NASA Astrophysics Data System (ADS)
Elantkowska, Magdalena; Ruczkowski, Jarosław; Sikorski, Andrzej; Dembczyński, Jerzy
2017-11-01
A parametric analysis of the hyperfine structure (hfs) for the even parity configurations of atomic terbium (Tb I) is presented in this work. We introduce the complete set of 4fN-core states in our high-performance computing (HPC) calculations. For calculations of the huge hyperfine structure matrix, requiring approximately 5000 hours when run on a single CPU, we propose the methods utilizing a personal computer cluster or, alternatively a cluster of Microsoft Azure virtual machines (VM). These methods give a factor 12 performance boost, enabling the calculations to complete in an acceptable time.
Ground-state hyperfine splitting for Rb, Cs, Fr, Ba+, and Ra+
NASA Astrophysics Data System (ADS)
Ginges, J. S. M.; Volotka, A. V.; Fritzsche, S.
2017-12-01
We have systematically investigated the ground-state hyperfine structure for alkali-metal atoms 87Rb,133Cs, and 211Fr and alkali-metal-like ions +135Ba and +225Ra, which are of particular interest for parity violation studies. The quantum electrodynamic one-loop radiative corrections have been rigorously evaluated within an extended Furry picture employing core-Hartree and Kohn-Sham atomic potentials. Moreover, the effect of the nuclear magnetization distribution on the hyperfine structure intervals has been studied in detail and its uncertainty has been estimated. Finally, the theoretical description of the hyperfine structure has been completed with full many-body calculations performed in the all-orders correlation potential method.
NASA Astrophysics Data System (ADS)
Başar, Gü.; Güzelçimen, F.; Öztürk, I. K.; Er, A.; Bingöl, D.; Kröger, S.; Başar, Gö.
2017-11-01
The hyperfine structure of 57 spectral lines of neutral vanadium has been investigated using a hollow cathode lamp by laser-induced fluorescence spectroscopy in the wavelength range from 750 nm to 860 nm. New magnetic dipole hyperfine structure constants A have been determined for 14 atomic energy levels and new electric quadrupole hyperfine structure constants B for two levels. Additionally previously published hyperfine structure constants A of 56 levels have been measured again. In five cases, the old A values have been rejected and replaced by improved values.
Hyperfine structure investigations for the odd-parity configuration system in atomic holmium
NASA Astrophysics Data System (ADS)
Stefanska, D.; Furmann, B.
2018-02-01
In this work new experimental results of the hyperfine structure (hfs) in the holmium atom are reported, concerning the odd-parity level system. Investigations were performed by the method of laser induced fluorescence in a hollow cathode discharge lamp on 97 spectral lines in the visible part of the spectrum. Hyperfine structure constants: magnetic dipole - A and electric quadrupole - B for 40 levels were determined for the first time; for another 21 levels the hfs constants available in the literature were remeasured. Results for the A constants can be viewed as fully reliable; for B constants further possibilities of improving the accuracy are considered.
Hyperfine structure of 2Σ molecules containing alkaline-earth-metal atoms
NASA Astrophysics Data System (ADS)
Aldegunde, Jesus; Hutson, Jeremy M.
2018-04-01
Ultracold molecules with both electron spin and an electric dipole moment offer new possibilities in quantum science. We use density-functional theory to calculate hyperfine coupling constants for a selection of molecules important in this area, including RbSr, LiYb, RbYb, CaF, and SrF. We find substantial hyperfine coupling constants for the fermionic isotopes of the alkaline-earth-metal and Yb atoms. We discuss the hyperfine level patterns and Zeeman splittings expected for these molecules. The results will be important both to experiments aimed at forming ultracold open-shell molecules and to their applications.
NASA Astrophysics Data System (ADS)
Stefanska, D.; Ruczkowski, J.; Elantkowska, M.; Furmann, B.
2018-04-01
In this work new experimental results concerning the hyperfine structure (hfs) for the even-parity level system of the holmium atom (Ho I) were obtained; additionally, hfs data obtained recently as a by-product in investigations of the odd-parity level system were summarized. In the present work the values of the magnetic dipole and the electric quadrupole hfs constants A and B were determined for 24 even-parity levels, for 14 of them for the first time. On the basis of these results, as well as on available literature data, a parametric study of the fine structure and the hyperfine structure for the even-parity configurations of atomic holmium was performed. A multi-configuration fit of 7 configurations was carried out, taking into account second-order of the perturbation theory. For unknown electronic levels predicted values of the level energies and hfs constants are given, which can facilitate further experimental investigations.
Ultrafast time scale X-rotation of cold atom storage qubit using Rubidium clock states
NASA Astrophysics Data System (ADS)
Song, Yunheung; Lee, Han-Gyeol; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook
2017-04-01
Ultrafast-time-scale optical interaction is a local operation on the electronic subspace of an atom, thus leaving its nuclear state intact. However, because atomic clock states are maximally entangled states of the electronic and nuclear degrees of freedom, their entire Hilbert space should be accessible only with local operations and classical communications (LOCC). Therefore, it may be possible to achieve hyperfine qubit gates only with electronic transitions. Here we show an experimental implementation of ultrafast X-rotation of atomic hyperfine qubits, in which an optical Rabi oscillation induces a geometric phase between the constituent fine-structure states, thus bringing about the X-rotation between the two ground hyperfine levels. In experiments, cold atoms in a magneto-optical trap were controlled with a femtosecond laser pulse from a Ti:sapphire laser amplifier. Absorption imaging of the as-controlled atoms initially in the ground hyperfine state manifested polarization dependence, strongly agreeing with the theory. The result indicates that single laser pulse implementations of THz clock speed qubit controls are feasible for atomic storage qubits. Samsung Science and Technology Foundation [SSTF-BA1301-12].
NASA Astrophysics Data System (ADS)
Pal'Chikov, V. G.
2000-08-01
A quantum-electrodynamical (QED) perturbation theory is developed for hydrogen and hydrogen-like atomic systems with interaction between bound electrons and radiative field being treated as the perturbation. The dependence of the perturbed energy of levels on hyperfine structure (hfs) effects and on the higher-order Stark effect is investigated. Numerical results have been obtained for the transition probability between the hfs components of hydrogen-like bismuth.
Hyperfine Structure Constants of Energetically High-lying Levels of Odd Parity of Atomic Vanadium
NASA Astrophysics Data System (ADS)
Güzelçimen, F.; Yapıcı, B.; Demir, G.; Er, A.; Öztürk, I. K.; Başar, Gö.; Kröger, S.; Tamanis, M.; Ferber, R.; Docenko, D.; Başar, Gü.
2014-09-01
High-resolution Fourier transform spectra of a vanadium-argon plasma have been recorded in the wavelength range of 365-670 nm (15,000-27,400 cm-1). Optical bandpass filters were used in the experimental setup to enhance the sensitivity of the Fourier transform spectrometer. In total, 138 atomic vanadium spectral lines showing resolved or partially resolved hyperfine structure have been analyzed to determine the magnetic dipole hyperfine structure constants A of the involved energy levels. One of the investigated lines has not been previously classified. As a result, the magnetic dipole hyperfine structure constants A for 90 energy levels are presented: 35 of them belong to the configuration 3d 34s4p and 55 to the configuration 3d 44p. Of these 90 constants, 67 have been determined for the first time, with 23 corresponding to the configuration 3d 34s4p and 44 to 3d 44p.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowmya, K.; Nagendra, K. N.; Sampoorna, M.
2015-12-01
Interference between magnetic substates of the hyperfine structure states belonging to different fine structure states of the same term influences the polarization for some of the diagnostically important lines of the Sun's spectrum, like the sodium and lithium doublets. The polarization signatures of this combined interference contain information on the properties of the solar magnetic fields. Motivated by this, in the present paper, we study the problem of polarized scattering on a two-term atom with hyperfine structure by accounting for the partial redistribution in the photon frequencies arising due to the Doppler motions of the atoms. We consider the scatteringmore » atoms to be under the influence of a magnetic field of arbitrary strength and develop a formalism based on the Kramers–Heisenberg approach to calculate the scattering cross section for this process. We explore the rich polarization effects that arise from various level-crossings in the Paschen–Back regime in a single scattering case using the lithium atomic system as a concrete example that is relevant to the Sun.« less
Subpicosecond X rotations of atomic clock states
NASA Astrophysics Data System (ADS)
Song, Yunheung; Lee, Han-gyeol; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook
2018-05-01
We demonstrate subpicosecond-timescale population transfer between the pair of hyperfine ground states of atomic rubidium using a single laser-pulse. Our scheme utilizes the geometric and dynamic phases induced during Rabi oscillation through the fine-structure excited state to construct an X rotation gate for the hyperfine-state qubit system. The experiment performed with a femtosecond laser and cold rubidium atoms, in a magnetooptical trap, shows over 98% maximal population transfer between the clock states.
Hyperfine structure in 229gTh3+ as a probe of the 229gTh→ 229mTh nuclear excitation energy.
Beloy, K
2014-02-14
We identify a potential means to extract the 229gTh→ 229mTh nuclear excitation energy from precision microwave spectroscopy of the 5F(5/2,7/2) hyperfine manifolds in the ion 229gTh3+. The hyperfine interaction mixes this ground fine structure doublet with states of the nuclear isomer, introducing small but observable shifts to the hyperfine sublevels. We demonstrate how accurate atomic structure calculations may be combined with the measurement of the hyperfine intervals to quantify the effects of this mixing. Further knowledge of the magnetic dipole decay rate of the isomer, as recently reported, allows an indirect determination of the nuclear excitation energy.
Sensitive sub-Doppler nonlinear spectroscopy for hyperfine-structure analysis using simple atomizers
NASA Astrophysics Data System (ADS)
Mickadeit, Fritz K.; Kemp, Helen; Schafer, Julia; Tong, William M.
1998-05-01
Laser wave-mixing spectroscopy is presented as a sub-Doppler method that offers not only high spectral resolution, but also excellent detection sensitivity. It offers spectral resolution suitable for hyperfine structure analysis and isotope ratio measurements. In a non-planar backward- scattering four-wave mixing optical configuration, two of the three input beams counter propagate and the Doppler broadening is minimized, and hence, spectral resolution is enhanced. Since the signal is a coherent beam, optical collection is efficient and signal detection is convenient. This simple multi-photon nonlinear laser method offers un usually sensitive detection limits that are suitable for trace-concentration isotope analysis using a few different types of simple analytical atomizers. Reliable measurement of hyperfine structures allows effective determination of isotope ratios for chemical analysis.
The Hyperfine Structure of the Ground State in the Muonic Helium Atoms
NASA Astrophysics Data System (ADS)
Aznabayev, D. T.; Bekbaev, A. K.; Korobov, V. I.
2018-05-01
Non-relativistic ionization energies 3He2+μ-e- and 4He2+μ-e- of helium-muonic atoms are calculated for ground states. The calculations are based on the variational method of the exponential expansion. Convergence of the variational energies is studied by an increasing of a number of the basis functions N. This allows to claim that the obtained energy values have 26 significant digits for ground states. With the obtained results we calculate hyperfine splitting of the muonic helium atoms.
Fine- and hyperfine structure investigations of even configuration system of atomic terbium
NASA Astrophysics Data System (ADS)
Stefanska, D.; Elantkowska, M.; Ruczkowski, J.; Furmann, B.
2017-03-01
In this work a parametric study of the fine structure (fs) and the hyperfine structure (hfs) for the even-parity configurations of atomic terbium (Tb I) is presented, based in considerable part on the new experimental results. Measurements on 134 spectral lines were performed by laser induced fluorescence (LIF) in a hollow cathode discharge lamp; on this basis, the hyperfine structure constants A and B were determined for 52 even-parity levels belonging to the configurations 4f85d6s2, 4f85d26s or 4f96s6p; in all the cases those levels were involved in the transitions investigated as the lower levels. For 40 levels the hfs was examined for the first time, and for the remaining 12 levels the new measurements supplement our earlier results. As a by-product, also preliminary values of the hfs constants for 84 odd-parity levels were determined (the investigations of the odd-parity levels system in the terbium atom are still in progress). This huge amount of new experimental data, supplemented by our earlier published results, were considered for the fine and hyperfine structure analysis. A multi-configuration fit of 7 configurations was performed, taking into account second-order of perturbation theory, including the effects of closed shell-open shell excitations. Predicted values of the level energies, as well as of magnetic dipole and electric quadrupole hyperfine structure constants A and B, are quoted in cases when no experimental values are available. By combining our experimental data with our own semi-empirical procedure it was possible to identify correctly the lower and upper level of the line 544.1440 nm measured by Childs with the use of the atomic-beam laser-rf double-resonance technique (Childs, J Opt Soc Am B 9;1992:191-6).
Nagaoka's atomic model and hyperfine interactions.
Inamura, Takashi T
2016-01-01
The prevailing view of Nagaoka's "Saturnian" atom is so misleading that today many people have an erroneous picture of Nagaoka's vision. They believe it to be a system involving a 'giant core' with electrons circulating just outside. Actually, though, in view of the Coulomb potential related to the atomic nucleus, Nagaoka's model is exactly the same as Rutherford's. This is true of the Bohr atom, too. To give proper credit, Nagaoka should be remembered together with Rutherford and Bohr in the history of the atomic model. It is also pointed out that Nagaoka was a pioneer of understanding hyperfine interactions in order to study nuclear structure.
NASA Technical Reports Server (NTRS)
Dobson, Chris C.; Sung, C. C.
1998-01-01
Optical pumping of the ground states of sodium can radically alter the shape of the laser induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections for (Delta)F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), (Delta)F cross sections. The hyperfine cross sections measured using this method, which is thought to be novel, are compared with cross sections for transitions involving polarized magnetic substates, m(sub F), measured previously using polarization sensitive absorption. Also, fine structure transition ((Delta)J) cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.
NASA Technical Reports Server (NTRS)
Dobson, Chris C.; Sung, C. C.
1999-01-01
Optical pumping of the ground states of sodium can radically alter the shape of the laser-induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections lor DELTA.F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), DELTA.F cross sections. The hyperfine cross sections measured using this method, which to our knowledge is novel, are compared with cross sections for transitions involving polarized magnetic substates m(sub F) measured previously using polarization sensitive absorption. Also, fine-structure transition cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.
Laser pumping Cs atom magnetometer of theory research based on gradient tensor measuring
NASA Astrophysics Data System (ADS)
Yang, Zhang; Chong, Kang; Wang, Qingtao; Lei, Cheng; Zheng, Caiping
2011-02-01
At present, due to space exploration, military technology, geological exploration, magnetic navigation, medical diagnosis and biological magnetic fields study of the needs of research and development, the magnetometer is given strong driving force. In this paper, it will discuss the theoretical analysis and system design of laser pumping cesium magnetometer, cesium atomic energy level formed hyperfine structure with the I-J coupling, the hyperfine structure has been further split into Zeeman sublevels for the effects of magnetic field. To use laser pump and RF magnetic field make electrons transition in the hyperfine structure to produce the results of magneto-optical double resonance, and ultimately through the resonant frequency will be able to achieve accurate value of the external magnetic field. On this basis, we further have a discussion about magnetic gradient tensor measuring method. To a large extent, it increases the magnetic field measurement of information.
Nagaoka’s atomic model and hyperfine interactions
INAMURA, Takashi T.
2016-01-01
The prevailing view of Nagaoka’s “Saturnian” atom is so misleading that today many people have an erroneous picture of Nagaoka’s vision. They believe it to be a system involving a ‘giant core’ with electrons circulating just outside. Actually, though, in view of the Coulomb potential related to the atomic nucleus, Nagaoka’s model is exactly the same as Rutherford’s. This is true of the Bohr atom, too. To give proper credit, Nagaoka should be remembered together with Rutherford and Bohr in the history of the atomic model. It is also pointed out that Nagaoka was a pioneer of understanding hyperfine interactions in order to study nuclear structure. PMID:27063182
Hyperfine Quantum Beat Spectroscopy of the Cs 8p level with Pulsed Pump-Probe Technique
NASA Astrophysics Data System (ADS)
Bayram, Burcin; Popov, Oleg; Kelly, Stephen; Boyle, Patrick; Salsman, Andrew
2013-05-01
Quantum beats arising from the hyperfine interaction were measured in a three-level excitation (lambda) scheme: pump for the 6s2S1 / 2 --> 8p2P3 / 2 and stimulated emission pump (probe) for the 8p2P3 / 2 --> 5d2D5 / 2 transitions of atomic cesium. In the technique, pump laser instantaneously excites the hot atomic vapor and creates anisotropy in the 8p2P3 / 2 level, and probe laser comes after some time delay. Delaying the probe time allows us to map out the motion of the polarized atoms like a stroboscope. According to the observed evolution of the hyperfine structure dependent parameters, e.g. alignment and atomic polarization, by delaying the arrival time of the stimulated emission pump laser (SEP), precise values of the magnetic dipole and electric quadrupole coefficients are obtained with an improved precision over previous results. The usefulness of the PUMP-SEP excitation scheme for the polarization hyperfine quantum beat measurements without complications from the Doppler effect will also be discussed. The financial support of the Research Corporation under the Grant number CC7133 and MiamiUniversity, College of the Arts and Sciences are acknowledged.
The nuclear magnetic moment of 208Bi and its relevance for a test of bound-state strong-field QED
NASA Astrophysics Data System (ADS)
Schmidt, S.; Billowes, J.; Bissell, M. L.; Blaum, K.; Garcia Ruiz, R. F.; Heylen, H.; Malbrunot-Ettenauer, S.; Neyens, G.; Nörtershäuser, W.; Plunien, G.; Sailer, S.; Shabaev, V. M.; Skripnikov, L. V.; Tupitsyn, I. I.; Volotka, A. V.; Yang, X. F.
2018-04-01
The hyperfine structure splitting in the 6p3 3/2 4S → 6p2 7 s 1/2 4P transition at 307 nm in atomic 208Bi was measured with collinear laser spectroscopy at ISOLDE, CERN. The hyperfine A and B factors of both states were determined with an order of magnitude improved accuracy. Based on these measurements, theoretical input for the hyperfine structure anomaly, and results from hyperfine measurements on hydrogen-like and lithium-like 209Bi80+,82+, the nuclear magnetic moment of 208Bi has been determined to μ (208Bi) = + 4.570 (10)μN. Using this value, the transition energy of the ground-state hyperfine splitting in hydrogen-like and lithium-like 208Bi80+,82+ and their specific difference of -67.491(5)(148) meV are predicted. This provides a means for an experimental confirmation of the cancellation of nuclear structure effects in the specific difference in order to exclude such contributions as the cause of the hyperfine puzzle, the recently reported 7-σ discrepancy between experiment and bound-state strong-field QED calculations of the specific difference in the hyperfine structure splitting of 209Bi80+,82+.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, M.B.
1962-09-01
The method of atomic-beam radiofrequency spectroscopy was used to determine some nuclear and atomic properties of Lu/sup 176m/, Br/sup 80/, Br/sup 80m/, and I/sup 132/. Hyperfine structure me asurements were raade to determine the magnetic dipole interaction constants and the electric quadrupole interaction constants of all these isotopes. Also the nuclear spin and the electronic g/sub J/ factor were measured for Lu/sup 176m/, and the nuclear magnetic dipole moments and the electric quadrupole moments for the isotopes were calculated. All results are listed. 62 references. (auth)
Innovation and reliability of atomic standards for PTTI applications
NASA Technical Reports Server (NTRS)
Kern, R.
1981-01-01
Innovation and reliability in hyperfine frequency standards and clock systems are discussed. Hyperfine standards are defined as those precision frequency sources and clocks which use a hyperfine atomic transition for frequency control and which have realized significant commercial production and acceptance (cesium, hydrogen, and rubidium atoms). References to other systems such as thallium and ammonia are excluded since these atomic standards have not been commercially exploited in this country.
Structure and magnetic behaviors of melt-spun SmFeSiB ribbons and their nitrides
NASA Astrophysics Data System (ADS)
Luo, Y.; Zhang, K.; Li, K. S.; Yu, D. B.; Ling, J. J.; Men, K.; Dou, Q. Y.; Yan, W. L.; Xie, J. J.; Yang, Y. F.
2016-05-01
SmFe9.3+xSi0.2B0.1 (x=0, 0.5, 1.0) ribbons and their nitrides were prepared by melt-spinning, followed by annealing and subsequent nitriding. The structure and magnetic properties have been investigated by means of powder X-ray diffraction, vibrating sample magnetometer and Mossbauer spectroscopy. Rietveld analysis shows that the augment of Fe content gives rise to an increase of the c/a ratio and cell volume. The increasing amount of Fe atoms occupying the 2e sites results in the change of initial structure. It is indicated that the isomer shift of 3g and 6l atom remains quasi-constant while the 2e atom shows a noticeable increase with the increase of iron content, which further conforms the preferential occupation of excessive Fe atoms at this site. Consistent with Tc, the mean hyperfine field 〈Bhf〉 has the highest value of 25.7 T when x=0.5. The hyperfine fields at different Fe sites follow the order H2e>H3g>H6l. The highest curie temperature of 477.68 K and the hyperfine field of 25.7 T in the as-quenched ribbons were obtained when x=0.5. Meanwhile, the highest magnetic properties of Hcj=4.31 kOe, (BH)m=3.5 MGOe in the nitride powders were found.
Ultrafast Pulse Sequencing for Fast Projective Measurements of Atomic Hyperfine Qubits
NASA Astrophysics Data System (ADS)
Ip, Michael; Ransford, Anthony; Campbell, Wesley
2015-05-01
Projective readout of quantum information stored in atomic hyperfine structure typically uses state-dependent CW laser-induced fluorescence. This method requires an often sophisticated imaging system to spatially filter out the background CW laser light. We present an alternative approach that instead uses simple pulse sequences from a mode-locked laser to affect the same state-dependent excitations in less than 1 ns. The resulting atomic fluorescence occurs in the dark, allowing the placement of non-imaging detectors right next to the atom to improve the qubit state detection efficiency and speed. We also discuss methods of Doppler cooling with mode-locked lasers for trapped ions, where the creation of the necessary UV light is often difficult with CW lasers.
Optogalvanic spectroscopy of lanthanum hyperfine structure
NASA Astrophysics Data System (ADS)
Nelson, Amanda; Hankes, Jessie; Banner, Patrick; Olmschenk, Steven
2017-04-01
Optogalvanic spectroscopy is a sensitive technique to measure optical transitions of atoms and ions produced in a high voltage discharge. Advantages of this technique include a comparatively simple optical setup and the ability to interrogate excited state transitions. Here, we use optogalavanic spectroscopy in a hollow cathode lamp to measure the hyperfine spectrum of several transitions in lanthanum. Hyperfine coefficients are determined for the corresponding energy levels and compared to available previous measurements. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.
Hyperfine structure parametrisation in Maple
NASA Astrophysics Data System (ADS)
Gaigalas, G.; Scharf, O.; Fritzsche, S.
2006-02-01
In hyperfine structure examinations, routine high resolution spectroscopy methods have to be combined with exact fine structure calculations. The so-called magnetic A and electric B factor of the fine structure levels allow to check for a correct fine structure analysis, to find errors in the level designation, to find new levels and to probe the electron wavefunctions and its mixing coefficients. This is done by parametrisation of these factors into different contributions of the subshell electrons, which are split further into their radial and spin-angular part. Due to the routine with which hyperfine structure measurements are done, a tool for keeping the necessary information together, performing checks online with the experiment and deriving standard quantities is of great help. MAPLE [Maple is a registered trademark of Waterloo Maple Inc.] is a highly-developed symbolic programming language, often referred to as the pocket calculator of the future. Packages for theoretical atomic calculation exist ( RACAH and JUCYS) and the language meets all the requirements to keep and present information accessible for the user in a fast and practical way. We slightly extended the RACAH package [S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51] and set up an environment for experimental hyperfine structure calculations, the HFS package. Supplying the fine structure and nuclear data, one is in the position to obtain information about the hyperfine spectrum, the different contributions to the splitting and to perform a least square fit of the radial parameters based on the semiempirical method. Experimentalist as well as theoretical physicist can do a complete hyperfine structure analysis using MAPLE. Program summaryTitle of program: H FS Catalogue number: ADXD Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXD Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computers for which the program is designed: All computers with a license of the computer algebra package MAPLE Installations: University of Kassel (Germany) Operating systems under which the program has been tested: Linux 9.0 Program language used:MAPLE, Release 7, 8 and 9 Memory required to execute with typical data: 5 MB No. of lines in distributed program, including test data, etc.: 34 300 No. of bytes in distributed program, including test data, etc.: 954 196 Distribution format: tar.gz Nature of the physical problem: Atomic state functions of an many configuration many electron atom with several open shells are defined by a number of quantum numbers, by their coupling and selection rules such as the Pauli exclusion principal or parity conservation. The matrix elements of any one-particle operator acting on these wavefunctions can be analytically integrated up to the radial part [G. Gaigalas, O. Scharf, S. Fritzsche, Central European J. Phys. 2 (2004) 720]. The decoupling of the interacting electrons is general, the obtained submatrix element holds all the peculiarities of the operator in question. These so-called submatrix elements are the key to do hyperfine structure calculations. The interaction between the electrons and the atomic nucleus leads to an additional splitting of the fine structure lines, the hyperfine structure. The leading components are the magnetic dipole interaction defining the so-called A factor and the electric quadrupole interaction, defining the so-called B factor. They express the energetic splitting of the spectral lines. Moreover, they are obtained directly by experiments and can be calculated theoretically in an ab initio approach. A semiempirical approach allows the fitting of the radial parts of the wavefunction to the experimentally obtained A and B factors. Method of solution: Extending the existing csf_LS() and asf_LS() to several open shells and implementing a data structure level_LS() for the fine structure level, the atomic environment is defined in MAPLE. It is used in a general approach to decouple the interacting shells for any one-particle operator. Further submatrix elements for the magnetic dipole and electric quadrupole interaction are implemented, allowing to calculate the A and B factors up to the radial part. Several procedures for standard quantities of the hyperfine structure are defined, too. The calculations are accelerated by using a hyper-geometric approach for three, six and nine symbols. Restrictions onto the complexity of the problem: Only atomic state functions in nonrelativistic LS-coupling with states having l⩽3 are supported. Typical running time: The program replies promptly on most requests. The least square fit depends heavily on the number of levels and can take a few minutes.
NASA Astrophysics Data System (ADS)
Raithel, Georg
2017-04-01
Cold atomic systems have opened new frontiers in atomic and molecular physics, including several types of Rydberg molecules. Three types will be reviewed. Long-range Rydberg-ground molecules, first predicted in and observed in, are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules. A classification into Hund's cases will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction of neutral Rydberg-Rydberg molecules is dipole-dipole, while for ionic Rydberg molecules it is dipole-monopole. Higher-order terms are discussed. FUNDING: NSF (PHY-1506093), NNSF of China (61475123).
Observation of the hyperfine spectrum of antihydrogen.
Ahmadi, M; Alves, B X R; Baker, C J; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Cohen, S; Collister, R; Eriksson, S; Evans, A; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Johnson, M A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Mathers, M; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; Stracka, S; Stutter, G; So, C; Tharp, T D; Thompson, J E; Thompson, R I; van der Werf, D P; Wurtele, J S
2017-08-02
The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 10 13 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger's relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen-the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 10 4 . This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.
Observation of the hyperfine spectrum of antihydrogen
NASA Astrophysics Data System (ADS)
Ahmadi, M.; Alves, B. X. R.; Baker, C. J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Ishida, A.; Johnson, M. A.; Jones, S. A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Mathers, M.; Maxwell, D.; McKenna, J. T. K.; Menary, S.; Michan, J. M.; Momose, T.; Munich, J. J.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; Stracka, S.; Stutter, G.; So, C.; Tharp, T. D.; Thompson, J. E.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.
2017-08-01
The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 1013 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger’s relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen—the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 104. This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.
Schröder, Leif
2007-01-01
The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the A MX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed.
NASA Astrophysics Data System (ADS)
Collauto, A.; Feintuch, A.; Qi, M.; Godt, A.; Meade, T.; Goldfarb, D.
2016-02-01
Complexes of the Gd(III) ion are currently being established as spin labels for distance determination in biomolecules by pulse dipolar spectroscopy. Because Gd(III) is an f ion, one expects electron spin density to be localized on the Gd(III) ion - an important feature for the mentioned application. Most of the complex ligands have nitrogens as Gd(III) coordinating atoms. Therefore, measurement of the 14N hyperfine coupling gives access to information on the localization of the electron spin on the Gd(III) ion. We carried out W-band, 1D and 2D 14N and 1H ENDOR measurements on the Gd(III) complexes Gd-DOTA, Gd-538, Gd-595, and Gd-PyMTA that serve as spin labels for Gd-Gd distance measurements. The obtained 14N spectra are particularly well resolved, revealing both the hyperfine and nuclear quadrupole splittings, which were assigned using 2D Mims ENDOR experiments. Additionally, the spectral contributions of the two different types of nitrogen atoms of Gd-PyMTA, the aliphatic N atom and the pyridine N atom, were distinguishable. The 14N hyperfine interaction was found to have a very small isotropic hyperfine component of -0.25 to -0.37 MHz. Furthermore, the anisotropic hyperfine interactions with the 14N nuclei and with the non-exchangeable protons of the ligands are well described by the point-dipole approximation using distances derived from the crystal structures. We therefore conclude that the spin density is fully localized on the Gd(III) ion and that the spin density distribution over the nuclei of the ligands is rightfully ignored when analyzing distance measurements.
NASA Astrophysics Data System (ADS)
Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.
1991-08-01
We present a complete analysis of the hyperfine structure of the MnH A 7Π-X 7Σ+ (0,0) band near 5680 Å, studied with sub-Doppler resolution by intermodulated fluorescence spectroscopy. Magnetic hyperfine interactions involving both the 55Mn (I=5/2) and 1H (I=1/2) nuclear spins are observed as well as 55Mn electric quadrupole effects. The manganese Fermi contact interaction in the X 7Σ+ state is the dominant contributor to the observed hyperfine splittings; the ΔF=0, ΔN=0, ΔJ=±1 matrix elements of this interaction mix the electron spin components of the ground state quite strongly at low N, destroying the ``goodness'' of J as a quantum number and inducing rotationally forbidden, ΔJ=±2 and ±3 transitions. The hyperfine splittings of over 50 rotational transitions covering all 7 spin components of both states were analyzed and fitted by least squares, allowing the accurate determination of 14 different hyperfine parameters. Using single electronic configurations to describe the A 7Π and X 7Σ+ states and Herman-Skillman atomic radial wave functions to represent the molecular orbitals, we calculated a priori values for the 55Mn and 1H hyperfine parameters which agree closely with experiment. We show that the five high-spin coupled Mn 3d electrons do not contribute to the manganese hyperfine structure but are responsible for the observed proton magnetic dipolar couplings. Furthermore, the results suggest that the Mn 3d electrons are not significantly involved in bonding and demonstrate that the molecular hyperfine interactions may be quantitatively understood using simple physical interpretations.
NASA Astrophysics Data System (ADS)
Raithel, Georg; Zhao, Jianming
2017-04-01
Cold atomic systems have opened new frontiers at the interface of atomic and molecular physics. These include research on novel types of Rydberg molecules. Three types of molecules will be reviewed. Long-range, homonuclear Rydberg molecules, first predicted in [1] and observed in [2], are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium [3]). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules [3]. A classification into Hund's cases [3, 4, 5] will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction term of neutral Rydberg-Rydberg molecules is between two dipoles, while for ionic Rydberg molecules it is between a dipole and a monopole. NSF (PHY-1506093), NNSF of China (61475123).
High-precision optical measurement of the 2S hyperfine interval in atomic hydrogen.
Kolachevsky, N; Fischer, M; Karshenboim, S G; Hänsch, T W
2004-01-23
We have applied an optical method to the measurement of the 2S hyperfine interval in atomic hydrogen. The interval has been measured by means of two-photon spectroscopy of the 1S-2S transition on a hydrogen atomic beam shielded from external magnetic fields. The measured value of the 2S hyperfine interval is equal to 177 556 860(16) Hz and represents the most precise measurement of this interval to date. The theoretical evaluation of the specific combination of 1S and 2S hyperfine intervals D21 is in fair agreement (within 1.4 sigma) with the value for D21 deduced from our measurement.
Isotropic Inelastic Collisions in a Multiterm Atom with Hyperfine Structure
NASA Astrophysics Data System (ADS)
Belluzzi, Luca; Landi Degl'Innocenti, Egidio; Trujillo Bueno, Javier
2015-10-01
A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron-atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D1 and D2 lines is presented.
Hyperfine structure of atomic fluorine (F I)
NASA Astrophysics Data System (ADS)
Huo, Xiaoxue; Deng, Lunhua; Windholz, L.; Mu, Xiuli; Wang, Hailing
2018-01-01
A high resolution absorption spectrum of neutral fluorine(F I) was observed around 800 nm using concentration modulation absorption spectroscopy with a tunable Ti : Sapphire laser. The fluorine atoms were produced by discharging the mixed gases of helium and sulfur hexafluoride (SF6) in a glass tube. Thirty four hyperfine structure (hfs) resolved transitions were analyzed to obtain 23 magnetic dipole hfs constants A for 2p4(3P)3s, 2p4(3P)3p and 2p4(3P)3d configurations. The hfs constants in 2p4(3P)3s and 2p4(3P)3p configurations were compared with those obtained from experiments and calculations. Fifteen constants in 2p4(3P)3d configuration were reported - to our knowledge - for the first time.
Hyperfine Structure and Abundances of Heavy Elements in 68 Tauri (HD 27962)
NASA Astrophysics Data System (ADS)
Martinet, S.; Monier, R.
2017-12-01
HD 27962, also known as 68 Tauri, is a Chemically Peculiar Am star member of the Hyades Open Cluster in the local arm of the Galaxy. We have modeled the high resolution SOPHIE (R=75000) spectrum of 68 Tauri using updated model atmosphere and spectrum synthesis to derive chemical abundances in its atmosphere. In particular, we have studied the effect of the inclusion of Hyperfine Structure of various Baryum isotopes on the determination of the Baryum abundance in 68 Tauri. We have also derived new abundances using updated accurate atomic parameters retrieved from the NIST database.
Chiral effective-field theory of the nucleon spin structure
NASA Astrophysics Data System (ADS)
Pascalutsa, Vladimir
2017-01-01
I will review the recent chiral EFT calculations of the nucleon (spin) structure functions at low Q2, confronted with the Jefferson Lab measurements. The moments of the structure functions correspond with various polarizabilities, and I will explain why one of them - δLT - is especially interesting. I will also discuss how the spin structure functions at low Q enter in the atomic calculations of the hyperfine splittings and how they are impacting the ongoing experimental program at PSI (Switzerland) to measure the ground-state hyperfine splitting of muonic hydrogen. Partially supported by the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center SFB 1044 [The Low-Energy Frontier of the Standard Model].
Research investigation directed toward extending the useful range of the electromagnetic spectrum
NASA Technical Reports Server (NTRS)
Hartmann, S. R.
1971-01-01
The lifetimes and fine structure of He(-) were studied using time-of-flight techniques and quenching by a static axial magnetic field. Using level-crossing spectroscopy the hyperfine constants A and B and the lifetime of the 3 2P3/2 state of Li-7 were measured. Polarization of the Ru 7S level was created as a first step in determining the hyperfine structure of the alkali excited S state. The parametric interaction between light and microwaves in optically pumped Rb-87 vapor were investigated. Measurements and analyses of transitions in formaldehyde and its isotopic species and in the lowest two excited vibrational states of H2CO were also made, as well as of transitions in furan, pyrrole, formic acid, and cyanoacetylene. The Hanle effect was studied in the NO molecule, and RF oscillators were developed with flat, wideband output to observe excited state hyperfine transitions at zero field. Data was generated on the time-dependent behavior of photon echoes in ruby. Stimulated Raman scattering was studied in atomic Tl vapor. A Q switched, temperature-tuned ruby laser was developed which operates between 6934 and 6938 A. The frequency shift due to resonant interaction between identical radiating atoms was calculated.
Ground-State Hyperfine Structure of Heavy Hydrogen-Like Ions
NASA Astrophysics Data System (ADS)
Kühl, T.; Borneis, S.; Dax, A.; Engel, T.; Faber, S.; Gerlach, M.; Holbrow, C.; Huber, G.; Marx, D.; Merz, P.; Quint, W.; Schmitt, F.; Seelig, P.; Tomaselli, M.; Winter, H.; Wuertz, M.; Beckert, K.; Franzke, B.; Nolden, F.; Reich, H.; Steck, M.
Contributions of quantum electrodynamics (QED) to the combined electric and magnetic interaction between the electron and the nucleus can be studied by optical spectroscopy in high-Z hydrogen-like heavy ions. The transition studied is the ground-state hyperfine structure transition, well known from the 21 cm line in atomic hydrogen. The hyperfine splitting of the is ground state of hydrogen-like systems constitutes the simplest and most basic magnetic interaction in atomic physics. The Z3-increase leads to a transition energy in the UV-region of the optical spectrum for the case of Bi82+. At the same time, the QED correction rises to nearly 1 fraction of higher order contributions. This situation is particularly useful for a comparison with non-perturbative QED calculations. The combination of exceptionally intense electric and magnetic fields electric and magnetic fields is unique. This transition has become accessible to precision laser spectroscopy at the high-energy heavy-ion storage ring at GSI-Darmstadt in the hydrogen-like 209Bi82+ and 207Pb81+. In the meantime, 165Ho66+ and 185,187Re74+ were also studied with reduced resolution by conventional optical spectroscopy at the SuperEBIT ion trap at Lawrence Livermore National Laboratory.
ISOTROPIC INELASTIC COLLISIONS IN A MULTITERM ATOM WITH HYPERFINE STRUCTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belluzzi, Luca; Landi Degl’Innocenti, Egidio; Bueno, Javier Trujillo
2015-10-10
A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron–atom interaction ismore » described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D{sub 1} and D{sub 2} lines is presented.« less
The gj factor of a bound electron and the hyperfine structure splitting in hydrogenlike ions
NASA Astrophysics Data System (ADS)
Beier, Thomas
2000-12-01
The comparison between theory and experiment of the hyperfine structure splitting and the electronic gj factor in heavy highly charged ions provides a unique testing ground for quantum electrodynamics in the presence of strong electric and magnetic fields. A theoretical evaluation is presented of all quantum electrodynamical contributions to the ground-state hfs splitting in hydrogenlike and lithiumlike atoms as well as to the gj factor. Binding and nuclear effects are discussed as well. A comparison with the available experimental data is performed, and a detailed discussion of theoretical sources of uncertainty is included which is mainly due to insufficiently known nuclear properties.
Theory of long-range interactions for Rydberg states attached to hyperfine-split cores
NASA Astrophysics Data System (ADS)
Robicheaux, F.; Booth, D. W.; Saffman, M.
