SOLUTION RHEOLOGY OF HYPERBRANCHED POLYESTERS AND THEIR BLENDS WITH LINEAR POLYMERS
In this study, the rheological properties of different generations of hyperbranched polyesters in 1-methyl-2-pyrrolidinone solvent and their blends with poly(2-hydroxyethyl methacrylate) have ben investigated. All the hyperbranched polyester solutions exhibited Newtonian behavior...
RHEOLOGY OF CONCENTRATED SOLUTIONS OF HYPERBRANCHED POLYESTERS
The solution rheology of different generations of hyperbranched polyesters in N-methyl-2- pyrrolidinone (NMP) solvent was examined in this study. The solutions exhibited Newtonian behavior over a wide range of polyester concentrations. Also, the relative viscosities of poly(amido...
Microcellular processing of polylactide-hyperbranched polyester-nanoclay composites
Srikanth Pilla; Adam Kramschuster; Jungjoo Lee; Craig Clemons; Shaoqin Gong; Lih-Sheng Turng
2010-01-01
The effects of addition of hyperbranched polyesters (HBPs) and nanoclay on the material properties of both solid and microcellular polylactide (PLA) produced via a conventional and microcellular injection-molding process, respectively, were investigated. The effects of two different types of HBPs (i.e., Boltorn H2004® and Boltorn H20®) at the same...
Polystyrene/Hyperbranched Polyester Blends and Reactive Polystyrene/Hyperbranched Polyester Blends
1999-01-01
interfacial tension between the PE and polystyrene phases. This was brought about by the chemical interaction between the acidic anhydride groups in the...multiple 2,2 dimethylol propionic acid (C5H10O4) chain extenders or repeat units. 11 Core HO \\ HO’ /■ J OH V *OH Pentaerythritol Chain Extender...O 2,2 - Dimethylol propionic acid Figure 11. HBP Building Blocks. These materials were supplied in small quantities with little technical data. The
Protoenzymes: the case of hyperbranched polyesters
NASA Astrophysics Data System (ADS)
Mamajanov, Irena; Cody, George D.
2017-11-01
Enzymes are biopolymeric complexes that catalyse biochemical reactions and shape metabolic pathways. Enzymes usually work with small molecule cofactors that actively participate in reaction mechanisms and complex, usually globular, polymeric structures capable of specific substrate binding, encapsulation and orientation. Moreover, the globular structures of enzymes possess cavities with modulated microenvironments, facilitating the progression of reaction(s). The globular structure is ensured by long folded protein or RNA strands. Synthesis of such elaborate complexes has proven difficult under prebiotically plausible conditions. We explore here that catalysis may have been performed by alternative polymeric structures, namely hyperbranched polymers. Hyperbranched polymers are relatively complex structures that can be synthesized under prebiotically plausible conditions; their globular structure is ensured by virtue of their architecture rather than folding. In this study, we probe the ability of tertiary amine-bearing hyperbranched polyesters to form hydrophobic pockets as a reaction-promoting medium for the Kemp elimination reaction. Our results show that polyesters formed upon reaction between glycerol, triethanolamine and organic acid containing hydrophobic groups, i.e. adipic and methylsuccinic acid, are capable of increasing the rate of Kemp elimination by a factor of up to 3 over monomeric triethanolamine. This article is part of the themed issue 'Reconceptualizing the origins of life'.
Santra, Santimukul; Kaittanis, Charalambos; Perez, J. Manuel
2009-01-01
Herein we report the design and synthesis of multifunctional hyperbranched polyester-based nanoparticles and nanocomposites with properties ranging from magnetic, fluorescence, antioxidant and X-ray contrast. The fabrication of these nanostructures was achieved using a novel aliphatic and biodegradable hyperbranched polyester (HBPE) synthesized from readily available diethylmalonate. The polymer’s globular structure with functional surface carboxylic groups and hydrophobic cavities residing in the polymer’s interior allows for the formation of multifunctional polymeric nanoparticles, which are able to encapsulate a diversity of hydrophobic cargos. Via simple surface chemistry modifications, the surface carboxylic acid groups were modified to yield nanoparticles with a variety of surface functionalizations, such as amino, azide and propargyl groups, which mediated the conjugation of small molecules. This capability achieved the engineering of the HBPE nanoparticle surface for specific cell internalization studies and the formation of nanoparticle assemblies for the creation of novel nanocomposites that retained, and in some cases enhanced, the properties of the parental nanoparticle building blocks. Considering these results, the HBPE polymer, nanoparticles and composites should be ideal for biomedical, pharmaceutical, nanophotonics and material applications. PMID:19957939
The Lewis-acid-catalyzed synthesis of hyperbranched poly(glycerol-diacid)s in toluene
USDA-ARS?s Scientific Manuscript database
The first examples of monomeric glycerol-derived hyperbranched polyesters produced in a non-polar solvent system are reported here. The polymers were made by the Lewis acid (dibutyltin(IV)oxide)-catalyzed polycondensation of glycerol with either succinic acid (n (aliphatic chain length)=2), glutari...
Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications
NASA Astrophysics Data System (ADS)
Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia
2016-01-01
We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach.
NASA Astrophysics Data System (ADS)
Fang, Chao; Li, Ning; Liu, Yang; Lu, Gang
2018-05-01
In order to improve the toughness of epoxy acrylate (EA) in three dimensional printing (3D-printing), bifunctional polyurethane acrylate (PUA) and trifunctional PUA were firstly blended with EA. The multi-indicators orthogonal experiment, designed with the indicators of tensile strength, elongation at break and impact strength, was used to find out the optimal formulation. Then, hyper-branched polyesters (HBPs) was added to improve the toughness of the photocurable system. The microstructures of the cured specimens were characterized by optical microscopy and scanning electron microscopy. By analyzing their mechanical properties and microstructures, it was revealed that the best addition amounts of HBP are 10 wt%. Results indicated that their toughness improved a lot comparing with pure EA. The changes of mechanical properties were characterized by DMA. The addition of HBP could cause a loss in stiffness, elasticity modulus and thermostability.
Pedrón, Sara; Peinado, Carmen; Bosch, Paula; S.Anseth, Kristi
2010-01-01
Hyperbranched poly(ester amide) polymer (Hybrane™ S1200; Mn 1200 g/mol) was functionalized with maleic anhydride (MA) and propylene sulfide, to obtain multifunctional crosslinkers with fumaric and thiol-end groups, S1200MA and S1200SH, respectively. The degree of substitution of maleic acid groups (DS) was controlled by varying the molar ratio of MA to S1200 in the reaction mixture. Hydrogels were obtained by UV crosslinking of functionalized S1200 and poly(ethyleneglycol) diacrylate (PEGDA) in aqueous solutions. Compressive modulus increased with decreasing the S1200/PEG ratio and also depended on the DS of the multifunctional crosslinker (S1200). Also, heparin-based macromonomers together with functionalized hyperbranched polymers were used to construct novel functional hydrogels. The multivalent hyperbranched polymers allowed high crosslinking densities in heparin modified gels while introducing biodegradation sites. Both heparin presence and acrylate/thiol ratio have an impact on degradation profiles and morphologies. Hyperbranched crosslinked hydrogels showed no evidence of cell toxicity. Overall, the multifunctional crosslinkers afford hydrogels with promising properties that suggest that these may be suitable for tissue engineering applications. PMID:20561601
Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications
Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia
2016-01-01
We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach. PMID:26727881
Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka
We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acidsmore » (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach.« less
Label-free immunosensor based on hyperbranched polyester for specific detection of α-fetoprotein.
Niu, Yanlian; Yang, Tian; Ma, Shangshang; Peng, Fang; Yi, Meihui; Wan, Mimi; Mao, Chun; Shen, Jian
2017-06-15
A novel label-free immunosensor based on hyperbranched polyester nanoparticles with nitrite groups (HBPE-NO 2 ), which were synthesized through a simple one-step chemical reaction, was first developed for specific detection of α-fetoprotein (AFP), the tumor marker for liver cancer. The obtained HBPE-NO 2 nanoparticles (NPs) were characterized by the proton nuclear magnetic resonance spectroscopy ( 1 H NMR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). And the fabricated process of immunosensor was investigated by attenuated total reflection Fourier-transform infrared spectra (ATR-FTIR), static water contact angles, scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrochemical performances of the AFP immunosensor were studied. Results indicated the prepared HBPE-NO 2 -modified immunosensor showed excellent electrochemical properties and satisfactory accuracy for the detection of AFP of the real clinical samples that attributed to the properties of the HBPE-NO 2 NPs, which had nanosized structure to increase the specific surface area and unique chemical reactivity for loading capacity of protein molecules. Construction of biosensors using the structure and properties of hyperbranched molecules will offer ideal electrode substrates, which provided more possibilities for the design of biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.
Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.
Shah, Aamer Ali; Kato, Satoshi; Shintani, Noboru; Kamini, Numbi Ramudu; Nakajima-Kambe, Toshiaki
2014-04-01
Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(L-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.
Thermal properties of poly(urethane-ester-siloxane)s based on hyperbranched polyester
NASA Astrophysics Data System (ADS)
Pergal, M. V.; Džunuzović, J. V.; Kićanović, M.; Vodnik, V.; Pergal, M. M.; Jovanović, S.
2011-12-01
Novel polyurethanes (PUs) were synthesized using hydroxy-terminated hyperbranched polyester (BH-20) and 4,4'-methylenediphenyl diisocyanate (MDI) as hard segments and hydroxy-terminated ethylene oxide-poly(dimethylsiloxane)-ethylene oxide triblock copolymer (PDMS-EO) as soft segment, with soft segment content ranging from 30 to 60 wt %. The PUs were synthesized by two-step solution polymerization method. The influence of the soft segment content on the structure, swelling behavior and thermal properties of PUs was investigated. According to the results obtained by swelling measurements, the increase of the hard segment content resulted in the increase of the crosslinking density of synthesized samples. DSC results showed that the glass transition temperatures increase from 36 to 65°C with increasing hard segment content. It was demonstrated using thermogravimetric analysis (TGA) that thermal stability of investigated PUs increases with increase of the soft PDMS-EO content. This was concluded from the temperatures corresponding to the 10 wt % loss, which represents the beginning of thermal degradation of samples.
Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications
Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; ...
2016-01-05
We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acidsmore » (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. Increased branching and degree of polymerization, and thus molecular weight, were found to reduce the solubility of these systems in the base oil. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated improved viscosity index and reduced friction coefficient, validating the basic approach.« less
Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka
We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acidsmore » (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. Increased branching and degree of polymerization, and thus molecular weight, were found to reduce the solubility of these systems in the base oil. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated improved viscosity index and reduced friction coefficient, validating the basic approach.« less
Synthesis of Cu/SiO2 Core-Shell Particles Using Hyperbranched Polyester as Template and Dispersant
NASA Astrophysics Data System (ADS)
Han, Wensong
2017-07-01
Third-generation hyperbranched polyester (HBPE3) was synthesized by stepwise polymerization with N, N-diethylol-3-amine methylpropionate as AB2 monomer and pentaerythritol as core molecule. Then, Cu particles were prepared by reduction of copper nitrate with ascorbic acid in aqueous solution using HBPE3 as template. Finally, Cu/SiO2 particles were prepared by coating silica on the surface of Cu particles. The structure and morphology of the samples were characterized by Fourier-transform infrared (FT-IR) spectrometry, x-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results confirmed the formation of the silica coating on the surface of Cu and that the Cu/SiO2 particles had spherical shape with particle size in the range of 0.8 μm to 2 μm. Compared with pure Cu, the synthesized Cu/SiO2 core-shell particles exhibited better oxidation resistance at high temperature. Moreover, the oxidation resistance of the Cu/SiO2 particles increased significantly with increasing tetraethyl orthosilicate (TEOS) concentration.
NASA Astrophysics Data System (ADS)
Yao, Qi; Li, Chenying; Huang, Henghui; Chen, Hualin; Liu, Bailing
2017-09-01
A series of carboxyl-terminated hyperbranched oligomer polyester (HBP) with different degree of branching (DB) and number average molar mass (Mbarn) have been prepared. The molecular structure, degree of branching, molecular mass and its distribution of HBP were investigated by FTIR, 1H NMR, and GPC, respectively. And the coordination number, stability constant and degree of dissociation (α) between HBP and chromium(Ⅲ) were measured via continuous variation method (Job's plot). Experimental results show that the coordination capability between HBP and chromium(Ⅲ) affected by both DB and molecular mass, and the latter plays a decisive role. Moreover HBP outperforms low molecular weight of organic acids (citric acid, acetic acid) and linear polyacrylic acid with similar molecular mass. The coordination number and stability constants of HBP-3 (Mbarn = 1713 Da, Mbarw /Mbarn (PDI) = 1.11 and DB = 0.72) can reach 4 and 6.55e+008, which demonstrated it can be selected as a good ligand to coordination with chromium(Ⅲ). Therefore HBP can be used as chrome auxiliary in chrome tanning to improve the absorption of chromium.
Rheological and Thermal Properties of Bio-based Hyperbranched Polyesters
NASA Astrophysics Data System (ADS)
Bubeck, Robert; Dumitrascu, Adina; Zhang, Tracy; Smith, Patrick
Hyperbranched poly(ester)s (HBPEs) of designed molecular structures and targeted molecular weight can be prepared from a variety of multi-functional acids and alcohols. These polymers find application in the areas of coatings and rheology modifiers for coatings. These functional polymers can be synthesized in variety of architectures, possessing either hydroxyl or carboxyl reactive end-groups suitable for the attachment of active entities. The rheological characteristics as related to variation in molecular structure were determined using cone and plate or couette geometries. Viscosities of the HBPEs were found to be near Newtonian. HB polymers permit the control of Tg that is not as readily attained with linear polymers. Accordingly, Tg and viscosity are affected little as a function of Mw but vary dramatically with the nature of the end-groups, are highly dependent on hydrogen bonding of the hydroxyl end groups, and decrease dramatically with the incorporation of aliphatic end-caps. The thermal properties and the degradation characteristics of the HBPEs were determined. Thermal degradation of the hydroxyl-terminal HBPEs is initiated by dehydrative ether formation (crosslinking) while decarboxylation is the initial decomposition event for the carboxyl-terminal polymers. Midland, MI Campus.
Metal catalyzed synthesis of hyperbranched ethylene and/or .alpha.-olefin polymers
Sen, Ayusman; Kim, Jang Sub; Pawlow, James H.; Murtuza, Shahid; Kacker, Smita; Wojcinski, III, Louis M.
2001-01-01
Oily hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin, and a method for their synthesis, are disclosed. The polymers have non-regular microstructures and are characterized by a ratio ({character pullout})of methyl hydrogens centered around 0.85 ppm on the 1H-NMR spectra of the polymers relative to total aliphatic hydrogens of from about 0.40 to about 0.65 for polymers derived from ethylene or butene, and a ratio ({character pullout})of from greater than 0.50 to about 0.65 for polymers derived from propylene. A method for grafting hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin onto aromatic rings in organic molecules and polymers, and the resulting grafted materials, are also disclosed. The hyperbranched polymers and grafted materials are useful, for example, as lubricants and lubricant additives.
Hard and flexible nanocomposite coatings using nanoclay-filled hyperbranched polymers.
Fogelström, Linda; Malmström, Eva; Johansson, Mats; Hult, Anders
2010-06-01
The combination of hardness, scratch resistance, and flexibility is a highly desired feature in many coating applications. The aim of this study is to achieve this through the introduction of an unmodified nanoclay, montmorillonite (Na(+)MMT), in a polymer resin based on the hyperbranched polyester Boltorn H30. Smooth and transparent films were prepared from both the neat and the nanoparticle-filled hyperbranched resins. X-ray diffraction (XRD) and transmission electron microscopy (TEM) corroborated a mainly exfoliated structure in the nanocomposite films, which was also supported by results from dynamic mechanical analysis (DMA). Furthermore, DMA measurements showed a 9-16 degrees C increase in Tg and a higher storage modulus-above and below the T(g)-both indications of a more cross-linked network, for the clay-containing film. Thermogravimetric analysis (TGA) demonstrated the influence of the nanofiller on the thermal properties of the nanocomposites, where a shift upward of the decomposition temperature in oxygen atmosphere is attributed to the improved barrier properties of the nanoparticle-filled materials. Conventional coating characterization methods demonstrated an increase in the surface hardness, scratch resistance and flexibility, with the introduction of clay, and all coatings exhibited excellent chemical resistance and adhesion.
Hyperbranched-polymer dispersed nanocomposite volume gratings for holography and diffractive optics
NASA Astrophysics Data System (ADS)
Tomita, Yasuo; Takeuchi, Shinsuke; Oyaizu, Satoko; Urano, Hiroshi; Fukamizu, Taka-aki; Nishimura, Naoya; Odoi, Keisuke
2016-10-01
We review our experimental investigations of photopolymerizable nanoparticle-polymer composites (NPCs) for holography and diffractive optics. Various types of hyperbranched polymer (HBP) were systhesized and used as transporting organic nanoparticles. These HBPs include hyperbranched poly(ethyl methacrylate) (HPEMA), hyperbranched polystyrene (HPS) and hyperbranched triazine/aromatic polymer units (HTA) whose refractive indices are 1.51, 1.61 and 1.82, respectively. Each HBP was dispersed in (meth)acrylate monomer whose refractive index was so chosen that a refractive index difference between HBP and the formed polymer was large. Such monomer-HBP syrup was mixed with a titanocene photoinitiator for volume holographic recording in the green. We used a two-beam interference setup to write an unslanted transmission volume grating at grating spacing of 1 μm and at a wavelength of 532 nm. It is shown that NPC volume gratings with the saturated refractive index modulation amplitudes as large as 0.008, 0.004 and 0.02 can be recorded in NPCs incorporated with HPEMA, HPS and HTA at their optimum concentrations of 34, 34 and 25 vol.%, respectively. We show the usefulness of HBP-dispersed NPC volume gratings for holographic applications such as holographic data storage and diffractive optical devices.
Semi-aromatic polyesters based on a carbohydrate-derived rigid diol for engineering plastics.
Wu, Jing; Eduard, Pieter; Thiyagarajan, Shanmugam; Noordover, Bart A J; van Es, Daan S; Koning, Cor E
2015-01-01
New carbohydrate-based polyesters were prepared from isoidide-2,5-dimethanol (extended isoidide, XII) through melt polymerization with dimethyl esters of terephthalic acid (TA) and furan-2,5-dicarboxylic acid (FDCA), yielding semi-crystalline prepolymers. Subsequent solid-state post-condensation (SSPC) gave high molecular weight (Mn =30 kg mol(-1) for FDCA) materials, the first examples of high Mn , semi-aromatic homopolyesters containing isohexide derivatives obtained via industrially relevant procedures. NMR spectroscopy showed that the stereo-configuration of XII was preserved under the applied conditions. The polyesters are thermally stable up to 380 °C. The TA- and FDCA-based polyesters have high Tg (105 °C and 94 °C, resp.) and Tm (284 °C and 250 °C, resp.) values. Its reactivity, stability, and ability to afford high Tg and Tm polyesters make XII a promising diol for the synthesis of engineering polymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Guowen; Li, Wenjie; Zhang, Chen; Zhou, Chuanjian; Feng, Shengyu
2012-09-21
Phenyl-ended hyperbranched carbosilane (HBC) is synthesized and immobilized onto the inner wall of a fused silica capillary column using a sol-gel process. The hybrid coating layer formed is used as a stationary phase for gas chromatography (GC) and as an adsorption medium for solid phase microextraction (SPME). Trifluoroacetic acid, as a catalyst in this process, helps produce a homogeneous hybrid coating layer. This result is beneficial for better column chromatographic performances, such as high efficiency and high resolution. Extraction tests using the novel hybrid layer show an extraordinarily large adsorption capacity and specific adsorption behavior for aromatic compounds. A 1 ppm trace level detectability is obtained with the SPME/GC work model when both of the stationary phase and adsorption layer bear a hyperbranched structure. A large amount of phenyl groups and a low viscosity of hyperbranched polymers contribute to these valuable properties, which are important to environment and safety control, wherein detection sensitivity and special adsorption behavior are usually required. Copyright © 2012 Elsevier B.V. All rights reserved.
Structure-property relationships in low-temperature adhesives. [for inflatable structures
NASA Technical Reports Server (NTRS)
Schoff, C. K.; Udipi, K.; Gillham, J. K.
1977-01-01
Adhesive materials of aliphatic polyester, linear hydroxyl end-capped polybutadienes, or SBS block copolymers are studied with the objective to replace conventional partially aromatic end-reactive polyester-isocyanate adhesives that have shown embrittlement
Modification of polylactide bioplastic using hyperbranched polymer based nanostructures
NASA Astrophysics Data System (ADS)
Bhardwaj, Rahul
Polylactide (PLA) is the most well known renewable resource based biodegradable polymer. The inherent brittleness and poor processability of PLA pose considerable technical challenges and limit its range of commercial applications. The broad objective of this research was to investigate novel pathways for polylactide modification to enhance its mechanical and rheological properties. The focus of this work was to tailor the architecture of a dendritic hyperbranched polymer (HBP) and study its influence on the mechanical and rheological properties of PLA bioplastic. The hyperbranched polymers under consideration are biodegradable aliphatic hydroxyl-functional hyperbranched polyesters having nanoscale dimensions, unique physical properties and high peripheral functionalities. This work relates to identifying a new and industrially relevant research methodology to develop PLA based nanoblends having outstanding stiffness-toughness balance. In this approach, a hydroxyl functional hyperbranched polymer was crosslinked in-situ with a polyanhydride (PA) in the PLA matrix during melt processing, leading to the generation of new nanoscale hyperbranched polymer based domains in the PLA matrix. Transmission electron microscopy and atomic force microscopy revealed the "sea-island" morphology of PLA-crosslinked HBP blends. The domain size of a large portion of the crosslinked HBP particles in PLA matrix was less than 100 nm. The presence of crosslinked hyperbranched polymers exhibited more than 500% and 800% improvement in the tensile toughness and elongation at break values of PLA, respectively, with a minimal sacrifice of tensile strength and modulus as compared to unmodified PLA. The toughening mechanism of PLA in the presence of crosslinked HBP particles was comprised of shear yielding and crazing. The volume fraction of crosslinked HBP particles and matrix ligament thickness (inter-particle distance) were found to be the critical parameters for the toughening of PLA. The maximum average matrix ligament thickness was 114 nm for a toughened polylactide nanoblend and correlated well with the theoretical prediction of the matrix ligament thickness. Fourier transform infrared spectroscopy and dynamic mechanical thermal analysis proved the crosslinking of the HBP phase in the PLA matrix. The crosslinked HBP was effective at hydroxyl (-OH) to anhydride molar ratios of: 2:1, 1:1 or 1:2. The glass transition temperature values of the crosslinked HBP phase at these molar ratios were observed to deviate from the predictions made by the Fox equation. The hydrophilic nature of the hyperbranched polymer was altered to hydrophobic by incorporation of polyanhydride crosslinker, as demonstrated by the increase in the contact angle with water. Rheological studies showed that there was a network formation in the PLA matrix after in-situ crosslinking of HBP. The HBP was found to reduce the melt viscosity of PLA dramatically and this effect was maintained even after its in-situ crosslinking in the PLA matrix. Finally, the current research unwraps the new opportunities provided by the unique physical and chemical properties of highly functional hyperbranched polymers in generating new nanostructured multiphase polymer systems with enhanced properties.
Characterization of new drug delivery nanosystems using atomic force microscopy
NASA Astrophysics Data System (ADS)
Spyratou, Ellas; Mourelatou, Elena A.; Demetzos, C.; Makropoulou, Mersini; Serafetinides, A. A.
2015-01-01
Liposomes are the most attractive lipid vesicles for targeted drug delivery in nanomedicine, behaving also as cell models in biophotonics research. The characterization of the micro-mechanical properties of drug carriers is an important issue and many analytical techniques are employed, as, for example, optical tweezers and atomic force microscopy. In this work, polyol hyperbranched polymers (HBPs) have been employed along with liposomes for the preparation of new chimeric advanced drug delivery nanosystems (Chi-aDDnSs). Aliphatic polyester HBPs with three different pseudogenerations G2, G3 and G4 with 16, 32, and 64 peripheral hydroxyl groups, respectively, have been incorporated in liposomal formulation. The atomic force microscopy (AFM) technique was used for the comparative study of the morphology and the mechanical properties of Chi-aDDnSs and conventional DDnS. The effects of both the HBPs architecture and the polyesters pseudogeneration number in the stability and the stiffness of chi-aDDnSs were examined. From the force-distance curves of AFM spectroscopy, the Young's modulus was calculated.
Photocrosslinkable biodegradable elastomers based on cinnamate-functionalized polyesters.
Zhu, Congcong; Kustra, Stephen R; Bettinger, Christopher J
2013-07-01
Synthetic biodegradable elastomers are an emerging class of materials that play a critical role in supporting innovations in bioabsorbable medical implants. This paper describes the synthesis and characterization of poly(glycerol-co-sebacate)-cinnamate (PGS-CinA), a biodegradable elastomer based on hyperbranched polyesters derivatized with pendant cinnamate groups. PGS-CinA can be prepared via photodimerization in the absence of photoinitiators using monomers that are found in common foods. The resulting network exhibits a Young's modulus of 50.5-152.1kPa and a projected in vitro degradation half-life time between 90 and 140days. PGS-CinA elastomers are intrinsically cell-adherent and support rapid proliferation of fibroblasts. Spreading and proliferation of fibroblasts are loosely governed by the substrate stiffness within the range of Young's moduli in PGS-CinA networks that were prepared. The thermo-mechanical properties, biodegradability and intrinsic support of cell attachment and proliferation suggest that PGS-CinA networks are broadly applicable for use in next generation bioabsorable materials including temporary medical devices and scaffolds for soft tissue engineering. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Tabatabaei Rezaei, Seyed Jamal; Abandansari, Hamid Sadeghi; Nabid, Mohammad Reza; Niknejad, Hassan
2014-07-01
Novel unimolecular micelles from amphiphilic hyperbranched block copolymer H40-poly(ε-caprolactone)-b-poly(acrylic acid)-b'-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate (i.e., H40-PCL-b-PAA-b'-MPEG/PEG-FA (HCAE-FA)) as new multifunctional nanocarriers to pH-induced accelerated release and tumor-targeted delivery of poorly water-soluble anticancer drugs were developed. The hydrophobic core of the unimolecular micelle was hyperbranched polyester (H40-poly(ε-caprolactone) (H40-PCL)). The inner hydrophilic layer was composed of PAA segments, while the outer hydrophilic shell was composed of PEG segments. This copolymer formed unimolecular micelles in the aqueous solution with a mean particle size of 33 nm, as determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). To study the feasibility of micelles as a potential nanocarrier for targeted drug delivery, we encapsulated a hydrophobic anticancer drug, paclitaxel (PTX), in the hydrophobic core, and the loading content was determined by UV-vis analysis to be 10.35 wt.%. In vitro release studies demonstrated that the drug-loaded delivery system is relatively stable at physiologic conditions but susceptible to acidic environments which would trigger the release of encapsulated drugs. Flow cytometry and fluorescent microscope studies revealed that the cellular binding of the FA-conjugated micelles against HeLa cells was higher than that of the neat micelles (without FA). The in vitro cytotoxicity studies showed that the PTX transported by these micelles was higher than that by the commercial PTX formulation Tarvexol®. All of these results show that these unique unimolecular micelles may offer a very promising approach for targeted cancer therapy. Copyright © 2014 Elsevier Inc. All rights reserved.
2009-01-01
aromatic keto -band arisen from carboxylic acids, which could be part of terminal groups of HPEKs, ranged from 1708 to 1719 cm1. The carbonyl bands from...1999, 143 , 1–34; (d) Inoue, K. Prog Polym Sci 2000, 25, 453–571; (e) Voit, B. J Polym Sci Part A: Polym Chem 2000, 36, 2505–2525; (f) Hult, A
Development of a flameproof elastic elastomeric fiber
NASA Technical Reports Server (NTRS)
Howarth, J. T.; Nilgrom, J.; Massucco, A.; Sheth, S. G.; Dawn, F. S.
1971-01-01
Various flexible polyurethane structures containing halogen were synthesized from polyesters derived from aliphatic or aromatic polyols and dibasic acids. Aliphatic halide structures could not be used because they are unstable at the required reaction temperatures, giving of hydrogen halide which hydrolyzes the ester linkages. In contract, halogen-containing aromatic polyols were stable and satisfactory products were made. The most promising composition, a brominated neopentyl glycol capped with toluene disocyanate, was used as a conventional diisocyanate, in conjunction with hydroxy-terminated polyethers or polyesters to form elastomeric urethanes containing about 10% bromine with weight. Products made in this manner will not burn in air, have an oxygen index value of about 25, and have tensile strength values of about 5,000 psi at 450% elongation. The most efficient additives for imparting flame retardancy to Spandex urethanes are aromatic halides and the most effective of these are the bromide compounds. Various levels of flame retardancy have been achieved depending on the levels of additives used.
Dynamics of Hyperbranched Polymers under Confinement
NASA Astrophysics Data System (ADS)
Androulaki, Krystallenia; Chrissopoulou, Kiriaki; Anastasiadis, Spiros H.; Prevosto, Daniele; Labardi, Massimiliano
2015-03-01
The effect of severe confinement on the dynamics of three different generations of hyperbranched polyesters (Boltorns) is investigated by Dielectric Spectroscopy. The polymers are intercalated within the galleries of natural Na+-MMT, thus, forming 1nm polymer films confined between solid walls. The Tg's of the polymers determined by DSC show a clear dependence on the generation whereas the transition is completely suppressed when all the polymer chains are intercalated. The dynamic investigation of the bulk polymers reveals two sub-Tg processes, with similar behavior for the three polymers with the segmental relaxation observed above the Tg of each. For the nanocomposites, where all polymers are severely confined, the dynamics show significant differences compared to that of the bulk polymers. The sub-Tg processes are similar for the three generations but significantly faster and with weaker temperature dependence than those in the bulk. The segmental process appears at temperatures below the bulk polymer Tg, it exhibits an Arrhenius temperature dependence and shows differences for the three generations. A slow process that appears at higher temperatures is due to interfacial polarization. Co-financed by the EU and Greek funds through the Operational Program ``Education and Lifelong Learning'' of the NSRF-Research Funding Program: THALES-Investing in knowledge society through the Eur. Social Fund (MIS 377278) and COST Action MP0902-COINAPO.
Synthesis of improved polyester resins
NASA Technical Reports Server (NTRS)
Mcleod, A. H.; Delano, C. B.
1979-01-01
Eighteen aromatic unsaturated polyester prepolymers prepared by a modified interfacial condensation technique were investigated for their solubility in vinyl monomers and ability to provide high char yield forming unsaturated polyester resins. The best resin system contained a polyester prepolymer of phthalic, fumaric and diphenic acids reacted with 2,7-naphthalene diol and 9,9-bis(4-hydroxyphenyl)fluorene. This prepolymer is very soluble in styrene, divinyl benzene, triallyl cyanurate, diallyl isophthalate and methylvinylpyridine. It provided anaerobic char yields as high as 41 percent at 800 C. The combination of good solubility and char yield represents a significant improvement over state-of-the-art unsaturated polyester resins. The majority of the other prepolymers had only low or no solubility in vinyl monomers. Graphite composites from this prepolymer with styrene were investigated. The cause for the observed low shear strengths of the composites was not determined, however 12-week aging of the composites at 82 C showed that essentially no changes in the composites had occurred.
Characterization of a resorbable poly(ester urethane) with biodegradable hard segments.
Dempsey, David K; Robinson, Jennifer L; Iyer, Ananth V; Parakka, James P; Bezwada, Rao S; Cosgriff-Hernandez, Elizabeth M
2014-01-01
The rapid growth of regenerative medicine and drug delivery fields has generated a strong need for improved polymeric materials that degrade at a controlled rate into safe, non-cytotoxic by-products. Polyurethane thermoplastic elastomers offer several advantages over other polymeric materials including tunable mechanical properties, excellent fatigue strength, and versatile processing. The variable segmental chemistry in developing resorbable polyurethanes also enables fine control over the degradation profile as well as the mechanical properties. Linear aliphatic isocyanates are most commonly used in biodegradable polyurethane formulations; however, these aliphatic polyurethanes do not match the mechanical properties of their aromatic counterparts. In this study, a novel poly(ester urethane) (PEsU) synthesized with biodegradable aromatic isocyanates based on glycolic acid was characterized for potential use as a new resorbable material in medical devices. Infrared spectral analysis confirmed the aromatic and phase-separated nature of the PEsU. Uniaxial tensile testing displayed stress-strain behavior typical of a semi-crystalline polymer above its Tg, in agreement with calorimetric findings. PEsU outperformed aliphatic PCL-based polyurethanes likely due to the enhanced cohesion of the aromatic hard domains. Accelerated degradation of the PEsU using 0.1 M sodium hydroxide resulted in hydrolysis of the polyester soft segment on the surface, reduced molecular weight, surface cracking, and a 30% mass loss after four weeks. Calorimetric studies indicated a disruption of the soft segment crystallinity after incubation which corresponded with a drop in initial modulus of the PEsU. Finally, cytocompatibility testing with 3T3 mouse fibroblasts exhibited cell viability on PEsU films comparable to a commercial poly(ether urethane urea) after 24 h followed by 85% cell viability at 72 h. Overall, this new resorbable polyurethane shows strong potential for use in wide range of biomedical applications.
Allabashi, Roza; Arkas, Michael; Hörmann, Gerold; Tsiourvas, Dimitris
2007-01-01
Triethoxysilylated derivatives of poly(propylene imine) dendrimer, polyethylene imine and polyglycerol hyperbranched polymers and beta-cyclodextrin have been synthesized and characterized. These compounds impregnated ceramic membranes made from Al(2)O(3), SiC and TiO(2) and subsequently sol-gel reaction led to their polymerization and chemical bond formation with the ceramic substrates. The resulting organic-inorganic filters were tested for the removal of a variety of organic pollutants from water. They were found to remove of polycyclic aromatic hydrocarbons (up to 99%), of monocyclic aromatic hydrocarbons (up to 93%), trihalogen methanes (up to 81%), pesticides (up to 43%) and methyl-tert-butyl ether (up to 46%).
Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi
2014-01-01
Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed. PMID:24776758
Li, Xiaojie; Qian, Yinfeng; Liu, Tao; Hu, Xianglong; Zhang, Guoying; You, Yezi; Liu, Shiyong
2011-09-01
We report on the fabrication of multifunctional polymeric unimolecular micelles as an integrated platform for cancer targeted drug delivery and magnetic resonance imaging (MRI) contrast enhancement under in vitro and in vivo conditions. Starting from a fractionated fourth-generation hyperbranched polyester (Boltorn H40), the ring-opening polymerization of ɛ-caprolactone (CL) from the periphery of H40 and subsequent terminal group esterification with 2-bromoisobutyryl bromide afforded star copolymer-based atom transfer radical polymerization (ATRP) macroinitiator, H40-PCL-Br. Well-defined multiarm star block copolymers, H40-PCL-b-P(OEGMA-co-AzPMA), were then synthesized by the ATRP of oligo(ethylene glycol) monomethyl ether methacrylate (OEGMA) and 3-azidopropyl methacrylate (AzPMA). This was followed by the click reaction of H40-PCL-b-P(OEGMA-co-AzPMA) with alkynyl-functionalized cancer cell-targeting moieties, alkynyl-folate, and T(1)-type MRI contrast agents, alkynyl-DOTA-Gd (DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakisacetic acid), affording H40-PCL-b-P(OEGMA-Gd-FA). In aqueous solution, the amphiphilic multiarm star block copolymer exists as structurally stable unimolecular micelles possessing a hyperbranched polyester core, a hydrophobic PCL inner layer, and a hydrophilic P(OEGMA-Gd-FA) outer corona. H40-PCL-b-P(OEGMA-Gd-FA) unimolecular micelles are capable of encapsulating paclitaxel, a well-known hydrophobic anticancer drug, with a loading content of 6.67 w/w% and exhibiting controlled release of up to 80% loaded drug over a time period of ∼120 h. In vitro MRI experiments demonstrated considerably enhanced T(1) relaxivity (18.14 s(-1) mM(-1)) for unimolecular micelles compared to 3.12 s(-1) mM(-1) for that of the small molecule counterpart, alkynyl-DOTA-Gd. Further experiments of in vivo MR imaging in rats revealed good accumulation of unimolecular micelles within rat liver and kidney, prominent positive contrast enhancement, and relatively long duration of blood circulation. The reported unimolecular micelles-based structurally stable nanocarriers synergistically integrated with cancer targeted drug delivery and controlled release and MR imaging functions augur well for their potential applications as theranostic systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
Thermodynamic properties of hyperbranched polymer, Boltorn U3000, using inverse gas chromatography.
Domańska, Urszula; Zołek-Tryznowska, Zuzanna
2009-11-19
Mass-fraction activity coefficients at infinite dilution (Omega13(infinity)) of alkanes (C5-C10), cycloalkanes (C5-C8), alkenes (C5-C8), alkynes (C5-C8), aromatic hydrocarbons (benzene, toluene, ethylbenzene, o-, m-, p-xylene, thiophene), alcohols (C1-C5), water, ethers (tetrahydrofuran (THF), methyl-tert-butylether (MTBE), diethyl-, di-n-propyl-, di-n-butyl ether), and ketones (propanone, 2-pentanone, 3-pentanone, 2-hexanone, 3-hexanone, cyclopentanone) in the hyperbranched polymer, Boltorn U3000 (B-U3000), have been determined by inverse gas chromatography (IGC) using the polymer as the stationary phase. The measurements were carried out at different temperatures between 308.15 and 348.15 K. The density and thermophysical properties of polymer were described. The specific retention volume (V(g)), the Flory-Huggins interaction parameter (chi13(infinity)), the molar enthalpy of sorption (the partial molar enthalpies of solute dissolution) (Delta(s)H), the partial molar excess enthalpy at infinite dilution of the solute and polymer (DeltaH1(E,infinity)), the partial molar Gibbs excess energy at infinite dilution (DeltaG1(E,infinity)), and the solubility parameter (delta3) were calculated.
Characterization and engineering of a plastic-degrading aromatic polyesterase
Austin, Harry P.; Allen, Mark D.; Rorrer, Nicholas A.; Kearns, Fiona L.; Silveira, Rodrigo L.; Pollard, Benjamin C.; Dominick, Graham; El Omari, Kamel; Mykhaylyk, Vitaliy; Michener, William E.; Amore, Antonella; Skaf, Munir S.; Crowley, Michael F.; Thorne, Alan W.; Johnson, Christopher W.; Woodcock, H. Lee
2018-01-01
Poly(ethylene terephthalate) (PET) is one of the most abundantly produced synthetic polymers and is accumulating in the environment at a staggering rate as discarded packaging and textiles. The properties that make PET so useful also endow it with an alarming resistance to biodegradation, likely lasting centuries in the environment. Our collective reliance on PET and other plastics means that this buildup will continue unless solutions are found. Recently, a newly discovered bacterium, Ideonella sakaiensis 201-F6, was shown to exhibit the rare ability to grow on PET as a major carbon and energy source. Central to its PET biodegradation capability is a secreted PETase (PET-digesting enzyme). Here, we present a 0.92 Å resolution X-ray crystal structure of PETase, which reveals features common to both cutinases and lipases. PETase retains the ancestral α/β-hydrolase fold but exhibits a more open active-site cleft than homologous cutinases. By narrowing the binding cleft via mutation of two active-site residues to conserved amino acids in cutinases, we surprisingly observe improved PET degradation, suggesting that PETase is not fully optimized for crystalline PET degradation, despite presumably evolving in a PET-rich environment. Additionally, we show that PETase degrades another semiaromatic polyester, polyethylene-2,5-furandicarboxylate (PEF), which is an emerging, bioderived PET replacement with improved barrier properties. In contrast, PETase does not degrade aliphatic polyesters, suggesting that it is generally an aromatic polyesterase. These findings suggest that additional protein engineering to increase PETase performance is realistic and highlight the need for further developments of structure/activity relationships for biodegradation of synthetic polyesters. PMID:29666242
Characterization and engineering of a plastic-degrading aromatic polyesterase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Austin, Harry P.; Allen, Mark D.; Donohoe, Bryon S.
Poly(ethylene terephthalate) (PET) is one of the most abundantly produced synthetic polymers and is accumulating in the environment at a staggering rate as discarded packaging and textiles. The properties that make PET so useful also endow it with an alarming resistance to biodegradation, likely lasting centuries in the environment. Our collective reliance on PET and other plastics means that this buildup will continue unless solutions are found. Recently, a newly discovered bacterium, Ideonella sakaiensis 201-F6, was shown to exhibit the rare ability to grow on PET as a major carbon and energy source. Central to its PET biodegradation capability ismore » a secreted PETase (PET-digesting enzyme). Here, we present a 0.92 A resolution X-ray crystal structure of PETase, which reveals features common to both cutinases and lipases. PETase retains the ancestral a/..beta..-hydrolase fold but exhibits a more open active-site cleft than homologous cutinases. By narrowing the binding cleft via mutation of two active-site residues to conserved amino acids in cutinases, we surprisingly observe improved PET degradation, suggesting that PETase is not fully optimized for crystalline PET degradation, despite presumably evolving in a PET-rich environment. Additionally, we show that PETase degrades another semiaromatic polyester, polyethylene-2,5-furandicarboxylate (PEF), which is an emerging, bioderived PET replacement with improved barrier properties. In contrast, PETase does not degrade aliphatic polyesters, suggesting that it is generally an aromatic polyesterase. These findings suggest that additional protein engineering to increase PETase performance is realistic and highlight the need for further developments of structure/activity relationships for biodegradation of synthetic polyesters.« less
Characterization and engineering of a plastic-degrading aromatic polyesterase
Austin, Harry P.; Allen, Mark D.; Donohoe, Bryon S.; ...
2018-04-17
Poly(ethylene terephthalate) (PET) is one of the most abundantly produced synthetic polymers and is accumulating in the environment at a staggering rate as discarded packaging and textiles. The properties that make PET so useful also endow it with an alarming resistance to biodegradation, likely lasting centuries in the environment. Our collective reliance on PET and other plastics means that this buildup will continue unless solutions are found. Recently, a newly discovered bacterium, Ideonella sakaiensis 201-F6, was shown to exhibit the rare ability to grow on PET as a major carbon and energy source. Central to its PET biodegradation capability ismore » a secreted PETase (PET-digesting enzyme). Here, we present a 0.92 A resolution X-ray crystal structure of PETase, which reveals features common to both cutinases and lipases. PETase retains the ancestral a/..beta..-hydrolase fold but exhibits a more open active-site cleft than homologous cutinases. By narrowing the binding cleft via mutation of two active-site residues to conserved amino acids in cutinases, we surprisingly observe improved PET degradation, suggesting that PETase is not fully optimized for crystalline PET degradation, despite presumably evolving in a PET-rich environment. Additionally, we show that PETase degrades another semiaromatic polyester, polyethylene-2,5-furandicarboxylate (PEF), which is an emerging, bioderived PET replacement with improved barrier properties. In contrast, PETase does not degrade aliphatic polyesters, suggesting that it is generally an aromatic polyesterase. These findings suggest that additional protein engineering to increase PETase performance is realistic and highlight the need for further developments of structure/activity relationships for biodegradation of synthetic polyesters.« less
Bode, Gerard H; Coué, Gregory; Freese, Christian; Pickl, Karin E; Sanchez-Purrà, Maria; Albaiges, Berta; Borrós, Salvador; van Winden, Ewoud C; Tziveleka, Leto-Aikaterini; Sideratou, Zili; Engbersen, Johan F J; Singh, Smriti; Albrecht, Krystyna; Groll, Jürgen; Möller, Martin; Pötgens, Andy J G; Schmitz, Christoph; Fröhlich, Eleonore; Grandfils, Christian; Sinner, Frank M; Kirkpatrick, C James; Steinbusch, Harry W M; Frank, Hans-Georg; Unger, Ronald E; Martinez-Martinez, Pilar
2017-04-01
Targeted delivery of drugs across endothelial barriers remains a formidable challenge, especially in the case of the brain, where the blood-brain barrier severely limits entry of drugs into the central nervous system. Nanoparticle-mediated transport of peptide/protein-based drugs across endothelial barriers shows great potential as a therapeutic strategy in a wide variety of diseases. Functionalizing nanoparticles with peptides allows for more efficient targeting to specific organs. We have evaluated the hemocompatibilty, cytotoxicity, endothelial uptake, efficacy of delivery and safety of liposome, hyperbranched polyester, poly(glycidol) and acrylamide-based nanoparticles functionalized with peptides targeting brain endothelial receptors, in vitro and in vivo. We used an ELISA-based method for the detection of nanoparticles in biological fluids, investigating the blood clearance rate and in vivo biodistribution of labeled nanoparticles in the brain after intravenous injection in Wistar rats. Herein, we provide a detailed report of in vitro and in vivo observations. Copyright © 2016 Elsevier Inc. All rights reserved.
Improving of Mechanical and Shape-Memory Properties in Hyperbranched Epoxy Shape-Memory Polymers
NASA Astrophysics Data System (ADS)
Santiago, David; Fabregat-Sanjuan, Albert; Ferrando, Francesc; De la Flor, Silvia
2016-09-01
A series of shape-memory epoxy polymers were synthesized using an aliphatic amine and two different commercial hyperbranched poly(ethyleneimine)s with different molecular weights as crosslinking agents. Thermal, mechanical, and shape-memory properties in materials modified with different hyperbranched polymers were analyzed and compared in order to establish the effect of the structure and the molecular weight of the hyperbranched polymers used. The presence of hyperbranched polymers led to more heterogeneous networks, and the crosslinking densities of which increase as the hyperbranched polymer content increases. The transition temperatures can be tailored from 56 to 117 °C depending on the molecular weight and content of the hyperbranched polymer. The mechanical properties showed excellent values in all formulations at room temperature and, specially, at T_{{g}}^{{E^' with stress at break as high as 15 MPa and strain at break as high as 60 %. The shape-memory performances revealed recovery ratios around 95 %, fixity ratios around 97 %, and shape-recovery velocities as high as 22 %/min. The results obtained in this study reveal that hyperbranched polymers with different molecular weights can be used to enhance the thermal and mechanical properties of epoxy-based SMPs while keeping excellent shape-memory properties.
Characterization and engineering of a plastic-degrading aromatic polyesterase.
Austin, Harry P; Allen, Mark D; Donohoe, Bryon S; Rorrer, Nicholas A; Kearns, Fiona L; Silveira, Rodrigo L; Pollard, Benjamin C; Dominick, Graham; Duman, Ramona; El Omari, Kamel; Mykhaylyk, Vitaliy; Wagner, Armin; Michener, William E; Amore, Antonella; Skaf, Munir S; Crowley, Michael F; Thorne, Alan W; Johnson, Christopher W; Woodcock, H Lee; McGeehan, John E; Beckham, Gregg T
2018-05-08
Poly(ethylene terephthalate) (PET) is one of the most abundantly produced synthetic polymers and is accumulating in the environment at a staggering rate as discarded packaging and textiles. The properties that make PET so useful also endow it with an alarming resistance to biodegradation, likely lasting centuries in the environment. Our collective reliance on PET and other plastics means that this buildup will continue unless solutions are found. Recently, a newly discovered bacterium, Ideonella sakaiensis 201-F6, was shown to exhibit the rare ability to grow on PET as a major carbon and energy source. Central to its PET biodegradation capability is a secreted PETase (PET-digesting enzyme). Here, we present a 0.92 Å resolution X-ray crystal structure of PETase, which reveals features common to both cutinases and lipases. PETase retains the ancestral α/β-hydrolase fold but exhibits a more open active-site cleft than homologous cutinases. By narrowing the binding cleft via mutation of two active-site residues to conserved amino acids in cutinases, we surprisingly observe improved PET degradation, suggesting that PETase is not fully optimized for crystalline PET degradation, despite presumably evolving in a PET-rich environment. Additionally, we show that PETase degrades another semiaromatic polyester, polyethylene-2,5-furandicarboxylate (PEF), which is an emerging, bioderived PET replacement with improved barrier properties. In contrast, PETase does not degrade aliphatic polyesters, suggesting that it is generally an aromatic polyesterase. These findings suggest that additional protein engineering to increase PETase performance is realistic and highlight the need for further developments of structure/activity relationships for biodegradation of synthetic polyesters. Copyright © 2018 the Author(s). Published by PNAS.
Gamerith, Caroline; Vastano, Marco; Ghorbanpour, Sahar M.; Zitzenbacher, Sabine; Ribitsch, Doris; Zumstein, Michael T.; Sander, Michael; Herrero Acero, Enrique; Pellis, Alessandro; Guebitz, Georg M.
2017-01-01
To study hydrolysis of aromatic and aliphatic polyesters cutinase 1 from Thermobifida cellulosilytica (Thc_Cut1) was expressed in P. pastoris. No significant differences between the expression of native Thc_Cut1 and of two glycosylation site knock out mutants (Thc_Cut1_koAsn and Thc_Cut1_koST) concerning the total extracellular protein concentration and volumetric activity were observed. Hydrolysis of poly(ethylene terephthalate) (PET) was shown for all three enzymes based on quantification of released products by HPLC and similar concentrations of released terephthalic acid (TPA) and mono(2-hydroxyethyl) terephthalate (MHET) were detected for all enzymes. Both tested aliphatic polyesters poly(butylene succinate) (PBS) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were hydrolyzed by Thc_Cut1 and Thc_Cut1_koST, although PBS was hydrolyzed to significantly higher extent than PHBV. These findings were also confirmed via quartz crystal microbalance (QCM) analysis; for PHBV only a small mass change was observed while the mass of PBS thin films decreased by 93% upon enzymatic hydrolysis with Thc_Cut1. Although both enzymes led to similar concentrations of released products upon hydrolysis of PET and PHBV, Thc_Cut1_koST was found to be significantly more active on PBS than the native Thc_Cut1. Hydrolysis of PBS films by Thc_Cut1 and Thc_Cut1_koST was followed by weight loss and scanning electron microscopy (SEM). Within 96 h of hydrolysis up to 92 and 41% of weight loss were detected with Thc_Cut1_koST and Thc_Cut1, respectively. Furthermore, SEM characterization of PBS films clearly showed that enzyme tretment resulted in morphological changes of the film surface. PMID:28596765
Synthesis and properties of amphiphilic hyperbranched polyethers as pigment dispersant
NASA Astrophysics Data System (ADS)
Xu, Q.; Zhou, Y. J.; Long, S. J.; Liu, Y. G.; Li, J. H.
2018-01-01
Hyperbranched polymers possess prominent properties such as low viscosity, good solubility, high rheological property, environmental non-toxic, and so on, which have potential applications in coatings. In this study, the amphiphilic hyperbranched polyethers (AHPs) consisting of hydrophobic hyperbranched polyethers core and hydrophilic poly (ethylene glycol) arms with different degree of branching (DB) under various reaction temperatures was prepared by the cation ring-opening polymerization. Their structures were characterized by IR, 13CNMR and GPC. Their dispersion properties for pigment particles were investigated. The AHP47 with 0.47 DB was found to have good dispersion properties for Yellow HGR. This work would provide experimental data and theoretical foundation for the application of hyperbranched polyethers in environmental protection coating.
Kleeberg, Ilona; Hetz, Claudia; Kroppenstedt, Reiner Michael; Müller, Rolf-Joachim; Deckwer, Wolf-Dieter
1998-01-01
Random aliphatic-aromatic copolyesters synthesized from 1,4-butanediol, adipic acid, and terephthalic acid (BTA) have excellent thermal and mechanical properties and are biodegradable by mixed cultures (e.g., in compost). Over 20 BTA-degrading strains were isolated by using compost as a microbial source. Among these microorganisms, thermophilic actinomycetes obviously play an outstanding role and appear to dominate the initial degradation step. Two actinomycete strains exhibited about 20-fold higher BTA degradation rates than usually observed in a common compost test. These isolates were identified as Thermomonospora fusca strains. They appeared to be particularly suitable for establishment of rapid degradation tests and were used in comparative studies on the biodegradation of various polyesters. PMID:9572944
Min, Ke; Gao, Haifeng
2012-09-26
A facile approach is presented for successful synthesis of hyperbranched polymers with high molecular weight and uniform structure by a one-pot polymerization of an inimer in a microemulsion. The segregated space in the microemulsion confined the inimer polymerization and particularly the polymer-polymer reaction within discrete nanoparticles. At the end of polymerization, each nanoparticle contained one hyperbranched polymer that had thousands of inimer units and low polydispersity. The hyperbranched polymers were used as multifunctional macroinitiators for synthesis of "hyper-star" polymers. When a degradable inimer was applied, the hyper-stars showed fast degradation into linear polymer chains with low molecular weight.
European Scientific Notes. Volume 35. Number 1.
1981-01-31
thermotropic polymers, primar- formed smectic phases. She also studied ily with aromatic polyesters. Dr. R.W. the orientation of liquid crystal ...booster synchrotron and Linac are switched studies of crystals where a very good off and the electrons are allowed to approximation to a point source...compounds in the temperature Cr in a MgO host crystal in magnetic range of 1 to 25 K and as a function of fields up to 2*S T at temperatures between
Pharmaceutical and biomedical potential of surface engineered dendrimers.
Satija, Jitendra; Gupta, Umesh; Jain, Narendra Kumar
2007-01-01
Dendrimers are hyperbranched, globular, monodisperse, nanometric polymeric architecture, having definite molecular weight, shape, and size (which make these an inimitable and optimum carrier molecule in pharmaceutical field). Dendritic architecture is having immense potential over the other carrier systems, particularly in the field of drug delivery because of their unique properties, such as structural uniformity, high purity, efficient membrane transport, high drug pay load, targeting potential, and good colloidal, biological, and shelf stability. Despite their enormous applicability in different areas, the inherent cytotoxicity, reticuloendothelial system (RES) uptake, drug leakage, immunogenicity, and hemolytic toxicity restricted their use in clinical applications, which is primarily associated with cationic charge present on the periphery due to amine groups. To overcome this toxic nature of dendrimers, some new types of nontoxic, biocompatible, and biodegradable dendrimers have been developed (e.g., polyester dendrimer, citric acid dendrimer, arginine dendrimer, carbohydrate dendrimers, etc.). The surface engineering of parent dendrimers is graceful and convenient strategy, which not only shields the positive charge to make this carrier more biomimetic but also improves the physicochemical and biological behavior of parent dendrimers. Thus, surface modification chemistry of parent dendrimers holds promise in pharmaceutical applications (such as solubilization, improved drug encapsulation, enhanced gene transfection, sustained and controlled drug release, intracellular targeting) and in the diagnostic field. Development of multifunctional dendrimer holds greater promise toward the biomedical applications because a number of targeting ligands determine specificity in the same manner as another type of group would secure stability in biological milieu and prolonged circulation, whereas others facilitate their transport through cell membranes. Therefore, as a consequence of ideal hyperbranched architecture and the biocompatible nature of engineered dendrimers, their utilization has been included in the scope of this review, which focuses on current surface alteration strategies of dendrimers for their potential use in drug delivery and explains the possible beneficial applications of these engineered dendrimers in the biomedical field.
Heat conduction tuning by hyperbranched nanophononic metamaterials
NASA Astrophysics Data System (ADS)
Li, Bing; Tan, K. T.; Christensen, Johan
2018-05-01
Phonon dispersion and thermal conduction properties of hyperbranched nanostructures with unique topological complexity are theoretically and numerically investigated in this research. We present analytical cantilever-in-mass models to analyze and control the inherent resonance hybridization in hyperbranched nanomembranes containing different configurations and cross sections. We show that these local resonances hosted by hyperbranched nanopillars can generate numerous flat bands in the phonon dispersion relation and dramatically lower the group velocities, consequently resulting in a significant reduction of the thermal conductivity. The applicability of the proposed analytical models in thermal conductivity tuning is demonstrated, and a superior performance in reducing the heat flux in nano-structured membranes is exhibited, which can potentially lead to improved thermoelectric energy conversion devices.
Dynamic Relaxational Behaviour of Hyperbranched Polyether Polyols
NASA Astrophysics Data System (ADS)
Navarro-Gorris, A.; Garcia-Bernabé, A.; Stiriba, S.-E.
2008-08-01
Hyperbranched polymers are highly cascade branched polymers easily accessible via one-pot procedure from ABm type monomers. A key property of hyperbranched polymers is their molecular architecture, which allows core-shell morphology to be manipulated for further specific applications in material and medical sciences. Since the discovery of hyperbranched polymer materials, an increasing number of reports have been published describing synthetic procedures and technological applications of such materials, but their physical properties have remained less studied until the last decade. In the present work, different esterified hyperbranched polyglycerols have been prepared starting from polyglycerol precursors in presence of acetic acid, thus generating functionalization degree with range from 0 to 94%. Thermal analysis of the obtained samples has been studied by Differential Scanning Calorimetry (DSC). Dielectric Spectroscopy measurements have been analyzed by combining loss spectra deconvolution with the modulus formalism. In this regard, all acetylated polyglycerols exhibited a main relaxation related to the glass transition (α process) and two sub-glassy relaxations (β and γ processes) which vanish at high functionalization degrees.
Controlled growth of novel hyper-branched nanostructures in nanoporous alumina membrane.
Zhang, Junping; Day, Cynthia S; Carroll, David L
2009-12-07
This paper proposes a novel approach to fabricate hyper-branched anodic aluminium oxide (AAO) nanostructures with different branches on the vertically-aligned trunk and at the trunk terminal. Silver nanowires with different dimensional and multifunctional complexity have been prepared from this hyper-branched AAO template by varying the electrodeposition time. These kinds of novel nanostructure may be used to build blocks for nanoelectronic and nanophotonic devices.
Polyether-polyester graft copolymer
NASA Technical Reports Server (NTRS)
Bell, Vernon L. (Inventor)
1987-01-01
Described is a polyether graft polymer having improved solvent resistance and crystalline thermally reversible crosslinks. The copolymer is prepared by a novel process of anionic copolymerization. These polymers exhibit good solvent resistance and are well suited for aircraft parts. Previous aromatic polyethers, also known as polyphenylene oxides, have certain deficiencies which detract from their usefulness. These commercial polymers are often soluble in common solvents including the halocarbon and aromatic hydrocarbon types of paint thinners and removers. This limitation prevents the use of these polyethers in structural articles requiring frequent painting. In addition, the most popular commercially available polyether is a very high melting plastic. This makes it considerably more difficult to fabricate finished parts from this material. These problems are solved by providing an aromatic polyether graft copolymer with improved solvent resistance and crystalline thermally reversible crosslinks. The graft copolymer is formed by converting the carboxyl groups of a carboxylated polyphenylene oxide polymer to ionic carbonyl groups in a suitable solvent, reacting pivalolactone with the dissolved polymer, and adding acid to the solution to produce the graft copolymer.
Bio-based production of monomers and polymers by metabolically engineered microorganisms.
Chung, Hannah; Yang, Jung Eun; Ha, Ji Yeon; Chae, Tong Un; Shin, Jae Ho; Gustavsson, Martin; Lee, Sang Yup
2015-12-01
Recent metabolic engineering strategies for bio-based production of monomers and polymers are reviewed. In the case of monomers, we describe strategies for producing polyamide precursors, namely diamines (putrescine, cadaverine, 1,6-diaminohexane), dicarboxylic acids (succinic, glutaric, adipic, and sebacic acids), and ω-amino acids (γ-aminobutyric, 5-aminovaleric, and 6-aminocaproic acids). Also, strategies for producing diols (monoethylene glycol, 1,3-propanediol, and 1,4-butanediol) and hydroxy acids (3-hydroxypropionic and 4-hydroxybutyric acids) used for polyesters are reviewed. Furthermore, we review strategies for producing aromatic monomers, including styrene, p-hydroxystyrene, p-hydroxybenzoic acid, and phenol, and propose pathways to aromatic polyurethane precursors. Finally, in vivo production of polyhydroxyalkanoates and recombinant structural proteins having interesting applications are showcased. Copyright © 2015 Elsevier Ltd. All rights reserved.
