Science.gov

Sample records for hyperbranched polymers capable

  1. Randomly hyperbranched polymers.

    PubMed

    Konkolewicz, Dominik; Gilbert, Robert G; Gray-Weale, Angus

    2007-06-08

    We describe a model for the structures of randomly hyperbranched polymers in solution, and find a logarithmic growth of radius with polymer mass. We include segmental overcrowding, which puts an upper limit on the density. The model is tested against simulations, against data on amylopectin, a major component of starch, on glycogen, and on polyglycerols. For samples of synthetic polyglycerol and glycogen, our model holds well for all the available data. The model reveals higher-level scaling structure in glycogen, related to the beta particles seen in electron microscopy.

  2. Randomly Hyperbranched Polymers

    NASA Astrophysics Data System (ADS)

    Konkolewicz, Dominik; Gilbert, Robert G.; Gray-Weale, Angus

    2007-06-01

    We describe a model for the structures of randomly hyperbranched polymers in solution, and find a logarithmic growth of radius with polymer mass. We include segmental overcrowding, which puts an upper limit on the density. The model is tested against simulations, against data on amylopectin, a major component of starch, on glycogen, and on polyglycerols. For samples of synthetic polyglycerol and glycogen, our model holds well for all the available data. The model reveals higher-level scaling structure in glycogen, related to the β particles seen in electron microscopy.

  3. Marginally compact hyperbranched polymer trees.

    PubMed

    Dolgushev, M; Wittmer, J P; Johner, A; Benzerara, O; Meyer, H; Baschnagel, J

    2017-03-29

    Assuming Gaussian chain statistics along the chain contour, we generate by means of a proper fractal generator hyperbranched polymer trees which are marginally compact. Static and dynamical properties, such as the radial intrachain pair density distribution ρpair(r) or the shear-stress relaxation modulus G(t), are investigated theoretically and by means of computer simulations. We emphasize that albeit the self-contact density diverges logarithmically with the total mass N, this effect becomes rapidly irrelevant with increasing spacer length S. In addition to this it is seen that the standard Rouse analysis must necessarily become inappropriate for compact objects for which the relaxation time τp of mode p must scale as τp ∼ (N/p)(5/3) rather than the usual square power law for linear chains.

  4. Growing Hyperbranched Polymers Using Natural Sunlight

    PubMed Central

    Yan, Jun-Jie; Sun, Jiao-Tong; You, Ye-Zi; Wu, De-Cheng; Hong, Chun-Yan

    2013-01-01

    In nature, a sapling can grow into a big tree under irradiation of sunlight. In chemistry, a similar concept that a small molecule only exposing to sunlight grows into a hyperbranched macromolecule has not been realized by now. The achievement of the concept will be fascinating and valuable for polymer synthesis wherein sunlight is inexpensive, abundant, renewable, and nonpolluting. Herein, we report a new strategy in which small monomers can directly grow into big hyperbranched macromolecule under irradiation of sunlight without any catalyst. PMID:24100948

  5. Dynamics of Hyperbranched Polymers under Confinement

    NASA Astrophysics Data System (ADS)

    Androulaki, Krystallenia; Chrissopoulou, Kiriaki; Anastasiadis, Spiros H.; Prevosto, Daniele; Labardi, Massimiliano

    2015-03-01

    The effect of severe confinement on the dynamics of three different generations of hyperbranched polyesters (Boltorns) is investigated by Dielectric Spectroscopy. The polymers are intercalated within the galleries of natural Na+-MMT, thus, forming 1nm polymer films confined between solid walls. The Tg's of the polymers determined by DSC show a clear dependence on the generation whereas the transition is completely suppressed when all the polymer chains are intercalated. The dynamic investigation of the bulk polymers reveals two sub-Tg processes, with similar behavior for the three polymers with the segmental relaxation observed above the Tg of each. For the nanocomposites, where all polymers are severely confined, the dynamics show significant differences compared to that of the bulk polymers. The sub-Tg processes are similar for the three generations but significantly faster and with weaker temperature dependence than those in the bulk. The segmental process appears at temperatures below the bulk polymer Tg, it exhibits an Arrhenius temperature dependence and shows differences for the three generations. A slow process that appears at higher temperatures is due to interfacial polarization. Co-financed by the EU and Greek funds through the Operational Program ``Education and Lifelong Learning'' of the NSRF-Research Funding Program: THALES-Investing in knowledge society through the Eur. Social Fund (MIS 377278) and COST Action MP0902-COINAPO.

  6. Synthesis and characterization of a hyper-branched water-soluble β-cyclodextrin polymer

    PubMed Central

    Caldera, Fabrizio; Cavalli, Roberta; Mele, Andrea; Punta, Carlo; Melone, Lucio; Castiglione, Franca; Rossi, Barbara; Ferro, Monica; Crupi, Vincenza; Majolino, Domenico; Venuti, Valentina

    2014-01-01

    Summary A new hyper-branched water-soluble polymer was synthesized by reacting β-cyclodextrin with pyromellitic dianhydride beyond the critical conditions that allow the phenomenon of gelation to occur. The molar ratio between the monomers is a crucial parameter that rules the gelation process. Nevertheless, the concentration of monomers in the solvent phase plays a key role as well. Hyper-branched β-cyclodextrin-based polymers were obtained performing the syntheses with excess of solvent and cross-linking agent, and the conditions for critical dilution were determined experimentally. A hyper-branched polymer with very high water solubility was obtained and fully characterized both as for its chemical structure and for its capability to encapsulate substances. Fluorescein was used as probe molecule to test the complexation properties of the new material. PMID:25550720

  7. Multifunctional hyperbranched glycoconjugated polymers based on natural aminoglycosides.

    PubMed

    Chen, Mingsheng; Hu, Mei; Wang, Dali; Wang, Guojian; Zhu, Xinyuan; Yan, Deyue; Sun, Jian

    2012-06-20

    Multifunctional gene vectors with high transfection, low cytotoxicity, and good antitumor and antibacterial activities were prepared from natural aminoglycosides. Through the Michael-addition polymerization of gentamycin and N,N'-methylenebisacrylamide, cationic hyperbranched glycoconjugated polymers were synthesized, and their physical and chemical properties were analyzed by FTIR, (1)H NMR, (13)C NMR, GPC, ζ-potential, and acid-base titration techniques. The cytotoxicity of these hyperbranched glycoconjugated polycations was low because of the hydrolysis of degradable glycosidic and amide linkages in acid conditions. Owing to the presence of various primary, secondary, and tertiary amines in the polymers, hyperbranched glycoconjugated polymers showed high buffering capacity and strong DNA condensation ability, resulting in the high transfection efficiency. In the meantime, due to the introduction of natural aminoglycosides into the polymeric backbone, the resultant hyperbranched glycoconjugated polymers inhibited the growth of cancer cells and bacteria efficiently. Combining the gene transfection, antitumor, and antibacterial abilities together, the multifunctional hyperbranched glycoconjugated polymers based on natural aminoglycosides may play an important role in protecting cancer patients from bacterial infections.

  8. Conformation and intramolecular relaxation dynamics of semiflexible randomly hyperbranched polymers

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Rai, Gobind Ji; Biswas, Parbati

    2013-03-01

    The conformational and dynamic properties of semiflexible randomly hyperbranched polymers are investigated in dilute solutions within the framework of optimized Rouse-Zimm formalism. Semiflexibility is incorporated by restricting the directions and orientations of the respective bond vectors, while hydrodynamic interactions are modeled through the preaveraged Oseen tensor. The effect of semiflexibility is typically reflected in the intermediate frequency regime of the viscoelastic relaxation moduli where the bond orientation angle restores the characteristic power-law scaling in fractal structures, as in randomly hyperbranched polymers. Despite the absence of this power-law scaling regime in flexible randomly hyperbranched polymers and in earlier models of semiflexible randomly branched polymers due to weak disorder [C. von Ferber and A. Blumen, J. Chem. Phys. 116, 8616 (2002)], 10.1063/1.1470198, this power-law behavior may be reinstated by explicitly modeling hyperbranched polymers as a Vicsek fractals. The length of this power-law zone in the intermediate frequency region is a combined function of the number of monomers and the degree of semiflexibility. A clear conformational transition from compact to open structures is facilitated by changing the bond orientation angle, where the compressed conformations are compact, while the expanded ones are relatively non-compact. The extent of compactness in the compressed conformations are much less compared to the semiflexible dendrimers, which resemble hard spheres. The fractal dimensions of the compressed and expanded conformations calculated from the Porod's scaling law vary as a function of the bond orientation angle, spanning the entire range of three distinct scaling regimes of linear polymers in three-dimensions. The results confirm that semiflexibility exactly accounts for the excluded volume interactions which are expected to be significant for such polymers with complex topologies.

  9. Hyperbranched polymers with controlled degree of branching from 0 to 100%.

    PubMed

    Segawa, Yukari; Higashihara, Tomoya; Ueda, Mitsuru

    2010-08-18

    A linear polymer, hyperbranched polymers with various degrees of branching, and 100% hyperbranched polymers were successfully synthesized by self-polycondensation of 2,2,2-trifluoro-1-[4-(4-phenoxyphenoxy)phenyl]ethanone by using different amounts of trifluoromethanesulfonic acid from the same AB(2) monomer.

  10. Modification of polylactide bioplastic using hyperbranched polymer based nanostructures

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Rahul

    Polylactide (PLA) is the most well known renewable resource based biodegradable polymer. The inherent brittleness and poor processability of PLA pose considerable technical challenges and limit its range of commercial applications. The broad objective of this research was to investigate novel pathways for polylactide modification to enhance its mechanical and rheological properties. The focus of this work was to tailor the architecture of a dendritic hyperbranched polymer (HBP) and study its influence on the mechanical and rheological properties of PLA bioplastic. The hyperbranched polymers under consideration are biodegradable aliphatic hydroxyl-functional hyperbranched polyesters having nanoscale dimensions, unique physical properties and high peripheral functionalities. This work relates to identifying a new and industrially relevant research methodology to develop PLA based nanoblends having outstanding stiffness-toughness balance. In this approach, a hydroxyl functional hyperbranched polymer was crosslinked in-situ with a polyanhydride (PA) in the PLA matrix during melt processing, leading to the generation of new nanoscale hyperbranched polymer based domains in the PLA matrix. Transmission electron microscopy and atomic force microscopy revealed the "sea-island" morphology of PLA-crosslinked HBP blends. The domain size of a large portion of the crosslinked HBP particles in PLA matrix was less than 100 nm. The presence of crosslinked hyperbranched polymers exhibited more than 500% and 800% improvement in the tensile toughness and elongation at break values of PLA, respectively, with a minimal sacrifice of tensile strength and modulus as compared to unmodified PLA. The toughening mechanism of PLA in the presence of crosslinked HBP particles was comprised of shear yielding and crazing. The volume fraction of crosslinked HBP particles and matrix ligament thickness (inter-particle distance) were found to be the critical parameters for the toughening of PLA. The

  11. Bioorthogonal layer-by-layer encapsulation of pancreatic islets via hyperbranched polymers.

    PubMed

    Gattás-Asfura, Kerim M; Stabler, Cherie L

    2013-10-23

    Encapsulation of viable tissues via layer-by-layer polymer assembly provides a versatile platform for cell surface engineering, with nanoscale control over the capsule properties. Herein, we report the development of a hyperbranched polymer-based, ultrathin capsule architecture expressing bioorthogonal functionality and tailored physiochemical properties. Random carbodiimide-based condensation of 3,5-dicarboxyphenyl glycineamide on alginate yielded a highly branched polysaccharide with multiple, spatially restricted, and readily functionalizable terminal carboxylate moieties. Poly(ethylene glycol) (PEG) was utilized to link azido end groups to the structured alginate. Together with a phosphine-functionalized poly(amidoamine) dendrimer, nanoscale layer-by-layer coatings, covalently stabilized via Staudinger ligation, were assembled onto solid surfaces and pancreatic islets. The effects of electrostatic and/or bioorthogonal covalent interlayer interactions on the resulting coating efficiency and stability, as well as pancreatic islet viability and function, were studied. These hyperbranched polymers provide a flexible platform for the formation of covalently stabilized, ultrathin coatings on viable cells and tissues. In addition, the hyperbranched nature of the polymers presents a highly functionalized surface capable of bioorthogonal conjugation of additional bioactive or labeling motifs.

  12. Hyperbranched amphiphilic polymer with folate mediated targeting property.

    PubMed

    Zhang, Lei; Hu, Chao-Hua; Cheng, Si-Xue; Zhuo, Ren-Xi

    2010-09-01

    Hyperbranched amphiphilic polymer PG6-PLA-PEG was synthesized through grafting hydrophobic poly(D,L-lactide) (PLA) segments and hydrophilic poly(ethylene glycol) (PEG) blocks to hydrophilic hyperbranched polyglycerol core (PG6), subsequently. To achieve cell targeting property, folic acid (FA) was further incorporated to the hyperbranched polymer to obtain PG6-PLA-PEG-FA. The polymers were characterized by (1)H NMR, UV-vis spectroscopy and combined size-exclusion chromatography and multiangle laser light scattering (SEC-MALLS) analysis. Due to the amphiphilicity, PG6-PLA-PEG and PG6-PLA-PEG-FA could self-assemble to form nanoparticles in aqueous solutions. Antineoplastic drug, paclitaxel (PTX), was encapsulated into the nanoparticles. The nanoparticles were observed by transmission electron microscopy (TEM). The targeting property of PG6-PLA-PEG-FA was evaluated in vitro. The results showed that the PTX loaded PG6-PLA-PEG-FA nanoparticles exhibited enhanced inhibition on folate receptor positive tumor cells due to the folate mediated targeting.

  13. New methodologies for construction of hyperbranched organic and organometallic polymers

    NASA Astrophysics Data System (ADS)

    Xu, Kaitian

    2000-10-01

    A series of completely soluble hyperbranched polymers were synthesized by polycyclotrimerization of diynes for the first time. TaCl5-Ph 4Sn was found to be the effective catalyst and toluene to be the efficient solvent. A possible polycyclotrimerization mechanism via tantalacyclopentadiene intermediates is proposed. The polymerization processes including initiation, propagation and termination are analyzed. The unique backbiting reaction was found to be a plausible way to terminate the propagation chain. Conformations of the diynes greatly affect the occurrence of backbiting reaction and affect the solubility of resultant polymers to certain extent. Diynes with short spacers such as 1,5-hexadiyne (21 ); 1,6-heptadiyne (22); 1,7-octadiyne (23); and 1,8-nonadiyne (17); possess a conformation in which the two triple bonds locate closely. Such a conformation makes the backbiting termination to occur easily. Thus, soluble polymers are readily formed from these diynes. For the diynes of long spacers, a conformation with two far-separating triple bonds dramatically reduces the chance of backbiting reaction. Consequently, only partially soluble or insoluble polymers could be prepared. In the polycyclotrimerization of internal diynes, hexasubstituted benzene rings were formed. The steric effect of the terminal substituents plays an important role in the polymerization reaction. Internal diynes with bulky substituents such as 1,9-bis(trimethylsilyl)-1,8-nonadiyne (74), 1,6-bis(dimethylphenylsilyl)-1,5-hexadiyne (75), 1,8-bis(dimethylphenylsilyl)-1,7-octadiyne (76) gave little amount of polymers. Internal diynes with less bulky substituents and short spacers [e.g. 3,9-dodecadiyne (78) and 2,9-undecadiyne (79)] offered soluble polymers. In the study on hyperbranched organometallic polymers, a new methodology for the preparation of hyperbranched polysilynes was developed. Ceramization of the hyperbranched polymers produced mesoporous magnetoceramic materials. The compositions

  14. Hyper-branched polymer for electro-optic applications

    NASA Astrophysics Data System (ADS)

    Piao, Xianqing; Mori, Yuichi; Zhang, Xianmin; Inoue, Shinichiro; Yokoyama, Shiyoshi

    2010-02-01

    In the present work, the hyper-branched (HB) polymer is utilized as a host material to efficiently incorporate the nonlinear optical chromophore. The HB polymer and toluene diisocyanate (2, 4-TDI) formed 3-D networks, and the typical FTC or CF3-Ph-FTC chromophores were introduced to investigate the electro-optic activity (r33). At the same time, poling behavior of NLO chromophores in the traditional poly methyl methacrylate (PMMA) and Poly MMA-MOI side-chain polymers were also included in this work for comparison. For FTC doped composites, the r33 reached over 80 pm/V in 3-D network matrix, while the value of r33 maximized at about 45 pm/V in traditional PMMA host and 70 pm/V in side-chain polymers. In addition, the measurement of poling process, poling efficiency, and thermal stability for the real application were also investigated.

  15. Improving of Mechanical and Shape-Memory Properties in Hyperbranched Epoxy Shape-Memory Polymers

    NASA Astrophysics Data System (ADS)

    Santiago, David; Fabregat-Sanjuan, Albert; Ferrando, Francesc; De la Flor, Silvia

    2016-09-01

    A series of shape-memory epoxy polymers were synthesized using an aliphatic amine and two different commercial hyperbranched poly(ethyleneimine)s with different molecular weights as crosslinking agents. Thermal, mechanical, and shape-memory properties in materials modified with different hyperbranched polymers were analyzed and compared in order to establish the effect of the structure and the molecular weight of the hyperbranched polymers used. The presence of hyperbranched polymers led to more heterogeneous networks, and the crosslinking densities of which increase as the hyperbranched polymer content increases. The transition temperatures can be tailored from 56 to 117 °C depending on the molecular weight and content of the hyperbranched polymer. The mechanical properties showed excellent values in all formulations at room temperature and, specially, at T_{{g}}^{{E^' with stress at break as high as 15 MPa and strain at break as high as 60 %. The shape-memory performances revealed recovery ratios around 95 %, fixity ratios around 97 %, and shape-recovery velocities as high as 22 %/min. The results obtained in this study reveal that hyperbranched polymers with different molecular weights can be used to enhance the thermal and mechanical properties of epoxy-based SMPs while keeping excellent shape-memory properties.

  16. A hyperbranched dopamine-containing PEG-based polymer for the inhibition of α-synuclein fibrillation.

    PubMed

    Breydo, Leonid; Newland, Ben; Zhang, Hong; Rosser, Anne; Werner, Carsten; Uversky, Vladimir N; Wang, Wenxin

    2016-01-22

    Aggregation of α-synuclein is believed to play an important role in Parkinson's disease and in other neurodegenerative maladies. Small molecule inhibitors of this process are among the most promising drug candidates for neurodegenerative diseases. Dendrimers have also been studied for anti-fibrillation applications but they can be difficult and expensive to synthetize. Here we show that RAFT polymerization can be used to produce a hyperbranched polyethylene glycol structure via a one-pot reaction. This polymer included a dopamine moiety, a known inhibitor of α-synuclein fibril formation. Dopamine within the polymer structure was capable of aggregation inhibition, although not to the same degree as free dopamine. This result opens up new avenues for the use of controlled radical polymerizations as a means of preparing hyperbranched polymers for anti-fibrillation activity, but shows that the incorporation of functional groups from known small molecules within polymers may alter their biological activity.

  17. Hyperbranched polymers with a degree of branching of 100% prepared by catalyst transfer Suzuki-Miyaura polycondensation.

    PubMed

    Huang, Weiguo; Su, Linjie; Bo, Zhishan

    2009-08-05

    Hyperbranched polymers with a degree of branching of 100% were prepared by catalyst transfer Suzuki-Miyaura polymerization of AB(2) monomers carrying one boronic acid and two aromatic bromo functional groups; in contrast, Suzuki-Miyaura polymerization of the same AB(2) monomers using a traditional catalyst afforded hyperbranched polymers with a branching degree of only approximately 56%. This is a nice example of controlling the topology of hyperbranched polymers via the catalyst.

  18. Hyperbranched chelating polymers for the polymer-assisted ultrafiltration of boric acid

    SciTech Connect

    Smith, B.M.; Todd, P.; Bowman, C.N.

    1999-07-01

    Two hyperbranched chelating polymers, glucoheptonamide derivatives of dendrimetric poly(amido amine) and poly(ethylene imine), were employed in polymer-assisted ultrafiltration and concentration of boron from aqueous feed streams. For feeds containing approximately 1 mM B (10 ppm), volume reduction factors of 20 were observed in cyclic adsorption-desorption. The concentrations of both polymers declined due to permeation through an ultrafiltration membrane with pore sizes which should have retained them. Acid-catalyzed hydrolysis of the amide linkages between the polymer backbone and the chelating side groups is implicated in this loss of polymer mass and effectiveness.

  19. Localised delivery of doxorubicin to prostate cancer cells through a PSMA-targeted hyperbranched polymer theranostic.

    PubMed

    Pearce, Amanda K; Simpson, Joshua D; Fletcher, Nicholas L; Houston, Zachary H; Fuchs, Adrian V; Russell, Pamela J; Whittaker, Andrew K; Thurecht, Kristofer J

    2017-10-01

    The therapeutic potential of hyperbranched polymers targeted to prostate cancer and loaded with doxorubicin was investigated. Polyethylene glycol hyperbranched polymers were synthesised via RAFT polymerisation to feature glutamate urea targeting ligands for PSMA on the periphery. The chemotherapeutic, doxorubicin, was attached to the hyperbranched polymers through hydrazone formation, which allowed controlled release of the drug from the polymers in vitro endosomal conditions, with 90% release of the drug over 36 h. The polymers were able to target to PSMA-expressing prostate cancer cells in vitro, and demonstrated comparable cytotoxicity to free doxorubicin. The ability of the hyperbranched polymers to specifically facilitate transport of loaded doxorubicin into the cells was confirmed using live cell confocal imaging, which demonstrated that the drug was able to travel with the polymer into cells by receptor mediated internalisation, and subsequently be released into the nucleus following hydrazone degradation. Finally, the ability of the complex to induce a therapeutic effect on prostate cancer cells was investigated through a long term tumour regression study, which confirmed that the DOX-loaded polymers were able to significantly reduce the volume of subcutaneous prostate tumours in vivo in comparison to free doxorubicin and a polymer control, with no adverse toxicity to the animals. This work therefore demonstrates the potential of a hyperbranched polymer system to be utilised for prostate cancer theranostics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Dynamics of semiflexible regular hyperbranched polymers

    NASA Astrophysics Data System (ADS)

    Fürstenberg, Florian; Dolgushev, Maxim; Blumen, Alexander

    2013-01-01

    We study the dynamics of semiflexible Vicsek fractals (SVF) following the framework established by Dolgushev and Blumen [J. Chem. Phys. 131, 044905 (2009), 10.1063/1.3184797], a scheme which allows to model semiflexible treelike polymers of arbitrary architecture. We show, extending the methods used in the treatment of semiflexible dendrimers by Fürstenberg et al. [J. Chem. Phys. 136, 154904 (2012), 10.1063/1.3703757], that in this way the Langevin-dynamics of SVF can be treated to a large part analytically. For this we show for arbitrary Vicsek fractals (VF) how to construct complete sets of eigenvectors; these reduce considerably the diagonalization problem of the corresponding equations of motion. In fact, such eigenvector sets arise naturally from a hierarchical procedure which follows the iterative construction of the VF. We use the obtained eigenvalues to calculate the loss moduli G″(ω) of SVF for different degrees of stiffness of the junctions. Finally, we compare the results for SVF to those found for semiflexible dendrimers.

  1. Self-assembly of hyperbranched polymers and its biomedical applications.

    PubMed

    Zhou, Yongfeng; Huang, Wei; Liu, Jinyao; Zhu, Xinyuan; Yan, Deyue

    2010-11-02

    Hyperbranched polymers (HBPs) are highly branched macromolecules with a three-dimensional dendritic architecture. Due to their unique topological structure and interesting physical/chemical properties, HBPs have attracted wide attention from both academia and industry. In this paper, the recent developments in HBP self-assembly and their biomedical applications have been comprehensively reviewed. Many delicate supramolecular structures from zero-dimension (0D) to three-dimension (3D), such as micelles, fibers, tubes, vesicles, membranes, large compound vesicles and physical gels, have been prepared through the solution or interfacial self-assembly of amphiphilic HBPs. In addition, these supramolecular structures have shown promising applications in the biomedical areas including drug delivery, protein purification/detection/delivery, gene transfection, antibacterial/antifouling materials and cytomimetic chemistry. Such developments promote the interdiscipline researches among surpramolecular chemistry, biomedical chemistry, nano-technology and functional materials.

  2. Hyperbranched polymer films and dendrimers: Their chemistry and applications

    NASA Astrophysics Data System (ADS)

    Zhao, Mingqi

    The research in this dissertation examines the chemistry and applications of dendritic polymers; specifically, hyperbranched polymer thin films and dendrimers. We examined hyperbranched, fluorinated and unfluorinated poly(acrylic acid) (PAA) films on gold substrates, poly(amidoamine) (PAMAM) dendrimer monolayers and dendrimer-alkanethiol mixed monolayers on gold substrates, PAMAM dendrimer/poly(anhydride) and poly(iminopropane-1,3-diyl) (Cascade) dendrimer/poly(anhydride) multilayer films on silicon, gold, and aluminum substrates, PAMAM dendrimer/metal-ion composites, and PAMAM dendrimer-encapsulated metal nanoclusters in solution and on electrode surfaces. Hyperbranched PAA films have pH-dependent blocking abilities: at low pH PAA films effectively passivate Au electrodes while at high pH they are open and permeable. Fluorinated PAA films are far less permeable at any pH. Dendrimers ranging from generation 4 to 8 (G4--G8) can form highly stable and nearly close-packed monolayers and mixed monolayers with hexadecanethiol (C16SH) on surfaces. Moreover, dendrimers embedded within C16SH can act as gates of molecular dimension that control intradendrimer mass transfer of ions. Dendrimer/poly(anhydride) multilayers on surfaces were synthesized and their permeability was investigated. These composite membranes exhibit fully reversible, pH-switchable permselectivity for both cationic and anionic probe molecules because of their pH-dependent electrostatic properties. After heating, such films become highly blocking over the pH range studied due to thermally induced interdendrimer imidization, and other reactions. Finally, we show that PAMAM dendrimers can act first as templates for the preparation of transition-metal nanoclusters, and subsequently as stabilizers. Dendrimers quantitatively complex many transition-metal ions, including Cu 2+, Pt2+, Pd2+, Ru3+, and Ni2+, within their interiors. Chemical reduction of such nanocomposites results in formation of dendrimer

  3. Stainless steel grafting of hyperbranched polymer brushes with an antibacterial activity: synthesis, characterization, and properties.

    PubMed

    Ignatova, Milena; Voccia, Samule; Gabriel, Sabine; Gilbert, Bernard; Cossement, Damien; Jerome, Robert; Jerome, Christine

    2009-01-20

    Two strategies were used for the preparation of hyperbranched polymer brushes with a high density of functional groups: (a) the cathodic electrografting of stainless steel by poly[2-(2-chloropropionate)ethyl acrylate] [poly(cPEA)], which was used as a macroinitiator for the atom transfer radical polymerization of an inimer, 2-(2-bromopropionate)ethyl acrylate in the presence or absence of heptadecafluorodecyl acrylate, (b) the grafting of preformed hyperbranched poly(ethyleneimine) onto poly(N-succinimidyl acrylate) previously electrografted onto stainless steel. The hyperbranched polymer, which contained either bromides or amines, was quaternized because the accordingly formed quaternary ammonium or pyridinium groups are known for antibacterial properties. The structure, chemical composition, and morphology of the quaternized and nonquaternized hyperbranched polymer brushes were characterized by ATR-FTIR reflectance, Raman spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. The peeling test confirmed that the grafted hyperbranched polymer films adhered much more strongly to stainless steel than the nongrafted solvent-cast films. The quaternized hyperbranched polymer brushes were more effective in preventing both protein adsorption and bacterial adhesion than quaternary ammonium containing poly(cPEA) primary films, more likely because of the higher hydrophilicity and density of cationic groups.

  4. Synthesis and self-assembly behavior of POSS-embedded hyperbranched polymers.

    PubMed

    Li, Dawei; Niu, Yuguang; Yang, Yanyu; Wang, Xing; Yang, Fei; Shen, Hong; Wu, Decheng

    2015-05-14

    Here we demonstrate a simple and straightforward approach to prepare POSS-embedded hyperbranched (HB-POSS) polymers with customized molecular weights and sizes just by controlling the polymerization time. The polymers can be further used for building amphiphilic polymers, presenting morphological transition from micelle to vesicle in aqueous solution.

  5. Synthetic methodologies and spatial organization of metal chelate dendrimers and star and hyperbranched polymers.

    PubMed

    Dzhardimalieva, Gulzhian I; Uflyand, Igor E

    2017-08-08

    The synthetic methodologies, physico-chemical peculiarities, properties, and structure of metal chelate dendrimers and star and hyperbranched polymers are considered. These compounds are subdivided into molecular, intracomplex, and macrocyclic types which in turn are classified depending on the nature of the donor atoms (N,N-, N,O-, N,S-, O,O-, O,S-, S,S-, P,P-chelates, etc.). Special attention is paid to the features of the preparation of metal chelate star polymers by "arm-first", "core-first" and click-to-chelate approaches. The main data on the synthesis, spatial structure and properties of the metal chelate hyperbranched polymers are summarized. The basic concepts and synthetic strategies leading to the different types of supramolecular metal chelate dendrimers are analyzed. The problems and future prospects of metal chelate dendrimers and star and hyperbranched polymers are outlined. The bibliography includes papers published after 2010.

  6. Hyperbranched Polymers by Type II Photoinitiated Self-Condensing Vinyl Polymerization.

    PubMed

    Aydogan, Cansu; Ciftci, Mustafa; Yagci, Yusuf

    2016-04-01

    Type II photoinitiated self-condensing vinyl polymerization for the preparation of hyperbranched polymers is explored using 2-hydroxyethyl methacrylate (HEMA) or 2-(dimethylamino)ethyl methacrylate (DMAEMA), and methyl methacrylate as hydrogen donating inimers and comonomer, respectively, in the presence of benzophenone and camphorquinone under UV and visible light. Upon irradiation at the corresponding wavelength, the excited photoinitiator abstracts hydrogen from HEMA or DMAEMA leading to the formation of initiating radicals. Depending on the concentration of inimers, type of the photoinitiator, and irradiation time, hyperbranched polymers with different branching densities and cross-linked polymers are formed.

  7. Improvement of antibody immobilization using hyperbranched polymer and protein A.

    PubMed

    Shen, Guangyu; Cai, Chenbo; Wang, Kun; Lu, Jilin

    2011-02-01

    For the construction of a well-defined antibody surface, protein A was used as a binding material to immobilize antibodies onto gold-derivatized transducers. The traditional method tends to assemble protein A directly onto the gold-derivatized transducers. In this paper, we tried to indirectly bind protein A onto sensors through hyperbranched polymer (HBP) which was synthesized from p-phenylenediamine and trimesic acid. The three-dimensional structure of HBP and the characteristics including orientation control and biocompatibility of protein A led to highly efficient immunoreactions and enhanced detection system performance. With this strategy, cysteamine monolayer was first assembled onto Au electrodes associated with the piezoelectric quartz crystal; secondly, the cysteamine-modified gold electrode was further modified by the activated HBP; thirdly, protein A was immobilized onto the HBP film; and finally, antibodies were immobilized onto the surface of protein A film for detecting the corresponding antigen. The quartz crystal microbalance immunosensor thus fabricated was applied to detect hepatitis B surface antigen in solutions that ranged from 0.71 to 300 μg mL(-1). The detection limit was estimated to be 0.53 μg mL(-1). The immunosensor holds good selectivity, sensitivity, and repeatability.

  8. Biocompatible or biodegradable hyperbranched polymers: from self-assembly to cytomimetic applications.

    PubMed

    Jin, Haibao; Huang, Wei; Zhu, Xinyuan; Zhou, Yongfeng; Yan, Deyue

    2012-09-21

    Self-assembly of amphiphilic hyperbranched polymers (HBPs) is a newly emerging research area and has attracted increasing attention due to the great advantages in biomedical applications. This tutorial review focuses on the self-assembly of biocompatible or biodegradable amphiphilic HBPs and their cytomimetic applications, and specialities or advantages therein owing to the hyperbranched structure have also been summarized. As shown here, various supramolecular structures including micelles, vesicles, tubes, fibers and films have been prepared through the primary self-assembly processes. The primary self-assemblies can be further assembled into more complex structures through hierachical self-assembly processes. Besides, the hyperbranched polymer vesicles have demonstrated great potential to be used as model membranes to mimic cellular behaviors, such as fusion, fission and cell aggregation. Other biomedical applications of HBPs as well as their self-assemblies are also briefly summarized.

  9. Microcellular poly(hydroxybutyrate-co-hydroxyvalerate)-hyperbranched polymer-nanoclay nanocomposites

    Treesearch

    Alireza Javadi; Yottha Srithep; Srikanth Pilla; Craig C. Clemons; Shaoqin Gong; Lih-Sheng Turng

    2012-01-01

    The effects of incorporating hyperbranched polymers (HBPs) and different nanoclays [Cloisite® 30B and halloysite nanotubes (HNT)] on the mechanical, morphological, and thermal properties of solid and microcellular poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) were investigated. According to the X-ray diffraction (...

  10. Construction of supramolecular hyperbranched polymers via the "tweezering directed self-assembly" strategy.

    PubMed

    Tian, Yu-Kui; Yang, Zhi-Shuai; Lv, Xiao-Qin; Yao, Ri-Sheng; Wang, Feng

    2014-08-28

    A bis-alkynylplatinum(II) terpyridine tweezer-alkynylgold(III) diphenylpyridine guest is shown to maintain the specific complexation in the presence of a B21C7-secondary ammonium salt recognition motif, which facilitates the formation of supramolecular hyperbranched polymers via the "tweezering directed self-assembly" strategy.

  11. Preparation of hyperbranched polymer via single electron transfer living radical polymerization

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Chen, X. H.; Li, J.; Cao, X. X.; Cheng, C. J.

    2015-07-01

    α-Trichloromethyl benzyl alcohol is converted to α-trichloromethyl benzyl methacrylate in 62% yield under esterification conditions. The ester proves to be a good inimer to prepare hyperbranched polymer by utilizing SET-LRP approach. The monomer conversion is about 72% at 60°C for 6 h.

  12. Hyperbranched-polymer dispersed nanocomposite volume gratings for holography and diffractive optics

    NASA Astrophysics Data System (ADS)

    Tomita, Yasuo; Takeuchi, Shinsuke; Oyaizu, Satoko; Urano, Hiroshi; Fukamizu, Taka-aki; Nishimura, Naoya; Odoi, Keisuke

    2016-10-01

    We review our experimental investigations of photopolymerizable nanoparticle-polymer composites (NPCs) for holography and diffractive optics. Various types of hyperbranched polymer (HBP) were systhesized and used as transporting organic nanoparticles. These HBPs include hyperbranched poly(ethyl methacrylate) (HPEMA), hyperbranched polystyrene (HPS) and hyperbranched triazine/aromatic polymer units (HTA) whose refractive indices are 1.51, 1.61 and 1.82, respectively. Each HBP was dispersed in (meth)acrylate monomer whose refractive index was so chosen that a refractive index difference between HBP and the formed polymer was large. Such monomer-HBP syrup was mixed with a titanocene photoinitiator for volume holographic recording in the green. We used a two-beam interference setup to write an unslanted transmission volume grating at grating spacing of 1 μm and at a wavelength of 532 nm. It is shown that NPC volume gratings with the saturated refractive index modulation amplitudes as large as 0.008, 0.004 and 0.02 can be recorded in NPCs incorporated with HPEMA, HPS and HTA at their optimum concentrations of 34, 34 and 25 vol.%, respectively. We show the usefulness of HBP-dispersed NPC volume gratings for holographic applications such as holographic data storage and diffractive optical devices.

  13. Metal catalyzed synthesis of hyperbranched ethylene and/or .alpha.-olefin polymers

    DOEpatents

    Sen, Ayusman; Kim, Jang Sub; Pawlow, James H.; Murtuza, Shahid; Kacker, Smita; Wojcinski, III, Louis M.

    2001-01-01

    Oily hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin, and a method for their synthesis, are disclosed. The polymers have non-regular microstructures and are characterized by a ratio ({character pullout})of methyl hydrogens centered around 0.85 ppm on the 1H-NMR spectra of the polymers relative to total aliphatic hydrogens of from about 0.40 to about 0.65 for polymers derived from ethylene or butene, and a ratio ({character pullout})of from greater than 0.50 to about 0.65 for polymers derived from propylene. A method for grafting hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin onto aromatic rings in organic molecules and polymers, and the resulting grafted materials, are also disclosed. The hyperbranched polymers and grafted materials are useful, for example, as lubricants and lubricant additives.

  14. Hyperbranched polymer vesicles: from self-assembly, characterization, mechanisms, and properties to applications.

    PubMed

    Jiang, Wenfeng; Zhou, Yongfeng; Yan, Deyue

    2015-06-21

    Vesicles, including lipid vesicles, surfactant vesicles, as well as polymer vesicles, have been extensively investigated over the past fifty years. Among them, polymer vesicles have attracted more and more attention because of their low permeability, superior stability and toughness, in addition to the numerous possibilities for tailoring physical, chemical and biological properties. Polymer vesicles are generally fabricated through the self-assembly of amphiphilic polymers with a linear architecture. Recently, as representative polymers with a highly branched three-dimensional architecture, hyperbranched polymers have also exhibited great potential for preparing vesicles. The resultant hyperbranched polymer vesicles, defined as branched-polymersomes (BPs), have shown unique properties, such as giant and easily tuned vesicle sizes, facile functionalization, a special formation mechanism, and appealing solution behaviours. In this tutorial review, ten years of advances in BPs have been summarized since their first discovery in the year 2004, including the syntheses of vesicle-forming hyperbranched polymers, self-assembly methods, self-assembly mechanisms, as well as the special properties. In addition, the cytomimetic, biomedical and other initiatory applications of BPs are also included.

  15. Perfluoroalkyl-Functionalized Hyperbranched Polyglycerol as Pore Forming Agents and Supramolecular Hosts in Polymer Microspheres

    PubMed Central

    Wagner, Olaf; Zieringer, Maximilian; Duncanson, Wynter J.; Weitz, David A.; Haag, Rainer

    2015-01-01

    Perfluoroalkyl-functionalized, hyperbranched polyglycerols that produce stable microbubbles are integrated into a microfluidic emulsion to create porous microspheres. In a previously-presented work a dendrimer with a perfluorinated shell was used. By replacing this dendrimer core with a hyperbranched core and evaluating different core sizes and degrees of fluorinated shell functionalization, we optimized the process to a more convenient synthesis and higher porosities. The new hyperbranched polyglycerol porogens produced more pores and can be used to prepare microspheres with porosity up to 12% (v/v). The presented preparation forms pores with a perfluoroalkyl-functionalized surface that enables the resulting microspheres to act as supramolecular host systems. The microspheres can incorporate gases into the pores and actives in the polymer matrix, while the perfluoroalkylated pore surface can be used to immobilize perfluoro-tagged molecules onto the pores by fluorous-fluorous interaction. PMID:26343631

  16. Perfluoroalkyl-Functionalized Hyperbranched Polyglycerol as Pore Forming Agents and Supramolecular Hosts in Polymer Microspheres.

    PubMed

    Wagner, Olaf; Zieringer, Maximilian; Duncanson, Wynter J; Weitz, David A; Haag, Rainer

    2015-08-26

    Perfluoroalkyl-functionalized, hyperbranched polyglycerols that produce stable microbubbles are integrated into a microfluidic emulsion to create porous microspheres. In a previously-presented work a dendrimer with a perfluorinated shell was used. By replacing this dendrimer core with a hyperbranched core and evaluating different core sizes and degrees of fluorinated shell functionalization, we optimized the process to a more convenient synthesis and higher porosities. The new hyperbranched polyglycerol porogens produced more pores and can be used to prepare microspheres with porosity up to 12% (v/v). The presented preparation forms pores with a perfluoroalkyl-functionalized surface that enables the resulting microspheres to act as supramolecular host systems. The microspheres can incorporate gases into the pores and actives in the polymer matrix, while the perfluoroalkylated pore surface can be used to immobilize perfluoro-tagged molecules onto the pores by fluorous-fluorous interaction.

  17. PEI grafted hyperbranched polymers with polyglycerol as a core for gene delivery.

    PubMed

    Zhang, Lei; Hu, Chao-Hua; Cheng, Si-Xue; Zhuo, Ren-Xi

    2010-04-01

    Hyperbranched polymers, PG6-PEI25k and PG6-PEI800, were synthesized through grafting branched polyethylenimines (PEIs) with molecular weights of 25 kDa and 800 Da to a polyglycerol core (PG6), respectively. The structure of the polymers was characterized by 1H NMR and FTIR. Through agarose gel electrophoresis retardation assay, PG6-PEI25k and PG6-PEI800 were demonstrated to have capability for DNA binding. PG6-PEI/DNA complexes with different weight ratios were characterized by TEM and particle size analysis. The activity of PG6-PEIs to mediate transfection of reporter plasmids pEGFP-C1 and pGL3-Luc was evaluated on 293T and HeLa cell lines. PG6-PEI25k and PG6-PEI800 showed enhanced levels in transgene expression and decreased cytotoxicities as compared with PEI25k and PEI800, respectively. The results indicated potential applications of PG6-PEIs for efficient gene delivery.

  18. Composite Polymer Electrolytes Based on Hyperbranched Polymer and Application to Lithium Polymer Batteries

    NASA Astrophysics Data System (ADS)

    Itoh, Takahito; Ichikawa, Yosiaki; Miyamura, Yuko; Uno, Takahiro; Kubo, Masataka; Takeda, Yasuo; Li, Qi; Yamamoto, Osamu

    2002-12-01

    Composite polymer electrolytes based on poly(ethylene oxide) (PEO), hyperbranched polymer (HBP), poly[bis(triethylene glycol)benzoate] capped with an acetyl group, a ceramic filler BaTiO3, and a lithium salt such as LiN(CF3SO2)2, LiN(CF3CF2SO2)2, or LiN(CF3SO2)2/LiPF6 were investigated as the electrolyte for all solid-state lithium polymer batteries. The ionic conductivities of the optimized [(PEO-20wt%HBP)12(LiN(CF3SO2)2)]-10wt% BaTiO3, [(PEO-20wt%HBP)12(LiN(CF3CF2SO2)2)]-10wt%BaTiO3, and [(PEO-10wt%HBP)10(LiN(CF3SO2)2-10wt%LiPF6)]-10wt%BaTiO3 electrolytes were found to be 2.6 × 10-4 S/cm at 30 °C and 5.2 × 10-3 S/cm at 80 °C, 1.3 × 10-4 S/cm at 30 °C and 1.6 × 10-3 S/cm at 80 °C, and 1.6 × 10-4 S/cm at 25 °C and 1.5 × 10-3 S/cm at 60 °C, respectively. The lithium polymer batteries composed of the [(PEO-10wt%HBP)10(LiN(CF3SO2)2-10wt%LiPF6)]-10wt%BaTiO3 electrolyte and 4 V class cathode, LiNi0.8Co0.2O2, showed excellent charge-discharge cycling performance. The initial cathode discharge capacity of 154 mAh/g declined only 0.1 %/cycle during first 30 cycles at 60 °C.

  19. Layer-by-layer deposition of rhenium-containing hyperbranched polymers and fabrication of photovoltaic cells.

    PubMed

    Tse, Chui Wan; Man, Ka Yan Kitty; Cheng, Kai Wing; Mak, Chris S K; Chan, Wai Kin; Yip, Cho Tung; Liu, Zheng Tong; Djurisić, Aleksandra B

    2007-01-01

    Multilayer thin films were prepared by the layer-by-layer (LBL) deposition method using a rhenium-containing hyperbranched polymer and poly[2-(3-thienyl)ethoxy-4-butylsulfonate] (PTEBS). The radii of gyration of the hyperbranched polymer in solutions with different salt concentrations were measured by laser light scattering. A significant decrease in molecular size was observed when sodium trifluoromethanesulfonate was used as the electrolyte. The conditions of preparing the multilayer thin films by LBL deposition were studied. The growth of the multilayer films was monitored by absorption spectroscopy and spectroscopic ellipsometry, and the surface morphologies of the resulting films were studied by atomic force microscopy. When the pH of a PTEBS solution was kept at 6 and in the presence of salt, polymer films with maximum thickness were obtained. The multilayer films were also fabricated into photovoltaic cells and their photocurrent responses were measured upon irradiation with simulated air mass (AM) 1.5 solar light. The open-circuit voltage, short-circuit current, fill factor, and power conversion efficiency of the devices were 1.2 V, 27.1 mu A cm(-2), 0.19, and 6.1x10(-3) %, respectively. The high open-circuit voltage was attributed to the difference in the HOMO level of the PTEBS donor and the LUMO level of the hyperbranched polymer acceptor. A plot of incident photon-to-electron conversion efficiency versus wavelength also suggests that the PTEBS/hyperbranched polymer junction is involved in the photosensitization process, in which a maximum was observed at approximately 420 nm. The relatively high capacitance, determined from the measured photocurrent rise and decay profiles, can be attributed to the presence of large counter anions in the polymer film.

  20. Hyperbranched polymers and dendrimers as templates for organic/inorganic hybrid nanomaterials.

    PubMed

    Huang, Xinhua; Zheng, Sudan; Kim, Il

    2014-02-01

    This paper reviews the recent research and development of hyperbranched polymers (HPs) and dendrimers, and their use as templates for organic-inorganic hybrid nanomaterials. Hyperbranched polymers (HPs) are highly branched macromolecules with three-dimensional globular structures featuring unique properties such as low viscosity, high solubility, and a large number of terminal functional groups compared to their linear analogs. They are easily prepared by (1) condensation polymerization, (2) self-condensing vinyl copolymerization (SCVCP), and (3) ring-opening multibranch polymerization methods. Organic-inorganic hybrid nanomaterials are synthesized by a template approach using HPs/dendrimers. Monometallic, bimetallic (alloy and core/shell), semiconductor, and metal oxide nanoparticles have been prepared by this route. The dendrimer component of these composites serves not only as a template for preparing the nanoparticles but also as a stabilizer for the nanoparticles.

  1. Broadband optical limiting and nonlinear optical absorption properties of a novel hyperbranched conjugated polymer

    NASA Astrophysics Data System (ADS)

    Li, Chao; Liu, Chunling; Li, Quanshui; Gong, Qihuang

    2004-12-01

    The nonlinear transmittance of a novel hyperbranched conjugated polymer named DMA-HPV has been measured in CHCl 3 solution using a nanosecond optical parametric oscillator. DMA-HPV shows excellent optical limiting performance in the visible region from 490 to 610 nm. An explanation based on the combination of two-photon absorption and reverse saturable absorption was proposed for its huge and broadband nonlinear optical absorption.

  2. Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers.

    PubMed

    Kolhe, Parag; Misra, Ekta; Kannan, Rangaramanujam M; Kannan, Sujatha; Lieh-Lai, Mary

    2003-06-18

    Highly branched, functionalized polymers have potential to act as efficient drug carrier systems. Dendrimers are ideal candidates among model hyperbranched polymers because of their well-defined structure and high density of functional groups. Using ibuprofen as a model drug, we studied the interaction between the drug and Polyamidoamine (PAMAM) dendrimers (generations 3 and 4 with --NH2 functionality) and Perstrop Polyol (generation 5, hyperbranched polyester with --OH functionality). FTIR and NMR studies suggest that ibuprofen predominantly forms a complex with PAMAM dendrimers because of the ionic interaction between the --NH2 end groups and the carboxyl group of ibuprofen. On an average, up to 78 molecules of ibuprofen could be incorporated into one molecule of PAMAM-G4-NH2 with 64 end groups. This complex is stable in deionized water and methanol. The in vitro release of ibuprofen from drug-dendrimer complex is appreciably slower compared to pure ibuprofen. The complexed drug enters A549 cells much more rapidly than pure drug suggesting that dendrimers may be able to carry the complexed drug inside cells efficiently. Hyperbranched Polyol (with 128 --OH end groups) appears to encapsulate approximately 24 drug molecules. Perhaps the lack of strong interactions between the --OH end groups and the drugs prevents complex formation.

  3. Enhanced immunogenicity of multivalent MUC1 glycopeptide antitumour vaccines based on hyperbranched polymers.

    PubMed

    Glaffig, M; Palitzsch, B; Stergiou, N; Schüll, C; Strassburger, D; Schmitt, E; Frey, H; Kunz, H

    2015-10-28

    Enhancing the immunogenicity of an antitumour vaccine still poses a major challenge. It depends upon the selected antigen and the mode of its presentation. We here describe a fully synthetic antitumour vaccine, which addresses both aspects. For the antigen, a tumour-associated MUC1 glycopeptide as B-cell epitope was synthesised and linked to the immunostimulating T-cell epitope P2 derived from tetanus toxoid. The MUC1-P2 conjugate is presented multivalently on a hyperbranched polyglycerol to the immune system. In comparison to a related vaccine of lower multivalency, this vaccine exposing more antigen structures on the hyperbranched polymer induced significantly stronger immune responses in mice and elicited IgG antibodies of distinctly higher affinity to epithelial tumour cells.

  4. Dynamics of Hyperbranched Polymers in the Bulk and under Confinement: Effect of Dendritic Generation

    NASA Astrophysics Data System (ADS)

    Chrissopoulou, Kiriaki; Androulaki, Krystalenia; Anastasiadis, Spiros H.; Prevosto, Daniele; Labardi, Massimiliano

    2014-03-01

    The structure and dynamics of three generations of a hyperbranched polyester polyol (Boltorn) and their nanocomposites with natural montmorillonite (Na+-MMT) are investigated to offer a detailed picture of the behavior in bulk and under confinement. The structure was studied with X-ray diffraction (XRD) and differential scanning calorimetry (DSC), while the dynamics using dielectric spectroscopy (DS). XRD reveals that the polymer chains reside within the galleries of the Na+-MMT producing an intercalated nanocomposite. The glass transition temperature, Tg, of the bulk polymers shows a dependence on the generation whereas the transition is completely suppressed when all chains are intercalated. The dynamics of the polymers and nanocomposites with ~50wt% polymer, where all chains are confined, were investigated for temperatures both below and above the polymer Tg. A sub-Tg process was found, showing similar features for the three polymers whereas the segmental relaxation was observed around Tg. For the nanocomposites, the dynamics that are observed show similarities and differences with the respective of the pure polymers depending on the specific process. Partially sponsored by EU (COST Action MP0902) and by the Greek GSRT (Research Funding Program: THALES (MIS 377278))

  5. SOLUTION RHEOLOGY OF HYPERBRANCHED POLYESTERS AND THEIR BLENDS WITH LINEAR POLYMERS

    EPA Science Inventory

    In this study, the rheological properties of different generations of hyperbranched polyesters in 1-methyl-2-pyrrolidinone solvent and their blends with poly(2-hydroxyethyl methacrylate) have ben investigated. All the hyperbranched polyester solutions exhibited Newtonian behavior...

  6. SOLUTION RHEOLOGY OF HYPERBRANCHED POLYESTERS AND THEIR BLENDS WITH LINEAR POLYMERS

    EPA Science Inventory

    In this study, the rheological properties of different generations of hyperbranched polyesters in 1-methyl-2-pyrrolidinone solvent and their blends with poly(2-hydroxyethyl methacrylate) have ben investigated. All the hyperbranched polyester solutions exhibited Newtonian behavior...

  7. A supramolecular Janus hyperbranched polymer and its photoresponsive self-assembly of vesicles with narrow size distribution.

    PubMed

    Liu, Yong; Yu, Chunyang; Jin, Haibao; Jiang, Binbin; Zhu, Xinyuan; Zhou, Yongfeng; Lu, Zhongyuan; Yan, Deyue

    2013-03-27

    Herein, we report a novel Janus particle and supramolecular block copolymer consisting of two chemically distinct hyperbranched polymers, which is coined as Janus hyperbranched polymer. It is constructed by the noncovalent coupling between a hydrophobic hyperbranched poly(3-ethyl-3-oxetanemethanol) with an apex of an azobenzene (AZO) group and a hydrophilic hyperbranched polyglycerol with an apex of a β-cyclodextrin (CD) group through the specific AZO/CD host-guest interactions. Such an amphiphilic supramolecular polymer resembles a tree together with its root very well in the architecture and can further self-assemble into unilamellar bilayer vesicles with narrow size distribution, which disassembles reversibly under the irradiation of UV light due to the trans-to-cis isomerization of the AZO groups. In addition, the obtained vesicles could further aggregate into colloidal crystal-like close-packed arrays under freeze-drying conditions. The dynamics and mechanism for the self-assembly of vesicles as well as the bilayer structure have been disclosed by a dissipative particle dynamics simulation.

  8. Selenium/Tellurium-Containing Hyperbranched Polymers: Effect of Molecular Weight and Degree of Branching on Glutathione Peroxidase-Like Activity.

    PubMed

    Thomas, Joice; Dong, Zeyuan; Dehaen, Wim; Smet, Mario

    2012-12-21

    A series of novel hyperbranched polyselenides and polytellurides with multiple catalytic sites at the branching units has been synthesized via the polycondensation of A2 + B3 monomers. The GPx-like activities of these polymer mimics were assessed and it was found that the polytellurides showed higher GPx-like activities than the corresponding polyselenides. Interestingly, the polymers with higher molecular weights and degree of branching (DB) showed higher GPx-like activities than the analogous lower molecular weight polymer. The enhancement in the catalytical activity of the hyperbranched polymers with increasing molecular weight affirmed the importance of the incorporation of multiple catalytic groups in the macromolecule which increases the local concentration of catalytic sites.

  9. Metal Coordination Stoichiometry Controlled Formation of Linear and Hyperbranched Supramolecular Polymers.

    PubMed

    Lin, Cuiling; Xu, Luonan; Huang, Libo; Chen, Jia; Liu, Yuanyuan; Ma, Yifan; Ye, Feixiang; Qiu, Huayu; He, Tian; Yin, Shouchun

    2016-09-01

    Controlling the topologies of polymers is a hot topic in polymer chemistry because the physical and/or chemical properties of polymers are determined (at least partially) by their topologies. This study exploits the host-guest interactions between dibenzo-24-crown-8 and secondary ammonium salts and metal coordination interactions between 2,6-bis(benzimidazolyl)-pyridine units with metal ions (Zn(II) and/or Eu(III) ) as orthogonal non-covalent interactions to prepare supramolecular polymers. By changing the ratios of the metal ion additives (Zn(NO3 )2 and Eu(NO3 )3 ) linkers to join the host-guest dimeric complex, the linear supramolecular polymers (100 mol% Zn(NO3 )2 per ligand) and hyperbranched supramolecular polymers (97 mol% Zn(NO3 )2 and 3 mol% Eu(NO3 )3 per ligand) are separately and successfully constructed. This approach not only expands topological control over polymeric systems, but also paves the way for the functionalization of smart and adaptive materials.

  10. Self-assembly of phospholipid-analogous hyperbranched polymers nanomicelles for drug delivery.

    PubMed

    Liu, Jinyao; Pang, Yan; Huang, Wei; Zhu, Xinyuan; Zhou, Yongfeng; Yan, Deyue

    2010-02-01

    A drug nanocarrier has been constructed through self-assembly of phospholipid analogous hyperbranched polymers (HPHEEP-alkyls) which contain a polar hyperbranched polyphosphate headgroup and many aliphatic tails. HPHEEP-alkyls were synthesized by self-condensing ring-opening polymerization of 2-(2-hydroxyethoxy)ethoxy-2-oxo-1,3,2-dioxaphospholane and then capped with palmitoyl chloride. Benefiting from the amphiphilic structure with the hydrophilic core and many hydrophobic tails, HPHEEP-alkyls were able to self-assemble into nanomicelles in aqueous media. Importantly, the size of the nanomicelles could be controlled conveniently from 98 to 215 nm by adjusting the capped fraction of the hydroxyl groups with hydrophobic palmityls. The excellent biocompatibility of these nanomicelles was confirmed by methyl tetrazolium assay and acridine orange/ethidium bromide double staining against COS-7 cells. Confocal laser scanning microscopy and flow cytometry analysis demonstrated their good cell permeability, i.e. these nanomicelles were easily internalized by vivid cells and mainly located in the cytoplasm rather than nucleolus. Chlorambucil-loaded nanomicelles were investigated for proliferation inhibition of a MCF-7 breast cancer cell line in vitro, and the chlorambucil dose required for 50% cellular growth inhibition was found to be 5 microg/mL. All of these results indicate that HPHEEP-alkyls nanomicelles can be used as safe and promising drug nanocarriers.

  11. Covalent layer-by-layer assembly of hyperbranched polymers on alginate microcapsulesto impart stability and permselectivity

    PubMed Central

    Gattás-Asfura, KM; Valdes, M; Celik, E; Stabler, CL

    2014-01-01

    The microencapsulation of cells has shown promise as a therapeutic vehicle for the treatment of a wide variety of diseases. While alginate microcapsules provide an ideal cell encapsulation material, polycations coatings are commonly employed to enhance stability and impart permselectivity. In this study, functionalized hyperbranched alginate and dendrimer polymers were used to generate discreet nanoscale coatings onto alginate microbeads via covalent layer-by-layer assembly. The bioorthogonal Staudinger ligation scheme was used to chemoselectively crosslink azide functionalized hyperbranched alginate (alginate-hN3) to methyl-2-diphenylphosphino-terephthalate (MDT) linked PAMAM dendrimer (PAMAM-MDT). Covalent layer-by-layer deposition of PAMAM-MDT/alginate-hN3 coatings onto alginate microbeads resulted in highly stable coatings, even after the inner alginate gel was liquefied to form microcapsules. The permselectivity of the coated microcapsules could be manipulated via the charge density of the PAMAM, the number of layers deposited, and the length of the functional arms. The cytocompatibility of the resulting PAMAM-MDT/alginate-hN3 coating was evaluated using a beta cell line, with no significant detrimental response observed. The biocompatibility of the coatings in vivo was also found comparable to uncoated alginate beads. The remarkable stability and versatile nature of these coatings provides an appealing option for bioencapsulation and the release of therapeutic agents. PMID:25478165

  12. Hard and flexible nanocomposite coatings using nanoclay-filled hyperbranched polymers.

    PubMed

    Fogelström, Linda; Malmström, Eva; Johansson, Mats; Hult, Anders

    2010-06-01

    The combination of hardness, scratch resistance, and flexibility is a highly desired feature in many coating applications. The aim of this study is to achieve this through the introduction of an unmodified nanoclay, montmorillonite (Na(+)MMT), in a polymer resin based on the hyperbranched polyester Boltorn H30. Smooth and transparent films were prepared from both the neat and the nanoparticle-filled hyperbranched resins. X-ray diffraction (XRD) and transmission electron microscopy (TEM) corroborated a mainly exfoliated structure in the nanocomposite films, which was also supported by results from dynamic mechanical analysis (DMA). Furthermore, DMA measurements showed a 9-16 degrees C increase in Tg and a higher storage modulus-above and below the T(g)-both indications of a more cross-linked network, for the clay-containing film. Thermogravimetric analysis (TGA) demonstrated the influence of the nanofiller on the thermal properties of the nanocomposites, where a shift upward of the decomposition temperature in oxygen atmosphere is attributed to the improved barrier properties of the nanoparticle-filled materials. Conventional coating characterization methods demonstrated an increase in the surface hardness, scratch resistance and flexibility, with the introduction of clay, and all coatings exhibited excellent chemical resistance and adhesion.

  13. HBP Builder: A Tool to Generate Hyperbranched Polymers and Hyperbranched Multi-Arm Copolymers for Coarse-grained and Fully Atomistic Molecular Simulations

    PubMed Central

    Yu, Chunyang; Ma, Li; Li, Shanlong; Tan, Haina; Zhou, Yongfeng; Yan, Deyue

    2016-01-01

    Computer simulation has been becoming a versatile tool that can investigate detailed information from the microscopic scale to the mesoscopic scale. However, the crucial first step of molecular simulation is model building, particularly for hyperbranched polymers (HBPs) and hyperbranched multi-arm copolymers (HBMCs) with complex and various topological structures. Unlike well-defined polymers, not only the molar weight of HBPs/HBMCs with polydispersity, but the HBPs/HBMCs with the same degree of polymerization (DP) and degree of branching (DB) also have many possible topological structures, thus making difficulties for user to build model in molecular simulation. In order to build a bridge between model building and molecular simulation of HBPs and HBMCs, we developed HBP Builder, a C language open source HBPs/HBMCs building toolkit. HBP Builder implements an automated protocol to build various coarse-grained and fully atomistic structures of HBPs/HBMCs according to user’s specific requirements. Meanwhile, coarse-grained and fully atomistic output structures can be directly employed in popular simulation packages, including HOOMD, Tinker and Gromacs. Moreover, HBP Builder has an easy-to-use graphical user interface and the modular architecture, making it easy to extend and reuse it as a part of other program. PMID:27188541

  14. HBP Builder: A Tool to Generate Hyperbranched Polymers and Hyperbranched Multi-Arm Copolymers for Coarse-grained and Fully Atomistic Molecular Simulations

    NASA Astrophysics Data System (ADS)

    Yu, Chunyang; Ma, Li; Li, Shanlong; Tan, Haina; Zhou, Yongfeng; Yan, Deyue

    2016-05-01

    Computer simulation has been becoming a versatile tool that can investigate detailed information from the microscopic scale to the mesoscopic scale. However, the crucial first step of molecular simulation is model building, particularly for hyperbranched polymers (HBPs) and hyperbranched multi-arm copolymers (HBMCs) with complex and various topological structures. Unlike well-defined polymers, not only the molar weight of HBPs/HBMCs with polydispersity, but the HBPs/HBMCs with the same degree of polymerization (DP) and degree of branching (DB) also have many possible topological structures, thus making difficulties for user to build model in molecular simulation. In order to build a bridge between model building and molecular simulation of HBPs and HBMCs, we developed HBP Builder, a C language open source HBPs/HBMCs building toolkit. HBP Builder implements an automated protocol to build various coarse-grained and fully atomistic structures of HBPs/HBMCs according to user’s specific requirements. Meanwhile, coarse-grained and fully atomistic output structures can be directly employed in popular simulation packages, including HOOMD, Tinker and Gromacs. Moreover, HBP Builder has an easy-to-use graphical user interface and the modular architecture, making it easy to extend and reuse it as a part of other program.

  15. Structure and dynamics of hyperbranched polymers in bulk and under nanoscopic confinement

    NASA Astrophysics Data System (ADS)

    Anastasiadis, S. H.; Chrissopoulou, K.; Karatasos, K.; Fotiadou, S.; Karageorgaki, C.; Tanis, I.; Tragoudaras, D.; Frick, B.

    2013-03-01

    The structure and dynamics of a hyperbranched polyesteramide (Hybrane S 1200) and its nanocomposites with natural montmorillonite (Na+-MMT) are investigated. In bulk, the behavior is probed by QENS with MD simulations employed for a deeper insight into the relevant relaxation processes. The energy-resolved elastically scattered intensity from the polymer relaxes with two steps, one below and one above the polymer Tg. The QENS spectra are consistent with the elastic measurements and can be correlated to the results emerging from the detailed description afforded by the atomistic simulations, which cover a broad time range and predict the existence of three relaxation processes. The nanocomposites are investigated by XRD, DSC and QENS. XRD reveals an intercalated nanocomposite structure. The polymer chains confined within the galleries show similarities in the dynamic behavior with that of the bulk polymer for temperatures below the bulk polymer Tg, whereas they exhibit frozen dynamics under confinement at temperatures higher than that. Sponsored by the Greek GSRT (ΣÙ NEP ΓA ΣIA 09 ΣÙ N-42-580).

  16. Imidazole and dimethyl aminopropyl-functionalized hyperbranched polymers for nucleic acid transfection.

    PubMed

    Germershaus, Oliver; Pickaert, Guillaume; Konrad, Juliane; Krüger, Ute; Kissel, Thomas; Haag, Rainer

    2010-09-09

    In order to mimic the histidine binding motives of naturally occurring histones as DNA complexing proteins, hyperbranched poly(ethylene imine) and polyglycerol were functionalized with imidazole or 3-dimethylamino propyl groups. These new polycationic polymers were tested for interaction with dye-labelled oligonucleotide and DNA using UV and fluorescence spectroscopy and gel electrophoresis. Formation of stable complexes was observed above N/P ratios of 4 for unfunctionalized and 8 for functionalized PEIs. No stable complexes were formed with polyglycerol-based polyamines up to N/P 16. Cytotoxicity determined by MTT assay of all functionalized PEI polymers was found to be significantly lower than for unfunctionalized PEI. PG-based polymers showed no toxicity in the tested concentration range. Dynamic light scattering showed that only for PEI(21)-Imidaz polyplexes hydrodynamic diameters below 250 nm could be reached.The influence of functionalization and polymer type on transfection efficiency was evaluated in L929, NIH/3T3 and HeLa cells. Only imidazole-functionalized PEIs reached similar transfection efficiencies as unfunctionalized PEIs, while 3-dimethylamino propyl modification resulted in lower transfection efficiencies. We also demonstrated that the polymer plays an important role for transfection properties since, regardless of the modifications of polyglycerol, only low transfection efficiencies were observed at functionalization levels below 50%.

  17. A hydrotropic β-cyclodextrin grafted hyperbranched polyglycerol co-polymer for hydrophobic drug delivery.

    PubMed

    Zhang, Xuejiao; Zhang, Xinge; Wu, Zhongming; Gao, Xiujun; Cheng, Cui; Wang, Zhen; Li, Chaoxing

    2011-02-01

    The development of successful formulations for poorly water soluble drugs remains a longstanding, critical, and challenging issue in cancer therapy. A β-cyclodextrin (CD) functionalized hyperbranched polyglycerol (HPG) has been prepared as a potential water insoluble drug carrier. The HPG-g-CD molecules could self-assemble into multimolecular spherical micelles in water, the size of which ranged from 200 to 300 nm, with good dispersity. A high loading capacity and high encapsulation efficiency of paclitaxel, as a model, were obtained. The release profiles of different co-polymer compositions showed a burst release followed by continuous extended release. Furthermore, MTT analysis showed that HPG-g-CD had good biocompatibility, indicating that HPG-g-CD may be considered a promising hydrophobic drug delivery system.

  18. Hyperbranched poly(NIPAM) polymers modified with antibiotics for the reduction of bacterial burden in infected human tissue engineered skin.

    PubMed

    Shepherd, Joanna; Sarker, Prodip; Rimmer, Stephen; Swanson, Linda; MacNeil, Sheila; Douglas, Ian

    2011-01-01

    The escalating global incidence of bacterial infection, particularly in chronic wounds, is a problem that requires significant improvements to existing therapies. We have developed hyperbranched poly(NIPAM) polymers functionalized with the antibiotics Vancomycin and Polymyxin-B that are sensitive to the presence of bacteria in solution. Binding of bacteria to the polymers causes a conformational change, resulting in collapse of the polymers and the formation of insoluble polymer/bacteria complexes. We have applied these novel polymers to our tissue engineered human skin model of a burn wound infected with Pseudomonas aeruginosa and Staphylococcus aureus. When the polymers were removed from the infected skin, either in a polymer gel solution or in the form of hydrogel membranes, they removed bound bacteria, thus reducing the bacterial load in the infected skin model. These bacteria-binding polymers have many potential uses, including coatings for wound dressings.

  19. Glycodendritic structures based on Boltorn hyperbranched polymers and their interactions with Lens culinaris lectin.

    PubMed

    Arce, Eva; Nieto, Pedro M; Díaz, Vicente; Castro, Rossana García; Bernad, Antonio; Rojo, Javier

    2003-01-01

    Multivalent scaffolds bearing carbohydrates have been prepared to mediate biological processes where carbohydrates are involved. These systems consist of dendritic structures based on Boltorn H20 and H30 hyperbranched polymers to which carbohydrates are linked through a convenient spacer. Mannose has been chosen as a sugar unit to test the viability of this strategy. These glycodendritic compounds have been prepared in a few steps with good yields, showing a high solubility in physiological media and low toxicity. The binding of these dendritic polymers to the mannose-binding lectin Lens culinaris (LCA) was studied using STD-NMR experiments and quantitative precipitation assays. The results demonstrate the existence of a clear interaction between the mannose derivative systems and the Lens lectin where the dendritic scaffold does not have an important role in mannose binding but supplies the necessary multivalence for lectin cluster formation. These glycodendritic structures are able to interact with a receptor, and therefore they can be considered as promising tools for biological studies.

  20. Hydrophobic acrylic hard coating by surface segregation of hyper-branched polymers

    NASA Astrophysics Data System (ADS)

    Haraguchi, Masayuki; Hirai, Tomoyasu; Ozawa, Masaaki; Miyaji, Katsuaki; Tanaka, Keiji

    2013-02-01

    The ability of hyperbranched polymers (HBPs) to preferentially segregate to the surface of its matrix owing to its unique structure makes it a good candidate as a surface modifier. One particular challenge in its application as an efficient surface modifier, however, is its possible elimination from the surface due to the lack of attachments between a HBP (modifier) and its host material (polymer matrix). Here, we present a novel approach to efficiently prevent the removal of HBPs from the surface of its host material by directly reacting a HBP containing fluoroalkyl segments (F-HBP) to a multi-functional acrylate monomer prior to curing. We also have characterized surface structure and wettability of the acrylic hard coating material by X-ray photoelectron spectroscopic and contact angle measurements, respectively. The results show that since F-HBP was segregated at the surface, the surface became hydrophobic and more stable. Thus, we claim that our approach results in the formation of a water-repellent acrylic hard coating material.

  1. Stimuli-Responsive Biodegradable Hyperbranched Polymer-Gadolinium Conjugates as Efficient and Biocompatible Nanoscale Magnetic Resonance Imaging Contrast Agents.