2018-02-01
The theory is developed for one- and two-atom interactions when the atom has a Rydberg electron attached to a hyperfine-split core state. This situation is relevant for some of the rare-earth and alkaline-earth atoms that have been proposed for experiments on Rydberg-Rydberg interactions. For the rare-earth atoms, the core electrons can have a very substantial total angular momentum J and a nonzero nuclear spin I . In the alkaline-earth atoms there is a single (s ) core electron whose spin can couple to a nonzero nuclear spin for odd isotopes. The resulting hyperfine splitting of the core state can lead to substantial mixing between the Rydberg series attached to different thresholds. Compared to the unperturbed Rydberg series of the alkali-metal atoms, the series perturbations and near degeneracies from the different parity states could lead to qualitatively different behavior for single-atom Rydberg properties (polarizability, Zeeman mixing and splitting, etc.) as well as Rydberg-Rydberg interactions (C5 and C6 matrices).
NUCLEAR CHEMISTRY ANNUAL REPORT 1970
DOE Office of Scientific and Technical Information (OSTI.GOV)
Authors, Various
Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.
ENDOR/ESR of Mn atoms and MnH molecules in solid argon
NASA Astrophysics Data System (ADS)
van Zee, R. J.; Garland, D. A.; Weltner, W., Jr.
1986-09-01
Mn atoms and MnH molecules, the latter formed by reaction between metal and hydrogen atoms, were trapped in solid argon and their ESR/ENDOR spectra measured at 4 K. At each pumping magnetic field two ENDOR lines were observed for 55Mn(I=5/2) atoms, corresponding to hyperfine transitions within the MS =±1/2 levels. Values of the hyperfine interaction constant and nuclear moment of 55Mn were derived from the six sets of data. For MnH, three sets of signals were detected: a proton ``matrix ENDOR'' line, transitions in the MS =0,±1 levels involving MI (55Mn)=1/2, 3/2, 5/2 levels, and proton transitions corresponding to νH and νH±aH. Analysis yielded the hyperfine constant aH =6.8(1) MHz and the nuclear quadrupole coupling constant Q'(55Mn)=-11.81(2) MHz. The latter compared favorably with a theoretical value derived earlier by Bagus and Schaefer. A higher term in the spin Hamiltonian appeared to be necessary to fit the proton hyperfine data.
The hyperfine excitation of OH radicals by He
NASA Astrophysics Data System (ADS)
Marinakis, Sarantos; Kalugina, Yulia; Lique, François
2016-04-01
Hyperfine-resolved collisions between OH radicals and He atoms are investigated using quantum scattering calculations and the most recent ab initio potential energy surface, which explicitly takes into account the OH vibrational motion. Such collisions play an important role in astrophysics, in particular in the modelling of OH masers. The hyperfine-resolved collision cross sections are calculated for collision energies up to 2500 cm-1 from the nuclear spin free scattering S-matrices using a recoupling technique. The collisional hyperfine propensities observed are discussed. As expected, the results from our work suggest that there is a propensity for collisions with ΔF = Δj. The new OH-He hyperfine cross sections are expected to significantly help in the modelling of OH masers from current and future astronomical observations. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.
NASA Astrophysics Data System (ADS)
Khan, Sajid; Yazdani-Kachoei, M.; Jalali-Asadabadi, S.; Ahmad, Iftikhar
2017-12-01
In this paper, we explore the structural and magnetic properties as well as electric field gradient (EFG), hyperfine field (HFF) and quadrupole coupling constant in actinide digallide AcGa2 (Ac = U, Np, Pu) using LDA, GGA, LDA+U, GGA+U and hybrid functional with Wu-Cohen Generalized Gradient approximation HF-WC. Relativistic effects of the electrons are considered by including spin-orbit coupling. The comparison of the calculated structural parameters and magnetic properties with the available experimental results confirms the consistency and hence effectiveness of our theoretical tools. The calculated magnetic moments demonstrate that UGa2 and NpGa2 are ferromagnetic while PuGa2 is antiferromagnetic in nature. The EFG of AcGa2 is reported for the first time. The HFF, EFG and quadrupole coupling constant in AcGa2 (Ac = U, Np, Pu) are mainly originated from f-f and p-p contributions of Ac atom and p-p contribution of Ga atom.
NASA Astrophysics Data System (ADS)
Kane, S. N.; Shah, M.; Satalkar, M.; Gehlot, K.; Kulriya, P. K.; Avasthi, D. K.; Sinha, A. K.; Modak, S. S.; Ghodke, N. L.; Reddy, V. R.; Varga, L. K.
2016-07-01
Effect of 80 MeV 16O6+ ion irradiation in amorphous Fe77P8Si3C5Al2Ga1B4 alloy is reported. Electronic energy loss induced modifications in the structural and, magnetic properties were monitored by synchrotron X-ray diffraction (SXRD), Mössbauer and, magnetic measurements. Broad amorphous hump seen in SXRD patterns reveals the amorphous nature of the studied specimens. Mössbauer measurements suggest that: (a) alignment of atomic spins within ribbon plane, (b) changes in average hyperfine field suggests radiation-induced decrease in the inter atomic distance around Mössbauer (Fe) atom, (c) hyperfine field distribution confirms the presence of non-magnetic elements (e.g. - B, P, C) in the first near-neighbor shell of the Fe atom, thus reducing its magnetic moment, and (d) changes in isomer shift suggests variation in average number of the metalloid near neighbors and their distances. Minor changes in soft magnetic behavior - watt loss and, coercivity after an irradiation dose of 2 × 1013 ions/cm2 suggests prospective application of Fe77P8Si3C5Al2Ga1B4 alloy as core material in accelerators (radio frequency cavities).
Atomic dark matter with hyperfine interactions
NASA Astrophysics Data System (ADS)
Boddy, Kimberly K.; Kaplinghat, Manoj; Kwa, Anna; Peter, Annika H. G.
2017-11-01
We consider dark matter as an analog of hydrogen in a secluded sector and study its astrophysical implications. The self interactions between dark matter particles include elastic scatterings as well as inelastic processes from hyperfine transitions. We show that for a dark hydrogen mass in the 10-100 GeV range and a dark fine-structure constant larger than 0.01, the self-interaction cross section has the right magnitude and velocity dependence to explain the low dark matter density cores seen in small galaxies while being consistent with all constraints from observations of galaxy clusters. Excitations to the hyperfine state and subsequent decays, however, may cause significant cooling losses and affect the evolution of low-mass halos. We also find minimum halo masses in the range of 103.5-107 M⊙, which are significantly larger than the typical predictions for weakly interacting dark matter models. This pattern of observables in structure formation is unique to this model, making it possible to determine the viability of hidden-sector hydrogen as a dark matter candidate.
Spin polarization of {sup 87}Rb atoms with ultranarrow linewidth diode laser: Numerical simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Z. G.; Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha, 410073; College of Science, National University of Defense Technology, Changsha, 410073
2016-08-15
In order to polarize {sup 87}Rb vapor effectively with ultranarrow linewidth diode laser, we studied the polarization as a function of some parameters including buffer gas pressure and laser power. Moreover, we also discussed the methods which split or modulate the diode laser frequency so as to pump the two ground hyperfine levels efficiently. We obtained some useful results through numerical simulation. If the buffer gas pressure is so high that the hyperfine structure is unresolved, the polarization is insensitive to laser frequency at peak absorption point so frequency splitting and frequency modulation methods do not show improvement. At lowmore » pressure and laser power large enough, where the hyperfine structure is clearly resolved, frequency splitting and frequency modulation methods can increase polarization effectively. For laser diodes, frequency modulation is easily realized with current modulation, so this method is attractive since it does not add any other components in the pumping laser system.« less
Kevorkyants, Ruslan; Wang, Xiqiao; Close, David M; Pavanello, Michele
2013-11-14
We present an application of the linear scaling frozen density embedding (FDE) formulation of subsystem DFT to the calculation of isotropic hyperfine coupling constants (hfcc's) of atoms belonging to a guanine radical cation embedded in a guanine hydrochloride monohydrate crystal. The model systems range from an isolated guanine to a 15,000 atom QM/MM cluster where the QM region is comprised of 36 protonated guanine cations, 36 chlorine anions, and 42 water molecules. Our calculations show that the embedding effects of the surrounding crystal cannot be reproduced by small model systems nor by a pure QM/MM procedure. Instead, a large QM region is needed to fully capture the complicated nature of the embedding effects in this system. The unprecedented system size for a relativistic all-electron isotropic hfcc calculation can be approached in this work because the local nature of the electronic structure of the organic crystals considered is fully captured by the FDE approach.
NASA Astrophysics Data System (ADS)
Yudkin, Yaakov; Khaykovich, Lev
2018-05-01
We show experimentally that three-dimensional laser cooling of lithium atoms on the D2 line is possible when the laser light is tuned exactly to resonance with the dominant atomic transition. Qualitatively, it can be understood by applying simple Doppler cooling arguments to the specific hyperfine structure of the excited state of lithium atoms, which is both dense and inverted. However, to build a quantitative theory, we must resolve to a full model which takes into account both the entire atomic structure of all 24 Zeeman sublevels and the laser light polarization. Moreover, by means of Monte Carlo simulations, we show that coherent processes play an important role in showing consistency between the theory and the experimental results.
Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin
2010-06-21
By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.
Where's water? The many binding sites of hydantoin.
Gruet, Sébastien; Pérez, Cristóbal; Steber, Amanda L; Schnell, Melanie
2018-02-21
Prebiotic hydantoin and its complexes with one and two water molecules are investigated using high-resolution broadband rotational spectroscopy in the 2-8 GHz frequency range. The hyperfine structure due to the nuclear quadrupole coupling of the two 14 N atoms is analysed for the monomer and the complexes. This characteristic hyperfine structure will support a definitive assignment from low frequency radioastronomy data. Experiments with H 2 18 O provide accurate experimental information on the preferred binding sites of water, which are compared with quantum-chemically calculated coordinates. In the 2-water complexes, the water molecules bind to hydantoin as a dimer instead of individually, indicating the strong water-water interactions. This information provides first insight on how hydantoin interacts with water on the molecular level.
Atomic Clocks and Variations of the FIne Structure Constant
NASA Technical Reports Server (NTRS)
Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute
1995-01-01
We describe a new test for possible variations of the fine structure constant alpha by comparisons of rates between clocks based on hyperfine transitions in alkali atoms with different atomic number Z. H-maser, Cs, and Hg(+) clocks have a different dependence on alpha via relativistic contributions of order (Z-alpha)(sup 2). Recent H-maser vs Hg(+) clock comparison data improve laboratory limits on a time variation by 100-fold to give dot-alpha less than or equal to 3.7 x 10(exp -14)/yr. Future laser cooled clocks (Be(+), Rb, Cs, Hg(+), etc.), when compared, will yield the most sensitive of all tests for dot-alpha/alpha.
Atomic Spectra and the Vector Model
NASA Astrophysics Data System (ADS)
Candler, A. C.
2015-05-01
12. Displaced terms; 13. Combination of several electrons; 14. Short periods; 15. Long periods; 16. Rare earths; 17. Intensity relsations; 18. Sum rules and (jj) coupling; 19. Series limit; 20. Hyperfine structure; 21. Quadripole radiation; 22. Fluorescent crystals; Appendix 5. Key to references; Appendix 6. Bibliography; Subject index; Author index.
Hyperfine state entanglement of spinor BEC and scattering atom
NASA Astrophysics Data System (ADS)
Li, Zhibing; Bao, Chengguang; Zheng, Wei
2018-05-01
Condensate of spin-1 atoms frozen in a unique spatial mode may possess large internal degrees of freedom. The scattering amplitudes of polarized cold atoms scattered by the condensate are obtained with the method of fractional parentage coefficients that treats the spin degrees of freedom rigorously. Channels with scattering cross sections enhanced by the square of the atom number of the condensate are found. Entanglement between the condensate and the propagating atom can be established by scattering. Entanglement entropy is analytically obtained for arbitrary initial states. Our results also give a hint for the establishment of quantum thermal ensembles in the hyperfine space of spin states.
NASA Astrophysics Data System (ADS)
Kaupp, Martin; Arbuznikov, Alexei V.; Heßelmann, Andreas; Görling, Andreas
2010-05-01
The isotropic hyperfine coupling constants of the free N(S4) and P(S4) atoms have been evaluated with high-level post-Hartree-Fock and density-functional methods. The phosphorus hyperfine coupling presents a significant challenge to both types of methods. With large basis sets, MP2 and coupled-cluster singles and doubles calculations give much too small values for the phosphorus atom. Triple excitations are needed in coupled-cluster calculations to achieve reasonable agreement with experiment. None of the standard density functionals reproduce even the correct sign of this hyperfine coupling. Similarly, the computed hyperfine couplings depend crucially on the self-consistent treatment in exact-exchange density-functional theory within the optimized effective potential (OEP) method. Well-balanced auxiliary and orbital basis sets are needed for basis-expansion exact-exchange-only OEP approaches to come close to Hartree-Fock or numerical OEP data. Results from the localized Hartree-Fock and Krieger-Li-Iafrate approximations deviate notably from exact OEP data in spite of very similar total energies. Of the functionals tested, only full exact-exchange methods augmented by a correlation functional gave at least the correct sign of the P(S4) hyperfine coupling but with too low absolute values. The subtle interplay between the spin-polarization contributions of the different core shells has been analyzed, and the influence of even very small changes in the exchange-correlation potential could be identified.
Parallel Low-Loss Measurement of Multiple Atomic Qubits
NASA Astrophysics Data System (ADS)
Kwon, Minho; Ebert, Matthew F.; Walker, Thad G.; Saffman, M.
2017-11-01
We demonstrate low-loss measurement of the hyperfine ground state of rubidium atoms by state dependent fluorescence detection in a dipole trap array of five sites. The presence of atoms and their internal states are minimally altered by utilizing circularly polarized probe light and a strictly controlled quantization axis. We achieve mean state detection fidelity of 97% without correcting for imperfect state preparation or background losses, and 98.7% when corrected. After state detection and correction for background losses, the probability of atom loss due to the state measurement is <2 % and the initial hyperfine state is preserved with >98 % probability.
Hyperfine excitation of CH in collisions with atomic and molecular hydrogen
NASA Astrophysics Data System (ADS)
Dagdigian, Paul J.
2018-04-01
We investigate here the excitation of methylidene (CH) induced by collisions with atomic and molecular hydrogen (H and H2). The hyperfine-resolved rate coefficients were obtained from close coupling nuclear-spin-free scattering calculations. The calculations are based upon recent, high-accuracy calculations of the CH(X2Π)-H(2S) and CH(X2Π)-H2 potential energy surfaces. Cross-sections and rate coefficients for collisions with atomic H, para-H2, and ortho-H2 were computed for all transitions between the 32 hyperfine levels for CH(X2Π) involving the n ≤ 4 rotational levels for temperatures between 10 and 300 K. These rate coefficients should significantly aid in the interpretation of astronomical observations of CH spectra. As a first application, the excitation of CH is simulated for conditions in typical molecular clouds.
Hyperfine excitation of OH+ by H
NASA Astrophysics Data System (ADS)
Lique, François; Bulut, Niyazi; Roncero, Octavio
2016-10-01
The OH+ ions are widespread in the interstellar medium and play an important role in the interstellar chemistry as they act as precursors to the H2O molecule. Accurate determination of their abundance rely on their collisional rate coefficients with atomic hydrogen and electrons. In this paper, we derive OH+-H fine and hyperfine-resolved rate coefficients by extrapolating recent quantum wave packet calculations for the OH+ + H collisions, including inelastic and exchange processes. The extrapolation method used is based on the infinite order sudden approach. State-to-state rate coefficients between the first 22 fine levels and 43 hyperfine levels of OH+ were obtained for temperatures ranging from 10 to 1000 K. Fine structure-resolved rate coefficients present a strong propensity rule in favour of Δj = ΔN transitions. The Δj = ΔF propensity rule is observed for the hyperfine transitions. The new rate coefficients will help significantly in the interpretation of OH+ spectra from photon-dominated region (PDR), and enable the OH+ molecule to become a powerful astrophysical tool for studying the oxygen chemistry.
NASA Astrophysics Data System (ADS)
Nardali, Ş.; Ucun, F.; Karakaya, M.
2017-11-01
The optimized structures of some radical adducts of 5,5-dimethyl-1-pyrroline N-oxide were computed by different methods on ESR spectra. As trapped radicals, H, N3, NH2, CH3, CCl3, OOH in water and F, OH, CF3, CH2OH, OC2H5 in benzene solutions were used. The calculated isotropic hyperfine coupling constants of all the trapped radicals were compared with the corresponding experimental data. The hyperfine coupling constant due to the β proton of the nitroxide radical was seen to be consist with the McConnel's relation αβ = B 0 + B 1cos2θ and, to be effected with the opposite spin density of oxygen nucleus bonded to the nitrogen. It was concluded that in hyperfine calculations the DFT(B3PW91)/LanL2DZ level is superior computational quantum model relative to the used other level. Also, the study has been enriched by the computational of the optimized geometrical parameters, the hyper conjugative interaction energies, the atomic charges and spin densities for all the radical adducts.
Mössbauer spectroscopy and the structure of interfaces on the atomic scale in metallic nanosystems
NASA Astrophysics Data System (ADS)
Uzdin, V. M.
2007-10-01
A microscopic model of the formation of an alloy on the interface has been constructed, which takes into account the exchange of atoms with the substrate atoms and the “floating up” of the latter into the upper layers in the process of epitaxial growth. The self-consistent calculations of atomic magnetic moments of spatially inhomogeneous structures obtained in this case are used for the interpretation of data of Mössbauer spectroscopy. The proposed scenario of mixing leads to the appearance of a preferred direction in the sample and the asymmetry of interfaces in the direction of epitaxial growth. In the multilayer M 1/ M 2 ( M 1,2 = Fe, Cr, V, Sn, or Ag) systems, this asymmetry makes it possible to understand the difference in the magnetic behavior of M 1-on M 2 and M 2-on- M 1 interfaces which has been observed experimentally. The correlation between the calculated distributions of magnetic moments and the measured distributions of hyperfine fields at iron atoms confirms the assumption about their proportionality for a broad class of metallic multilayer systems. However, a linear decrease of hyperfine fields at the 57Fe nuclei with increasing number of impurity atoms among the nearest and next-nearest neighbors is not confirmed for Fe/Cr systems, although is correct in Fe/V superlattices. In the Fe/Cr multilayer systems, the experimentally measured value of magnetoresistance grows with increasing fraction of the “floated up” atoms of 57Fe. Thus, it is the bulk scattering by impurity atoms that gives the basic contribution to the effect of giant magnetoresistance. The problem of the influence of mixing and adsorption of hydrogen in the vanadium layers on the state of the spin-density wave in V/Cr superlattices has been considered.
Spin-Orbit Interactions and Quantum Spin Dynamics in Cold Ion-Atom Collisions
NASA Astrophysics Data System (ADS)
Tscherbul, Timur V.; Brumer, Paul; Buchachenko, Alexei A.
2016-09-01
We present accurate ab initio and quantum scattering calculations on a prototypical hybrid ion-atom system Yb+ -Rb, recently suggested as a promising candidate for the experimental study of open quantum systems, quantum information processing, and quantum simulation. We identify the second-order spin-orbit (SO) interaction as the dominant source of hyperfine relaxation in cold Yb+ -Rb collisions. Our results are in good agreement with recent experimental observations [L. Ratschbacher et al., Phys. Rev. Lett. 110, 160402 (2013)] of hyperfine relaxation rates of trapped Yb+ immersed in an ultracold Rb gas. The calculated rates are 4 times smaller than is predicted by the Langevin capture theory and display a weak T-0.3 temperature dependence, indicating significant deviations from statistical behavior. Our analysis underscores the deleterious nature of the SO interaction and implies that light ion-atom combinations such as Yb+ -Li should be used to minimize hyperfine relaxation and decoherence of trapped ions in ultracold atomic gases.
Polarization effects in the interaction between multi-level atoms and two optical fields
NASA Astrophysics Data System (ADS)
Colín-Rodríguez, R.; Flores-Mijangos, J.; Hernández-Gómez, S.; Jáuregui, R.; López-Hernández, O.; Mojica-Casique, C.; Ponciano-Ojeda, F.; Ramírez-Martínez, F.; Sahagún, D.; Volke-Sepúlveda, K.; Jiménez-Mier, J.
2015-06-01
Polarized velocity selective spectra for rubidium atoms in a room temperature cell are presented. The experiments were performed in the lambda configuration (D2 manifold) and in the 5s\\to 5{{p}3/2}\\to 5{{d}j} ladder configuration. For the lambda configuration the effect of the probe beam intensity in the absorption and polarization spectra are compared with results of a rate equation approximation. Good overall agreement between experiment and theory is found. The results indicate different saturation rates for each of the atomic transitions. Distinctive polarization signals with hyperfine-resolved components are found for the ladder 5{{d}3/2} and 5{{d}5/2} upper states. Fluorescence detection of the 420 nm that results from the second step in the cascade decay 5{{d}j}\\to 6{{p}{{j\\prime }}}\\to 5s was used in the ladder experiments. This fluorescence was also used for the detection of the 5{{p}3/2}\\to 6{{p}3/2} electric dipole forbidden transition in atomic rubidium that occurs at 911 nm. The 6{{p}3/2} hyperfine structure was resolved in this continuous wave, non-dipole excitation.
Hyperfine structure measurements of neutral iodine atom (127I) using Fourier Transform Spectrometry
NASA Astrophysics Data System (ADS)
Ashok, Chilukoti; Vishwakarma, S. R.; Bhatt, Himal; Ankush, B. K.; Deo, M. N.
2018-01-01
We report the hyperfine Structure (hfs) splitting observations of neutral iodine atom (II) in the 6000 - 10,000 cm-1 near infrared spectral region. The measurements were carried out using a high-resolution Fourier Transform Spectrometer (FTS), where an electrodeless discharge lamp (EDL), excited using microwaves, was employed as the light source and InGaAs as the light detector. A specially designed setup was used to lower the plasma temperature of the medium so as to reduce the Doppler width and consequently to increase the spectral resolution of hfs components. A total of 183 lines with hfs splitting have been observed, out of which hfs in 53 spectral lines are reported for the first time. On the basis of hfs analysis, we derived the magnetic dipole and electric quadrupole coupling constants, A and B respectively for 30 even and 30 odd energy levels and are compared with the values available in the literature. New hfs values for 5 even and 4 odd levels are also reported here for the first time.
Theory of the n = 2 levels in muonic helium-3 ions
NASA Astrophysics Data System (ADS)
Franke, Beatrice; Krauth, Julian J.; Antognini, Aldo; Diepold, Marc; Kottmann, Franz; Pohl, Randolf
2017-12-01
The present knowledge of Lamb shift, fine-, and hyperfine structure of the 2S and 2P states in muonic helium-3 ions is reviewed in anticipation of the results of a first measurement of several 2S → 2P transition frequencies in the muonic helium-3 ion, μ3He+. This ion is the bound state of a single negative muon μ- and a bare helium-3 nucleus (helion), 3He++. A term-by-term comparison of all available sources, including new, updated, and so far unpublished calculations, reveals reliable values and uncertainties of the QED and nuclear structure-dependent contributions to the Lamb shift and the hyperfine splitting. These values are essential for the determination of the helion rms charge radius and the nuclear structure effects to the hyperfine splitting in μ3He+. With this review we continue our series of theory summaries in light muonic atoms [see A. Antognini et al., Ann. Phys. 331, 127 (2013); J.J. Krauth et al., Ann. Phys. 366, 168 (2016); and M. Diepold et al.
Hyperfine structure and isotope shift of /sup 208/Bi in the 3067-A resonance line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamontagne, J.J.
1982-01-01
The hyperfine structure of /sup 208/Bi (I = 5) was measured using the 3067 A spectral line from the 6p/sup 2/7s (/sup 4/P/sub 1/2/) - 6p/sup 3/ (/sup 4/S/sub 3/2/) transition. After production of the isotope at the Princeton University Cyclotron, chemical separation, and mass separation, some 10/sup 12/ atoms were used to produce an absorption spectrum. The monochromator, Czerny-Turner design), had a 9.1 m focal length with a 25 cm diffraction grating used in autocollimation near 63/sup 0/. The spectrum was recorded on photographic plates. Measurements were made of the position of the components. From these the value /supmore » 208/A (/sup 4/P/sub 1/2) = 166 (1.5) mK was obtained. Neglecting hyperfine anomalies this gives /sup 208/A (/sup 4/S/sub 3/2/) = 15.07 (.1). The isotope shift /sup 208/Bi-/sup 208/Bi was measured to be 50.58 (7.5) mK.« less
In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy
NASA Astrophysics Data System (ADS)
Diermaier, M.; Jepsen, C. B.; Kolbinger, B.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Zmeskal, J.; Widmann, E.
2017-06-01
Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of νHF=1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10-9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.
NASA Astrophysics Data System (ADS)
Ponciano-Ojeda, F.; Hernández-Gómez, S.; Mojica-Casique, C.; Ruiz-Martínez, E.; López-Hernández, O.; Colín-Rodríguez, R.; Ramírez-Martínez, F.; Flores-Mijangos, J.; Sahagún, D.; Jáuregui, R.; Jiménez-Mier, J.
2018-01-01
An advanced undergraduate experiment to study the 5 P 3 / 2 → 6 P 3 / 2 electric quadrupole transition in rubidium atoms is presented. The experiment uses two external cavity diode lasers, one operating at the D2 rubidium resonance line and the other built with commercial parts to emit at 911 nm. The lasers produce the 5 s → 5 p → 6 p excitation sequence in which the second step is the forbidden transition. Production of atoms in the 6 P 3 / 2 state is observed by detection of the 420 nm fluorescence that results from electric dipole decay into the ground state. Lines whose widths are significantly narrower than the Doppler width are used to study the hyperfine structure of the 6 P 3 / 2 state in rubidium. The spectra illustrate characteristics unique to electric dipole forbidden transitions, like the electric quadrupole selection rules; they are also used to show general aspects of two-color laser spectroscopy such as velocity selection and hyperfine pumping.
In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy.
Diermaier, M; Jepsen, C B; Kolbinger, B; Malbrunot, C; Massiczek, O; Sauerzopf, C; Simon, M C; Zmeskal, J; Widmann, E
2017-06-12
Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of ν HF =1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10 -9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.
In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy
Diermaier, M.; Jepsen, C. B.; Kolbinger, B.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Zmeskal, J.; Widmann, E.
2017-01-01
Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of νHF=1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10−9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration. PMID:28604657
NASA Technical Reports Server (NTRS)
Vessot, Robert F. C.
1989-01-01
Clocks have played a strong role in the development of general relativity. The concept of the proper clock is presently best realized by atomic clocks, whose development as precision instruments has evolved very rapidly in the last decades. To put a historical prospective on this progress since the year AD 1000, the time stability of various clocks expressed in terms of seconds of time error over one day of operation is shown. This stability of operation must not be confused with accuracy. Stability refers to the constancy of a clock operation as compared to that of some other clocks that serve as time references. Accuracy, on the other hand, is the ability to reproduce a previously defined frequency. The issues are outlined that must be considered when accuracy and stability of clocks and oscillators are studied. In general, the most widely used resonances result from the hyperfine interaction of the nuclear magnetic dipole moment and that of the outermost electron, which is characteristic of hydrogen and the alkali atoms. During the past decade hyperfine resonances of ions have also been used. The principal reason for both the accuracy and the stability of atomic clocks is the ability of obtaining very narrow hyperfine transition resonances by isolating the atom in some way so that only the applied stimulating microwave magnetic field is a significant source of perturbation. It is also important to make resonance transitions among hyperfine magnetic sublevels where separation is independent, at least to first order, of the magnetic field. In the case of ions stored in traps operating at high magnetic fields, one selects the trapping field to be consistent with a field-independent transition of the trapped atoms.
Joint CPT and N resonance in compact atomic time standards
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Hohensee, Michael; Xiao, Yanhong; Phillips, David; Walsworth, Ron
2008-05-01
Currently development efforts towards small, low power atomic time standards use current-modulated VCSELs to generate phase-coherent optical sidebands that interrogate the hyperfine structure of alkali atoms such as rubidium. We describe and use a modified four-level quantum optics model to study the optimal operating regime of the joint CPT- and N-resonance clock. Resonant and non-resonant light shifts as well as modulation comb detuning effects play a key role in determining the optimal operating point of such clocks. We further show that our model is in good agreement with experimental tests performed using Rb-87 vapor cells.
Initial atomic coherences and Ramsey frequency pulling in fountain clocks
NASA Astrophysics Data System (ADS)
Gerginov, Vladislav; Nemitz, Nils; Weyers, Stefan
2014-09-01
In the uncertainty budget of primary atomic cesium fountain clocks, evaluations of frequency-pulling shifts of the hyperfine clock transition caused by unintentional excitation of its nearby transitions (Rabi and Ramsey pulling) have been based so far on an approach developed for cesium beam clocks. We re-evaluate this type of frequency pulling in fountain clocks and pay particular attention to the effect of initial coherent atomic states. We find significantly enhanced frequency shifts caused by Ramsey pulling due to sublevel population imbalance and corresponding coherences within the state-selected hyperfine component of the initial atom ground state. Such shifts are experimentally investigated in an atomic fountain clock and quantitative agreement with the predictions of the model is demonstrated.
Toward laser cooling and trapping lanthanum ions
NASA Astrophysics Data System (ADS)
Olmschenk, Steven; Banner, Patrick; Hankes, Jessie; Nelson, Amanda
2017-04-01
Trapped atomic ions are a leading candidate for applications in quantum information. For scalability and applications in quantum communication, it would be advantageous to interface ions with telecom light. We present progress toward laser cooling doubly-ionized lanthanum, which should require only infrared, telecom-compatible light. Since the hyperfine structure of this ion has not been measured, we are using optogalavanic spectroscopy in a hollow cathode lamp to measure the hyperfine spectrum of transitions in lanthanum. Using laser ablation to directly produce ions from a solid target, we laser cool and trap barium ions, and explore extending this technique to lanthanum ions. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.
Development of a collinear laser spectrometer facility at VECC: First test result
NASA Astrophysics Data System (ADS)
Ali, Md Sabir; Ray, Ayan; Raja, Waseem; Bandyopadhyay, Arup; Naik, Vaishali; Polley, Asish; Chakrabarti, Alok
2018-04-01
We report here the development of collinear laser spectroscopy (CLS) system at VECC for the study of hyperfine spectrum and isotopic shift of stable and unstable isotopes. The facility is first of its kind in the country allowing measurement of hyperfine splitting of atomic levels using atomic beams. The CLS system is installed downstream of the focal plane of the existing isotope separator online (ISOL) facility at VECC and is recently commissioned by successfully resolving the fluorescence spectrum of the hyperfine levels in ^{85,87}Rb. The atomic beams of Rb were produced by charge exchange of 8 keV Rb ion beam which were produced, extracted and transported to the charge exchange cell using the ion sources, extractor and the beam-line magnets of the ISOL facility. The laser propagating opposite to the ion / atom beam direction was allowed to interact with the atom beam and fluorescence spectrum was recorded. The experimental set-up and the experiment conducted are reported in detail. The measures needed to be carried out for improving the sensitivity to a level necessary for studying short-lived exotic nuclei have also been discussed.
Calculation of the spin-polarized electronic structure of an interstitial iron impurity in silicon
NASA Astrophysics Data System (ADS)
Katayama-Yoshida, H.; Zunger, Alex
1985-06-01
We apply our self-consistent, all-electron, spin-polarized Green's-function method within an impurity-centered, dynamic basis set to study the interstitial iron impurity in silicon. We use two different formulations of the interelectron interactions: the local-spin-density (LSD) formalism and the self-interaction-corrected (SIC) local-spin-density (SIC-LSD) formalism. We find that the SIC-LSD approach is needed to obtain the correct high-spin ground state of Si:Fe+. We propose a quantitative explanation to the observed donor ionization energy and the high-spin ground states for Si:Fe+ within the SIC-LSD approach. For both Si:Fe0 and Si:Fe+, this approach leads to a hyperfine field, contact spin density, and ionization energy in better agreement with experiments than the simple LSD approach. The apparent dichotomy between the covalently delocalized nature of Si:Fe as suggested on the one hand by its reduced hyperfine field (relative to the free atom) and extended spin density and by the occurrence of two closely spaced, stable charge states (within 0.4 eV) and on the other hand by the atomically localized picture (suggested, for example, by the stability of a high-spin, ground-state configuration) is resolved. We find a large reduction in the hyperfine field and contact spin density due to the covalent hybridization between the impurity 3d orbitals and the tails of the delocalized sp3 hybrid orbitals of the surrounding silicon atoms. Using the calculated results, we discuss (i) the underlying mechanism for the stability and plurality of charged states, (ii) the covalent reduction in the hyperfine field, (iii) the remarkable constancy of the impurity Mössbauer isomer shift for different charged states, (iv) comparison with the multiple charged states in ionic crystals, and (v) some related speculation about the mechanism of (Fe2+/Fe3+) oxidation-reduction ionizations in heme proteins and electron-transporting biological systems.
Charge radii and electromagnetic moments of At-211195
NASA Astrophysics Data System (ADS)
Cubiss, J. G.; Barzakh, A. E.; Seliverstov, M. D.; Andreyev, A. N.; Andel, B.; Antalic, S.; Ascher, P.; Atanasov, D.; Beck, D.; Bieroń, J.; Blaum, K.; Borgmann, Ch.; Breitenfeldt, M.; Capponi, L.; Cocolios, T. E.; Day Goodacre, T.; Derkx, X.; De Witte, H.; Elseviers, J.; Fedorov, D. V.; Fedosseev, V. N.; Fritzsche, S.; Gaffney, L. P.; George, S.; Ghys, L.; Heßberger, F. P.; Huyse, M.; Imai, N.; Kalaninová, Z.; Kisler, D.; Köster, U.; Kowalska, M.; Kreim, S.; Lane, J. F. W.; Liberati, V.; Lunney, D.; Lynch, K. M.; Manea, V.; Marsh, B. A.; Mitsuoka, S.; Molkanov, P. L.; Nagame, Y.; Neidherr, D.; Nishio, K.; Ota, S.; Pauwels, D.; Popescu, L.; Radulov, D.; Rapisarda, E.; Revill, J. P.; Rosenbusch, M.; Rossel, R. E.; Rothe, S.; Sandhu, K.; Schweikhard, L.; Sels, S.; Truesdale, V. L.; Van Beveren, C.; Van den Bergh, P.; Wakabayashi, Y.; Van Duppen, P.; Wendt, K. D. A.; Wienholtz, F.; Whitmore, B. W.; Wilson, G. L.; Wolf, R. N.; Zuber, K.
2018-05-01
Hyperfine-structure parameters and isotope shifts of At-211195 have been measured for the first time at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life; the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used for short-lived, predominantly α -decaying nuclei. The electromagnetic moments and changes in the mean-square charge radii of the astatine nuclei have been extracted from the measured hyperfine-structure constants and isotope shifts. This was only made possible by dedicated state-of-the-art large-scale atomic computations of the electronic factors and the specific mass shift of atomic transitions in astatine that are needed for these extractions. By comparison with systematics, it was possible to assess the reliability of the results of these calculations and their ascribed uncertainties. A strong deviation in the ground-state mean-square charge radii of the lightest astatine isotopes, from the trend of the (spherical) lead isotopes, is interpreted as the result of an onset of deformation. This behavior bears a resemblance to the deviation observed in the isotonic polonium isotopes. Cases for shape coexistence have been identified in At,199197, for which a significant difference in the charge radii for ground (9 /2- ) and isomeric (1 /2+ ) states has been observed.
NASA Technical Reports Server (NTRS)
Singh, G.
1973-01-01
An experimental study for creating population differences in the ground states of alkali atoms (Cesium 133) is presented. Studies made on GaAs-junction lasers and the achievement of population inversions among the hyperfine levels in the ground state of Cs 133 by optically pumping it with radiation from a GaAs diode laser. Laser output was used to monitor the populations in the ground state hyperfine levels as well as to perform the hyperfine pumping. A GaAs laser operated at about 77 K was used to scan the 8521 A line of Cs 133. Experiments were performed both with neon-filled and with paraflint-coated cells containing the cesium vapor. Investigations were also made for the development of the triple resonance coherent pulse technique and for the detection of microwave induced hyperfine trasistions by destroying the phase relationships produced by a radio frequency pulse. A pulsed cesium resonance lamp developed, and the lamp showed clean and reproducible switching characteristics.
Research on Spectroscopy, Opacity, and Atmospheres
NASA Astrophysics Data System (ADS)
Kurucz, Robert L.
1996-01-01
The main accomplishment was the merging of all the atomic line data into one wavelength-sorted list that is simple to use. We have combined all the atomic files from a CDROM into 534,910 line files GFALL.DAT and GFELEN.DAT. These are the data we use to compute spectra. They are not up to date. References are given in GFALL.REF or GFELEK.REF. There are no references after 1988, and for light elements there are no references after 1979. One new development is the inclusion of hyperfine splitting for the iron group elements using hyperfine data from the literature through 1993. The data are very incomplete. We have supplied a program for splitting the line list for a species. It reads the hyperfine and isotopic splitting parameters for levels and computes the splittings whenever those levels appear. Lines with no splitting data are copied untouched. Because Sc, Mn, and Co are monoisotopic, only the hyperfine splittings are needed. Since 51V is much more abundant than 50V, the isotope shifts are small for 51V, and we approximate V with 51V. GFALLHYP.DAT has 754,946 lines including hyperfine Sc I, V I, Mn I, and Co I.
An ESR study of the stable radical in a γ-irradiated single crystal of 17α-dydroxy-progesterone
NASA Astrophysics Data System (ADS)
Krzyminiewski, R.; Pietrzak, J.; Konopka, R.
1990-11-01
Electron spin resonance spectroscopy was used to investigate γ-radiation damage of 17α-hydroxy-progesterone molecules in a single crystal. Two types of radicals with different rates of recombination were observed and a definite structure was assigned to the specimen by analyzing the orientational variation of the spectra. The unpaired electron of the radical is delocalized in the 2 pz orbitals of the C(6), C(4) and C(3) atoms, giving rise to a hyperfine spectrum by interaction with two equivalent α-protons in positions 4 and 6 and with two non-equivalent β-protons attached to C(7). The hyperfine coupling tensors are reported, together with the g tensor of the radical. The presence of additional intermolecular interactions caused by hydrogen bonding between O(3) and HO(17) of two molecules does not change the type of radical (which is the same as the stable radical in a γ-irradiated single crystal of progesterone) but does increase the hyperfine coupling anisotropy.
NASA Astrophysics Data System (ADS)
Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue
2012-05-01
The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission.
