia. Clinical and laboratory diagnosis of partial deficiencies during asymptomatic periods is difficult, and correlation of phenotypic severity with either genotype and/or in vitro enzyme activity is often imprecise. We hypothesized that stable isotopically determined in vivo rates of total body urea synthesis and urea cycle-specific nitrogen flux would correlate with both phenotypic severity and carrier status in patients with a variety of different enzymatic deficiencies of the urea cycle. We studied control subjects, patients, and their relatives with different enzymatic deficiencies affecting the urea cycle while consuming a low protein diet. On a separate occasion the subjects either received a higher protein intake or were treated with an alternative route medication sodium phenylacetate/benzoate (Ucephan), or oral arginine supplementation. Total urea synthesis from all nitrogen sources was determined from [18O]urea labeling, and the utilization of peripheral nitrogen was estimated from the relative isotopic enrichments of [15N]urea and [15N]glutamine during i.v. co-infusions of [5-(amide)15N]glutamine and [18O]urea. The ratio of the isotopic enrichments of 15N-urea/15N-glutamine distinguished normal control subjects (ratio = 0.42 ± 0.06) from urea cycle patients with late (0.17 ± 0.03) and neonatal (0.003 ± 0.007) presentations irrespective of enzymatic deficiency. This index of urea cycle activity also distinguished asymptomatic heterozygous carriers of argininosuccinate synthetase deficiency (0.22 ± 0.03), argininosuccinate lyase deficiency (0.35 ± 0.11), and partial ornithine transcarbamylase deficiency (0.26 ± 0.06) from normal controls. Administration of Ucephan lowered, and arginine increased, urea synthesis to the degree predicted from their respective rates of metabolism. The 15N-urea/15N-glutamine ratio is a sensitive index of in vivo urea cycle activity and correlates with clinical severity. Urea synthesis is altered by alternative route medications and arginine supplementation to the degree that is to be expected from theory. This stable isotope protocol provides a sensitive tool for evaluating the efficacy of therapeutic modalities and acts as an aid to the diagnosis and management of urea cycle patients. PMID:10869432

  17. Zinc in human health: effect of zinc on immune cells.

    PubMed

    Prasad, Ananda S

    2008-01-01

    Although the essentiality of zinc for plants and animals has been known for many decades, the essentiality of zinc for humans was recognized only 40 years ago in the Middle East. The zinc-deficient patients had severe immune dysfunctions, inasmuch as they died of intercurrent infections by the time they were 25 years of age. In our studies in an experimental human model of zinc deficiency, we documented decreased serum testosterone level, oligospermia, severe immune dysfunctions mainly affecting T helper cells, hyperammonemia, neurosensory disorders, and decreased lean body mass. It appears that zinc deficiency is prevalent in the developing world and as many as two billion subjects may be growth retarded due to zinc deficiency. Besides growth retardation and immune dysfunctions, cognitive impairment due to zinc deficiency also has been reported recently. Our studies in the cell culture models showed that the activation of many zinc-dependent enzymes and transcription factors were adversely affected due to zinc deficiency. In HUT-78 (T helper 0 [Th(0)] cell line), we showed that a decrease in gene expression of interleukin-2 (IL-2) and IL-2 receptor alpha(IL-2Ralpha) were due to decreased activation of nuclear factor-kappaB (NF-kappaB) in zinc deficient cells. Decreased NF-kappaB activation in HUT-78 due to zinc deficiency was due to decreased binding of NF-kappaB to DNA, decreased level of NF-kappaB p105 (the precursor of NF-kappaB p50) mRNA, decreased kappaB inhibitory protein (IkappaB) phosphorylation, and decreased Ikappa kappa. These effects of zinc were cell specific. Zinc also is an antioxidant and has anti-inflammatory actions. The therapeutic roles of zinc in acute infantile diarrhea, acrodermatitis enteropathica, prevention of blindness in patients with age-related macular degeneration, and treatment of common cold with zinc have been reported. In HL-60 cells (promyelocytic leukemia cell line), zinc enhances the up-regulation of A20 mRNA, which, via TRAF pathway, decreases NF-kappaB activation, leading to decreased gene expression and generation of tumor necrosis factor-alpha (TNF-alpha), IL-1beta, and IL-8. We have reported recently that in both young adults and elderly subjects, zinc supplementation decreased oxidative stress markers and generation of inflammatory cytokines.