    PubMed

    Sun, Ling; Li, Xue; Wei, Xiaoli; Luo, Qiang; Guan, Pujun; Wu, Min; Zhu, Hongyan; Luo, Kui; Gong, Qiyong

    2016-04-27

    The efficacy and biocompatibility of nanoscale magnetic resonance imaging (MRI) contrast agents depend on optimal molecular structures and compositions. Gadolinium [Gd(III)] based dendritic macromolecules with well-defined and tunable nanoscale sizes are excellent candidates as multivalent MRI contrast agents. Here, we propose a novel alternate preparation of biodegradable hyperbranched polymer-gadolinium conjugates via a simple strategy and report potentially efficient and biocompatible nanoscale MRI contrast agents for cancer diagnosis. The enzyme-responsive hyperbranched poly(oligo-(ethylene glycol) methacrylate)-gadolinium conjugate (HB-POEGMA-Gd) was prepared via one-step reversible addition-fragmentation chain transfer (RAFT) polymerization and Gd(III) chelating, and the cRGDyK functionalized polymer (HB-POEGMA-cRGD-Gd) was obtained via click chemistry. By using an enzyme similar to lysosomal cathepsin B, hyperbranched conjugates of high molecular weights (MW) (180 and 210 kDa) and nanoscale sizes (38 and 42 nm) were degraded into low MW (25 and 30 kDa) and smaller products (4.8 and 5.2 nm) below the renal threshold. Conjugate-based nanoscale systems had three-fold more T1 relaxivity compared to clinical agent diethylenediaminepentaacetic acid (DTPA)-Gd. Animal studies with the nanoscale system offered greater tumor accumulation and enhanced signal intensity (SI) in mouse U87 tumors of which the greatest activity was conferred by the cRGDyK moiety functionalized hyperbranched conjugate. In vitro cytotoxicity, hemocompatibility and in vivo toxicity studies confirmed no adverse events. This design strategy for multifunctional Gd(III)-labeled biodegradable dendritic macromolecules may have significant potential as future efficient, biocompatible polymeric nanoscale MRI diagnostic contrast agents for cancer.

  2. Mussel-inspired hyperbranched poly(amino ester) polymer as strong wet tissue adhesive.

    PubMed

    Zhang, Hong; Bré, Lígia P; Zhao, Tianyu; Zheng, Yu; Newland, Ben; Wang, Wenxin

    2014-01-01

    Current medical adhesives based on cyanoacrylates typically exhibit cellular toxicity. In contrast, fibrin adhesives are non-toxic but have poor adhesive properties. To overcome these drawbacks we designed a simple and scalable adhesive precursor inspired by marine mussel adhesion that functioned with strong adhesion in wet conditions and with low cytotoxicity. Dopamine, an-amine derivative of an amino acid abundantly present in mussel adhesive proteins, was co-polymerised with a tri-functional vinyl monomer, to form a hyperbranched poly(β-amino ester) polymer termed poly(dopamine-co-acrylate) (PDA). A variety of molecular weights and crosslinking methods were analysed using an ex vivo porcine skin model and an almost 4 fold increase in wet adhesion strength was observed compared to TISSEEL(®) fibrin sealant. With a fast curing time, degradable properties and low cytotoxicity, PDA is highly attractive for medical purposes and could have a broad impact on surgeries where surgical tissue adhesives, sealants, and haemostatic agents are used.

  3. Adsorption behaviors of Hg(II) on chitosan functionalized by amino-terminated hyperbranched polyamidoamine polymers.

    PubMed

    Ma, Fang; Qu, Rongjun; Sun, Changmei; Wang, Chunhua; Ji, Chunnuan; Zhang, Ying; Yin, Ping

    2009-12-30

    The adsorption behaviors of Hg(II) on adsorbents, chitosan functionalized by generation 1.0-3.0 of amino-terminated hyperbranched polyamidoamine polymers (denoted as CTS-1.0, CTS-2.0 and CTS-3.0, respectively), were studied. The optimum pH corresponding to the maximum adsorption capacities was found to be 5.0 for the three adsorbents. The experimental equilibrium data of Hg(II) on the three adsorbents were fitted to the Freundlich and the Langmuir models, and it is found that the Langmuir isotherm was the best fitting model to describe the equilibrium adsorption. The kinetics data indicated that the adsorption process of Hg(II) ions on CTS-1.0, CTS-2.0 and CTS-3.0 were governed by the film diffusion and followed pseudo-second-order rate model. Thermodynamic analysis and FTIR analysis revealed that the adsorption behaviors of Hg(II) ions on the three adsorbents could be considered as spontaneous, endothermic and chemical sorption process, resulting in their higher adsorption capacities at higher temperature.

  4. Phase behavior of hyperbranched polymer systems: experiments and application of the perturbed-chain polar SAFT equation of state.

    PubMed

    Kozłowska, Marta K; Jürgens, Bas F; Schacht, Christian S; Gross, Joachim; de Loos, Theo W

    2009-01-29

    Vapor-liquid equilibrium data for systems of hyperbranched polymer (HBP) and carbon dioxide are reported for temperatures of 285-455 K and pressures up to 13 MPa. The bubble-point pressures of (CO2 + hyperbranched polyester) and of (CO2 + hyperbranched polyglycerol + CH3OH) samples with fixed compositions were measured using a Cailletet apparatus. The system (CO2 + polyglycerol + CH3OH) also exhibits a liquid-liquid phase split characterized by lower critical solution temperatures. For this system cloud point curves and vapor-liquid-liquid bubble-point curves were also measured. Moreover, a thermodynamic model has been developed for HBP mixtures in the framework of the perturbed-chain polar statistical association fluid theory (PCP-SAFT) equation of state accounting for branching effects. There is no additional binary interaction parameter introduced along with the branching contributions to the model. Although the miscibility gap in the system (CO2 + polyglycerol + CH3OH) is not predicted by the model, PCP-SAFT including branching effects gives a good representation of the bubble-point curves of this system at temperatures lower than the lower solution temperature (LST).

  5. Solution-Processable Hyperbranched Conjugated Polymer Nanoparticles Based on C3h -Symmetric Benzotrithiophene for Polymer Solar Cells.

    PubMed

    Wu, Xiaofu; Zhang, Zijian; Hang, Hao; Chen, Yonghong; Xu, Yuxiang; Tong, Hui; Wang, Lixiang

    2017-02-21

    The development of photovoltaic polymers based on C3h -symmetric benzotrithiophene (C3h -BTT), an analogue of the well-known benzodithiophene (BDT) donor unit, has been severely limited due to difficult processability. Here the authors report the preparation of solution-processable C3h -BTT-based hyperbranched conjugated polymer nanoparticles (BTT-HCPNs) with tunable particle sizes via Stille miniemulsion polymerization. Compared with the corresponding star-shaped small molecule (C3h -BTT core with three diketopyrrolopyrrole arms, BTT-3DPP) with a wide bandgap (1.83 eV), both BTT-HCPNs show strong aggregation even in dilute solutions, leading to much-extended absorption (up to ≈1000 nm) and lower bandgaps (1.38 eV). The larger BTT-HCPN particle exhibits stronger aggregation and more extended absorption than the smaller one. As a result, solar cells fabricated from BTT-HCPNs/PC71 BM solutions show a power conversion efficiency up to 1.51% after DIO additive treatment, much higher than that of BTT-3DPP (0.31%).

  6. Polymers with integrated sensing capabilities

    NASA Astrophysics Data System (ADS)

    Kunzelman, Jill Nicole

    This dissertation is focused on the creation and characterization of new types of chromogenic polymers, which change their absorption and/or fluorescence characteristics in response to an external stimulus. These optical sensor materials rely on chromophores that display pronounced color changes upon self-assembly as a result of charge-transfer interactions and/or conformational changes. When these chromophores are incorporated into a polymer of interest, the relative amounts of dispersed and aggregated molecules (and therefore their optical appearance) can be initially tuned by controlling the extent of aggregation via the materials composition and the processing protocol employed; the phase-behavior is changed in a predefined manner upon exposure to a specific stimulus. This sensing scheme was exploited in a number of different polymer matrices, leading to a variety of sensor types including mechanochromic, thermochromic, moisture-sensing, and shape-memory materials that allow visualization of the set/release temperature. Important design fundamentals of "aggregachromic" sensor dyes are discussed and chemical structure is related to type of interactions (hydrophobic, pi-pi, charge-transfer) and self-assembly/color relationships. The knowledge is used to control behavior such as piezochromism, aggregation rate, and intramolecular-excimer-formation.

  7. Blood compatibility of novel water soluble hyperbranched polyglycerol-based multivalent cationic polymers and their interaction with DNA.

    PubMed

    Kainthan, Rajesh Kumar; Gnanamani, Muthiah; Ganguli, Munia; Ghosh, Tanay; Brooks, Donald E; Maiti, Souvik; Kizhakkedathu, Jayachandran N

    2006-11-01

    A novel class of hyperbranched polymers based on polyglycerol (PG) and poly(ethylene glycol) (PEG) are synthesized by multibranching anionic ring opening polymerization. Multivalent cationic sites are added to these polymers by a post-amination and quarternization reactions. Blood compatibility studies using these polymers at different concentrations showed insignificant effects on complement activation, platelet activation, coagulation, erythrocyte aggregation and hemolysis compared to branched cationic polyethyleneimine (PEI). The degree of quarternization does not have large influence on the blood compatibility of the new polymers. Cytotoxicity of these polymers is significantly lower than that of PEI and is a function of quarternized nitrogen present in the polymer. Also, these polymers bind DNA in the nanomolar range and are able to condense DNA to highly compact, stable, water soluble nanoparticles in the range of 60-80 nm. Gel electrophoresis studies showed that they form electroneutral complexes with DNA around N/P ratio 1 irrespective of the percentage of quarternization under the conditions studied.

  8. Chain-growth click polymerization of AB2 monomers for the formation of hyperbranched polymers with low polydispersities in a one-pot process.

    PubMed

    Shi, Yi; Graff, Robert W; Cao, Xiaosong; Wang, Xiaofeng; Gao, Haifeng

    2015-06-22

    Hyperbranched polymers are important soft nanomaterials but robust synthetic methods with which the polymer structures can be easily controlled have rarely been reported. For the first time, we present a one-pot one-batch synthesis of polytriazole-based hyperbranched polymers with both low polydispersity and a high degree of branching (DB) using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization. The use of a trifunctional AB2 monomer that contains one alkyne and two azide groups ensures that all Cu catalysts are bound to polytriazole polymers at low monomer conversion. Subsequent CuAAC polymerization displayed the features of a "living" chain-growth mechanism with a linear increase in molecular weight with conversion and clean chain extension for repeated monomer additions. Furthermore, the triazole group in a linear (L) monomer unit complexed Cu(I) , which catalyzed a faster reaction of the second azide group to quickly convert the L unit into a dendritic unit, producing hyperbranched polymers with DB=0.83.

  9. Development of hyperbranched polymers with non-covalent interactions for extraction and determination of aflatoxins in cereal samples.

    PubMed

    Liu, Xiaoyan; Li, Huihui; Xu, Zhigang; Peng, Jialin; Zhu, Shuqiang; Zhang, Haixia

    2013-10-03

    A novel approach for assembling homogeneous hyperbranched polymers based on non-covalent interactions with aflatoxins was developed; the polymers were used to evaluate the extraction of aflatoxins B1, B2, G1 and G2 (AFB1, AFB2, AFG1 and AFG2) in simulant solutions. The results showed that the extraction efficiencies of three kinds of synthesized polymers for the investigated analytes were not statistically different; as a consequence, one of the representative polymers (polymer I) was used as the solid-phase extraction (SPE) sorbent to evaluate the influences of various parameters, such as desorption conditions, pH, ionic strength, concentration of methanol in sample solutions, and the mass of the sorbent on the extraction efficiency. In addition, the extraction efficiencies for these aflatoxins were compared between the investigated polymer and the traditional sorbent C18. The results showed that the investigated polymer had superior extraction efficiencies. Subsequently, the proposed polymer for the SPE packing material was employed to enrich and analyze four aflatoxins in the cereal powder samples. The limits of detection (LODs) at a signal-to-noise (S/N) ratio of 3 were in the range of 0.012-0.120 ng g(-1) for four aflatoxins, and the limits of quantification (LOQs) calculated at S/N=10 were from 0.04 to 0.40 ng g(-1) for four aflatoxins. The recoveries of four aflatoxins from cereal powder samples were in the range of 82.7-103% with relative standard deviations (RSDs) lower than 10%. The results demonstrate the suitability of the SPE approach for the analysis of trace aflatoxins in cereal powder samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Single-chain nanoparticles vs. star, hyperbranched and dendrimeric polymers: effect of the nanoscopic architecture on the flow properties of diluted solutions.

    PubMed

    Perez-Baena, Irma; Moreno, Angel J; Colmenero, Juan; Pomposo, José A

    2014-12-21

    The flow properties of dilute solutions of linear, star, hyperbranched and dendrimeric polymers have been the subject of numerous studies. However, no systematic analysis has been carried out for the case of single-chain nanoparticles (SCNPs) of different nature, which are unimolecular soft nano-objects consisting of individual polymer chains collapsed to a certain degree by means of intramolecular bonding. On the basis of the fractal nature of SCNPs and experimental data of the hydrodynamic radius, a simple predictive power-law between the intrinsic viscosity and molecular weight is proposed. Furthermore, a comparison is made between the intrinsic viscosities of SCNPs and of low-functionality stars, hyperbranched and dendrimeric polymers of the same chemical nature and molecular weight. As a consequence of their complex nanoscopic architecture, the intrinsic viscosities of SCNPs are systematically smaller than those of linear chains and low-functionality stars. When compared with hyperbranched and dendrimeric polymers, a complex behaviour is found, this being highly dependent on the molecular weight and amount of X-linkers of SCNPs.

  11. A fully synthetic glycopeptide antitumor vaccine based on multiple antigen presentation on a hyperbranched polymer.

    PubMed

    Glaffig, Markus; Palitzsch, Björn; Hartmann, Sebastian; Schüll, Christoph; Nuhn, Lutz; Gerlitzki, Bastian; Schmitt, Edgar; Frey, Holger; Kunz, Horst

    2014-04-07

    For antitumor vaccines both the selected tumor-associated antigen, as well as the mode of its presentation, affect the immune response. According to the principle of multiple antigen presentation, a tumor-associated MUC1 glycopeptide combined with the immunostimulating T-cell epitope P2 from tetanus toxoid was coupled to a multi-functionalized hyperbranched polyglycerol by "click chemistry". This globular polymeric carrier has a flexible dendrimer-like structure, which allows optimal antigen presentation to the immune system. The resulting fully synthetic vaccine induced strong immune responses in mice and IgG antibodies recognizing human breast-cancer cells.

  12. A New Epoxy-Based Layered Silicate Nanocomposite Using a Hyperbranched Polymer: Study of the Curing Reaction and Nanostructure Development.

    PubMed

    Cortés, Pilar; Fraga, Iria; Calventus, Yolanda; Román, Frida; Hutchinson, John M; Ferrando, Francesc

    2014-03-04

    Polymer layered silicate (PLS) nanocomposites have been prepared with diglycidyl ether of bisphenol-A (DGEBA) epoxy resin as the matrix and organically modified montmorillonite (MMT) as the clay nanofiller. Resin-clay mixtures with different clay contents (zero, two, five and 10 wt%) were cured, both isothermally and non-isothermally, using a poly(ethyleneimine) hyperbranched polymer (HBP), the cure kinetics being monitored by differential scanning calorimetry (DSC). The nanostructure of the cured nanocomposites was characterized by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), and their mechanical properties were determined by dynamic mechanical analysis (DMA) and impact testing. The results are compared with an earlier study of the structure and properties of the same DGEBA-MMT system cured with a polyoxypropylene diamine, Jeffamine. There are very few examples of the use of HBP as a curing agent in epoxy PLS nanocomposites; here, it is found to enhance significantly the degree of exfoliation of these nanocomposites compared with those cured with Jeffamine, with a corresponding enhancement in the impact energy for nanocomposites with the low clay content of 2 wt%. These changes are attributed to the different cure kinetics with the HBP, in which the intra-gallery homopolymerization reaction is accelerated, such that it occurs before the bulk cross-linking reaction.

  13. A New Epoxy-Based Layered Silicate Nanocomposite Using a Hyperbranched Polymer: Study of the Curing Reaction and Nanostructure Development

    PubMed Central

    Cortés, Pilar; Fraga, Iria; Calventus, Yolanda; Román, Frida; Hutchinson, John M.; Ferrando, Francesc

    2014-01-01

    Polymer layered silicate (PLS) nanocomposites have been prepared with diglycidyl ether of bisphenol-A (DGEBA) epoxy resin as the matrix and organically modified montmorillonite (MMT) as the clay nanofiller. Resin-clay mixtures with different clay contents (zero, two, five and 10 wt%) were cured, both isothermally andnon-isothermally, using a poly(ethyleneimine) hyperbranched polymer (HBP), the cure kinetics being monitored by differential scanning calorimetry (DSC). The nanostructure of the cured nanocomposites was characterized by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), and their mechanical properties were determined by dynamic mechanical analysis (DMA) and impact testing. The results are compared with an earlier study of the structure and properties of the same DGEBA-MMT system cured with a polyoxypropylene diamine, Jeffamine. There are very few examples of the use of HBP as a curing agent in epoxy PLS nanocomposites; here, it is found to enhance significantly the degree of exfoliation of these nanocomposites compared with those cured with Jeffamine, with a corresponding enhancement in the impact energy for nanocomposites with the low clay content of 2 wt%. These changes are attributed to the different cure kinetics with the HBP, in which the intra-gallery homopolymerization reaction is accelerated, such that it occurs before the bulk cross-linking reaction. PMID:28788542

  14. Effect of the microstructure of a hyperbranched polymer and nanoclay loading on the morphology and properties of novel polyurethane nanocomposites.

    PubMed

    Maji, Pradip K; Guchhait, Prasanta K; Bhowmick, Anil K

    2009-02-01

    Novel polyurethane nanocomposites based on toluene diisocyanate, poly(propylene glycol), various hyperbranched polymers (HBPs), and layered silicate were synthesized with the aim of determining the effect of the layered silicate loading and the functionality of HBP on the structure and properties of polyurethane nanocomposites. The microstructure of the nanocomposites was investigated by X-ray diffraction analysis and high-resolution transmission electron microscopy. It was found that exfoliated morphology and good dispersion were obtained up to 8 phr clay loading for all of the nanocomposites. approximately 100% increment in tensile strength, approximately 2-fold increase in the lap shear strength, approximately 200% increment in the peel strength, and 120% increment in the storage modulus along with a dramatic improvement in thermal stability were observed with the addition of 8 phr clay, over the pristine polyurethane. The higher the level of functionality of the HBP, the higher is the property enhancement. These properties were correlated with the state of dispersion of the clay platelets in the polyurethane matrix, the structure of the matrix, and clay-polymer interaction.

  15. Active site formation mechanism of carbon-based oxygen reduction catalysts derived from a hyperbranched iron phthalocyanine polymer

    NASA Astrophysics Data System (ADS)

    Hiraike, Yusuke; Saito, Makoto; Niwa, Hideharu; Kobayashi, Masaki; Harada, Yoshihisa; Oshima, Masaharu; Kim, Jaehong; Nabae, Yuta; Kakimoto, Masa-aki

    2015-04-01

    Carbon-based cathode catalysts derived from a hyperbranched iron phthalocyanine polymer (HB-FePc) were characterized, and their active-site formation mechanism was studied by synchrotron-based spectroscopy. The properties of the HB-FePc catalyst are compared with those of a catalyst with high oxygen reduction reaction (ORR) activity synthesized from a mixture of iron phthalocyanine and phenolic resin (FePc/PhRs). Electrochemical measurements demonstrate that the HB-FePc catalyst does not lose its ORR activity up to 900°C, whereas that of the FePc/PhRs catalyst decreases above 700°C. Hard X-ray photoemission spectra reveal that the HB-FePc catalysts retain more nitrogen components than the FePc/PhRs catalysts between pyrolysis temperatures of 600°C and 800°C. This is because the linked structure of the HB-FePc precursor has high thermostability against nitrogen desorption. Consequently, effective doping of active nitrogen species into the sp 2 carbon network of the HB-FePc catalysts may occur up to 900°C.

  16. Active site formation mechanism of carbon-based oxygen reduction catalysts derived from a hyperbranched iron phthalocyanine polymer.

    PubMed

    Hiraike, Yusuke; Saito, Makoto; Niwa, Hideharu; Kobayashi, Masaki; Harada, Yoshihisa; Oshima, Masaharu; Kim, Jaehong; Nabae, Yuta; Kakimoto, Masa-Aki

    2015-01-01

    Carbon-based cathode catalysts derived from a hyperbranched iron phthalocyanine polymer (HB-FePc) were characterized, and their active-site formation mechanism was studied by synchrotron-based spectroscopy. The properties of the HB-FePc catalyst are compared with those of a catalyst with high oxygen reduction reaction (ORR) activity synthesized from a mixture of iron phthalocyanine and phenolic resin (FePc/PhRs). Electrochemical measurements demonstrate that the HB-FePc catalyst does not lose its ORR activity up to 900°C, whereas that of the FePc/PhRs catalyst decreases above 700°C. Hard X-ray photoemission spectra reveal that the HB-FePc catalysts retain more nitrogen components than the FePc/PhRs catalysts between pyrolysis temperatures of 600°C and 800°C. This is because the linked structure of the HB-FePc precursor has high thermostability against nitrogen desorption. Consequently, effective doping of active nitrogen species into the sp (2) carbon network of the HB-FePc catalysts may occur up to 900°C.

  17. Preparation of complementary glycosylated hyperbranched polymer/poly(ethylene glycol) brushes and their selective interactions with hepatocytes.

    PubMed

    Liang, Su; Yu, Shan; Gao, Changyou

    2016-09-01

    Selective cell adhesion and migration, which mimics the natural biological events in vivo, is very important for the right repair of damaged tissues. In this study, glycosylated hyperbranched polymers (LA-HPMA) were synthesized, and were grafted on glass slide through dopamine deposition with different densities adjusted by co-grafting of poly(ethylene glycol) (PEG). The LA-HPMA and PEG molecular brushes were characterized by X-ray photoelectron spectroscopy (XPS), quartz crystal microbalance with dissipation (QCM-d) and ellipsometry. The adhesion of human hepatoma (HepG2) cells was promoted on the surface of a higher LA-HPMA density, and the migration rate was accelerated from 6.4μm/h on PEG surface to 12.7μm/h on 75% LA-HPMA surface. By contrast, the density and spreading area of mouse embryonic fibroblast (NIH3T3) cells were not significantly influenced by the LA-HPMA density, and the migration rate did not change significantly on all types of surfaces either. Therefore, the specific interactions of carbohydrate-protein can be used to modulate cell behaviors in vitro, for example the selective adhesion and migration of HepG2 cells.

  18. Anhydrous proton-conducting electrolyte membranes based on hyperbranched polymer with phosphonic acid groups for high-temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Itoh, Takahito; Hirai, Keita; Tamura, Masashi; Uno, Takahiro; Kubo, Masataka; Aihara, Yuichi

    The two different molecular weight hyperbranched polymers (HBP(L)-PA-Ac and HBP(H)-PA-Ac) with both phosphonic acid group as a functional group and acryloyl group as a cross-linker at the chain ends were successfully synthesized as a new thermally stable proton-conducting electrolyte. The cross-linked electrolyte membranes (CL-HBP-PA) were prepared by their thermal polymerizations using benzoyl peroxide and their ionic conductivities under dry condition and thermal properties were investigated. The ionic conductivities of the low molecular weight CL-HBP(L)-PA membrane and the high molecular weight CL-HBP(H)-PA membrane were found to be 1.2 × 10 -5 and 2.6 × 10 -6 S cm -1, respectively, at 150 °C under dry condition, and showed the Vogel-Tamman-Fulcher (VTF) type temperature dependence. Both membranes were thermally stable up to 300 °C, and they had suitable thermal stability as electrolyte membranes for the high-temperature fuel cells under dry condition. Fuel cell measurements using a single membrane electrode assembly cell with both cross-linked membranes were successfully performed.

  19. The effect of hyperbranched polyglycerol coatings on drug delivery using degradable polymer nanoparticles.

    PubMed

    Deng, Yang; Saucier-Sawyer, Jennifer K; Hoimes, Christopher J; Zhang, Junwei; Seo, Young-Eun; Andrejecsk, Jillian W; Saltzman, W Mark

    2014-08-01

    A key attribute for nanoparticles (NPs) that are used in medicine is the ability to avoid rapid uptake by phagocytic cells in the liver and other tissues. Poly(ethylene glycol) (PEG) coatings has been the gold standard in this regard for several decades. Here, we examined hyperbranched polyglycerols (HPG) as an alternate coating on NPs. In earlier work, HPG was modified with amines and subsequently conjugated to poly(lactic acid) (PLA), but that approach compromised the ability of HPG to resist non-specific adsorption of biomolecules. Instead, we synthesized a copolymer of PLA-HPG by a one-step esterification. NPs were produced from a single emulsion using PLA-HPG: fluorescent dye or the anti-tumor agent camptothecin (CPT) were encapsulated at high efficiency in the NPs. PLA-HPG NPs were quantitatively compared to PLA-PEG NPs, produced using approaches that have been extensively optimized for drug delivery in humans. Despite being similar in size, drug release profile and in vitro cytotoxicity, the PLA-HPG NPs showed significantly longer blood circulation and significantly less liver accumulation than PLA-PEG. CPT-loaded PLA-HPG NPs showed higher stability in suspension and better therapeutic effectiveness against tumors in vivo than CPT-loaded PLA-PEG NPs. Our results suggest that HPG is superior to PEG as a surface coating for NPs in drug delivery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The Effect of Hyperbranched Polyglycerol Coatings on Drug Delivery Using Degradable Polymer Nanoparticles

    PubMed Central

    Deng, Yang; Saucier-Sawyer, Jennifer; Hoimes, Christopher; Zhang, Junwei; Seo, Young-Eun; Andrejecsk, Jillian W.; Saltzman, W. Mark

    2014-01-01

    A key attribute for nanoparticles (NPs) that are used in medicine is the ability to avoid rapid uptake by phagocytic cells in the liver and other tissues. Poly(ethylene glycol) (PEG) coatings has been the gold standard in this regard for several decades. Here, we examined hyperbranched polyglycerols (HPG) as an alternate coating on NPs. In earlier work, HPG was modified with amines and subsequently conjugated to poly(lactic acid) (PLA), but that approach compromised the ability of HPG to resist non-specific adsorptions of biomolecules. Instead, we synthesized a copolymer of PLA-HPG by a one-step esterification. NPs were produced from a single emulsion using PLA-HPG: fluorescent dye or the anti-tumor agent camptothecin (CPT) were encapsulated at high efficiency in the NPs. PLA-HPG NPs were quantitatively compared to PLA-PEG NPs, produced using approaches that have been extensively optimized for drug delivery in humans. Despite being similar in size, drug release profile and in vitro cytotoxicity, the PLA-HPG NPs showed significantly longer blood circulation and significantly less liver accumulation than PLA-PEG. CPT-loaded PLA-HPG NPs showed higher stability in suspension and better therapeutic effectiveness against tumors in vivo than CPT-loaded PLA-PEG NPs. Our results suggest that HPG is superior to PEG as a surface coating for NPs in drug delivery. PMID:24816286

  1. Hyperbranched polymer mediated fabrication of water soluble carbon nanotube-metal nanoparticle hybrids

    NASA Astrophysics Data System (ADS)

    Li, Haiqing; Cooper-White, Justin J.

    2013-03-01

    1-Pyrenemethanol initiated hyperbranched polyglycerol (PiHP) has been synthesized and utilized to non-covalently functionalize pristine multi-walled carbon nanotubes (CNTs) through π-π stacking interactions. Mediated with the PiHP coating, a variety of metal nanoparticles (Au, Ag, Pd and Pt) were in situ generated and randomly tethered on the CNT sidewalls, producing various water-soluble CNT/PiHP/metal hybrids. Particularly, the resulting CNT/PiHP/Pt hybrids possess improved metal coverage in comparison to the reported CNT/Pt nanohybrids obtained by the use of conventional non-covalent CNT surface-modifiers. Depending on the using concentration of Pt2+ precursor, Pt coverage in CNT/PiHP/Pt hybrids can be effectively controlled. In the meanwhile, Pt component on the CNT sidewalls can be either well isolated nanoparticles or loose ``nanoclusters''. To test the promising catalytic application of these obtained CNT/PiHP/Pt hybrids, a systematic investigation on their catalytic performance towards the reduction of 4-nitrophenol to produce 4-aminophenol was performed. Surprisingly, these hybrids exhibited significantly enhanced catalytic activity compared with the conventionally utilized Au and Ag nanoparticles. Moreover, they can be easily recovered and reused without significant loss in catalytic activity after running 6 circles.

  2. Composite Electrolyte Membranes from Partially Fluorinated Polymer and Hyperbranched, Sulfonated Polysulfone

    PubMed Central

    Subianto, Surya; Roy Choudhury, Namita; Dutta, Naba

    2013-01-01

    Macromolecular modification of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF) was done with various proportions of sulfonic acid terminated, hyperbranched polysulfone (HPSU) with a view to prepare ion conducting membranes. The PVDF-co-HFP was first chemically modified by dehydrofluorination and chlorosulfonation in order to make the membrane more hydrophilic as well as to introduce unsaturation, which would allow crosslinking of the PVDF-co-HFP matrix to improve the stability of the membrane. The modified samples were characterized for ion exchange capacity, morphology, and performance. The HPSU modified S-PVDF membrane shows good stability and ionic conductivity of 5.1 mS cm−1 at 80 °C and 100% RH for blends containing 20% HPSU, which is higher than the literature values for equivalent blend membranes using Nafion. SEM analysis of the blend membranes containing 15% or more HPSU shows the presence of spherical domains with a size range of 300–800 nm within the membranes, which are believed to be the HPSU-rich area.

  3. Molecular Mobility in Hyperbranched Polymers and Their Interaction with an Epoxy Matrix

    PubMed Central

    Román, Frida; Colomer, Pere; Calventus, Yolanda; Hutchinson, John M.

    2016-01-01

    The molecular mobility related to the glass transition and secondary relaxations in a hyperbranched polyethyleneimine, HBPEI, and its relaxation behaviour when incorporated into an epoxy resin matrix are investigated by dielectric relaxation spectroscopy (DRS) and dynamic mechanical analysis (DMA). Three systems are analysed: HBPEI, epoxy and an epoxy/HBPEI mixture, denoted ELP. The DRS behaviour is monitored in the ELP system in three stages: prior to curing, during curing, and in the fully cured system. In the stage prior to curing, DRS measurements show three dipolar relaxations: γ, β and α, for all systems (HBPEI, epoxy and ELP). The α-relaxation for the ELP system deviates significantly from that for HBPEI, but superposes on that for the epoxy resin. The fully cured thermoset displays both β- and α-relaxations. In DMA measurements, both α- and β-relaxations are observed in all systems and in both the uncured and fully cured systems, similar to the behaviour identified by DRS. PMID:28773319

  4. Self-adapting peripherally heterofunctionalized hyperbranched polymers: formation of Janus and tripodal structures.

    PubMed

    Samuel, Ashok Zachariah; Ramakrishnan, S

    2013-01-29

    A peripherally clickable hyperbranched polyester carrying numerous propargyl terminal groups was prepared by a simple melt transesterification polycondensation of a suitably designed AB(2) monomer; this clickable hyperscaffold was then transformed into a variety of different derivatives by using the Cu-catalyzed azide-yne click reaction. Functionalization of the periphery with equimolar quantities of mutually immiscible segments, such as hydrocarbon, fluorocarbon, and PEG, yielded frustrated molecular systems that readapt and form structures wherein the immiscible segments appear to self-segregate to generate either Janus structures (when two immiscible segments are present) or tripodal structures (when three immiscible segments are present). Evidence for such self-segregation was obtained from a variety of studies, such as differential scanning calorimetry, Langmuir isotherms, AFM imaging, and small-angle X-ray scattering measurements. Crystallization of one or more of the peripheral segments reinforced this self-segregation; the weight-fraction-normalized enthalpies of melting associated with the different domains revealed a competition between the segments to optimize their crystalline organization. When one or more of the segments are amorphous, the remaining segments crystallize more effectively and consequently exhibit a higher melting enthalpy. AFM images of monolayers, transferred from the Langmuir trough, revealed that the thickness matches the expected values; furthermore, contact angle measurements clearly demonstrated that the monolayer films are fairly hydrophobic, and in the case of the tripodal hybramers, the presence of domains of hydrocarbon and fluorocarbon appears to impart nanoscale chemical heterogeneity that is reflected in the strong hysteresis in the advancing and receding contact angles.

  5. Synthesis of a Chloroamide-Hyperbranched Polymer Additive for Self-Decontaminating Surfaces

    DTIC Science & Technology

    2012-04-01

    Soldiers. Similar concerns exist for surfaces exposed to chemical warfare agents, which require substantial cleaning procedures to “render safe” the...affected asset. To reduce logistical burdens associated with decontamination of both chemical and biological challenges, spontaneously segregating...bacterial and chemical contamination of military assets. 2. Approach The use of a polymer additive to modify a coating formulation is advantageous

  6. Modified Thermoresponsive Hyperbranched Polymers for Improved Viscosity and Enhanced Lubricity of Engine Oils

    SciTech Connect

    Cosimbescu, Lelia; Robinson, Joshua W.; Bays, John Timothy; Qu, Jun; West, Brian

    2016-09-30

    The manuscript captures the chronological succession of the molecular design progression through multiple architectures and topologies of the polymeric viscosity index improvers and their rheology bench test performance. Tribology testing was also performed on selected analogs and their friction and wear was evaluated. Finally, a top performing polymer was selected for engine testing, scaled-up, and its rheological performance in a complete formulation was assessed. The engine performance of the viscosity index improver was examined against an industry-established baseline.

  7. Facile fabrication of narrowly-distributed polymeric micelles via host-guest inclusion complexation of hyperbranched polymers and cyclodextrin and its two-dimensional self-assembly.

    PubMed

    Sun, Xiaoyi; Huang, Wei; Zhou, Yongfeng; Yan, Deyue

    2010-10-14

    A novel narrowly-distributed (ND) polymeric micelle obtained in combination with host-guest recognition and self-assembly is reported. First, the adamantyl-terminated hyperbranched poly[3-ethyl-3-(hydroxymethyl)oxetane] (HBPO-AD) was synthesized by esterification of hyperbranched poly[3-ethyl-3-(hydroxymethyl)oxetane] (HBPO) with 1-adamantanecarbonyl chloride. Then the ND polymeric core-shell micelles, with the hydrophobic HBPO-AD cores and hydrophilic beta-cyclodextrin (β-CD) shells, were prepared via host-guest inclusion complexation of HBPO-AD and β-CD. The resultant polymer micelles were well characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Interestingly, after annealing at a temperature above the glass transition temperature (T(g)) for a certain time, the polymeric micelles can further self-assemble and fuse into two-dimensional (2D) sheets. The TEM, SEM and atomic force microscopy (AFM) characterization validate that the sheets are formed through stacking and fusion of tightly packed nanoparticles. In addition, the formation mechanism of polymeric complex micelles and 2D sheets has also been discussed.

  8. Acid-degradable hyperbranched polymer and its application in bottom anti-reflective coatings

    NASA Astrophysics Data System (ADS)

    Mercado, Ramil-Marcelo L.; Xu, Hao; Lowes, Joyce A.; Meador, Jim D.; Guerrero, Douglas J.

    2008-11-01

    A photosensitive developer-soluble bottom anti-reflective coating (DBARC) system is described for KrF and ArF lithographic applications. The system contains an acid-degradable branched polymer that is self-crosslinked into a polymeric film after spin coating and baking at high temperature, rendering a solvent-insoluble coating. The DBARC coating is tunable in terms having the appropriate light absorption (k value) and thickness for desirable reflection control. After the exposure of the resist, the DBARC layer decrosslinks into developer-soluble small molecules in the presence of photoacid generator (PAG). Thus the DBARC layer is removed simultaneously with the photoresist in the development process, instead of being etched away in a plasma-etching chamber in the case of traditional BARC layers. The etch budget is significantly improved so that a thin resist can be used for better resolution. Alternatively, the etch step can be omitted in the case of the formation of layers that may be damaged by exposure to plasma.

  9. Impedimetric Aptasensor for Ochratoxin A Determination Based on Au Nanoparticles Stabilized with Hyper-Branched Polymer

    PubMed Central

    Evtugyn, Gennady; Porfireva, Anna; Stepanova, Veronika; Kutyreva, Marianna; Gataulina, Alfiya; Ulakhovich, Nikolay; Evtugyn, Vladimir; Hianik, Tibor

    2013-01-01

    An impedimetric aptasensor for ochratoxin A (OTA) detection has been developed on the base of a gold electrode covered with a new modifier consisting of electropolymerized Neutral Red and a mixture of Au nanoparticles suspended in the dendrimeric polymer Botlorn H30®. Thiolated aptamer specific to OTA was covalently attached to Au nanoparticles via Au-S bonding. The interaction of the aptamer with OTA induced the conformational switch of the aptamer from linear to guanine quadruplex form followed by consolidation of the surface layer and an increase of the charge transfer resistance. The aptasensor makes it possible to detect from 0.1 to 100 nM of OTA (limit of detection: 0.02 nM) in the presence of at least 50 fold excess of ochratoxin B. The applicability of the aptasensor for real sample assay was confirmed by testing spiked beer samples. The recovery of 2 nM OTA was found to be 70% for light beer and 78% for dark beer. PMID:24287535

  10. Monofunctional hyperbranched ethylene oligomers.

    PubMed

    Wiedemann, Thomas; Voit, Gregor; Tchernook, Alexandra; Roesle, Philipp; Göttker-Schnetmann, Inigo; Mecking, Stefan

    2014-02-05

    The neutral κ(2)N,O-salicylaldiminato Ni(II) complexes [κ(2)N,O-{(2,6-(3',5'-R2C6H3)2C6H3-N═C(H)-(3,5-I2-2-O-C6H2)}]NiCH3(pyridine)] (1a-pyr, R = Me; 1b-pyr, R = Et; 1c-pyr, R = iPr) convert ethylene to hyperbranched low-molecular-weight oligomers (Mn ca. 1000 g mol(-1)) with high productivities. While all three catalysts are capable of generating hyperbranched structures, branching densities decrease significantly with the nature of the remote substituent along Me > Et > iPr and oligomer molecular weights increase. Consequently, only 1a-pyr forms hyperbranched structures over a wide range of reaction conditions (ethylene pressure 5-30 atm and 20-70 °C). An in situ catalyst system achieves similar activities and identical highly branched oligomer microstructures, eliminating the bottleneck given by the preparation and isolation of Ni-Me catalyst precursor species. Selective introduction of one primary carboxylic acid ester functional group per highly branched oligoethylene molecule was achieved by isomerizing ethoxycarbonylation and alternatively cross metathesis with ethyl acrylate followed by hydrogenation. The latter approach results in complete functionalization and no essential loss of branched oligomer material and molecular weight, as the reacting double bonds are close to a chain end. Reduction yielded a monoalcohol-functionalized oligomer. Introduction of one reactive epoxide group per branched oligomer occurs completely and selectively under mild conditions. All reaction steps involved in oligomerization and monofunctionalization are efficient and readily scalable.

  11. In situ preparation of fluorescent CdTe quantum dots with small thiols and hyperbranched polymers as co-stabilizers

    PubMed Central

    2014-01-01

    A new strategy for in situ preparation of highly fluorescent CdTe quantum dots (QDs) with 3-mercaptopropionic acid (MPA) and hyperbranched poly(amidoamine)s (HPAMAM) as co-stabilizers was proposed in this paper. MPA and HPAMAM were added in turn to coordinate Cd2+. After adding NaHTe and further microwave irradiation, fluorescent CdTe QDs stabilized by MPA and HPAMAM were obtained. Such a strategy avoids the aftertreatment of thiol-stabilized QDs in their bioapplication and provides an opportunity for direct biomedical use of QDs due to the existence of biocompatible HPAMAM. The resulting CdTe QDs combine the mechanical, biocompatibility properties of HPAMAM and the optical, electrical properties of CdTe QDs together. PMID:24636234

  12. Dynamic Relaxational Behaviour of Hyperbranched Polyether Polyols

    NASA Astrophysics Data System (ADS)

    Navarro-Gorris, A.; Garcia-Bernabé, A.; Stiriba, S.-E.

    2008-08-01

    Hyperbranched polymers are highly cascade branched polymers easily accessible via one-pot procedure from ABm type monomers. A key property of hyperbranched polymers is their molecular architecture, which allows core-shell morphology to be manipulated for further specific applications in material and medical sciences. Since the discovery of hyperbranched polymer materials, an increasing number of reports have been published describing synthetic procedures and technological applications of such materials, but their physical properties have remained less studied until the last decade. In the present work, different esterified hyperbranched polyglycerols have been prepared starting from polyglycerol precursors in presence of acetic acid, thus generating functionalization degree with range from 0 to 94%. Thermal analysis of the obtained samples has been studied by Differential Scanning Calorimetry (DSC). Dielectric Spectroscopy measurements have been analyzed by combining loss spectra deconvolution with the modulus formalism. In this regard, all acetylated polyglycerols exhibited a main relaxation related to the glass transition (α process) and two sub-glassy relaxations (β and γ processes) which vanish at high functionalization degrees.

  13. Evaluation of the hyperbranched polymer Hybrane H1500 for production of matricial controlled-release particles by hot-melt extrusion.

    PubMed

    Raviña-Eirín, Elena; Sánchez-Rodríguez, Blanca; Gómez-Amoza, Jose Luis; Martínez-Pacheco, Ramón

    2014-01-30

    Extrudates of the hyperbranched polymer Hybrane H1500 prepared by hot melt extrusion, with five particle sizes (from <250 μm to 1.5-2.0 mm) and three drug content (10, 20 and 30%) of acetaminophen or caffeine, were evaluated in this study as potential multiparticulate controlled release systems. Hybrane H1500 extrudates (of very low porosity), experienced a very slow hydration, with a limited swelling capacity, and they do not behave as true gels when fully hydrated. Hot melt extrusion provokes the conversion of the acetaminophen into an amorphous state inside the extrudates, whereas for those containing caffeine, some crystals remain for the highest drug proportions (20 and 30%). From both drug extrudates a wide range of dissolution profiles are obtained. Drug release rate depends mostly on extrudate particle size, and in those extrudates containing caffeine, a slight effect of the drug proportion is observed. Dissolution profiles' kinetic analysis suggests that drug release is controlled by the diffusion of the drug through the polymeric hydrated structure, although this mechanism is only clearly and efficiently displayed for the greatest extrudate particles (1.5-2.0 mm).

  14. Conjugation of cytochrome c with ferrocene-terminated hyperbranched polymer and its influence on protein structure, conformation and function

    NASA Astrophysics Data System (ADS)

    Xiao, Fengjuan; Yue, Lin; Li, Song; Li, Xinxin

    2016-06-01

    Interaction mechanism of a new hyperbranched polyurethane-based ferrocene (HPU-Fc) with cytochrome c (cyt c) and cyt c structure and conformation change induced by HPU-Fc were investigated using cyclic voltammogram(CV), differential pulse voltammetry (DPV), circular dichroism (CD), fluorescence, synchronous fluorescence and absorbance spectroscopy technique. The peroxidase activity of cyt c in the presence of HPU-Fc was also studied. The structure and conformation of protein are relatively stable at moderate concentration of HPU-Fc without obvious perturbation of the heme pocket and significant changes in protein secondary structure. Conjugation of cyt c with excessive HPU-Fc (over about 3 times of cyt c) slightly changed the α-helix structure in protein, disturbed the microenvironment around heme as well as away from the heme crevice, which caused the changes of the electrochemical behavior and the absorption spectra. Reasonable amount of HPU-Fc has no significant influence on the protein enzymatic activity, while excess HPU-Fc may cause a conformation not suitable for H2O2 activation and guaiacol oxidation. The interaction of HPU-Fc with cyt c and the conservation of protein function at suitable HPU-Fc amount make prepared complex promising for the synergistic anticancer therapy. CV curves of 10 μM HPU-Fc, 10 μM cyt c and HPU-Fc/cyt c complex (n HPU-Fc: n cyt c = 3.5:1) in 0.5 M KCl (versus SCE) at a sweep rate of 100 mV ṡ s- 1 (b). Interaction mechanism of a new hyperbranched polyurethane-based ferrocene (HPU-Fc) with cytochrome c (cyt c) and cyt c structure and conformation change induced by HPU-Fc were investigated. The structure and conformation of protein are relatively stable at moderate concentration of HPU-Fc. Conjugation of cyt c with excessive HPU-Fc (over about 3 times of cyt c) slightly changed the α-helix structure in protein, disturbed the microenvironment around heme as well as away from the heme crevice, which caused the changes of the

  15. Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene.

    PubMed

    Hu, Weizhao; Yu, Bin; Jiang, Shu-Dong; Song, Lei; Hu, Yuan; Wang, Bibo

    2015-12-30

    A well-defined functionalized graphene oxide (FGO) grafted by hyper-branched flame retardant based on N-aminoethyl piperazine and phosphonate derivative was synthesized to reduce flammability and toxicity of polystyrene (PS). The chemical structure, morphological and thermal properties were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis, respectively. Micro combustion calorimeter and steady state tube furnace were employed to evaluate the heat and non-heat fire hazards of PS nanocomposites. The incorporation of FGO into PS matrix effectively improved the flame retardancy and restrained the toxicity of the volatiles escaped, which is attributed to that the homogeneous dispersion of FGO in the PS matrix enhanced barrier effect that reduced peak heat release rate, total heat release and toxic gas release during combustion. Furthermore, PS-FGO nanocompsites obviously decreased the amount of flammable and toxic volatiles evolved, such as the aromatic compounds, carbonyl compounds, carbon monoxide, indicating suppressed fire hazards of the PS composites.

  16. Synthetic genetic polymers capable of heredity and evolution.

    PubMed

    Pinheiro, Vitor B; Taylor, Alexander I; Cozens, Christopher; Abramov, Mikhail; Renders, Marleen; Zhang, Su; Chaput, John C; Wengel, Jesper; Peak-Chew, Sew-Yeu; McLaughlin, Stephen H; Herdewijn, Piet; Holliger, Philipp

    2012-04-20

    Genetic information storage and processing rely on just two polymers, DNA and RNA, yet whether their role reflects evolutionary history or fundamental functional constraints is currently unknown. With the use of polymerase evolution and design, we show that genetic information can be stored in and recovered from six alternative genetic polymers based on simple nucleic acid architectures not found in nature [xeno-nucleic acids (XNAs)]. We also select XNA aptamers, which bind their targets with high affinity and specificity, demonstrating that beyond heredity, specific XNAs have the capacity for Darwinian evolution and folding into defined structures. Thus, heredity and evolution, two hallmarks of life, are not limited to DNA and RNA but are likely to be emergent properties of polymers capable of information storage.

  17. Influence of hyperbranched polyesters on the surface tension of polyols.

    PubMed

    Ziemer, Antje; Azizi, Mazen; Pleul, Dieter; Simon, Frank; Michel, Stefan; Kreitschmann, Mirko; Kierkus, Paul; Voit, Brigitte; Grundke, Karina

    2004-09-14

    The influence of hyperbranched polyesters with different functional end groups on the surface tension of mixtures with an oligo(ester diol) was investigated. The temperature dependence of the surface tension of the pure components and of the mixtures was measured by a modified Wilhelmy balance technique. The results indicate that the surface tension of the pure hyperbranched polyesters strongly depends on the functionality of the end groups. The functionalization of the hydroxyl end groups by short alkyl chains (methyl, tert-butyl) reduced the surface tension depending on the degree of substitution. The surface tension of the mixtures with the hydroxyl-terminated hyperbranched polyester was slightly increased at higher concentrations of the hyperbranched polymer compared to the surface tension of the pure ester diol. On the other hand, the surface tension of mixtures could be considerably decreased using 1% of hyperbranched polyester polyols partially substituted with short alkyl chains. In that case, the modified hyperbranched polyesters act as surface active agents. On the molecular level, the enrichment of the modified hyperbranched polyester in the surface region was proven by X-ray photoelectron spectroscopy measurements.

  18. Using hyperbranched oligomer functionalized glass fillers to reduce shrinkage stress

    PubMed Central

    Ye, Sheng; Azarnoush, Setareh; Smith, Ian R.; Cramer, Neil B.; Stansbury, Jeffrey W.; Bowman, Christopher N

    2012-01-01

    Objective Fillers are widely utilized to enhance the mechanical properties of polymer resins. However, polymerization stress has the potential to increase due to the higher elastic modulus achieved upon filler addition. Here, we demonstrate a hyperbranched oligomer functionalized glass filler UV curable resin composite which is able to reduce the shrinkage stress without sacrificing mechanical properties. Methods A 16-functional alkene-terminated hyperbranched oligomer is synthesized by thiol-acrylate and thiol-yne reactions and the product structure is analyzed by 1H-NMR, mass spectroscopy, and gel permeation chromatography. Surface functionalization of the glass filler is measured by thermogravimetric analysis. Reaction kinetics, mechanical properties and shrinkage stress are studied via Fourier transform infrared spectroscopy, dynamic mechanical analysis and a tensometer, respectively. Results Silica nanoparticles are functionalized with a flexible 16-functional alkene-terminated hyperbranched oligomer which is synthesized by multistage thiol-ene/yne reactions. 93% of the particle surface was covered by this oligomer and an interfacial layer ranging from 0.7 – 4.5 nm thickness is generated. A composite system with these functionalized silica nanoparticles incorporated into the thiol-yne-methacrylate resin demonstrates 30% reduction of shrinkage stress (from 0.9 MPa to 0.6 MPa) without sacrificing the modulus (3100 ± 300 MPa) or glass transition temperature (62 ± 3 °C). Moreover, the shrinkage stress of the composite system builds up at much later stages of the polymerization as compared to the control system. Significance Due to the capability of reducing shrinkage stress without sacrificing mechanical properties, this composite system will be a great candidate for dental composite applications. PMID:22717296

  19. Developing Flexible, High Performance Polymers with Self-Healing Capabilities

    NASA Technical Reports Server (NTRS)

    Jolley, Scott T.; Williams, Martha K.; Gibson, Tracy L.; Caraccio, Anne J.

    2011-01-01

    Flexible, high performance polymers such as polyimides are often employed in aerospace applications. They typically find uses in areas where improved physical characteristics such as fire resistance, long term thermal stability, and solvent resistance are required. It is anticipated that such polymers could find uses in future long duration exploration missions as well. Their use would be even more advantageous if self-healing capability or mechanisms could be incorporated into these polymers. Such innovative approaches are currently being studied at the NASA Kennedy Space Center for use in high performance wiring systems or inflatable and habitation structures. Self-healing or self-sealing capability would significantly reduce maintenance requirements, and increase the safety and reliability performance of the systems into which these polymers would be incorporated. Many unique challenges need to be overcome in order to incorporate a self-healing mechanism into flexible, high performance polymers. Significant research into the incorporation of a self-healing mechanism into structural composites has been carried out over the past decade by a number of groups, notable among them being the University of I1linois [I]. Various mechanisms for the introduction of self-healing have been investigated. Examples of these are: 1) Microcapsule-based healant delivery. 2) Vascular network delivery. 3) Damage induced triggering of latent substrate properties. Successful self-healing has been demonstrated in structural epoxy systems with almost complete reestablishment of composite strength being achieved through the use of microcapsulation technology. However, the incorporation of a self-healing mechanism into a system in which the material is flexible, or a thin film, is much more challenging. In the case of using microencapsulation, healant core content must be small enough to reside in films less than 0.1 millimeters thick, and must overcome significant capillary and surface

  20. Hyperbranched polyglycerols at the biointerface

    NASA Astrophysics Data System (ADS)

    Moore, Eli; Thissen, Helmut; Voelcker, Nicolas H.

    2013-08-01

    The control over biointerfacial interactions is the key to a broad range of biomedical applications, ranging from implantable devices to drug delivery and nanomedicine. In many of these applications, coatings are required that reduce or prevent non-specific interactions with the biological environment, while at the same time presenting specific bioactive signals. Whilst surface coatings based on polymers such as poly(ethylene glycol) (PEG) have been used successfully, many limitations persist in regard to the biocompatibility, stability and functionality of state-of-the-art polymer coatings. Most of these limitations are related to the fact that, typically, linear polymers are used with associated limited chemical functionality. Here, we examine the development of hyperbranched polyglycerols (HPGs) as promising candidates for the replacement of traditional linear polymers, such as the chemically analogous PEG, for the control of biointerfacial interactions. HPGs are highly branched globular molecules that exhibit a high valency, allow easy access to a variety of functionalities and can present biologically active signals. In this review, a comprehensive overview is provided with respect to the history, synthetic strategies, modifications and applications of HPGs.

  1. Hyperbranched acidic polysaccharide from green tea.

    PubMed

    Yang, Liqun; Fu, Shanshan; Zhu, Xiane; Zhang, Li-Ming; Yang, Yanrui; Yang, Xiaomin; Liu, Hui

    2010-12-13

    An acidic tea polysaccharide (ALTPS), isolated from green tea ( Camellia sinensis ), was characterized as a hyperbranched glycoprotein containing the acidic heteropolysaccharide chains and the protein residues from the results of UV-vis, FTIR, one- and two-dimensional NMR, GC, GC-MS, and amino acid analyses. Solution properties of ALTPS were investigated by static and dynamic light scattering analyses and viscometry. The results indicated that the viscosity behavior of ALTPS exhibited a typical polyelectrolyte effect in distilled water, which may be avoided by adding salts. The low intrinsic viscosity of ALTPS in the solutions (8-15 mL/g) is attributed to its hyperbranched structure. By application of the polymer solution theory, it was revealed that ALTPS was present in a sphere-like conformation in the solutions as a result of the hyperbranched structure. The TEM image further confirmed that ALTPS existed in a spherical conformation in aqueous NaCl solution. Glucose was absorbed by ALTPS, which may be one of blood glucose lowering mechanisms of tea polysaccharides.

  2. Hyperbranched-hyperbranched polymeric nanoassembly to mediate controllable co-delivery of siRNA and drug for synergistic tumor therapy.

    PubMed

    Jia, Hui-Zhen; Zhang, Wei; Zhu, Jun-Yi; Yang, Bin; Chen, Si; Chen, Gang; Zhao, Yi-Fang; Feng, Jun; Zhang, Xian-Zheng

    2015-10-28

    This study reported a flexible nanoplatform constructed on the pH-dependent self-assembly of two kinds of hyperbranched polymers, and then validated its potency as the controllable siRNA/drug co-delivery vehicle for the combination of chemotherapy with RNA interfering (RNAi) therapy. By virtue of pH-reversible phenylboronate linking, phenylboronic acid-tethered hyperbranched oligoethylenimine (OEI600-PBA) and 1,3-diol-rich hyperbranched polyglycerol (HBPO) can be spontaneously interlinked together into a core-corona nanoconstruction. The special buildup of compactly clustering OEI600-PBA units around hydrophobic HBPO aggregate offered significant advantages over parent OEI600-PBA, including strengthened affinity to siRNA, ability of further loading anticancer drug, easier cellular transport, and acidity-responsive release of payloads. To evaluate the co-delivery capability, Beclin1 siRNA and antitumor DOX were used as the therapeutic models in order to suppress the post-chemotherapy survival of tumor cells caused by drug-induced autophagy. The nanoassembly-mediated single delivery of DOX displayed even better anticancer effects than free DOX, demonstrating the superiority of our pH-responsive nano-design. The nanoassembly-mediated co-delivery of siRNA together with DOX can effectively silence Beclin1 gene, suppress DOX-induced autophagy, and consequently provide strong synergism with a significant enhancement of cell-killing effects in cultured cancerous cells. The in vivo combinational treatment was shown to make the tumor more sensitive to DOX chemotherapy while displaying substantially improved safety as compared with the monochemotherapy.

  3. Microfluidic approaches for the fabrication of gradient crosslinked networks based on poly(ethylene glycol) and hyperbranched polymers for manipulation of cell interactions

    PubMed Central

    Pedron, S; Peinado, C; Bosch, P; Benton, J A; Anseth, K S

    2011-01-01

    High-throughput methods allow rapid examination of parameter space to characterize materials and develop new polymeric formulations for biomaterials applications. One limitation is the difficulty of preparing libraries and performing high-throughput screening with conventional instrumentation and sample preparation. Here, we describe the fabrication of substrate materials with controlled gradients in composition by a rapid method of micromixing followed by a photopolymerization reaction. Specifically, poly(ethylene glycol) dimethacrylate was copolymerized with a hyperbranched multimethacrylate (P1000MA or H30MA) in a gradient manner. The extent of methacrylate conversion and the final network composition were determined by near-infrared spectroscopy, and mechanical properties were measured by nanoindentation. A relationship was observed between the elastic modulus and network crosslinking density. Roughness and hydrophilicity were increased on surfaces with a higher concentration of P1000MA. These results likely relate to a phase segregation process of the hyperbranched macromer that occurs during the photopolymerization reaction. On the other hand, the decrease in the final conversion in H30MA polymerization reactions was attributed to the lower termination rate as a consequence of the softening of the network. Valvular interstitial cell attachment was evaluated on these gradient substrates as a demonstration of studying cell morphology as a function of the local substrate properties. Data revealed that the presence of P1000MA affects cell–material interaction with a higher number of adhered cells and more cell spreading on gradient regions with a higher content of the multifunctional crosslinker. PMID:21105168

  4. Electroactive Polymers as Artificial Muscles: Capabilities, Potentials and Challenges

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2000-01-01

    The low density and the relative ease of shaping made polymers highly attractive materials and they are increasingly being chosen for aerospace applications. Polymer matrix composite materials significantly impacted the construction of high performance aircraft components and structures. In recent years, the resilience characteristics of polymers made them attractive to the emerging field of inflatable structures. Balloons were used to cushion the deployment of the Mars Pathfinder lander on July 4, 1997, paving the way for the recent large number of related initiatives. Inflatable structures are now being used to construct a rover, aerial vehicles, telescopes, radar antennas, and others. Some of these applications have reached space flight experiments, whereas others are now at advanced stages of development.

  5. Patterning of hyperbranched resist materials by e-beam

    NASA Astrophysics Data System (ADS)

    Trimble, Alexander R.; Tully, David C.; Frechet, Jean M. J.; Medeiros, David R.; Angelopoulos, Marie

    2000-06-01

    The application of a hyperbranched polymer with its globular architecture as a chemically amplified resist system is demonstrated. These hyperbranched poly(esters) based on 3,5- dihydroxybenzoic acid and 4,4-bis(4-hydroxyphenyl)valeric acid and obtained by a polycondensation process at high temperatures. Once obtained, the hyperbranched polymers are functionalized with acid and thermally labile t-BOC groups by reaction of their phenolic groups with di-t-butyl dicarbonate in the presence of a catalytic amount of potassium t-butoxide. These globular materials have number average molecular weights (Mn) in the range of 5,000 - 20,000 with polydispersities of 1.5 - 2. Exposure of the hyperbranched resist material formulated with a photoacid generator was carried out using a direct-write electron-beam (e-beam) tool operating at 50 keV with doses of 15 - 40 (mu) C/cm2. Development of these resist materials can be accomplished in either aqueous base developer or organic solvent, thereby allowing access to both the positive and negative tone images. Feature sizes of 100 nm are readily obtained from these unoptimized materials.

  6. The effect of molecular weight, compositions and lectin type on the properties of hyperbranched glycopolymers as non-viral gene delivery systems.

    PubMed

    Ahmed, Marya; Narain, Ravin

    2012-05-01

    The architectures of gene delivery vectors, in addition to their molecular weights and compositions, can play a critical role in DNA condensation and hence on their gene expression. In general, branched polymers are superior gene delivery vectors as compared to their linear analogs. This study reports the efficacy of cationic hyperbranched glycopolymers for DNA condensation and gene expression. Hyperbranched glycopolymers of varying molecular weights and compositions are synthesized via reversible addition fragmentation chain transfer (RAFT) process and are further explored for their gene expression in vitro. Galactose-based hyperbranched polymers are compared to glucose-derived hyperbranched polymers for their cellular uptake, toxicity and gene expression. It is found that molecular weight of hyperbranched polymers, and carbohydrate content of copolymers are critical factors in determining the gene expression as well as in imparting the specificity to these novel gene delivery vectors. The galactose-based hyperbranched glycopolymer of ~30 kDa or lower show improved gene expression at varying polymer/plasmid ratios. The incubation of hyperbranched polyplexes in the presence of serum protein show the presence of stable particles and gene expression of these hyperbranched polyplexes is unaffected in the presence of serum proteins. Furthermore, the cellular uptake and gene expression are studied in two different cell lines in the presence of lectins. It is found that polyplexes-lectin conjugates show enhanced cellular uptake in vitro, however their gene expression is cell line and lectin type dependent.

  7. Tethering of hyperbranched polyols using PEI as a building block to synthesize antifouling PVDF membranes

    NASA Astrophysics Data System (ADS)

    Wang, Xushan; Wang, Zihong; Wang, Zhe; Cao, Yu; Meng, Jianqiang

    2017-10-01

    Antifouling PVDF membranes were prepared by grafting hyperbranched polyols on the membrane surface via a three-step modification method. The membrane was first prepared by alkaline treatment to introduce alkenyl groups, then chemically immobilizing hyperbranched poly(ethyleneimine) (HPEI) on membrane surface through Michael reaction followed by ring opening reaction of the glycidol with amine groups. Chemical compositions, surface morphology and physicochemical properties of the original and modified membranes were characterized via attenuated total refection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), water contact angle (WCA) and zeta potential measurements. The antifouling property of the modified membrane was assessed by the static bovine serum albumin (BSA) and lysozyme (LZM) adsorption as well as cross-flow filtration of BSA aqueous solution. The results explicate that surface modification using hyperbranched polymers can alter membrane chemistry and morphology significantly. In contrast to the original PVDF membrane, the modified membrane shows superhydrophilic property and relatively high capability to resist nonspecific protein adsorption. Three HPEIs were used for modification and the obtained PVDFA-g-PG60,000 membrane has a static BSA protein adsorption of 45 μg/cm2 and shows the highest protein resistance. However, the PVDF-g-PG membrane is positively charged due to the unreacted amine groups. As a result, the PVDF-g-PG membranes also show high flux decline during the filtration of BSA aqueous solution due to the electrostatic interaction. In spite of that, the PVDF-g-PG membranes still maintain high flux recovery ratio and good washing properties.

  8. Hyperbranched polyphosphates: synthesis, functionalization and biomedical applications.

    PubMed

    Liu, Jinyao; Huang, Wei; Pang, Yan; Yan, Deyue

    2015-06-21

    Hyperbranched polyphosphates (HBPPs) are newly emerged polymeric biomaterials with repeating phosphate bonds in a highly branched framework over the past 5 years. Due to the integration of the advantages of both hyperbranched polymers and polyphosphates, HBPPs are versatile in chemical structure, flexible in physicochemical properties, water soluble, biocompatible and biodegradable in biological features. On the basis of their excellent water solubility, biocompatibility, biodegradability and potential functionalization as well as their simple preparation in one-pot synthesis, HBPPs have fascinating biomedical applications, especially for drug delivery. In this tutorial review, the recent advances of HBPPs are summarized. HBPPs with different topological structures and various functionalities were synthesized via adjusting the side group of cyclic phosphate monomers, which have shown promising biomedical applications, for example, using as a macromolecular anticancer agent and constructing advanced drug delivery systems, including site-specific delivery systems, self-delivery systems, and stimuli-responsive delivery systems. Such progress may promote the further development of interdisciplinary research between polymer chemistry, material science and biomedicine.

  9. Investigation of Carrier Collection Capability in Organic Heterostructure with Conductive Polymer Nanofiber

    NASA Astrophysics Data System (ADS)

    Yamashita, Kenichi; Maeda, Tatsuya; Kusakabe, Youhei; Kotaki, Masaya

    2011-08-01

    The capability of carrier collection was investigated for an organic heterointerface with conductive polymer nanofibers and a fullerene derivative. The electrospinning method was employed for fabricating conductive polymer nanofibers. In a photovoltaic device with this heterointerface, a rather large photocurrent was obtained in spite of the fact that the polymer nanofibers were large at submicrometer diameter. It was considered that conductive polymer nanofibers can serve as a conduction path for photoinduced carriers and might be helpful for the marked improvement in power conversion efficiency of organic thin film solar cell.

  10. Communication: Density-functional theory for inhomogeneous hyperbranched polymeric fluids: polydisperse effect of degree of branching.

    PubMed

    Xu, Xiaofei; Cao, Dapeng

    2010-09-28

    We developed a new density-functional theory (DFT) for inhomogeneous hyperbranched polymers that is able to describe the polydisperse degree of branching quantitatively. The topological contributions of the polymer chains to the Helmholtz free energy take into account the effect of triple connections that are absent in previous DFT investigations. One key advantage of the new theory is that the computational cost shows only a linear relationship with the molecular weight (rather than an exponential relationship). The practical utility of the new DFT is illustrated by investigating colloidal stability in the presence of monodisperse and polydisperse hyperbranched polymers.

  11. Structure and Dynamics in Hyperbranched Nanohybrids

    NASA Astrophysics Data System (ADS)

    Chrissopoulou, K.; Fotiadou, S.; Anastasiadis, S. H.; Frick, B.

    2012-02-01

    The structure and dynamics of a hyperbranched polyester-amide (Hybrane^ 1200, Mn=1200, Tg=45^oC) polymer and its nanocomposites with natural montmorillonite (Na^+-MMT) are investigated to offer a detailed picture of its behavior in bulk and under confinement and reveal its potential use for various applications. The static properties were studied utilizing X-ray diffraction (XRD), while the dynamics using energy-resolved elastic and quasi-elastic neutron scattering (QENS). XRD reveals that the polymer chains reside within the galleries of the Na^+-MMT producing an intercalated nanocomposite. The elastically scattered intensity for the polymer exhibits two distinct relaxation steps, which are attributed to the methyl group rotation and to the segmental motion. The intensity for the nanocomposite shows the first step broader than the respective of the pure polymer indicating restricted local motion whereas it indicates frozen dynamics under confinement at temperatures higher than the bulk polymer glass transition temperature, Tg. The QENS spectra measured at temperatures covering the regimes below and above Tg are in agreement with the elastic measurements. Sponsored by the Greek GSRT (σYNEP γA σIA; 09σYN-42-580) and by the EU (CP-IP 246095-2).

  12. Degree of branching in hyperbranched poly(glycerol-co-diacid)s synthesized in toluene

    USDA-ARS?s Scientific Manuscript database

    Hyperbranched polymers were synthesized by using a Lewis acid (dibutyltin(IV)oxide) to catalyze the polycondensation of glycerol with either succinic acid (n (aliphatic chain length)=2), glutaric acid (n=3) or azelaic acid (n=7) in toluene. These are the first examples of diacid-glycerol hyperbranc...

  13. The Lewis-acid-catalyzed synthesis of hyperbranched poly(glycerol-diacid)s in toluene

    USDA-ARS?s Scientific Manuscript database

    The first examples of monomeric glycerol-derived hyperbranched polyesters produced in a non-polar solvent system are reported here. The polymers were made by the Lewis acid (dibutyltin(IV)oxide)-catalyzed polycondensation of glycerol with either succinic acid (n (aliphatic chain length)=2), glutari...

  14. Photoluminescence of Conjugated Star Polymers

    NASA Astrophysics Data System (ADS)

    Ferguson, J. B.; Prigodin, N. V.; Epstein, A. J.; Wang, F.

    2000-10-01

    Higher dimensionality "star" polymers provide new properties beyond those found in their linear analogs. They have been used to improving electronic properties for nonlinear optics through exciton transfer and molecular antenna structures for example (M. Kawa, J. M. J. Frechet, Chem. Mater. 10, 286 (1998).). We report on photoluminescence properties of star polymers with a hyperbranched core (both hyperbranched phenlyene and hyperbranched triphenylamine) and polyhexylthiophene arms. The arm is a conjugated oligomer of polythiophene that has been investigated extensively for metallic like conductivity when doped as well as utilized in field effect transistors in its undoped form (A. Tsumara, H. Koezuka, T. Ando, Appl. Phys. Lett. 49, 1210 (1986).). The cores are respectively, a nonconjugated polymer in the case of hyperbranched phenlyene and a conjugated polymer in the case of hyperbranched triphenylamine. The photoluminesce spectrum (λ_max at 575 nm) is identical for both star polymers with the two electronically different hyperbranched cores and for linear polythiophene alone. We conclude the wave functions of the core and arms do not strongly interact to form states different from their individual states and excitons formed on the hyperbranched cores migrate to the lower bandgap polythiophene before recombining.