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED
NASA Astrophysics Data System (ADS)
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-05-01
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-05-16
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-01-01
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron–nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction. PMID:28508892
Autschbach, Jochen
2009-09-14
A spherical Gaussian nuclear charge distribution model has been implemented for spin-free (scalar) and two-component (spin-orbit) relativistic density functional calculations of indirect NMR nuclear spin-spin coupling (J-coupling) constants. The finite nuclear volume effects on the hyperfine integrals are quite pronounced and as a consequence they noticeably alter coupling constants involving heavy NMR nuclei such as W, Pt, Hg, Tl, and Pb. Typically, the isotropic J-couplings are reduced in magnitude by about 10 to 15 % for couplings between one of the heaviest NMR nuclei and a light atomic ligand, and even more so for couplings between two heavy atoms. For a subset of the systems studied, viz. the Hg atom, Hg(2) (2+), and Tl--X where X=Br, I, the basis set convergence of the hyperfine integrals and the coupling constants was monitored. For the Hg atom, numerical and basis set calculations of the electron density and the 1s and 6s orbital hyperfine integrals are directly compared. The coupling anisotropies of TlBr and TlI increase by about 2 % due to finite-nucleus effects.
NASA Astrophysics Data System (ADS)
Lomsadze, Bachana; Cundiff, Steven T.
2018-06-01
Frequency-comb based multidimensional coherent spectroscopy is a novel optical method that enables high-resolution measurement in a short acquisition time. The method's resolution makes multidimensional coherent spectroscopy relevant for atomic systems that have narrow resonances. We use double-quantum multidimensional coherent spectroscopy to reveal collective hyperfine resonances in rubidium vapor at 100 °C induced by dipole-dipole interactions. We observe tilted and elongated line shapes in the double-quantum 2D spectra, which have never been reported for Doppler-broadened systems. The elongated line shapes suggest that the signal is predominately from the interacting atoms that have a near zero relative velocity.
NASA Astrophysics Data System (ADS)
Kale, Y. B.; Tiwari, V. B.; Mishra, S. R.; Singh, S.; Rawat, H. S.
2016-12-01
We report electromagnetically induced absorption (EIA) and transparency (EIT) resonances of sub-natural linewidth in degenerate two level systems (DTLSs) of metastable 84Kr (84Kr*) and 83Kr (83Kr*) atoms. Using the spectrally narrow EIA signals obtained corresponding to the closed hyperfine transition 4p55s[3/2]2(F=13/2) to 4p55p[5/2]3(F‧ = 15 / 2) in 83Kr* atom, we have measured the Landé g-factor (gF) for the lower hyperfine level involved in this transition by application of small values of magnetic field of few Gauss.
Asselin, Pierre; Berger, Yann; Huet, Thérèse R; Margulès, Laurent; Motiyenko, Roman; Hendricks, Richard J; Tarbutt, Michael R; Tokunaga, Sean K; Darquié, Benoît
2017-02-08
Precise spectroscopic analysis of polyatomic molecules enables many striking advances in physical chemistry and fundamental physics. We use several new high-resolution spectroscopic devices to improve our understanding of the rotational and rovibrational structure of methyltrioxorhenium (MTO), the achiral parent of a family of large oxorhenium compounds that are ideal candidate species for a planned measurement of parity violation in chiral molecules. Using millimetre-wave and infrared spectroscopy in a pulsed supersonic jet, a cryogenic buffer gas cell, and room temperature absorption cells, we probe the ground state and the Re[double bond, length as m-dash]O antisymmetric and symmetric stretching excited states of both CH 3 187 ReO 3 and CH 3 185 ReO 3 isotopologues in the gas phase with unprecedented precision. By extending the rotational spectra to the 150-300 GHz range, we characterize the ground state rotational and hyperfine structure up to J = 43 and K = 41, resulting in refinements to the rotational, quartic and hyperfine parameters, and the determination of sextic parameters and a centrifugal distortion correction to the quadrupolar hyperfine constant. We obtain rovibrational data for temperatures between 6 and 300 K in the 970-1015 cm -1 range, at resolutions down to 8 MHz and accuracies of 30 MHz. We use these data to determine more precise excited-state rotational, Coriolis and quartic parameters, as well as the ground-state centrifugal distortion parameter D K of the 187 Re isotopologue. We also account for hyperfine structure in the rovibrational transitions and hence determine the upper state rhenium atom quadrupole coupling constant eQq'.
Mossbauer effect in dilute iron alloys
NASA Technical Reports Server (NTRS)
Singh, J. J.
1975-01-01
The effects of variable concentration, x, of Aluminum, Germanium, and Lanthanum atoms in Iron lattice on various Mossbauer parameters was studied. Dilute binary alloys of (Fe-Al), (Fe-Ge), (Fe-Al) containing up to x = 2 a/o of the dilute constituent were prepared in the form of ingots and rolled to a thickness of 0.001 in. Mossbauer spectra of these targets were then studied in transmission geometry to measure changes in the hyperfine field, peak widths isomer shifts as well as the ratio of the intensities of peaks (1,6) to the intensities of peaks (2,5). It was shown that the concept of effective hyperfine structure field in very dilute alloys provides a useful means of studying the effects of progressively increasing the solute concentration on host lattice properties.
Proton, muon and ¹³C hyperfine coupling constants of C₆₀X and C₇₀X (X = H, Mu).
Brodovitch, Jean-Claude; Addison-Jones, Brenda; Ghandi, Khashayar; McKenzie, Iain; Percival, Paul W
2015-01-21
The reaction of H atoms with fullerene C70 has been investigated by identifying the radical products formed by addition of the atom muonium (Mu) to the fullerene in solution. Four of the five possible radical isomers of C70Mu were detected by avoided level-crossing resonance (μLCR) spectroscopy, using a dilute solution of enriched (13)C70 in decalin. DFT calculations were used to predict muon and (13)C isotropic hyperfine constants as an aid to assigning the observed μLCR signals. Computational methods were benchmarked against previously published experimental data for (13)C60Mu in solution. Analysis of the μLCR spectrum resulted in the first experimental determination of (13)C hyperfine constants in either C70Mu or C70H. The large number of values confirms predictions that the four radical isomers have extended distributions of unpaired electron spin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakai, Hironori; Baek, Seung H; Bauer, Eric D
2009-01-01
UNiSi{sub 2} orders ferromagnetically below T{sub Curie} = 95 K. This material crystallizes in the orthorhombic CeNiSi{sub 2}-type structure. The uranium atoms form double-layers, which are stacked along the crystallographic b axis (the longest axis). From magnetization measurement the easy (hard) magnetization axis is found to be the c axis (b axis). {sup 29}Si-NMR measurements have been performed in the paramagnetic state. In UNiSi{sub 2}, two crystallographic Si sites exist with orthorhombic local symmetry. The Knight shifts on each Si site have been estimated from the spectra of random and oriented powders. The transferred hyperfine couplings have been also derived.more » It is found that the transferred hyperfine coupling constants on each Si site are nearly isotropic, and that their Knight shift anisotropy comes from that of the bulk susceptibility. The nuclear-spin lattice relaxation rate 1/T{sub 1} shows temperature-independent behavior, which indicates the existence of localized 5f electron.« less
Bressel, U; Borodin, A; Shen, J; Hansen, M; Ernsting, I; Schiller, S
2012-05-04
Advanced techniques for manipulation of internal states, standard in atomic physics, are demonstrated for a charged molecular species for the first time. We address individual hyperfine states of rovibrational levels of a diatomic ion by optical excitation of individual hyperfine transitions, and achieve controlled transfer of population into a selected hyperfine state. We use molecular hydrogen ions (HD+) as a model system and employ a novel frequency-comb-based, continuous-wave 5 μm laser spectrometer. The achieved spectral resolution is the highest obtained so far in the optical domain on a molecular ion species. As a consequence, we are also able to perform the most precise test yet of the ab initio theory of a molecule.
NASA Astrophysics Data System (ADS)
dos Santos, A. V.; Samudio Pérez, C. A.; Muenchen, D.; Anibele, T. P.
2015-01-01
The ground state properties of Fe/N/Fe and Fe/O/Fe multilayers were investigated using the first principles calculations. The calculations were performed using the Linearized Augmented Plane Wave (LAPW) method implemented in the Wien2k code. A supercell consisting of one layer of nitride (or oxide) between two layers of Fe in the bcc structure was used to model the structure of the multilayer. The research in new materials also stimulated theoretical and experimental studies of iron-based nitrides due to their variety of structural and magnetic properties for the potential applications as in high strength steels and for high corrosion resistance. It is obvious from many reports that magnetic iron nitrides such as γ-Fe4N and α-Fe16N2 have interesting magnetic properties, among these a high magnetisation saturation and a high density crimp. However, although Fe-N films and multilayers have many potential applications, they can be produced in many ways and are being extensively studied from the theoretical point of view there is no detailed knowledge of their electronic structure. Clearly, efforts to understand the influence of the nitrogen atoms on the entire electronic structure are needed as to correctly interpret the observed changes in the magnetic properties when going from Fe-N bulk compounds to multilayer structures. Nevertheless, the N atoms are not solely responsible for electronics alterations in solid compounds. Theoretical results showed that Fe4X bulk compounds, where X is a variable atom with increasing atomic number (Z), the nature of bonding between X and adjacent Fe atoms changes from more covalent to more ionic and the magnetic moments of Fe also increase for Z=7, i.e. N. This is an indicative that atoms with a Z number higher than 7, i.e., O, can produce several new alterations in the entire magnetic properties of Fe multilayers. This paper presents the first results of an ab-initio electronic structure calculations, performed for Fe-N and Fe-O multilayers. Firstly, the formation energy and the cohesive energy of the multilayers are discussed. For optimised values, the cohesive energy of the multilayers to obtain the lattice parameters at the equilibrium ground state was used, i.e. a new methodology for this calculus was applied. Secondly, the magnetic properties and hyperfine interactions (magnetic field, electric field gradient and the isomer shift) of the iron atoms of the multilayers are discussed.
NASA Astrophysics Data System (ADS)
Majumder, Tiku
2017-04-01
In recent decades, substantial experimental effort has centered on heavy (high-Z) atomic and molecular systems for atomic-physics-based tests of standard model physics, through (for example) measurements of atomic parity nonconservation and searches for permanent electric dipole moments. In all of this work, a crucial role is played by atomic theorists, whose accurate wave function calculations are essential in connecting experimental observables to tests of relevant fundamental physics parameters. At Williams College, with essential contributions from dozens of undergraduate students, we have pursued a series of precise atomic structure measurements in heavy metal atoms such as thallium, indium, and lead. These include measurements of hyperfine structure, transition amplitudes, and atomic polarizability. This work, involving diode lasers, heated vapor cells, and an atomic beam apparatus, has both tested the accuracy and helped guide the refinement of new atomic theory calculations. I will discuss a number of our recent experimental results, emphasizing the role played by students and the opportunities that have been afforded for research-training in this undergraduate environment. Work supported by Research Corporation, the NIST Precision Measurement Grants program, and the National Science Foundation.
Experimental and theoretical study of Co sorption in clay montmorillonites
NASA Astrophysics Data System (ADS)
Gil Rebaza, A. V.; Montes, M. L.; Taylor, M. A.; Errico, L. A.; Alonso, R. E.
2018-03-01
Montmorillonite (MMT) clays are 2:1 layered structures which in natural state may allocate different hydrated cations such as M-nH2O (M = Na, Ca, Fe, etc) in its interlayer space. Depending on the capability for ion sorption, these materials are interesting for environmental remediation. In this work we experimentally study the Co sorption in a natural Na-MMT using UV-visible spectrometry and XRD on semi-oriented samples, and then analyze the sorption ability of this clay by means of ab initio calculation performed on pristine MMT. The structural properties of Na-MMT and Co-adsorbed MMT, and the hyperfine parameters at different atomic sites were analyzed and compared with the experimental ones for the first, and for the case of the hyperfine parameters, presented for the first time for the last. The theoretical predictions based on total energy considerations confirm that Co incorporation replacing Na is energetically favorable. Also, the basal spacing d001 experimentally obtained is well reproduced.
Interaction-induced decay of a heteronuclear two-atom system
Xu, Peng; Yang, Jiaheng; Liu, Min; He, Xiaodong; Zeng, Yong; Wang, Kunpeng; Wang, Jin; Papoular, D. J.; Shlyapnikov, G. V.; Zhan, Mingsheng
2015-01-01
Two-atom systems in small traps are of fundamental interest for understanding the role of interactions in degenerate cold gases and for the creation of quantum gates in quantum information processing with single-atom traps. One of the key quantities is the inelastic relaxation (decay) time when one of the atoms or both are in a higher hyperfine state. Here we measure this quantity in a heteronuclear system of 87Rb and 85Rb in a micro optical trap and demonstrate experimentally and theoretically the presence of both fast and slow relaxation processes, depending on the choice of the initial hyperfine states. This experimental method allows us to single out a particular relaxation process thus provides an extremely clean platform for collisional physics studies. Our results have also implications for engineering of quantum states via controlled collisions and creation of two-qubit quantum gates. PMID:26199051
Atomic Clock Based on Opto-Electronic Oscillator
NASA Technical Reports Server (NTRS)
Maleki, Lute; Yu, Nan
2005-01-01
A proposed highly accurate clock or oscillator would be based on the concept of an opto-electronic oscillator (OEO) stabilized to an atomic transition. Opto-electronic oscillators, which have been described in a number of prior NASA Tech Briefs articles, generate signals at frequencies in the gigahertz range characterized by high spectral purity but not by longterm stability or accuracy. On the other hand, the signals generated by previously developed atomic clocks are characterized by long-term stability and accuracy but not by spectral purity. The proposed atomic clock would provide high spectral purity plus long-term stability and accuracy a combination of characteristics needed to realize advanced developments in communications and navigation. In addition, it should be possible to miniaturize the proposed atomic clock. When a laser beam is modulated by a microwave signal and applied to a photodetector, the electrical output of the photodetector includes a component at the microwave frequency. In atomic clocks of a type known as Raman clocks or coherent-population-trapping (CPT) clocks, microwave outputs are obtained from laser beams modulated, in each case, to create two sidebands that differ in frequency by the amount of a hyperfine transition in the ground state of atoms of an element in vapor form in a cell. The combination of these sidebands produces a transparency in the population of a higher electronic level that can be reached from either of the two ground-state hyperfine levels by absorption of a photon. The beam is transmitted through the vapor to a photodetector. The components of light scattered or transmitted by the atoms in the two hyperfine levels mix in the photodetector and thereby give rise to a signal at the hyperfine- transition frequency. The proposed atomic clock would include an OEO and a rubidium- or cesium- vapor cell operating in the CPT/Raman regime (see figure). In the OEO portion of this atomic clock, as in a typical prior OEO, a laser beam would pass through an electro-optical modulator, the modulated beam would be fed into a fiber-optic delay line, and the delayed beam would be fed to a photodetector. The electrical output of the photodetector would be detected, amplified, filtered, and fed back to the microwave input port of the modulator. The laser would be chosen to have the same wavelength as that of the pertinent ground-state/higher-state transition of the atoms in the vapor. The modulator/ filter combination would be designed to operate at the microwave frequency of the hyperfine transition. Part of the laser beam would be tapped from the fiberoptic loop of the OEO and introduced into the vapor cell. After passing through the cell, this portion of the beam would be detected differentially with a tapped portion of the fiber-optically-delayed beam. The electrical output of the photodetector would be amplified and filtered in a loop that would control a DC bias applied to the modulator. In this manner, the long-term stability and accuracy of the atomic transition would be transferred to the OEO.
New Tests for Variations of the Fine Structure Constant
NASA Technical Reports Server (NTRS)
Prestage, John D.
1995-01-01
We describe a new test for possible variations of the fine structure constant, by comparisons of rates between clocks based on hyperfine transitions in alkali atomos with different atomic number Z. H- maser, Cs and Hg+ clocks have a different dependence on ia relativistic contributions of order (Z. Recent H-maser vs Hg+ clock comparison data improves laboratory limits on a time variation by 100-fold to giveFuture laser cooled clocks (Be+, Rb, Cs, Hg+, etc.), when compared, will yield the most senstive of all tests for.
Precision Muonium Spectroscopy
NASA Astrophysics Data System (ADS)
Jungmann, Klaus P.
2016-09-01
The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s-2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium-antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter.
Rosi, G.; D'Amico, G.; Cacciapuoti, L.; Sorrentino, F.; Prevedelli, M.; Zych, M.; Brukner, Č.; Tino, G. M.
2017-01-01
The Einstein equivalence principle (EEP) has a central role in the understanding of gravity and space–time. In its weak form, or weak equivalence principle (WEP), it directly implies equivalence between inertial and gravitational mass. Verifying this principle in a regime where the relevant properties of the test body must be described by quantum theory has profound implications. Here we report on a novel WEP test for atoms: a Bragg atom interferometer in a gravity gradiometer configuration compares the free fall of rubidium atoms prepared in two hyperfine states and in their coherent superposition. The use of the superposition state allows testing genuine quantum aspects of EEP with no classical analogue, which have remained completely unexplored so far. In addition, we measure the Eötvös ratio of atoms in two hyperfine levels with relative uncertainty in the low 10−9, improving previous results by almost two orders of magnitude. PMID:28569742
NASA Astrophysics Data System (ADS)
Baranov, A. A.; Ermak, S. V.; Kulachenkov, N. K.; Petrenko, M. V.; Sagitov, E. A.; Semenov, V. V.
2017-11-01
This paper presents the results of investigation Stark shift effect influence on the long-term stability of a dual scheme of quantum magnetometers. Such scheme allows suppressing Stark shift components when a certain pumping light polarization is applied. As a result, long-term stability of a quantum sensor increases. However, when low-frequency (LF) and microwave fields are attached to a single vapor cell a coherence circulation in hyperfine structure of alkali atoms takes place. Physical origin of this effect is associated with the so called “dressed” atom theory, when atom is “dressed” by LF field. It yields in multiphoton absorption and resonance frequency shift. First estimates for this shift based on density matrix evolution formalism are provided in the paper.
NASA Astrophysics Data System (ADS)
Kim, Minhyuk; Kim, Kyungtae; Lee, Woojun; Kim, Hyosub; Ahn, Jaewook
2017-04-01
Spectral programming solutions for the ultrafast spatial coherent control (USCC) method to resolve the fine-structure energy levels of atomic rubidium are reported. In USCC, a pair of counter-propagating ultrashort laser pulses are programmed to make a two-photon excitation pattern specific to particular transition pathways and atom species, thus allowing the involved transitions resolvable in space simultaneously. With a proper spectral phase and amplitude modulation, USCC has been also demonstrated for the systems with many intermediate energy levels. Pushing the limit of system complexity even further, we show here an experimental demonstration of the rubidium fine-structure excitation pattern resolvable by USCC. The spectral programming solution for the given USCC is achieved by combining a double-V-shape spectral phase function and a set of phase steps, where the former distinguishes the fine structure and the latter prevents resonant transitions. The experimental results will be presented along with its application in conjunction with the Doppler-free frequency-comb spectroscopy for rubidium hyperfine structure measurements. Samsung Science and Technology Foundation [SSTFBA1301-12].
Spectroscopy of a Synthetic Trapped Ion Qubit
NASA Astrophysics Data System (ADS)
Hucul, David; Christensen, Justin E.; Hudson, Eric R.; Campbell, Wesley C.
2017-09-01
133Ba+ has been identified as an attractive ion for quantum information processing due to the unique combination of its spin-1 /2 nucleus and visible wavelength electronic transitions. Using a microgram source of radioactive material, we trap and laser cool the synthetic A =133 radioisotope of barium II in a radio-frequency ion trap. Using the same, single trapped atom, we measure the isotope shifts and hyperfine structure of the 62P1 /2↔62S1 /2 and 62P1 /2↔52D3 /2 electronic transitions that are needed for laser cooling, state preparation, and state detection of the clock-state hyperfine and optical qubits. We also report the 62P1 /2↔52D3 /2 electronic transition isotope shift for the rare A =130 and 132 barium nuclides, completing the spectroscopic characterization necessary for laser cooling all long-lived barium II isotopes.
Anomalous behavior of the magnetic hyperfine field at 140Ce impurities at La sites in LaMnSi2
NASA Astrophysics Data System (ADS)
Domienikan, C.; Bosch-Santos, B.; Cabrera-Pasca, G. A.; Saxena, R. N.; Carbonari, A. W.
2018-05-01
Magnetic hyperfine field has been measured in the orthorhombic intermetallic compound LaMnSi2 with perturbed angular correlation (PAC) spectroscopy using radioactive 140La(140Ce) nuclear probes. Magnetization measurements were also carried out in this compound with MPSM-SQUID magnetometer. Samples of LaMnSi2 compound were prepared by arc melting the component metals with high purity under argon atmosphere followed by annealing at 1000°C for 60 h under helium atmosphere and quenching in water. X-ray analysis confirmed the samples to be in a single phase with correct crystal structure expected for LaMnSi2 compound. The radioactive 140La (T1/2 = 40 h) nuclei were produced by direct irradiation of the sample with neutrons in the IEA-R1 nuclear research reactor at IPEN with a flux of ˜ 1013 n cm-2s-1 for about 3 - 4 min. The PAC measurements were carried out with a six BaF2 detector spectrometer at several temperatures between 10 K and 400 K. Temperature dependence of the hyperfine field, Bhf was found to be anomalous. A modified two-state model explained this anomalous behavior where the effective magnetic hyperfine field at 140Ce is believed to have two contributions, one from the unstable localized spins at Ce impurities and another from the magnetic Mn atoms of the host. The competition of these two contributions explains the anomalous behavior observed for the temperature dependence of the magnetic hyperfine field at 140Ce. The ferromagnetic transition temperature (TC) of LaMnSi2 was determined to be 400(1) K confirming the magnetic measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch
2016-07-28
Resonance-enhanced multiphoton ionization (REMPI) is a widely used technique for studying molecular photoionization and producing molecular cations for spectroscopy and dynamics studies. Here, we present a model for describing hyperfine-structure effects in the REMPI process and for predicting hyperfine populations in molecular ions produced by this method. This model is a generalization of our model for fine- and hyperfine-structure effects in one-photon ionization of molecules presented in Paper I [M. Germann and S. Willitsch, J. Chem. Phys. 145, 044314 (2016)]. This generalization is achieved by covering two main aspects: (1) treatment of the neutral bound-bound transition including the hyperfine structuremore » that makes up the first step of the REMPI process and (2) modification of our ionization model to account for anisotropic populations resulting from this first excitation step. Our findings may be used for analyzing results from experiments with molecular ions produced by REMPI and may serve as a theoretical background for hyperfine-selective ionization experiments.« less
Rolf Landauer and Charles H. Bennett Award Talk: Experimental development of spin qubits in silicon
NASA Astrophysics Data System (ADS)
Morello, Andrea
The modern information era is built on silicon nanoelectronic devices. The future quantum information era might be built on silicon too, if we succeed in controlling the interactions between individual spins hosted in silicon nanostructures. Spins in silicon constitute excellent solid-state qubits, because of the weak spin-orbit coupling and the possibility to remove nuclear spins from the environment through 28Si isotopic enrichment. Substitutional 31P atoms in silicon behave approximately like hydrogen in vacuum, providing two spin 1/2 qubits - the donor-bound electron and the 31P nucleus - that can be coherently controlled, read out in single-shot, and are naturally coupled through the hyperfine interaction. In isotopically-enriched 28Si, these single-atom qubits have demonstrated outstanding coherence times, up to 35 seconds for the nuclear spin, and 1-qubit gate fidelities well above 99.9% for both the electron and the nucleus. The hyperfine coupling provides a built-in interaction to entangle the two qubits within one atom. The combined initialization, control and readout fidelities result in a violation of Bell's inequality with S = 2 . 70 , a record value for solid-state qubits. Despite being identical atomic systems, 31P atoms can be addressed individually by locally modifying the hyperfine interaction through electrostatic gating. Multi-qubit logic gates can be mediated either by the exchange interaction or by electric dipole coupling. Scaling up beyond a single atom presents formidable challenges, but provides a pathway to building quantum processors that are compatible with standard semiconductor fabrication, and retain a nanometric footprint, important for truly large-scale quantum computers. Work supported by US Army Research Office (W911NF-13-1-0024) and Australian Research Council (CE110001027).
Study of atomic coherence effects in multi-level V+Ξ system involving Rydberg state
NASA Astrophysics Data System (ADS)
Kaur, Amanjot; Singh, Neeraj; Kaur, Paramjit
2018-06-01
We present theoretical model to investigate the influence of hyperfine levels on the atomic coherences of V+Ξ Rydberg system. Using density matrix formulation, an analytical expression of atomic coherence for weak probe field is derived. The closely spaced hyperfine levels cause asymmetry and red shift while wavelength mismatching induced due to Rydberg state leads to reduction in magnitude and broadening of group index, absorption and dispersion profiles for moving atoms. Our system shows both Rydberg Electromagnetically induced transparency (EIT) with subluminal behavior and Rydberg Electromagnetically induced absorption (EIA) with superluminal propagation by adjusting the strengths of control and switching fields. Variation of group index with probe detuning reveals anomalous dispersion regions at Autler-Townes doublet positions. Group index for Doppler-broadened atoms at resonance condition has lower magnitude as compared to the stationary atoms and hence the group delay time of the pulse is also reduced. We also explore in-depth non-degenerate four-wave mixing (FWM) which is ignited due to the presence of three electromagnetic (e.m.) fields and concurrently, establish relationship between FWM and multi-photon atomic coherence. The transient behavior is also studied for practical realization of our considered system as optical switch.
Mössbauer studies of iron hydride at high pressure
NASA Astrophysics Data System (ADS)
Choe, I.; Ingalls, R.; Brown, J. M.; Sato-Sorensen, Y.; Mills, R.
1991-07-01
We have measured in situ Mössbauer spectra of iron hydride made in a diamond anvil cell at high pressure and room temperature. The spectra show a sudden change at 3.5+/-0.5 GPa from a single hyperfine pattern to a superposition of three. The former pattern results from normal α-iron with negligible hydrogen content, and the latter from residual α-iron plus newly formed iron hydride. Between 3.5 and 10.4 GPa, the extra hydride pattern have hyperfine fields for one ranging from 276 to 263 kOe, and the other, from 317 to 309 kOe. Both have isomer shifts of about 0.4 mm/sec, and negligible quadrupole splittings. X-ray studies on quenched samples have shown that iron hydride is of double hexagonal close-packed structure, whose two nonequivalent iron sites may account for the observation of two different patterns. Even allowing for the effect of volume expansion, the observed isomer shifts for the hydride are considerably more positive than those of other metallic phases of iron. At the same time, the hyperfine fields are slightly smaller than that of α-iron. As a possible explanation, one may expect a bonding of hydrogen with iron, which would result in a small reduction of 4s electrons, possibly accompanied by a small increase of 3d electrons compared with the neutral atom in metallic iron. The difference between the hyperfine fields in the two spectra are presumably due to the different symmetry at the two iron sites.
Gold atoms and clusters on MgO(100) films; an EPR and IRAS study
NASA Astrophysics Data System (ADS)
Yulikov, M.; Sterrer, M.; Risse, T.; Freund, H.-J.
2009-06-01
Single gold atoms deposited on single crystalline MgO(1 0 0) films grown on Mo(1 0 0) are characterized by electron paramagnetic resonance spectroscopy as well as IR spectroscopy using CO as probe molecules. In this article we describe the first angular dependent measurements to determine the principal hyperfine components of a secondary hyperfine interaction, namely, with 17O of the MgO. The values determined here are in perfect agreement with theoretical expectations and corroborate the previously reported binding mechanism of Au atoms on the oxygen anions of the MgO terrace. The temperature dependent EPR data reveal an onset of Au atom mobility at about 80 K while the formation of Au particles occurs only above 125 K. By an analysis of the EPR line width in combination with STM measurements it is possible to deduce an increase of the interatomic distance above 80 K. The Au/CO complexes show a somewhat smaller temperature stability as compared to the Au atoms. The observed thermal stability is in perfect agreement with theoretical predictions for CO desorption.
The spectroscopic observation of the CH radical in its a4Sigma(-) state
NASA Technical Reports Server (NTRS)
Nelis, Thomas; Brown, John M.; Evenson, Kenneth M.
1988-01-01
The first spectroscopic observation of CH in the a 4Sigma(0-) state are reported. The molecule was generated in a discharge-flow system in the reaction betweeen fluorine atoms and methane or between oxygen atoms and acetylene at a total pressure of about 1 Torr. Several resonances associated with the N = 1 - 0 transitions of 4Sigma(-) CH were observed at three separate laser wavelengths, while those for the N = 2 - 1 transition were observed at two wavelengths. Each observed Zeeman component consists of a well-split doublet arising from proton hyperfine structure. The reasons for assigning the observations to CH in its a 4Sigma(-) state are discussed.
NASA Astrophysics Data System (ADS)
Wang, K.; Zhang, C. Y.; Jönsson, P.; Si, R.; Zhao, X. H.; Chen, Z. B.; Guo, X. L.; Chen, C. Y.; Yan, J.
2018-03-01
Employing two state-of-the-art methods, multiconfiguration Dirac-Hartree-Fock and second-order many-body perturbation theory, highly accurate calculations are performed for the lowest 272 fine-structure levels arising from the 2s22p3, 2s2p4, 2p5, 2s22p23l (l = s , p , d), 2s2p33l (l = s , p , d), and 2p43l (l = s , p , d) configurations in nitrogen-like Ge XXVI. Complete and consistent atomic data, including excitation energies, lifetimes, wavelengths, hyperfine structures, Landé gJ-factors, and E1, E2, M1, M2 line strengths, oscillator strengths, and transition rates among these 272 levels are provided. Comparisons are made between the present two data sets, as well as with other available experimental and theoretical values. The present data are accurate enough for identification and deblending of emission lines involving the n = 3 levels, and are also useful for modeling and diagnosing fusion plasmas.
Spin-interaction effects for ultralong-range Rydberg molecules in a magnetic field
NASA Astrophysics Data System (ADS)
Hummel, Frederic; Fey, Christian; Schmelcher, Peter
2018-04-01
We investigate the fine and spin structure of ultralong-range Rydberg molecules exposed to a homogeneous magnetic field. Each molecule consists of a 87Rb Rydberg atom the outer electron of which interacts via spin-dependent s - and p -wave scattering with a polarizable 87Rb ground-state atom. Our model includes also the hyperfine structure of the ground-state atom as well as spin-orbit couplings of the Rydberg and ground-state atom. We focus on d -Rydberg states and principal quantum numbers n in the vicinity of 40. The electronic structure and vibrational states are determined in the framework of the Born-Oppenheimer approximation for varying field strengths ranging from a few up to hundred Gauss. The results show that the interplay between the scattering interactions and the spin couplings gives rise to a large variety of molecular states in different spin configurations as well as in different spatial arrangements that can be tuned by the magnetic field. This includes relatively regularly shaped energy surfaces in a regime where the Zeeman splitting is large compared to the scattering interaction but small compared to the Rydberg fine structure, as well as more complex structures for both weaker and stronger fields. We quantify the impact of spin couplings by comparing the extended theory to a spin-independent model.
Determination of the fine structure constant using helium fine structure.
Smiciklas, Marc; Shiner, David
2010-09-17
We measure 31,908,131.25(30) kHz for the 2(3)}P J=0 to 2 fine structure interval in helium. The difference between this and theory to order mα7 (20 Hz numerical uncertainty) implies 0.22(30) kHz for uncalculated terms. The measurement is performed by using atomic beam and electro-optic laser techniques. Various checks include a 3He 2{3}S hyperfine measurement. We can obtain an independent value for the fine structure constant α with a 5 ppb experimental uncertainty. However, dominant mα8 terms (potentially 1.2 kHz) limit the overall uncertainty to a less competitive 20 ppb in α.
Atomic clouds as spectrally selective and tunable delay lines for single photons from quantum dots
NASA Astrophysics Data System (ADS)
Wildmann, Johannes S.; Trotta, Rinaldo; Martín-Sánchez, Javier; Zallo, Eugenio; O'Steen, Mark; Schmidt, Oliver G.; Rastelli, Armando
2015-12-01
We demonstrate a compact, spectrally selective, and tunable delay line for single photons emitted by quantum dots. This is achieved by fine-tuning the wavelength of the optical transitions of such "artificial atoms" into a spectral window in which a cloud of natural atoms behaves as a slow-light medium. By employing the ground-state fine-structure-split exciton confined in an InGaAs/GaAs quantum dot as a source of single photons at different frequencies and the hyperfine-structure-split D1 transition of Cs-vapors as a tunable delay medium, we achieve a differential delay of up 2.4 ns on a 7.5-cm-long path for photons that are only 60 μ eV (14.5 GHz) apart. To quantitatively explain the experimental data, we develop a theoretical model that accounts for both the inhomogeneous broadening of the quantum-dot emission lines and the Doppler broadening of the atomic lines. The concept we proposed here may be used to implement time-reordering operations aimed at erasing the "which-path" information that deteriorates entangled-photon emission from excitons with finite fine-structure splitting.
Hyperfine structure of the hydroxyl free radical (OH) in electric and magnetic fields
NASA Astrophysics Data System (ADS)
Maeda, Kenji; Wall, Michael L.; Carr, Lincoln D.
2015-05-01
We investigate single-particle energy spectra of the hydroxyl free radical (OH) in the lowest electronic and rovibrational level under combined static electric and magnetic fields, as an example of heteronuclear polar diatomic molecules. In addition to the fine-structure interactions, the hyperfine interactions and centrifugal distortion effects are taken into account to yield the zero-field spectrum of the lowest 2Π3 / 2 manifold to an accuracy of less than 2kHz. We also examine level crossings and repulsions in the hyperfine structure induced by applied electric and magnetic fields. Compared to previous work, we found more than 10 percent reduction of the magnetic fields at level repulsions in the Zeeman spectrum subjected to a perpendicular electric field. In addition, we find new level repulsions, which we call Stark-induced hyperfine level repulsions, that require both an electric field and hyperfine structure. It is important to take into account hyperfine structure when we investigate physics of OH molecules at micro-Kelvin temperatures and below. This research was supported in part by AFOSR Grant No.FA9550-11-1-0224 and by the NSF under Grants PHY-1207881 and NSF PHY-1125915. We appreciate the Aspen Center for Physics, supported in part by the NSF Grant No.1066293, for hospitality.
Λ-enhanced grey molasses on the D2 transition of Rubidium-87 atoms.
Rosi, Sara; Burchianti, Alessia; Conclave, Stefano; Naik, Devang S; Roati, Giacomo; Fort, Chiara; Minardi, Francesco
2018-01-22
Laser cooling based on dark states, i.e. states decoupled from light, has proven to be effective to increase the phase-space density of cold trapped atoms. Dark-states cooling requires open atomic transitions, in contrast to the ordinary laser cooling used for example in magneto-optical traps (MOTs), which operate on closed atomic transitions. For alkali atoms, dark-states cooling is therefore commonly operated on the D 1 transition nS 1/2 → nP 1/2 . We show that, for 87 Rb, thanks to the large hyperfine structure separations the use of this transition is not strictly necessary and that "quasi-dark state" cooling is efficient also on the D 2 line, 5S 1/2 → 5P 3/2 . We report temperatures as low as (4.0 ± 0.3) μK and an increase of almost an order of magnitude in the phase space density with respect to ordinary laser sub-Doppler cooling.
EFFECTIVE HYPERFINE-STRUCTURE FUNCTIONS OF AMMONIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustovičová, L.; Soldán, P.; Špirko, V., E-mail: spirko@marge.uochb.cas.cz
The hyperfine structure of the rotation-inversion ( v {sub 2} = 0{sup +}, 0{sup −}, 1{sup +}, 1{sup −}) states of the {sup 14}NH{sub 3} and {sup 15}NH{sub 3} ammonia isotopomers is rationalized in terms of effective (ro-inversional) hyperfine-structure (hfs) functions. These are determined by fitting to available experimental data using the Hougen’s effective hyperfine-structure Hamiltonian within the framework of the non-rigid inverter theory. Involving only a moderate number of mass independent fitting parameters, the fitted hfs functions provide a fairly close reproduction of a large majority of available experimental data, thus evidencing adequacy of these functions for reliable prediction.more » In future experiments, this may help us derive spectroscopic constants of observed inversion and rotation-inversion transitions deperturbed from hyperfine effects. The deperturbed band centers of ammonia come to the forefront of fundamental physics especially as the probes of a variable proton-to-electron mass ratio.« less
Hyperfine fields and anisotropy of the orbital moment in epitaxial Mn5Ge3 films studied by 55Mn NMR
NASA Astrophysics Data System (ADS)
Kalvig, R.; Jedryka, E.; Wojcik, M.; Allodi, G.; De Renzi, R.; Petit, M.; Michez, L.
2018-05-01
55Mn NMR was used to perform the atomic-scale study of the anisotropic properties of Mn5Ge3 /Ge(111) epitaxial films with thicknesses between 9 and 300 nm. The NMR spectra have been recorded as a function of strong external magnetic field applied in the film plane and perpendicular to it. Two 55Mn NMR resonances have been observed, corresponding to the two manganese sites 4 d and 6 g , in the hexagonal D 88 structure; in zero field their frequency is centered around 207.5 and 428 MHz, respectively. The anisotropy of 55Mn hyperfine fields between the hexagonal c direction and the c plane at both Mn sites was evidenced and attributed to the anisotropic term due to the unquenched Mn orbital momentum. The anisotropy of the orbital contribution to hyperfine fields was determined as 1.52 T in the 4 d site and up to 2.77 T in the 6 g site. The 4 d site reveals a quadrupolar interaction due to the strong electric field gradient: Vz z=5.3 ×1019V/m2 in this site, which is shown to be oriented along the hexagonal c axis.
NASA Technical Reports Server (NTRS)
Ducas, T. W.; Feld, M. S.; Ryan, L. W., Jr.; Skribanowitz, N.; Javan, A.
1972-01-01
Observation results are presented on the optical hyperfine structure in Ne-21 obtained with the aid of laser-induced line-narrowing techniques. The output from a long stabilized single-mode 1.15-micron He-Ne laser focused into an external sample cell containing Ne-21 was used in implementing these techniques. Their applicability is demonstrated for optical hyperfine structure observation in systems whose features are ordinarily masked by Doppler broadening.
Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins
NASA Astrophysics Data System (ADS)
Norris, Leigh Morgan
Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater than or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f>1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.
Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins
NASA Astrophysics Data System (ADS)
Norris, Leigh Morgan
Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f >1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berengut, J. C.; Flambaum, V. V.; Kava, E. M.