Saini, Amandeep; Thaysen, Clara; Jantunen, Liisa; McQueen, Rachel H; Diamond, Miriam L
2016-09-06
The accumulation of phthalate esters, brominated flame retardants (BFRs) and organophosphate esters (OPEs) by clothing from indoor air and transfer via laundering to outdoors were investigated. Over 30 days cotton and polyester fabrics accumulated 3475 and 1950 ng/dm(2) ∑5phthalates, 65 and 78 ng/dm(2) ∑10BFRs, and 1200 and 310 ng/dm(2) ∑8OPEs, respectively. Planar surface area concentrations of OPEs and low molecular weight phthalates were significantly greater in cotton than polyester and similar for BFRs and high molecular weight phthalates. This difference was significantly and inversely correlated with KOW, suggesting greater sorption of polar compounds to polar cotton. Chemical release from cotton and polyester to laundry water was >80% of aliphatic OPEs (log KOW < 4), < 50% of OPEs with an aromatic structure, 50-100% of low molecular weight phthalates (log KOW 4-6), and < detection-35% of higher molecular weight phthalates (log KOW > 8) and BFRs (log KOW > 6). These results support the hypothesis that clothing acts an efficient conveyer of soluble semivolatile organic compounds (SVOCs) from indoors to outdoors through accumulation from air and then release during laundering. Clothes drying could as well contribute to the release of chemicals emitted by electric dryers. The results also have implications for dermal exposure.
Simultaneous growth of pure hyperbranched Zn3As2 structures and long Ga2O3 nanowires.
Li, Jianye; Wang, Lung-Shen; Buchholz, D Bruce; Chang, Robert P H
2009-05-01
Through a facile and highly repeatable chemical vapor method, pure three-dimensional hyperbranched Zn(3)As(2) structures and ultralong Ga(2)O(3) nanowires were simultaneously grown with controllable locations in the same experiment. The hyperbranched Zn(3)As(2) consists of cone-shaped submicro-/nanowires and has a single-crystalline tetragonal structure. This is the first report of nano Zn(3)As(2) and hyperbranched Zn(3)As(2) structures. The as-grown Ga(2)O(3) nanowires are monoclinic single crystals. A vapor-solid-solid mechanism is suggested for the growth of the Ga(2)O(3) nanowires, and a vapor-solid mechanism, for the Zn(3)As(2) structures.
Enzyme immobilization and biocatalysis of polysiloxanes
NASA Astrophysics Data System (ADS)
Poojari, Yadagiri
Lipases have been proven to be versatile and efficient biocatalysts which can be used in a broad variety of esterification, transesterification, and ester hydrolysis reactions. Due to the high chemo-, regio-, and stereo-selectivity and the mild conditions of lipase-catalyzed reactions, the vast potential of these biocatalysts for use in industrial applications has been increasingly recognized. Polysiloxanes (silicones) are well known for their unique physico-chemical properties and can be prepared in the form of fluids, elastomers, gels and resins for a wide variety of applications. However, the enzymatic synthesis of silicone polyesters and copolymers is largely unexplored. In the present investigations, an immobilized Candida antarctica lipase B (CALB) on macroporous acrylic resin beads (Novozym-435 RTM) has been successfully employed as a catalyst to synthesize silicone polyesters and copolymers under mild reaction conditions. The silicone aliphatic polyesters and the poly(dimethylsiloxane)--poly(ethylene glycol) (PDMS-PEG) copolymers were synthesized in the bulk (without using a solvent), while the silicone aromatic polyesters, the silicone aromatic polyamides and the poly(epsilon-caprolactone)--poly(dimethylsiloxane)--poly(epsilon-caprolactone) (PCL-PDMS-PCL) triblock copolymers were synthesized in toluene. The synthesized silicone polyesters and copolymers were characterized by Gel Permeation Chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD). This dissertation also describes a methodology for physical immobilization of the enzyme pepsin from Porcine stomach mucosa in silicone elastomers utilizing condensation-cure room temperature vulcanization (RTV) of silanol-terminated poly(dimethylsiloxane) (PDMS). The activity and the stability of free pepsin and pepsin immobilized in silicone elastomers were studied with respect to pH, temperature, cross-link density, organic solvents and storage time using a hemoglobin assay. A notable finding was that free pepsin had zero activity in neutral buffer solution (pH 7) after incubation for 5 hours, while pepsin immobilized in the silicone elastomers was found to retain more than 70% of its maximum normalized activity. These results demonstrate that cross-linked poly(dimethylsiloxane) (PDMS) is a promising support material for the physical entrapment of hydrolytic enzymes such as pepsin. The Novozym-435 has been widely employed as a biocatalyst for esterification and transesterification of a variety of organic compounds including synthesis of polyesters and polylactones due to its high catalytic-efficiency and high thermal stability in organic media. However, the Novozym-435 was found to have poor mechanical stability and the enzyme was found to leach out from the resin into the organic media. In the present research work, efforts were made to solve the above two problems by chemical immobilization of CALB on surface modified porous silica gel particles. The surface of the porous silica gel particles was silanized using (gamma-Aminopropyl)triethoxysilane and then the CALB was chemically crosslinked onto the surface of the silica gel particles using glutaraldehyde. Although the thermal stability of the CALB immobilized silica gel particles was found to be lower compared to that of Novozym-435. The CALB immobilized silica gel particles showed higher enzymatic activity and higher mechanical stability compared to that of Novozym-435.
Liquid crystal polyester thermosets
Benicewicz, Brian C.; Hoyt, Andrea E.
1992-01-01
The present invention provides (1) curable liquid crystalline polyester monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 where R.sup.1 and R.sup.2 are radicals selected from the group consisting of maleimide, substituted maleimide, nadimide, substituted naimide, ethynyl, and (C(R.sup.3).sub.2).sub.2 where R.sup.3 is hydrogen with the proviso that the two carbon atoms of (C(R.sup.3).sub.2).sub.2 are bound on the aromatic ring of A.sup.1 or A.sup.3 to adjacent carbon atoms, A.sup.1 and A.sup.3 are 1,4-phenylene and the same where said group contains one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro lower alkyl, e.g., methyl, ethyl, or propyl, alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl, e.g., trifluoromethyl, pentafluoroethyl and the like, A.sup.2 is selected from the group consisting of 1,4-phenylene, 4,4'-biphenyl, 2,6-naphthylene and the same where said groups contain one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro, lower alkyl, e.g., methyl, ethyl, and propyl, lower alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl or fluoroalkoxy, e.g., trifluoromethyl, pentafluoroethyl and the like, and B.sup.1 and B.sup.2 are selected from the group consisting of --C(O)--O-- and --O--C(O)--, (2) thermoset liquid crystalline polyester compositions comprised of heat-cured segments derived from monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 as described above, (3) curable blends of at least two of the polyester monomers and (4) processes of preparing the curable liquid crystalline polyester monomers.
A hydroxycinnamoyltransferase responsible for synthesizing suberin aromatics in Arabidopsis
Gou, Jin-Ying; Yu, Xiao-Hong; Liu, Chang-Jun
2009-01-01
Suberin, a polyester polymer in the cell wall of terrestrial plants, controls the transport of water and nutrients and protects plant from pathogenic infections and environmental stresses. Structurally, suberin consists of aliphatic and aromatic domains; p-hydroxycinnamates, such as ferulate, p-coumarate, and/or sinapate, are the major phenolic constituents of the latter. By analyzing the “wall-bound” phenolics of mutant lines of Arabidopsis deficient in a family of acyl-CoA dependent acyltransferase (BAHD) genes, we discovered that the formation of aromatic suberin in Arabidopsis, primarily in seed and root tissues, depends on a member of the BAHD superfamily of enzymes encoded by At5g41040. This enzyme exhibits an ω-hydroxyacid hydroxycinnamoyltransferase activity with an in vitro kinetic preference for feruloyl-CoA and 16-hydroxypalmitic acid. Knocking down or knocking out the At5g41040 gene in Arabidopsis reduces specifically the quantity of ferulate in suberin, but does not affect the accumulation of p-coumarate or sinapate. The loss of the suberin phenolic differentially affects the aliphatic monomer loads and alters the permeability and sensitivity of seeds and roots to salt stress. This highlights the importance of suberin aromatics in the polymer's function. PMID:19846769
Growing Hyperbranched Polymers Using Natural Sunlight
Yan, Jun-Jie; Sun, Jiao-Tong; You, Ye-Zi; Wu, De-Cheng; Hong, Chun-Yan
2013-01-01
In nature, a sapling can grow into a big tree under irradiation of sunlight. In chemistry, a similar concept that a small molecule only exposing to sunlight grows into a hyperbranched macromolecule has not been realized by now. The achievement of the concept will be fascinating and valuable for polymer synthesis wherein sunlight is inexpensive, abundant, renewable, and nonpolluting. Herein, we report a new strategy in which small monomers can directly grow into big hyperbranched macromolecule under irradiation of sunlight without any catalyst. PMID:24100948
Zheng, Luping; Wang, Yunfei; Zhang, Xianshuo; Ma, Liwei; Wang, Baoyan; Ji, Xiangling; Wei, Hua
2018-01-17
Dendrimer with hyperbranched structure and multivalent surface is regarded as one of the most promising candidates close to the ideal drug delivery systems, but the clinical translation and scale-up production of dendrimer has been hampered significantly by the synthetic difficulties. Therefore, there is considerable scope for the development of novel hyperbranched polymer that can not only address the drawbacks of dendrimer but maintain its advantages. The reversible addition-fragmentation chain transfer self-condensing vinyl polymerization (RAFT-SCVP) technique has enabled facile preparation of segmented hyperbranched polymer (SHP) by using chain transfer monomer (CTM)-based double-head agent during the past decade. Meanwhile, the design and development of block-statistical copolymers has been proven in our recent studies to be a simple yet effective way to address the extracellular stability vs intracellular high delivery efficacy dilemma. To integrate the advantages of both hyperbranched and block-statistical structures, we herein reported the fabrication of hyperbranched block-statistical copolymer-based prodrug with pH and reduction dual sensitivities using RAFT-SCVP and post-polymerization click coupling. The external homo oligo(ethylene glycol methyl ether methacrylate) (OEGMA) block provides sufficient extracellularly colloidal stability for the nanocarriers by steric hindrance, and the interior OEGMA units incorporated by the statistical copolymerization promote intracellular drug release by facilitating the permeation of GSH and H + for the cleavage of the reduction-responsive disulfide bond and pH-liable carbonate link as well as weakening the hydrophobic encapsulation of drug molecules. The delivery efficacy of the target hyperbranched block-statistical copolymer-based prodrug was evaluated in terms of in vitro drug release and cytotoxicity studies, which confirms both acidic pH and reduction-triggered drug release for inhibiting proliferation of HeLa cells. Interestingly, the simultaneous application of both acidic pH and GSH triggers promoted significantly the cleavage and release of CPT compared to the exertion of single trigger. This study thus developed a facile approach toward hyperbranched polymer-based prodrugs with high therapeutic efficacy for anticancer drug delivery.
Arkas, Michael; Allabashi, Roza; Tsiourvas, Dimitris; Mattausch, Eva-Maria; Perfler, Reinhard
2006-04-15
Long-alkyl chain functionalized poly(propylene imine) dendrimer, poly(ethylene imine) hyperbranched polymer, and beta-cyclodextrin derivatives, which are completely insoluble in water, have the property of encapsulating organic pollutants from water. Ceramic porous filters can be impregnated with these compounds resulting in hybrid organic/ inorganic filter modules. These hybrid filter modules were tested for the effective purification of water, by continuous filtration experiments, employing a variety of water pollutants. It has been established that polycyclic aromatic hydrocarbons (PAHs) can be removed very efficiently (more than 95%), and final concentrations of several ppb (microg/ L) are easily obtained. Representatives of the pollutant group of trihalogen methanes (THMs), monoaromatic hydrocarbons (BTX), and pesticides (simazine) can also be removed (>80%), although the filters are saturated considerably faster in these cases.
Munari, Andrea
2017-01-01
In the last decade, there has been an increased interest from the food packaging industry toward the development and application of bioplastics, to contribute to the sustainable economy and to reduce the huge environmental problem afflicting the planet. In the present work, we focus on a new furan-based polyester, poly(neopentyl glycol 2,5-furanoate) (PNF) to be used for sustainable food packaging applications. The aromatic polyester was successfully synthesized with high molecular weight, through a solvent-free process, starting directly from 2,5-furandicarboxylic acid. PNF was revealed to be a material with good thermal stability, characterized by a higher Tg and Tm and a lower RAF fraction compared to poly(propylene 2,5-furanoate) (PPF), ascribable to the two methyl side groups present in PNF glycol-sub-unit. PNF’s mechanical characteristics, i.e., very high elastic modulus and brittle fracture, were found to be similar to those of PPF and PEF. Barrier properties to different gases, temperatures and relative humidity were evaluated. From the results obtained, PNF was showed to be a material with very smart barrier performances, significantly superior with respect to PEF’s ones. Lastly, PNF’s permeability behavior did not appreciably change after contact with food simulants, whereas it got worse with increasing RH, due to the polar nature of furan ring. PMID:28869555
Genovese, Laura; Lotti, Nadia; Siracusa, Valentina; Munari, Andrea
2017-09-04
In the last decade, there has been an increased interest from the food packaging industry toward the development and application of bioplastics, to contribute to the sustainable economy and to reduce the huge environmental problem afflicting the planet. In the present work, we focus on a new furan-based polyester, poly(neopentyl glycol 2,5-furanoate) (PNF) to be used for sustainable food packaging applications. The aromatic polyester was successfully synthesized with high molecular weight, through a solvent-free process, starting directly from 2,5-furandicarboxylic acid. PNF was revealed to be a material with good thermal stability, characterized by a higher T g and T m and a lower RAF fraction compared to poly(propylene 2,5-furanoate) (PPF), ascribable to the two methyl side groups present in PNF glycol-sub-unit. PNF's mechanical characteristics, i.e., very high elastic modulus and brittle fracture, were found to be similar to those of PPF and PEF. Barrier properties to different gases, temperatures and relative humidity were evaluated. From the results obtained, PNF was showed to be a material with very smart barrier performances, significantly superior with respect to PEF's ones. Lastly, PNF's permeability behavior did not appreciably change after contact with food simulants, whereas it got worse with increasing RH, due to the polar nature of furan ring.
Biodegradable products by lipase biocatalysis.
Linko, Y Y; Lämsä, M; Wu, X; Uosukainen, E; Seppälä, J; Linko, P
1998-11-18
The interest in the applications of biocatalysis in organic syntheses has rapidly increased. In this context, lipases have recently become one of the most studied groups of enzymes. We have demonstrated that lipases can be used as biocatalyst in the production of useful biodegradable compounds. A number of examples are given. 1-Butyl oleate was produced by direct esterification of butanol and oleic acid to decrease the viscosity of biodiesel in winter use. Enzymic alcoholysis of vegetable oils without additional organic solvent has been little investigated. We have shown that a mixture of 2-ethyl-1-hexyl esters can be obtained in a good yield by enzymic transesterification from rapeseed oil fatty acids for use as a solvent. Trimethylolpropane esters were also similarly synthesized as lubricants. Finally, the discovery that lipases can also catalyze ester syntheses and transesterification reactions in organic solvent systems has opened up the possibility of enzyme catalyzed production of biodegradable polyesters. In direct polyesterification of 1,4-butanediol and sebacic acid, polyesters with a mass average molar mass of the order of 56,000 g mol-1 or higher, and a maximum molar mass of about 130,000 g mol-1 were also obtained by using lipase as biocatalyst. Finally, we have demonstrated that also aromatic polyesters can be synthesized by lipase biocatalysis, a higher than 50,000 g mol-1 mass average molar mass of poly(1,6-hexanediyl isophthalate) as an example.
Novel Low-Density Ablators Containing Hyperbranched Poly(azomethine)s
NASA Technical Reports Server (NTRS)
Tigelaar, Dean
2011-01-01
An ablative composite is low-density (0.25 to 0.40 g/cu cm), easy to fabricate, and superior to the current state-of-the-art ablator (phenolic impregnated carbon ablator, PICA) in terms of decomposition temperature, char yield, and mechanical strength. Initial ablative testing with a CO2 laser under high-heat-flux (1,100 W/sq cm) conditions showed these new ablators are over twice as effective as PICA in terms of weight loss, as well as transfer of heat through the specimen. The carbon fiber/poly(azomethine) composites have the same density as PICA, but are 8 to 11 times stronger to irreversible breaking by tensile compression. In addition, polyazomethine char yields by thermogravimetric analysis are 70 to 80 percent at 1,000 C. This char yield is 10 to 20 percent higher than phenolic resins, as well as one of the highest char yields known for any polymer. A high char yield holds the composite together better toward shearing forces on reentry, as well as reradiates high heat fluxes. This innovative composite is stronger than PICA, so multiple pieces can be sealed together without fracture. Researchers have also studied polyazomethines before as linear polymers. Due to poor solubility, these polymers precipitate from the polymerization solvent as a low-molecular-weight (2 to 4 repeat units) powder. The only way found to date to keep linear polyazomethines in solution is by adding solubilizing side groups. However, these groups sacrifice certain polymer properties. These hyperbranched polyazomethines are high molecular weight and fully aromatic.
Microcellular poly(hydroxybutyrate-co-hydroxyvalerate)-hyperbranched polymer-nanoclay nanocomposites
Alireza Javadi; Yottha Srithep; Srikanth Pilla; Craig C. Clemons; Shaoqin Gong; Lih-Sheng Turng
2012-01-01
The effects of incorporating hyperbranched polymers (HBPs) and different nanoclays [Cloisite® 30B and halloysite nanotubes (HNT)] on the mechanical, morphological, and thermal properties of solid and microcellular poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) were investigated. According to the X-ray diffraction (...
Mathew, Asha; Cao, Hongliang; Collin, Estelle; Wang, Wenxin; Pandit, Abhay
2012-09-15
A unique hyperbranched polymeric system with a linear poly-2-dimethylaminoethyl methacrylate (pDMAEMA) block and a hyperbranched polyethylene glycol methyl ether methacrylate (PEGMEMA) and ethylene dimethacrylate (EGDMA) block was designed and synthesized via deactivation enhanced atom transfer radical polymerisation (DE-ATRP) for efficient gene delivery. Using this unique structure, with a linear pDMAEMA block, which efficiently binds to plasmid DNA (pDNA) and hyperbranched polyethylene glycol (PEG) based block as a protective shell, we were able to maintain high transfection levels without sacrificing cellular viability even at high doses. The transfection capability and cytotoxicity of the polymers over a range of pDNA concentration were analysed and the results were compared to commercially available transfection vectors such as polyethylene imine (branched PEI, 25 kDa), partially degraded poly(amido amine)dendrimer (dPAMAM; commercial name: SuperFect(®)) in fibroblasts and adipose tissue derived stem cells (ADSCs). Copyright © 2012 Elsevier B.V. All rights reserved.
Self-healing hyperbranched poly(aroyltriazole)s
Wei, Qiang; Wang, Jian; Shen, Xiaoyuan; Zhang, Xiao A.; Sun, Jing Zhi; Qin, Anjun; Tang, Ben Zhong
2013-01-01
The research on self-healing polymers has been a hot topic. The encapsulated-monomer/catalyst, supramolecular self-assembly, and reversible or dynamic covalent bond formation are the prevailingly adopted strategies. The alternative of irreversible covalent bond formation is, however, to be further developed. In this contribution, self-healing hyperbranched poly(aroyltriazole)s of PI and PII sharing such mechanism were developed. The polymers were synthesized by our developed metal-free click polymerizations of bis(aroylacetylene)s and triazide. They are processible and have excellent film-forming ability. High quality homogeneous films and sticks free from defects could be obtained by casting. The scratched films could be self-repaired upon general heating. The cut films and sticks could be healed by stacking or pressing the halves together at elevated temperature. Thus, these hyperbranched polymers could find broad applications in diverse areas, and our design concept for self-healing materials should be generally applicable to other hyperbranched polymers with reactive groups on their peripheries.
Rheology of Hyperbranched Poly(triglyceride)-Based Thermoplastic Elastomers via RAFT polymerization
NASA Astrophysics Data System (ADS)
Yan, Mengguo; Cochran, Eric
2014-03-01
In this contribution we discuss how melt- and solid-state properties are influenced by the degree of branching and molecular weight in a family of hyperbranched thermoplastics derived from soybean oil. Acrylated epoxidized triglycerides from soybean oils have been polymerized to hyperbranched thermoplastic elastomers using reversible addition-fragmentation chain transfer (RAFT) polymerization. With the proper choice of chain transfer agent, both homopolymer and block copolymer can be synthesized. By changing the number of acrylic groups per triglycerides, the chain architectures can range from nearly linear to highly branched. We show how the fundamental viscoelastic properties (e.g. entanglement molecular weight, plateau modulus, etc.) are influenced by chain architecture and molecular weight.
Degree of branching in hyperbranched poly(glycerol-co-diacid)s synthesized in toluene
USDA-ARS?s Scientific Manuscript database
Hyperbranched polymers were synthesized by using a Lewis acid (dibutyltin(IV)oxide) to catalyze the polycondensation of glycerol with either succinic acid (n (aliphatic chain length)=2), glutaric acid (n=3) or azelaic acid (n=7) in toluene. These are the first examples of diacid-glycerol hyperbranc...
Kong, Jie; Kong, Minmin; Zhang, Xiaofei; Chen, Lixin; An, Linan
2013-10-23
In this contribution, we report a novel strategy for the synthesis of nanocrystal-containing magnetoceramics with an ultralow hysteresis loss by the pyrolysis of commercial polysilazane cross-linked with a functional metallopolymer possessing hyperbranched topology. The usage of hyperbranched polyferrocenylcarbosilane offers either enhanced ceramic yield or magnetic functionality of pyrolyzed ceramics. The ceramic yield was enhanced accompanied by a decreased evolution of hydrocarbons and NH3 because of the cross-linking of precursors and the hyperbranched cross-linker. The nucleation of Fe5Si3 from the reaction of iron atoms with Si-C-N amorphous phase promoted the formation of α-Si3N4 and SiC crystals. After annealing at 1300 °C, stable Fe3Si crystals were generated from the transformation of the metastable Fe5Si3 phase. The nanocrystal-containing ceramics showed good ferromagnetism with an ultralow (close to 0) hysteresis loss. This method is convenient for the generation of tunable functional ceramics using a commercial polymeric precursor cross-linked by a metallopolymer with a designed topology.
Wu, Wu-Qiang; Xu, Yang-Fan; Rao, Hua-Shang; Su, Cheng-Yong; Kuang, Dai-Bin
2014-04-30
An unprecedented attempt was conducted on suitably functionalized integration of three-dimensional hyperbranched titania architectures for efficient multistack photoanode, constructed via layer-by-layer assembly of hyperbranched hierarchical tree-like titania nanowires (underlayer), branched hierarchical rambutan-like titania hollow submicrometer-sized spheres (intermediate layer), and hyperbranched hierarchical urchin-like titania micrometer-sized spheres (top layer). Owing to favorable charge-collection, superior light harvesting efficiency and extended electron lifetime, the multilayered TiO2-based devices showed greater J(sc) and V(oc) than those of a conventional TiO2 nanoparticle (TNP), and an overall power conversion efficiency of 11.01% (J(sc) = 18.53 mA cm(-2); V(oc) = 827 mV and FF = 0.72) was attained, which remarkably outperformed that of a TNP-based reference cell (η = 7.62%) with a similar film thickness. Meanwhile, the facile and operable film-fabricating technique (hydrothermal and drop-casting) provides a promising scheme and great simplicity for high performance/cost ratio photovoltaic device processability in a sustainable way.
Bioorthogonal layer-by-layer encapsulation of pancreatic islets via hyperbranched polymers
Gattás-Asfura, Kerim M.; Stabler, Cherie L.
2013-01-01
The encapsulation of viable tissues via layer-by-layer polymer assembly provides a versatile platform for cell surface engineering, with nanoscale control over capsule properties. Herein, we report the development of a hyperbranched polymer-based, ultrathin capsule architecture expressing bioorthogonal functionality and tailored physiochemical properties. Random carbodiimide-based condensation of 3,5-dicarboxyphenyl glycineamide on alginate yielded a highly branched polysaccharide with multiple, spatially restricted, and readily functionalizable terminal carboxylate moieties. Poly(ethylene glycol) (PEG) was utilized to link azido end groups to the structured alginate. Together with phosphine functionalized poly(amido amine) (PAMAM) dendrimer, nanoscale layer-by-layer coatings, covalently stabilized via Staudinger ligation, were assembled onto solid surfaces and pancreatic islets. The effects of electrostatic and/or bioorthogonal covalent interlayer interactions on the resulting coating efficiency and stability, as well as pancreatic islet viability and function, were studied. These hyperbranched polymers provide a flexible platform for the formation of covalently stabilized ultrathin coatings on viable cells and tissues. In addition, the hyperbranched nature of the polymers presents a highly functionalized surface capable of bioorthogonal conjugation of additional bioactive or labeling motifs. PMID:24063764
Drug Self-Delivery Systems Based on Hyperbranched Polyprodrugs towards Tumor Therapy.
Duan, Xiao; Chen, Jianxin; Wu, Yalan; Wu, Si; Shao, Dongyan; Kong, Jie
2018-04-16
Amphiphilic hyperbranched polyprodrugs (DOX-S-S-PEG) with drug repeat units in hydrophobic core linked by disulfide bonds were developed as drug self-delivery systems for cancer therapy. The hydroxyl groups and the amine group in doxorubicin (DOX) were linked by 3,3'-dithiodipropanoic acid as hydrophobic hyperbranched cores, then amino-terminated polyethylene glycol monomethyl ether (mPEG-NH 2 ) as hydrophilic shell was linked to hydrophobic cores to form amphiphilic and glutathione (GSH)-responsive micelle of hyperbranched polyprodrugs. The amphiphilic micelles can be disrupted under GSH (1 mg mL -1 ) circumstance. Cell viability of A549 cells and 293T cells was evaluated by CCK-8 and Muse Annexin V & Dead Cell Kit. The disrupted polyprodrugs maintained drug activity for killing tumor cells. Meanwhile, the undisrupted polyprodrugs possessed low cytotoxicity to normal cells. The cell uptake experiments showed that the micelles of DOX-S-S-PEG were taken up by A549 cells and distributed to cell nuclei. Thus, the drug self-delivery systems with drug repeat units in hydrophobic cores linked by disulfide bonds showed significant special advantages: 1) facile one-pot synthesis; 2) completely without toxic or non-degradable polymers; 3) DOX itself functions as fluorescent labeled molecule and self-delivery carrier; 4) drug with inactive form in hyperbranched cores and low cytotoxicity to normal cells. These advantages make them excellent drug self-delivery systems for potential high efficient cancer therapy. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bi, Sai; Yue, Shuzhen; Wu, Qiang; Ye, Jiayan
2016-04-07
Toehold-mediated strand displacement-based nanocircuits are developed by integrating catalytic hairpin assembly (CHA) with hybridization chain reaction (HCR), which achieves self-assembly of hyperbranched DNA structures and is readily utilized as an enzyme-free amplifier for homogeneous CRET detection of microRNA with high sensitivity and selectivity.
Maximizing omnidirectional light harvesting in metal oxide hyperbranched array architectures
NASA Astrophysics Data System (ADS)
Wu, Wu-Qiang; Feng, Hao-Lin; Rao, Hua-Shang; Xu, Yang-Fan; Kuang, Dai-Bin; Su, Cheng-Yong
2014-05-01
The scrupulous design of nanoarchitectures and smart hybridization of specific active materials are closely related to the overall photovoltaic performance of an anode electrode. Here we present a solution-based strategy for the fabrication of well-aligned metal oxide-based nanowire-nanosheet-nanorod hyperbranched arrays on transparent conducting oxide substrates. For these hyperbranched arrays, we observe a twofold increment in dye adsorption and enhanced light trapping and scattering capability compared with the pristine titanium dioxide nanowires, and thus a power conversion efficiency of 9.09% is achieved. Our growth approach presents a strategy to broaden the photoresponse and maximize the light-harvesting efficiency of arrays architectures, and may lead to applications for energy conversion and storage, catalysis, water splitting and gas sensing.
Maximizing omnidirectional light harvesting in metal oxide hyperbranched array architectures.
Wu, Wu-Qiang; Feng, Hao-Lin; Rao, Hua-Shang; Xu, Yang-Fan; Kuang, Dai-Bin; Su, Cheng-Yong
2014-05-29
The scrupulous design of nanoarchitectures and smart hybridization of specific active materials are closely related to the overall photovoltaic performance of an anode electrode. Here we present a solution-based strategy for the fabrication of well-aligned metal oxide-based nanowire-nanosheet-nanorod hyperbranched arrays on transparent conducting oxide substrates. For these hyperbranched arrays, we observe a twofold increment in dye adsorption and enhanced light trapping and scattering capability compared with the pristine titanium dioxide nanowires, and thus a power conversion efficiency of 9.09% is achieved. Our growth approach presents a strategy to broaden the photoresponse and maximize the light-harvesting efficiency of arrays architectures, and may lead to applications for energy conversion and storage, catalysis, water splitting and gas sensing.
Hydrothermal growth of cross-linked hyperbranched copper dendrites using copper oxalate complex
NASA Astrophysics Data System (ADS)
Truong, Quang Duc; Kakihana, Masato
2012-06-01
A facile and surfactant-free approach has been developed for the synthesis of cross-linked hyperbranched copper dendrites using copper oxalate complex as a precursor and oxalic acid as a reducing and structure-directing agent. The synthesized particles are composed of highly branched nanostructures with unusual cross-linked hierarchical networks. The formation of copper dendrites can be explained in view of both diffusion control and aggregation-based growth model accompanied by the chelation-assisted assembly. Oxalic acid was found to play dual roles as reducing and structure-directing agent based on the investigation results. The understanding on the crystal growth and the roles of oxalic acid provides clear insight into the formation mechanism of hyperbranched metal dendrites.
NASA Technical Reports Server (NTRS)
Kane, K. M.; Cassidy, P. E.; Tullos, G. L.; Reynolds, D. W.
1990-01-01
The synthesis and properties to date of several novel HFIP-containing polymers and copolymers are presented. Thermal analyses of polyether ketones (PEK), aromatic polyesters, and polymers from a novel 18F-diacid were performed on a thermal analyzer. All three polymer types exhibited enhanced solubility, thermal stability, and low dielectric constants that are predicted for polymers containing the HFIP moiety. The moderate thermal stability observed in the polymers derived from the 18F-diacid is attributed to the oxidatively weak methylene linkage between the HFIP groups and the phenyl rings. PEKs and polyarylates show potential as high emissivity coatings under conditions where atomic oxygen is present.
Evidence for cross-linking in tomato cutin using HR-MAS NMR spectroscopy.
Deshmukh, Ashish P; Simpson, André J; Hatcher, Patrick G
2003-11-01
Cutin is a polyester biopolymer component of plant leaf and fruit cuticles, most often associated with waxes and cuticular polysaccharides, and sometimes with another aliphatic biopolymer called cutan. Insolubility of these cuticular biopolymers has made it difficult to apply traditional analytical techniques for structure determination, because most techniques providing molecular level details require solubility. By using the relatively new technique of one and two-dimensional high-resolution magic angle spinning (HR-MAS) NMR spectroscopy, with added information from solid-state 13C NMR spectroscopy, detailed through-bond connectivities and assignments are made for cutin from Lycopersicon esculentum (tomato) fruit. Based on the data obtained, tomato cutin is found to be predominantly an aliphatic polyester with some olefinic and aromatic moieties, consistent with previous studies that employed various degradative approaches. Aside from esters, there are free primary and secondary alcohol groups, as well as free fatty acids. A significant finding is the presence of alpha-branched fatty acids/esters. Mid-chain hydroxyls appear to be generally unesterified, but esters of mid-chain hydroxyls have been identified. The alpha-branched fatty acids/esters and esters of mid-chain hydroxyls could point towards cross-linking.
A review of plastic waste biodegradation.
Zheng, Ying; Yanful, Ernest K; Bassi, Amarjeet S
2005-01-01
With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.
Thomas, Joice; Dong, Zeyuan; Dehaen, Wim; Smet, Mario
2012-12-21
A series of novel hyperbranched polyselenides and polytellurides with multiple catalytic sites at the branching units has been synthesized via the polycondensation of A2 + B3 monomers. The GPx-like activities of these polymer mimics were assessed and it was found that the polytellurides showed higher GPx-like activities than the corresponding polyselenides. Interestingly, the polymers with higher molecular weights and degree of branching (DB) showed higher GPx-like activities than the analogous lower molecular weight polymer. The enhancement in the catalytical activity of the hyperbranched polymers with increasing molecular weight affirmed the importance of the incorporation of multiple catalytic groups in the macromolecule which increases the local concentration of catalytic sites. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High dielectric hyperbranched polyaniline materials.
Yan, X Z; Goodson, T
2006-08-03
New organic materials for the purpose of high speed capacitor applications are discussed. The effect of the microcrystalline size dependence of different polyaniline polymeric systems on the dielectric constant is investigated. Two different methods are described for the preparation of the polyaniline dielectric materials. By sonication polymerization, the prepared polyaniline with a suggested hyperbranched structure showed much larger microcrystalline domains in comparison to the conventional linear polyaniline. Investigations of the dielectric constant and capacitance at a relatively high frequency (>100 kHz) suggested that the system with the larger microcrystalline domains (hyperbranched) gives rise to a larger dielectric constant. The mechanism of the increased dielectric response at higher frequencies is investigated by EPR spectroscopy, and these results suggest that delocalized polarons may provide a way to enhance the dielectric response at high frequency.
Zhang, Zhichao; Ye, Zhibin
2012-08-18
Upon the addition of an equimolar amount of 2,2'-bipyridine, a cationic Pd-diimine complex capable of facilitating "living" ethylene polymerization is switched to catalyze "living" alternating copolymerization of 4-tertbutylstyrene and CO. This unique chemistry is thus employed to synthesize a range of well-defined treelike (hyperbranched polyethylene)-b-(linear polyketone) block polymers.
Wilson, John T; Postma, Almar; Keller, Salka; Convertine, Anthony J; Moad, Graeme; Rizzardo, Ezio; Meagher, Laurence; Chiefari, John; Stayton, Patrick S
2015-03-01
Protein-based vaccines offer a number of important advantages over organism-based vaccines but generally elicit poor CD8(+) T cell responses. We have previously demonstrated that pH-responsive, endosomolytic polymers can enhance protein antigen delivery to major histocompatibility complex class I (MHC-I) antigen presentation pathways thereby augmenting CD8(+) T cell responses following immunization. Here, we describe a new family of nanocarriers for protein antigen delivery assembled using architecturally distinct pH-responsive polymers. Reversible addition-fragmentation chain transfer (RAFT) polymerization was used to synthesize linear, hyperbranched, and core-crosslinked copolymers of 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA) and butyl methacrylate (BMA) that were subsequently chain extended with a hydrophilic N,N-dimethylacrylamide (DMA) segment copolymerized with thiol-reactive pyridyl disulfide (PDS) groups. In aqueous solution, polymer chains assembled into 25 nm micellar nanoparticles and enabled efficient and reducible conjugation of a thiolated protein antigen, ovalbumin. Polymers demonstrated pH-dependent membrane-destabilizing activity in an erythrocyte lysis assay, with the hyperbranched and cross-linked polymer architectures exhibiting significantly higher hemolysis at pH ≤ 7.0 than the linear diblock. Antigen delivery with the hyperbranched and cross-linked polymer architecture enhanced in vitro MHC-I antigen presentation relative to free antigen, whereas the linear construct did not have a discernible effect. The hyperbranched system elicited a four- to fivefold increase in MHC-I presentation relative to the cross-linked architecture, demonstrating the superior capacity of the hyperbranched architecture in enhancing MHC-I presentation. This work demonstrates that the architecture of pH-responsive, endosomolytic polymers can have dramatic effects on intracellular antigen delivery, and offers a promising strategy for enhancing CD8(+) T cell responses to protein-based vaccines.
Synthesis and characterization of novel fluoroalkyl-terminated hyperbranched polyurethane latex
NASA Astrophysics Data System (ADS)
Xu, Wei; Zhao, Weijia; Hao, Lifen; Wang, Sha; Pei, Mengmeng; Wang, Xuechuan
2018-04-01
Waterborne polyurethane (PU) emulsions are widely used in various fields and the demand for them is ever-increasing over the years. However, the hydrophilic chain extender inevitably bonded into the PU backbone can affect the water tolerance of PU. Thus, it is of great importance to improve PU water resistance effectively. Herein, novel fluoroalkyl-terminated hyperbranched polyurethane (HBPUF) latex was accordingly synthesized by graft reaction of perfluorohexyl ethyl alcohol and hyperbranched polyurethane (HBPU), which was previously obtained from interaction between hydroxyl-terminated hyperbranched polymer and PU prepolymer manufactured via the acetone process, as well as using neutralization, adding water, and high-speed stirring operations. We characterized the resultants and investigated its surface properties by IR, NMR, TEM, XRD, TGA, DSC, FE-SEM, AFM, XPS, and contact angle measurements, etc. IR and NMR tests confirmed that the fluorinated fragments had been grafted onto the tail end of HBPU. TEM, XRD, DSC, and FE-SEM results all accounted for the fact that there were multi-crystals in PU, HBPU and HBPUF. TGA results showed that thermal stabilities of the PU, HBPU, and HBPUF latex films were enhanced in turn. XPS and AFM analyses demonstrated that the fluorine-containing segments from the HBPUF terminals were prone to migrate and enrich on the film-air surface of the HBPUF latex film, which made water contact angle and water absorption of the HBPUF film be as 113.9° and 11.1%, respectively, compared to those of the PU film (77.8° and 136.2%). This research indicates that water resistance of the PU film can be efficiently enhanced by fluorinated polyurethane with novel fluoroalkyl-terminated hyperbranched structure.
Hyperbranched TiO2-CdS nano-heterostructures for highly efficient photoelectrochemical photoanodes.
Mezzetti, Alessandro; Balandeh, Mehrdad; Luo, Jingshan; Bellani, Sebastiano; Tacca, Alessandra; Divitini, Giorgio; Cheng, Chuanwei; Ducati, Caterina; Meda, Laura; Fan, Hongjin; Di Fonzo, Fabio
2018-08-17
Quasi-1D-hyperbranched TiO 2 nanostructures are grown via pulsed laser deposition and sensitized with thin layers of CdS to act as a highly efficient photoelectrochemical photoanode. The device properties are systematically investigated by optimizing the height of TiO 2 scaffold structure and thickness of the CdS sensitizing layer, achieving photocurrent values up to 6.6 mA cm -2 and reaching saturation with applied biases as low as 0.35 V RHE . The high internal conversion efficiency of these devices is to be found in the efficient charge generation and injection of the thin CdS photoactive film and in the enhanced charge transport properties of the hyperbranched TiO 2 scaffold. Hence, the proposed device represents a promising architecture for heterostructures capable of achieving high solar-to-hydrogen efficiency.
Renewable unsaturated polyesters from muconic acid
Rorrer, Nicholas A.; Dorgan, John R.; Vardon, Derek R.; ...
2016-09-27
cis,cis-Muconic acid is an unsaturated dicarboxylic acid that can be produced in high yields via biological conversion of sugars and lignin-derived aromatic compounds. Muconic acid is often targeted as an intermediate to direct replacement monomers such as adipic or terephthalic acid. However, the alkene groups in muconic acid provide incentive for its direct use in polymers, for example, in the synthesis of unsaturated polyester resins. Here, biologically derived muconic acid is incorporated into polyesters via condensation polymerization using the homologous series of poly(ethylene succinate), poly(propylene succinate), poly(butylene succinate), and poly(hexylene succinate). Additionally, dimethyl cis,cis-muconate is synthesized and subsequently incorporated intomore » poly(butylene succinate). NMR measurements demonstrate that alkene bonds are present in the polymer backbones. In all cases, the glass transition temperatures are increased whereas the melting and degradation temperatures are decreased. In the case of poly(butylene succinate), utilization of neat muconic acid yields substoichiometric incorporation consistent with a tapered copolymer structure, whereas the muconate diester exhibits stoichiometric incorporation and a random copolymer structure based on thermal and mechanical properties. Prototypical fiberglass panels were produced by infusing a mixture of low molecular weight poly(butylene succinate-co-muconate) and styrene into a woven glass mat and thermally initiating polymerization resulting in thermoset composites with shear moduli in excess of 30 GPa, a value typical of commercial composites. The increased glass transition temperatures with increasing mucconic incorporation leads to improved composites properties. We find that the molecular tunability of poly(butylene succinate-co-muconate) as a tapered or random copolymer enables the tunability of composite properties. Altogether, this study demonstrates the utility of muconic acid as a monomer suitable for direct use in commercial composites.« less
Renewable unsaturated polyesters from muconic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rorrer, Nicholas A.; Dorgan, John R.; Vardon, Derek R.
cis,cis-Muconic acid is an unsaturated dicarboxylic acid that can be produced in high yields via biological conversion of sugars and lignin-derived aromatic compounds. Muconic acid is often targeted as an intermediate to direct replacement monomers such as adipic or terephthalic acid. However, the alkene groups in muconic acid provide incentive for its direct use in polymers, for example, in the synthesis of unsaturated polyester resins. Here, biologically derived muconic acid is incorporated into polyesters via condensation polymerization using the homologous series of poly(ethylene succinate), poly(propylene succinate), poly(butylene succinate), and poly(hexylene succinate). Additionally, dimethyl cis,cis-muconate is synthesized and subsequently incorporated intomore » poly(butylene succinate). NMR measurements demonstrate that alkene bonds are present in the polymer backbones. In all cases, the glass transition temperatures are increased whereas the melting and degradation temperatures are decreased. In the case of poly(butylene succinate), utilization of neat muconic acid yields substoichiometric incorporation consistent with a tapered copolymer structure, whereas the muconate diester exhibits stoichiometric incorporation and a random copolymer structure based on thermal and mechanical properties. Prototypical fiberglass panels were produced by infusing a mixture of low molecular weight poly(butylene succinate-co-muconate) and styrene into a woven glass mat and thermally initiating polymerization resulting in thermoset composites with shear moduli in excess of 30 GPa, a value typical of commercial composites. The increased glass transition temperatures with increasing mucconic incorporation leads to improved composites properties. We find that the molecular tunability of poly(butylene succinate-co-muconate) as a tapered or random copolymer enables the tunability of composite properties. Altogether, this study demonstrates the utility of muconic acid as a monomer suitable for direct use in commercial composites.« less
NASA Astrophysics Data System (ADS)
Li, Chao; Liu, Chunling; Li, Quanshui; Gong, Qihuang
2004-12-01
The nonlinear transmittance of a novel hyperbranched conjugated polymer named DMA-HPV has been measured in CHCl 3 solution using a nanosecond optical parametric oscillator. DMA-HPV shows excellent optical limiting performance in the visible region from 490 to 610 nm. An explanation based on the combination of two-photon absorption and reverse saturable absorption was proposed for its huge and broadband nonlinear optical absorption.
NASA Astrophysics Data System (ADS)
Chen, Youning; Zhao, Wei; Wang, Huan; Li, Yuhong; Li, Chenxi
2018-02-01
This paper explored the method of combining atom transfer radical polymerization (ATRP) technology and hyperbranched polymer principle to prepare the high capacity chelating resin. First, surface-initiated atom transfer radical polymerization (SI-ATRP) method was used to graft glycidyl methacrylate (GMA) on chloromethylated cross-linked styrene-divinylbenzene resin, and then the novel polyamine chelating resin with a kind of hyperbranched structure was prepared through the amination reaction between amino group of (2-aminoethyl) triamine and epoxy group in GMA. This resin had a selective effect on As(V) and Cr(VI) at a relatively low pH and can be used for the disposal of waste water containing As(V) and Cr(VI). It had a relatively strong adsorption effect on Cu(II), Pb(II), Cd(II) and Cr(III) and can be used for the disposal of heavy metal ion waste water. The finding was that, the adsorption capacity of resin on the studied heavy metal ions was higher than that of the chelating resin synthesized by traditional technology and also higher than that of the resin modified by ATRP technology and bifunctional chelator, indicating that the combination of ATRP and hyperbranched polymer concept is an effective method to prepare chelating resin with high capacity.
Zhao, Wei; Wang, Huan; Li, Yuhong; Li, Chenxi
2018-01-01
This paper explored the method of combining atom transfer radical polymerization (ATRP) technology and hyperbranched polymer principle to prepare the high capacity chelating resin. First, surface-initiated atom transfer radical polymerization (SI-ATRP) method was used to graft glycidyl methacrylate (GMA) on chloromethylated cross-linked styrene-divinylbenzene resin, and then the novel polyamine chelating resin with a kind of hyperbranched structure was prepared through the amination reaction between amino group of (2-aminoethyl) triamine and epoxy group in GMA. This resin had a selective effect on As(V) and Cr(VI) at a relatively low pH and can be used for the disposal of waste water containing As(V) and Cr(VI). It had a relatively strong adsorption effect on Cu(II), Pb(II), Cd(II) and Cr(III) and can be used for the disposal of heavy metal ion waste water. The finding was that, the adsorption capacity of resin on the studied heavy metal ions was higher than that of the chelating resin synthesized by traditional technology and also higher than that of the resin modified by ATRP technology and bifunctional chelator, indicating that the combination of ATRP and hyperbranched polymer concept is an effective method to prepare chelating resin with high capacity. PMID:29515875
Seiwert, Jan; Herzberger, Jana; Leibig, Daniel; Frey, Holger
2017-01-01
The synthesis of thioether-bearing hyperbranched polyether polyols based on an AB/AB 2 type copolymerization (cyclic latent monomers) is introduced. The polymers are prepared by anionic ring-opening multibranching copolymerization of glycidol and 2-(methylthio)ethyl glycidyl ether (MTEGE), which is conveniently accessible in a single etherification step. Slow monomer addition provides control over molecular weights. Moderate dispersities (Đ = 1.48-1.85) are obtained, given the hyperbranched structure. In situ 1 H NMR copolymerization kinetics reveal reactivity ratios of r G = 3.7 and r MTEGE = 0.27. Using slow monomer addition, copolymer composition can be systematically varied, allowing for the adjustment of the hydroxyl/thioether ratio, the degree of branching (DB = 0.36-0.48), thermal properties, and cloud point temperatures in aqueous solution in the range of 29-75 °C. Thioether oxidation to sulfoxides enables to tailor the copolymers' solubility profile. Use of these copolymers as a versatile, multifunctional platform for orthogonal modification is highlighted. The methyl sulfide groups can be selectively alkoxylated, using propylene oxide, allyl glycidyl ether, or furfuryl glycidyl ether, resulting in functional hyperbranched polyelectrolytes. Reaction of the alcohol groups with benzyl isocyanate demonstrates successful orthogonal functionalization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Second-Order Nonlinear Optical Dendrimers and Dendronized Hyperbranched Polymers.
Tang, Runli; Li, Zhen
2017-01-01
Second-order nonlinear optical (NLO) dendrimers with a special topological structure were regarded as the most promising candidates for practical applications in the field of optoelectronic materials. Dendronized hyperbranched polymers (DHPs), a new type of polymers with dendritic structures, proposed and named by us recently, demonstrated interesting properties and some advantages over other polymers. Some of our work concerning these two types of polymers are presented herein, especially focusing on the design idea and structure-property relationship. To enhance their comprehensive NLO performance, dendrimers were designed and synthesized by adjusting their isolation mode, increasing the number of the dendritic generation, modifying their topological structure, introducing isolation chromophores, and utilizing the Ar-Ar F self-assembly effect. To make full use of the advantages of both the structural integrity of dendrimers and the convenient one-pot synthesis of hyperbranched polymers, DHPs were explored by utilizing low-generation dendrons as big monomers to construct hyperbranched polymers. These selected works could provide valuable information to deeply understand the relationship between the structure and properties of functional polymers with dendritic structures, but not only limited to the NLO ones, and might contribute much to the further development of functional polymers with rational design. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oxygen transport as a structure probe for heterogeneous polymeric systems
NASA Astrophysics Data System (ADS)
Hu, Yushan
Although permeability of small molecules is often measured as an important performance property, deeper analysis of the transport characteristics provides insight into polymer structure, especially if used in combination with other characterization techniques. Transport of small gas molecules senses the permeable amorphous structure and probes the nature of free volume. This work focuses on oxygen transport, supplemented with other methods of physical analysis, as a probe for: (1) the nature of free volume and crystalline morphology in the crystallized glassy state, (2) the nature of free volume and hierarchical structure in liquid crystalline polymers, and (3) the role of dispersed polyamide phase geometry on oxygen barrier properties of poly(ethylene terephthalate) (PET)/polyamide blends. In the first part, the improvement in oxygen-barrier properties of glassy polyesters by crystallization was examined. Examples included poly(ethylene naphthalate) (PEN), and a copolymer based on PET in which 55 mol% terephthalate was replaced with 4,4'-bibenzoate. Explanation of the unexpectedly high solubility of crystallized PEN required a two-phase transport model consisting of an impermeable crystalline phase of constant density and a permeable amorphous phase of variable density. The resulting relationship between oxygen solubility and amorphous phase density was consistent with free volume concepts of gas sorption. In the second part, oxygen barrier properties of liquid crystalline (LC) polyesters based on poly(diethylene glycol 4,4'-bibenzoate) (PDEGBB) were studied. This study extended the 2-phase transport model for oxygen transport of non-LC crystalline polymers to a smectic LCP. It was possible to systematically vary the solid state structure of (PDEGBB) from LC glass to crystallized LC glass. The results were consistent with a liquid crystalline state intermediate between the permeable amorphous glass and the impermeable 3-dimensional crystal. In this interpretation, LC order naturally led to inherently low gas solubility. In the third part, improvement of gas-barrier properties of poly(ethylene terephthalate) (PET) by blending with an aromatic polyamide, either poly(m-xylylene adipamide) (MXD6) or a copolyamide based on MXD6 in which 12 mol% adipamide was replaced with isophthalamide (MXD6-12I), was studied. Aromatic polyamides provided higher barrier than aliphatic polyamides, and unlike aliphatic polyamides, the aromatic polyamides retained high barrier under conditions of high humidity, making them more suitable for beverage packaging applications. (Abstract shortened by UMI.)
Hierarchial Junction Solar Cells Based on Hyper-Branched Semiconductor Nanocrystals
2009-06-30
Hyper-Branched Semiconductor Nanocrystals 4 2. Cu2S- CdS all-inorganic nanocrystal solar cells. We demonstrated the rational synthesis of... Hydrothermal Synthesis of Single Phase Pyrite FeS2 Nanocrystals. We demonstrated a single-source molecular precursor that can be used for the synthesis ... CdS Semiconductor Nanostructures,” Advanced Materials, (2008), 20(22), 4306. Y. Wu, C. Wadia, W. Ma, B. Sadtler, A. P. Alivisatos, “ Synthesis of
Fluorescent aliphatic hyperbranched polyether: chromophore-free and without any N and P atoms.
Miao, Xuepei; Liu, Tuan; Zhang, Chen; Geng, Xinxin; Meng, Yan; Li, Xiaoyu
2016-02-14
The strong fluorescence, in both the solution and the bulk state, of a chromophore-free aliphatic hyperbranched polyether which does not contain N and P atoms was reported for the first time. Effects of concentration and solvent solubility were measured. Its ethanol solution shows a strong blue-green fluorescence (Yu = 0.11-0.39), and its fluorescence shows a strong selective quenching with respect to Fe(3+).
Bi, Sai; Chen, Min; Jia, Xiaoqiang; Dong, Ying; Wang, Zonghua
2015-07-06
A hyper-branched hybridization chain reaction (HB-HCR) is presented herein, which consists of only six species that can metastably coexist until the introduction of an initiator DNA to trigger a cascade of hybridization events, leading to the self-sustained assembly of hyper-branched and nicked double-stranded DNA structures. The system can readily achieve ultrasensitive detection of target DNA. Moreover, the HB-HCR principle is successfully applied to construct three-input concatenated logic circuits with excellent specificity and extended to design a security-mimicking keypad lock system. Significantly, the HB-HCR-based keypad lock can alarm immediately if the "password" is incorrect. Overall, the proposed HB-HCR with high amplification efficiency is simple, homogeneous, fast, robust, and low-cost, and holds great promise in the development of biosensing, in the programmable assembly of DNA architectures, and in molecular logic operations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Garcia-Bernabé, Abel; Dominguez-Espinosa, Gustavo; Diaz-Calleja, Ricardo; Riande, Evaristo; Haag, Rainer
2007-09-28
The non-Debye relaxation behavior of hyperbranched polyglycerol was investigated by broadband dielectric spectroscopy. A thorough study of the relaxations was carried out paying special attention to truncation effects on deconvolutions of overlapping processes. Hyperbranched polyglycerol exhibits two relaxations in the glassy state named in increasing order of frequency beta and gamma processes. The study of the evolution of these two fast processes with temperature in the time retardation spectra shows that the beta absorption is swallowed by the alpha in the glass-liquid transition, the gamma absorption being the only relaxation that remains operative in the liquid state. In heating, a temperature is reached at which the alpha absorption vanishes appearing the alphagamma relaxation. Two characteristics of alpha absorptions, decrease of the dielectric strength with increasing temperature and rather high activation energy, are displayed by the alphagamma process. Williams' ansatz seems to hold for these topologically complex macromolecules.
Huang, Jianshe; Han, Xinyi; Wang, Dawei; Liu, Dong; You, Tianyan
2013-09-25
Gold dendritic nanostructures with hyperbranched architectures were synthesized by the galvanic replacement reaction between nickel wire and HAuCl4 in aqueous solution. The study revealed that the morphology of the obtained nanostructures strongly depended on experimental parameters such as the HAuCl4 solution concentration, reaction temperature, and time, as well as stirring or not. According to the investigation of the growth process, it was proposed that gold nanoparticles with rough surfaces were first deposited on the nickel substrate and that subsequent growth preferentially occurred on the preformed gold nanoparticles, finally leading to the formation of hyperbranched gold dendrites via a self-organization process under nonequilibrium conditions. The electrochemical experiment results demonstrated that the as-obtained gold dendrites exhibited high catalytic activity toward ethanol electrooxidation in alkaline solution, indicating that this nanomaterial may be a potential catalyst for direct ethanol fuel cells.
Li, Hongkun; Chi, Weiwen; Liu, Yajing; Yuan, Wei; Li, Yaowen; Li, Yongfang; Tang, Ben Zhong
2017-09-01
Ferrocene-based polymers have drawn much attention in the past decades due to their unique properties and promising applications. However, the synthesis of hyperbranched polymers is still a great challenge. Here, two ferrocene-based hyperbranched polytriazoles with high molecular weights are facilely prepared by the click polymerization reactions of ferrocene-containing diazides (1) and tris(4-ethynylphenyl)amine (2) using Cu(PPh 3 ) 3 Br as catalyst in dimethylformamide at 60 °C for 5 and 9 h in satisfactory yields of 54.0% and 52.3%. The resulting polytriazoles are soluble in common organic solvents and thermally stable, with 5% weight loss temperatures up to 307 °C. They can be used as precursors to produce nanostructured ceramics with good magnetizability by pyrolysis at elevated temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Organic/inorganic hybrid coatings for anticorrosion
NASA Astrophysics Data System (ADS)
He, Zhouying
Compared to organic coatings, organic-inorganic hybrid coatings can potentially improve the anticorrosion performance. The organic phase provides the excellent mechaincal and barrier properties while the inorganic phase acts as an adhesion promoter and corrosion inhibitor. Despite that many studies on alkoxylsilane-based hybrid coatings have been developed and studied, their weatherability and anticorrosion performance has been rarely evaluated. On the other hand, organic-inorganic hybrid coatings based on mixed sol-gel precursors have received much less attention compared to alkoxylsilane-based hybrid coatings. In the first part, polyurethane hybrid coatings with a unique hybrid crosslinked structure as an improved unicoat were successfully prepared. The effect of polyesters on physical properties of the hybrid coatings was studied. Polyurethane coatings derived from cycloaliphatic polyester show comparable properties than those derived from the commercially viable aromatic polyester. Introducing the polysiloxane part into the polyurethane coatings enhanced the crosslinking density, Tg, mechanical properties, and general coating properties. The increased adhesion between the hybrid coating and the substrate make the hybrid coating a good candidate for anticorrosion application, which is shown by electrochemical impedance spectroscopy (EIS). The degradation mechanism of the polyurethane/polysiloxane hybrid coatings under various weathering conditions was shown to be the scission of the urethane and ester groups in the organic phase along with reorganizing and rearranging of the inorganic phase. The anticorrosion performance of the cycloaliphatic hybrid was much better than that of aromatic based hybrid under outdoor weathering based on visual observation and EIS analysis. Acid undercutting is an issue for TEOS based hybrid coating. In the second part, design of experiments (DOEs) was used to statistically investigate on the effect of sol-gel precursors. The synergistic effect of the mixed sol-gel precursors was shown to enhance the overall properties and was also observed structurally by SAXS and SEM. The improved resistance to the acid undercutting was observed for mixed sol-gel precursors based hybrids. The application of hybrids provides excellent anticorrosive properties as observed in salt spray and EIS study. The formation of Al2O3 protective layer as well as M-O-Al covalent bond provided the basis for excellent corrosion protection on Al substrate. However, the generation of Fe ions as corrosion product caused the accumulation of electrolyte, which resulted in the delamination of the coating on steel substrate. In this way, the corrosion of steel substrate is much faster than that of Al substrate. The maintenance of high impedance and corresponding resistance and capacitance based on EIS results further confirmed the great anticorrosion performance of hybrids on both Al and steel substrate.
Hou, Yanbei; Qiu, Shuilai; Hu, Yuan; Kundu, Chanchal Kumar; Gui, Zhou; Hu, Weizhao
2018-05-30
This work proposed an idea of recycling in preparing Co-Ni layered double hydroxide (LDH)-derived flame retardants. A novel and feasible method was developed to synthesize CO-Ni LDH-decorated graphene oxide (GO) and carbon nanotubes (CNTs), by sacrificing bimetal zeolitic imidazolate frameworks (ZIFs). Organic ligands that departed from ZIFs were recyclable and can be reused to synthesize ZIFs. ZIFs, as transitional objects, in situ synthesized on the surfaces of GO or CNTs directly suppressed the re-stacking of the carbides and facilitated the preparation of GO@LDHs and CNTs@LDHs. As-prepared hybrids catalytically reduced toxic CO yield during the thermal decomposition of unsaturated polyester resin (UPR). What is more, the release behaviors of aromatic compounds were also suppressed during the pyrolysis process of UPR composites. The addition of GO@LDHs and CNTs@LDHs obviously inhibited the heat release and smoke emission behaviors of the UPR matrix during combustion. Mechanical properties of the UPR matrix also improved by inclusion of the carbides derivatives. This work paved a feasible method to prepare well-dispersed carbides@Co-Ni LDH nanocomposites with a more environmentally friendly method.