  15. Synthesis and Characterization of Degradable Bioconjugated Hydrogels with Hyperbranched Multifunctional Crosslinkers

    PubMed Central

    Pedrón, Sara; Peinado, Carmen; Bosch, Paula; S.Anseth, Kristi

    2010-01-01

    Hyperbranched poly(ester amide) polymer (Hybrane™ S1200; Mn 1200 g/mol) was functionalized with maleic anhydride (MA) and propylene sulfide, to obtain multifunctional crosslinkers with fumaric and thiol-end groups, S1200MA and S1200SH, respectively. The degree of substitution of maleic acid groups (DS) was controlled by varying the molar ratio of MA to S1200 in the reaction mixture. Hydrogels were obtained by UV crosslinking of functionalized S1200 and poly(ethyleneglycol) diacrylate (PEGDA) in aqueous solutions. Compressive modulus increased with decreasing the S1200/PEG ratio and also depended on the DS of the multifunctional crosslinker (S1200). Also, heparin-based macromonomers together with functionalized hyperbranched polymers were used to construct novel functional hydrogels. The multivalent hyperbranched polymers allowed high crosslinking densities in heparin modified gels while introducing biodegradation sites. Both heparin presence and acrylate/thiol ratio have an impact on degradation profiles and morphologies. Hyperbranched crosslinked hydrogels showed no evidence of cell toxicity. Overall, the multifunctional crosslinkers afford hydrogels with promising properties that suggest that these may be suitable for tissue engineering applications. PMID:20561601

  16. A hierarchical polymer brush coating with dual-function antibacterial capability.

    PubMed

    Yan, Shunjie; Song, Lingjie; Luan, Shifang; Xin, Zhirong; Du, Shanshan; Shi, Hengchong; Yuan, Shuaishuai; Yang, Yuming; Yin, Jinghua

    2017-01-01

    Bacterial infections are problematic in many healthcare-associated devices. Antibacterial surfaces integrating the strength of bacteria repellent and bactericidal functions exhibit an encouraging efficacy in tackling this problem. Herein, a hierarchical dual-function antibacterial polymer brush coating that integrates an antifouling bottom layer with a bactericidal top layer is facilely constructed via living photograft polymerization. Excellent resistance to bacterial attachment is correlated with the antifouling components, and good bactericidal activity is afforded by the bactericidal components, and therefore the hierarchical coating shows an excellent long-term antibacterial capability. In addition, due to the presence of the hydrophilic background layer, the hierarchical surface has the greatly improved biocompatibility, as shown by the suppression of platelet adhesion and activation, the inhibition of erythrocyte adhesion and damage, and low toxicity against mammalian cells. The hierarchical polymer brush system provides the basis for the development of long-term antibacterial and biocompatible surfaces.

  17. Hyperbranched polyglycerols: from the controlled synthesis of biocompatible polyether polyols to multipurpose applications.

    PubMed

    Wilms, Daniel; Stiriba, Salah-Eddine; Frey, Holger

    2010-01-19

    Dendritic macromolecules with random branch-on-branch topology, termed hyperbranched polymers in the late 1980s, have a decided advantage over symmetrical dendrimers by virtue of typically being accessible in a one-step synthesis. Saving this synthetic effort once had an unfortunate consequence, though: hyperbranching polymerization used to result in a broad distribution of molecular weights (that is, very high polydispersities, often M(w)/M(n) > 5). By contrast, a typical dendrimer synthesis yields a single molecule (in other words, M(w)/M(n) = 1.0), albeit by a labor-intensive, multistep process. But 10 years ago, Sunder and colleagues reported the controlled synthesis of well-defined hyperbranched polyglycerol (PG) via ring-opening multibranching polymerization (ROMBP) of glycidol. Since then, hyperbranched and polyfunctional polyethers with controlled molar mass and low polydispersities (M(w)/M(n) = 1.2-1.9) have been prepared, through various monomer addition protocols, by ROMBP. In this Account, we review the progress in the preparation and application of these uniquely versatile polyether polyols over the past decade. Hyperbranched PGs combine several remarkable features, including a highly flexible aliphatic polyether backbone, multiple hydrophilic groups, and excellent biocompatibility. Within the past decade, intense efforts have been directed at the optimization of synthetic procedures affording PG homo- and copolymers with different molecular weight characteristics and topology. Fundamental parameters of hyperbranched polymers include molar mass, polydispersity, degree of branching, and end-group functionality. Selected approaches for optimizing and tailoring these characteristics are presented and classified with respect to their application potential. Specific functionalization in the core and at the periphery of hyperbranched PG has been pursued to meet the growing demand for novel specialty materials in academia and industry. A variety of

  18. Production of CaCO3/hyperbranched polyglycidol hybrid films using spray-coating technique.

    PubMed

    Malinova, Kalina; Gunesch, Manfred; Montero Pancera, Sabrina; Wengeler, Robert; Rieger, Bernhard; Volkmer, Dirk

    2012-05-15

    Biomineralizing organisms employ macromolecules and cellular processing strategies in order to produce highly complex composite materials such as nacre. Bionic approaches translating this knowledge into viable technical production schemes for a large-scale production of biomimetic hybrid materials have met with limited success so far. Investigations presented here thus focus on the production of CaCO(3)/polymer hybrid coatings that can be applied to huge surface areas via reactive spray-coating. Technical requirements for simplicity and cost efficiency include a straightforward one-pot synthesis of low molecular weight hyperbranched polyglycidols (polyethers of 2,3-epoxy-1-propanol) as a simple mimic of biological macromolecules. Polymers functionalized with phosphate monoester, sulfate or carboxylate groups provide a means of controlling CaCO(3) particle density and morphology in the final coatings. We employ reactive spray-coating techniques to generate CaCO(3)/hybrid coatings among which vaterite composites can be prepared in the presence of sulfate-containing hyperbranched polyglycidol. These coatings show high stability and remained unchanged for periods longer than 9 months. By employing carboxylate-based hyperbranched polyglycidol, it is possible to deposit vaterite-calcite composites, whereas phosphate-ester-based hyperbranched polyglycidol leads to calcite composites. Nanoindentation was used to study mechanical properties, showing that coatings thus obtained are slightly harder than pure calcite. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    PubMed Central

    2009-01-01

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance. PMID:20596546

  20. Sensing and actuating capabilities of a shape memory polymer composite integrated with hybrid filler

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Yu, Kai; Liu, Yanju; Leng, Jinsong

    2010-06-01

    In this paper, hybrid fillers, including carbon black (CB) and chopped short carbon fibers (SCF), are integrated into a styrene-based shape memory polymer (SMP) with sensing and actuating capabilities. The hybrid filler is expected to transform insulating SMP into conducting. Static mechanical properties of the SMP composites containing various filler concentrations of hybrid filler reinforcement are studied first, and it is theoretically and experimentally confirmed that the mechanical properties are significantly improved by a factor of filler content of SCF. The excellent electrical properties of this novel type of SMP composite are determined by a four-point-probe method. As a consequence, the sensing properties of SMP composite filled with 5 wt% CB and 2 wt% SCF are characterized by functions of temperature and strain. These two experimental results both aid the use of SMP composites as sensors that respond to changes in temperature or mechanical loads. On the other hand, the actuating capability of SMP composites is also validated and demonstrated. The dynamic mechanical analysis result reveals that the output strength of SMP composites is improved with an increase in filler content of SCF. The actuating capability of SMP composites is subsequently demonstrated in a series of photographs.

  1. Smart fiber-reinforced polymer rods featuring improved ductility and health monitoring capabilities

    NASA Astrophysics Data System (ADS)

    Belarbi, Abdeldjelil; Watkins, Steve E.; Chandrashekhara, K.; Corra, Josh; Konz, Bethany

    2001-06-01

    The strain-measuring capability of fiber optic strain gages in fiber-reinforced polymer (FRP) rebars was investigated for failure-inducing loads. Fiber optic interferometric sensors were embedded in a pultruded carbon fiber core and then another layer of carbon fibers were filament wound around the core to form a shell. Pultrusion and filament winding techniques protect the fiber optic strain gages from the concrete environment while providing a secure bond to the core and additional ductility to the overall FRP rebar. Tests of coupon FRP rebar and of FRP-rebar-reinforced concrete beams show that the fiber optic strain gages can read internal strain through failure and can duplicate data from conventional linear variable differential transformers and electrical resistance strain gages. Also, the shell of the FRP rebar inside the concrete beams failed before the rebar core providing pseudo-ductility.

  2. Modified Hyperbranched Polymers for Fluorescence Sensing Applications

    DTIC Science & Technology

    2012-06-01

    Jensen, Lynne A. Samuelson , and Steven H. McKnight ARL-TR-6018 June 2012 Approved for public...University of Massachusetts Lowell Lynne A. Samuelson U.S. Army Natick Soldier Research, Development, and Engineering Center...Joshua A. Orlicki, Xianyan Wang,  Matthew S. Bratcher, Robert E. Jensen, Lynne A. Samuelson , † and Steven H. McKnight 5d. PROJECT NUMBER 5e

  3. Hyperbranched Polymers for Resin Transfer Molding

    DTIC Science & Technology

    2005-03-01

    Tan that the FC of the nitro acid can be performed in methanesulfonic acid with phosphorus pentoxide as a dehydrating agent (hereafter referred to as...the MSA system). Since this FC reaction is performed upon the acid directly, there is no need to convert to the acid chloride, which obviates one...step from the scheme. Upon learning this information we reproduced the reaction with the nitro acid and then quickly applied it to our imide first scheme

  4. In vitro biological evaluation of high molecular weight hyperbranched polyglycerols.

    PubMed

    Kainthan, Rajesh Kumar; Hester, Samuel R; Levin, Elena; Devine, Dana V; Brooks, Donald Elliott

    2007-11-01

    Low molecular weight hyperbranched polyglycerols are highly water soluble and biocompatible polyether polyols, which can be synthesized in a controlled manner with narrow polydispersity. Recently we reported the synthesis and characterization of very high molecular weight (Mn up to 700,000) and narrowly polydispersed polyglycerols which could be potentially used as alternatives to high generation dendrimers which are difficult to make. A detailed biocompatibility testing of these polymers conducted in vitro is reported here. The in vitro studies include hemocompatibility testing for effects on coagulation (prothrombin time (PT), activated partial thromboplastin time (APTT), plasma recalcification time (PRT), thrombelastograph parameters (TEG)), complement activation, platelet activation, red blood cell aggregation and cytotoxicity. Results from these studies show that these high molecular weight polyglycerols are highly biocompatible and are potential candidates for various applications in nanobiotechnology and in nanomedicine. Moreover these polymers are thermally and oxidatively stable.

  5. Self-Controlled Synthesis of Hyperbranched Poly(etherketone)s from A2 + B3 Approach in Poly(phosphoric acid)

    DTIC Science & Technology

    2009-01-01

    polymerization condition was indeed strong enough to effi- ciently facilitate polycondensation via ‘‘direct’’ Friedel - Crafts reaction without gelation...Keywords: Friedel - Crafts acylation; high performance polymer; hyperbranched polymer; poly(ether-ketone)s; poly(phosphoric acid) INTRODUCTION Dendritic...Hence, the applied polymerization condition was indeed strong enough to efficiently facilitate polycondensation via ??direct?? Friedel - Crafts reaction

  6. Hyperbranched cationic amylopectin derivatives for gene delivery.

    PubMed

    Zhou, Yanfang; Yang, Bin; Ren, Xianyue; Liu, Zhenzhen; Deng, Zheng; Chen, Luming; Deng, Yubin; Zhang, Li-Ming; Yang, Liqun

    2012-06-01

    A series of hyperbranched cationic amylopectin derivatives conjugated with 1,2-ethylenediamine, diethylenetriamine and 3-(dimethylamino)-1-propylamine residues, named as EDA-Amp, DETA-Amp and DMAPA-Amp, were synthesized by the N,N'-carbonyldiimidazole activation method at room temperature. Their structures were characterized by FTIR and (1)H NMR analyses, and their buffering capability was assessed by acid-base titration. The amylopectin derivatives exhibited better blood compatibility and lower cytotoxicity when compared to branched polyethyleneimine (bPEI) in the hemolysis and MTT assays. Atomic force microscopy and optical microscopy confirmed that the amylopectin derivatives exhibited lower damage for erythrocytes than bPEI. The amylopectin derivatives could bind and condense plasmid DNA (pDNA) to form the complexes with the size ranging from 100 to 300 nm. The resultant complexes showed higher transfection efficiency in 293T cells than in A549 cells. The DMAPA-Amp derivative-mediated gene transfection for Forkhead box O1 exhibited higher protein expression than that of the EDA-Amp and DETA-Amp derivatives in 293T cells, which was analyzed by western blot, flow cytometry and Hoechst staining assay. On the basis of these data, amylopectin derivatives exhibit potential as nonviral gene vectors. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  7. Effect of Linear-Hyperbranched Amphiphilic Phosphate Esters on Collagen Fibers.

    PubMed

    Wang, Xuechuan; Guo, Xiaoxiao; Wang, Haijun; Guo, Peiying

    2017-01-11

    The surfactants of the linear-hyperbranched phosphate esters (PAMAMGn-3-Ps) have been constructed through random multibranching esterification of lauroyl chloride and phosphate ester as a branching agent. Subsequently, a series of surfactant products were obtained. Benefiting from the amphiphilic structure with the hydrophilic core and many hydrophobic tails, PAMAMGn-3-Ps were able to self-assemble into nanomicelles in aqueous media. Importantly, the polymers show low critical micelle concentrations (CMCs) and small particle sizes. Here, PAMAMG1-3-P was applied in the collagen fibers of leather to improve the fibers' distance and mechanical property of collagen fibers. Additionally, the polymers display significant flexibility, which could replace ordinary fatliquor in the future. The result provides a new application of using linear-hyperbranched amphiphilic phosphate esters into traditional leather materials to enhance the performance of collagen fibers.

  8. Branched Polymers via ROMP of Termimers.

    PubMed

    Hanik, Nils; Kilbinger, Andreas F M

    2016-03-01

    Today's olefin metathesis catalysts show high reactivity, selectivity, and functional group tolerance and allow the design of new syntheses of precisely functionalized polymers. Here the synthesis of a new end-capping reagent is investigated allowing the introduction of a highly reactive activated ester end-group at the polymer chain end as well as its prefunctionalization to directly introduce functional moieties. The versatility of this new end-capping reagent is demonstrated by utilizing it to synthesize a so-called termimer (a monomer with termination capabilities). Copolymerization of a norbornene derivative with the termimer leads to hyperbranched ring-opening metathesis polymerization polymers as proven by gel permeation chromatography and MALDI-ToF-(matrix-assisted laser desorption/ionization time of flight) mass spectrometry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Dendritic polyurea polymers.

    PubMed

    Tuerp, David; Bruchmann, Bernd

    2015-01-01

    Dendritic polymers, subsuming dendrimers as well as hyperbranched or highly branched polymers are well established in the field of polymer chemistry. This review article focuses on urea based dendritic polymers and summarizes their synthetic routes through both isocyanate and isocyanate-free processes. Furthermore, this article highlights applications where dendritic polyureas show their specific chemical and physical potential. For these purposes scientific publications as well as patent literature are investigated to generate a comprehensive overview on this topic.

  10. Fatty acid based hyperbranched polymeric nanoparticles for hydrophobic drug delivery.

    PubMed

    Güç, Esra; Gündüz, Güngör; Gündüz, Ufuk

    2010-10-01

    In recent years nano-sized dendrimer/hyperbranched polymers gained importance in drug delivery applications. In this study, a novel fatty acid-based hyperbranched resin (HBR) was synthesized and used for tamoxifen (TAM) and idarubicin (IDA) delivery. The core of the HBR was dipentaerythritol, and the branching was provided by dimethylolpropionic acid. The molecule was terminated by ricinoleic acid. Chemical and structural characterization of the resin was carried out and then drug-loading experiments were performed. The loading efficiencies were found to be 73.3% for TAM and 74% for IDA. The Fourier transform infrared spectroscopy analysis showed that TAM physically bounded onto the resin whereas IDA interacted chemically. Controlled release in phosphate buffer was improved by Pseudomonas sp. lipase and sodium dodecyl sulfate. The release rates decreased with the increase of loading concentrations. The cytotoxicity analyses were carried out on MCF-7 breast cancer cells for both drug-free and drug-loaded HBR. Drug-free particles did not have significant toxicity. Drug-loaded nanoparticles caused higher levels of cell death than pure drugs.

  11. Hydrophobically derivatized hyperbranched polyglycerol as a human serum albumin substitute.

    PubMed

    Kainthan, Rajesh K; Janzen, Johan; Kizhakkedathu, Jayachandran N; Devine, Dana V; Brooks, Donald E

    2008-04-01

    There is a huge clinical demand for Human Serum Albumin (HSA), with a world market of approximately $1.5B/year. Concern over prion and viral transmission in the blood supply has led to a need for safer substitutes and offers the opportunity for development of materials with enhanced properties over the presently available plasma expanders. We report here the synthesis and testing of a new synthetic plasma expander that can replace not only the osmotic and volume expansion properties of HSA but, uniquely, its binding and transport properties. We have synthesized several hyperbranched polyglycerols derivatized with hydrophobic groups and short poly(ethylene glycol) (PEG) chains. The hydrophobic groups provide regions for binding fatty acids and other hydrophobic materials while PEG imparts the necessary protection from host defense systems and enhances circulation longevity. These polymers, being hyperbranched, have only a small effect on plasma viscosity. We have shown in vitro that our materials bind 2-3 moles palmitic acid per mole, do not activate the platelet, coagulation or complement systems and do not cause red cell aggregation. In mice these materials are non-toxic with circulation half-lives as high as 34h, controllable by manipulating the molecular weight and the degree of PEG derivatization.

  12. Biodegradable hyperbranched polyglycerol with ester linkages for drug delivery.

    PubMed

    Hu, Mei; Chen, Mingsheng; Li, Guolin; Pang, Yan; Wang, Dali; Wu, Jieli; Qiu, Feng; Zhu, Xinyuan; Sun, Jian

    2012-11-12

    Biodegradable hyperbranched polyglycerols (dHPGs) were synthesized through oxyanionic initiating hybrid polymerization of glycerol and glycidyl methacrylate. Due to the introduction of ester linkages into the hyperbranched polyglycerol backbone, dHPGs showed good biodegradability and low cytotoxicity. Benefiting from the existence of terminal hydroxyls and methacryloyl groups, both the anticancer drug methotrexate (MTX) and fluorescent probe Rhodamine-123 could be conjugated onto the surface of dHPGs easily. The resultant MTX-conjugated polymers (dHPG-MTXs) exhibited an amphiphilic character, resulting in the formation of micelles in an aqueous solution. The release of MTX from micelles was significantly faster at mildly acidic pH of 5.0 compared to physiological pH of 7.4. dHPG-MTX micelles could be efficiently internalized by cancer cells. MTT assay against cancer cells showed dHPG-MTXs micelles had high anticancer efficacy. On the basis of their good biodegradability and low cytotoxicity, dHPGs provide an opportunity to design excellent drug delivery systems.

  13. Click modification of multifunctional liposomes bearing hyperbranched polyether chains.

    PubMed

    Fritz, Thomas; Hirsch, Markus; Richter, Felix C; Müller, Sophie S; Hofmann, Anna M; Rusitzka, Kristiane A K; Markl, Jürgen; Massing, Ulrich; Frey, Holger; Helm, Mark

    2014-07-14

    Aiming at controlled modification of liposomal surface structures, we describe a postpreparational approach for surface derivatization of a new type of multifunctional, sterically stabilized liposomes. Application of dual centrifugation (DC) resulted in high encapsulation efficiencies above 50% at very small batch sizes with a total volume of 150 μL, which were conductive to fast and efficient optimization of variegated surface modification reactions. Cholesterol-polymer amphiphiles, including complex hyperbranched polyether structures bearing 1-4 terminal alkynes, were used in DC formulations to provide steric stabilization. The alkyne moieties were explored as anchors for the conjugation of small molecules to the liposomal surface via click chemistry, binding 350-450 fluorophores per liposome as examples for surface active molecules. Using Förster resonance energy transfer (FRET) spectroscopy, the conjugation reaction as well as the uptake of FRET-labeled liposomes by RBE4 cells was monitored, and the distribution of the fluorescent lipids among cellular structures and membranes could be studied. Thus, the combination of clickable hyperbranched amphiphiles and dual centrifugation provides access to well-defined liposomal formulations with a variety of surface moieties.

  14. Preparation and post-functionalization of hyperbranched polyurea coatings.

    PubMed

    Xiang, Fei; Asri, Lia; Ivashenko, Oleksii; Rudolf, Petra; Loontjens, Ton

    2015-03-10

    Postfunctionalizable hyperbranched polyurea coatings were prepared by the bulk polycondensation of AB2 monomers on preactivated silicon substrates. As previously shown, AB2 monomers were prepared, comprising a secondary amino group (A) and two blocked isocyanates (B) connected by hexyl spacers, in a single step and in quantitative yields. Covalent anchoring of the coatings on substrates was accomplished by reacting the secondary amino group in the focal point of the polymers with the blocked isocyanates (BIs) of the covalently attached coupling agent. The BIs in the top layer of the coatings were storage-stable under ambient conditions but well-modifiable with amino- or hydroxyl-functional compounds on heating. Attachment of polyethylene glycol or perfluoro-1-decanol afforded hydrophilic or hydrophobic surfaces. Immobilization and quaternization of polyethylenimines yielded highly charged surfaces. The coatings were extensively characterized by a number of techniques, such as Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, ellipsometry, and contact -angle measurements.

  15. Patterning and biofunctionalization of antifouling hyperbranched polyglycerol coatings.

    PubMed

    Moore, Eli; Delalat, Bahman; Vasani, Roshan; Thissen, Helmut; Voelcker, Nicolas H

    2014-07-14

    We demonstrate the patterned biofunctionalization of antifouling hyperbranched polyglycerol (HPG) coatings on silicon and glass substrates. The ultralow fouling HPG coatings afforded straightforward chemical handles for rapid bioconjugation of amine containing biomolecular species. This was achieved by sodium periodate oxidation of terminal HPG diols to yield reactive aldehyde groups. Patterned microprinting of sodium periodate and cell adhesion mediating cyclic peptides containing the RGD sequence resulted in an array of covalently immobilized bioactive signals. When incubated with mouse fibroblasts, the HPG background resisted cell attachment whereas high density cell attachment was observed on the peptide spots, resulting in high-contrast cell microarrays. We also demonstrated single-step, in situ functionalization of the HPG coatings by printing periodate and peptide concurrently. Our results demonstrate the effectiveness of antifouling and functionalized HPG graft polymer coatings and establish their use in microarray applications for the first time.

  16. A polymer lab-on-a-chip for magnetic immunoassay with on-chip sampling and detection capabilities.

    PubMed

    Do, Jaephil; Ahn, Chong H

    2008-04-01

    This paper presents a new polymer lab-on-a-chip for magnetic bead-based immunoassay with fully on-chip sampling and detection capabilities, which provides a smart platform of magnetic immunoassay-based lab-on-a-chip for point-of-care testing (POCT) toward biochemical hazardous agent detection, food inspection or clinical diagnostics. In this new approach, the polymer lab-on-a-chip for magnetic bead-based immunoassay consists of a magnetic bead-based separator, an interdigitated array (IDA) micro electrode, and a microfluidic system, which are fully incorporated into a lab-on-a-chip on cyclic olefin copolymer (COC). Since the polymer lab-on-a-chip was realized using low cost, high throughput polymer microfabrication techniques such as micro injection molding and hot embossing method, a disposable polymer lab-on-a-chip for the magnetic bead-based immunoassay can be successfully realized in a disposable platform. With this newly developed polymer lab-on-a-chip, an enzyme-labelled electrochemical immunoassay (ECIA) was performed using magnetic beads as the mobile solid support, and the final enzyme product produced from the ECIA was measured using chronoamperometry. A sampling and detection of as low as 16.4 ng mL(-1) of mouse IgG has been successfully performed in 35 min for the entire procedure.

  17. Hyperbranched double hydrophilic block copolymer micelles of poly(ethylene oxide) and polyglycerol for pH-responsive drug delivery.

    PubMed

    Lee, Sueun; Saito, Kyohei; Lee, Hye-Ra; Lee, Min Jae; Shibasaki, Yuji; Oishi, Yoshiyuki; Kim, Byeong-Su

    2012-04-09

    We report the synthesis of a well-defined hyperbranched double hydrophilic block copolymer of poly(ethylene oxide)-hyperbranched-polyglycerol (PEO-hb-PG) to develop an efficient drug delivery system. In specific, we demonstrate the hyperbranched PEO-hb-PG can form a self-assembled micellar structure on conjugation with the hydrophobic anticancer agent doxorubicin, which is linked to the polymer by pH-sensitive hydrazone bonds, resulting in a pH-responsive controlled release of doxorubicin. Dynamic light scattering, atomic force microscopy, and transmission electron microscopy demonstrated successful formation of the spherical core-shell type micelles with an average size of about 200 nm. Moreover, the pH-responsive release of doxorubicin and in vitro cytotoxicity studies revealed the controlled stimuli-responsive drug delivery system desirable for enhanced efficiency. Benefiting from many desirable features of hyperbranched double hydrophilic block copolymers such as enhanced biocompatibility, increased water solubility, and drug loading efficiency as well as improved clearance of the polymer after drug release, we believe that double hydrophilic block copolymer will provide a versatile platform to develop excellent drug delivery systems for effective treatment of cancer.

  18. Xylanase Immobilized on Novel Multifunctional Hyperbranched Polyglycerol-Grafted Magnetic Nanoparticles: An Efficient and Robust Biocatalyst.

    PubMed

    Landarani-Isfahani, Amir; Taheri-Kafrani, Asghar; Amini, Mina; Mirkhani, Valiollah; Moghadam, Majid; Soozanipour, Asieh; Razmjou, Amir

    2015-08-25

    Although several strategies are now available for immobilization of enzymes to magnetic nanoparticles for bioapplications, little progresses have been reported on the use of dendritic or hyperbranched polymers for the same purpose. Herein, we demonstrated synthesis of magnetic nanoparticles supported hyperbranched polyglycerol (MNP/HPG) and a derivative conjugated with citric acid (MNP/HPG-CA) as unique and convenient nanoplatforms for immobilization of enzymes. Then, an important industrial enzyme, xylanase, was immobilized on the nanocarriers to produce robust biocatalysts. A variety of analytical tools were used to study the morphological, structural, and chemical properties of the biocatalysts. Additionally, the results of biocatalyst systems exhibited the substantial improvement of reactivity, reusability, and stability of xylanase due to this strategy, which might confer them a wider range of applications.

  19. An infrared spectroscopic study of H-bond network in hyperbranched polyester polyol

    NASA Astrophysics Data System (ADS)

    Žagar, Ema; Grdadolnik, Jože

    2003-10-01

    A FTIR study of aliphatic hyperbranched polyester of the fourth generation Boltorn H40 (BH40) is presented. In order to properly assign the main vibrational bands in infrared spectrum temperature measurements, hydration and H/D exchange experiments were performed. Beside these experiments, difference spectroscopy, 2D generalized correlation infrared spectroscopy (2-DGCS) and band fitting procedure were employed to study the main interactions in polymer. On the basis of the detected interactions between various groups the structure of a H-bond network in hyperbranched polyester is proposed. Three main H-bond interactions were detected. Besides CO⋯HO and HO⋯HO a third type of H-bond is present (CO⋯HO⋯HO). A minor type of interactions represent the hydrogen bond formed with the carboxyl COOH group and impurities, which may be present in lower concentration.

  20. Enzymatically cross-linked hyperbranched polyglycerol hydrogels as scaffolds for living cells.

    PubMed

    Wu, Changzhu; Strehmel, Christine; Achazi, Katharina; Chiappisi, Leonardo; Dernedde, Jens; Lensen, Marga C; Gradzielski, Michael; Ansorge-Schumacher, Marion B; Haag, Rainer

    2014-11-10

    Although several strategies are now available to enzymatically cross-link linear polymers to hydrogels for biomedical use, little progress has been reported on the use of dendritic polymers for the same purpose. Herein, we demonstrate that horseradish peroxidase (HRP) successfully catalyzes the oxidative cross-linking of a hyperbranched polyglycerol (hPG) functionalized with phenol groups to hydrogels. The tunable cross-linking results in adjustable hydrogel properties. Because the obtained materials are cytocompatible, they have great potential for encapsulating living cells for regenerative therapy. The gel formation can be triggered by glucose and controlled well under various environmental conditions.

  1. Mussel-inspired Fluoro-Polydopamine Functionalization of Titanium Dioxide Nanowires for Polymer Nanocomposites with Significantly Enhanced Energy Storage Capability

    PubMed Central

    Wang, Guanyao; Huang, Xingyi; Jiang, Pingkai

    2017-01-01

    High-dielectric-constant polymer nanocomposites are demonstrated to show great promise as energy storage materials. However, the large electrical mismatch and incompatibility between nanofillers and polymer matrix usually give rise to significantly reduced breakdown strength and weak energy storage capability. Therefore, rational selection and elaborate functionalization of nanofillers to optimize the performance of polymer nanocomposites are vital. Herein, inspired by adhesive proteins in mussels, a facile modification by fluoro-polydopamine is employed to reinforce the compatibility of TiO2 nanowires in the fluoropolymer matrix. The loading of 2.5 vol % f-DOPA@TiO2 NWs leads to an ultrahigh discharged energy density of 11.48 J cm−3 at 530 MV m−1, more than three times of commercial biaxial-oriented polypropylene (BOPP, 3.56 J cm−3 at 600 MV m−1). A gratifying high energy density of 9.12 J cm−3 has also been obtained with nanofiller loading as high as 15 vol % at 360 MV m−1, which is nearly double to that of pure P(VDF-HFP) (4.76 J cm−3 at 360 MV m−1). This splendid energy storage capability seems to rival or exceed most of previously reported nano-TiO2 based nanocomposites. The methods presented here provide deep insights into the design of polymer nanocomposites for energy storage applications. PMID:28225047

  2. Mussel-inspired Fluoro-Polydopamine Functionalization of Titanium Dioxide Nanowires for Polymer Nanocomposites with Significantly Enhanced Energy Storage Capability.

    PubMed

    Wang, Guanyao; Huang, Xingyi; Jiang, Pingkai

    2017-02-22

    High-dielectric-constant polymer nanocomposites are demonstrated to show great promise as energy storage materials. However, the large electrical mismatch and incompatibility between nanofillers and polymer matrix usually give rise to significantly reduced breakdown strength and weak energy storage capability. Therefore, rational selection and elaborate functionalization of nanofillers to optimize the performance of polymer nanocomposites are vital. Herein, inspired by adhesive proteins in mussels, a facile modification by fluoro-polydopamine is employed to reinforce the compatibility of TiO2 nanowires in the fluoropolymer matrix. The loading of 2.5 vol % f-DOPA@TiO2 NWs leads to an ultrahigh discharged energy density of 11.48 J cm(-3) at 530 MV m(-1), more than three times of commercial biaxial-oriented polypropylene (BOPP, 3.56 J cm(-3) at 600 MV m(-1)). A gratifying high energy density of 9.12 J cm(-3) has also been obtained with nanofiller loading as high as 15 vol % at 360 MV m(-1), which is nearly double to that of pure P(VDF-HFP) (4.76 J cm(-3) at 360 MV m(-1)). This splendid energy storage capability seems to rival or exceed most of previously reported nano-TiO2 based nanocomposites. The methods presented here provide deep insights into the design of polymer nanocomposites for energy storage applications.

  3. Mussel-inspired Fluoro-Polydopamine Functionalization of Titanium Dioxide Nanowires for Polymer Nanocomposites with Significantly Enhanced Energy Storage Capability

    NASA Astrophysics Data System (ADS)

    Wang, Guanyao; Huang, Xingyi; Jiang, Pingkai

    2017-02-01

    High-dielectric-constant polymer nanocomposites are demonstrated to show great promise as energy storage materials. However, the large electrical mismatch and incompatibility between nanofillers and polymer matrix usually give rise to significantly reduced breakdown strength and weak energy storage capability. Therefore, rational selection and elaborate functionalization of nanofillers to optimize the performance of polymer nanocomposites are vital. Herein, inspired by adhesive proteins in mussels, a facile modification by fluoro-polydopamine is employed to reinforce the compatibility of TiO2 nanowires in the fluoropolymer matrix. The loading of 2.5 vol % f-DOPA@TiO2 NWs leads to an ultrahigh discharged energy density of 11.48 J cm-3 at 530 MV m-1, more than three times of commercial biaxial-oriented polypropylene (BOPP, 3.56 J cm-3 at 600 MV m-1). A gratifying high energy density of 9.12 J cm-3 has also been obtained with nanofiller loading as high as 15 vol % at 360 MV m-1, which is nearly double to that of pure P(VDF-HFP) (4.76 J cm-3 at 360 MV m-1). This splendid energy storage capability seems to rival or exceed most of previously reported nano-TiO2 based nanocomposites. The methods presented here provide deep insights into the design of polymer nanocomposites for energy storage applications.

  4. RHEOLOGY OF CONCENTRATED SOLUTIONS OF HYPERBRANCHED POLYESTERS

    EPA Science Inventory

    The solution rheology of different generations of hyperbranched polyesters in N-methyl-2- pyrrolidinone (NMP) solvent was examined in this study. The solutions exhibited Newtonian behavior over a wide range of polyester concentrations. Also, the relative viscosities of poly(amido...

  5. RHEOLOGY OF CONCENTRATED SOLUTIONS OF HYPERBRANCHED POLYESTERS

    EPA Science Inventory

    The solution rheology of different generations of hyperbranched polyesters in N-methyl-2- pyrrolidinone (NMP) solvent was examined in this study. The solutions exhibited Newtonian behavior over a wide range of polyester concentrations. Also, the relative viscosities of poly(amido...

  6. Extraordinary Capability for Water Treatment Achieved by a Perfluorous Conjugated Microporous Polymer

    PubMed Central

    Yang, Rui-Xia; Wang, Ting-Ting; Deng, Wei-Qiao

    2015-01-01

    Oils, organic solvents, dyes, and heavy metal ions are primary pollutants in water resources. Currently, no sorbent material can effectively remove these types of pollutants simultaneously. Here we report a perfluorous conjugated microporous polymer with superhydrophobicity and a large surface area, which exhibits outstanding adsorption capacities, kinetics, and recyclability for a wide range of organic solvents, oils, dyes, and heavy metal ions. The adsorption capacities of this polymer, 1376.7 mg g−1 for Congo red, 808.2 mg g−1 for Pb(II) and 303.2 mg g−1 for As(V), are higher than the adsorption capacities of any previously described porous materials. Our theoretical calculation reveals that the superior properties of this polymer are due to fluorination and triple bonds within the polymer. A benchmark experiment indicates that this polymer can efficiently remove these pollutants simultaneously. Application of this polymer may lead to the development of next-generation reusable and portable water purification appliances. PMID:25974738

  7. Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation

    PubMed Central

    Xie, Meihua; Wang, Ling; Guo, Baolin; Wang, Zhong; Chen, Y. Eugene; Ma, Peter X.

    2015-01-01

    Myotube formation is crucial to restoring muscular functions, and biomaterials that enhance the myoblast differentiation into myotubes are highly desirable for muscular repair. Here, we report the synthesis of electroactive, ductile, and degradable copolymers and their application in enhancing the differentiation of myoblasts to myotubes. A hyperbranched ductile polylactide (HPLA) was synthesized and then copolymerized with aniline tetramer (AT) to produce a series of electroactive, ductile and degradable copolymers (HPLAAT). The HPLA and HPLAAT showed excellent ductility with strain to failure from 158.9% to 42.7% and modulus from 265.2 to 758.2 MPa. The high electroactivity of the HPLAAT was confirmed by UV spectrometer and cyclic voltammogram measurements. These HPLAAT polymers also showed improved thermal stability and controlled biodegradation rate compared to HPLA. Importantly, when applying these polymers for myotube formation, the HPLAAT significantly improved the proliferation of C2C12 myoblasts in vitro compared to HPLA. Furthermore, these polymers greatly promoted myogenic differentiation of C2C12 cells as measured by quantitative analysis of myotube number, length, diameter, maturation index, and gene expression of MyoD and TNNT. Together, our study shows that these electroactive, ductile and degradable HPLAAT copolymers represent significantly improved biomaterials for muscle tissue engineering compared to HPLA. PMID:26335860

  8. Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation.

    PubMed

    Xie, Meihua; Wang, Ling; Guo, Baolin; Wang, Zhong; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Myotube formation is crucial to restoring muscular functions, and biomaterials that enhance the myoblast differentiation into myotubes are highly desirable for muscular repair. Here, we report the synthesis of electroactive, ductile, and degradable copolymers and their application in enhancing the differentiation of myoblasts to myotubes. A hyperbranched ductile polylactide (HPLA) was synthesized and then copolymerized with aniline tetramer (AT) to produce a series of electroactive, ductile and degradable copolymers (HPLAAT). The HPLA and HPLAAT showed excellent ductility with strain to failure from 158.9% to 42.7% and modulus from 265.2 to 758.2 MPa. The high electroactivity of the HPLAAT was confirmed by UV spectrometer and cyclic voltammogram measurements. These HPLAAT polymers also showed improved thermal stability and controlled biodegradation rate compared to HPLA. Importantly, when applying these polymers for myotube formation, the HPLAAT significantly improved the proliferation of C2C12 myoblasts in vitro compared to HPLA. Furthermore, these polymers greatly promoted myogenic differentiation of C2C12 cells as measured by quantitative analysis of myotube number, length, diameter, maturation index, and gene expression of MyoD and TNNT. Together, our study shows that these electroactive, ductile and degradable HPLAAT copolymers represent significantly improved biomaterials for muscle tissue engineering compared to HPLA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Molecular dynamics simulation studies of hyperbranched polyglycerols and their encapsulation behaviors of small drug molecules.

    PubMed

    Yu, Chunyang; Ma, Li; Li, Ke; Li, Shanlong; Liu, Yannan; Zhou, Yongfeng; Yan, Deyue

    2016-08-10

    Hyperbranched polyglycerol (HPG) is one of the most important hyperbranched polymers (HBPs) due to its interesting properties and applications. Herein, the conformation of HPGs depending on the degree of polymerization (DP) and the degree of branching (DB) is investigated explicitly by molecular dynamics simulations. This study shows that the radius of gyration (Rg) scales as Rg ∼ DP(1/3), which is in close agreement with the result of the SANS experiment. For HPGs with the same DP, the radius of gyration, asphericities and solvent accessible surface area all monotonically decrease with the increase of DB; while for HPGs with the same DB, the molecular anisotropy decreases with the increase of DP. The radial density investigation discloses that the cavities are randomly distributed in the interior of the HPG core to support the "dendritic box effect", which can be used to encapsulate the guest molecules. Interestingly, the terminal groups of HPGs with a high Wiener index (WI) are more favorable to fold back into the interiors than those with the low WI when in water. For the hyperbranched multi-arm copolymer with a HPG core and many polyethylene glycol (PEG) arms, drug encapsulation studies show that the PEG caps can not only effectively prevent tamoxifen from leaving the HPG core, but also encapsulate tamoxifen inside the PEG chains. These simulation results have provided more details for understanding the structure-property relationships of HPGs in water.

  10. Triblock polymers of the bab type having hydrophobic association capabilities for rheological control in aqueous systems

    SciTech Connect

    Rose, G. D.; Dennis, K. S.; Evani, S.

    1985-03-19

    The rheology of aqueous liquids is effectively controlled by the addition to the liquid of a water-dispersible BAB triblock polymer wherein the B blocks are hydrophobic blocks such as alkyl or sulfonated poly (t-butylstyrene) and the A block is a hydrophilic block such as sulfonated poly (vinyltoluene).

  11. Quantitative Assessment of Coumarin-Containing Polymer Film's Capability for Photoalignment of Liquid Crystals

    SciTech Connect

    Kim, C.; Wallace, J.U.; Trajkovska, A.; Ou, J.J.; Chen, S.H.

    2007-12-12

    The photoalignment of a nematic fluid, E-7, and a glassy-nematic oligofluorene, F(MB)5, was investigated on films of Polymers 1 and 2 in the parallel regime. Polarized absorption spectroscopy and computational chemistry were employed to characterize coumarin monomer's and dimer's molar extinction coefficients and to locate absorption dipoles as parallel to their long molecular axes. Moreover, their orientational order parameters, S_m and S_d, were experimentally determined as functions of the extent of dimerization. Higher S_d and Y_d, coumarin dimer's mole fraction, were achieved in films of Polymer 1 than in Polymer 2 because of the greater coumarin mobility of the former. The ability of a coumarin-containing photoalignment film to orient a spin-cast F(MB)5 film was found to improve with increasing Y_d S_d to an extent comparable to that of a rubbed polyimide film. Because of the relatively short lengths of its constituent molecules, E-7 was oriented equally well on both polymer films regardless of the Y_d S_d values.

  12. Experimental and theoretical studies of scaling of sizes and intrinsic viscosity of hyperbranched chains in good solvents

    NASA Astrophysics Data System (ADS)

    Li, Lianwei; Lu, Yuyuan; An, Lijia; Wu, Chi

    2013-03-01

    Using a set of hyperbranched polystyrenes with different overall molar masses but a uniform subchain length or a similar overall molar mass but different subchain lengths, we studied their sizes and hydrodynamic behaviors in toluene (a good solvent) at T = 25 °C by combining experimental (laser light scattering (LLS) and viscometry) and theoretical methods based on a partially permeable sphere model. Our results show that both the average radii of gyration (⟨Rg⟩) and hydrodynamic radius (⟨Rh⟩) are scaled to the weight-average molar mass (Mw) as ⟨Rg⟩ ˜ ⟨Rh⟩ ˜ MwγMw,sφ, with γ = 0.47 ± 0.01 and φ = 0.10 ± 0.01; and their intrinsic viscosity ([η]) quantitatively follow the Mark-Houwink-Sakurada (MHS) equation as [η] = KηMwνMw,sμ with Kη = 2.26 × 10-5, ν = 0.39 ± 0.01, and μ = 0.31 ± 0.01, revealing that these model chains with long subchains are indeed fractal objects. Further, our theoretical and experimental results broadly agree with each other besides a slight deviation from the MHS equation for short subchains, similar to dendrimers, presumably due to the multi-body hydrodynamic interaction. Moreover, we also find that the average viscometric radius (⟨Rη⟩) determined from intrinsic viscosity is slightly smaller than ⟨Rh⟩ measured in dynamic LLS and their ratio (⟨Rη⟩/⟨Rh⟩) roughly remains 0.95 ± 0.05, reflecting that linear polymer chains are more draining with a smaller ⟨Rh⟩ than their hyperbranched counterparts for a given intrinsic viscosity. Our current study of the "defect-free" hyperbranched polymer chains offers a standard model for further theoretical investigation of hydrodynamic behaviors of hyperbranched polymers and other complicated architectures, in a remaining unexploited research field of polymer science.

  13. Conditional repair by locally switching the thermal healing capability of dynamic covalent polymers with light

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Anne; Göstl, Robert; Wendt, Robert; Kötteritzsch, Julia; Hager, Martin D.; Schubert, Ulrich S.; Brademann-Jock, Kerstin; Thünemann, Andreas F.; Nöchel, Ulrich; Behl, Marc; Hecht, Stefan

    2016-12-01

    Healable materials could play an important role in reducing the environmental footprint of our modern technological society through extending the life cycles of consumer products and constructions. However, as most healing processes are carried out by heat alone, the ability to heal damage generally kills the parent material's thermal and mechanical properties. Here we present a dynamic covalent polymer network whose thermal healing ability can be switched `on' and `off' on demand by light, thereby providing local control over repair while retaining the advantageous macroscopic properties of static polymer networks. We employ a photoswitchable furan-based crosslinker, which reacts with short and mobile maleimide-substituted poly(lauryl methacrylate) chains forming strong covalent bonds while simultaneously allowing the reversible, spatiotemporally resolved control over thermally induced de- and re-crosslinking. We reason that our system can be adapted to more complex materials and has the potential to impact applications in responsive coatings, photolithography and microfabrication.

  14. Conditional repair by locally switching the thermal healing capability of dynamic covalent polymers with light

    PubMed Central

    Fuhrmann, Anne; Göstl, Robert; Wendt, Robert; Kötteritzsch, Julia; Hager, Martin D.; Schubert, Ulrich S.; Brademann-Jock, Kerstin; Thünemann, Andreas F.; Nöchel, Ulrich; Behl, Marc; Hecht, Stefan

    2016-01-01

    Healable materials could play an important role in reducing the environmental footprint of our modern technological society through extending the life cycles of consumer products and constructions. However, as most healing processes are carried out by heat alone, the ability to heal damage generally kills the parent material's thermal and mechanical properties. Here we present a dynamic covalent polymer network whose thermal healing ability can be switched ‘on' and ‘off' on demand by light, thereby providing local control over repair while retaining the advantageous macroscopic properties of static polymer networks. We employ a photoswitchable furan-based crosslinker, which reacts with short and mobile maleimide-substituted poly(lauryl methacrylate) chains forming strong covalent bonds while simultaneously allowing the reversible, spatiotemporally resolved control over thermally induced de- and re-crosslinking. We reason that our system can be adapted to more complex materials and has the potential to impact applications in responsive coatings, photolithography and microfabrication. PMID:27941924

  15. Hydrophilic polymer coated microporous membranes capable of use as a battery separator

    SciTech Connect

    Taskier, H.T.

    1984-03-20

    The present invention is directed to microporous membranes having a surfactant impregnated therein which is coated on at least one surface thereof with a polymer coating, such as cellulose acetate. The polymer coating possesses functional groups in the presence of an aqueous alkaline environment which permits it to undergo hydrogen bonding with water and to transport battery electrolyte through the coating by diffusion. The presence of the coating on the normally hydrophobic substrate membrane, when used in conjunction with a suitable surfactant, increases the wettability of the substrate membrane and thereby lowers its electrical resistance. The coating also serves to immobilize various soluble electrode derived ions at the coating-electrolyte interface thereby hindering their penetration into the pores of the substrate microporous membrane. Consequently, the plugging of the pores of the substrate membrane by these ions is substantially reduced thereby increasing the life of a battery in which said coated membranes are used as battery separators.

  16. Prebiotic Alternatives to Proteins: Structure and Function of Hyperbranched Polyesters

    NASA Astrophysics Data System (ADS)

    Mamajanov, Irena; Callahan, Michael P.; Dworkin, Jason P.; Cody, George D.

    2015-06-01

    Proteins are responsible multiple biological functions, such as ligand binding, catalysis, and ion channeling. This functionality is enabled by proteins' three-dimensional structures that require long polypeptides. Since plausibly prebiotic synthesis of functional polypeptides has proven challenging in the laboratory, we propose that these functions may have been initially performed by alternative macromolecular constructs, namely hyperbranched polymers (HBPs), during early stages of chemical evolution. HBPs can be straightforwardly synthesized in one-pot processes, possess globular structures determined by their architecture as opposed to folding in proteins, and have documented ligand binding and catalytic properties. Our initial study focuses on glycerol-citric acid HBPs synthesized via moderate heating in the dry state. The polymerization products consisted of a mixture of isomeric structures of varying molar mass as evidenced by NMR, mass spectrometry and size-exclusion chromatography. Addition of divalent cations during polymerization resulted in increased incorporation of citric acid into the HBPs and the possible formation of cation-oligomer complexes. The chelating properties of citric acid govern the makeup of the resulting polymer, turning the polymerization system into a rudimentary smart material.

  17. Hyperbranched polyglycerol hydrogels prepared through biomimetic mineralization.

    PubMed

    Postnova, Irina; Silant'ev, Vladimir; Kim, Min Hee; Song, Ga Young; Kim, Il; Ha, Chang-Sik; Shchipunov, Yury

    2013-03-01

    Hyperbranched polyglycerols find increasing usage in biomedicine owing to their excellent biocompatibility like polysaccharides. To prepare hydrogels, they are cross-linked mainly by treating with toxic epoxy reagents. Here we suggest a one-stage nontoxic procedure for the jellification of aqueous solutions that was previously developed for nongelable polysaccharides. It was carried out via the biomimicking mineralization. As the silica precursor, tetrakis(2-hydroxyethyl)orthosilicate containing ethylene glycol residues was employed. It could mineralize directly hydroxyl-containing macromolecules passing a stage of the sol formation. Jellification was performed in one stage in the neutral pH region at the ambient conditions. An organic solvent was not needed because of high hydrophilicity of both the precursor and polyglycerols. An as-prepared hydrogel is ready for applications because of the absence of toxic products. Its structure and mechanical properties were characterized by scanning and transmission electron microscopy as well as dynamic rheology. It was demonstrated that hyperbranched polyglycerols were encased into silica matrix that formed three-dimensional mesoporous network. A study of initial solutions of hyperbranched polyglycerols by the dynamic light scattering revealed their aggregation. This important result was confirmed by direct observations of aggregated macromolecules with high resolution scanning electron microscopy. Entrapped aggregates were also found in the silica matrix.

  18. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    PubMed Central

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia

    2016-01-01

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach. PMID:26727881

  19. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    SciTech Connect

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia

    2016-01-05

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. Increased branching and degree of polymerization, and thus molecular weight, were found to reduce the solubility of these systems in the base oil. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated improved viscosity index and reduced friction coefficient, validating the basic approach.

  20. Self-assembly of amido-ended hyperbranched polyester films with a highly ordered dendritic structure.

    PubMed

    Zhang, Daohong; Xu, Zhicai; Li, Junna; Chen, Sufang; Cheng, Juan; Zhang, Aiqing; Chen, Shenghui; Miao, Menghe

    2014-09-24

    Self-assemblies fabricated from dendrimers and amphiphilic polymers have demonstrated remarkable performances and a wide range of applications. Direct self-assembly of hyperbranched polymers into highly ordered macrostructures with heat-resistance remains a big challenge due to the weak amphiphilicity of the polymers. Here, we report the self-assembly of amphiphilic amido-ended hyperbranched polyester (HTDA-2) into millimeter-size dendritic films using combined hydrogen bond interaction and solvent induction. The self-assembly process and mechanism have been studied. Hydrogen bond interaction between amido-ended groups assists the aggregation of inner and outer chains of the HTDA-2, resulting in phase separation and micelle formation. Some micelles attach to and grow on the glass substrate like seedlings. Other micelles move to the seedlings and connect with their branches via solvent induction and hydrogen bond interaction, leading to the fabrication of highly ordered crystalline dendritic films that show high heat-resistance. HTDA-2 can further self-assemble into sheet crystals on the dendritic films.

  1. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    NASA Astrophysics Data System (ADS)

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia

    2016-01-01

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach.

  2. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    DOE PAGES

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; ...

    2016-01-05

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acidsmore » (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. Increased branching and degree of polymerization, and thus molecular weight, were found to reduce the solubility of these systems in the base oil. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated improved viscosity index and reduced friction coefficient, validating the basic approach.« less

  3. Covalent attachment of a bioactive hyperbranched polymeric layer to titanium surface for the biomimetic growth of calcium phosphates

    PubMed Central

    Tsiourvas, D.; Arkas, M.; Diplas, S.; Mastrogianni, E.

    2010-01-01

    This work is investigating the chemical grafting on Ti surface of a polymer/calcium phosphate coating of improved adhesion for enhanced bioactivity. For this purpose, a whole new methodology was developed based on covalently attaching a hyperbranched poly(ethylene imine) layer on Ti surface able to promote calcium phosphate formation in a next deposition stage. This was achieved through an intermediate surface silanization step. The research included optimization both of the reaction conditions for covalently grafting the intermediate organosilicon and the subsequent hyperbranched poly(ethylene imine) layers, as well as of the conditions for the mechanical and chemical pretreatment of Ti surface before coating. The reaction steps were monitored employing FTIR and XPS analyses, whereas the surface morphology and structure of the successive coating layers were studied by SEM combined with EDS. The analysis confirmed the successful grafting of the hybrid layer which demonstrated very good ability for hydroxyapatite growth in simulated body fluid. PMID:21069559

  4. Comparison of Properties among Dendritic and Hyperbranched Poly(ether ether ketone)s and Linear Poly(ether ketone)s.

    PubMed

    Morikawa, Atsushi

    2016-02-16

    Poly(ether ether ketone) dendrimers and hyperbranched polymers were prepared from 3,5-dimethoxy-4'-(4-fluorobenzoyl)diphenyl ether and 3,5-dihydroxy-4'-(4-fluorobenzoyl)diphenyl ether through aromatic nucleophilic substitution reactions. 1-(tert-Butyldimethylsiloxy)-3,5-bis(4-fluorobenzoyl)benzene was polycondensed with bisphenols, followed by cleavage of the protective group to form linear poly(ether ketone)s having the same hydroxyl groups in the side chains as the chain ends of the dendrimer and hyperbranched polymers. Their properties, such as solubilities, reduced viscosities, and thermal properties, were compared with one another. Similar comparisons were also carried out among the corresponding methoxy group polymers, and the size of the molecules was shown to affect the properties.

  5. Capability of NIPAM polymer gel in recording dose from the interaction of (10)B and thermal neutron in BNCT.

    PubMed

    Khajeali, Azim; Reza Farajollahi, Ali; Kasesaz, Yaser; Khodadadi, Roghayeh; Khalili, Assef; Naseri, Alireza

    2015-11-01

    The capability of N-isopropylacrylamide (NIPAM) polymer gel to record the dose resulting from boron neutron capture reaction in BNCT was determined. In this regard, three compositions of the gel with different concentrations of (10)B were prepared and exposed to gamma radiation and thermal neutrons. Unlike irradiation with gamma rays, the boron-loaded gels irradiated by neutron exhibited sensitivity enhancement compared with the gels without (10)B. It was also found that the neutron sensitivity of the gel increased by the increase of concentration of (10)B. It can be concluded that NIPAM gel might be suitable for the measurement of the absorbed dose enhancement due to (10)B and thermal neutron reaction in BNCT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Elastin-Mimetic Protein Polymers Capable of Physical and Chemical Crosslinking

    PubMed Central

    Sallach, Rory E.; Cui, Wanxing; Wen, Jing; Martinez, Adam; Conticello, Vincent P.; Chaikof, Elliot L.

    2008-01-01

    We report the synthesis of a new class of recombinant elastin-mimetic triblock copolymer capable of both physical and chemical crosslinking. These investigations were motivated by a desire to capture features unique to both physical and chemical crosslinking schemes so as to exert optimal control over a wide range of potential properties afforded by protein-based mutiblock materials. We postulated that by chemically locking a multiblock protein assembly in place, functional responses that are linked to specific domain structures and morphologies may be preserved over a broader range of loading conditions that would otherwise disrupt microphase structure solely stabilized by physical crosslinking. Specifically, elastic modulus was enhanced and creep strain reduced through the addition of chemical crosslinking sites. Additionally, we have demonstrated excellent in vivo biocompatibility of glutaraldehyde treated multiblock systems. PMID:18954902

  7. Cationic polymer lubricant (CPL): A new bond and mobile boundary lubricant with self-healing capabilities

    NASA Astrophysics Data System (ADS)

    Liao, Erik Hsiao

    The boundary film formation and lubrication effects of low-molecular-weight silicone molecules with cationic side groups were studied. Poly-(N,N,N-trimethylamine-3- propylmethylsiloxane-co-dimethylsiloxane) iodide was synthesized and deposited on silicon oxide surfaces to form a bound-and-mobile lubricant film. The effects of the ionically bound layer and mobile multilayers were investigated. Both nano- and macro-scale tribological tests revealed superior lubrication performance of the silicon molecule with cationic side chains over the neutral silicon molecule (which was modeled with polydimethylsiloxane with the same molecule weight). The multilayer films exhibited characteristic topographic features due to ionic interactions within the polymeric film. In the macro-scale, the effects of ionic content, environmental condition, and advantage of the bound layer on self-healing will be discussed to demonstrate the wear resistance and selfhealing capability. The multilayer spreading rates were estimated to be ~10-11 m2/s. In the nanoscale, the results of disjoining pressure and viscosity measurements help understand the lateral spreading of the mobile layer and identify the mobile species. The mobile species are the reduced tertiary amine form of CPL. The hydrophobic but hygroscopic properties of CPL are also investigated with SFG and ATR-IR. The CPL-coated surfaces are hydrophobic which prevents the detrimental effects of humidity on wear of silicon. In addition, the hygroscopic nature of CPL allows humidity to be absorbed into the film, which enhances the self-healing capabilities. Finally, by texturing the silicon surface with nanowells, self-healing is enhanced when the nanowells are filled with CPL. The nanowells serve as CPL reservoirs that are readily available for self-healing within the wear track for faster cycle intervals. However, the nanowells deteriorate the self-healing from surrounding the contact region due to the refilling of the empty nanowells.

  8. Red blood cell membrane grafting of multi-functional hyperbranched polyglycerols.

    PubMed

    Rossi, Nicholas A A; Constantinescu, Iren; Kainthan, Rajesh K; Brooks, Donald E; Scott, Mark D; Kizhakkedathu, Jayachandran N

    2010-05-01

    The covalent attachment of hydrophilic polymers or biopharmaceuticals to the surface of red blood cells (RBCs) has previously been shown as a relatively compatible and effective method for a range of applications. Here, the first example of cell-surface grafting with a hyperbranched and multi-functional macromolecule is described. A range (3 kDa-101 kDa) of dense, globular, and blood compatible hyperbranched polyglycerols (HPG) were synthesized and functionalized with cell-surface reactive, succinimidyl succinate groups (1-12 groups per polymer). Subsequently, HPG was grafted to the RBCs, which were analyzed using physical characterization techniques such as aqueous two-phase partitioning and particle electrophoresis. It was found that the extent of grafting was enhanced by increasing HPG molecular weight, the number of reactive groups per HPG, HPG concentration, and reaction time. Good in vitro cell viability - as measured by lipid peroxidation, hemoglobin oxidation, cell lysis, osmotic fragility, stability in fresh serum and aggregation behavior - was observed for grafting concentrations up to 4.8 mm. The multi-functional aspect of HPG is highlighted by the following observations: using fluorescein-labeled Anti-D (monoclonal) antibody and flow cytometry, the detection of cell-surface Rhesus (RhD) antigens were significantly reduced upon HPG grafting. Secondly, the potential for using HPG as a multi-functional, delivery agent was demonstrated by attaching fluorescent markers to the HPG via degradable linkages prior to grafting. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Squaric acid mediated synthesis and biological activity of a library of linear and hyperbranched poly(glycerol)-protein conjugates.

    PubMed

    Wurm, Frederik; Dingels, Carsten; Frey, Holger; Klok, Harm-Anton

    2012-04-09

    Polymer-protein conjugates generated from side chain functional synthetic polymers are attractive because they can be easily further modified with, for example, labeling groups or targeting ligands. The residue specific modification of proteins with side chain functional synthetic polymers using the traditional coupling strategies may be compromised due to the nonorthogonality of the side-chain and chain-end functional groups of the synthetic polymer, which may lead to side reactions. This study explores the feasibility of the squaric acid diethyl ester mediated coupling as an amine selective, hydroxyl tolerant, and hydrolysis insensitive route for the preparation of side-chain functional, hydroxyl-containing, polymer-protein conjugates. The hydroxyl side chain functional polymers selected for this study are a library of amine end-functional, linear, midfunctional, hyperbranched, and linear-block-hyperbranched polyglycerol (PG) copolymers. These synthetic polymers have been used to prepare a diverse library of BSA and lysozyme polymer conjugates. In addition to exploring the scope and limitations of the squaric acid diethylester-mediated coupling strategy, the use of the library of polyglycerol copolymers also allows to systematically study the influence of molecular weight and architecture of the synthetic polymer on the biological activity of the protein. Comparison of the activity of PG-lysozyme conjugates generated from relatively low molecular weight PG copolymers did not reveal any obvious structure-activity relationships. Evaluation of the activity of conjugates composed of PG copolymers with molecular weights of 10000 or 20000 g/mol, however, indicated significantly higher activities of conjugates prepared from midfunctional synthetic polymers as compared to linear polymers of similar molecular weight.

  10. Hyperbranched polyglycerol as a colloid in cold organ preservation solutions.

    PubMed

    Gao, Sihai; Guan, Qiunong; Chafeeva, Irina; Brooks, Donald E; Nguan, Christopher Y C; Kizhakkedathu, Jayachandran N; Du, Caigan

    2015-01-01

    Hydroxyethyl starch (HES) is a common colloid in organ preservation solutions, such as in University of Wisconsin (UW) solution, for preventing graft interstitial edema and cell swelling during cold preservation of donor organs. However, HES has undesirable characteristics, such as high viscosity, causing kidney injury and aggregation of erythrocytes. Hyperbranched polyglycerol (HPG) is a branched compact polymer that has low intrinsic viscosity. This study investigated HPG (MW-0.5 to 119 kDa) as a potential alternative to HES for cold organ preservation. HPG was synthesized by ring-opening multibranching polymerization of glycidol. Both rat myocardiocytes and human endothelial cells were used as an in vitro model, and heart transplantation in mice as an in vivo model. Tissue damage or cell death was determined by both biochemical and histological analysis. HPG polymers were more compact with relatively low polydispersity index than HES in UW solution. Cold preservation of mouse hearts ex vivo in HPG solutions reduced organ damage in comparison to those in HES-based UW solution. Both size and concentration of HPGs contributed to the protection of the donor organs; 1 kDa HPG at 3 wt% solution was superior to HES-based UW solution and other HPGs. Heart transplants preserved with HPG solution (1 kDa, 3%) as compared with those with UW solution had a better functional recovery, less tissue injury and neutrophil infiltration in syngeneic recipients, and survived longer in allogeneic recipients. In cultured myocardiocytes or endothelial cells, significantly more cells survived after cold preservation with the HPG solution than those with the UW solution, which was positively correlated with the maintenance of intracellular adenosine triphosphate and cell membrane fluidity. In conclusion, HPG solution significantly enhanced the protection of hearts or cells during cold storage, suggesting that HPG is a promising colloid for the cold storage of donor organs and cells in

  11. Hyperbranched Polyglycerol as a Colloid in Cold Organ Preservation Solutions

    PubMed Central

    Gao, Sihai; Guan, Qiunong; Chafeeva, Irina; Brooks, Donald E.; Nguan, Christopher Y. C.; Kizhakkedathu, Jayachandran N.; Du, Caigan

    2015-01-01

    Hydroxyethyl starch (HES) is a common colloid in organ preservation solutions, such as in University of Wisconsin (UW) solution, for preventing graft interstitial edema and cell swelling during cold preservation of donor organs. However, HES has undesirable characteristics, such as high viscosity, causing kidney injury and aggregation of erythrocytes. Hyperbranched polyglycerol (HPG) is a branched compact polymer that has low intrinsic viscosity. This study investigated HPG (MW-0.5 to 119 kDa) as a potential alternative to HES for cold organ preservation. HPG was synthesized by ring-opening multibranching polymerization of glycidol. Both rat myocardiocytes and human endothelial cells were used as an in vitro model, and heart transplantation in mice as an in vivo model. Tissue damage or cell death was determined by both biochemical and histological analysis. HPG polymers were more compact with relatively low polydispersity index than HES in UW solution. Cold preservation of mouse hearts ex vivo in HPG solutions reduced organ damage in comparison to those in HES-based UW solution. Both size and concentration of HPGs contributed to the protection of the donor organs; 1 kDa HPG at 3 wt% solution was superior to HES-based UW solution and other HPGs. Heart transplants preserved with HPG solution (1 kDa, 3%) as compared with those with UW solution had a better functional recovery, less tissue injury and neutrophil infiltration in syngeneic recipients, and survived longer in allogeneic recipients. In cultured myocardiocytes or endothelial cells, significantly more cells survived after cold preservation with the HPG solution than those with the UW solution, which was positively correlated with the maintenance of intracellular adenosine triphosphate and cell membrane fluidity. In conclusion, HPG solution significantly enhanced the protection of hearts or cells during cold storage, suggesting that HPG is a promising colloid for the cold storage of donor organs and cells in

  12. Role of branching architecture on the glass transition of hyperbranched polyethers.

    PubMed

    Zhu, Qi; Wu, Jieli; Tu, Chunlai; Shi, Yunfeng; He, Lin; Wang, Ruibin; Zhu, Xinyuan; Yan, Deyue

    2009-04-30

    The influence of branching architecture on the glass transition of hyperbranched polyethers has been investigated. For amorphous samples, the glass transition temperature (T(g)) first increases with the degree of branching (DB), passes through a maximum, and then decreases sharply. An attempt is made to explain this by the competition between the junction density and the free volume of terminal units. For the crystalline samples, the crystallization of polymer chains makes the relationship of DB and T(g) more complicated. By the introduction of branching architecture, the crystallization ability of the branched polymer is weakened gradually. When the samples are isothermally crystallized for a long time, the T(g) of polyethers decreases monotonically with DB.

  13. The Time Evolution of the Surface Segregation of Hyperbranched Molecules from a Linear Matrix

    NASA Astrophysics Data System (ADS)

    Swader, Onome; Dadmun, Mark; Hutchings, Lian; Thompson, Richard

    2010-03-01

    Modification of a surface by the selective surface segregation of an additive in a mixture is a process with many commercial applications including biocompatibility, wettability, and anti-fouling in coatings. In a blend of branched and linear polymers, there exists an entropic driving force for the selective surface segregation of the branched polymer. Unfortunately, a systematic study of the impact of the branched copolymer structure on the dynamics and thermodynamics of this surface segregation is not currently available. Neutron reflectivity experiments that seek to fill this void have been completed and will be discussed. High molecular weight poly(styrene) (PS) hyperbranched molecules, hypermacs (HM) and dendrimacs (DM), with 10 % HM or DM and 90 % deuterated PS are the model systems studied. Reflectivity profiles for all blends were obtained as a function of annealing time from 30 minutes up to 48 hours.

  14. Optimal Reactivity and Improved Self-Healing Capability of Structurally Dynamic Polymers Grafted on Janus Nanoparticles Governed by Chain Stiffness and Spatial Organization.

    PubMed

    Xu, Guoxi; Huang, Zihan; Chen, Pengyu; Cui, Tianqi; Zhang, Xinghua; Miao, Bing; Yan, Li-Tang

    2017-01-16

    Structurally dynamic polymers are recognized as a key potential to revolutionize technologies ranging from design of self-healing materials to numerous biomedical applications. Despite intense research in this area, optimizing reactivity and thereby improving self-healing ability at the most fundamental level pose urgent issue for wider applications of such emerging materials. Here, the authors report the first mechanistic investigation of the fundamental principle for the dependence of reactivity and self-healing capabilities on the properties inherent to dynamic polymers by combining large-scale computer simulation, theoretical analysis, and experimental discussion. The results allow to reveal how chain stiffness and spatial organization regulate reactivity of dynamic polymers grafted on Janus nanoparticles and mechanically mediated reaction in their reverse chemistry, and, particularly, identify that semiflexible dynamic polymers possess the optimal reactivity and self-healing ability. The authors also develop an analytical model of blob theory of polymer chains to complement the simulation results and reveal essential scaling laws for optimal reactivity. The findings offer new insights into the physical mechanism in various systems involving reverse/dynamic chemistry. These studies highlight molecular engineering of polymer architecture and intrinsic property as a versatile strategy in control over the structural responses and functionalities of emerging materials with optimized self-healing capabilities.

  15. Controllable Nonspecific Protein Adsorption by Charged Hyperbranched Polyglycerol Thin Films.

    PubMed

    Yu, Yaming; Frey, Holger

    2015-12-08

    Antifouling thin films derived from charged hyperbranched polyglycerol (hbPG) layers were fabricated and evaluated. The anionic hbPG (a-hbPG) monolayers and cationic hbPG/anionic hbPG (c/a-hbPG) bilayers were adsorbed on the underlying self-assembled monolayers (SAMs) of cysteamine and 3-mercaptopropionic acid (3-MPA) by electrostatic interaction, respectively, and their procession was monitored by surface plasmon resonance spectroscopy (SPR). The adsorption of bovine serum albumin (BSA) and fibrinogen on the premade a-hbPG and c/a-hbPG thin films was measured and the capability of these thin films to resist nonspecific protein adsorption was evaluated by SPR as well. It is observed that the c/a-hbPG bilayer films possessed good antifouling properties. With c/a-hbPG bilayers consisting of higher molecular weight a-hbPG, the adsorption of BSA and fibrinogen were as low as 0.015 ng/mm(-2) and 0.0076 ng/mm(-2), respectively, comparable to the traditionally ultralow antifouling surfaces (<0.05 ng/mm(-2) of nonspecific protein adsorption). This work proved that the charged hbPG thin films can strongly reduce the nonspecific protein adsorption and have the promise for the antifouling coatings with improved performance.

  16. Substantial enhancement of energy storage capability in polymer nanocomposites by encapsulation of BaTiO3 NWs with variable shell thickness.

    PubMed

    Wang, Guanyao; Huang, Yanhui; Wang, Yuxin; Jiang, Pingkai; Huang, Xingyi

    2017-08-09

    Dielectric polymer nanocomposites have received keen interest due to their potential application in energy storage. Nevertheless, the large contrast in dielectric constant between the polymer and nanofillers usually results in a significant decrease of breakdown strength of the nanocomposites, which is unfavorable for enhancing energy storage capability. Herein, BaTiO3 nanowires (NWs) encapsulated by TiO2 shells of variable thickness were utilized to fabricate dielectric polymer nanocomposites. Compared with nanocomposites with bare BaTiO3 NWs, significantly enhanced energy storage capability was achieved for nanocomposites with TiO2 encapsulated BaTiO3 NWs. For instance, an ultrahigh energy density of 9.53 J cm(-3) at 440 MV m(-1) could be obtained for nanocomposites comprising core-shell structured nanowires, much higher than that of nanocomposites with 5 wt% raw ones (5.60 J cm(-3) at 360 MV m(-1)). The discharged energy density of the proposed nanocomposites with 5 wt% mTiO2@BaTiO3-1 NWs at 440 MV m(-1) seems to rival or exceed those of some previously reported nanocomposites (mostly comprising core-shell structured nanofillers). More notably, this study revealed that the energy storage capability of the nanocomposites can be tailored by the TiO2 shell thickness. Finite element simulations were employed to analyze the electric field distribution in the nanocomposites. The enhanced energy storage capability should be mainly attributed to the smoother gradient of dielectric constant between the nanofillers and polymer matrix, which alleviated the electric field concentration and leakage current in the polymer matrix. The methods and results herein offer a feasible approach to construct high-energy-density polymer nanocomposites with core-shell structured nanowires.