  18. Carnitine-acylcarnitine translocase deficiency with c.199-10 T>G and novel c.1A>G mutation

    PubMed Central

    Yan, Hui-ming; Hu, Hao; Ahmed, Aisha; Feng, Bing-bing; Liu, Jing; Jia, Zheng-jun; Wang, Hua

    2017-01-01

    Abstract Rationale: Carnitine-acylcarnitine translocate deficiency (CACTD) is a rare and life-threatening, autosomal recessive disorder of fatty acid β-oxidation characterized by hypoketotic hypoglycemia, hyperammonemia, cardiomyopathy, liver dysfunction, and muscle weakness; culminating in early death. To date, CACTD cases screened from the Chinese mainland population, especially patient with compound heterozygote with c.199-10T>G and a novel c.1A>G mutation in the SLC25A20 gene has never been described. Patient concerns: Herein, we report 2 neonatal cases of CACTD identified from the mainland China. These 2 patients were presented with severe metabolic crisis and their clinical conditions deteriorate rapidly and both died of cardiorespiratory collapse in the first week of life. We present the clinical and biochemical features of 2 probands and a brief literature review of previously reported CACTD cases with the c.199-10T>G mutation. Diagnoses: The acylcarnitine profiles by tandem-mass-spectrometry and the mutation analysis of SLC25A20 gene confirmed the diagnosis of CACTD in both patients. Mutation analysis demonstrated that patient No. 1 was homozygous for c.199-10T>G mutation, while patient No. 2 was a compound heterozygote for 2 mutations, a maternally-inherited c.199-10T>G and a paternally-inherited, novel c.1A>G mutation. Interventions: Both patients were treated with an aggressive treatment regimen include high glucose and arginine infusion, respiratory, and circulatory support. Outcomes: The first proband died 3 days after delivery due to sudden cardiac arrest. The second patient's clinical condition, at one time, was improved by high glucose infusion, intravenous arginine, and circulatory support. However, the patient failed to wean from mechanical ventilation. Unfortunately, her parents refused further treatment due to fear of financial burdens. The patient died of congestive heart failure in the 6th day of life. Lessons: We report the first 2 cases of CACTD identified from the mainland China. Apart from a founder mutation c.199-10T>G, we identified a novel c.1A>G mutation. Patients with CACTD with a genotype of c.199-10T>G mutation usually presents with a severe clinical phenotype. Early recognition and appropriate treatment is crucial in this highly lethal disorder. This case series highlights the importance of screening for metabolic diseases including CACTD in cases of sudden infant death and unexplained abrupt clinical deterioration in the early neonatal period. PMID:29137068

  19. Carnitine-acylcarnitine translocase deficiency with c.199-10 T>G and novel c.1A>G mutation: Two case reports and brief literature review.

    PubMed

    Yan, Hui-Ming; Hu, Hao; Ahmed, Aisha; Feng, Bing-Bing; Liu, Jing; Jia, Zheng-Jun; Wang, Hua