Li, Zibiao; Zhang, Zhongxing; Liu, Kerh Li; Ni, Xiping; Li, Jun
2012-12-10
This paper reports the synthesis and characterization of new hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol) (PPG), poly(ethylene glycol) (PEG), and polycaprolactone (PCL) segments as in situ thermogels. The hyperbranched poly(PPG/PEG/PCL urethane)s, termed as HBPEC copolymers, were synthesized from PPG-diol, PEG-diol, and PCL-triol by using 1,6-hexamethylene diisocyanate (HMDI) as a coupling agent. The compositions and structures of HBPEC copolymers were determined by GPC and 1H NMR spectroscopy. We carried out comparative studies of the new hyperbranched copolymers with their linear counterparts, the linear poly(PPG/PEG/PCL urethane) (LPEC) copolymer and Pluronic F127 PEG-PPG-PEG block copolymer, in terms of their self-assembly and aggregation behaviors and thermoresponsive properties. HBPEC copolymers were found to show thermoresponsive micelle formation and aggregation behaviors. Particularly, the lower critical solution temperature (LCST) of the copolymers was significantly affected by the copolymer architecture. HBPEC copolymers showed much lower LCST than LPEC, the linear counterpart. Our studies revealed that the effect of hyperbranch architecture was more prominent in the gelation of the copolymers. The aqueous solutions of HBPEC copolymers exhibited thermogelling behaviors at critical gelation concentrations (CGCs) ranging from 4.3 to 7.4 wt %. These values are much lower than those reported on other PCL-contained linear thermogelling copolymers and Pluronic F127 copolymer. In addition, the CGC of HBPEC copolymers is much lower than the control LPEC copolymer. More interestingly, at high temperatures, while LPEC and other linear thermogelling copolymers formed turbid sol, HBPEC formed a dehydrated gel. Our data suggest that these phenomena are caused by the hyperbranched structure of HBPEC copolymers, which could increase the interaction of copolymer branches and enhance the chain association through synergetic hydrogen bonding effect. The thermogelling behavior of HBPEC block copolymers was further evidenced by the 1H NMR molecular dynamic study and rheological study, which further support the above hypothesis. The hydrolytic degradation study showed that the HBPEC copolymer hydrogels are biodegradable under physiological conditions. Together with the good cell biocompatibility demonstrated by the cytotoxicity study, the new thermogelling copolymers reported in this paper could potentially be used as in situ-forming hydrogels for biomedical applications.
Sousa, Andreia F; Gandini, Alessandro; Caetano, Ana; Maria, Teresa M R; Freire, Carmen S R; Neto, Carlos Pascoal; Silvestre, Armando J D
2016-12-01
The main purpose of this study was to investigate the potential of suberin (a naturally occurring aromatic-aliphatic polyester ubiquitous to the vegetable realm) as a renewable source of chemicals and, in particular, to assess their physical properties. A comparison between cork and birch suberin fragments obtained by conventional depolymerisation processes (hydrolysis or methanolysis) is provided, focusing essentially on their thermal and crystallinity properties. It was found that suberin fragments obtained by the hydrolysis depolymerisation of birch had a high degree of crystallinity, as indicated by their thermal analysis and corroborated by the corresponding XRD diffractions, as opposed to hydrolysis-depolymerised cork suberin counterparts, which were essentially amorphous. Copyright © 2016 Elsevier B.V. All rights reserved.
Integrated circuit for SAW and MEMS sensors
NASA Astrophysics Data System (ADS)
Fischer, Wolf-Joachim; Koenig, Peter; Ploetner, Matthias; Hermann, Rudiger; Stab, Helmut
2001-11-01
The sensor processor circuit has been developed for hand-held devices used in industrial and environmental applications, such as on-line process monitoring. Thereby devices with SAW sensors or MEMS resonators will benefit from this processor especially. Up to 8 sensors can be connected to the circuit as multisensors or sensor arrays. Two sensor processors SP1 and SP2 for different applications are presented in this paper. The SP-1 chip has a PCMCIA interface which can be used for the program and data transfer. SAW sensors which are working in the frequency range from 80 MHz to 160 MHz can be connected to the processor directly. It is possible to use the new SP-2 chip fabricated in a 0.5(mu) CMOS process for SAW devices with a maximum frequency of 600 MHz. An on-chip analog-digital-converter (ADC) and 6 PWM modules support the development of high-miniaturized intelligent sensor systems We have developed a multi-SAW sensor system with this ASIC that manages the requirements on control as well as signal generation and storage and provides an interface to the PC and electronic devices on the board. Its low power consumption and its PCMCIA plug fulfil the requirements of small size and mobility. For this application sensors have been developed to detect hazardous gases in ambient air. Sensors with differently modified copper-phthalocyanine films are capable of detecting NO2 and O3, whereas those with a hyperbranched polyester film respond to NH3.
Wang, Mingxing; Tucker, Jay D; Lu, Peijuan; Wu, Bo; Cloer, Caryn; Lu, Qilong
2012-04-18
Hyperbranched poly(ester amine)s (PEAs) were successfully synthesized by Michael addition reaction between tris[2-(acryloyloxy)ethyl]isocyanurate (TAEI) and low-molecular-weight polyethylenimine (LPEI, M(w) 0.8k, 1.2k, and 2.0k) and evaluated in vitro and in vivo as gene carriers. PEAs effectively condensed plasmid DNA with particle sizes below 200 nm and surface charges between 11.5 and 33.5 mV under tested doses [at the ratios 2-10:1 of polymer/pDNA(w/w)]. The PEAs showed significantly lower cytotoxicities when compared with PEI 25k in two different cell lines. The PEAs (C series) composed of PEI 2k showed higher transgene expression compared to PEAs of PEI 0.8k (A series) or 1.2k (B series). Highest gene transfection efficiency in CHO, C2C12 myoblast, and human skeletal muscle (HSK) cell lines was obtained with TAEI/PEI-2K (C12) at a ratio of 1:2. Both C12, C14(TAEI/PEI-2K at a ratio of 1:4) demonstrated 5-8-fold higher gene expression as compared with PEI 25k in mdx mice in vivo through intramuscular administration. No obvious muscle damage was observed with these new polymers. Higher transfection efficiency and lower toxicity indicate the potential of the biodegradable PEAs as safe and efficient transgene delivery vectors. © 2012 American Chemical Society
Biodegradable shape-memory block co-polymers for fast self-expandable stents.
Xue, Liang; Dai, Shiyao; Li, Zhi
2010-11-01
Block co-polymers PCTBVs (M(n) of 36,300-65,300 g/mol, T(m) of 39-40 and 142 degrees C) containing hyperbranched three-arm poly(epsilon-caprolactone) (PCL) as switching segment and microbial polyester PHBV as crystallizable hard segment were designed as biodegradable shape-memory polymer (SMP) for fast self-expandable stent and synthesized in 96% yield by the reaction of three-arm PCL-triol (M(n) of 4200 g/mol, T(m) of 47 degrees C) with methylene diphenyl 4,4'-diisocyanate isocynate (MDI) to form the hyperbrached MDI-linked PCL (PTCM; M(n) of 25,400 g/mol and a T(m) of 38 degrees C), followed by further polymerization with PHBV-diol (M(n) of 2200 g/mol, T(m) of 137 and 148 degrees C). The polymers were characterized by (1)H NMR, GPC, DSC, tensile test, and cyclic thermomechanical tensile test. PCTBVs showed desired thermal properties, mechanical properties, and ductile nature. PCTBV containing 25 wt% PHBV (PCTBV-25) demonstrated excellent shape-memory property at 40 degrees C, with R(f) of 94%, R(r) of 98%, and shape recovery within 25s. PCTBV-25 was also shown as a safe material with good biocompatibility by cytotoxicity tests and cell growth experiments. The stent made from PCTBV-25 film showed nearly complete self-expansion at 37 degrees C within only 25 s, which is much better and faster than the best known self-expandable stents. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Ting
Lithium-ion batteries can fail and catch fire when overcharged, exposed to high temperatures or short-circuited due to the highly flammable organic liquid used in the electrolyte. Using inorganic solid electrolyte materials can potentially improve the safety factor. Additionally, nanostructured electrolyte materials may further enhanced performance by taking advantage of their large aspect ratio. In this work, the synthesis of two promising nanostructured solid electrolyte materials was explored. Amorphous lithium niobate nanowires were synthesized through the decomposition of a niobium-containing complex in a structure-directing solvent using a reflux method. Lithium lanthanum titanate was obtained via solid state reaction with titanium oxide nanowires as the titanium precursor, but the nanowire morphology could not be preserved due to high temperature sintering. Hyperbranched potassium lanthanum titanate was synthesized through hydrothermal route. This was the first time that hyperbranched nanowires with perovskite structure were made without any catalyst or substrate. This result has the potential to be applied to other perovskite materials.
Yang, Hee-Man; Choi, Hye Min; Jang, Sung-Chan; Han, Myeong Jin; Seo, Bum-Kyoung; Moon, Jei-Kwon; Lee, Kune-Woo
2015-10-01
Hyperbranched polyglycerol-coated magnetic nanoparticles (SHPG-MNPs) were functionalized with succinate groups to form a draw solute for use in a forward osmosis (FO). After the one-step synthesis of hyperbranched polyglycerol-coated magnetic nanoparticles (HPG-MNPs), the polyglycerol groups on the surfaces of the HPG-MNPs were functionalized with succinic anhydride moieties. The resulting SHPG-MNPs showed no change of size and magnetic property compared with HPG-MNPs and displayed excellent dispersibility in water up to the concentration of 400 g/L. SHPG-MNPs solution showed higher osmotic pressure than that of HPG-MNPs solution due to the presence of surface carboxyl groups in SHPG-MNPs and could draw water from a feed solution across an FO membrane without any reverse draw solute leakage during FO process. Moreover, the water flux remained nearly constant over several SHPG-MNP darw solute regeneration cycles applied to the ultrafiltration (UF) process. The SHPG-MNPs demonstrate strong potential for use as a draw solute in FO processes.
Tsiourvas, D.; Arkas, M.; Diplas, S.; Mastrogianni, E.
2010-01-01
This work is investigating the chemical grafting on Ti surface of a polymer/calcium phosphate coating of improved adhesion for enhanced bioactivity. For this purpose, a whole new methodology was developed based on covalently attaching a hyperbranched poly(ethylene imine) layer on Ti surface able to promote calcium phosphate formation in a next deposition stage. This was achieved through an intermediate surface silanization step. The research included optimization both of the reaction conditions for covalently grafting the intermediate organosilicon and the subsequent hyperbranched poly(ethylene imine) layers, as well as of the conditions for the mechanical and chemical pretreatment of Ti surface before coating. The reaction steps were monitored employing FTIR and XPS analyses, whereas the surface morphology and structure of the successive coating layers were studied by SEM combined with EDS. The analysis confirmed the successful grafting of the hybrid layer which demonstrated very good ability for hydroxyapatite growth in simulated body fluid. PMID:21069559
Polyglycerol coatings of glass vials for protein resistance.
Höger, Kerstin; Becherer, Tobias; Qiang, Wei; Haag, Rainer; Friess, Wolfgang; Küchler, Sarah
2013-11-01
Proteins are surface active molecules which undergo non-specific adsorption when getting in contact with surfaces such as the primary packaging material. This process is critical as it may cause a loss of protein content or protein aggregation. To prevent unspecific adsorption, protein repellent coatings are of high interest. We describe the coating of industrial relevant borosilicate glass vials with linear methoxylated polyglycerol, hyperbranched polyglycerol, and hyperbranched methoxylated polyglycerol. All coatings provide excellent protein repellent effects. The hyperbranched, non-methoxylated coating performed best. The protein repellent properties were maintained also after applying industrial relevant sterilization methods (≥200 °C). Marginal differences in antibody stability between formulations stored in bare glass vials and coated vials were detected after 3 months storage; the protein repellent effect remained largely stable. Here, we describe a new material suitable for the coating of primary packaging material of proteins which significantly reduces the protein adsorption and thus could present an interesting new possibility for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Tsiourvas, D; Tsetsekou, A; Arkas, M; Diplas, S; Mastrogianni, E
2011-01-01
This work is investigating the chemical grafting on Ti surface of a polymer/calcium phosphate coating of improved adhesion for enhanced bioactivity. For this purpose, a whole new methodology was developed based on covalently attaching a hyperbranched poly(ethylene imine) layer on Ti surface able to promote calcium phosphate formation in a next deposition stage. This was achieved through an intermediate surface silanization step. The research included optimization both of the reaction conditions for covalently grafting the intermediate organosilicon and the subsequent hyperbranched poly(ethylene imine) layers, as well as of the conditions for the mechanical and chemical pretreatment of Ti surface before coating. The reaction steps were monitored employing FTIR and XPS analyses, whereas the surface morphology and structure of the successive coating layers were studied by SEM combined with EDS. The analysis confirmed the successful grafting of the hybrid layer which demonstrated very good ability for hydroxyapatite growth in simulated body fluid.
49 CFR 173.165 - Polyester resin kits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Polyester resin kits. 173.165 Section 173.165... Polyester resin kits. (a) Except for transportation by aircraft, polyester resin kits consisting of a base... will not interact dangerously in the event of leakage. (b) For transportation by aircraft, polyester...
21 CFR 177.1590 - Polyester elastomers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyester elastomers. 177.1590 Section 177.1590... Components of Single and Repeated Use Food Contact Surfaces § 177.1590 Polyester elastomers. The polyester...) For the purpose of this section, polyester elastomers are those produced by the ester exchange...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-21
... DEPARTMENT OF COMMERCE International Trade Administration [A-580-839] Certain Polyester Staple... certain polyester staple fiber (polyester staple fiber) from the Republic of Korea (Korea) for the period..., 2013, the Department initiated an administrative review of the antidumping duty order on polyester...
21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Partial phosphoric acid esters of polyester resins... of polyester resins. Partial phosphoric acid esters of polyester resins identified in this section... prescribed conditions: (a) For the purpose of this section, partial phosphoric acid esters of polyester...
21 CFR 177.1590 - Polyester elastomers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyester elastomers. 177.1590 Section 177.1590... Components of Single and Repeated Use Food Contact Surfaces § 177.1590 Polyester elastomers. The polyester...) For the purpose of this section, polyester elastomers are those produced by the ester exchange...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Certain Polyester Staple... certain polyester staple fiber from Taiwan. The period of review is May 1, 2008, through April 30, 2009... polyester staple fiber (PSF) from Taiwan. See Certain Polyester Staple Fiber From Taiwan: Preliminary...
Polyester synthases: natural catalysts for plastics.
Rehm, Bernd H A
2003-01-01
Polyhydroxyalkanoates (PHAs) are biopolyesters composed of hydroxy fatty acids, which represent a complex class of storage polyesters. They are synthesized by a wide range of different Gram-positive and Gram-negative bacteria, as well as by some Archaea, and are deposited as insoluble cytoplasmic inclusions. Polyester synthases are the key enzymes of polyester biosynthesis and catalyse the conversion of (R)-hydroxyacyl-CoA thioesters to polyesters with the concomitant release of CoA. These soluble enzymes turn into amphipathic enzymes upon covalent catalysis of polyester-chain formation. A self-assembly process is initiated resulting in the formation of insoluble cytoplasmic inclusions with a phospholipid monolayer and covalently attached polyester synthases at the surface. Surface-attached polyester synthases show a marked increase in enzyme activity. These polyester synthases have only recently been biochemically characterized. An overview of these recent findings is provided. At present, 59 polyester synthase structural genes from 45 different bacteria have been cloned and the nucleotide sequences have been obtained. The multiple alignment of the primary structures of these polyester synthases show an overall identity of 8-96% with only eight strictly conserved amino acid residues. Polyester synthases can been assigned to four classes based on their substrate specificity and subunit composition. The current knowledge on the organization of the polyester synthase genes, and other genes encoding proteins related to PHA metabolism, is compiled. In addition, the primary structures of the 59 PHA synthases are aligned and analysed with respect to highly conserved amino acids, and biochemical features of polyester synthases are described. The proposed catalytic mechanism based on similarities to alpha/beta-hydrolases and mutational analysis is discussed. Different threading algorithms suggest that polyester synthases belong to the alpha/beta-hydrolase superfamily, with a conserved cysteine residue as catalytic nucleophile. This review provides a survey of the known biochemical features of these unique enzymes and their proposed catalytic mechanism. PMID:12954080
Venkateswar Reddy, M; Mawatari, Yasuteru; Yajima, Yuka; Seki, Chigusa; Hoshino, Tamotsu; Chang, Young-Cheol
2015-09-01
In the present study five different types of alkylphenols, each of the two different types of mono and poly-aromatic hydrocarbons were selected for degradation, and conversion into poly-3-hydroxybutyrate (PHB) using the Bacillus sp. CYR1. Strain CYR1 showed growth with various toxic organic compounds. Degradation pattern of all the organic compounds at 100 mg/l concentration with or without addition of tween-80 were analyzed using high pressure liquid chromatography (HPLC). Strain CYR1 showed good removal of compounds in the presence of tween-80 within 3 days, but it took 6 days without addition of tween-80. Strain CYR1 showed highest PHB production with phenol (51 ± 5%), naphthalene (42 ± 4%), 4-chlorophenol (32 ± 3%) and 4-nonylphenol (29 ± 3%). The functional groups, structure, and thermal properties of the produced PHB were analyzed. These results denoted that the strain Bacillus sp. CYR1 can be used for conversion of different toxic compounds persistent in wastewaters into useable biological polyesters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Blends of polyester ionomers with polar polymers: Interactions, reactions, and compatibilization
NASA Astrophysics Data System (ADS)
Boykin, Timothy Lamar
The compatibility of amorphous and semicrystalline polyester ionomers with various polar polymers (i.e., polyesters and polyamides) has been investigated for their potential use as minor component compatibilizers. The degree of compatibility (i.e., ranging from incompatible to miscible) between the polyester ionomers and the polar polymers was determined by evaluating the effect of blend composition on the melting behavior and phase behavior of binary blends. In addition, the origin of compatibility and/or incompatibility for each of the binary blends (i.e., polyamide/ionomer and polyester/ionomer) was determined by evaluating blends prepared by both solution and melt mixed methods. Subsequent to investigation of the binary blends, the effect of polyester ionomer addition on the compatibility of polyamide/polyester blends was investigated by evaluating the mechanical properties and phase morphology of ionomer compatibilized polyamide/polyester blends. Polyester ionomers (amorphous and semicrystalline) were shown to exhibit a high degree of compatibility (even miscibility) with polyamides, such as nylon 6,6 (N66). Compatibility was attributed to specific interactions between the metal counterion of the polyester ionomer and the amide groups of N66. The degree of compatibility (or miscibility) was shown to be dependent on the counterion type of the ionomer, with the highest degree exhibited by blends containing the divalent form of the polyester ionomers. Although polyester ionomers were shown to exhibit incompatibility with both poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT), increasing the time of melt processing significantly enhanced the compatibility of the polyester ionomers with both PET and PBT. The observed enhancement in compatibility was attributed to ester-ester interchange between the polyester blend components, which was confirmed by NMR spectroscopy. The addition of polyester ionomers as a minor component compatibilizer (i.e., 2 to 5 wt%) resulted in significant enhancement in the impact strength and a dramatic improvement in the tensile properties compared to uncompatibilized blends of nylon 6,6 (N66) with poly(butylene terephthalate) (PBT). This behavior was attributed to an increase in the interfacial adhesion between the phase-separated domains due to strong interactions between the polyester ionomer and N66. The placement of the ionomer compatibilizer at the N66/PBT interface was facilitated by pre-extrusion of the polyester ionomer with PBT, prior to extrusion with N66.
An efficient nonviral gene-delivery vector based on hyperbranched cationic glycogen derivatives.
Liang, Xuan; Ren, Xianyue; Liu, Zhenzhen; Liu, Yingliang; Wang, Jue; Wang, Jingnan; Zhang, Li-Ming; Deng, David Yb; Quan, Daping; Yang, Liqun
2014-01-01
The purpose of this study was to synthesize and evaluate hyperbranched cationic glycogen derivatives as an efficient nonviral gene-delivery vector. A series of hyperbranched cationic glycogen derivatives conjugated with 3-(dimethylamino)-1-propylamine (DMAPA-Glyp) and 1-(2-aminoethyl) piperazine (AEPZ-Glyp) residues were synthesized and characterized by Fourier-transform infrared and hydrogen-1 nuclear magnetic resonance spectroscopy. Their buffer capacity was assessed by acid-base titration in aqueous NaCl solution. Plasmid deoxyribonucleic acid (pDNA) condensation ability and protection against DNase I degradation of the glycogen derivatives were assessed using agarose gel electrophoresis. The zeta potentials and particle sizes of the glycogen derivative/pDNA complexes were measured, and the images of the complexes were observed using atomic force microscopy. Blood compatibility and cytotoxicity were evaluated by hemolysis assay and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, respectively. pDNA transfection efficiency mediated by the cationic glycogen derivatives was evaluated by flow cytometry and fluorescence microscopy in the 293T (human embryonic kidney) and the CNE2 (human nasopharyngeal carcinoma) cell lines. In vivo delivery of pDNA in model animals (Sprague Dawley rats) was evaluated to identify the safety and transfection efficiency. The hyperbranched cationic glycogen derivatives conjugated with DMAPA and AEPZ residues were synthesized. They exhibited better blood compatibility and lower cytotoxicity when compared to branched polyethyleneimine (bPEI). They were able to bind and condense pDNA to form the complexes of 100-250 nm in size. The transfection efficiency of the DMAPA-Glyp/pDNA complexes was higher than those of the AEPZ-Glyp/pDNA complexes in both the 293T and CNE2 cells, and almost equal to those of bPEI. Furthermore, pDNA could be more safely delivered to the blood vessels in brain tissue of Sprague Dawley rats by the DMAPA-Glyp derivatives, and then expressed as green fluorescence protein, compared with the control group. The hyperbranched cationic glycogen derivatives, especially the DMAPA-Glyp derivatives, showed high gene-transfection efficiency, good blood compatibility, and low cyto toxicity when transfected in vitro and in vivo, which are novel potential nonviral gene vectors.
Cheng, Weiren; Wu, Decheng; Liu, Ye
2016-10-10
Michael addition polymerizations of amines and acrylic monomers are versatile approaches to biomaterials for various applications. A combinatorial library of poly(β-amino ester)s and diverse poly(amido amine)s from diamines and diacrylates or bis(acrylamide)s have been reported, respectively. Furthermore, novel linear and hyperbranched polymers from Michael addition polymerizations of trifunctional amines and acrylic monomers significantly enrich this category of biomaterials. In this Review, we focus on the biomaterials from Michael addition polymerizations of trifunctional amines and acrylic monomers. First we discuss how the polymerization mechanisms, which are determined by the reactivity sequence of the three types of amines of trifunctional amines, i.e., secondary (2°) amines (original), primary (1°) amines, and 2° amines (formed), are affected by the chemistry of monomers, reaction temperature, and solvent. Then we update how to design and synthesize linear and hyperbranched polymers based on the understanding of polymerization mechanisms. Linear polymers containing 2° amines in the backbones can be obtained from polymerizations of diacrylates or bis(acrylamide)s with equimolar trifunctional amine, and several approaches, e.g., 2A 2 +BB'B″, A 3 +2BB'B', A 2 +BB'B″, to hyperbranched polymers are developed. Further through molecular design of monomers, conjugation of functional species to 2° amines in the backbones of linear polymers and the abundant terminal groups of hyperbranched polymers, the amphiphilicity of polymers can be adjusted, and additional stimuli, e.g., thermal, redox, reactive oxidation species (ROS), and light, responses can be integrated with the intrinsic pH response. Finally we discuss the applications of the polymers for gene/drug delivery and bioimaging through exploring their self-assemblies in various motifs, e.g., micelles, polyplexes particles/nanorings and hydrogels. Redox-responsive hyperbranched polymers can display 300 times higher in vitro gene transfection efficiency and provide a higher in vivo siRNA efficacy than PEI. Also redox-responsive micelle carriers can improve the efficacy of anticancer drug and the bioimaging contrast. Further molecular design and optimization of this category of polymers together with in vivo studies should provide safe and efficient biomaterials for clinical applications.
NASA Astrophysics Data System (ADS)
Wang, Xushan; Wang, Zihong; Wang, Zhe; Cao, Yu; Meng, Jianqiang
2017-10-01
Antifouling PVDF membranes were prepared by grafting hyperbranched polyols on the membrane surface via a three-step modification method. The membrane was first prepared by alkaline treatment to introduce alkenyl groups, then chemically immobilizing hyperbranched poly(ethyleneimine) (HPEI) on membrane surface through Michael reaction followed by ring opening reaction of the glycidol with amine groups. Chemical compositions, surface morphology and physicochemical properties of the original and modified membranes were characterized via attenuated total refection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), water contact angle (WCA) and zeta potential measurements. The antifouling property of the modified membrane was assessed by the static bovine serum albumin (BSA) and lysozyme (LZM) adsorption as well as cross-flow filtration of BSA aqueous solution. The results explicate that surface modification using hyperbranched polymers can alter membrane chemistry and morphology significantly. In contrast to the original PVDF membrane, the modified membrane shows superhydrophilic property and relatively high capability to resist nonspecific protein adsorption. Three HPEIs were used for modification and the obtained PVDFA-g-PG60,000 membrane has a static BSA protein adsorption of 45 μg/cm2 and shows the highest protein resistance. However, the PVDF-g-PG membrane is positively charged due to the unreacted amine groups. As a result, the PVDF-g-PG membranes also show high flux decline during the filtration of BSA aqueous solution due to the electrostatic interaction. In spite of that, the PVDF-g-PG membranes still maintain high flux recovery ratio and good washing properties.
Pan, Ling-Yun; Pan, Gen-Cai; Zhang, Yong-Lai; Gao, Bing-Rong; Dai, Zhen-Wen
2013-02-01
As the priority of interconnects and active components in nanoscale optical and electronic devices, three-dimensional hyper-branched nanostructures came into focus of research. Recently, a novel crystallization route, named as "nonclassical crystallization," has been reported for three-dimensional nanostructuring. In this process, Quantum dots are used as building blocks for the construction of the whole hyper-branched structures instead of ions or single-molecules in conventional crystallization. The specialty of these nanostructures is the inheritability of pristine quantum dots' physical integrity because of their polycrystalline structures, such as quantum confinement effect and thus the luminescence. Moreover, since a longer diffusion length could exist in polycrystalline nanostructures due to the dramatically decreased distance between pristine quantum dots, the exciton-exciton interaction would be different with well dispersed quantum dots and single crystal nanostructures. This may be a benefit for electron transport in solar cell application. Therefore, it is very necessary to investigate the exciton-exciton interaction in such kind of polycrystalline nanostructures and their optical properites for solar cell application. In this research, we report a novel CdTe hyper-branched nanostructures based on self-assembly of CdTe quantum dots. Each branch shows polycrystalline with pristine quantum dots as the building units. Both steady state and time-resolved spectroscopy were performed to investigate the properties of carrier transport. Steady state optical properties of pristine quantum dots are well inherited by formed structures. While a suppressed multi-exciton recombination rate was observed. This result supports the percolation of carriers through the branches' network.
NASA Astrophysics Data System (ADS)
Barua, Shaswat; Chattopadhyay, Pronobesh; Phukan, Mayur M.; Konwar, Bolin K.; Karak, Niranjan
2014-12-01
Hyperbranched epoxy MWCNT-CuO-nystatin nanocomposite has been presented here as an advanced antimicrobial high performance material. The material showed significant improvement of mechanical properties (tensile strength from 38 to 63 MPa) over the pristine matrix without effecting elongation. MWCNT was modified by a non-ionic surfactant, triton X-100, wherein copper oxide nanoparticles were anchored in situ by a ‘green’ method. Further, sonochemical immobilization of nystatin enhanced the stability of the system. The immobilized nanohybrid system was incorporated into the hyperbranched matrix in 1, 2 and 3 wt%. The resultant system proved its ability to prevent bacterial, fungal and microalgal fouling against the tested strains, Staphylococcus aureus, Candida albicans and Chlorella sp. Additionally, this system is quite compatible with rat heart cells. Furthermore, in vivo assessment showed that this could be utilized as an implantable antimicrobial biomaterial. Thus, the overall study pointed out that the prepared material may have immense utility in marine industry as well as in biomedical domain to address microbial fouling, without inducing any toxicity to higher organisms.
Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites
2009-01-01
The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance. PMID:20596546
Meng, Xiangfeng; Dobruchowska, Justyna M; Pijning, Tjaard; Gerwig, Gerrit J; Dijkhuizen, Lubbert
2016-01-20
α-Glucans produced by glucansucrase enzymes of lactic acid bacteria attract strong attention as novel ingredients and functional biopolymers in the food industry. In the present study, α-helix 4 amino acid residues D1085, R1088, and N1089 of glucansucrase GTF180 of Lactobacillus reuteri 180 were targeted for mutagenesis both jointly and separately. Analysis of the mutational effects on enzyme function revealed that all D1085 and R1088 mutants catalyzed the synthesis of hyperbranched α-glucans with 15-22% branching (α1→3,6) linkages, compared to 13% in the wild-type GTF180. In addition, besides native (α1→6) and (α1→3) linkages, all of the mutations introduced a small amount of (α1→4) linkages (5% at most) in the polysaccharides produced. We conclude that α-helix 4 residues, especially D1085 and R1088, constituting part of the +2 acceptor binding subsite, are important determinants for the linkage specificity. The new hyperbranched α-glucans provide very interesting structural diversities and may find applications in the food industry.
Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites.
Deka, Harekrishna; Karak, Niranjan
2009-04-25
The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications. Mesua ferrea L. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 degrees C of melting point, and 111 degrees C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96-99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.
NASA Astrophysics Data System (ADS)
Taniguchi, Ikuo; Wada, Norihisa; Kinugasa, Kae; Higa, Mitsuru
2017-11-01
Due to CO2-philic nature of polyoxyethylene (POE), a dense POE comb structure was tethered onto PMMA backbone to develop CO2 separation membranes over N2. The resulting hyper-branched polymers displayed preferential CO2 permeation. When the polymer thin layer was formed on a high gas permeable polydimethylsiloxane (PDMS) support by a spray-coating manner, the resulting thin film composite (TFC) membranes displayed very high CO2 permeability. However, the CO2 selectivity, which was the permeability ratio of CO2 over N2, was moderate and lower than 50. To enhance the selectivity, poly(amidoamine) (PAMAM) was introduced to the hyper-branched polymers in the CO2-selective layer of the TFC membranes. The CO2 selectivity increased from 47 to 90 with increasing PAMAM content to 40 wt%, and it was drastically enhanced to 350 with PAMAM content of 50 wt%. Differential scanning calorimetry (DSC) and laser microscope revealed formation of PAMAM-rich domain at the higher amine content, where CO2 could readily migrate in comparison to the other polymeric fractions.
Structural and Interfacial Properties of Hyperbranched-Linear Polymer Surfactant.
Qiang, Taotao; Bu, Qiaoqiao; Huang, Zhaofeng; Wang, Xuechuan
2014-01-01
With oleic acid grafting modification, a series of hyperbranched-linear polymer surfactants (HLPS) were prepared by hydroxyl-terminated hyperbranched polymer (HBP), which was gained through a step synthesis method using trimethylolpropane and AB 2 monomer. The AB 2 monomers were obtained through the Michael addition reaction of methyl acrylate and diethanol amine. The structures of HLPS were characterised by Fourier transform infrared spectrophotometer and nuclear magnetic resonance (NMR), which indicated that HBP was successfully modified by oleic acid. Furthermore, the properties of surface tension and critical micelle concentration of HLPS solution showed that HLPS can significantly reduce the surface tension of water. The morphology of the HLPS solution was characterised by dynamic light scattering, which revealed that HLPS exhibited a nonmonotonic appearance in particle size at different scattering angles owing to the different replaced linear portions. The relationships of the surface pressure to monolayer area and time were measured using the Langmuir-Blodgett instrument, which showed that the surface tension of monolayer molecules increased with the increasing of hydrophobic groups. In addition, the interface conditions of different replaced HLPS solutions were simulated.
Gogoi, Satyabrat; Maji, Somnath; Mishra, Debasish; Devi, K Sanjana P; Maiti, Tapas Kumar; Karak, Niranjan
2017-03-01
The present study delves into a combined bio-nano-macromolecular approach for bone tissue engineering. This approach relies on the properties of an ideal scaffold material imbued with all the chemical premises required for fostering cellular growth and differentiation. A tannic acid based water dispersible hyperbranched polyurethane is fabricated with bio-nanohybrids of carbon dot and four different peptides (viz. SVVYGLR, PRGDSGYRGDS, IPP, and CGGKVGKACCVPTKLSPISVLYK) to impart target specific in vivo bone healing ability. This polymeric bio-nanocomposite is blended with 10 wt% of gelatin and examined as a non-invasive delivery vehicle. In vitro assessment of the developed polymeric system reveals good osteoblast adhesion, proliferation, and differentiation. Aided by this panel of peptides, the polymeric bio-nanocomposite exhibits in vivo ectopic bone formation ability. The study on in vivo mineralization and vascularization reveals the occurrence of calcification and blood vessel formation. Thus, the study demonstrates carbon dot/peptide functionalized hyperbranched polyurethane gel for bone tissue engineering application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
40 CFR 721.8082 - Polyester polyurethane acrylate.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane acrylate...
40 CFR 721.8082 - Polyester polyurethane acrylate.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane acrylate...
Properties of honeycomb polyester knitted fabrics
NASA Astrophysics Data System (ADS)
Feng, A. F.
2016-07-01
The properties of honeycomb polyester weft-knitted fabrics were studied to understand their advantages. Seven honeycomb polyester weft-knitted fabrics and one common polyester weft-knitted fabric were selected for testing. Their bursting strengths, fuzzing and pilling, air permeability, abrasion resistance and moisture absorption and perspiration were studied. The results show that the honeycomb polyester weft-knitted fabrics have excellent moisture absorption and liberation. The smaller their thicknesses and area densities are, the better their moisture absorption and liberation will be. Their anti-fuzzing and anti-pilling is good, whereas their bursting strengths and abrasion resistance are poorer compared with common polyester fabric's. In order to improve the hygroscopic properties of the fabrics, the proportion of the honeycomb microporous structure modified polyester in the fabrics should not be less than 40%.
40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyether polyester copolymer... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this section...
40 CFR 721.6485 - Hydroxy terminated polyester.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydroxy terminated polyester. 721.6485... Substances § 721.6485 Hydroxy terminated polyester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a hydroxy terminated polyester...
40 CFR 721.6485 - Hydroxy terminated polyester.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydroxy terminated polyester. 721.6485... Substances § 721.6485 Hydroxy terminated polyester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a hydroxy terminated polyester...
Studies on thermo-mechanical properties of chemically treated jute-polyester composite
NASA Astrophysics Data System (ADS)
Chaudhari, Vikas; Chandekar, Harichandra; Saboo, Jayesh; Mascarenhas, Adlete
2018-03-01
The effect of chemical treatments on jute-polyester composites is studied in this paper. The jute fabrics are chemically treated with NaOH and benzoyl chloride and its tensile and visco-elastic properties are compared with untreated jute composite. The NaOH treated jute-polyester composite show superior tensile strength and modulus compared to other jute-polyester composites. The glass transition temperature obtained from DMA shift to higher temperature for composites in comparison to polyester resin, this is due to restriction of mobility in chains due to introduction of jute reinforcement. The DMA results also show favourable results towards NaOH treatment i.e. higher storage modulus and lower tan δ values relative to untreated jute-polyester composite. The benzoyl treated jute-polyester composite however do not show promising results which may be attributed to the fact that the adhesion properties associated with similar ester functional groups in the benzoyl treated jute fabric and polyester resin were not obtained.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-18
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple... duty order on certain polyester staple fiber (``PSF'') from the People's Republic of China (``PRC''). See Certain Polyester Staple Fiber From the People's Republic of China: Notice of Preliminary Results...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-26
... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Polyester Staple Fiber From... Commerce is initiating a changed- circumstances review of the antidumping duty order on polyester staple... previously accorded to Far Eastern Textile Limited with regard to the antidumping duty order on polyester...
40 CFR 721.9507 - Polyester silane.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyester silane. 721.9507 Section 721... Polyester silane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a polyester silane (P-95-1022) is subject to reporting under this section for the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-16
... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Certain Polyester Staple... administrative review of the antidumping duty order on certain polyester staple fiber from Taiwan. See Certain Polyester Staple Fiber from Taiwan: Preliminary Results of Antidumping Duty Administrative Review, 75 FR...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple... results of the administrative review of certain polyester staple fiber from the People's Republic of China... polyester staple fiber from the PRC. See Initiation of Antidumping and Countervailing Duty Administrative...
40 CFR 721.9507 - Polyester silane.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester silane. 721.9507 Section 721... Polyester silane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a polyester silane (P-95-1022) is subject to reporting under this section for the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-02
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-101] Greige Polyester Cotton... duty order on greige polyester cotton printcloth from the People's Republic of China (``PRC''). Because..., 1983, the Department issued an antidumping duty order on greige polyester cotton printcloth from the...
49 CFR 173.165 - Polyester resin kits.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Polyester resin kits. 173.165 Section 173.165... Polyester resin kits. (a) Except for transportation by aircraft, polyester resin kits consisting of a base... resin kits consisting of a base material component (Class 3, Packing Group II or III) and an activator...
Distributed Spacing Stochastic Feature Selection and its Application to Textile Classification
2011-09-01
Spandex, (b) 65% Polyester / 35% Cot- ton vs 94% Polyester / 6% Spandex, (c) 65% Polyester / 35% Cotton vs 100% Cotton , and (d) 65% Polyester / 35% Cotton ...3-29 3.10. This is an example of the final feature selection process for 100% Cotton Woven, with acceptable distributed spacing set to a 35...3-40 4.1. Representative samples from the 12 class textile data set: 65% Polyester 35% Cotton Woven (red), 80% Nylon 20% Spandex Knit (green), 97
Surface Modification of Polyester Fiber with Perfluorooctyltrimethoxysilane
NASA Astrophysics Data System (ADS)
Wang, Xiangcheng; Liu, Yadong; Li, Dan; Tie, Zihan
2018-05-01
An excellent modified polyester fiber was prepared via chemical grafting between polyester fiber and perfluorooctyltrimethoxysilane (FAS-17), or silane coupler (KH-570), or Titanate coupler (DN-101) in isopropyl alcohol aqueous solution. Volume ratio of isopropyl alcohol in aqueous solution was 50:50, the mass concentration of FAS-17 is 2%, reacting on polyester fiber modified for 24h at 60 °C, the polyester fiber contact angle to water was 145 °, and the contact angle to peanut oil was 118 °, with excellent performance of amphiphobic property. KH-570 and DN-101 modified polymer fiber to be hydrophobic properties nearly as FAS-17, but modified polyester fiber have no amphiphobic property.
Study on moisture absorption and sweat discharge of honeycomb polyester fiber
NASA Astrophysics Data System (ADS)
Feng, Aifen; Zhang, Yongjiu
2015-07-01
The moisture absorption and liberation properties of honeycomb polyester fiber were studied in order to understand its moisture absorption and sweat discharge. Through testing moisture absorption and liberation regains of honeycomb polyester fiber and normal polyester fiber in standard atmospheric conditions, their moisture absorption and liberation curves were depicted, and the regression equations of moisture regains to time during their reaching the balance of moisture absorption and moisture liberation were obtained according to the curves. Their moisture absorption and liberation rate curves were analyzed and the regression equations of the rates to time were obtained. The results shows that the moisture regain of honeycomb polyester fiber is much bigger than the normal polyester fiber's, and the initial moisture absorption and moisture liberation rates of the former are much higher than the latter's, so that the moisture absorbance and sweat discharge of honeycomb polyester fiber are excellent.
Isohexide and Sorbitol-Derived, Enzymatically Synthesized Renewable Polyesters with Enhanced Tg.
Gustini, Liliana; Lavilla, Cristina; de Ilarduya, Antxon Martínez; Muñoz-Guerra, Sebastián; Koning, Cor E
2016-10-10
Sugar-based polyesters derived from sorbitol and isohexides were obtained via solvent-free enzymatic catalysis. Pendant hydroxyl groups, coming from the sorbitol units, were present along the polyester backbone, whereas the two isohexides, namely, isomannide and isoidide dimethyl ester monomers, were selected to introduce rigidity into the polyester chains. The feasibility of incorporating isomannide as a diol compared to the isoidide dimethyl ester as acyl-donor via lipase-catalyzed polycondensation was investigated. The presence of bicyclic units resulted in enhanced T g with respect to the parent sorbitol-containing polyester lacking isohexides. The different capability of the two isohexides to boost the thermal properties confirmed the more flexible character provided by the isoidide diester derivative. Solvent-borne coatings were prepared by cross-linking the sugar-based polyester polyols with polyisocyanates. The increased rigidity of the obtained sugar-based polyester polyols led to an enhancement in hardness of the resulting coatings.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-01
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple... results of the administrative review of certain polyester staple fiber from the People's Republic of China... administrative review of the antidumping duty order on certain polyester staple fiber from the PRC. See...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-09
... DEPARTMENT OF COMMERCE International Trade Administration [A-580-839] Certain Polyester Staple... Polyester staple fiber (``PSF'') covered by the scope of the order is defined as synthetic staple fibers, not carded, combed or otherwise processed for spinning, of polyesters measuring 3.3 decitex (3 denier...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-11
... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Certain Polyester Staple... Department) initiated an administrative review of the antidumping duty order on certain polyester staple fiber from Taiwan for the period May 1, 2010, through April 30, 2011.\\1\\ In Certain Polyester Staple...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-08
... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Polyester Staple Fiber from... Eastern Textile Limited with regard to the antidumping duty order on polyester staple fiber from Taiwan... on polyester staple fiber from Taiwan to determine whether FENC was the successor-in-interest to FET...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
... DEPARTMENT OF COMMERCE International Trade Administration [A-580-839, A-583-833] Certain Polyester... Commission (ITC) that revocation of the antidumping duty orders on certain polyester staple fiber from the... and the ITC instituted sunset reviews of the antidumping duty orders on polyester staple fiber from...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-20
... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Polyester Staple Fiber from... antidumping duty order on polyester staple fiber from Taiwan. The period of review is May 1, 2009, through... duty order on polyester staple fiber from Taiwan with respect to respondents Nan Ya Plastics...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-28
... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Polyester Staple Fiber From... duty order on polyester staple fiber (PSF) from Taiwan. The period of review is May 1, 2011, through... Results. None were received. \\1\\ See Polyester Staple Fiber From Taiwan: Preliminary Results of...
76 FR 58040 - Certain Polyester Staple Fiber From Korea and Taiwan
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-19
... Polyester Staple Fiber From Korea and Taiwan Determination On the basis of the record \\1\\ developed in the... antidumping duty orders on certain polyester staple fiber from Korea and Taiwan would be likely to lead to...), entitled Certain Polyester Staple Fiber From Korea and Taiwan: Investigation Nos. 731-TA-825 and 826...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-09
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple... results of the administrative review of certain polyester staple fiber from the People's Republic of China... administrative review of the antidumping duty order on certain polyester staple fiber from the PRC. See...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-12
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple... International Trade Commission (``ITC'') that revocation of the antidumping duty order on certain polyester... antidumping duty order on certain polyester staple fiber from the PRC pursuant to section 751(c)(2) of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-10
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple... results of the administrative review of certain polyester staple fiber from the People's Republic of China... initiation of the administrative review of the antidumping duty order on certain polyester staple fiber from...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple... results of the administrative review of certain polyester staple fiber from the People's Republic of China... polyester staple fiber from the PRC.\\1\\ On February 9, 2012 the Department partially extended the deadline...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-28
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple... Preliminary Results of the 2011-2012 administrative review of the antidumping duty order on certain polyester... dumping margin is listed in the ``Final Results of Review'' section below. \\1\\ See Certain Polyester...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-17
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple... results of the administrative review of certain polyester staple fiber from the People's Republic of China... administrative review of the antidumping duty order on certain polyester staple fiber from the PRC. See...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 731-TA-825 and 826 (Second Review)] Polyester... Duty Orders on Polyester Staple Fiber From Korea and Taiwan AGENCY: United States International Trade... determine whether revocation of the antidumping duty orders on polyester staple fiber from Korea and Taiwan...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-10
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple... administrative review of certain polyester staple fiber (``PSF'') from the People's Republic of China (``PRC''), covering the period June 1, 2008--May 31, 2009. See Certain Polyester Staple Fiber From the People's...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-24
... DEPARTMENT OF COMMERCE International Trade Administration [A-580-839] Certain Polyester Staple... on polyester staple fiber from Korea. See Antidumping or Countervailing Duty Order, Finding, or..., 76 FR 37781 (June 28, 2011). Scope of the Order Polyester staple fiber covered by the scope of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dermody, D.L.; Peez, R.F.; Bergbreiter, D.E.
1999-02-02
The authors report a new molecular-filter approach for enhancing the selectivity of chemical sensors. Specifically, they describe electrochemical sensors prepared from Au electrodes coated with {beta}-cyclodextrin-functionalized, hyperbranched poly(acrylic acid)(PAA) films capped with a chemically grafted, ultrathin polyamine layer. The hyperbranched PAA film is a highly functionalized framework for covalently binding the {beta}-cyclodextrin molecular receptors. The thin, grafted polyamine overlayer acts as a pH-sensitive molecular filter that selectively passes suitably charged analytes. Poly(amidoamine) dendrimers or poly-D-lysine is used as 10--15-nm-thick filter layers. The results show that at low pH, when the polyamines are fully protonated, positively charged redox probe molecules, suchmore » as benzyl viologen (BV), do not permeate the filter layer. However, at high pH, when the filter layer is uncharged, BV penetrates the filter layer and is reduced at the electrode. The opposite pH dependence is observed for negatively charged redox molecules such as anthraquinone-2-sulfonate (AQS). Both BV and AQS specifically interact with the {beta}-cyclodextrin receptors underlying the polyamine filter layers.« less
NASA Astrophysics Data System (ADS)
Lin, Fang-Yi; Hohmann, Austin; Hernández, Nacú; Cochran, Eric
Here we present the phase behavior of a new type of coil-hyperbranched diblock copolymer: poly(styrene- b-acrylated epoxidized soybean oil), or PS-PAESO. PS-PAESO is an example of a biorenewable thermoplastic elastomer (bio-TPE). To date, we have shown that bio-TPEs can be economical commercial substitutes for their petrochemically derived analogues--such as poly(styrene- b-butadiene- b-styrene) (SBS)--in a range of applications including pressure sensitive adhesives and bitumen modification. From a polymer physics perspective, PS-PAESO is an interesting material in that it couples a linear coil-like block with a highly branched block. Thus in contrast to the past five decades of studies on linear AB diblock copolymers, coil-hyperbranched block copolymers are relatively unknown to the community and can be expected to deviate substantially from the standard ``universal'' phase behavior in the AB systems. To explore these new materials, we have constructed a library of PS-PAESO materials spanning a range of molecular weight and composition values. The phase transition behavior and the morphology information will be interpreted by isochronal temperature scanning in dynamic shear rheology, small angle X-ray scattering and the corresponding transmission electron microscopy.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-01
... DEPARTMENT OF COMMERCE International Trade Administration [A-580-839, A-583-833] Certain Polyester... sunset reviews of the antidumping duty orders on polyester staple fiber (PSF) from the Republic of Korea... polyesters measuring 3.3 decitex (3 denier, inclusive) or more in diameter. This merchandise is cut to...
Gozalbo, Ana; Mestre, Sergio; Sanz, Vicente
2017-01-01
A polyester composite was prepared through the polymerization of an unsaturated ester resin with styrene and an open-cage oligomeric silsesquioxane with methacrylate groups. The effect of the open-cage oligomeric silsesquioxane on the thermal stability of the thermostable polyester was studied using both thermogravimetric analysis and differential thermal analysis. The results showed that the methacryl oligomeric silsesquioxane improved the thermal stability of the polyester. The decomposition mechanism of the polyester/oligomer silsesquioxane composite was proposed by Fourier transform infrared spectroscopy (FTIR) analysis of the volatiles. PMID:29295542
Liquid-crystalline aromatic-aliphatic copolyester bioresorbable polymers.
de Oca, Horacio Montes; Wilson, Joanne E; Penrose, Andrew; Langton, David M; Dagger, Anthony C; Anderson, Melissa; Farrar, David F; Lovell, Christopher S; Ries, Michael E; Ward, Ian M; Wilson, Andrew D; Cowling, Stephen J; Saez, Isabel M; Goodby, John W
2010-10-01
The synthesis and characterisation of a series of liquid-crystalline aromatic-aliphatic copolyesters are presented. Differential scanning calorimetry showed these polymers have a glass transition temperature in the range 72 degrees C-116 degrees C. Polarised optical microscopy showed each polymer exhibits a nematic mesophase on heating to the molten state at temperatures below 165 degrees C. Melt processing is demonstrated by the production of injection moulded and compression moulded specimens with Young's modulus of 5.7 +/- 0.3 GPa and 2.3 +/- 0.3 GPa, respectively. Wide-angle X-ray scattering data showed molecular orientation is responsible for the increase of mechanical properties along the injection direction. Degradation studies in the temperature range 37 degrees C-80 degrees C are presented for one polymer of this series and a kinetic constant of 0.002 days(-1) is obtained at 37 degrees C assuming a first order reaction. The activation energy (83.4 kJ mol(-1)) is obtained following the Arrhenius analysis of degradation, showing degradation of this material is less temperature sensitive compared with other commercially available biodegradable polyesters. In vitro and in vivo biocompatibility data are presented and it is shown the unique combination of degradative, mechanical and biological properties of these polymers may represent in the future an alternative for medical device manufacturers. Copyright 2010 Elsevier Ltd. All rights reserved.
Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes.
Nakajima-Kambe, T; Shigeno-Akutsu, Y; Nomura, N; Onuma, F; Nakahara, T
1999-02-01
Polyurethane (PUR) is a polymer derived from the condensation of polyisocyanate and polyol and it is widely used as a base material in various industries. PUR, in particular, polyester PUR, is known to be vulnerable to microbial attack. Recently, environmental pollution by plastic wastes has become a serious issue and polyester PUR had attracted attention because of its biodegradability. There are many reports on the degradation of polyester PUR by microorganisms, especially by fungi. Microbial degradation of polyester PUR is thought to be mainly due to the hydrolysis of ester bonds by esterases. Recently, polyester-PUR-degrading enzymes have been purified and their characteristics reported. Among them, a solid-polyester-PUR-degrading enzyme (PUR esterase) derived from Comamonas acidovorans TB-35 had unique characteristics. This enzyme has a hydrophobic PUR-surface-binding domain and a catalytic domain, and the surface-binding domain was considered as being essential for PUR degradation. This hydrophobic surface-binding domain is also observed in other solid-polyester-degrading enzymes such as poly(hydroxyalkanoate) (PHA) depolymerases. There was no significant homology between the amino acid sequence of PUR esterase and that of PHA depolymerases, except in the hydrophobic surface-binding region. Thus, PUR esterase and PHA depolymerase are probably different in terms of their evolutionary origin and it is possible that PUR esterases come to be classified as a new solid-polyester-degrading enzyme family.
46 CFR 164.023-3 - Specifications and standards incorporated by reference.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Weathering Method—164.023-7. Federal Specifications (4) V-T-285E—Thread, Polyester, August 21, 1986—164.023-5..., Polyester Core: Cotton-, Rayon-, or Polyester-Covered, September 30, 1986—164.023-5. (7) MIL-T-43624A—Thread, Polyester, Spun, January 22, 1982—164.023-5. (c) All reference materials are available from the Naval...
46 CFR 164.023-3 - Specifications and standards incorporated by reference.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Weathering Method—164.023-7. Federal Specifications (4) V-T-285E—Thread, Polyester, August 21, 1986—164.023-5..., Polyester Core: Cotton-, Rayon-, or Polyester-Covered, September 30, 1986—164.023-5. (7) MIL-T-43624A—Thread, Polyester, Spun, January 22, 1982—164.023-5. (c) All reference materials are available from the Naval...
Effects of glass scraps powder and glass fiber on mechanical properties of polyester composites
NASA Astrophysics Data System (ADS)
Sonsakul, K.; Boongsood, W.
2017-11-01
One concern in bus manufacturing is the high cost of glass fiber reinforced in polyester composites parts. The composites of glass fiber and polyester are low elongation and high strength, and glass scraps powder displays high hardness and good chemical compatibility with the polymer matrix and glass fiber. This research aimed to study the effects of glass scraps powder and glass fiber on mechanical performance of polyester composites. Glass fiber was randomly oriented fiber and used as new. Glass scraps were obtained from a bus factory and crushed to powder sizes of 120 and 240 μm by a ball mill. Polyester composites were prepared using Vacuum Infusion Process (VIP).Polyester reinforced with 3 layers of glass fiber was an initial condition. Then, one layer of glass fiber was replaced with glass scraps powder. Flexural strength, tensile strength, impact strength and hardness of the polyester composites were determined. Hardness was increased with a combination of smaller size and higher volume of glass scraps powder. Pictures of specimens obtained by using scanning electron microscope (SEM) confirmed that the powder of glass scraps packed in the layers of glass fiber in polyester composites.
NASA Astrophysics Data System (ADS)
Kan, C. W.; Yuen, C. W. M.
2008-01-01
Low temperature plasma treatment has been conducted in textile industry and has some success in the dyeing and finishing processes. In this paper, an attempt was made to apply low temperature plasma treatment to improve the anti-static property of polyester fabric. The polyester fabrics were treated under different conditions using low temperature plasma. An Orthogonal Array Testing Strategy was employed to determine the optimum treatment condition. After low temperature plasma treatment, the polyester fabrics were evaluated with different characterisation methods. Under the observation of scanning electron microscope, the surface structure of low temperature plasma-treated polyester fabric was seriously altered. This provided more capacity for polyester to capture moisture and hence increase the dissipation of static charges. The relationship between moisture content and half-life decay time for static charges was studied and the results showed that the increment of moisture content would result in shortening the time for the dissipation of static charges. Moreover, there was a great improvement in the anti-static property of the low temperature plasma-treated polyester fabric after comparing with that of the polyester fabric treated with commercial anti-static finishing agent.
NASA Technical Reports Server (NTRS)
Bouquet, Frank L.; Maag, Carl R.
1986-01-01
Radiation simulation tests (protons and electrons) were performed along with atomic oxygen flight tests aboard the Shuttle to space qualify the surface protective coatings. The results, which contributed to the selection of indium-tin-oxide (ITO) coated polyester as the material for the thermal blankets of the Galileo Spacecraft, are given here. Two candidate materials, polyester and Fluorglas, were radiation-tested to determine changes at simulated Jovian radiation levels. The polyester exhibited a smaller weight loss (2.8) than the Fluorglas (8.8 percent). Other changes of polyester are given. During low-earth orbit, prior to transit to Jupiter, the thermal blankets would be exposed to atomic oxygen. Samples of uncoated and ITO-coated polyesters were flown on the Shuttle. Qualitative results are given which indicated that the ITO coating protected the underlying polyester.
Wang, Wei; Ding, Jianxun; Xiao, Chunsheng; Tang, Zhaohui; Li, Di; Chen, Jie; Zhuang, Xiuli; Chen, Xuesi
2011-07-11
Novel amphiphilic alternating polyesters, poly((N-phthaloyl-l-glutamic anhydride)-co-(2-(2-(2-methoxyethoxy)ethoxy)methyl)oxirane) (P(PGA-co-ME(2)MO)), were synthesized by alternating copolymerization of PGA and ME(2)MO. The structures of the synthesized polyesters were characterized by (1)H NMR, (13)C NMR, FT-IR, and GPC analyses. Because of the presence of oligo(ethylene glycol) (OEG) side chains, the polyesters could self-assemble into thermosensitive micelles. Dynamic light scattering (DLS) showed that these micelles underwent thermoinduced size decrease without intermicellar aggregation. In vitro methyl thiazolyl tetrazolium (MTT) assay demonstrated that the polyesters were biocompatible to Henrietta Lacks (HeLa) cells, rendering their potential for drug delivery applications. Two hydrophobic drugs, rifampin and doxorubicin (DOX), were loaded into the polyester micelles and observed to be released in a zero-order sustained manner. The sustained release could be accelerated in lower pH or in the presence of proteinase K, due to the degradation of the polyester under these conditions. Remarkably, in vitro cell experiments showed that the polyester micelles accomplished fast release of DOX inside cells and higher anticancer efficacy as compared with the free DOX. With enhanced stability during circulation condition and accelerated drug release at the target sites (e.g., low pH or enzyme presence), these novel polyesters with amphiphilic structures are promising to be used in sustained release drug delivery systems.
Wu, Wenbo; Ye, Cheng; Yu, Gui; Liu, Yunqi; Qin, Jingui; Li, Zhen
2012-04-02
By modifying a synthetic procedure, two new hyperbranched polytriazoles (HP1 and HP2) containing isolation chromophores were synthesized successfully through click chemistry reactions under copper(I) catalysis. For the first time, these two polymers were derived from an AB(4)-type monomer, although they contain different end-capping chromophores. They are soluble in normal polar organic solvents and are well characterized. Thanks to the presence of the isolation chromophore, the two polymers demonstrate good nonlinear optical (NLO) properties and optical transparency, making them promising candidates for practical applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sapalidis, Andreas; Sideratou, Zili; Panagiotaki, Katerina N.; Sakellis, Elias; Kouvelos, Evangelos P.; Papageorgiou, Sergios; Katsaros, Fotios
2018-03-01
A series of Poly(vinyl alcohol) (PVA) nanocomposite films containing quaternized hyperbranched polyethyleneimine (PEI) functionalized multi-walled carbon nanotubes (ox-CNTs@QPEI) are prepared by solvent casting technique. The modified carbon based material exhibits high aqueous solubility, due to the hydrophilic character of the functionalized hyperbranched dendritic polymer. The quaternized PEI successfully wraps around nanotube walls, as polycations provide electrostatic repulsion. Various contents of ox-CNTs@QPEI ranging from 0.05 to 1.0 % w/w were employed to prepare functionalized PVA nanocomposites. The developed films exhibit adequate optical transparency, improved mechanical properties and extremely high antibacterial behavior due to the excellent dispersion of the functionalized carbon nanotubes into the PVA matrix.
Xu, Shangjie; Luo, Ying; Haag, Rainer
2007-08-07
A simple general synthetic concept to build dendritic core-shell architectures with pH-labile linkers based on hyperbranched PEI cores and biocompatible PEG shells is presented. Using these dendritic core-shell architectures as nanocarriers, the encapsulation and transport of polar dyes of different sizes is studied. The results show that the acid-labile nanocarriers exhibit much higher transport capacities for dyes than unfunctionalized hyperbranched PEI. The cleavage of imine bonds and controlled release of the polar dyes revealed that weak acidic condition (pH approximately 5.0) could cleave the imine bonds linker and release the dyes up to five times faster than neutral conditions (pH = 7.4).
21 CFR 177.2420 - Polyester resins, cross-linked.
Code of Federal Regulations, 2014 CFR
2014-04-01
... following prescribed conditions: (a) The cross-linked polyester resins are produced by the condensation of... fiber Polyester fiber produced by the condensation of one or more of the acids listed in paragraph (a)(1...
21 CFR 177.2420 - Polyester resins, cross-linked.
Code of Federal Regulations, 2013 CFR
2013-04-01
... polyester resins are produced by the condensation of one or more of the acids listed in paragraph (a)(1) of.... Reinforcements: Asbestos Glass fiber Polyester fiber produced by the condensation of one or more of the acids...
21 CFR 177.2420 - Polyester resins, cross-linked.
Code of Federal Regulations, 2012 CFR
2012-04-01
... polyester resins are produced by the condensation of one or more of the acids listed in paragraph (a)(1) of.... Reinforcements: Asbestos Glass fiber Polyester fiber produced by the condensation of one or more of the acids...
NASA Technical Reports Server (NTRS)
Bill, R. C.