  17. Hydrolytically degradable hyperbranched PEG-polyester adhesive with low swelling and robust mechanical properties.

    PubMed

    Zhang, Hong; Zhao, Tianyu; Duffy, Patrick; Dong, Yixiao; Annaidh, Aisling Ní; O'Cearbhaill, Eoin; Wang, Wenxin

    2015-10-28

    Photocrosslinkable and water soluble hyperbranched PEG-polyester polymers (HPEGDA) have been developed as robust degradable adhesives. The HPEGDA polymers have been synthesized from controlled homopolymerization of poly(ethylene glycol) diacrylate (PEGDA700 ) via in situ deactivation enhanced atom transfer radical polymerization (DE-ATRP). By introducing a high initiator-to-monomer ratio, the obtained HPEGDA polymer is composed of extremely short carbon-carbon backbones interconnected together by the long PEG chains as well as pendent photocrosslinkable acrylate moieties. Due to the extremely short C-C backbone, the long PEG chains can therefore be seen as the main chain, thus, HPEGDA polymers behave more like polyester which is a category of polymers that contain the ester functional group in their main chain. Photo-cured HPEGDA can be readily adhered to tissue forming a patch with robust mechanical and adhesive strengths. The degradation profile by hydrolysis of polyester blocks as well as a significantly low swelling ratio of HPEGDA gels in an aqueous environment allow them to have great potential for sealing and repair of internal tissue. Furthermore, HPEGDA gels appear to have minor significant cytotoxicity in vitro. These unique properties indicate that the reported HPEGDA polymers are well poised for the development of adhesive tissue engineering matrixes, wound dressings, and sealants.

  18. Large-scale preparation of indium-based infinite coordination polymer hierarchical nanostructures and their good capability for water treatment.

    PubMed

    Jin, Li-Na; Liu, Qing; Yang, Ying; Fu, Hong-Gang; Sun, Wei-Yin

    2014-07-15

    The removal of dyes in wastewater has been of much interest in the recent decades because dyes are stable, toxic and even potentially carcinogenic, and their release into environment causes serious environmental, aesthetical, and health problems. In the current work, indium-based coordination polymer particles (In-CPPs) have been fabricated via a facile solvothermal synthesis without any template or surfactant. In-CPPs are composed of hierarchical nanostructures assembled from abundant nanoplates with thickness of about 20 nm. Owing to their high BET surface area and pore volume, In-CPPs exhibit excellent adsorption capability for Congo red with a maximum capacity of 577 mg g(-1), which was higher than that of most materials reported to now. In-CPPS can also be outstanding adsorbents for removing other dyes such as acid chrome blue K, brilliant red GR and brilliant green. Furthermore, after calcinations in air In-CPPs can be converted to morphology-preserved porous In2O3 products which can detect NOx gas in air at room temperature.

  19. Improvement of extraction capability of magnetic molecularly imprinted polymer beads in aqueous media via dual-phase solvent system.

    PubMed

    Hu, Yuling; Liu, Ruijin; Zhang, Yi; Li, Gongke

    2009-08-15

    In this study, a novel and simple dual-phase solvent system for the improvement of extraction capability of magnetic molecularly imprinted polymer (MIP) beads in aqueous sample was proposed. The method integrated MIP extraction and micro-liquid-liquid extraction (micro-LLE) into only one step. A magnetic MIP beads using atrazine as template was synthesized, and was applied to aqueous media by adding micro-volume of n-hexane to form a co-extraction system. The magnetic MIP beads preferred to suspend in the organic phase, which shielded them from the disturbance of water molecule. The target analytes in the water sample was extracted into the organic phase by micro-LLE and then further bound to the solid-phase of magnetic MIP beads. The beads specificity was significantly improved with the imprinting efficiency of template increasing from 0.5 to 4.4, as compared with that in pure aqueous media. The extraction capacity, equilibration process and cross-selectivity of the MIP dual-phase solvent extraction system were investigated. The proposed method coupled with high-performance liquid chromatography was applied to the analysis of atrazine, simazine, propazine, simetryn, prometryne, ametryn and terbutryn in complicated sample such as tomato, strawberry juice and milk. The method is selective, sensitive and low organic solvent-consuming, and has potential to broaden the range of MIP application in biological and environmental sample.

  20. Hyper-branched Structures via Flow Coating

    NASA Astrophysics Data System (ADS)

    Liu, Yujie; Lee, Dong; Monteux, Cécile; Crosby, Alfred

    2013-03-01

    Evaporative self-assembly has been shown to be a scalable method for organizing non-volatile solutes, e.g. nanoparticles; however, the influence of substrate surface energy in this technique has not been studied extensively. In this work, we utilize an evaporative self-assembly process based upon flexible blade flow coating to fabricate organized structures on substrates that have been modified to systematically vary surface energy. We focus on the patterning of polystyrene. We observe a variety of polystyrene structures including dots, hyper-branched patterns, stripes and lines that can be deposited on substrates with a range of wetting properties. We explain the mechanism for these structural formations based on the competition between Marangoni flow, adsorption, friction and viscosity. The development of this fundamental knowledge is important for controlling hierarchical manufacturing of nanoscale objects with different surface chemistries and compositions.

  1. Highly efficient hyperbranched CNT surfactants: influence of molar mass and functionalization.

    PubMed

    Bertels, Ellen; Bruyninckx, Kevin; Kurttepeli, Mert; Smet, Mario; Bals, Sara; Goderis, Bart

    2014-10-21

    End-group-functionalized hyperbranched polymers were synthesized to act as a carbon nanotube (CNT) surfactant in aqueous solutions. Variation of the percentage of triphenylmethyl (trityl) functionalization and of the molar mass of the hyperbranched polyglycerol (PG) core resulted in the highest measured surfactant efficiency for a 5000 g/mol PG with 5.6% of the available hydroxyl end-groups replaced by trityl functions, as shown by UV-vis measurements. Semiempirical model calculations suggest an even higher efficiency for PG5000 with 2.5% functionalization and maximal molecule specific efficiency in general at low degrees of functionalization. Addition of trityl groups increases the surfactant-nanotube interactions in comparison to unfunctionalized PG because of π-π stacking interactions. However, at higher functionalization degrees mutual interactions between trityl groups come into play, decreasing the surfactant efficiency, while lack of water solubility becomes an issue at very high functionalization degrees. Low molar mass surfactants are less efficient compared to higher molar mass species most likely because the higher bulkiness of the latter allows for a better CNT separation and stabilization. The most efficient surfactant studied allowed dispersing 2.85 mg of CNT in 20 mL with as little as 1 mg of surfactant. These dispersions, remaining stable for at least 2 months, were mainly composed of individual CNTs as revealed by electron microscopy.

  2. Magnetorheological fluids based on a hyperbranched polycarbosilane matrix and iron microparticles

    NASA Astrophysics Data System (ADS)

    Vasiliev, V. G.; Sheremetyeva, N. A.; Buzin, M. I.; Turenko, D. V.; Papkov, V. S.; Klepikov, I. A.; Razumovskaya, I. V.; Muzafarov, A. M.; Kramarenko, E. Yu

    2016-05-01

    Magnetorheological fluids (MFs) based on hyperbranched polycarbosilanes as a carrier medium and micron-sized carbonyl iron particles as filler have been synthesized for the first time. Their magnetorheological (MR) behavior has been studied in steady-state flow regime and under dynamic torsion oscillations on a commercial rheometer. At zero magnetic field, in spite of a rather high molecular mass, the hyperbranched polymers as well as their magnetic compositions with up to 72 mass% of magnetic filler demonstrate Newtonian behavior, and their viscosity considerably increases with magnetic filler content. In magnetic fields MFs show a huge MR response. Namely, in steady-state flow experiments a five orders of magnitude increase in viscosity was observed accompanied by magnetic-field-induced well-pronounced non-Newtonian behavior and a non-zero yield stress. Dynamic experiments demonstrate the transition from liquid-like to solid-like behavior of MFs with a large increase in both the storage and loss moduli under application of a magnetic field. In magnetic fields, the rheological behavior of the obtained MF resembles that of soft MR elastomers being mainly determined by the magnetic particle network formed due to magnetic interactions. In particular, like MR elastomers the MFs exhibit the Payne effect, i.e. dependence of the dynamic modulus on the strain amplitude.

  3. Thermodynamics of coil-hyperbranched poly(styrene-b-acrylated epoxidized soybean oil) block copolymers

    NASA Astrophysics Data System (ADS)

    Lin, Fang-Yi; Hohmann, Austin; Hernández, Nacú; Cochran, Eric

    Here we present the phase behavior of a new type of coil-hyperbranched diblock copolymer: poly(styrene- b-acrylated epoxidized soybean oil), or PS-PAESO. PS-PAESO is an example of a biorenewable thermoplastic elastomer (bio-TPE). To date, we have shown that bio-TPEs can be economical commercial substitutes for their petrochemically derived analogues--such as poly(styrene- b-butadiene- b-styrene) (SBS)--in a range of applications including pressure sensitive adhesives and bitumen modification. From a polymer physics perspective, PS-PAESO is an interesting material in that it couples a linear coil-like block with a highly branched block. Thus in contrast to the past five decades of studies on linear AB diblock copolymers, coil-hyperbranched block copolymers are relatively unknown to the community and can be expected to deviate substantially from the standard ``universal'' phase behavior in the AB systems. To explore these new materials, we have constructed a library of PS-PAESO materials spanning a range of molecular weight and composition values. The phase transition behavior and the morphology information will be interpreted by isochronal temperature scanning in dynamic shear rheology, small angle X-ray scattering and the corresponding transmission electron microscopy.

  4. Capabilities and limitations of direct analysis in real time orbitrap mass spectrometry and tandem mass spectrometry for the analysis of synthetic and natural polymers.

    PubMed

    Bridoux, Maxime C; Machuron-Mandard, Xavier

    2013-09-30

    Despite the widespread use of direct analysis in real time mass spectrometry (DART-MS), its capabilities in terms of accessible mass range and the types of polymers that can be analysed are not well known. The goal of this work was to evaluate the capabilities and limitations of this ionization technique combined with orbitrap mass spectrometry and tandem mass spectrometry, for the characterization (structural and polydispersity metrics) of various synthetic and natural polymers. The capabilities and limitations of DART-MS (and -MS(2)), using an orbitrap mass spectrometer, for polymer analysis were evaluated using various industrial synthetic polymers and biopolymers. Stainless steel mesh screens secured on a movable rail were used as the sampling surface, onto which 5 μL of various polymers dissolved in tetrahydrofuran were added. Assignment of spectral features and calculation of molecular weight and polydispersity metrics were performed using Polymerix™ software and the results were compared with those obtained by gel-permeation chromatography (GPC). Protonated oligomers and ammonium adducts were instantaneously detected as the major ionisation products in positive ion mode. Only perfluoropolyethers (PFPEs) were ionised in negative mode and detected as [M](-·) ions. Only singly charged molecular species were observed for all oligomers under study, allowing for a rapid determination of the molecular weight and polydispersity metrics of polymers. At elevated DART gas temperatures (400-500°C) the molecular weight and polydispersity metrics compared fairly well with those obtained by GPC, with polymers whose masses ranged from 200 g x mol(-1) to 4000 g x mol(-1). DART-MS allowed the direct and rapid analysis (mass spectra and tandem mass spectra of all the polymers were acquired in seconds) based on the exact masses of their [M+H](+) and [M+NH4](+) ions (in the positive mode) or [M](-·) ions (for polymers having a high sensitivity toward electron

  5. Adsorption of amphiphilic hyperbranched polyglycerol derivatives onto human red blood cells.

    PubMed

    Liu, Zonghua; Janzen, Johan; Brooks, Donald E

    2010-04-01

    Hydrophobically derivatized hyperbranched polyglycerol (HPG)-polyethylene glycol (PEG) polymers bearing stearoyl chains (HPG-C18-PEG) were originally developed as human serum albumin substitutes and further as a unimolecular drug delivery system. In view of these in vivo applications and the potential for membrane interaction by these materials due to their amphiphilic structure, determining the adsorption of the polymers to human red blood cells (RBCs) is an important issue. This paper reports on the in vitro adsorption to RBCs of tritium-radiolabeled HPG-C18-PEG polymers. The morphological changes of RBCs associated with the adsorption were also examined by light and scanning electron microscopy (SEM). Laser scanning confocal microscopy (LSCM) suggests that the binding site of the polymers on RBCs is the cell membrane. Adsorption experiments show that, in the medium of either saline or plasma, the binding amount of the polymers to RBCs increases with increased polymer concentration in a manner which implies simple Langmurian behavior. The binding amount in saline is of the order of 10(5) molecules/cell at an equilibrium concentration of 1 mg/mL of HPG-C18-PEG polymer. The RBC morphology depends on the adsorbed amount; the cells become crenated in high concentrations (5 and 10 mg/mL) of the polymer solutions in the absence of plasma proteins. Interestingly, a large amount of polymers remain bound to RBCs even after washes with plasma (of the order of 10(4) molecules/cell). Thus, the bound polymers might have an extended circulating time by "hitchhiking" on RBCs in the bloodstream. These results provide significant information and insight for related studies of the interaction of amphiphilic molecules with cell membranes and for in vivo applications of biopolymers as drug delivery systems. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. A seawater triggered dynamic coordinate bond and its application for underwater self-healing and reclaiming of lipophilic polymer.

    PubMed

    Xia, Nan Nan; Xiong, Xiao Min; Wang, Junhu; Rong, Min Zhi; Zhang, Ming Qiu

    2016-04-21

    In this work, water triggered dynamic catechol-Fe(3+) coordinate bonds are revealed and studied at atomic, molecular and macroscopic levels using Mössbauer spectroscopy, rheological analysis, etc. DOPA-iron complexation is found to be dynamic in the presence of water, and this dynamic manner is immobilized after removing water. Accordingly, a water saturated lipophilic polymer containing catechol-Fe(3+) crosslinks, rather than the dry version, exhibits dynamic coordination-dissociation behavior. In addition, a migration of iron proves to be enabled in the catechol-Fe(3+) crosslinked polymer immersed in seawater. Rearrangement of the dynamic catechol-Fe(3+) coordinate bonds among different molecules is thus favored. Based on these results, we develop a bulk lipophilic polymer solid capable of repeated autonomic recovery of strength in seawater without manual intervention. When the polymer is damaged in seawater, reshuffling of the mobile hyperbranched polymer networks across the crack interface, owing to the dynamic catechol-Fe(3+) crosslinkages activated by the alkaline circumstances, rebinds the damaged site. By taking advantage of the same mechanism, the polymer can be remolded with the help of seawater and this recycled polymer is still self-healable in seawater. Unlike in the case of conventional polymers where water would shield macromolecules from interacting, here, seawater is a necessary environmental assistant for the material interaction to take effect. The outcomes are beneficial for deepening the understanding of coordinate bonds, and the development of robust underwater self-healing lipophilic polymers.

  7. Reversible hemostatic properties of sulfabetaine/quaternary ammonium modified hyperbranched polyglycerol.

    PubMed

    Wen, Jiying; Weinhart, Marie; Lai, Benjamin; Kizhakkedathu, Jayachandran; Brooks, Donald E

    2016-04-01

    A library of hyperbranched polyglycerols (HPGs) functionalized with different mole fractions of zwitterionic sulfabetaine and cationic quaternary ammonium ligands was synthesized and characterized. A post-polymerization method was employed that utilized double bond moieties on the dendritic HPG for the coupling of thiol-terminated ligands via UV initiated thiol-ene "click" chemistry. The proportions of different ligands were precisely controlled by varying the ligand concentration during the irradiation process. The effect of the polymer library on hemostasis was investigated using whole human blood. It was found that polymer with ≥40% of alkenes converted to positive charges and the remainder to sulfabetaines caused hemagglutination at ≥1 mg/mL, without causing red blood cell lysis. The quaternary ammonium groups can interact with the negative charged sites on the membranes of erythrocytes, which provides the bioadhesion. The zwitterionic sulfabetaine evidently provides a hydration layer to partially mask the adverse effects that are likely to be caused by cationic moieties. The polymer was also found able to enhance platelet aggregation and activation in a concentration and positive charge density-dependent manner, which would contribute to initiating hemostasis. In a variety of other assays the material was found to be largely biocompatible. The polymer-induced hemostasis is obtained by a process independent of the normal blood clotting cascade but dependent on red blood cell agglutination, where the polymers promote hemostasis by linking erythrocytes together to form a lattice to entrap the cells.

  8. Bio-Inspired Fluoro-polydopamine Meets Barium Titanate Nanowires: A Perfect Combination to Enhance Energy Storage Capability of Polymer Nanocomposites.

    PubMed

    Wang, Guanyao; Huang, Xingyi; Jiang, Pingkai

    2017-03-01

    Rapid evolution of energy storage devices expedites the development of high-energy-density materials with excellent flexibility and easy processing. The search for such materials has triggered the development of high-dielectric-constant (high-k) polymer nanocomposites. However, the enhancement of k usually suffers from sharp reduction of breakdown strength, which is detrimental to substantial increase of energy storage capability. Herein, the combination of bio-inspired fluoro-polydopamine functionalized BaTiO3 nanowires (NWs) and a fluoropolymer matrix offers a new thought to prepare polymer nanocomposites. The elaborate functionalization of BaTiO3 NWs with fluoro-polydopamine has guaranteed both the increase of k and the maintenance of breakdown strength, resulting in significantly enhanced energy storage capability. The nanocomposite with 5 vol % functionalized BaTiO3 NWs discharges an ultrahigh energy density of 12.87 J cm(-3) at a relatively low electric field of 480 MV m(-1), more than three and a half times that of biaxial-oriented polypropylene (BOPP, 3.56 J cm(-3) at 600 MV m(-1)). This superior energy storage capability seems to rival or exceed some reported advanced nanoceramics-based materials at 500 MV m(-1). This new strategy permits insights into the construction of polymer nanocomposites with high energy storage capability.

  9. A molecular design principle of lyotropic liquid-crystalline conjugated polymers with directed alignment capability for plastic electronics.

    PubMed

    Kim, Bong-Gi; Jeong, Eun Jeong; Chung, Jong Won; Seo, Sungbaek; Koo, Bonwon; Kim, Jinsang

    2013-07-01

    Conjugated polymers with a one-dimensional p-orbital overlap exhibit optoelectronic anisotropy. Their unique anisotropic properties can be fully realized in device applications only when the conjugated chains are aligned. Here, we report a molecular design principle of conjugated polymers to achieve concentration-regulated chain planarization, self-assembly, liquid-crystal-like good mobility and non-interdigitated side chains. As a consequence of these intra- and intermolecular attributes, chain alignment along an applied flow field occurs. This liquid-crystalline conjugated polymer was realized by incorporating intramolecular sulphur-fluorine interactions and bulky side chains linked to a tetrahedral carbon having a large form factor. By optimizing the polymer concentration and the flow field, we could achieve a high dichroic ratio of 16.67 in emission from conducting conjugated polymer films. Two-dimensional grazing-incidence X-ray diffraction was performed to analyse a well-defined conjugated polymer alignment. Thin-film transistors built on highly aligned conjugated polymer films showed more than three orders of magnitude faster carrier mobility along the conjugated polymer alignment direction than the perpendicular direction.

  10. A molecular design principle of lyotropic liquid-crystalline conjugated polymers with directed alignment capability for plastic electronics

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Gi; Jeong, Eun Jeong; Chung, Jong Won; Seo, Sungbaek; Koo, Bonwon; Kim, Jinsang

    2013-07-01

    Conjugated polymers with a one-dimensional p-orbital overlap exhibit optoelectronic anisotropy. Their unique anisotropic properties can be fully realized in device applications only when the conjugated chains are aligned. Here, we report a molecular design principle of conjugated polymers to achieve concentration-regulated chain planarization, self-assembly, liquid-crystal-like good mobility and non-interdigitated side chains. As a consequence of these intra- and intermolecular attributes, chain alignment along an applied flow field occurs. This liquid-crystalline conjugated polymer was realized by incorporating intramolecular sulphur-fluorine interactions and bulky side chains linked to a tetrahedral carbon having a large form factor. By optimizing the polymer concentration and the flow field, we could achieve a high dichroic ratio of 16.67 in emission from conducting conjugated polymer films. Two-dimensional grazing-incidence X-ray diffraction was performed to analyse a well-defined conjugated polymer alignment. Thin-film transistors built on highly aligned conjugated polymer films showed more than three orders of magnitude faster carrier mobility along the conjugated polymer alignment direction than the perpendicular direction.

  11. Using Peptide Aptamer Targeted Polymers as a Model Nanomedicine for Investigating Drug Distribution in Cancer Nanotheranostics.

    PubMed

    Zhao, Yongmei; Houston, Zachary H; Simpson, Joshua D; Chen, Liyu; Fletcher, Nicholas L; Fuchs, Adrian V; Blakey, Idriss; Thurecht, Kristofer J

    2017-10-02

    Theranostics is a strategy that combines multiple functions such as targeting, stimulus-responsive drug release, and diagnostic imaging into a single platform, often with the aim of developing personalized medicine.1,2 Based on this concept, several well-established hyperbranched polymeric theranostic nanoparticles were synthesized and characterized as model nanomedicines to investigate how their properties affect the distribution of loaded drugs at both the cell and whole animal levels. An 8-mer peptide aptamer was covalently bound to the periphery of the nanoparticles to achieve both targeting and potential chemosensitization functionality against heat shock protein 70 (Hsp70). Doxorubicin was also bound to the polymeric carrier as a model chemotherapeutic drug through a degradable hydrazone bond, enabling pH-controlled release under the mildly acid conditions that are found in the intracellular compartments of tumor cells. In order to track the nanoparticles, cyanine-5 (Cy5) was incorporated into the polymer as an optical imaging agent. In vitro cellular uptake was assessed for the hyperbranched polymer containing both doxorubicin (DOX) and Hsp70 targeted peptide aptamer in live MDA-MB-468 cells, and was found to be greater than that of either the untargeted, DOX-loaded polymer or polymer alone due to the specific affinity of the peptide aptamer for the breast cancer cells. This was also validated in vivo with the targeted polymers showing much higher accumulation within the tumor 48 h postinjection than the untargeted analogue. More detailed assessment of the nanomedicine distribution was achieved by directly following the polymeric carrier and the doxorubicin at both the in vitro cellular level via compartmental analysis of confocal images of live cells and in whole tumors ex vivo using confocal imaging to visualize the distribution of the drug in tumor tissue as a function of distance from blood vessels. Our results indicate that this polymeric carrier shows

  12. Synthesis and adsorption properties of polymer-mesoporous SiO2 nanocomposite based on cellulose biomass via self-assembly

    NASA Astrophysics Data System (ADS)

    Tao, Jin; Xiong, Jiaqing; Jiao, Chenlu; Chen, Yuyue; Lin, Hong

    2017-06-01

    The present work describes the fabrication of an amino hyperbranched polymer (AHP) functionalized mesoporous SiO2 nanocomposite based on cellulose biomass substrate through self-assembly method, obtaining a multi-functional hybrid composite (AM-cotton) as adsorbent for dye pollutions from aqueous medium. Specifically, polymer-functionalized mesoporous SiO2 nanoparticles (AMSNs) was obtained by covalently graft of AHP onto carboxyl-functionalized mesoporous silica nanoparticles (CMSNs) which were prepared via one-pot co-condensation. Subsequently, owing to electrostatic interaction between interfaces, AM-cotton fibers were fabricated via self-assembly of amino coated AMSNs on the surface of anion-modified cotton fiber (AN-cotton). Due to considerate versatile functional groups from hyperbranched polymer on nano-sized mesoporous silica with large surface area per unit mass, the functional fiber AM-cotton exhibits excellent adsorption capabilities for anionic (Congo red, CR) and cationic (Methylene blue, MB) dye pollutant with maximum of 195 mg/g for CR and 144 mg/g for MB, respectively.

  13. Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based onHyperbranched Semiconductor Nanocrystals

    SciTech Connect

    Gur, Ilan; Fromer, Neil A.; Chen, Chih-Ping; Kanaras, AntoniosG.; Alivisatos, A. Paul

    2006-09-09

    In recent years, the search to develop large-area solar cells at low cost has led to research on photovoltaic (PV) systems based on nanocomposites containing conjugated polymers. These composite films can be synthesized and processed at lower costs and with greater versatility than the solid state inorganic semiconductors that comprise today's solar cells. However, the best nanocomposite solar cells are based on a complex architecture, consisting of a fine blend of interpenetrating and percolating donor and acceptor materials. Cell performance is strongly dependent on blend morphology, and solution-based fabrication techniques often result in uncontrolled and irreproducible blends, whose composite morphologies are difficult to characterize accurately. Here we incorporate 3-dimensional hyper-branched colloidal semiconductor nanocrystals in solution-processed hybrid organic-inorganic solar cells, yielding reproducible and controlled nanoscale morphology.

  14. Hyperbranched poly(epsilon-caprolactone) as a nonmigrating alternative plasticizer for phthalates in flexible PVC.

    PubMed

    Choi, Jeongsoo; Kwak, Seung-Yeop

    2007-05-15

    Hyperbranched (dendritic) poly(epsilon-caprolactone)s (HPCLs) were synthesized to have architectural variations, which are the different lengths of linear segments and different numbers of branches, and were used as plasticizers for flexible poly(vinyl chloride) (PVC). The plasticization efficiency estimated by the lowering of glass transition temperature and the enhancement in ultimate elongation indicated that the HPCLs with the shorter linear segments and the larger number of branches imparted as high flexibility as di(ethylhexyl) phthalate (DEHP) and much higher flexibility than their linear analogue, linear poly(epsilon-caprolactone), which is one of currently used polymer plasticizers. Volatility, extractability, and exudation tests for PVC/HPCL samples showed that there was no plasticizer migration even at very harsh condition, while ca. 7-78% of additives in PVC/DEHP was migrated out of samples, indicating that the HPCL can be used as an alternative plasticizer to remove the potential health risk from migrating phthalates during end use.

  15. Controlled release of DNA from photoresponsive hyperbranched polyglycerols with oligoamine shells.

    PubMed

    Fischer, Wiebke; Quadir, Mohiuddin A; Barnard, Anna; Smith, David K; Haag, Rainer

    2011-12-08

    Two photo-responsive core/shell nanoparticles based on hyperbranched polyglycerol (hPG) are synthesized for controlled release of DNA. The shell is composed either of bis-(3-aminopropyl)methylamine (AMPA) or pentaethylenehexamine (PEHA) derivatives and is attached to the hPG core with a photo-responsive o-nitrobenzyl linker. Ethidium bromide displacement assay, gel electrophoresis, DLS, and ζ-potential measurements are performed with these nanoparticles. Photo-responsive changes within the carrier scaffold are investigated by irradiating the polymer solution with 350 nm monochromatic light. Fully covered APMA-shelled carriers are found to complex the DNA at an N/P ratio of 10 with an average size ranging from 54 to 78 nm depending on the degree of functionalization of the core.

  16. Progesterone binding nano-carriers based on hydrophobically modified hyperbranched polyglycerols.

    PubMed

    Alizadeh Noghani, M; Brooks, D E

    2016-03-07

    Progesterone (Pro) is a potent neurosteroid and promotes recovery from moderate Traumatic Brain Injury but its clinical application is severely impeded by its poor water solubility. Here we demonstrate that reversibly binding Pro within hydrophobically modified hyperbranched polyglycerol (HPG-Cn-MPEG) enhances its solubility, stability and bioavailability. Synthesis, characterization and Pro loading into HPG-Cn-MPEG is described. The release kinetics are correlated with structural properties and the results of Differential Scanning Calorimetry studies of a family of HPG-Cn-MPEGs of varying molecular weight and alkylation. While the maximum amount of Pro bound correlates well with the amount of alkyl carbon per molecule contributing to its hydrophobicity, the dominant first order rate constant for Pro release correlates strongly with the amount of structured or bound water in the dendritic domain of the polymer. The results provide evidence to justify more detailed studies of interactions with biological systems, both single cells and in animal models.

  17. Water-Soluble Blue Fluorescence-Emitting Hyperbranched Polysiloxanes Simultaneously Containing Hydroxyl and Primary Amine Groups.

    PubMed

    Niu, Song; Yan, Hongxia; Chen, Zhengyan; Yuan, Lingxia; Liu, Tianye; Liu, Chao

    2016-01-01

    In this Communication, novel water-soluble hyperbranched polysiloxanes (WHPSs) simultaneously containing hydroxyl and primary amine groups are developed. The polymers are constructed via melt polycondensation, that is, transesterification reaction between ethoxyl groups of (3-aminopropyl)triethoxysilane and hydroxyl groups of dihydric alcohols, using a one-step process under catalyst-free conditions. Surprisingly, the resultant WHPSs can emit bright blue fluorescence in the 100% solid state under the irradiation of UV light, and their photoluminescence intensities in aqueous solutions continuously go up along with increasing concentrations. Interestingly, their hydrolyzates display more intense luminescence compared to the unhydrolyzed. The efficient and easily controllable preparation strategy provides a remarkable and versatile platform for the fabrication of neoteric fluorescent materials for various potential applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Functionalization of MWNTs with hyperbranched PEI for highly selective isolation of BSA.

    PubMed

    Chen, Mei-Ling; Chen, Ming-Li; Chen, Xu-Wei; Wang, Jian-Hua

    2010-08-11

    Cationic hyperbranched BPEI was immobilized on the surface of MWNTs via electrostatic interactions between the positively charged protonated amines within the polymer and the carboxyl groups on the chemically oxidized MWNT surface. The functionalized BPEI-MWNTs were characterized by FT-IR, TGA, TEM and surface charge analysis, and it was used as a bio-sorbent for the adsorption of proteins. CD spectra showed no conformational change of BSA during the adsorption/desorption process. A dynamic adsorption capacity of 167 mg · g⁻¹ for BSA was achieved. With a sample volume of 2.0 mL, an enrichment factor of 10 was obtained along with an adsorption efficiency of 100%, a recovery of 100%, a sampling frequency of 10 h⁻¹ and a RSD of 2.6% at 25 µg · mL⁻¹ BSA.

  19. Anion exchangers with negatively charged functionalities in hyperbranched ion-exchange layers for ion chromatography.

    PubMed

    Uzhel, Anna S; Zatirakha, Alexandra V; Smirnov, Konstantin N; Smolenkov, Alexandr D; Shpigun, Oleg A

    2017-01-27

    Novel pellicular poly(styrene-divinylbenzene)-based (PS-DVB) anion exchangers with covalently-bonded hyperbranched functional ion-exchange layers containing negatively charged functionalities are obtained and examined. The hyperbranched coating is created on the surface of aminated PS-DVB substrate by repeating the modification cycles including alkylation with 1,4-butanediol diglycidyl ether (1,4-BDDGE), and amination of the terminal epoxide rings with methylamine (MA) or glycine (Gly). The influence of the position and the number of the layers with glycine, as well as of the total number of the layers of amine in the coating on the chromatographic properties of the obtained stationary phases is investigated. Chromatographic performance of the obtained stationary phases is evaluated using the model mixtures of inorganic and organic anions with hydroxide eluent. It is shown that the best selectivity toward weakly retained organic acids and oxyhalides is possessed by the anion exchanger obtained after 5 modification cycles, with glycine being used in the first one. Such anion exchanger packed in 25-cm long column is capable of separating 22 anions in 58min including 7 standard anions, mono-, di- and trivalent organic acids, oxyhalides, and some other double- and triple-charged anions.

  20. Polymeric assembly of hyperbranched building blocks to establish tunable nanoplatforms for lysosome acidity-responsive gene/drug co-delivery.

    PubMed

    Jia, Hui-Zhen; Zhang, Wei; Wang, Xu-Li; Yang, Bin; Chen, Wei-Hai; Chen, Si; Chen, Gang; Zhao, Yi-Fang; Zhuo, Ren-Xi; Feng, Jun; Zhang, Xian-Zheng

    2015-07-01

    This study plans to develop a nanoparticle technology that can assemble different polymeric "building blocks" with various desired functionalities into one nanosystem in a pH-dependent manner. For this purpose, polymeric building blocks were specifically designed with hyperbranched architectures, and orthogonal pH-reversible phenylboronic acid-diols were taken as "joints" to integrate them together. To verify the idea, a corona-core dual-polymer nanoassembly was prepared as the vehicle for lysosomotropic gene/drug co-delivery. Phenylboronic acid modified hyperbranched oligoethylenimine (OEI-PBA) was arranged to cluster around the hydrophobic core composed of hyperbranched polyglycerol, just by mixing two polymers in an appropriate ratio at neutral conditions. Compared with the parent OEI-PBA, this nanoassembly demonstrated better capture of plasmid DNA, highly enhanced activity for cellular transport and gene transfection (up to 100 fold), the ability to further load hydrophobic drugs, lysosome acidity-targeting pH-dependent release of both carried cargoes, and improved cell-biocompatibility. To evaluate its potential for combinational gene/drug therapy, in vitro experiments using the therapeutic p53 gene and antitumor doxorubicin as models were carried out. This intracellular co-delivery led to apparently synergetic anti-cancer effects in cultured cancer cells. This dynamic paradigm shows interesting features including easy manipulation, reversible conjugation, lysosome-targeting pH-responsiveness, high co-delivery efficiency, and functional expandability by further accommodating other building blocks.

  1. Hyperbranched polyglycerols on the nanometer and micrometer scale.

    PubMed

    Steinhilber, Dirk; Seiffert, Sebastian; Heyman, John A; Paulus, Florian; Weitz, David A; Haag, Rainer

    2011-02-01

    We report the preparation of polyglycerol particles on different length scales by extending the size of hyperbranched polyglycerols (3 nm) to nanogels (32 nm) and microgels (140 and 220 μm). We use miniemulsion templating for the preparation of nanogels and microfluidic templating for the preparation of microgels, which we obtain through a free-radical polymerization of hyperbranched polyglycerol decaacrylate and polyethylene glycol-diacrylate. The use of mild polymerization conditions allows yeast cells to be encapsulated into the resultant microgels with cell viabilities of approximately 30%.

  2. Negatively charged hyperbranched polyglycerol grafted membranes for osmotic power generation from municipal wastewater.

    PubMed

    Li, Xue; Cai, Tao; Chen, Chunyan; Chung, Tai-Shung

    2016-02-01

    Osmotic power holds great promise as a clean, sustainable and largely unexploited energy resource. Recent membrane development for pressure-retarded osmosis (PRO) is making the osmotic power generation more and more realistic. However, severe performance declines have been observed because the porous layer of PRO membranes is fouled by the feed stream. To overcome it, a negatively charged antifouling PRO hollow fiber membrane has been designed and studied in this work. An antifouling polymer, derived from hyperbranched polyglycerol and functionalized by α-lipoic acid and succinic anhydride, was synthesized and grafted onto the polydopamine (PDA) modified poly(ether sulfone) (PES) hollow fiber membranes. In comparison to unmodified membranes, the charged hyperbranched polyglycerol (CHPG) grafted membrane is much less affected by organic deposition, such as bovine serum albumin (BSA) adsorption, and highly resistant to microbial growths, demonstrated by Escherichia coli adhesion and Staphylococcus aureus attachment. CHPG-g-TFC was also examined in PRO tests using a concentrated wastewater as the feed. Comparing to the plain PES-TFC and non-charged HPG-g-TFC, the newly developed membrane exhibits not only the smallest decline in water flux but also the highest recovery rate. When using 0.81 M NaCl and wastewater as the feed pair in PRO tests at 15 bar, the average power density remains at 5.6 W/m(2) in comparison to an average value of 3.6 W/m(2) for unmodified membranes after four PRO runs. In summary, osmotic power generation may be sustained by properly designing and anchoring the functional polymers to PRO membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Hyperbranched polyglycerol electrospun nanofibers for wound dressing applications.

    PubMed

    Vargas, E A Torres; do Vale Baracho, N C; de Brito, J; de Queiroz, A A A

    2010-03-01

    This study reports on the performance of electrospun hyperbranched polyglycerol nanofibers capable of providing an active agent delivery for wound dressing applications. The aim of this work was to prepare electrospun HPGL nanofibers containing Calendula officinalis as a wound-healing and anti-inflammatory agent. The morphology of the electrospun HPGL-C. officinalis nanofibers was analyzed using a scanning electron microscope. The results showed that the diameters of the fibers were in nanoscales. The release of C. officinalis from the electrospun HPGL fibers was determined by HPLC at a physiological temperature (37 degrees C). Rapid release of the C. officinalis from the electrospun HPGL-C. officinalis nanofibers was exhibited as result of the high swelling ability as well as the high porosity of the electrospun HPGL-C. officinalis membranes. The degree of swelling, and the mechanical and biocompatible properties of the electrospun HPGL fibers were determined. The results showed that, in physiological conditions, the water absorption into the HPGL electrospun fibers slowed down, governed by the rate at which the electrospun HPGL-C. officinalis membranes interacted with the physiological fluid. The rate of release of C. officinalis seemed to depend on the C. officinalis content in the HPGL nanofibers. From the elastic modulus, it could be seen that elastic electrospun HPGL fibers were obtained with increments of C. officinalis content in the HPGL-C. officinalis membranes. The results of in vivo experiments in rats suggested that HPGL-C. officinalis might be an interesting bioactive wound dressing material for clinical applications.

  4. Quantum dots as templates for self-assembly of photoswitchable polymers: small, dual-color nanoparticles capable of facile photomodulation.

    PubMed

    Díaz, Sebastián A; Giordano, Luciana; Azcárate, Julio C; Jovin, Thomas M; Jares-Erijman, Elizabeth A

    2013-02-27

    A photomodulatable amphiphilic polymer has been synthesized with a backbone of poly[isobutylene-alt-maleic anhydride] and pendant dodecyl alkyl chains, Lucifer Yellow (LY) fluorescent probes, and diheteroarylethenes photochromic (PC) groups. The latter serve as reversible UV-activated FRET acceptors for the LY donors. We characterized the spectral and switching properties of the polymer in an organic solvent (CHCl(3)). In an aqueous medium the polymer forms polymersomes, constituting fluorescence probes ~75 nm in diameter. Self-assembly of the polymer on the surface of a quantum dot (QD) serving as a template creates a dual-color photoswitchable nanoparticle (psNP) with improved properties due to the increase in polymer density and efficiency of PC photoconversion. The psNP exhibits a second QD red emission band that functions as an internal standard requiring only a single excitation wavelength, and is much reduced in size (<20 nm diameter) compared to the polymersomes. The QD template also greatly increases the depth of modulation by photochromic FRET of the LY emission monitored by both steady-state and time-resolved (lifetime) fluorescence (from 20%→70%, and from 12%→55%, respectively).

  5. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  6. Polymers.

    ERIC Educational Resources Information Center

    Tucker, David C.

    1986-01-01

    Presents an open-ended experiment which has students exploring polymer chemistry and reverse osmosis. This activity involves construction of a polymer membrane, use of it in a simple osmosis experiment, and application of its principles in solving a science-technology-society problem. (ML)

  7. Synthesis of novel N-diazeniumdiolates based on hyperbranched polyethers.

    PubMed

    Kou, Yuxia; Wan, Ajun

    2008-04-01

    Novel N-diazeniumdiolate based on hyperbranched polyethers(HP-g-DACA/N(2)O(2)) were prepared through a two-step synthesized route. The alkyltrimethoxysilane containing secondary amine groups (DACA) was used to modify the hydroxyl end groups of hyperbranched polyethers (HP) to obtain the precursor hyperbranched diamine (HP-g-DACA). Then HP-g-DACA was reacted with NO at 80psi pressure to be converted into N-diazeniumdiolates. The structures were confirmed using (13)C NMR and IR spectra. UV-vis spectroscopy measurement indicated that the aqueous solution of obtained HP-g-DACA/N(2)O(2) had a characteristic absorption at 246nm. The final HP-g-DACA/N(2)O(2) product showed NO releasing within the prolonged periods of time, and the apparent half-life t(1/2) was more than 11min in phosphate buffer at 37 degrees C. The total amount of NO released from HP-g-DACA/N(2)O(2) could achieve to 0.43micromol/mg and was proportional to the modified degree of HP by DACA. In addition, the NO loading efficiency can be modulated by the modification degree of hyperbranched macromolecular end groups.

  8. Microcellular processing of polylactide-hyperbranched polyester-nanoclay composites

    Treesearch

    Srikanth Pilla; Adam Kramschuster; Jungjoo Lee; Craig Clemons; Shaoqin Gong; Lih-Sheng Turng

    2010-01-01

    The effects of addition of hyperbranched polyesters (HBPs) and nanoclay on the material properties of both solid and microcellular polylactide (PLA) produced via a conventional and microcellular injection-molding process, respectively, were investigated. The effects of two different types of HBPs (i.e., Boltorn H2004® and Boltorn H20®) at the same...

  9. Hyperbranched Polyglycerol-Induced Porous Silica Nanoparticles as Drug Carriers for Cancer Therapy In Vitro and In Vivo.

    PubMed

    Yang, Yang; Wang, Anhe; Wei, Qiang; Schlesener, Cathleen; Haag, Rainer; Li, Qi; Li, Junbai

    2017-02-01

    Mesoporous silica-based nanoparticles are generally accepted as a potential platform for drug loading with a lot of advantages, except for their complex purification procedures and structures that are difficult to decompose. In this work, biocompatible hyperbranched polyglycerol is introduced to synthesize mesoporous silica nanoparticles (MSNs). The materials possess good biocompatibility, controlled release, and biodegradability. They also show passive targeting capability through the enhanced permeability and retention effect and can be excreted from the biological system. The method avoids the needs to employ traditional surfactants and complicated purified procedures, which make these MSNs an efficient delivery system for cancer therapy.

  10. Hyperbranched Polyglycerol‐Induced Porous Silica Nanoparticles as Drug Carriers for Cancer Therapy In Vitro and In Vivo

    PubMed Central

    Yang, Yang; Wang, Anhe; Wei, Qiang; Schlesener, Cathleen; Haag, Rainer; Li, Qi

    2016-01-01

    Abstract Mesoporous silica‐based nanoparticles are generally accepted as a potential platform for drug loading with a lot of advantages, except for their complex purification procedures and structures that are difficult to decompose. In this work, biocompatible hyperbranched polyglycerol is introduced to synthesize mesoporous silica nanoparticles (MSNs). The materials possess good biocompatibility, controlled release, and biodegradability. They also show passive targeting capability through the enhanced permeability and retention effect and can be excreted from the biological system. The method avoids the needs to employ traditional surfactants and complicated purified procedures, which make these MSNs an efficient delivery system for cancer therapy. PMID:28168161

  11. Synthesis and characterization of hyperbranched polyglycerol hydrogels.

    PubMed

    Oudshoorn, Marion H M; Rissmann, Robert; Bouwstra, Joke A; Hennink, Wim E

    2006-11-01

    Hyperbranched polyglycerol (HyPG; M(n) 2000g/mol) was derivatized with glycidyl methacrylate (GMA) in dimethyl sulfoxide using 4-(N,N-dimethylamino)pyridine as a catalyst to obtain methacrylated HyPG (HyPG-MA). The degree of substitution (DS, the percentage of derivatized hydroxyl groups), established by NMR and RP-HPLC, was fully controlled in the range of 0.7-70 by varying the molar ratio of GMA to HyPG in the reaction mixture. This indicates that for e.g. a DS of 28, 9 out of the 32 hydroxyl groups of a HyPG molecule were esterified with methacryloyl groups. Under the selected conditions, the reaction reached an equilibrium within 4h. Furthermore, it was demonstrated that under the applied conditions the reaction was reversible. Hydrogels were obtained by crosslinking HyPG-MA in aqueous solutions using potassium peroxodisulfate (KPS) and N,N,N',N'-tetramethylethylenediamine (TEMED) as initiator and catalyst, respectively. Within 10min, 99% of the methacryloyl groups were polymerized. Rheological analysis showed that the storage modulus of these gels could be tailored by varying the concentration of HyPG-MA in the aqueous solution as well as by the DS. Moreover, the obtained hydrogels have a limited swelling capacity indicating that rather dimensionally stable networks were obtained. As an alternative for radical polymerization with KPS and TEMED, the HyPG-MA could also be crosslinked by photopolymerization using Irgacure 2959 as photoinitiator. A methacrylate conversion of 99% was obtained within 3min of illumination. As for the gels prepared with KPS and TEMED, networks formed by photopolymerization also had a high shear storage modulus and showed limited swelling. Hydrogels based on HyPG have great potential as drug delivery matrices and for tissue engineering purposes.

  12. Injection and injection-compression moulding replication capability for the production of polymer lab-on-a-chip with nano structures

    NASA Astrophysics Data System (ADS)

    Calaon, M.; Tosello, G.; Garnaes, J.; Hansen, H. N.

    2017-10-01

    The manufacturing precision and accuracy in the production of polymer lab-on-a-chip components with 100–130 nm deep nanochannels are evaluated using a metrological approach. Replication fidelity on corresponding process fingerprint test nanostructures over different substrates (nickel tool and polymer part) is quantified through traceable atomic force microscope measurements. Dimensions of injection moulded (IM) and injection-compression moulded (ICM) thermoplastic cyclic olefin copolymer nanofeatures are characterized depending on process parameters and four different features positions on a 30  ×  80 mm2 area. Replication capability of IM and ICM technologies are quantified and the products tolerance at the nanometre dimensional scale verified.

  13. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation

    PubMed Central

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-01-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability. PMID:27080134

  14. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation.

    PubMed

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-04-15

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors' knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.

  15. Peroxidase-like activity of gold nanoparticles stabilized by hyperbranched polyglycidol derivatives over a wide pH range

    NASA Astrophysics Data System (ADS)

    Drozd, Marcin; Pietrzak, Mariusz; Parzuchowski, Paweł; Mazurkiewicz-Pawlicka, Marta; Malinowska, Elżbieta

    2015-12-01

    The aim of this work was to carry out comparative studies on the peroxidase-like activity of gold nanoparticles (AuNPs) stabilized with low molecular weight hyperbranched polyglycidol (HBPG-OH) and its derivative modified with maleic acid residues (HBPG-COOH). The influence of the stabilizer to gold precursor ratio on the size and morphology of nanoparticles obtained was checked, and prepared nanoparticles were characterized by means of transmission electron microscopy and UV-Vis spectroscopy. The results indicated the divergent effect of increasing the concentration of stabilizers (HBPG-OH or HBPG-COOH) on the size of the nanostructures obtained. The gold nanoparticles obtained were characterized as having intrinsic peroxidase-like activity and the mechanism of catalysis in acidic and alkaline mediums was consistent with the standard Michaelis-Menten kinetics, revealing a strong affinity of AuNPs with 2, 2‧-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 3, 3‧, 5, 5‧-tetramethylbenzidine (TMB), and significantly lower affinity towards phenol. By comparing the kinetic parameters, a negligible effect of polymeric ligand charge on activity against various types of substrates (anionic or cationic) was indicated. The superiority of steric stabilization via the application of tested low-weight hyperbranched polymers over typical stabilizers in preventing salt-induced aggregation and maintaining high catalytic activity in time was proved. The applied hyperbranched stabilizers provide a good tool for manufacturing gold-based nanozymes, which are highly stable and active over a wide pH range.

  16. Pulsed micro-laser line thermography on submillimeter porosity in carbon fiber reinforced polymer composites: experimental and numerical analyses for the capability of detection.

    PubMed

    Zhang, Hai; Fernandes, Henrique; Djupkep Dizeu, Frank Billy; Hassler, Ulf; Fleuret, Julien; Genest, Marc; Ibarra-Castanedo, Clemente; Robitaille, François; Joncas, Simon; Maldague, Xavier

    2016-12-01

    In this article, pulsed micro-laser line thermography (pulsed micro-LLT) was used to detect the submillimeter porosities in a 3D preformed carbon fiber reinforced polymer composite specimen. X-ray microcomputed tomography was used to verify the thermographic results. Then, finite element analysis was performed on the corresponding models on the basis of the experimental results. The same infrared image processing techniques were used for the experimental and simulation results for comparative purposes. Finally, a comparison of experimental and simulation postprocessing results was conducted. In addition, an analysis of probability of detection was performed to evaluate the detection capability of pulsed micro-LLT on submillimeter porosity.

  17. Thermodynamics of hyperbranched poly(ethylenimine) with isobutyramide residues during phase transition: an insight into the molecular mechanism.

    PubMed

    Wang, Hongna; Sun, Shengtong; Wu, Peiyi

    2011-07-21

    The thermodynamic behavior of hyperbranched poly(ethylenimine) with isobutyramide groups (HPEI-IBAm) during thermal-induced phase transition in water was investigated by turbidity measurement, calorimetric measurements (DSC), FT-IR, and dynamic light scattering (DLS). Both turbidity and calorimetric measurements indicated a recoverable phase transition with a small hysteresis. Detailed FT-IR investigation gave an insight into its molecular mechanism about detailed group interaction during the heating-cooling process. The second derivative and Gaussian fit were carried out to separate three components of ν(C═O): 1648, 1625, and 1600 cm(-1), which are assigned to C═O···D-N H-bonds, single and double H-bonded carbonyl groups with water molecules, respectively. Quantitative analysis of amide I groups indicates a better revival compared to PNIPAM. The isosbestic point determination and 2D correlation analysis together with dynamic light scattering were applied to draw out the mechanism. Thermosensitive HPEI-IBAm dissolves in water exhibits small particles of ca. 3 nm at room temperature at first. As temperature increases, the polymer begins to shrink and water is driven out from the polymer. Finally, the polymer results in a hydrophobic sphere, which aggregates further for a relative stable state upon heating. Above LCST, C═O···D-N hydrogen bonds form with the disassociation of C═O···D(2)O, which helps in the dehydration of CH groups. Upon cooling, the driven force of the transition is the hydration of CH groups. Compared with linear-PNIPAM, the globule-like hyperbranched polymer has a high specific area which endows the groups with a high degree of freedom and more sufficient interaction with water.

  18. Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability.

    PubMed

    Mieszala, Maxime; Hasegawa, Madoka; Guillonneau, Gaylord; Bauer, Jens; Raghavan, Rejin; Frantz, Cédric; Kraft, Oliver; Mischler, Stefano; Michler, Johann; Philippe, Laetitia

    2017-02-01

    By designing advantageous cellular geometries and combining the material size effects at the nanometer scale, lightweight hybrid microarchitectured materials with tailored structural properties are achieved. Prior studies reported the mechanical properties of high strength cellular ceramic composites, obtained by atomic layer deposition. However, few studies have examined the properties of similar structures with metal coatings. To determine the mechanical performance of polymer cellular structures reinforced with a metal coating, 3D laser lithography and electroless deposition of an amorphous layer of nickel-boron (NiB) is used for the first time to produce metal/polymer hybrid structures. In this work, the mechanical response of microarchitectured structures is investigated with an emphasis on the effects of the architecture and the amorphous NiB thickness on their deformation mechanisms and energy absorption capability. Microcompression experiments show an enhancement of the mechanical properties with the NiB thickness, suggesting that the deformation mechanism and the buckling behavior are controlled by the brittle-to-ductile transition in the NiB layer. In addition, the energy absorption properties demonstrate the possibility of tuning the energy absorption efficiency with adequate designs. These findings suggest that microarchitectured metal/polymer hybrid structures are effective in producing materials with unique property combinations.

  19. The use of azide-alkyne click chemistry in recent syntheses and applications of polytriazole-based nanostructured polymers

    NASA Astrophysics Data System (ADS)

    Shi, Yi; Cao, Xiaosong; Gao, Haifeng

    2016-02-01

    The rapid development of efficient organic click coupling reactions has significantly facilitated the construction of synthetic polymers with sophisticated branched nanostructures. This Feature Article summarizes the recent progress in the application of efficient copper-catalyzed and copper-free azide-alkyne cycloaddition (CuAAC and CuFAAC) reactions in the syntheses of dendrimers, hyperbranched polymers, star polymers, graft polymers, molecular brushes, and cyclic graft polymers. Literature reports on the interesting properties and functions of these polytriazole-based nanostructured polymers are also discussed to illustrate their potential applications as self-healing polymers, adhesives, polymer catalysts, opto-electronic polymer materials and polymer carriers for drug and imaging molecules.

  20. Anti-tumor activity of paclitaxel through dual-targeting carrier of cyclic RGD and transferrin conjugated hyperbranched copolymer nanoparticles.

    PubMed

    Xu, Qing; Liu, Yuexian; Su, Shishuai; Li, Wei; Chen, Chunying; Wu, Yan

    2012-02-01

    Targeted delivery strategies are becoming increasingly important. Herein, a novel hyperbranched amphiphilic poly[(amine-ester)-co-(D,L-lactide)]/1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine copolymer (HPAE-co-PLA/DPPE) with RGD peptide (cRGDfK) and transferrin (Tf) on the periphery was synthesized and used to prepare paclitaxel-loaded nanoparticles (NPs) for dual-targeting chemotherapy. These NPs show satisfactory size distribution, high encapsulated efficiency and a pH-dependent release profile. The intrinsic fluorescence of the hyperbranched copolymer renders the detection and tracking of NPs in vitro and in vivo conveniently. In vitro cytotoxicity studies proved that the presence of cRGDfK enhanced the cytotoxic efficiency by 10 folds in α(ν)β(3) integrin over-expressed human umbilical vein endothelial cells, while Tf improved cytotoxicity by 2 folds in Tf receptor over-expressed human cervical carcinoma cells. The drug-loaded NPs can be efficiently transported into the vascular endothelial cells and the target tumor cells. These results indicate that the cRGDfK and Tf decorated HPAE-co-PLA/DPPE could deliver chemotherapies specifically inside the cell via receptor-mediated endocytosis with greater efficacy. Therefore, such a fluorescent nanocarrier prepared from non-cytotoxic and biodegradable polymers is promising for drug delivery in tumor therapy.

  1. Remarkable swelling capability of amino acid based cross-linked polymer networks in organic and aqueous medium.

    PubMed

    Roy, Saswati Ghosh; Haldar, Ujjal; De, Priyadarsi

    2014-03-26

    This work reports design and synthesis of side chain amino acid based cross-linked polymeric gels, able to switch over from organogel to hydrogel by a simple deprotection reaction and showing superabsorbancy in water. Amino acid based methacrylate monomers, tert-butoxycarbonyl (Boc)-l/d-alanine methacryloyloxyethyl ester (Boc-l/d-Ala-HEMA), have been polymerized in the presence of a cross-linker via conventional free radical polymerization (FRP) and the reversible addition-fragmentation chain transfer (RAFT) technique for the synthesis of cross-linked polymer gels. The swelling behaviors of these organogels are investigated in organic solvents, and they behave as superabsorbent materials for organic solvents such as dichloromethane, acetone, tetrahydrofuran, etc. Swollen cross-linked polymer gels release the absorbed organic solvent rapidly. After Boc group deprotection from the pendant alanine moiety, the organogels transform to the hydrogels due to the formation of side chain ammonium (-NH3(+)) groups, and these hydrogels showed a significantly high swelling ratio (∼560 times than their dry volumes) in water. The morphology of organogels and hydrogels is studied by field emission scanning electron microscopy (FE-SEM). Amino acid based cross-linked gels could find applications as absorbents for oil spilled on water as well as superabsorbent hydrogels.

  2. Adsorption mechanism and valency of catechol-functionalized hyperbranched polyglycerols.

    PubMed

    Krysiak, Stefanie; Wei, Qiang; Rischka, Klaus; Hartwig, Andreas; Haag, Rainer; Hugel, Thorsten

    2015-01-01

    Nature often serves as a model system for developing new adhesives. In aqueous environments, mussel-inspired adhesives are promising candidates. Understanding the mechanism of the extraordinarily strong adhesive bonds of the catechol group will likely aid in the development of adhesives. With this aim, we study the adhesion of catechol-based adhesives to metal oxides on the molecular level using atomic force microscopy (AFM). The comparison of single catechols (dopamine) with multiple catechols on hyperbranched polyglycerols (hPG) at various pH and dwell times allowed us to further increase our understanding. In particular, we were able to elucidate how to achieve strong bonds of different valency. It was concluded that hyperbranched polyglycerols with added catechol end groups are promising candidates for durable surface coatings.

  3. Adsorption mechanism and valency of catechol-functionalized hyperbranched polyglycerols

    PubMed Central

    Krysiak, Stefanie; Wei, Qiang; Rischka, Klaus; Hartwig, Andreas; Haag, Rainer

    2015-01-01

    Summary Nature often serves as a model system for developing new adhesives. In aqueous environments, mussel-inspired adhesives are promising candidates. Understanding the mechanism of the extraordinarily strong adhesive bonds of the catechol group will likely aid in the development of adhesives. With this aim, we study the adhesion of catechol-based adhesives to metal oxides on the molecular level using atomic force microscopy (AFM). The comparison of single catechols (dopamine) with multiple catechols on hyperbranched polyglycerols (hPG) at various pH and dwell times allowed us to further increase our understanding. In particular, we were able to elucidate how to achieve strong bonds of different valency. It was concluded that hyperbranched polyglycerols with added catechol end groups are promising candidates for durable surface coatings. PMID:26150898

  4. Functionalization of graphene with hyperbranched polyglycerol for stable aqueous dispersion

    NASA Astrophysics Data System (ADS)

    Cai, Ning; Hou, Dajun; Shen, Liang; Luo, Xiaogang; Xue, Yanan; Yu, Faquan

    2015-07-01

    The application of graphene for some particular fields including biomedical engineering was hindered by its poor aqueous dispersivity and hydrophobic property. In this study, the strategy of the functionalization of graphene with hyperbranched polyglycerol (HPG) by a facile procedure was proposed. By the epoxy ring-opening hyperbranched polymerization of glycidol, graphene surface was grafted with HPG layer with rich hydroxyl groups. The content of polyglycerol on HPG functionalized graphene (HPG-G) was determined to be 55%. The results of fourier transform infrared (FTIR), X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS) and UV-Vis demonstrated that HPG was successfully grafted onto graphene sheets (GSs), and the aromatic and crystalline structure of graphene was maintained after HPG functionalization. The obtained HPG-G composites possess high hydrophilicity and can be dispersed well in water. Furthermore, no discernable precipitation was found in HPG-G aqueous solution even after three months of storage.

  5. Antigens protected functional red blood cells by the membrane grafting of compact hyperbranched polyglycerols.

    PubMed

    Chapanian, Rafi; Constantinescu, Iren; Brooks, Donald E; Scott, Mark D; Kizhakkedathu, Jayachandran

    2013-01-02

    Red blood cell (RBC) transfusion is vital for the treatment of a number of acute and chronic medical problems such as thalassemia major and sickle cell anemia. Due to the presence of multitude of antigens on the RBC surface (~308 known antigens), patients in the chronic blood transfusion therapy develop alloantibodies due to the miss match of minor antigens on transfused RBCs. Grafting of hydrophilic polymers such as polyethylene glycol (PEG) and hyperbranched polyglycerol (HPG) forms an exclusion layer on RBC membrane that prevents the interaction of antibodies with surface antigens without affecting the passage of small molecules such as oxygen, glucose, and ions. At present no method is available for the generation of universal red blood donor cells in part because of the daunting challenge presented by the presence of large number of antigens (protein and carbohydrate based) on the RBC surface and the development of such methods will significantly improve transfusion safety, and dramatically improve the availability and use of RBCs. In this report, the experiments that are used to develop antigen protected functional RBCs by the membrane grafting of HPG and their characterization are presented. HPGs are highly biocompatible compact polymers, and are expected to be located within the cell glycocalyx that surrounds the lipid membrane and mask RBC surface antigens.

  6. Multivalent presentation of mannose on hyperbranched polyglycerol and their interaction with concanavalin A lectin.

    PubMed

    Papp, Ilona; Dernedde, Jens; Enders, Sven; Riese, Sebastian B; Shiao, Tze Chieh; Roy, René; Haag, Rainer

    2011-05-02

    We describe the synthesis of multivalent mannose derivatives by using hyperbranched polyglycerols (hPG) as a scaffold with different linker structures. Grafting of protected mannose (Man) units is achieved by using Cu(I) -catalyzed Huisgen click chemistry with either an anomeric azide or propargyl ether onto complementarily functionalized alkyne or azido polymer surfaces. NMR spectroscopy, dynamic light scattering (DLS), IR spectroscopy, size-exclusion chromatography (SEC), and elemental analysis have been used to characterize the hPG-Man compounds. The surface availability and bioactivity of Man-modified polymers were evaluated by using a competitive surface plasmon resonance (SPR)-based binding assay by interactions of the glycopolymers with concanavalin A (Con A), a lectin that binds mannose containing molecules. The results indicated that the novel glycoarchitectures presented in this work are efficient inhibitors of Con A-mannose recognition and resulted in inhibitor concentrations (mean IC(50)) from the micro- to the nanomolar range, whereas the corresponding monovalent mannoside (methyl-Man) requires millimolar concentrations. The results provide an interesting structure-activity relationship for libraries of materials that differ in the linkage of the sugar moiety presented on a biocompatible polyglycerol scaffold.

  7. Novel Low-Density Ablators Containing Hyperbranched Poly(azomethine)s

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean

    2011-01-01

    An ablative composite is low-density (0.25 to 0.40 g/cu cm), easy to fabricate, and superior to the current state-of-the-art ablator (phenolic impregnated carbon ablator, PICA) in terms of decomposition temperature, char yield, and mechanical strength. Initial ablative testing with a CO2 laser under high-heat-flux (1,100 W/sq cm) conditions showed these new ablators are over twice as effective as PICA in terms of weight loss, as well as transfer of heat through the specimen. The carbon fiber/poly(azomethine) composites have the same density as PICA, but are 8 to 11 times stronger to irreversible breaking by tensile compression. In addition, polyazomethine char yields by thermogravimetric analysis are 70 to 80 percent at 1,000 C. This char yield is 10 to 20 percent higher than phenolic resins, as well as one of the highest char yields known for any polymer. A high char yield holds the composite together better toward shearing forces on reentry, as well as reradiates high heat fluxes. This innovative composite is stronger than PICA, so multiple pieces can be sealed together without fracture. Researchers have also studied polyazomethines before as linear polymers. Due to poor solubility, these polymers precipitate from the polymerization solvent as a low-molecular-weight (2 to 4 repeat units) powder. The only way found to date to keep linear polyazomethines in solution is by adding solubilizing side groups. However, these groups sacrifice certain polymer properties. These hyperbranched polyazomethines are high molecular weight and fully aromatic.

  8. A Process and Environment Aware Sierra/SolidMechanics Cohesive Zone Modeling Capability for Polymer/Solid Interfaces

    SciTech Connect

    Reedy, E. D.; Chambers, Robert S.; Hughes, Lindsey Gloe; Kropka, Jamie Michael; Stavig, Mark E.; Stevens, Mark J.

    2015-09-01

    The performance and reliability of many mechanical and electrical components depend on the integrity of po lymer - to - solid interfaces . Such interfaces are found in adhesively bonded joints, encapsulated or underfilled electronic modules, protective coatings, and laminates. The work described herein was aimed at improving Sandia's finite element - based capability to predict interfacial crack growth by 1) using a high fidelity nonlinear viscoelastic material model for the adhesive in fracture simulations, and 2) developing and implementing a novel cohesive zone fracture model that generates a mode - mixity dependent toughness as a natural consequence of its formulation (i.e., generates the observed increase in interfacial toughness wi th increasing crack - tip interfacial shear). Furthermore, molecular dynamics simulations were used to study fundamental material/interfa cial physics so as to develop a fuller understanding of the connection between molecular structure and failure . Also reported are test results that quantify how joint strength and interfacial toughness vary with temperature.

  9. Bio-based hyperbranched thermosetting polyurethane/triethanolamine functionalized multi-walled carbon nanotube nanocomposites as shape memory materials.

    PubMed

    Kalita, Hemjyoti; Karak, Niranjan

    2014-07-01

    Here, bio-based shape memory polymers have generated immense interest in recent times. Here, Bio-based hyperbranched polyurethane/triethanolamine functionalized multi-walled carbon nanotube (TEA-f-MWCNT) nanocomposites were prepared by in-situ pre-polymerization technique. The Fourier transform infrared spectroscopy and the transmission electron microscopic studies showed the strong interfacial adhesion and the homogeneous distribution of TEA-f-MWCNT in the polyurethane matrix. The prepared epoxy cured thermosetting nanocomposites exhibited enhanced tensile strength (6.5-34.5 MPa), scratch hardness (3.0-7.5 kg) and thermal stability (241-288 degrees C). The nanocomposites showed excellent shape fixity and shape recovery. The shape recovery time decreases (24-10 s) with the increase of TEA-f-MWCNT content in the nanocomposites. Thus the studied nanocomposites have potential to be used as advanced shape memory materials.

  10. Combining RAFT polymerization and thiol-ene click reaction for core-shell structured polymer@BaTiO3 nanodielectrics with high dielectric constant, low dielectric loss, and high energy storage capability.

    PubMed

    Yang, Ke; Huang, Xingyi; Zhu, Ming; Xie, Liyuan; Tanaka, Toshikatsu; Jiang, Pingkai

    2014-02-12

    Nanodielectric materials with high dielectric constant, low dielectric loss, and high energy storage capability are highly desirable in modern electric and electronics industries. It has been proved that the preparation of core-shell structured dielectric polymer nanocomposites via "grafting from" method is an effective approach to these materials. However, by using this approach, the deep understanding of the structure-dielectric property relationship of the core-shell structured nanodielectrics has been limited because of the lack of detailed information (e.g., molecular weight, grafting density) about the macromolecules grafted onto the nanoparticle surfaces. In this work, by the combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and thiol-ene click reaction, two types of core-shell structured polymer@BaTiO3 (polymer@BT) nanocomposites with high dielectric constant and low dielectric loss were successfully prepared via a "grafting to" method. Compared with the "grafting from" method, this "grafting to" method has two merits: the molecular weight of the polymer chains in the shell layer can be easily controlled and the grafting density can be tailored by changing the molecular weight of the grafting polymer. Moreover, a clear insight into the relationship among the dielectric properties and energy storage capability of the core-shell structured polymer@BT nanocomposites, the molecular weight of the polymer chains, and the grafting density of the core-shell structured nanoparticles was achieved. The study provides new insights into the design and preparation of nanodielectric materials with desirable dielectric properties.

  11. Fabrication of monometallic nanoparticles using alkyl-terminated hyperbranched polyglycidols as a stabilizer and reducer.

    PubMed

    Kim, Min Hee; Song, Ga Young; Yu, Seong Jae; Kim, Il

    2013-09-01

    A series of alkyl-terminated hyperbranched polyglycidols (HBPs) have been synthesized via an anionicring-opening multi-branching polymerization of glycidolusing trifunctional 1,1,1-tris(hydroxymethyl)propane as an initiator, followed by the ring-opening polymerization of 1,2-epoxyhexane, 1,2-epoxydodecaneand 1,2-epoxytetradecane. The resulting polymers possess polydispersities below 1.5 and the degree of polymerization could be controlled by the ratio of glycidol monomer to the initiator. Depending on ratio of glycidol to alkyl oxide, polarity and solubility could also be tuned. The HBPs have been demonstrated to be an effective reducer and stabilizer for the synthesis of highly water-soluble monometallic (Au, Ag, Pd and Pt) nanoparticles in the absence of any additional reducers and surfactants. The size of nanoparticles could be tuned by changing the concentration of the metal ion precursors. The optical properties of the as-prepared metal nanoparticles are investigated by UV-vis spectroscopy and their structural characteristics were defined by electron microscope image.

  12. Synthesis and characterization of curcumin loaded PLA-Hyperbranched polyglycerol electrospun blend for wound dressing applications.

    PubMed

    Perumal, Govindaraj; Pappuru, Sreenath; Chakraborty, Debashis; Maya Nandkumar, A; Chand, Dillip Kumar; Doble, Mukesh

    2017-07-01

    This study is aimed to develop curcumin (Cur) incorporated electrospun nanofibers of a blend of poly (lactic acid) (PLA) and hyperbranched polyglycerol (HPG) for wound healing applications. Both the polymers are synthesized and fabricated by electrospinning technique. The produced nanofibers were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Colorimetry (DSC) and Thermogravimetric Analysis (TGA). Electrospun scaffolds (PLA/HPG/Cur) exhibits very high hydrophilicity, high swelling and drug uptake and promotes better cell viability, adhesion and proliferation when compared to PLA/Cur electrospun nanofibers. Biodegradation study revealed that the morphology of the nanofibers were unaffected even after 14days immersion in Phosphate Buffered Saline. In vitro scratch assay indicates that migration of the cells in the scratch treated with PLA/HPG/Cur is complete within 36h. These results suggest that PLA/HPG/Cur nanofibers can be a potential wound patch dressing for acute and chronic wound applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Nanostructured Amphiphilic Star-Hyperbranched Block Copolymers for Drug Delivery.

    PubMed

    Seleci, Muharrem; Seleci, Didem Ag; Ciftci, Mustafa; Demirkol, Dilek Odaci; Stahl, Frank; Timur, Suna; Scheper, Thomas; Yagci, Yusuf

    2015-04-21

    A robust drug delivery system based on nanosized amphiphilic star-hyperbranched block copolymer, namely, poly(methyl methacrylate-block-poly(hydroxylethyl methacrylate) (PMMA-b-PHEMA) is described. PMMA-b-PHEMA was prepared by sequential visible light induced self-condensing vinyl polymerization (SCVP) and conventional vinyl polymerization. All of the synthesis and characterization details of the conjugates are reported. To accomplish tumor cell targeting property, initially cell-targeting (arginylglycylaspactic acid; RGD) and penetrating peptides (Cys-TAT) were binding to each other via the well-known EDC/NHS chemistry. Then, the resulting peptide was further incorporated to the surface of the amphiphilic hyperbranched copolymer via a coupling reaction between the thiol (-SH) group of the peptide and the hydroxyl group of copolymer by using N-(p-maleinimidophenyl) isocyanate as a heterolinker. The drug release property and targeting effect of the anticancer drug (doxorobucin; DOX) loaded nanostructures to two different cell lines were evaluated in vitro. U87 and MCF-7 were chosen as integrin αvβ3 receptor positive and negative cells for the comparison of the targeting efficiency, respectively. The data showed that drug-loaded copolymers exhibited enhanced cell inhibition toward U87 cells in compared to MCF-7 cells because targeting increased the cytotoxicity of drug-loaded copolymers against integrin αvβ3 receptor expressing tumor cells.