2011-10-15
Atomic microwave clocks based on hyperfine transitions, such as the caesium standard, tick with a frequency that is proportional to the magnetic moment of the nucleus. This magnetic moment varies strongly between isotopes of the same atom, while all atomic electron parameters remain the same. Therefore the comparison of two microwave clocks based on different isotopes of the same atom can be used to constrain variation of fundamental constants. In this paper, we calculate the neutron and proton contributions to the nuclear magnetic moments, as well as their sensitivity to any potential quark-mass variation, in a number of isotopes ofmore » experimental interest including {sup 201,199}Hg and {sup 87,85}Rb, where experiments are underway. We also include a brief treatment of the dependence of the hyperfine transitions to variation in nuclear radius, which in turn is proportional to any change in quark mass. Our calculations of expectation values of proton and neutron spin in nuclei are also needed to interpret measurements of violations of fundamental symmetries.« less
Lande gJ factors for even-parity electronic levels in the holmium atom
NASA Astrophysics Data System (ADS)
Stefanska, D.; Werbowy, S.; Krzykowski, A.; Furmann, B.
2018-05-01
In this work the hyperfine structure of the Zeeman splitting for 18 even-parity levels in the holmium atom was investigated. The experimental method applied was laser induced fluorescence in a hollow cathode discharge lamp. 20 spectral lines were investigated involving odd-parity levels from the ground multiplet, for which Lande gJ factors are known with high precision, as the lower levels; this greatly facilitated the evaluation of gJ factors for the upper levels. The gJ values for the even-parity levels considered are reported for the first time. They proved to compare fairly well with the values obtained recently in a semi-empirical analysis for the even-parity level system of Ho I.
Single-ion microwave near-field quantum sensor
NASA Astrophysics Data System (ADS)
Wahnschaffe, M.; Hahn, H.; Zarantonello, G.; Dubielzig, T.; Grondkowski, S.; Bautista-Salvador, A.; Kohnen, M.; Ospelkaus, C.
2017-01-01
We develop an intuitive model of 2D microwave near-fields in the unusual regime of centimeter waves localized to tens of microns. Close to an intensity minimum, a simple effective description emerges with five parameters that characterize the strength and spatial orientation of the zero and first order terms of the near-field, as well as the field polarization. Such a field configuration is realized in a microfabricated planar structure with an integrated microwave conductor operating near 1 GHz. We use a single 9 Be+ ion as a high-resolution quantum sensor to measure the field distribution through energy shifts in its hyperfine structure. We find agreement with simulations at the sub-micron and few-degree level. Our findings give a clear and general picture of the basic properties of oscillatory 2D near-fields with applications in quantum information processing, neutral atom trapping and manipulation, chip-scale atomic clocks, and integrated microwave circuits.
Simulation of a 3D MOT-Optical Molasses Hybrid for Potassium-41 Atoms
NASA Astrophysics Data System (ADS)
Peterson, W. A.; Wrubel, Jonathan
2017-04-01
We report a design and numerical model for a 3D magneto-optical trap (MOT)-optical molasses hybrid for potassium-41 atoms. In this arrangement, the usual quadrupole magnetic field is replaced by an octupole field. The octupole field has a central region of very low magnetic field where our simulations show that the atoms experience an optical molasses, resulting in sub-doppler cooling not possible in a quadrupole MOT. The simulations also show that the presence of the magneto-optical trapping force at the edge of the cooling beams provides a restoring force which cycles atoms through the molasses region. We plan to use this hybrid trap to directly load a far off-resonance optical dipole trap. Because the atoms are recycled for multiple passes through the molasses, we expect a higher phase-space density of atoms loaded into the dipole trap. Similar hybrid cooling schemes should be relevant for lithium-6 and lithium-7, which also have poorly resolved D2 hyperfine structure. Research Corporation for Science Advancement, Cottrell College Science Award.
NASA Astrophysics Data System (ADS)
Kunz, Paul; Meyer, David; Quraishi, Qudsia
2015-05-01
Within the class of nonlinear optical effects that exhibit sub-natural linewidth features, electromagnetically induced transparency (EIT) and nonlinear magneto-optical rotation (NMOR) stand out as having made dramatic impacts on various applications including atomic clocks, magnetometry, and single photon storage. A related effect, known as electromagnetically induced absorption (EIA), has received less attention in the literature. Here, we report on the first observation of EIA in cold atoms using the Hanle configuration, where a single laser beam is used to both pump and probe the atoms while sweeping a magnetic field through zero along the beam direction. We find that, associated with the EIA peak, a ``twist'' appears in the corresponding NMOR signal. A similar twist has been previously noted by Budker et al., in the context of warm vapor optical magnetometry, and was ascribed to optical pumping through nearby hyperfine levels. By studying this feature through numerical simulations and cold atom experiments, thus rendering the hyperfine levels well resolved, we enhance the understanding of the optical pumping mechanism behind it, and elucidate its relation to EIA. Finally, we demonstrate a useful application of these studies through a simple and rapid method for nulling background magnetic fields within our atom chip apparatus.
Germann, Matthias; Willitsch, Stefan
2016-07-28
We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.
Sub-Doppler infrared spectroscopy of propargyl radical (H{sub 2}CCCH) in a slit supersonic expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chih-Hsuan; Nesbitt, David J.
The acetylenic CH stretch mode (ν{sub 1}) of propargyl (H{sub 2}CCCH) radical has been studied at sub-Doppler resolution (∼60 MHz) via infrared laser absorption spectroscopy in a supersonic slit-jet discharge expansion, where low rotational temperatures (T{sub rot} = 13.5(4) K) and lack of spectral congestion permit improved determination of band origin and rotational constants for the excited state. For the lowest J states primarily populated in the slit jet cooled expansion, fine structure due to the unpaired electron spin is resolved completely, which permits accurate analysis of electron spin-rotation interactions in the vibrationally excited states (ε{sub aa} = − 518.1(1.8),more » ε{sub bb} = − 13.0(3), ε{sub cc} = − 1.8(3) MHz). In addition, hyperfine broadening in substantial excess of the sub-Doppler experimental linewidths is observed due to nuclear spin–electron spin contributions at the methylenic (—CH{sub 2}) and acetylenic (—CH) positions, which permits detailed modeling of the fine/hyperfine structure line contours. The results are consistent with a delocalized radical spin density extending over both methylenic and acetylenic C atoms, in excellent agreement with simple resonance structures as well as ab initio theoretical calculations.« less
Using optical masks to create and image sub-optical wavelength atomic structures in a MOT
NASA Astrophysics Data System (ADS)
Turlapov, Andrey; Tonyushkin, Aleksey; Sleator, Tycho
2002-05-01
We have used an ``optical mask'' for Rubidium atoms in a magneto-optical trap to create and image atomic density gratings with periodicities as small as 1/8th of an optical wavelength ( ˜ 100 nm). The mask consists of a pulse of an optical standing wave (wavelength λ) resonant to an open atomic transition. The interaction pumps all atoms except those near the nodes into another hyperfine ground state, leaving a grating of ``spikes'' in atomic density in the initial ground state. The nodes of the standing wave serve as slits of the mask. By applying two such masks separated by time T, we have created atomic gratings of period λ/(2n) (or smaller) at times (n+1)/n T after the first mask pulse. For T on the order of the Talbot time (or inverse recoil frequency), quantum effects are important for the dynamics of the atomic center of mass. Under appropriate conditions, these quantum effects led to a reduction of the period of the resulting density gratings (Talbot-Lau effect). The resulting density gratings of period λ/2n (for n=1 to 4) were imaged in real time using an additional optical mask.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Correa, E. L., E-mail: eduardo.correa@usp.br; Bosch-Santos, B.; Cavalcante, F. H. M.
2016-05-15
The magnetic behavior of Gd{sub 2}O{sub 3} nanoparticles, produced by thermal decomposition method and subsequently annealed at different temperatures, was investigated by magnetization measurements and, at an atomic level, by perturbed γ − γ angular correlation (PAC) spectroscopy measuring hyperfine interactions at {sup 111}In({sup 111}Cd) probe nuclei. Nanoparticle structure, size and shape were characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Magnetization measurements were carried out to characterize the paramagnetic behavior of the samples. XRD results show that all samples crystallize in the cubic-C form of the bixbyite structure with space group Ia3. TEM images showed that particlesmore » annealed at 873 K present particles with highly homogeneous sizes in the range from 5 nm to 10 nm and those annealed at 1273 K show particles with quite different sizes from 5 nm to 100 nm, with a wide size distribution. PAC and magnetization results show that samples annealed at 873 and 1273 K are paramagnetic. Magnetization measurements show no indication of blocking temperatures for all samples down to 2 K and the presence of antiferromagnetic correlations.« less
Hyperfine interactions in titanates: Study of orbital ordering and local magnetic properties
NASA Astrophysics Data System (ADS)
Agzamova, P. A.; Leskova, Yu. V.; Nikiforov, A. E.
2013-05-01
Hyperfine magnetic fields induced on the nuclei of nonmagnetic ions 139La and 89Y in LaTiO3 and YTiO3, respectively, have been microscopically calculated. The dependence of the hyperfine fields on the orbital and magnetic structures of the compounds under study has been analyzed. The comparative analysis of the calculated and known experimental data confirms the existence of the static orbital structure in lanthanum and yttrium titanates.
Quantum Theory of Hyperfine Structure Transitions in Diatomic Molecules.
ERIC Educational Resources Information Center
Klempt, E.; And Others
1979-01-01
Described is an advanced undergraduate laboratory experiment in which radio-frequency transitions between molecular hyperfine structure states may be observed. Aspects of the quantum theory applied to the analysis of this physical system, are discussed. (Authors/BT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch
2016-07-28
We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O{sub 2} reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ionsmore » produced by photoionization.« less
NASA Technical Reports Server (NTRS)
Cooksy, A. L.; Saykally, R. J.; Brown, J. M.; Evenson, K. M.
1986-01-01
Accurate values are presented for the fine-structure intervals in the 3P ground state of neutral atomic C-12 and C-13 as obtained from laser magnetic resonance spectroscopy. The rigorous analysis of C-13 hyperfine structure, the measurement of resonant fields for C-12 transitions at several additional far-infrared laser frequencies, and the increased precision of the C-12 measurements, permit significant improvement in the evaluation of these energies relative to earlier work. These results will expedite the direct and precise measurement of these transitions in interstellar sources and should assist in the determination of the interstellar C-12/C-13 abundance ratio.
RADIATIVE TRANSFER MODELING OF THE ENIGMATIC SCATTERING POLARIZATION IN THE SOLAR Na i D{sub 1} LINE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belluzzi, Luca; Bueno, Javier Trujillo; Degl’Innocenti, Egidio Landi
2015-12-01
The modeling of the peculiar scattering polarization signals observed in some diagnostically important solar resonance lines requires the consideration of the detailed spectral structure of the incident radiation field as well as the possibility of ground level polarization, along with the atom's hyperfine structure and quantum interference between hyperfine F-levels pertaining either to the same fine structure J-level, or to different J-levels of the same term. Here we present a theoretical and numerical approach suitable for solving this complex non-LTE radiative transfer problem. This approach is based on the density-matrix metalevel theory (where each level is viewed as a continuousmore » distribution of sublevels) and on accurate formal solvers of the transfer equations and efficient iterative methods. We show an application to the D-lines of Na i, with emphasis on the enigmatic D{sub 1} line, pointing out the observable signatures of the various physical mechanisms considered. We demonstrate that the linear polarization observed in the core of the D{sub 1} line may be explained by the effect that one gets when the detailed spectral structure of the anisotropic radiation responsible for the optical pumping is taken into account. This physical ingredient is capable of introducing significant scattering polarization in the core of the Na i D{sub 1} line without the need for ground-level polarization.« less
The g$$p\\atop{2}$$ Experiment: A Measurement of the Proton's Spin Structure Functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zielinski, Ryan B.
The E08-027 (gmore » $$p\\atop{2}$$) experiment measured the spin structure functions of the proton at Jefferson Laboratory in Newport News, Va. Longitudinally polarized electrons were scattered from a transversely and longitudinally polarized solid ammonia target in Hall A, with the polarized NH$$_3$$ acting as an effective proton target. Focusing on small scattering angle events at the electron energies available at Jefferson Lab, the experiment covered a kinematic phase space of 0.02 GeV$^2$ $< Q^2 <$ 0.20 GeV$^2$ in the proton's resonance region. The spin structure functions, $$g_{1}^p(x,Q^2)$$ and $$g_{2}^p(x,Q^2)$$ , are extracted from an inclusive polarized cross section measurement of the electron-proton interaction. Integrated moments of $$g_1(x,Q^2)$$ are calculated and compared to theoretical predictions made by Chiral Perturbation Theory. The $$g_1(x,Q^2)$$ results are in agreement with previous measurements, but include a significant increase in statistical precision. The spin structure function contributions to the hyperfine energy levels in the hydrogen atom are also investigated. The $$g_2(x,Q^2)$$ measured contribution to the hyperfine splitting is the first ever experimental determination of this quantity. The results of this thesis suggest a disagreement of over 100% with previously published model results.« less
Method and apparatus for quantum information processing using entangled neutral-atom qubits
Jau, Yuan Yu; Biedermann, Grant; Deutsch, Ivan
2018-04-03
A method for preparing an entangled quantum state of an atomic ensemble is provided. The method includes loading each atom of the atomic ensemble into a respective optical trap; placing each atom of the atomic ensemble into a same first atomic quantum state by impingement of pump radiation; approaching the atoms of the atomic ensemble to within a dipole-dipole interaction length of each other; Rydberg-dressing the atomic ensemble; during the Rydberg-dressing operation, exciting the atomic ensemble with a Raman pulse tuned to stimulate a ground-state hyperfine transition from the first atomic quantum state to a second atomic quantum state; and separating the atoms of the atomic ensemble by more than a dipole-dipole interaction length.
Two-photon Direct Frequency Comb Spectroscopy of Alkali Atoms
NASA Astrophysics Data System (ADS)
Nguyen, Khoa; Pradhananga, Trinity; Palm, Christopher; Stalnaker, Jason; Kimball, Derek Jackson
2012-06-01
We are using direct frequency comb spectroscopy to study transition frequencies and excited state hyperfine structure in potassium and rubidium using 2-photon transitions excited directly with the frequency-doubled output of a erbium fiber optical frequency comb. The frequency comb output is directed in two counterpropagating directions through a vapor cell containing the atomic vapor of interest. A pair of optical filters is used to select teeth of the comb in order to identify the transition wavelengths. A photomultiplier tube (PMT) measures fluorescence from a decay channel wavelength selected with another optical filter. Using different combinations of filters enables a wide range of transitions to be investigated. By scanning the repetition rate, a Doppler-free spectrum can be obtained enabling kHz-resolution spectral measurements. The thermal motion of the atoms in the vapor cell actually eliminates the need to fine-tune the offset frequency and repetition rate, alleviating a somewhat challenging requirement for spectroscopy of cold atoms. Our investigations are laying the groundwork for a long-term research program to use direct frequency comb spectroscopy to understand the complex spectra of rare-earth atoms.
Direct Frequency Comb Spectroscopy of Alkali Atoms
NASA Astrophysics Data System (ADS)
Pradhananga, Trinity; Palm, Christopher; Nguyen, Khoa; Guttikonda, Srikanth; Kimball, Derek Jackson
2011-11-01
We are using direct frequency comb spectroscopy to study transition frequencies and excited state hyperfine structure in potassium and rubidium using 2-photon transitions excited directly with the frequency-doubled output of a erbium fiber optical frequency comb. The frequency comb output is directed in two counterpropagating directions through a vapor cell containing the atomic vapor of interest. A pair of optical filters is used to select teeth of the comb in order to identify the transition wavelengths. A photomultiplier tube (PMT) measures fluorescence from a decay channel wavelength selected with another optical filter. Using different combinations of filters enables a wide range of transitions to be investigated. By scanning the repetition rate, a Doppler-free spectrum can be obtained enabling kHz-resolution spectral measurements. The thermal motion of the atoms in the vapor cell actually eliminates the need to fine-tune the offset frequency and repetition rate, alleviating a somewhat challenging requirement for spectroscopy of cold atoms. Our investigations are laying the groundwork for a long-term research program to use direct frequency comb spectroscopy to understand the complex spectra of rare-earth atoms.
C and RB Fountains:. Recent Results
NASA Astrophysics Data System (ADS)
Bize, S.; Sortais, Y.; Abgrall, M.; Zhang, S.; Calonico, D.; Mandache, C.; Lemonde, P.; Laurent, P.; Santarelli, G.; Salomon, C.; Clairon, A.; Luiten, A.; Tobar, M.
2002-04-01
We discuss the present performance and limits of our Cs and Rb fountains. The BNM/LPTF operates three cold atom clocks: two Cs fountains and a dual Cs-Rb fountain. By using an ultra-stable cryogenic sapphire oscillator to interrogate the atoms the frequency stability reaches 3.6 × 10-14τ-1/2. The accuracy of our fountains is now near 10-15. We discuss here the problems to be solved to reach a 10-16 accuracy. For instance this implies a continuous monitoring of the collisional frequency shift at the percent level in Cs. In contrast, 87Rb cold atom clocks exhibit a collisional shift ~ 100 times smaller than Cs which should lead to a better ultimate accuracy. Comparing the hyperfine energies of atoms with different atomic numbers Z, one can search for a possible violation of the Einstein Equivalence Principle. When interpreted as a test of the stability of the fine structure constant (α = e2/4πγ0ħc), measurements of the ratio νRb/νCs spread over a two year interval show no change of α at the 7 × 10-15/year level.
Wavelengths, energy levels and hyperfine structure of Mn II and Sc II.
NASA Astrophysics Data System (ADS)
Nave, Gillian; Pickering, Juliet C.; Townley-Smith, Keeley I. M.; Hala, .
2015-08-01
For many decades, the Atomic Spectroscopy Groups at the National Institute of Standards and Technology (NIST) and Imperial College London (ICL) have measured atomic data of astronomical interest. Our spectrometers include Fourier transform (FT) spectrometers at NIST and ICL covering the region 1350 Å to 5.5 μm and a 10.7-m grating spectrometer at NIST covering wavelengths from 300 - 5000 Å. Sources for these spectra include high-current continuous and pulsed hollow cathode (HCL) lamps, Penning discharges, and sliding spark discharges. Recent work has focused on the measurement and analysis of wavelengths, energy levels, and hyperfine structure (HFS) constants for iron-group elements. The analysis of FT spectra of Cr I, Mn I, and Mn II is being led by ICL and is described in a companion poster [1]. Current work being led by NIST includes the analysis of HFS in Mn II, analysis of Mn II in the vacuum ultraviolet, and a comprehensive analysis of Sc II.Comprehensive HFS constants for Mn II are needed for the interpretation of stellar spectra and incorrect abundances may be obtained when HFS is omitted. Holt et al. [2] have measured HFS constants for 59 levels of Mn II using laser spectroscopy. We used FT spectra of Mn/Ni and Mn/Cu HCLs covering wavelength ranges from 1350 Å to 5.4 μm to confirm 26 of the A constants of Holt et al. and obtain values for roughly 40 additional levels. We aim to obtain HFS constants for the majority of lines showing significant HFS that are observed in chemically-peculiar stars.Spectra of Sc HCLs have been recorded from 1800 - 6700 Å using a vacuum ultraviolet FT spectrometer at NIST. Additional measurements to cover wavelengths above 6700 Å and below 1800 Å are in progress. The spectra are being analyzed by NIST and Alighar Muslim University, India in order to derive improved wavelengths, energy levels, and hyperfine structure parameters.This work was partially supported by NASA, the STFC and PPARC (UK), the Royal Society of the UK, and the Leverhulme Trust.[1] J. C. Pickering, F. Liggins, C. Clear, M. Ruffoni, G. Nave, C. Sansonetti (this meeting)[2] R. A. Holt, T. J. Scholl & S. D. Rosner, MNRAS 306, 107 (1999)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, W.J.
1997-09-01
Matrix elements of the hyperfine operators corresponding to the magnetic-dipole (A) and electric-quadrupole (B) hyperfine structures constants are given as linear combinations of the appropriate radial integrals for all states of the s, p{sup N}, and d{sub N} configurations in both the SL and pure jj representations. The associated SL-jj transformations are also given. 13 refs., 10 tabs.
Development of high-power dye laser chain
NASA Astrophysics Data System (ADS)
Konagai, Chikara; Kimura, Hironobu; Fukasawa, Teruichiro; Seki, Eiji; Abe, Motohisa; Mori, Hideo
2000-01-01
Copper vapor laser (CVL) pumped dye laser (DL) system, both in a master oscillator power amplifier (MOPA) configuration, has been developed for Atomic Vapor Isotope Separation program in Japan. Dye laser output power of about 500 W has been proved in long-term operations over 200 hours. High power fiber optic delivery system is utilized in order to efficiently transport kilowatt level CVL beams to the DL MOPA. Single model CVL pumped DL oscillator has been developed and worked for 200 hours within +/- 0.1 pm wavelength stability. Phase modulator for spreading spectrum to the linewidth of hyperfine structure has been developed and demonstrated.
de Vine, Glenn; McClelland, David E; Gray, Malcolm B; Close, John D
2005-05-15
We present an experimental technique that permits mechanical-noise-free, cavity-enhanced frequency measurements of an atomic transition and its hyperfine structure. We employ the 532-nm frequency-doubled output from a Nd:YAG laser and an iodine vapor cell. The cell is placed in a folded ring cavity (FRC) with counterpropagating pump and probe beams. The FRC is locked with the Pound-Drever-Hall technique. Mechanical noise is rejected by differencing the pump and probe signals. In addition, this differenced error signal provides a sensitive measure of differential nonlinearity within the FRC.
NASA Astrophysics Data System (ADS)
Pickering, Juliet C.; Nave, Gillian; Liggins, Florence; Clear, Christian; Ruffoni, Matthew; Sansonetti, Craig
2015-08-01
We present new laboratory spectroscopic measurements to produce atomic data for astrophysically important species: neutral, singly and doubly ionised iron group elements.We use high resolution Fourier Transform Spectrometry (FTS) (resolving power up to 2x106 at 200nm) to measure atomic spectra, giving accurate line wavelengths (to a few parts in 108), atomic energy levels, hyperfine structure splitting and log gfs (accurate to a few %) (Ruffoni et al this meeting). These data are vital for astrophysical spectral analyses for: line identification, spectrum synthesis, elemental abundance determinations [eg 1], and disentangling of blends etc. It is not possible to theoretically calculate these atomic data to the accuracy needed for modern astrophysics applications.At Imperial College we have a unique visible-VUV FT spectrometer with short wavelength cut-off of 135nm. We supplement FTS data at shorter wavelengths with spectra recorded on the NIST 10.7m grating spectrograph (with phosphor image or photographic plates) and at longer wavelengths in the IR we use the NIST IR FT spectrometer.An elemental spectrum may contain thousands of spectral lines from the IR to VUV. We use these wavelengths to correct known atomic energy levels, and search for new atomic levels. The result is a classified linelist and accurate atomic energy levels.We present progress on iron group element atomic energy levels and wavelengths for V I and V II [2,3], Co III [4], Cr I, Mn I and Mn II, and Ni II.This work is supported by STFC(UK), The Leverhulme Trust, The Royal Society and NASA.References[1] Bergemann M, Pickering JC & Gehren T,“NLTE analysis of Co I/Co II lines in spectra of cool stars with new laboratory hyperfine splitting constants",MNRAS 401(2) 1334 (2010)[2] Thorne AP, Pickering JC & Semeniuk J,“The spectrum and term analysis of V II”, ApJS 207,13 (2013)[3] Thorne AP, Pickering JC & Semeniuk J,“The spectrum and term analysis of V I",ApJS 192,11 (2011)[4] Smillie DG, Pickering JC, Nave G & Smith PL,“The Spectrum and Term Analysis of Co III Measured using Fourier Transform and Grating Spectroscopy”,ApJS submitted
NASA Astrophysics Data System (ADS)
Zhang, Tingxian; Xie, Luyou; Li, Jiguang; Lu, Zehuang
2017-07-01
We calculated the magnetic dipole and the electric quadrupole hyperfine interaction constants of 3 s 3 p 3,1P1o states and the isotope shift, including mass and field shift, factors for transitions from these two states to the ground state 3 s 2 1S0 in Al+ ions using the multiconfiguration Dirac-Hartree-Fock method. The effects of the electron correlations and the Breit interaction on these physical quantities were investigated in detail based on the active space approach. It is found that the core-core and the higher order correlations are considerable for evaluating the uncertainties of the atomic parameters concerned. The uncertainties of the hyperfine interaction constants in this work are less than 1.6%. Although the isotope shift factors are highly sensitive to the electron correlations, reasonable uncertainties were obtained by exploring the effects of the electron correlations. Moreover, we found that the relativistic nuclear recoil corrections to the mass shift factors are very small and insensitive to the electron correlations for Al+. These atomic parameters present in this work are valuable for extracting the nuclear electric quadrupole moments and the mean-square charge radii of Al isotopes.
Hyperfine frequencies of {sup 87}Rb and {sup 133}Cs atoms in Xe gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuyer, B. H.; Xia, T.; Jau, Y.-Y.
2011-09-15
The microwave resonant frequencies of ground-state {sup 87}Rb and {sup 133}Cs atoms in Xe buffer gas are shown to have a relatively large nonlinear dependence on the Xe pressure, presumably because of RbXe or CsXe van der Waals molecules. The nonlinear shifts for Xe are opposite in sign to the previously measured shifts for Ar and Kr, even though all three gases have negative linear shifts. The Xe data show striking discrepancies with the previous theory for nonlinear shifts. Most of this discrepancy is eliminated by accounting for the spin-rotation interaction, {gamma}N{center_dot}S, in addition to the hyperfine-shift interaction, {delta} Amore » I{center_dot}S, in the molecules. To the limit of our experimental accuracy, the shifts of {sup 87}Rb and {sup 133}Cs in He, Ne, and N{sub 2} were linear with pressure.« less
Complete wavelength mismatching effect in a Doppler broadened Y-type six-level EIT atomic medium
NASA Astrophysics Data System (ADS)
Bharti, Vineet; Wasan, Ajay
We present a theoretical study of the Doppler broadened Y-type six-level atomic system, using a density matrix approach, to investigate the effect of varying control field wavelengths and closely spaced hyperfine levels in the 5P state of 87Rb. The closely spaced hyperfine levels in our six-level system affect the optical properties of Y-type system and cause asymmetry in absorption profiles. Depending upon the choices of π-probe, σ+-control and σ--control fields transitions, we consider three regimes: (i) perfect wavelength matching regime (λp=λ=λ), (ii) partial wavelength mismatching regime (λp≠λ=λ), and (iii) complete wavelength mismatching regime (λp≠λ≠λ). The complete wavelength mismatching regime is further distinguished into two situations, i.e., λ<λ and λ>λ. We have shown that in the room temperature atomic vapor, the asymmetric transparency window gets broadened in the partial wavelength mismatching regime as compared to the perfect wavelength matching regime. This broad transparency window also splits at the line center in the complete wavelength mismatching regime.
Mendt, Matthias; Barth, Benjamin; Hartmann, Martin; Pöppl, Andreas
2017-12-14
The low-temperature binding of nitric oxide (NO) in the metal-organic framework MIL-100(Al) has been investigated by pulsed electron nuclear double resonance and hyperfine sublevel correlation spectroscopy. Three NO adsorption species have been identified. Among them, one species has been verified experimentally to bind directly to an 27 Al atom and all its relevant 14 N and 27 Al hyperfine interaction parameters have been determined spectroscopically. Those parameters fit well to the calculated ones of a theoretical cluster model, which was derived by density functional theory (DFT) in the present work and describes the low temperature binding of NO to the regular coordinatively unsaturated Al 3+ site of the MIL-100(Al) structure. As a result, the Lewis acidity of that site has been characterized using the NO molecule as an electron paramagnetic resonance active probe. The DFT derived wave function analysis revealed a bent end-on coordination of the NO molecule adsorbed at that site which is almost purely ionic and has a weak binding energy. The calculated flat potential energy surface of this species indicates the ability of the NO molecule to freely rotate at intermediate temperatures while it is still binding to the Al 3+ site. For the other two NO adsorption species, no structural models could be derived, but one of them is indicated to be adsorbed at the organic part of the metal-organic framework. Hyperfine interactions with protons, weakly coupled to the observed NO adsorption species, have also been measured by pulsed electron paramagnetic resonance and found to be consistent with their attribution to protons of the MIL-100(Al) benzenetricarboxylate ligand molecules.
Observation of Raman self-focusing in an alkali-metal vapor cell
NASA Astrophysics Data System (ADS)
Proite, N. A.; Unks, B. E.; Green, J. T.; Yavuz, D. D.
2008-02-01
We report an experimental demonstration of Raman self-focusing and self-defocusing in a far-off resonant alkali-metal atomic system. The key idea is to drive a hyperfine transition in an alkali-metal atom to a maximally coherent state with two laser beams. In this regime, the two-photon detuning from the Raman resonance controls the nonlinear index of the medium.
First determination of ground state electromagnetic moments of Fe 53
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, A. J.; Minamisono, K.; Rossi, D. M.
Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less
First determination of ground state electromagnetic moments of Fe 53
Miller, A. J.; Minamisono, K.; Rossi, D. M.; ...
2017-11-16
Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less
Nuclear chemistry. Annual report, 1974
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conzett, H.E.; Edelstein, N.M.; Tsang, C.F.
1975-07-01
The 1974 Nuclear Chemistry Annual Report contains information on research in the following areas: nuclear science (nuclear spectroscopy and radioactivity, nuclear reactions and scattering, nuclear theory); chemical and atomic physics (heavy ion-induced atomic reactions, atomic and molecular spectroscopy, photoelectron spectroscopy and hyperfine interactions); physical, inorganic, and analytical chemistry (x-ray crystallography, physical and inorganic chemistry, geochemistry); and instrumentation. Thesis abstracts, 1974 publication titles, and an author index are also included. Papers having a significant amount of information are listed separately by title. (RWR)
Electron spin resonance identification di-carbon-related centers in irradiated silicon
NASA Astrophysics Data System (ADS)
Hayashi, S.; Saito, H.; Itoh, K. M.; Vlasenko, M. P.; Vlasenko, L. S.
2018-04-01
A previously unreported electron spin resonance (ESR) spectrum was found in γ-ray irradiated silicon by the detection of the change in microwave photoconductivity arising from spin-dependent recombination (SDR). In the specially prepared silicon crystals doped by 13C isotope, a well resolved hyperfine structure of SDR-ESR lines due to the interaction between electrons and two equivalent carbon atoms having nuclear spin I = 1/2 was observed. The Si-KU4 spectrum is described by spin Hamiltonian for spin S = 1 and of g and D tensors of orthorhombic symmetry with principal values g1 = 2.008, g2 = 2.002, and g3 =2.007; and D1 = ± 103 MHz, D2 = ∓170 MHz, and D3 = ± 67 MHz where axes 1, 2, and 3 are parallel to the [1 1 ¯ 0 ], [110], and [001] crystal axes, respectively. The hyperfine splitting arising from 13C nuclei is about 0.35 mT. A possible microstructure of the detect leading to the Si-KU4 spectrum is discussed.
NASA Astrophysics Data System (ADS)
Bouchaala, N.; Jemmali, M.; Bartoli, T.; Nouri, K.; Hentech, I.; Walha, S.; Bessais, L.; Salah, A. Ben
2018-02-01
Nd2Fe17-xCox (x = 0 , 1 , 2 , 3 , 4) intermetallic compounds, obtained under arc-melting conditions, have been investigated by means of X-ray diffraction analysis (XRD), Mössbauer spectrometry and magnetic measurements. The Rietveld refinement revealed that the sample is a pure compound with rhombohedral Th2Zn17-type structure (R 3 bar m space group) with the following lattice parameters: a = 8.5792 (2) Å, c = 12.4615 (2) Å. Using Mössbauer spectrometry analysis coupled with structural consideration we have unambiguously determined the cobalt atoms preferred inequivalent crystallographic site. Nd2Fe17 show an increase of 3.5 T in their weighted average hyperfine fields upon cobalt substitution. Whatever the cobalt content, the hyperfine field of these compounds follow this sequence Hhf { 6 c } >Hhf { 9 d } >Hhf { 18 f } >Hhf { 18 h }. The magnetic measurements showed that the Curie temperature increases with the Co content. The magnetic entropy change (ΔSM) was estimated from isothermal magnetization curves and it increases from 3.35 J/Kg K for x = 0 to 5.83 J/Kg K for x = 2 at μ0 H = 1.6 T . The relative cooling power (RCP) is in the range of 11.6 J/kg (x = 0) and 16 J/kg (x = 2).
NASA Astrophysics Data System (ADS)
Bommier, Véronique
2017-11-01
Context. In previous papers of this series, we presented a formalism able to account for both statistical equilibrium of a multilevel atom and coherent and incoherent scatterings (partial redistribution). Aims: This paper provides theoretical expressions of the redistribution function for the two-term atom. This redistribution function includes both coherent (RII) and incoherent (RIII) scattering contributions with their branching ratios. Methods: The expressions were derived by applying the formalism outlined above. The statistical equilibrium equation for the atomic density matrix is first formally solved in the case of the two-term atom with unpolarized and infinitely sharp lower levels. Then the redistribution function is derived by substituting this solution for the expression of the emissivity. Results: Expressions are provided for both magnetic and non-magnetic cases. Atomic fine structure is taken into account. Expressions are also separately provided under zero and non-zero hyperfine structure. Conclusions: Redistribution functions are widely used in radiative transfer codes. In our formulation, collisional transitions between Zeeman sublevels within an atomic level (depolarizing collisions effect) are taken into account when possible (I.e., in the non-magnetic case). However, the need for a formal solution of the statistical equilibrium as a preliminary step prevents us from taking into account collisional transfers between the levels of the upper term. Accounting for these collisional transfers could be done via a numerical solution of the statistical equilibrium equation system.
21-cm radiation: a new probe of variation in the fine-structure constant.
Khatri, Rishi; Wandelt, Benjamin D
2007-03-16
We investigate the effect of variation in the value of the fine-structure constant (alpha) at high redshifts (recombination > z > 30) on the absorption of the cosmic microwave background (CMB) at 21 cm hyperfine transition of the neutral atomic hydrogen. We find that the 21 cm signal is very sensitive to the variations in alpha and it is so far the only probe of the fine-structure constant in this redshift range. A change in the value of alpha by 1% changes the mean brightness temperature decrement of the CMB due to 21 cm absorption by >5% over the redshift range z < 50. There is an effect of similar magnitude on the amplitude of the fluctuations in the brightness temperature. The redshift of maximum absorption also changes by approximately 5%.
Local structure study of Fe dopants in Ni-deficit Ni 3Al alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
V. N. Ivanovski; Umicevic, A.; Belosevic-Cavor, J.
2015-08-24
We found that the local electronic and magnetic structure, hyperfine interactions, and phase composition of polycrystalline Ni–deficient Ni 3-x FexAl (x = 0.18 and 0.36) were investigated by means of 57 Fe Mössbauer spectroscopy. The samples were characterized by X–ray diffraction and magnetization measurements. The ab initio calculations performed with the projector augmented wave method and the calculations of the energies of iron point defects were done to elucidate the electronic structure and site preference of Fe doped Ni 3 Al. Moreover, the value of calculated electric field gradient tensor V zz=1.6 10 21Vm -2 matches well with the resultsmore » of Mössbauer spectroscopy and indicates that the Fe atoms occupy Ni sites.« less
Possibility of New Precise Measurements of Muonic Helium Atom HFS at J-PARC MUSE
NASA Astrophysics Data System (ADS)
Strasser, P.; Shimomura, K.; Torii, H. A.
We propose the next generation of precision microwave spectroscopy measurements of the ground state hyperfine structure (HFS) of the muonic helium atom. The HFS interval is a sensitive tool to test three-body atomic system and bound-state QED theory as well as precise direct determination of the negative muon magnetic moment and hence its mass. Previous measurements performed in 1980s at PSI and LAMPF had uncertainties dominated by statistical errors. The new high-intensity pulsed negative muon beam at J-PARC MUSE give an opportunity to improve these measurements by nearly two orders of magnitude for the HFS interval, and almost tenfold for the negative muon mass, thus providing a more precise test of CPT invariance and determination of the negative counterpart of the anomalous g-factor for the existing BNL muon g-2 experiment. Both measurements at zero field and at high magnetic field are considered. An overview of the different aspects of these new muonic helium HFS measurements is presented.
Iron state in iron nanoparticles with and without zirconium
NASA Astrophysics Data System (ADS)
Filippov, V. P.; Khasanov, A. M.; Lauer, Yu. A.
2017-11-01
Mössbauer and X-ray methods are used for investigations of structure, stability and characteristics of pure-iron grain and two iron-zirconium alloys such as Fe + 5 wt.% Zr and Fe + 10 wt.% Zr. The used powder was ground for 24 h in a SPEX Model 8000 mill shaker. Complex nanoparticles are found, which change their properties under milling. Mössbauer spectral parameters are obtained for investigated materials. Milling results in formation of nanosized particles with two states of iron atoms: one main part is pure α-Fe and another part of iron atoms displaced in grain boundaries or defective zones in which hyperfine magnetic splitting decrease to ˜ 30.0 T. In alloys with Zr three iron states are formed in each alloy, main part of iron is in the form of α-Fe and another two states depend on the concentration of Zr and represent iron in grain boundaries with Zr atoms in nearest neighbor. The changing of iron states is discussed.
NASA Astrophysics Data System (ADS)
Mathew, Bijo; Adeniyi, Adebayo A.; Joy, Monu; Mathew, Githa Elizabeth; Singh-Pillay, Ashona; Sudarsanakumar, C.; Soliman, Mahmoud E. S.; Suresh, Jerad
2017-10-01
Compound (2E)-3-(methoxyphenyl)-1-(4-methylphenyl) prop-2-en-1-one (Ch) was synthesized by the Claisen-Schmidt condensation reaction between para-methylacetophenone and para-methoxybenzaldehyde under basic condition. The structure of the molecule was elucidated using X-ray diffraction. Compound (Ch) demonstrated higher antioxidant activities in the DPPH test and H2O2 assay (IC50 = 12.23 ± 0.53 and 15.62 ± 0.98) than with the standard ascorbic acid (IC50 = 17.32 ± 0.44 and 19.07 ± 0.35). An evaluation of the atomic and molecular properties of ascorbic acid and Ch were computed based on their antioxidant activities. The molecular properties give insight into possible reasons for the enhanced antioxidant properties of Ch compared to ascorbic acid. The atomic properties provide further insight into chemical changes of the atoms of the compounds. Such changes include electronic shifting of the compounds electrophilic and/or nucleophilic states which highlight chemical moieties which characterize the antioxidant activity but do not directly relate to a variation in their antioxidant activities. The results obtained reflect oxygen atoms having significant nucleophilic interactions of each of the compounds. This was characterized by higher Fukui indices, isotropic and anisotropic hyperfine and orbital coupling stability energy.