1976-01-01
A titanium - 6-percent-aluminum - 4-percent-vanadium alloy (Ti-6Al-4V) was subjected to fretting-wear exposures against uncoated Ti-6Al-4V as a baseline and against various coatings and surface treatments applied to Ti-6Al-4V. The coatings evaluated included plasma-sprayed tungsten carbide with 12 percent cobalt, aluminum oxide with 13 percent titanium oxide, chromium oxide, and aluminum bronze with 10 percent aromatic polyester; polymer-bonded polyimide, polyimide with graphite fluoride, polyimide with molybdenum disulfide (MoS2), and methyl phenyl silicone bonded MoS2, preoxidation surface treatment, a nitride surface treatment, and a sputtered MoS2 coating. Results of wear measurements on both the coated and uncoated surfaces after 300,000 fretting cycles indicated that the polyimide coating was the most wear resistant and caused the least wear to the uncoated mating surface.
Hyperbranched quasi-1D nanostructures for solid-state dye-sensitized solar cells.
Passoni, Luca; Ghods, Farbod; Docampo, Pablo; Abrusci, Agnese; Martí-Rujas, Javier; Ghidelli, Matteo; Divitini, Giorgio; Ducati, Caterina; Binda, Maddalena; Guarnera, Simone; Li Bassi, Andrea; Casari, Carlo Spartaco; Snaith, Henry J; Petrozza, Annamaria; Di Fonzo, Fabio
2013-11-26
In this work we demonstrate hyperbranched nanostructures, grown by pulsed laser deposition, composed of one-dimensional anatase single crystals assembled in arrays of high aspect ratio hierarchical mesostructures. The proposed growth mechanism relies on a two-step process: self-assembly from the gas phase of amorphous TiO2 clusters in a forest of tree-shaped hierarchical mesostructures with high aspect ratio; oriented crystallization of the branches upon thermal treatment. Structural and morphological characteristics can be optimized to achieve both high specific surface area for optimal dye uptake and broadband light scattering thanks to the microscopic feature size. Solid-state dye sensitized solar cells fabricated with arrays of hyperbranched TiO2 nanostructures on FTO-glass sensitized with D102 dye showed a significant 66% increase in efficiency with respect to a reference mesoporous photoanode and reached a maximum efficiency of 3.96% (among the highest reported for this system). This result was achieved mainly thanks to an increase in photogenerated current directly resulting from improved light harvesting efficiency of the hierarchical photoanode. The proposed photoanode overcomes typical limitations of 1D TiO2 nanostructures applied to ss-DSC and emerges as a promising foundation for next-generation high-efficiency solid-state devices comprosed of dyes, polymers, or quantum dots as sensitizers.
NASA Astrophysics Data System (ADS)
Kannan, R. M.; Kolhe, Parag; Khandare, Jayant; Kannan, Sujatha; Lieh-Lai, Mary
2004-03-01
Dendrimers and hyperbranched polymers are a new class of macromolecules characterized by large density of "tunable" peripheral functional groups. Therefore dendrimers can serve as a model macromolecular system to study the influence of molecular geometry and charge density on transport across biological barriers, especially cellular interfaces. The effect of size, end-functionality, surface charge (pH), and the nature of the cell surface are expected to play an important role in transport, and are investigated using flow cytometry, fluorescene microscopy and UV/Vis spectroscopy. Our results suggest that at physiological pH, cationic polyamidoamine (PAMAM) dendrimers can enter the A549 cancer lung epithelial cells within 5 minutes, perhaps due to the favorable interaction between anionic surface receptors of cells and cationic PAMAM dendrimer, through adsorptive endocytosis. On the other hand, hyperbranched polyol, which is a neutral polymer at physiological pH, enters cells at a much slower rate. The entry of hyperbranched polyol may be because of fluid-phase pinocytosis. Our results also indicate that the dendritic polymers enter the cell surface much more rapidly than linear polymers, and some small drugs, suggesting that the high density of functional groups plays a key role in the interaction with the cell surface, and the subsequent transport inside.
NASA Astrophysics Data System (ADS)
Gholipour-Mahmoudalilou, Meysam; Roghani-Mamaqani, Hossein; Azimi, Reza; Abdollahi, Amin
2018-01-01
Thermal properties of epoxy resin were improved by preparation of a curing agent of poly (amidoamine) (PAMAM) dendrimer-grafted graphene oxide (GO). Hyperbranched PAMAM-modified GO (GD) was prepared by a divergent dendrimer synthesis methodology. Modification of GO with (3-Aminopropyl)triethoxysilane (APTES), Michael addition of methacrylic acid, and amidation reaction with ethylenediamine results in the curing agent of GD. Then, epoxy resin was cured in the presence of different amounts of GD and the final products were compared with ethylenediamine-cured epoxy resin (E) in their thermal degradation temperature and char contents. Functionalization of GO with APTES and hyperbranched dendrimer formation at the surface of GO were evaluated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and thermogravimetric analysis (TGA) results. TGA results showed that the weight loss associated with chemical moieties in GONH2, GOMA, and GD is estimated to be 10.1, 12.2, and 14.1%, respectively. Covalent attachment of dendrimer at the surface of GO increases its thermal stability. TGA also showed that decomposition temperature and char content are higher for composites compared with E. Scanning and transmission electron microscopies show that flat and smooth graphene nanolayers are wrinkled in GO and re-stacking and flattening of nanolayers is observed in GD.
Biocompatible high performance hyperbranched epoxy/clay nanocomposite as an implantable material.
Barua, Shaswat; Dutta, Nipu; Karmakar, Sanjeev; Chattopadhyay, Pronobesh; Aidew, Lipika; Buragohain, Alak K; Karak, Niranjan
2014-04-01
Polymeric biomaterials are in extensive use in the domain of tissue engineering and regenerative medicine. High performance hyperbranched epoxy is projected here as a potential biomaterial for tissue regeneration. Thermosetting hyperbranched epoxy nanocomposites were prepared with Homalomena aromatica rhizome oil-modified bentonite as well as organically modified montmorillonite clay. Fourier transformed infrared spectroscopy, x-ray diffraction and scanning and transmission electron microscopic techniques confirmed the strong interfacial interaction of clay layers with the epoxy matrix. The poly(amido amine)-cured thermosetting nanocomposites exhibited high mechanical properties like impact resistance (>100 cm), scratch hardness (>10 kg), tensile strength (48-58 MPa) and elongation at break (11.9-16.6%). Cytocompatibility of the thermosets was found to be excellent as evident by MTT and red blood cell hemolytic assays. The nanocomposites exhibited antimicrobial activity against Staphylococcus aureus (ATCC 11632), Escherichia coli (ATCC 10536), Mycobacterium smegmatis (ATCC14468) and Candida albicans (ATCC 10231) strains. In vivo biocompatibility of the best performing nanocomposite was ascertained by histopathological study of the brain, heart, liver and skin after subcutaneous implantation in Wistar rats. The material supported the proliferation of dermatocytes without induction of any sign of toxicity to the above organs. The adherence and proliferation of cells endorse the nanocomposite as a non-toxic biomaterial for tissue regeneration.
Christ, Eva-Maria; Hobernik, Dominika; Bros, Matthias; Wagner, Manfred; Frey, Holger
2015-10-12
The cationic ring-opening copolymerization of 3,3-bis(hydroxymethyl)oxetane (BHMO) with glycidol using different comonomer ratios (BHMO content from 25 to 90%) and BF3OEt2 as an initiator has been studied. Apparent molecular weights of the resulting hyperbranched polyether copolymers ranged from 1400 to 3300 g mol(-1) (PDI: 1.21-1.48; method: SEC, linear PEG standards). Incorporation of both comonomers is evidenced by MALDI-TOF mass spectroscopy. All hyperbranched polyether polyols with high content of primary hydroxyl groups portray good solubility in water, which correlates with an increasing content of glycerol units. Detailed NMR characterization was employed to elucidate the copolymer microstructures. Kinetic studies via FTIR demonstrated a weak gradient-type character of the copolymers. MTT assays of the copolymers (up to 100 μg mL(-1)) on HEK and fibroblast cell lines (3T3, L929, WEHI) as well as viability tests on the fibroblast cells were carried out to assess the biocompatibility of the materials, confirming excellent biocompatibility. Transfection efficiency characterization by flow cytometry and confocal laser microscopy demonstrated cellular uptake of the copolymers. Antiadhesive properties of the materials on surfaces were assessed by adhesion assays with fibroblast cells.
Hyperbranched Polycarbosilanes via Nucleophilic Substitution Reactions
NASA Astrophysics Data System (ADS)
Interrante, L.; Shen, Q.
Nucleophilic substitution reactions involving organomagnesium (Grignard) [1] and organolithium reagents have been used extensively for many years to form Si—C bonds (see Reaction Scheme 12.1). However, their use for the construction of hyperbranched polymers whose backbone contains, as a major structural component, silicon—carbon bonds, i.e., polycarbosilanes [2] is relatively more recent. (12.1) begin{array}{l} {{R}}_3 {{SiX + MR'}} to {{R}}_3 {{SiR' + MX}} \\ left({{{R,R' = alkyl}} {{or aryl;}} {{M = Mg(X),}} {{Li,}} {{Na}};{{X = halogen, OR''}}} right) \\ This chapter focuses on the application of such nucleophilic substitution reactions toward the synthesis of hyperbranched polycarbosilanes, with particular emphasis on those preparations that have resulted in relatively well characterized products. These syntheses are organized by the type of ABn monomer unit used (see Section 1.2), where A and B refer to the (C)X and (Si)Xn, respectively, functional ends of the monomer unit and where the nature of the coupling reaction leads to entirely or primarily Si—C bond formation. In most cases, these are “one-pot” reactions that employ monomers that bear halogen or alkoxy groups on the C and Si ends of the unit. Indeed, hyperbranched polycarbosilanes have been described, in general, as “obtained in one synthetic step via a random, one-pot polymerization of multifunctional monomers of AB n type” [2]. Treatment of the ABn monomer with either elemental Mg or an organolithium reagent, ideally (but not always) forms a complexed carbanion (the nucleophile) by reaction with the C-X end of the monomer unit, resulting in an intermediate of the type, (XxM)CSiXn, where M = Mg or Li, X = halogen or alkoxy, and x = 1 (Mg) or 0 (Li). Self-coupling of this reagent via reactions of the type shown in Reaction Scheme 12.1 leads to oligomeric and polymeric products that are connected primarily through Si—C bonds and yield an inorganic MXx by-product.
Nabar, Yogaraj; Raquez, Jean Marie; Dubois, Philippe; Narayan, Ramani
2005-01-01
Free-radical-initiated grafting of maleic anhydride (MA) onto poly(butylene adipate-co-terephthalate) (PBAT), a biodegradable aliphatic-aromatic copolyester, was performed by reactive extrusion. 2,5-Dimethyl-2,5-di(tert-butylperoxy)hexane was used as the free-radical initiator. The peroxide concentration was varied between 0.0 and 0.5 wt % at 3.0 wt % MA concentration; the MA concentration was varied between 1.0 and 5.0 wt % at 0.5 wt % peroxide concentration. The reaction temperature was maintained at 185 degrees C for all experiments. Under these conditions, between 0.194% and 0.691% MA was grafted onto the polyester backbone. Size-exclusion chromatography, melt flow index, intrinsic viscosity measurements, thermal gravimetric analysis, and differential scanning calorimetry were used to characterize the maleated copolyester. Increasing the initiator concentration at a constant MA concentration of 3% resulted in an increase in the grafting of MA while decreasing the molecular weight of the resulting polymer. Increasing the feed MA concentration also increased the grafting percentage. The maleation of the polyester proved to be very efficient in promoting strong interfacial adhesion with high amylose cornstarch in starch foams as prepared by melt blending. Thus, the use of maleated copolyester as a compatibilizer between starch and PBAT allowed the reduction of the density of resulting starch foams to approximately 21 kg/m3 and improved the resilience from 84% to as high as 95%. Also, the resulting starch foams exhibited improved hydrophobic properties in terms of lower weight gain and higher dimensional stability on moisture sorption.
New materials systems for advanced tribological and environmental applications
NASA Astrophysics Data System (ADS)
Xiao, Wei
In this study, two different materials systems were developed to address current industrial problems of wear. The first system consisted of sterically hindered aliphatic polyester (SHAP) lubricants for use in hard disk magnetic recording applications. Specific goals included improved adhesion, durability and tribochemical stability compared to commercial perfluoropolyethers. While commercial perfluoropolyether lubricants are subject to catalytic degradation and mechanical scission, or suffer from severe stiction and dewetting problems, SHAP lubricants manifest greatly reduced stiction, superb thermal and oxidation stability, and excellent friction property, and make good candidates for broader applications, such as lubricants for MEMs or general purpose lubricants. The second material system involved a blend of Polytetrafluoroethylene (PTFE) and an Aromatic Thermosetting Polyester (ATSP) to achieve greatly improved mechanical properties and wear resistance compared to currently available blends of PTFE. The unique solid bonding capability and liquid crystalline nature of ATSP help form high aspect ratio microstructures, which allows fabrication of PTFE/ATSP composites across the entire composition range with greatly improved performance under greatly simplified conditions. A third project involved the design of new wide-spectrum antibacterial filters for point-of-use systems that are robust and can be easily regenerated and maintained. Silver coated fiberglass with colloidal sized silver particles was developed. Systems made of silver coated fiberglass are highly effective, have high capacity and can be regenerated easily. These disinfection units do not leach silver ions, or add taste or disinfection by-products into the treated water. Protozoa such as Cryptosporidium and Giardia can be held by the filter and destroyed during regeneration. They are an inexpensive, cleaner alternative to current point-of-use systems.
75 FR 42784 - Greige Polyester/Cotton Printcloth From China
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-101 (Third Review)] Greige Polyester/Cotton Printcloth From China AGENCY: United States International Trade Commission. ACTION: Termination of... revocation of the antidumping duty order on greige polyester/cotton printcloth from China would be likely to...
75 FR 23300 - Greige Polyester/Cotton Printcloth From China
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-03
.../Cotton Printcloth From China AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on greige polyester/cotton printcloth from... antidumping duty order on greige polyester/cotton printcloth from China would be likely to lead to...
40 CFR 721.10298 - MDI terminated polyester polyurethane polymer (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... polymer (generic). 721.10298 Section 721.10298 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10298 MDI terminated polyester polyurethane polymer (generic). (a... generically as MDI terminated polyester polyurethane polymer (P-11-662) is subject to reporting under this...
40 CFR 721.10298 - MDI terminated polyester polyurethane polymer (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... polymer (generic). 721.10298 Section 721.10298 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10298 MDI terminated polyester polyurethane polymer (generic). (a... generically as MDI terminated polyester polyurethane polymer (P-11-662) is subject to reporting under this...
40 CFR 721.10298 - MDI terminated polyester polyurethane polymer (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... polymer (generic). 721.10298 Section 721.10298 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10298 MDI terminated polyester polyurethane polymer (generic). (a... generically as MDI terminated polyester polyurethane polymer (P-11-662) is subject to reporting under this...
NASA Astrophysics Data System (ADS)
Hao, H.; Hu, J. Q.; Wang, F.; Tu, W. P.
2017-01-01
A new type of polyester polyol dispersion with good storage stability was prepared based on a hydrophilic monomer 5-sodium sulfodimethyl isophthalate (5-SIPM), and frequently-used monomers such as neopentyl glycol (NPG), dimethyl terephthalate (DMT), dimethyl phthalate (DMP) and trimethylolpropane (TMP) by the transpolycondensation and polycondensation method. The polyester polyol dispersion was characterized by FTIR and GPC. The proper content of these monomers were determined by the performance of polyester dispersion: the content of TMP was 15wt%, the content of NPG was 7.5wt% and the hydrophilic monomer 5-SIPM content was 5wt%. Two-component waterborne polyurethane (2K-WPU) coatings were prepared by Bayhydur® XP2487/1 and polyester polyol dispersions, which were stored before and after at 40 ° for 6 weeks, the prepared films have no differences in drying time, adhesion, pencil hardness, gloss and chemical resistance, the result also reveals that the polyester polyol dispersion have excellent storage stability resistance.
NASA Astrophysics Data System (ADS)
Aseer, J. R.; Sankaranarayanasamy, K.
2017-12-01
Today, the utilization of biodegradable materials has been hogging much attention throughout the world. Due to the disposal issues of petroleum based products, there is a focus towards developing biocomposites with superior mechanical properties and degradation rate. In this research work, Hibiscus Sabdariffa (HS) fibers were used as the reinforcement for making biocomposites. The HS fibers were reinforced in the polyester resin by compression moulding method. Water absorption studies of the composite at room temperature are carried out as per ASTM D 570. Also, degradation behavior of HS/Polyester was done by soil burial method. The HS/polyester biocomposites containing 7.5 wt% of HS fiber has shown higher value of tensile strength. The tensile strength retention of the HS/Polyester composites are higher than the neat polyester composites. This value increases with increase of HS fiber loading in the composites. The results indicated that HS/polyester biocomposites can be used for making automobile components such as bumper guards etc.
Degradation rates of glycerol polyesters at acidic and basic conditions
USDA-ARS?s Scientific Manuscript database
Polyesters prepared from glycerol with mixtures of adipic and citric acids were evaluated in the laboratory to estimate degradation rates over a range of pH conditions. These renewable polymers provide a market for glycerol that is generated during biodiesel production. The polyesters were prepared...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple Fiber From the People's Republic of China: Partial Rescission of the Third Antidumping Duty... Request Administrative Review'' of the antidumping duty order on certain polyester staple fiber (``PSF...
46 CFR 164.023-5 - Performance; standard thread.
Code of Federal Regulations, 2011 CFR
2011-10-01
... specification Material Type Class Ticket No. or size range V-T-285E Polyester I or II 1 E, F, FF. V-T-295E Nylon I or II A E, F, FF. MIL-T-43624A Polyester 24 through 12. MIL-T-43548C Polyester covered only 24...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-31
... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Certain Polyester Staple Fiber From Taiwan: Extension of Time Limit for Preliminary Results of Antidumping Duty Administrative...) initiated an administrative review of the antidumping duty order on certain polyester staple fiber from...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
... DEPARTMENT OF COMMERCE International Trade Administration [A-580-839] Certain Polyester Staple Fiber From the Republic of Korea: Rescission of Antidumping Duty Administrative Review AGENCY: Import... antidumping duty order on certain polyester staple fiber from the Republic of Korea (``the Order''). The...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-30
... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Certain Polyester Staple Fiber From Taiwan: Extension of Time Limit for Preliminary Results of Antidumping Duty Administrative...) initiated an administrative review of the antidumping duty order on certain polyester staple fiber from...
46 CFR 164.023-5 - Performance; standard thread.
Code of Federal Regulations, 2010 CFR
2010-10-01
... specification Material Type Class Ticket No. or size range V-T-285E Polyester I or II 1 E, F, FF. V-T-295E Nylon I or II A E, F, FF. MIL-T-43624A Polyester 24 through 12. MIL-T-43548C Polyester covered only 24...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-21
... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1104 (Review)] Polyester Staple Fiber... Polyester Staple Fiber From China AGENCY: United States International Trade Commission. ACTION: Notice... CONTACT: Joanna Lo (202-205-1888), Office of Investigations, U.S. International Trade Commission, 500 E...
77 FR 60720 - Certain Polyester Staple Fiber From China
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-04
... Fiber From China Determination On the basis of the record \\1\\ developed in the subject five-year review... certain polyester staple fiber from China would be likely to lead to continuation or recurrence of... (September 2012), entitled Certain Polyester Staple Fiber from China: Investigation No. 731-TA-1104 (Review...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-01
... Agreements (``CITA'') has determined that certain cotton/polyester three-thread circular knit fleece fabric... behalf of Intradeco Apparel, Inc. for certain cotton/polyester three-thread circular knit fleece fabric.... Specifications: Certain Cotton/Polyester Three-Thread Circular Knit Fleece Fabric HTS: 6001.21 Fiber content...
Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes.
Wei, Ren; Oeser, Thorsten; Zimmermann, Wolfgang
2014-01-01
Thermophilic actinomycetes produce enzymes capable of hydrolyzing synthetic polyesters such as polyethylene terephthalate (PET). In addition to carboxylesterases, which have hydrolytic activity predominantly against PET oligomers, esterases related to cutinases also hydrolyze synthetic polymers. The production of these enzymes by actinomycetes as well as their recombinant expression in heterologous hosts is described and their catalytic activity against polyester substrates is compared. Assays to analyze the enzymatic hydrolysis of synthetic polyesters are evaluated, and a kinetic model describing the enzymatic heterogeneous hydrolysis process is discussed. Structure-function and structure-stability relationships of actinomycete polyester hydrolases are compared based on molecular dynamics simulations and recently solved protein structures. In addition, recent progress in enhancing their activity and thermal stability by random or site-directed mutagenesis is presented. © 2014 Elsevier Inc. All rights reserved.
De, Bibekananda; Gupta, Kuldeep; Mandal, Manabendra; Karak, Niranjan
2015-11-01
The present work demonstrated a transparent thermosetting nanocomposite with antimicrobial and photoluminescence attributes. The nanocomposites are fabricated by incorporation of different wt.% (1, 2 and 3) of a biocide immobilized OMMT-carbon dot reduced Cu2O nanohybrid (MITH-NH) in the hyperbranched epoxy matrix. MITH-NH is obtained by immobilization of 2-methyl-4-isothiazolin-3-one hydrochloride (MITH) at room temperature using sonication on OMMT-carbon dot reduced Cu2O nanohybid. The nanohybrid is prepared by reduction of cupric acetate using carbon dot as the reducing agent in the presence of OMMT at 70°C. The significant improvements in tensile strength (~2 fold), elongation at break (3 fold), toughness (4 fold) and initial thermal degradation temperature (30°C) of the pristine hyperbranched epoxy system are achieved by incorporation of 3wt.% of MITH-NH in it. The nanocomposites exhibit strong antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae and Pseudomonas aeruginosa bacteria and Candida albicans, a fungus. The nanocomposite also shows significant activity against biofilm formation compared to the pristine thermoset. Further, the nanocomposite films emit different colors on exposure of different wavelengths of UV light. The properties of these nanocomposites are also compared with the same nanohybrid without OMMT. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Alavi, Seyyed Jamal; Gholami, Leila; Askarian, Saeedeh; Darroudi, Majid; Massoudi, Abdolhossein; Rezaee, Mehdi; Kazemi Oskuee, Reza
2017-02-01
The applications of dendrimer-based vectors seem to be promising in non-viral gene delivery because of their potential for addressing the problems with viral vectors. In this study, generation 3 poly(propyleneimine) (G3-PPI) dendrimers with 1, 4-diaminobutane as a core initiator was synthesized using a divergent growth approach. To increase the hydrophobicity and reduce toxicity, 10% of primary amines of G3-PPI dendrimers were replaced with bromoalkylcarboxylates with different chain lengths (6-bromohexanoic and 10-bromodecanoic). Then, to retain the overall buffering capacity and enhance transfection, the alkylcarboxylate-PPIs were conjugated to 10 kDa branched polyethylenimine (PEI). The results showed that the modified PPI was able to form complexes with the diameter of less than 60 nm with net-positive surface charge around 20 mV. No significant toxicity was observed in modified PPIs; however, the hexanoate conjugated PPI-PEI (PPI-HEX-10% PEI) and the decanoate conjugated PPI-PEI (PPI-DEC-10%-PEI) showed the best transfection efficiency in murine neuroblastoma (Neuro-2a) cell line, even PPI-HEX-10%-PEI showed transfection efficiency equal to standard PEI 25 kDa with reduced toxicity. This study suggested a new series of hyperbranched (PEI)-dendrimer (PPI) architectural copolymers as non-viral gene delivery vectors with high transfection efficiency and low toxicity.
Bioengineering of Bacteria To Assemble Custom-Made Polyester Affinity Resins
Hay, Iain D.; Du, Jinping; Burr, Natalie
2014-01-01
Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced “target protein.” Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains. PMID:25344238
Barratt, S R; Ennos, A R; Greenhalgh, M; Robson, G D; Handley, P S
2003-01-01
To investigate the relationship between soil water holding capacity (WHC) and biodegradation of polyester polyurethane (PU) and to quantify and identify the predominant degrading micro-organisms in the biofilms on plastic buried in soil. High numbers of both fungi and bacteria were recovered from biofilms on soil-buried dumb-bell-shaped pieces of polyester PU after 44 days at 15-100% WHC. The tensile strength of the polyester PU was reduced by up to 60% over 20-80% soil WHC, but no reduction occurred at 15, 90 or 100% soil WHC. A PU agar clearance assay indicated that fungi, but not bacteria were, the major degrading organisms in the biofilms on polyester PU and 10-30% of all the isolated fungi were able to degrade polyester PU in this assay. A 5.8S rDNA sequencing identified 13 strains of fungi representing the three major colony morphology types responsible for PU degradation. Sequence homology matches identified these strains as Nectria gliocladioides (five strains), Penicillium ochrochloron (one strain) and Geomyces pannorum (seven strains). Geomyces pannorum was the predominant organism in the biofilms comprising 22-100% of the viable polyester PU degrading fungi. Polyester PU degradation was optimum under a wide range of soil WHC and the predominant degrading organisms were fungi. By identifying the predominant degrading fungi in soil and studying the optimum WHC conditions for degradation of PU it allows us to better understand how plastics are broken down in the environment such as in landfill sites.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-04
... First Administrative Review of Certain Polyester Staple Fiber From the People's Republic of China: Final... the People's Republic of China (``PRC''). See First Administrative Review of Certain Polyester Staple Fiber From the People's Republic of China: Final Results of Antidumping Duty Administrative Review, 75...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-11
... System. Jianxin Fuda Chemical Fibre Factory. Comment 6: Correction of Name in Federal Register Notice... of Certain Polyester Staple Fiber From the People's Republic of China: Final Results of Antidumping... duty order on certain polyester staple fiber (``PSF'') from the People's Republic of China (``PRC...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-06
... calls into question the reliability of this information. \\27\\ See Polyester Staple Fiber Final... Fiber From the People's Republic of China: Preliminary Results of the Antidumping Duty Administrative... duty order on certain polyester staple fiber from the People's Republic of China (``PRC'') for the...
16 CFR 303.10 - Fiber content of special types of products.
Code of Federal Regulations, 2010 CFR
2010-01-01
... percentages of such components by weight. (2) If the components of such fibers are of a matrix-fibril configuration, the term matrix-fibril fiber or matrix fiber may be used in setting forth the information...% Biconstituent Fiber (65% Nylon, 35% Polyester) 80% Matrix Fiber (60% Nylon, 40% Polyester) 15% Polyester 5...
Zakharova, Elena; Martínez de Ilarduya, Antxon; León, Salvador; Muñoz-Guerra, Sebastián
2017-01-01
Abstract Three series of polyalkanoates (adipates, suberates and sebacates) were synthesized using as monomers three sugar-based bicyclic diols derived from D-glucose (Glux-diol and isosorbide) and D-mannose (Manx-diol). Polycondensations were conducted in the melt applying similar reaction conditions for all cases. The aim was to compare the three bicyclic diols regarding their suitability to render aliphatic polyesters with enhanced thermal and mechanical properties. The ensuing polyesters had molecular weights (M w) in the 25,000–50,000 g mol−1 range with highest values being attained for Glux-diol. All the polyesters started to decompose above 300 °C and most of them did not display perceivable crystallinity. On the contrary, they had glass transition temperatures much higher than usually found in homologous polyesters made of alkanediols, and showed a stress–strain behavior consistent with their T g values. Glux-diol was particularly effective in increasing the T g and to render therefore polyesters with high elastic modulus and considerable mechanical strength. PMID:29491789
NASA Astrophysics Data System (ADS)
Fahrul Hassan, Mohd; Jamri, Azmil; Nawawi, Azli; Zaini Yunos, Muhamad; Fauzi Ahmad, Md; Adzila, Sharifah; Nasrull Abdol Rahman, Mohd
2017-08-01
The main purpose of this study is to investigate the performance of a driven fan design made by Polyester/Epoxy interpenetrate polymer network (IPN) material that specifically used for turbocharger compressor. Polyester/Epoxy IPN is polymer plastics that was used as replacements for traditional polymers and has been widely used in a variety of applications because of their limitless conformations. Simulation based on several parameters which are air pressure, air velocity and air temperature have been carried out for a driven fan design performance of two different materials, aluminum alloy (existing driven fan design) and Polyester/Epoxy IPN using SolidWorks Flow Simulation software. Results from both simulations were analyzed and compared where both materials show similar performance in terms of air pressure and air velocity due to similar geometric and dimension, but Polyester/Epoxy IPN produces lower air temperature than aluminum alloy. This study shows a preliminary result of the potential Polyester/Epoxy IPN to be used as a driven fan design material. In the future, further studies will be conducted on detail simulation and experimental analysis.
Local orientational mobility in regular hyperbranched polymers.
Dolgushev, Maxim; Markelov, Denis A; Fürstenberg, Florian; Guérin, Thomas
2016-07-01
We study the dynamics of local bond orientation in regular hyperbranched polymers modeled by Vicsek fractals. The local dynamics is investigated through the temporal autocorrelation functions of single bonds and the corresponding relaxation forms of the complex dielectric susceptibility. We show that the dynamic behavior of single segments depends on their remoteness from the periphery rather than on the size of the whole macromolecule. Remarkably, the dynamics of the core segments (which are most remote from the periphery) shows a scaling behavior that differs from the dynamics obtained after structural average. We analyze the most relevant processes of single segment motion and provide an analytic approximation for the corresponding relaxation times. Furthermore, we describe an iterative method to calculate the orientational dynamics in the case of very large macromolecular sizes.
Hyperbranched quasi-1D TiO2 nanostructure for hybrid organic-inorganic solar cells.
Ghadirzadeh, Ali; Passoni, Luca; Grancini, Giulia; Terraneo, Giancarlo; Li Bassi, Andrea; Petrozza, Annamaria; Di Fonzo, Fabio
2015-04-15
The performance of hybrid solar cells is strongly affected by the device morphology. In this work, we demonstrate a poly(3-hexylthiophene-2,5-diyl)/TiO2 hybrid solar cell where the TiO2 photoanode comprises an array of tree-like hyperbranched quasi-1D nanostructures self-assembled from the gas phase. This advanced architecture enables us to increase the power conversion efficiency to over 1%, doubling the efficiency with respect to state of the art devices employing standard mesoporous titania photoanodes. This improvement is attributed to several peculiar features of this array of nanostructures: high interfacial area; increased optical density thanks to the enhanced light scattering; and enhanced crystallization of poly(3-hexylthiophene-2,5-diyl) inside the quasi-1D nanostructure.
NASA Astrophysics Data System (ADS)
de Assis, Foluke S.; Netto, Pedro A.; Margem, Frederico M.; Monteiro, Artur R. P. Junior Sergio N.
Synthetic fibers are being replaced gradually by natural materials such as lignocellulosic fibers. Compared to synthetic fibers, natural fibers have shown advantages in technical aspects such as environmental and economic. So there is a growing international interest in the use of those fibers. The banana fiber presents significant properties to be studied, but until now few thermal properties on banana fiber as reinforcement of polyester matrix were performed. The present work had as its objective to investigate, by photoacoustic spectroscopy and photothermal techniques the thermal properties of diffusivity, specific heat capacity and conductivity for polyester composites reinforced with banana fibers. In the polyester matrix will be added up to 30% in volume of continuous and aligned banana fibers. These values show that the incorporation of banana fibers in the polyester matrix changes its thermal properties.
NASA Astrophysics Data System (ADS)
Du, Zoufei; Cheng, Cheng; Tan, Lin; Lan, Jianwu; Jiang, Shouxiang; Zhao, Ludan; Guo, Ronghui
2018-03-01
In this study, a visible-light-driven photocatalyst Bi2WO6/TiO2 composite was reported using one-step hydrothermal method and then coated on the polyester fabric. The samples were systematically characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, UV-vis diffuse reflection spectroscopy and photoluminescence spectroscopy (PL). The photocatalytic activity of Bi2WO6/TiO2 coated polyester fabric was evaluated by degradation of Rhodamine B (RhB) and Methylene blue (MB) under visible light irradiation. The self-cleaning property of the fabrics was assessed through removing red wine stain. The results reveal that the Bi2WO6/TiO2 composites with irregular shape are coated on the polyester fabric successfully. The UV-vis absorption spectra show a broad absorption band in the visible region, which extends the scope of absorption spectrum and helps to improve the photocatalytic degradation efficiency. Photocatalytic activities of the Bi2WO6/TiO2 composite polyester fabric are associated with the content of TiO2. Bi2WO6/15%TiO2 coated polyester fabric exhibits the degradation efficiency for RhB and MB up to 98% and 95.1%, respectively, which is much higher than that of pure Bi2WO6 and TiO2 coated polyester fabric. Moreover, Bi2WO6/15%TiO2 coated polyester fabric shows good cycle stability toward continuous three cycles of photocatalytic experiment for dyes degradation. In addition, the Bi2WO6/TiO2 coated polyester fabric shows good self-cleaning property. This work could be extended to design of other composite photocatalyst coating on the fabric for enhancing activity by coupling suitable wide and narrow band-gap semiconductors.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
... polyester/nylon cut corduroy fabric, as specified below, is not available in commercial quantities in a... cut corduroy fabric, as specified below. On July 29, 2013, in accordance with CITA's procedures, CITA...: Certain Polyester/Nylon Cut Corduroy Fabric. HTS: 5801.32.0000. Fiber Content: 80-95% polyester, 5-20...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-06
... Fiber From the People's Republic of China: Final Results of Expedited Sunset Review of the Antidumping... (``sunset'') review of the antidumping duty order on certain polyester staple fiber from the People's... Department finds that revocation of the antidumping duty order on certain polyester staple fiber from the PRC...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-06
... Fiber From the People's Republic of China: Preliminary Results and Rescission in Part of the 2011-2012... administrative review of the antidumping duty order on certain polyester staple fiber from the People's Republic... Industries (``Far Eastern'') and Huvis Sichuan Chemical Fiber Corp. and Huvis Sichuan Polyester Fiber Ltd...
Optical properties of three-dimensional P(St-MAA) photonic crystals on polyester fabrics
NASA Astrophysics Data System (ADS)
Liu, Guojin; Zhou, Lan; Wu, Yujiang; Wang, Cuicui; Fan, Qinguo; Shao, Jianzhong
2015-04-01
The three-dimensional (3D) photonic crystals with face-centered cubic (fcc) structure was fabricated on polyester fabrics, a kind of soft textile materials quite different from the conventional solid substrates, by gravitational sedimentation self-assembly of monodisperse P(St-MAA) colloidal microspheres. The optical properties of structural colors on polyester fabrics were investigated and the position of photonic band gap was characterized. The results showed that the color-tuning ways of the structural colors from photonic crystals were in accordance with Bragg's law and could be modulated by the size of P(St-MAA) colloidal microspheres and the viewing angles. The L∗a∗b∗ values of the structural colors generated from the assembled polyester fabrics were in agreement with their reflectance spectra. The photonic band gap position of photonic crystals on polyester fabrics could be consistently confirmed by reflectance and transmittance spectra.
[Analysis of anatomical pieces preservation with polyester resin for human anatomy study].
de Oliveira, Ítalo Martins; Mindêllo, Marcela Maria Aguiar; Martins, Yasmin de Oliveira; da Silva Filho, Antônio Ribeiro
2013-01-01
To evaluate the use of polyester resin in preserving anatomical specimens for the study of human anatomy. We used 150 anatomical specimens, comprised of unfixed (fresh), fixed in 10% formalin and vascular casts of organs injected with vinyl acetate and polyester resin. The solution used consisted of polyester resin with the diluent styrene monomer and catalyst (peroxol). After embedding in this solution, models in transparent resin were obtained, allowing full observation of structures and conservation of the specimens used. upon evaluation of the specimens, we observed a high degree of transparency, which promoted a complete visualization of structures with perfect preservation of the anatomy. The average time for the completion of the embedding was 48 hours. Only 14 specimens (9.3%) were lost during the preparation. Polyester resin can be used for preserving anatomical specimens for teaching human anatomy in a practical, aesthetic and durable way.
[Application of FTIR micro-spectroscopy in the tribology].
Hu, Zhi-meng
2002-10-01
The wave number of characteristic absorption peak nu asC-O-C of the polyester formed on the frictional process were determined by Fourier Transform Infrared (FTIR) Micro-spectroscopy, and the wave number displacement of characteristic absorption peak nu asC-O-C was analyzed based on the conversion mass of polyester formed. The internal relations between anti-wear order rule of hydroxyl fatty acids and vibration absorption peak nu asC-O-C of polyester formed by hydroxyl fatty acids was deduced according to these results, and the anti-wear order of hydroxyl fatty acids was reasonably explained, that is 13, 14-di-hydroxydocosanoic acid > 13 (14)-monohydroxydocosanoic acid = 9,10-dihydroxyoctadecanoic acid > 9,10,12-trihydroxyoctadecanoic acid > 9(10)-monohydroxyoctadecanoic acid. A net polyester film is formed by 13, 14-dihydroxydocosanoic acid and a linear polyester film is formed by 9, (10)-monohydroxyoctadecanoic acid and 13(14)-monohydroxydocosanoic acid.
Eco-friendly surface modification on polyester fabrics by esterase treatment
NASA Astrophysics Data System (ADS)
Wu, Jindan; Cai, Guoqiang; Liu, Jinqiang; Ge, Huayun; Wang, Jiping
2014-03-01
Currently, traditional alkali deweighting technology is widely used to improve the hydrophilicity of polyester fabrics. However, the wastewater and heavy chemicals in the effluent cause enormous damage to the environment. Esterase treatment, which is feasible in mild conditions with high selectivity, can provide a clean and efficient way for polyester modification. Under the optimum conditions, the polyester fabric hydrolysis process of esterase had a linear kinetics. X-ray photoelectron spectrometry (XPS) results showed that hydroxyl and carboxyl groups were produced only on the surface of modified fiber without changing the chemical composition of the bulk. These fibers exhibited much improved fabric wicking, as well as greatly improved oily stain removal performance. Compared to the harsh alkali hydrolysis, the enzyme treatment led to smaller weight loss and better fiber integrity. The esterase treatment technology is promising to produce higher-quality polyester textiles with an environmental friendly approach.
Oxidation of alkylaromatics - Analysis of an innovation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pohlman, H.P.; Leipold, H.A.; Meyer, D.H.
The effort by Standard Oil Co. (Indiana) through its subsidiary, Amoco Chemicals Corporation, to develop and commercialize a process for oxidizing alkylaromatics to their corresponding carboxylic acids is one of the major success stories in the chemical industry in the last 25 years. It represents the dedicated efforts of many people both within and outside the company who developed and applied state-of-the-art knowledge in many different technologies (1-3). The initial catalyzed air oxidation process scheme produced a variety of aromatic acids, but this paper focuses on the single product process for producing terephthalic acid from paraxylene. The commercial importance ofmore » terephthalic acid and its di-ester, dimethylterephthalate, lies in the production of poly-(ethylene terephthalate) (PET). This linear polymer is used in the manufacture of polyester fiber for clothing and home furnishing and industrial applications such as tire cord and conveyor belts. PET is also the base material for audio and video recording tapes and photographic films. Laminated polyester finds application in a variety of food packaging items while, as a molding resin, PET is used to make shatter-proof, lightweight bottles for soft drinks and, most recently, for alcoholic beverages (4-16). We believe there are several key lessons which can be learned from this innovation: 1. It is important to set good objectives, compatible with resources and opportunities of the company. 2. The key invention may be found outside the organization, no matter how hard we try or how good our own people are. 3. Firm commitment by management brings out the best in people. 4. Aggressive commercialization may be more effective than first completing all possible development work. It is necessary, however, to obtain good fundamental data if one wants to skip expensive pilot plants.« less
Oikawa, Yuri; Saito, Tomoya; Yamada, Satoshi; Sugiya, Masashi; Sawada, Hideo
2015-07-01
Fluoroalkyl end-capped vinyltrimethoxysilane oligomer [R(F)-(CH2-CHSi(OMe)3)n-R(F); n = 2, 3; R(F) = CF(CF3)OC3F7 (R(F)-VM oligomer)] can undergo the sol-gel reaction in the presence of talc particles under alkaline conditions at room temperature to provide the corresponding fluorinated oligomeric silica/talc nanocomposites (RF-VM-SiO2/Talc). A variety of guest molecules such as 2-hydroxy-4-methoxybenzophenone (HMB), bisphenol A (BPA), bisphenol AF, 3-(hydroxysilyl)-1-propanesulfonic acid (THSP), and perfluoro-2-methyl-3-oxahexanoic acid (R(F)-COOH) are effectively encapsulated into the R(F)-VM-SiO2/Talc composite cores to afford the corresponding fluorinated nanocomposites-encapsulated these guest molecules. The R(F)-VM-SiO2/Talc composites encapsulated low molecular weight aromatic compounds such as HMB and BPA can exhibit a superoleophilic-superhydrophobic characteristic on the surfaces; however, the R(F)-VM-SiO2/Talc composite-encapsulated THSP and R(F)-COOH exhibit a superoleophobic-superhydrophilic characteristic on the modified surfaces. In these nanocomposites, the R(F)-VM-SiO2/Talc/THSP composites are applicable to the surface modification of polyester fabric, and the modified polyester fabric possessing a superoleophobic-superhydrophilic characteristic on the surface can be used for the membrane for oil (dodecane)/water separation. In addition, the R(F)-VM-SiO2/Talc composites-encapsulated micrometer-size controlled cross-linked polystyrene particles can be also prepared under similar conditions, and the obtained composite white-colored particle powders are applied to the packing material for the column chromatography to separate water-in-oil (W/O) emulsion.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-15
... Fiber from the Republic of Korea: Preliminary Results of the 2008 - 2009 Antidumping Duty Administrative... antidumping duty order on certain polyester staple fiber from the Republic of Korea. The period of review is May 1, 2008, through April 30, 2009. This review covers imports of certain polyester staple fiber from...
NASA Astrophysics Data System (ADS)
Chella Gifta, C.; Prabavathy, S.
2018-05-01
This work presents the energy absorption capacity of hybrid fiber reinforced concrete made with hooked end steel fibers (0.5 and 0.75%) and straight polyester fibers (0.5, 0.8, 1.0 and 2.0%). Compressive toughness (energy absorption capacity) under uni-axial compression was evaluated on 100 × 200 mm size cylindrical specimens with varying steel and polyester fiber content. Efficiency of the hybrid fiber reinforcement is studied with respect to fiber type, size and volume fractions in this investigation. The vertical displacement under uni-axial compression was measured under the applied loads and the load-deformation curves were plotted. From these curves the toughness values were calculated and the results were compared with steel and polyester as individual fibers. The hybridization of 0.5% steel + 0.5% polyester performed well in post peak region due to the addition of polyester fibers with steel fibers and the energy absorption value was 23% greater than 0.5% steel FRC. Peak stress values were also higher in hybrid series than single fiber and based on the results it is concluded that hybrid fiber reinforcement improves the toughness characteristics of concrete without affecting workability.
Interior microelectrolysis oxidation of polyester wastewater and its treatment technology.
Yang, Xiaoyi
2009-09-30
This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.
NASA Astrophysics Data System (ADS)
Babu Roshni, Satheesh; Jayakrishnan, M. P.; Mohanan, P.; Peethambharan Surendran, Kuzhichalil
2017-10-01
In this paper, we investigated the simulation and fabrication of an E-shaped microstrip patch antenna realized on multilayered polyester fabric suitable for WiMAX (Worldwide Interoperability for Microwave Access) applications. The main challenges while designing a textile antenna were to provide adequate thickness, surface uniformity and water wettability to the textile substrate. Here, three layers of polyester fabric were stacked together in order to obtain sufficient thickness, and were subsequently dip coated with polyvinyl butyral (PVB) solution. The PVB-coated polyester fabric showed a hydrophobic nature with a contact angle of 91°. The RMS roughness of the uncoated and PVB-coated polyester fabric was about 341 nm and 15 nm respectively. The promising properties, such as their flexibility, light weight and cost effectiveness, enable effortless integration of the proposed antenna into clothes like polyester jackets. Simulated and measured results in terms of return loss as well as gain were showcased to confirm the usefulness of the fabricated prototype. The fabricated antenna successfully operates at 3.37 GHz with a return loss of 21 dB and a maximum measured gain of 3.6 dB.
Li, Zi-Long; Zeng, Fu-Rong; Ma, Ji-Mei; Sun, Lin-Hao; Zeng, Zhen; Jiang, Hong
2017-06-01
Sequence-regulated polymerization is realized upon sequential cross-metathesis polymerization (CMP) and exhaustive hydrogenation to afford precision aliphatic polyesters with alternating sequences. This strategy is particularly suitable for the arrangement of well-known monomer units including glycolic acid, lactic acid, and caprolactic acid on polymer chain in a predetermined sequence. First of all, structurally asymmetric monomers bearing acrylate and α-olefin terminuses are generated in an efficient and straightforward fashion. Subsequently, cross-metathesis (co)polymerization of M1 and M2 using the Hoveyda-Grubbs second-generation catalyst (HG-II) furnishes P1-P3, respectively. Finally, hydrogenation yields the desired saturated polyesters HP1-HP3. It is noteworthy that the ε-caprolactone-derived unit is generated in situ rather than introduced to tailor-made monomers prior to CMP. NMR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) results verify the microstructural periodicity of these precision polyesters. Differential scanning calorimetry (DSC) results reflect that polyesters without methyl side groups exhibit crystallinity, and unsaturated polyester samples show higher glass transition temperatures than their hydrogenated counterparts owing to structural rigidity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liquefaction of corn stover and preparation of polyester from the liquefied polyol.
Yu, Fei; Liu, Yuhuan; Pan, Xuejun; Lin, Xiangyang; Liu, Chengmei; Chen, Paul; Ruan, Roger
2006-01-01
This research investigated a novel process to prepare polyester from corn stover through liquefaction and crosslinking processes. First, corn stover was liquefied in organic solvents (90 wt% ethylene glycol and 10 wt% ethylene carbonate) with catalysts at moderate temperature under atmospheric pressure. The effect of liquefaction temperature, biomass content, and type of catalyst, such as H2SO4, HCl, H3PO4, and ZnCl2, was evaluated. Higher liquefaction yield was achieved in 2 wt% sulfuric acid, 1/4 (w/w) stover to liquefying reagent ratio; 160 degrees C temperature, in 2 h. The liquefied corn stover was rich in polyols, which can be directly used as feedstock for making polymers without further separation or purification. Second, polyester was made from the liquefied corn stover by crosslinking with multifunctional carboxylic acids and/or cyclic acid anhydrides. The tensile strength of polyester is about 5 MPa and the elongation is around 35%. The polyester is stable in cold water and organic solvents and readily biodegradable as indicated by 82% weight loss when buried in damp soil for 10 mo. The results indicate that this novel polyester could be used for the biodegradable garden mulch film production.
Recent advances in aliphatic polyesters for drug delivery applications.
Washington, Katherine E; Kularatne, Ruvanthi N; Karmegam, Vasanthy; Biewer, Michael C; Stefan, Mihaela C
2017-07-01
The use of aliphatic polyesters in drug delivery applications has been a field of significant interest spanning decades. Drug delivery strategies have made abundant use of polyesters in their structures owing to their biocompatibility and biodegradability. The properties afforded from these materials provide many avenues for the tunability of drug delivery systems to suit individual needs of diverse applications. Polyesters can be formed in several different ways, but the most prevalent is the ring-opening polymerization of cyclic esters. When used to form amphiphilic block copolymers, these materials can be utilized to form various drug carriers such as nanoparticles, micelles, and polymersomes. These drug delivery systems can be tailored through the addition of targeting moieties and the addition of stimuli-responsive groups into the polymer chains. There are also different types of polyesters that can be used to modify the degradation rates or mechanical properties. Here, we discuss the reasons that polyesters have become so popular, the current research focuses, and what the future holds for these materials in drug delivery applications. WIREs Nanomed Nanobiotechnol 2017, 9:e1446. doi: 10.1002/wnan.1446 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
A study on effect of ATH on Euphorbia coagulum modified polyester banana fiber composite
NASA Astrophysics Data System (ADS)
Kumari, Sanju; Rai, Bhuvneshwar; Kumar, Gulshan
2018-02-01
Fiber reinforced polymer composites are used for building and structural applications due to their high strength. In conventional composites both the binder and the reinforcing fibers are synthetic or either one of the material is natural. In the present study coagulum of Euphorbia royleana has been used for replacing polyester resinas binder in polyester banana composite. Euphorbia coagulum (driedlatex) is rich in resinous mass (60-80%), which are terpenes and polyisoprene (10-20%). Effect of varying percentage of coagulum content on various physico-mechanical properties of polyester-banana composites has been studied. Since banana fiber is sensitive to water due to presence of polar group, banana composite undergoes delamination and deterioration under humid condition. Alkali treated banana fiber along with coagulum content has improved overall mechanical properties and reduction in water absorption. The best physico-mechanical properties have been achieved on replacing 40% of polyester resin by coagulum. An increase of 50% in bending strength, 30% bending modulus and 45% impact strength as well as 68% decrease in water absorption was observed. Incorporation of 20% ATH as flame retardant in coagulum modified banana polyester composite enhanced limiting oxygen index from 20.6 to 26.8% and smoke density reduced up to 40%. This study presents the possibility of utilization of renewable materials for environmental friendly composite development as well as to find out alternative feedstock for petroleum products. Developed Euphorbia latex modified banana polyester composites can have potential utility in hardboard, partition panel, plywood and automotive etc.
Kalita, Hemjyoti; Karak, Niranjan
2014-07-01
Here, bio-based shape memory polymers have generated immense interest in recent times. Here, Bio-based hyperbranched polyurethane/triethanolamine functionalized multi-walled carbon nanotube (TEA-f-MWCNT) nanocomposites were prepared by in-situ pre-polymerization technique. The Fourier transform infrared spectroscopy and the transmission electron microscopic studies showed the strong interfacial adhesion and the homogeneous distribution of TEA-f-MWCNT in the polyurethane matrix. The prepared epoxy cured thermosetting nanocomposites exhibited enhanced tensile strength (6.5-34.5 MPa), scratch hardness (3.0-7.5 kg) and thermal stability (241-288 degrees C). The nanocomposites showed excellent shape fixity and shape recovery. The shape recovery time decreases (24-10 s) with the increase of TEA-f-MWCNT content in the nanocomposites. Thus the studied nanocomposites have potential to be used as advanced shape memory materials.
Huang, Hongye; Liu, Meiying; Jiang, Ruming; Chen, Junyu; Mao, Liucheng; Wen, Yuanqing; Tian, Jianwen; Zhou, Naigen; Zhang, Xiaoyong; Wei, Yen
2018-03-01
Due to their excellent chemical stability and remarkable biocompatibility, nanodiamonds (NDs) have received widespread research attention by the biomedical field. The excellent water dispersibility of NDs has significant importance for biomedical applications. Therefore, surface modification of NDs with hydrophilic polymers has been extensively investigated over the past few decades. In this study, we synthesize β-CD containing hyperbranched polymer functionalized ND (ND-β-CD-HPG) composites with high water dispersibility via supramolecular chemistry based on the host-guest interactions between β-Cyclodextrin (β-CD) and adamantine (Ad). The hydroxyl groups of NDs first reacted with 1, 1-adamantanecarbonyl chloride to obtain ND-Ad, which was further functionalized with β-CD containing hyperbranched polymers to form the final ND-β-CD-HPG composites. The successful preparation of ND-β-CD-HPG composites was confirmed by several characterization techniques. Furthermore, the loading and release of the anticancer agent doxorubicin hydrochloride (DOX) on ND-β-CD-HPG composites was also examined to explore its potential in drug delivery. When compared with traditional methods of surface modification of NDs, this method was convenient, fast and efficient. We demonstrated that ND-β-CD-HPG composites have great water dispersibility, low toxicity, high drug-loading capacity and controlled drug-release behavior. Based on these characteristics, ND-β-CD-HPG composites are expected to have high potential for biomedical applications. Copyright © 2017 Elsevier Inc. All rights reserved.
Liu, Bing; Lin, Donge; Xu, Lin; Lei, Yanhui; Bo, Qianglong; Shou, Chongqi
2012-05-01
The surface of poly (methyl acrylate) (PMMA) microfluidic chips were modified using hyperbranched polyamide ester via chemical bonding. The contact angles of the modified chips were measured. The surface morphology was observed by scanning electron microscope (SEM) and stereo microscope. The results showed that the surface of the modified chips was coated by a dense, uniform, continuous, hydrophilic layer of hyperbranched polyamide ester. The hydrophilic of the chip surface was markedly improved. The contact angle of the chips modified decreased from 89.9 degrees to 29.5 degrees. The electro osmotic flow (EOF) in the modified microchannel was lower than that in the unmodified microchannel. Adenosine and L-lysine were detected and separated via the modified PMMA microfluidic chips. Compared with unmodified chips, the modified chips successfully separated the two biomolecules. The detection peaks were clear and sharp. The separation efficiencies of adenosine and L-lysine were 8.44 x 10(4) plates/m and 9.82 x 10(4) plates/m respectively, and the resolutions (Rs) was 5.31. The column efficiencies and resolutions of the modified chips were much higher than those of the unmodified chips. It was also observed that the modified chips possessed good reproducibility of migration time. This research may provide a new and effective method to improve the hydrophilicity of the PMMA surface and the application of PMMA microfluidic chips in the determination of trace biomolecules.
Effects of nanoparticle shape on the morphology and properties of porous CdSe assemblies (aerogels).
Yu, Hongtao; Brock, Stephanie L
2008-08-01
We demonstrate the effect of differently shaped CdSe nanoscale building blocks (dots, rods, branched nanoparticles, and hyperbranched nanoparticles) on the morphologies, surface characteristics, and optical properties of resultant porous CdSe nanostructured aerogels. Monolithic CdSe aerogels were produced by controlled oxidative removal of surface thiolate ligands from differently shaped CdSe nanoparticles to yield a wet gel, followed by CO(2) supercritical drying. The X-ray diffraction data show that the resultant CdSe aerogels maintain the crystalline phase of the building blocks without significant grain growth. However, the transmission electron microscopy images indicate that the morphology of CdSe aerogels changes from a colloid-type morphology to a polymer-type morphology when the building block changes from dot to rod or the branched nanoparticle. The morphology of the CdSe aerogel assembled from hyperbranched nanoparticles appears to be intermediate between the colloid-type and the polymer-type. Nitrogen physisorption measurements suggest that the surface areas and porosity are a direct function of the shape of the primary building blocks, with aerogels formed from rods or branched particles exhibiting the greatest surface areas (>200 m(2)/g) and those prepared from hyperbranched nanoparticles exhibiting the least (<100 m(2)/g). Band gap measurements and photoluminescence studies show that the as-prepared CdSe aerogels retain to a large extent the intrinsic quantum confinement of the differently shaped building blocks, despite being connected into a 3D network.
Chatterjee, Subhasish; Matas, Antonio J; Isaacson, Tal; Kehlet, Cindie; Rose, Jocelyn K C; Stark, Ruth E
2016-01-11
Plant cuticles on outer fruit and leaf surfaces are natural macromolecular composites of waxes and polyesters that ensure mechanical integrity and mitigate environmental challenges. They also provide renewable raw materials for cosmetics, packaging, and coatings. To delineate the structural framework and flexibility underlying the versatile functions of cutin biopolymers associated with polysaccharide-rich cell-wall matrices, solid-state NMR spectra and spin relaxation times were measured in a tomato fruit model system, including different developmental stages and surface phenotypes. The hydrophilic-hydrophobic balance of the cutin ensures compatibility with the underlying polysaccharide cell walls; the hydroxy fatty acid structures of outer epidermal cutin also support deposition of hydrophobic waxes and aromatic moieties while promoting the formation of cell-wall cross-links that rigidify and strengthen the cuticle composite during fruit development. Fruit cutin-deficient tomato mutants with compromised microbial resistance exhibit less efficient local and collective biopolymer motions, stiffening their cuticular surfaces and increasing their susceptibility to fracture.
A new polyester based on allyl α-hydroxy glutarate as shell for magnetite nanoparticles
NASA Astrophysics Data System (ADS)
Nan, Alexandrina; Feher, Ioana Coralia
2017-12-01
Allyl side-chain-functionalized lactide was synthesized from commercially available glutamic acid and polymerized by ring opening polymerization using 4-dimethylaminopyridine as an organocatalyst in the presence of magnetic nanoparticles. The resulting magnetic nanostructures coated with the allyl-containing polyester were then functionalized with cysteine by thiol-ene click reaction leading to highly functionalized magnetic nano-platforms of practical interest. The polyester precursors were characterized by nuclear magnetic resonance and mass spectrometry. The morphology of magnetic nanostructures based on the functionalized polyester was determined by transmission electron microscopy TEM, while the chemical structure was investigated by FT-IR. TGA investigations and the magnetic properties of the magnetic nanostructures are also described.
NASA Astrophysics Data System (ADS)
Çeven, E. K.; Günaydın, G. K.
2017-10-01
The aim of this study is filling the gap in the literature about investigating the effect of yarn and fabric structural parameters on burning behavior of polyester fabrics. According to the experimental design three different fabric types, three different weft densities and two different weave types were selected and a total of eighteen different polyester drapery fabrics were produced. All statistical procedures were conducted using the SPSS Statistical software package. The results of the Analysis of Variance (ANOVA) tests indicated that; there were statistically significant (5% significance level) differences between the mass loss ratios (%) in weft and mass loss ratios (%) in warp direction of different fabrics calculated after the flammability test. The Student-Newman-Keuls (SNK) results for mass loss ratios (%) both in weft and warp directions revealed that the mass loss ratios (%) of fabrics containing Trevira CS type polyester were lower than the mass loss ratios of polyester fabrics subjected to washing treatment and flame retardancy treatment.
1979-12-01
resin types: 1) acrylic latex, 2) acrylic solution polymer, 3) epoxy emulsions, 4) polyurethane, 5) butadiene elastomeric latex, 6) polyester/ alkyd , 7...emulsions and the class of polyester/ alkyd resins were evaluated only as network, crosslinked films. -53- j z I, ACRYLIC SOLUTIONLATEX URE THANE ACRYLIC ...amount of "plasticizing" monomer such as ethyl acrylate . 2.3.1.3 Aqueous Polyester Alkyd Resins As indicated in section 2.2.7 of this report,
Mechanical performance of hybrid polyester composites reinforced Cloisite 30B and kenaf fibre
NASA Astrophysics Data System (ADS)
Bonnia, N. N.; Surip, S. N.; Ratim, S.; Mahat, M. M.
2012-06-01
Hybridization of rubber toughened polyester-kenaf nanocomposite was prepared by adding various percentage of kenaf fiber with 4% Cloisite 30B in unsaturated polyester resin. Composite were prepared by adding filler to modified polyester resin subsequently cross-linked using methyl ethyl ketone peroxide and the accelerator cobalt octanoate 1%. Three per hundred rubbers (phr) of liquid natural rubber (LNR) were added in producing this composite. This composite expected to be applied in the interior of passenger cars and truck cabins. This is a quality local product from a combination of good properties polyester and high performance natural fiber, kenaf that is suitable for many applications such as in automotive sector and construction sector. The mechanical and thermal properties of composite were characterized using Durometer Shore-D hardness test, Izod impact test, Scanning electron microscopy, thermogravimetry (TGA) and differential scanning calorimetry (DSC). Result shows that addition of LNR give good properties on impact, flexural and hardness compare to without LNR composite. DSC curve shows that all composition of composites is fully cured and good in thermal properties. Addition of higher percentage of kenaf will lead the composite to elastic behavior and decrease the toughened properties of the composite. Hybrid system composite showed the flexural properties within the flexural properties of kenaf - polyester and Cloisite 30B.