    2017-11-01

    Carnitine-acylcarnitine translocate deficiency (CACTD) is a rare and life-threatening, autosomal recessive disorder of fatty acid β-oxidation characterized by hypoketotic hypoglycemia, hyperammonemia, cardiomyopathy, liver dysfunction, and muscle weakness; culminating in early death. To date, CACTD cases screened from the Chinese mainland population, especially patient with compound heterozygote with c.199-10T>G and a novel c.1A>G mutation in the SLC25A20 gene has never been described. Herein, we report 2 neonatal cases of CACTD identified from the mainland China. These 2 patients were presented with severe metabolic crisis and their clinical conditions deteriorate rapidly and both died of cardiorespiratory collapse in the first week of life. We present the clinical and biochemical features of 2 probands and a brief literature review of previously reported CACTD cases with the c.199-10T>G mutation. The acylcarnitine profiles by tandem-mass-spectrometry and the mutation analysis of SLC25A20 gene confirmed the diagnosis of CACTD in both patients. Mutation analysis demonstrated that patient No. 1 was homozygous for c.199-10T>G mutation, while patient No. 2 was a compound heterozygote for 2 mutations, a maternally-inherited c.199-10T>G and a paternally-inherited, novel c.1A>G mutation. Both patients were treated with an aggressive treatment regimen include high glucose and arginine infusion, respiratory, and circulatory support. The first proband died 3 days after delivery due to sudden cardiac arrest. The second patient's clinical condition, at one time, was improved by high glucose infusion, intravenous arginine, and circulatory support. However, the patient failed to wean from mechanical ventilation. Unfortunately, her parents refused further treatment due to fear of financial burdens. The patient died of congestive heart failure in the 6th day of life. We report the first 2 cases of CACTD identified from the mainland China. Apart from a founder mutation c.199-10T>G, we identified a novel c.1A>G mutation. Patients with CACTD with a genotype of c.199-10T>G mutation usually presents with a severe clinical phenotype. Early recognition and appropriate treatment is crucial in this highly lethal disorder. This case series highlights the importance of screening for metabolic diseases including CACTD in cases of sudden infant death and unexplained abrupt clinical deterioration in the early neonatal period.

  20. Parallel changes in intracellular water volume and pH induced by NH(3)/NH(4)(+) exposure in single neuroblastoma cells.

    PubMed

    Blanco, Víctor M; Márquez, Martín S; Alvarez-Leefmans, Francisco J

    2013-01-01

    Increased blood levels of ammonia (NH3) and ammonium (NH4(+)), i.e. hyperammonemia, leads to cellular brain edema in humans with acute liver failure. The pathophysiology of this edema is poorly understood. This is partly due to incomplete understanding of the osmotic effects of the pair NH3/NH4(+) at the cellular and molecular levels. Cell exposure to solutions containing NH3/NH4(+) elicits changes in intracellular pH (pHi), which can in turn affect cell water volume (CWV) by activating transport mechanisms that produce net gain or loss of solutes and water. The occurrence of CWV changes caused by NH3/NH4(+) has long been suspected, but the mechanisms, magnitude and kinetics of these changes remain unknown. Using fluorescence imaging microscopy we measured, in real time, parallel changes in pHi and CWV caused by brief exposure to NH3/NH4(+) of single cells (N1E-115 neuroblastoma or NG-108 neuroblastoma X glioma ) loaded with the fluorescent indicator BCECF. Changes in CWV were measured by exciting BCECF at its intracellular isosbestic wavelength (∼438 nm), and pHi was measured ratiometrically. Brief exposure to isosmotic solutions (i.e. having the same osmolality as that of control solutions) containing NH4Cl (0.5- 30 mM) resulted in a rapid, dose-dependent swelling, followed by isosmotic regulatory volume decrease (iRVD). NH4Cl solutions in which either extracellular [NH3] or [NH4(+)] was kept constant while the other was changed by varying the pH of the solution, demonstrated that [NH3]o rather than [NH4(+)]o is the main determinant of the NH4Cl-induced swelling. The iRVD response was sensitive to the anion channel blocker NPPB, and partly dependent on external Ca(2+). Upon removal of NH4Cl, cells shrank and displayed isosmotic regulatory volume increase (iRVI). Regulatory volume responses could not be activated by comparable CWV changes produced by anisosmotic solutions, suggesting that membrane stretch or contraction by themselves are not sufficient to trigger these responses. Inhibition of glutamine synthetase partially blocked the NH4Cl-induced swelling. A quantitative description of the osmotic changes produced by exposure to NH3/NH4(+) in single neurons and glial cells shows that ∼35 to 45% of the initial cell swelling can be explained by intracellular accumulation of NH4(+) due to rapid permeation and protonation of NH3. Another∼23% of the swelling can be accounted for by rapid glutamine accumulation. The results are discussed in terms of basic cell physiology and their potential relevance to the pathophysiology of hyperammonemic cellular brain edema. © 2014 S. Karger AG, Basel.