NASA Astrophysics Data System (ADS)
Koch, Angira; Kumar, Arvind; Singh, Suryabhan; Borthakur, Rosmita; Basumatary, Debajani; Lal, Ram A.; Shangpung, Sankey
2015-03-01
The synthesis of the heterobinuclear copper-zinc complex [CuZn(bz)3(bpy)2]ClO4 (bz = benzoate) from benzoic acid and bipyridine is described. Single crystal X-ray diffraction studies of the heterobinuclear complex reveals the geometry of the benzoato bridged Cu(II)-Zn(II) centre. The copper or zinc atom is pentacoordinate, with two oxygen atoms from bridging benzoato groups and two nitrogen atoms from one bipyridine forming an approximate plane and a bridging oxygen atom from a monodentate benzoate group. The Cu-Zn distance is 3.345 Å. The complex is normal paramagnetic having μeff value equal to 1.75 BM, ruling out the possibility of Cu-Cu interaction in the structural unit. The ESR spectrum of the complex in CH3CN at RT exhibit an isotropic four line spectrum centred at g = 2.142 and hyperfine coupling constants Aav = 63 × 10-4 cm-1, characteristic of a mononuclear square-pyramidal copper(II) complexes. At LNT, the complex shows an isotropic spectrum with g|| = 2.254 and g⊥ = 2.071 and A|| = 160 × 10-4 cm-1. The Hamiltonian parameters are characteristic of distorted square pyramidal geometry. Cyclic voltammetric studies of the complex have indicated quasi-reversible behaviour in acetonitrile solution.
Site-Resolved Imaging with the Fermi Gas Microscope
NASA Astrophysics Data System (ADS)
Huber, Florian Gerhard
The recent development of quantum gas microscopy for bosonic rubidium atoms trapped in optical lattices has made it possible to study local structure and correlations in quantum many-body systems. Quantum gas microscopes are a perfect platform to perform quantum simulation of condensed matter systems, offering unprecedented control over both internal and external degrees of freedom at a single-site level. In this thesis, this technique is extended to fermionic particles, paving the way to fermionic quantum simulation, which emulate electrons in real solids. Our implementation uses lithium, the lightest atom amenable to laser cooling. The absolute timescales of dynamics in optical lattices are inversely proportional to the mass. Therefore, experiments are more than six times faster than for the only other fermionic alkali atom, potassium, and more then fourteen times faster than an equivalent rubidium experiment. Scattering and collecting a sufficient number of photons with our high-resolution imaging system requires continuous cooling of the atoms during the fluorescence imaging. The lack of a resolved excited hyperfine structure on the D2 line of lithium prevents efficient conventional sub-Doppler cooling. To address this challenge we have applied a Raman sideband cooling scheme and achieved the first site-resolved imaging of ultracold fermions in an optical lattice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davaasuren, Bambar; Dashjav, Enkhtsetseg; Kreiner, Guido
The carboferrates RE{sub 15}[Fe{sub 8}C{sub 25}] (RE=Dy, Ho) were prepared from mixtures of the elements by arc-melting followed with subsequent annealing at 1373 K. The crystal structures were determined from single crystal X-ray diffraction data and revealed an isotypic relationship to Er{sub 15}[Fe{sub 8}C{sub 25}] (hP48, P321). The main feature of the crystal structure is given by Fe{sub 6} cluster units characterized by covalent Fe–Fe bonding interactions. {sup 57}Fe Mössbauer spectra of Dy{sub 15}[Fe{sub 8}C{sub 25}] were fitted by three subspectra with relative spectral weights of about 3:3:2 which is in general agreement with the crystal structure. Below 50 K,more » an onset of magnetic hyperfine fields at the three iron sites is observed which is supposed to be caused by dipolar fields arising from neighboring, slowly relaxing Dy magnetic moments. - Graphical abstract: Fe{sub 6}-cluster in the crystal structure of RE{sub 15}[Fe{sub 8}C{sub 25}], RE=Dy, Ho. - Highlights: • New carboferrates RE{sub 15}[Fe{sub 8}C{sub 25}] with RE=Dy, Ho have been synthesized. • The crystal structures were refined using single crystal X-ray data. • An orientational relationship between Fe{sub 6}-clusters and Fe in γ-Fe is outlined. • {sup 57}Fe Mössbauer spectra are in agreement with structural data from X-rays. • Magnetic hyperfine fields below 50 K are explained by dipolar fields from Dy atoms.« less
ANTIHYDROGEN PRODUCTION AND PRECISION SPECTROSCOPY WITH ATHENA/AD-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. HOLZSCHEITER; C. AMSLER; ET AL
2000-11-01
CPT invariance is a fundamental property of quantum field theories in flat space-time. Principal consequences include the predictions that particles and their antiparticles have equal masses and lifetimes, and equal and opposite electric charges and magnetic moments. It also follows that the fine structure, hyperfine structure, and Lamb shifts of matter and antimatter bound systems should be identical. It is proposed to generate new stringent tests of CPT using precision spectroscopy on antihydrogen atoms. An experiment to produce antihydrogen at rest has been approved for running at the Antiproton Decelerator (AD) at CERN. We describe the fundamental features of thismore » experiment and the experimental approach to the first phase of the program, the formation and identification of low energy antihydrogen.« less
Practical method for transversely measuring the spin polarization of optically pumped alkali atoms
NASA Astrophysics Data System (ADS)
Ding, Zhichao; Yuan, Jie; Long, Xingwu
2018-06-01
A practical method to measure the spin polarization of optically pumped alkali atoms is demonstrated. In order to realize transverse measurement, the transverse spin component of spin-polarized alkali atoms is created by a rotating exciting magnetic field, and detected using the optical rotation of a near-resonant probe beam for realizing a high detection sensitivity. The dependency of the optical rotation on the spin polarization of 133Cs atoms is derived theoretically and verified experimentally. By changing the direction of the rotating magnetic field, we realize the transverse measurement of the spin polarization of 133Cs atoms in either ground-state hyperfine level.
Matterwave interferometric velocimetry of cold Rb atoms
NASA Astrophysics Data System (ADS)
Carey, Max; Belal, Mohammad; Himsworth, Matthew; Bateman, James; Freegarde, Tim
2018-03-01
We consider the matterwave interferometric measurement of atomic velocities, which forms a building block for all matterwave inertial measurements. A theoretical analysis, addressing both the laboratory and atomic frames and accounting for residual Doppler sensitivity in the beamsplitter and recombiner pulses, is followed by an experimental demonstration, with measurements of the velocity distribution within a 20 ?K cloud of rubidium atoms. Our experiments use Raman transitions between the long-lived ground hyperfine states, and allow quadrature measurements that yield the full complex interferometer signal and hence discriminate between positive and negative velocities. The technique is most suitable for measurement of colder samples.
Matterwave interferometric velocimetry of cold Rb atoms
NASA Astrophysics Data System (ADS)
Carey, Max; Belal, Mohammad; Himsworth, Matthew; Bateman, James; Freegarde, Tim
2018-02-01
We consider the matterwave interferometric measurement of atomic velocities, which forms a building block for all matterwave inertial measurements. A theoretical analysis, addressing both the laboratory and atomic frames and accounting for residual Doppler sensitivity in the beamsplitter and recombiner pulses, is followed by an experimental demonstration, with measurements of the velocity distribution within a 20 $\\mu$K cloud of rubidium atoms. Our experiments use Raman transitions between the long-lived ground hyperfine states, and allow quadrature measurements that yield the full complex interferometer signal and hence discriminate between positive and negative velocities. The technique is most suitable for measurement of colder samples.
Demonstration of the Jaynes-Cummings ladder with Rydberg-dressed atoms
Lee, Jongmin; Martin, Michael J.; Jau, Yuan-Yu; ...
2017-04-06
Here, we observe the nonlinearity of the Jaynes-Cummings (JC) ladder in the Autler-Townes spectroscopy of the hyperfine ground states for a Rydberg-dressed two-atom system. The role of the two-level system in the JC model is played by the presence or absence of a collective Rydberg excitation, and the bosonic mode manifests as the number n of single-atom spin flips, symmetrically distributed between the atoms. We also measure the normal-mode splitting and √ n nonlinearity as a function of detuning and Rabi frequency, thereby experimentally establishing the isomorphism with the JC model.
Iron Atoms in Cr-Mn Antiferromagnetic Matrix
NASA Astrophysics Data System (ADS)
Szymański, K.; Satuła, D.; Dobrzyński, L.; Biernacka, M.; Perzyńska, K.; Zaleski, P.
2002-06-01
The results of the Mössbauer effect measurements on bcc Cr rich Cr-Fe-Mn alloys in temperature range 12-296 K in zero- and in applied magnetic fields are reported. Monochromatic, circularly polarized radiation was used for investigation of iron moments alignment. Strong enhancement of internal hyperfine magnetic field induced by the applied magnetic field was detected and explained as due to dynamical effects. At high temperatures alignment of iron moments in antiferromagnetic phase is weakly magnetic field-dependent. At low temperatures the average hyperfine magnetic field is antiparallel to the net magnetization showing that iron moments are partly ordered by the applied field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orozco, Luis A
This is a report of the construction of a Francium Trapping Facility (FTF) at the Isotope Separator and Accelerator (ISAC) of TRIUMF in Vancouver, Canada, where the Francium Parity Non Conservation (FrPNC) international collaboration has its home. This facility will be used to study fundamental symmetries with high-resolution atomic spectroscopy. The primary scientific objective of the program is a measurement of the anapole moment of francium in a chain of isotopes by observing the parity violation induced by the weak interaction. The anapole moment of francium and associated signal are expected to be ten times larger than in cesium, themore » only element in which an anapole moment has been observed. The measurement will provide crucial information for better understanding weak hadronic interactions in the context of Quantum Chromodynamics (QCD). The methodology combines nuclear and particle physics techniques for the production of francium with precision measurements based on laser cooling and trapping and microwave spectroscopy. The program builds on an initial series of atomic spectroscopy measurements of the nuclear structure of francium, based on isotope shifts and hyperfine anomalies, before conducting the anapole moment measurements, these measurements performed during commissioning runs help understand the atomic and nuclear structure of Fr.« less
Evidence for a second-order phase transition around 350 K in Ce3Rh4Sn13
NASA Astrophysics Data System (ADS)
Kuo, C. N.; Chen, W. T.; Tseng, C. W.; Hsu, C. J.; Huang, R. Y.; Chou, F. C.; Kuo, Y. K.; Lue, C. S.
2018-03-01
We report an observation of a phase transition in Ce3Rh4Sn13 with the transition temperature T*≃350 K by means of synchrotron x-ray powder diffraction, specific heat, electrical resistivity, Seebeck coefficient, thermal conductivity, as well as 119Sn nuclear magnetic resonance (NMR) measurements. The phase transition has been characterized by marked features near T* in all measured physical quantities. The lack of thermal hysteresis in the specific heat indicates a second-order phase transition in nature. From the NMR analysis, the change in the transferred hyperfine coupling constant for two tin sites has been resolved. The obtained result has been associated with the reduction in the averaged interatomic distance between Ce and Sn atoms, particularly for the Sn2 atoms. It indicates that the movement of the Sn2 atoms, which deforms the high-temperature structure, shortens the Ce-Sn2 bond length at low temperatures. We therefore provide a concise picture that the observed second-order phase transition at T* of Ce3Rh4Sn13 should be characterized by a structural modulation essentially due to lattice distortions arising from phonon instability.
Quadrupole splittings in the near-infrared spectrum of 14NH 3
Twagirayezu, Sylvestre; Hall, Gregory E.; Sears, Trevor J.
2016-10-13
Sub-Doppler, saturation dip, spectra of lines in the v 1 + v 3, v 1 + 2v 4 and v 3 + 2v 4 bands of 14NH 3 have been measured by frequency comb-referenced diode laser absorption spectroscopy. The observed spectral line widths are dominated by transit time broadening, and show resolved or partially-resolved hyperfine splittings that are primarily determined by the 14N quadrupole coupling. Modeling of the observed line shapes based on the known hyperfine level structure of the ground state of the molecule shows that, in nearly all cases, the excited state level has hyperfine splittings similar tomore » the same rotational level in the ground state. The data provide accurate frequencies for the line positions and easily separate lines overlapped in Doppler-limited spectra. The observed hyperfine splittings can be used to make and confirm rotational assignments and ground state combination differences obtained from the measured frequencies are comparable in accuracy to those obtained from conventional microwave spectroscopy. Furthermore, several of the measured transitions do not show the quadrupole hyperfine splittings expected based on their existing rotational assignments. Either the assignments are incorrect or the upper levels involved are perturbed in a way that affects the nuclear hyperfine structure.« less
Revised energy levels of singly ionized lanthanum
NASA Astrophysics Data System (ADS)
Güzelçimen, Feyza; Tonka, Mehdi; Uddin, Zaheer; Bhatti, Naveed Anjum; Windholz, Laurentius; Kröger, Sophie; Başar, Gönül
2018-05-01
Based on the experimental wavenumbers of 344 spectral lines from calibrated Fourier transform (FT) spectra as well as wavenumbers of 81 lines from the wavelength tables from literature, the energy of 115 fine structure levels of singly ionized lanthanum has been revised by weighted global fits. The classifications of the lines are provided by numerous previous investigations of lanthanum by different spectroscopic methods and authors. For the high accurate determination of the center of gravity wavenumbers from the experimental spectrum, the hyperfine constants of the involved levels have been taken into account, if possible. For the 94 levels with known hyperfine constants the accuracy of energy values is better than 0.01 cm-1. For 34 levels the magnetic dipole hyperfine constants A have been determined from FT spectra as part of this work. For four of these 34 levels even electric quadrupole hyperfine constants B could be estimated. For levels, which have experimentally unknown hyperfine constants and which are connected only by lines not found in the FT spectra but taken from literature, the uncertainties of energy values are about a factor of 10 higher. A list of all revised level energies together with a compilation of hyperfine structure data is given as well as a list of all lines used.
Hyperfine field and electronic structure of magnetite below the Verwey transition
NASA Astrophysics Data System (ADS)
Řezníček, R.; Chlan, V.; Štěpánková, H.; Novák, P.
2015-03-01
Magnetite represents a prototype compound with a mixed valence of iron cations. Its structure and electron ordering below the Verwey transition have been studied for decades. A recently published precise crystallographic structure [Senn et al., Nature (London) 481, 173 (2012), 10.1038/nature10704] accompanied by a suggestion of a "trimeron" model has given a new impulse to magnetite research. Here we investigate hyperfine field anisotropy in the C c phase of magnetite by quantitative reanalysis of published measurements of the dependences of the 57Fe nuclear magnetic resonance frequencies on the external magnetic field direction. Further, ab initio density-functional-theory-based calculations of hyperfine field depending on the magnetization direction using the recently reported crystal structure are carried out, and analogous hyperfine anisotropy data linked to particular crystallographic sites are determined. These two sets of data are compared, and mutually matching groups of the iron B sites in the 8:5:3 ratio are found. Moreover, information on electronic structure is obtained from the ab initio calculations. Our results are compared with the trimeron model and with an alternative analysis [Patterson, Phys. Rev. B 90, 075134 (2014), 10.1103/PhysRevB.90.075134] as well.
Investigation of Cr substitution in Co ferrite (CoCrxFe2-xO4) using Mossbauer spectroscopy
NASA Astrophysics Data System (ADS)
Krieble, K.; Lo, C. C. H.; Melikhov, Y.; Snyder, J. E.
2006-04-01
Substitution of other metals for Fe in cobalt ferrite has been proposed as a method to tailor the magnetic and magnetoelastic properties for sensor and actuator applications [H. Zheng et al., Science 303, 661 (2004)]. However, to understand the effect of Cr substitution, one needs atomic-level information on the local environments and interactions of the transition-metal ions. In this study, Mossbauer spectroscopy was used to investigate the local environments of the Fe atoms in these materials. A series of five powder samples with compositions CoCrxFe2-xO4 (x=0.0 to 0.8) was investigated using transmission geometry. Results show two distinct six-line hyperfine patterns, indicating Fe in A and B spinel sites. Increasing Cr concentration is seen to decrease the hyperfine field strength for both A and B sites, as well as increasing the width of those distributions. Results for Cr substitution show generally similar behavior to a prior study using Mn; however, Cr substitution has more pronounced effects: the hyperfine fields decrease and distribution widths increase at greater rates for Cr substitution, and the differences between A and B site behavior are more pronounced. Results are consistent with a model in which Cr has an even stronger B-site preference than Mn, and displaces more of the Co from the B to the A sites.
Bichromatic laser cooling in a three-level system
NASA Astrophysics Data System (ADS)
Gupta, R.; Xie, C.; Padua, S.; Batelaan, H.; Metcalf, H.
1993-11-01
We report a 1D study of optical forces on atoms in a two-frequency laser field. The light couples two ground state hyperfine structure levels to a common excited state of 85Rb, thus forming a Λ system. We observe a new type of sub-Doppler coupling with blue-tuned light that uses neither polarization gradients nor magnetic fields, efficient heating with red tuning, and the spatial phase dependence of these. We observed deflection from a rectified dipole force and determined its velocity dependence and capture range. We report velocity selective resonances associated with Raman transitions. A simplified semiclassical calculation agrees qualitatively with our measurements.
Laser ablated hydantoin: A high resolution rotational study.
Alonso, Elena R; Kolesniková, Lucie; Alonso, José L
2017-09-28
Laser ablation techniques coupled with broadband and narrowband Fourier transform microwave spectroscopies have allowed the high resolution rotational study of solid hydantoin, an important target in astrochemistry as a possible precursor of glycine. The complicated hyperfine structure arising from the presence of two 14 N nuclei in non-equivalent positions has been resolved and interpreted in terms of the nuclear quadrupole coupling interactions. The results reported in this work provide a solid base for the interstellar searches of hydantoin in the astrophysical surveys. The values of the nuclear quadrupole coupling constants have been also discussed in terms of the electronic environment around the respective nitrogen atom.
Materials for optical memory: Resolved hyperfine structure in KY3F10:Ho3+
NASA Astrophysics Data System (ADS)
Popova, M. N.
2013-08-01
Basic principles of creating a quantum optical memory (QOM) and requirements for relevant materials, in particular, for crystals doped with rare-earth ions, are briefly reviewed. A combined approach to studying the hyperfine structure, which is essential for QOM applications, is presented on the example of KY3F10:Ho3+.
Spin-orbit-coupled Fermi gases of two-electron ytterbium atoms
NASA Astrophysics Data System (ADS)
He, Chengdong; Song, Bo; Haciyev, Elnur; Ren, Zejian; Seo, Bojeong; Zhang, Shanchao; Liu, Xiong-Jun; Jo, Gyu-Boong
2017-04-01
Spin-orbit coupling (SOC) has been realized in bosonic and fermionic atomic gases opening an avenue to novel physics associated with spin-momentum locking. In this talk, we will demonstrate all-optical method coupling two hyperfine ground states of 173Yb fermions through a narrow optical transition 1S0 -> 3P1. An optical AC Stark shift is applied to split the ground hyperfine levels and separate out an effective spin-1/2 subspace from other spin states for the realization of SOC. The spin dephasing dynamics and the asymmetric momentum distribution of the spin-orbit coupled Fermi gas are observed as a hallmark of SOC. The implementation of all-optical SOC for ytterbium fermions should offer a new route to a long-lived spin-orbit coupled Fermi gas and greatly expand our capability in studying novel spin-orbit physics with alkaline-earth-like atoms. Other ongoing experimental works related to SOC will be also discussed. Funded by Croucher Foundation and Research Grants Council (RGC) of Hong Kong (Project ECS26300014, GRF16300215, GRF16311516, and Croucher Innovation Grants); MOST (Grant No. 2016YFA0301604) and NSFC (No. 11574008).
The HERMES Polarized Atomic Beam Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nass, A.
2003-07-30
The atomic beam source (ABS) provides nuclear polarized hydrogen or deuterium atoms for the HERMES target at flow rates of about 6.5 {center_dot} 1016H-vector/s (hydrogen in two hyperfine substates) and 6.0 {center_dot} 1016D-vector/s (deuterium in three hyperfine substates). The degree of dissociation of 93% for H (95% for D) at the entrance of the storage cell and the nuclear polarization of around 0.97 (H) and 0.92 (D) have been found to be constant within a a couple of percent over the whole running period of the HERMES experiment. A new dissociator (MWD) based on a microwave discharge at 2.45 GHzmore » has been developed and installed into the HERMES-ABS in 2000. Since the velocity distribution of the MWD differs from that of the RFD the intensity could be increased further with a modified sextupole magnet system. For this purpose the way for a new start generator for sextupole tracking calculations was opened. Monte-Carlo simulations were successfully used to describe the gas expansion between nozzle, skimmer and collimator. A new type of beam monitor was used to study the beam formation after the nozzle.« less
Technology for On-Chip Qubit Control with Microfabricated Surface Ion Traps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Highstrete, Clark; Scott, Sean Michael; Nordquist, Christopher D.
2013-11-01
Trapped atomic ions are a leading physical system for quantum information processing. However, scalability and operational fidelity remain limiting technical issues often associated with optical qubit control. One promising approach is to develop on-chip microwave electronic control of ion qubits based on the atomic hyperfine interaction. This project developed expertise and capabilities at Sandia toward on-chip electronic qubit control in a scalable architecture. The project developed a foundation of laboratory capabilities, including trapping the 171Yb + hyperfine ion qubit and developing an experimental microwave coherent control capability. Additionally, the project investigated the integration of microwave device elements with surface ionmore » traps utilizing Sandia’s state-of-the-art MEMS microfabrication processing. This effort culminated in a device design for a multi-purpose ion trap experimental platform for investigating on-chip microwave qubit control, laying the groundwork for further funded R&D to develop on-chip microwave qubit control in an architecture that is suitable to engineering development.« less
Free Radical Metabolism of Methyleugenol and Related Compounds
2015-01-01
Methyleugenol, the methyl ether of eugenol, both of which are flavorant constituents of spices, has been listed by the National Toxicology Program’s Report on Carcinogens as reasonably anticipated to be a human carcinogen. This finding is based on the observation of increased incidence of malignant tumors at multiple tissue sites in experimental animals of different species. By contrast, eugenol is not listed. In this study, we show that both methyleugenol and eugenol readily undergo peroxidative metabolism in vitro to form free radicals with large hyperfine interactions of the methylene allylic hydrogen atoms. These large hyperfine splittings indicate large electron densities adjacent to those hydrogen atoms. Methyleugenol undergoes autoxidation such that the commercial product contains 10–30 mg/L hydroperoxide and is capable of activating peroxidases without the presence of added hydrogen peroxide. Additionally, the hydroperoxide is not a good substrate for catalase, which demonstrates that these antioxidant defenses will not be effective in protecting against methyleugenol exposure. PMID:24564854
Hyperfine interaction in K 2Ba[Fe(NO 2) 6
NASA Astrophysics Data System (ADS)
Padmakumar, K.; Manoharan, P. T.
2000-04-01
Magnetic hyperfine splitting observed in the low temperature Mössbauer spectrum of potassium barium hexanitro ferrate(II), in the absence of any external field, is attributed to the 5T 2g state of the central metal atom further split into a ground 5E g state and a first excited 5B 2g state under a distorted octahedral symmetry in contrast to the earlier prediction of 1A 1g ground state on the basis of room temperature Mössbauer spectral and other properties. The central iron atom is co-ordianted to six nitrito groups (NO 2-), having an oxidation state of +2. The temperature dependence of Mössbauer spectra is explained on the basis of electronic relaxation among the spin-orbit coupled levels of the 5E g ground state. Various kinds of electronic relaxation mechanisms have been compared to explain the proposed mechanism. The observed temperature dependent spectra with varying internal magnetic field and line width can be explained by simple spin lattice relaxation.
NASA Astrophysics Data System (ADS)
Filatov, Michael; Cremer, Dieter
2005-09-01
It is demonstrated that the LYP correlation functional is not suited to be used for the calculation of electron spin resonance hyperfine structure (HFS) constants, nuclear magnetic resonance spin-spin coupling constants, magnetic, shieldings and other properties that require a balanced account of opposite- and equal-spin correlation, especially in the core region. In the case of the HFS constants of alkali atoms, LYP exaggerates opposite-spin correlation effects thus invoking too strong in-out correlation effects, an exaggerated spin-polarization pattern in the core shells of the atoms, and, consequently, too large HFS constants. Any correlation functional that provides a balanced account of opposite- and equal-spin correlation leads to improved HFS constants, which is proven by comparing results obtained with the LYP and the PW91 correlation functional. It is suggested that specific response properties are calculated with the PW91 rather than the LYP correlation functional.
Research on Spectroscopy, Opacity, and Atmospheres
NASA Astrophysics Data System (ADS)
Kurucz, Robert L.; Bell, Barbara
1996-01-01
This line list is a replacement for the Kurucz-Peytremann line list. We have combined all the atomic files from CDROM 18 into 534910 line files GFALL.DAT and GFELEM.DAT. These are the data we actually use to compute spectra. They are not up to date. References are given in GFALL.REF or GFELEN.REF. There are no references after 1988. For light elements there are no references after 1979. We have the literature into the 1990's but have not had manpower or funding to update everything. Our current plan is to make a new semiempirical calculation for each species and at that time to include all the data from the literature. One new development is the inclusion of hyperfine splitting for the iron group elements using hyperfine data from the literature through 1993. The data are very incomplete. We have not yet included data for isotopic splitting. We supply a program for splitting the line list for a species. It reads the hyperfine and isotopic splitting parameters for levels and computes the oplittings whenever those levels appear. Lines with no splitting data are copied untouched. Because Sc, Mn, and Co are monoisotopic, only the hyperfine splittings are needed. Since 51V is much more abundant than S0V, the isotope shifts are small for 51V, and we approximate V with 51V. GFALLKYP.DAT has 754946 lines including hyperfine Sc(I), V(I), Mn(I), and Co(I). A bibliography for last year (1994-1995) is also attached.
The use of 133 Ba+ as a new candidate for trapped atomic ion qubits
NASA Astrophysics Data System (ADS)
Hucul, David; Christiansen, Justin; Campbell, Wesley; Hudson, Eric
2016-05-01
Trapped atomic ions are qubit standards in quantum information science because of their long coherence times and high fidelity entangling gates. Many different atomic ions have been used as qubits, each with strengths and weaknesses dictated by its atomic structure. We propose to use 133 Ba+ as an atomic qubit. 133 Ba+ is a nearly ideal, all-purpose candidate by combining many of the strengths of different workhorse atomic ions. 133 Ba+, like 171 Yb+, has a nuclear spin 1/2, allowing for a robust hyperfine qubit with simple state preparation and readout via differential fluorescence. The lack of a low-lying F-state, like in Ca+, simplifies high-fidelity qubit state detection that relies on shelving a qubit level to a meta-stable excited state. In addition, 133 Ba+ can be used for background-free qubit state detection where the wavelength of the qubit detection light differs from all excitation light by at least 50 THz. Unlike all other ions in use, the optical transitions of barium are in the visible spectrum, enabling the use of high power lasers, low-loss fibers, high quantum efficiency detectors, and other technologies developed for visible wavelengths of light to ease some requirements toward scaling a quantum system.
HYPERFINE-DEPENDENT gf-VALUES OF Mn I LINES IN THE 1.49-1.80 μm H BAND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, M.; Hutton, R.; Zou, Y.
2015-01-01
The three Mn I lines at 17325, 17339, and 17349 Å are among the 25 strongest lines (log (gf) > 0.5) in the H band. They are all heavily broadened due to hyperfine structure, and the profiles of these lines have so far not been understood. Earlier studies of these lines even suggested that they were blended. In this work, the profiles of these three infrared (IR) lines have been studied theoretically and compared to experimental spectra to assist in the complete understanding of the solar spectrum in the IR. It is shown that the structure of these lines cannot be describedmore » in the conventional way using the diagonal A and B hyperfine interaction constants. The off-diagonal hyperfine interaction not only has a large impact on the energies of the hyperfine levels, but also introduces a large intensity redistribution among the hyperfine lines, changing the line profiles dramatically. By performing large-scale calculations of the diagonal and off-diagonal hyperfine interaction and the gf-values between the upper and lower hyperfine levels and using a semi-empirical fitting procedure, we achieved agreement between our synthetic and experimental spectra. Furthermore, we compare our results with observations of stellar spectra. The spectra of the Sun and the K1.5 III red giant star Arcturus were modeled in the relevant region, 1.73-1.74 μm, using our theoretically predicted gf-values and energies for each individual hyperfine line. Satisfactory fits were obtained and clear improvements were found using our new data compared with the old available Mn I data. A complete list of energies and gf-values for all the 3d {sup 5}4s({sup 7} S)4d e{sup 6}D - 3d {sup 5}4s({sup 7} S)4f w{sup 6}F hyperfine lines are available as supporting material, whereas only the stronger lines are presented and discussed in detail in this paper.« less
Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, Ahmad Y.; Jensen, Per, E-mail: jensen@uni-wuppertal.de; Yachmenev, Andrey
2015-12-28
We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH{sub 3} radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH{sub 3} in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in verymore » good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.« less
First determination of ground state electromagnetic moments of 53Fe
NASA Astrophysics Data System (ADS)
Miller, A. J.; Minamisono, K.; Rossi, D. M.; Beerwerth, R.; Brown, B. A.; Fritzsche, S.; Garand, D.; Klose, A.; Liu, Y.; Maaß, B.; Mantica, P. F.; Müller, P.; Nörtershäuser, W.; Pearson, M. R.; Sumithrarachchi, C.
2017-11-01
The hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum of the 3 d64 s25D4↔3 d64 s 4 p 5F5 transition, measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ =-0.65 (1 ) μN and Q =+35 (15 ) e2fm2 , respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental values agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full f p shell model space, which support the soft nature of the 56Ni nucleus.
The fine-structure intervals of (N-14)+ by far-infrared laser magnetic resonance
NASA Technical Reports Server (NTRS)
Brown, John M.; Varberg, Thomas D.; Evenson, Kenneth M.; Cooksy, Andrew L.
1994-01-01
The far-infrared laser magnetic resonance spectra associated with both fine-structure transitions in (N-14)+ in its ground P-3 state have been recorded. This is the first laboratory observation of the J = 1 left arrow 0 transition and its frequency has been determined two orders of magnitude more accurately than previously. The remeasurement of the J = 2 left arrow 1 spectrum revealed a small error in the previous laboratory measurements. The fine-structure splittings (free of hyperfine interactions) determined in this work are (delta)E(sub 10) = 1461.13190 (61) GHz, (delta)E(sub 21) = 2459.38006 (37) GHz. Zero-field transition frequencies which include the effects of hyperfine structure have also been calculated. Refined values for the hyperfine constants and the g(sub J) factors have been obtained.
Entanglement of two individual neutral atoms using Rydberg blockade.
Wilk, T; Gaëtan, A; Evellin, C; Wolters, J; Miroshnychenko, Y; Grangier, P; Browaeys, A
2010-01-08
We report the generation of entanglement between two individual 87Rb atoms in hyperfine ground states |F=1,M=1> and |F=2,M=2> which are held in two optical tweezers separated by 4 microm. Our scheme relies on the Rydberg blockade effect which prevents the simultaneous excitation of the two atoms to a Rydberg state. The entangled state is generated in about 200 ns using pulsed two-photon excitation. We quantify the entanglement by applying global Raman rotations on both atoms. We measure that 61% of the initial pairs of atoms are still present at the end of the entangling sequence. These pairs are in the target entangled state with a fidelity of 0.75.
Physics with Trapped Antihydrogen
NASA Astrophysics Data System (ADS)
Charlton, Michael
2017-04-01
For more than a decade antihydrogen atoms have been formed by mixing antiprotons and positrons held in arrangements of charged particle (Penning) traps. More recently, magnetic minimum neutral atom traps have been superimposed upon the anti-atom production region, promoting the trapping of a small quantity of the antihydrogen yield. We will review these advances, and describe some of the first physics experiments performed on anrtihydrogen including the observation of the two-photon 1S-2S transition, invesigation of the charge neutrailty of the anti-atom and studies of the ground state hyperfine splitting. We will discuss the physics motivations for undertaking these experiments and describe some near-future initiatives.
Zeeman structure of red lines of lanthanum observed by laser spectroscopy methods
NASA Astrophysics Data System (ADS)
Sobolewski, Ł. M.; Windholz, L.; Kwela, J.
2017-11-01
Laser Induced Fluorescence (LIF) Spectroscopy and Optogalvanic (OG) Spectroscopy were used for the investigation of the Zeeman hyperfine (hf) structures of 27 spectral lines of La I in the wavelength range between 633.86 and 667.54 nm. As a source of free La atoms a hollow cathode discharge lamp was used. Spectra were recorded in the presence of a relatively weak magnetic field (about 800G) produced by a permanent magnet, for two linear polarization directions of the exciting laser beam. As a result of the measurements, we determined for the first time the Landé gJ- factors of 18 levels of La I. The Landé gJ- factors of 12 other levels were re-investigated and determined with higher accuracy.
Two-photon exchange correction to the hyperfine splitting in muonic hydrogen
NASA Astrophysics Data System (ADS)
Tomalak, Oleksandr
2017-12-01
We reevaluate the Zemach, recoil and polarizability corrections to the hyperfine splitting in muonic hydrogen expressing them through the low-energy proton structure constants and obtain the precise values of the Zemach radius and two-photon exchange (TPE) contribution. The uncertainty of TPE correction to S energy levels in muonic hydrogen of 105 ppm exceeds the ppm accuracy level of the forthcoming 1S hyperfine splitting measurements at PSI, J-PARC and RIKEN-RAL.
Opto-Electronic Oscillator Stabilized By A Hyperfine Atomic Transition
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry; Aveline, David; Matsko, Andrey B.; Thompson, Robert; Yu, Nan
2004-01-01
Opto-electronic oscillator (OEO) is a closed-loop system with part of the loop is implemented by an optical beam, and the rest by RF circuitry. The technological advantage of this approach over traditional all-RF loops in the gigahertz range comes from the that frequency filtering can be done far more efficiently in the optical range with compact, low power, and have superior stability. In this work, we report our preliminary results on using the phenomenon of coherent population trapping in (87) Rb vapor as an optical filter. Such a filter allows us to stabilize the OEO at the hyperfine splitting frequency of rubidium, thus implementing a novel type of frequency standard.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, M. P.; Lawler, J. E.; Den Hartog, E. A.
2014-10-01
New experimental absolute atomic transition probabilities are reported for 203 lines of V II. Branching fractions are measured from spectra recorded using a Fourier transform spectrometer and an echelle spectrometer. The branching fractions are normalized with radiative lifetime measurements to determine the new transition probabilities. Generally good agreement is found between this work and previously reported V II transition probabilities. Two spectrometers, independent radiometric calibration methods, and independent data analysis routines enable a reduction in systematic uncertainties, in particular those due to optical depth errors. In addition, new hyperfine structure constants are measured for selected levels by least squares fittingmore » line profiles in the FTS spectra. The new V II data are applied to high resolution visible and UV spectra of the Sun and metal-poor star HD 84937 to determine new, more accurate V abundances. Lines covering a range of wavelength and excitation potential are used to search for non-LTE effects. Very good agreement is found between our new solar photospheric V abundance, log ε(V) = 3.95 from 15 V II lines, and the solar-system meteoritic value. In HD 84937, we derive [V/H] = –2.08 from 68 lines, leading to a value of [V/Fe] = 0.24.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanza, Mathieu; Lique, François, E-mail: francois.lique@univ-lehavre.fr
The determination of hyperfine structure resolved excitation cross sections and rate coefficients due to H{sub 2} collisions is required to interpret astronomical spectra. In this paper, we present several theoretical approaches to compute these data. An almost exact recoupling approach and approximate sudden methods are presented. We apply these different approaches to the HCl–H{sub 2} collisional system in order to evaluate their respective accuracy. HCl–H{sub 2} hyperfine structure resolved cross sections and rate coefficients are then computed using recoupling and approximate sudden methods. As expected, the approximate sudden approaches are more accurate when the collision energy increases and the resultsmore » suggest that these approaches work better for para-H{sub 2} than for ortho-H{sub 2} colliding partner. For the first time, we present HCl–H{sub 2} hyperfine structure resolved rate coefficients, computed here for temperatures ranging from 5 to 300 K. The usual Δj{sub 1} = ΔF{sub 1} propensity rules are observed for the hyperfine transitions. The new rate coefficients will significantly help the interpretation of interstellar HCl emission lines observed with current and future telescopes. We expect that these new data will allow a better determination of the HCl abundance in the interstellar medium, that is crucial to understand the interstellar chlorine chemistry.« less
NASA Astrophysics Data System (ADS)
D'yachkov, A. B.; Firsov, V. A.; Gorkunov, A. A.; Labozin, A. V.; Mironov, S. M.; Saperstein, E. E.; Tolokonnikov, S. V.; Tsvetkov, G. O.; Panchenko, V. Y.
2017-01-01
Laser resonant photoionization spectroscopy was used to study the hyperfine structure of the optical 3d84s2 {}3F4→ 3d84s4p {}3G^o3 and 3d94s {}3D3→ 3d84s4p {}3G^o3 transitions of 63Ni and 61Ni isotopes. Experimental spectra allowed us to derive hyperfine interaction constants and determine the magnetic dipole moment of the nuclear ground state of 63Ni for the first time: μ=+0.496(5)μ_N. The value obtained agrees well with the prediction of the self-consistent theory of finite Fermi systems.
Nuclear Hyperfine Structure in the Donor – Acceptor Complexes (CH3)3N-BF3 and (CH)33N-B(CH3)3
The donor-acceptor complexes (CH3)3N-BF3 and (CH3)3N-B(CH3)3 have been reinvestigated at high resolution by rotational spectroscopy in a supersonic jet. Nuclear hyperfine structure resulting from both nitrogen and boron has been resolved and quadrupole coupling constants have bee...