Ali, Wazed; Sultana, Parveen; Joshi, Mangala; Rajendran, Subbiyan
2016-07-01
Neem oil, a natural antibacterial agent from neem tree (Azadarichtaindica) has been used to impart antibacterial activity to polyester fabrics. Solvent induced polymer modification method was used and that facilitated the easy entry of neem molecules into the compact structure of polyethylene terephthalate (PET) polyester. The polyester fabric was treated with trichloroacetic acid-methylene chloride (TCAMC) solvent system at room temperature prior to treatment with neem oil. The concentration of TCAMC and the treatment time were optimised. XRD and SEM results showed that the TCAMC treatment causes polymer modification and morphological changes in the PET polyester. Antibacterial activity of TCAMC pre-treated and neem-oil-treated polyester fabric was tested using AATCC qualitative and quantitative methods. Both Gram-positive and Gram-negative organisms were used to determine the antimicrobial activity. It was observed that the treated fabric registers substantial antimicrobial activity against both the Staphylococcus aureus (Gram-positive) and the Escherichia coli (Gram-negative) and the effect increases with the increase in concentration of TCAMC treatment. The antibacterial effect remains substantial even after 25 launderings. A kinetic growth study involving the effect of antibacterial activity at various incubation times was carried out. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Wen-xia; Li, Feng; Zhao, Guo-liang; Tang, Shi-jun; Liu, Xiao-ying
2014-12-01
A series of 376 cotton-polyester (PET) blend fabrics were studied by a portable near-infrared (NIR) spectrometer. A NIR semi-quantitative-qualitative calibration model was established by Partial Least Squares (PLS) method combined with qualitative identification coefficient. In this process, PLS method in a quantitative analysis was used as a correction method, and the qualitative identification coefficient was set by the content of cotton and polyester in blend fabrics. Cotton-polyester blend fabrics were identified qualitatively by the model and their relative contents were obtained quantitatively, the model can be used for semi-quantitative identification analysis. In the course of establishing the model, the noise and baseline drift of the spectra were eliminated by Savitzky-Golay(S-G) derivative. The influence of waveband selection and different pre-processing method was also studied in the qualitative calibration model. The major absorption bands of 100% cotton samples were in the 1400~1600 nm region, and the one for 100% polyester were around 1600~1800 nm, the absorption intensity was enhancing with the content increasing of cotton or polyester. Therefore, the cotton-polyester's major absorption region was selected as the base waveband, the optimal waveband (1100~2500 nm) was found by expanding the waveband in two directions (the correlation coefficient was 0.6, and wave-point number was 934). The validation samples were predicted by the calibration model, the results showed that the model evaluation parameters was optimum in the 1100~2500 nm region, and the combination of S-G derivative, multiplicative scatter correction (MSC) and mean centering was used as the pre-processing method. RC (relational coefficient of calibration) value was 0.978, RP (relational coefficient of prediction) value was 0.940, SEC (standard error of calibration) value was 1.264, SEP (standard error of prediction) value was 1.590, and the sample's recognition accuracy was up to 93.4%. It showed that the cotton-polyester blend fabrics could be predicted by the semi-quantitative-qualitative calibration model.
Bourne, L. B.; Milner, F. J. M.
1963-01-01
Polyester resins are being increasingly used in industry. These resins require the addition of catalysts and accelerators. The handling of polyester resin system materials may give rise to skin irritations, allergic reactions, and burns. The burns are probably due to styrene and organic peroxides. Atmospheric pollution from styrene and explosion and fire risks from organic peroxides must be prevented. Where dimethylaniline is used scrupulous cleanliness and no-touch technique must be enforced. Handling precautions are suggested. Images PMID:14014495
Hydrolyzable polyester resins, varnishes and coating compositions containing the same
Yamamori, Naoki; Yokoi, Junji; Yoshikawa, Motoyoshi
1984-01-01
Preparation of hydrolyzable polyester resin comprising reacting polycarboxylic acid and polyhydric alcohol components, which is characterized by using, as at least part of said polyhydric alcohol component, a metallic salt of hydroxy carboxylic acid of the formula defined and effecting the polycondensation at a temperature which is no more than the decomposition temperature of said metallic salt. The polyester resins are useful as resinous vehicle of varnishes and antifouling paints.
Jawahar, P; Balasubramanian, M
2006-12-01
Glass fiber reinforced polyester composite and hybrid nanoclay-fiber reinforced composites were prepared by hand lay-up process. The mechanical behavior of these materials and the changes as a result of the incorporation of both nanosize clay and glass fibers were investigated. Composites were prepared with a glass fibre content of 25 vol%. The proportion of the nanosize clay platelets was varied from 0.5 to 2.5 vol%. Hybrid clay-fiber reinforced polyester composite posses better tensile, flexural, impact, and barrier properties. Hybrid clay-fiber reinforced polyester composites also posses better shear strength, storage modulus, and glass transition temperature. The optimum properties were found to be with the hybrid laminates containing 1.5 vol% nanosize clay.
Synthesis, Characterization and Antibacterial Activity of BiVO4 Microstructure
NASA Astrophysics Data System (ADS)
Ekthammathat, Nuengruethai; Phuruangrat, Anukorn; Thongtem, Somchai; Thongtem, Titipun
2018-05-01
Hyperbranched BiVO4 microstructure were successfully synthesized by a hydrothermal method. Upon characterization the products by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, selected area electron diffraction (SAED) and photoluminescence (PL) spectroscopy, pure monoclinic hyperbranched BiVO4 with dominant vibration peak at 810 cm-1 and strong photoemission peak at 360 nm was synthesized in the solution with pH 1. In the solution with pH 2, tetragonal BiVO4 phase was also detected. In this research, antibacterial activity against S. aureus and E. coli was investigated by counting the colony forming unit (CFU). At 37°C within 24 h, the monoclinic BiVO4 phase can play the role in inhibiting S. aureus growth (350 CFU/mL remaining bacteria) better than that against E. coli (a large number of remaining bacteria).
Liu, Shuiping; Gu, Tianxun; Fu, Jiajia; Li, Xiaoqiang; Chronakis, Ioannis S; Ge, Mingqiao
2014-12-01
In this work, novel hybrid nanosphere vehicles were synthesized for nitric oxide (NO) donating and real-time detection. The hybrid nanosphere vehicles consist of cadmium selenide quantum dots (CdSe QDs) as NO fluorescent probes, and the modified hyperbranched polyether (mHP)-based diazeniumdiolates as NO donors, respectively. The nanospheres have spherical outline with dimension of ~127 nm. The data of systematic characterization demonstrated that the mHP-based hybrid nanosphere vehicles (QDs-mHP-NO) can release and real-time detect NO with the low limit of 25 nM, based on fluorescence quenching mechanism. The low cell-toxicity of QDs-mHP-NO nanospheres was verified by means of MTT assay on L929 cells viability. The QDs-mHP-NO nanospheres provide perspectives for designing a new class of biocompatible NO donating and imaging systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Laccase-mediated synthesis of lignin-core hyperbranched copolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannatelli, Mark D.; Ragauskas, Arthur J.
Lignin, one of the major chemical constituents of woody biomass, is the second most abundant biopolymer found in nature. The pulp and paper industry has long produced lignin on the scale of millions of tons annually as a by-product of the pulping process, and the dawn of cellulosic ethanol production has further contributed to this amount. Historically, lignin has been perceived as a waste material and burned as a fuel for the pulping process. But, recent research has been geared toward developing cost-effective technologies to convert lignin into valuable commodities. Attributing to the polyphenolic structure of lignin, enzymatic modification ofmore » its surface using laccases (benzenediol:oxygen oxidoreductases, EC 1.10.3.2) has demonstrated to be highly successful. The current study aims at developing lignin-core hyperbranched copolymers via the laccase-assisted copolymerization of kraft lignin with methylhydroquinone and a trithiol. Based on the physical properties of the resulting material, it is likely that crosslinking reactions have taken place during the drying process to produce a copolymeric network rather than discrete hyperbranched copolymers, with NMR data providing evidence of covalent bonding between monomers. A preliminary thermal analysis data reveals that the copolymeric material possesses a moderate glass transition temperature and exhibits good thermostability, thus may have potential application as a lignin-based thermoplastic. Scanning electron microscopy images confirm the smooth, glossy surface of the material and that it is densely packed. Our results are a sustainable, ecofriendly, economic method to create an exciting novel biomaterial from a renewable feedstock while further enhancing lignin valorization.« less
Laccase-mediated synthesis of lignin-core hyperbranched copolymers
Cannatelli, Mark D.; Ragauskas, Arthur J.
2017-06-06
Lignin, one of the major chemical constituents of woody biomass, is the second most abundant biopolymer found in nature. The pulp and paper industry has long produced lignin on the scale of millions of tons annually as a by-product of the pulping process, and the dawn of cellulosic ethanol production has further contributed to this amount. Historically, lignin has been perceived as a waste material and burned as a fuel for the pulping process. But, recent research has been geared toward developing cost-effective technologies to convert lignin into valuable commodities. Attributing to the polyphenolic structure of lignin, enzymatic modification ofmore » its surface using laccases (benzenediol:oxygen oxidoreductases, EC 1.10.3.2) has demonstrated to be highly successful. The current study aims at developing lignin-core hyperbranched copolymers via the laccase-assisted copolymerization of kraft lignin with methylhydroquinone and a trithiol. Based on the physical properties of the resulting material, it is likely that crosslinking reactions have taken place during the drying process to produce a copolymeric network rather than discrete hyperbranched copolymers, with NMR data providing evidence of covalent bonding between monomers. A preliminary thermal analysis data reveals that the copolymeric material possesses a moderate glass transition temperature and exhibits good thermostability, thus may have potential application as a lignin-based thermoplastic. Scanning electron microscopy images confirm the smooth, glossy surface of the material and that it is densely packed. Our results are a sustainable, ecofriendly, economic method to create an exciting novel biomaterial from a renewable feedstock while further enhancing lignin valorization.« less
Pedron, S; Peinado, C; Bosch, P; Benton, J A; Anseth, K S
2011-01-01
High-throughput methods allow rapid examination of parameter space to characterize materials and develop new polymeric formulations for biomaterials applications. One limitation is the difficulty of preparing libraries and performing high-throughput screening with conventional instrumentation and sample preparation. Here, we describe the fabrication of substrate materials with controlled gradients in composition by a rapid method of micromixing followed by a photopolymerization reaction. Specifically, poly(ethylene glycol) dimethacrylate was copolymerized with a hyperbranched multimethacrylate (P1000MA or H30MA) in a gradient manner. The extent of methacrylate conversion and the final network composition were determined by near-infrared spectroscopy, and mechanical properties were measured by nanoindentation. A relationship was observed between the elastic modulus and network crosslinking density. Roughness and hydrophilicity were increased on surfaces with a higher concentration of P1000MA. These results likely relate to a phase segregation process of the hyperbranched macromer that occurs during the photopolymerization reaction. On the other hand, the decrease in the final conversion in H30MA polymerization reactions was attributed to the lower termination rate as a consequence of the softening of the network. Valvular interstitial cell attachment was evaluated on these gradient substrates as a demonstration of studying cell morphology as a function of the local substrate properties. Data revealed that the presence of P1000MA affects cell–material interaction with a higher number of adhered cells and more cell spreading on gradient regions with a higher content of the multifunctional crosslinker. PMID:21105168
Rezaeifar, Zohreh; Es'haghi, Zarrin; Rounaghi, Gholam Hossein; Chamsaz, Mahmoud
2016-09-01
A new design of hyperbranched polyglycerol/graphene oxide nanocomposite reinforced hollow fiber solid/liquid phase microextraction (HBP/GO -HF-SLPME) coupled with high performance liquid chromatography used for extraction and determination of ibuprofen and naproxen in hair and waste water samples. The graphene oxide first synthesized from graphite powders by using modified Hummers approach. The surface of graphene oxide was modified using hyperbranched polyglycerol, through direct polycondensation with thionyl chloride. The ready nanocomposite later wetted by a few microliter of an organic solvent (1-octanol), and then applied to extract the target analytes in direct immersion sampling mode.After the extraction process, the analytes were desorbed with methanol, and then detected via high performance liquid chromatography (HPLC). The experimental setup is very simple and highly affordable. The main factors influencing extraction such as; feed pH, extraction time, aqueous feed volume, agitation speed, the amount of functionalized graphene oxide and the desorption conditions have been examined in detail. Under the optimized experimental conditions, linearity was observed in the range of 5-30,000ngmL(-1) for ibuprofen and 2-10,000ngmL(-1) for naproxen with correlation coefficients of 0.9968 and 0.9925, respectively. The limits of detection were 2.95ngmL(-1) for ibuprofen and 1.51ngmL(-1) for naproxen. The relative standard deviations (RSDs) were found to be less than 5% (n=5). Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Yan; Wang, Xin-Yan; Zhang, Qianyi; Zhang, Chun-Yang
2017-11-21
DNA methyltransferases (MTases) may specifically recognize the short palindromic sequences and transfer a methyl group from S-adenosyl-l-methionine to target cytosine/adenine. The aberrant DNA methylation is linked to the abnormal DNA MTase activity, and some DNA MTases have become promising targets of anticancer/antimicrobial drugs. However, the reported DNA MTase assays often involve laborious operation, expensive instruments, and radio-labeled substrates. Here, we develop a simple and label-free fluorescent method to sensitively detect DNA adenine methyltransferase (Dam) on the basis of terminal deoxynucleotidyl transferase (TdT)-activated Endonuclease IV (Endo IV)-assisted hyperbranched amplification. We design a hairpin probe with a palindromic sequence in the stem as the substrate and a NH 2 -modified 3' end for the prevention of nonspecific amplification. The substrate may be methylated by Dam and subsequently cleaved by DpnI, producing three single-stranded DNAs, two of which with 3'-OH termini may be amplified by hyperbranched amplification to generate a distinct fluorescence signal. Because high exactitude of TdT enables the amplification only in the presence of free 3'-OH termini and Endo IV only hydrolyzes the intact apurinic/apyrimidinic sites in double-stranded DNAs, zero background signal can be achieved. This method exhibits excellent selectivity and high sensitivity with a limit of detection of 0.003 U/mL for pure Dam and 9.61 × 10 -6 mg/mL for Dam in E. coli cells. Moreover, it can be used to screen the Dam inhibitors, holding great potentials in disease diagnosis and drug development.
Laccase-mediated synthesis of lignin-core hyperbranched copolymers.
Cannatelli, Mark D; Ragauskas, Arthur J
2017-08-01
Lignin, one of the major chemical constituents of woody biomass, is the second most abundant biopolymer found in nature. The pulp and paper industry has long produced lignin on the scale of millions of tons annually as a by-product of the pulping process, and the dawn of cellulosic ethanol production has further contributed to this amount. Historically, lignin has been perceived as a waste material and burned as a fuel for the pulping process. However, recent research has been geared toward developing cost-effective technologies to convert lignin into valuable commodities. Attributing to the polyphenolic structure of lignin, enzymatic modification of its surface using laccases (benzenediol:oxygen oxidoreductases, EC 1.10.3.2) has demonstrated to be highly successful. The current study aims at developing lignin-core hyperbranched copolymers via the laccase-assisted copolymerization of kraft lignin with methylhydroquinone and a trithiol. Based on the physical properties of the resulting material, it is likely that crosslinking reactions have taken place during the drying process to produce a copolymeric network rather than discrete hyperbranched copolymers, with NMR data providing evidence of covalent bonding between monomers. Preliminary thermal analysis data reveals that the copolymeric material possesses a moderate glass transition temperature and exhibits good thermostability, thus may have potential application as a lignin-based thermoplastic. Scanning electron microscopy images confirm the smooth, glossy surface of the material and that it is densely packed. The presented results are a sustainable, ecofriendly, economic method to create an exciting novel biomaterial from a renewable feedstock while further enhancing lignin valorization.
Rydz, Joanna; Sikorska, Wanda; Kyulavska, Mariya; Christova, Darinka
2014-01-01
This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are outlined. Environmental impact and in particular (bio)degradation of aliphatic polyesters, polyamides and related copolymer structures are described in view of the potential applications in various fields. PMID:25551604
Thermal Expansion Measurements of Polymer Matrix Composites and Syntactics
1992-04-01
828 (Shell Chemical) epoxy combined with 50.0 PBW EPON® V-40 polyamide curing agent (Shell Chemical) and Owens Corning (E-780) polyester combined 1...with 24 oz. woven roving with an Owens Corning 463 finish. " A 3 x 1, S-2 glass with 27 oz. woven roving with an Owens Corning 933 finish, nominally...wet polyester resin ( Owens Corning E-780) and subsequently processing the composites using the standard vacuum bag cure cycle for this polyester
The identification of cutin synthase: formation of the plant polyester cutin.
Yeats, Trevor H; Martin, Laetitia B B; Viart, Hélène M-F; Isaacson, Tal; He, Yonghua; Zhao, Lingxia; Matas, Antonio J; Buda, Gregory J; Domozych, David S; Clausen, Mads H; Rose, Jocelyn K C
2012-07-01
A hydrophobic cuticle consisting of waxes and the polyester cutin covers the aerial epidermis of all land plants, providing essential protection from desiccation and other stresses. We have determined the enzymatic basis of cutin polymerization through characterization of a tomato extracellular acyltransferase, CD1, and its substrate, 2-mono(10,16-dihydroxyhexadecanoyl)glycerol. CD1 has in vitro polyester synthesis activity and is required for cutin accumulation in vivo, indicating that it is a cutin synthase.
A high-throughput assay for enzymatic polyester hydrolysis activity by fluorimetric detection.
Wei, Ren; Oeser, Thorsten; Billig, Susan; Zimmermann, Wolfgang
2012-12-01
A fluorimetric assay for the fast determination of the activity of polyester-hydrolyzing enzymes in a large number of samples has been developed. Terephthalic acid (TPA) is a main product of the enzymatic hydrolysis of polyethylene terephthalate (PET), a synthetic polyester. Terephthalate has been quantified following its conversion to the fluorescent 2-hydroxyterephthalate by an iron autoxidation-mediated generation of free hydroxyl radicals. The assay proved to be robust at different buffer concentrations, reaction times, pH values, and in the presence of proteins. A validation of the assay was performed by analyzing TPA formation from PET films and nanoparticles catalyzed by a polyester hydrolase from Thermobifida fusca KW3 in a 96-well microplate format. The results showed a close correlation (R(2) = 0.99) with those obtained by a considerably more tedious and time-consuming HPLC method, suggesting the aptness of the fluorimetric assay for a high-throughput screening for polyester hydrolases. The method described in this paper will facilitate the detection and development of biocatalysts for the modification and degradation of synthetic polymers. The fluorimetric assay can be used to quantify the amount of TPA obtained as the final degradation product of the enzymatic hydrolysis of PET. In a microplate format, this assay can be applied for the high-throughput screening of polyester hydrolases. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polyester projects for India, Pakistan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siddiqi, R.
1993-02-10
India's Indo Rama Synthetics (Bombay) is planning a $186-million integrated polyester fiber and filament complex at Nagpur, Maharashtra. The complex will have annual capacities for 38,000 m.t. of polyester chips by polycondensation, 25,000 m.t. of polyester staple fiber, and 12,000 m.t. of polyester blended yarn. The company is negotiating with the main world suppliers of polycondensation technology. The first stage of the project is slated to begin production by the end of this year and be fully completed by 1994. In Pakistan, National Fibers Ltd. (PNF; Karachi) has signed a deal with Zimmer (Frankfurt) for technology, procurement, construction, and supportmore » work to expand polyester staple fiber capacity from 14,000 m.t./year to 52,000 m.t./year. The technology involves a continuous polymerization process. The project also calls for improvements to PNF's existing batch plant. It is scheduled for completion by the end of 1994. Total cost of the project is estimated at Rs1.745 billion ($70 million), out of which the foreign exchange component is Rs1.05 billion. The Islamic Development Bank (Jeddah; Saudi Arabia) has already approved a $27-million slice of the financing, while the balance of the foreign exchange loan is being arranged through suppliers credit. Local currency loans will be provided by other financial institutions in Pakistan.« less
NASA Astrophysics Data System (ADS)
Cheng, Jun; Shi, Wenxin; Zhang, Lanhe; Zhang, Ruijun
2017-09-01
A novel polyester thin film composite nanofiltration (NF) membrane was prepared by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC) on polyethersulfone (PES) supporting membrane. The performance of the polyester composite NF membrane was optimized by regulating the preparation parameters, including reaction time, pH of the aqueous phase solution, pentaerythritol concentration and TMC concentration. A series of characterization, including permeation experiments, attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscope (SEM), atomic force microscopy (AFM), zeta potential analyzer and chlorine resistance experiments, were employed to study the properties of the optimized membrane. The results showed that the optimized polyester composite NF membrane exhibited very high rejection of Na2SO4 (98.1%), but the water flux is relatively low (6.1 L/m2 h, 0.5 MPa, 25 °C). The order of salt rejections is Na2SO4 > MgSO4 > MgCl2 > NaCl, which indicated the membrane was negatively charged, just consistent with the membrane zeta potential results. After treating by NaClO solutions with different concentrations (100 ppm, 500 ppm, 1000 ppm, 2000 ppm, 3000 ppm) for 48 h, the results demonstrated that the polyester NF membrane had good chlorine resistance. Additionally, the polyester TFC NF membrane exhibits good long-term stability.
The identification of cutin synthase: formation of the plant polyester cutin
Yeats, Trevor H.; Martin, Laetitia B. B.; Viart, Hélène M.-F.; Isaacson, Tal; He, Yonghua; Zhao, Lingxia; Matas, Antonio J.; Buda, Gregory J.; Domozych, David S.; Clausen, Mads H.; Rose, Jocelyn K. C.
2012-01-01
A hydrophobic cuticle consisting of waxes and the polyester cutin covers the aerial epidermis of all land plants, providing essential protection from desiccation and other stresses. We have determined the enzymatic basis of cutin polymerization through characterization of a tomato extracellular acyltransferase, CD1, and its substrate, 2-mono(10,16-dihydroxyhexadecanoyl)glycerol (2-MHG). CD1 has in vitro polyester synthesis activity and is required for cutin accumulation in vivo, indicating that it is a cutin synthase. PMID:22610035
NASA Astrophysics Data System (ADS)
Shen, Keke; Yu, Miao; Li, Qianqian; Sun, Wei; Zhang, Xiting; Quan, Miao; Liu, Zhengtang; Shi, Suqing; Gong, Yongkuan
2017-12-01
A non-fluorinated polymeric alkylsilane, poly(isobutyl methacrylate-co-3-methacryloxypropyltrimethoxysilane) (PIT), is designed and synthesized to replace the commercial long-chain perfluoroalkylsilane (FAS) water-repellent agent. The superhydrophobic polyester fabrics are prepared by anchoring sol-gel derived silica nanoparticles onto alkali-treated polyester fabric surfaces and subsequently hydrophobilizing with PIT, using FAS as control. The surface chemical composition, surface morphology, wetting behavior and durability of the modified polyester fabrics are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectrophotometer (XPS) and video-based contact angle goniometer, respectively. The results show that a porous silica layer could be successfully fabricated onto the surface of polyester fabric through base-catalyzed sol-gel process with tetraethoxysilane (TEOS) as precursor, incorporating additional nanostructured roughness essential for superhydrophobicity. At the same time, such a silica primer layer could provide both secondary reactive moieties (-Si - OH) for the subsequent surface hydrophobization and acceptable adhesion at the silica-polyester fabric interface. When silica modified polyester fabric (SiO2@ fabric) is hydrophobized by PIT solution (10 mg/mL), excellent water-repellency could be obtained. The water contact angle is up to 154° and the sliding angle is about 5°. Compared with small molecule water-repellent agent FAS, PIT modified SiO2@ fabric exhibits greatly improved solvent resistance under ultra-sonication, abrasion and simulated laundering durability. The anti-stain property of PIT-modified SiO2@ fabric is also evaluated by using different aqueous colored solutions.
3D printing of new biobased unsaturated polyesters by microstereo-thermallithography.
Gonçalves, Filipa A M M; Costa, Cátia S M F; Fabela, Inês G P; Farinha, Dina; Faneca, Henrique; Simões, Pedro N; Serra, Arménio C; Bártolo, Paulo J; Coelho, Jorge F J
2014-09-01
New micro three-dimensional (3D) scaffolds using biobased unsaturated polyesters (UPs) were prepared by microstereo-thermal-lithography (μSTLG). This advanced processing technique offers indubitable advantages over traditional printing methods. The accuracy and roughness of the 3D structures were evaluated by scanning electron microscopy and infinite focus microscopy, revealing a suitable roughness for cell attachment. UPs were synthesized by bulk polycondensation between biobased aliphatic diacids (succinic, adipic and sebacic acid) and two different glycols (propylene glycol and diethylene glycol) using fumaric acid as the source of double bonds. The chemical structures of the new oligomers were confirmed by proton nuclear magnetic resonance spectra, attenuated total reflectance Fourier transform infrared spectroscopy and matrix assisted laser desorption/ionization-time of flight mass spectrometry. The thermal and mechanical properties of the UPs were evaluated to determine the influence of the diacid/glycol ratio and the type of diacid in the polyester's properties. In addition an extensive thermal characterization of the polyesters is reported. The data presented in this work opens the possibility for the use of biobased polyesters in additive manufacturing technologies as a route to prepare biodegradable tailor made scaffolds that have potential applications in a tissue engineering area.
Polyester Fabric's Fluorescent Dyeing in Supercritical Carbon Dioxide and its Fluorescence Imaging.
Xiong, Xiaoqing; Xu, Yanyan; Zheng, Laijiu; Yan, Jun; Zhao, Hongjuan; Zhang, Juan; Sun, Yanfeng
2017-03-01
As one of the most important coumarin-like dyes, disperse fluorescent Yellow 82 exhibits exceptionally large two-photon effects. Here, it was firstly introduced into the supercritical CO 2 dyeing polyester fabrics in this work. Results of the present work showed that the dyeing parameters such as the dyeing time, pressure and temperature had remarkable influences on the color strength of fabrics. The optimized dyeing condition in supercritical CO 2 dyeing has been proposed that the dyeing time was 60 min; the pressure was 25 MPa and the temperature was 120 °C. As a result, acceptable products were obtained with the wash and rub fastness rating at 5 or 4-5. The polyester fabrics dyed with fluorescent dyes can be satisfied for the requirement of manufacturing warning clothing. Importantly, the confocal microscopy imaging technology was successfully introduced into textile fields to observe the distribution and fluorescence intensity of disperse fluorescent Yellow 82 on polyester fabrics. As far as we know, this is the first report about supercritical CO 2 dyeing polyester fabrics based on disperse fluorescent dyes. It will be very helpful for the further design of new fluorescent functional dyes suitable for supercritical CO 2 dyeing technique.
Dilatation of aortic grafts over time: what to expect and when to be concerned.
Schroeder, Torben V; Eldrup, Nikolaj; Just, Sven; Hansen, Marc; Nyhuus, Bo; Sillesen, Henrik
2009-06-01
Dilatation of aortic prosthetic grafts is commonly reported, but most reports are anecdotal, with little objective data in the literature. We performed a prospective trial of 303 patients who underwent prosthetic graft repair for aortic aneurysm or occlusive disease, randomizing patients between insertion of a woven polyester or expanded polytetrafluoroethylene (ePTFE) graft. Patients were followed with computed tomography and ultrasonography for up to 5 years in order to assess the frequency and magnitude of postoperative dilatation. Graft dilatation was documented in patients with polyester grafts at 12 months. Thereafter and up to 60 months, polyester grafts did not dilate further. After 5 years, polyester prostheses had dilated by 25% and ePTFE by 12.5%, as determined by computed tomography imaging. These observations suggest that dilatation of prosthetic grafts is more frequent with knitted polyester grafts compared with ePTFE. Dilatation occurs within the first year after implantation and can be, in part, explained by a discrepancy between the initial nominal graft diameter and its diameter after clamp release, probably due to an in vivo adaptation of the textile structure. Interestingly, graft dilatation did not appear to be associated with an increased frequency of graft-related complications.
Gustini, Liliana; Lavilla, Cristina; Janssen, William W T J; Martínez de Ilarduya, Antxon; Muñoz-Guerra, Sebastián; Koning, Cor E
2016-08-23
Renewable polyesters derived from a sugar alcohol (i.e., sorbitol) were synthesized by solvent-free polycondensation. The aim was to prepare linear polyesters with pendant hydroxyl groups along the polymer backbone. The performance of the sustainable biocatalyst SPRIN liposorb CALB [an immobilized form of Candida antarctica lipase B (CALB); SPRIN technologies] and the organo-base catalyst 1,5,7-triazabicyclo[4,4,0]dec-5-ene (TBD) were compared with two metal-based catalysts: dibutyl tin oxide (DBTO) and scandium trifluoromethanesulfonate [also known as scandium triflate, Sc(OTf)3 ]. For the four catalytic systems, the efficiency and selectivity for the incorporation of sorbitol were studied, mainly using (13) C and (31) P NMR spectroscopies, whereas side reactions, such as ether formation and dehydration of sorbitol, were evaluated using MALDI-TOF-MS. Especially the biocatalyst SPRIN liposorb CALB succeeded in incorporating sorbitol in a selective way without side reactions, leading to close-to-linear polyesters. By using a renewable hydroxyl-reactive curing agent based on l-lysine, transparent and glossy poly(ester urethane) networks were successfully synthesized offering a tangible example of bio-based coatings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
50 CFR 679.24 - Gear limitations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... material that is brightly colored, UV-protected plastic tubing or 3/8 inch polyester line or material of an... tubing or 3/8 inch polyester line or material of an equivalent density. (iv) Snap gear streamer standard...
Experimental Investigation on Thermal Physical Properties of an Advanced Polyester Material
NASA Astrophysics Data System (ADS)
Guangfa, Gao; Shujie, Yuan; Ruiyuan, Huang; Yongchi, Li
Polyester materials were applied widely in aircraft and space vehicles engineering. Aimed to an advanced polyester material, a series of experiments for thermal physical properties of this material were conducted, and the corresponding performance curves were obtained through statistic analyzing. The experimental results showed good consistency. And then the thermal physical parameters such as thermal expansion coefficient, engineering specific heat and sublimation heat were solved and calculated. This investigation provides an important foundation for the further research on the heat resistance and thermodynamic performance of this material.
Quasi-static axial crushes on woven jute/polyester AA6063T52 composite tubes
NASA Astrophysics Data System (ADS)
Othman, A.; Ismail, AE
2018-04-01
Quasi-static axial loading have been studied in this paper to determine the behaviour of jute/polyester wrapped on aluminium alloy 6063T52. The filler material also was include into crush box specimen, which is polyurethane (PU) and polystyrene (PE) rigid foam at ranging 40 and 45 kg/m3 densities. All specimen profile was fabricated using hand layup techniques and the length of each specimen were fixed at 100 mm as well as diameter and width of the tube at 50.8 mm. The two types of tubular cross-section were studied of round and square thin-walled profiles and the angle of fibre at 450 were analysed for four layers. Thin walled of aluminium was 1.9 mm and end frontal of each specimen of composite were chamfered at 450 to prevent catastrophic failure mode. The specific absorbed energy (SEA) and crush force efficiency (CFE) were analyses for each specimen to see the behaviour on jute/polyester wrapped on metallic structure can give influence the energy management for automotive application. Result show that the four layers’ jute/polyester with filler material show significant value in term of specific absorbed energy compared empty and polyurethane profiles higher 26.66% for empty and 15.19% compared to polyurethane profiles. It has been found that the thin walled square profile of the jute/polyester tubes with polystyrene foam-filled is found higher respectively 27.42% to 13.13% than empty and polyurethane (PU) foam tubes. An introduce filler material onto thin walled composite profiles gave major advantage increases the mean axial load of 31.87% from 32.94 kN to 48.35 kN from empty to polystyrene thin walled round jute/polyester profiles and 31.7% from 23.11 KN to 33.84 kN from empty to polystyrene thin walled square jute/polyester profiles. Failure mechanisms of the axially loaded composite tubes were also observed and discussed.
The axial crushes behaviour on foam-filled round Jute/Polyester composite tubes
NASA Astrophysics Data System (ADS)
Othman, A.; Ismail, A. E.
2018-04-01
The present paper investigates the effect of axial loading compression on jute fibre reinforced polyester composite round tubes. The specimen of composite tube was fabricated by hand lay-up method of 120 mm length with fix 50.8 mm inner diameter to determine the behaviour of energy absorption on number of layers of 450 angle fibre and internally reinforced with and without foam filler material. The foam filler material used in this studies were polyurethane (PU) and polystyrene (PE) with average of 40 and 45 kg/m3 densities on the axial crushing load against displacement relations and on the failure modes. The number of layers of on this study were two; three and four were selected to calculate the crush force efficiency (CFE) and the specific energy absorption (SEA) of the composite tubes. Result indicated that the four layers’ jute/polyester show significant value in term of crushing load compared to 2 and 3 layers higher 60% for 2 layer and 3% compared to 3 layers. It has been found that the specific energy absorption of the jute/polyester tubes with polystyrene foam-filled is found higher respectively 10% to 12% than empty and polyurethane (PU) foam tubes. The increase in the number of layers from two to four increases the mean axial load from 1.01 KN to 3.60 KN for empty jute/polyester and from 2.11 KN to 4.26 KN for the polyurethane (PU) foam-filled jute/polyester tubes as well as for 3.60 KN to 5.58 KN for the polystyrene (PE) foam-filled jute/polyester. The author’s found that the failure of mechanism influence the characteristic of curve load against displacement obtained and conclude that an increasing number of layers and introduce filler material enhance the capability of specific absorbed energy.
Premixed polymer concrete overlays.
DOT National Transportation Integrated Search
1990-01-01
The results of a study undertaken to evaluate premixed polymer concrete overlays (PMPCO) over a 3-year period are presented. The PMPCO evaluated were constructed with polyester amide para resin and silica sand 1;. polyester styrene resin 1 and silica...
(Citric acid–co–polycaprolactone triol) polyester
Thomas, Lynda V.; Nair, Prabha D.
2011-01-01
Tissue engineering holds enormous challenges for materials science, wherein the ideal scaffold to be used is expected to be biocompatible, biodegradable and possess mechanical and physical properties that are suitable for target application. In this context, we have prepared degradable polyesters in different ratios by a simple polycondensation technique with citric acid and polycaprolactone triol. Differential scanning calorimetry indicated that the materials were amorphous based the absence of a crystalline melting peak and the presence of a glass transition temperature below 37°C. These polyesters were found to be hydrophilic and could be tailor-made into tubes and films. Porosity could also be introduced by addition of porogens. All the materials were non-cytotoxic in an in vitro cytotoxicity assay and may degrade via hydrolysis to non-toxic degradation products. These polyesters have potential implications in the field of soft tissue engineering on account of their similarity of properties. PMID:23507730
NASA Astrophysics Data System (ADS)
Pesko, Danielle; Jung, Yuki; Coates, Geoff; Balsara, Nitash
2015-03-01
Gaining a fundamental understanding of the relationship between molecular structure and ionic conductivity of polymer electrolytes is an essential step toward designing next generation materials for battery applications. In this study, we use a systematic set of newly-designed polyesters with varying side-chain lengths and oxygen functional groups to elucidate the effects of structural modifications on the conductive properties of the corresponding electrolytes. Mixtures of polyesters and lithium bis(trifluromethanesulfonyl)imide (LiTFSI) were characterized using ac impedance spectroscopy to measure the ionic conductivity at various temperatures and salt concentrations. The relative conductivities of these electrolytes in the dilute limit are directly comparable to results of molecular dynamics simulations performed using the same polymers. The simulations correspond well with the experimental results, and provide molecular level insight about the solvation environment of the lithium ions and how the ions transport through these polyesters.
Arce, Eva; Nieto, Pedro M; Díaz, Vicente; Castro, Rossana García; Bernad, Antonio; Rojo, Javier
2003-01-01
Multivalent scaffolds bearing carbohydrates have been prepared to mediate biological processes where carbohydrates are involved. These systems consist of dendritic structures based on Boltorn H20 and H30 hyperbranched polymers to which carbohydrates are linked through a convenient spacer. Mannose has been chosen as a sugar unit to test the viability of this strategy. These glycodendritic compounds have been prepared in a few steps with good yields, showing a high solubility in physiological media and low toxicity. The binding of these dendritic polymers to the mannose-binding lectin Lens culinaris (LCA) was studied using STD-NMR experiments and quantitative precipitation assays. The results demonstrate the existence of a clear interaction between the mannose derivative systems and the Lens lectin where the dendritic scaffold does not have an important role in mannose binding but supplies the necessary multivalence for lectin cluster formation. These glycodendritic structures are able to interact with a receptor, and therefore they can be considered as promising tools for biological studies.
Hyperbranched polymer functional cotton fabric for its in situ deposition of silver nanoparticles
NASA Astrophysics Data System (ADS)
Zhang, Desuo; Jiao, Chenlu; Xiong, Jiaqing; Lin, Hong; Chen, Yuyue
2015-06-01
This paper describes a strategy of fabricating silver nanoparticles (Ag NPs) finished cotton fabric through in situ synthesis method. In order to endow the cotton fabric with the capability of in situ synthesis of Ag NPs without any other reagents, an amino-terminated hyperbranched polymer (HBP-NH2) was employed to functionalize the cotton fabric. To this end, cotton fabric was oxidized to generate aldehyde groups and then HBP-NH2 was grafted on the oxidized cotton fabric based on the reaction between amino groups and aldehyde groups. Due to numerous imino and amino groups in the polymer and its special three-dimensional structure, the functional cotton fabric could take initiative to capture and reduce silver ions, control the formation of Ag NPs and fix them on the cotton fabric. The sizes of Ag NPs in situ synthesized on cotton fibers range from 4 to 10 nm. The prepared Ag NPs finished cotton fabric has excellent laundering durability.
Molecular Mobility in Hyperbranched Polymers and Their Interaction with an Epoxy Matrix
Román, Frida; Colomer, Pere; Calventus, Yolanda; Hutchinson, John M.
2016-01-01
The molecular mobility related to the glass transition and secondary relaxations in a hyperbranched polyethyleneimine, HBPEI, and its relaxation behaviour when incorporated into an epoxy resin matrix are investigated by dielectric relaxation spectroscopy (DRS) and dynamic mechanical analysis (DMA). Three systems are analysed: HBPEI, epoxy and an epoxy/HBPEI mixture, denoted ELP. The DRS behaviour is monitored in the ELP system in three stages: prior to curing, during curing, and in the fully cured system. In the stage prior to curing, DRS measurements show three dipolar relaxations: γ, β and α, for all systems (HBPEI, epoxy and ELP). The α-relaxation for the ELP system deviates significantly from that for HBPEI, but superposes on that for the epoxy resin. The fully cured thermoset displays both β- and α-relaxations. In DMA measurements, both α- and β-relaxations are observed in all systems and in both the uncured and fully cured systems, similar to the behaviour identified by DRS. PMID:28773319
Photo-enhanced performance and photo-tunable degradation in LC ecopolymers
NASA Astrophysics Data System (ADS)
Kaneko, Tatsuo
2007-05-01
Photosensitive, liquid crystalline (LC) polymers were prepared by in-bulk polymerization of phytomonomers such as cinnamic acid derivatives. The p-coumaric acid (4HCA) homopolymer showed a thermotropic LC phase where a photoreaction of [2+2] cycloaddition occurred by ultraviolet irradiation. LC phase was exhibited only in a low molecular weight state but the polymer was too brittle to materialize. Then we copolymerized 4HCA with multifunctional cinnamate, 3,4 dihydroxycinnamic acid (caffeic acid; DHCA), to prepare the hyperbranching architecture. Many branches increased the apparent size of the polymer chain but kept the low number-average molecular weight. P(4HCA-co-DHCA)s showed high performances which may be attained through the entanglement by in-bulk formation of hyperbranching, rigid structures. P(4HCA-co-DHCA)s showed a smooth hydrolysis, an in-soil degradation and a photoreaction cross-linking from conjugated cinnamate esters to aliphatic esters. The change in photoconversion degree tuned the polymer performance and chain hydrolysis.
Perumal, Govindaraj; Pappuru, Sreenath; Chakraborty, Debashis; Maya Nandkumar, A; Chand, Dillip Kumar; Doble, Mukesh
2017-07-01
This study is aimed to develop curcumin (Cur) incorporated electrospun nanofibers of a blend of poly (lactic acid) (PLA) and hyperbranched polyglycerol (HPG) for wound healing applications. Both the polymers are synthesized and fabricated by electrospinning technique. The produced nanofibers were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Colorimetry (DSC) and Thermogravimetric Analysis (TGA). Electrospun scaffolds (PLA/HPG/Cur) exhibits very high hydrophilicity, high swelling and drug uptake and promotes better cell viability, adhesion and proliferation when compared to PLA/Cur electrospun nanofibers. Biodegradation study revealed that the morphology of the nanofibers were unaffected even after 14days immersion in Phosphate Buffered Saline. In vitro scratch assay indicates that migration of the cells in the scratch treated with PLA/HPG/Cur is complete within 36h. These results suggest that PLA/HPG/Cur nanofibers can be a potential wound patch dressing for acute and chronic wound applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Huang, Yajun; Ding, Xiaokang; Qi, Yu; Yu, Bingran; Xu, Fu-Jian
2016-11-01
There is an increasing demand in developing of multifunctional materials with good antibacterial activity, biocompatibility and drug/gene delivery capability for next-generation biomedical applications. To achieve this purpose, in this work series of hydroxyl-rich hyperbranched polyaminoglycosides of gentamicin, tobramycin, and neomycin (HP and SS-HP with redox-responsive disulfide bonds) were readily synthesized via ring-opening reactions in a one-pot manner. Both HP and SS-HP exhibit high antibacterial activity toward Escherichia coli and Staphylococcus aureus. Meanwhile, the hemolysis assay of the above materials shows good biocompatibility. Moreover, SS-HPs show excellent gene transfection efficiency in vitro due to the breakdown of reduction-responsive disulfide bonds. For an in vivo anti-tumor assay, the SS-HP/p53 complexes exhibit potent inhibition capability to the growth of tumors. This study provides a promising approach for the design of next-generation multifunctional biomedical materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lin, Cuiling; Xu, Luonan; Huang, Libo; Chen, Jia; Liu, Yuanyuan; Ma, Yifan; Ye, Feixiang; Qiu, Huayu; He, Tian; Yin, Shouchun
2016-09-01
Controlling the topologies of polymers is a hot topic in polymer chemistry because the physical and/or chemical properties of polymers are determined (at least partially) by their topologies. This study exploits the host-guest interactions between dibenzo-24-crown-8 and secondary ammonium salts and metal coordination interactions between 2,6-bis(benzimidazolyl)-pyridine units with metal ions (Zn(II) and/or Eu(III) ) as orthogonal non-covalent interactions to prepare supramolecular polymers. By changing the ratios of the metal ion additives (Zn(NO3 )2 and Eu(NO3 )3 ) linkers to join the host-guest dimeric complex, the linear supramolecular polymers (100 mol% Zn(NO3 )2 per ligand) and hyperbranched supramolecular polymers (97 mol% Zn(NO3 )2 and 3 mol% Eu(NO3 )3 per ligand) are separately and successfully constructed. This approach not only expands topological control over polymeric systems, but also paves the way for the functionalization of smart and adaptive materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Subianto, Surya; Roy Choudhury, Namita; Dutta, Naba
2013-01-01
Macromolecular modification of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF) was done with various proportions of sulfonic acid terminated, hyperbranched polysulfone (HPSU) with a view to prepare ion conducting membranes. The PVDF-co-HFP was first chemically modified by dehydrofluorination and chlorosulfonation in order to make the membrane more hydrophilic as well as to introduce unsaturation, which would allow crosslinking of the PVDF-co-HFP matrix to improve the stability of the membrane. The modified samples were characterized for ion exchange capacity, morphology, and performance. The HPSU modified S-PVDF membrane shows good stability and ionic conductivity of 5.1 mS cm−1 at 80 °C and 100% RH for blends containing 20% HPSU, which is higher than the literature values for equivalent blend membranes using Nafion. SEM analysis of the blend membranes containing 15% or more HPSU shows the presence of spherical domains with a size range of 300–800 nm within the membranes, which are believed to be the HPSU-rich area. PMID:28348282
Mussel-inspired hyperbranched poly(amino ester) polymer as strong wet tissue adhesive.
Zhang, Hong; Bré, Lígia P; Zhao, Tianyu; Zheng, Yu; Newland, Ben; Wang, Wenxin
2014-01-01
Current medical adhesives based on cyanoacrylates typically exhibit cellular toxicity. In contrast, fibrin adhesives are non-toxic but have poor adhesive properties. To overcome these drawbacks we designed a simple and scalable adhesive precursor inspired by marine mussel adhesion that functioned with strong adhesion in wet conditions and with low cytotoxicity. Dopamine, an-amine derivative of an amino acid abundantly present in mussel adhesive proteins, was co-polymerised with a tri-functional vinyl monomer, to form a hyperbranched poly(β-amino ester) polymer termed poly(dopamine-co-acrylate) (PDA). A variety of molecular weights and crosslinking methods were analysed using an ex vivo porcine skin model and an almost 4 fold increase in wet adhesion strength was observed compared to TISSEEL(®) fibrin sealant. With a fast curing time, degradable properties and low cytotoxicity, PDA is highly attractive for medical purposes and could have a broad impact on surgeries where surgical tissue adhesives, sealants, and haemostatic agents are used. Copyright © 2013 Elsevier Ltd. All rights reserved.
Warenda, Monika; Richter, Anne; Schmidt, Diana; Janke, Andreas; Müller, Martin; Simon, Frank; Zimmermann, Ralf; Eichhorn, Klaus-Jochen; Voit, Brigitte; Appelhans, Dietmar
2012-09-14
For using successful (ultra)thin dendritic macromolecule films in (bio)sensing and microfluidic devices and for obtaining reproducible film properties, alteration effects arising from precoatings have to be avoided. Here, oligosaccharide-modified hyperbranched poly(ethylene imine)s (PEI-OS) were used to fabricate very thin PEI-OS films (15-20 nm in dry state), cross-linked with citric acid under condensation, and vacuum condition. However, no reactive precoating is necessary to obtain stable films, which allows very simple film preparation and avoids alteration of the PEIS-OS film properties arising from precoating. Several methods [(in situ) ellipsometry, AFM, XPS, (in situ) ATR-IR, streaming potential measurements] were applied to characterize homogeneity, surface morphology, and stability of these PEI-OS films between pH 2 and pH 10, but also the low protein adsorption behavior. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., olefin, polyester, wool, or any combination of these fibers, regardless of weight.) If no exemptions... sweaters; polyester/cotton and 100% cotton fleece/sherpa garments, and 100% cotton terry cloth robes...
NASA Technical Reports Server (NTRS)
Orndoff, Evelyne; Poritz, Darwin
2014-01-01
All human space missions require significant logistical mass and volume that add an unprecedented burden on longduration missions beyond low-Earth orbit. For these missions with limited cleaning resources, a new wardrobe must be developed to reduce this logistical burden by reducing clothing mass and extending clothing wear. The present studies have been undertaken, for the first time, to measure length of wear and to assess the acceptance of such extended wear. Garments in these studies are commercially available exercise T-shirts and shorts, routine-wear T-shirts, and longsleeved pullover shirts. Fabric composition (cotton, polyester, light-weight, superfine Merino wool, modacrylic, cotton/rayon, polyester/Cocona, modacrylic/Xstatic, modacrylic/rayon, modacrylic/lyocell/aramid), construction (open knit, tight knit, open weave, tight weave), and finishing treatment (none, quaternary ammonium salt) are the independent variables. Eleven studies are reported here: five studies of exercise T-shirts, three of exercise shorts, two of routine wear Tshirts, and one of shirts used as sleep-wear. All studies are conducted in a climate-controlled environment, similar to a space vehicle's. For exercise clothing, study participants wear the garments during aerobic exercise. For routine wear clothing, study participants wear the T-shirts daily in an office or laboratory. Daily questionnaires collected data on ordinal preferences of nine sensory elements and on reason for retiring a used garment. Study 1 compares knitted cotton, polyester, and Merino exercise T-shirts (61 participants), study 2, knitted polyester, modacrylic, and polyester/Cocona exercise T-shirts (40 participants), study 3, cotton and polyester exercise shorts, knitted and woven (70 participants), all three using factorial experimental designs with and without a finishing treatment, conducted at the Johnson Space Center, sharing study participants. Study 4 compares knitted polyester and ZQ Merino exercise T-shirts, study 5, knitted ZQ Merino and modacrylic routine-wear T-shirts, with study 6 using only knitted polyester exercise shorts. No finishing treatment is used. Studies 4 and 5 use cross-over experimental designs, and all three studies were conducted aboard the ISS with six crew. Studies 4 and 6 were repeated on the ground with the same participants to learn if perception was affected microgravity. Study 7 is a longer-term, single-blind panel study of knitted routine-wear undershirts with at least 12 participants to assess tolerance to Merino by comparing it with a cotton/rayon blends, using a cross-over design, eliminating carryover effects with wash-out periods between shirts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anggoro, Didi Dwi, E-mail: anggorophd@gmail.com; Kristiana, Nunung, E-mail: nuna.c631@gmail.com
Ballistic protection equipment, such as a bulletproof vest, is a soldier’s most important means of preserving life and survivability in extreme combat conditions. The bulletproof vests are designed to protect the user’s chest from injury without disturbing the ability to perform his duties. Aromatic polyamide or aramid fibers known under the trade name Kevlar, Trawon and so is synthetic fiber materials commonly used in the manufacture of bulletproof vests. This synthetic fibers have high tensile strength and ductility. Kevlar is expensive and imported material. In this study, will introduce local natural raw materials, ramie fiber (Boehmeria nivea) which is cheapermore » and environmentally friendly. It has enough tenacity and tensile strength as a bulletproof vest. This experiment uses two panels, there are Panel A as front surface of Panel B. Panel A is a combination of ramie and epoxide matrix, while panel B is only ramie. From several variations of experimental combinations between Panel A and Panel B, optimal combination obtained with 16 layers of panel A and 31-34 layers of panel B which is able to protect againts cal. 7.65 mm × 17 mm (.32 ACP) bullet fired through pistol .32 Pindad from a distance of 20 meters. Panel with a size of 20 cm × 20 cm has a total thickness between 12,922 to13,745 mm and a total weight between 506,26 to 520,926gram. Scanning electron microscopy (SEM) observations indicated that the porosity and surface area of the ramie fiber is smooth, fiber surfaces showed topography with micropores. SEM also showed well-arranged structure of fibers bonding. Energy Dispersive X-ray (EDX) analysis indicated 100 % carbon contents in ramie fiber. Test result indicates that panel from composite ramie-epoxide can reach the level 1of International Standard of NIJ - 010104. Compared to panel from polyester fiber, the panel from composite ramie-epoxide (0,50-0,52 kg) is lighter weight than panel polyester fiber (1,642 kg)« less
Discovery of Polyesterases from Moss-Associated Microorganisms.
Müller, Christina Andrea; Perz, Veronika; Provasnek, Christoph; Quartinello, Felice; Guebitz, Georg M; Berg, Gabriele
2017-02-15
The growing pollution of the environment with plastic debris is a global threat which urgently requires biotechnological solutions. Enzymatic recycling not only prevents pollution but also would allow recovery of valuable building blocks. Therefore, we explored the existence of microbial polyesterases in microbial communities associated with the Sphagnum magellanicum moss, a key species within unexploited bog ecosystems. This resulted in the identification of six novel esterases, which were isolated, cloned, and heterologously expressed in Escherichia coli The esterases were found to hydrolyze the copolyester poly(butylene adipate-co-butylene terephthalate) (PBAT) and the oligomeric model substrate bis[4-(benzoyloxy)butyl] terephthalate (BaBTaBBa). Two promising polyesterase candidates, EstB3 and EstC7, which clustered in family VIII of bacterial lipolytic enzymes, were purified and characterized using the soluble esterase substrate p-nitrophenyl butyrate (K m values of 46.5 and 3.4 μM, temperature optima of 48°C and 50°C, and pH optima of 7.0 and 8.5, respectively). In particular, EstC7 showed outstanding activity and a strong preference for hydrolysis of the aromatic ester bond in PBAT. Our study highlights the potential of plant-associated microbiomes from extreme natural ecosystems as a source for novel hydrolytic enzymes hydrolyzing polymeric compounds. In this study, we describe the discovery and analysis of new enzymes from microbial communities associated with plants (moss). The recovered enzymes show the ability to hydrolyze not only common esterase substrates but also the synthetic polyester poly(butylene adipate-co-butylene terephthalate), which is a common material employed in biodegradable plastics. The widespread use of such synthetic polyesters in industry and society requires the development of new sustainable technological solutions for their recycling. The discovered enzymes have the potential to be used as catalysts for selective recovery of valuable building blocks from this material. Copyright © 2017 American Society for Microbiology.
Discovery of Polyesterases from Moss-Associated Microorganisms
Perz, Veronika; Provasnek, Christoph; Quartinello, Felice; Guebitz, Georg M.; Berg, Gabriele
2016-01-01
ABSTRACT The growing pollution of the environment with plastic debris is a global threat which urgently requires biotechnological solutions. Enzymatic recycling not only prevents pollution but also would allow recovery of valuable building blocks. Therefore, we explored the existence of microbial polyesterases in microbial communities associated with the Sphagnum magellanicum moss, a key species within unexploited bog ecosystems. This resulted in the identification of six novel esterases, which were isolated, cloned, and heterologously expressed in Escherichia coli. The esterases were found to hydrolyze the copolyester poly(butylene adipate-co-butylene terephthalate) (PBAT) and the oligomeric model substrate bis[4-(benzoyloxy)butyl] terephthalate (BaBTaBBa). Two promising polyesterase candidates, EstB3 and EstC7, which clustered in family VIII of bacterial lipolytic enzymes, were purified and characterized using the soluble esterase substrate p-nitrophenyl butyrate (Km values of 46.5 and 3.4 μM, temperature optima of 48°C and 50°C, and pH optima of 7.0 and 8.5, respectively). In particular, EstC7 showed outstanding activity and a strong preference for hydrolysis of the aromatic ester bond in PBAT. Our study highlights the potential of plant-associated microbiomes from extreme natural ecosystems as a source for novel hydrolytic enzymes hydrolyzing polymeric compounds. IMPORTANCE In this study, we describe the discovery and analysis of new enzymes from microbial communities associated with plants (moss). The recovered enzymes show the ability to hydrolyze not only common esterase substrates but also the synthetic polyester poly(butylene adipate-co-butylene terephthalate), which is a common material employed in biodegradable plastics. The widespread use of such synthetic polyesters in industry and society requires the development of new sustainable technological solutions for their recycling. The discovered enzymes have the potential to be used as catalysts for selective recovery of valuable building blocks from this material. PMID:27940546
NASA Astrophysics Data System (ADS)
Anggoro, Didi Dwi; Kristiana, Nunung
2015-12-01
Ballistic protection equipment, such as a bulletproof vest, is a soldier's most important means of preserving life and survivability in extreme combat conditions. The bulletproof vests are designed to protect the user's chest from injury without disturbing the ability to perform his duties. Aromatic polyamide or aramid fibers known under the trade name Kevlar, Trawon and so is synthetic fiber materials commonly used in the manufacture of bulletproof vests. This synthetic fibers have high tensile strength and ductility. Kevlar is expensive and imported material. In this study, will introduce local natural raw materials, ramie fiber (Boehmeria nivea) which is cheaper and environmentally friendly. It has enough tenacity and tensile strength as a bulletproof vest. This experiment uses two panels, there are Panel A as front surface of Panel B. Panel A is a combination of ramie and epoxide matrix, while panel B is only ramie. From several variations of experimental combinations between Panel A and Panel B, optimal combination obtained with 16 layers of panel A and 31-34 layers of panel B which is able to protect againts cal. 7.65 mm × 17 mm (.32 ACP) bullet fired through pistol .32 Pindad from a distance of 20 meters. Panel with a size of 20 cm × 20 cm has a total thickness between 12,922 to13,745 mm and a total weight between 506,26 to 520,926gram. Scanning electron microscopy (SEM) observations indicated that the porosity and surface area of the ramie fiber is smooth, fiber surfaces showed topography with micropores. SEM also showed well-arranged structure of fibers bonding. Energy Dispersive X-ray (EDX) analysis indicated 100 % carbon contents in ramie fiber. Test result indicates that panel from composite ramie-epoxide can reach the level 1of International Standard of NIJ - 010104. Compared to panel from polyester fiber, the panel from composite ramie-epoxide (0,50-0,52 kg) is lighter weight than panel polyester fiber (1,642 kg).
Polyester polymer concrete overlay.
DOT National Transportation Integrated Search
2013-01-01
Polyester polymer concrete (PPC) was used in a trial application on a section of pavement that suffers from extensive studded tire wear. The purpose of the trial section is to determine if PPC is a possible repair strategy for this type of pavement d...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-26
... of the finished product) include the following: 100% polyester, 100% cotton dyed plain weave, and 62% cotton/38% polyester plain weave (duty rates range from 7 to 12%). In accordance with the Board's...
Initial studies of a flexural member composed of glass-fiber reinforced polyester resin.
DOT National Transportation Integrated Search
1973-01-01
An investigation was conducted of the structural behavior of a flexural member composed entirely of glass-fiber reinforced polyester resin. Three experimental girders were fabricated and load-tested in the laboratory. The physical characteristics of ...
A kinetic study of hydrolysis of polyester elastomer in magnetic tape
NASA Technical Reports Server (NTRS)
Yamamoto, K.; Watanabe, H.
1994-01-01
A useful method for kinetic study of the hydrolysis of polyester elastomer is established which uses the number-average molecular weight. The reasonableness of this method is confirmed and the effect of magnetic particles on hydrolysis is considered.
Radioluminescence of polyester resin modified with acrylic acid and its salts
NASA Astrophysics Data System (ADS)
Szalińska, H.; Wypych, M.; Pietrzak, M.; Szadkowska-Nicze, M.
Polimal-109 polyester resin and its compounds containing acrylic acid and its salts such as: sodium, potassium, magnesium, calcium, barium, iron, cobalt, copper and manganese acrylates were studied by the radioluminescence method, including isothermal luminescence (ITL) at a radiation temperature of 77 K, thermoluminescence (RTL) and spectral distributions of isothermal luminescence. Measurements of optical absorption at 77 K before and after irradiation of the investigated samples were also carried out. The results obtained have shown that metal ions play a significant part in the processes taking place in the polyester matrix under the influence of γ 60Co radiation.
Radiation cured polyester compositions containing metal-properties
NASA Astrophysics Data System (ADS)
Szalińska, H.; Pietrzak, M.; Gonerski, A.
The subject of the studies was unsaturated polyester resin, Polimal-109 and its compositions containing acrylates of: sodium, potassium, calcium, magnesium, barium, manganese, iron, cobalt, copper and acrylic acid. Polyester resin modified with acrylic acid salts was cured with 60Co gamma radiation. Measurements of Vicat softening temperature, water absorption, creep current resistance, volume and surface resistivity, the tangent of dielectric loss angle and permittivity of radiation cured compositions were carried out. The results of the studies presented testify to the fact that the properties of cross-linked polymers alter after ionogenic compounds have been introduced into them.
NASA Astrophysics Data System (ADS)
Ratim, S.; Bonnia, N. N.; Surip, S. N.