  14. Dynamics on Multilayered Hyperbranched Fractals Through Continuous Time Random Walks

    NASA Astrophysics Data System (ADS)

    Volta, Antonio; Galiceanu, Mircea; Jurjiu, Aurel; Gallo, Tommaso; Gualandri, Luciano

    We introduce a new method to generate three-dimensional structures, with mixed topologies. We focus on Multilayered Regular Hyperbranched Fractals (MRHF), three-dimensional networks constructed as a set of identical generalized Vicsek fractals, known as Regular Hyperbranched Fractals (RHF), layered on top of each other. Every node of any layer is directly connected only to copies of itself from nearest-neighbor layers. We found out that also for MRHF the eigenvalue spectrum of the connectivity matrix is determined through a semi-analytical method, which gives the opportunity to analyze very large structures. This fact allows us to study in detail the crossover effects of two basic topologies: linear, corresponding to the way we connect the layers and fractal due to the layers' topology. From the wealth of applications which depends on the eigenvalue spectrum we choose the return-to-the-origin probability. The results show the expected short-time and long-time behaviors. In the intermediate time domain we obtained two different power-law exponents: the first one is given by the combination linear-RHF, while the second one is peculiar either of a single RHF or of a single linear chain.

  15. Catalytic water dissociation using hyperbranched aliphatic polyester (Boltorn series) as the interface of a bipolar membrane.

    PubMed

    Xue, Yanhong; Xu, Tongwen; Fu, Rongqiang; Cheng, Yiyun; Yang, Weihua

    2007-12-15

    The effect of hyperbranched aliphatic polyester (Boltorn series) on the water dissociation in bipolar membranes was firstly investigated in this paper. The bipolar membranes were prepared by immersing the anion exchange layer in a hyperbranched aliphatic polyester solution and then coating on the layer a polyphenylene oxide (SPPO) solution. The SEM observations proved the existence of hyperbranched aliphatic polyester at the membrane intermediate layer. The adsorption amount was evaluated by the oxygen content via XPS. The junction thickness of the prepared bipolar membrane was determined by electrochemical impedance spectroscopy (EIS), and the membrane performances were evaluated by current-voltage curves. The results showed that the amount and generation of Boltorn series, and temperature all affected I-V behaviors of the fabricated bipolar membranes, and the former two played the critical role. These effects were explained on the basis of the water dissociation theory and the characteristics of hyperbranched aliphatic polyester.

  16. Liquid-Gel-Liquid Transition and Shear-Thickening in Mixed Suspensions of Silica Colloid and Hyperbranched Polyethyleneimine

    NASA Astrophysics Data System (ADS)

    Yuan, Guangcui; Zhang, Huan; Han, Charles C.

    2014-03-01

    The rheological property of mixed suspensions of silica colloid and hyperbranched polylethyleneimine was studied as functions of particle volume fraction, ratio of polymer to particle, and pH value. A mechanism of liquid-gel-liquid transition for this mixed system was proposed based on the amount and the conformation of polyelectrolyte bridges which were able to self-arrange with solution environments. The equilibrium adsorbed amount (Cp*) for a given volume fraction of particles is an important concentration ratio of polymer to particle denoting the transition of irreversible and reversible bridging. For mixed suspensions at equilibrium adsorbed state (Cp ~Cp *), the adsorption-desorption of polymer bridges on the particles can reversibly take place, and shear thickening is observed under a steady shear flow as a result of rapid extension of bridges when the relaxation time scale of extension is shorter than that of desorption. This work is supported by the National Basic Research Program of China (973 Program, 2012CB821503).

  17. Progesterone binding nano-carriers based on hydrophobically modified hyperbranched polyglycerols

    NASA Astrophysics Data System (ADS)

    Alizadeh Noghani, M.; Brooks, D. E.

    2016-02-01

    Progesterone (Pro) is a potent neurosteroid and promotes recovery from moderate Traumatic Brain Injury but its clinical application is severely impeded by its poor water solubility. Here we demonstrate that reversibly binding Pro within hydrophobically modified hyperbranched polyglycerol (HPG-Cn-MPEG) enhances its solubility, stability and bioavailability. Synthesis, characterization and Pro loading into HPG-Cn-MPEG is described. The release kinetics are correlated with structural properties and the results of Differential Scanning Calorimetry studies of a family of HPG-Cn-MPEGs of varying molecular weight and alkylation. While the maximum amount of Pro bound correlates well with the amount of alkyl carbon per molecule contributing to its hydrophobicity, the dominant first order rate constant for Pro release correlates strongly with the amount of structured or bound water in the dendritic domain of the polymer. The results provide evidence to justify more detailed studies of interactions with biological systems, both single cells and in animal models.Progesterone (Pro) is a potent neurosteroid and promotes recovery from moderate Traumatic Brain Injury but its clinical application is severely impeded by its poor water solubility. Here we demonstrate that reversibly binding Pro within hydrophobically modified hyperbranched polyglycerol (HPG-Cn-MPEG) enhances its solubility, stability and bioavailability. Synthesis, characterization and Pro loading into HPG-Cn-MPEG is described. The release kinetics are correlated with structural properties and the results of Differential Scanning Calorimetry studies of a family of HPG-Cn-MPEGs of varying molecular weight and alkylation. While the maximum amount of Pro bound correlates well with the amount of alkyl carbon per molecule contributing to its hydrophobicity, the dominant first order rate constant for Pro release correlates strongly with the amount of structured or bound water in the dendritic domain of the polymer. The

  18. Waterborne carboxyl-terminated hyperbranched oligomer polyester ligand: Synthesis, characterization and chelation with chromium(III)

    NASA Astrophysics Data System (ADS)

    Yao, Qi; Li, Chenying; Huang, Henghui; Chen, Hualin; Liu, Bailing

    2017-09-01

    A series of carboxyl-terminated hyperbranched oligomer polyester (HBP) with different degree of branching (DB) and number average molar mass (Mbarn) have been prepared. The molecular structure, degree of branching, molecular mass and its distribution of HBP were investigated by FTIR, 1H NMR, and GPC, respectively. And the coordination number, stability constant and degree of dissociation (α) between HBP and chromium(Ⅲ) were measured via continuous variation method (Job's plot). Experimental results show that the coordination capability between HBP and chromium(Ⅲ) affected by both DB and molecular mass, and the latter plays a decisive role. Moreover HBP outperforms low molecular weight of organic acids (citric acid, acetic acid) and linear polyacrylic acid with similar molecular mass. The coordination number and stability constants of HBP-3 (Mbarn = 1713 Da, Mbarw /Mbarn (PDI) = 1.11 and DB = 0.72) can reach 4 and 6.55e+008, which demonstrated it can be selected as a good ligand to coordination with chromium(Ⅲ). Therefore HBP can be used as chrome auxiliary in chrome tanning to improve the absorption of chromium.

  19. Enhancement of MHC-I antigen presentation via architectural control of pH-responsive, endosomolytic polymer nanoparticles.

    PubMed

    Wilson, John T; Postma, Almar; Keller, Salka; Convertine, Anthony J; Moad, Graeme; Rizzardo, Ezio; Meagher, Laurence; Chiefari, John; Stayton, Patrick S

    2015-03-01

    Protein-based vaccines offer a number of important advantages over organism-based vaccines but generally elicit poor CD8(+) T cell responses. We have previously demonstrated that pH-responsive, endosomolytic polymers can enhance protein antigen delivery to major histocompatibility complex class I (MHC-I) antigen presentation pathways thereby augmenting CD8(+) T cell responses following immunization. Here, we describe a new family of nanocarriers for protein antigen delivery assembled using architecturally distinct pH-responsive polymers. Reversible addition-fragmentation chain transfer (RAFT) polymerization was used to synthesize linear, hyperbranched, and core-crosslinked copolymers of 2-(N,N-diethylamino)ethyl methacrylate (DEAEMA) and butyl methacrylate (BMA) that were subsequently chain extended with a hydrophilic N,N-dimethylacrylamide (DMA) segment copolymerized with thiol-reactive pyridyl disulfide (PDS) groups. In aqueous solution, polymer chains assembled into 25 nm micellar nanoparticles and enabled efficient and reducible conjugation of a thiolated protein antigen, ovalbumin. Polymers demonstrated pH-dependent membrane-destabilizing activity in an erythrocyte lysis assay, with the hyperbranched and cross-linked polymer architectures exhibiting significantly higher hemolysis at pH ≤ 7.0 than the linear diblock. Antigen delivery with the hyperbranched and cross-linked polymer architecture enhanced in vitro MHC-I antigen presentation relative to free antigen, whereas the linear construct did not have a discernible effect. The hyperbranched system elicited a four- to fivefold increase in MHC-I presentation relative to the cross-linked architecture, demonstrating the superior capacity of the hyperbranched architecture in enhancing MHC-I presentation. This work demonstrates that the architecture of pH-responsive, endosomolytic polymers can have dramatic effects on intracellular antigen delivery, and offers a promising strategy for enhancing CD8(+) T cell

  20. Synthesis and characterization of N-ethyl-N'-(3-dimethylaminopropyl)-guanidinyl-polyethylenimine polymers and investigation of their capability to deliver DNA and siRNA in mammalian cells.

    PubMed

    Mahato, Manohar; Sharma, Ashwani K; Kumar, Pradeep

    2013-09-01

    Recent advancements in polymeric gene delivery have raised the potential of gene therapy as treatment for various acquired and inherited diseases. Here, we report on the synthesis and characterization of N-ethyl-N'-(3-dimethylaminopropyl)-guanidinyl-polyethylenimine (sGP) polymers and investigation of their capability to carry DNA and siRNA in vitro. Zinc triflate-mediated activation of primary amines of branched polyethylenimine (bPEI) followed by reaction with varying amounts of N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDAC) resulted in the generation of a small series of trisubstituted guanidinyl-modified polyethylenimine polymers. Determination of primary amines on modified polymers by TNBS assay revealed 62-84% of the attempted conjugation of EDAC onto bPEI. These modified polymers were shown to condense plasmid DNA and retard its mobility on 0.8% agarose gel. Further, these polymers were evaluated for their capability to carry pDNA into the cells by performing transfection assay on various mammalian cells. All the modified polymer/pDNA complexes exhibited significantly higher levels of gene expression with one of the complexes, sGP3/pDNA complex, displayed ~1.45 to 3.0 orders of magnitude higher transfection efficiency than that observed in the native bPEI and the commercial transfection reagent, Lipofectamine™. The efficacy of sGP3 polymer was further assessed by siRNA delivery, which resulted in ~81% suppression of the target gene. In conclusion, these studies demonstrate the potential of these substituted guanidinyl-modified PEIs as efficient gene delivery vectors.

  1. Hyperthermal Intact Molecular Ions Play Key Role in Retention of ATRP Surface Initiation Capability of Plasma Polymer Films from Ethyl α-Bromoisobutyrate.

    PubMed

    Saboohi, Solmaz; Coad, Bryan R; Michelmore, Andrew; Short, Robert D; Griesser, Hans J

    2016-06-29

    We report a systematic study of the plasma polymerization of ethyl α-bromoisobutyrate (EBIB) to produce thin film coatings capable of serving as ATRP initiation surfaces, for which they must contain α-bromoisobutyryl functional groups. In the deposition of polymeric coatings by plasma polymerization there generally occurs considerable fragmentation of precursor ("monomer") molecules in the plasma; and the retention of larger structural elements is challenging, particularly when they are inherently chemically labile. Empirical principles such as low plasma power and low pressure are usually utilized. However, we show that the α-bromoisobutyryl structural moiety is labile in a plasma gas phase and in low pressure plasma conditions, below the collisional threshold, there is little retention. At higher pressure, in contrast, fragmentation of this structural motif appears to be reduced substantially, and coatings useful for ATRP initiation were obtained. Mass spectrometry analysis of the composition of the plasma phase revealed that the desired structural moiety can be retained through the plasma, if the plasma conditions are steered toward ions of the precursor molecule. Whereas at low pressure the plasma polymer assembles mainly from various neutral (radical) fragments, at higher pressure the deposition occurs from hyperthermal ions, among which the protonated intact molecular ion is the most abundant. At higher pressure, a substantial population of ions has low kinetic energy, leading to "soft landing" and thus less fragmentation. This study demonstrates that relatively complex structural motifs in precursor molecules can be retained in plasma polymerization if the chemical and physical processes occurring in the plasma phase are elucidated and controlled such that desirable larger structural elements play a key role in the film deposition.

  2. Synthesis of functionalized CNTs/hyperbranched polyester nanocomposites

    NASA Astrophysics Data System (ADS)

    Pan, Yufeng; Cui, Xiaokun; Zhang, Yue

    2017-01-01

    Carbon nanotubes (CNTs) were unzipped using the modified Hummer method to prepare the CNTs-GO microstructure (see Fig. 1). A new type of CNTs-GO-H20 nanocomposite has been synthesized by grafting hyperbranched (HB) polyester (Boltorn H20) brushes on the CNTs-GO by coupling agent (KH560). The morphology of CNTs-GO-H20 was characterized by FTIR, TEM, XPS and TGA. The FT-IR data and XPS data evidenced that CNTs-GO-H20 nanocomposites were synthesized successfully. The addition of CNTs improved the thermal stability of the nanocomposites. The TEM data showed that the CNTs-GO microstructure was also prepared. These electrochemical measurements results indicated that coatings provided greater protection against corrosion behavior. Moreover, the nanocomposite material improved corrosion resistance of the coating.

  3. Thermal and photochemical crosslinking of hyperbranched polyphenylene with organic azides.

    PubMed

    Pötzsch, Robert; Voit, Brigitte

    2012-04-23

    Here, we report on the first example of crosslinking (CL) hyperbranched polyphenylene (hb-PPh) with a small molecule crosslinker 1,3,5-tris(azidomethyl)benzene (TAMB). It was successfully shown that CL of the hb-PPh/TAMB (9:1) film is possible either thermally or photochemically making use of fundamentally different reaction mechanisms. Starting from a model reaction to prove the feasibility of the thermal CL reaction, we went on to check both the thermal and the photochemical crosslinkability of micrometer thick films. IR spectroscopy was furthermore used to confirm the CL process. Finally, the thin film morphology of the films before and after CL was investigated by AFM, revealing that the surface morphology was unaffected by the CL processes.

  4. Laccase-mediated synthesis of lignin-core hyperbranched copolymers

    DOE PAGES

    Cannatelli, Mark D.; Ragauskas, Arthur J.

    2017-06-06

    Lignin, one of the major chemical constituents of woody biomass, is the second most abundant biopolymer found in nature. The pulp and paper industry has long produced lignin on the scale of millions of tons annually as a by-product of the pulping process, and the dawn of cellulosic ethanol production has further contributed to this amount. Historically, lignin has been perceived as a waste material and burned as a fuel for the pulping process. But, recent research has been geared toward developing cost-effective technologies to convert lignin into valuable commodities. Attributing to the polyphenolic structure of lignin, enzymatic modification ofmore » its surface using laccases (benzenediol:oxygen oxidoreductases, EC 1.10.3.2) has demonstrated to be highly successful. The current study aims at developing lignin-core hyperbranched copolymers via the laccase-assisted copolymerization of kraft lignin with methylhydroquinone and a trithiol. Based on the physical properties of the resulting material, it is likely that crosslinking reactions have taken place during the drying process to produce a copolymeric network rather than discrete hyperbranched copolymers, with NMR data providing evidence of covalent bonding between monomers. A preliminary thermal analysis data reveals that the copolymeric material possesses a moderate glass transition temperature and exhibits good thermostability, thus may have potential application as a lignin-based thermoplastic. Scanning electron microscopy images confirm the smooth, glossy surface of the material and that it is densely packed. Our results are a sustainable, ecofriendly, economic method to create an exciting novel biomaterial from a renewable feedstock while further enhancing lignin valorization.« less

  5. Laccase-mediated synthesis of lignin-core hyperbranched copolymers.

    PubMed

    Cannatelli, Mark D; Ragauskas, Arthur J

    2017-08-01

    Lignin, one of the major chemical constituents of woody biomass, is the second most abundant biopolymer found in nature. The pulp and paper industry has long produced lignin on the scale of millions of tons annually as a by-product of the pulping process, and the dawn of cellulosic ethanol production has further contributed to this amount. Historically, lignin has been perceived as a waste material and burned as a fuel for the pulping process. However, recent research has been geared toward developing cost-effective technologies to convert lignin into valuable commodities. Attributing to the polyphenolic structure of lignin, enzymatic modification of its surface using laccases (benzenediol:oxygen oxidoreductases, EC 1.10.3.2) has demonstrated to be highly successful. The current study aims at developing lignin-core hyperbranched copolymers via the laccase-assisted copolymerization of kraft lignin with methylhydroquinone and a trithiol. Based on the physical properties of the resulting material, it is likely that crosslinking reactions have taken place during the drying process to produce a copolymeric network rather than discrete hyperbranched copolymers, with NMR data providing evidence of covalent bonding between monomers. Preliminary thermal analysis data reveals that the copolymeric material possesses a moderate glass transition temperature and exhibits good thermostability, thus may have potential application as a lignin-based thermoplastic. Scanning electron microscopy images confirm the smooth, glossy surface of the material and that it is densely packed. The presented results are a sustainable, ecofriendly, economic method to create an exciting novel biomaterial from a renewable feedstock while further enhancing lignin valorization.

  6. Surface-initiated hyperbranched polyglycerol as an ultralow-fouling coating on glass, silicon, and porous silicon substrates.

    PubMed

    Moore, Eli; Delalat, Bahman; Vasani, Roshan; McPhee, Gordon; Thissen, Helmut; Voelcker, Nicolas H

    2014-09-10

    Anionic ring-opening polymerization of glycidol was initiated from activated glass, silicon, and porous silicon substrates to yield thin, ultralow-fouling hyperbranched polyglycerol (HPG) graft polymer coatings. Substrates were activated by deprotonation of surface-bound silanol functionalities. HPG polymerization was initiated upon the addition of freshly distilled glycidol to yield films in the nanometer thickness range. X-ray photoelectron spectroscopy, contact angle measurements, and ellipsometry were used to characterize the resulting coatings. The antifouling properties of HPG-coated surfaces were evaluated in terms of protein adsorption and the attachment of mammalian cells. The adsorption of bovine serum albumin and collagen type I was found to be reduced by as much as 97 and 91%, respectively, in comparison to untreated surfaces. Human glioblastoma and mouse fibroblast attachment was reduced by 99 and 98%, respectively. HPG-grafted substrates outperformed polyethylene glycol (PEG) grafted substrates of comparable thickness under the same incubation conditions. Our results demonstrate the effectiveness of antifouling HPG graft polymer coatings on a selected range of substrate materials and open the door for their use in biomedical applications.

  7. Characterization of a Mixture of CO2 Adsorption Products in Hyperbranched Aminosilica Adsorbents by (13)C Solid-State NMR.

    PubMed

    Moore, Jeremy K; Sakwa-Novak, Miles A; Chaikittisilp, Watcharop; Mehta, Anil K; Conradi, Mark S; Jones, Christopher W; Hayes, Sophia E

    2015-11-17

    Hyperbranched amine polymers (HAS) grown from the mesoporous silica SBA-15 (hereafter "SBA-15-HAS") exhibit large capacities for CO2 adsorption. We have used static in situ and magic-angle spinning (MAS) ex situ (13)C nuclear magnetic resonance (NMR) to examine the adsorption of CO2 by SBA-15-HAS. (13)C NMR distinguishes the signal of gas-phase (13)CO2 from that of the chemisorbed species. HAS polymers possess primary, secondary, and tertiary amines, leading to multiple chemisorption reaction outcomes, including carbamate (RnNCOO(-)), carbamic acid (RnNCOOH), and bicarbonate (HCO3(-)) moieties. Carbamates and bicarbonate fall within a small (13)C chemical shift range (162-166 ppm), and a mixture was observed including carbamic acid and carbamate, the former disappearing upon evacuation of the sample. By examining the (13)C-(14)N dipolar coupling through low-field (B0 = 3 T) (13)C{(1)H} cross-polarization MAS NMR, carbamate is confirmed through splitting of the (13)C resonance. A third species that is either bicarbonate or a second carbamate is evident from bimodal T2 decay times of the ∼163 ppm peak, indicating the presence of two species comprising that single resonance. The mixture of products suggests that (1) the presence of amines and water leads to bicarbonate being present and/or (2) the multiple types of amine sites in HAS permit formation of chemically distinct carbamates.

  8. Anti-fouling behavior of hyperbranched polyglycerol-grafted poly(ether sulfone) hollow fiber membranes for osmotic power generation.

    PubMed

    Li, Xue; Cai, Tao; Chung, Tai-Shung

    2014-08-19

    To sustain high performance of osmotic power generation by pressure-retarded osmosis (PRO) processes, fouling on PRO membranes must be mitigated. This is especially true for the porous support of PRO membranes because its porous structure is very prone to fouling by feeding river water. For the first time, we have successfully designed antifouling PRO thin-film composite (TFC) membranes by synthesizing a dendritic hydrophilic polymer with well-controlled grafting sites, hyperbranched polyglycerol (HPG), and then grafting it on poly(ether sulfone) (PES) hollow fiber membrane supports. Compared to the pristine PES membranes, polydopamine modified membranes, and conventional poly(ethylene glycol) (PEG)-grafted membranes, the HPG grafted membranes show much superior fouling resistance against bovine serum albumin (BSA) adsorption, E. coli adhesion, and S. aureus attachment. In high-pressure PRO tests, the PES TFC membranes are badly fouled by model protein foulants, causing a water flux decline of 31%. In comparison, the PES TFC membrane grafted by HPG not only has an inherently higher water flux and a higher power density but also exhibits better flux recovery up to 94% after cleaning and hydraulic pressure impulsion. Clearly, by grafting the properly designed dendritic polymers to the membrane support, one may substantially sustain PRO hollow fiber membranes for power generation.

  9. Pore-free matrix with cooperative chelating of hyperbranched ligands for high-performance separation of uranium.

    PubMed

    Li, Yang; Wang, Lei; Li, Bo; Zhang, Meicheng; Wen, Rui; Guo, Xinghua; Li, Xing; Zhang, Ji; Li, Shoujian; Ma, Lijian

    2016-10-04

    A new strategy combining pore-free matrix and cooperative-chelating was proposed in the present paper in order to effectively avoid undesired non-selective physical adsorption and intra-particle diffusion caused by pores and voids in porous sorbents, and to greatly enhance uranium-chelating capability based on hyperbranched amidoxime ligands on the surface of nanodiamond particles. Thus a pore-free, amidoxime-terminated hyperbranched nanodiamond (ND-AO) was designed and synthesized. The experimental results demonstrate that the strategy endows the as-synthesized ND-AO with following expected features: (1) distinctively high uranium selectivity (SU = qe-U /qe-tol ×100 %) from over 80% to nearly 100 % over the whole weak acidity range (pH < 4.5), especially, the SU can reach up to unprecedented > 91 % at pH 4.5, more than 20 percent of selectivity increment over any analogous sorbent materials reported so far, with a uranium sorption capacity of 121mg/g in simulated nuclear industry effluent samples containing 12 coexistent nuclide ions, (2) super-fast equilibrium sorption time of < 30s, (3) one of the highest distribution coefficient ( Kd ) of ~ 3×106 ml/g for U(VI) as well as fairly high sorption capacity of 212 mg/g at pH 4.5 in pure-uranium solution. The strategy could also provide an optional approach for the design and fabrication of other new high-performance sorbing materials with prospective applications in selective separation of other interested metal ions.

  10. Preparation and characterization of structured hydrogel microparticles based on cross-linked hyperbranched polyglycerol.

    PubMed

    Oudshoorn, Marion H M; Penterman, Roel; Rissmann, Robert; Bouwstra, Joke A; Broer, Dirk J; Hennink, Wim E

    2007-11-06

    The aim of this work was to obtain well-defined HyPG-MA (methacrylated hyperbranched polyglycerol) microparticles with uniform sizes. Therefore, three different preparation methods were evaluated. First, we assessed a micromolding technique using rigid SU-8 (a photoresist based on epoxies) grids. Independent of the surface treatment of the SU-8 grid or the type of polymer used, approximately 50% of the microgels remained attached to the SU-8 grid or broke into smaller particles during the release process in which drying of the gels was followed by a sonication process. Although 90% methacrylate conversion could be obtained, this method has some additional drawbacks as the obtained dried microgels did not rehydrate completely after the drying step. Second, a soft micromolding technique was evaluated using elastomeric PDMS (poly(dimethyl siloxane)) grids. The use of these flexible grids resulted in a high yield (80-90% yield; >90% methacrylate conversion) of microgels with a well-defined size and shape (squares 100 microm x 100 microm x 50 microm or hexagons with Ø 30 microm and a thickness of 20 microm) without the occurrence of water evaporation. However, a number of particles showed a less-defined shape as not all grids could be filled well. The microgels showed restricted swelling, implying that these gels are dimensionally stable. Third, an alternative method referred to as photolithography was evaluated. This method was suitable to tailor accurately the size and shape of HyPG-MA microgels and additionally gained 100% yield. Well-defined HyPG-MA microgels in the size range of 200-1400 microm (thickness of 6, 20, or 50 microm), with a methacrylate conversion of >90%, could easily be prepared by adding an inhibitor (e.g., 1% (w/v) of vitamin C) to the polymer solution to inhibit dark polymerization. Microgels in the size range of 30-100 microm (>90% conversion) could only be obtained when applying the photomask in direct contact with the polymer solution and

  11. Cross-Linked Hyperbranched Polyglycerols as Hosts for Selective Binding of Guest Molecules

    PubMed Central

    Burakowska, Ewelina; Quinn, Jordan R.; Zimmerman, Steven C.; Haag, Rainer

    2009-01-01

    The ring-closing metathesis reaction of dendrimers containing allyl ether end groups is known to rigidify them significantly. Herein we report that polyallylated hyperbranched polyglycerol (HPG) 1 complexes the sodium salt of rose Bengal in chloroform solution but releases it readily to water. In contrast, extensively cross-linking 1 with Grubbs catalyst provides 2 which similarly complexes rose Bengal, but does not release it despite 12 h of shaking with water. Both 1 and 2 also complex thymol blue and exhibit the same differential complex stability when extracted with water. Neither 1 nor 2 complex Congo red sodium salt and more weakly solubilize the cesium salt of rose Bengal and thymol blue. Larger loop size cross-linked analogs HPG 5 and 6 also bind rose Bengal (RB) and thymol blue and are able to bind Congo red, but both release the dye more readily when extracted with water. In addition, a bathochromic shift is observed in the UV spectra for complex 6·RB, suggesting a changed microenvironment for the dye due to a tighter binding of the counter anion. Dihydroxylation of the alkene groups in 1, 2, 5, and 6 produced HPGs 3, 4, 7, and 8, respectively. HPGs 3 and 4 are both water-soluble, but 7 and 8 were not and could not be studied further. In water, HPG 4 solubilized less than one nonpolar guest (Nimodipine, pyrene, or Nile red) per polymer at least in part because it forms very large aggregates. Dynamic light scattering (DLS) and size exclusion chromatography (SEC) indicate aggregates with diameters of ca. 100 nm in pure water. The aggregates dissociated in high salt concentrations suggesting applications in stimuli responsive materials. PMID:19722631

  12. The size-dependent efficacy and biocompatibility of hyperbranched polyglycerol in peritoneal dialysis.

    PubMed

    Du, Caigan; Mendelson, Asher A; Guan, Qiunong; Chapanian, Rafi; Chafeeva, Irina; da Roza, Gerald; Kizhakkedathu, Jayachandran N

    2014-02-01

    Glucose is a common osmotic agent for peritoneal dialysis (PD), but has many adverse side effects for patients with end-stage renal disease. Recently, hyperbranched polyglycerol (HPG) has been tested as an alternative osmotic agent for PD. This study was designed to further examine the efficacy and biocompatibility of HPG over a range of different molecular weights. HPGs of varying molecular weights (0.5 kDa, 1 kDa, 3 kDa) were evaluated in a preclinical rodent model of PD. HPG PD solutions were standardized for osmolality and compared directly to conventional glucose-based Physioneal™ PD solution (PYS). The efficacy of HPG solutions was measured by their ultrafiltration (UF) capacity, solute removal, and free water transport; biocompatibility was determined in vivo by the histological analysis of the peritoneal membrane and the cell count of detached peritoneal mesothelial cells (PMCs) and neutrophils, and in vitro cytotoxicity to cultured human PMCs. All the different sized HPGs induced higher UF and sodium removal over a sustained period of time (up to 8 h) compared to PYS. Urea removal was significantly higher for 1-3 kDa than PYS, and was similar for 0.5 kDa. Our analyses indicated that the peritoneal membrane exhibited more tolerance to the HPG solutions compared to PYS, evidenced by less submesothelial injury and neutrophil infiltration in vivo, and less cell death in cultured human peritoneal mesothelial cells. Free water transport analysis of HPG indicated that these molecules function as colloids and induce osmosis mainly through capillary small pores. We attribute the differences in the biocompatibility and osmotic activity of different sized HPGs to the differences in the polymer bound water measured by differential scanning calorimetry. These preclinical data indicate that compared to PYS, low MW HPGs (0.5-3 kDa) produces superior fluid and waste removal with better biocompatibility profile, suggesting that they are promising osmotic agents for PD.

  13. Influence of the 1,2,4-linking hyperbranched poly(arylenevinylene) structure on organic light emitting diode performance as compared to conventional 1,3,5-linking one

    NASA Astrophysics Data System (ADS)

    Coya, C.; Álvarez, A. L.; Yoon, W. S.; Park, S. Y.

    2011-05-01

    The influence of a novel 1,2,4-linking hyperbranched poly(arylenevinylene) (1,2,4-hb-PAV) material, designed to feature intramolecular energy-funneling, on the transport and emission properties of organic light emitting diodes (OLEDs) has been studied. A comparison to conventional hyperbranched 1,3,5-linking polymers (1,3,5-hb-PAV), which do not exhibit this effect, has been made. For this purpose, single-layer organic light emitting diodes with a glass/indium-tin oxide/poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate)/active layer/Ca/Al structure and different active layer thicknesses have been fabricated and characterized, using either 1,2,4-hb-PAV or 1,3,5-hb-PAV as active layers. The current-voltage response has been interpreted in terms of a numerical model that includes a field-dependent carrier mobility, which allows us to estimate carrier mobility in the diodes. Stable green emission with Commission Internationale de L'Eclairage coordinates at (0.41,0.56) and a high luminous efficiency of 28 Cd/A has been obtained at very low driving currents (10 μA) for 1,2,4-hb-PAV material, versus 2.1 Cd/A for the conventional 1,3,5-linking material, in spite of the high photoluminescence quantum yield in thin film exhibited by both materials. The significant improvements in the performance of OLEDs based on 1,2,4-hb-PAV with respect to other conventional hyperbranched polymers are attributed to the inherent energy gradient from the shorter branches to the longer conjugated stem in this structure, which enables the characteristic funneling effect.

  14. Enhanced dispersion of carbon nanotubes in hyperbranched polyurethane and properties of nanocomposites.

    PubMed

    Rana, Sravendra; Karak, Niranjan; Cho, Jae Whan; Kim, Young Ho

    2008-12-10

    Hyperbranched polyurethane (HBPU) nanocomposites with multi-walled carbon nanotubes (MWNTs) were prepared by in situ polymerization on the basis of poly(ε-caprolactone)diol as the soft segment, 4,4'-methylene bis(phenylisocyanate) as the hard segment, and castor oil as the multifunctional group for the hyperbranched structure. A dominant improvement in the dispersion of MWNTs in the HBPU matrix was found, and good solubility of HBPU-MWNT nanocomposites in organic solvents was shown. Due to the well-dispersed MWNTs, the nanocomposites resulted in achieving excellent shape memory properties as well as enhanced mechanical properties compared to pure HBPU.

  15. Enhanced dispersion of carbon nanotubes in hyperbranched polyurethane and properties of nanocomposites

    NASA Astrophysics Data System (ADS)

    Rana, Sravendra; Karak, Niranjan; Cho, Jae Whan; Kim, Young Ho

    2008-12-01

    Hyperbranched polyurethane (HBPU) nanocomposites with multi-walled carbon nanotubes (MWNTs) were prepared by in situ polymerization on the basis of poly(ɛ-caprolactone)diol as the soft segment, 4,4'-methylene bis(phenylisocyanate) as the hard segment, and castor oil as the multifunctional group for the hyperbranched structure. A dominant improvement in the dispersion of MWNTs in the HBPU matrix was found, and good solubility of HBPU-MWNT nanocomposites in organic solvents was shown. Due to the well-dispersed MWNTs, the nanocomposites resulted in achieving excellent shape memory properties as well as enhanced mechanical properties compared to pure HBPU.

  16. Relaxation dynamics of small-world degree-distributed treelike polymer networks

    NASA Astrophysics Data System (ADS)

    Galiceanu, Mircea; Oliveira, Edieliton S.; Dolgushev, Maxim

    2016-11-01

    Hyperbranched polymers are typically treelike macromolecules with a very disordered structure. Here we construct hyperbranched polymers based on the degree distribution of the small-world networks. This algorithm allows us to study a transition from monodisperse linear chains to structurally-disordered dendritic polymers by varying the parameter p (0 ≤ p ≤ 1), which measures the randomness and the degree of branching of the network. Employing the framework of generalized Gaussian structures, we determine for the obtained structures the relaxation spectra, which are exemplified on the mechanical relaxation moduli (storage and loss moduli). We monitor these physical quantities for networks of different sizes and for various values of the parameter p. In the intermediate frequency domain, we encounter macroscopically distinguishable behaviours.

  17. Nuclear entry of hyperbranched polylysine nanoparticles into cochlear cells

    PubMed Central

    Zhang, Weikai; Zhang, Ya; Löbler, Marian; Schmitz, Klaus-Peter; Ahmad, Aqeel; Pyykkö, Ilmari; Zou, Jing

    2011-01-01

    Background: Gene therapy is a potentially effective therapeutic modality for treating sensorineural hearing loss. Nonviral gene delivery vectors are expected to become extremely safe and convenient, and nanoparticles are the most promising types of vectors. However, infrequent nuclear localization in the cochlear cells limits their application for gene therapy. This study aimed to investigate the potential nuclear entry of hyperbranched polylysine nanoparticles (HPNPs) for gene delivery to cochlear targets. Methods: Rat primary cochlear cells and cochlear explants generated from newborn rats were treated with different concentrations of HPNPs. For the in vivo study, HPNPs were administered to the rats’ round window membranes. Subcellular distribution of HPNPs in different cell populations was observed with confocal microscope 24 hours after administration. Results: Nuclear entry was observed in various cochlear cell types in vitro and in vivo. In the primary cochlear cell culture, concentration-dependent internalization was observed. In the cochlear organotypic culture, abundant HPNPs were found in the modiolus, including the spiral ganglion, organ of Corti, and lateral wall tissues. In the in vivo study, a gradient distribution of HPNPs through different layers of the round window membrane was observed. HPNPs were also distributed in the cells of the middle ear tissue. Additionally, efficient internalization of HPNPs was observed in the organ of Corti and spiral ganglion cells. In primary cochlear cells, HPNPs induced higher transfection efficiency than did Lipofectamine™. Conclusion: These results suggest that HPNPs are potentially an ideal carrier for gene delivery into the cochlea. PMID:21468356

  18. One-pot synthesis of linear-hyperbranched amphiphilic block copolymers based on polyglycerol derivatives and their micelles.

    PubMed

    Oikawa, Yurie; Lee, Sueun; Kim, Do Hyung; Kang, Dae Hwan; Kim, Byeong-Su; Saito, Kyohei; Sasaki, Shigeko; Oishi, Yoshiyuki; Shibasaki, Yuji

    2013-07-08

    This paper describes the one-pot synthesis of a polyglycidol (PG)-based polymer, poly(ethoxyethyl glycidyl ether) (PEEGE)-b-[hyperbranched polyglycerol (hbPG)-co-PEEGE]x/y, its micelle formulation, and the ability to encapsulate a model therapeutic molecule. Amphiphilic block copolymers were prepared by the sequential addition of ethoxyethyl glycidyl ether (EEGE) to glycidol. The composition of the block copolymers varied from 62:38 to 92:8. Block copolymers with composition x:y≥66:34 were soluble only in organic solvents. Micelles were formulated by injection of deionized water into a tetrahydrofuran block copolymer solution with or without pyrene as a model hydrophobic molecule. The critical micelle concentration was 18.2-30.9 mg/L, and the micelle size was 100-250 nm. The pyrene-containing micelle rapidly collapsed on acidic exposure, allowing conversion of hydrophobic PEEGE to hydrophilic PG, thus, facilitating the release of the encapsulated pyrene. Cytotoxicity data showed high biocompatibility of PG-based block copolymers, suggesting their potential as a drug delivery carrier.

  19. Hyperbranched poly(glycidol)/poly(ethylene oxide) crosslinked hydrogel for tissue engineering scaffold using e-beams.

    PubMed

    Haryanto; Singh, Deepti; Huh, Pil Ho; Kim, Seong Cheol

    2016-01-01

    A microporous hydrogel scaffold was developed from hyperbranched poly(glycidol) (HPG) and poly(ethylene oxide) (PEO) using electron beam (e-beam) induced cross-linking for tissue engineering applications. In this study, HPG was synthesized from glycidol using trimethylol propane as a core initiator and cross-linked hydrogels were made using 0, 10, 20, and 30% HPG with respect to PEO. The effects of %-HPG on the swelling ratio, cross-linking density, mechanical properties, morphology, degradation, and cytotoxicity of the hydrogel scaffolds were then investigated. Increasing the HPG content increased the pore size of the hydrogel scaffold, as well as the porosity, elongation at break, degree of degradation and swelling ratio. In contrast, the presence of HPG decreased the cross-linking density of the hydrogel. There was no significant difference in compressive modulus and tensile strength of all compositions. The pore size of hydrogel scaffolds could be easily tailored by controlling the content of HPG in the polymer blend. Evaluation of the cytotoxicity demonstrated that HPG/PEO hydrogel scaffold has potential for use as a matrix for cellular attachment and proliferation. These results indicate that cross-linked HPG/PEO hydrogel can function as a potential material for tissue engineering scaffolds. Moreover, a facile method to prepare hydrogel microporous scaffolds for tissue engineering by e-beam irradiation was developed.

  20. Dendronized multifunctional amphiphilic polymers as efficient nanocarriers for biomedical applications.

    PubMed

    Kumari, Meena; Gupta, Shilpi; Achazi, Katharina; Böttcher, Christoph; Khandare, Jayant; Sharma, Sunil K; Haag, Rainer

    2015-01-01

    To gain insight into the factors that affect stability and transport efficiency under dilution conditions, dendronized and hyperbranched multifunctional amphiphilic polymers are synthesized by following the "grafting to" approach using varied amounts of propargylated alkyl chain with perfect and hyperbranched polyglycerol dendrons on the base copolymer of PEG (Mn: 1000 g mol(-1)) diethylester and 2-azidopropane-1,3-diol following the "bio-catalytic method" and "click approach". The dendronized and hyperbranched polymeric systems form supramolecular aggregates and exhibit an efficient transport potential for the model dye "Nile red" in the low μm range in the core-shell-type architecture provided with distinct amphiphilicity as required for encapsulation. Cytotoxicity studies show the polymeric systems to be non-toxic over a wide concentration range. The cellular internalization of Nile-red-encapsulated supramolecular micellar structures is also studied using cellular fluorescence micro-scopy and fluorescence-activated cell sorting (FACS) measurements. A comparison of the data for the dendronized polymers (PEG Mn: 600/1000 g mol(-1)) with the respective low-molecular-weight amphiphile reveal that these polymeric systems are excellent nanotransporters.

  1. One-pot synthesis of doxorubicin-loaded multiresponsive nanogels based on hyperbranched polyglycerol.

    PubMed

    Sousa-Herves, Ana; Wedepohl, Stefanie; Calderón, Marcelo

    2015-03-28

    Doxorubicin-loaded nanogels with multiresponsive properties are prepared using hyperbranched polyglycerol as a biocompatible scaffold. The nanogels are synthesized in a single step combining free-radical polymerization and a mild nanoprecipitation technique. The nanogels respond to different biological stimuli such as low pH and reductive environments, resulting in a more efficient cell proliferation inhibition in A549 cells.

  2. Controlled crystallization of CaCO(3) on hyperbranched polyglycerol adsorbed to self-assembled monolayers.

    PubMed

    Balz, Mathias; Barriau, Emilie; Istratov, Vladislav; Frey, Holger; Tremel, Wolfgang

    2005-04-26

    The formation of biominerals by living organisms is governed by the cooperation of soluble and insoluble macromolecules with peculiar interfacial properties. To date, most of the studies on mineralization processes involve model systems that only account for the existence of one organic matrix and thus disregard the interaction between the soluble and insoluble organic components that is crucial for a better understanding of the processes taking place at the inorganic-organic interface. We have set up a model system composed of a matrix surface, namely, a self-assembled monolayer (SAM), and a soluble component, hyperbranched polyglycerol. The model mineral calcium carbonate displays diverse polymorphism. It could be demonstrated that the phase selection of calcium carbonate is controlled by the cooperative interaction of the SAM and hyperbranched polyglycerol of different molecular weights (M(n) = 500-6000 g/mol) adsorbed to the SAM. Our studies showed that hyperbranched polyglycerol is adsorbed to polar as well as to nonpolar SAMs. This effect can be related to its highly flexible structure and its amphiphilic character. The adsorption of hyperbranched polyglycerol to the SAMs with different surface polarities resulted in the formation of aragonite for alkyl-terminated SAMs and no phase selection for carboxylate-terminated SAMs.

  3. Hydrophobicity/hydrophilicity tunable hyperbranched polystyrenes as novel supports for transition-metal nanoparticles.

    PubMed

    Kojima, Keisuke; Chikama, Katsumi; Ishikawa, Makoto; Tanaka, Akihiro; Nishikata, Takashi; Tsutsumi, Hironori; Igawa, Kazunobu; Nagashima, Hideo

    2012-11-07

    Development of a new preparative procedure for hyperbranched polystyrene having Cl end groups (HPS-Cl) enables to prepare HPS-NR(3)(+)Cl(-), for which the hydrophobicity/hydrophilicity is tunable by the R groups. The resulting ammonium salts behave as a good support of platinum nanoparticles, which is useful for catalytic biphasic hydrogenation of alkenes.

  4. Organic/inorganic hybrid nanospheres based on hyperbranched poly(ethylene imine) encapsulated into silica for the sorption of toxic metal ions and polycyclic aromatic hydrocarbons from water.

    PubMed

    Arkas, Michael; Tsiourvas, Dimitris

    2009-10-15

    Organic-inorganic hybrid silica nanospheres were prepared through a biomimetic silicification process in water at ambient conditions by the interaction of low cost poly(ethylene imine) hyperbranched polymer with silicic acid. The characterization of these nanoparticles by FTIR spectroscopy, scanning electron microscopy (SEM), zeta-potential and dynamic light scattering (DLS) experiments confirmed that the dendritic polymer was incorporated into the silica network. Preliminary experiments show that these hybrid nanoparticles can be employed for the removal of toxic water contaminants. Hybrid nanospheres' sorption of two completely different categories of pollutants, i.e. metal ions such as Pb(2+), Cd(2+), Hg(2+), Cr(2)O(7)(2-), and polycyclic aromatic hydrocarbons such as pyrene and phenanthrene, was largely enhanced in comparison with the corresponding polymer-free silica nanospheres. This was attributed to the to the formation of conventional metal-ligand and charge-transfer complexes proving that although integrated into the silica network poly(ethylene imine) retains its chemical properties.

  5. Synthesis and noncovalent protein conjugation of linear-hyperbranched PEG-poly(glycerol) alpha,omega(n)-telechelics.

    PubMed

    Wurm, Frederik; Klos, Johannes; Räder, Hans Joachim; Frey, Holger

    2009-06-17

    Linear-hyperbranched, heterobifunctional alpha,omega(n) telechelic block copolymers consisting of a linear poly(ethylene glycol) (PEG) chain and a hyperbranched polyglycerol (PG) block have been prepared in five steps, using a protected amino-functional initiator. The polyfunctionality omega(n) (OH groups) can be adjusted by the degree of polymerization (DP(n)) of the polyglycerol block. Subsequent introduction of a single biotin unit by amidation in alpha-position permitted noncovalent bioconjugation with avidin.

  6. Novel composites materials from functionalized polymers and silver coated titanium oxide capable for calcium phosphate induction, control of orthopedic biofilm infections: an "in vitro" study.

    PubMed

    Tyllianakis, M; Dalas, E; Christofidou, M; Kallitsis, J K; Chrissanthopoulos, A; Koutsoukos, P G; Bartzavali, C; Gourdoupi, N; Papadimitriou, K; Oikonomou, E K; Yannopoulos, S N; Sevastos, D

    2010-07-01

    Three copolymers containing the functional groups P=O, S=O and C=O were prepared, and upon the introduction in calcium phosphate aqueous solutions at physiological conditions, "in vitro" were induced the precipitation of calcium phosphate crystals. The investigation of the crystal growth process was done at constant supersaturation. It is suggested that the negative end of the above functional groups acts as the active site for nucleation of the inorganic phase. In order to obtain the copolymer further antimicrobial activity, titania (TiO(2)) nanocrystals were incorporated in the polymer matrix after silver coverage by UV radiation. The antimicrobial resistance of the composite material (copolymer-titania/Ag) was tested against Staphylococcus epidermidis (SEM), Staphylococcus aureus (SAM), Candida parapsilosis (CAM) and Pseudomonas aeruginosa (PAM), microorganisms, using cut parts of "pi-plate" that covered with the above mentioned composite. The antimicrobial effect increased as the size of the nanocrystals TiO(2)/Ag decreased, the maximum achieved with the third polymer that contained also quartenary ammonium groups.

  7. Macromolecular metamorphosis via stimulus-induced transformations of polymer architecture

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Kabb, Christopher P.; Dai, Yuqiong; Hill, Megan R.; Ghiviriga, Ion; Bapat, Abhijeet P.; Sumerlin, Brent S.

    2017-08-01

    Macromolecular architecture plays a pivotal role in determining the properties of polymers. When designing polymers for specific applications, it is not only the size of a macromolecule that must be considered, but also its shape. In most cases, the topology of a polymer is a static feature that is inalterable once synthesized. Using reversible-covalent chemistry to prompt the disconnection of chemical bonds and the formation of new linkages in situ, we report polymers that undergo dramatic topological transformations via a process we term macromolecular metamorphosis. Utilizing this technique, a linear amphiphilic block copolymer or hyperbranched polymer undergoes 'metamorphosis' into comb, star and hydrophobic block copolymer architectures. This approach was extended to include a macroscopic gel which transitioned from a densely and covalently crosslinked network to one with larger distances between the covalent crosslinks when heated. These architectural transformations present an entirely new approach to 'smart' materials.

  8. Methotrexate-conjugated and hyperbranched polyglycerol-grafted Fe₃O₄ magnetic nanoparticles for targeted anticancer effects.

    PubMed

    Li, Min; Neoh, Koon-Gee; Wang, Rong; Zong, Bao-Yu; Tan, Jia Yong; Kang, En-Tang

    2013-01-23

    Superparamagnetic nanoparticles grafted with hyperbranched polyglycerol (HPG) and conjugated with methotrexate (MTX) (MNP-g-HPG-MTX) were synthesized via a sol-gel reaction followed by thiol-ene click chemistry and esterification reaction. The successful grafting of MTX and HPG onto the nanoparticles was confirmed by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectroscopy, and UV-visible spectroscopy. The HPG-graft layer confers the magnetic nanoparticles with good dispersibility and stability in aqueous medium and macrophage-evasive property while the MTX acts as a chemotherapeutic drug as well as a tumor targeting ligand. The dose-dependent targeting and anticancer effect of the MNP-g-HPG-MTX nanoparticles were evaluated, and the results showed that depending on the amount of conjugated MTX and the concentration of the incubated nanoparticles, the uptake of MNP-g-HPG-MTX nanoparticles by human head and neck cancer (KB) cells can be eight times or more higher than those by 3T3 fibroblasts and RAW macrophages. As a result, the MNP-g-HPG-MTX nanoparticles are capable of killing ∼50% of the KB cells while at the same time exhibiting low cytotoxicity towards 3T3 fibroblasts and RAW macrophages. Thus, such nanoparticles can potentially be used as active targeting anticancer agents.

  9. Hyperbranched hydrocarbon surfactants give fluorocarbon-like low surface energies.

    PubMed

    Sagisaka, Masanobu; Narumi, Tsuyoshi; Niwase, Misaki; Narita, Shioki; Ohata, Atsushi; James, Craig; Yoshizawa, Atsushi; Taffin de Givenchy, Elisabeth; Guittard, Frédéric; Alexander, Shirin; Eastoe, Julian

    2014-06-03

    Two series of Aerosol-OT-analogue surfactants (sulfosuccinate-type di-BCnSS and sulfoglutarate-type di-BCnSG) with hyperbranched alkyl double tails (so-called "hedgehog" groups, carbon number n = 6, 9, 12, and 18) have been synthesized and shown to demonstrate interfacial properties comparable to those seen for related fluorocarbon (FC) systems. Critical micelle concentration (CMC), surface tension at the CMC (γCMC), and minimum area per molecule (Amin) were obtained from surface tension measurements of aqueous surfactant solutions. The results were examined for relationships between the structure of the hedgehog group and packing density at the interface. To evaluate A and B values in the Klevens equation for these hedgehog surfactants, log(CMC) was plotted as a function of the total carbon number in the surfactant double tail. A linear relationship was observed, producing B values of 0.20-0.25 for di-BCnSS and di-BCnSG, compared to a value of 0.31 for standard double-straight-tail sulfosuccinate surfactants. The lower B values of these hedgehog surfactants highlight their lower hydrophobicity compared to double-straight-tail surfactants. To clarify how hydrocarbon density in the surfactant-tail layer (ρ(layer)) affects γCMC, the ρ(layer) of each double-tail surfactant was calculated and the relationship between γCMC and ρ(layer) examined. As expected for the design of low surface energy surfactant layers, ρ(layer) was identified as an important property for controlling γCMC with higher ρ(layer), leading to a lower γCMC. Interestingly, surfactants with BC9 and BC12 tails achieved much lower γCMC, even at low ρ(layer) values of <0.55 g cm(-3). The lowest surface energy surfactant studied here was di-BC6SS, which had a γCMC of only 23.8 mN m(-1). Such a low γCMC is comparable to those obtained with short FC-tail surfactants (e.g., 22.0 mN m(-1) for the sulfosuccinate-type FC-surfactant with R = F(CF2)6CH2CH2-).

  10. GMI Capabilities

    NASA Technical Reports Server (NTRS)

    Strode, Sarah; Rodriguez, Jose; Steenrod, Steve; Liu, Junhua; Strahan, Susan; Nielsen, Eric

    2015-01-01

    We describe the capabilities of the Global Modeling Initiative (GMI) chemical transport model (CTM) with a special focus on capabilities related to the Atmospheric Tomography Mission (ATom). Several science results based on GMI hindcast simulations and preliminary results from the ATom simulations are highlighted. We also discuss the relationship between GMI and GEOS-5.

  11. Two-step adsorption on jungle-gym-type porous coordination polymers: dependence on hydrogen-bonding capability of adsorbates, ligand-substituent effect, and temperature.

    PubMed

    Uemura, Kazuhiro; Yamasaki, Yukari; Onishi, Fumiaki; Kita, Hidetoshi; Ebihara, Masahiro

    2010-11-01

    A preliminary study of isopropanol (IPA) adsorption/desorption isotherms on a jungle-gym-type porous coordination polymer, [Zn(2)(bdc)(2)(dabco)](n) (1, H(2)bdc = 1,4-benzenedicarboxylic acid, dabco =1,4-diazabicyclo[2.2.2]octane), showed unambiguous two-step profiles via a highly shrunk intermediate framework. The results of adsorption measurements on 1, using probing gas molecules of alcohol (MeOH and EtOH) for the size effect and Me(2)CO for the influence of hydrogen bonding, show that alcohol adsorption isotherms are gradual two-step profiles, whereas the Me(2)CO isotherm is a typical type-I isotherm, indicating that a two-step adsorption/desorption is involved with hydrogen bonds. To further clarify these characteristic adsorption/desorption behaviors, selecting nitroterephthalate (bdc-NO(2)), bromoterephthalate (bdc-Br), and 2,5-dichloroterephthalate (bdc-Cl(2)) as substituted dicarboxylate ligands, isomorphous jungle-gym-type porous coordination polymers, {[Zn(2)(bdc-NO(2))(2)(dabco)]·solvents}(n) (2 ⊃ solvents), {[Zn(2)(bdc-Br)(2)(dabco)]·solvents}(n) (3 ⊃ solvents), and {[Zn(2)(bdc-Cl(2))(2)(dabco)]·solvents}(n) (4 ⊃ solvents), were synthesized and characterized by single-crystal X-ray analyses. Thermal gravimetry, X-ray powder diffraction, and N(2) adsorption at 77 K measurements reveal that [Zn(2)(bdc-NO(2))(2)(dabco)](n) (2), [Zn(2)(bdc-Br)(2)(dabco)](n) (3), and [Zn(2)(bdc-Cl(2))(2)(dabco)](n) (4) maintain their frameworks without guest molecules with Brunauer-Emmett-Teller (BET) surface areas of 1568 (2), 1292 (3), and 1216 (4) m(2) g(-1). As found in results of MeOH, EtOH, IPA, and Me(2)CO adsorption/desorption on 2-4, only MeOH adsorption on 2 shows an obvious two-step profile. Considering the substituent effects and adsorbate sizes, the hydrogen bonds, which are triggers for two-step adsorption, are formed between adsorbates and carboxylate groups at the corners in the pores, inducing wide pores to become narrow pores. Interestingly, such

  12. A self-strain feedback tuning-fork-shaped ionic polymer metal composite clamping actuator with soft matter elasticity-detecting capability for biomedical applications.

    PubMed

    Feng, Guo-Hua; Huang, Wei-Lun

    2014-12-01

    This paper presents a smart tuning-fork-shaped ionic polymer metal composite (IPMC) clamping actuator for biomedical applications. The two fingers of the actuator, which perform the clamping motion, can be electrically controlled through a unique electrode design on the IPMC material. The generated displacement or strain of the fingers can be sensed using an integrated soft strain-gage sensor. The IPMC actuator and associated soft strain gage were fabricated using a micromachining technique. A 13.5×4×2 mm(3) actuator was shaped from Nafion solution and a selectively grown metal electrode formed the active region. The strain gage consisted of patterned copper foil and polyethylene as a substrate. The relationship between the strain gage voltage output and the displacement at the front end of the actuator's fingers was characterized. The equivalent Young's modulus, 13.65 MPa, of the soft-strain-gage-integrated IPMC finger was analyzed. The produced clamping force exhibited a linear increasing rate of 1.07 mN/s, based on a dc driving voltage of 7 V. Using the developed actuator to clamp soft matter and simultaneously acquire its Young's modulus was achieved. This demonstrated the feasibility of the palpation function and the potential use of the actuator in minimally invasive surgery.

  13. Rheology of Hyperbranched Poly(triglyceride)-Based Thermoplastic Elastomers via RAFT polymerization

    NASA Astrophysics Data System (ADS)

    Yan, Mengguo; Cochran, Eric

    2014-03-01

    In this contribution we discuss how melt- and solid-state properties are influenced by the degree of branching and molecular weight in a family of hyperbranched thermoplastics derived from soybean oil. Acrylated epoxidized triglycerides from soybean oils have been polymerized to hyperbranched thermoplastic elastomers using reversible addition-fragmentation chain transfer (RAFT) polymerization. With the proper choice of chain transfer agent, both homopolymer and block copolymer can be synthesized. By changing the number of acrylic groups per triglycerides, the chain architectures can range from nearly linear to highly branched. We show how the fundamental viscoelastic properties (e.g. entanglement molecular weight, plateau modulus, etc.) are influenced by chain architecture and molecular weight.

  14. Secondary and primary relaxations in hyperbranched polyglycerol: a comparative study in the frequency and time domains.

    PubMed

    Garcia-Bernabé, Abel; Dominguez-Espinosa, Gustavo; Diaz-Calleja, Ricardo; Riande, Evaristo; Haag, Rainer

    2007-09-28

    The non-Debye relaxation behavior of hyperbranched polyglycerol was investigated by broadband dielectric spectroscopy. A thorough study of the relaxations was carried out paying special attention to truncation effects on deconvolutions of overlapping processes. Hyperbranched polyglycerol exhibits two relaxations in the glassy state named in increasing order of frequency beta and gamma processes. The study of the evolution of these two fast processes with temperature in the time retardation spectra shows that the beta absorption is swallowed by the alpha in the glass-liquid transition, the gamma absorption being the only relaxation that remains operative in the liquid state. In heating, a temperature is reached at which the alpha absorption vanishes appearing the alphagamma relaxation. Two characteristics of alpha absorptions, decrease of the dielectric strength with increasing temperature and rather high activation energy, are displayed by the alphagamma process. Williams' ansatz seems to hold for these topologically complex macromolecules.

  15. Structurally Enhanced Self-Plasticization of Poly(vinyl chloride) via Click Grafting of Hyperbranched Polyglycerol.

    PubMed

    Lee, Kyu Won; Chung, Jae Woo; Kwak, Seung-Yeop

    2016-12-01

    A highly self-plasticized poly(vinyl chloride) (PVC) is demonstrated for the first time via click grafting of hyperbranched polyglycerol (HPG). The plasticizing effect of the grafted HPG on PVC is systematically investigated by various analytical methods. The amorphous and bulky dendritic structure of HPG efficiently increases the free volume of the grafted PVC, which leads to a remarkably lower glass transition temperature comparable to that of the conventional plasticized PVC. Viscoelastic analysis reveals that HPG considerably improves the softness of the grafted PVC at room temperature and promotes the segmental motion in the system. The HPG-grafted PVC films exhibit an exceptional stretchability unlike the mixture of PVC and HPG because the covalent attachment of HPG to PVC allows it to maintain its homogeneous and well-organized architecture under tensile stretching. The work provides valuable insights into the design of highly flexible and stretchable polymeric materials by means of introducing hyperbranched side chains.

  16. Secondary and primary relaxations in hyperbranched polyglycerol: A comparative study in the frequency and time domains

    NASA Astrophysics Data System (ADS)

    Garcia-Bernabé, Abel; Dominguez-Espinosa, Gustavo; Diaz-Calleja, Ricardo; Riande, Evaristo; Haag, Rainer

    2007-09-01

    The non-Debye relaxation behavior of hyperbranched polyglycerol was investigated by broadband dielectric spectroscopy. A thorough study of the relaxations was carried out paying special attention to truncation effects on deconvolutions of overlapping processes. Hyperbranched polyglycerol exhibits two relaxations in the glassy state named in increasing order of frequency β and γ processes. The study of the evolution of these two fast processes with temperature in the time retardation spectra shows that the β absorption is swallowed by the α in the glass-liquid transition, the γ absorption being the only relaxation that remains operative in the liquid state. In heating, a temperature is reached at which the α absorption vanishes appearing the αγ relaxation. Two characteristics of α absorptions, decrease of the dielectric strength with increasing temperature and rather high activation energy, are displayed by the αγ process. Williams' ansatz seems to hold for these topologically complex macromolecules.

  17. Polyion complex micelles prepared by self-assembly of block-graft polycation and hyperbranched polyanion

    NASA Astrophysics Data System (ADS)

    Dai, Yu; Wang, Hongquan; Zhang, Xiaojin

    2017-09-01

    Polyion complex (PIC) micelles were prepared by self-assembly of block-graft polycation monomethoxy poly(ethylene glycol)- block-(poly(ɛ-caprolactone)- graft-polyethylenimine) (PEG- b-(PCL- g-PEI)) and hyperbranched polyanion sodium carboxyl-modified hyperbranched polyesters (Hx-COONa, x = 20, 30, 40). The results from commonly used MTT assay indicated that PIC micelles had good biocompatibility. PIC micelles with N/COO- of 8/3 had appropriate size (sub-110 nm) and moderate zeta potential ( 3 mV). PIC micelles were nano-sized spheres, and the average size was about 50 nm. PIC micelles had high drug loading capacity for hydrophilic drugs such as doxorubicin (DOX) hydrochloride and released the drugs under the influence of pH and ionic strength.

  18. Facile synthesis of dendritic gold nanostructures with hyperbranched architectures and their electrocatalytic activity toward ethanol oxidation.

    PubMed

    Huang, Jianshe; Han, Xinyi; Wang, Dawei; Liu, Dong; You, Tianyan

    2013-09-25

    Gold dendritic nanostructures with hyperbranched architectures were synthesized by the galvanic replacement reaction between nickel wire and HAuCl4 in aqueous solution. The study revealed that the morphology of the obtained nanostructures strongly depended on experimental parameters such as the HAuCl4 solution concentration, reaction temperature, and time, as well as stirring or not. According to the investigation of the growth process, it was proposed that gold nanoparticles with rough surfaces were first deposited on the nickel substrate and that subsequent growth preferentially occurred on the preformed gold nanoparticles, finally leading to the formation of hyperbranched gold dendrites via a self-organization process under nonequilibrium conditions. The electrochemical experiment results demonstrated that the as-obtained gold dendrites exhibited high catalytic activity toward ethanol electrooxidation in alkaline solution, indicating that this nanomaterial may be a potential catalyst for direct ethanol fuel cells.

  19. Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.

    2007-01-01

    Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.

  20. Noradrenaline-functionalized hyperbranched fluoropolymer-poly(ethylene glycol) cross-linked networks as dual-mode, anti-biofouling coatings.

    PubMed

    Imbesi, Philip M; Gohad, Neeraj V; Eller, Michael J; Orihuela, Beatriz; Rittschof, Dan; Schweikert, Emile A; Mount, Andrew S; Wooley, Karen L

    2012-02-28

    The strategy of decorating antibiofouling hyperbranched fluoropolymer-poly(ethylene glycol) (HBFP-PEG) networks with a settlement sensory deterrent, noradrenaline (NA), and the results of biofouling assays are presented. This example of a dual-mode surface, which combines both passive and active modes of antibiofouling, works in synergy to improve the overall antibiofouling efficiency against barnacle cyprids. The HBFP-PEG polymer surface, prior to modification with NA, was analyzed by atomic force microscopy, and a significant distribution of topographical features was observed, with a nanoscopic roughness measurement of 110 ± 8 nm. NA attachment to the surface was probed by secondary ion mass spectrometry to quantify the extent of polymer chain-end substitution with NA, where a 3- to 4-fold increase in intensity for a fragment ion associated with NA was observed and 39% of the available sites for attachment were substituted. Cytoskeletal assays confirmed the activity of tethered NA on adhering oyster hemocytes. Settlement assays showed deterrence toward barnacle cyprid settlement, while not compromising the passive biofouling resistance of the surface. This robust strategy demonstrates a methodology for the incorporation of actively antibiofouling moieties onto a passively antibiofouling network.

  1. Thermal evaporated hyperbranched Ag nanostructure as an effective secondary-electron trapping surface coating

    NASA Astrophysics Data System (ADS)

    He, Y. N.; Peng, W. B.; Cui, W. Z.; Ye, M.; Zhao, X. L.; Wang, D.; Hu, T. C.; Wang, R.; Li, Y.

    2016-02-01

    We study secondary electron yield (SEY) suppression of silver using a hyperbranched nanostructure obtained by thermal evaporation. First, we perform thermal evaporation at different residual gas pressures for studying the influence of pressure on surface morphologies. A self-assembled hyperbranched Ag nanostructure has been achieved at 100 Pa. Then, we further investigate the detailed formation process of the self-assembled hyperbranched Ag nanostructure qualitatively and find it to be dominated by "screening effect". Finally, we study the obvious SEY suppression effect of this special structure. We show that 100 Pa is the best process condition within our experimental scope from the SEY suppression point of view. It exhibits maximum SEY (δmax) of ˜0.9. We also show that the combining of this nanostructure with the micro-porous surface we developed before can further improve its SEY suppression effect which leading to a δmax of ˜0.8. We propose a novel 2D rectangular-hemisphere hybrid trap model to perform numerical simulation of secondary electron dynamics for interpretation of the experimental results. In total, this work provides guidance to controllable preparation of low SEY metallic surfaces for potential applications in particle accelerators, RF microwave components and satellite systems.

  2. Hyperbranched polyglycerol-based lipids via oxyanionic polymerization: toward multifunctional stealth liposomes.

    PubMed

    Hofmann, Anna Maria; Wurm, Frederik; Hühn, Eva; Nawroth, Thomas; Langguth, Peter; Frey, Holger

    2010-03-08

    We describe the synthesis of linear-hyperbranched lipids for liposome preparation based on linear poly(ethylene glycol) (PEG) and hyperbranched polyglycerol (PG). Molecular weights were adjusted to values around 3000 g/mol with varying degrees of polymerization of the linear and the branched segments in analogy to PEG-based stealth lipids; polydispersities were generally low and below 1.3. The hydrophobic anchors were introduced into the lipid structures as initiators for the anionic polymerization of ethylene oxide and are either based on cholesterol or on different aliphatic glyceryl ethers. Complete incorporation of the apolar initiators was evidenced by MALDI-ToF analysis at all stages of the reaction. The linear-hyperbranched polyether lipid is incorporated as the polyfunctional shell in liposome formulations together with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The resulting liposomes were subsequently characterized via dynamic light scattering (DLS) and small angle neutron scattering (SANS) as well as transmission electron microscopy (TEM), demonstrating the formation of unilamellar liposomes in the size range of 40 to 50 nm.

  3. Synthesis of Cu-Ag@Ag particles using hyperbranched polyester as template

    NASA Astrophysics Data System (ADS)

    Han, Wen-Song

    2015-07-01

    In this manuscript, the third-generation hyperbranched polyester was synthesized with 2, 2-dimethylol propionic acid as AB2 monomer and pentaerythrite as core molecule by using step by step polymerization process at first. Then, the Cu-Ag particles were prepared by co-reduction of silver nitrate and copper nitrate with ascorbic acid in the aqueous solution using hyperbranched polyester as template. Finally, the Cu-Ag@Ag particles were prepared by coating silver on the surface of Cu-Ag particles by reduction of silver nitrate. The synthesized hyperbranched polyester and Cu-Ag@Ag particles were characterized by Fourier transform infrared (FT-IR) spectroscopy, UV-vis spectra, x-ray diffraction, Laser light scattering, thermogravimetric analysis (TGA) and SEM. UV-vis spectra results showed that the Cu-Ag@Ag particles had a strong absorption band at around 420 nm. Laser light scattering and SEM studies confirmed that the most frequent particle sizes of Cu-Ag@Ag particles were 1.2 um. TGA results indicated that the Cu-Ag@Ag particles had good thermal stability. [Figure not available: see fulltext.

  4. Capability Disillusionment

    DTIC Science & Technology

    2011-08-01

    Defense AT&L: July–August 2011 22 Capability Disillusionment Cochrane is an operations research analyst and has worked for the past 6 years at the... Disillusionment 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...unsup- ported by either academic investigation or practical utility. The definition of “capability” in the literature suggests that capabilities are

  5. Inhibition of Electrochemical Reactions at Gold Surfaces by Grafted, Highly Fluorinated, Hyperbranched Polymer Films

    DTIC Science & Technology

    1996-10-01

    50 atom% F; These films are very hydrophobic (water contact angle of 114 deg) and block electrochemical reactions on gold electrodes. Cyclic ... voltammetry in basic solution shows that while an electrode covered with a 3-layer PAA (3-PAA) film mimics an assembly of microelectrodes, a fluorinated 3

  6. Synthesis and Characterization of a Hyperbranched Hydrogen Bond Acidic Carbosilane Sorbent Polymer

    DTIC Science & Technology

    2010-01-01

    double bond of HCSA2 (1) electrophilically attacks the ketone carbon of the HFA. The bonds are formed via a pericyclic mechanism which requires formation...val- ues for H, 3.1% and C, 35.4% compared with the theoretical weight percents of H, 2.2%, and C, 34.3%. Fluorine composi- tion numbers were...Srcic, S. Acta Chim Solv 2004, 51, 373–394. 43 Bhadury, P. S.; Dubey, V.; Singh, S.; Saxena, C. J. Fluorine Chem 2005, 126, 1252–1256. 44 Grate, J. W

  7. Synthesis and supramolecular association of immobilized NCN-pincer platinum(II) complexes on hyperbranched polyglycerol supports.

    PubMed

    Stiriba, Salah-Eddine; Slagt, Martijn Q; Kautz, Holger; Klein Gebbink, Robertus J M; Thomann, Ralf; Frey, Holger; van Koten, Gerard

    2004-03-05

    Pertosylation of hyperbranched polyglycerol (M(n)=2000; M(w)/M(n)=1.3) followed by partial displacement of the tosyl groups with carboxylic acid functionalized NCN-pincer platinum(II) complexes [PtI-2,6-(NMe(2)CH(2))(2)C(6)H(2)-4-COOH], resulted in covalent attachment of the NCN-pincer complexes to the polyglycerol. These functionalized hyperbranched macromolecules have been characterized by (1)H, (13)C, and (195)Pt NMR, UV-visible, and IR spectroscopy. The presence of Pt and I atoms renders them directly visible by transmission electron microscopy (TEM) without staining procedures, which offers images of associated hyperbranched macromolecules. TEM micrographs show disk-shaped structures with a small size-distribution (15-20 nm), and characteristic core-shell ring structures. The thickness of the corona observed in TEM could be correlated with the substitution degree with pincer platinum moieties.

  8. Antimocrobial Polymer

    DOEpatents

    McDonald, William F.; Huang, Zhi-Heng; Wright, Stacy C.

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  9. Antimicrobial Polymer

    DOEpatents

    McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2004-09-28

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The polymeric composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from metals, metal alloys, metal salts, metal complexes and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one example embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl; and the metallic antimicrobial agent is selected from chelated silver ions, silver metal, chelated copper ions, copper metal, chelated zinc ions, zinc metal and mixtures thereof.