NASA Astrophysics Data System (ADS)
Liu, Wenliang; Wang, Xiaofeng; Wu, Jizhou; Su, Xingliang; Wang, Shen; Sovkov, Vladimir B.; Ma, Jie; Xiao, Liantuan; Jia, Suotang
2017-08-01
We report on the experimental observation and quantitative determination of the laser-induced frequency shift (LIFS) of the ultracold polar molecules formed by photoassociation (PA). The experiments are performed by detecting a series of double PA spectra with a molecular hyperfine structure, which are induced by two PA lasers with a precise and adjustable frequency reference. We find that the LIFS of the molecular hyperfine levels shows a linear dependence on PA laser intensity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hafiz, Moustafa Abdel; Maurice, Vincent; Chutani, Ravinder
2015-05-14
We report the realization and characterization using coherent population trapping (CPT) spectroscopy of an octadecyltrichlorosilane (OTS)-coated centimeter-scale Cs vapor cell. The dual-structure of the resonance lineshape, with presence of a narrow structure line at the top of a Doppler-broadened structure, is clearly observed. The linewidth of the narrow resonance is compared to the linewidth of an evacuated Cs cell and of a buffer gas Cs cell of similar size. The Cs-OTS adsorption energy is measured to be (0.42 ± 0.03) eV, leading to a clock frequency shift rate of 2.7 × 10{sup −9}/K in fractional unit. A hyperfine population lifetime, T{sub 1}, and amore » microwave coherence lifetime, T{sub 2}, of 1.6 and 0.5 ms are reported, corresponding to about 37 and 12 useful bounces, respectively. Atomic-motion induced Ramsey narrowing of dark resonances is observed in Cs-OTS cells by reducing the optical beam diameter. Ramsey CPT fringes are detected using a pulsed CPT interrogation scheme. Potential applications of the Cs-OTS cell to the development of a vapor cell atomic clock are discussed.« less
NASA Astrophysics Data System (ADS)
Beloy, Kyle; Derevianko, Andrei
2008-05-01
The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V. M. Shabaev et al., Phys. Rev. Lett. 93, 130405 (2004)] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely- employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37, 307-15 (1988)]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s1/2-7s1/2 transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach.
EPR Spectroscopy of Radical Ions of a 2,3-Diamino-1,4-naphthoquinone Derivative.
Tarábek, Ján; Wen, Jin; Dron, Paul I; Pospíšil, Lubomír; Michl, Josef
2018-05-18
We report the electron paramagnetic resonance spectra of the radical cation and radical anion of 1,2,2,3-tetramethyl-2,3-dihydro-1 H-naphtho[2,3- d]imidazole-4,9-dione (1) and its doubly 13 C labeled analogue 2, of interest for singlet fission. The hyperfine coupling constants are in excellent agreement with density functional theory calculations and establish the structures beyond doubt. Unlike the radical cation 1 •+ , the radical anion 1 •- and its parent 1 have pyramidalized nitrogen atoms and inequivalent methyl groups 15 and 16, in agreement with the calculations. The distinction is particularly clear with the labeled analogue 2 •- .
Diode laser based resonance ionization mass spectrometric measurement of strontium-90
NASA Astrophysics Data System (ADS)
Bushaw, B. A.; Cannon, B. D.
1997-10-01
A diode laser based scheme for the isotopically selective excitation and ionization of strontium is presented. The double-resonance excitation 5s 21S 0→5s5p 3P 1→5s6s 3S 1 is followed by photoionization at 488 nm. The isotope shifts and hyperfine structure in the resonance transitions have been accurately measured for the stable isotopes and 90Sr, with the measurement of the 90Sr shifts using sub-pg samples. Analytical tests, using graphite crucible atomization, demonstrated 90Sr detection limits of 0.8 fg and overall (optical+mass spectrometer) isotopic selectivity of >10 10 against stable strontium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okubo, Sho; Nakayama, Hirotaka; Sasada, Hiroyuki
Saturated absorption spectra of the {nu}{sub 1} fundamental band of CH{sub 3}I are recorded with a cavity-enhanced cell and a tunable difference frequency generation source having an 86-cm{sup -1} range. The recorded spectral lines are 250 kHz wide, and most of them are resolved into the individual hyperfine components. The Coriolis interaction between the v{sub 1}=1 and (v{sub 2},v{sub 6}{sup l})=(1,2{sup 2}) states locally perturbing the hyperfine structures is analyzed to yield the Coriolis and hyperfine coupling constants with uncertainties similar to those in typical microwave spectroscopy. The spectrometer has demonstrated the potential for precisely determining the energy structure inmore » the vibrational excited states.« less
Magnetism and Hyperfine Parameters in Iron Rich Gd_2Fe_{17-x}Si_x Intermetallics
NASA Astrophysics Data System (ADS)
Nouri, K.; Bartoli, T.; Chrobak, A.; Moscovici, J.; Bessais, L.
2018-04-01
Gd_2Fe_{17-x}Si_x (x = 0.25 , 0.5 and 1) samples were synthesized by arc melting and annealed at 1073 K for 1 week. X-ray diffraction analysis by the Rietveld method has shown that these materials crystallize in the rhombohedral Th_2Zn_{17} -type structure (space group R\\bar{3}m ). The Curie temperature increases with Si content x, whereas the unit-cell parameters decrease slightly. The temperature dependence of magnetization data revealed that Gd_2Fe_{17-x}Si_x exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of the Curie temperature. Exchange coupling parameters of R-R, M-M and R-M (R—rare earth, M—transition metal) have been determined from M(T) magnetization curves based on the mean field theory calculation. The magnetic entropy change Δ S_M and the relative cooling power were estimated from isothermal magnetization curves for all samples. In the proximity of {T}_C and in an applied field of 1.56 T, Δ S_M reached a maximum values of 1.38, 1.67 and 3.07 J/kg K for x = 0.25, 0.5 and 1, respectively. We have calculated the magnetic moment per Fe atom from magnetization measurements at 293 K up to 17 kOe, and it decreases with Si content. These results are verified by the Mössbauer spectrometry measurements obtained at the same temperature. The Mössbauer spectra analysis is based on the correlation between the Wigner-Seitz volume and the isomer-shift evolution of each specific site 6c, 9d, 18f, and 18h of the R\\bar{3} m structure. For all Si concentrations, the magnitude of the hyperfine fields are {H_HF}{6c} > {H_HF}{9d} > {H_HF}{18f} > {H_HF}{18h} . The mean hyperfine field decreases with the Si content.
Magnetism and Hyperfine Parameters in Iron Rich Gd_2Fe_{17-x}Si_x Intermetallics
NASA Astrophysics Data System (ADS)
Nouri, K.; Bartoli, T.; Chrobak, A.; Moscovici, J.; Bessais, L.
2018-07-01
Gd_2Fe_{17-x}Si_x (x = 0.25, 0.5 and 1) samples were synthesized by arc melting and annealed at 1073 K for 1 week. X-ray diffraction analysis by the Rietveld method has shown that these materials crystallize in the rhombohedral Th_2Zn_{17}-type structure (space group R\\bar{3}m). The Curie temperature increases with Si content x, whereas the unit-cell parameters decrease slightly. The temperature dependence of magnetization data revealed that Gd_2Fe_{17-x}Si_x exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of the Curie temperature. Exchange coupling parameters of R- R, M- M and R- M ( R—rare earth, M—transition metal) have been determined from M( T) magnetization curves based on the mean field theory calculation. The magnetic entropy change Δ S_M and the relative cooling power were estimated from isothermal magnetization curves for all samples. In the proximity of {T}_C and in an applied field of 1.56 T, Δ S_M reached a maximum values of 1.38, 1.67 and 3.07 J/kg K for x = 0.25, 0.5 and 1, respectively. We have calculated the magnetic moment per Fe atom from magnetization measurements at 293 K up to 17 kOe, and it decreases with Si content. These results are verified by the Mössbauer spectrometry measurements obtained at the same temperature. The Mössbauer spectra analysis is based on the correlation between the Wigner-Seitz volume and the isomer-shift evolution of each specific site 6 c, 9 d, 18 f, and 18 h of the R\\bar{3}m structure. For all Si concentrations, the magnitude of the hyperfine fields are {H_HF}{6c} > {H_HF}{9d} > {H_HF}{18f} > {H_HF}{18h}. The mean hyperfine field decreases with the Si content.
Evidence for Nuclear Tensor Polarization of Deuterium Molecules in Storage Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
van den Brand, J.; Bulten, H.; Zhou, Z.
1997-02-01
Deuterium molecules were obtained by recombination, on a copper surface, of deuterium atoms prepared in specific hyperfine states. The molecules were stored for about 5ms in an open-ended cylindrical cell, placed in a 23mT magnetic field, and their tensor polarization was measured by elastic scattering of 704MeV electrons. The results of the measurements are consistent with the deuterium molecules retaining the tensor polarization of the initial atoms. {copyright} {ital 1997} {ital The American Physical Society}
Storage rings for spin-polarized hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, D.; Lovelace, R.V.E.; Lee, D.
1989-11-01
A strong-focusing storage ring is proposed for the long-term magnetic confinement of a collisional gas of neutral spin-polarized hydrogen atoms in the Za{l arrow} and Zb{l arrow} hyperfine states. The trap uses the interaction of the magnetic moments of the gas atoms with a static magnetic field. Laser cooling and evaporative cooling can be utilized to enhance the confinement and to offset the influence of viscous heating. An important application of the trap is to the attainment of Bose--Einstein condensation.
Magneto-optical trap for thulium atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukachev, D.; Sokolov, A.; Chebakov, K.
2010-07-15
Thulium atoms are trapped in a magneto-optical trap using a strong transition at 410 nm with a small branching ratio. We trap up to 7x10{sup 4} atoms at a temperature of 0.8(2) mK after deceleration in a 40-cm-long Zeeman slower. Optical leaks from the cooling cycle influence the lifetime of atoms in the magneto-optical trap which varies between 0.3 and 1.5 s in our experiments. The lower limit for the leaking rate from the upper cooling level is measured to be 22(6) s{sup -1}. The repumping laser transferring the atomic population out of the F=3 hyperfine ground-state sublevel gives amore » 30% increase for the lifetime and the number of atoms in the trap.« less
EPR hyperfine structure of the Mo-related defect in CdWO4
NASA Astrophysics Data System (ADS)
Elsts, E.; Rogulis, U.
2005-01-01
The hyperfine structure (hf) of the electron paramagnetic resonance (EPR) spectrum of Mo-related impurity defects in CdWO4 crystals observed previously (U. Rogulis, Radiat. Meas. 29, 287 (1998) [1]) is reconsidered taking into account interactions with two different groups of neighbouring Cd nuclei. The best fit calculated EPR spectrum to the experimental is obtained considering 2 groups of 3 and 2 equivalent Cd nuclei, respectively.
Carrier-Envelope Phase Effect on Atomic Excitation by Few-Cycle rf Pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Hebin; Welch, George R.; Sautenkov, Vladimir A.
2010-03-12
We present an experimental and theoretical study of the carrier-envelope phase effects on population transfer between two bound atomic states interacting with intense ultrashort pulses. Radio frequency pulses are used to transfer population among the ground state hyperfine levels in rubidium atoms. These pulses are only a few cycles in duration and have Rabi frequencies of the order of the carrier frequency. The phase difference between the carrier and the envelope of the pulses has a significant effect on the excitation of atomic coherence and population transfer. We provide a theoretical description of this phenomenon using density matrix equations. Wemore » discuss the implications and possible applications of our results.« less
Magnetometer Based on Optoelectronic Microwave Oscillator
NASA Technical Reports Server (NTRS)
Maleki, Lute; Strekalov, Dmitry; Matsko, Andrey
2005-01-01
proposed instrument, intended mainly for use as a magnetometer, would include an optoelectronic oscillator (OEO) stabilized by an atomic cell that could play the role of a magnetically tunable microwave filter. The microwave frequency would vary with the magnetic field in the cell, thereby providing an indication of the magnetic field. The proposed magnetometer would offer a combination of high accuracy and high sensitivity, characterized by flux densities of less than a picotesla. In comparison with prior magnetometers, the proposed magnetometer could, in principle, be constructed as a compact, lightweight instrument: It could fit into a package of about 10 by 10 by 10 cm and would have a mass <0.5 kg. As described in several prior NASA Tech Briefs articles, an OEO is a hybrid of photonic and electronic components that generates highly spectrally pure microwave radiation, and optical radiation modulated by the microwave radiation, through direct conversion between laser light and microwave radiation in an optoelectronic feedback loop. As used here, "atomic cell" signifies a cell containing a vapor, the constituent atoms of which can be made to undergo transitions between quantum states, denoted hyperfine levels, when excited by light in a suitable wavelength range. The laser light must be in this range. The energy difference between the hyperfine levels defines the microwave frequency. In the proposed instrument (see figure), light from a laser would be introduced into an electro-optical modulator (EOM). Amplitude-modulated light from the exit port of the EOM would pass through a fiber-optic splitter having two output branches. The light in one branch would be sent through an atomic cell to a photodiode. The light in the other branch would constitute the microwave-modulated optical output. Part of the light leaving the atomic cell could also be used to stabilize the laser at a frequency in the vicinity of the desired hyperfine or other quantum transition. The microwave signal from the output of the photodiode would be amplified (if necessary, as explained below) and fed back into the EOM. This system would oscillate if the amplification in the closed loop exceeded the linear absorption of the loop. The microwave amplifier may be unnecessary to sustain stable oscillations, depending on the power of the laser radiation at the photodetector and on particular features of the modulator and optical delay line.
The pure rotational spectrum of TiF (X 4Φr): 3d transition metal fluorides revisited
NASA Astrophysics Data System (ADS)
Sheridan, P. M.; McLamarrah, S. K.; Ziurys, L. M.
2003-11-01
The pure rotational spectrum of TiF in its X 4Φr (v=0) ground state has been measured using millimeter/sub-millimeter wave direct absorption techniques in the range 140-530 GHz. In ten out of the twelve rotational transitions recorded, all four spin-orbit components were observed, confirming the 4Φr ground state assignment. Additional small splittings were resolved in several of the spin components in lower J transitions, which appear to arise from magnetic hyperfine interactions of the 19F nucleus. In contrast, no evidence for Λ-doubling was seen in the data. The rotational transitions of TiF were analyzed using a case (a) Hamiltonian, resulting in the determination of rotational and fine structure constants, as well as hyperfine parameters for the fluorine nucleus. The data were readily fit in a case (a) basis, indicating strong first order spin-orbit coupling and minimal second-order effects, as also evidenced by the small value of λ, the spin-spin parameter. Moreover, only one higher order term, η, the spin-orbit/spin-spin interaction term, was needed in the analysis, again suggesting limited perturbations in the ground state. The relative values of the a, b, and c hyperfine constants indicate that the three unpaired electrons in this radical lie in orbitals primarily located on the titanium atom and support the molecular orbital picture of TiF with a σ1δ1π1 single electron configuration. The bond length of TiF (1.8342 Å) is significantly longer than that of TiO, suggesting that there are differences in the bonding between 3d transition metal fluorides and oxides.
Antiferromagnetic structure and electronic properties of BaCr2As2 and BaCrFeAs2
NASA Astrophysics Data System (ADS)
Filsinger, Kai A.; Schnelle, Walter; Adler, Peter; Fecher, Gerhard H.; Reehuis, Manfred; Hoser, Andreas; Hoffmann, Jens-Uwe; Werner, Peter; Greenblatt, Martha; Felser, Claudia
2017-05-01
Recent theoretical studies suggest that superconductivity may be found in doped chromium pnictides with crystal structures similar to their iron counterparts. Here, we report a comprehensive study on the magnetic arsenides BaCr2As2 and BaCrFeAs2 (space group I 4 /m m m ), which are possible mother compounds with d4 and d5 electron configurations, respectively. DFT-based calculations of the electronic structure evidence metallic antiferromagnetic ground states for both compounds. By powder neutron diffraction, we confirm for BaCr2As2 a robust ordering in the antiferromagnetic G -type structure at TN=580 K with μCr=1.9 μB . Anomalies in the lattice parameters point to magnetostructural coupling effects. In BaCrFeAs2, the Cr and Fe atoms randomly occupy the transition-metal site and G -type order is found below 265 K with μCr /Fe=1.1 μB . 57Fe Mössbauer spectroscopy demonstrates that only a small ordered moment is associated with the Fe atoms, in agreement with electronic structure calculations leading to μFe˜0 . The temperature dependence of the hyperfine field does not follow that of the total moments. Both compounds are metallic but show large enhancements of the linear specific heat. Electrical transport in BaCrFeAs2 is dominated by the atomic disorder and the partial magnetic disorder of Fe. Our results indicate that Néel-type order is unfavorable for Fe moments and thus it is destabilized with increasing Fe content.
Cheng, Wang-Yau; Chen, Ting-Ju; Lin, Chia-Wei; Chen, Bo-Wei; Yang, Ya-Po; Hsu, Hung Yi
2017-02-06
Robust sub-millihertz-level offset locking was achieved with a simple scheme, by which we were able to transfer the laser frequency stability and accuracy from either cesium-stabilized diode laser or comb laser to the other diode lasers who had serious frequency jitter previously. The offset lock developed in this paper played an important role in atomic two-photon spectroscopy with which record resolution and new determination on the hyperfine constants of cesium atom were achieved. A quantum-interference experiment was performed to show the improvement of light coherence as an extended design was implemented.
NASA Astrophysics Data System (ADS)
Baturo, V. V.; Cherepanov, I. N.; Lukashov, S. S.; Petrov, A. N.; Poretsky, S. A.; Pravilov, A. M.
2018-05-01
Detailed studies of I2(β1 g , v β = 13, J β ∼ D{0}u+, v D = 12, J D and D, 48, J D ∼ β, 47, J β ) rovibronic state coupling have been carried out using two-step two-color, hν 1 + hν 2 and hν 1 + 2hν 2, optical–optical double resonance excitation schemes, respectively. The hyperfine interaction satisfying the | {{Δ }}J| = 0, 1 selection rules (magnetic-dipole interaction) has been observed. No electric-quadrupole hyperfine coupling (| {{Δ }}J| = 2) has been found. The dependences of ratios of luminescence intensities from the rovibronic states populated due to the hyperfine coupling to those from optically populated ones on energy gaps between these states have been experimentally determined. The matrix elements as well as the hyperfine structure constant have been obtained using these dependences. It is shown that they increase slightly with the vibrational quantum number of the states.
Two-photon direct frequency comb spectroscopy of alkali atoms
NASA Astrophysics Data System (ADS)
Palm, Christopher; Pradhananga, Trinity; Nguyen, Khoa; Montcrieffe, Caitlin; Kimball, Derek
2012-11-01
We have studied transition frequencies and excited state hyperfine structure in rubidium using 2-photon transitions excited directly with the frequency-doubled output of a erbium fiber optical frequency comb. The frequency comb output is directed in two counterpropagating directions through a vapor cell containing the rubidium vapor. A pair of optical filters is used to select teeth of the comb in order to identify the transition wavelengths. A photomultiplier tube (PMT) measures fluorescence from a decay channel wavelength selected with another optical filter. Using different combinations of filters enables a wide range of transitions to be investigated. By scanning the repetition rate, a Doppler-free spectrum can be obtained enabling kHz-resolution spectral measurements. An interesting dependence of the 2-photon spectrum on the energy of the intermediate state of the 2-photon transition is discussed. Our investigations are laying the groundwork for a long-term research program to use direct frequency comb spectroscopy to understand the complex spectra of rare-earth atoms.
Modified ferrite core-shell nanoparticles magneto-structural characterization
NASA Astrophysics Data System (ADS)
Klekotka, Urszula; Piotrowska, Beata; Satuła, Dariusz; Kalska-Szostko, Beata
2018-06-01
In this study, ferrite nanoparticles with core-shell structures and different chemical compositions of both the core and shell were prepared with success. Proposed nanoparticles have in the first and second series magnetite core, and the shell is composed of a mixture of ferrites with Fe3+, Fe2+ and M ions (where M = Co2+, Mn2+ or Ni2+) with a general composition of M0.5Fe2.5O4. In the third series, the composition is inverted, the core is composed of a mixture of ferrites and as a shell magnetite is placed. Morphology and structural characterization of nanoparticles were done using Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), and Infrared spectroscopy (IR). While room temperature magnetic properties were measured using Mössbauer spectroscopy (MS). It is seen from Mössbauer measurements that Co always increases hyperfine magnetic field on Fe atoms at RT, while Ni and Mn have opposite influences in comparison to pure Fe ferrite, regardless of the nanoparticles structure.
Inductively guided circuits for ultracold dressed atoms
Sinuco-León, German A.; Burrows, Kathryn A.; Arnold, Aidan S.; Garraway, Barry M.
2014-01-01
Recent progress in optics, atomic physics and material science has paved the way to study quantum effects in ultracold atomic alkali gases confined to non-trivial geometries. Multiply connected traps for cold atoms can be prepared by combining inhomogeneous distributions of DC and radio-frequency electromagnetic fields with optical fields that require complex systems for frequency control and stabilization. Here we propose a flexible and robust scheme that creates closed quasi-one-dimensional guides for ultracold atoms through the ‘dressing’ of hyperfine sublevels of the atomic ground state, where the dressing field is spatially modulated by inductive effects over a micro-engineered conducting loop. Remarkably, for commonly used atomic species (for example, 7Li and 87Rb), the guide operation relies entirely on controlling static and low-frequency fields in the regimes of radio-frequency and microwave frequencies. This novel trapping scheme can be implemented with current technology for micro-fabrication and electronic control. PMID:25348163
Microwave ac Zeeman force for ultracold atoms
NASA Astrophysics Data System (ADS)
Fancher, C. T.; Pyle, A. J.; Rotunno, A. P.; Aubin, S.
2018-04-01
We measure the ac Zeeman force on an ultracold gas of 87Rb due to a microwave magnetic field targeted to the 6.8 GHz hyperfine splitting of these atoms. An atom chip produces a microwave near field with a strong amplitude gradient, and we observe a force over three times the strength of gravity. Our measurements are consistent with a simple two-level theory for the ac Zeeman effect and demonstrate its resonant, bipolar, and spin-dependent nature. We observe that the dressed-atom eigenstates gradually mix over time and have mapped out this behavior as a function of magnetic field and detuning. We demonstrate the practical spin selectivity of the force by pushing or pulling a specific spin state while leaving other spin states unmoved.
Moons, Hans; Łapok, Łukasz; Loas, Andrei; Van Doorslaer, Sabine; Gorun, Sergiu M
2010-10-04
The synthesis, crystal structure, and electronic properties of perfluoro-isopropyl-substituted perfluorophthalocyanine bearing a copper atom in the central cavity (F(64)PcCu) are reported. While most halogenated phthalocyanines do not exhibit long-term order sufficient to form large single crystals, this is not the case for F(64)PcCu. Its crystal structure was determined by X-ray analysis and linked to the electronic properties determined by electron paramagnetic resonance (EPR). The findings are corroborated by density functional theory (DFT) computations, which agree well with the experiment. X-band continuous-wave EPR spectra of undiluted F(64)PcCu powder, indicate the existence of isolated metal centers. The electron-withdrawing effect of the perfluoroalkyl (R(f)) groups significantly enhances the complexes solubility in organic solvents like alcohols, including via their axial coordination. This coordination is confirmed by X-band (1)H HYSCORE experiments and is also seen in the solid state via the X-ray structure. Detailed X-band CW-EPR, X-band Davies and Mims ENDOR, and W-band electron spin-echo-detected EPR studies of F(64)PcCu in ethanol allow the determination of the principal g values and the hyperfine couplings of the metal, nitrogen, and fluorine nuclei. Comparison of the g and metal hyperfine values of F(64)PcCu and other PcCu complexes in different matrices reveals a dominant effect of the matrix on these EPR parameters, while variations in the ring substituents have only a secondary effect. The relatively strong axial coordination occurs despite the diminished covalency of the C-N bonds and potentially weakening Jahn-Teller effects. Surprisingly, natural abundance (13)C HYSCORE signals could be observed for a frozen ethanol solution of F(64)PcCu. The (13)C nuclei contributing to the HYSCORE spectra could be identified as the pyrrole carbons by means of DFT. Finally, (19)F ENDOR and easily observable paramagnetic NMR were found to relate well to the DFT computations, revealing negligible isotropic hyperfine (Fermi contact) contributions. The single-site isolation in solution and solid state and the relatively strong coordination of axial ligands, both attributed to the introduction of R(f) groups, are features important for materials and catalyst design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puzzarini, Cristina, E-mail: cristina.puzzarini@unibo.it; Cazzoli, Gabriele; Harding, Michael E.
2015-03-28
Guided by theoretical predictions, the hyperfine structures of the rotational spectra of mono- and bideuterated-water containing {sup 17}O have been experimentally investigated. To reach sub-Doppler resolution, required to resolve the hyperfine structure due to deuterium quadrupole coupling as well as to spin-rotation (SR) and dipolar spin-spin couplings, the Lamb-dip technique has been employed. The experimental investigation and in particular, the spectral analysis have been supported by high-level quantum-chemical computations employing coupled-cluster techniques and, for the first time, a complete experimental determination of the hyperfine parameters involved was possible. The experimentally determined {sup 17}O spin-rotation constants of D{sub 2}{sup 17}O andmore » HD{sup 17}O were used to derive the paramagnetic part of the corresponding nuclear magnetic shielding constants. Together with the computed diamagnetic contributions as well as the vibrational and temperature corrections, the latter constants have been employed to confirm the oxygen nuclear magnetic shielding scale, recently established on the basis of spin-rotation data for H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)].« less
NASA Astrophysics Data System (ADS)
de Oliveira, Marcos; Wiegand, Thomas; Elmer, Lisa-Maria; Sajid, Muhammad; Kehr, Gerald; Erker, Gerhard; Magon, Claudio José; Eckert, Hellmut
2015-03-01
Anisotropic interactions present in three new nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs) have been characterized by continuous-wave (cw) and pulsed X-band EPR spectroscopies in solid FLP-hydroxylamine matrices at 100 K. Anisotropic g-tensor values and 11B, 14N, and 31P hyperfine coupling tensor components have been extracted from continuous-wave lineshape analyses, electron spin echo envelope modulation (ESEEM), and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments with the help of computer simulation techniques. Suitable fitting constraints are developed on the basis of density functional theory (DFT) calculations. These calculations reveal that different from the situation in standard nitroxide radicals (TEMPO), the g-tensors are non-coincident with any of the nuclear hyperfine interaction tensors. The determination of these interaction parameters turns out to be successful, as the cw- and pulse EPR experiments are highly complementary in informational content. While the continuous-wave lineshape is largely influenced by the anisotropic hyperfine coupling to 14N and 31P, the ESEEM and HYSCORE spectra contain important information about the 11B hyperfine coupling and nuclear electric quadrupolar interaction. The set of cw- and pulsed EPR experiments, with fitting constraints developed by DFT calculations, defines an efficient strategy for the structural analysis of paramagnetic FLP adducts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, Marcos de; Magon, Claudio José; Wiegand, Thomas
2015-03-28
Anisotropic interactions present in three new nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs) have been characterized by continuous-wave (cw) and pulsed X-band EPR spectroscopies in solid FLP-hydroxylamine matrices at 100 K. Anisotropic g-tensor values and {sup 11}B, {sup 14}N, and {sup 31}P hyperfine coupling tensor components have been extracted from continuous-wave lineshape analyses, electron spin echo envelope modulation (ESEEM), and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments with the help of computer simulation techniques. Suitable fitting constraints are developed on the basis of density functional theory (DFT) calculations. These calculations reveal that differentmore » from the situation in standard nitroxide radicals (TEMPO), the g-tensors are non-coincident with any of the nuclear hyperfine interaction tensors. The determination of these interaction parameters turns out to be successful, as the cw- and pulse EPR experiments are highly complementary in informational content. While the continuous-wave lineshape is largely influenced by the anisotropic hyperfine coupling to {sup 14}N and {sup 31}P, the ESEEM and HYSCORE spectra contain important information about the {sup 11}B hyperfine coupling and nuclear electric quadrupolar interaction. The set of cw- and pulsed EPR experiments, with fitting constraints developed by DFT calculations, defines an efficient strategy for the structural analysis of paramagnetic FLP adducts.« less
A source of antihydrogen for in-flight hyperfine spectroscopy
Kuroda, N.; Ulmer, S.; Murtagh, D. J.; Van Gorp, S.; Nagata, Y.; Diermaier, M.; Federmann, S.; Leali, M.; Malbrunot, C.; Mascagna, V.; Massiczek, O.; Michishio, K.; Mizutani, T.; Mohri, A.; Nagahama, H.; Ohtsuka, M.; Radics, B.; Sakurai, S.; Sauerzopf, C.; Suzuki, K.; Tajima, M.; Torii, H. A.; Venturelli, L.; Wu¨nschek, B.; Zmeskal, J.; Zurlo, N.; Higaki, H.; Kanai, Y.; Lodi Rizzini, E.; Nagashima, Y.; Matsuda, Y.; Widmann, E.; Yamazaki, Y.
2014-01-01
Antihydrogen, a positron bound to an antiproton, is the simplest antiatom. Its counterpart—hydrogen—is one of the most precisely investigated and best understood systems in physics research. High-resolution comparisons of both systems provide sensitive tests of CPT symmetry, which is the most fundamental symmetry in the Standard Model of elementary particle physics. Any measured difference would point to CPT violation and thus to new physics. Here we report the development of an antihydrogen source using a cusp trap for in-flight spectroscopy. A total of 80 antihydrogen atoms are unambiguously detected 2.7 m downstream of the production region, where perturbing residual magnetic fields are small. This is a major step towards precision spectroscopy of the ground-state hyperfine splitting of antihydrogen using Rabi-like beam spectroscopy. PMID:24448273
Wilkins, A D; Morgus, L; Hernandez-Guzman, J; Huennekens, J; Hickman, A P
2005-09-22
Earlier high-resolution spectroscopic studies of the fine and hyperfine structure of rovibrational levels of the 1 3delta state of NaK have been extended to include high lying rovibrational levels with v < or = 59, of which the highest levels lie within approximately 4 cm(-1) of the dissociation limit. A potential curve is determined using the inverted perturbation approximation method that reproduces these levels to an accuracy of approximately 0.026 cm(-1). For the largest values of v, the outer turning points occur near R approximately 12.7 angstroms, which is sufficiently large to permit the estimation of the C6 coefficient for this state. The fine and hyperfine structure of the 1 3delta rovibrational levels has been fit using the matrix diagonalization method that has been applied to other states of NaK, leading to values of the spin-orbit coupling constant A(v) and the Fermi contact constant b(F). New values determined for v < or = 33 are consistent with values determined by a simpler method and reported earlier. The measured fine and hyperfine structure for v in the range 44 < or = v < or = 49 exhibits anomalous behavior whose origin is believed to be the mixing between the 1 3delta and 1 1delta states. The matrix diagonalization method has been extended to treat this interaction, and the results provide an accurate representation of the complicated patterns that arise. The analysis leads to accurate values for A(v) and b(F) for all values of v < or = 49. For higher v (50 < or = v < or = 59), several rovibrational levels have been assigned, but the pattern of fine and hyperfine structure is difficult to interpret. Some of the observed features may arise from effects not included in the current model.
Nuclear spin noise in the central spin model
NASA Astrophysics Data System (ADS)
Fröhling, Nina; Anders, Frithjof B.; Glazov, Mikhail
2018-05-01
We study theoretically the fluctuations of the nuclear spins in quantum dots employing the central spin model which accounts for the hyperfine interaction of the nuclei with the electron spin. These fluctuations are calculated both with an analytical approach using homogeneous hyperfine couplings (box model) and with a numerical simulation using a distribution of hyperfine coupling constants. The approaches are in good agreement. The box model serves as a benchmark with low computational cost that explains the basic features of the nuclear spin noise well. We also demonstrate that the nuclear spin noise spectra comprise a two-peak structure centered at the nuclear Zeeman frequency in high magnetic fields with the shape of the spectrum controlled by the distribution of the hyperfine constants. This allows for direct access to this distribution function through nuclear spin noise spectroscopy.
Charge Radii of Neutron Deficient Fe,5352 Produced by Projectile Fragmentation
NASA Astrophysics Data System (ADS)
Minamisono, K.; Rossi, D. M.; Beerwerth, R.; Fritzsche, S.; Garand, D.; Klose, A.; Liu, Y.; Maaß, B.; Mantica, P. F.; Miller, A. J.; Müller, P.; Nazarewicz, W.; Nörtershäuser, W.; Olsen, E.; Pearson, M. R.; Reinhard, P.-G.; Saperstein, E. E.; Sumithrarachchi, C.; Tolokonnikov, S. V.
2016-12-01
Bunched-beam collinear laser spectroscopy is performed on neutron deficient Fe,5352 prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δ ⟨r2⟩ of Fe,5352 are determined relative to stable 56Fe as δ ⟨r2⟩56 ,52=-0.034 (13 ) fm2 and δ ⟨r2⟩56 ,53=-0.218 (13 ) fm2 , respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ ⟨r2⟩. The values of δ ⟨r2⟩ exhibit a minimum at the N =28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. The trend of δ ⟨r2⟩ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ ⟨r2⟩ of closed-shell Ca isotopes.
Coherent storage of temporally multimode light using a spin-wave atomic frequency comb memory
NASA Astrophysics Data System (ADS)
Gündoǧan, M.; Mazzera, M.; Ledingham, P. M.; Cristiani, M.; de Riedmatten, H.
2013-04-01
We report on the coherent and multi-temporal mode storage of light using the full atomic frequency comb memory scheme. The scheme involves the transfer of optical atomic excitations in Pr3+:Y2SiO5 to spin waves in hyperfine levels using strong single-frequency transfer pulses. Using this scheme, a total of five temporal modes are stored and recalled on-demand from the memory. The coherence of the storage and retrieval is characterized using a time-bin interference measurement resulting in visibilities higher than 80%, independent of the storage time. This coherent and multimode spin-wave memory is promising as a quantum memory for light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samskog, P.; Kispert, L.D.; Lund, A.
Three different radicals were identified by EPR in x-ray irradiated single crystals of trehalose at 3 K. The species are the trapped electron, a hydroxy alkyl radical, and an alkoxy radical. The electron is trapped in an intermolecular site formed by two hydroxyl groups, one on the carbohydrate and the other on a water molecule as evidenced by the anisotropic proton hyperfine couplings. A geometric model for the trapping site is presented. The trapped electron decays by cleavage of an OH bond and the liberated hydrogen atom abstracts another hydrogen atom from an adjacent carbon atom forming a hydroxy alkylmore » radical. The site of the alkoxy radical has been identified. The primary reaction mechanism is discussed.« less
Recent trends in precision measurements of atomic and nuclear properties with lasers and ion traps
NASA Astrophysics Data System (ADS)
Block, Michael
2017-11-01
The X. international workshop on "Application of Lasers and Storage Devices in Atomic Nuclei Research" took place in Poznan in May 2016. It addressed the latest experimental and theoretical achievements in laser and ion trap-based investigations of radionuclides, highly charged ions and antiprotons. The precise determination of atomic and nuclear properties provides a stringent benchmark for theoretical models and eventually leads to a better understanding of the underlying fundamental interactions and symmetries. This article addresses some general trends in this field and highlights select recent achievements presented at the workshop. Many of these are covered in more detail within the individual contributions to this special issue of Hyperfine Interactions.
Underground atom gradiometer array for mass distribution monitoring and advanced geodesy
NASA Astrophysics Data System (ADS)
Canuel, B.
2015-12-01
After more than 20 years of fundamental research, atom interferometers have reached sensitivity and accuracy levels competing with or beating inertial sensors based on different technologies. Atom interferometers offer interesting applications in geophysics (gravimetry, gradiometry, Earth rotation rate measurements), inertial sensing (submarine or aircraft autonomous positioning), metrology (new definition of the kilogram) and fundamental physics (tests of the standard model, tests of general relativity). Atom interferometers already contributed significantly to fundamental physics by, for example, providing stringent constraints on quantum-electrodynamics through measurements of the hyperfine structure constant, testing the Equivalence Principle with cold atoms, or providing new measurements for the Newtonian gravitational constant. Cold atom sensors have moreover been established as key instruments in metrology for the new definition of the kilogram or through international comparisons of gravimeters. The field of atom interferometry (AI) is now entering a new phase where very high sensitivity levels must be demonstrated, in order to enlarge the potential applications outside atomic physics laboratories. These applications range from gravitational wave (GW) detection in the [0.1-10 Hz] frequency band to next generation ground and space-based Earth gravity field studies to precision gyroscopes and accelerometers. The Matter-wave laser Interferometric Gravitation Antenna (MIGA) presented here is a large-scale matter-wave sensor which will open new applications in geoscience and fundamental physics. The MIGA consortium gathers 18 expert French laboratories and companies in atomic physics, metrology, optics, geosciences and gravitational physics, with the aim to build a large-scale underground atom-interferometer instrument by 2018 and operate it till at least 2023. In this paper, we present the main objectives of the project, the status of the construction of the instrument and the motivation for the applications of MIGA in geosciences
Ultrafast coherent excitation of a trapped ion qubit for fast gates and photon frequency qubits.
Madsen, M J; Moehring, D L; Maunz, P; Kohn, R N; Duan, L-M; Monroe, C
2006-07-28
We demonstrate ultrafast coherent excitation of an atomic qubit stored in the hyperfine levels of a single trapped cadmium ion. Such ultrafast excitation is crucial for entangling networks of remotely located trapped ions through the interference of photon frequency qubits, and is also a key component for realizing ultrafast quantum gates between Coulomb-coupled ions.
The ASACUSA antihydrogen and hydrogen program: results and prospects
NASA Astrophysics Data System (ADS)
Malbrunot, C.; Amsler, C.; Arguedas Cuendis, S.; Breuker, H.; Dupre, P.; Fleck, M.; Higaki, H.; Kanai, Y.; Kolbinger, B.; Kuroda, N.; Leali, M.; Mäckel, V.; Mascagna, V.; Massiczek, O.; Matsuda, Y.; Nagata, Y.; Simon, M. C.; Spitzer, H.; Tajima, M.; Ulmer, S.; Venturelli, L.; Widmann, E.; Wiesinger, M.; Yamazaki, Y.; Zmeskal, J.
2018-03-01
The goal of the ASACUSA-CUSP collaboration at the Antiproton Decelerator of CERN is to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. A milestone was achieved in 2012 through the detection of 80 antihydrogen atoms 2.7 m away from their production region. This was the first observation of `cold' antihydrogen in a magnetic field free region. In parallel to the progress on the antihydrogen production, the spectroscopy beamline was tested with a source of hydrogen. This led to a measurement at a relative precision of 2.7×10-9 which constitutes the most precise measurement of the hydrogen hyperfine splitting in a beam. Further measurements with an upgraded hydrogen apparatus are motivated by CPT and Lorentz violation tests in the framework of the Standard Model Extension. Unlike for hydrogen, the antihydrogen experiment is complicated by the difficulty of synthesizing enough cold antiatoms in the ground state. The first antihydrogen quantum states scan at the entrance of the spectroscopy apparatus was realized in 2016 and is presented here. The prospects for a ppm measurement are also discussed. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.
The ASACUSA antihydrogen and hydrogen program: results and prospects
Amsler, C.; Arguedas Cuendis, S.; Breuker, H.; Dupre, P.; Fleck, M.; Higaki, H.; Kanai, Y.; Kolbinger, B.; Kuroda, N.; Leali, M.; Mäckel, V.; Mascagna, V.; Massiczek, O.; Matsuda, Y.; Nagata, Y.; Simon, M. C.; Spitzer, H.; Tajima, M.; Venturelli, L.; Widmann, E.; Wiesinger, M.; Yamazaki, Y.; Zmeskal, J.