2012-07-01
The effects of woven and non-woven kenaf fiber on mechanical properties of polyester composites were studied at different types of perform structures. Composite polyester reinforced kenaf fiber has been prepared via hand lay-up process by varying fiber forms into plain weave, twill and mats structure. The reinforcing efficiency of different fiber structure was compared with control of unreinforced polyester sample. It was found that the strength and stiffness of the composites are largely affected by fiber structure. A maximum value for tensile strength of composite was obtained for twill weave pattern of fiber structure while no significant different for plain weave and mat structure. The elastic modulus of composite has shown some improvement on plain and twill weave pattern. Meanwhile, lower value of modulus elasticity achieved by mats structure composite as well as control sample. The modulus of rupture and impact resistance were also analyzed. The improvement of modulus of rupture value can be seen on plain and twill weave pattern. However impact resistance doesn't show significant improvement in all types of structure except for mat fiber. The mechanical properties of kenaf fiber reinforced polyester composite found to be increased with woven and non-woven fiber structures in composite.
Le, Minh-Tai; Huang, Shyh-Chour
2015-01-01
In the present investigation, we successfully fabricate a hybrid polymer nanocomposite containing epoxy/polyester blend resin and graphene nanoplatelets (GNPs) by a novel technique. A high intensity ultrasonicator is used to obtain a homogeneous mixture of epoxy/polyester resin and graphene nanoplatelets. This mixture is then mixed with a hardener using a high-speed mechanical stirrer. The trapped air and reaction volatiles are removed from the mixture using high vacuum. The hot press casting method is used to make the nanocomposite specimens. Tensile tests, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) are performed on neat, 0.2 wt %, 0.5 wt %, 1 wt %, 1.5 wt % and 2 wt % GNP-reinforced epoxy/polyester blend resin to investigate the reinforcement effect on the thermal and mechanical properties of the nanocomposites. The results of this research indicate that the tensile strength of the novel nanocomposite material increases to 86.8% with the addition of a ratio of graphene nanoplatelets as low as 0.2 wt %. DMA results indicate that the 1 wt % GNP-reinforced epoxy/polyester nanocomposite possesses the highest storage modulus and glass transition temperature (Tg), as compared to neat epoxy/polyester or the other nanocomposite specimens. In addition, TGA results verify thethermal stability of the experimental specimens, regardless of the weight percentage of GNPs. PMID:28793521
EPA is taking final action to approve revisions to the San Diego County Air Pollution Control District (SDCAPCD) portion of the California SIP concerning volatile organic compound (VOC) emissions from polyester resin operations.
2012-01-01
Background To prevent surgical site infection it is desirable to keep bacterial counts low in the operating room air during orthopaedic surgery, especially prosthetic surgery. As the air-borne bacteria are mainly derived from the skin flora of the personnel present in the operating room a reduction could be achieved by using a clothing system for staff made from a material fulfilling the requirements in the standard EN 13795. The aim of this study was to compare the protective capacity between three clothing systems made of different materials – one mixed cotton/polyester and two polyesters - which all had passed the tests according to EN 13795. Methods Measuring of CFU/m3 air was performed during 21 orthopaedic procedures performed in four operating rooms with turbulent, mixing ventilation with air flows of 755 – 1,050 L/s. All staff in the operating room wore clothes made from the same material during each surgical procedure. Results The source strength (mean value of CFU emitted from one person per second) calculated for the three garments were 4.1, 2.4 and 0.6 respectively. In an operating room with an air flow of 755 L/s both clothing systems made of polyester reduced the amount of CFU/m3 significantly compared to the clothing system made from mixed material. In an operating room with air intake of 1,050 L/s a significant reduction was only achieved with the polyester that had the lowest source strength. Conclusions Polyester has a better protective capacity than cotton/polyester. There is need for more discriminating tests of the protective efficacy of textile materials intended to use for operating garment. PMID:23068884
Quantitation of monomers in poly(glyerol-co-diacid) gels using gas chromatography
USDA-ARS?s Scientific Manuscript database
The validation of a gas chromatography (GC) method developed to quantify amounts of starting material from the synthesis of hyperbranched polymers made from glycerol and either succinic acid, glutaric acid, or azelaic acid is described. The GC response to concentration was linear for all starting r...
Flame retardant antibacterial cotton high-loft nonwoven fabrics
USDA-ARS?s Scientific Manuscript database
Flame retardant treated gray cotton fibers were blended with antibacterial treated gray cotton fibers and polyester/polyester sheath/core bicomponent fibers to form high-loft fabrics. The high flame retardancy (FR) and antibacterial property of these high lofts were evaluated by limiting oxygen inde...
NASA Astrophysics Data System (ADS)
Bhaskar, V. Vijaya; Srinivas, Kolla
2017-07-01
Polymer reinforced composites have been replacing most of the engineering material and their applications become more and more day by day. Polymer composites have been analyzing from past thirty five years for their betterment for adapting more applications. This paper aims at the mechanical properties of polyester reinforced with glass fiber composites. The glass fiber is reinforced with polyester in two forms viz Woven Rovings (WRG) and Chopped Strand Mat (CSMG) E-glass fibers. The composites are fabricated by hand lay-up technique and the composites are cut as per ASTM Standard sizes for corresponding tests like flexural, compression and impact tests, so that flexural strength, compression strength, impact strength and inter laminar shear stress(ILSS) of polymer matrix composites are analyzed. From the tests and further calculations, the polyester composites reinforced with Chopped Strand Mat glass fiber have shown better performance against flexural load, compression load and impact load than that of Woven Roving glass fiber.
Plesa, Jocelyn A; Shoup, Kelly; Manole, Mioara D; Hickey, Robert W
2015-03-01
We examine the ability of a depilatory agent, Nair, to dissolve strands of hair, cotton, polyester, and rayon. We conducted a bench laboratory study in which we tested single strands of hair and natural and synthetic fibers under static tension with a 10.8-g weight and application of Nair. The dependent variable, time until breakage, was recorded. If the strand did not break within 8 hours, the experiment was discontinued. Three types of hair were tested (thin, medium, and thick, as recorded per diameter). Three types of natural and synthetic fibers were tested (cotton, polyester, and rayon). All types of hair had breakage within 10 minutes of the Nair application. Synthetic materials had no breakage after 8 hours with application of Nair. Depilatory agents dissolve hair under tension within minutes. However, they do not dissolve cotton, polyester, and rayon even after many hours of application. Copyright © 2014 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.
Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds viamore » a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.« less
Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; ...
2015-07-10
Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds viamore » a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.« less
NASA Astrophysics Data System (ADS)
Orgon, Casey Roy
Corrosion is the decomposition of metal and metal alloys which threatens the integrity of man-made structures. One of the more efficient methods of delaying the corrosion process in metals is by coatings. In this work, the durability of two polyester powder coatings were investigated for corrosion protection of AA-2024-T3. Polyester powder coatings crosslinked by either triglycidyl isocyanurate (TGIC) or beta-hydroxyalkyl amide (HAA) compounds were prepared and investigated for barrier protection of metal substrates by electrochemical impedance spectroscopy (EIS). Polyester-TGIC coatings were found to provide better long-term protection, which can be attributed to the increased mechanical strength and higher concentration of crosslinking in the coating films. Additionally, the polyester powder coatings, along with a fusion bonded epoxy (FBE) were investigated for their compatibility as a topcoat for magnesium-rich primers (MgRP). Under proper application conditions, powder topcoats were successfully applied to cured MgRP while corrosion protection mechanisms of each system were maintained.
Friction and morphology of magnetic tapes in sliding contact with nickel-zinc ferrite
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.; Bhushan, B.
1984-01-01
Friction and morphological studies were conducted with magnetic tapes containing a Ni-Zn ferrite hemispherical pin in laboratory air at a relative humidity of 40 percent and at 23 C. The results indicate that the binder plays a significant role in the friction properties, morphology, and microstructure of the tape. Comparisons were made with four binders: nitrocellulose; poly (vinyledene) chloride; cellulose acetate; and hydroxyl-terminated, low molecular weight polyester added to the base polymer, polyester-polyurethane. The coefficient of friction was lowest for the tape with the nitrocellulose binder and increased in the order hydroxylterminated, low molecular weight polyester resin; poly (vinyledene) chloride; and cellulose acetate. The degree of enclosure of the oxide particles by the binder was highest for hydroxyl-terminated, low molecular weight polyester and decreased in the order cellulose acetate, poly (vinyledene) chloride, and nitrocellulose. The nature of deformation of the tape was a factor in controlling friction. The coefficient of friction under elastic contact conditions was considerably lower than under conditions that produced plastic contacts.
2015-01-01
Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials. PMID:27162971
Maleate/vinyl ether UV-cured coatings: Effects of composition on curing and properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noren, G.K.
1996-10-01
The effect of the composition of the maleate polyester and the vinyl ether terminated compound on their UV-curing and properties has been investigated. Linear unsaturated polyester resins based on maleic anhydride and 1,5-pentane diol were synthesized. The molecular weight of the unsaturated polyesters was varied by changing the ratio of maleic anhydride to 1,5-pentane diol and the double bond equivalent weight was varied by replacing maleic anhydride with succinic anhydride. Coating formulations containing these unsaturated polyesters, triethylene glycol divinyl ether and a free radical photoinitiator were crosslinked in the presence of UV light. The coatings were very brittle, exhibiting tensilemore » strengths in the range of 1.5-4.0 MPa and elongations of only 3-7%. Diethyl maleate and isobutyl vinyl ether were effective diluents for reducing viscosity but reduced the cure speed. A vinyl ether urethane oligomer was synthesized and enhanced the flexibility and toughness of the coatings when substituted for triethylene glycol divinyl ether.« less
Polyester: simulating RNA-seq datasets with differential transcript expression.
Frazee, Alyssa C; Jaffe, Andrew E; Langmead, Ben; Leek, Jeffrey T
2015-09-01
Statistical methods development for differential expression analysis of RNA sequencing (RNA-seq) requires software tools to assess accuracy and error rate control. Since true differential expression status is often unknown in experimental datasets, artificially constructed datasets must be utilized, either by generating costly spike-in experiments or by simulating RNA-seq data. Polyester is an R package designed to simulate RNA-seq data, beginning with an experimental design and ending with collections of RNA-seq reads. Its main advantage is the ability to simulate reads indicating isoform-level differential expression across biological replicates for a variety of experimental designs. Data generated by Polyester is a reasonable approximation to real RNA-seq data and standard differential expression workflows can recover differential expression set in the simulation by the user. Polyester is freely available from Bioconductor (http://bioconductor.org/). jtleek@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology.
Lenz, Robert W; Marchessault, Robert H
2005-01-01
The discovery and chemical identification, in the 1920s, of the aliphatic polyester: poly(3-hydroxybutyrate), PHB, as a granular component in bacterial cells proceeded without any of the controversies which marked the recognition of macromolecules by Staudinger. Some thirty years after its discovery, PHB was recognized as the prototypical biodegradable thermoplastic to solve the waste disposal challenge. The development effort led by Imperial Chemical Industries Ltd., encouraged interdisciplinary research from genetic engineering and biotechnology to the study of enzymes involved in biosynthesis and biodegradation. From the simple PHB homopolyester discovered by Maurice Lemoigne in the mid-twenties, a family of over 100 different aliphatic polyesters of the same general structure has been discovered. Depending on bacterial species and substrates, these high molecular weight stereoregular polyesters have emerged as a new family of natural polymers ranking with nucleic acids, polyamides, polyisoprenoids, polyphenols, polyphosphates, and polysaccharides. In this historical review, the chemical, biochemical and microbial highlights are linked to personalities and locations involved with the events covering a discovery timespan of 75 years.
Polyesters from microorganisms.
Kim, Y B; Lenz, R W
2001-01-01
Bacterial polyesters have been found to have useful properties for applications as thermoplastics, elastomers, and adhesives and are biodegradable and biocompatible. Poly(3-hydroxyalkanoates) (PHAs) and poly(beta-malate) are the most representative polyesters synthesized by microorganisms. PHAs containing a wide variety of repeating units can be produced by bacteria, including those containing many types of pendant functional groups which can be synthesized by microorganisms that are grown on unnatural organic substrates. Poly(beta-malate) is of interest primarily for medical applications, especially for drug delivery systems. In this chapter, the bacterial production and properties of poly(3-hydroxyalkanoates) and poly(beta-malate) are described with emphasis on the former.
Antifungal activity of fabrics knitted by metalized Silver/Polyester composite yarn
NASA Astrophysics Data System (ADS)
Özkan, İ.; Duru Baykal, P.
2017-10-01
In this study, antifungal properties of fabric knitted from metalized silver/polyester composite yarn were investigated. Intermingling is an alternative technique for yarn blending process. Yarns having different features can be combined by feeding the same intermingling jet. This process is defined as commingling. In the study, intermingling process was used to produce metalized silver/polyester composite yarn. Commingled yarns were knitted to single jersey fabrics by IPM brand sample type circular knitting machine. Antifungal activity test was applied to samples against Aspergillus Niger according to AATCC 30 test procedure. It has been identified that the application provides antifungal activity to fabric.
NASA Technical Reports Server (NTRS)
Niccum, R. J.
1972-01-01
A series of candidate materials for use in large balloons was tested and their tensile and shear strength capabilities were compared. The tests were done in a cold box at -68 C (-90 F). Some of these materials were fabricated on a special machine called the flying thread loom. This machine laminates various patterns of polyester yarn to a thin polyester film. The results show that the shear strength of materials changes with the angle selected for the transverse yarns, and substantial increases in biaxial load carrying capabilities, compared to materials formerly used, are possible. The loom capabilities and the test methods are discussed.
Instrumental physical analysis of microwaved glycerol citrate foams
USDA-ARS?s Scientific Manuscript database
Solid polyester glyceride polymers generated by microwave cooking were further cured in a conventional oven at 100 oC for 0, 6, 24, 48, or 72 hr and their physical properties were tested. Curing polyester glycerides resulted in decreased moisture content (MC), altered color, increased hydrated polym...
Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete
Sugama, Toshifumi; Kukacka, Lawrence E.; Horn, William H.
1985-01-01
Quick setting polymer concrete compositions with excellent structural properties are disclosed; these polymer concrete compositions are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate, which may be wet, and with a source of bivalent metallic ions.
Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete
Sugama, T.; Kukacka, L.E.; Horn, W.H.
1981-11-04
Quick setting polymer concrete compositions which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.
NASA Astrophysics Data System (ADS)
Patel, Vinay Kumar; Chauhan, Shivani; Katiyar, Jitendra Kumar
2018-04-01
In this study, a novel natural fiber i.e. Sour-weed botanically known as ‘Rumex acetosella’ has been first time introduced as natural reinforcements to polyester matrix. The natural fiber based polyester composites were fabricated by hand lay-up technique using different sizes and different weight percentages. In Sour-weed/Polyester composites, physical (density, water absorption and hardness), mechanical properties (tensile and impact properties) and wear properties (sand abrasion and sliding wear) were investigated for different sizes of sour weed of 0.6 mm, 5 mm, 10 mm, 15 mm and 20 mm at 3, 6 and 9 weight percent loading, respectively in polyester matrix. Furthermore, on average value of results, the multi-criteria optimization technique i.e. TOPSIS was employed to decide the ranking of the composites. From the optimized results, it was observed that Sour-weed composite reinforced with fiber’s size of 15 mm at 6 wt% loading demonstrated the best ranked composite exhibiting best overall properties as average tensile strength of 34.33 MPa, average impact strength of 10 Joule, average hardness of 12 Hv, average specific sand abrasion wear rate of 0.0607 mm3 N‑1m‑1, average specific sliding wear rate of 0.002 90 mm3 N‑1m‑1, average percentage of water absorption of 3.446% and average density of 1.013 among all fabricated composites.
Microfabricated polyester conical microwells for cell culture applications†
Selimović, Šeila; Piraino, Francesco; Bae, Hojae; Rasponi, Marco; Redaelli, Alberto
2012-01-01
Over the past few years there has been a great deal of interest in reducing experimental systems to a lab-on-a-chip scale. There has been particular interest in conducting high-throughput screening studies using microscale devices, for example in stem cell research. Microwells have emerged as the structure of choice for such tests. Most manufacturing approaches for microwell fabrication are based on photolithography, soft lithography, and etching. However, some of these approaches require extensive equipment, lengthy fabrication process, and modifications to the existing microwell patterns are costly. Here we show a convenient, fast, and low-cost method for fabricating microwells for cell culture applications by laser ablation of a polyester film coated with silicone glue. Microwell diameter was controlled by adjusting the laser power and speed, and the well depth by stacking several layers of film. By using this setup, a device containing hundreds of microwells can be fabricated in a few minutes to analyze cell behavior. Murine embryonic stem cells and human hepatoblastoma cells were seeded in polyester microwells of different sizes and showed that after 9 days in culture cell aggregates were formed without a noticeable deleterious effect of the polyester film and glue. These results show that the polyester microwell platform may be useful for cell culture applications. The ease of fabrication adds to the appeal of this device as minimal technological skill and equipment is required. PMID:21614380
Dipeptide-based Polyphosphazene and Polyester Blends for Bone Tissue Engineering
Deng, Meng; Nair, Lakshmi S.; Nukavarapu, Syam P.; Jiang, Tao; Kanner, William A.; Li, Xudong; Kumbar, Sangamesh G.; Weikel, Arlin L.; Krogman, Nicholas R.; Allcock, Harry R.; Laurencin, Cato T.
2010-01-01
Polyphosphazene-polyester blends are attractive materials for bone tissue engineering applications due to their controllable degradation pattern with non-toxic and neutral pH degradation products. In our ongoing quest for an ideal completely miscible polyphosphazene-polyester blend system, we report synthesis and characterization of a mixed-substituent biodegradable polyphosphazene poly[(glycine ethyl glycinato)1(phenyl phenoxy)1phosphazene] (PNGEG/PhPh) and its blends with a polyester. Two dipeptide-based blends namely 25:75 (Matrix1) and 50:50 (Matrix2) were produced at two different weight ratios of PNGEG/PhPh to poly(lactic acid-glycolic acid) (PLAGA). Blend miscibility was confirmed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Both blends resulted in higher tensile modulus and strength than the polyester. The blends showed a degradation rate in the order of Matrix2 < Matrix1 < PLAGA in phosphate buffered saline at 37°C over 12 weeks. Significantly higher pH values of degradation media were observed for blends compared to PLAGA confirming the neutralization of PLAGA acidic degradation by polyphosphazene hydrolysis products. The blend components PLAGA and polyphosphazene exhibited a similar degradation pattern as characterized by the molecular weight loss. Furthermore, blends demonstrated significantly higher osteoblast growth rates compared to PLAGA while maintaining osteoblast phenotype over a 21-day culture. Both blends demonstrated improved biocompatibility in a rat subcutaneous implantation model compared to PLAGA over 12 weeks. PMID:20334909
Microfiber Masses Recovered from Conventional Machine Washing of New or Aged Garments.
Hartline, Niko L; Bruce, Nicholas J; Karba, Stephanie N; Ruff, Elizabeth O; Sonar, Shreya U; Holden, Patricia A
2016-11-01
Synthetic textiles can shed numerous microfibers during conventional washing, but evaluating environmental consequences as well as source-control strategies requires understanding mass releases. Polyester apparel accounts for a large proportion of the polyester market, and synthetic jackets represent the broadest range in apparel construction, allowing for potential changes in manufacturing as a mitigation measure to reduce microfiber release during laundering. Here, detergent-free washing experiments were conducted and replicated in both front- and top-load conventional home machines for five new and mechanically aged jackets or sweaters: four from one name-brand clothing manufacturer (three majority polyester fleece, and one nylon shell with nonwoven polyester insulation) and one off-brand (100% polyester fleece). Wash water was filtered to recover two size fractions (>333 μm and between 20 and 333 μm); filters were then imaged, and microfiber masses were calculated. Across all treatments, the recovered microfiber mass per garment ranged from approximately 0 to 2 g, or exceeding 0.3% of the unwashed garment mass. Microfiber masses from top-load machines were approximately 7 times those from front-load machines; garments mechanically aged via a 24 h continuous wash had increased mass release under the same wash protocol as new garments. When published wastewater treatment plant influent characterization and microfiber removal studies are considered, washing synthetic jackets or sweaters as per this study would account for most microfibers entering the environment.
Omer, Elsa; Cariou, Ronan; Remaud, Gérald; Guitton, Yann; Germon, Hélène; Hill, Paul; Dervilly-Pinel, Gaud; Le Bizec, Bruno
2018-03-08
An untargeted strategy aiming at identifying non-intentionally added substances (NIAS) migrating from coatings was developed. This innovative approach was applied to two polyester-polyurethane lacquers, for which suppliers previously provided the identity of the monomers involved. Lacquers were extracted with acetonitrile and analyzed by liquid chromatography-high resolution mass spectrometry (LC-HRMS). Data, acquired in the full scan mode, were processed using an open-source R-environment (xcms and CAMERA packages) to list the detected features and deconvolute them in groups related to individual compounds. The most intense groups, accounting for more than 85% of cumulated feature intensities, were then investigated. A homemade database, populated with predicted polyester oligomer combinations from a relevant selection of diols and diacids, enabled highlighting the presence of 14 and 17 cyclic predicted polyester oligomers in the two lacquers, including three mutual combinations explained by common known monomers. Combination hypotheses were strengthened by chromatographic considerations and by the investigation of fragmentation patterns. Regarding unpredicted migrating substances, four monomers were hypothesised to explain several polyester or caprolactam oligomer series. Finally, considering both predicted and tentatively elucidated unpredicted oligomers, it was possible to assign hypotheses to features representing up to 82% and 90% of the cumulated intensities in the two lacquers, plus 9% and 3% (respectively) originating from the procedural blank. Graphical abstract Elucidation of non-intentionally added substances.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-03
... compound (VOC) emissions from organic chemical manufacturing, soil decontamination, and polyester resin... 74.29 Soil Decontamination Operations 04/08/08 01/10/10 PCAPCD 243 Polyester Resin Operations..... 04....29 establishes procedures for the treatment of soil contaminated with gasoline, diesel fuel or jet...
USDA-ARS?s Scientific Manuscript database
This paper reports a convenient one-pot method integrating a novel solvent-exchange method into in situ melt polycondensation to fabricate unsaturated polyester nanocomposites containing functionalized graphene sheets (FGS). A novel solvent-exchange method was first developed to prepare graphene oxi...
Code of Federal Regulations, 2011 CFR
2011-01-01
... granite weave, which is a blended fabric of 50 percent cotton and 50 percent polyester and weighs within... 50 percent polyester fibers. (b) Cloth material that is 24 inches by 36 inches and has been hemmed to...
USDA-ARS?s Scientific Manuscript database
This study aims to evaluate plant fibers that were surface activated with NaOH and corona discharge before incorporating in ortho unsaturated polyester-based fiber composites. It demonstrates the potential use of lignocellulosic particles, especially eucalyptus that presented the higher values for a...
Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete
Sugama, T.; Kukacka, L.E.; Horn, W.H.
1983-05-13
Quick setting polymer concrete compositions are described which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.
Enhanced cellular transport and drug targeting using dendritic nanostructures
NASA Astrophysics Data System (ADS)
Kannan, R. M.; Kolhe, Parag; Kannan, Sujatha; Lieh-Lai, Mary
2003-03-01
Dendrimers and hyperbranched polymers possess highly branched architectures, with a large number of controllable, tailorable, peripheral' functionalities. Since the surface chemistry of these materials can be modified with relative ease, these materials have tremendous potential in targeted drug delivery. The large density of end groups can also be tailored to create enhanced affinity to targeted cells, and can also encapsulate drugs and deliver them in a controlled manner. We are developing tailor-modified dendritic systems for drug delivery. Synthesis, drug/ligand conjugation, in vitro cellular and in vivo drug delivery, and the targeting efficiency to the cell are being studied systematically using a wide variety of experimental tools. Results on PAMAM dendrimers and polyol hyperbranched polymers suggest that: (1) These materials complex/encapsulate a large number of drug molecules and release them at tailorable rates; (2) The drug-dendrimer complex is transported very rapidly through a A549 lung epithelial cancel cell line, compared to free drug, perhaps by endocytosis. The ability of the drug-dendrimer-ligand complexes to target specific asthma and cancer cells is currently being explored using in vitro and in vivo animal models.
Son, Suhyun; Shin, Eeseul; Kim, Byeong-Su
2014-02-10
Light-responsive polymeric micelles have emerged as site-specific and time-controlled systems for advanced drug delivery. Spiropyran (SP), a well-known photochromic molecule, was used to initiate the ring-opening multibranching polymerization of glycidol to afford a series of hyperbranched polyglycerols (SP-hb-PG). The micelle assembly and disassembly were induced by an external light source owing to the reversible photoisomerization of hydrophobic SP to hydrophilic merocyanine (MC). Transmission electron microscopy, atomic force microscopy, UV/vis spectroscopy, and dynamic light scattering demonstrated the successful assembly and disassembly of SP-hb-PG micelles. In addition, the critical micelle concentration (CMC) was determined through the fluorescence analysis of pyrene to confirm the amphiphilicity of respective SP-hb-PGn (n = 15, 29, and 36) micelles, with CMC values ranging from 13 to 20 mg/L, which is correlated to the length of the polar polyglycerol backbone. Moreover, the superior biocompatibility of the prepared SP-hb-PG was evaluated using WI-38 cells and HeLa cells, suggesting the prospective applicability of the micelles in smart drug delivery systems.
Hyperbranched polyglycerols at the biointerface
NASA Astrophysics Data System (ADS)
Moore, Eli; Thissen, Helmut; Voelcker, Nicolas H.
2013-08-01
The control over biointerfacial interactions is the key to a broad range of biomedical applications, ranging from implantable devices to drug delivery and nanomedicine. In many of these applications, coatings are required that reduce or prevent non-specific interactions with the biological environment, while at the same time presenting specific bioactive signals. Whilst surface coatings based on polymers such as poly(ethylene glycol) (PEG) have been used successfully, many limitations persist in regard to the biocompatibility, stability and functionality of state-of-the-art polymer coatings. Most of these limitations are related to the fact that, typically, linear polymers are used with associated limited chemical functionality. Here, we examine the development of hyperbranched polyglycerols (HPGs) as promising candidates for the replacement of traditional linear polymers, such as the chemically analogous PEG, for the control of biointerfacial interactions. HPGs are highly branched globular molecules that exhibit a high valency, allow easy access to a variety of functionalities and can present biologically active signals. In this review, a comprehensive overview is provided with respect to the history, synthetic strategies, modifications and applications of HPGs.
Silver-embedded modified hyperbranched epoxy/clay nanocomposites as antibacterial materials.
Roy, Buddhadeb; Bharali, Pranjal; Konwar, B K; Karak, Niranjan
2013-01-01
Silver-embedded modified hyperbranched epoxy/clay nanocomposites were prepared at different wt.% of octadecyl amine-modified montmorillonite at a constant silver concentration (1 wt.%). UV-visible, XRD and TEM studies confirmed the formation of silver nanoparticles. Compared to the system without silver and clay, the gloss from 70° to 94°, scratch hardness from 4 to 5.8 kg, impact strength from 60 to 90 cm, tensile strength from 8.5 to 15.5 MPa, adhesive strength from 5 to 7.1 × 10(9)N/m, flexibility from >6 to <4mm, and thermostability from 230 to 260 °C increased for the modified system. Resistance to aqueous 10% HCl, 0.5% NaOH, 10% NaCl also increased. The nanocomposites showed antibacterial activity in well diffusion assays against Staphylococcus aureus (ATCC11632), Bacillus subtilis (ATCC11774), Escherichia coli (MTCC40), Pseudomonas aeruginosa (MTCC7814) and Klebsiella pneumoniae (ATCC10031). The results showed that these nanocomposites have potential to be used as antimicrobial materials. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hiraike, Yusuke; Saito, Makoto; Niwa, Hideharu; Kobayashi, Masaki; Harada, Yoshihisa; Oshima, Masaharu; Kim, Jaehong; Nabae, Yuta; Kakimoto, Masa-Aki
2015-01-01
Carbon-based cathode catalysts derived from a hyperbranched iron phthalocyanine polymer (HB-FePc) were characterized, and their active-site formation mechanism was studied by synchrotron-based spectroscopy. The properties of the HB-FePc catalyst are compared with those of a catalyst with high oxygen reduction reaction (ORR) activity synthesized from a mixture of iron phthalocyanine and phenolic resin (FePc/PhRs). Electrochemical measurements demonstrate that the HB-FePc catalyst does not lose its ORR activity up to 900°C, whereas that of the FePc/PhRs catalyst decreases above 700°C. Hard X-ray photoemission spectra reveal that the HB-FePc catalysts retain more nitrogen components than the FePc/PhRs catalysts between pyrolysis temperatures of 600°C and 800°C. This is because the linked structure of the HB-FePc precursor has high thermostability against nitrogen desorption. Consequently, effective doping of active nitrogen species into the sp (2) carbon network of the HB-FePc catalysts may occur up to 900°C.
Wu, Ding-Tao; Meng, Lan-Zhen; Wang, Lan-Ying; Lv, Guang-Ping; Cheong, Kit-Leong; Hu, De-Jun; Guan, Jia; Zhao, Jing; Li, Shao-Ping
2014-09-22
A polysaccharide, named as cordysinan, extracted from natural Cordyceps sinensis, was identified as a hyperbranched heteropolysaccharide from the results of FT-IR, GC-MS, and carbohydrate analysis by carbohydrate gel electrophoresis analysis, as well as the degree of branching of cordysinan was 43.3%. The solution properties of cordysinan were investigated by using size exclusion chromatography coupled with multi-angle laser light scattering and triple detector array, respectively. The molecular weights, the radius of gyration and the intrinsic viscosity of cordysinan were determined as 22.45±0.26 kDa and 22.37 kDa, 15.4±2.4 nm and 1.41 mL/g, respectively. By applying the polymer solution theory, the exponent (ν and α) values of
Luo, Cheng-Qiong; Jang, Yoonjeong; Xing, Lei; Cui, Peng-Fei; Qiao, Jian-Bin; Lee, Ah Young; Kim, Hyeon-Jeong; Cho, Myung-Haing; Jiang, Hu-Lin
2016-11-20
Lung cancer has been a leading cause of cancer mortality worldwide and aerosol-mediated gene therapy endows numerous advantages compared to other traditional modalities. Here, we reported a folic acid (FA)-modified hyperbranched polyspermine (HPSPE) with prominent biocompatibility for lung cancer cell targeted gene therapy. FA was decorated to the HPSPE via an amidation reaction and the physicochemical properties of nanoplexes formed with DNA were characterized. Gel electrophoresis study elucidated that the designed polymer was capable to condense DNA and protect it from degradation by DNase I. Cell viability and transfection efficiency assay in vitro and in vivo indicated its increased transfection performance with lower toxicity. Furthermore, reduced tumor numbers and down-regulation of Akt1 protein after aerosol treatment containing FA-HPSPE/shAkt1 complexes proved its therapeutic potential for lung cancer suppression. Results obtained in this study suggested that FA-HPSPE with highly biocompatibility and targeting capability while forming complexes with shAkt1 and administrated through noninvasive aerosol could be prospective for inhibiting lung tumorigenesis. Copyright © 2016 Elsevier B.V. All rights reserved.
High-performance functional ecopolymers based on flora and fauna.
Kaneko, Tatsuo
2007-01-01
Liquid crystalline (LC) polymers of rigid monomers based on flora and fauna were prepared by in-bulk polymerization. Para-coumaric (p-coumaric) acid [4-hydroxycinnamic acid (4HCA)] and its derivatives were selected as phytomonomers and bile acids were selected as biomonomers. The 4HCA homopolymer showed a thermotropic LC phase only in a state of low molecular weight. The copolymers of 4HCA with bile acids such as lithocholic acid (LCA) and cholic acid (CA) showed excellent cell compatibilities but low molecular weights. However, P(4HCA-co-CA)s allowed LC spinning to create molecularly oriented biofibers, presumably due to the chain entanglement that occurs during in-bulk chain propagation into hyperbranching architecture. P[4HCA-co-3,4-dihydroxycinnamic acid (DHCA)]s showed high molecular weight, high mechanical strength, high Young's modulus, and high softening temperature, which may be achieved through the entanglement by in-bulk formation of hyperbranching, rigid structures. P(4HCA-co-DHCA)s showed a smooth hydrolysis, in-soil degradation, and photo-tunable hydrolysis. Thus, P(4HCA-co-DHCA)s might be applied as an environmentally degradable plastic with extremely high performance.
Xu, Qian; Guo, Linru; A, Sigen; Gao, Yongsheng; Zhou, Dezhong; Greiser, Udo; Creagh-Flynn, Jack; Zhang, Hong; Dong, Yixiao; Cutlar, Lara; Wang, Fagang; Liu, Wenguang; Wang, Wei; Wang, Wenxin
2018-02-28
Adjusting biomaterial degradation profiles to match tissue regeneration is a challenging issue. Herein, biodegradable hyperbranched poly(β-amino ester)s (HP-PBAEs) were designed and synthesized via "A2 + B4" Michael addition polymerization, and displayed fast gelation with thiolated hyaluronic acid (HA-SH) via a "click" thiol-ene reaction. HP-PBAE/HA-SH hydrogels showed tunable degradation profiles both in vitro and in vivo using diamines with different alkyl chain lengths and poly(ethylene glycol) diacrylates with varied PEG spacers. The hydrogels with optimized degradation profiles encapsulating ADSCs were used as injectable hydrogels to treat two different types of humanized excisional wounds - acute wounds with faster healing rates and diabetic wounds with slower healing and neo-tissue formation. The fast-degrading hydrogel showed accelerated wound closure in acute wounds, while the slow-degrading hydrogel showed better wound healing for diabetic wounds. The results demonstrate that the new HP-PBAE-based hydrogel in combination with ADSCs can be used as a well-controlled biodegradable skin substitute, which demonstrates a promising approach in the treatment of various types of skin wounds.
Synthesis of lipase-catalysed silicone-polyesters and silicone-polyamides at elevated temperatures.
Frampton, Mark B; Zelisko, Paul M
2013-10-18
More and more enzymes are being explored as alternatives to conventional catalysts in chemical reactions. To utilize these biocatalysts to their fullest, it is incumbent on researchers to gain a complete understanding of the reaction conditions that particular enzymes will tolerate. To this end siloxane-containing polyesters and polyamides have been produced via N435-mediated catalysis at temperatures well above the normal denaturation temperature for free CalB. Low molecular weight disiloxane-based acceptors release the enzyme from its acylated state with equal proficiency while longer chain siloxanes favours polyester synthesis. The thermal tolerance of the enzyme catalyst is increased using longer chain diesters and generally more hydrophobic substrates.
21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.
Code of Federal Regulations, 2014 CFR
2014-04-01
... section, partial phosphoric acid esters of polyester resins are prepared by the reaction of trimellitic anhydride with 2,2-dimethyl-1,3-propanediol followed by reaction of the resin thus produced with phosphoric... characterizing the type of food and under the conditions of time and temperature characterizing the conditions of...
Bio-Based Nanocomposites: An Alternative to Traditional Composites
ERIC Educational Resources Information Center
Tate, Jitendra S.; Akinola, Adekunle T.; Kabakov, Dmitri
2009-01-01
Polymer matrix composites (PMC), often referred to as fiber reinforced plastics (FRP), consist of fiber reinforcement (E-glass, S2-glass, aramid, carbon, or natural fibers) and polymer matrix/resin (polyester, vinyl ester, polyurethane, phenolic, and epoxies). Eglass/ polyester and E-glass/vinyl ester composites are extensively used in the marine,…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-28
... antidumping duty orders on Certain Polyester Staple Fiber from the People's Republic of China with respect to... Certain Polyester Staple Fiber from the People's Republic of China with respect to two exporters and on... exporter. Period to be reviewed Antidumping Duty Proceedings Japan: Certain Large Diameter Carbon and Alloy...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-22
... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Polyester Staple Fiber From... staple fiber (PSF) from Taiwan. The period of review (POR) is May 1, 2011, through April 30, 2012. The.... DATES: Effective Date: March 22, 2013. FOR FURTHER INFORMATION CONTACT: Bryan Hansen or Minoo Hatten, AD...
The Environmental Technology Verification report discusses the technology and performance of the AeroStar "C-Series" Polyester Panel Filter air filter for dust and bioaerosol filtration manufactured by Filtration Group. The pressure drop across the filter was 126 Pa clean and 267...
The use of supercritical carbon dioxide as a reaction medium for polyester synthesis is hindered by the low solubility of diols in CO2. However, it has been previously demonstrated that fluorinated compounds can exhibit greater miscibility with carbon dioxide than t...
USDA-ARS?s Scientific Manuscript database
The adsorption kinetics and isotherms of alkyl-dimethyl-benzyl-ammonium chloride (ADBAC), a cationic surfactant commonly employed as an antimicrobial agent, on hydroentangled nonwoven fabrics (applicable for wipes) including raw cotton, bleached cotton, and their blends with polyester (PES) were stu...
Thread angle dependency on flame spread shape over kenaf/polyester combined fabric
NASA Astrophysics Data System (ADS)
Azahari Razali, Mohd; Sapit, Azwan; Nizam Mohammed, Akmal; Nor Anuar Mohamad, Md; Nordin, Normayati; Sadikin, Azmahani; Faisal Hushim, Mohd; Jaat, Norrizam; Khalid, Amir
2017-09-01
Understanding flame spread behavior is crucial to Fire Safety Engineering. It is noted that the natural fiber exhibits different flame spread behavior than the one of the synthetic fiber. This different may influences the flame spread behavior over combined fabric. There is a research has been done to examined the flame spread behavior over kenaf/polyester fabric. It is seen that the flame spread shape is dependent on the thread angle dependency. However, the explanation of this phenomenon is not described in detail in that research. In this study, explanation about this phenomenon is given in detail. Results show that the flame spread shape is dependent on the position of synthetic thread. For thread angle, θ = 0°, the polyester thread is breaking when the flame approach to the thread and the kenaf thread tends to move to the breaking direction. This behavior produces flame to be ‘V’ shape. However, for thread angle, θ = 90°, the polyester thread melts while the kenaf thread decomposed and burned. At this angle, the distance between kenaf threads remains constant as flame approaches.
Goeschen, Catrin
2013-01-01
Summary Manufactured polymer materials are used in increasingly demanding applications, but their lifetime is strongly influenced by environmental conditions. In particular, weathering and ageing leads to dramatic changes in the properties of the polymers, which results in decreased service life and limited usage. Despite the heavy reliance of our society on polymers, the mechanism of their degradation upon exposure to environmental oxidants is barely understood. In this work, model systems of important structural motifs in commercial high-performing polyesters were used to study the reaction with the night-time free radical oxidant NO3 • in the absence and presence of other radical and non-radical oxidants. Identification of the products revealed ‘hot spots’ in polyesters that are particularly vulnerable to attack by NO3 • and insight into the mechanism of oxidative damage by this environmentally important radical. It is suggested that both intermediates as well as products of these reactions are potentially capable of promoting further degradation processes in polyesters under environmental conditions. PMID:24204400
Napper, Imogen E; Thompson, Richard C
2016-11-15
Washing clothes made from synthetic materials has been identified as a potentially important source of microscopic fibres to the environment. This study examined the release of fibres from polyester, polyester-cotton blend and acrylic fabrics. These fabrics were laundered under various conditions of temperature, detergent and conditioner. Fibres from waste effluent were examined and the mass, abundance and fibre size compared between treatments. Average fibre size ranged between 11.9 and 17.7μm in diameter, and 5.0 and 7.8mm in length. Polyester-cotton fabric consistently shed significantly fewer fibres than either polyester or acrylic. However, fibre release varied according to wash treatment with various complex interactions. We estimate over 700,000 fibres could be released from an average 6kg wash load of acrylic fabric. As fibres have been reported in effluent from sewage treatment plants, our data indicates fibres released by washing of clothing could be an important source of microplastics to aquatic habitats. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ogila, K. O.; Yang, W.; Shao, M.; Tan, J.
2017-05-01
Unsaturated Polyester Resin is a versatile and cost efficient thermosetting plastic whose application in rotational molding is currently limited by its relatively high initial viscosity and heat of reaction. These material characteristics result in uneven material distribution, poor surface finish and imperfections in the moldings especially when large wall thicknesses are required. The current work attempts to remedy these shortcomings through the development of a continuous multi-shot system which adds predetermined loads of unsaturated polyester resin into a rotating mold at various intervals. As part of this system, a laboratory-scale uniaxial rotational molding machine was used to produce Unsaturated Polyester Resin moldings in single and double shots. Optimal processing conditions were determined through visual studies, three dimensional microscopic studies, thickness distribution analysis and Fourier Transform Infrared spectroscopy. Volume filling fractions of 0.049-0.065, second shot volumes of 0.5-0.75 from the first shot, rotational speeds of 15-20 rpm and temperatures of 30-50 °C resulted in moldings of suitable quality on both the inner and outer surfaces.
Soil-release behaviour of polyester fabrics after chemical modification with polyethylene glycol
NASA Astrophysics Data System (ADS)
Miranda, T. M. R.; Santos, J.; Soares, G. M. B.
2017-10-01
The fibres cleanability depends, among other characteristics, on their hydrophilicity. Hydrophilic fibres are easy-wash materials but hydrophobic fibres are difficult to clean due to their higher water-repellent surfaces. This type of surfaces, like polyester (PET), produce an accumulation of electrostatic charges, which favors adsorption and retention of dirt. Thus, the polyester soil-release properties can be increased by finishing processes that improve fiber hydrophilicity. In present study, PET fabric modification was described by using poly(ethylene glycol) (PEG) and N,N´-dimethylol-4,5-dihydroxyethylene urea (DMDHEU) chemically modified resin. Briefly, the modification process was carried out in two steps, one to hydrolyse the polyester and create hydroxyl and carboxylic acid groups on the surface and other to crosslink the PEG chains. The resulting materials were characterized by contact angle, DSC and FTIR-ATR methods. Additionally, the soil release behavior and the mechanical properties of modified PET were evaluated. For the best process conditions, the treated PET presented 0° contact angle, grade 5 stain release and acceptable mechanical performance.
NASA Astrophysics Data System (ADS)
Zohdy, Maged H.
2005-06-01
The effect of hydrazine hydrate (HZH) treatment and/or gamma irradiation on the dyeing, mechanical and thermal properties of polyester fabrics (PET) was studied. The different factors that may affect the dyeing performance, such as concentrations of HZH, benzyl alcohol and pH values, were investigated. In this regard, the colour strength of untreated polyester fabrics dyed with the dyestuffs Dispersol blue BR, Dispersol orange B2R and Dispersol red B2B was found to be 10.34, 10.76 and 10.12 compared to 24.61, 24.90 and 23.00 in the case of irradiated and HZH-treated polyester fabrics, respectively. These colour strength values were achieved by preirradiation at a dose of 75 kGy followed by treatment with 15 ml l-1 of HZH. Thermogravimetric analysis (TGA) showed that the thermal decomposition stability was improved by using gamma irradiation and the treatment with HZH as indicated by the calculated activation energies. FT-IR spectroscopy showed that the treatment with HZH acts as cationizer prior to dyeing with disperse dyes.
Release of polyester and cotton fibers from textiles in machine washings.
Sillanpää, Markus; Sainio, Pirjo
2017-08-01
Microplastics are widely spread in the environment, which along with still increasing production have aroused concern of their impacts on environmental health. The objective of this study is to quantify the number and mass of two most common textile fibers discharged from sequential machine washings to sewers. The number and mass of microfibers released from polyester and cotton textiles in the first wash varied in the range 2.1 × 10 5 to 1.3 × 10 7 and 0.12 to 0.33% w/w, respectively. Amounts of released microfibers showed a decreasing trend in sequential washes. The annual emission of polyester and cotton microfibers from household washing machines was estimated to be 154,000 (1.0 × 10 14 ) and 411,000 kg (4.9 × 10 14 ) in Finland (population 5.5 × 10 6 ). Due to the high emission values and sorption capacities, the polyester and cotton microfibers may play an important role in the transport and fate of chemical pollutants in the aquatic environment.
NASA Astrophysics Data System (ADS)
Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Sun, Kaikai; Hu, Xili; Wang, Yujiao; Xu, Xiaoqi
2014-10-01
Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.
Detection of third-hand smoke on clothing fibers with a surface acoustic wave gas sensor
Cheng, Chi-Yung; Huang, Shih-Shen; Yang, Chia-Min; Tang, Kea-Tiong
2016-01-01
Third-hand smoke (THS) is a new cigarette-related issue defined as the residual contamination from cigarette smoke after a cigarette is extinguished. To detect THS on three commonly used clothing fibers—wool, cotton, and polyester, we applied two methods to measure the adsorption of THS: one was the gain of mass with an analytical balance after exposure to cigarette smoke; and the other was to detect the THS chemical compounds such as nicotine and 3-ethenylpyridine with a surface acoustic wave (SAW) sensor composed of coated oxidized hollow mesoporous carbon nanospheres. In the mass measurement, the gain of mass decreased in the order wool, cotton, and polyester; the latter gain was about one tenth that of wool. In the SAW detection, the frequency shift decreased in the same order—wool, cotton, and polyester. The residence period of THS on natural fiber (wool and cotton) is greater than on synthetic polyester fiber. These two tests provide quantitative results of THS on varied clothing fibers, to assess their risk after exposure to cigarette smoke. PMID:26909119
NASA Astrophysics Data System (ADS)
Zhang, Chunming; Zhao, Meihua; Wang, Libing; Qu, Lijun; Men, Yajing
2017-04-01
Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(Cdbnd O, Csbnd OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.
You, Zhengwei; Cao, Haiping; Gao, Jin; Shin, Paul H.; Day, Billy W.; Wang, Yadong
2010-01-01
Polyesters with free functional groups allow facile modifications with biomolecules, which can lead to versatile biomaterials that afford controlled interactions with cells and tissues. Efficient synthesis of functionalizable polyesters is still a challenge that greatly limits the availability and widespread applications of biofunctionalized synthetic polymers. Here we report a simple route to prepare a functionalizable polyester, poly(sebacoyl diglyceride) (PSeD) bearing free hydroxyl groups. The key synthetic step is an epoxide ring-opening polymerization, instead of the traditional polycondensation, that produces poly(glycerol sebacate) (PGS) [1]. PSeD has a more defined structure with mostly linear backbone, more free hydroxyl groups, higher molecular weight, and lower polydispersity than PGS. Crosslinking PSeD with sebacic acid yields a polymer five times tougher and more elastic than cured PGS. PSeD exhibits good cytocompatibility in vitro. Furthermore, functionalization by glycine proceeds with high efficiency. This versatile synthetic platform can offer a large family of biodegradable, functionalized polymers with tunable physiochemical and biological properties useful for a wide range of biomedical applications. PMID:20149441
Development of Knitted Warm Garments from Speciality Jute Yarns
NASA Astrophysics Data System (ADS)
Roy, Alok Nath
2013-09-01
Jute-polyester blended core and textured polyester multifilament cover spun-wrapped yarn was produced using existing jute spinning machines. The spun-wrapped yarn so produced show a reduction in hairiness up to 86.1 %, improvement in specific work of rupture up to 9.8 % and specific flexural rigidity up to 23.6 % over ordinary jute-polyester blended yarn. The knitted swatch produced out of these spun-wrapped yarn using seven gauge and nine gauge needle in both single jersey and double jersey knitting machines showed very good dimensional stability even after three washing. The two-ply and three-ply yarn produced from single spun-wrapped yarn can be easily used in knitting machines and also in hand-knitting for the production of sweaters. The thermal insulation value of the sweaters produced with jute-polyester blended spun-wrapped yarn is comparable with thermal insulation value of sweaters made from 100 % acrylic and 100 % wool. However, the hand-knitted sweaters showed higher thermal insulation value than the machine-knitted sweaters due to less packing of yarn in hand knitted structure as compared to machine knitting.
Rezaie, Ali Bashiri; Montazer, Majid; Rad, Mahnaz Mahmoudi
2017-11-01
In this paper, a facile environmentally friendly method is introduced for in-situ synthesis and fabrication of cauliflower-like CuO nanoparticles on the polyester fabric to produce photo and biocatalytic activities with UV protection properties on polyester fabric. The ash of burnt leaves and stems of Seidlitzia rosmarinus plant called Keliab was used as a natural and nontoxic alkaline source for simultaneous synthesis of CuO nanoparticles and surface modification of polyester without using any other compounds. The images of field-emission scanning electron microscopy, patterns of energy-dispersive spectroscopy, UV-visible spectrum and X-ray diffraction confirmed successful synthesis and loading of CuO nanoparticles on the polyester fabric. The treated fabrics showed very good antibacterial activities toward two pathogen bacteria including Staphylococcus aureus as a Gram-positive and Escherichia coli as a Gram-negative bacteria with no adverse effects on human dermal fibroblasts based on MTT test. The treated fabrics confirmed significant photocatalytic activity for degradation of methylene blue under sunlight, self-cleaning properties under UV light and also UV protection properties. Further a colorant effect along with an improvement in the wettability and mechanical properties of the treated fabrics were indicated. Overall, this method can be applied as a clean route for producing photo and bio active textiles protecting against UV irradiation. Copyright © 2017 Elsevier B.V. All rights reserved.
Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering.
Deng, Meng; Nair, Lakshmi S; Nukavarapu, Syam P; Jiang, Tao; Kanner, William A; Li, Xudong; Kumbar, Sangamesh G; Weikel, Arlin L; Krogman, Nicholas R; Allcock, Harry R; Laurencin, Cato T
2010-06-01
Polyphosphazene-polyester blends are attractive materials for bone tissue engineering applications due to their controllable degradation pattern with non-toxic and neutral pH degradation products. In our ongoing quest for an ideal completely miscible polyphosphazene-polyester blend system, we report synthesis and characterization of a mixed-substituent biodegradable polyphosphazene poly[(glycine ethyl glycinato)(1)(phenyl phenoxy)(1)phosphazene] (PNGEG/PhPh) and its blends with a polyester. Two dipeptide-based blends namely 25:75 (Matrix1) and 50:50 (Matrix2) were produced at two different weight ratios of PNGEG/PhPh to poly(lactic acid-glycolic acid) (PLAGA). Blend miscibility was confirmed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Both blends resulted in higher tensile modulus and strength than the polyester. The blends showed a degradation rate in the order of Matrix2
Stewart-Jones, Alex; Poppy, Guy M
2006-04-01
Plants release volatile chemicals into their surrounding air space that can affect the physiology of neighboring plants and influence the behavior of insects. In studying these interactions, it is desirable to collect volatiles from plants that have not been excised and are growing under as natural conditions as possible. We compared a vessel of borosilicate glass and Nylon-6 or polyester [poly(ethyleneterephthalate) or PET] cooking bags for enclosing plants during collection of volatiles. A push-pull airflow system was used, and volatiles were trapped on Tenax TA and analyzed by gas chromatography after thermal desorption. Low levels of impurities were found for the glass vessel and polyester bags. Nylon bags contained higher levels and more impurities. Recoveries of standards of 10 plant volatiles were measured in static and dynamic systems. In a static air system, there was good recovery only from the glass vessel. In a dynamic system, there was generally good recovery from both the glass vessel and polyester bags. Recoveries of alpha-pinene and (Z)-jasmone were poor throughout. The former was shown to have a very low breakthrough volume on the Tenax TA adsorbent, and the latter may be strongly adsorbed on glass. All three materials were essentially transparent in the IR and visible (photosynthetic) range but with significantly different absorptions in the UV range. In a simulated dynamic entrainment in full sunlight, internal vessel temperatures were higher than ambient by up to 9.5 degrees C in the glass vessel and 7.5 degrees C in the polyester bag. Lower increases in temperature relative to ambient (<1 degrees C) were recorded when entrainments were conducted in the shade. In a field trial, the profiles of volatiles collected from an apple tree infested with rosy apple aphid using a glass vessel and a polyester bag were similar. Polyester bags are recommended as more convenient than glass vessels for the enclosure of plants during the collection of volatiles.
Polyester Wax: A New Embedding Medium for the Histopathologic Study of Human Temporal Bones
Merchant, Saumil N.; Burgess, Barbara; O'Malley, Jennifer; Jones, Diane; Adams, Joe C.
2007-01-01
Background Celloidin and paraffin are the two common embedding mediums used for histopathologic study of the human temporal bone by light microscopy. Although celloidin embedding permits excellent morphologic assessment, celloidin is difficult to remove, and there are significant restrictions on success with immunostaining. Embedding in paraffin allows immunostaining to be performed, but preservation of cellular detail within the membranous labyrinth is relatively poor. Objectives/Hypothesis Polyester wax is an embedding medium that has a low melting point (37°C), is soluble in most organic solvents, is water tolerant, and sections easily. We hypothesized that embedding in polyester wax would permit good preservation of the morphology of the membranous labyrinth and, at the same time, allow the study of proteins by immunostaining. Methods Nine temporal bones from individuals aged 1 to 94 years removed 2 to 31 hours postmortem, from subjects who had no history of otologic disease, were used. The bones were fixed using 10% formalin, decal-cified using EDTA, embedded in polyester wax, and serially sectioned at a thickness of 8 to 12 μm on a rotary microtome. The block and knife were cooled with frozen CO2 (dry ice) held in a funnel above the block. Sections were placed on glass slides coated with a solution of 1% fish gelatin and 1% bovine albumin, followed by staining of selected sections with hematoxylin and eosin (H&E). Immunostaining was also performed on selected sections using antibodies to 200 kD neurofilament and Na-K-ATPase. Results Polyester wax–embedded sections demonstrated good preservation of cellular detail of the organ of Corti and other structures of the membranous labyrinth, as well as the surrounding otic capsule. The protocol described in this paper was reliable and consistently yielded sections of good quality. Immuno-staining was successful with both antibodies. Conclusion The use of polyester wax as an embedding medium for human temporal bones offers the advantage of good preservation of morphology and ease of immunostaining. We anticipate that in the future, polyester wax embedding will also permit other molecular biologic assays on temporal bone sections such as the retrieval of nucleic acids and the study of proteins using mass spectrometry–based proteomic analysis. PMID:16467713
Ferri, J M; Garcia-Garcia, D; Sánchez-Nacher, L; Fenollar, O; Balart, R
2016-08-20
In this work, poly(lactic acid), PLA and thermoplastic starch, TPS blends (with a fixed content of 30wt.% TPS) were prepared by melt extrusion process to increase the low ductile properties of PLA. The TPS used contains an aliphatic/aromatic biodegradable polyester (AAPE) that provides good resistance to aging and moisture. This blend provides slightly improved ductile properties with an increase in elongation at break of 21.5% but phase separation is observed due to the lack of strong interactions between the two polymers. Small amounts of maleinized linseed oil (MLO) can positively contribute to improve the ductile properties of these blends by a combined plasticizing-compatibilizing effect. The elongation at break increases over 160% with the only addition of 6phr MLO. One of the evidence of the plasticizing-compatibilizing effect provided by MLO is the change in the glass transition temperature (Tg) with a decrease of about 10°C. Field emission scanning electron microscopy (FESEM) of PLA-TPS blends with varying amounts of maleinized linseed oil also suggests an increase in compatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Shuizhong; Gao, Wa; Li, Helong; Xiao, Ling-Ping; Sun, Run-Cang; Song, Guoyong
2018-04-16
Lignin is the largest renewable resource of bio-aromatics, and catalytic fragmentation of lignin into phenolic monomers is increasingly recognized as an important starting point for lignin valorization. Herein, we reported zinc molybdate (ZnMoO4) supported on MCM-41 can catalyze fragmentation of biorefinery technical lignin, enzymatic mild acidolysis lignin and native lignin derived from corncob, to give lignin oily products containing 15 to 37.8 wt% phenolic monomers, in which the high selectivities towards methyl coumarate 1 and methyl ferulate 2 were obtained (up to 78%). The effects of some key parameters such as the influences of solvent, reaction temperature, time, H2 pressure and catalyst dosage were examined in view of activity and selectivity. The loss of zinc atom in catalyst is appointed as a primary cause of deactivation, and catalytic activity and selectivity can be well-preserved for at least six times by thermal calcination. The high selectivity to compounds 1 and 2 make them easily separated and purified from lignin oily product, thus providing sustainable monomers for preparation of functional polyetheresters and polyesters. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanical Properties of Unsaturated Polyester / Montmorillonite Composites
2001-11-01
Montmorillonite Composites DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Nanophase and...Mechanical Properties of Unsaturated Polyester / Montmorillonite Composites A. Baran Inceoglu and Ulku Yilmazer Middle East Technical University, Chemical...analysed the nature of the curing agent on structure. Kornmann, Berglund and Giannelis [8] studied nanocomposites based on montmorillonite modified
Speedy Acquisition of Surface-Contamination Samples
NASA Technical Reports Server (NTRS)
Puleo, J. R.; Kirschner, L. E.
1982-01-01
Biological contamination of large-area surfaces can be determined quickly, inexpensively, and accurately with the aid of a polyester bonded cloth. Cloth is highly effective in removing microbes from a surface and releasing them for biological assay. In releasing contaminants, polyester bonded cloth was found to be superior to other commercial cleanroom cloths, including spun-bound polyamid cloths and cellulose cloths.
USDA-ARS?s Scientific Manuscript database
Whole air sampling using containers such as flexible bags or rigid canisters is commonly used to collect samples of volatile organic compounds (VOC) in air. The objective of this study was to compare the stability of polyester aluminum (PEA) and polyvinyl fluoride (PVF, brand name Tedlar®) bags for ...
Stabilized unsaturated polyesters
NASA Technical Reports Server (NTRS)
Vogl, O.; Borsig, E. (Inventor)
1985-01-01
An unsaturated polyester, such as propylene glycolmaleic acid phthalic acid prepolymer dissolved in styrene is interpolymerized with an ultraviolet absorber and/or an antioxidant. The unsaturated chain may be filled with H or lower alkyl such as methyl and tertiary alkyl such as tertiary butyl. A polymer stable to exposure to the outdoors without degradation by ultraviolet radiation, thermal and/or photooxidation is formed.
Brindza, Paul Daniel; Wines, Robin Renee; Takacs, James Joseph
1999-01-01
A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament.
A study on the quality control of slow burning polyester
NASA Astrophysics Data System (ADS)
Chen, Bin; Wang, Yinglei; Yan, Zhengfeng; Yu, Tao
2018-04-01
In this paper, the influence of the alcohol/acid mole ratio, reaction temperature, warm-up mode, end-capping, vacuity to the quality of slow burning polyester was studied. The hydroxyl value will increase when the alcohol/acid mole ratio increase, but the acid value and molecular weight will decrease. The molecular weight and molecular weight distribution of the polyester consistent with the designed one can be obtained by stepped heating up. Monobasic alcohol end-capping can be used to control the molecular weight effectively and reduce acid value. Stripping process narrow the molecular weight distribution and reduce the hydroxyl value. Decompression is in favor of the decrease of acid value and increase of the reaction speed to get qualified production.
Alireza Javadi; Yottha Srithep; Craig C. Clemons; L-S. Turng; Shaoqin Gong
2012-01-01
Supercritical fluid (SCF) N2 was used as a physical foaming agent to fabricate microcellular injection-molded poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)âpoly(butylene adipate-co-terephthalate) (PBAT)âhyperbranched-polymer (HBP)ânanoclay (NC) bionanocomposites. The effects of incorporating HBP and NC on the morphological, mechanical, and...
2007-04-01
MWNTs.20 These defects would provide sites for the electrophilic substitution reaction. In our previous work, FT-IR had been used to characterize the...various surface functionalities.22 In this study, MWNTs containing polar surface groups such as amino-, hydroxyl-, and fluorine groups displayed similar
Accelerated healing of cardiovascular textiles promoted by an RGD peptide.