  1. Minimal hepatic encephalopathy in children with chronic liver disease: Prevalence, pathogenesis and magnetic resonance-based diagnosis.

    PubMed

    Srivastava, Anshu; Chaturvedi, Saurabh; Gupta, Rakesh Kumar; Malik, Rohan; Mathias, Amrita; Jagannathan, Naranamangalam R; Jain, Sunil; Pandey, Chandra Mani; Yachha, Surender Kumar; Rathore, Ram Kishor Singh

    2017-03-01

    Data on minimal hepatic encephalopathy (MHE) in children is scarce. We aimed to study MHE in children with chronic liver disease (CLD) and to validate non-invasive objective tests which can assist in its diagnosis. We evaluated 67 children with CLD (38 boys; age 13 [7-18] years) and 37 healthy children to determine the prevalence of MHE. We also assessed the correlation of MHE with changes in brain metabolites by magnetic resonance spectroscopy ( 1 HMRS), diffusion tensor imaging (DTI) derived metrics, blood ammonia and inflammatory cytokines (interleukin-6 [IL6], tumor necrosis factor alpha [TNF-α]). In addition, the accuracy of MR-based investigations for diagnosis of MHE in comparison to neuropsychological tests was analysed. Thirty-four (50.7%) children with CLD had MHE on neuropsychological tests. MHE patients had higher BA (30.5 [6-74] vs. 14 [6-66]μmol/L; p=0.02), IL-6 (8.3 [4.7-28.7] vs. 7.6 [4.7-20.7]pg/ml; p=0.4) and TNF-α (17.8 [7.8-65.5] vs. 12.8 [7.5-35]pg/ml; p=0.06) than No-MHE. 1 HMRS showed higher glutamine (2.6 [2.1-3.3] vs. 2.4 [2.0-3.1]; p=0.02), and lower choline (0.20 [0.14-0.25] vs. 0.22 [0.17-0.28]; p=0.1) and myo-inositol (0.25 [0.14-0.41] vs. 0.29 [0.21-0.66]; p=0.2) in MHE patients than those without MHE. Mean diffusivity (MD) on DTI was significantly higher in 6/11 brain areas in patients with MHE vs. no MHE. Brain glutamine had a significant positive correlation with blood ammonia, IL-6, TNF-α and MD of various brain regions. Neuropsychological tests showed a negative correlation with blood ammonia, IL6, TNF-α, glutamine and MD. Frontal white matter MD had a sensitivity and specificity of 73.5% and 100% for diagnosing MHE. In children with CLD, 50% have MHE. There is a significant positive correlation between markers of hyperammonemia, inflammation and brain edema and these correlate negatively with neuropsychological tests. MD on DTI is a reliable tool for diagnosing MHE. Fifty percent of children with chronic liver disease develop minimal hepatic encephalopathy (MHE) and perform poorly on neuropsychological testing. These children have raised blood ammonia, inflammatory cytokines and mild cerebral edema on diffusion tensor imaging as compared to children without MHE. The higher the ammonia, inflammatory cytokines and cerebral edema levels the poorer the performance on neuropsychological assessment. The estimation of mean diffusivity on diffusion tensor imaging is an objective and reliable method for diagnosing MHE. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

Top