2018-01-01
The goal of the ASACUSA-CUSP collaboration at the Antiproton Decelerator of CERN is to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. A milestone was achieved in 2012 through the detection of 80 antihydrogen atoms 2.7 m away from their production region. This was the first observation of ‘cold’ antihydrogen in a magnetic field free region. In parallel to the progress on the antihydrogen production, the spectroscopy beamline was tested with a source of hydrogen. This led to a measurement at a relative precision of 2.7×10−9 which constitutes the most precise measurement of the hydrogen hyperfine splitting in a beam. Further measurements with an upgraded hydrogen apparatus are motivated by CPT and Lorentz violation tests in the framework of the Standard Model Extension. Unlike for hydrogen, the antihydrogen experiment is complicated by the difficulty of synthesizing enough cold antiatoms in the ground state. The first antihydrogen quantum states scan at the entrance of the spectroscopy apparatus was realized in 2016 and is presented here. The prospects for a ppm measurement are also discussed. This article is part of the Theo Murphy meeting issue ‘Antiproton physics in the ELENA era’. PMID:29459412
The Effects of Internal Rotation and 14N Quadrupole Coupling in N-Methyldiacetamide
NASA Astrophysics Data System (ADS)
Kannengießer, Raphaela; Eibl, Konrad; Nguyen, Ha Vinh Lam; Stahl, Wolfgang
2015-06-01
Acetyl- and nitrogen containing substances play an important role in chemical, physical, and especially biological systems. This applies in particular for acetamides, which are structurally related to peptide bonds. In this work, N-methyldiacetamide, CH_3N(COCH_3)_2, was investigated by a combination of molecular beam Fourier transform microwave spectroscopy and quantum chemical calculations. In N-methyldiacetamide, at least three large amplitude motions are possible: (1) the internal rotation of the methyl group attached to the nitrogen atom and (2, 3) the internal rotations of both acetyl methyl groups. This leads to a rather complicated torsional fine structure of all rotational transitions with additional quadrupole hyperfine splittings caused by the 14N nucleus. Quantum chemical calculations were carried out at the MP2/6-311++G(d,p) level of theory to support the spectral assignment. Conformational analysis was performed by calculating a full potential energy surface depending on the orientation of the two acetyl groups. This yielded three stable conformers with a maximum energy difference of 35.2 kJ/mol. The spectrum of the lowest energy conformer was identified in the molecular beam. The quadrupole hyperfine structure as well as the internal rotation of two methyl groups could be assigned. For the N-methyl group and for one of the two acetyl methyl groups, barriers to internal rotation of 147 cm-1 and of 680 cm-1, respectively, were determined. The barrier of the last methyl group seems to be so high that no additional splittings could be resolved. Using the XIAM program, a global fit with a standard deviation on the order of our experimental accuracy could be achieved.
NASA Astrophysics Data System (ADS)
Corrêa, Eduardo L.; Bosch-Santos, Brianna; Freitas, Rafael S.; Potiens, Maria da Penha A.; Saiki, Mitiko; Carbonari, Artur W.
2018-05-01
In the investigation reported in this paper a modified thermal decomposition method was developed to produce very small Er2O3 nanoparticles (NPs). Particles structure, shape and size were characterized by x-ray diffraction and transmission electron microscopy which showed that the synthesis by thermal decomposition under O2 atmosphere produced very small and monodisperse NPs, allowing the investigation of finite-size and surface effects. Results of magnetization measurements showed that the smallest particles present the highest values of susceptibility that decrease as particle size increases. Specific heat measurements indicate that the sample with the smallest NPs (diameter ∼5 nm) has a Néel temperature of 0.54 K. The local structure of particles was investigated by measurements of hyperfine interactions with perturbed angular correlation spectroscopy using 111Cd as probe nuclei replacing the cationic sites. Results showed that the relative population of sites 8b increases in both the core and surface layer of particles.
Corrêa, Eduardo L; Bosch-Santos, Brianna; Freitas, Rafael S; da Penha A Potiens, Maria; Saiki, Mitiko; Carbonari, Artur W
2018-05-18
In the investigation reported in this paper a modified thermal decomposition method was developed to produce very small Er 2 O 3 nanoparticles (NPs). Particles structure, shape and size were characterized by x-ray diffraction and transmission electron microscopy which showed that the synthesis by thermal decomposition under O 2 atmosphere produced very small and monodisperse NPs, allowing the investigation of finite-size and surface effects. Results of magnetization measurements showed that the smallest particles present the highest values of susceptibility that decrease as particle size increases. Specific heat measurements indicate that the sample with the smallest NPs (diameter ∼5 nm) has a Néel temperature of 0.54 K. The local structure of particles was investigated by measurements of hyperfine interactions with perturbed angular correlation spectroscopy using 111 Cd as probe nuclei replacing the cationic sites. Results showed that the relative population of sites 8b increases in both the core and surface layer of particles.
Collisional relaxation of MnH (X7Σ+) in a magnetic field: effect of the nuclear spin of Mn.
Stoecklin, T; Halvick, Ph
2011-11-14
In the present study we investigate the role played by the hyperfine structure of manganese in the cooling and magnetic trapping of MnH((7)Σ(+)). The effect of the hyperfine structure of Mn on the relaxation of the magnetically trappable maximally stretched low-field seeking state of MnH((7)Σ(+)) in collisions with (3)He is deduced from comparison between the results of the present approach and our previous nuclear spin free calculations. We show that our previous results are unchanged at the temperature of the buffer gas cooling experiment but find a new resonance at very low collision energy. The role played by the different contributions to the hyperfine diatomic Hamiltonian considered in this work as well as the effect of an applied magnetic field on this resonance are also analyzed.
Hyperfine interactions of trans-lead elements studied by nuclear radiations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansaldo, E.J.
1973-09-16
The applications of nuclear radiation methods to the study of hyperfine interactions (hfi) for elements beyond Pb in the periodic table are reviewed. A general discussion of hfi is presented along with a review of specific methods. The techniques are illustrated whenever possible by their application to the actinides, with emphasis on the unsolved aspects of the results. A special method of sample preparation is ion implantation, in which stable or radioactive ions of practically any element are shot into the host, either by means of isotope separators or the recoil energy of nuclear reactions or radioactive decays. The locationmore » of the implanted (recoiled) atom in the lattice has to be assessed for a reliable determination of the hfi. Therefore, a chapter on the channeling technique is also included. (JRD)« less
Atoms and Molecules Interacting with Light
NASA Astrophysics Data System (ADS)
van der Straten, Peter; Metcalf, Harold
2016-02-01
Part I. Atom-Light Interaction: 1. The classical physics pathway; Appendix 1.A. Damping force on an accelerating charge; Appendix 1.B. Hanle effect; Appendix 1.C. Optical tweezers; 2. Interaction of two-level atoms and light; Appendix 2.A. Pauli matrices for motion of the bloch vector; Appendix 2.B. The Ramsey method; Appendix 2.C. Echoes and interferometry; Appendix 2.D. Adiabatic rapid passage; Appendix 2.E Superposition and entanglement; 3. The atom-light interaction; Appendix 3.A. Proof of the oscillator strength theorem; Appendix 3.B. Electromagnetic fields; Appendix 3.C. The dipole approximation; Appendix 3.D. Time resolved fluorescence from multi-level atoms; 4. 'Forbidden' transitions; Appendix 4.A. Higher order approximations; 5. Spontaneous emission; Appendix 5.A. The quantum mechanical harmonic oscillator; Appendix 5.B. Field quantization; Appendix 5.C. Alternative theories to QED; 6. The density matrix; Appendix 6.A. The Liouville-von Neumann equation; Part II. Internal Structure: 7. The hydrogen atom; Appendix 7.A. Center-of-mass motion; Appendix 7.B. Coordinate systems; Appendix 7.C. Commuting operators; Appendix 7.D. Matrix elements of the radial wavefunctions; 8. Fine structure; Appendix 8.A. The Sommerfeld fine-structure constant; Appendix 8.B. Measurements of the fine structure 9. Effects of the nucleus; Appendix 9.A. Interacting magnetic dipoles; Appendix 9.B. Hyperfine structure for two spin =2 particles; Appendix 9.C. The hydrogen maser; 10. The alkali-metal atoms; Appendix 10.A. Quantum defects for the alkalis; Appendix 10.B. Numerov method; 11. Atoms in magnetic fields; Appendix 11.A. The ground state of atomic hydrogen; Appendix 11.B. Positronium; Appendix 11.C. The non-crossing theorem; Appendix 11.D. Passage through an anticrossing: Landau-Zener transitions; 12. Atoms in electric fields; 13. Rydberg atoms; 14. The helium atom; Appendix 14.A. Variational calculations; Appendix 14.B. Detail on the variational calculations of the ground state; 15. The periodic system of the elements; Appendix 15. A paramagnetism; Appendix 15.B. The color of gold; 16. Molecules; Appendix 16.A. Morse potential; 17. Binding in the hydrogen molecule; Appendix 17.A. Confocal elliptical coordinates; Appendix 17.B. One-electron two-center integrals; Appendix 17.C. Electron-electron interaction in molecular hydrogen; 18. Ultra-cold chemistry; Part III. Applications: 19. Optical forces and laser cooling; 20. Confinement of neutral atoms; 21. Bose-Einstein condensation; Appendix 21.A. Distribution functions; Appendix 21.B. Density of states; 22. Cold molecules; 23. Three level systems; Appendix 23.A. General Case for _1 , _2; 24. Fundamental physics; Part IV. Appendices: Appendix A. Notation and definitions; Appendix B. Units and notation; Appendix C. Angular momentum in quantum mechanics; Appendix D. Transition strengths; References; Index.
Effects of Anisotropic Excitation in Laser-Induced Fluorescence Spectroscopy (LIFS)
NASA Astrophysics Data System (ADS)
Fujimoto, Takashi; Goto, Chiaki; Uetani, Yasunori; Fukuda, Kuniya
1985-07-01
Various features of the effect of alignment in the upper-level population on the observed emission-line intensity, i.e., the spatially-anisotropic intensity distribution and polarization, are demonstrated using laser-induced fluorescence spectroscopy on the neon 2p53s-2p53p transitions in a plasma. Disalignment by atomic collision is observed on the 2p2 level, and its rate coefficient is determined as (1.70± 0.03)× 10-10 cm3s-1. The case of hyperfine-structure lines is discussed. Polarization is observed in the hydrogen Balmer α line fluorescence following the laser excitation of the same transition. Conditions are given under which the alignment effect is eliminated or can be neglected. Cases of unpolarized-light excitation and high-intensity excitation are discussed.
Electron paramagnetic resonance of deep boron in silicon carbide
NASA Astrophysics Data System (ADS)
Baranov, P. G.; Mokhov, E. N.
1996-04-01
In this article we report the first EPR observation of deep boron centres in silicon carbide. A direct identification of the boron atom involved in the defect centre, considered as deep boron, has been established by the presence of a hyperfine interaction with 0268-1242/11/4/005/img1 and 0268-1242/11/4/005/img2 nuclei in isotope-enriched 6H-SiC:B crystals. Deep boron centres were shown from EPR spectra to have axial symmetry along the hexagonal axis. A correspondence between the EPR spectra and the luminescence, ODMR and DLTS spectra of deep boron centres has been indicated. The structural model for a deep boron centre as a boron - vacancy pair is presented and the evidence for bistable behaviour of deep boron centres is discussed.
Iron films deposited on porous alumina substrates
NASA Astrophysics Data System (ADS)
Yamada, Yasuhiro; Tanabe, Kenichi; Nishida, Naoki; Kobayashi, Yoshio
2016-12-01
Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 - 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.
Studies of defects in Bi2Fe4O9 using Mössbauer spectroscopy
NASA Astrophysics Data System (ADS)
Panda, Alaka; Govindaraj, R.; Vinod, K.; Amarendra, G.
2018-05-01
Effect of oxygen vacancies on the stability and magnetic properties of Bi2Fe4O9 has been addressed in a detailed manner using Mössbauer spectroscopy along with magnetization studies. This is studied mainly based on the variations in Mössbauer hyperfine parameters due to the changes in the local structure and magnetic properties at 57Fe atoms in Bi2Fe4O9 which are observed to be significantly influenced due to vacuum annealing. Oxygen vacancies concomitantly result in the formation of iron associated antiferromagnetic phase preferably at the boundaries of the grains of Bi2Fe4O9. Growth of these phases is observed to be strongly dependent upon subsequent air annealing treatments of this system.
NASA Astrophysics Data System (ADS)
Sobolewski, Ł. M.; Windholz, L.; Kwela, J.
2017-11-01
Laser Induced Fluorescence Spectroscopy (LIF) and Optogalvanic Spectroscopy (OG) were used for the investigation of the Zeeman hyperfine structures of 26 spectral lines of La I in the wavelength range between 569.7 and 665.4 nm. As a source of free La atoms a hollow cathode discharge lamp was used. The spectra were recorded in the presence of a magnetic field of about 800G produced by a permanent magnet for two linear polarizations of the exciting laser light. As a result of the study, we determined for the first time the Landé gJ- factors of 20 levels of La I. For several other levels the Landé gJ- factors were re-investigated and determined with higher precision.
NASA Astrophysics Data System (ADS)
Xu, Donghong; Xue, Fei
2017-12-01
We theoretically study cooling of flexural modes of a mechanical oscillator by Bose-Einstein-condensate (BEC) atoms (Rb87) trapped in a magnetic trap. The mechanical oscillator with a tiny magnet attached on one of its free ends produces an oscillating magnetic field. When its oscillating frequency matches certain hyperfine Zeeman energy of Rb87 atoms, the trapped BEC atoms are coupled out of the magnetic trap by the mechanical oscillator, flying away from the trap with stolen energy from the mechanical oscillator. Thus the mode temperature of the mechanical oscillator is reduced. The mode temperature of the steady state of mechanical oscillator, measured by the mean steady-state phonon number in the flexural mode of the mechanical oscillator, is analyzed. It is found that ground state (phonon number less than 1) may be accessible with optimal parameters of the hybrid system of mechanical oscillator and trapped BEC atoms.
The effect of electromagnetically induced transparency in a potassium nanocell
NASA Astrophysics Data System (ADS)
Sargsyan, A.; Amiryan, A.; Leroy, C.; Vartanyan, T. A.; Sarkisyan, D.
2017-07-01
The effect of electromagnetically induced transparency (EIT) has been experimentally implemented for the first time for the (4 S 1/2-4 P 1/2-4 S 1/2) Λ-system of potassium atom levels in a nanocell with a 770-nm-thick column of atomic vapor. It is shown that, at such a small thickness of the vapor column, the EIT resonance can be observed only when the coupling-laser frequency is in exact resonance with the frequency of the corresponding atomic transition. The EIT resonance disappears even if the coupling-laser frequency differs slightly (by 50 MHz) from that of the corresponding atomic transition, which is due to the high thermal velocity of K atoms. The EIT resonance and related velocity selective optical pumping resonances caused by optical pumping (formed by the coupling) can be simultaneously recorded because of the small ( 462 MHz) hyperfine splitting of the lower 4 S 1/2 level.
Structure and nature of manganese(II) imidazole complexes in frozen aqueous solutions.
Un, Sun
2013-04-01
A common feature of a large majority of the manganese metalloenzymes, as well as many synthetic biomimetic complexes, is the bonding between the manganese ion and imidazoles. This interaction was studied by examining the nature and structure of manganese(II) imidazole complexes in frozen aqueous solutions using 285 GHz high magnet-field continuous-wave electron paramagnetic resonance (cw-HFEPR) and 95 GHz pulsed electron-nuclear double resonance (ENDOR) and pulsed electron-double resonance detected nuclear magnetic resonance (PELDOR-NMR). The (55)Mn hyperfine coupling and isotropic g values of Mn(II) in frozen imidazole solutions continuously decreased with increasing imidazole concentration. ENDOR and PELDOR-NMR measurements demonstrated that the structural basis for this behavior arose from the imidazole concentration-dependent distribution of three six-coordinate and two four-coordinate species: [Mn(H2O)6](2+), [Mn(imidazole)(H2O)5](2+), [Mn(imidazole)2(H2O)4](2+), [Mn(imidazole)3(H2O)](2+), and [Mn(imidazole)4](2+). The hyperfine and g values of manganese proteins were also fully consistent with this imidazole effect. Density functional theory methods were used to calculate the structures, spin and charge densities, and hyperfine couplings of a number of different manganese imidazole complexes. The use of density functional theory with large exact-exchange admixture calculations gave isotropic (55)Mn hyperfine couplings that were semiquantitative and of predictive value. The results show that the covalency of the Mn-N bonds play an important role in determining not only magnetic spin parameters but also the structure of the metal binding site. The relationship between the isotropic (55)Mn hyperfine value and the number of imidazole ligands provides a quick and easy test for determining whether a protein binds an Mn(II) ion using histidine residues and, if so, how many are involved. Application of this method shows that as much as 40% of the Mn(II) ions in Deinococcus radiodurans are ligated to two histidines (Tabares, L. C.; Un, S. J. Biol. Chem 2013, in press).
Molecular beam electric resonance study of KCN, K 13CN and KC 15N
NASA Astrophysics Data System (ADS)
van Vaals, J. J.; Leo Meerts, W.; Dymanus, A.
1984-08-01
The microwave spectra of the isotopic species K 13CN and KC 15N have been investigated by molecular beam electric resonance spectroscopy, using the seeded beam technique. For both isotopic species about 20 rotational transitions originating in the ground vibrational state were observed in the frequency range 9-38 GHz. The observed transitions were fitted to an asymmetric rotor model to determine the three rotational, as well as the five quartic and three sextic centrifugal distortion constants. The hyperfine spectrum of KCN has been unravelled with the help of microwave-microwave double-resonance techniques. One hundred and forty hyperfine transitions in 11 rotational transitions have been assigned. The hyperfine structures of K 13CN and KC 15N were also studied. For all three isotopic species the quadrupole coupling constants and some spin-rotation coupling constants could be deduced. The rotational constants of the 13C and 15N isotopically substituted species of potassium cyanide, combined with those of the normal isotopic species (determined more accurately in this work), allowed an accurate and unambiguous evaluation of the structure, which was confirmed to be T shaped. Both the effective structure of the ground vibrational state and the substitution structure were evaluated. The results for the effective structural parameters are r CN = 1.169(3) Å, r KC = 2.716(9) Å, and r KN = 2.549(9) Å. The values obtained for the principal hyperfine coupling constant eQqz(N), the angle between the CN axis and zN, and the bond length rCN indicate that in gaseous potassium cyanide the CN group can be considered as an almost unperturbed CN - ion.
NASA Astrophysics Data System (ADS)
Zhang, Chun Mei; Chen, Chao; Sun, Yan; Gou, Bing Cong; Shao, Bin
2015-04-01
The Rayleigh-Ritz variational method with multiconfiguration interaction wave functions is used to obtain the energies of high-lying multi-excited quartet states 1 s 22 s2 pnl and 1 s 22 p 2 nl 4Pe,o ( n ≥ 2) in B-like neon, including the mass polarization and relativistic corrections. The fine structure and hyperfine structure of the excited quartet states for this system are investigated. Configuration structures of the high-lying multi-excited series are further identified by relativistic corrections and fine structure splittings. The transition rates and wavelengths are also calculated. Calculated wavelengths include the quantum electrodynamic effects. The results are compared with other theoretical and experimental data in the literature.
Selective Reflection of Potassium Vapor Nanolayers in a Magnetic Field
NASA Astrophysics Data System (ADS)
Sargsyan, A.; Tonoyan, A.; Keaveney, J.; Hughes, I. G.; Adams, C. S.; Sarkisyan, D.
2018-03-01
The selective reflection of laser radiation from the interface between a dielectric window and the atomic vapors confined in a nanocell of thickness L ≈ 350 nm is used to develop effective Doppler-broadening- free spectroscopy of potassium atoms. A small atomic line width and a relation between the signal intensity and the transition probability allowed us to resolve four lines of atomic transitions responsible for the D1 lines of the 39K and 41K isotopes. Two groups containing four atomic transitions form in an applied magnetic field upon pumping by radiation with circular polarization σ+ or σ-. Different intensities (probabilities) of transitions for the σ+ and σ- excitations are detected in magnetic field B 0 ≈ A hfs /μB ≈ 165 G ( A hfs is the magnetic dipole constant for the ground state and μB is the Bohr magneton). A substantially different situation is observed at B ≫ B 0, since high symmetry appears for the two groups formed by radiation with circular polarization σ+ or σ-. Each group is the mirror image of the other group with respect to the frequency of the 42 S 1/2-42 P 1/2 transition, which additionally proves the occurrence of the complete Paschen-Back regime of the hyperfine structure at B ≈ 2.5 kG. A developed theoretical model well reproduces the experimental results. Possible practical applications are described. The results obtained can also be applied to the D 1 lines of 87Rb and 23Na.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho, R. S.; Ávila, H. C.; Cremona, M., E-mail: cremona@fis.puc-rio.br
The recently discovered organic magnetoresistance effect (OMAR) reveals the spin-dependent behavior of the charge transport in organic semiconductors. So far, it is known that hyperfine interactions play an important role in this phenomenon and also that spin-orbit coupling is negligible for light-atom based compounds. However, in the presence of heavy atoms, spin-orbit interactions should play an important role in OMAR. It is known that these interactions are responsible for singlet and triplet states mixing via intersystem crossing and the change of spin-charge relaxation time in the charge mobility process. In this work, we report a dramatic change in the OMARmore » effect caused by the presence of strong intramolecular spin-orbit coupling in a series of rare-earth quinolate organic complex-based devices. Our data show a different OMAR lineshape compared with the OMAR lineshape of tris(8-hydroxyquinolinate) aluminum-based devices, which are well described in the literature. In addition, electronic structure calculations based on density functional theory help to establish the connection between this results and the presence of heavy central ions in the different complexes.« less
First principles study of the ground state properties of Si, Ga, and Ge doped Fe50Al50
NASA Astrophysics Data System (ADS)
Pérez, Carlos Ariel Samudio; dos Santos, Antonio Vanderlei
2018-06-01
The first principles calculation of the structural, electronic and associated properties of the Fe50Al50 alloy (B2 phase) doped by s-p elements (Im = Si, Ga, and Ge) are performed as a function of the atomic concentration on the basis of the Full Potential Linear Augmented Plane Wave (FP-LAPW) method as implemented in the WIEN2k code. The Al substitution by Im (Si and Ge) atoms (principally at a concentration of 6.25 at%) induces a pronounced redistribution of the electronic charge leading to a strong Fe-Im interaction with covalent bonding character. At the same time, decrease the lattice volume (V) while increase the bulk modulus (B). For the alloys containing Ga, the Fe-Ga interaction is also observed but the V and B of the alloy are very near to that of pure Fe-Al alloy. The magnetic moment and hyperfine parameters observed at the lattice sites of studied alloys also show variations, they increase or decrease in relation to that in Fe50Al50 according to the Im that substitutes Al.
NASA Astrophysics Data System (ADS)
Pfanner, Gernot; Freysoldt, Christoph; Neugebauer, Jörg; Gerstmann, Uwe
2012-05-01
A dangling bond (db) is an important point defect in silicon. It is realized in crystalline silicon by defect complexes of the monovacancy V with impurities. In this work, we present spin-polarized density-functional theory calculations of EPR parameters (g and hyperfine tensors) within the GIPAW formalism for two kinds of db defect complexes. The first class characterizes chemically saturated db systems, where three of the four dangling bonds of the isolated vacancy are saturated by hydrogen (VH3) or hydrogen and oxygen (hydrogen-oxygen complex, VOH). The second kind of db consists of systems with a Jahn-Teller distortion, where the vacancy includes either a substitutional phosphorus atom (the E center, VP) or a single hydrogen atom (VH). For all systems we obtain excellent agreement with available experimental data, and we are therefore able to quantify the effect of the Jahn-Teller distortion on the EPR parameters. Furthermore we study the influence of strain to obtain further insights into the structural and electronic characteristics of the considered defects.
Angular Distribution of Hyperfine Magnetic Field in Fe3O4 and Fe66Ni34 from Mössbauer Polarimetry
NASA Astrophysics Data System (ADS)
Szymański, K.; Satuła, D.; Dobrzyński, L.
2004-12-01
Experimental determination of some angular averages of hyperfine field is demonstrated. The averages relates to magnetic structure. Exemplary results of the measurements for Fe3O4 and Fe66Ni34 show that it is possible to obtain valuable information about the field magnitudes and orientations even when distributions of fields are present in the system under study.
NASA Astrophysics Data System (ADS)
Puttisong, Y.; Wang, X. J.; Buyanova, I. A.; Chen, W. M.
2013-03-01
The effect of hyperfine interaction (HFI) on the recently discovered room-temperature defect-enabled spin-filtering effect in GaNAs alloys is investigated both experimentally and theoretically based on a spin Hamiltonian analysis. We provide direct experimental evidence that the HFI between the electron and nuclear spin of the central Ga atom of the spin-filtering defect, namely, the Gai interstitials, causes strong mixing of the electron spin states of the defect, thereby degrading the efficiency of the spin-filtering effect. We also show that the HFI-induced spin mixing can be suppressed by an application of a longitudinal magnetic field such that the electronic Zeeman interaction overcomes the HFI, leading to well-defined electron spin states beneficial to the spin-filtering effect. The results provide a guideline for further optimization of the defect-engineered spin-filtering effect.
Fourier transform microwave spectra and ab initio calculation of N-ethylformamide
NASA Astrophysics Data System (ADS)
Ohba, Keisuke; Usami, Tsuyoshi; Kawashima, Yoshiyuki; Hirota, Eizi
2005-06-01
A peptide molecule: N-ethylformamide HCONHCH 2CH 3 (NEFA) was investigated by Fourier transform microwave spectroscopy in order to determine molecular structure, potential barrier to methyl internal rotation, and nuclear quadrupole coupling constant of the nitrogen atom. All the three ( a, b and c) types of transitions were observed; they were split into hyperfine structure components due to nitrogen nuclear quadrupole coupling. The rotational constants of NEFA were determined to be A=9904.8373(6), B=3521.0995(2) and C=2984.9808(2) MHz, with three standard deviations in parentheses. The inertial defect Δ= Icc- Iaa- Ibb was calculated from the rotational constants to be -25.24492(2) uÅ 2, which indicates the ethyl group to be bent out of the peptide linkage plane. A comparison of the observed rotational constants with those calculated by an ab initio molecular orbital method also led us to conclude that the most stable form of NEFA is trans- sc, a conformer with a nonplanar heavy atom skeleton. No evidence has so far been obtained for the existence of other conformers, as was the case for a related molecule: N-ethylacetamide. We have also observed spectra of five singly substituted isotopomers, three 13C and one for each of 15N and 18O, from which we derived a partial rs structure, in fair agreement with an ab initio result.
Studies of iron impurities in YxPr1-xBa2Cu3O7-delta
NASA Technical Reports Server (NTRS)
Swartzendruber, L. J.; Bennett, L. H.; Ritter, J.; Rubinstein, M.; Harford, M. Z.
1990-01-01
Pr is the only rare earth which, when substituted for Y in YBa2Cu3O7, significantly alters the superconducting transition temperature T(sub c) without changing the crystal structure. For YxPr1-xBa2Cu3O7-delta with delta approx. equal to 0, T(sub c) is reduced rapidly as x is increased, reaching zero for x about 0.5. For x above 0.5 the compound is antiferromagnetic with a Neel temperature that increases with increasing x, rising to above room temperature for x near 1. A similar behavior is observed when the oxygen deficit delta is increased from zero to 1 with x=0. For the case of Pr substitution, the drop in T(sub c) is believed due to magnetic interactions. For the case of varying delta with x=0, the drop can be attributed to a combination of magnetic interactions, band filling, and changes in crystal structure. To study these effects, the Mossbauer effect of 57 Fe atoms substituted for the Cu atoms has been observed as a function of delta, x, and temperature. The observed spectra are all well described by a two quadrupole-split pairs, a central singlet, and a six-line magnetic hyperfine field pattern. For several Pr compositions both delta and temperature were varied, and the results support the hypothesis that a magnetic interaction exists between the Fe in the Cu lattice and the substitutional Pr atoms.
NASA Astrophysics Data System (ADS)
Yu, Yan-mei; Sahoo, B. K.
2016-12-01
We investigate the transition between the fine structure levels of the ground state, 3 p 2P1 /2→3 p 2P3 /2 , of the highly charged Al-like 10+51V, 11+53Cr, 12+55Mn, 13+57Fe, 14+59Co, 15+61Ni, and 16+63Cu ions for frequency standards. To comprehend them as prospective atomic clocks, we determine their transition wavelengths, quality factors, and various plausible systematics during the measurements. Since most of these ions have nuclear spin I =3 /2 , uncertainties due to dominant quadrupole shifts can be evaded in the F =0 hyperfine level of the 3 p 2P3 /2 state. Other dominant systematics such as quadratic Stark and black-body radiation shifts have been evaluated precisely demonstrating the feasibility of achieving high accuracy, below 10-19 fractional uncertainty, atomic clocks using the above transitions. Moreover, relativistic sensitivity coefficients are determined to find out the aptness of these proposed clocks to investigate possible temporal variation of the fine structure constant. To carry out these analysis, a relativistic coupled-cluster method considering Dirac-Coulomb-Breit Hamiltonian along with lower-order quantum electrodynamics interactions is employed and many spectroscopic properties are evaluated. These properties are also of immense interest for astrophysical studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Boer, E.; Boon, K.; Wever, R.
An electron paramagnetic resonance (EPR) study was carried out to examine structural aspects of vanadium-containing bromoperoxidase from the brown seaweed Ascophyllum nodosum. At high pH, the reduced form of bromoperoxidase showed an apparently axially symmetric EPR signal with 16 hyperfine lines. When the pH was lowered, a new EPR spectrum was formed. When EPR spectra of the reduced enzyme were recorded in the pH range from 4.2 to 8.4, it appeared that these changes were linked to a functional group with an apparent pK/sub a/ of about 5.4. In D/sub 2/O this value for the pK/sub a/ was 5.3. Itmore » is suggested that these effects arise from protonation of histidine or aspartate/glutamate residues near the metal ion. The values for the isotropic hyperfine coupling constant of the reduced enzyme at both high and low pH are also consistent with a ligand field containing nitrogen and/or oxygen donor atoms. When reduced bromoperoxidase was dissolved in D/sub 2/O or H/sub 2//sup 17/O instead of H/sub 2//sup 16/O, vanadium (IV) hyperfine line widths were markedly affected, demonstrating that water is a ligand of the metal ion. Together with previous work these findings suggest that vanadium (IV) is not involved in catalytic turnover and confirm the model in which the vanadium (V) ion of the native enzyme only serves to bind both hydrogen peroxide and bromide. After excess vanadate was added to a homogeneous preparation of purified bromoperoxidase, the extent of vanadium bound to the protein increased from 0.5 to 1.1, with a concomitant enhancement of enzymic activity. Finally, it is demonstrated that both vanadate (VO/sub 4//sup 3 -/) and molybdate (MoO/sub 4//sup 2 -/) compete for the same site on apobromoperoxidase.« less
Electron-nuclear coherent spin oscillations probed by spin-dependent recombination
NASA Astrophysics Data System (ADS)
Azaizia, S.; Carrère, H.; Sandoval-Santana, J. C.; Ibarra-Sierra, V. G.; Kalevich, V. K.; Ivchenko, E. L.; Bakaleinikov, L. A.; Marie, X.; Amand, T.; Kunold, A.; Balocchi, A.
2018-04-01
We demonstrate the triggering and detection of coherent electron-nuclear spin oscillations related to the hyperfine interaction in Ga deep paramagnetic centers in GaAsN by band-to-band photoluminescence without an external magnetic field. In contrast to other point defects such as Cr4 + in SiC, Ce3 + in yttrium aluminum garnet crystals, nitrogen-vacancy centers in diamond, and P atoms in silicon, the bound-electron spin in Ga centers is not directly coupled to the electromagnetic field via the spin-orbit interaction. However, this apparent drawback can be turned into an advantage by exploiting the spin-selective capture of conduction band electrons to the Ga centers. On the basis of a pump-probe photoluminescence experiment we measure directly in the temporal domain the hyperfine constant of an electron coupled to a gallium defect in GaAsN by tracing the dynamical behavior of the conduction electron spin-dependent recombination to the defect site. The hyperfine constants and the relative abundance of the nuclei isotopes involved can be determined without the need of an electron spin resonance technique and in the absence of any magnetic field. Information on the nuclear and electron spin relaxation damping parameters can also be estimated from the oscillation amplitude decay and the long-time-delay behavior.
Progress towards a cesium atomic fountain clock
NASA Astrophysics Data System (ADS)
Klipstein, William M.; Raithel, Georg A.; Rolston, Steven L.; Phillips, William D.; Ekstrom, Christopher R.
1997-04-01
We have been developing a fountain of laser--cooled cesium atoms for use as an atomic clock. Our design largely follows that of the fountain built at LPTF in Paris. In our fountain, chirp--slowed atoms are first collected in a Magneto--Optic Trap (MOT) and then cooled to a few μK in optical molasses. The cooled atoms are then launched vertically into a "moving molasses" by shifting the frequencies of the vertical cooling beams. The atoms then travel through a microwave cavity tuned to the 9.2 GHz cesium hyperfine frequency for a first Ramsey pulse. After roughly 0.5 seconds of free flight under the influence of gravity, the atoms fall back through the microwave cavity and into an optical state--detection region which detects the number of atoms making the F=3 arrow F=4 transition. The increased Ramsey interaction time improves the short--time precision as compared to traditional atomic beam experiments, while many systematic shifts which limit the accuracy of an atomic beam clock are reduced by the low atomic velocity and the retrace of the atomic trajectory through the microwave cavity. We will discuss the progress towards a working fountain being assembled in our laboratory.
Charge radii of neutron deficient Fe 52 , 53 produced by projectile fragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minamisono, K.; Rossi, D. M.; Beerwerth, R.
Bunched-beam collinear laser spectroscopy is performed on neutron deficient 52,53Fe prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δmore » $$\\langle$$r 2$$\\rangle$$ of 52,53Fe are determined relative to stable 56Fe as δ$$\\langle$$r2$$\\rangle$$ 56,52=$-$0.034(13) fm 2 and δ$$\\langle$$r 2$$\\rangle$$56,53=$-$0.218(13) fm 2, respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ$$\\langle$$r 2$$\\rangle$$. The values of δ$$\\langle$$r 2$$\\rangle$$ exhibit a minimum at the N=28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. As a result, the trend of δ$$\\langle$$r 2$$\\rangle$$ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ$$\\langle$$r 2$$\\rangle$$ of closed-shell Ca isotopes« less
Charge radii of neutron deficient Fe 52 , 53 produced by projectile fragmentation
Minamisono, K.; Rossi, D. M.; Beerwerth, R.; ...
2016-12-15
Bunched-beam collinear laser spectroscopy is performed on neutron deficient 52,53Fe prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δmore » $$\\langle$$r 2$$\\rangle$$ of 52,53Fe are determined relative to stable 56Fe as δ$$\\langle$$r2$$\\rangle$$ 56,52=$-$0.034(13) fm 2 and δ$$\\langle$$r 2$$\\rangle$$56,53=$-$0.218(13) fm 2, respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ$$\\langle$$r 2$$\\rangle$$. The values of δ$$\\langle$$r 2$$\\rangle$$ exhibit a minimum at the N=28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. As a result, the trend of δ$$\\langle$$r 2$$\\rangle$$ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ$$\\langle$$r 2$$\\rangle$$ of closed-shell Ca isotopes« less
NASA Astrophysics Data System (ADS)
Beloy, Kyle; Derevianko, Andrei
2008-09-01
The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V.M. Shabaev et al., Phys. Rev. Lett. 93 (2004) 130405] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely-employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37 (1988) 307-315]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s-7s transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach. In addition, we present a strategy for optimizing the size of the basis sets by choosing progressively smaller number of basis functions for increasingly higher partial waves. This strategy exploits suppression of contributions of high partial waves to typical many-body correlation corrections.
Stochastic hyperfine interactions modeling library
NASA Astrophysics Data System (ADS)
Zacate, Matthew O.; Evenson, William E.
2011-04-01
The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When interactions fluctuate at rates comparable to the time scale of a hyperfine method, there is a loss in signal coherence, and spectra are damped. The degree of damping can be used to determine fluctuation rates, provided that theoretical expressions for spectra can be derived for relevant physical models of the fluctuations. SHIML provides routines to help researchers quickly develop code to incorporate stochastic models of fluctuating hyperfine interactions in calculations of hyperfine spectra. Solution method: Calculations are based on the method for modeling stochastic hyperfine interactions for PAC by Winkler and Gerdau [5]. The method is extended to include other hyperfine methods following the work of Dattagupta [6]. The code provides routines for reading model information from text files, allowing researchers to develop new models quickly without the need to modify computer code for each new model to be considered. Restrictions: In the present version of the code, only methods that measure the hyperfine interaction on one probe spin state, such as PAC, μSR, and NMR, are supported. Running time: Varies
NASA Astrophysics Data System (ADS)
Kurkcuoglu, Doga Murat; de Melo, C. A. R. Sá
2018-05-01
We propose the creation and investigation of a system of spin-one fermions in the presence of artificial spin-orbit coupling, via the interaction of three hyperfine states of fermionic atoms to Raman laser fields. We explore the emergence of spinor physics in the Hamiltonian described by the interaction between light and atoms, and analyze spectroscopic properties such as dispersion relation, Fermi surfaces, spectral functions, spin-dependent momentum distributions and density of states. Connections to spin-one bosons and SU(3) systems is made, as well relations to the Lifshitz transition and Pomeranchuk instability are presented.
Atomic scale study of ball milled Ni-Fe{sub 2}O{sub 3} using Mössbauer spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Ravi Kumar; Govindaraj, R., E-mail: govind@igcar.gov.in; Vinod, K.
Evolution of hyperfine fields at Fe atoms has been studied in a detailed manner in a mixture of Ni and α-Fe{sub 2}O{sub 3} subjected to high energy ball milling using Mossbauer spectroscopy. Mossbauer results indicate the dispersion of α-Fe{sub 2}O{sub 3} particles in Ni matrix in the as ball milled condition. Evolution of α-Fe{sub 2}O{sub 3} due to ball milling, reduction of the valence of associated Fe and possible interaction between the oxide particles with Ni in the matrix due to annealing treatments has been elucidated in the present study.
The Guanine Cation Radical: Investigation of Deprotonation States by ESR and DFT
Adhikary, Amitava; Kumar, Anil; Becker, David; Sevilla, Michael D.