Tweden, K S; Harasaki, H; Jones, M; Blevitt, J M; Craig, W S; Pierschbacher, M; Helmus, M N
1995-07-01
Polytetrafluoroethylene (PTFE) and polyethylene terephthalate (Dacron polyester) fabrics are used extensively in cardiovascular devices, e.g. heart valve sewing cuffs and vascular prostheses. While devices containing these fabrics are generally successful, it is recognized that fabrics cause complications prior to tissue ingrowth due to their thrombogenic nature. A surface active synthetic peptide, called PepTite Coating (PepTite), which was modeled after the cell attachment domain of human fibronectin has been marketed as a biocompatible coating. This peptide stimulates cell attachment through the arginine-glycine-aspartic acid (RGD) sequence. Modification of medical implants with PepTite has been shown to promote ingrowth of surrounding cells into the material leading to better tissue integration, reduced inflammation and reduced fibrotic encapsulation. In this study, polyester and PTFE textiles were modified with PepTite. The effectiveness of this coating in enhancing wound healing was investigated in a simple vascular and cardiac valve model. Our results indicate that the RGD-containing peptide, PepTite, promoted the formation of an endothelial-like cell layer on both polyester and PTFE vascular patches in the dog model. PepTite was also found to promote the formation of a significantly thinner neointima (pannus) on polyester as compared to that on its uncoated control. These results were corroborated in the cardiac valve model in which a greater amount of thin pannus and less thrombus were seen on coated polyester sewing cuffs than on control uncoated cuffs. This research shows the promising tissue response to RGD coated textiles and the potential role of this peptide in material passivation via accelerated healing.
NASA Astrophysics Data System (ADS)
Ibrahim, Nik Noor Idayu Nik; Mamauod, Siti Nur Liyana; Romli, Ahmad Zafir
2017-12-01
The glass fibre reinforced orthophthalic unsaturated polyester composite was widely used in the pipeline industry as a replacement to the corroded steel pipes. A filler which possesses high mechanical performance at high temperature; P84 Polyimide used as the particulate reinforcement in the unsaturated polyester matrix system to increase the mechanical performance of the glass fibre reinforced unsaturated polyester. The glass fibre composite laminates were prepared through a hand lay-up technique and fabricated into three layer laminate. Prior to be used as the matrix system in the lamination process, the unsaturated polyester resin was mixed with masterbatch P84 Polyimide at three loadings amount of 1, 3, and 5 wt%. The addition of P84 Polyimide at 1, 3, and 5 wt% increased the tensile properties and flexural properties especially at 1 wt% filler loading. As the filler loading increased, the tensile properties and flexural properties showed decreasing pattern. In the dynamic mechanical analysis, the values of storage modulus were taken at two points; 50 °C and 150 °C which were the storage modulus before and after the glass transition temperature. All storage modulus showed fluctuation trend for both before and after Tg. However, the storage modulus of the filled composite laminates after Tg showed higher values than unfilled composite laminates at all filler loading. Since the P84 Polyimide possesses high thermal stability, the presence of P84 Polyimide inside the composite system had assisted in delaying the Tg. In terms of the filler dispersion, the Cole-Cole plot showed an imperfect semi-circular shape which indicated good filler dispersion.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-28
... orders on Certain Polyester Staple Fiber from the People's Republic of China (``PRC'') with respect to... Diameter Carbon and Alloy Seamless, 6/1/09-5/31/10 Standard, Line, and Pressure Pipe, A-588-850.... JFE... Republic of China: Certain Polyester Staple Fiber, \\3\\ A-570-905.... 6/1/09-5/31/10 Far Eastern Industries...
2011-05-12
For 70 Min Cool Down And De-mold 10Unclassified For Producing Polyester Or Vinyl Ester Composite Specimens Resin Resin Inlet Vacuum Bag Trap Pump Steel...Reinforcement Finish Matrix Fiber Content (%) Hexcel 1581-F12 Heat Burnt (No Finish) PP 71.0 Polyester 70.0 Vinyl ester 66.2 Hexcel 1581-GR Greige ( Starch
James D. Haywood; John A. Youngquist
1991-01-01
In this preliminary study, several mattings, combined with and without fertilizer application, were tested around newly planted loblolly, pine (Pinus taeda L.) seedlings. After 9 months in the field, jute- polyester and jute mats had similar survival rates relitive to controls, but hemlock-po1yvester mats had depressed survival when used in...
The effect of autoclave resterilisation on polyester vascular grafts.
Riepe, G; Whiteley, M S; Wente, A; Rogge, A; Schröder, A; Galland, R B; Imig, H
1999-11-01
polyester grafts are expensive, single-use items. Some manufacturers of uncoated, woven grafts include instructions for autoclave resterilisation to be performed at the surgeon's own request. Others warn against such manipulation. Theoretically, the glass transition point of polyester at 70-80 degrees C and the possible acceleration of hydrolysis suggest that autoclave resterilisation at 135 degrees C might be a problem. a DeBakey Soft Woven Dacron Vascular Prosthesis (Bard) and a Woven Double Velour Dacron Graft (Meadox) were autoclave-resterilised 0 to 20 times, having been weighed before and after sterilisation. Tactile testing was performed. Mechanical properties were examined by probe puncture and single-filament testing, the surface was examined by scanning electron microscopy and the degree of hydrolysis by infra-red spectroscopy. tactile testing revealed a change of feeling with increasing cycles of resterilisation. Investigation of weight, textile strength, single-filament strength, electron microscopy of the surface and infra-red spectroscopy showed no change of the material. changes felt are presumably a surface phenomenon, not measurably affecting strength or chemistry of material after autoclave resterilisation. We therefore feel that it is safe to use once-autoclave-resterilised surplus uncoated polyester grafts, provided that sterility is guaranteed. Copyright 1999 Harcourt Publishers Ltd.
Arnould, Mark A; Buehner, Rita W; Wesdemiotis, Chrys; Vargas, Rafael
2005-01-01
Electrospray ionization of polyesters composed of isophthalic acid and neopentyl glycol produces carboxylate anions in negative mode and mainly sodium ion adducts in positive mode. A tandem mass spectrometry (MS/MS) study of these ions in a quadrupole ion trap shows that the collisionally activated dissociation pathways of the anions are simpler than those of the corresponding cations. Charge-remote fragmentations predominate in both cases, but the spectra obtained in negative mode are devoid of the complicating cation exchange observed in positive mode. MS/MS of the Na(+) adducts gives rise to a greater number of fragments but not necessarily more structural information. In either positive or negative mode, polyester oligomers with different end groups fragment by similar mechanisms. The observed fragments are consistent with rearrangements initiated by the end groups. Single-stage ESI mass spectra also are more complex in positive mode because of extensive H/Na substitutions; this is also true for matrix-assisted laser desorption ionization (MALDI) mass spectra. Hence, formation and analysis of anions might be the method of choice for determining block length, end group structure and copolymer sequence, provided the polyester contains at least one carboxylic acid end group that is ionizable to anions.
The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters.
Li, Ying; Chu, Zhaowei; Li, Xiaoming; Ding, Xili; Guo, Meng; Zhao, Haoran; Yao, Jie; Wang, Lizhen; Cai, Qiang; Fan, Yubo
2017-06-01
Aliphatic biodegradable polyesters have been the most widely used synthetic polymers for developing biodegradable devices as alternatives for the currently used permanent medical devices. The performances during biodegradation process play crucial roles for final realization of their functions. Because physiological and biochemical environment in vivo significantly affects biodegradation process, large numbers of studies on effects of mechanical loads on the degradation of aliphatic biodegradable polyesters have been launched during last decades. In this review article, we discussed the mechanism of biodegradation and several different mechanical loads that have been reported to affect the biodegradation process. Other physiological and biochemical factors related to mechanical loads were also discussed. The mechanical load could change the conformational strain energy and morphology to weaken the stability of the polymer. Besides, the load and pattern could accelerate the loss of intrinsic mechanical properties of polymers. This indicated that investigations into effects of mechanical loads on the degradation should be indispensable. More combination condition of mechanical loads and multiple factors should be considered in order to keep the degradation rate controllable and evaluate the degradation process in vivo accurately. Only then can the degradable devise achieve the desired effects and further expand the special applications of aliphatic biodegradable polyesters.
Microbial Odor Profile of Polyester and Cotton Clothes after a Fitness Session
Callewaert, Chris; De Maeseneire, Evelyn; Kerckhof, Frederiek-Maarten; Verliefde, Arne; Van de Wiele, Tom
2014-01-01
Clothing textiles protect our human body against external factors. These textiles are not sterile and can harbor high bacterial counts as sweat and bacteria are transmitted from the skin. We investigated the microbial growth and odor development in cotton and synthetic clothing fabrics. T-shirts were collected from 26 healthy individuals after an intensive bicycle spinning session and incubated for 28 h before analysis. A trained odor panel determined significant differences between polyester versus cotton fabrics for the hedonic value, the intensity, and five qualitative odor characteristics. The polyester T-shirts smelled significantly less pleasant and more intense, compared to the cotton T-shirts. A dissimilar bacterial growth was found in cotton versus synthetic clothing textiles. Micrococci were isolated in almost all synthetic shirts and were detected almost solely on synthetic shirts by means of denaturing gradient gel electrophoresis fingerprinting. A selective enrichment of micrococci in an in vitro growth experiment confirmed the presence of these species on polyester. Staphylococci were abundant on both cotton and synthetic fabrics. Corynebacteria were not enriched on any textile type. This research found that the composition of clothing fibers promotes differential growth of textile microbes and, as such, determines possible malodor generation. PMID:25128346
Matsumoto, Ken'ichiro; Taguchi, Seiichi
2013-12-01
The development of synthetic biology has transformed microbes into useful factories for producing valuable polymers and/or their precursors from renewable biomass. Recent progress at the interface of chemistry and biology has enabled the production of a variety of new biopolymers with properties that substantially differ from their petroleum-derived counterparts. This review touches on recent trials and achievements in the field of biopolymer synthesis, including chemo-enzymatically synthesized aliphatic polyesters, wholly biosynthesized lactate-based polyesters, polyhydroxyalkanoates and other unusual bacterially synthesized polyesters. The expanding diversities in structure and the material properties of biopolymers are key for exploring practical applications. The enzyme and metabolic engineering approaches toward this goal are discussed by shedding light on the successful case studies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Development auxiliaries for dyeing polyester with disperse dyes at low temperatures
NASA Astrophysics Data System (ADS)
Carrion-Fite, F. J.; Radei, S.
2017-10-01
High-molecular weight organic compounds known as carriers are widely used to expedite polyester dyeing at atmospheric pressure at 100 °C. However, carriers are usually poorly biodegradable and can partially plasticize fibres. Also, dyeing at temperatures above 100 °C in the absence of a carrier entails using expensive equipment. In this work, we developed an alternative method for dyeing polyester at temperatures below 100 °C that reduces energy expenses, dispenses with the need to invest in new equipment and avoids the undesirable effects of non-biodegradable carriers. The method uses disperse dyes in a microemulsion containing a low proportion of a non-toxic organic solvent and either of two alternative development auxiliaries (coumarin and o-vanillin) that is prepared with the aid of ultrasound.
Mutlu, Hatice; Montero de Espinosa, Lucas; Türünç, Oĝuz
2010-01-01
Summary We report on the catalytic activity of commercially available Ru-indenylidene and “boomerang” complexes C1, C2 and C3 in acyclic diene metathesis (ADMET) polymerization of a fully renewable α,ω-diene. A high activity of these catalysts was observed for the synthesis of the desired renewable polyesters with molecular weights of up to 17000 Da, which is considerably higher than molecular weights obtained using the same monomer with previously studied catalysts. Moreover, olefin isomerization side reactions that occur during the ADMET polymerizations were studied in detail. The isomerization reactions were investigated by degradation of the prepared polyesters via transesterification with methanol, yielding diesters. These diesters, representing the repeat units of the polyesters, were then quantified by GC-MS. PMID:21160555
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z.; Gosser, Y; Baker, P
Cutinases are responsible for hydrolysis of the protective cutin lipid polyester matrix in plants and thus have been exploited for hydrolysis of small molecule esters and polyesters. Here we explore the reactivity, stability, and structure of Aspergillus oryzae cutinase and compare it to the well-studied enzyme from Fusarium solani. Two critical differences are highlighted in the crystallographic analysis of the A. oryzae structure: (i) an additional disulfide bond and (ii) a topologically favored catalytic triad with a continuous and deep groove. These structural features of A. oryzae cutinase are proposed to result in an improved hydrolytic activity and altered substratemore » specificity profile, enhanced thermostability, and remarkable reactivity toward the degradation of the synthetic polyester polycaprolactone. The results presented here provide insight into engineering new cutinase-inspired biocatalysts with tailor-made properties.« less
Degradation of microbial polyesters.
Tokiwa, Yutaka; Calabia, Buenaventurada P
2004-08-01
Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB.
FY08 Chemical Synthesis for the Self-Decontaminating Coatings Project
2013-08-01
These synthesized materials consist of Boltorn hyperbranched polymers that are functionalized with hydantoin, alkyl, and perfluorinated groups. 15...envisioned that completely prevents sorption of chemical agents, enables autonomous decontamination, reduces the volume of cleaning solution...modified with perfluorinated octanoic acid (PFOA), lauric acid, and a hydantoin moiety. HO OH CH3 HO O 3 Figure 2. Synthetic targets 1–3
Hu, Lihua; Li, Yan; Zhang, Xuefei; Wang, Yaoguang; Cui, Limei; Wei, Qin; Ma, Hongmin; Yan, Liangguo; Du, Bin
2016-01-01
Magnetic water-soluble hyperbranched polyol functionalized graphene oxide nanocomposite (MWHPO-GO) was successfully prepared and applied to water remediation in this paper. MWHPO-GO was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), magnetization curve, zeta potential, scanning electron microscope (SEM) and transmission electron microscope (TEM) analyses. MWHPO-GO exhibited excellent adsorption performance for the removal of synthetic dyes (methylene blue (MB) and methyl violet (MV)) and heavy metal (Pb(II)). Moreover, MWHPO-GO could be simply recovered from water with magnetic separation. The pseudo-second order equation and the Langmuir model exhibited good correlation with the adsorption kinetic and isotherm data, respectively, for these three pollutants. The thermodynamic results (ΔG < 0, ΔH < 0, ΔS < 0) implied that the adsorption process of MB, MV and Pb(II) was feasible, exothermic and spontaneous in nature. A possible adsorption mechanism has been proposed where π-π stacking interactions, H-bonding interaction and electrostatic attraction dominated the adsorption of MB/MV and chelation and electrostatic attraction dominated the adsorption of Pb(II). In addition, the excellent reproducibility endowed MWHPO-GO with the potential for application in water remediation. PMID:27354318
Truxene-Based Hyperbranched Conjugated Polymers: Fluorescent Micelles Detect Explosives in Water.
Huang, Wei; Smarsly, Emanuel; Han, Jinsong; Bender, Markus; Seehafer, Kai; Wacker, Irene; Schröder, Rasmus R; Bunz, Uwe H F
2017-01-25
We report two hyperbranched conjugated polymers (HCP) with truxene units as core and 1,4-didodecyl-2,5-diethynylbenzene as well as 1,4-bis(dodecyloxy)-2,5-diethynylbenzene as comonomers. Two analogous poly(para-phenyleneethynylene)s (PPE) are also prepared as comparison to demonstrate the difference between the truxene and the phenyl moieties in their optical properties and their sensing performance. The four polymers are tested for nitroaromatic analytes and display different fluorescence quenching responses. The quenching efficiencies are dependent upon the spectral overlap between the absorbance of the analyte and the emission of the fluorescent polymer. Optical fingerprints are obtained, based on the unique response patterns of the analytes toward the polymers. With this small sensor array, one can distinguish nine nitroaromatic analytes with 100% accuracy. The amphiphilic polymer F127 (a polyethylene glycol-polypropylene glycol block copolymer) carries the hydrophobic HCPs and self-assembles into micelles in water, forming highly fluorescent HCP micelles. The micelle-bound conjugated polymers detect nitroaromatic analytes effectively in water and show an increased sensitivity compared to the sensing of nitroaromatics in organic solvents. The nitroarenes are also discriminated in water using this four-element chemical tongue.
Shin, Yonghee; Lee, Chiwon; Yang, Myung-Seok; Jeong, Sunil; Kim, Dongchul; Kang, Taewook
2014-08-26
Two-dimensional (2D) gold nanoparticles can possess novel physical and chemical properties, which will greatly expand the utility of gold nanoparticles in a wide variety of applications ranging from catalysis to biomedicine. However, colloidal synthesis of such particles generally requires sophisticated synthetic techniques to carefully guide anisotropic growth. Here we report that 2D hyper-branched gold nanoparticles in the lateral size range of about 50 ~ 120 nm can be synthesized selectively on a 2D immiscible oil/water interface in a few minutes at room temperature without structure-directing agents. An oleic acid/water interface can provide diffusion-controlled growth conditions, leading to the structural evolution of a smaller gold nucleus to 2D nanodendrimer and nanourchin at the interface. Simulations based on the phase field crystal model match well with experimental observations on the 2D branching of the nucleus, which occurs at the early stage of growth. Branching results in higher surface area and stronger near-field enhancement of 2D gold nanoparticles. This interfacial synthesis can be scaled up by creating an emulsion and the recovery of oleic acid is also achievable by centrifugation.
Liu, Shi Gang; Li, Na; Ling, Yu; Kang, Bei Hua; Geng, Shuo; Li, Nian Bing; Luo, Hong Qun
2016-02-23
We report that fluorescence properties and morphology of hyperbranched polyethylenimine (hPEI) cross-linked with formaldehyde are highly dependent on the pH values of the cross-linking reaction. Under acidic and neutral conditions, water-soluble fluorescent copolymer particles (CPs) were produced. However, under basic conditions, white gels with weak fluorescence emission would be obtained. The water-soluble hPEI-formaldehyde (hPEI-F) CPs show strong intrinsic fluorescence without the conjugation to any classical fluorescent agents. By the combination of spectroscopy and microscopy techniques, the mechanism of fluorescence emission was discussed. We propose that the intrinsic fluorescence originates from the formation of a Schiff base in the cross-linking process between hPEI and formaldehyde. Schiff base bonds are the fluorescence-emitting moieties, and the compact structure of hPEI-F CPs plays an important role in their strong fluorescence emission. The exploration on fluorescence mechanism may provide a new strategy to prepare fluorescent polymer particles. In addition, the investigation shows that the hPEI-F CPs hold potential as a fluorescent probe for the detection of copper ions in aqueous media.
Du, Fang; Hönzke, Stefan; Neumann, Falko; Keilitz, Juliane; Chen, Wei; Ma, Nan; Hedtrich, Sarah; Haag, Rainer
2016-11-28
The topical application of drugs allows for a local application in skin disease and can reduce side effects. Here we present biodegradable core-multishell (CMS) nanocarriers which are composed of a hyperbranched polyglycerol core functionalized with diblock copolymers consisting of polycaprolactone (PCL) and poly(ethylene glycol) (mPEG) as the outer shell. The anti-inflammatory drug Dexamethasone (Dexa) was loaded into these CMS nanocarriers. DLS results suggested that Dexa loaded nanoparticles mostly act as a unimolecular carrier system. With longer PCL segments, a better transport capacity is observed. In vitro skin permeation studies showed that CMS nanocarriers could improve the Nile red penetration through the skin by up to 7 times, compared to a conventional cream formulation. Interestingly, covalently FITC-labeled CMS nanocarriers remain in the stratum corneum layer. This suggests the enhancement is due to the release of cargo after being transported into the stratum corneum by the CMS nanocarriers. In addition, the hPG-PCL-mPEG CMS nanocarriers exhibited good stability, low cytotoxicity, and their production can easily be scaled up, which makes them promising nanocarriers for topical drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.
Wanted: Scalable Tracers for Diffusion Measurements
2015-01-01
Scalable tracers are potentially a useful tool to examine diffusion mechanisms and to predict diffusion coefficients, particularly for hindered diffusion in complex, heterogeneous, or crowded systems. Scalable tracers are defined as a series of tracers varying in size but with the same shape, structure, surface chemistry, deformability, and diffusion mechanism. Both chemical homology and constant dynamics are required. In particular, branching must not vary with size, and there must be no transition between ordinary diffusion and reptation. Measurements using scalable tracers yield the mean diffusion coefficient as a function of size alone; measurements using nonscalable tracers yield the variation due to differences in the other properties. Candidate scalable tracers are discussed for two-dimensional (2D) diffusion in membranes and three-dimensional diffusion in aqueous solutions. Correlations to predict the mean diffusion coefficient of globular biomolecules from molecular mass are reviewed briefly. Specific suggestions for the 3D case include the use of synthetic dendrimers or random hyperbranched polymers instead of dextran and the use of core–shell quantum dots. Another useful tool would be a series of scalable tracers varying in deformability alone, prepared by varying the density of crosslinking in a polymer to make say “reinforced Ficoll” or “reinforced hyperbranched polyglycerol.” PMID:25319586
Biomimetic polyesters and their role in ion transport across cell membranes.
Jedliński, Z; Kurcok, P; Adamus, G; Juzwa, M
2000-01-01
Syntheses of biomimetic low-molecular weight poly-(R)-3-hydroxybutanoate mediated by three types of supramolecular catalysts are presented. The utility of these synthetic polyesters for preparation of artificial channels in phospholipid bilayers capable of sodium and calcium ion transport across cell membranes, is discussed. Further studies on possible applications of these bio-polymers for manufacturing drugs of prolonged activity are under way.
Maintenance Operations Degradation of Airfield Pavement Markings
2012-03-01
polyurea . 1.4 Research Questions To answer the problem presented, several questions need to be addressed. The first is whether or not rubber...suitable for use on airfields. Further research is required. Cyrus and Frierson 2006 Polyurea The material showed poor performance in...evaluating polyurea and one evaluating polyester. Both studies were undertaken to evaluate the effectiveness of polyurea or polyester as a potential
The usefulness of a stretch-polyester pouch to encase implanted pacemakers and defibrillators.
Parsonnet, V; Bernstein, A D; Neglia, D; Omar, A
1994-12-01
This study was undertaken to assess the effects of enclosing permanent pacemaker and ICD pulse generators in a stretch-polyester pouch prior to implantation. Follow-up of 223 patients with oversized pacemakers and with ICDs and 344 with standard-sized pacemaker pulse generators showed that the pouch was effective in decreasing the frequency of pulse generator migration and extrusion.
Air Quality Management Using Pollution Prevention: A Joint Service Approach
1998-03-01
sites to promote polymerization. High solids coatings may be one or two component systems based on acrylic , alkyd , epoxy, polyester, or urethane...formulation to form high molecular weight polymers. Examples include acrylic , epoxy/polyester hybrid , functional epoxy, thin film epoxy, and urethane...Air Human System Center (HSC/OEBQ) Naval Facilities Engineering Service Center (NFESC) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 9
Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Jeong, Sung Hoon
2015-05-21
Textile wearable electronics offers the combined advantages of both electronics and textile characteristics. The essential properties of these flexible electronics such as lightweight, stretchable, and wearable power sources are in strong demand. Here, we have developed a facile route to fabricate multi walled carbon nanotube (MWCNT) coated polyester fabric as a flexible counter electrode (CE) for dye sensitized solar cells (DSSCs). A variety of MWCNT and enzymes with different structures were used to generate individual enzyme-dispersed MWCNT (E-MWCNT) suspensions by non-covalent functionalization. A highly concentrated colloidal suspension of E-MWCNT was deposited on polyester fabric via a simple tape casting method using an air drying technique. In view of the E-MWCNT coating, the surface structure is represented by topologically randomly assembled tubular graphene units. This surface morphology has a high density of colloidal edge states and oxygen-containing surface groups which execute multiple catalytic sites for iodide reduction. A highly conductive E-MWCNT coated fabric electrode with a surface resistance of 15 Ω sq(-1) demonstrated 5.69% power conversion efficiency (PCE) when used as a flexible CE for DSSCs. High photo voltaic performance of our suggested system of E-MWCNT fabric-based DSSCs is associated with high sheet conductivity, low charge transfer resistance (RCT), and excellent electro catalytic activity (ECA). Such a conductive fabric demonstrated stable conductivity against bending cycles and strong mechanical adhesion of E-MWCNT on polyester fabric. Moreover, the polyester fabric is hydrophobic and, therefore, has good sealing capacity and retains the polymer gel electrolyte without seepage. This facile E-MWCNT fabric CE configuration provides a concrete fundamental background towards the development of textile-integrated solar cells.
NASA Astrophysics Data System (ADS)
Arif Irfai, Mochamad; Wulandari, Diah; Sutriyono; Marsyahyo, Eko
2018-04-01
The objective of this research is to investigate the effect of NaOH treatment on bending strength of lamina composite reinforced by sugar palm fiber. To know of mechanism fracture can be done with visual inspection of the fracture surface. The Materials used are random sugar palm fibers that have been in the treatment of NaOH, polyester resin and hardener. Sugar palm fibers after washed and dried then soaked NaOH with a long time soaking 0, 2, 4, 6 and 8 hours. The bending test specimens were produced according to ASTM D 790. All specimens were post cured at 62°C for 4 hours. The Bending test was carried out on a universal testing machine. The SEM analysis has conducted to provide the analysis on interface adhesion between the surfaces of fiber with the matrix. The result shows that polyester composite reinforced by sugar palm fiber has highest bending stress 176.77 N/mm2 for 2 hours of a long time soaking NaOH, the highest flexural strain 0.27 mm for 2 hours of a long time soaking NaOH, elongation 24.05% for 2 hours of a long time soaking NaOH and the highest bending modulus 1.267 GPa for 2 hours of a long time soaking NaOH. Based on the results, it can be concluded that the polyester composite reinforced by sugar palm fiber has the optimum bending properties for a long time soaking 2 hours. The fracture surface shows that the polyester composite reinforced by sugar palm fiber pull out that indicate weakens the bond between fiber and matrix.
Evaluation of microplastic release caused by textile washing processes of synthetic fabrics.
De Falco, Francesca; Gullo, Maria Pia; Gentile, Gennaro; Di Pace, Emilia; Cocca, Mariacristina; Gelabert, Laura; Brouta-Agnésa, Marolda; Rovira, Angels; Escudero, Rosa; Villalba, Raquel; Mossotti, Raffaella; Montarsolo, Alessio; Gavignano, Sara; Tonin, Claudio; Avella, Maurizio
2018-05-01
A new and more alarming source of marine contamination has been recently identified in micro and nanosized plastic fragments. Microplastics are difficult to see with the naked eye and to biodegrade in marine environment, representing a problem since they can be ingested by plankton or other marine organisms, potentially entering the food web. An important source of microplastics appears to be through sewage contaminated by synthetic fibres from washing clothes. Since this phenomenon still lacks of a comprehensive analysis, the objective of this contribution was to investigate the role of washing processes of synthetic textiles on microplastic release. In particular, an analytical protocol was set up, based on the filtration of the washing water of synthetic fabrics and on the analysis of the filters by scanning electron microscopy. The quantification of the microfibre shedding from three different synthetic fabric types, woven polyester, knitted polyester, and woven polypropylene, during washing trials simulating domestic conditions, was achieved and statistically analysed. The highest release of microplastics was recorded for the wash of woven polyester and this phenomenon was correlated to the fabric characteristics. Moreover, the extent of microfibre release from woven polyester fabrics due to different detergents, washing parameters and industrial washes was evaluated. The number of microfibres released from a typical 5 kg wash load of polyester fabrics was estimated to be over 6,000,000 depending on the type of detergent used. The usage of a softener during washes reduces the number of microfibres released of more than 35%. The amount and size of the released microfibres confirm that they could not be totally retained by wastewater treatments plants, and potentially affect the aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hajighasemi, Mahbod; Nocek, Boguslaw P; Tchigvintsev, Anatoli; Brown, Greg; Flick, Robert; Xu, Xiaohui; Cui, Hong; Hai, Tran; Joachimiak, Andrzej; Golyshin, Peter N; Savchenko, Alexei; Edwards, Elizabeth A; Yakunin, Alexander F
2016-06-13
Polylactic acid (PLA) is a biodegradable polyester derived from renewable resources, which is a leading candidate for the replacement of traditional petroleum-based polymers. Since the global production of PLA is quickly growing, there is an urgent need for the development of efficient recycling technologies, which will produce lactic acid instead of CO2 as the final product. After screening 90 purified microbial α/β-hydrolases, we identified hydrolytic activity against emulsified PLA in two uncharacterized proteins, ABO2449 from Alcanivorax borkumensis and RPA1511 from Rhodopseudomonas palustris. Both enzymes were also active against emulsified polycaprolactone and other polyesters as well as against soluble α-naphthyl and p-nitrophenyl monoesters. In addition, both ABO2449 and RPA1511 catalyzed complete or extensive hydrolysis of solid PLA with the production of lactic acid monomers, dimers, and larger oligomers as products. The crystal structure of RPA1511 was determined at 2.2 Å resolution and revealed a classical α/β-hydrolase fold with a wide-open active site containing a molecule of polyethylene glycol bound near the catalytic triad Ser114-His270-Asp242. Site-directed mutagenesis of both proteins demonstrated that the catalytic triad residues are important for the hydrolysis of both monoester and polyester substrates. We also identified several residues in RPA1511 (Gln172, Leu212, Met215, Trp218, and Leu220) and ABO2449 (Phe38 and Leu152), which were not essential for activity against soluble monoesters but were found to be critical for the hydrolysis of PLA. Our results indicate that microbial carboxyl esterases can efficiently hydrolyze various polyesters making them attractive biocatalysts for plastics depolymerization and recycling.
Impact behaviour of Napier/polyester composites under different energy levels
NASA Astrophysics Data System (ADS)
Fahmi, I.; Majid, M. S. Abdul; Afendi, M.; Haslan, M.; Helmi E., A.; M. Haameem J., A.
2016-07-01
The effects of different energy levels on the impact behaviour of Napier fibre/polyester reinforced composites were investigated. Napier fibre was extracted using traditional water retting process to be utilized as reinforcing materials in polyester composite laminates. 25% fibre loading composite laminates were prepared and impacted at three different energy levels; 2.5,5 and 7.5 J using an instrumented drop weight impact testing machine (IMATEK IM10). The outcomes show that peak force and contact time increase with increased impact load. The energy absorption was then calculated from the force displacement curve. The results indicated that the energy absorption decreases with increasing energy levels of the impact. Impacted specimens were observed visually for fragmentation fracture using an optical camera to identify the failure mechanisms. Fracture fragmentation pattern from permanent dent to perforation with radial and circumferential was observed.
Fracture behavior of glass fiber reinforced polymer composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avci, A.; Arikan, H.; Akdemir, A
2004-03-01
Chopped strand glass fiber reinforced particle-filled polymer composite beams with varying notch-to-depth ratios and different volume fractions of glass fibers were investigated in Mode I fracture using three-point bending tests. Effects of polyester resin content and glass fiber content on fracture behavior was also studied. Polyester resin contents were used 13.00%%, 14.75%, 16.50%, 18.00% and 19.50%, and glass fiber contents were 1% and 1.5% of the total weight of the polymer composite system. Flexural strength of the polymer composite increases with increase in polyester and fiber content. The critical stress intensity factor was determined by using several methods such asmore » initial notch depth method, compliance method and J-integral method. The values of K{sub IC} obtained from these methods were compared.« less
The Fracture of Thermosetting Resins after Exposure to Water.
1980-09-01
formaldehyde , urea - formaldehyde and melamine - formaldehyde resins , epoxides, unsaturated polyesters, diallyl phthalate resins , furanes and certain kinds...linked phenol- formaldehyde (27) and epoxy resins (22), but some work on the fracture surfaces of polyesters with varying flexibiliser additions has been...AO0-A099 975 KINGSTON POLYTECHNIC KINGSTON UPON THAMES (ENGLAND) F/G 11/9 THE FRACTURE OF THERMOSETTING RESINS AFTER EXPOSURE TO WATER.(U) SEP 80 6
Fiber Reinforced Polyester Resins Polymerized by Microwave Source
NASA Astrophysics Data System (ADS)
Visco, A. M.; Calabrese, L.; Cianciafara, P.; Bonaccorsi, L.; Proverbio, E.
2007-12-01
Polyester resin based composite materials are widely used in the manufacture of fiberglass boats. Production time of fiberglass laminate components could be strongly reduced by using an intense energy source as well as microwaves. In this work a polyester resin was used with 2% by weight of catalyst and reinforced with chopped or woven glass fabric. Pure resin and composite samples were cured by microwaves exposition for different radiation times. A three point bending test was performed on all the cured samples by using an universal testing machine and the resulting fracture surfaces were observed by means of scanning electron microscopy (SEM). The results of mechanical and microscopy analyses evidenced that microwave activation lowers curing time of the composite while good mechanical properties were retained. Microwaves exposition time is crucial for mechanical performance of the composite. It was evidenced that short exposition times suffice for resin activation while long exposure times cause fast cross linking and premature matrix fracture. Furthermore high-radiation times induce bubbles growth or defects nucleation within the sample, decreasing composite performance. On the basis of such results microwave curing activation of polyester resin based composites could be proposed as a valid alternative method for faster processing of laminated materials employed for large-scale applications.
Microbial odor profile of polyester and cotton clothes after a fitness session.
Callewaert, Chris; De Maeseneire, Evelyn; Kerckhof, Frederiek-Maarten; Verliefde, Arne; Van de Wiele, Tom; Boon, Nico
2014-11-01
Clothing textiles protect our human body against external factors. These textiles are not sterile and can harbor high bacterial counts as sweat and bacteria are transmitted from the skin. We investigated the microbial growth and odor development in cotton and synthetic clothing fabrics. T-shirts were collected from 26 healthy individuals after an intensive bicycle spinning session and incubated for 28 h before analysis. A trained odor panel determined significant differences between polyester versus cotton fabrics for the hedonic value, the intensity, and five qualitative odor characteristics. The polyester T-shirts smelled significantly less pleasant and more intense, compared to the cotton T-shirts. A dissimilar bacterial growth was found in cotton versus synthetic clothing textiles. Micrococci were isolated in almost all synthetic shirts and were detected almost solely on synthetic shirts by means of denaturing gradient gel electrophoresis fingerprinting. A selective enrichment of micrococci in an in vitro growth experiment confirmed the presence of these species on polyester. Staphylococci were abundant on both cotton and synthetic fabrics. Corynebacteria were not enriched on any textile type. This research found that the composition of clothing fibers promotes differential growth of textile microbes and, as such, determines possible malodor generation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Development of sugar palm yarn/glass fibre reinforced unsaturated polyester hybrid composites
NASA Astrophysics Data System (ADS)
Nurazzi, N. Mohd; Khalina, A.; Sapuan, S. Mohd; Rahmah, M.
2018-04-01
This study investigates the effect of fibre hybridization for sugar palm yarn fibre with glass fibre reinforced with unsaturated polyester composites. In this work, unsaturated polyester resin are reinforced with fibre at a ratio of 70:30 wt% and 60:40 wt%. The hybrid composites were characterized in terms of physical (density and water absorption), mechanical (tensile, flexural and compression) and thermal properties through thermal gravimetry analysis (TGA). Density determination showed that density increased with higher wt% of glass fibre. The inherently higher density of glass fibre increased the density of hybrid composite. Resistance to water absorption is improved upon the incorporation of glass fibre and the hybrid composites were found to reach equilibrium absorption at days 4 and 5. As for mechanical performance, the highest tensile strength, tensile modulus, flexural strength, flexural modulus and compression strength were obtained from 40 wt% of fibres reinforcement with ratio of 50:50 wt% of sugar palm yarn fibre and glass fibre reinforced unsaturated polyester composites. The increase of glass fibre loading had a synergistic effect on the mechanical properties to the composites structure due to its superior strength and modulus. The thermal stability of hybrid composites was improved by the increase of onset temperature and the reduction of residues upon increase in temperature.
Modified Hyperbranched Polymers for Fluorescence Sensing Applications
2012-06-01
sensors. The HBPs transported the fluorescent groups to the fiber mat surface where they interacted with mercury (Hg(II)) or cytochrome c as the analyte...coworkers (27, 28) have employed fluorescence quenching using a binol-based dendrimer sensor, which exhibited differential sensitivity to enantiomeric...based sensors using HBP-based fluorophores was demonstrated in this report. Low concentrations of fluorophore were transported to the surface of
Engineered Film Surfaces Via Spontaneous Phase Segregation
2004-12-01
constituents of a Langmuir Blodgett thin Figure 1: Contact angles w/ H2O Contact angles determined from cast films of TPU with (right) 1% wt/wt...Synn, D.; Stelzle, M.; Rabolt, J. F., 2000: Characterization of Orientation of Perfluorostearic Acid Langmuir - Blodgett Multilayers by Infrared...Natick Soldier Center Materials Science Team Natick, MA 01760 ABSTRACT A series of hyperbranched materials have been developed that allow
Contribution To Degradation Study, Behavior Of Unsaturated Polyester Resin Under Neutron Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abellache, D.; Lounis, A.; Taiebi, K.
2010-01-05
Applications of unsaturated polyester thermosetting resins are numerous in construction sector, in transport, electric spare parts manufactures, consumer goods, and anticorrosive materials. This survey reports the effect of thermosetting polymer degradation (unsaturated polyester): degradation by neutrons irradiation. In order to evaluate the deterioration of our material, some comparative characterizations have been done between standard samples and damaged ones. Scanning electron microscopy (SEM), ultrasonic scanning, hardness test (Shore D) are the techniques which have been used. The exposure to a neutrons flux is carried out in the column of the nuclear research reactor of Draria (Algiers-Algeria). The energetic profile of themore » incidental fluxes is constituted of fast neutrons (PHI{sub R} = 3.10{sup 12} n.cm{sup -2}.s{sup -1}, E = 2 Mev) of thermal neutrons (PHI{sub TH} = 10{sup 13} n.cm{sup -2}.s{sup -1}; E = 0.025 ev) and epithermal neutrons (PHI{sub epi} = 7.10{sup 11} n.cm{sup -2}.s{sup -1}; E>4,9 ev). The received dose flow is 0,4 Kgy. We notice only a few scientific investigations can be found in this field. In comparison with the standard sample (no exposed) it is shown that the damage degree is an increasing process with the exposure. Concerning the description of irradiation effects on polymers, we can advance that several reactions are in competition: reticulation, chain break, and oxidation by radical mechanism. In our case the incidental particle of high energy fast neutrons whose energy is greater or equal to 2 Mev, is braked by the target with a nuclear shock during which the incidental particle transmits a part of its energy to an atom. If the energy transfer is sufficient, the nuclear shock permits to drive out an atom of its site the latter will return positioning interstitially, the energy that we used oversteps probably the energy threshold (displacement energy). This fast neutrons collision with target cores proceeds to an indirect ionization by the preliminary creation of excited secondary species that will generate ionization. Scanning electron microscopy (SEM) performed with an acceleration tension of 0,7 kV shows clearly the caused damage. This observation seems to indicate the presence of major chain breaks for the sample bombarded during 90 minutes. Let us note that the presence of benzenic cores improves behavior toward radiations indeed the chemical function recognized as the most stable to radiations is the aromatic ring. In order to value the rigidity of our material we have determined the Young's modulus . The values are 7.17, 7.60, 8.39 and 8.96 Gpa respectively for blank samples, 30, 60 and 90 minutes exposure ones. Thus, we remark an increase of Young's modulus that can be interpreted in terms of reticulation, provided to use the level of irradiation dose.« less
1983-12-01
maleic acid , adipic acid , azelaic acid and suberic acid . To ensure complete esterification during the exhaustive degradation reactions, an...spectroscopic techniques. Major components were shown to be sebacic acid and neopentyl glycol. The most significant difference between the two polyester...and acid equivalent weights of the prepolymers, their hydrolysis products and hydrolysed cured sealants were determined to assess extent of degradation
Weathering Tests on Protective Helmets Approved to Australian Standard AS 1698 (for Vehicle Users).
1979-11-01
Expanded Polystyrene HELMETI Colour Production; SAA Size ,Length Width j Mass Circumference Date Serial No. cm imm mm nu qm nun L A White July B535336...HELMET DETAILS Make: ARAI Model: S-75 Shell: Fibreglass Reinforced Polyester Resin Liner: Expanded Polystyrene HELMET Colour Production SAA Size...Reinforced Polyester Resin Liner; Expanded Polystyrene (with thin plastic inner shell) HELMET Colour Production’ SAA Size Length Width Mass
NASA Astrophysics Data System (ADS)
Nugroho, A.; Abdurohman, K.; Kusmono; Hestiawan, H.; Jamasri
2018-04-01
This paper described the effect of different type of manufacturing method to tensile properties of hybrid composite woven agel leaf fiber and glass fiber as an alternative of LSU structure material. The research was done by using 3 ply of woven agel leaf fiber (ALF) and 3 ply of glass fiber (wr200) while the matrix was using unsaturated polyester. Composite manufacturing method used hand lay-up and vacuum bagging. Tensile test conducted with Tensilon universal testing machine, specimen shape and size according to standard size ASTM D 638. Based on tensile test result showed that the tensile strength of agel leaf fiber composite with unsaturated polyester matrix is 54.5 MPa by hand lay-up and 84.6 MPa with vacuum bagging method. From result of tensile test, hybrid fiber agel composite and glass fiber with unsaturated polyester matrix have potential as LSU structure.
Investigation of electrically conducting yarns for use in textile actuators
NASA Astrophysics Data System (ADS)
Martinez, Jose G.; Richter, Klaus; Persson, Nils-Krister; Jager, Edwin W. H.
2018-07-01
Textile actuators are an emerging technology to develop biomimetic actuators with synergetic actuation. They are composed of a passive fabric coated with an electroactive polymer providing with mechanical motion. Here we used different conducting yarns (polyamide + carbon, silicon + carbon, polyamide + silver coated, cellulose + carbon, polyester + 2 × INOX 50 μm, polyester + 2 × Cu/Sn and polyester + gold coated) to develop such textile actuators. It was possible to coat them through direct electrochemical methods, which should provide with an easier and more cost-effective fabrication process. The conductivity and the electrochemical properties of the yarns were sufficient to allow the electropolymerization of the conducting polymer polypyrrole on the yarns. The electropolymerization was carried out and both the linear and angular the actuation of the yarns was investigated. These yarns may be incorporated into textile actuators for assistive prosthetic devices easier and cheaper to get and at the same time with good mechanical performance are envisaged.
Impact behaviour of Napier/polyester composites under different energy levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fahmi, I., E-mail: fahmi-unimap@yahoo.com; Majid, M. S. Abdul, E-mail: shukry@unimap.edu.my; Afendi, M., E-mail: afendirojan@unimap.edu.my
2016-07-19
The effects of different energy levels on the impact behaviour of Napier fibre/polyester reinforced composites were investigated. Napier fibre was extracted using traditional water retting process to be utilized as reinforcing materials in polyester composite laminates. 25% fibre loading composite laminates were prepared and impacted at three different energy levels; 2.5,5 and 7.5 J using an instrumented drop weight impact testing machine (IMATEK IM10). The outcomes show that peak force and contact time increase with increased impact load. The energy absorption was then calculated from the force displacement curve. The results indicated that the energy absorption decreases with increasing energymore » levels of the impact. Impacted specimens were observed visually for fragmentation fracture using an optical camera to identify the failure mechanisms. Fracture fragmentation pattern from permanent dent to perforation with radial and circumferential was observed.« less
Nickel-titanium wire as a flexor tendon suture material: an ex vivo study.
Karjalainen, T; Göransson, H; Viinikainen, A; Jämsä, T; Ryhänen, J
2010-07-01
Nickel-titanium shape memory alloy (NiTi) is a new suture material that is easy to handle, is strong, and biocompatible. The purpose of this study was to evaluate the material properties and biomechanical behaviour of 150 microm and 200 microm NiTi wires in flexor tendon repair. Braided polyester (4-0 Ethibond) was used as control. Fifty fresh-frozen porcine flexor tendons were repaired using the Pennington modification of the Kessler repair or a double Kessler technique. NiTi wires were stiffer and reached higher tensile strength compared to braided polyester suture. Repairs with 200 microm NiTi wire had a higher yield force, ultimate force and better resistance to gapping than 4-0 braided polyester repairs. Repairs made with 200 microm NiTi wire achieved higher stiffness and ultimate force than repairs made with 150 microm NiTi wire.
Evaluation of suture material characteristics in an in vitro experimental model.
Justan, I
2010-01-01
The purpose of our study was to indentify the mechanical characteristics of various suture materials. We created an in-vitro experimental flexor tendon model. Materials were divided into four groups: monofilament polypropylene non-absorbable material (group 1); monofilament long-term absorbable material (group 2); polyester multifilament non-absorbable coated material (group 3) and polyester multifilament non-absorbable uncoated material (group 4). We performed 135 tests. The mean maximal tensile strength was 62.92 N in group 1, 75.20 N in group 2, 36.38 N in group 3 and 72.4 N in group 4. Elasticity in millimetres was adjusted at the 35N level: group 1:2.01 mm, group 2:2.18 mm, group 3:2.14 and group 4:1.51 mm. With regard to its elasticity and favourable SD for tensile strength measurements, polyester multifilament non-absorbable uncoated material was considered to be the most suitable material.
Synthesis of silver nanoparticles in melts of amphiphilic polyesters
NASA Astrophysics Data System (ADS)
Vasylyev, S.; Damm, C.; Segets, D.; Hanisch, M.; Taccardi, N.; Wasserscheid, P.; Peukert, W.
2013-03-01
The current work presents a one-step procedure for the synthesis of amphiphilic silver nanoparticles suitable for production of silver-filled polymeric materials. This solvent free synthesis via reduction of Tollens’ reagent as silver precursor in melts of amphiphilic polyesters consisting of hydrophilic poly(ethylene glycol) blocks and hydrophobic alkyl chains allows the production of silver nanoparticles without any by-product formation. This makes them especially interesting for the production of medical devices with antimicrobial properties. In this article the influences of the chain length of the hydrophobic block in the amphiphilic polyesters and the process temperature on the particle size distribution (PSD) and the stability of the particles against agglomeration are discussed. According to the results of spectroscopic and viscosimetric investigations the silver precursor is reduced to elemental silver nanoparticles by a single electron transfer process from the poly(ethylene glycol) chain to the silver ion.
Thermal and mechanical behaviour of sub micron sized fly ash reinforced polyester resin composite
NASA Astrophysics Data System (ADS)
Nantha Kumar, P.; Rajadurai, A.; Muthuramalingam, T.
2018-04-01
The utilization of particles reinforced resin matrix composites is being increased owing to its lower density and high strength to weight ratio. In the present study, an attempt has been made to synthesize fly ash particles reinforced polyester resin composite for engine cowling application. The thermal stability and mechanical behaviours such as hardness and flexural strength of the composite with 2, 3 and 4 weight % of reinforcement is studied and analyzed. The thermo gravimetric analysis indicates that the higher addition of reinforcement increases the decomposition temperature due to its refractory nature. It is also observed that the hardness increases with higher filler addition owing to the resistance of FA particles towards penetration. The flexural strength is found to increase up to the addition of 3% of FA particles, whereas the polyester resin composite prepared with 4% FA particles addition is observed to have low flexural strength owing to agglomeration of particles.
Pyroglyphid mites, xerophilic fungi and allergenic activity in dust from hospital mattresses.
v d Lustgraaf, B; Jorde, W
1977-12-01
Dust from mattresses of different composition and age was analysed for mites, xerophilic fungi and allergenic activity. The mites of the genus Demodex were the most abundant (58.2 per cent). Also pyroglyphid mites occurred commonly (36.6 per cent). Pyroglyphid mites were present in small numbers (mean: 1 specimen/0.2 g of dust) in 12 out of the 17 older polyester-foam mattresses. The 11 cotton-horsechair mattresses and the newly used polyester-foam mattresses (three tested) were without them. The dust from the cotton-horsehair mattresses had a significantly higher allergenic activity than from those of polyester-foam. Xerophilic fungi were isolated in three out of 31 mattresses. The species isolated belonged to the genus Aspergillus and Eurotium. E. repens occurred most frequently. Disinfection of mattresses was suggested to have a negative influence on the occurrence of mites and fungi.
NASA Astrophysics Data System (ADS)
Salem, I. A. S.; Rozyanty, A. R.; Betar, B. O.; Adam, T.; Mohammed, M.; Mohammed, A. M.
2017-10-01
In this research, unsaturated polyester/kenaf fiber (UP/KF) composites was prepared by using hand lay-up process. The effect of surface treatment of kenaf fiber on mechanical properties of kenaf filled unsaturated polyester composites were studied. Different concentrationsof stearic acid (SA) were applied, i.e. 0, 0.4, and 0.8 wt%. Tensile strength of untreated UP/KF composites was found to be higher for 40 wt% loading of kenaf fiber. The highest tensile strength value was obtained after treatment with 0.4 wt% concentration of stearic acid at 56 MPa and tensile modulus was at 2409 MPa. From the flexural strength result obtained, it is clearly seen that 40 wt% loading of kenaf fiber and treatment with 0.4 wt% concentration of stearic acid give the highest value at 72 MPa and flexural modulus at 3929 MPa.
Francis, Brian R.
2015-01-01
Although analysis of the genetic code has allowed explanations for its evolution to be proposed, little evidence exists in biochemistry and molecular biology to offer an explanation for the origin of the genetic code. In particular, two features of biology make the origin of the genetic code difficult to understand. First, nucleic acids are highly complicated polymers requiring numerous enzymes for biosynthesis. Secondly, proteins have a simple backbone with a set of 20 different amino acid side chains synthesized by a highly complicated ribosomal process in which mRNA sequences are read in triplets. Apparently, both nucleic acid and protein syntheses have extensive evolutionary histories. Supporting these processes is a complex metabolism and at the hub of metabolism are the carboxylic acid cycles. This paper advances the hypothesis that the earliest predecessor of the nucleic acids was a β-linked polyester made from malic acid, a highly conserved metabolite in the carboxylic acid cycles. In the β-linked polyester, the side chains are carboxylic acid groups capable of forming interstrand double hydrogen bonds. Evolution of the nucleic acids involved changes to the backbone and side chain of poly(β-d-malic acid). Conversion of the side chain carboxylic acid into a carboxamide or a longer side chain bearing a carboxamide group, allowed information polymers to form amide pairs between polyester chains. Aminoacylation of the hydroxyl groups of malic acid and its derivatives with simple amino acids such as glycine and alanine allowed coupling of polyester synthesis and protein synthesis. Use of polypeptides containing glycine and l-alanine for activation of two different monomers with either glycine or l-alanine allowed simple coded autocatalytic synthesis of polyesters and polypeptides and established the first genetic code. A primitive cell capable of supporting electron transport, thioester synthesis, reduction reactions, and synthesis of polyesters and polypeptides is proposed. The cell consists of an iron-sulfide particle enclosed by tholin, a heterogeneous organic material that is produced by Miller-Urey type experiments that simulate conditions on the early Earth. As the synthesis of nucleic acids evolved from β-linked polyesters, the singlet coding system for replication evolved into a four nucleotide/four amino acid process (AMP = aspartic acid, GMP = glycine, UMP = valine, CMP = alanine) and then into the triplet ribosomal process that permitted multiple copies of protein to be synthesized independent of replication. This hypothesis reconciles the “genetics first” and “metabolism first” approaches to the origin of life and explains why there are four bases in the genetic alphabet. PMID:25679748
Bacterial production of the biodegradable plastics polyhydroxyalkanoates.
Urtuvia, Viviana; Villegas, Pamela; González, Myriam; Seeger, Michael
2014-09-01
Petroleum-based plastics constitute a major environmental problem due to their low biodegradability and accumulation in various environments. Therefore, searching for novel biodegradable plastics is of increasing interest. Microbial polyesters known as polyhydroxyalkanoates (PHAs) are biodegradable plastics. Life cycle assessment indicates that PHB is more beneficial than petroleum-based plastics. In this report, bacterial production of PHAs and their industrial applications are reviewed and the synthesis of PHAs in Burkholderia xenovorans LB400 is described. PHAs are synthesized by a large number of microorganisms during unbalanced nutritional conditions. These polymers are accumulated as carbon and energy reserve in discrete granules in the bacterial cytoplasm. 3-hydroxybutyrate and 3-hydroxyvalerate are two main PHA units among 150 monomers that have been reported. B. xenovorans LB400 is a model bacterium for the degradation of polychlorobiphenyls and a wide range of aromatic compounds. A bioinformatic analysis of LB400 genome indicated the presence of pha genes encoding enzymes of pathways for PHA synthesis. This study showed that B. xenovorans LB400 synthesize PHAs under nutrient limitation. Staining with Sudan Black B indicated the production of PHAs by B. xenovorans LB400 colonies. The PHAs produced were characterized by GC-MS. Diverse substrates for the production of PHAs in strain LB400 were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.
Pre-Flight Advanced Clothing Study
NASA Technical Reports Server (NTRS)
Orndoff, Evelyne; Poritz, Darwin; Schlesinger, Thilini; Byme, Vicky
2014-01-01
All human space missions require significant logistical mass and volume that will become an excessive burden for long duration missions beyond low Earth orbit. The current International Space Station (ISS) crew wardrobe has already evolved not only to reduce some of the logistical burden but also to address crew preference. The present study was undertaken to find ways further to reduce this logistical burden while examining human response to different types of clothes. The primary objective of the study is to measure how long people can wear the same exercise garment, depending on the type of fabric and the presence of antimicrobial treatment. The secondary objective is to assess the reasons for length of wear from perceptions of clothing characteristics, including nine ordinal scales. Cardiovascular exercise was chosen as the activity in this experiment for its profuse sweating effect and because it is considered a more severe treatment applied to the clothes than every-day usage. Study garments were exercise T-shirts and shorts purchased from various vendors. Fabric construction, fabric composition, and finishing treatment were defined as the key variables. A web-based questionnaire was used for self-reported data collection. The study was divided in three balanced experiments: a cotton-polyester-wool (CPW) T-shirts study with 61 participants, a polyester-modacrylic-polyester/cocona (PMC) T-shirts study with 40 participants, and a shorts study with 70 participants. In the CPW study, the T-shirts were made of 100% cotton, or of 100% polyester or of 100% wool, and categorized into open and tight knit constructions. In the PMC study, the T-shirts were made of 100% polyester, or of 82% modacrylic, or of 95% polyester with 5% cocona fiber, without construction distinction. The shorts were made either of 100% cotton or of 100% polyester, and were knitted or woven. Some garments were treated with Bio-Protect 500 antimicrobial finish according the experimental design. The data collected from the questionnaire included garment identification, level of exertion, duration of exercise session, number of exercise sessions, an ordinal preference scale for nine sensory elements, and reason for retiring a used garment. From the analysis of the combined CPW and PMC shirt studies, there are statistically significant differences among the mean lifetimes of various types of shirts. The exercise shirts with the longest mean lifetimes are untreated wool (600 minutes), treated cotton (526 minutes), and untreated modacrylic (515 minutes). From the combined CPW and PMC shirt studies, the most preferred material was untreated open-knit wool, which is one of the two materials that jointly were worn the longest, untreated wool, both open-knit and tight-knit. For the CP shorts study, there were no statistically significant differences in mean lifetimes of the exercise shorts at the 5% significance level due to the treatment combinations. There was therefore no justification to examine differences among levels of main effects or interactions. The preference for shorts was in this order: untreated woven polyester, untreated knitted polyester, untreated woven cotton, and treated knitted cotton.The nine preference scales were tabulated to determine the preference responses at the end of those exercise periods which were prior to the period when a garment was retired and a new garment was started. The assumption is that an unfavorable assessment of a garment leads to its retirement. The scent scale response was predominantly unfavorable at the end of the exercise period immediately prior to the exercise period when a new garment was started. Additional work on wool clothing is needed to assess if this material can be part of a crew wardrobe for long duration missions. The results of this study informed the choice of fabrics for an upcoming ISS intra-vehicular clothing study.
Storage, Preservation, and Recovery of Magnetic Recording Tape
NASA Technical Reports Server (NTRS)
Cuddihy, Edward F.
1994-01-01
During the 1970's, a commercial magnetic recording tape fabricated with magnetic oxide particles, and with oxide and backcoat binders made from polyester urethane was being used for spacecraft tape recorders, and which would periodically manifest operational problems such as layer-to-layer adhesion, stick-slip, and shedding of sticky organic materials. These problems were generally associated with periods of high humidity. An experimental study identified that these problems resulted from hydrolysis of the polyester urethane binders.
Observation of hairpin defects in a nematic main-chain polyester
NASA Astrophysics Data System (ADS)
Li, M. H.; Brûlet, A.; Davidson, P.; Keller, P.; Cotton, J. P.
1993-04-01
The conformation of a main-chain liquid crystalline polyester in its oriented nematic phase has been determined by small-angle neutron scattering. The data are fitted by a model of rigid cylinder with orientational fluctuations. For a low degree of polymerization (~9) the chain is almost completely elongated in the direction of the nematic field. For a polymer 3 times longer, the existence of two hairpins is shown at high temperature; this number decreases with decreasing temperature.
Dynamic-compliance and viscosity of PET and PEN
NASA Astrophysics Data System (ADS)
Weick, Brian L.
2016-05-01
Complex dynamic-compliance and in-phase dynamic-viscosity data are presented and analyzed for PET and PEN advanced polyester substrates used for magnetic tapes. Frequency-temperature superposition is used to predict long-term behavior. Temperature and frequency ranges for the primary glass transition and secondary transitions are discussed and compared for PET and PEN. Shift factors from frequency-temperature superposition are used to determine activation energies for the transitions, and WLF parameters are determined for the polyester substrates.
Dynamic-compliance and viscosity of PET and PEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weick, Brian L.
Complex dynamic-compliance and in-phase dynamic-viscosity data are presented and analyzed for PET and PEN advanced polyester substrates used for magnetic tapes. Frequency-temperature superposition is used to predict long-term behavior. Temperature and frequency ranges for the primary glass transition and secondary transitions are discussed and compared for PET and PEN. Shift factors from frequency-temperature superposition are used to determine activation energies for the transitions, and WLF parameters are determined for the polyester substrates.
Synthesis of a Chloroamide-Hyperbranched Polymer Additive for Self-Decontaminating Surfaces
2012-04-01
dissolved in dichloromethane (DCM) (30 mL) and the solution was dried with anhydrous sodium sulfate (Na2SO4) before being used in the next step...infrared spectroscopy N2 nitrogen Na2SO4 anhydrous sodium sulfate NMP 1-methyl-2-pyrrolidinone PFOA perfluorinated octanoic acid PMMA poly(methyl...16 3.6.1 Synthesis and Characterization of Chlorinated 5,5-Dimethylhydantoin Sodium Salt
Stabilization of Lipid Membranes With Dendritic Polymers
2004-12-01
Langmuir - Blodgett (Takamato, et al., 2001) and solution techniques (Johnson, et al., 2002). However, BLMs are too unstable to be used to make effective...J.A., Ivanova, A.T., Schwartz, D.K., Yang, T., and Cremer, P.S., 2001: Stable Ordering in Langmuir - Blodgett Films, Science, 293, 1292-1295. Tully...Various dendrimers and hyperbranched polymers were evaluated. In addition, lipids with different head groups were used to probe the underlying
Durable Suit Bladder with Improved Water Permeability for Pressure and Environment Suits
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Kuznetz, Larry; Orndoff, Evelyne; Tang, Henry; Aitchison, Lindsay; Ross, Amy
2009-01-01
Water vapor permeability is shown to be useful in rejecting heat and managing moisture accumulation in launch-and-entry pressure suits. Currently this is accomplished through a porous Gortex layer in the Advanced Crew and Escape Suit (ACES) and in the baseline design of the Constellation Suit System Element (CSSE) Suit 1. Non-porous dense monolithic membranes (DMM) that are available offer potential improvements for water vapor permeability with reduced gas leak. Accordingly, three different pressure bladder materials were investigated for water vapor permeability and oxygen leak: ElasthaneTM 80A (thermoplastic polyether urethane) provided from stock polymer material and two custom thermoplastic polyether urethanes. Water vapor, carbon dioxide and oxygen permeability of the DMM's was measured in a 0.13 mm thick stand-alone layer, a 0.08 mm and 0.05 mm thick layer each bonded to two different nylon and polyester woven reinforcing materials. Additional water vapor permeability and mechanical compression measurements were made with the reinforced 0.05 mm thick layers, further bonded with a polyester wicking and overlaid with moistened polyester fleece thermal underwear .This simulated the pressure from a supine crew person. The 0.05 mm thick nylon reinforced sample with polyester wicking layer was further mechanically tested for wear and abrasion. Concepts for incorporating these materials in launch/entry and Extravehicular Activity pressure suits are presented.