  10. An efficient nonviral gene-delivery vector based on hyperbranched cationic glycogen derivatives

    PubMed Central

    Liang, Xuan; Ren, Xianyue; Liu, Zhenzhen; Liu, Yingliang; Wang, Jue; Wang, Jingnan; Zhang, Li-Ming; Deng, David YB; Quan, Daping; Yang, Liqun

    2014-01-01

    Background The purpose of this study was to synthesize and evaluate hyperbranched cationic glycogen derivatives as an efficient nonviral gene-delivery vector. Methods A series of hyperbranched cationic glycogen derivatives conjugated with 3-(dimethylamino)-1-propylamine (DMAPA-Glyp) and 1-(2-aminoethyl) piperazine (AEPZ-Glyp) residues were synthesized and characterized by Fourier-transform infrared and hydrogen-1 nuclear magnetic resonance spectroscopy. Their buffer capacity was assessed by acid–base titration in aqueous NaCl solution. Plasmid deoxyribonucleic acid (pDNA) condensation ability and protection against DNase I degradation of the glycogen derivatives were assessed using agarose gel electrophoresis. The zeta potentials and particle sizes of the glycogen derivative/pDNA complexes were measured, and the images of the complexes were observed using atomic force microscopy. Blood compatibility and cytotoxicity were evaluated by hemolysis assay and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, respectively. pDNA transfection efficiency mediated by the cationic glycogen derivatives was evaluated by flow cytometry and fluorescence microscopy in the 293T (human embryonic kidney) and the CNE2 (human nasopharyngeal carcinoma) cell lines. In vivo delivery of pDNA in model animals (Sprague Dawley rats) was evaluated to identify the safety and transfection efficiency. Results The hyperbranched cationic glycogen derivatives conjugated with DMAPA and AEPZ residues were synthesized. They exhibited better blood compatibility and lower cytotoxicity when compared to branched polyethyleneimine (bPEI). They were able to bind and condense pDNA to form the complexes of 100–250 nm in size. The transfection efficiency of the DMAPA-Glyp/pDNA complexes was higher than those of the AEPZ-Glyp/pDNA complexes in both the 293T and CNE2 cells, and almost equal to those of bPEI. Furthermore, pDNA could be more safely delivered to the blood vessels in brain

  11. An efficient nonviral gene-delivery vector based on hyperbranched cationic glycogen derivatives.

    PubMed

    Liang, Xuan; Ren, Xianyue; Liu, Zhenzhen; Liu, Yingliang; Wang, Jue; Wang, Jingnan; Zhang, Li-Ming; Deng, David Yb; Quan, Daping; Yang, Liqun

    2014-01-01

    The purpose of this study was to synthesize and evaluate hyperbranched cationic glycogen derivatives as an efficient nonviral gene-delivery vector. A series of hyperbranched cationic glycogen derivatives conjugated with 3-(dimethylamino)-1-propylamine (DMAPA-Glyp) and 1-(2-aminoethyl) piperazine (AEPZ-Glyp) residues were synthesized and characterized by Fourier-transform infrared and hydrogen-1 nuclear magnetic resonance spectroscopy. Their buffer capacity was assessed by acid-base titration in aqueous NaCl solution. Plasmid deoxyribonucleic acid (pDNA) condensation ability and protection against DNase I degradation of the glycogen derivatives were assessed using agarose gel electrophoresis. The zeta potentials and particle sizes of the glycogen derivative/pDNA complexes were measured, and the images of the complexes were observed using atomic force microscopy. Blood compatibility and cytotoxicity were evaluated by hemolysis assay and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, respectively. pDNA transfection efficiency mediated by the cationic glycogen derivatives was evaluated by flow cytometry and fluorescence microscopy in the 293T (human embryonic kidney) and the CNE2 (human nasopharyngeal carcinoma) cell lines. In vivo delivery of pDNA in model animals (Sprague Dawley rats) was evaluated to identify the safety and transfection efficiency. The hyperbranched cationic glycogen derivatives conjugated with DMAPA and AEPZ residues were synthesized. They exhibited better blood compatibility and lower cytotoxicity when compared to branched polyethyleneimine (bPEI). They were able to bind and condense pDNA to form the complexes of 100-250 nm in size. The transfection efficiency of the DMAPA-Glyp/pDNA complexes was higher than those of the AEPZ-Glyp/pDNA complexes in both the 293T and CNE2 cells, and almost equal to those of bPEI. Furthermore, pDNA could be more safely delivered to the blood vessels in brain tissue of Sprague Dawley rats

  12. Supramolecular dendritic polymers: from synthesis to applications.

    PubMed

    Dong, Ruijiao; Zhou, Yongfeng; Zhu, Xinyuan

    2014-07-15

    CONSPECTUS: Supramolecular dendritic polymers (SDPs), which perfectly combine the advantages of dendritic polymers with those of supramolecular polymers, are a novel class of non-covalently bonded, highly branched macromolecules with three-dimensional globular topology. Because of their dynamic/reversible nature, unique topological structure, and exceptional physical/chemical properties (e.g., low viscosity, high solubility, and a large number of functional terminal groups), SDPs have attracted increasing attention in recent years in both academic and industrial fields. In particular, the reversibility of non-covalent interactions endows SDPs with the ability to undergo dynamic switching of structure, morphology, and function in response to various external stimuli, such as pH, temperature, light, stress, and redox agents, which further provides a flexible and robust platform for designing and developing smart supramolecular polymeric materials and functional supramolecular devices. The existing SDPs can be systematically classified into the following six major types according to their topological features: supramolecular dendrimers, supramolecular dendronized polymers, supramolecular hyperbranched polymers, supramolecular linear-dendritic block copolymers, supramolecular dendritic-dendritic block copolymers, and supramolecular dendritic multiarm copolymers. These different types of SDPs possess distinct morphologies, unique architectures, and specific functions. Benefiting from their versatile topological structures as well as stimuli-responsive properties, SDPs have displayed not only unique characteristics or advantages in supramolecular self-assembly behaviors (e.g., controllable morphologies, specific performance, and facile functionalization) but also great potential to be promising candidates in various fields. In this Account, we summarize the recent progress in the synthesis, functionalization, and self-assembly of SDPs as well as their potential

  13. Hyperbranched Hybridization Chain Reaction for Triggered Signal Amplification and Concatenated Logic Circuits.

    PubMed

    Bi, Sai; Chen, Min; Jia, Xiaoqiang; Dong, Ying; Wang, Zonghua

    2015-07-06

    A hyper-branched hybridization chain reaction (HB-HCR) is presented herein, which consists of only six species that can metastably coexist until the introduction of an initiator DNA to trigger a cascade of hybridization events, leading to the self-sustained assembly of hyper-branched and nicked double-stranded DNA structures. The system can readily achieve ultrasensitive detection of target DNA. Moreover, the HB-HCR principle is successfully applied to construct three-input concatenated logic circuits with excellent specificity and extended to design a security-mimicking keypad lock system. Significantly, the HB-HCR-based keypad lock can alarm immediately if the "password" is incorrect. Overall, the proposed HB-HCR with high amplification efficiency is simple, homogeneous, fast, robust, and low-cost, and holds great promise in the development of biosensing, in the programmable assembly of DNA architectures, and in molecular logic operations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A hyperbranched β-d-glucan with compact coil conformation from Lignosus rhinocerotis sclerotia.

    PubMed

    Hu, Ting; Huang, Qilin; Wong, Kahing; Yang, Hong; Gan, Jingsi; Li, Yanru

    2017-06-15

    An alkali-soluble polysaccharide was extracted from Lignosus rhinocerotis sclerotia (LRP). Its structural characteristics were determined by GC-MS, FT-IR, GC, 1D and 2D NMR combined with Smith degradation and methylation analysis. The LRP had a (1→3)-β-d-Glcp backbone with every three residues bearing a (1→6)-linked and hyperbranched side chain that contained three (1→6)-β-d-Glcp residues as secondary main chain and two terminal β-d-Glcp residues linked at O3. The degree of branching was 0.76 from GC-MS analysis, implying a highly branched structure for LRP. The Mw, z(1/2), Rh and [η] values of LRP in 0.25M LiCl/DMSO were measured by SEC-MALLS-Vis-RI combination technology to be 2.88×10(5)g/mol, 30.36nm, 22.34nm and 131.50ml/g, respectively. Furthermore, the exponent α of [η]-Mw, β of z(1/2)-Mw, the fractal dimension df and molecular parameter ρ were determined to be 0.20, 0.33, 2.50 and 1.36, demonstrating that the LRP was a hyperbranched polysaccharide and adopted a compact coil conformation in LiCl/DMSO.

  15. Succinate Functionalization of Hyperbranched Polyglycerol-Coated Magnetic Nanoparticles as a Draw Solute During Forward Osmosis.

    PubMed

    Yang, Hee-Man; Choi, Hye Min; Jang, Sung-Chan; Han, Myeong Jin; Seo, Bum-Kyoung; Moon, Jei-Kwon; Lee, Kune-Woo

    2015-10-01

    Hyperbranched polyglycerol-coated magnetic nanoparticles (SHPG-MNPs) were functionalized with succinate groups to form a draw solute for use in a forward osmosis (FO). After the one-step synthesis of hyperbranched polyglycerol-coated magnetic nanoparticles (HPG-MNPs), the polyglycerol groups on the surfaces of the HPG-MNPs were functionalized with succinic anhydride moieties. The resulting SHPG-MNPs showed no change of size and magnetic property compared with HPG-MNPs and displayed excellent dispersibility in water up to the concentration of 400 g/L. SHPG-MNPs solution showed higher osmotic pressure than that of HPG-MNPs solution due to the presence of surface carboxyl groups in SHPG-MNPs and could draw water from a feed solution across an FO membrane without any reverse draw solute leakage during FO process. Moreover, the water flux remained nearly constant over several SHPG-MNP darw solute regeneration cycles applied to the ultrafiltration (UF) process. The SHPG-MNPs demonstrate strong potential for use as a draw solute in FO processes.

  16. Transparent luminescent hyperbranched epoxy/carbon oxide dot nanocomposites with outstanding toughness and ductility.

    PubMed

    De, Bibekananda; Voit, Brigitte; Karak, Niranjan

    2013-10-23

    A luminescent transparent hyperbranched epoxy nanocomposite with previously unachieved outstanding toughness and elasticity has been created by incorporation of a very small amount of carbon oxide nanodots. The nanocomposites of the hyperbranched epoxy with carbon oxide dots at different dose levels (0.1, 0.5, and 1.0 wt %) have been prepared by an ex situ solution technique followed by curing with poly(amido-amine) at 100 °C. Different characterizations and evaluations of mechanical and optical properties of the nanocomposites have been performed. The toughness (area under the stress-strain curve) of the pristine system has been improved dramatically by 750% with only 0.5 wt % carbon oxide dots. The tensile strength has been enhanced from 38 to 46 MPa, whereas the elongation at break improved noticeably from 15 to 45%. Excellent adhesive strength combined with transparency and photoluminescent behavior renders these materials highly interesting as functional films in optical devices like light-emitting diodes and UV light detection systems as well as in anticounterfeiting applications.

  17. Controlled synthesis of hyper-branched inorganic nanocrystals withrich three-dimensional structures

    SciTech Connect

    Kanaras, Antonios G.; Sonnichsen, Carsten; Liu, Haitao; Alivisatos, A. Paul

    2005-07-27

    Studies of crystal growth kinetics are tightly integrated with advances in the creation of new nanoscale inorganic building blocks and their functional assemblies 1-11. Recent examples include the development of semiconductor nanorods which have potential uses in solar cells 12-17, and the discovery of a light driven process to create noble metal particles with sharp corners that can be used in plasmonics 18,19. In the course of studying basic crystal growth kinetics we developed a process for preparing branched semiconductor nanocrystals such as tetrapods and inorganic dendrimers of precisely controlled generation 20,21. Here we report the discovery of a crystal growth kinetics regime in which a new class of hyper-branched nanocrystals are formed. The shapes range from 'thorny balls', to tree-like ramified structures, to delicate 'spider net'-like particles. These intricate shapes depend crucially on a delicate balance of branching and extension. The multitudes of resulting shapes recall the diverse shapes of snowflakes 22.The three dimensional nature of the branch points here, however, lead to even more complex arrangements than the two dimensionally branched structures observed in ice. These hyper-branched particles not only extend the available three-dimensional shapes in nanoparticle synthesis ,but also provide a tool to study growth kinetics by carefully observing and modeling particle morphology.

  18. Hyperbranched PEG-based supramolecular nanoparticles for acid-responsive targeted drug delivery.

    PubMed

    Chen, Xiaofei; Yao, Xuemei; Wang, Chunran; Chen, Li; Chen, Xuesi

    2015-06-01

    Herein, hyperbranched poly(ethylene glycol)-based supramolecular nanoparticles with pH-sensitive properties were designed and used for targeted drug delivery. Via host-guest recognition between benzimidazole anchored poly(ethylene glycol)-hyperbranched polyglycerol (PEG-HPG-BM) and folic acid modified CD (FA-CD), targeted supramolecular nanoparticles (TSNs) were fabricated. At neutral aqueous conditions TSNs could load the model drug DOX. While under intracellular acidic conditions the loaded-drug would be released due to the protonation of BM. This protonation allowed the supramolecular nanoparticles to expand or even disassemble, which showes the pH-dependent property. The introduction of the active targeting FA molecule and the specific interactions with the receptor of HeLa cells means that DOX-loaded TSNs show a significantly improved anticancer efficacy. In vitro drug release assays and intracellular experiments confirmed that TSNs had an obvious pH-sensitive property and remarkably improved anticancer effects, which hold great potential for further biomedical applications such as anticancer drug delivery.

  19. Spiropyran-based hyperbranched star copolymer: synthesis, phototropy, FRET, and bioapplication.

    PubMed

    Wang, Ying; Hong, Chun-Yan; Pan, Cai-Yuan

    2012-08-13

    Photo- and pH-responsive amphiphilic hyperbranched star copolymers, poly(6-O-methacryloyl-1,2;3,4-di-O-isopropylidene-d-galactopyranose)[poly(2-(N,N-dimethylaminoethyl) methacrylate)-co-poly(1'-(2-methacryloxyethyl)-3',3'-dimethyl-6-nitro-spiro(2H-1-benzo-pyran-2,2'-indoline))](n)s [HPMAlpGP(PDMAEMA-co-PSPMA)(n)], were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of the DMAEMA and the SPMA using hyperbranched PMAlpGP as a macro RAFT agent. In aqueous solution, the copolymers self-assembled to form core-shell micelles with HPMAlpGP core and PDMAEMA-co-PSPMA shell. The hydrophobic fluorescent dye nitrobenzoxadiazolyl derivative (NBD) was loaded into the spiropyran-containing micelles. The obtained micelles not only have the photochromic properties, but also modulate the fluorescence of NBD through fluorescence resonance energy transfer (FRET), which was also observed in living cells. Slight fluorescence intensity decrease of the spiropyran in merocyanine (ME) form was observed after five UV-visible light irradiation cycles. The cytotoxicity of the HPMAlpGP(PDMAEMA-co-PSPMA)(n) micelles was lower than that of 25k PEI. All the results revealed that these photoresponsive nanoparticles are a good candidate for cell imaging and may find broad applications in biological areas such as biological diagnosis, imaging, and detection.

  20. Hyperbranched epoxy/MWCNT-CuO-nystatin nanocomposite as a high performance, biocompatible, antimicrobial material

    NASA Astrophysics Data System (ADS)

    Barua, Shaswat; Chattopadhyay, Pronobesh; Phukan, Mayur M.; Konwar, Bolin K.; Karak, Niranjan

    2014-12-01

    Hyperbranched epoxy MWCNT-CuO-nystatin nanocomposite has been presented here as an advanced antimicrobial high performance material. The material showed significant improvement of mechanical properties (tensile strength from 38 to 63 MPa) over the pristine matrix without effecting elongation. MWCNT was modified by a non-ionic surfactant, triton X-100, wherein copper oxide nanoparticles were anchored in situ by a ‘green’ method. Further, sonochemical immobilization of nystatin enhanced the stability of the system. The immobilized nanohybrid system was incorporated into the hyperbranched matrix in 1, 2 and 3 wt%. The resultant system proved its ability to prevent bacterial, fungal and microalgal fouling against the tested strains, Staphylococcus aureus, Candida albicans and Chlorella sp. Additionally, this system is quite compatible with rat heart cells. Furthermore, in vivo assessment showed that this could be utilized as an implantable antimicrobial biomaterial. Thus, the overall study pointed out that the prepared material may have immense utility in marine industry as well as in biomedical domain to address microbial fouling, without inducing any toxicity to higher organisms.

  1. Hydrogen Bonding Structure in Hyperbranched Aliphatic Polyesters Studied by MD Simulations

    NASA Astrophysics Data System (ADS)

    Olson, Brian; Kaushik, Mukul; Nazarenko, Sergei

    2009-03-01

    Hyperbranched aliphatic polyesters based on dimethoxy propionic acid (bis-MPA) as the repeating unit and ethoxylated pentaerythritol as the tetrafunctional core gained widespread attention due to their unusual structure and properties. These globular macromolecules possess a large number of hydroxyl functional groups in particular on their periphery. These hydroxyl groups interact readily through hydrogen bonding (HB) and form clusters responsible for many physical properties of this system. The structure of these clusters however remains unclear. Therefore MD simulations have been used to elucidate the structure of these clusters. MD simulations revealed that peripheral hydroxyl groups form linear hydrogen bond clusters (strings) similar to those proposed in hydrofluoric acid (HF) but considerably shorter consisting of 4-10 hydroxyl groups per cluster. Simulations also led to prediction of WAXS pattern for these hyperbranched polyesters in the bulk with the characteristic peak at 2θ =30 due to O-O correlations similar to those in water. The predictions were in excellent agreement with the experimental WAXS data.

  2. Effect of degree of branching on the thermoresponsive phase transition behaviors of hyperbranched multiarm copolymers: comparison of systems with LCST transition based on coil-to-globule transition or hydrophilic-hydrophobic balance.

    PubMed

    Cheng, Haixing; Xie, Shaoai; Zhou, Yongfeng; Huang, Wei; Yan, Deyue; Yang, Jintian; Ji, Bing

    2010-05-20

    This work reports for the first time the influence of degree of branching (DB) on the thermoresponsive phase transition behaviors of hyperbranched multiarm copolymers. Two series of PEHO-star-PEOs (series A) and PEHO-star-PDMAEMAs (series B) with the hydrophobic DB-variable PEHO core and different kinds of linear arms (PEO arms or PDMAEMA arms) were synthesized. It was found these two series demonstrate thermoresponsive phase transitions with the lower critical solution temperature (LCST). The studies on the LCST transition mechanism indicate that series A belongs to the thermoresponsive polymer system with LCST transition based on hydrophilic-hydrophobic balance, while series B belongs to the thermoresponsive polymer system with LCST transition based on coil-to-globule transition. Correspondingly, there is a big difference in the DB dependence of LCST transition between series A and series B. For series A, the LCST phase transition is highly dependent on the DB of the PEHO core in copolymers. For series B, the LCST phase transition is independent of the DB but dependent on solution pH. Such results may extend the knowledge on the structure-activity relationship of thermoresponsive highly branched polymers.

  3. Multidimensional Polycation β-Cyclodextrin Polymer as an Effective Aqueous Binder for High Sulfur Loading Cathode in Lithium-Sulfur Batteries.

    PubMed

    Zeng, Fanglei; Wang, Weikun; Wang, Anbang; Yuan, Keguo; Jin, Zhaoqing; Yang, Yu-sheng

    2015-12-02

    Although the lithium-sulfur battery has attracted significant attention because of its high theoretical energy density and low cost of elemental sulfur, its real application is still hindered by multiple challenges, especially the polysulfides shuttled between the cathode and anode electrodes. By originating from β-cyclodextrin and introducing a quaternary ammonium cation into β-cyclodextrin polymer, a new multifunctional aqueous polycation binder (β-CDp-N(+)) for the sulfur cathode is obtained. The unique hyperbranched network structure of the new binder β-CDp-N(+) as well as its multidimensional noncovalent interactions and the introduced cations endowed β-CDp-N(+) with some new abilities: a sulfur-electrode-stabilized ability, a polysulfides-immobilized ability, and a volume-accommodated ability, which help to ease the primary problems of the lithium-sulfur battery, i.e., the shuttle of polysulfides and the volume change of the sulfur during charge and discharge. It is demonstrated that cycling performance and rate capability of the cathodes can be the improved by using β-CDp-N(+) as the binder compared to other well-known binders. Even with high sulfur loading of 5.5 mg cm(-2), the cathode with β-CDp-N(+) still can deliver an areal capacity of 4.4 mAh cm(-2) at 50 mA g(-1) after 45 cycles, which is much higher than that achieved using the cathode with the conventional binder (0.9 mAh cm(-2)).

  4. Antimicrobial polymers.

    PubMed

    Jain, Anjali; Duvvuri, L Sailaja; Farah, Shady; Beyth, Nurit; Domb, Abraham J; Khan, Wahid

    2014-12-01

    Better health is basic requirement of human being, but the rapid growth of harmful pathogens and their serious health effects pose a significant challenge to modern science. Infections by pathogenic microorganisms are of great concern in many fields such as medical devices, drugs, hospital surfaces/furniture, dental restoration, surgery equipment, health care products, and hygienic applications (e.g., water purification systems, textiles, food packaging and storage, major or domestic appliances etc.) Antimicrobial polymers are the materials having the capability to kill/inhibit the growth of microbes on their surface or surrounding environment. Recently, they gained considerable interest for both academic research and industry and were found to be better than their small molecular counterparts in terms of enhanced efficacy, reduced toxicity, minimized environmental problems, resistance, and prolonged lifetime. Hence, efforts have focused on the development of antimicrobial polymers with all desired characters for optimum activity. In this Review, an overview of different antimicrobial polymers, their mechanism of action, factors affecting antimicrobial activity, and application in various fields are given. Recent advances and the current clinical status of these polymers are also discussed.

  5. Hyperbranched-dendrimer architectural copolymer gene delivery using hyperbranched PEI conjugated to poly(propyleneimine) dendrimers: synthesis, characterization, and evaluation of transfection efficiency

    NASA Astrophysics Data System (ADS)

    Alavi, Seyyed Jamal; Gholami, Leila; Askarian, Saeedeh; Darroudi, Majid; Massoudi, Abdolhossein; Rezaee, Mehdi; Kazemi Oskuee, Reza

    2017-02-01

    The applications of dendrimer-based vectors seem to be promising in non-viral gene delivery because of their potential for addressing the problems with viral vectors. In this study, generation 3 poly(propyleneimine) (G3-PPI) dendrimers with 1, 4-diaminobutane as a core initiator was synthesized using a divergent growth approach. To increase the hydrophobicity and reduce toxicity, 10% of primary amines of G3-PPI dendrimers were replaced with bromoalkylcarboxylates with different chain lengths (6-bromohexanoic and 10-bromodecanoic). Then, to retain the overall buffering capacity and enhance transfection, the alkylcarboxylate-PPIs were conjugated to 10 kDa branched polyethylenimine (PEI). The results showed that the modified PPI was able to form complexes with the diameter of less than 60 nm with net-positive surface charge around 20 mV. No significant toxicity was observed in modified PPIs; however, the hexanoate conjugated PPI-PEI (PPI-HEX-10% PEI) and the decanoate conjugated PPI-PEI (PPI-DEC-10%-PEI) showed the best transfection efficiency in murine neuroblastoma (Neuro-2a) cell line, even PPI-HEX-10%-PEI showed transfection efficiency equal to standard PEI 25 kDa with reduced toxicity. This study suggested a new series of hyperbranched (PEI)-dendrimer (PPI) architectural copolymers as non-viral gene delivery vectors with high transfection efficiency and low toxicity.

  6. Cyclic and multicyclic polymers by three-dimensional polycondensation.

    PubMed

    Kricheldorf, Hans R

    2009-08-18

    The recent confirmation that polycondensations (and other step-growth polymerizations) of difunctional monomers involve cyclization reactions at any concentration and at any stage of the polymerization also has consequences for three-dimensional polycondensations on multifunctional monomers. It is demonstrated that tree-shaped (hyperbranched) oligomers are gradually transformed into star-shaped polymers with a cyclic core, when the conversion increases. Polycondensations of "a(2) + b(3)" or "a(2) + b(4)" monomer combinations yield multicyclic polymers, when gelation can be avoided. This new architecture may be subdivided into three groups: perfect multicycles free of functional groups, multicycles having b functions, and multicycles having "a" groups. The concrete examples discussed in this Account mainly concern polyethers and polyesters.

  7. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  8. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  9. Pressure-Volume-Temperature Behavior of Hyperbranched Polyols: Experiment and Modelling

    NASA Astrophysics Data System (ADS)

    Kaushik, Mukul; Nazarenko, Sergei; Olson, Brian

    2011-03-01

    The pressure volume temperature behavior of two generations of hyperbranched polyesters Boltorn TM H40 and H20 was studied by PVT measurements using high pressure dilatometer. Volumetric expansivity, and free volume parameters were determined for both generations in the melt state. The PVT data were fitted to Simha-Somcynsky (SS) equation of state (EOS) and Sanchez--Lacombe (SL) equation of state (EOS) to calculate occupied volume and fractional free volume. The values of occupied volume and fractional free volumes obtained through both the equations of states were similar. Simulated atmospheric pressure V-T data were generated by using Discover module of Accelrys. Quality of equilibrium was confirmed by energy stabilization and closeness of experimental and simulation densities. WAXD and temperature-volume curves obtained by molecular dynamics simulations were comparable to the experimental data. Well relaxed amorphous cell was further utilized to study hydrogen bond network and determination of O-O pair correlation function of terminal hydroxyl groups.

  10. Hyperbranched quasi-1D TiO2 nanostructure for hybrid organic-inorganic solar cells.

    PubMed

    Ghadirzadeh, Ali; Passoni, Luca; Grancini, Giulia; Terraneo, Giancarlo; Li Bassi, Andrea; Petrozza, Annamaria; Di Fonzo, Fabio

    2015-04-15

    The performance of hybrid solar cells is strongly affected by the device morphology. In this work, we demonstrate a poly(3-hexylthiophene-2,5-diyl)/TiO2 hybrid solar cell where the TiO2 photoanode comprises an array of tree-like hyperbranched quasi-1D nanostructures self-assembled from the gas phase. This advanced architecture enables us to increase the power conversion efficiency to over 1%, doubling the efficiency with respect to state of the art devices employing standard mesoporous titania photoanodes. This improvement is attributed to several peculiar features of this array of nanostructures: high interfacial area; increased optical density thanks to the enhanced light scattering; and enhanced crystallization of poly(3-hexylthiophene-2,5-diyl) inside the quasi-1D nanostructure.

  11. Highly colloidally stable hyperbranched polyglycerol grafted red fluorescent silicon nanoparticle as bioimaging probe.

    PubMed

    Das, Pradip; Jana, Nikhil R

    2014-03-26

    Here we report a surface modification approach for fluorescent silicon nanoparticle that transforms hydrophobic nanoparticle into water-soluble nanoparticle of high colloidal stability. The approach involves ring-opening polymerization of glycidol at the hydroxyl-terminated nanoparticle surface that results in a hyperbranched polyglycerol grafted silicon nanoparticle (Si-HPG). The resultant Si-HPG has 25 nm hydrodynamic diameter, low surface charge, and broad emission in the range of 450-700 nm with a fluorescence quantum yield of 6-9%. The Si-HPG has been transformed into cyclic RGD peptide functionalized nanoprobe using the conventional bioconjugation chemistry and used for specific targeting to αvβ3 integrin overexpressed cervical cancer cells and glioblastoma cells. Result shows that a silicon nanoparticle-based red fluorescent nanoprobe can be developed for in vitro/in vivo bioimaging applications.

  12. Non-enzymatic glucose biosensor based on hyperbranched pine-like gold nanostructure.

    PubMed

    Heli, H; Amirizadeh, O

    2016-06-01

    Hyperbranched pine-like gold nanostructure was electrodeposited on the polycrystalline gold surface at 0 mV (vs. AgCl) with the assistance of histidine as a soft template. The nanostructure was then applied as a highly sensitive nonenzymatic sensor for glucose. The catalytic activity and sensitivity of the gold nanostructure toward the electrooxidation of glucose was excellent without surface fouling and deterioration effects. The current related to the oxidation of glucose rapidly and linearly depended on its concentration with a sensitivity of 776.8 μA cm(-2)mmol(-1)dm(3), a detection limit of 3.39 μmol dm(-3) with a relative standard deviation of 2.32%.

  13. Directing the self-assembly of semiconducting copolymers: the consequences of grafting linear or hyperbranched polyether side chains.

    PubMed

    zur Borg, Lisa; Schüll, Christoph; Frey, Holger; Zentel, Rudolf

    2013-08-01

    The synthesis and self-assembly of novel semiconducting rod-coil type graft block copolymers based on poly(para-phenylene vinylene) (PPV) copolymers is presented, focusing on the ordering effect of linear versus hyperbranched side chains. Using an additional reactive ester block, highly polar, linear poly(ethylene glycol), and hyperbranched polyglycerol side chains are attached in a grafting-to approach. Remarkably, the resulting novel semiconducting graft copolymers with polyether side chains show different solubility and side-chain directed self-assembly behavior in various solvents, e.g., cylindrical or spherical superstructures in the size range of 10 to 120 nm, as shown by TEM. By adjusting the molecular weight and the topology of the polyether segments, self-assembly into defined superstructures can be achieved, which is important for the efficient charge transport in potential electronic applications.

  14. Controlled Synthesis of Uniform Cobalt Phosphide Hyperbranched Nanocrystals Using Tri-n-octylphosphine Oxide as a Phosphorus Source

    SciTech Connect

    Zhang, Haitao; Ha, Don-Hyung; Hovden, Robert; Fitting Kourkoutis, Lena; Robinson, Richard D.

    2011-01-12

    A new method to produce hyperbranched Co{sub 2}P nanocrystals that are uniform in size, shape, and symmetry was developed. In this reaction tri-n-octylphosphine oxide (TOPO) was used as both a solvent and a phosphorus source. The reaction exhibits a novel monomer-saturation-dependent tunability between Co metal nanoparticle (NP) and Co{sub 2}P NP products. The morphology of Co{sub 2}P can be controlled from sheaflike structures to hexagonal symmetric structures by varying the concentration of the surfactant. This unique product differs significantly from other reported hyperbranched nanocrystals in that the highly anisotropic shapes can be stabilized as the majority shape (>84%). This is the first known use of TOPO as a reagent as well as a coordinating background solvent in NP synthesis.

  15. Controlled synthesis of uniform cobalt phosphide hyperbranched nanocrystals using tri-n-octylphosphine oxide as a phosphorus source.

    PubMed

    Zhang, Haitao; Ha, Don-Hyung; Hovden, Robert; Kourkoutis, Lena Fitting; Robinson, Richard D

    2011-01-12

    A new method to produce hyperbranched Co(2)P nanocrystals that are uniform in size, shape, and symmetry was developed. In this reaction tri-n-octylphosphine oxide (TOPO) was used as both a solvent and a phosphorus source. The reaction exhibits a novel monomer-saturation-dependent tunability between Co metal nanoparticle (NP) and Co(2)P NP products. The morphology of Co(2)P can be controlled from sheaflike structures to hexagonal symmetric structures by varying the concentration of the surfactant. This unique product differs significantly from other reported hyperbranched nanocrystals in that the highly anisotropic shapes can be stabilized as the majority shape (>84%). This is the first known use of TOPO as a reagent as well as a coordinating background solvent in NP synthesis.

  16. Nanostructured polymer membranes for proton conduction

    DOEpatents

    Balsara, Nitash Pervez; Park, Moon Jeong

    2013-06-18

    Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

  17. Hyperbranched-polyol-tethered poly (amic acid) electrospun nanofiber membrane with ultrahigh adsorption capacity for boron removal

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Wu, Zhongyu; Zhang, Yufeng; Meng, Jianqiang

    2017-04-01

    The development of efficient adsorbents with high sorption capacity remains as a challenge for the removal of micropollutants occurred globally in water resources. In this work, poly (amic acid) (PAA) electrospun nanofiber membranes grafted with hyperbranched polyols were synthesized and used for boron removal. The PAA nanofiber was reacted with hyperbranched polyethylenimine (HPEI) and further with glycidol to introduce the vicinal hydroxyl groups. The chemical composition and surface characteristics of the obtained PAA-g-PG membranes were evaluated by FESEM, FTIR, XPS and water contact angles (WCA) measurements. The boron adsorption thermodynamics and kinetics were investigated systematically. The results showed that the PAA nanofiber spun from concentration of 15% had uniform morphology and narrow diameter distribution. The PAA-g-PG nanofiber membrane had a maximum boron uptake of 5.68 mmol/g and could adsorb 0.82 mmol/g boron from a 5 mg/L solution in 15 min. Both the high surface area of nanofibers and the hyperbranched structure should contribute to the high boron uptake and high adsorption rate. The nanofiber membrane obeyed the Langmuir adsorption model and the pseudo-first-order kinetic model. The regeneration efficiency of the nanofiber membrane remained 93.9% after 10 cycled uses, indicating good regenerability of the membrane.

  18. Synthesis and supramolecular assembly of biomimetic polymers

    NASA Astrophysics Data System (ADS)

    Marciel, Amanda Brittany

    A grand challenge in materials chemistry is the synthesis of macromolecules and polymers with precise shapes and architectures. Polymer microstructure and architecture strongly affect the resulting functionality of advanced materials, yet understanding the static and dynamic properties of these complex macromolecules in bulk has been difficult due to their inherit polydispersity. Single molecule studies have provided a wealth of information on linear flexible and semi-flexible polymers in dilute solutions. However, few investigations have focused on industrially relevant complex topologies (e.g., star, comb, hyperbranched polymers) in industrially relevant solution conditions (e.g., semi-dilute, concentrated). Therefore, from this perspective there is a strong need to synthesize precision complex architectures for bulk studies as well as complex architectures compatible with current single molecule techniques to study static and dynamic polymer properties. In this way, we developed a hybrid synthetic strategy to produce branched polymer architectures based on chemically modified DNA. Overall, this approach enables control of backbone length and flexibility, as well as branch grafting density and chemical identity. We utilized a two-step scheme based on enzymatic incorporation of non-natural nucleotides containing bioorthogonal dibenzocyclooctyne (DBCO) functional groups along the main polymer backbone, followed by copper-free "click" chemistry to graft synthetic polymer branches or oligonucleotide branches to the DNA backbone, thereby allowing for the synthesis of a variety of polymer architectures, including three-arm stars, H-polymers, graft block copolymers, and comb polymers for materials assembly and single molecule studies. Bulk materials properties are also affected by industrial processing conditions that alter polymer morphology. Therefore, in an alternative strategy we developed a microfluidic-based approach to assemble highly aligned synthetic

  19. Dynamics of dendritic polymers in the bulk and under confinement

    NASA Astrophysics Data System (ADS)

    Chrissopoulou, K.; Fotiadou, S.; Androulaki, K.; Tanis, I.; Karatasos, K.; Prevosto, D.; Labardi, M.; Frick, B.; Anastasiadis, S. H.

    2014-05-01

    The structure and dynamics of a hyperbranched polyesteramide (Hybrane® S 1200) polymer and its nanocomposites with natural montmorillonite (Na+-MMT) are investigated by XRD, DSC, QENS, DS and Molecular Dynamics (MD) simulation. In bulk, the energy-resolved elastically scattered intensity from the polymer exhibits two relaxation steps, one attributed to sub-Tg motions and one observed at temperatures above the glass transition, Tg. The QENS spectra measured over the complete temperature range are consistent with the elastic measurements and can be correlated to the results emerging from the detailed description afforded by the atomistic simulations, which predict the existence of three relaxation processes. Moreover, dielectric spectroscopy shows the sub- Tg beta process as well as the segmental relaxation. For the nanocomposites, XRD reveals an intercalated structure for all hybrids with distinct interlayer distances due to polymer chains residing within the galleries of the Na+-MMT. The polymer chains confined within the galleries show similarities in the behavior with that of the polymer in the bulk for temperatures below the bulk polymer Tg, whereas they exhibit frozen dynamics under confinement at temperatures higher than that.

  20. Dynamics of dendritic polymers in the bulk and under confinement

    SciTech Connect

    Chrissopoulou, K.; Fotiadou, S.; Androulaki, K.; Anastasiadis, S. H.; Tanis, I.; Karatasos, K.; Prevosto, D.; Labardi, M.; Frick, B.

    2014-05-15

    The structure and dynamics of a hyperbranched polyesteramide (Hybrane® S 1200) polymer and its nanocomposites with natural montmorillonite (Na{sup +}-MMT) are investigated by XRD, DSC, QENS, DS and Molecular Dynamics (MD) simulation. In bulk, the energy-resolved elastically scattered intensity from the polymer exhibits two relaxation steps, one attributed to sub-T{sub g} motions and one observed at temperatures above the glass transition, T{sub g}. The QENS spectra measured over the complete temperature range are consistent with the elastic measurements and can be correlated to the results emerging from the detailed description afforded by the atomistic simulations, which predict the existence of three relaxation processes. Moreover, dielectric spectroscopy shows the sub- T{sub g} beta process as well as the segmental relaxation. For the nanocomposites, XRD reveals an intercalated structure for all hybrids with distinct interlayer distances due to polymer chains residing within the galleries of the Na{sup +}-MMT. The polymer chains confined within the galleries show similarities in the behavior with that of the polymer in the bulk for temperatures below the bulk polymer T{sub g}, whereas they exhibit frozen dynamics under confinement at temperatures higher than that.

  1. The interaction between unique hyperbranched polyaniline and carbon nanotubes, and its influence on the dielectric behavior of hyperbranched polyaniline/carbon nanotube/epoxy resin composites

    NASA Astrophysics Data System (ADS)

    Qiang, Zhixiang; Liang, Guozheng; Gu, Aijuan; Yuan, Li

    2014-05-01

    Novel hybridized multi-walled carbon nanotubes (CNTs), consisting of a unique hyperbranched polyaniline (HSiPA) and CNTs, were prepared. The interaction between HSiPA and CNTs was investigated by many techniques, and results show that there are strong π- π and electrostatic interactions between HSiPA and CNTs, so HSiPA can stack firmly onto the surface of CNTs to form a coating. Based on this, a new kind of ternary composites made up of hybridized CNTs and epoxy (EP) resin was prepared, the influence of the ratio of HSiPA to CNTs on the structure and properties of the HSiPA/CNT/EP composites was intensively studied. The percolation threshold of HSiPA/CNT/EP composites is very low (1.26 wt%); besides, with a suitable ratio of HSiPA to CNTs, the HSiPA/CNT/EP composite has much higher dielectric constant and lower dielectric loss than the CNT/EP composite with the same loading of CNTs. When the ratio of HSiPA to CNTs is 0.5:1, the dielectric constant and loss at 100 Hz of the resultant HSiPA/CNT0.5/EP composite are 711 and 1.53, about 7.1 and 4.3 × 10-3 times the corresponding value of CNT0.5/EP composite, respectively. In addition, compared with traditional CNT/EP composites, the HSiPA/CNT0.5/EP composites have different equivalent circuit models. These attractive results are attributed to unique structure of hybridized CNTs, and thus leading to greatly different structures between the CNT0.5/EP and HSiPA/CNT0.5/EP composites. This investigation reported herein suggests a new approach to prepare new CNTs and related composites with controllable dielectric properties.

  2. Electroactive polymers for sensing.

    PubMed

    Wang, Tiesheng; Farajollahi, Meisam; Choi, Yeon Sik; Lin, I-Ting; Marshall, Jean E; Thompson, Noel M; Kar-Narayan, Sohini; Madden, John D W; Smoukov, Stoyan K

    2016-08-06

    Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer-metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units.

  3. Polymer nanoassemblies for cancer treatment and imaging.

    PubMed

    Lee, Hyun Jin; Ponta, Andrei; Bae, Younsoo

    2010-12-01

    Amphiphilic polymers represented by block copolymers self-assemble into well-defined nanostructures capable of incorporating therapeutics. Polymer nanoassemblies currently developed for cancer treatment and imaging are reviewed in this article. Particular attention is paid to three representative polymer nanoassemblies: polymer micelles, polymer micellar aggregates and polymer vesicles. Rationales, design and performance of these polymer nanoassemblies are addressed, focusing on increasing the solubility and chemical stability of drugs. Also discussed are polymer nanoassembly formation, the distribution of polymer materials in the human body and applications of polymer nanoassemblies for combined therapy and imaging of cancer. Updates on tumor-targeting approaches, based on preclinical and clinical results are provided, as well as solutions for current issues that drug-delivery systems have, such as in vivo stability, tissue penetration and therapeutic efficacy. These are discussed to provide insights on the future development of more effective polymer nanoassemblies for the delivery of therapeutics in the body.

  4. Sequentially Hetero-functional, Topological Polymers by Step-growth Thiol-yne Approach

    PubMed Central

    Han, Jin; Zheng, Yaochen; Zhao, Bo; Li, Sipei; Zhang, Yuanchao; Gao, Chao

    2014-01-01

    Sequence-controlled polymers (SCPs) such as DNA and proteins play an important role in biology. Many efforts have been devoted to synthesize SCPs in the past half a century. However, to our knowledge, the artificial sequences containing independently functional groups have never been reported. Here, we present a facile and scalable approach based on radical-initiated step-growth polymerization to synthesize sequence-controlled functional polymers (SCFPs) with various topologies, covering from linear to random and hyperbranched polymers. The functional groups, such as OH/NH2, OH/COOH, and NH2/N3, alternately arranged along the chain, which were further selectively functionalized to achieve DNA-mimic and hetero-multifunctional SCPs. This user-friendly strategy exhibits advantages of commercially available monomers, catalyst-free process, fast reaction, high yield and water solvent, opening a general approach to facile and scalable synthesis of SCFPs. PMID:24633000

  5. Single-crystalline hyperbranched nanostructure of iron hydroxyl phosphate Fe5(PO4)4(OH)3·2H2O for highly selective capture of phosphopeptides.

    PubMed

    Chen, Qun; Wei, Chengzhen; Zhang, Yizhou; Pang, Huan; Lu, Qingyi; Gao, Feng

    2014-01-17

    Single-crystalline hyperbranched nanostructures of iron hydroxyl phosphate Fe5(PO4)4(OH)3·2H2O (giniite) with orthorhombic phase were synthesized through a simple route. They have a well-defined dendrite fractal structure with a pronounced trunk and highly ordered branches. The toxicity test shows that the hyperbranched nanostructures have good biocompatibility and low toxicity level, which makes them have application potentials in life science. The study herein demonstrated that the obtained hyperbranched giniite nanostructures show highly selective capture of phosphopeptides and could be used as a kind of promising nanomaterial for the specific capture of phosphopeptides from complex tryptic digests with the detection of MALDI-TOF mass spectrometry.

  6. Single-Crystalline Hyperbranched Nanostructure of Iron Hydroxyl Phosphate Fe5(PO4)4(OH)3·2H2O for Highly Selective Capture of Phosphopeptides

    PubMed Central

    Chen, Qun; Wei, Chengzhen; Zhang, Yizhou; Pang, Huan; Lu, Qingyi; Gao, Feng

    2014-01-01

    Single-crystalline hyperbranched nanostructures of iron hydroxyl phosphate Fe5(PO4)4(OH)3·2H2O (giniite) with orthorhombic phase were synthesized through a simple route. They have a well-defined dendrite fractal structure with a pronounced trunk and highly ordered branches. The toxicity test shows that the hyperbranched nanostructures have good biocompatibility and low toxicity level, which makes them have application potentials in life science. The study herein demonstrated that the obtained hyperbranched giniite nanostructures show highly selective capture of phosphopeptides and could be used as a kind of promising nanomaterial for the specific capture of phosphopeptides from complex tryptic digests with the detection of MALDI-TOF mass spectrometry. PMID:24435094

  7. Biocompatible polymer/quantum dots hybrid materials: current status and future developments.

    PubMed

    Shen, Lei

    2011-12-02

    Quantum dots (QDs) are nanometer-sized semiconductor particles with tunable fluorescent optical property that can be adjusted by their chemical composition, size, or shape. In the past 10 years, they have been demonstrated as a powerful fluorescence tool for biological and biomedical applications, such as diagnostics, biosensing and biolabeling. QDs with high fluorescence quantum yield and optical stability are usually synthesized in organic solvents. In aqueous solution, however, their metallic toxicity, non-dissolubility and photo-luminescence instability prevent the direct utility of QDs in biological media. Polymers are widely used to cover and coat QDs for fabricating biocompatible QDs. Such hybrid materials can provide solubility and robust colloidal and optical stability in water. At the same time, polymers can carry ionic or reactive functional groups for incorporation into the end-use application of QDs, such as receptor targeting and cell attachment. This review provides an overview of the recent development of methods for generating biocompatible polymer/QDs hybrid materials with desirable properties. Polymers with different architectures, such as homo- and co-polymer, hyperbranched polymer, and polymeric nanogel, have been used to anchor and protect QDs. The resulted biocompatible polymer/QDs hybrid materials show successful applications in the fields of bioimaging and biosensing. While considerable progress has been made in the design of biocompatible polymer/QDs materials, the research challenges and future developments in this area should affect the technologies of biomaterials and biosensors and result in even better biocompatible polymer/QDs hybrid materials.

  8. Biocompatible Polymer/Quantum Dots Hybrid Materials: Current Status and Future Developments

    PubMed Central

    Shen, Lei

    2011-01-01

    Quantum dots (QDs) are nanometer-sized semiconductor particles with tunable fluorescent optical property that can be adjusted by their chemical composition, size, or shape. In the past 10 years, they have been demonstrated as a powerful fluorescence tool for biological and biomedical applications, such as diagnostics, biosensing and biolabeling. QDs with high fluorescence quantum yield and optical stability are usually synthesized in organic solvents. In aqueous solution, however, their metallic toxicity, non-dissolubility and photo-luminescence instability prevent the direct utility of QDs in biological media. Polymers are widely used to cover and coat QDs for fabricating biocompatible QDs. Such hybrid materials can provide solubility and robust colloidal and optical stability in water. At the same time, polymers can carry ionic or reactive functional groups for incorporation into the end-use application of QDs, such as receptor targeting and cell attachment. This review provides an overview of the recent development of methods for generating biocompatible polymer/QDs hybrid materials with desirable properties. Polymers with different architectures, such as homo- and co-polymer, hyperbranched polymer, and polymeric nanogel, have been used to anchor and protect QDs. The resulted biocompatible polymer/QDs hybrid materials show successful applications in the fields of bioimaging and biosensing. While considerable progress has been made in the design of biocompatible polymer/QDs materials, the research challenges and future developments in this area should affect the technologies of biomaterials and biosensors and result in even better biocompatible polymer/QDs hybrid materials. PMID:24956449

  9. Poly(carbonate-imide) polymer

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L. (Inventor); Maudgal, Shubha (Inventor); Pratt, J. Richard (Inventor)

    1987-01-01

    A novel series of polymers and copolymers based on a polyimide backbone with the incorporation of carbonate moieties along the backbone. The process for preparing these polymers and copolymers is also disclosed as is a novel series of dinitrodiphenyl carbonates and diaminodiphenyl carbonates. The novel polymers and copolymers exhibit high temperature capability and because of the carbonate unit, many exhibit a high degree of order and/or crystallinity.

  10. Polymers for Drug Delivery Systems

    PubMed Central

    Liechty, William B.; Kryscio, David R.; Slaughter, Brandon V.; Peppas, Nicholas A.

    2012-01-01

    Polymers have played an integral role in the advancement of drug delivery technology by providing controlled release of therapeutic agents in constant doses over long periods, cyclic dosage, and tunable release of both hydrophilic and hydrophobic drugs. From early beginnings using off-the-shelf materials, the field has grown tremendously, driven in part by the innovations of chemical engineers. Modern advances in drug delivery are now predicated upon the rational design of polymers tailored for specific cargo and engineered to exert distinct biological functions. In this review, we highlight the fundamental drug delivery systems and their mathematical foundations and discuss the physiological barriers to drug delivery. We review the origins and applications of stimuli-responsive polymer systems and polymer therapeutics such as polymer-protein and polymer-drug conjugates. The latest developments in polymers capable of molecular recognition or directing intracellular delivery are surveyed to illustrate areas of research advancing the frontiers of drug delivery. PMID:22432577

  11. Development of novel electrically conductive scaffold based on hyperbranched polyester and polythiophene for tissue engineering applications.

    PubMed

    Jaymand, Mehdi; Sarvari, Raana; Abbaszadeh, Parisa; Massoumi, Bakhshali; Eskandani, Morteza; Beygi-Khosrowshahi, Younes

    2016-11-01

    A novel electrically conductive scaffold containing hyperbranched aliphatic polyester (HAP), polythiophene (PTh), and poly(ε-caprolactone) (PCL) for regenerative medicine application was succesfully fabricated via electrospinning technique. For this purpose, the HAP (G4; fourth generation) was synthesized via melt polycondensation reaction from tris(methylol)propane and 2,2-bis(methylol)propionic acid (bis-MPA). Afterward, the synthesized HAP was functionalized with 2-thiopheneacetic acid in the presence of N,N-dicyclohexyl carbodiimide, and N-hydroxysuccinimide as coupling agent and catalyst, respectively, to afford a thiophene-functionalized G4 macromonomer. This macromonomer was subsequently used in chemical oxidation copolymerization with thiophene monomer to produce a star-shaped PTh with G4 core (G4-PTh). The solution of the G4-PTh, and PCL was electrospun to produce uniform, conductive, and biocompatible nanofibers. The conductivity, hydrophilicity, and mechanical properties of these nanofibers were investigated. The biocompatibility of the electrospun nanofibers were evaluated by assessing the adhesion and proliferation of mouse osteoblast MC3T3-E1 cell line and in vitro degradability to demonstrate their potential uses as a tissue engineering scaffold. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2673-2684, 2016.

  12. Hyperbranched polyamine assisted synthesis of dual-luminescent gold composite with pH responsive character

    NASA Astrophysics Data System (ADS)

    Yuan, Zhiqin; Du, Yi; He, Yan

    2017-03-01

    We present a facile one-pot, two-step strategy to prepare water-soluble dual-luminescent gold nanodots (AuNDs) and few-atom gold nanocluster composites simultaneously by using high molecular weight and hyperbranched polyethyleneimine (hPEI) as the protection ligand and stabilization agent. It was found that in the presence of hPEI, Au(III) ion can be reduced to a metastable Au(I) charge state in aqueous solution. Subsequently, adding 11-mercaptoundonioic acid induces parallel pathways of restricted Au(I) assembly, leading to the formation of both red-emitting hPEI stabilized AuNDs and blue-emitting hPEI-protected Au8 nanoclusters. The intensity ratio between the blue and red species shows a sensitive and reversible response to the solution pH in the range 2-11 and the dual-luminescent gold composites can act as an effective and reversible pH indicator.

  13. Isolation and characterization of a hyperbranched proteoglycan from Ganoderma lucidum for anti-diabetes.

    PubMed

    Pan, Deng; Wang, Linqiang; Chen, Congheng; Hu, Bingwen; Zhou, Ping

    2015-03-06

    Presently, an efficient protein tyrosine phosphatase 1B (PTP1B) inhibitor, named FYGL-n, was isolated from Ganoderma Lucidum and characterized for its structure and bioactivity. Structure and chain conformation of FYGL-n based on both chemical and spectroscopic analysis showed that FYGL-n was a hyperbranched heteropolysaccharide bonded with protein via both serine and threonine residues by O-type glycoside, and showed a sphere observed by AFM. Specifically, monosaccharide composition indicated that FYGL-n consisted of D-arabinose, D-galactose, L-rhamnose and D-glucose in a mole ratio of 0.08:0.21:0.24:0.47, with a molecular mass of 72.9 kDa. The analysis of amino acids in FYGL-n indicated that there were 16 common amino acids, among which aspartic acid, glycine, serine, alanine, glutamic acid and threonine were the dominant components. Also it was demonstrated that FYGL-n could inhibit the PTP1B activity on a competitive mechanism in vitro.

  14. Adsorption of Pb(II) from aqueous solution by silica-gel supported hyperbranched polyamidoamine dendrimers.

    PubMed

    Niu, Yuzhong; Qu, Rongjun; Sun, Changmei; Wang, Chunhua; Chen, Hou; Ji, Chunnuan; Zhang, Ying; Shao, Xia; Bu, Fanling

    2013-01-15

    The adsorption properties of silica-gel supported hyperbranched polyamidoamine dendrimers (SiO(2)-G0-SiO(2)-G4.0) have been investigated by batch method. The effect of pH of the solution, contact time, initial Pb(II) ion concentration, temperature and coexisting metal ions have been demonstrated. The results indicated that the optimum pH value was 5. Adsorption kinetics was found to follow the pseudo-second-order model and controlled by film diffusion. The adsorption isotherms were fitted by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Langmuir isotherm model was found to be more suitable to describe the equilibrium data, suggesting the uptake of Pb(II) ions by monolayer adsorption. From D-R isotherm model, the calculated mean free energy E demonstrated the adsorption processes occurred by chemical ion-exchange mechanism. FTIR analysis revealed that amine groups were mainly responsible for the adsorption of Pb(II) by amino-terminated adsorbents, while CO of ester groups also participated in the adsorption process of ester-terminated ones. The adsorbents can selectively adsorb Pb(II) from binary ion systems in the presence of Mn(II), Cu(II), Co(II), and Ni(II). Based on the results, it is concluded that SiO(2)-G0-SiO(2)-G4.0 had great potential for the removal of Pb(II) from aqueous solution.

  15. Bio-functionalized MWCNT/hyperbranched polyurethane bionanocomposite for bone regeneration.

    PubMed

    Das, Beauty; Chattopadhyay, Pronobesh; Maji, Somnath; Upadhyay, Aadesh; Das Purkayastha, Manashi; Mohanta, Charu Lata; Maity, Tapas Kumar; Karak, Niranjan

    2015-04-17

    The proper fabrication of biomaterials, particularly for purposes like bone regeneration, is of the utmost importance for the clinical success of materials that fulfill the design criteria at bio-interfacial milieu. Building on this aspect, a polyurethane nanocomposite (PNC) was fabricated by the combination of rapeseed protein functionalized multi-walled carbon nanotubes (MWCNTs) and vegetable-oil-based hyperbranched polyurethane. Biofunctionalized MWCNTs showed incredible biocompatibility compared to pristine MWCNTs as ascertained via in vitro and in vivo studies. PNC showed enhanced MG63 cell differentiation ability compared to the control and carboxyl functionalized MWCNT-based nanocomposite, as postulated by alkaline phosphatase activity together with better cellular adhesion, spreading and proliferation. Consequently, a critical-sized fracture gap (6 mm) bridged by the sticky PNC scaffold illustrated rapid bone neoformation within 30-45 d, with 90-93% of the defect area filling up. Histopathological studies demonstrated the reorganization of the normal tibial architecture and biodegradation of the implant. The subsequent toxicological study through cytokine expression, biochemical analysis and hematological studies suggested non-immunogenic and non-toxic effects of PNCs and their degraded/leached products. Their excellent bio-physiological features with high load-bearing ability (49-55.5 Mpa), ductility (675-790%) and biodegradability promote them as the best alternative biomaterials for bone regeneration in a comprehensive manner.

  16. Multivalent anchored and crosslinked hyperbranched polyglycerol monolayers as antifouling coating for titanium oxide surfaces.

    PubMed

    Wei, Qiang; Krysiak, Stefanie; Achazi, Katharina; Becherer, Tobias; Noeske, Paul-Ludwig Michael; Paulus, Florian; Liebe, Hendrik; Grunwald, Ingo; Dernedde, Jens; Hartwig, Andreas; Hugel, Thorsten; Haag, Rainer

    2014-10-01

    A set of new catecholic monolayer coatings was developed to improve the antifouling performance of TiO2 surfaces. To solve the problem of the weak charge-transfer interaction between a single catechol anchor and TiO2, multiple catechol groups were combined with hyperbranched polyglycerol (hPG) which is a distinct dendritic scaffold that exposes its multivalent anchor groups on the surface. Thus, multivalent catecholic hPGs can be easily prepared for surface modification. The immobilization of the compounds was monitored by quartz crystal microbalance with dissipation monitoring. Surface properties of the coatings were analyzed by water contact angle, X-ray photoelectron spectroscopy, and atomic force microscopy. The antifouling ability and stability were investigated by protein adsorption and cell adhesion. By increasing the number of catechol groups on the hPG scaffold, the stability and surface coverage could be significantly enhanced. Moreover, the inner-layer crosslinking of the coatings by grafting and initiating vinyl groups clearly improved their long-term stability. As a result, hPG with a catecholic functional degree of 10% (hPG-Cat10) and hPG with both catecholic and vinylic functional degree of 5% (hPG-Cat5-V5) were identified as the best catecholic hPGs to prepare bioinert and stable monolayer coatings on TiO2.

  17. Development of biodegradable hyperbranched core-multishell nanocarriers for efficient topical drug delivery.

    PubMed

    Du, Fang; Hönzke, Stefan; Neumann, Falko; Keilitz, Juliane; Chen, Wei; Ma, Nan; Hedtrich, Sarah; Haag, Rainer

    2016-11-28

    The topical application of drugs allows for a local application in skin disease and can reduce side effects. Here we present biodegradable core-multishell (CMS) nanocarriers which are composed of a hyperbranched polyglycerol core functionalized with diblock copolymers consisting of polycaprolactone (PCL) and poly(ethylene glycol) (mPEG) as the outer shell. The anti-inflammatory drug Dexamethasone (Dexa) was loaded into these CMS nanocarriers. DLS results suggested that Dexa loaded nanoparticles mostly act as a unimolecular carrier system. With longer PCL segments, a better transport capacity is observed. In vitro skin permeation studies showed that CMS nanocarriers could improve the Nile red penetration through the skin by up to 7 times, compared to a conventional cream formulation. Interestingly, covalently FITC-labeled CMS nanocarriers remain in the stratum corneum layer. This suggests the enhancement is due to the release of cargo after being transported into the stratum corneum by the CMS nanocarriers. In addition, the hPG-PCL-mPEG CMS nanocarriers exhibited good stability, low cytotoxicity, and their production can easily be scaled up, which makes them promising nanocarriers for topical drug delivery.

  18. In vitro biocompatibility evaluations of hyperbranched polyglycerol hybrid nanostructure as a candidate for nanomedicine applications.

    PubMed

    Zarrabi, Ali; Shokrgozar, Mohammad Ali; Vossoughi, Manouchehr; Farokhi, Mehdi

    2014-02-01

    In the present study, a detailed biocompatibility testing of a novel class of hybrid nanostructure based on hyperbranched polyglycerol and β-cyclodextrin is conducted. This highly water soluble nanostructure with size of less than 10 nm, polydispersity of less than 1.3, chemical tenability and highly branched architecture with the control over branching structure could be potentially used as a carrier in drug delivery systems. To this end, extensive studies in vitro and in vivo conditions have to be demonstrated. The in vitro studies include in vitro cytotoxicity tests; MTT and Neutral Red assay as an indicator of mitochondrial and lysosomal function, and blood biocompatibility tests such as effects on coagulation cascade, and complement activation. The results show that these hybrid nanostructures, which can be prepared in a simple reaction, are considerably biocompatible. The in vivo studies showed that the hybrid nanostructure is well tolerated by rats even in high doses of 10 mg ml(-1). After autopsy, the normal structure of liver tissue was observed; which divulges high biocompatibility and their potential applications as drug delivery and nanomedicine.

  19. Efficient gene delivery with osmotically active and hyperbranched poly(ester amine)s.

    PubMed

    Arote, Rohidas B; Lee, Eun-Sun; Jiang, Hu-Lin; Kim, You-Kyoung; Choi, Yun-Jaie; Cho, Myung-Haing; Cho, Chong-Su

    2009-12-01

    Degradable and hyperbranched poly (ester amine)s (PEAs) were successfully synthesized by Michael addition reaction between hydrophilic glycerol triacrylate (GTA) and low-molecular-weight polyethylenimine (LMW-PEI) and evaluated as nonviral gene carriers. PEAs effectively condensed DNA with particle sizes below 200 nm and suitable surface charges (15-45 mV), suitable for intracellular delivery. PEAs degraded in a controlled fashion showing half-lives of more than 12 days and were essentially nontoxic in three different cell lines. Elevated transfection levels by luciferase assay revealed the superiority of PEAs over PEI 25K and Lipofectamine. PEAs synthesized using 1:4 mol ratio of GTA to PEI [GTA/PEI-1.2(1:4)] showed highest transfection efficiency in HepG2 cells. PEAs showed significant gene expression in vitro as well as in vivo through aerosol administration. Reduction in packed cell volume (PCV) of cells when treated with polyplexes supported the hyperosmotic effect of PEAs. Effect of bafilomycin A1 on transfection efficiency of PEAs on 293T cells indicated its endosomal buffering capacity. High transfection efficiency was attributed to the synergism from hyperosmotic glycerol backbone in the PEAs and endosomal buffering capacity of PEI amine groups. Therefore, this convergence of osmotically active biodegradable PEAs suggests their potential as a safe and efficient gene delivery vector.

  20. Long-term active antimicrobial coatings for surgical sutures based on silver nanoparticles and hyperbranched polylysine.

    PubMed

    Ho, Chau Hon; Odermatt, Erich K; Berndt, Ingo; Tiller, Joerg C

    2013-01-01

    The goal of this study was to develop a long-term active antimicrobial coating for surgical sutures. To this end, two water-insoluble polymeric nanocontainers based on hyperbranched polylysine (HPL), hydrophobically modified by either using glycidyl hexadecyl ether, or a mixture of stearoyl/palmitoyl chloride, were synthesized. Highly stabilized silver nanoparticles (AgNPs, 2-5 nm in size) were generated by dissolving silver nitrate in the modified HPL solutions in toluene followed by reduction with L-ascorbic acid. Poly(glycolic acid)-based surgical sutures were dip-coated with the two different polymeric silver nanocomposites. The coated sutures showed high efficacies of more than 99.5% reduction of adhesion of living Staphylococcus aureus cells onto the surface compared to the uncoated specimen. Silver release experiments were performed on the HPL-AgNP modified sutures by washing them in phosphate buffered saline for a period of 30 days. These coatings showed a constant release of silver ions over more than 30 days. After this period of washing, the sutures retained their high efficacies against bacterial adhesion. Cytotoxicity tests using L929 mouse fibroblast cells showed that the materials are basically non-cytotoxic.

  1. A Highly Photostable Hyperbranched Polyglycerol-Based NIR Fluorescence Nanoplatform for Mitochondria-Specific Cell Imaging.

    PubMed

    Dong, Chunhong; Liu, Zhongyun; Liu, Junqing; Wu, Changzhu; Neumann, Falko; Wang, Hanjie; Schäfer-Korting, Monika; Kleuser, Burkhard; Chang, Jin; Li, Wenzhong; Ma, Nan; Haag, Rainer

    2016-09-01

    Considering the critical role of mitochondria in the life and death of cells, non-invasive long-term tracking of mitochondria has attracted considerable interest. However, a high-performance mitochondria-specific labeling probe with high photostability is still lacking. Herein a highly photostable hyperbranched polyglycerol (hPG)-based near-infrared (NIR) quantum dots (QDs) nanoplatform is reported for mitochondria-specific cell imaging. Comprising NIR Zn-Cu-In-S/ZnS QDs as extremely photostable fluorescent labels and alkyl chain (C12 )/triphenylphosphonium (TPP)-functionalized hPG derivatives as protective shell, the tailored QDs@hPG-C12 /TPP nanoprobe with a hydrodynamic diameter of about 65 nm exhibits NIR fluorescence, excellent biocompatibility, good stability, and mitochondria-targeted ability. Cell uptake experiments demonstrate that QDs@hPG-C12 /TPP displays a significantly enhanced uptake in HeLa cells compared to nontargeted QDs@hPG-C12 . Further co-localization study indicates that the probe selectively targets mitochondria. Importantly, compared with commercial deep-red mitochondria dyes, QDs@hPG-C12 /TPP possesses superior photostability under continuous laser irradiation, indicating great potential for long-term mitochondria labeling and tracking. Moreover, drug-loaded QDs@hPG-C12 /TPP display an enhanced tumor cell killing efficacy compared to nontargeted drugs. This work could open the door to the construction of organelle-targeted multifunctional nanoplatforms for precise diagnosis and high-efficient tumor therapy.

  2. The surface characteristics of hyperbranched polyamide modified corncob and its adsorption property for Cr(VI)

    NASA Astrophysics Data System (ADS)

    Lin, Hai; Han, Shaoke; Dong, Yingbo; He, Yinhai

    2017-08-01

    A low-cost anion adsorbent for Cr(VI) effectively removing was synthesized by hyperbranched polyamide modified corncob (HPMC). Samples were characterized by Brunauer-Emmett-Teller (BET) surface area analysis, field-emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray spectroscopy, Fourier transform infrared (FTIR) and zeta potential analysis. Kinetics, isotherms and thermodynamics studies of HPMC for Cr(VI) adsorption were investigated in batch static experiments, in the temperature range of 25-45 °C, pH = 2.0. Results showed that the adsorption was rapid and stable, with the uptake capacity higher than 80% after 30 min. Adsorption behavior and rate-controlling mechanisms were analyzed using three kinetic models (pseudo-first order, pseudo-second order, intra-particle kinetic model). Kinetic studies showed that the adsorption of HPMC to Cr(VI) relied the pseudo-second-order model, and controlled both by the intra-particle diffusion and film diffusion. Equilibrium data was tested by Langmuir and Freundlich adsorption isotherm models. Langmuir model was more suitable to indicate a homogeneous distribution of active sites on HPMC and monolayer adsorption. The maximum adsorption capacity from the Langmuir model, qmax, was 131.6 mg/g at pH 2.0 and 45 °C for HPMC. Thermodynamic parameters revealed spontaneous and endothermic nature of the Cr(VI) adsorption onto HPMC.

  3. Sensitive and isothermal electrochemiluminescence gene-sensing of Listeria monocytogenes with hyperbranching rolling circle amplification technology.

    PubMed

    Long, Yi; Zhou, Xiaoming; Xing, Da

    2011-02-15

    Listeria monocytogenes (L. monocytogenes) is one of the most problematic human pathogens, as it is mainly transmitted through the food chain and cause listeriosis. Thus, specific and sensitive detection of L. monocytogenes is required to ensure food safety. In this study, we proposed a method using hyperbranching rolling circle amplification (HRCA) combined with magnetic beads based electrochemiluminescence (ECL) to offer an isothermal, highly sensitive and specific assay for the detection of L. monocytogenes. At first, a linear padlock probe was designed to target a specific sequence in the hly gene which is specific to L. monocytogenes and then ligated by Taq DNA ligase. After ligation and digestion, further amplification by HRCA with a biotiny labeled primer and a tris (bipyridine) ruthenium (TBR) labeled primer was performed. The resulting HRCA products were then captured onto streptavidin-coated paramagnetic beads and were analyzed by magnetic beads based ECL platform to confirm the presence of targets. Through this approach, as low as 10 aM synthetic hly gene targets and about 0.0002 ng/μl of genomic DNA from L. monocytogenes can be detected, the ability to detect at such ultratrace levels could be attributed to the powerful amplification of HRCA and the high sensitivity of current magnetic bead based ECL detection platform. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Modified Hyperbranched Polyglycerol as Dispersant for Size Control and Stabilization of Gold Nanoparticles in Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Shen, Yanyu; He, Guijin; Guo, Yongsheng; Xie, Hujun; Fang, Wenjun

    2017-09-01

    Hyperbranched polyglycerol (HPG) is modified with dodecanethiol (DS) via the "thiol-ene" click reaction to obtain an amphiphilic product DSHPG. The molecular structures of DSHPG samples are characterized by NMR, FTIR, and GPC, and the thermal behaviors are characterized by DSC and TGA. Gold nanoparticles (Au NPs) are prepared with DSHPG as the stabilizer and surface-modification reagent. The size of Au NPs can be tuned by changing the molecular weight of HPG. It is observed that the HPG molecular weights of 1123, 3826, and 55,075 lead to the NP diameters of 4.1 nm for Au@DSHPG-1, 9.7 nm for Au@DSHPG-2, and 15.1 nm for Au@DSHPG-3, respectively. The morphology and size of Au NPs are characterized by TEM and DLS. Especially, the dispersion abilities of Au NPs in different pure solvents and co-solvent mixtures are investigated. The long alkyl chains on DSHPG give the ability of Au NPs to be well dispersed in nonpolar solvents. Hydrocarbon-based nanofluids can be obtained from the hydrophobic Au NPs dispersed into a series of hydrocarbons. The dispersion stability for Au NPs in hydrocarbons is monitored by UV-Vis spectroscopy, and the relative concentration of Au NPs is observed to still maintain over 80% after 3600 h.

  5. Hyperbranched polyglycidol assisted green synthetic protocols for the preparation of multifunctional metal nanoparticles.

    PubMed

    Li, Haiqing; Jo, Jung Kyu; Zhang, Li Dong; Ha, Chang-Sik; Suh, Hongsuk; Kim, Il

    2010-12-07

    Biocompatible hyperbranched polyglycidol (HBP) has been demonstrated to be an effective reducing and stabilizing agent for the synthesis of highly water-soluble monometallic (Au, Ag, Pt, Pd, and Ru) and bimetallic (Au/Pt, Au/Pd, and Au/Ru) nanoparticles (NPs), which provides a general and green protocol to fabricate metal NPs. The HBP-assisted reduction of metal ions follows an analogous polyol process. The reduction reaction rate increases sharply by increasing the temperature and the molecular weight of HBP. The size of NPs is controllable simply by changing the concentration of the metal precursor. High molecular weight HBP is favorable for the formation of NPs with uniform size and improved stability. By utilizing hydroxyl groups in the HBP-passivation layer of Au NPs, TiO(2)/Au, GeO(2)/Au, and SiO(2)/Au nanohybrids are also fabricated via sol-gel processes, which sets a typical example for the creation of versatile metal NPs/inorganic oxide hybrids based on the as-prepared multifunctional NPs.

  6. Hyperbranched Polyester Hydrogels with Controlled Drug Release and Cell Adhesion Properties

    PubMed Central

    Zhang, Hongbin; Patel, Alpesh; Gaharwar, Akhilesh K.; Mihaila, Silvia M.; Iviglia, Giorgio; Mukundan, Shilpaa; Bae, Hojae; Yang, Huai; Khademhosseini, Ali

    2013-01-01

    Hyperbranched polyesters (HPE) have a high efficiency to encapsulate bioactive agents, including drugs, genes and proteins, due to their globe-like nanostructure. However, the use of these highly branched polymeric systems for tissue engineering applications has not been broadly investigated. Here, we report synthesis and characterization of photocrosslinkable HPE hydrogels with sustained drug release characteristics for cellular therapies. These HPE can encapsulate hydrophobic drug molecules within the HPE cavities, due to the presence of hydrophobic inner structure that is otherwise difficult to achieve in conventional hydrogels. The functionalization of HPE with photocrosslinkable acrylate moieties renders the formation of hydrogels with highly porous interconnected structure, and mechanically tough network. The compressive modulus of HPE hydrogels was tunable by changing the crosslinking density. The feasibility of using these HPE networks for cellular therapies was investigated by evaluating cell adhesion, spreading and proliferation on hydrogel surface. Highly crosslinked and mechanically stiff HPE hydrogels have higher cell adhesion, spreading, proliferation compared to soft and complaint HPE hydrogels. Overall, we showed that hydrogels made from HPE could be used for biomedical applications that require control cell adhesion and control release of hydrophobic clues. PMID:23394067

  7. New core-shell hyperbranched chitosan-based nanoparticles as optical sensor for ammonia detection.

    PubMed

    El-Sherbiny, Ibrahim M; Hefnawy, Amr; Salih, Ehab

    2016-05-01

    In this paper, preparation of new core-shell amino-terminated hyperbranched chitosan nanoparticles (HBCs-NH2) NPs is described. The synthesized nanoparticles were characterized using ninhydrin assay, FTIR, TGA, and FESEM. The newly prepared (HBCs-NH2) NPs were then used as a platform for facile and controlled synthesis of silver nanoparticles (AgNPs) which was confirmed using FTIR, UV-vis spectrometry, X-ray diffraction, SEM and HRTEM. Formation of the AgNPs was also noted upon changing the color of (HBCs-NH2) NPs suspension from colorless into yellow as well as through the appearance of surface plasmon resonance (SPR) peak at 400 nm. HRTEM showed a uniform and spherical morphology of the resulting HBCs-NH2 NPs with average size 400 nm, and the AgNPs were formed mainly on their surface with average size of 20-50 nm. The newly developed (HBCs-NH2) NPs-AgNPs showed a great potential as optical sensor for efficient detection of the ammonia concentration in solutions based on the change in the SPR.

  8. Photoluminescent hyperbranched poly(amido amine) containing β-cyclodextrin as a nonviral gene delivery vector.

    PubMed

    Chen, Yan; Zhou, Linzhu; Pang, Yan; Huang, Wei; Qiu, Feng; Jiang, Xulin; Zhu, Xinyuan; Yan, Deyue; Chen, Qun

    2011-06-15

    Hyperbranched poly(amido amine)s (HPAAs) containing different amounts of β-cyclodextrin (β-CD) (HPAA-CDs) were synthesized in one-pot by Michael addition copolymerization of N,N'-methylene bisacrylamide, 1-(2-aminoethyl)piperazine, and mono-6-deoxy-6-ethylenediamino-β-CD. In comparison to pure HPAA, the fluorescence intensity of HPAA-CDs was enhanced significantly while the cytotoxicity became lower. Ascribed to plenty of amino groups and strong photoluminescence, HPAA-CDs could be used as nonviral gene delivery vectors, and the corresponding gene transfection was evaluated. The experimental results indicated that HPAA-CDs condensed the plasmid DNA very well. By utilizing the fluorescent properties of HPAA-CDs, the cellular uptake and gene transfection processes were tracked by flow cytometry and confocal laser scanning microscopy without any fluorescent labeling. The transfection efficiencies of HPAA-CDs were similar to that of pure HPAA. In addition, the inner cavities of β-CDs in HPAA-CDs could be used to encapsulate drugs through host--guest interaction. Therefore, the HPAA-CDs may have potential application in the combination of gene therapy and chemotherapy.

  9. Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery.

    PubMed

    Son, Suhyun; Shin, Eeseul; Kim, Byeong-Su

    2014-02-10

    Light-responsive polymeric micelles have emerged as site-specific and time-controlled systems for advanced drug delivery. Spiropyran (SP), a well-known photochromic molecule, was used to initiate the ring-opening multibranching polymerization of glycidol to afford a series of hyperbranched polyglycerols (SP-hb-PG). The micelle assembly and disassembly were induced by an external light source owing to the reversible photoisomerization of hydrophobic SP to hydrophilic merocyanine (MC). Transmission electron microscopy, atomic force microscopy, UV/vis spectroscopy, and dynamic light scattering demonstrated the successful assembly and disassembly of SP-hb-PG micelles. In addition, the critical micelle concentration (CMC) was determined through the fluorescence analysis of pyrene to confirm the amphiphilicity of respective SP-hb-PGn (n = 15, 29, and 36) micelles, with CMC values ranging from 13 to 20 mg/L, which is correlated to the length of the polar polyglycerol backbone. Moreover, the superior biocompatibility of the prepared SP-hb-PG was evaluated using WI-38 cells and HeLa cells, suggesting the prospective applicability of the micelles in smart drug delivery systems.

  10. Lunar Capabilities Roadmap

    NASA Astrophysics Data System (ADS)

    Kramer, G. Y.; Lawrence, D. J.; Neal, C. R.; Clark, P. E.; Green, R. O.; Horanyi, M.; Johnson, M. D.; Kelso, R. M.; Sultana, M.; Thompson, D. R.

    2016-11-01

    A Lunar Capabilities Roadmap (LCR) is required to highlight capabilities critical for science and exploration of the Moon as well as beyond. The LCR will focus mainly on capabilities with examples of specific technologies to satisfy those needs.

  11. Microgravity Polymers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A one-day, interactive workshop considering the effects of gravity on polymer materials science was held in Cleveland, Ohio, on May 9, 1985. Selected programmatic and technical issues were reviewed to introduce the field to workshop participants. Parallel discussions were conducted in three disciplinary working groups: polymer chemistry, polymer physics, and polymer engineering. This proceedings presents summaries of the workshop discussions and conclusions.

  12. A new approach for the synthesis of hyperbranched N-glycan core structures from locust bean gum.

    PubMed

    Ravi Kumar, H V; Naruchi, Kentaro; Miyoshi, Risho; Hinou, Hiroshi; Nishimura, Shin-Ichiro

    2013-12-20

    A novel protocol for the synthesis of general N-glycan core structures was established by means of Manβ(1→4)Man peracetate derived from a naturally abundant locust bean gum as a key starting material. Phenyl (2-O-benzyl-4,6-O-benzylidine-β-D-mannopyranosyl)-(1→4)-3,6-di-O-benzyl-2-azido-2-deoxy-1-thio-β-D-glucopyranoside facilitated the synthesis of key intermediates leading to hyperbranched N-glycan core structures.

  13. Synthesis and physicochemical characterization of a novel amphiphilic polylactic acid-hyperbranched polyglycerol conjugate for protein delivery.

    PubMed

    Gao, Xiujun; Zhang, Xinge; Wu, Zhongming; Zhang, Xuejiao; Wang, Zhen; Li, Chaoxing

    2009-12-03

    Amphiphilic copolymers with polylactic acid (PLA) chains grafted onto hyperbranched polyglycerol (HPG) have been synthesized and characterized. The copolymer nanoparticles with corona and core structure were formed by self-assembly in aqueous solution. The loading capacity and association efficiency were up to 23% and 86%, respectively. Protein release profiles with different copolymer compositions and BSA concentrations all showed a burst effect followed by a continuous release phase. The released BSA from the copolymer nanoparticles remained in its original structure over a period of 4 days, as testified by circular dichroism spectroscopy. Furthermore, cell viability research suggested good biocompatibility of the copolymer nanoparticles, which have a promising potential for protein delivery system.

  14. Leukocyte-mimicking stem cell delivery via in situ coating of cells with a bioactive hyperbranched polyglycerol.

    PubMed

    Jeong, Jae Hyun; Schmidt, John J; Kohman, Richie E; Zill, Andrew T; DeVolder, Ross J; Smith, Cartney E; Lai, Mei-Hsiu; Shkumatov, Artem; Jensen, Tor W; Schook, Lawrence G; Zimmerman, Steven C; Kong, Hyunjoon

    2013-06-19

    Since stem cells emerged as a new generation of medicine, there are increasing efforts to deliver stem cells to a target tissue via intravascular injection. However, the therapeutic stem cells lack the capacity to detect and adhere to the target tissue. Therefore, this study presents synthesis of a bioactive hyperbranched polyglycerol (HPG) that can noninvasively associate with stem cells and further guide them to target sites, such as inflamed endothelium. The overall process is analogous to the way in which leukocytes are mobilized to the injured endothelium.

  15. Biodegradable Polymers

    PubMed Central

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. The following review presents an overview of the different biodegradable polymers that are currently being used and their properties, as well as new developments in their synthesis and applications.

  16. Preparation of hyperstar polymers with encapsulated Au25(SR)18 clusters as recyclable catalysts for nitrophenol reduction.

    PubMed

    Hu, Daqiao; Jin, Shan; Shi, Yi; Wang, Xiaofeng; Graff, Robert W; Liu, Wenqi; Zhu, Manzhou; Gao, Haifeng

    2017-03-09

    A robust approach is developed to prepare hyperstar polymer-Au25(SR)18 nanocomposites for catalysis. The synthesis started with atom transfer radical copolymerization of an inimer with a cyclic disulfide-containing methacrylate monomer in a microemulsion to produce hyperbranched copolymers with high molar mass, low polydispersity, and a vital fraction of dangling disulfide groups. The core-shell structured hyperstar polymers were then prepared using hyperbranched copolymers as macroinitiators to polymerize oligo(ethylene glycol) methyl ether methacrylate (Mn = 500) and grow the radiating arms. The hyperstar polymers with disulfide groups were proved to efficiently encapsulate Au25(SR)18 nanoclusters through ligand exchange without destroying the fine structure of the Au25(SR)18 clusters. The obtained hyperstar-Au25(SR)18 nanocomposites showed great stability with no size change after a three-month shelf storage. They were used as efficient catalysts for the catalytic reduction of 4-nitrophenol by NaBH4, showing convenient recovery and reuse without losing catalytic efficiency.

  17. Electroactive polymers for sensing

    PubMed Central

    2016-01-01

    Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer–metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units. PMID:27499846

  18. Secondary polymer layered impregnated tile

    NASA Technical Reports Server (NTRS)

    Tran, Huy K. (Inventor); Rasky, Daniel J. (Inventor); Szalai, Christine E. (Inventor); Carroll, Joseph A. (Inventor); Hsu, Ming-ta S. (Inventor)

    2005-01-01

    A low density organic polymer impregnated preformed fibrous ceramic article includes a plurality of layers. A front layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one organic polymer. A middle layer includes polymer impregnated ceramic fibers. A back layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one low temperature pyrolyzing organic polymer capable of decomposing without depositing residues.

  19. Secondary polymer layered impregnated tile

    NASA Technical Reports Server (NTRS)

    Tran, Huy K. (Inventor); Rasky, Daniel J. (Inventor); Szalai, Christine E. (Inventor); Carroll, Joseph A. (Inventor); Hsu, Ming-ta S. (Inventor)

    2005-01-01

    A low density organic polymer impregnated preformed fibrous ceramic article includes a plurality of layers. A front layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one organic polymer. A middle layer includes polymer impregnated ceramic fibers. A back layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one low temperature pyrolyzing organic polymer capable of decomposing without depositing residues.

  20. Ru(II) Tris(3,8-Dibromo-1,10-Phenanthro1ine): A New Versatile Core for the Divergent Synthesis of Hyperbranched Systems

    NASA Technical Reports Server (NTRS)

    Sotiriou-Leventis, Chariklia; Yang, Jinhua; Duan, Penggao; Leventis, Nicholas

    2004-01-01

    We report the first synthesis of Ru(II) tris(3,8-dibromo-1,lO-phenanthroline) bishexafluorophosphate, and we demonstrate its utility as a building core for the divergent synthesis of hyperbranched systems by coupling with phenylacetylene in the preparation of Rum tris(3,8-diphenylethynyl- 1,lO-phenanthroline) dihexafluorophosphate.

  1. Unusual, promoted release of guests from amphiphilic cross-linked polymer networks.

    PubMed

    Brown, Gerald O; Bergquist, Catherine; Ferm, Paul; Wooley, Karen L

    2005-08-17

    Hyperbranched fluoropolymer-poly(ethylene glycol) (HBFP-PEG) cross-linked networks have been found to exhibit capabilities for the encapsulation of high levels of geraniol guest molecules coupled with unusually rapid release of the volatile compound. The promotion of the release of the volatile fragrance geraniol, observed as decreasing volatilization temperatures and increasing volatilization rates by thermogravimetric analyses, was found to be dependent upon the HBFP-PEG network composition, with increasing effects from decreasing wt % PEG and a maximum effect occurring at 5 wt % PEG.

  2. Post polymerization cure shape memory polymers

    DOEpatents

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  3. Post polymerization cure shape memory polymers

    DOEpatents

    Wilson, Thomas S.; Hearon, II, Michael Keith; Bearinger, Jane P.

    2017-01-10

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  4. Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy.

    PubMed

    Mashhadi Malekzadeh, Asemeh; Ramazani, Ali; Tabatabaei Rezaei, Seyed Jamal; Niknejad, Hassan

    2017-03-15

    Magnetic drug targeting is a drug delivery strategy that can be used to improve the therapeutic efficiency on tumor cells and reduce the side effects on normal cells and tissues. The aim in this study is designing a novel multifunctional drug delivery system based on superparamagnetic nanoparticles for cancer therapy. Magnetic nanoparticles were synthesized by coprecipitation of iron oxide followed by coating with poly citric acid (PCA) dendritic macromolecules via bulk polymerization strategy. It was further surface-functionalized with poly(ethylene glycol) (PEG) and then to achieve tumor cell targeting property, folic acid was further incorporated to the surface of prepared carriers via a facile coupling reaction between the hydroxyl end group of the PEG and the carboxyl group of folic acid. The so prepared nanocarriers (Fe3O4@PCA-PEG-FA) were characterized by X-ray diffraction, TEM, TGA, FT-IR, DLS and VSM techniques. The room temperature VSM measurements showed that magnetic particles were superparamagnetic. Transmission electron microscopy and dynamic light scattering were also performed which revealed that size of nanocarriers was lying in the range of 10-49nm. Quercetin loading and release profiles of prepared nanocarriers showed that up to 83% of loaded drug was released in 250h. Fluorescent microscopy showed that the cellular uptake by folate receptor-overexpressing HeLa cells of the quercetin-loaded Fe3O4@PCA-PEG-FA nanoparticles was higher than that of non-folate conjugated nanoparticles. Thus, folate conjugation significantly increased nanoparticle cytotoxicity. Also, T2-weighted MRI images of Fe3O4@PCA-PEG-FA nanoparticles showed that the magnetic resonance signal is enhanced significantly with increasing nanoparticle concentration in water and they also served as MRI contrast agents with relaxivities of 3.4mM(-1)s(-1) (r1) and 99.8mM(-1)s(-1) (r2). The results indicate that this multifunctional nanocarrier is a significant breakthrough in developing a drug delivery vehicle that combines drug targeting as well as sensing and therapy at the same time.

  5. Design Considerations for Developing Hyperbranched Polyglycerol Nanoparticles as Systemic Drug Carriers.

    PubMed

    Wong, Nelson K Y; Misri, Ripen; Shenoi, Rajesh A; Chafeeva, Irina; Kizhakkedathu, Jayachandran N; Khan, Mohamed K

    2016-05-01

    PEGylation is commonly used to increase the plasma residence time of anticancer drug nanocarriers. However, PEGylation may trigger antibody production and lead to accelerated blood clearance in subsequent administrations. Moreover, the presence of PEG shells on nanocarriers may also hamper endosomal escape and decrease drug payload release. To avoid these shortcomings, we synthesized and evaluated a non-PEGylated, hyperbranched polyglycerol nanoparticle (HPG NP) with a hydrophobic core and a hydrophilic HPG shell, HPG-C10-HPG, as a candidate for systemic delivery of anticancer drug. In vitro studies with primary human cell lines revealed that HPG-C10-HPG possesses low cytotoxicity. The presence of long chain alkyl groups (C1o) in the core as the hydrophobic pocket in the NP enabled the binding and sustained release of the hydrophobic drug docetaxel. Remarkably, the docetaxel-loaded HPG-C10-HPG formulation also confers preferential protection to primary cells, when compared to cancer cells, potentially widening the therapeutic index. HPG-C10-HPG, however, accumulated at higher levels in the liver and spleen when administered intravenously in mice. Comparing the biodistribution patterns of HPG-C10-HPG, PEGylated HPG-C10-PEG, and unmodified HPG in a xenograft model reveals that the accumulation pattern of HPG-C10-HPG was attributed to insufficient shielding of the hydrophobic groups by the HPG shell. Our results revealed the influence of the nature of the hydrophilic shell and the presence of hydrophobic groups on the tumor-to-tissue accumulation specificities of these HPG NP variants. Therefore, the present study provides insights into the structural considerations of future HPG NP designs for systemic drug delivery.

  6. Antimicrobial hyperbranched poly(ester amide)/polyaniline nanofiber modified montmorillonite nanocomposites.

    PubMed

    Pramanik, Sujata; Bharali, Pranjal; Konwar, B K; Karak, Niranjan

    2014-02-01

    There has been growing interest in the use of nanomaterials featuring potent of antimicrobial activity in the biomedical domain. It still remains a challenge for the researchers to develop an efficient nanocomposite possessing antimicrobial efficacy against broad spectrum microbes including bacteria, fungi as well as algal consortium, posing serious challenges for the human survival. In addressing the above problem, we report the fabrication of bio-based hyperbranched poly(ester amide) (HBPEA)/polyaniline nanofiber modified montmorillonite (MMT) nanocomposites by an ex-situ polymerization technique at varied weight percentages (1, 2.5, 5 wt.%) of the modified MMT (nanohybrid). The Fourier transform infrared spectroscopy confirmed the structural changes upon interaction of the nanohybrid with HBPEA. A probable mechanism is proposed for the formation of nanocomposites with partially exfoliated nanoplatelet structure, which was further confirmed from the high resolution transmission electron microscopic analyses. The prepared nanocomposites exhibited potent efficacy against gram positive bacteria like Bacillus subtilis and Staphylococcus aureus as compared to the gram negative ones like Pseudomonas aeruginosa and Escherichia coli. The nanocomposites showed significant antifungal activity against Aspergillus niger, Fusarium oxysporum and Coleotricum capcii and antialgal activity against algal consortium comprising of Chlorella, Hormidium and Cladophorella species. The formation of thermosetting nanocomposites resulted in the acceptable improvement of desired physico-chemical and mechanical properties including thermostability. Thus pronounced antimicrobial activity of the nanocomposites against a spectrum of bacterial and fungal strains as well as a consortium of algal species along with other desired performance vouched them as potent antimicrobial materials in the realm of health and biomedical industry. © 2013.

  7. Grafting the surface of carbon nanotubes and carbon black with the chemical properties of hyperbranched polyamines

    PubMed Central

    Morales-Lara, Francisco; Domingo-García, María; López-Garzón, Rafael; Luz Godino-Salido, María; Peñas-Sanjuán, Antonio; López-Garzón, F. Javier; Pérez-Mendoza, Manuel; Melguizo, Manuel

    2016-01-01

    Abstract Controlling the chemistry on the surface of new carbon materials is a key factor to widen the range of their applicability. In this paper we show a grafting methodology of polyalkylamines to the surface of carbon nanomaterials, in particular, carbon nanotubes and a carbon black. The aim of this work is to reach large degrees of covalent functionalization with hyperbranched polyethyleneimines (HBPEIs) and to efficiently preserve the strong chelating properties of the HBPEIs when they are fixed to the surface of these carbon materials. This functionalization opens new possibilities of using these carbon nanotubes-based hybrids. The results show that the HBPEIs are covalently attached to the carbon materials, forming hybrids. These hybrids emerge from the reaction of amine functions of the HBPEIs with carbonyls and carboxylic anhydrides of the carbon surface which become imine and imide bonds. Thus, due to the nature of these bonds, the pre-oxidized samples with relevant number of C=O groups showed an increase in the degree of functionalization with the HBPEIs. Furthermore, both the acid-base properties and the coordination capacity for metal ions of the hybrids are equivalent to that of the free HBPEIs in solution. This means that the chemical characteristics of the HBPEIs have been efficiently transferred to the hybrids. To reach this conclusion we have developed a novel procedure to assess the acid-base and the coordination properties of the hybrids (solids) by means of potentiometric titration. The good agreement of the values obtained for the hybrids and for the free HBPEIs in aqueous solution supports the reliability of the procedure. Moreover, the high capacity of the hybrids to capture Ni2+ by complexation opens new possibilities of using these hybrids to capture high-value metal ions such as Pd2+ and Pt2+. PMID:27877902

  8. Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotube-polymer interactions.

    PubMed

    Adeli, Mohsen; Soleyman, Rouhollah; Beiranvand, Zahra; Madani, Fahimeh

    2013-06-21

    Despite the great potential of carbon nanotubes (CNTs) in various areas of biomedicine, concerns regarding their carcinogenicity, inefficient dispersion in aqueous solutions and biological activity in vivo still remain. One important and feasible route to overcome these barriers is modification of CNTs with polymers, which are widely studied and play a vital role in biological and biomedical fields, especially in drug delivery. This comprehensive review focuses on the achievements of our and other groups in currently used methods to functionalize the surface of CNTs with polymers to produce anticancer drug delivery systems. We have intensively studied covalent and noncovalent interactions between CNTs and linear, dendritic and hyperbranched biocompatible polymers as well as biomacromolecules interactions which are very crucial to diminish the toxicity of CNTs via changing their conformations.

  9. Nano-Bio Engineered Carbon Dot-Peptide Functionalized Water Dispersible Hyperbranched Polyurethane for Bone Tissue Regeneration.

    PubMed

    Gogoi, Satyabrat; Maji, Somnath; Mishra, Debasish; Devi, K Sanjana P; Maiti, Tapas Kumar; Karak, Niranjan

    2017-03-01

    The present study delves into a combined bio-nano-macromolecular approach for bone tissue engineering. This approach relies on the properties of an ideal scaffold material imbued with all the chemical premises required for fostering cellular growth and differentiation. A tannic acid based water dispersible hyperbranched polyurethane is fabricated with bio-nanohybrids of carbon dot and four different peptides (viz. SVVYGLR, PRGDSGYRGDS, IPP, and CGGKVGKACCVPTKLSPISVLYK) to impart target specific in vivo bone healing ability. This polymeric bio-nanocomposite is blended with 10 wt% of gelatin and examined as a non-invasive delivery vehicle. In vitro assessment of the developed polymeric system reveals good osteoblast adhesion, proliferation, and differentiation. Aided by this panel of peptides, the polymeric bio-nanocomposite exhibits in vivo ectopic bone formation ability. The study on in vivo mineralization and vascularization reveals the occurrence of calcification and blood vessel formation. Thus, the study demonstrates carbon dot/peptide functionalized hyperbranched polyurethane gel for bone tissue engineering application.

  10. Hydrotropic polymeric mixed micelles based on functional hyperbranched polyglycerol copolymers as hepatoma-targeting drug delivery system.

    PubMed

    Zhang, Xuejiao; Zhang, Xinge; Yu, Peien; Han, Yucai; Li, Yangguang; Li, Chaoxing

    2013-01-01

    Mixed copolymer nanoparticles (NPs) self-assembled from β-cyclodextrin-grafted hyperbranched polyglycerol (HPG-g-CD) and lactobionic acid (LA)-grafted hyperbranched polyglycerol (HPG-g-LA) were applied as carriers for a hydrophobic antitumor drug, paclitaxel (PTX), achieving hepatocellular carcinoma-targeted delivery. The resulting NPs exhibited high drug loading capacity and substantial stability in aqueous solution. In vitro drug release studies demonstrated a controlled drug release profile with increased release at acidic pH. Remarkably, tumor proliferation assays showed that PTX-loaded mixed copolymer NPs inhibited asialoglycoprotein (ASGP) receptor positive HepG2 cell proliferation in a concentration-dependent manner in comparison with ASGP receptor negative BGC-823 cells. Moreover, the competition assay demonstrated that the small molecular LA inhibited the cellular uptake of the PTX-loaded mixed copolymer NPs, indicating the ASGP receptor-mediated endocytosis in HepG2 cells. In addition, the intracellular uptake tests by confocal laser scanning microscopy showed that the mixed copolymer NPs were more efficiently taken up by HepG2 cells compared with HPG-g-CD NPs. These results suggest a feasible application of the mixed copolymer NPs as nanocarriers for hepatoma-targeted delivery of potent antitumor drugs.

  11. Poly(amidoamine) polymers: soluble linear amphiphilic drug-delivery systems for genes, proteins and oligonucleotides.

    PubMed

    Pettit, Marie W; Griffiths, Peter; Ferruti, Paolo; Richardson, Simon C W

    2011-07-01

    Polymer-drug and polymer-protein conjugates are emerging as a robust and well-characterized class of therapeutic entity. Although there are no low-molecular-weight soluble polymer conjugates in routine clinical use, there are many examples of routinely used high-molecular-weight drugs conjugated to soluble polymers (e.g., Oncospar). Advances in synthetic polymer chemistry have fostered the development of linear poly(amidoamine)s (PAA)s that impart both biodegradability, 'smart' (pH responsive) biological activity and biocompatibility. In their linear form, such as hyper-branched poly(amidoamine) (PAMAM) dendrimers, linear PAAs can be used to deliver large therapeutic entities such as peptides, proteins and genes to either the cytosol or nucleus. Furthermore, these polymers offer great potential in vivo due to their ability to either target the liver or be directed away from the liver and enter tumor mass via the enhanced permeability and retention (EPR) effect. PAAs also exhibit minimal toxicity (dependent upon backbone chemistry), relative to well-characterized polymers used for gene delivery. The propensity of PAAs to modulate intracellular trafficking resulting in their cytosolic translocation has also recently been quantified in vivo and is the primary focus of this article.

  12. Molecular engineering of dendritic polymers and their application as drug and gene delivery systems.

    PubMed

    Paleos, Constantinos M; Tsiourvas, Dimitris; Sideratou, Zili

    2007-01-01

    This review discusses the development of functional and multifunctional dendrimeric and hyperbranched polymers, collectively called dendritic polymers, with the objective of being applied as drug and gene delivery systems. In particular, using as starting materials known and well-characterized basic dendritic polymers, the review deals with the type of structural modifications to which these dendritic polymers were subjected for the development of drug carriers with low toxicity, high encapsulating capacity, a specificity for certain biological cells, and the ability to be transported through their membranes. Proceeding from functional to multifunctional dendritic polymers, one is able to prepare products that fulfill one or more of these requirements, which an effective drug carrier should exhibit. A common feature of the dendritic polymers is the exhibition of polyvalent interactions, while for multifunctional derivatives, a number of targeting ligands determine specificity, another type of group secures stability in biological milieu and prolonged circulation, while others facilitate their transport through cell membranes. Furthermore, dendritic polymers employed for gene delivery should be or become cationic in the biological environment for the formation of complexes with the negatively charged genetic material.

  13. Maltose- and maltotriose-modified, hyperbranched poly(ethylene imine)s (OM-PEIs): Physicochemical and biological properties of DNA and siRNA complexes.

    PubMed

    Höbel, Sabrina; Loos, Andrea; Appelhans, Dietmar; Schwarz, Simona; Seidel, Jürgen; Voit, Brigitte; Aigner, Achim

    2011-01-20

    Polycationic non-viral polymers are widely employed as delivery platforms of plasmid DNA, or of small interfering RNAs (siRNAs) for the induction of RNA interference (RNAi). Among those, poly(ethylene imine)s (PEIs) take a prominent position due to their relatively high efficacy; however, their biodistribution profiles upon systemic delivery and their toxicity pose limitations which can be addressed by the introduction of PEI modifications. In this paper, we systematically analyse physicochemical and biological properties of DNA and siRNA complexes prepared from a set of maltose-, maltotriose- or maltoheptaose-modified hyperbranched PEIs (termed (oligo-)maltose-modified PEIs; OM-PEIs). We show that pH-dependent charge densities of the OM-PEIs correlate with the structure and degree of grafting, and the length of the oligomaltose. Decreased zeta potentials of OM-PEI-based complexes and changes in the thermodynamics of DNA complex formation are observed, while the complex sizes are largely unaffected by maltose grafting and the presence of serum proteins. Furthermore, although complexation efficacies of siRNAs are not altered, complex stabilities are markedly increased in OM-PEI complexes. DNA complex uptake and transfection kinetics are slowed down upon maltose-grafting of the PEI which can be attributed to decreased zeta potentials, and alterations in the uptake mechanisms (clathrin-dependent/clathrin-independent endocytosis) are observed. Independent of the maltose architecture, DNA and siRNA complexes based on maltose-grafted PEI show considerably lower cytotoxicity as compared to PEI complexes. While maltose grafting generally leads to reduced in vitro transfection efficacies, this effect is less profound in some OM-PEI/siRNA complexes as compared to OM-PEI/DNA complexes. Importantly, upon their systemic application in vivo, OM-PEI/siRNA complexes show marked differences in the siRNA biodistribution profile with e.g. substantially decreased siRNA levels in the

  14. Piezoelectric Polymers

    NASA Technical Reports Server (NTRS)

    Harrison, J. S.; Ounaies, Z.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The purpose of this review is to detail the current theoretical understanding of the origin of piezoelectric and ferroelectric phenomena in polymers; to present the state-of-the-art in piezoelectric polymers and emerging material systems that exhibit promising properties; and to discuss key characterization methods, fundamental modeling approaches, and applications of piezoelectric polymers. Piezoelectric polymers have been known to exist for more than forty years, but in recent years they have gained notoriety as a valuable class of smart materials.

  15. Computer modeling of polymers

    NASA Technical Reports Server (NTRS)

    Green, Terry J.

    1988-01-01

    A Polymer Molecular Analysis Display System (p-MADS) was developed for computer modeling of polymers. This method of modeling allows for the theoretical calculation of molecular properties such as equilibrium geometries, conformational energies, heats of formations, crystal packing arrangements, and other properties. Furthermore, p-MADS has the following capabilities: constructing molecules from internal coordinates (bonds length, angles, and dihedral angles), Cartesian coordinates (such as X-ray structures), or from stick drawings; manipulating molecules using graphics and making hard copy representation of the molecules on a graphics printer; and performing geometry optimization calculations on molecules using the methods of molecular mechanics or molecular orbital theory.

  16. Preparation of redox polymer cathodes for thin film rechargeable batteries

    DOEpatents

    Skotheim, Terje A.; Lee, Hung S.; Okamoto, Yoshiyuki

    1994-11-08

    The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

  17. Preparation of redox polymer cathodes for thin film rechargeable batteries

    DOEpatents

    Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.

    1994-11-08

    The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

  18. Membrane consisting of polyquaternary amine ion exchange polymer network interpenetrating the chains of thermoplastic matrix polymer

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Wallace, C. J. (Inventor)

    1978-01-01

    An ion exchange membrane was formed from a solution containing dissolved matrix polymer and a set of monomers which are capable of reacting to form a polyquaternary ion exchange material; for example vinyl pyride and a dihalo hydrocarbon. After casting solution and evaporation of the volatile component's, a relatively strong ion exchange membrane was obtained which is capable of removing anions, such as nitrate or chromate from water. The ion exchange polymer forms an interpenetrating network with the chains of the matrix polymer.

  19. Tritium containing polymers having a polymer backbone substantially void of tritium

    DOEpatents

    Jensen, G.A.; Nelson, D.A.; Molton, P.M.

    1992-03-31

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium. 2 figs.

  20. Tritium containing polymers having a polymer backbone substantially void of tritium

    DOEpatents

    Jensen, George A.; Nelson, David A.; Molton, Peter M.

    1992-01-01

    A radioluminescent light source comprises a solid mixture of a phosphorescent substance and a tritiated polymer. The solid mixture forms a solid mass having length, width, and thickness dimensions, and is capable of self-support. In one aspect of the invention, the phosphorescent substance comprises solid phosphor particles supported or surrounded within a solid matrix by a tritium containing polymer. The tritium containing polymer comprises a polymer backbone which is essentially void of tritium.

  1. Investigations of non-linear polymers as high performance lubricant additives

    SciTech Connect

    Robinson, Joshua W.; Bhattacharya, Priyanka; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia

    2015-03-22

    Off-the-shelf available engine oils contain an assortment of additives that increase the performance of base oils and maximize the overall efficiency of the machine. With ever increasing requirements for fuel efficiency, the demand for novel materials that outperform older generations is also on the rise. One approach towards increasing overall efficiency is to reduce internal friction and wear in an engine. From an additive approach, this is typically achieved by altering the bulk oil’s viscosity at high temperatures via polymers. In general, the hydrodynamic volume of polymers increase (expand) at elevated temperatures and decrease (contract/deflate) with declining temperatures and this effect is enhanced be carefully designing specific structures and architectures. The natural thinning tendency of base oil with increasing temperatures is in part mitigated by the expansion of the macromolecules added, and the overall effect is decreasing the viscosity losses at high temperatures. Traditional polymer architectures vary from linear to dendritic, where linear polymers of the same chemical composition and molecular weight to its dendritic counterpart will undergo a more significant free volume change in solution with regards to temperature changes. This advantage has been exploited in the literature towards the production of viscosity modifiers. However, one major disadvantage of linear polymers is degradation due to mechanical shear forces and high temperatures causing a shorter additive lifetime. Dendrimers on the other hand are known to demonstrate superior robustness to shear degradation when compared to their respective linear counterparts. An additional advantage of the dendritic architecture is the ability to tailor the peripheral end-groups towards influencing polymer-solvent and/or polymer-surface interactions. Comb-burst hyperbranched polymers are a hybrid of the aforementioned architectures and provide several compromises between the traditional

  2. Dendritic polymer-based nanodevices for targeted drug delivery applications

    NASA Astrophysics Data System (ADS)

    Kannan, R. M.; Kolhe, Parag; Gurdag, Sezen; Khandare, Jayant; Lieh-Lai, Mary

    2004-03-01

    Dendrimers and hyperbranched polymers are unimolecular micellar nanostructures, characterized by globular shape ( ˜ 20 nm) and large density of functional groups at periphery. The tailorable end groups make them ideal for conjugation with drugs, ligands, and imagining agents, making them an attractive molecular nanodevices for drug delivery. Compared to linear polymers and nanoparticles, these nanodevices enter cells rapidly, carrying drugs and delivering them inside cells. Performance of nanodevices prepared for asthma and cancer drug delivery will be discussed. Our conjugation procedure produced very high drug payloads. Dendritic polymer-drug conjugates were very effective in transporting methotrexate (a chemotherapy drug) into both sensitive (CCRF-CEM cell line) and resistant cell line (CEM-MTX). The conjugate nanodevice was 3 times more effective than free drug in the sensitive line, and 9 times more effective in the resistant cell line (based on IC50). The physics of cell entry and drug release from these nanodevices are being investigated. The conjugates appear to enter cells through endocytosis, with the rate of entry dependent on end-group, molecular weight, the pH of the medium, and the cancerous nature of the cells.

  3. Cyclic voltammetry characterization of metal complex imprinted polymer.

    PubMed

    Zeng, Yi Ning; Zheng, Ning; Osborne, Peter G; Li, Yuan Zong; Chang, Wen Bao; Wen, Mei Juan

    2002-01-01

    Polymer capable of specific binding to Cu(2+)-2, 2'-dipyridyl complex was prepared by molecular imprinting technology. The binding specificity of the polymer to the template (Cu(2+)-2, 2'-dipyridyl complex) was investigated by cyclic voltammetric scanning using the carbon paste electrode modified by polymer particles in phosphate buffer solution. Factors that influence rebinding of the imprinted polymer were explored. The results demonstrated that cyclic voltammetry was an efficient approach to explore interactions between template and imprinted polymers.

  4. Flex: RSRE's capability computer

    NASA Astrophysics Data System (ADS)

    Foster, J. M.

    The Flex capability based computer architecture is described. It supports a multilanguage environment, and compilers for ALGOL 168 and PASCAL exist; an Ada compiler is being completed. The idea of capabilities is used on backing store as well as main store, so that all kinds of structured object which can be held in main store can also be held on any of the packing stores with the same degree of protection. Capabilities are used across a network of Flex computers, so that capabilities for data in one machine may be passed to and held in another. Flex uses true procedure values in the sense of Landin (1964).

  5. CAPABILITIES AND SKILLS*

    PubMed Central

    Heckman, James J.; Corbin, Chase O.

    2016-01-01

    This paper discusses the relevance of recent research on the economics of human development to the work of the Human Development and Capability Association. The recent economics of human development brings insights about the dynamics of skill accumulation to an otherwise static literature on capabilities. Skills embodied in agents empower people. Enhanced skills enhance opportunities and hence promote capabilities. We address measurement problems common to both the economics of human development and the capability approach. The economics of human development analyzes the dynamics of preference formation, but is silent about which preferences should be used to evaluate alternative policies. This is both a strength and a limitation of the approach. PMID:28261378

  6. Poly (Carbonate-Mide) Polymer

    NASA Technical Reports Server (NTRS)

    St.clair, T. L. (Inventor); Maudgal, S. (Inventor); Pratt, J. R. (Inventor)

    1986-01-01

    A novel series of polymers and copolymers based on a polymide backbone with the incorporation of carbonate moieties along the backbone is presented. The preparation process for the polymers and copolymers is disclosed together with a novel series of dinitrodiphenyl carbonates and diaminodiphenyl carbonates. The novel polyners and copolymers exhibit high temperature capability and because of the carbonate unit, many exhibit a high degree of order and/or crystallinity.

  7. Water- and organo-dispersible gold nanoparticles supported by using ammonium salts of hyperbranched polystyrene: preparation and catalysis.

    PubMed

    Gao, Lei; Nishikata, Takashi; Kojima, Keisuke; Chikama, Katsumi; Nagashima, Hideo

    2013-12-01

    Gold nanoparticles (1 nm in size) stabilized by ammonium salts of hyperbranched polystyrene are prepared. Selection of the R groups provides access to both water- and organo-dispersible gold nanoparticles. The resulting gold nanoparticles are subjected to studies on catalysis in solution, which include reduction of 4-nitrophenol with sodium borohydride, aerobic oxidation of alcohols, and homocoupling of phenylboronic acid. In the reduction of 4-nitrophenol, the catalytic activity is clearly dependent on the size of the gold nanoparticles. For the aerobic oxidation of alcohols, two types of biphasic oxidation are achieved: one is the catalyst dispersing in the aqueous phase, whereas the other is in the organic phase. The catalysts are reusable more than four times without loss of the catalytic activity. Selective synthesis of biphenyl is achieved by the homocoupling of phenylboronic acid catalyzed by organo-dispersible gold nanoparticles.

  8. Quantum dots-hyperbranched polyether hybrid nanospheres towards delivery and real-time detection of nitric oxide.

    PubMed

    Liu, Shuiping; Gu, Tianxun; Fu, Jiajia; Li, Xiaoqiang; Chronakis, Ioannis S; Ge, Mingqiao

    2014-12-01

    In this work, novel hybrid nanosphere vehicles were synthesized for nitric oxide (NO) donating and real-time detection. The hybrid nanosphere vehicles consist of cadmium selenide quantum dots (CdSe QDs) as NO fluorescent probes, and the modified hyperbranched polyether (mHP)-based diazeniumdiolates as NO donors, respectively. The nanospheres have spherical outline with dimension of ~127 nm. The data of systematic characterization demonstrated that the mHP-based hybrid nanosphere vehicles (QDs-mHP-NO) can release and real-time detect NO with the low limit of 25 nM, based on fluorescence quenching mechanism. The low cell-toxicity of QDs-mHP-NO nanospheres was verified by means of MTT assay on L929 cells viability. The QDs-mHP-NO nanospheres provide perspectives for designing a new class of biocompatible NO donating and imaging systems.

  9. Fabrication and photoluminescence of hyperbranched silicon nanowire networks on silicon substrates by laser-induced forward transfer.

    PubMed

    Rigout, Muriel LA; Niu, Haijun; Qin, Chuanli; Zhang, Li; Li, Chenming; Bai, Xuduo; Fan, Naiying

    2008-06-18

    The structure and photoluminescent properties of films obtained by modified laser-induced forward transfer of silicon are presented. Strong variations in structure with ambient gas composition are observed: in Ar, porous films of mutually agglomerated silicon nanoparticles are observed, while in air the films consist of a network of hyperbranched nanowires (SiHBNWs) whose diameter varies periodically along their length, and which are composed of crystalline silicon nanoparticles surrounded and interconnected by amorphous silicon oxide of varying stoichiometry. The mechanisms of formation of the structures are dwelt upon and explained in term of dynamics within the plume. For the SiHBNWs, the pioneering use of fluorescence imaging was employed to obtain evidence for the photoluminescence originating from the crystalline nanoparticles themselves, and origins of the emission bands are thus attributed to radiative recombination of excitons at the Si/SiO(2) interface accordingly.

  10. Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer.

    PubMed

    Dong, Yixiao; Hassan, Waqar U; Kennedy, Robert; Greiser, Udo; Pandit, Abhay; Garcia, Yolanda; Wang, Wenxin

    2014-05-01

    Hydrogel dressings have been widely used for wound management due to their ability to maintain a hydrated wound environment, restore the skin's physical barrier and facilitate regular dressing replacement. However, the therapeutic functions of standard hydrogel dressings are restricted. In this study, an injectable hybrid hydrogel dressing system was prepared from a polyethylene glycol (PEG)-based thermoresponsive hyperbranched multiacrylate functional copolymer and thiol-modified hyaluronic acid in combination with adipose-derived stem cells (ADSCs). The cell viability, proliferation and metabolic activity of the encapsulated ADSCs were studied in vitro, and a rat dorsal full-thickness wound model was used to evaluate this bioactive hydrogel dressing in vivo. It was found that long-term cell viability could be achieved for both in vitro (21days) and in vivo (14days) studies. With ADSCs, this hydrogel system prevented wound contraction and enhanced angiogenesis, showing the potential of this system as a bioactive hydrogel dressing for wound healing.

  11. Polymer adsorption

    NASA Astrophysics Data System (ADS)

    Joanny, Jean-Francois

    2008-03-01

    The aim of this talk is to review Pierre-Gilles deGennes' work on polymer adsorption and the impact that it has now in our understanding of this problem. We will first present the self-consistent mean-field theory and its applications to adsorption and depletion. De Gennes most important contribution is probably the derivation of the self-similar power law density profile for adsorbed polymer layers that we will present next, emphasizing the differences between the tail sections and the loop sections of the adsorbed polymers. We will then discuss the kinetics of polymer adsorption and the penetration of a new polymer chain in an adsobed layer that DeGennes described very elegantly in analogy with a quantum tunneling problem. Finally, we will discuss the role of polymer adsorption for colloid stabilization.

  12. XRCF Testing Capabilities

    NASA Technical Reports Server (NTRS)

    Reily, Cary; Kegely, Jeff; Burdine, Robert (Technical Monitor)

    2001-01-01

    The Space Optics Manufacturing Technology Center's X-ray Calibration Facility has been recently modified to test Next Generation Space Telescope (NGST) developmental mirrors at cryogenic temperatures (35 degrees Kelvin) while maintaining capability for performance testing of x-ray optics and detectors. The facility's current cryo-optical testing capability and potential modifications for future support of NGST will be presented.

  13. Capability and Deliberation

    ERIC Educational Resources Information Center

    Hinchliffe, Geoffrey

    2009-01-01

    This paper explores the role of deliberation in the context of the capability approach to human well-being from the standpoint of the individual doing the reflecting. The concept of a "strong evaluator" is used develop a concept of the agent of capability. The role of values is discussed in the process of deliberating, particularly the nature of…

  14. Testing and technical capabilities

    SciTech Connect

    Morrow, R.W.; Dill, M.S.

    1984-05-01

    Capabilities of the following are outlined: state-of-the-art-services, measurement control and capabilities coordination, sampling and standard section, analytical technology section, environmental-industrial hygiene section, spectrochemical section, inorganic and production control section, instrumentation and control section, instrument technology, and mass spectrometry-isotopic section.

  15. Widening Participation; Widening Capability

    ERIC Educational Resources Information Center

    Walker, Melanie

    2008-01-01

    This paper proposes that widening participation in higher education might distinctively be conceptualised beyond economically driven human capital outcomes, as a matter of widening capability. Specifically, the paper proposes forming the capability of students to become and to be "strong evaluators", able to make reflexive and informed…

  16. Widening Participation; Widening Capability

    ERIC Educational Resources Information Center

    Walker, Melanie

    2008-01-01

    This paper proposes that widening participation in higher education might distinctively be conceptualised beyond economically driven human capital outcomes, as a matter of widening capability. Specifically, the paper proposes forming the capability of students to become and to be "strong evaluators", able to make reflexive and informed…

  17. Optical modulators based on polymers

    NASA Astrophysics Data System (ADS)

    Allen, Philip Charles; Friend, Richard Henry; Burroughes, Jeremy Henley; Harrison, Alan John

    1988-05-01

    A device for electrooptic modulation of an optical beam is described. The device is a laminate comprising a coherent film of a conjugated polymer (semiconducting properties). Two or more layers of electrically conducting, insulating, or semiconducting materials are added. The polymer layer is capable of interacting with the optical beam. The electrical contact established between the layers enables the detection of the beam emerging from the polymers. The design and application examples concerning a rectifier diode modulator, Schottky diodes, a metal insulator semiconductor, and a metal oxide semiconductor field effect transistor are given.

  18. Preparation of water-soluble hyperbranched polyester nanoparticles with sulfonic acid functional groups and their micelles behavior, anticoagulant effect and cytotoxicity.

    PubMed

    Han, Qiaorong; Chen, Xiaohan; Niu, Yanlian; Zhao, Bo; Wang, Bingxiang; Mao, Chun; Chen, Libin; Shen, Jian

    2013-07-02

    Biocompatibility of nanoparticles has been attracting great interest in the development of nanoscience and nanotechnology. Herein, the aliphatic water-soluble hyperbranched polyester nanoparticles with sulfonic acid functional groups (HBPE-SO3 NPs) were synthesized and characterized. They are amphiphilic polymeric nanoparticles with hydrophobic hyperbranched polyester (HBPE) core and hydrophilic sulfonic acid terminal groups. Based on our observations, we believe there are two forms of HBPE-SO3 NPs in water under different conditions: unimolecular micelles and large multimolecular micelles. The biocompatibility and anticoagulant effect of the HBPE-SO3 NPs were investigated using coagulation tests, hemolysis assay, morphological changes of red blood cells (RBCs), complement and platelet activation detection, and cytotoxicity (MTT). The results confirmed that the sulfonic acid terminal groups can substantially enhance the anticoagulant property of HBPE, and the HBPE-SO3 NPs have the potential to be used in nanomedicine due to their good bioproperties.

  19. Metrology measurement capabilities

    SciTech Connect

    Shroyer, K.

    1997-02-01

    Since 1958, the AlliedSignal Federal Manufacturing and Technologies (FM and T) Metrology Department has developed measurement technology and calibration capability in four major areas of measurement: (1) mechanical; (2) environmental, gas, liquid; (3) electrical (D.C., A.C., RF/Microwave); and (4) optical and radiation. The capabilities developed include unique capabilities in many areas of measurement and engineering expertise to develop measurement techniques and resolve measurement problems in these major areas. A strong audit function has been developed to provide a means to evaluate the calibration programs of the suppliers and internal calibration organizations. This evaluation includes measurement audits and technical surveys. The requirements placed on metrology require traceability of measurements to the National Institute of Standards and Technology or to nationally recognized methods or natural phenomena. A description of Metrology capabilities, traceability flow charts, and the measurement uncertainty of each of the measurement capabilities is contained in the report.

  20. Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering.

    PubMed

    Shahbazi, Mohammad-Ali; Almeida, Patrick V; Mäkilä, Ermei M; Kaasalainen, Martti H; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2014-08-01

    The development of a stable vehicle with low toxicity, high cellular internalization, efficient endosomal escape, and optimal drug release profile is a key bottleneck in nanomedicine. To overcome all these problems, we have developed a successful layer-by-layer method to covalently conjugate polyethyleneimine (PEI) and poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) copolymer on the surface of undecylenic acid functionalized thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs), forming a bilayer zwitterionic nanocomposite containing free positive charge groups of hyper-branched PEI disguised by the PMVE-MA polymer. The surface smoothness, charge and hydrophilicity of the developed NPs considerably improved the colloidal and plasma stabilities via enhanced suspensibility and charge repulsion. Furthermore, despite the surface negative charge of the bilayer polymer-conjugated NPs, the cellular trafficking and endosomal escape were significantly increased in both MDA-MB-231 and MCF-7 breast cancer cells. Remarkably, we also showed that the conjugation of surface free amine groups of the highly toxic UnTHCPSi-PEI (Un-P) NPs to the carboxylic groups of PMVE-MA renders acceptable safety features to the system and preserves the endosomal escape properties via proton sponge mechanism of the free available amine groups located inside the hyper-branched PEI layer. Moreover, the double layer protection not only controlled the aggregation of the NPs and reduced the toxicity, but also sustained the drug release of an anticancer drug, methotrexate, with further improved cytotoxicity profile of the drug-loaded particles. These results provide a proof-of-concept evidence that such zwitterionic polymer-based PSi nanocomposites can be extensively used as a promising candidate for cytosolic drug delivery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Star Polymers.

    PubMed

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  2. Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  3. Polymer Chemistry

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  4. Metastable tetragonal Cu2Se hyperbranched structures: large-scale preparation and tunable electrical and optical response regulated by phase conversion.

    PubMed

    Zhu, Jinbao; Li, Qiuyang; Bai, Liangfei; Sun, Yongfu; Zhou, Min; Xie, Yi

    2012-10-08

    Despite the promising applications of copper selenide nanoparticles, an in-depth elucidation of the inherent properties of tetragonal Cu(2)Se (β-Cu(2)Se) has not been performed because of the lack of a facile synthesis on the nanoscale and an energy-intensive strategy is usually employed. In this work, a facile wet-chemical strategy, employing HCOOH as reducing agent, has been developed to access single-crystalline metastable β-Cu(2)Se hyperbranched architectures for the first time. The process avoids hazardous chemistry and high temperatures, and thus opens up a facile approach to the large-scale low-cost preparation of metastable β-Cu(2)Se hyperbranched architectures. A possible growth mechanism to explain the formation of the β-Cu(2)Se dendritic morphology has been proposed based on time-dependent shape evolution. Further investigations revealed that the metastable β-Cu(2)Se can convert into the thermodynamically more stable cubic α-Cu(2-x)Se maintaining the dendritic morphology. An increase in electrical conductivity and a tunable optical response were observed under ambient conditions. This behavior can be explained by the oxidation of the surface of the β-Cu(2)Se hyperbranched structures, ultimately leading to solid-state phase conversion from β-Cu(2)Se into superionic conductor α-Cu(1.8)Se, which has potential applications in energy-related devices and sensors.

  5. OX26 modified hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) nanoparticles: synthesis, characterization and evaluation of its brain delivery ability.

    PubMed

    Bao, Hanmei; Jin, Xu; Li, Ling; Lv, Feng; Liu, Tianjun

    2012-08-01

    A novel nanoparticles-based brain drug delivery system made of hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) which was surface functionalized with transferrin antibody (OX26) was prepared. Hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) was synthesized, characterized and applied to prepare nanoparticles by means of double emulsion solvent evaporation technique. Transmission electron micrograph and dynamic light scattering showed that nanoparticles had a round and regular shape with a mean diameter of 170 ± 20 nm. Surface chemical composition was detected by X-ray photoelectron spectroscopy. Endomorphins, as a model drug, was encapsulated in the nanoparticles. In vitro drug release study showed that endomorphins was released continuously for 72 h. Cellular uptake study showed that the uptake of nanoparticles by the brain microvascular endothelial cells was both time- and concentration-dependant. Further uptake inhibition study indicated that the uptake of nanoparticles was via a caveolae-mediated endocytic pathway. In vivo endomorphins brain delivery ability was evaluated based upon the rat model of chronic constriction injury of sciatic nerve. OX26 modified nanoparticles had achieved better analgesic effects, compared with other groups. Thus, OX26 modified hyperbranched polyglycerol-conjugated poly(lactic-co-glycolic acid) nanoparticles may be a promising brain drug delivery carrier.

  6. KSC Technical Capabilities Website

    NASA Technical Reports Server (NTRS)

    Nufer, Brian; Bursian, Henry; Brown, Laurette L.

    2010-01-01

    This document is the website pages that review the technical capabilities that the Kennedy Space Center (KSC) has for partnership opportunities. The purpose of this information is to make prospective customers aware of the capabilities and provide an opportunity to form relationships with the experts at KSC. The technical capabilities fall into these areas: (1) Ground Operations and Processing Services, (2) Design and Analysis Solutions, (3) Command and Control Systems / Services, (4) Materials and Processes, (5) Research and Technology Development and (6) Laboratories, Shops and Test Facilities.

  7. Engineering Capabilities and Partnerships

    NASA Technical Reports Server (NTRS)

    Poulos, Steve

    2010-01-01

    This slide presentation reviews the engineering capabilities at Johnson Space Center, The presentation also reviews the partnerships that have resulted in successfully designed and developed projects that involved commercial and educational institutions.

  8. Remote Controlled Orbiter Capability

    NASA Technical Reports Server (NTRS)

    Garske, Michael; delaTorre, Rafael

    2007-01-01

    The Remote Control Orbiter (RCO) capability allows a Space Shuttle Orbiter to perform an unmanned re-entry and landing. This low-cost capability employs existing and newly added functions to perform key activities typically performed by flight crews and controllers during manned re-entries. During an RCO landing attempt, these functions are triggered by automation resident in the on-board computers or uplinked commands from flight controllers on the ground. In order to properly route certain commands to the appropriate hardware, an In-Flight Maintenance (IFM) cable was developed. Currently, the RCO capability is reserved for the scenario where a safe return of the crew from orbit may not be possible. The flight crew would remain in orbit and await a rescue mission. After the crew is rescued, the RCO capability would be used on the unmanned Orbiter in an attempt to salvage this national asset.

  9. Polymers & People

    ERIC Educational Resources Information Center

    Lentz, Linda; Robinson, Thomas; Martin, Elizabeth; Miller, Mary; Ashburn, Norma

    2004-01-01

    Each Tuesday during the fall of 2002, teams of high school students from three South Carolina counties conducted a four-hour polymer institute for their peers. In less than two months, over 300 students visited the Charleston County Public Library in Charleston, South Carolina, to explore DNA, nylon, rubber, gluep, and other polymers. Teams of…

  10. Polymers & People

    ERIC Educational Resources Information Center

    Lentz, Linda; Robinson, Thomas; Martin, Elizabeth; Miller, Mary; Ashburn, Norma

    2004-01-01

    Each Tuesday during the fall of 2002, teams of high school students from three South Carolina counties conducted a four-hour polymer institute for their peers. In less than two months, over 300 students visited the Charleston County Public Library in Charleston, South Carolina, to explore DNA, nylon, rubber, gluep, and other polymers. Teams of…

  11. Dispersions of Carbon nanotubes in Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2010-01-01

    Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.

  12. Metrology measurement capability

    NASA Astrophysics Data System (ADS)

    Shroyer, K.

    1995-01-01

    During the past 36 years, the Kansas City Division's (KCD) Metrology Department has developed measurement technology and calibration capability in four major areas of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; Electrical (D.C., A.C., RF/Microwave); and (3) Optical and Radiation. The capabilities developed include unique capabilities in many areas of measurement and engineering expertise to develop measurement techniques and resolve measurement problems in these major areas. KCD Metrology was established in 1958 to provide a measurement base for the Kansas City Plant. The Metrology Engineering Department provides the expertise to develop measurement capabilities for virtually any type of measurement which falls into the broad areas listed above. The engineering staff currently averages almost 19 years of measurement experience. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. This evaluation includes measurement audits and technical surveys. The requirements placed on Metrology require traceability of measurements to the National Institute of Standards and Technology or to nationally recognized methods or natural phenomena. A description of Metrology capabilities, traceability flow charts, and the measurement uncertainty of each of the measurement capabilities is contained in the following pages.

  13. Metrology measurement capabilities

    SciTech Connect

    Barnes, L.M.

    1997-06-01

    Since 1958, the AlliedSignal Federal Manufacturing and Technologies (FM and T) Metrology Department has developed measurement technology and calibration capability in four major areas of measurement: mechanical; environmental, gas, liquid; electrical (D.C., A.C., RF/microwave); and optical and radiation. The capabilities developed include unique capabilities in many areas of measurement and engineering expertise to develop measurement techniques and resolve measurement problems in these major areas. FM and T Metrology was established in 1958 to provide a measurement base for the Department of energy`s Kansas City Plant. The Metrology Engineering Department provides the expertise to develop measurement capabilities for virtually any type of measurement which falls into the broad areas listed above. The engineering staff currently averages almost 16 years of measurement experience. A strong audit function has been developed to provide a means to evaluate the calibration programs of the suppliers and internal calibration organizations. This evaluation includes measurement audits and technical surveys. The requirements placed on Metrology require traceability of measurements to the National Institute of Standards and Technology or to nationally recognized methods or natural phenomena. A description of Metrology capabilities, traceability flow charts, and the measurement uncertainty of each of the measurement capabilities is contained in this report.

  14. Metrology measurement capability

    SciTech Connect

    Shroyer, K.

    1995-01-01

    During the past 36 years, the Kansas City Division`s (KCD) Metrology Department has developed measurement technology and calibration capability in four major areas of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; Electrical (D.C., A.C., RF/Microwave); and (3) Optical and Radiation. The capabilities developed include unique capabilities in many areas of measurement and engineering expertise to develop measurement techniques and resolve measurement problems in these major areas. KCD Metrology was established in 1958 to provide a measurement base for the Kansas City Plant. The Metrology Engineering Department provides the expertise to develop measurement capabilities for virtually any type of measurement which falls into the broad areas listed above. The engineering staff currently averages almost 19 years of measurement experience. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. This evaluation includes measurement audits and technical surveys. The requirements placed on Metrology require traceability of measurements to the National Institute of Standards and Technology or to nationally recognized methods or natural phenomena. A description of Metrology capabilities, traceability flow charts, and the measurement uncertainty of each of the measurement capabilities is contained in the following pages.

  15. Optimizing the Acid Catalyzed Synthesis of Hyperbranched Poly(Glycerol-diacids) Oligomers

    USDA-ARS?s Scientific Manuscript database

    Oligomeric pre-polymers were synthesized by the acid-catalyzed condensation of glycerol with succinic acid, glutaric acid and azelaic acid in dimethylsulfoxide (DMSO) or dimethylformamide (DMF). The prepolymers were obtained, on average in 84% yield, and were characterized by proton NMR, MALDI-TOF ...

  16. Biodegradable hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol), poly(ethylene glycol), and polycaprolactone as in situ thermogels.

    PubMed

    Li, Zibiao; Zhang, Zhongxing; Liu, Kerh Li; Ni, Xiping; Li, Jun

    2012-12-10

    This paper reports the synthesis and characterization of new hyperbranched amphiphilic polyurethane multiblock copolymers consisting of poly(propylene glycol) (PPG), poly(ethylene glycol) (PEG), and polycaprolactone (PCL) segments as in situ thermogels. The hyperbranched poly(PPG/PEG/PCL urethane)s, termed as HBPEC copolymers, were synthesized from PPG-diol, PEG-diol, and PCL-triol by using 1,6-hexamethylene diisocyanate (HMDI) as a coupling agent. The compositions and structures of HBPEC copolymers were determined by GPC and 1H NMR spectroscopy. We carried out comparative studies of the new hyperbranched copolymers with their linear counterparts, the linear poly(PPG/PEG/PCL urethane) (LPEC) copolymer and Pluronic F127 PEG-PPG-PEG block copolymer, in terms of their self-assembly and aggregation behaviors and thermoresponsive properties. HBPEC copolymers were found to show thermoresponsive micelle formation and aggregation behaviors. Particularly, the lower critical solution temperature (LCST) of the copolymers was significantly affected by the copolymer architecture. HBPEC copolymers showed much lower LCST than LPEC, the linear counterpart. Our studies revealed that the effect of hyperbranch architecture was more prominent in the gelation of the copolymers. The aqueous solutions of HBPEC copolymers exhibited thermogelling behaviors at critical gelation concentrations (CGCs) ranging from 4.3 to 7.4 wt %. These values are much lower than those reported on other PCL-contained linear thermogelling copolymers and Pluronic F127 copolymer. In addition, the CGC of HBPEC copolymers is much lower than the control LPEC copolymer. More interestingly, at high temperatures, while LPEC and other linear thermogelling copolymers formed turbid sol, HBPEC formed a dehydrated gel. Our data suggest that these phenomena are caused by the hyperbranched structure of HBPEC copolymers, which could increase the interaction of copolymer branches and enhance the chain association through

  17. Space Logistics: Launch Capabilities

    NASA Technical Reports Server (NTRS)

    Furnas, Randall B.

    1989-01-01

    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  18. Space Logistics: Launch Capabilities

    NASA Technical Reports Server (NTRS)

    Furnas, Randall B.

    1989-01-01

    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  19. Rippling of polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Fa; Kostogorova-Beller, Yulia Y.; Goponenko, Alexander V.; Hou, Haoqing; Dzenis, Yuris A.

    2008-12-01

    This paper studies the evolution mechanism of surface rippling in polymer nanofibers under axial stretching. This rippling phenomenon has been detected in as-electrospun polyacrylonitrile in recent single-fiber tension tests, and in electrospun polyimide nanofibers after imidization. We herein propose a one-dimensional nonlinear elastic model that takes into account the combined effect of surface tension and nonlinear elasticity during the rippling initiation and its evolution in compliant polymer nanofibers. The polymer nanofiber is modeled as an incompressible, isotropically hyperelastic Mooney-Rivlin solid. The fiber geometry prior to rippling is considered as a long circular cylinder. The governing equation of surface rippling is established through linear perturbation of the static equilibrium state of the nanofiber subjected to finite axial prestretching. The critical stretch and ripple wavelength are determined in terms of surface tension, elastic property, and fiber radius. Numerical examples are demonstrated to examine these dependencies. In addition, a critical fiber radius is determined, below which the polymer nanofibers are intrinsically unstable. The present model, therefore, is capable of predicting the rippling condition in compliant nanofibers, and can be further used as a continuum mechanics approach for the study of surface instability and nonlinear wave propagation in compliant fibers and wires at the nanoscale.

  20. Rippling of polymer nanofibers.

    PubMed

    Wu, Xiang-Fa; Kostogorova-Beller, Yulia Y; Goponenko, Alexander V; Hou, Haoqing; Dzenis, Yuris A

    2008-12-01

    This paper studies the evolution mechanism of surface rippling in polymer nanofibers under axial stretching. This rippling phenomenon has been detected in as-electrospun polyacrylonitrile in recent single-fiber tension tests, and in electrospun polyimide nanofibers after imidization. We herein propose a one-dimensional nonlinear elastic model that takes into account the combined effect of surface tension and nonlinear elasticity during the rippling initiation and its evolution in compliant polymer nanofibers. The polymer nanofiber is modeled as an incompressible, isotropically hyperelastic Mooney-Rivlin solid. The fiber geometry prior to rippling is considered as a long circular cylinder. The governing equation of surface rippling is established through linear perturbation of the static equilibrium state of the nanofiber subjected to finite axial prestretching. The critical stretch and ripple wavelength are determined in terms of surface tension, elastic property, and fiber radius. Numerical examples are demonstrated to examine these dependencies. In addition, a critical fiber radius is determined, below which the polymer nanofibers are intrinsically unstable. The present model, therefore, is capable of predicting the rippling condition in compliant nanofibers, and can be further used as a continuum mechanics approach for the study of surface instability and nonlinear wave propagation in compliant fibers and wires at the nanoscale.

  1. Fabrication of sisal fibers/epoxy composites with liquid crystals polymer grafted on sisal fibers

    NASA Astrophysics Data System (ADS)

    Luo, Q. Y.; Lu, S. R.; Song, L. F.; Li, Y. Q.

    2016-07-01

    In this word, microcrystalline cellulose fibers (MCFs), extracted from sisal fibers, were treated with function end-group hyperbranched liquid crystals (HLP). This work brought some insights into the successful surface modification in epoxy composite with HLP. The HLP-MCFs/epoxy composites are studied systematically. The HLP - MCFs/epoxy composites were studied by Fourier transform infrared spectroscopy (FT-IR), polarizing microscope (POM), X-ray photoelectron spectroscopy (XPS) and mechanical properties analysis. The results reveal that the reinforcement of EP composites was carried out by adding HLP-MCFs. In particular, with 1.0 wt% filler loading, the flexural strength, tensile strength, impact strength and flexural modulus of the HLP-MCFs/EP composites were increased by 60%, 69%, 130%, and 192%, respectively. It anticipates that our current work exploits more efficient methods to overcome the few nature fiber/polymer (NPC) adhesion in the interface region and provides implications for the engineering applications of the development of NPC.

  2. Improved performances of polymer-based dielectric by using inorganic/organic core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Benhadjala, W.; Bord-Majek, I.; Béchou, L.; Suhir, E.; Buet, M.; Rougé, F.; Gaud, V.; Plano, B.; Ousten, Y.

    2012-10-01

    BaTiO3/hyperbranched polyester/methacrylate core-shell nanoparticles were studied by varying the shell thickness and the methacrylate ratio. We demonstrated that coalescence typically observed in traditional composites employing polymer matrices is significantly reduced. By modifying the shell thickness, the equivalent filler fraction was tuned from 7 wt. % to 41 wt. %. Obtained permittivities were compared with reported models for two-phase mixtures. The nonlinear behavior of the dielectric constant as a function of the equivalent filler fraction has been fitted with the Bruggeman equation. Methacrylate groups reduce by a decade the loss factor by improving nanoparticles adhesion. The permittivity reaching 85 at 1 kHz makes core-shell nanoparticles a promising material for embedded capacitors.

  3. [Modification of the composite resin with the hyperbranched polyester and evaluation of the mechanical properties of the modified composite resin].

    PubMed

    Luo, Y C; Sun, S; Xiao, Y H

    2016-04-09

    To study the effect of hyperbranched polyester(HBP)on mechanical properties of the conventional resin matrix. Two hyperbranched monomers(HBP2-X and HBP2-Y)were synthesized and incorporated at 40%(by mass)into a 2∶1(by mass)bisphenol-A diglycidyl methacrylate(Bis-GMA): triethylene glycol dimethacrylate(TEGDMA)resin. Bis-GMA/TEGDMA without the incorporation of hyperbranched polyester was used as control(n=8 per group). The mechanical properties of the modified neat resin, including polymerization volumetric shrinkage, Vickers hardness, water absorption and dissolution rate, as well as the flexural strength, compressive strength and diametral tensile strength of the composite resin with different content of filler(0%, 30%, 50%, 70%)were measured. Mechanical properties of the composite resin were measured by universal testing machine. The results were analyzed by the ANOVA and LSD-t-test. The resin with HBP greatly decreased the polymerization shrinkage of the composite resin, and the value of group X was(6.32±0.49)%, and that of group Y was(6.31±0.68)%, whereas that of the control group was(8.14 ± 0.53)%. The value of volumetric shrinkage of the modified groups were significantly lower than that of the control group(P<0.05). By adding HBP, the hardness value of group X([198 ± 5]MPa)and group Y([177 ± 4]MPa)were significantly lower than that of the control group([214±6]MPa)(P<0.05). The HBP significantly influenced the water sorption and solubility of the neat resin(P<0.05). For the composite materials, with 70% inorganic filler, there were no significant difference in the value of flexural strength among the groups(P>0.05). There was no significant difference in the value of compressive strength, between group X([244 ± 13]MPa)and the standard group([234 ± 17]MPa)(P>0.05). However, they were significantly higher than that in group Y([204 ± 24]MPa)(P<0.05). For the value of diametral tensile strength, there was no significant difference between group Y([36

  4. Controlled Synthesis of Polymer Brushes via Polymer Single Crystal Templates

    NASA Astrophysics Data System (ADS)

    Zhou, Tian

    A novel synthetic method of polymer brushes using polymer single crystals (PSCs) as solid-state templates is introduced in this study. PSC has a quasi-2D lamellae structure with polymer chains fold back-and-forth perpendicular to the lamellae surfaces. During crystallization, the chain ends are excluded from the unit cell onto the lamellae surfaces, which makes the material extremely versatile in its functionality. Such structure holds the unique capability to harvest nanoparticles, or being immobilized onto macroscopic flat surfaces. After dissolving PSCs in good solvent, polymer brushes are chemically tethered on either nanoparticles or flat macroscopic surfaces. Because the chain-folding structure can be conveniently tailored by changing the molecular weight of polymer and the crystallization temperature, the thickness, grafting density and morphology of resulted polymer brushes can be precisely controlled. As a model system, poly(?-caprolactone) with thiol or alkoxysilane terminal groups was used, and polymer brushes were successfully prepared on both nanoparticles and glass/Au flat surfaces. The structure-property relationships of the as-prepared polymer brushes were studied in detail using multiple characterization techniques. First of all, when functionalizing nanoparticles, by engineering the chain-folding structure of the PSCs, interesting complex nanostructures can be formed by nanoparticles including Janus nanoparticles and nanoparticle dimers. These unique structures render hybrid nanoparticles very interesting responsive behavior which have been studied in detail in this dissertation. When grafted onto a flat surface on the other hand, not only the molecular weight and grafting density can be precisely controlled, the tethering points of a single polymer chain can also be conveniently tailored, resulting polymer brushes with either tail or loop structures. Such difference in brush structure can significantly alter the properties of functional surface

  5. Polymer electronic devices and materials.

    SciTech Connect

    Schubert, William Kent; Baca, Paul Martin; Dirk, Shawn M.; Anderson, G. Ronald; Wheeler, David Roger

    2006-01-01

    Polymer electronic devices and materials have vast potential for future microsystems and could have many advantages over conventional inorganic semiconductor based systems, including ease of manufacturing, cost, weight, flexibility, and the ability to integrate a wide variety of functions on a single platform. Starting materials and substrates are relatively inexpensive and amenable to mass manufacturing methods. This project attempted to plant the seeds for a new core competency in polymer electronics at Sandia National Laboratories. As part of this effort a wide variety of polymer components and devices, ranging from simple resistors to infrared sensitive devices, were fabricated and characterized. Ink jet printing capabilities were established. In addition to promising results on prototype devices the project highlighted the directions where future investments must be made to establish a viable polymer electronics competency.