Zhao, Yi; Zhao, Yuzhu; Xu, Helan; Yang, Yiqi
2015-02-17
Biodegradable sizing agents from triethanolamine (TEA) modified soy protein could substitute poly(vinyl alcohol)(PVA) sizes for high-speed weaving of polyester and polyester/cotton yarns to substantially decrease environmental pollution and impel sustainability of textile industry. Nonbiodegradable PVA sizes are widely used and mainly contribute to high chemical oxygen demand (COD) in textile effluents. It has not been possible to effectively degrade, reuse or replace PVA sizes so far. Soy protein with good biodegradability showed potential as warp sizes in our previous studies. However, soy protein sizes lacked film flexibility and adhesion for required high-speed weaving. Additives with multiple hydroxyl groups, nonlinear molecule, and electric charge could physically modify secondary structure of soy protein and lead to about 23.6% and 43.3% improvement in size adhesion and ability of hair coverage comparing to unmodified soy protein. Industrial weaving results showed TEA-soy protein had relative weaving efficiency 3% and 10% higher than PVA and chemically modified starch sizes on polyester/cotton fabrics, and had relative weaving efficiency similar to PVA on polyester fabrics, although with 3- 6% lower add-on. In addition, TEA-soy sizes had a BOD5/COD ratio of 0.44, much higher than 0.03 for PVA, indicating that TEA-soy sizes were easily biodegradable in activated sludge.
The Influence of the Environment and Clothing on Human Exposure to Ultraviolet Light
Liu, Jin; Zhang, Wei
2015-01-01
Objection The aim of this study is to determine the effect of clothing and the environment on human exposure to ultraviolet light. Methods The ultraviolet (ultraviolet A and ultraviolet B) light intensity was measured, and air quality parameters were recorded in 2014 in Beijing, China. Three types of clothing (white polyester cloth, pure cotton white T-shirt, and pure cotton black T-shirt) were individually placed on a mannequin. The ultraviolet (ultraviolet A and ultraviolet B) light intensities were measured above and beneath each article of clothing, and the percentage of ultraviolet light transmission through the clothing was calculated. Results (1) The ultraviolet light transmission was significantly higher through white cloth than through black cloth; the transmission was significantly higher through polyester cloth than through cotton. (2) The weather significantly influenced ultraviolet light transmission through white polyester cloth; transmission was highest on clear days and lowest on overcast days (ultraviolet A: P=0.000; ultraviolet B: P=0.008). (3) Air quality parameters (air quality index and particulate matter 2.5 and 10) were inversely related to the ultraviolet light intensity that reached the earth’s surface. Ultraviolet B transmission through white polyester cloth was greater under conditions of low air pollution compared with high air pollution. Conclusion Clothing color and material and different types of weather affected ultraviolet light transmission; for one particular cloth, the transmission decreased with increasing air pollution. PMID:25923778
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, R.C.; Garard, R.J.; Lokhandwala, K.K.
The crush behavior (specific energy absorption and crush load stability) of unidirectional fiber composite rods having tougher matrices than vinyl ester were investigated and compared with the crush behavior of similar specimens having a vinyl ester matrix. The matrices were a cyclic polyester and two rubber-toughened vinyl esters. The specific energy absorption with the cyclic polyester matrix, 180 MJ/m{sup 3}, was slightly lower than that with the vinyl ester matrix, 230 MJ/m{sup 3}. On the other hand, the crush stability was markedly better. The average deviation of the crush load about the mean was as small as 3.5% with themore » cyclic polyester matrix, in contrast to about 12% with the vinyl ester matrix. The higher ductility of the cyclic polyester and the good fiber-matrix bond strength together resulted in less fracturing of the matrix and more uniform kink-band formation across the composite cross section than occurred with the vinyl ester matrix. There was also a reduction in the tendency for fibers at the periphery of the rod to splay outward rather than being crushed. Of the two rubber-toughened vinyl ester matrices, a 30% reduction was found in the average deviation of the crush load about the mean with the matrix toughened with a core-shell material, although no improvement was found with the CTBN rubber-modified vinyl ester resin.« less
Analytical approaches to identify potential migrants in polyester-polyurethane can coatings.
Louise Bradley, Emma; Driffield, Malcolm; Guthrie, James; Harmer, Nick; Thomas Oldring, Peter Kenneth; Castle, Laurence
2009-12-01
The safety of a polyester-polyurethane can coating has been assessed using a suite of complementary analytical methods to identify and estimate the concentrations of potential chemical migrants. The polyester was based on phthalic acids and aliphatic diols. The polyisocyanate cross-linking agent was 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethyl cyclohexane homopolymer (IPDI) blocked with methylethylketone oxime (MEKO) to make a one-part formulation. The overall migrate, obtained using solvent extraction of cured films, comprised almost completely of 12 cyclic and one linear polyester oligomer up to molecular weight 800 and containing up to six monomer units. These 13 oligomers covered a total of 28 isomeric forms. Other minor components detected were plasticisers and surfactants as well as impurities present in the starting materials. There was no detectable residue of either the blocked isocyanate (<0.01 microg/dm(2)) used as the starting substance or the unblocked isocyanate (<0.02 microg/dm(2)). The level of extractable IPDI was used as an indicator of the completeness of cure in experimental coatings. These studies revealed that there was an influence of time, temperature and catalyst content. Polymerisation was also influenced by the additives used and by the ageing of the wet coating formulation over several months. These studies allow parameters to be specified to ensure that commercial production coatings receive a full cure giving low migration characteristics.
The influence of the environment and clothing on human exposure to ultraviolet light.
Liu, Jin; Zhang, Wei
2015-01-01
The aim of this study is to determine the effect of clothing and the environment on human exposure to ultraviolet light. The ultraviolet (ultraviolet A and ultraviolet B) light intensity was measured, and air quality parameters were recorded in 2014 in Beijing, China. Three types of clothing (white polyester cloth, pure cotton white T-shirt, and pure cotton black T-shirt) were individually placed on a mannequin. The ultraviolet (ultraviolet A and ultraviolet B) light intensities were measured above and beneath each article of clothing, and the percentage of ultraviolet light transmission through the clothing was calculated. (1) The ultraviolet light transmission was significantly higher through white cloth than through black cloth; the transmission was significantly higher through polyester cloth than through cotton. (2) The weather significantly influenced ultraviolet light transmission through white polyester cloth; transmission was highest on clear days and lowest on overcast days (ultraviolet A: P=0.000; ultraviolet B: P=0.008). (3) Air quality parameters (air quality index and particulate matter 2.5 and 10) were inversely related to the ultraviolet light intensity that reached the earth's surface. Ultraviolet B transmission through white polyester cloth was greater under conditions of low air pollution compared with high air pollution. Clothing color and material and different types of weather affected ultraviolet light transmission; for one particular cloth, the transmission decreased with increasing air pollution.
Fluorescence biosensor for inorganic pyrophosphatase activity.
Zhang, Ying; Guo, Yajuan; Zhao, Mengmeng; Lin, Cuiying; Lin, Zhenyu; Luo, Fang; Chen, Guonan
2017-02-01
A highly sensitive and selective fluorescence biosensor for inorganic pyrophosphatase (PPase) activity has been developed based on special click ligation trigger hyperbranched rolling circle amplification (CLT-HRCA). Pyrophosphate ion (PPi) can coordinate with Cu 2+ to form stable PPi/Cu 2+ complex and Cu 2+ in the complex cannot be reduced to Cu + . The addition of PPase causes the hydrolysis of PPi into orthophosphate (Pi) and therefore induces the releasing of Cu 2+ from the stable PPi/Cu 2+ complex, and the free Cu 2+ is easily reduced to Cu + by sodium ascorbate. Then Cu + catalyzes the cyclization reaction between the specially designed 5'-azide and 3'-alkyne tagged padlock probes through Cu + catalyzed azide-alkyne cycloaddition (CuAAC), which in turn initiates the hyperbranched rolling circle amplification (HRCA). Given that the CLT-HRCA products contain large amounts of double-stranded DNAs (dsDNAs), the addition of SYBR Green I resulted in the enhanced fluorescence signal. There was a linear relationship between the enhanced fluorescence intensity and the logarithm PPase activity ranging from 0.05 to 25 mU with a detection limit of 0.02 mU. Such proposed biosensor has been successfully applied to screen the potential PPase inhibitors and has accessed the related inhibit ability with high efficiency.
Carboxylated hyperbranched poly(glycidol)s for preparation of pH-sensitive liposomes.
Yuba, Eiji; Harada, Atsushi; Sakanishi, Yuichi; Kono, Kenji
2011-01-05
Previous reports by the authors described intracellular delivery using liposomes modified with various carboxylated poly(glycidol) derivatives. These linear polymer-modified liposomes exhibited a pH-dependent membrane fusion behavior in cellular acidic compartments. However, the effect of the backbone structure on membrane fusion activity remains unknown. Therefore, this study specifically investigated the backbone structure to obtain pH-sensitive polymers with much higher fusogenic activity and to reveal the effect of the polymer backbone structure on the interaction with the membrane. Hyperbranched poly(glycidol) (HPG) derivatives were prepared as a new type of pH-sensitive polymer and used for the modification of liposomes. The resultant HPG derivatives exhibited high hydrophobicity and intensive interaction with the membrane concomitantly with the increasing degree of polymerization (DP). Furthermore, HPG derivatives showed a stronger interaction with the membrane than the linear polymers show. Liposomes modified with HPG derivatives of high DP delivered contents into the cytosol of DC2.4 cells, a dendritic cell line, more effectively than the linear polymer-modified liposomes do. Results show that the backbone structure of pH-sensitive polymers affected their pH-sensitivity and interaction with liposomal and cellular membranes. Copyright © 2010 Elsevier B.V. All rights reserved.
A novel 96-well gel-based assay for determining antifungal activity against filamentous fungi.
Troskie, Anscha Mari; Vlok, Nicolas Maré; Rautenbach, Marina
2012-12-01
In recent years the global rise in antibiotic resistance and environmental consciousness lead to a renewed fervour to find and develop novel antibiotics, including antifungals. However, the influence of the environment on antifungal activity is often disregarded and many in vitro assays may cause the activity of certain antifungals to be overestimated or underestimated. The general antifungal test assays that are economically accessible to the majority of scientists primarily rely on visual examination or on spectrophotometric analysis. The effect of certain morphogenic antifungals, which may lead to hyperbranching of filamentous fungi, unfortunately renders these methods unreliable. To minimise the difficulties experienced as a result of hyperbranching, we developed a straightforward, economical 96-well gel-based method, independent of spectrophotometric analysis, for highly repeatable determination of antifungal activity. For the calculation of inhibition parameters, this method relies on the visualisation of assay results by digitisation. The antifungal activity results from our novel micro-gel dilution assay are comparable to that of the micro-broth dilution assay used as standard reference test of The Clinical and Laboratory Standard Institute. Furthermore, our economical assay is multifunctional as it permits microscopic analysis of the preserved assay results, as well as rendering highly reliable data. Copyright © 2012 Elsevier B.V. All rights reserved.
Xie, Meihua; Wang, Ling; Guo, Baolin; Wang, Zhong; Chen, Y Eugene; Ma, Peter X
2015-12-01
Myotube formation is crucial to restoring muscular functions, and biomaterials that enhance the myoblast differentiation into myotubes are highly desirable for muscular repair. Here, we report the synthesis of electroactive, ductile, and degradable copolymers and their application in enhancing the differentiation of myoblasts to myotubes. A hyperbranched ductile polylactide (HPLA) was synthesized and then copolymerized with aniline tetramer (AT) to produce a series of electroactive, ductile and degradable copolymers (HPLAAT). The HPLA and HPLAAT showed excellent ductility with strain to failure from 158.9% to 42.7% and modulus from 265.2 to 758.2 MPa. The high electroactivity of the HPLAAT was confirmed by UV spectrometer and cyclic voltammogram measurements. These HPLAAT polymers also showed improved thermal stability and controlled biodegradation rate compared to HPLA. Importantly, when applying these polymers for myotube formation, the HPLAAT significantly improved the proliferation of C2C12 myoblasts in vitro compared to HPLA. Furthermore, these polymers greatly promoted myogenic differentiation of C2C12 cells as measured by quantitative analysis of myotube number, length, diameter, maturation index, and gene expression of MyoD and TNNT. Together, our study shows that these electroactive, ductile and degradable HPLAAT copolymers represent significantly improved biomaterials for muscle tissue engineering compared to HPLA. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bielinski, Ashley R.; Boban, Mathew; He, Yang
2017-01-24
A method for tunable control of geometry in hyperbranched ZnO nanowire (NW) systems is reported, which enables the rational design and fabrication of superomniphobic surfaces. Branched NWs with tunable density and orientation were grown via a sequential hydrothermal process, in which atomic layer deposition (ALD) was used for NW seeding, disruption of epitaxy, and selective blocking of NW nucleation. This approach allows for the rational design and optimization of three-level hierarchical structures, in which the geometric parameters of each level of hierarchy can be individually controlled. We demonstrate the coupled relationships between geometry and contact angle for a variety ofmore » liquids, which is supported by mathematical models of structural superomniphobicity. The highest performing superomniphobic surface was designed with three levels of hierarchy and achieved the following advancing/receding contact angles, water: 172°/170°, hexadecane: 166°/156°, octane: 162°/145°, and heptane: 160°/130°. Low surface tension liquids were shown to bounce off the surface from a height of 7 cm without breaking through and wetting. This approach demonstrates the power of ALD as an enabling technique for hierarchical materials by design, spanning the macro, micro, and nano length scales.« less
Cortés, Pilar; Fraga, Iria; Calventus, Yolanda; Román, Frida; Hutchinson, John M; Ferrando, Francesc
2014-03-04
Polymer layered silicate (PLS) nanocomposites have been prepared with diglycidyl ether of bisphenol-A (DGEBA) epoxy resin as the matrix and organically modified montmorillonite (MMT) as the clay nanofiller. Resin-clay mixtures with different clay contents (zero, two, five and 10 wt%) were cured, both isothermally and non-isothermally, using a poly(ethyleneimine) hyperbranched polymer (HBP), the cure kinetics being monitored by differential scanning calorimetry (DSC). The nanostructure of the cured nanocomposites was characterized by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), and their mechanical properties were determined by dynamic mechanical analysis (DMA) and impact testing. The results are compared with an earlier study of the structure and properties of the same DGEBA-MMT system cured with a polyoxypropylene diamine, Jeffamine. There are very few examples of the use of HBP as a curing agent in epoxy PLS nanocomposites; here, it is found to enhance significantly the degree of exfoliation of these nanocomposites compared with those cured with Jeffamine, with a corresponding enhancement in the impact energy for nanocomposites with the low clay content of 2 wt%. These changes are attributed to the different cure kinetics with the HBP, in which the intra-gallery homopolymerization reaction is accelerated, such that it occurs before the bulk cross-linking reaction.
Xu, Qian; Guo, Linru; A, Sigen; Gao, Yongsheng; Zhou, Dezhong; Greiser, Udo; Creagh-Flynn, Jack; Zhang, Hong; Dong, Yixiao; Cutlar, Lara; Wang, Fagang; Liu, Wenguang
2018-01-01
Adjusting biomaterial degradation profiles to match tissue regeneration is a challenging issue. Herein, biodegradable hyperbranched poly(β-amino ester)s (HP-PBAEs) were designed and synthesized via “A2 + B4” Michael addition polymerization, and displayed fast gelation with thiolated hyaluronic acid (HA-SH) via a “click” thiol–ene reaction. HP-PBAE/HA-SH hydrogels showed tunable degradation profiles both in vitro and in vivo using diamines with different alkyl chain lengths and poly(ethylene glycol) diacrylates with varied PEG spacers. The hydrogels with optimized degradation profiles encapsulating ADSCs were used as injectable hydrogels to treat two different types of humanized excisional wounds – acute wounds with faster healing rates and diabetic wounds with slower healing and neo-tissue formation. The fast-degrading hydrogel showed accelerated wound closure in acute wounds, while the slow-degrading hydrogel showed better wound healing for diabetic wounds. The results demonstrate that the new HP-PBAE-based hydrogel in combination with ADSCs can be used as a well-controlled biodegradable skin substitute, which demonstrates a promising approach in the treatment of various types of skin wounds. PMID:29719691
Xiao, Fengjuan; Yue, Lin; Li, Song; Li, Xinxin
2016-06-05
Interaction mechanism of a new hyperbranched polyurethane-based ferrocene (HPU-Fc) with cytochrome c (cyt c) and cyt c structure and conformation change induced by HPU-Fc were investigated using cyclic voltammogram(CV), differential pulse voltammetry (DPV), circular dichroism (CD), fluorescence, synchronous fluorescence and absorbance spectroscopy technique. The peroxidase activity of cyt c in the presence of HPU-Fc was also studied. The structure and conformation of protein are relatively stable at moderate concentration of HPU-Fc without obvious perturbation of the heme pocket and significant changes in protein secondary structure. Conjugation of cyt c with excessive HPU-Fc (over about 3 times of cyt c) slightly changed the α-helix structure in protein, disturbed the microenvironment around heme as well as away from the heme crevice, which caused the changes of the electrochemical behavior and the absorption spectra. Reasonable amount of HPU-Fc has no significant influence on the protein enzymatic activity, while excess HPU-Fc may cause a conformation not suitable for H2O2 activation and guaiacol oxidation. The interaction of HPU-Fc with cyt c and the conservation of protein function at suitable HPU-Fc amount make prepared complex promising for the synergistic anticancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.
Xie, Meihua; Wang, Ling; Guo, Baolin; Wang, Zhong; Chen, Y. Eugene; Ma, Peter X.
2015-01-01
Myotube formation is crucial to restoring muscular functions, and biomaterials that enhance the myoblast differentiation into myotubes are highly desirable for muscular repair. Here, we report the synthesis of electroactive, ductile, and degradable copolymers and their application in enhancing the differentiation of myoblasts to myotubes. A hyperbranched ductile polylactide (HPLA) was synthesized and then copolymerized with aniline tetramer (AT) to produce a series of electroactive, ductile and degradable copolymers (HPLAAT). The HPLA and HPLAAT showed excellent ductility with strain to failure from 158.9% to 42.7% and modulus from 265.2 to 758.2 MPa. The high electroactivity of the HPLAAT was confirmed by UV spectrometer and cyclic voltammogram measurements. These HPLAAT polymers also showed improved thermal stability and controlled biodegradation rate compared to HPLA. Importantly, when applying these polymers for myotube formation, the HPLAAT significantly improved the proliferation of C2C12 myoblasts in vitro compared to HPLA. Furthermore, these polymers greatly promoted myogenic differentiation of C2C12 cells as measured by quantitative analysis of myotube number, length, diameter, maturation index, and gene expression of MyoD and TNNT. Together, our study shows that these electroactive, ductile and degradable HPLAAT copolymers represent significantly improved biomaterials for muscle tissue engineering compared to HPLA. PMID:26335860
NASA Astrophysics Data System (ADS)
Poillucci, Richard
Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an automated fiber placement machine and the successful fabrication of a carbon fiber plate with an integrated microvascular channel is demonstrated.
NASA Astrophysics Data System (ADS)
Al-Maharma, A. Y.; Sendur, P.
2018-05-01
In this study, we compare the inter-laminar effect of graphene nano-sheets (GNSs) and CNTs on the single and multiple dynamic impact response of E-glass fiber reinforced epoxy composite (GFEP). In the comparisons, raw GFEP composite is used as baseline for quantifying the improvement on the dynamic impact response. For that purpose, finite element based models are developed for GNSs on GFEP, graphene coating on glass fibers, inter-laminar composite of CNTs reinforced polyester at 7.5 vol%, and combinations of all these reinforcements. Comparisons are made on three metrics: (i) total deformation, (ii) the contact force, and (iii) internal energy of the composite plate. The improvement on axial modulus (E1) of GFEP reinforced with one layer of GNS (0.5 wt%) without polyester at lamination sequence of [0]8 is 29.4%, which is very close to the improvement of 31% on storage modulus for multi-layer graphene with 0.5 wt% reinforced E-glass/epoxy composite at room temperature. Using three GNSs (1.5 wt%) reinforced polyester composite as interlaminar layer results in an improvement of 57.1% on E1 of GFEP composite. The simulation results reveal that the interlaminar three GNSs/polyester composite at mid-plane of GFEP laminated composite can significantly improve the dynamic impact resistance of GFEP structure compared to the other aforementioned structural reinforcements. Reinforcing GFEP composite with three layers of GNSs/polyester composite at mid-plane results in an average of 35% improvement on the dynamic impact resistance for healthy and damaged composite plate under low velocity impacts of single and multiple steel projectiles. This model can find application in various areas including structural health monitoring, fire retardant composite, and manufacturing of high strength and lightweight mechanical parts such as gas tank, aircraft wings and wind turbine blades.
Santer, Roger D
2017-03-01
Riverine tsetse transmit the parasites that cause the most prevalent form of human African trypanosomiasis, Gambian HAT. In response to the imperative for cheap and efficient tsetse control, insecticide-treated 'tiny targets' have been developed through refinement of tsetse attractants based on blue fabric panels. However, modern blue polyesters used for this purpose attract many less tsetse than traditional phthalogen blue cottons. Therefore, colour engineering polyesters for improved attractiveness has great potential for tiny target development. Because flies have markedly different photoreceptor spectral sensitivities from humans, and the responses of these photoreceptors provide the inputs to their visually guided behaviours, it is essential that polyester colour engineering be guided by fly photoreceptor-based explanations of tsetse attraction. To this end, tsetse attraction to differently coloured fabrics was recently modelled using the calculated excitations elicited in a generic set of fly photoreceptors as predictors. However, electrophysiological data from tsetse indicate the potential for modified spectral sensitivities versus the generic pattern, and processing of fly photoreceptor responses within segregated achromatic and chromatic channels has long been hypothesised. Thus, I constructed photoreceptor-based models explaining the attraction of G. f. fuscipes to differently coloured tiny targets recorded in a previously published investigation, under differing assumptions about tsetse spectral sensitivities and organisation of visual processing. Models separating photoreceptor responses into achromatic and chromatic channels explained attraction better than earlier models combining weighted photoreceptor responses in a single mechanism, regardless of the spectral sensitivities assumed. However, common principles for fabric colour engineering were evident across the complete set of models examined, and were consistent with earlier work. Tools for the calculation of fly photoreceptor excitations are available with this paper, and the ways in which these and photoreceptor-based models of attraction can provide colorimetric values for the engineering of more-attractively coloured polyester fabrics are discussed.
2017-01-01
Riverine tsetse transmit the parasites that cause the most prevalent form of human African trypanosomiasis, Gambian HAT. In response to the imperative for cheap and efficient tsetse control, insecticide-treated ‘tiny targets’ have been developed through refinement of tsetse attractants based on blue fabric panels. However, modern blue polyesters used for this purpose attract many less tsetse than traditional phthalogen blue cottons. Therefore, colour engineering polyesters for improved attractiveness has great potential for tiny target development. Because flies have markedly different photoreceptor spectral sensitivities from humans, and the responses of these photoreceptors provide the inputs to their visually guided behaviours, it is essential that polyester colour engineering be guided by fly photoreceptor-based explanations of tsetse attraction. To this end, tsetse attraction to differently coloured fabrics was recently modelled using the calculated excitations elicited in a generic set of fly photoreceptors as predictors. However, electrophysiological data from tsetse indicate the potential for modified spectral sensitivities versus the generic pattern, and processing of fly photoreceptor responses within segregated achromatic and chromatic channels has long been hypothesised. Thus, I constructed photoreceptor-based models explaining the attraction of G. f. fuscipes to differently coloured tiny targets recorded in a previously published investigation, under differing assumptions about tsetse spectral sensitivities and organisation of visual processing. Models separating photoreceptor responses into achromatic and chromatic channels explained attraction better than earlier models combining weighted photoreceptor responses in a single mechanism, regardless of the spectral sensitivities assumed. However, common principles for fabric colour engineering were evident across the complete set of models examined, and were consistent with earlier work. Tools for the calculation of fly photoreceptor excitations are available with this paper, and the ways in which these and photoreceptor-based models of attraction can provide colorimetric values for the engineering of more-attractively coloured polyester fabrics are discussed. PMID:28306721
Design and Fabrication of an Elastomer Test Machine.
1988-05-01
provided by the Army Materials Technology Laboratories, were tested with the ETM at U.C.N.W. RUBBER 15 TP14AX 15 NAT25A 15 SBR26 NBR 6 FIBREGLASS REINFORCED...stationary, tilted and rotational) are comparable with 0001 AM and 0001 AN samples. SAMPLE NBR 62 This is a matt black, rubber based sample described as a... RUBBER 0001 AM 0001 AN 0001 AE -6- POLYURETHANE ECP 1 S ECP 2 Morbay 2690 Budd 20 1080 (Polyester) ) Gallagher Corporation A8 (Polyester) ) All
Wood-Polymer composites obtained by gamma irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gago, J.; Lopez, A.; Rodriguez, J.
2007-10-26
In this work we impregnate three Peruvian woods (Calycophy spruceanum Be, Aniba amazonica Meiz and Hura crepitans L) with styrene-polyester resin and methyl methacrylate. The polymerization of the system was promoted by gamma radiation and the experimental optimal condition was obtained with styrene-polyester 1:1 and 15 kGy. The obtained composites show reduced water absorption and better mechanical properties compared to the original wood. The structure of the wood-polymer composites was studied by light microscopy. Water absorption and hardness were also obtained.
1984-08-01
principally from sebacic acid and neopentyl glycol and that the most significant difference between the sealants was the greater proportion of trihydric...exhaustive hydrolysis of the polyesters would generate sebacic acid and neopentyl glycol , in practice ester units such as (1) which are terminated with both...slight to moderate swelling and softening of the polysulfides with PR-1422 being the most susceptible. Neopentyl glycol suppressed the swelling due to
Characterization and Fate of Gun and Rocket Propellant Residues on Testing and Training Ranges
2011-08-01
propellant sticks, is tied in three places with polyester and cotton thread ties. The bundle is then wrapped in lead foil (a de-coppering agent...sticks and the tying of the bundle in five places, again using polyester and cotton thread ties. The combustible case is manufactured mainly from...and brought back to DRDC to be weighed and extracted to measure the remaining 2,4-DNT. Most of what was collected was the remains of the cotton
Hygrothermomechanical evaluation of transverse filament tape epoxy/polyester fiberglass composites
NASA Technical Reports Server (NTRS)
Lark, R. F.; Chamis, C. C.
1984-01-01
Transverse filament tape (TFT) fiberglass/epoxy and TFT polyester composites intended for low cost wind turbine blade fabrication have been subjected to static and cyclic load behavior tests whose results are presently evaluated on the basis of an integrated hygrothermomechanical response theory. Laminate testing employed simulated filament winding procedures. The results obtained show that the predicted hygrothermomechanical environmental effects on TFT composites are in good agreement with measured data for various properties, including fatigue at different R-ratio values.
Polymeric Beads for Organic Coatings
1982-10-31
Clear Solid Polymeric Beads A solid polymeric bead is comprised of a sol id mass of polymerized unsaturated polyester/styrene resin mixture . 2. lear...than the current unsaturated polyester resin . For example, a bead male from acrylic resin could be more trans- - parent, more durable and provide more...0.44 Isopropyl Alcohol I 11.26 I 1 .73 60% Wt. Alkyd Resin - Volume I 251.26 i 30.52 " Sol ids 51% 1 I Anti.-Skinning Agent I 0.90 I 0.12 Mineral
Research progress on synthesis and characteristic about dendrimers
NASA Astrophysics Data System (ADS)
Tang, Zitao
2017-12-01
Dendrimers are hyper-branched polymers which have perfectly defined structures. Different from the common polymers, dendrimers are synthesized by a step-by-step iterative style, which starts from a central core and forms branching parts outward. The dendrimers also have different physical and chemical characteristics from common polymers. In this paper, contributions to dendrimer synthesis from different researchers with different scientific background, synthesis of different dendrimers, and applications of them will be reviewed.
Carrión, Francisco; Montalbán, Laura; Real, Julia I.
2014-01-01
Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior. PMID:25243213
Jin, Chun; Jin, Li-Na; Guo, Mei-Xia; Liu, Ping; Zhang, Jia-Nan; Bian, Shao-Wei
2017-12-15
A three-dimensional (3D) electrode material was successfully synthesized through a facile ZnO-assisted hydrothermal process in which vertical MnO 2 nanotube arrays were in situ grown on the conductive graphene/polyester composite fabric. The morphology and structure of MnO 2 nanotubes/graphene/polyester textile electrode were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The 3D electrode structure facilitates to achieve the maximum number of active sites for the pesudocapacitance redox reaction, fast electrolyte ion transportation and short ion diffusion path. The electrochemical measurements showed that the electrode possesses good capacitance capacity which reached 498F/g at a scan rate of 2mV/s in Na 2 SO 4 electrolyte solution. The electrode also showed stable electrochemical performances under the conditions of long-term cycling, and mechanical bending and twisting. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wawrzyńczyk, Dominika; Kulbacka, Julita; Bazylińska, Urszula
2017-08-01
We have investigated the change in optical properties and biocompatibility of up-converting NaYF4 nanoparticles (NPs) upon encapsulation inside the polyester nanocarriers (NCs) stabilized by Crempophor RH40 (CRH40), poly(D,L-lactide) (PLA), Pluronic P123 (P123). NaYF4:Er3+,Yb3+ NPs showed intense green and red emission, and upon encapsulation the increase of red band in respect to green one was observed, with no luminescence lifetime shortening. Obtained NCs showed prolonged colloidal stability and protective effect of the polymer shell simultaneously preserving the high emission efficiency of nanoparticles embedded within the silicon oil (SO) core. Based on emission spectra, kinetic measurements and cytotoxicity studies upon human malignant melanoma Me45 cell line we have shown the advantages of using polyester NCs as containers for the up-converting NPs. Due to the possibility of co-encapsulation of photosensitizers the obtained nanocarriers showed potential for application in theranostics.
Fabricating Superhydrophobic Polymeric Materials for Biomedical Applications
Kaplan, Jonah; Grinstaff, Mark
2015-01-01
Superhydrophobic materials, with surfaces possessing permanent or metastable non-wetted states, are of interest for a number of biomedical and industrial applications. Here we describe how electrospinning or electrospraying a polymer mixture containing a biodegradable, biocompatible aliphatic polyester (e.g., polycaprolactone and poly(lactide-co-glycolide)), as the major component, doped with a hydrophobic copolymer composed of the polyester and a stearate-modified poly(glycerol carbonate) affords a superhydrophobic biomaterial. The fabrication techniques of electrospinning or electrospraying provide the enhanced surface roughness and porosity on and within the fibers or the particles, respectively. The use of a low surface energy copolymer dopant that blends with the polyester and can be stably electrospun or electrosprayed affords these superhydrophobic materials. Important parameters such as fiber size, copolymer dopant composition and/or concentration, and their effects on wettability are discussed. This combination of polymer chemistry and process engineering affords a versatile approach to develop application-specific materials using scalable techniques, which are likely generalizable to a wider class of polymers for a variety of applications. PMID:26383018
Pressure polymerization of polyester
Maurer, Charles J.; Shaw, Gordon; Smith, Vicky S.; Buelow, Steven J.; Tumas, William; Contreras, Veronica; Martinez, Ronald J.
2000-08-29
A process is disclosed for the preparation of a polyester polymer or polyester copolymer under superatmospheric pressure conditions in a pipe or tubular reaction under turbannular flow conditions. Reaction material having a glycol equivalents to carboxylic acid equivalents mole ratio of from 1.0:1 to 1.2:1, together with a superatmospheric dense gaseous medium are fed co-currently to the reactor. Dicarboxylic acid and/or diol raw materials may be injected into any of the reaction zones in the process during operation to achieve the overall desired mole ratio balance. The process operates at temperatures of from about 220.degree. C. to about 320.degree. C., with turbannular flow achieved before the polymer product and gas exit the reactor process. The pressure in the reaction zones can be in the range from 15 psia to 2500 psia. A polymer product having a DP of a greater than 40, more preferably at least about 70, is achieved by the transfer of water from the reacting material polymer melt to the gaseous medium in the reactor.
NASA Astrophysics Data System (ADS)
Ma, Piming; Deshmukh, Yogesh S.; Wilsens, Carolus H. R. M.; Ryan Hansen, Michael; Graf, Robert; Rastogi, Sanjay
2015-08-01
One of the key requirements in semi-crystalline polyesters, synthetic or bio-based, is the control on crystallization rate and crystallinity. One of the limiting factors in the commercialization of the bio-based polyesters, for example polyhydroxyalkanoates synthesized by bacteria for energy storage purposes, is the slow crystallization rate. In this study, we show that by tailoring the molecular structure of oxalamide compounds, it is possible to dissolve these compounds in molten poly(hydroxybutyrate) (PHB), having a hydroxyvalerate co-monomer content of less than 2 mol%. Upon cooling the polymer melt, the homogeneously dispersed oxalamide compound crystallizes just below the melting temperature of the polymer. The phase-separated compound reduces the nucleation barrier of the polymer, thus enhancing the crystallization rate, nucleation density and crystallinity. The findings reported in this study provide a generic route for the molecular design of oxalamide-based compounds that can be used for enhancing nucleation efficiency of semi-crystalline bio-based polyesters.
Nanocellulose based polymer composite for acoustical materials
NASA Astrophysics Data System (ADS)
Farid, Mohammad; Purniawan, Agung; Susanti, Diah; Priyono, Slamet; Ardhyananta, Hosta; Rahmasita, Mutia E.
2018-04-01
Natural fibers are biodegradable materials that are innovatively and widely used for composite reinforcement in automotive components. Nanocellulose derived from natural fibers oil palm empty bunches have properties that are remarkable for use as a composite reinforcement. However, there have not been many investigations related to the use of nanocellulose-based composites for wideband sound absorption materials. The specimens of nanocellulose-based polyester composite were prepared using a spray method. An impedance tube method was used to measure the sound absorption coefficient of this composite material. To reveal the characteristics of the nanocellulose-based polyester composite material, SEM (scanning electron microscope), TEM (Transmission Electron Microscope), FTIR (Fourier Transform Infra Red), TGA (Thermogravimetric Analysis), and density tests were performed. Sound absorption test results showed the average value of sound absorption coefficient of 0.36 to 0,46 for frequency between 500 and 4000 Hz indicating that this nanocellulose-based polyester composite materials had a tendency to wideband sound absorption materials and potentially used as automotive interior materials.
Carrión, Francisco; Montalbán, Laura; Real, Julia I; Real, Teresa
2014-01-01
Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.
Brown, Gary S.; Betty, Rita G.; Brockmann, John E.; Lucero, Daniel A.; Souza, Caroline A.; Walsh, Kathryn S.; Boucher, Raymond M.; Tezak, Mathew; Wilson, Mollye C.; Rudolph, Todd
2007-01-01
Polyester-rayon blend wipes were evaluated for efficiency of extraction and recovery of powdered Bacillus atrophaeus spores from stainless steel and painted wallboard surfaces. Method limits of detection were also estimated for both surfaces. The observed mean efficiency of polyester-rayon blend wipe recovery from stainless steel was 0.35 with a standard deviation of ±0.12, and for painted wallboard it was 0.29 with a standard deviation of ±0.15. Evaluation of a sonication extraction method for the polyester-rayon blend wipes produced a mean extraction efficiency of 0.93 with a standard deviation of ±0.09. Wipe recovery quantitative limits of detection were estimated at 90 CFU per unit of stainless steel sample area and 105 CFU per unit of painted wallboard sample area. The method recovery efficiency and limits of detection established in this work provide useful guidance for the planning of incident response environmental sampling following the release of a biological agent such as Bacillus anthracis. PMID:17122390
Brown, Gary S; Betty, Rita G; Brockmann, John E; Lucero, Daniel A; Souza, Caroline A; Walsh, Kathryn S; Boucher, Raymond M; Tezak, Mathew; Wilson, Mollye C; Rudolph, Todd
2007-02-01
Polyester-rayon blend wipes were evaluated for efficiency of extraction and recovery of powdered Bacillus atrophaeus spores from stainless steel and painted wallboard surfaces. Method limits of detection were also estimated for both surfaces. The observed mean efficiency of polyester-rayon blend wipe recovery from stainless steel was 0.35 with a standard deviation of +/-0.12, and for painted wallboard it was 0.29 with a standard deviation of +/-0.15. Evaluation of a sonication extraction method for the polyester-rayon blend wipes produced a mean extraction efficiency of 0.93 with a standard deviation of +/-0.09. Wipe recovery quantitative limits of detection were estimated at 90 CFU per unit of stainless steel sample area and 105 CFU per unit of painted wallboard sample area. The method recovery efficiency and limits of detection established in this work provide useful guidance for the planning of incident response environmental sampling following the release of a biological agent such as Bacillus anthracis.
Pervasive plastisphere: First record of plastics in egagropiles (Posidonia spheroids).
Pietrelli, Loris; Di Gennaro, Alessia; Menegoni, Patrizia; Lecce, Francesca; Poeta, Gianluca; Acosta, Alicia T R; Battisti, Corrado; Iannilli, Valentina
2017-10-01
The ability of Posidonia oceanica spheroids (egagropiles, EG) to incorporate plastics was investigated along the central Italy coast. Plastics were found in the 52.84% of the egagropiles collected (n = 685). The more represented size of plastics has range within 1-1.5 cm, comparable to the size of natural fibres. Comparing plastics occurring both in EG and in surrounding sand, Polyethylene, Polyester and Nylon were the most abundant polymers in EG, while PSE, PE, PP and PET were the most represented in sand. In particular PE and PP were significantly more represented in sand, while PE, Nylon, Polyester and microfibers (as pills) were more represented in EG. Within plastics found in EG, 26.9% were microfibers as small pills (<1 cm), mainly composed of polyamide, polyester, cotton and PET mixing. These microfibers might be produced by discharges from washing machines and currently represents an emerging pollutant with widespread distribution in marine and freshwater ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jérôme, Christine; Aqil, Abdelhafid; Voccia, Samuël; Labaye, David-Emmanuel; Maquet, Véronique; Gautier, Sandrine; Bertrand, Olivier F; Jérôme, Robert
2006-03-01
This article reports on a novel two-step strategy for the coating of cardiovascular stents by strongly adhering biocompatible and biodegradable aliphatic polyesters. First, a precoating of poly(ethylacrylate) (PEA) was electrografted onto the metallic substrate by cathodic reduction of the parent monomer in dimethylformamide (DMF). The electrodeposition of PEA, in a good solvent of it, was confirmed by both Infra-red and Raman spectroscopies. The pendant ester groups of PEA were then chemically reduced into aluminum alkoxides, able to initiate the ring-opening polymerization (ROP) of either D,L-lactide (LA) or epsilon-caprolactone (CL). Growth of biodegradable PLA or PCL coatings from the adhering precoating was confirmed by both Infra-red and Raman spectroscopies, and directly observed by scanning electron microscopy (SEM). This type of coating can act as an anchoring layer for the subsequent casting of drug-loaded polyester films allowing the controlled release of antiproliferative agents for the treatment of in-stent restenosis. (c) 2005 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Rajalakshmi, M.; Uddandrao, V. V. Sathibabu; Saravanan, G.; Vadivukkarasi, S.; Koushik, C. V.
2018-06-01
The present study was aimed to develop a novel textile product through bio modification of cotton and micro-denier polyester with sericin (Sn) against bacterial and fungal growth. The authors extracted and purified Sn from silk yellow cocoons. Sn solution (10 g/L) was incorporated into the 100% cotton (C), 100% micro-denier polyester (MDP) and 65/35 micro-denier polyester/cotton (MDP/C) in a padding mangle by a 2-dip/2-nip process and fabrics were analysed by Field-Emission scanning electron microscope. Fabrics were divided into six groups such as untreated groups (C, MDP and MDP/C) and Sn-treated groups (Sn + C, Sn + MDP and Sn + MDP/C) and then underwent organoleptic evaluation and as well as anti-bacterial (Staphylococcus aureus and Escherichia coli) and anti-fungal (Aspergillus niger and Trichoderma harzianum) activities. Sn treated fabrics were found to show the presence of Sn by scanning electron micrographs and also attained high organoleptic score from the panel members. In addition, the Sn-treated fabrics displayed outstanding anti bacterial and anti fungal properties in terms of both qualitative and quantitative analysis. Sn + MDP/C fabrics have shown potential reduction in bacterial and fungal growth when compared with other treated and untreated fabrics. Hence, this study suggests that bio modification of C, MDP and MDP/C with Sn may make them ideal candidate for their application in medical textiles against pathogens.
Microclimatic Variation Within Sleeve Cages Used in Ecological Studies
Nelson, Lori A.; Rieske, Lynne K.
2014-01-01
Abstract Sleeve cages for enclosing or excluding arthropods are essential components of field studies evaluating trophic interactions. Microclimatic variation in sleeve cages was evaluated to characterize its potential effects on subsequent long-term experiments. Two sleeve cage materials, polyester and nylon, and two cage sizes, 400 and 6000 cm 2 , were tested on eastern hemlock, Tsuga canadensis (L.) Carrière. Temperature and relative humidity inside and outside cages, and the cost and durability of the cage materials, were compared. Long-term effects of the sleeve cages were observed by measuring new growth on T. canadensis branches. The ultimate goal was to identify a material that minimizes bag-induced microclimatic variation. Bagged branches whose microclimates mimic those of surrounding unbagged branches should have minimal effects on plant growth and may prove ideal venues for assessing herbivore and predator behavior under natural conditions. No differences were found in temperature or humidity between caging materials. Small cages had higher average temperatures than large cages, especially in the winter, but this difference was confounded by the fact that small cages were positioned higher in trees than large cages. Differences in plant growth were detected. Eastern hemlock branches enclosed within polyester cages produced fewer new growth tips than uncaged controls. Both polyester and nylon cages reduced the length of new shoot growth relative to uncaged branches. In spite of higher costs, nylon cages were superior to polyester with respect to durability and ease of handling. PMID:25368083
Lee, Ming-Chieh; Liu, En-Jung; Yang, Cheng-Han; Hsiao, Li-Jung; Wu, Tzong-Ming; Li, Si-Yu
2018-04-01
Whole-cell degradation of polyesters not only avoids the tedious process of enzyme separation, but also allows the degraded product to be reused as a carbon source. In this study, Escherichia coli BL21(DE3) harboring phaZ Cma , a gene encoding poly(3-hydroxybutyrate) (PHB) depolymerase from Caldimonas manganoxidans, is constructed. The extra-cellular fraction of E. coli/pPHAZ exhibits a fast PHB degradation rate where it only took 35 h to completely degrade PHB films, while C. manganoxidans takes 81 h to do the same. The co-expression of ORF Cma (a putative periplasmic substrate binding protein that is within the same operon of phaZ Cma ) further improves the PHB degradation. While 28 h is needed for E. coli/pPHAZ to cause an 80% weight loss in PHB films, E. coli/pORFPHAZ needs only 21 h. Furthermore, it is able to degrade at-least four different polyesters, PHB, poly(lactic acid) (PLA), polycaprolactone (PCL), and poly(butylene succinate-co-adipate) (PBSA). Testing of the time course of 3-hydroxybutyrate concentration and the turbidity of the degradation solutions over time shows that PhaZ Cma has both exo- and endo-enzymatic activity. The whole-cell E. coli/pORFPHAZ can be used for recycling various polyesters while ORF Cma can potentially be a universal element for enhancing the secretion of recombinant protein. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yan, Huijie; Zhu, Dingcheng; Zhou, Zhuxian; Liu, Xin; Piao, Ying; Zhang, Zhen; Liu, Xiangrui; Tang, Jianbin; Shen, Youqing
2018-03-30
Cationic polymers are one of the main non-viral vectors for gene therapy, but their applications are hindered by the toxicity and inefficient transfection, particularly in the presence of serum or other biological fluids. While rational design based on the current understanding of gene delivery process has produced various cationic polymers with improved overall transfection, high-throughput parallel synthesis of libraries of cationic polymers seems a more effective strategy to screen out efficacious polymers. Herein, we demonstrate a novel platform for parallel synthesis of low cationic charge-density polyesters for efficient gene delivery. Unsaturated polyester poly(alkylene maleate) (PAM) readily underwent Michael-addition reactions with various mercaptamines to produce polyester backbones with pendant amine groups, poly(alkylene maleate mercaptamine)s (PAMAs). Variations of the alkylenes in the backbone and the mercaptamines on the side chain produced PAMAs with tunable hydrophobicity and DNA-condensation ability, the key parameters dominating transfection efficiency of the resulting polymer/DNA complexes (polyplexes). A semi-library of such PAMAs was exampled from 7 alkylenes and 18 mercaptamines, from which a lead PAMA, G-1, synthesized from poly(1,4-phenylene bis(methylene) maleate) and N,N-dimethylcysteamine, showed remarkable transfection efficiency even in the presence of serum, owing to its efficient lysosome-circumventing cellular uptake. Furthermore, G-1 polyplexes efficiently delivered the suicide gene pTRAIL to intraperitoneal tumors and elicited effective anticancer activity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Textile for heart valve prostheses: fabric long-term durability testing.
Heim, Frederic; Durand, Bernard; Chakfe, Nabil
2010-01-01
The rapid developments and success in percutaneous vascular surgery over the last two decades with the now common stent grafts implantation, make the noninvasive surgery technique today attractive even for heart valve replacement. Less traumatic for the patient and also less time consuming, percutaneous heart valve replacement is however at its beginning and restricted to end of life patients. The noninvasive procedure expects from the heart valve prosthesis material to be resistant and adapted to folding requirements of the implantation process (catheter). Polyester fabric could be a suited material for heart valve implanted percutaneously. Highly flexible and resistant, polyester fabric proved to be well adapted to the dynamic behavior of a valve and polyester (Dacron) is also widely used for vascular grafts implantation and shows good biocompatibility and durability. However, today there's no data available on long-term durability of fabric used as heart valve material. The purpose of this work is to study the long term behavior of a microdenier polyester fabric construction under combined in vitro flexure and tension fatigue stress. In the novel in vitro testing technique presented, a fabric specimen was subjected to combined flexural and tensile fatigue generated by fluid flow under physiological pressure conditions. The results obtained show how flexural properties change with fatigue time, which reflects directly on the suitability of a fabric in such devices. It was also observed that these fabric structural changes directly influence the in vitro behavior of the textile heart valve prosthesis. (c) 2009 Wiley Periodicals, Inc.
Changing the color of textiles with realistic visual rendering
NASA Astrophysics Data System (ADS)
Hébert, Mathieu; Henckens, Lambert; Barbier, Justine; Leboulleux, Lucie; Page, Marine; Roujas, Lucie; Cazier, Anthony
2015-03-01
Fast and easy preview of a fabric without having to produce samples would be very profitable for textile designers, but remains a technological challenge. As a first step towards this objective, we study the possibility of making images of a real sample, and changing virtually the colors of its yarns while preserving the shine and shadow texture. We consider two types of fabrics: Jacquard weave fabrics made of polyester warp and weft yarns of different colors, and satin ribbons made of polyester and metallic yarns. For the Jacquard fabric, we make a color picture with a scanner on a sample in which the yarns have contrasted colors, threshold this image in order to distinguish the pixels corresponding to each yarn, and accordingly modify their hue and chroma values. This method is simple to operate but do not enable to simulate the angle-dependent shine. A second method, tested on the satin ribbon made of black polyester and achromatic metallic yarns, is based on polarized imaging. We analyze the polarization state of the reflected light which is different for dielectric and metallic materials illuminated by polarized light. We then add a fixed color value to the pixels representing the polyester yarns and modify the hue and chroma of the pixels representing the metallic yarns. This was performed for many incident angles of light, in order to render the twinkling effect displayed by these ribbons. We could verify through a few samples that the simulated previews reproduce real pictures with visually acceptable accuracy.
Degradation Characterization of Aliphatic POLYESTERS—IN Vitro Study
NASA Astrophysics Data System (ADS)
Vieira, A. C.; Vieira, J. C.; Guedes, R. M.; Marques, A. T.
2008-08-01
The most popular and important biodegradable polymers are aliphatic polyesters, such as polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), polyhydoxyalkanoates (PHA's) and polyethylene oxide (PEO). However, each of these has some shortcomings which restrict its applications. Blending techniques are an extremely promising approach which can improve or tune the original properties of the polymers[1]. Aliphatic polyesters are a central class of biodegradable polymers, because hydrolytic and/or enzymatic chain cleavage of these materials leads to α-hydroxyacids, which in most cases are ultimately metabolized in human body. This is particularly useful for controlled release devices and for other biomedical applications like suture fibers and ligaments. For aliphatic polyesters, hydrolysis rates are affected by the temperature, molecular structure, and ester group density as well as by the species of enzyme used. The degree of crystallinity may be a crucial factor, since enzymes attack mainly the amorphous domains of a polymer. Four different aliphatic polyesters were characterized in terms of degradation. Sutures fibers of PGA-PCL, PGA, PLA-PCL and PDO were used in this study. Weight loss, pH, molecular weight, crystallinity and strength were measured after six stages of incubation in distilled water, physiological saline and phosphate buffer solution (PBS). Degradation rate was determined, using a first order kinetic equation for all materials in the three incubation media. A relatively wide range of mechanical properties and degradation rates were observed among the materials studied. PBS was the most aggressive environment for the majority of cases.
Ibrahim, Nabil A; Eid, Basma M; El-Aziz, Eman Abd; Elmaaty, Tarek M Abou; Ramadan, Shaimaa M
2017-12-01
New and durable multifunctional properties of cotton/polyester blended fabrics were developed through loading of chitosan (Cs) and various metal oxide nanoparticles (MONPs) namely ZnO, TiO 2 , and SiO 2 onto fabric surface using citric acid/Sodium hypophosphite for ester-crosslinking and creating new anchoring and binding sites, COOH groups, onto the ester-crosslinked fabrics surface. The surface morphology and the presence of active ingredients (Cs & MONPs) onto selected - coated fabric samples were analyzed by SEM images and confirmed by EDS spectrums. The influence of various finishing formulations on some performance and functional properties such as wettability, antibacterial activity, UV-protection, self-cleaning, resiliency and durability to wash were studied. The obtained results revealed that the extent of improvement in the imparted functional properties is governed by type of loaded-hybrid and follows the decreasing order: Cs-TiO 2 NPs>Cs-ZnONPs>SiO 2 NP s >Cs alone, as well as kind of substrate cotton/polyester (65/35)>cotton/polyester (50/50). Moreover, after 15 washing cycles, the durability of the imparted functional properties of Cs/TiO 2 NP s - loaded substrates marginally decreased indicating the strong fixation of the hybrid components onto the ester-crosslinked substrates. The obtained bioactive multifunctional textiles can be used for producing eco-friendly protective textile materials for numerous applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Díaz, Angélica; del Valle, Luis J; Tugushi, David; Katsarava, Ramaz; Puiggalí, Jordi
2015-01-01
Electrospun scaffolds from an amino acid containing poly(ester urea) (PEU) were developed as promising materials in the biomedical field and specifically in tissue engineering applications. The selected poly(ester urea) was obtained with a high yield and molecular weight by reaction of phosgene with a bis(α-aminoacyl)-α,ω-diol-diester monomer. The polymer having L-leucine, 1,6-hexanediol and carbonic acid units had a semicrystalline character and relatively high glass transition and melting temperatures. Furthermore it was highly soluble in most organic solvents, an interesting feature that facilitated the electrospinning process and the effective incorporation of drugs with bactericidal activity (e.g. biguanide derivatives such as clorhexidine and polyhexamethylenebiguanide) and enzymes (e.g. α-chymotrypsin) that accelerated the degradation process. Continuous micro/nanofibers were obtained under a wide range of processing conditions, being diameters of electrospun fibers dependent on the drug and solvent used. Poly(ester urea) samples were degradable in media containing lipases and proteinases but the degradation rate was highly dependent on the surface area, being specifically greater for scaffolds with respect to films. The high hydrophobicity of new scaffolds had repercussions on enzymatic degradability since different weight loss rates were found depending on how samples were exposed to the medium (e.g. forced or non-forced immersion). New scaffolds were biocompatible, as demonstrated by adhesion and proliferation assays performed with fibroblast and epithelial cells. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
van Horn, Brooke Angela
Aliphatic polyesters represent one class of degradable, polymeric materials that is receiving significant attention in the search for, and design of, biocompatible and bioresorbable synthetic substances. Functional and crosslinked polyesters, having potential biomedical value, are the target of many avenues of current research. This dissertation work expands the utility of a specific aliphatic polyester, poly(epsilon-caprolactone-co-2-oxepane-1,5-dione) (P(CL-co-OPD)), which contains backbone ketone units that can be reacted with various functional, nucleophilic agents. Results presented in this dissertation convey both the successes had and the challenges encountered in the employment of different "iminyl" chemistries for the synthesis of functional and crosslinked materials. Specifically, the ketone-functionalized polyester was investigated as a general substrate designed to undergo solution-state intramolecular crosslinking and functionalization upon reductive amination with 1,6-hexanediamine and hexylamine, respectively, in the presence of NaCNBH3. Through detailed analysis of the products from these reactions, and simpler systems including small molecule model compounds, the polymeric gamma-keto ester functionality was determined to be incompatible with the reductive amination chemistry, resulting in chain cleavage via intramolecular lactam formation. Subsequent investigation of ketoxime ether formation using synthetic model hydroxylamines, 1-aminooxydodecane and 1,6-bis(aminooxy)hexane, in solution and in the presence of an acid catalyst, resulted in the targeted graft and crosslinked particulate/gel materials, respectively. With the significant interest in the development of synthetic polymer materials of increasing degrees of complexity, attention has been focused on the efficient and high-yielding conversion of polyesters into multi-functional materials. Facile conjugation of aminooxy- and sulfonyl hydrazide model ligands with P(CL-co-OPD) were also explored by both sequential and single-step approaches. The benefits of the characterization of intermediates in a functionalization sequence were then weighed against the corresponding challenges faced by the establishment of equilibria between coupled and uncoupled species in solution. Additionally, in this dissertation, the advantages of a single-step reaction for the construction of multi-functionalization are stressed. Finally, the synthesis and basic characterization of specific functional materials are highlighted with regard to the preparation of novel ligand-bearing graft and particulate nanostructures, decorated with poly(ethylene oxide), chromophores, fluorophores, and radio-labeled molecules, for potential use in diagnostic imaging and drug delivery.
Moussi, A; Daldoul, S; Bourguiba, B; Othmani, D; Zaouche, A
2012-04-01
The occurrence of enteric fistulae after wall repair using a prosthetic mesh is a serious but, fortunately, rare complication. We report the case of a 66-year-old diabetic man who presented with gas gangrene of the abdominal wall due to an intra-abdominal abscess caused by intestinal erosion six years after an incisional hernia repair using a polyester mesh. The aim of this case report is to illustrate the seriousness of enteric fistula after parietal repair using a synthetic material.
NASA Astrophysics Data System (ADS)
Ribeiro, Carlos E. Gomes; Rodriguez, Rubén J. Sánchez; Vieira, Carlos M. Fontes
Ornamental compound stone are produced by industry for decades, however, few published studies describe these materials. Brazil has many deposits of stone wastes and a big potential to produce these materials. This work aims to evaluate the chemical resistance of ornamental compound stones produced with marble waste and unsaturated polyester. An adaptation of Annex H of ABNT NBR 13818:97 standard, with reagents commonly used in household products, was used. The results were compared with those obtained for natural stone used in composite production.
Bronchiolitis obliterans organizing pneumonia due to titanium nanoparticles in paint.
Cheng, Tong-Hong; Ko, Fu-Chang; Chang, Junn-Liang; Wu, Kuo-An
2012-02-01
We present a case of a 58-year-old man who experienced Bronchiolitis obliterans organizing pneumonia after a 3-month exposure to polyester powder paint. Mineralogical analysis by transmission electron microscopy of a pulmonary sample and the polyester powder paint he was exposed to showed the presence of titanium dioxide nanoparticles in both. We suggest that exposure to titanium dioxide nanoparticles should be added to the etiology of Bronchiolitis obliterans organizing pneumonia. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
In-situ measurement of processing properties during fabrication in a production tool
NASA Technical Reports Server (NTRS)
Kranbuehl, D. E.; Haverty, P.; Hoff, M.; Loos, A. C.
1988-01-01
Progress is reported on the use of frequency-dependent electromagnetic measurements (FDEMs) as a single, convenient technique for continuous in situ monitoring of polyester cure during fabrication in a laboratory and manufacturing environment. Preliminary FDEM sensor and modeling work using the Loss-Springer model in order to develop an intelligent closed-loop, sensor-controlled cure process is described. FDEMs using impedance bridges in the Hz to MHz region is found to be ideal for automatically monitoring polyester processing properties continuously throughout the cure cycle.
Pukkila, J; Kokotti, H; Peltonen, K
1989-10-06
A method to estimate occupational exposure to emissions from the curing of polyester powder paints was developed. The method is based on the monitoring only of a certain marker compound in workroom air in order to make the determinations easier. Benzil, reproducibly emitted from all the powders tested, was chosen as the indicator for curing (220 degrees C)-derived emissions. A method for the air sampling and high-performance liquid chromatographic benzil is described. Aspects of the use of marker compounds are discussed.
Langmuir-Blodgett Films of Supported Polyester Dendrimers
Redón, Rocío; Carreón-Castro, M. Pilar; Mendoza-Martínez, F. J.
2012-01-01
Amphiphiles with a dendritic structure are attractive materials as they combine the features of dendrimers with the self-assembling properties and interfacial behavior of water-air affinities. We have synthesized three generations of polyester dendrimers and studied their interfacial properties on the Langmuir films. The behavior obtained was, as a rule, the lowest generation dendrimers behaving like traditional amphiphiles and the larger molecules presenting complicated isotherms. The Langmuir films of these compounds have been characterized by their surface pressure versus molecular area (π/A) and Brewster angle microscopy (BAM) observations. PMID:24052855
Bani, Farhad; Bodaghi, Ali; Dadkhah, Abbas; Movahedi, Soodabeh; Bodaghabadi, Narges; Sadeghizadeh, Majid; Adeli, Mohsen
2018-05-01
In this work, we reported a facile method to produce stable aqueous graphene dispersion through direct exfoliation of graphite by modified hyperbranched polyglycerol. Size of graphene sheets was manipulated by simultaneous exfoliation and sonication of graphite, and functionalized graphene sheets with narrow size distribution were obtained. The polyglycerol-functionalized graphene sheets exhibited highly efficient cellular uptake and photothermal conversion, enabling it to serve as a photothermal agent for cancer therapy.
Conjugated Organosilicon Materials for Organic Electronics and Photonics
NASA Astrophysics Data System (ADS)
Ponomarenko, Sergei A.; Kirchmeyer, Stephan
In this chapter different types of conjugated organosilicon materials possessing luminescent and/or semiconducting properties will be described. Such macromolecules have various topologies and molecular structures: linear, branched and hyperbranched oligomers, polymers, and dendrimers. Specific synthetic approaches to access these structures will be discussed. Special attention is devoted to the role of silicon in these structures and its influence on their optical and electrical properties, leading to their potential application in the emerging areas of organic and hybrid electronics.