  6. Remote inhibition of polymer degradation.

    SciTech Connect

    Clough, Roger Lee; Celina, Mathias Christopher

    2005-08-01

    Polymer degradation has been explored on the basis of synergistic infectious and inhibitive interaction between separate materials. A dual stage chemiluminescence detection system with individually controlled hot stages was applied to probe for interaction effects during polymer degradation in an oxidizing environment. Experimental confirmation was obtained that volatile antioxidants can be transferred over a relatively large distance. The thermal degradation of a polypropylene (PP) sample receiving traces of inhibitive antioxidants from a remote source is delayed. Similarly, volatiles from two stabilized elastomers were also capable of retarding a degradation process remotely. This observation demonstrates inhibitive cross-talk as a novel interactive phenomenon between different polymers and is consequential for understanding general polymer interactions, fundamental degradation processes and long-term aging effects of multiple materials in a single environment.

  7. Polymer flooding

    SciTech Connect

    Littmann, W.

    1988-01-01

    This book covers all aspects of polymer flooding, an enhanced oil recovery method using water soluble polymers to increase the viscosity of flood water, for the displacement of crude oil from porous reservoir rocks. Although this method is becoming increasingly important, there is very little literature available for the engineer wishing to embark on such a project. In the past, polymer flooding was mainly the subject of research. The results of this research are spread over a vast number of single publications, making it difficult for someone who has not kept up-to-date with developments during the last 10-15 years to judge the suitability of polymer flooding to a particular field case. This book tries to fill that gap. An indispensable book for reservoir engineers, production engineers and lab. technicians within the petroleum industry.

  8. Semiconducting polymers

    NASA Astrophysics Data System (ADS)

    Hermann, A. M.

    A review is presented of the electrical properties of those polymers whose conductivities occupy the middle ground between polymeric insulators and polymeric superconductors. Attention is confined to polymers in which conduction occurs through electronic, rather than ionic, transport. Four classes of semiconductors are discussed: (1) highly-conjugated polymers, including those formed by pyrolysis; (2) polymeric charge-transfer complexes and radical-ion salts; (3) organometallic polymeric semiconductors; and (4) composite polymer systems containing carbon or other highly conducting media. The possible applications discussed include cathodes in solid-state metal/halogen primary batteries, cathodes in lithium/poly-p-phenylene or polyacetylene secondary batteries, conductive coatings and epoxies, and chemical sensing agents. Other applications are Peltier cooling devices, pressure transducers, photovoltaic devices, infrared radiation detectors, and switches and resistors.

  9. Organometallic Polymers.

    ERIC Educational Resources Information Center

    Carraher, Charles E., Jr.

    1981-01-01

    Reactions utilized to incorporate a metal-containing moiety into a polymer chain (addition, condensation, and coordination) are considered, emphasizing that these reactions also apply to smaller molecules. (JN)

  10. Polymers All Around You!

    ERIC Educational Resources Information Center

    Gertz, Susan

    Background information on natural polymers, synthetic polymers, and the properties of polymers is presented as an introduction to this curriculum guide. Details are provided on the use of polymer products in consumer goods, polymer recycling, polymer densities, the making of a polymer such as GLUEP, polyvinyl alcohol, dissolving plastics, polymers…

  11. Polymers All Around You!

    ERIC Educational Resources Information Center

    Gertz, Susan

    Background information on natural polymers, synthetic polymers, and the properties of polymers is presented as an introduction to this curriculum guide. Details are provided on the use of polymer products in consumer goods, polymer recycling, polymer densities, the making of a polymer such as GLUEP, polyvinyl alcohol, dissolving plastics, polymers…

  12. Metrology Measurement Capabilities

    SciTech Connect

    Dr. Glen E. Gronniger

    2007-10-02

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 13.2, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2005, and ANSI/NCSL Z540-1. FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/Standards/scopes/2001080.pdf. These parameters are summarized. The Honeywell Federal Manufacturing & Technologies (FM&T) Metrology Department has developed measurement technology and calibration capability in four major fields of measurement: (1) Mechanical; (2) Environmental, Gas, Liquid; (3) Electrical (DC, AC, RF/Microwave); and (4) Optical and Radiation. Metrology Engineering provides the expertise to develop measurement capabilities for virtually any type of measurement in the fields listed above. A strong audit function has been developed to provide a means to evaluate the calibration programs of our suppliers and internal calibration organizations. Evaluation includes measurement audits and technical surveys.

  13. Capability, Enterprise and Entrepreneurship.

    ERIC Educational Resources Information Center

    Grant, Brian

    1986-01-01

    The concepts of education for capability, education for enterprise, and entrepreneurship education are outlined in terms of curriculum development. The paper studies the conceptual problems involved and presents a synthesis in the form of suggestions for curriculum development in enterprise/entrepreneurship education across the spectrum of general…

  14. Capabilities and health.

    PubMed

    Anand, P

    2005-05-01

    Sen's capabilities approach offers a radical generalisation of the conventional approach to welfare economics. It has been highly influential in development and many researchers are now beginning to explore its implications for health care. This paper contributes to the emerging debate by discussing two examples of such applications: first, at the individual decision making level, namely the right to die, and second, at the social choice level. For the first application, which draws on Nussbaum's list of capabilities, it is argued that many capabilities are ambiguously or indirectly related to the right to die, but the ability to form a concept of the good life and plan one's own life provides a direct justification for such a right. In the second application, the focus is specifically on healthcare rationing and it is argued that, although not committed to age based rationing, the capabilities approach provides a more natural justification of age related access to health care than the fair innings argument, which is often used to justify the alleged ageism inherent in quality adjusted life years (QALY) maximisation.

  15. Exploration Medical Capability

    NASA Technical Reports Server (NTRS)

    Watkins, Sharmila; Baumann, David; Wu, Jimmy; Barsten, Kristina

    2010-01-01

    Exploration Medical Capability (ExMC) is an element of NASA's Human Research Program (HRP). ExMC's goal is to address the risk of the Inability to Adequately Recognize or Treat an Ill or Injured Crewmember. This poster highlights the approach ExMC has taken to address this goal and our current areas of interest. The Space Medicine Exploration Medical Condition List (SMEMCL) was created to identify medical conditions of concern during exploration missions. The list was derived from space flight medical incidents, the shuttle medical checklist, the International Space Station medical checklist, and expert opinion. The conditions on the list were prioritized according to mission type by a panel comprised of flight surgeons, physician astronauts, engineers, and scientists. From the prioritized list, the ExMC element determined the capabilities needed to address the medical conditions of concern. Where such capabilities were not currently available, a gap was identified. The element s research plan outlines these gaps and the tasks identified to achieve the desired capabilities for exploration missions. This poster is being presented to inform the audience of the gaps and tasks being investigated by ExMC and to encourage discussions of shared interests and possible future collaborations.

  16. Visual Absorption Capability

    Treesearch

    Lee Anderson; Jerry Mosier; Geoffrey Chandler

    1979-01-01

    Visual absorption capability (VAC) is a tool to assess a landscape's susceptibility to visual change caused by man's activities. This paper explores different descriptive approaches to VAC and addresses in depth the development of the VAC process used on the Klamath National Forest. Four biophysical factors were selected to assess VAC for the lands within the...

  17. Capabilities for Intercultural Dialogue

    ERIC Educational Resources Information Center

    Crosbie, Veronica

    2014-01-01

    The capabilities approach offers a valuable analytical lens for exploring the challenge and complexity of intercultural dialogue in contemporary settings. The central tenets of the approach, developed by Amartya Sen and Martha Nussbaum, involve a set of humanistic goals including the recognition that development is a process whereby people's…

  18. Project CAPABLE: Model Unit.

    ERIC Educational Resources Information Center

    Madawaska School District, ME.

    Project CAPABLE (Classroom Action Program: Aim: Basic Learning Effectiveness) is a classroom approach which integrates the basic learning skills with content. The goal of the project is to use basic learning skills to enhance the learning of content and at the same time use the content to teach basic learning skills. This manual illustrates how…

  19. Capabilities for Intercultural Dialogue

    ERIC Educational Resources Information Center

    Crosbie, Veronica

    2014-01-01

    The capabilities approach offers a valuable analytical lens for exploring the challenge and complexity of intercultural dialogue in contemporary settings. The central tenets of the approach, developed by Amartya Sen and Martha Nussbaum, involve a set of humanistic goals including the recognition that development is a process whereby people's…

  20. Cooperative Engagement Capability (CEC)

    DTIC Science & Technology

    2015-12-01

    Mission and Description 6 Executive Summary 7 Threshold Breaches 8 Schedule 9 Performance 12 Track to Budget 14 Cost and Funding...Capability Production Document CY - Calendar Year DAB - Defense Acquisition Board DAE - Defense Acquisition Executive DAMIR - Defense Acquisition...13:59 UNCLASSIFIED 3 PB - President’s Budget PE - Program Element PEO - Program Executive Officer PM - Program Manager POE - Program Office Estimate

  1. Capabilities Composition (Briefing Charts)

    DTIC Science & Technology

    2009-04-22

    and support , , processes (including ITIL v3) • Understanding of Governance is still evolving Engineering Acquisition and Operational Governance...L – Logistics • NC – Net-Centric • CPM – Capability Portfolio Management • ITIL v3 – Information Technology • ONR – Office of Naval Research

  2. Semiconducting polymers for gas detection

    NASA Technical Reports Server (NTRS)

    Byrd, N. R.; Sheratte, M. B.

    1975-01-01

    Conjugated polyenes, and polyesters containing phthalocyanine in their backbone, were synthesized. These polymers were characterized by chemical analysis, thermogravimetric analysis, spectral analysis, and X-ray diffraction studies for crystallinity, as well as for their film-forming capability and gas/polymer interactions. Most of the polymers were relatively insensitive to water vapor up to 50 percent relative humidity, but the polyester/phthalocyanine (iron) polymer was relatively insensitive up to 100 percent RH. On the other hand, poly(p-dimethylaminophenylacetylene) was too conductive at 100 percent RH. Of the gases tested, the only ones that gave any evidence of interacting with the polymers were SO2, NOx, HCN and NH3. Poly(imidazole)/thiophene responded to each of these gases at all relative humidities, while the other polymers gave varying response, depending upon the RH. Thus, since most of these gases were electron-accepting, the electron-donating character of poly(imidazole)/thiophene substantiates the concept of electronegativity being the operating principle for interaction effects. Of the six polymers prepared, poly(imidazole)/thiophene first showed a very good response to smoldering cotton, but it later became nonresponsive; presumably due to oxidation effects.

  3. Capitalizing on capabilities.

    PubMed

    Ulrich, Dave; Smallwood, Norm

    2004-06-01

    By making the most of organizational capabilities--employees' collective skills and fields of expertise--you can dramatically improve your company's market value. Although there is no magic list of proficiencies that every organization needs in order to succeed, the authors identify 11 intangible assets that well-managed companies tend to have: talent, speed, shared mind-set and coherent brand identity, accountability, collaboration, learning, leadership, customer connectivity, strategic unity, innovation, and efficiency. Such companies typically excel in only three of these capabilities while maintaining industry parity in the other areas. Organizations that fall below the norm in any of the 11 are likely candidates for dysfunction and competitive disadvantage. So you can determine how your company fares in these categories (or others, if the generic list doesn't suit your needs), the authors explain how to conduct a "capabilities audit," describing in particular the experiences and findings of two companies that recently performed such audits. In addition to highlighting which intangible assets are most important given the organization's history and strategy, this exercise will gauge how well your company delivers on its capabilities and will guide you in developing an action plan for improvement. A capabilities audit can work for an entire organization, a business unit, or a region--indeed, for any part of a company that has a strategy to generate financial or customer-related results. It enables executives to assess overall company strengths and weaknesses, senior leaders to define strategy, midlevel managers to execute strategy, and frontline leaders to achieve tactical results. In short, it helps turn intangible assets into concrete strengths.

  4. Solid polymer membrane program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results are presented for a solid polymer electrolyte fuel cell development program. Failure mechanism was identified and resolution of the mechanism experienced in small stack testing was demonstrated. The effect included laboratory analysis and evaluation of a matrix of configurations and operational variables for effects on the degree of hydrogen fluoride released from the cell and on the degree of blistering/delamination occurring in the reactant inlet areas of the cell and to correlate these conditions with cell life capabilities. The laboratory evaluation tests were run at conditions intended to accelerate the degradation of the solid polymer electrolyte in order to obtain relative evaluations as quick as possible. Evaluation of the resolutions for the identified failure mechanism in space shuttle configuration cell assemblies was achieved with the fabrication and life testing of two small stack buildups of four cell assemblies and eight cells each.

  5. Metrology Measurement Capabilities

    SciTech Connect

    Barnes, L.M.

    2003-11-12

    This document contains descriptions of Federal Manufacturing & Technologies (FM&T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties. Metrology laboratories conform to the requirements of the Department of Energy Development and Production Manual Chapter 8.4, ANSI/ISO/IEC ANSI/ISO/IEC 17025:2000, and ANSI/NCSL Z540-1 (equivalent to ISO Guide 25). FM&T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. See the Internet at http://ts.nist.gov/ts/htdocs/210/214/scopes/2001080.pdf. These parameters are summarized in the table at the bottom of this introduction.

  6. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Kathy Lueders, program manager of NASA's Commercial Crew Program, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  7. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  8. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Kathy Lueders, program manager of NASA's Commercial Crew Program, speaks, as Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, left, and Astronaut Mike Fincke, a former commander of the International Space Station look on during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  9. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    Astronaut Mike Fincke, a former commander of the International Space Station, speaks during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  10. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    NASA Administrator Charles Bolden, left, announces the agency’s selection of Boeing and SpaceX to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft as Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida looks on at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  11. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    From left, NASA Public Affairs Officer Stephanie Schierholz, NASA Administrator Charles Bolden, Former astronaut Bob Cabana, director of NASA's Kennedy Space Center in Florida, Kathy Lueders, program manager of NASA's Commercial Crew Program, and Astronaut Mike Fincke, a former commander of the International Space Station, are seen during a news conference where it was announced that Boeing and SpaceX have been selected to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  12. Commercial Crew Transportation Capability

    NASA Image and Video Library

    2014-09-16

    NASA Administrator Charles Bolden listens to a reporter’s question after he announced the agency’s selection of Boeing and SpaceX to transport U.S. crews to and from the International Space Station using the Boeing CST-100 and the SpaceX Crew Dragon spacecraft, at NASA’s Kennedy Space Center in Cape Canaveral, Fla. on Tuesday, Sept. 16, 2014. These Commercial Crew Transportation Capability (CCtCap) contracts are designed to complete the NASA certification for a human space transportation system capable of carrying people into orbit. Once certification is complete, NASA plans to use these systems to transport astronauts to the space station and return them safely to Earth. Photo Credit: (NASA/Bill Ingalls)

  13. Metrology Measurement Capabilities

    SciTech Connect

    Barnes, L.M.

    2000-03-23

    This document contains descriptions of Federal Manufacturing and Technologies (FM and T) Metrology capabilities, traceability flow charts, and the measurement uncertainty of each measurement capability. Metrology provides NIST traceable precision measurements or equipment calibration for a wide variety of parameters, ranges, and state-of-the-art uncertainties in laboratories that conform to the requirements of the Department of Energy Development and Production Manual Chapter 8.4, and ANSI/NCSL Z540-1 (equivalent to ISO Guide 25). FM and T Metrology laboratories are accredited by NVLAP for the parameters, ranges, and uncertainties listed in the specific scope of accreditation under NVLAP Lab code 200108-0. These parameters are summarized.

  14. Layered Composite Analysis Capability

    NASA Technical Reports Server (NTRS)

    Narayanaswami, R.; Cole, J. G.

    1985-01-01

    Laminated composite material construction is gaining popularity within industry as an attractive alternative to metallic designs where high strength at reduced weights is of prime consideration. This has necessitated the development of an effective analysis capability for the static, dynamic and buckling analyses of structural components constructed of layered composites. Theoretical and user aspects of layered composite analysis and its incorporation into CSA/NASTRAN are discussed. The availability of stress and strain based failure criteria is described which aids the user in reviewing the voluminous output normally produced in such analyses. Simple strategies to obtain minimum weight designs of composite structures are discussed. Several example problems are presented to demonstrate the accuracy and user convenient features of the capability.

  15. Atmospheric Release Advisory Capability

    SciTech Connect

    Dickerson, M.H.; Gudiksen, P.H.; Sullivan, T.J.

    1983-02-01

    The Atmospheric Release Advisory Capability (ARAC) project is a Department of Energy (DOE) sponsored real-time emergency response service available for use by both federal and state agencies in case of a potential or actual atmospheric release of nuclear material. The project, initiated in 1972, is currently evolving from the research and development phase to full operation. Plans are underway to expand the existing capability to continuous operation by 1984 and to establish a National ARAC Center (NARAC) by 1988. This report describes the ARAC system, its utilization during the past two years, and plans for its expansion during the next five to six years. An integral part of this expansion is due to a very important and crucial effort sponsored by the Defense Nuclear Agency to extend the ARAC service to approximately 45 Department of Defense (DOD) sites throughout the continental US over the next three years.

  16. Defence Capability Plan 2009

    DTIC Science & Technology

    2009-01-01

    Generator Unit. Background The future management of Seahawk capability was originally to be provided under AIR 9000 Phase 3 as the Seahawk Mid-life...already in service and Battlefield Management Systems intended to be procured under LAND 75 and LAND 125. This phase will assist in the achievement of...and are to be managed regionally. Through-life Support A PSI is to be engaged under the sustainment contract to provide the necessary through-life

  17. Joint Forces Capabilities

    DTIC Science & Technology

    2007-11-02

    for countering the proliferation of weapons of mass destruction (WMD) in space. The Space Operations Center ( SPOC ), USSPACECOM is the single point...of contact for assessing space capabilities. Combatant commanders, subordinate JFCs, and Services can access this information from the SPOC via the...special operations forces SPOC Space Operations Center SSBN fleet ballistic missile submarine SST space support team UJTL Universal Joint Task List UN

  18. Review of CFD Capabilities

    DTIC Science & Technology

    2005-09-01

    growth in wind tunnel testing requirements – Increasingly sensitive/complex designs require more testing/analysis for success … – But, for fixed- wing ...been used to maintain an essentially constant number of wind tunnel test hours for the last 30 years. Also, while the number of different wing designs...not addressed directly • This study did not evaluate wind tunnel facilities or their capabilities – Comparisons between CFD and wind tunnel testing

  19. Joint Defense Capabilities Study

    DTIC Science & Technology

    2003-12-01

    program does not best meet Joint needs, or provide the best value for the nation’s defense investment. Capabilities-Based Process The Study Team...planning function integrates the highly related logistics support functions of supply, maintenance, and transportation . In addition, current logistics...strengthens the role of the Defense Logistics Executive (DLE) as the single Logistics Global Supply Chain Manager with oversight and decision authority

  20. Enhanced Rescue Lift Capability

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2007-01-01

    The evolving and ever-increasing demands of emergency response and disaster relief support provided by rotorcraft dictate, among other things, the development of enhanced rescue lift capability for these platforms. This preliminary analysis is first-order in nature but provides considerable insight into some of the challenges inherent in trying to effect rescue using a unique form of robotic rescue device deployed and operated from rotary-wing aerial platforms.

  1. Ada Compiler Evaluation Capability

    DTIC Science & Technology

    1991-05-01

    library functions may be available (and necessary) to exploit the vector processing capabilities. * Very Long Instruction Word (VLIW) machine...interested in how well the target machine instructions are utilized: Are available idioms exploited ? To answer this question, specific test problems...different pages) will also be referenced every fourth operation. This pattern can be exploited by locking the root and perhaps the first level directory

  2. Electronic and Microelectronic Capabilities.

    DTIC Science & Technology

    1982-07-01

    AREA A WORK UNIT NUMUERS 2800 Powder Mill Road Adeiphi, MD 20783 It. CONTROLLING OFFICE N AME AND ADDRESS 12. REPORT DATE US Army Materiel...both capability and functiongLI UNCLASSIFIED SECUMITY CL.ASSIFCATION OF THIS PAOW% &M & Mabe * 2 ft FOREWORD The following report describes the...Machine..................................................... 51 5.5 Hewlett-Packard (HP) Model 9500D Computer- Controlled Testing System............ 52 8

  3. Group Capability Model

    NASA Technical Reports Server (NTRS)

    Olejarski, Michael; Appleton, Amy; Deltorchio, Stephen

    2009-01-01

    The Group Capability Model (GCM) is a software tool that allows an organization, from first line management to senior executive, to monitor and track the health (capability) of various groups in performing their contractual obligations. GCM calculates a Group Capability Index (GCI) by comparing actual head counts, certifications, and/or skills within a group. The model can also be used to simulate the effects of employee usage, training, and attrition on the GCI. A universal tool and common method was required due to the high risk of losing skills necessary to complete the Space Shuttle Program and meet the needs of the Constellation Program. During this transition from one space vehicle to another, the uncertainty among the critical skilled workforce is high and attrition has the potential to be unmanageable. GCM allows managers to establish requirements for their group in the form of head counts, certification requirements, or skills requirements. GCM then calculates a Group Capability Index (GCI), where a score of 1 indicates that the group is at the appropriate level; anything less than 1 indicates a potential for improvement. This shows the health of a group, both currently and over time. GCM accepts as input head count, certification needs, critical needs, competency needs, and competency critical needs. In addition, team members are categorized by years of experience, percentage of contribution, ex-members and their skills, availability, function, and in-work requirements. Outputs are several reports, including actual vs. required head count, actual vs. required certificates, CGI change over time (by month), and more. The program stores historical data for summary and historical reporting, which is done via an Excel spreadsheet that is color-coded to show health statistics at a glance. GCM has provided the Shuttle Ground Processing team with a quantifiable, repeatable approach to assessing and managing the skills in their organization. They now have a common

  4. Current Range Safety Capabilities

    DTIC Science & Technology

    1994-02-01

    mission objectives, to prevent personnel injury , to minimize property damage, and to preclude incidents having the potential for international... high -speed film cameras in 16 mm, 35 mm, and 70 mm formats. These cameras can operate at frame rates from 6 to 40,000 frames per second. * Bowen ribbon...90, 180, and 360 frames per second. * Ultra- high -speed cameras capable of rates up to 4,500,000 frames per second in the framing mode or write records

  5. National transportable telecommunications capability

    NASA Technical Reports Server (NTRS)

    Boheim, Kenneth B.; Bach, Beverly

    1991-01-01

    The chance to integrate two emerging telecommunications technologies together, the Ku-band satellite communication (SATCOM) and cellular, offered the unique opportunity to package a truly stand-alone capability to reconstitute telecommuications service. Terrestrial cellular telephone services have proven to be an essential tool for dealing with local emergencies to the extent that they survive and remain operable, as in the San Francisco earthquake. Cellular telephones can provide emergency coordinators the flexibility of wireless mobility in the field via the Public Switched Network (PSN) to coordinate emergency services. However, not all areas are covered by cellular service; existing cellular and PSN service availability could be limited by the congestion and competition for the dial tone that occurs in emergencies. It was realized that a critical need exists for a rapidly deployable stand-alone cellular capability coupled with alternate connectivity to bypass congested or damaged PSN links. Existing commercial Ku-band satellite communications have provided alternate routing links in some cases to support emergency communications. An emergency operational capability was conceived that integrates these technologies into a rapidly deployable and transportable package that provides both local and long distance telephone services to an area that has suffered widespread telecommunications outages or has been totally isolated from the world.

  6. National transportable telecommunications capability

    NASA Technical Reports Server (NTRS)

    Boheim, Kenneth B.; Bach, Beverly

    1991-01-01

    The chance to integrate two emerging telecommunications technologies together, the Ku-band satellite communication (SATCOM) and cellular, offered the unique opportunity to package a truly stand-alone capability to reconstitute telecommuications service. Terrestrial cellular telephone services have proven to be an essential tool for dealing with local emergencies to the extent that they survive and remain operable, as in the San Francisco earthquake. Cellular telephones can provide emergency coordinators the flexibility of wireless mobility in the field via the Public Switched Network (PSN) to coordinate emergency services. However, not all areas are covered by cellular service; existing cellular and PSN service availability could be limited by the congestion and competition for the dial tone that occurs in emergencies. It was realized that a critical need exists for a rapidly deployable stand-alone cellular capability coupled with alternate connectivity to bypass congested or damaged PSN links. Existing commercial Ku-band satellite communications have provided alternate routing links in some cases to support emergency communications. An emergency operational capability was conceived that integrates these technologies into a rapidly deployable and transportable package that provides both local and long distance telephone services to an area that has suffered widespread telecommunications outages or has been totally isolated from the world.

  7. Resolving and measuring diffusion in complex interfaces: Exploring new capabilities

    SciTech Connect

    Alam, Todd M.

    2015-09-01

    This exploratory LDRD targeted the use of a new high resolution spectroscopic diffusion capabilities developed at Sandia to resolve transport processes at interfaces in heterogeneous polymer materials. In particular, the combination of high resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy with pulsed field gradient (PFG) diffusion experiments were used to directly explore interface diffusion within heterogeneous polymer composites, including measuring diffusion for individual chemical species in multi-component mixtures. Several different types of heterogeneous polymer systems were studied using these HRMAS NMR diffusion capabilities to probe the resolution limitations, determine the spatial length scales involved, and explore the general applicability to specific heterogeneous systems. The investigations pursued included a) the direct measurement of the diffusion for poly(dimethyl siloxane) polymer (PDMS) on nano-porous materials, b) measurement of penetrant diffusion in additive manufactures (3D printed) processed PDMS composites, and c) the measurement of diffusion in swollen polymers/penetrant mixtures within nano-confined aluminum oxide membranes. The NMR diffusion results obtained were encouraging and allowed for an improved understanding of diffusion and transport processes at the molecular level, while at the same time demonstrating that the spatial heterogeneity that can be resolved using HRMAS NMR PFG diffusion experiment must be larger than ~μm length scales, expect for polymer transport within nanoporous carbons where additional chemical resolution improves the resolvable heterogeneous length scale to hundreds of nm.

  8. A label-free and high sensitive aptamer biosensor based on hyperbranched polyester microspheres for thrombin detection.

    PubMed

    Sun, Chong; Han, Qiaorong; Wang, Daoying; Xu, Weimin; Wang, Weijuan; Zhao, Wenbo; Zhou, Min

    2014-11-19

    In this paper, we have synthesized hyperbranched polyester microspheres with carboxylic acid functional groups (HBPE-CA) and developed a label-free electrochemical aptamer biosensor using thrombin-binding aptamer (TBA) as receptor for the measurement of thrombin in whole blood. The indium tin oxide (ITO) electrode surface modified with HBPE-CA microspheres was grafted with TBA, which has excellent binding affinity and selectivity for thrombin. Binding of the thrombin at the modified ITO electrode surface greatly restrained access of electrons for a redox probe of [Fe(CN)6](3-/4-). Moreover, the aptamer biosensor could be used for detection of thrombin in whole blood, a wide detection range (10fM-100nM) and a detection limit on the order of 0.90fM were demonstrated. Control experiments were also carried out by using bull serum albumin (BSA) and lysozyme in the absence of thrombin. The good stability and repeatability of this aptamer biosensor were also proved. We expect that this demonstration will lead to the development of highly sensitive label-free sensors based on aptamer with lower cost than current technology. The integration of the technologies, which include anticoagulant, sensor and nanoscience, will bring significant input to high-performance biosensors relevant to diagnostics and therapy of interest for human health.

  9. Effect and origin of the structure of hyperbranched polysiloxane on the surface and integrated performances of grafted Kevlar fibers

    NASA Astrophysics Data System (ADS)

    Zhang, Hongrui; Yuan, Li; Liang, Guozheng; Gu, Aijuan

    2014-11-01

    Four hyperbranched polysiloxanes (HPSis) with different molecular weights and concentration ratios of double bonds to epoxy groups (1:6.5-1:0.7) were synthesized and characterized. Each HPSi was facilely grafted onto surfaces of Kevlar fibers (KFs) to develop novel modified fibers (HPSi-g-KFs). The structures and integrated properties of HPSi-g-KFs as well as the origin behind were systematically investigated. Results show that HPSi-g-KFs have much rougher surface morphologies, and their surface free energies are as high as about 1.7 times that of KFs, showing greatly improved wettability. Besides, HPSi-g-KFs have excellent UV resistance after 168 h UV irradiation, the retentions of tenacity, energy to break, modulus and break extension are as high as 92, 86, 95 and 96%, respectively, while those of KFs are 66-85%. In addition, compared with KFs, HPSi-g-KFs have higher tensile tenacity and energy to break with similar modulus and break extension, much better thermal stability and flame retardancy. The nature of HPSi has different influence on different property of fibers, the HPSi with smaller molecular weight and more epoxy groups is beneficial to prepare HPSi-g-KFs with better wettability, while that with larger molecular weight and more double bonds tends to prepare HPSi-g-KF with better flame retardancy and UV resistance.

  10. Adjustable bioadhesive control of PEGylated hyperbranch brushes on polystyrene microplate interface for the improved sensitivity of human blood typing.

    PubMed

    Chen, Yan-Wen; Chang, Yung; Lee, Rong-Ho; Li, Wen-Tyng; Chinnathambi, Arunachalam; Alharbi, Sulaiman Ali; Hsiue, Ging-Ho

    2014-08-05

    A PEGylated 96-well polystyrene (PS) microplate was first introduced for applications in high-throughput screening for selective blood typing to minimize the risks in blood transfusions. Herein, we present a hemocompatible PS 96-well microplate with adjustable PEGylated hyperbranch brush coverage prepared by ozone pretreated activation and thermally induced surface PEGylation. The grafting properties, hydration capacity, and blood compatibility of the PEGylated hyperbrush immobilized PS surfaces in human blood were illustrated by the combined chemical and physical properties of the surface, and the dependence of the specific absorption of human plasma fibrinogen onto the PEGylated surfaces on the grafting density was analyzed by monoclonal antibodies. The surface coverage of PEGylated brushes plays a major role in the bioadhesive properties of modified PS microplates, which in turn control the level of agglutination sensitivity in blood typing. The bioadhesive resistance toward proteins, platelets, and erythrocytes in human whole blood showed a correlation to the controlled hydration properties of the PEGylated hyperbrush-modified surfaces. Therefore, we suggested that the surface coverage of PEGylated hyperbrushes on PS surfaces can increase the sensitivity of cross-matching blood agglutination by up to 16-fold compared to that of the conventional 96-well virgin PS due to the regulated biorecognition of hematocrit and antibodies of the PEGylated hyperbrush-modified surfaces.

  11. Hyperbranched polyethyleneimine induced cross-linking of polyamide-imide nanofiltration hollow fiber membranes for effective removal of ciprofloxacin.

    PubMed

    Sun, Shi Peng; Hatton, T Alan; Chung, Tai-Shung

    2011-05-01

    This study aims to develop a positively charged nanofiltration (NF) hollow fiber membrane for effective removal of ciprofloxacin from water. A novel NF membrane was fabricated by hyperbranched polyethyleneimine (PEI) induced cross-linking on a polyamide-imide hollow fiber support. The spongy-like, fully porous membrane support provides minimal transport resistance and sufficient mechanical strengths for water permeation under high pressures. It is found that the PEI modification significantly influences NF performance through the mechanisms of size exclusion, charge repulsion, and solute-membrane affinity. Specifically, after PEI induced cross-linking, the membrane pore size is significantly reduced. The membrane surface becomes more hydrophilic and positively charged. As a result of these synergic effects, the rejection of ciprofloxacin is substantially enhanced. Furthermore, experimental results show that the molecular weight of PEI has tremendous effect on NF performance of the as-modified membrane. The NF membrane modified by a high molecular weight PEI_60K exhibits the highest rejection, the lowest fouling tendency, and keeps a constant flux over the whole pH range. This study may have great potential for developing high-performance antifouling NF hollow fiber membranes for various industrial applications.

  12. Fabrication of magnetic water-soluble hyperbranched polyol functionalized graphene oxide for high-efficiency water remediation

    PubMed Central

    Hu, Lihua; Li, Yan; Zhang, Xuefei; Wang, Yaoguang; Cui, Limei; Wei, Qin; Ma, Hongmin; Yan, Liangguo; Du, Bin

    2016-01-01

    Magnetic water-soluble hyperbranched polyol functionalized graphene oxide nanocomposite (MWHPO-GO) was successfully prepared and applied to water remediation in this paper. MWHPO-GO was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), magnetization curve, zeta potential, scanning electron microscope (SEM) and transmission electron microscope (TEM) analyses. MWHPO-GO exhibited excellent adsorption performance for the removal of synthetic dyes (methylene blue (MB) and methyl violet (MV)) and heavy metal (Pb(II)). Moreover, MWHPO-GO could be simply recovered from water with magnetic separation. The pseudo-second order equation and the Langmuir model exhibited good correlation with the adsorption kinetic and isotherm data, respectively, for these three pollutants. The thermodynamic results (ΔG < 0, ΔH < 0, ΔS < 0) implied that the adsorption process of MB, MV and Pb(II) was feasible, exothermic and spontaneous in nature. A possible adsorption mechanism has been proposed where π-π stacking interactions, H-bonding interaction and electrostatic attraction dominated the adsorption of MB/MV and chelation and electrostatic attraction dominated the adsorption of Pb(II). In addition, the excellent reproducibility endowed MWHPO-GO with the potential for application in water remediation. PMID:27354318

  13. Two-dimensional Hyper-branched Gold Nanoparticles Synthesized on a Two-dimensional Oil/Water Interface

    NASA Astrophysics Data System (ADS)

    Shin, Yonghee; Lee, Chiwon; Yang, Myung-Seok; Jeong, Sunil; Kim, Dongchul; Kang, Taewook

    2014-08-01

    Two-dimensional (2D) gold nanoparticles can possess novel physical and chemical properties, which will greatly expand the utility of gold nanoparticles in a wide variety of applications ranging from catalysis to biomedicine. However, colloidal synthesis of such particles generally requires sophisticated synthetic techniques to carefully guide anisotropic growth. Here we report that 2D hyper-branched gold nanoparticles in the lateral size range of about 50 ~ 120 nm can be synthesized selectively on a 2D immiscible oil/water interface in a few minutes at room temperature without structure-directing agents. An oleic acid/water interface can provide diffusion-controlled growth conditions, leading to the structural evolution of a smaller gold nucleus to 2D nanodendrimer and nanourchin at the interface. Simulations based on the phase field crystal model match well with experimental observations on the 2D branching of the nucleus, which occurs at the early stage of growth. Branching results in higher surface area and stronger near-field enhancement of 2D gold nanoparticles. This interfacial synthesis can be scaled up by creating an emulsion and the recovery of oleic acid is also achievable by centrifugation.

  14. Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants.

    PubMed

    Das, Beauty; Mandal, Manabendra; Upadhyay, Aadesh; Chattopadhyay, Pronobesh; Karak, Niranjan

    2013-06-01

    The fabrication of a smart magnetically controllable bio-based polymeric nanocomposite (NC) has immense potential in the biomedical domain. In this context, magneto-thermoresponsive sunflower oil modified hyperbranched polyurethane (HBPU)/Fe3O4 NCs with different wt.% of magnetic nanoparticles (Fe3O4) were prepared by an in situ polymerization technique. Fourier-transform infrared, x-ray diffraction, vibrating sample magnetometer, scanning electron microscope, transmission electron microscope, thermal analysis and differential scanning calorimetric were used to analyze various physico-chemical structural attributes of the prepared NC. The results showed good interfacial interactions between HBPU and well-dispersed superparamagnetic Fe3O4, with an average diameter of 7.65 nm. The incorporation of Fe3O4 in HBPU significantly improved the thermo-mechanical properties along with the shape-memory behavior, antibacterial activity, biocompatibility as well as biodegradability in comparison to the pristine system. The cytocompatibility of the degraded products of the NC was also verified by in vitro hemolytic activity and MTT assay. In addition, the in vivo biocompatibility and non-immunological behavior, as tested in Wistar rats after subcutaneous implantation, show promising signs for the NC to be used as antibacterial biomaterial for biomedical device and implant applications.

  15. Fabrication of magnetic water-soluble hyperbranched polyol functionalized graphene oxide for high-efficiency water remediation

    NASA Astrophysics Data System (ADS)

    Hu, Lihua; Li, Yan; Zhang, Xuefei; Wang, Yaoguang; Cui, Limei; Wei, Qin; Ma, Hongmin; Yan, Liangguo; Du, Bin

    2016-06-01

    Magnetic water-soluble hyperbranched polyol functionalized graphene oxide nanocomposite (MWHPO-GO) was successfully prepared and applied to water remediation in this paper. MWHPO-GO was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), magnetization curve, zeta potential, scanning electron microscope (SEM) and transmission electron microscope (TEM) analyses. MWHPO-GO exhibited excellent adsorption performance for the removal of synthetic dyes (methylene blue (MB) and methyl violet (MV)) and heavy metal (Pb(II)). Moreover, MWHPO-GO could be simply recovered from water with magnetic separation. The pseudo-second order equation and the Langmuir model exhibited good correlation with the adsorption kinetic and isotherm data, respectively, for these three pollutants. The thermodynamic results (ΔG < 0, ΔH < 0, ΔS < 0) implied that the adsorption process of MB, MV and Pb(II) was feasible, exothermic and spontaneous in nature. A possible adsorption mechanism has been proposed where π-π stacking interactions, H-bonding interaction and electrostatic attraction dominated the adsorption of MB/MV and chelation and electrostatic attraction dominated the adsorption of Pb(II). In addition, the excellent reproducibility endowed MWHPO-GO with the potential for application in water remediation.

  16. Dopamine modified hyperbranched TiO2 arrays based ultrasensitive photoelectrochemical immunosensor for detecting neuron specific enolase.

    PubMed

    Li, He; Xiao, Qiyou; Lv, Jiaxin; Lei, Qin; Huang, Yujie

    2017-08-15

    In this work, three-dimensional (3D) hyperbranched TiO2 nanorod arrays were synthesized and used to fabricate dopamine sensitized photoelectrochemical (PEC) biosensor. To increase the lifetime of charge carriers and enhance the photocurrent responses signal, a delicate signal amplification strategy by introducing dopamine (DA) as sensitizer was developed. The dopamine sensitized TiO2 can shorten the carrier diffusion distance, improve light harvesting efficiency and charge collection efficiency, which results in performance improvement of the as-obtained PEC sensor. This proposed biosensor for determination of neuron specific enolase (NSE) demonstrated a good linear relationship range from 0.1 ng mL(-1) to 1000 ng mL(-1) with a detection limit of 0.05 ngmL(-1) (S/N = 3). In addition, the as-prepared immunosensor exhibits excellent selectivity, stability and reproducibility, which could be extended to other label-free sensing fields. Therefore, this proposed method may also provide potential applications for the clinical examination. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Electrochemiluminescence biosensor for ultrasensitive determination of ochratoxin A in corn samples based on aptamer and hyperbranched rolling circle amplification.

    PubMed

    Yang, Linlin; Zhang, Ying; Li, Ruibao; Lin, Cuiying; Guo, Longhua; Qiu, Bin; Lin, Zhenyu; Chen, Guonan

    2015-08-15

    Determination of ochratoxin A (OTA) is highly important for food safety control. In this study, a signal-on electrochemiluminescence (ECL) biosensor which combined the characteristics of high efficiency of hyperbranched rolling circle amplification (HRCA) and high selectivity of aptamer was developed for OTA determination. The capture probe DNA (CDNA) was firstly immobilized on the gold electrode surface through Au-S interaction, then the OTA aptamer was modified on the electrode surface through hybridization with CDNA. Since OTA can competitively bind with the aptamer due to their high affinity, which would induce the releasing of aptamer from the electrode surface. Subsequently, the free CDNA on the electrode surface can hybridize with the padlock probe and induce HRCA reaction subsequently. Thus, the HRCA products which contained large amount of double-stranded DNA (dsDNA) fragments can be accumulated on the electrode surface. Since Ru(phen)3(2+) can intercalate into the groove of dsDNA and acts as ECL indicator, high ECL intensity can be detected from the electrode surface. The enhanced ECL intensity has a linear relationship with OTA in the range of 0.05-500 pg/mL with a correlation coefficient of 0.9957, and the limit of detection (LOD) was 0.02 pg/mL. The developed biosensor has been applied to determine OTA concentration in the corn samples with satisfied results.

  18. Facile synthesis of titania/hyperbranched polyglycidol nanohybrids with controllable morphologies: from solid spheres, capsules to tubes

    NASA Astrophysics Data System (ADS)

    Li, Haiqing; Zhang, Lin; Jo, Jung Kyu; Ha, Chang-Sik; Shchipunov, Yury A.; Kim, Il

    2011-05-01

    Titania/Hyperbranched polyglycidol (HBP) nanohybrids with tunable morphologies have been synthesized via a sol-gel process at ambient temperature. One-shot addition of varied amounts of titanium precursor tetraisopropoxide (TTIP) yields spherical titania/HBP solid particles with tunable size, while a controlled addition of TTIP results in spherical titania/HBP capsules. The average outer and inner diameters of the resultant capsules are also controllable according to the amount of TTIP via an Oswald ripening process. In addition, the modality of additional water supplied in the reaction systems can tune the morphologies of the resulting titania/HBP particles from nanocapsules to nanotubes owing to the accelerated hydrolysis rate of TTIP. The tunability in morphologies of the titania/HBP nanostructures ranging from solid spheres, capsules to tubes could be attributed to the self-assembly of a large amount of titania/HBP aggregates in a rapid, controlled and anisotropic manner, respectively. Surprisingly, by means of HBP contained in the resulting titania/HBP nanostructures, the gold nanoparticles are in situ generated and encapsulated into titania/HBP matrix in the absence of additional reducing agent. The as-prepared gold nanoparticles functionalized titania/HBP hybrids exhibit excellent catalytic function toward the reduction of 4-nitrophenol. This strategy demonstrates a typical example for functionalizing the titania/HBP hybrids targeted to specific applications.

  19. An amperometric urea biosensor based on covalently immobilized urease on an electrode made of hyperbranched polyester functionalized gold nanoparticles.

    PubMed

    Tiwari, Ashutosh; Aryal, Santosh; Pilla, Srikanth; Gong, Shaoqin

    2009-06-15

    An amperometric biosensor was fabricated for the quantitative determination of urea in aqueous medium using hematein, a pH-sensitive natural dye. The urease (Urs) was covalently immobilized onto an electrode made of gold nanoparticles functionalized with hyperbranched polyester-Boltron H40 (H40-Au) coated onto an indium-tin oxide (ITO) covered glass substrate. The covalent linkage between the Urs enzyme and H40-Au nanoparticles provided the resulting enzyme electrode (Urs/H40-Au/ITO) with a high level of enzyme immobilization and excellent lifetime stability. The response studies were carried out as a function of urea concentration with amperometric and photometric measurements. The biosensor based on Urs/H40-Au/ITO as the working electrode showed a linear current response to the urea concentration ranging from 0.01 to 35 mM. The urea biosensor exhibited a sensitivity of 7.48 nA/mM with a response time of 3s. The Michaelis-Menten constant for the Urs/H40-Au/ITO biosensor was calculated to be 0.96 mM, indicating the Urs enzyme immobilized on the electrode surface had a high affinity to urea.

  20. Synthesis of Cu/SiO2 Core-Shell Particles Using Hyperbranched Polyester as Template and Dispersant

    NASA Astrophysics Data System (ADS)

    Han, Wensong

    2017-07-01

    Third-generation hyperbranched polyester (HBPE3) was synthesized by stepwise polymerization with N, N-diethylol-3-amine methylpropionate as AB2 monomer and pentaerythritol as core molecule. Then, Cu particles were prepared by reduction of copper nitrate with ascorbic acid in aqueous solution using HBPE3 as template. Finally, Cu/SiO2 particles were prepared by coating silica on the surface of Cu particles. The structure and morphology of the samples were characterized by Fourier-transform infrared (FT-IR) spectrometry, x-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results confirmed the formation of the silica coating on the surface of Cu and that the Cu/SiO2 particles had spherical shape with particle size in the range of 0.8 μm to 2 μm. Compared with pure Cu, the synthesized Cu/SiO2 core-shell particles exhibited better oxidation resistance at high temperature. Moreover, the oxidation resistance of the Cu/SiO2 particles increased significantly with increasing tetraethyl orthosilicate (TEOS) concentration.

  1. One-pot reaction for the large-scale synthesis of hyperbranched polyglycerol-grafted Fe3O4 nanoparticles.

    PubMed

    Wang, Liang; Su, Dan; Zeng, Lintao; Liu, Ning; Jiang, Lai; Feng, Xuequan; Neoh, K G; Kang, E T

    2013-10-07

    Fe3O4 nanoparticles with surface hydroxyl groups (MNP-OH), prepared by the thermal decomposition of ferric oxalate pentahydrate in triethylene glycol, were grafted in situ with polyglycerol through the ring-opening polymerization of glycidol. By this method, hyperbranched polyglycerol-grafted Fe3O4 nanoparticles (HPG-grafted MNPs) can be obtained on an ultra-large scale of 50 g in a single reaction under laboratory conditions, and it is anticipated that the production of the HPG-grafted MNPs could be scaled up with the use of larger reaction vessels. The successful grafting of HPG onto the nanoparticles was confirmed by (1)H NMR and XPS analyses. The as-synthesized nanoparticles can be tuned from 8 to 24 nm in diameter by varying the reaction conditions. The size, morphology, and surface component of the nanoparticles were characterized by TEM, XPS, and XRD. The HPG-grafted MNPs are highly dispersible in aqueous media such as cell culture medium and serum. Since these magnetic nanoparticles possess desirable magnetic properties, controllable size, and can be produced by a facile inexpensive method, they can be potentially applied as a novel contrast agent for enhancing a MRI signal.

  2. Solution-Stable Colloidal Gold Nanoparticles via Surfactant-Free, Hyperbranched Polyglycerol-b-polystyrene Unimolecular Templates.

    PubMed

    Iocozzia, James; Lin, Zhiqun

    2016-07-19

    Hyperbranched polyglycerol-block-polystyrene copolymers, denoted HPG-b-PS, are synthesized and employed as a new and effective unimolecular template for synthesizing colloidal gold (Au) nanoparticles. The coordination of noble metal precursors with polyether within the inner HPG core and subsequent in situ reduction enables the formation of well-dispersed and stable PS-capped Au nanoparticles. The inner HPG core is produced via ring opening multibranching polymerization (ROMBP) and subsequently converted into atom transfer radical polymerization (ATRP) macroinitiators for the controlled growth of polystyrene (PS) arms possessing low polydispersity (PDI < 1.31). An initial investigation into the templating parameters of HPG-b-PS was undertaken by producing templates with different arm numbers (98 and 117) and different PS chain lengths (i.e., molecular weight = 3500-13400 g/mol). It was found that the PS chain length and solvent conditions affect the quality of the resulting PS-capped colloidal Au nanoparticles. This work demonstrates, for the first time, a simple, lower-cost approach for templating nonpolar solvent-soluble PS-capped Au nanoparticles on the order of 10-30 nm in diameter.

  3. Robust Fe3O4/SiO2-Pt/Au/Pd magnetic nanocatalysts with multifunctional hyperbranched polyglycerol amplifiers.

    PubMed

    Zhou, Li; Gao, Chao; Xu, Weijian

    2010-07-06

    Here we report a facile approach to prepare multicarboxylic hyperbranched polyglycerol (HPG)-grafted SiO(2)-coated iron oxide (Fe(3)O(4)/SiO(2)) magnetic hybrid support. This support combined the both features of Fe(3)O(4) and HPG, facile magnetic separation, and favorable molecular structure with numerous functional groups. With the use of the grafted-HPGs as templates, various noble metal nanocatalysts such as Pt, Au, and Pd were directly grown on the surfaces of magnetic support with ultrasmall and nearly monodisperse sizes (e.g., the average sizes of Pt, Au, and Pd are 4.8 +/- 0.5, 6.0 +/- 0.6, and 4.0 +/- 0.4 nm, respectively) and high coverage densities. Because of the amplification effect of HPG, high loading capacities of the nanocatalysts, around 0.296, 0.243, and 0.268 mmol/g for Pt, Au, and Pd, respectively, were achieved. Representative catalytic reactions including reduction of 4-nitrophenol, alcohol oxidation, and Heck reaction demonstrated the high catalytic activity of the noble metal nanocatalysts. Because of the stabilization of HPG templates, the nanocatalysts can be readily recycled by a magnet and reused for the next reactions with high efficiencies. The robust multifunctional magnetic hybrids will find important applications in catalysis and other fields such as drug delivery and bioseparations.

  4. Investigation on the interactions between fullerene and β-CD-g-hyperbranched polyglycerol to produce water-soluble fullerene

    NASA Astrophysics Data System (ADS)

    Eskandari, Mohammad; Najdian, Atena; Soleyman, Rouhollah

    2016-06-01

    Developing a successful way to solubilize C60 in water is a longstanding, critical, and challenging issue in nanotechnology, biological, and medicine applications because of the great potential of fullerene derivatives in anti-viral therapy. In the current study, an efficient strategy for the preparing of water-soluble C60 at room temperature has been developed by complexion of C60 with hyperbranched polyglycerol linked to the β-cyclodextrin core (β-CD-g-HPG). The interactions between C60 and β-CD-g-HPG were investigated using a range of analytical techniques such as FTIR, NMR, UV-vis spectroscopy as well as visual techniques including SEM and AFM images. The particle size for a 1:2 (C60: β-CD-g-HPG) complex was also determined to be monodisperse ∼60 nm from DLS, and it was appropriately matched with the size obtained from SEM pictures. The results show our synthesized hybrid nanomaterials will hopefully find interesting applications in biomedicine.

  5. A sensitive and specific hyperbranched rolling circle amplification assay and test strip for white spot syndrome virus.

    PubMed

    Zhao, Yu-Ran; Yin, Wei-Li; Yue, Zhi-Qin; Li, Ba-Fang

    2014-01-01

    White spot syndrome virus (WSSV) is a global threat to the prawn industry, and there is no simple method for field-based testing of this virus. We designed a padlock probe and primers to the capsid protein gene VP28 of WSSV, and established a hyperbranched rolling circle amplification (HRCA) assay and a corresponding strip-based test. The assay and the test strip both had similar high accuracy and specificity, and their sensitivity was about 10 copies/μL, which is 100 times higher than conventional PCR. In this study, 68 batches of prawns were tested for WSSV with the HRCA assay and test strip, and the results were compared with the PCR assay. The results indicated that both the assay and test strip had accuracy similar to each other and to the PCR results. However, the assay and strip were more sensitive and user-friendly than PCR. Establishment of this method will provide a rapid detection of WSSV and also a basis for field-based detection of animal disease.

  6. Characterization of oligosaccharide-functionalized hyperbranched poly(ethylene imine) and their complexes with retinol in aqueous solution.

    PubMed

    Bekhradnia, Sara; Naz, Iram; Lund, Reidar; Effenberg, Christiane; Appelhans, Dietmar; Sande, Sverre Arne; Nyström, Bo

    2015-11-15

    Structure, internal density distribution, and size of hyperbranched poly(ethylene imine) (PEI) functionalized with various amounts of maltose (PEI-Mal) in phosphate buffer were studied by small angle X-ray scattering (SAXS) and dynamic light scattering (DLS). The value of pH was varied in the range from 3 to 9. Virtually no effect of pH on the nanostructure was found in this interval. The SAXS results revealed a broad segmental radial density distribution, i.e. a "fluffy" globular structure rather than a distinct core-shell structure with a high-density compact core and a low-density corona. This suggests that the maltose units are rather evenly distributed both in the interior and on the surface of the species with a PEI-core of molar mass of 25,000g/mol. The DLS measurements showed that the overall size of the PEI-Mal derivatives increased as the number of maltose units in the PEI-Mal structures rises. The interaction of the hydrophobic model drug retinol with PEI or PEI-Mal derivatives was also investigated. The UV-visible spectroscopy results disclosed that the solubility of retinol in the phosphate buffer is very poor and it takes a very long time to solubilize retinol. Moreover, retinol induces aggregation of dendritic glycopolymers where the growth of aggregates occurs continuously over several days and then remains virtually constant.

  7. Dissipative particle dynamics simulation study on self-assembly of amphiphilic hyperbranched multiarm copolymers with different degrees of branching.

    PubMed

    Tan, Haina; Wang, Wei; Yu, Chunyang; Zhou, Yongfeng; Lu, Zhongyuan; Yan, Deyue

    2015-11-21

    Hyperbranched multiarm copolymers (HMCs) have shown great potential to be excellent precursors in self-assembly to form various supramolecular structures in all scales and dimensions in solution. However, theoretical studies on the self-assembly of HMCs, especially the self-assembly dynamics and mechanisms, have been greatly lagging behind the experimental progress. Herein, we investigate the effect of degree of branching (DB) on the self-assembly structures of HMCs by dissipative particle dynamics (DPD) simulation. Our simulation results demonstrate that the self-assembly morphologies of HMCs can be changed from spherical micelles, wormlike micelles, to vesicles with the increase of DBs, which are qualitatively consistent with the experimental observations. In addition, both the self-assembly mechanisms and the dynamic processes for the formation of these three aggregates have been systematically disclosed through the simulations. These self-assembly details are difficult to be shown by experiments and are very useful to fully understand the self-assembly behaviors of HMCs.

  8. Fabrication of magnetic water-soluble hyperbranched polyol functionalized graphene oxide for high-efficiency water remediation.

    PubMed

    Hu, Lihua; Li, Yan; Zhang, Xuefei; Wang, Yaoguang; Cui, Limei; Wei, Qin; Ma, Hongmin; Yan, Liangguo; Du, Bin

    2016-06-29

    Magnetic water-soluble hyperbranched polyol functionalized graphene oxide nanocomposite (MWHPO-GO) was successfully prepared and applied to water remediation in this paper. MWHPO-GO was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), magnetization curve, zeta potential, scanning electron microscope (SEM) and transmission electron microscope (TEM) analyses. MWHPO-GO exhibited excellent adsorption performance for the removal of synthetic dyes (methylene blue (MB) and methyl violet (MV)) and heavy metal (Pb(II)). Moreover, MWHPO-GO could be simply recovered from water with magnetic separation. The pseudo-second order equation and the Langmuir model exhibited good correlation with the adsorption kinetic and isotherm data, respectively, for these three pollutants. The thermodynamic results (ΔG < 0, ΔH < 0, ΔS < 0) implied that the adsorption process of MB, MV and Pb(II) was feasible, exothermic and spontaneous in nature. A possible adsorption mechanism has been proposed where π-π stacking interactions, H-bonding interaction and electrostatic attraction dominated the adsorption of MB/MV and chelation and electrostatic attraction dominated the adsorption of Pb(II). In addition, the excellent reproducibility endowed MWHPO-GO with the potential for application in water remediation.

  9. Fluorinated hyperbranched polyurethane electrospun nanofibrous membrane: fluorine-enriching surface and superhydrophobic state with high adhesion to water.

    PubMed

    Zheng, Fei; Deng, Hongtao; Zhao, Xinjun; Li, Xia; Yang, Can; Yang, Yunyan; Zhang, Aidong

    2014-05-01

    The fluorination of hyperbranched polyurethane (HPU) was achieved by atom transfer radical grafting polymerization (ATRgP) of dodecafluoroheptyl methacrylate that was initiated from 2-bromoisobutyryl bromide-modified end groups of HPU. The nanofibrous membrane of fluorinated HPU was prepared by electrospinning. The structure of fluorinated HPU was characterized by Fourier-transform infrared spectroscopy (FTIR) and (1)H nuclear magnetic resonance spectrum (1H NMR). The surface of nanofibrous membrane was investigated with scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and water contact angle (WCA) analysis, respectively. The results suggested that compared with the reported linear fluorine-containing polyurethane materials, rather high fluorine content up to 29.14% was achieved on the surface of fluorinated HPU nanofibrous membrane. Meanwhile, a superhydrophobic surface (WCA 159.7°) with high adhesion to water was successfully fabricated via a convenient electrospinning process. The prepared material is promising for the application in microfluidic devices. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Change in size, morphology and stability of DNA polyplexes with hyperbranched poly(ethyleneimines) containing bulky maltose units.

    PubMed

    Rumschöttel, Jens; Kosmella, Sabine; Prietzel, Claudia; Appelhans, Dietmar; Koetz, Joachim

    2016-02-01

    Polyplexes between Salmon DNA and non-modified hyperbranched poly(ethyleneimines) of varying molar mass, i.e., PEI(5 k) with 5000 g/mol and PEI(25 k) with 25,000 g/mol, and modified PEI(5 k) with maltose units (PEI-Mal) were investigated in dependence on the molar N/P ratio by using dynamic light scattering (DLS), zeta potential measurements, micro differential scanning calorimetry (μ-DSC), scanning-transmission electron microscopy (STEM), and cryo-scanning electron microscopy (cryo-SEM). A reloading of the polyplexes can be observed by adding the unmodified PEI samples of different molar mass. In excess of PEI a morphological transition from core-shell particles (at N/P 8) to loosely packed onion-like polyplexes (at N/P 40) is observed. The shift of the DSC melting peak from 88 °C to 76 °C indicates a destabilization of the DNA double helix due to the complexation with the unmodified PEI. Experiments with the maltose-modified PEI show a reloading already at a lower N/P ratio. Due to the presence of the sugar units in the periphery of the polycation electrostatic interactions between DNA become weaker, but cooperative H-bonding forces are reinforced. The resulting less-toxic, more compact polyplexes in excess of the PEI-Mal with two melting points and well distributed DNA segments are of special interest for extended gene delivery experiments.

  11. Preparation of synthetic copolymers potentially capable to interact with biomacromolecules

    NASA Astrophysics Data System (ADS)

    Davydova, N. K.; Sinitsyna, O. V.; Zinoviev, K. E.

    2012-07-01

    A series of substituted amides of acrylic acid with various functional groups have been synthesized. On their basis there were obtained synthetic polymers which potentially could be employed as the probes capable of interaction with biomacromolecules. Atomic force microscopy was applied to study the interaction between DNA and the copolymers.

  12. Materials Research Capabilities

    NASA Technical Reports Server (NTRS)

    Stofan, Andrew J.

    1986-01-01

    Lewis Research Center, in partnership with U.S. industry and academia, has long been a major force in developing advanced aerospace propulsion and power systems. One key aspect that made many of these systems possible has been the availability of high-performance, reliable, and long-life materials. To assure a continuing flow of new materials and processing concepts, basic understanding to guide such innovation, and technological support for development of major NASA systems, Lewis has supported a strong in-house materials research activity. Our researchers have discovered new alloys, polymers, metallic composites, ceramics, coatings, processing techniques, etc., which are now also in use by U.S. industry. This brochure highlights selected past accomplishments of our materials research and technology staff. It also provides many examples of the facilities available with which we can conduct materials research. The nation is now beginning to consider integrating technology for high-performance supersonic/hypersonic aircraft, nuclear space power systems, a space station, and new research areas such as materials processing in space. As we proceed, I am confident that our materials research staff will continue to provide important contributions which will help our nation maintain a strong technology position in these areas of growing world competition. Lewis Research Center, in partnership with U.S. industry and academia, has long been a major force in developing advanced aerospace propulsion and power systems. One key aspect that made many of these systems possible has been the availability of high-performance, reliable, and long-life materials. To assure a continuing flow of new materials and processing concepts, basic understanding to guide such innovation, and technological support for development of major NASA systems, Lewis has supported a strong in-house materials research activity. Our researchers have discovered new alloys, polymers, metallic composites

  13. Polymer inflation

    NASA Astrophysics Data System (ADS)

    Hassan, Syed Moeez; Husain, Viqar; Seahra, Sanjeev S.

    2015-03-01

    We consider the semiclassical dynamics of a free massive scalar field in a homogeneous and isotropic cosmological spacetime. The scalar field is quantized using the polymer quantization method assuming that it is described by a Gaussian coherent state. For quadratic potentials, the semiclassical equations of motion yield a universe that has an early "polymer inflation" phase which is generic and almost exactly de Sitter, followed by an epoch of slow-roll inflation. We compute polymer corrections to the slow-roll formalism, and discuss the probability of inflation in this model using a physical Hamiltonian arising from time gauge fixing. We also show how in this model, it is possible to obtain a significant amount of slow-roll inflation from sub-Planckian initial data, hence circumventing some of the criticisms of standard scenarios. These results show the extent to which a quantum gravity motivated quantization method affects early universe dynamics.

  14. Quantifying Capability Vectors

    DTIC Science & Technology

    1998-06-01

    at night. The components that enable this capability are a 12-V dry cell battery, a lightbulb , cables, and an on/off switch. The battery is hooked...to the lightbulb by conducting cables. The cables electrically connect the battery to the lightbulb , with the on/off switch connected in-between to...Finally, each succeeding cell that is drained Switch + 1 + -T vT v Ti -T i-T / -T k Lightbulb Dry Cells Figure 2. Components Which Enable the

  15. IAC - INTEGRATED ANALYSIS CAPABILITY

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1994-01-01

    The objective of the Integrated Analysis Capability (IAC) system is to provide a highly effective, interactive analysis tool for the integrated design of large structures. With the goal of supporting the unique needs of engineering analysis groups concerned with interdisciplinary problems, IAC was developed to interface programs from the fields of structures, thermodynamics, controls, and system dynamics with an executive system and database to yield a highly efficient multi-disciplinary system. Special attention is given to user requirements such as data handling and on-line assistance with operational features, and the ability to add new modules of the user's choice at a future date. IAC contains an executive system, a data base, general utilities, interfaces to various engineering programs, and a framework for building interfaces to other programs. IAC has shown itself to be effective in automatic data transfer among analysis programs. IAC 2.5, designed to be compatible as far as possible with Level 1.5, contains a major upgrade in executive and database management system capabilities, and includes interfaces to enable thermal, structures, optics, and control interaction dynamics analysis. The IAC system architecture is modular in design. 1) The executive module contains an input command processor, an extensive data management system, and driver code to execute the application modules. 2) Technical modules provide standalone computational capability as well as support for various solution paths or coupled analyses. 3) Graphics and model generation interfaces are supplied for building and viewing models. Advanced graphics capabilities are provided within particular analysis modules such as INCA and NASTRAN. 4) Interface modules provide for the required data flow between IAC and other modules. 5) User modules can be arbitrary executable programs or JCL procedures with no pre-defined relationship to IAC. 6) Special purpose modules are included, such as MIMIC (Model

  16. IAC - INTEGRATED ANALYSIS CAPABILITY

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1994-01-01

    The objective of the Integrated Analysis Capability (IAC) system is to provide a highly effective, interactive analysis tool for the integrated design of large structures. With the goal of supporting the unique needs of engineering analysis groups concerned with interdisciplinary problems, IAC was developed to interface programs from the fields of structures, thermodynamics, controls, and system dynamics with an executive system and database to yield a highly efficient multi-disciplinary system. Special attention is given to user requirements such as data handling and on-line assistance with operational features, and the ability to add new modules of the user's choice at a future date. IAC contains an executive system, a data base, general utilities, interfaces to various engineering programs, and a framework for building interfaces to other programs. IAC has shown itself to be effective in automatic data transfer among analysis programs. IAC 2.5, designed to be compatible as far as possible with Level 1.5, contains a major upgrade in executive and database management system capabilities, and includes interfaces to enable thermal, structures, optics, and control interaction dynamics analysis. The IAC system architecture is modular in design. 1) The executive module contains an input command processor, an extensive data management system, and driver code to execute the application modules. 2) Technical modules provide standalone computational capability as well as support for various solution paths or coupled analyses. 3) Graphics and model generation interfaces are supplied for building and viewing models. Advanced graphics capabilities are provided within particular analysis modules such as INCA and NASTRAN. 4) Interface modules provide for the required data flow between IAC and other modules. 5) User modules can be arbitrary executable programs or JCL procedures with no pre-defined relationship to IAC. 6) Special purpose modules are included, such as MIMIC (Model

  17. National Transportable Telecommunications Capability

    NASA Astrophysics Data System (ADS)

    Boheim, Kenneth B.; Dayton, Allen D.

    The National Communications System (NCS) in its role of planning for emergency telecommunications restoration has contracted for a deployable asset to be available for National Security and Emergency Preparedness (NS/EP) uses. This asset, the National Transportable Telecommunications Capability (NTTC) is a transportable package consisting of a cellular switch and base station in a shelter, a microwave radio system, a small telephone switch, and a mobile satellite terminal. This package will operate over a Ku-band domestic satellite back into a gateway station and into the packet switching network. A description of the system is provided, an overview of deployment issues is given, and potential enhancements are presented.

  18. On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers

    NASA Astrophysics Data System (ADS)

    Wan, Lei; Chandrahalim, Hengky; Chen, Cong; Chen, Qiushu; Mei, Ting; Oki, Yuji; Nishimura, Naoya; Guo, L. Jay; Fan, Xudong

    2017-08-01

    We developed a chip-scale temperature sensor with a high sensitivity of 228.6 pm/°C based on a rhodamine 6G (R6G)-doped SU-8 whispering gallery mode microring laser. The optical mode was largely distributed in a polymer core layer with a 30 μm height that provided detection sensitivity, and the chemically robust fused-silica microring resonator host platform guaranteed its versatility for investigating different functional polymer materials with different refractive indices. As a proof of concept, a dye-doped hyperbranched polymer (TZ-001) microring laser-based temperature sensor was simultaneously developed on the same host wafer and characterized using a free-space optics measurement setup. Compared to TZ-001, the SU-8 polymer microring laser had a lower lasing threshold and a better photostability. The R6G-doped SU-8 polymer microring laser demonstrated greater adaptability as a high-performance temperature-sensing element. In addition to the sensitivity, the temperature resolutions for the laser-based sensors were also estimated to be 0.13 °C and 0.35 °C, respectively. The rapid and simple implementation of micrometer-sized temperature sensors that operate in the range of 31 - 43 °C enables their potential application in thermometry.

  19. Predicting radiation sensitivity of polymers

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Price, P. B.; Kinoshita, K.; Willson, C. G.

    1982-01-01

    Recently two independent applications have emerged for highly radiation-sensitive polymers: as resists for production of microelectronic circuitry and as materials to record the tracks of energetic nuclear particles. The relief images used for masking in resist materials are generated by radiation-induced differential dissolution rates, whereas the techniques used in recording nuclear particle tracks employ differential etching processes, that is, development by a chemical etchant that actually degrades the polymer. It is found that the sensitivity of materials to these very different processes is related to their gamma-ray scission efficiency. This correlation provides a predictive capability.

  20. Crosslinked polymer nanoparticles containing single conjugated polymer chains

    NASA Astrophysics Data System (ADS)

    Ponzio, Rodrigo A.; Marcato, Yésica L.; Gómez, María L.; Waiman, Carolina V.; Chesta, Carlos A.; E Palacios, Rodrigo

    2017-06-01

    Conjugated polymer nanoparticles are widely used in fluorescent labeling and sensing, as they have mean radii between 5 and 100 nm, narrow size dispersion, high brightness, and are photochemically stable, allowing single particle detection with high spatial and temporal resolution. Highly crosslinked polymers formed by linking individual chains through covalent bonds yield high-strength rigid materials capable of withstanding dissolution by organic solvents. Hence, the combination of crosslinked polymers and conjugated polymers in a nanoparticulated material presents the possibility of interesting applications that require the combined properties of constituent polymers and nanosized dimension. In the present work, F8BT@pEGDMA nanoparticles composed of poly(ethylene glycol dimethacrylate) (pEGDMA; a crosslinked polymer) and containing the commercial conjugated polymer poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) were synthesized and characterized. Microemulsion polymerization was applied to produce F8BT@pEDGMA particles with nanosized dimensions in a ∼25% yield. Photophysical and size distribution properties of F8BT@pEDGMA nanoparticles were evaluated by various methods, in particular single particle fluorescence microscopy techniques. The results demonstrate that the crosslinking/polymerization process imparts structural rigidity to the F8BT@pEDGMA particles by providing resistance against dissolution/disintegration in organic solvents. The synthesized fluorescent crosslinked nanoparticles contain (for the most part) single F8BT chains and can be detected at the single particle level, using fluorescence microscopy, which bodes well for their potential application as molecularly imprinted polymer fluorescent nanosensors with high spatial and temporal resolution.