2008-01-01
This work reports ESR studies that identify the favored site of deprotonation of the guanine cation radical (G•+) in an aqueous medium at 77 K. Using ESR and UV-visible spectroscopy, one-electron oxidized guanine is investigated in frozen aqueous D2O solutions of 2′-deoxyguanosine (dGuo) at low temperatures at various pHs at which the guanine cation, G•+ (pH 3–5), singly deprotonated species, G(-H)• (pH 7–9) and doubly deprotonated species, G(-2H)•− (pH>11) are found. C-8-deuteration of dGuo to give 8-D-dGuo removes the major proton hyperfine coupling at C-8. This isolates the anisotropic nitrogen couplings for each of the three species and aids our analyses. These anisotropic nitrogen couplings were assigned to specific nitrogen sites by use of 15N substituted derivatives at N1, N2 N3 atoms in dGuo. Both ESR and UV-visible spectra are reported for each of the species: G•+, G(-H)•, and G(-2H)•−. The experimental anisotropic ESR hyperfine couplings are compared to those obtained from DFT calculations for the various tautomers of G(-H)•. Using the B3LYP/6–31G(d) method, the geometries and energies of G•+ and its singly deprotonated state in its two tautomeric forms, G(N1-H)• and G(N2-H)•, were investigated. In a non-hydrated state G(N2-H)• is found to be more stable than G(N1-H)• but on hydration with 7 water molecules G(N1-H)• is found to be more stable than G(N2-H)•. The theoretically calculated hyperfine coupling constants (HFCC) of G•+, G(N1-H)• and G(-2H)•− match the experimentally observed HFCCs best on hydration with 7 or more waters. For G(-2H)•−, the hyperfine coupling constant (HFCC) at the exocyclic nitrogen atom (N2) is especially sensitive to the number of hydrating water molecules; good agreement with experiment is not obtained until 9 or 10 waters of hydration are included. PMID:17125389
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Prakash; Morales, Jorge A., E-mail: jorge.morales@ttu.edu; Perera, Ajith
2013-11-07
Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. Inmore » this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the {sup 11}B, {sup 17}O, {sup 9}Be, {sup 19}F, {sup 1}H, {sup 13}C, {sup 35}Cl, {sup 33}S,{sup 14}N, {sup 31}P, and {sup 67}Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N{sup 7}-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate experimental ESR spectra, to interpret spin-density distributions, and to characterize and identify radical species is illustrated with our results from large organic radicals. Those include species relevant for organic chemistry, petroleum industry, and biochemistry, such as the cyclo-hexyl, 1-adamatyl, and Zn-porphycene anion radicals, inter alia.« less
NASA Technical Reports Server (NTRS)
Brown, J. M.; Curl, R. F.; Evenson, K. M.
1984-01-01
The far-infrared laser magnetic resonance spectrum of the SiH radical in the v = O level of its X2Pi state has been recorded. The signals are rather weak. The molecules were generated in the reaction between fluorine atoms and SiH4. Rotational transitions have been detected in both 2Pi1/2 and 2Pi3/2 spin components but no fine structure transitions between the spin components were observed. Proton hyperfine splittings were resolved on some lines. The measurements have been analyzed, subjected to a least-squares fit using an effective Hamiltonian, and the appropriate molecular parameters determined. The weakness of the spectrum and the failure of attempts to power saturate favorable lines are both consistent with a small value for the electric dipole moment for SiH.
Changes in the mean square charge radii and electromagnetic moments of neutron-deficient Bi isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barzakh, A. E., E-mail: barzakh@mail.ru; Batist, L. Kh.; Fedorov, D. V.
In-source laser spectroscopy experiments for neutron deficient bismuth isotopes at the 306.77 nm atomic transition were carried out at the IRIS (Investigation of Radioactive Isotopes on Synchrocyclotron) facility of Petersburg Nuclear Physics Institute (PNPI). New data on isotope shifts and hyperfine structure for {sup 189–198,} {sup 211}Bi isotopes and isomers were obtained. The changes in the mean-square charge radii and the magnetic moment values were deduced. Marked deviation from the nearly spherical behavior for ground states of bismuth isotopes at N < 109 is demonstrated, in contrast to the lead and thallium isotopic chains. The big isomer shift between Imore » = 1/2 (intruder) and I = 9/2 (normal) states for odd Bi isotopes (A = 193, 195, 197) was found.« less
Multiple coherent light scattering in ultracold rubidium
NASA Astrophysics Data System (ADS)
Kulatunga, P.; Sukenik, C. I.; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.
2001-11-01
We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider the dominant mode of double scattering only. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and progress towards observation of atomic coherent backscattering.
Multiple coherent light scattering in ultracold rubidium
NASA Astrophysics Data System (ADS)
Havey, M. D.; Sukenik, C. I.; Kulatunga, P.; Kupriyanov, D. V.; Sokolov, I. M.
2001-05-01
We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider the dominant mode of double scattering only. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and progress towards observation of atomic coherent backscattering.
NASA Astrophysics Data System (ADS)
Miles, J. A.; Das, Diptaranjan; Simmons, Z. J.; Yavuz, D. D.
2015-09-01
We experimentally demonstrate the localization of excitation between hyperfine ground states of 87Rb atoms to as small as λ /13 -wide spatial regions. We use ultracold atoms trapped in a dipole trap and utilize electromagnetically induced transparency (EIT) for the atomic excitation. The localization is achieved by combining a spatially varying coupling laser (standing wave) with the intensity dependence of EIT. The excitation is fast (150 ns laser pulses) and the dark-state fidelity can be made higher than 94% throughout the standing wave. Because the width of the localized regions is much smaller than the wavelength of the driving light, traditional optical imaging techniques cannot resolve the localized features. Therefore, to measure the excitation profile, we use an autocorrelation-like method where we perform two EIT sequences separated by a time delay, during which we move the standing wave.
NASA Astrophysics Data System (ADS)
Kirova, T.; Cinins, A.; Efimov, D. K.; Bruvelis, M.; Miculis, K.; Bezuglov, N. N.; Auzinsh, M.; Ryabtsev, I. I.; Ekers, A.
2017-10-01
This paper is devoted to clarifying the implications of hyperfine (HF) interaction in the formation of adiabatic (i.e., "laser-dressed") states and their expression in the Autler-Townes (AT) spectra. We first use the Morris-Shore model [J. R. Morris and B. W. Shore, Phys. Rev. A 27, 906 (1983), 10.1103/PhysRevA.27.906] to illustrate how bright and dark states are formed in a simple reference system where closely spaced energy levels are coupled to a single state with a strong laser field with the respective Rabi frequency ΩS. We then expand the simulations to realistic hyperfine level systems in Na atoms for a more general case when non-negligible HF interaction can be treated as a perturbation in the total system Hamiltonian. A numerical analysis of the adiabatic states that are formed by coupling of the 3 p3 /2 and 4 d5 /2 states by the strong laser field and probed by a weak laser field on the 3 s1 /2-3 p3 /2 transition yielded two important conclusions. Firstly, the perturbation introduced by the HF interaction leads to the observation of what we term "chameleon" states—states that change their appearance in the AT spectrum, behaving as bright states at small to moderate ΩS, and fading from the spectrum similarly to dark states when ΩS is much larger than the HF splitting of the 3 p3 /2 state. Secondly, excitation by the probe field from two different HF levels of the ground state allows one to address orthogonal sets of adiabatic states; this enables, with appropriate choice of ΩS and the involved quantum states, a selective excitation of otherwise unresolved hyperfine levels in excited electronic states.
Modulated magnetic structure of F e3P O7 as seen by 57Fe Mössbauer spectroscopy
NASA Astrophysics Data System (ADS)
Sobolev, A. V.; Akulenko, A. A.; Glazkova, I. S.; Pankratov, D. A.; Presniakov, I. A.
2018-03-01
The paper reports results of the 57Fe Mössbauer measurements on an F e3P O4O3 powder sample recorded at various temperatures, including the point of magnetic phase transition TN≈163 K . The spectra measured above TN consist of a quadrupole doublet with high quadrupole splitting of Δ300 K≈1.10 mm /s , emphasizing that F e3 + ions are located in crystal positions with a strong electric-field gradient (EFG). To predict the sign and orientation of the main components of the EFG tensor, we calculated the EFG using the density-functional-theory approach. In the temperature range T
Écija, Patricia; Cocinero, Emilio J; Lesarri, Alberto; Millán, Judith; Basterretxea, Francisco; Fernández, José A; Castaño, Fernando
2011-04-28
The intrinsic conformational and structural properties of the bicycle exo-2-aminonorbornane have been probed in a supersonic jet expansion using Fourier-transform microwave (FT-MW) spectroscopy and quantum chemical calculations. The rotational spectrum revealed two different conformers arising from the internal rotation of the amino group, exhibiting small (MHz) hyperfine patterns originated by the (14)N nuclear quadrupole coupling interaction. Complementary ab initio (MP2) and DFT (B3LYP and M05-2X) calculations provided comparative predictions for the structural properties, rotational and centrifugal distortion data, hyperfine parameters, and isomerization barriers. Due to the similarity of the rotational constants, the structural assignment of the observed rotamers and the calculation of the torsion angles of the amino group were based on the conformational dependence of the (14)N nuclear quadrupole coupling hyperfine tensor. In the most stable conformation (ss), the two amino N-H bonds are staggered with respect to the adjacent C-H bond. In the second conformer (st), only one of the N-H bonds is staggered and the other is trans. A third predicted conformer (ts) was not detected, consistent with a predicted conformational relaxation to conformer ss through a low barrier of 5.2 kJ mol(-1).
Time-resolved ESR spectra of the α-hydroxybenzyl-amine complex
NASA Astrophysics Data System (ADS)
Kawai, Akio; Kobori, Yasuhiro; Obi, Kinichi
1993-11-01
Time-resolved ESR spectra of the α-hydroxybenzyl radical were measured in benzene and 2-propanol solutions by the photo-dissociation of benzoin. The hyperfine structure (hfs) of α-hydroxybenzyl depends on the solvents. In a benzene solution containing triethylamine, two species with different hyperfine structure appeared simultaneously. As the ratio of intensity for the two species depends on the concentration of triethylamine, one of them is assigned to the bare α-hydroxybenzyl and the other to the 1:1 complex of α-hydroxybenzyl and triethylamine. The equilibrium constant of complex formation was estimated to be about 450 M -1 from the analysis of CIDEP intensities.
Optical Magnetometer Incorporating Photonic Crystals
NASA Technical Reports Server (NTRS)
Kulikov, Igor; Florescu, Lucia
2007-01-01
According to a proposal, photonic crystals would be used to greatly increase the sensitivities of optical magnetometers that are already regarded as ultrasensitive. The proposal applies, more specifically, to a state-of-the-art type of quantum coherent magnetometer that exploits the electromagnetically-induced-transparency (EIT) method for determining a small change in a magnetic field indirectly via measurement of the shift, induced by that change, in the hyperfine levels of resonant atoms exposed to the field.
Hyperfine Structure in the Pure Rotational Spectrum of 208Pb35Cl
NASA Astrophysics Data System (ADS)
Dewberry, Christopher T.; Grubbs, Garry S., II; Etchison, Kerry C.; Cooke, Stephen A.
2010-06-01
Initially in our laboratory the pure rotational spectrum of the title molecule was studied using a Balle-Flygare Fourier transform microwave spectrometer. Analysis was troublesome and so the spectrum was remeasured using a chirped pulse Fourier transform microwave (CP-FTMW) spectrometer. The correct intensity aspect of the CP-FTMW experiment allowed successful quantum number assignments for the hyperfine structure for the correct isotopologue. Spectroscopic constants have been obtained from a fit to a data set consisting of our measurements combined with those of a prior study on the X_2^2Π3/2 → X_1^2Π_{1/2 fine structure transitions. K. Ziebarth, K. D. Setzer, O. Shestakov and E. H. Fink J. Mol. Spectrosc., 191 108, 1998.
One Electron Atom in Special Relativity with de Sitter Space-Time Symmetry
NASA Astrophysics Data System (ADS)
Yan, Mu-Lin
2012-06-01
The de Sitter invariant Special Relativity (dS-SR) is SR with constant curvature, and a natural extension of usual Einstein SR (E-SR). In this paper, we solve the dS-SR Dirac equation of Hydrogen by means of the adiabatic approach and the quasi-stationary perturbation calculations of QM. Hydrogen atom is located in the light cone of the Universe. FRW metric and ΛCDM cosmological model are used to discuss this issue. To the atom, effects of de Sitter space-time geometry described by Beltrami metric are taken into account. The dS-SR Dirac equation turns out to be a time dependent quantum Hamiltonian system. We reveal that: (i) The fundamental physics constants me, ℏ, e variate adiabatically along with cosmologic time in dS-SR QM framework. But the fine-structure constant α ≡ e2/(ℏc) keeps to be invariant; (ii) (2s1/2-2p1/2)-splitting due to dS-SR QM effects: By means of perturbation theory, that splitting ΔE(z) are calculated analytically, which belongs to Script O(1/R2)-physics of dS-SR QM. Numerically, we find that when |R| ≃ {103 Gly, 104 Gly, 105 Gly}, and z ≃ {1, or 2}, the ΔE(z) ≫ 1 (Lamb shift). This indicates that for these cases the hyperfine structure effects due to QED could be ignored, and the dS-SR fine structure effects are dominant. This effect could be used to determine the universal constant R in dS-SR, and be thought as a new physics beyond E-SR.
Observation of coherent backscattering of light in ultracold ^85Rb
NASA Astrophysics Data System (ADS)
Kulatunga, P.; Sukenik, C. I.; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.
2002-05-01
We report investigation of multiple coherent light scattering from ^85Rb atoms confined in a magneto-optic trap. In experimental studies, measurements are made of coherent backscattering of a low-intensity probe beam tuned near the F = 3 - F' = 4 transition in ^85Rb atoms. Polarization of backscattered light is determined by a backscattering polarimeter; the spatial distribution of light intensity is measured by a liquid-nitrogen cooled CCD camera set in the focal plane of the analyzing optics. The instrument has angular resolution of about 100 micro-radians, and a polarization analyzing power of roughly 1000. In this paper we describe the instrument details, including calibration procedures, and our measurements of atomic coherent backscattering. In a theoretical study of intensity enhancement of near-resonant backscattered light from cold ^85,87Rb atoms, we consider scattering orders up to 8 and a Gaussian atom distribution in the MOT. Enhancement factors are calculated for all D1 and D2 hyperfine components and for both isotopes.
Entangling atomic spins with a Rydberg-dressed spin-flip blockade
Jau, Y. -Y.; Hankin, A. M.; Keating, T.; ...
2015-10-05
Controlling the quantum entanglement between parts of a many-body system is key to unlocking the power of quantum technologies such as quantum computation, high-precision sensing, and the simulation of many-body physics. The spin degrees of freedom of ultracold neutral atoms in their ground electronic state provide a natural platform for such applications thanks to their long coherence times and the ability to control them with magneto-optical fields. However, the creation of strong coherent coupling between spins has been challenging. In this paper, we demonstrate a strong and tunable Rydberg-dressed interaction between spins of individually trapped caesium atoms with energy shiftsmore » of order 1 MHz in units of Planck’s constant. This interaction leads to a ground-state spin-flip blockade, whereby simultaneous hyperfine spin flips of two atoms are inhibited owing to their mutual interaction. Finally, we employ this spin-flip blockade to rapidly produce single-step Bell-state entanglement between two atoms with a fidelity ≥81(2)%.« less
Theoretical hyperfine structures of 19F i and 17O i
NASA Astrophysics Data System (ADS)
Aourir, Nouria; Nemouchi, Messaoud; Godefroid, Michel; Jönsson, Per
2018-03-01
Multiconfiguration Hartree-Fock (MCHF) and multiconfiguration Dirac-Hartree-Fock (MCDHF) calculations are performed for the 2 p5P2o , 2 p4(3P ) 3 s 4P , 2 p4(3P ) 3 s 2P , and 2 p4(3P ) 3 p 4So states of 19F i to determine their hyperfine constants. Several computing strategies are considered to investigate electron correlation and relativistic effects. High-order correlation contributions are included in MCHF calculations based on single and double multireference expansions. The largest components of the single reference MCHF wave functions are selected to define the multireference (MR) sets. In this scheme, relativistic corrections are evaluated in the Breit-Pauli approximation. A similar strategy is used for the calculation of MCDHF relativistic wave functions and hyperfine parameters. While correlation and relativistic corrections are found to be rather small for the ground state, we highlight large relativistic effects on the hyperfine constant A3 /2 of 2 p4(3P ) 3 p 4So and, to a lesser extent, on A1 /2 of 2 p4(3P ) 3 s 4P . As expected for such a light system, electron correlation effects dominate over relativity in the calculation of the hyperfine interaction of all other levels considered. We also revisit the hyperfine constants of 2 p3(4S ) 3 s S5o and 2 p3(4S ) 3 p 5P in 17O using similar strategies. The results are found to be in excellent agreement with experiment.
NASA Astrophysics Data System (ADS)
Chen, Zhan-Bin; Guo, Xue-Ling; Wang, Kai
2018-02-01
An extensive set of level energies, wavelengths, line strengths, oscillator strengths, lifetimes, hyperfine structures, Lande´ gJ-factors, electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), and magnetic quadrupole (M2) radiative transition rates among the lowest 318 states arising from the 2s22p4, 2s2p5, 2p6, 2s22p33l (l = 0, 1, 2), 2s2p43l (l = 0, 1, 2), 2p53l (l = 0, 1, 2), and 2s22p34l (l = 0, 1, 2, 3) configurations has been obtained for Se XXVII. These new data, calculated within the frameworks of the multi-configuration Dirac-Hartree-Fock method and the second-order many-body perturbation theory, fill in the gap existing in the atomic data needed for the diagnostic processes of tokamak plasmas. Using two methods allowed us to make an intercomparison and to estimate the uncertainties on the obtained data. The results arising in the two sets of calculations are quite close, suggesting that there is a high degree of convergence achieved in our work. i.e., our two sets of energies agree to better than 0.02%, and the lifetimes mostly agree to within 2%. Comparison is also made with the limited number of experimental data and previous computations to assess the accuracy of our calculations.
Computational Studies of Magnetically Doped Semiconductor Nanoclusters
NASA Astrophysics Data System (ADS)
Gutsev, Lavrenty Gennady
Spin-polarized unrestricted density functional theory is used to calculate the molecular properties of magnetic semiconductor quantum dots doped with 3d-metal atoms. We calculate total energies of the low spin antiferromagnetically coupled states using a spin-flipping algorithm leading to the broken-symmetry states. Given the novel nature of the materials studied, we simulate experimental observables such as hyperfine couplings, ionization/ energies, electron affinities, first and second order polarizabilities, band gaps and exchange coupling constants. Specifically, we begin our investigation with pure clusters of (CdSe )16 and demonstrate the dependence of molecular observables on geometrical structures. We also show that the many isomers of this cluster are energetically quite closely spaced, and thus it would be necessary to employ a battery of tests to experimentally distinguish them. Next, we discuss Mn-doping into the cage (CdSe)9 cluster as well as the zinc-blende stacking type cluster (CdSe)36. We show that the local exchange coupling mechanism is ligand-mediated superexchange and simulate the isotropic hyperfine constants. Finally, we discuss a novel study where (CdSe)9 is doped with Mn or Fe up to a full replacement of all the Cd's and discuss the transition points for the magnetic behavior and specifically the greatly differing band-gap shifts. We also outline an unexpected pattern in the polarizability of the material as metals are added and compare our results with the results from theoretical studies of the bulk material.
Todorov, Petko; Bloch, Daniel
2017-11-21
For a gas at thermal equilibrium, it is usually assumed that the velocity distribution follows an isotropic 3-dimensional Maxwell-Boltzmann (M-B) law. This assumption classically implies the assumption of a "cos θ" law for the flux of atoms leaving the surface. Actually, such a law has no grounds in surface physics, and experimental tests of this assumption have remained very few. In a variety of recently developed sub-Doppler laser spectroscopy techniques for gases one-dimensionally confined in a thin cell, the specific contribution of atoms moving nearly parallel to the boundary of the vapor container becomes essential. We report here on the implementation of an experiment to probe effectively the distribution of atomic velocities parallel to the windows for a thin (60 μm) Cs vapor cell. The principle of the setup relies on a spatially separated pump-probe experiment, where the variations of the signal amplitude with the pump-probe separation provide the information on the velocity distribution. The experiment is performed in a sapphire cell on the Cs resonance line, which benefits from a long-lived hyperfine optical pumping. Presently, we can analyze specifically the density of atoms with slow normal velocities ∼5-20 m/s, already corresponding to unusual grazing flight-at ∼85°-88.5° from the normal to the surface-and no deviation from the M-B law is found within the limits of our elementary setup. Finally we suggest tracks to explore more parallel velocities, when surface details-roughness or structure-and the atom-surface interaction should play a key role to restrict the applicability of an M-B-type distribution.
Isotopic determination of uranium in soil by laser induced breakdown spectroscopy
Chan, George C. -Y.; Choi, Inhee; Mao, Xianglei; ...
2016-03-26
Laser-induced breakdown spectroscopy (LIBS) operated under ambient pressure has been evaluated for isotopic analysis of uranium in real-world samples such as soil, with U concentrations in the single digit percentage levels. The study addresses the requirements for spectral decomposition of 235U and 238U atomic emission peaks that are only partially resolved. Although non-linear least-square fitting algorithms are typically able to locate the optimal combination of fitting parameters that best describes the experimental spectrum even when all fitting parameters are treated as free independent variables, the analytical results of such an unconstrained free-parameter approach are ambiguous. In this work, five spectralmore » decomposition algorithms were examined, with different known physical properties (e.g., isotopic splitting, hyperfine structure) of the spectral lines sequentially incorporated into the candidate algorithms as constraints. It was found that incorporation of such spectral-line constraints into the decomposition algorithm is essential for the best isotopic analysis. The isotopic abundance of 235U was determined from a simple two-component Lorentzian fit on the U II 424.437 nm spectral profile. For six replicate measurements, each with only fifteen laser shots, on a soil sample with U concentration at 1.1% w/w, the determined 235U isotopic abundance was (64.6 ± 4.8)%, and agreed well with the certified value of 64.4%. Another studied U line - U I 682.691 nm possesses hyperfine structure that is comparatively broad and at a significant fraction as the isotopic shift. Thus, 235U isotopic analysis with this U I line was performed with spectral decomposition involving individual hyperfine components. For the soil sample with 1.1% w/w U, the determined 235U isotopic abundance was (60.9 ± 2.0)%, which exhibited a relative bias about 6% from the certified value. The bias was attributed to the spectral resolution of our measurement system - the measured line width for this U I line was larger than its isotopic splitting. In conclusion, although not the best emission line for isotopic analysis, this U I emission line is sensitive for element analysis with a detection limit of 500 ppm U in the soil matrix; the detection limit for the U II 424.437 nm line was 2000 ppm.« less
Domain wall suppression in trapped mixtures of Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Pepe, Francesco V.; Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio
2012-08-01
The ground-state energy of a binary mixture of Bose-Einstein condensates can be estimated for large atomic samples by making use of suitably regularized Thomas-Fermi density profiles. By exploiting a variational method on the trial densities the energy can be computed by explicitly taking into account the normalization condition. This yields analytical results and provides the basis for further improvement of the approximation. As a case study, we consider a binary mixture of 87Rb atoms in two different hyperfine states in a double-well potential and discuss the energy crossing between density profiles with different numbers of domain walls, as the number of particles and the interspecies interaction vary.
Hyperfine field and magnetic structure in the B phase of CeCoIn5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Matthias J; Curro, Nicholas J; Young, Ben - Li
2009-01-01
We re-analyze Nuclear Magnetic Resonance (NMR) spectra observed at low temperatures and high magnetic fields in the field-induced B-phase of CeCoIn{sub 5}. The NMR spectra are consistent with incommensurate antiferromagnetic order of the Ce magnetic moments. However, we find that the spectra of the In(2) sites depend critically on the direction of the ordered moments, the ordering wavevector and the symmetry of the hyperfine coupling to the Ce spins. Assuming isotropic hyperfine coupling, the NMR spectra observed for H {parallel} [100] are consistent with magnetic order with wavevector Q = {pi}(1+{delta}/a, 1/a, 1/c) and Ce moments ordered antiferromagnetically along themore » [100] direction in real space. If the hyperfine coupling has dipolar symmetry, then the NMR spectra require Ce moments along the [001] direction. The dipolar scenario is also consistent with recent neutron scattering measurements that find an ordered moment of 0.15{micro}{sub B} along [001] and Q{sub n} = {pi}(1+{delta}/a, 1+{delta}c, 1/c) with incommensuration {delta} = 0.12 for field H {parallel} [1{bar 1}0]. Using these parameters, we find that the hyperfine field is consistent with both experiments. We speculate that the B phase of CeCoIn{sub 5} represents an intrinsic phase of modulated superconductivity and antiferromagnetism that can only emerge in a highly clean system.« less
Hyperfine fields of Fe in Nd2Fe14BandSm2Fe17N3
NASA Astrophysics Data System (ADS)
Akai, Hisazumi; Ogura, Masako
2015-03-01
High saturation magnetization of rare-earth magnets originates from Fe and the strong magnetic anisotropy stems from f-states of rare-earth elements such as Nd and Sm. Therefore the hyperfine fields of both Fe and rare-earth provide us with important pieces of information: Fe NMR enable us to detect site dependence of the local magnetic moment and magnetic anisotropy (Fe sites also contribute to the magnetic anisotropy) while rare-earth NQR directly give the information of electric field gradients (EFG) that are related to the shape of the f-electron cloud as well as the EFG produced by ligands. In this study we focus on the hyperfine fields of materials used as permanent magnets, Nd2Fe14BandSm2Fe17N3 from theoretical points of view. The detailed electronic structure together with the hyperfine interactions are discussed on the basis of the first-principles calculation. In particular, the relations between the observed hyperfine fields and the magnetic properties are studies in detail. The effects of doping of those materials by other elements such as Dy and the effects of N adding in Sm2Fe17N3 will be discussed. This work was supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.
Hyperfine interaction constants of 14NO2 in 14 500-16 800 cm-1 energy region
NASA Astrophysics Data System (ADS)
Tada, Kohei; Hirata, Michihiro; Kasahara, Shunji
2017-10-01
We observed hyperfine-resolved high-resolution fluorescence excitation spectra of k = 0, N = 1 ← 0 transitions in 82 vibronic bands of the à 2B2 ← X ˜ 2A1 system of 14NO2 in the 14 500-16 800 cm-1 region by crossing a jet-cooled molecular beam and a single-mode dye laser beam at right angles. We determined hyperfine interaction constants of the lower and upper states for all the observed vibronic bands based on the analysis of the hyperfine structures of k = 0, N = 1 ← 0 transitions. Most of the determined Fermi contact interaction constants were found to be distributed in 0.0013-0.0038 cm-1, which are intermediate in magnitude between those in lower and higher energy region reported by other groups. A sharp decreasing of the Fermi contact interaction constant was found in 16 200-16 600 cm-1, and it may be caused by the interaction with the dark C ˜ 2A2 state. The hyperfine interaction constants are powerful clues to obtain reliable vibronic assignment. We tentatively assigned vibronic bands located at 14 836 cm-1, 15 586 cm-1, and 16 322 cm-1 as the transitions to the intrinsic (0,7,0), (0,8,0), and (0,9,0) vibrational levels of the à 2B2 state, respectively.
Analysis of structure of hyperfine poly(3-hydroxybutyrate) fibers (PHB) for controlled drug delivery
NASA Astrophysics Data System (ADS)
Olkhov, A. A.; Kosenko, R. Yu; Markin, V. S.; Zykova, A. K.; Pantyukhov, P. V.; Karpova, S. G.; Iordanskii, A. L.
2017-12-01
Hyperfine fibers based on biodegradable poly (3-hydroxybutyrate) with encapsulated drug substance (dipyridamol) were obtained by using electrospinning method. Addition of dipyridamol has a significant effect on geometrical shape and structure of microfibers as well as total porosity of fibrous material. Observation of fibers using scanning electron microscopy (SEM) method showed that without or at lower dipyridamol content (<3%) fibers consisted of interleaved ellipsoid and cylindrical fragments. At higher dipyridamol content (3-5%) anomalous ellipsoid structures did not practically form, and fiber’s shape became cylindrical. The totality of morphological and structural characteristics determined the rate of dipyridamol diffusive transports. The simplified model of drug desorption from fibrous matrix was presented. In current work it was showed that the rate-limiting stage of transport was the diffusion of dipyridamol in the bulk of cylindrical fibers.
Observation of EIA in closed and open caesium atomic system
NASA Astrophysics Data System (ADS)
Zhao, Jian-Ming; Zhao, Yan-Ting; Huang, Tao; Xiao, Lian-Tuan; Jia, Suo-Tang
2005-04-01
We present an experimental study on electromagnetically induced absorption (EIA) in the closed transition of a degenerate two-level Cs atomic system. The coupling and probe lasers coupled with the transition 6S1/2F=4 → 6P3/2F'=5 of caesium atom. The signal of EIA was obtained and the frequency detuning and intensity effect of the pumping laser were experimentally investigated. The EIA signal in 6S1/2 F=4 → 6P3/2 F'=4 and 6S1/2 F=4 → 6P3/2 F'=3 open transitions was also obtained. As the repumping laser couples with the transition of 6S1/2 F=3 → 6P3/2 F'=4, the EIA signal is increased due to the hyperfine optical pumping.
NASA Astrophysics Data System (ADS)
Stalnaker, J. E.; Ayer, H. M. G.; Baron, J. H.; Nuñez, A.; Rowan, M. E.
2017-07-01
We present an experimental determination of the 4 S1 /2→6 S1 /2 transition frequency in atomic potassium 39K, using direct frequency-comb spectroscopy. The output of a stabilized optical frequency comb was used to excite a thermal atomic vapor. The repetition rate of the frequency comb was scanned and the transitions were excited using stepwise two-photon excitation. The center-of-gravity frequency for the transition was found to be νcog=822 951 698.09 (13 ) MHz and the measured hyperfine A coefficient of the 6 S1 /2 state was 21.93 (11 ) MHz. The measurements are in agreement with previous values and represent an improvement by a factor of 700 in the uncertainty of the center-of-gravity measurement.
Bräuer, Björn; Weigend, Florian; Fittipaldi, Maria; Gatteschi, Dante; Reijerse, Edward J; Guerri, Annalisa; Ciattini, Samuele; Salvan, Georgeta; Rüffer, Tobias
2008-08-04
In this work we present the investigation of the influence of electronic and structural variations induced by varying the N,N'-bridge on the magnetic properties of Cu(II)- bis(oxamato) complexes. For this study the complexes [Cu(opba)] (2-) ( 1, opba = o-phenylene- bis(oxamato)), [Cu(nabo)] (2-) ( 2, nabo = 2,3-naphthalene- bis(oxamato)), [Cu(acbo)] (2-) ( 3, acbo = 2,3-anthrachinone- bis(oxamato)), [Cu(pba)] (2-) ( 4, pba = propylene- bis(oxamato)), [Cu(obbo)] (2-) ( 5, obbo = o-benzyl- bis(oxamato)), and [Cu(npbo)] (2-) ( 6, npbo = 1,8-naphthalene- bis(oxamato)), and the respective structurally isomorphic Ni(II) complexes ( 8- 13) have been prepared as ( (n)Bu 4N) (+) salts. The new complex ( (n)Bu 4N) 2[Cu(R-bnbo)].2H 2O ( 7, R-bnbo = (R)-1,1'-binaphthalene-2,2'- bis(oxamato)) was synthesized and is the first chiral complex in the series of Cu(II)-bis(oxamato) complexes. The molecular structure of 7 has been determined by single crystal X-ray analysis. The Cu(II) ions of the complexes 1- 7 are eta (4)(kappa (2) N, kappa (2) O) coordinated with a more or less distorted square planar geometry for 1- 6 and a distorted tetrahedral geometry for 7. Using pulsed Electron Nuclear Double Resonance on complex 6, detailed information about the relative orientation of the hyperfine ( A) and nuclear quadrupole tensors ( Q) of the coordinating nitrogens with respect to the g tensor were obtained. Electron Paramagnetic Resonance studies in the X, Q, and W-band at variable temperatures were carried out to extract g and A values of N ligands and Cu ion for 1- 7. The hyperfine values were interpreted in terms of spin population on the corresponding atoms. The obtained trends of the spin population for the monomeric building blocks were shown to correlate to the trends obtained in the dependence of the exchange interaction of the corresponding trinuclear complexes on their geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herojit Singh, L.; Govindaraj, R., E-mail: govind@igcar.gov.in; Rajagopalan, S.
Mössbauer spectroscopic studies have been carried out at different temperatures across ferromagnetic to paramagnetic transition in Ni{sub 50}Fe{sub 35}Co{sub 15} and the evolution of hyperfine parameters such as centre shift and magnetic hyperfine fields with temperature has been studied. Mössbauer spectrum obtained at 300 K in Ni{sub 50}Fe{sub 35}Co{sub 15} exhibiting fcc crystal structure is a six line pattern with the mean value of the hyperfine field close to 33 Tesla. Ferromagnetic to paramagnetic transition has been observed to occur in this system around 895 K matching with that of magnetization results. Debye temperature of this nickel rich alloy ismore » deduced to be around 470 K matching with that of Ni. Effect of prolonged annealing at 750 K on the magnetic property is also investigated with respect to the thermal stability of the alloy.« less
Probing Sizes and Shapes of Nobelium Isotopes by Laser Spectroscopy
NASA Astrophysics Data System (ADS)
Raeder, S.; Ackermann, D.; Backe, H.; Beerwerth, R.; Berengut, J. C.; Block, M.; Borschevsky, A.; Cheal, B.; Chhetri, P.; Düllmann, Ch. E.; Dzuba, V. A.; Eliav, E.; Even, J.; Ferrer, R.; Flambaum, V. V.; Fritzsche, S.; Giacoppo, F.; Götz, S.; Heßberger, F. P.; Huyse, M.; Kaldor, U.; Kaleja, O.; Khuyagbaatar, J.; Kunz, P.; Laatiaoui, M.; Lautenschläger, F.; Lauth, W.; Mistry, A. K.; Minaya Ramirez, E.; Nazarewicz, W.; Porsev, S. G.; Safronova, M. S.; Safronova, U. I.; Schuetrumpf, B.; Van Duppen, P.; Walther, T.; Wraith, C.; Yakushev, A.
2018-06-01
Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of
NASA Astrophysics Data System (ADS)
Scheerer, O.; Höhne, M.; Juda, U.; Riemann, H.
1997-10-01
In this article, we report about complexes in silicon investigated by electron paramagnetic resonance (EPR). In silicon doped with C and Pt we detected two different complexes: cr-1Pt (cr: carbon-related, 1Pt: one Pt atom) and cr-3Pt. The complexes have similar EPR properties. They show a trigonal symmetry with effective g-values geff,⊥=2g⊥≈4 and geff,‖=g‖≈2 (g⊥, g‖ true g-values). The g-values can be explained by a spin Hamiltonian with large fine-structure energy (electron spin S=3/2) and smaller Zeeman interaction. The participation of platinum in the complexes is proved by the hyperfine interaction. From experiments with varying carbon concentration we conclude that the complexes contain carbon. Atomistic models based on the Watkins vacancy-model for substitutional Pt were developed.
Spin-dependent recombination probed through the dielectric polarizability
Bayliss, Sam L.; Greenham, Neil C.; Friend, Richard H.; Bouchiat, Hélène; Chepelianskii, Alexei D
2015-01-01
Despite residing in an energetically and structurally disordered landscape, the spin degree of freedom remains a robust quantity in organic semiconductor materials due to the weak coupling of spin and orbital states. This enforces spin-selectivity in recombination processes which plays a crucial role in optoelectronic devices, for example, in the spin-dependent recombination of weakly bound electron-hole pairs, or charge-transfer states, which form in a photovoltaic blend. Here, we implement a detection scheme to probe the spin-selective recombination of these states through changes in their dielectric polarizability under magnetic resonance. Using this technique, we access a regime in which the usual mixing of spin-singlet and spin-triplet states due to hyperfine fields is suppressed by microwave driving. We present a quantitative model for this behaviour which allows us to estimate the spin-dependent recombination rate, and draw parallels with the Majorana–Brossel resonances observed in atomic physics experiments. PMID:26439933
Millimeter Wave Spectrum of Nitromethane
NASA Astrophysics Data System (ADS)
Ilyushin, V.
2016-06-01
A new study of the millimeter wave spectrum of nitromethane CH_3NO_2 is reported. The new measurements covering the frequency range from 49 GHz to 236 GHz have been carried out using spectrometer in IRA NASU (Ukraine). The transitions belonging to the m ≤ 8 torsional states have been analyzed using the RAM36 program, which has been modified for this study to take into account the quadrupole hyperfine structure due to presence of the nitrogen atom. The dataset consisting of 5838 microwave line frequencies and including transitions with J up to 50 was fit using a model consisting of 93 parameters and weighted root-mean-square deviation of 0.89 has been achieved. In the talk the details of this new study will be discussed. V. Ilyushin, Z. Kisiel, L. Pszczólkowski, H. Mäder, J. T. Hougen J. Mol. Spectrosc. 259 (2010) 26-38.
The ferromagnetic monolayer Fe(110) on W(110)
NASA Astrophysics Data System (ADS)
Gradmann, U.; Liu, G.; Elmers, H. J.; Przybylski, M.
1990-07-01
Ferromagnetic order in the pseudomorphic monolayer Fe(110) on W(110) was analyzed experimentally using Conversion Electron Mössbauer Spectroscopy (CEMS) and Torsion Oscillation Magnetometry (TOM). The monolayer is thermodynamically stable, crystallizes to large monolayer patches at elevated temperatures and therefore forms an excellent approximation to the ideal monolayer structure. It is ferromagnetic below a Curie-temperature T c,mono, which is given by (282±3) K for the Ag-coated layer, (290±10) K for coating by Cu, Ag or Au and ≈210 K for the free monolayer. For the Ag-coated monolayer, ground state hyperfine field B hf (0)=(11.9±0.3) T and magnetic moment per atom μ=2.53 μB could be determined, in fair agreement with theoretical predictions. Unusual properties of the phase transition are detected by the combination of both experimental techniques. Strong magnetic anisotropies, which are essential for ferromagnetic order, are determined by CEMS.
NASA Astrophysics Data System (ADS)
Varberg, Thomas D.; Gray, Jeffrey A.; Field, Robert W.; Merer, Anthony J.
1992-12-01
The A7Π- X7Σ + (0, 0) band of MnH at 568 nm has been recorded by laser fluorescence excitation spectroscopy. The original rotational analysis of Nevin [ Proc. R. Irish Acad.48A, 1-45 (1942); 50A, 123-137 (1945)] has been extended with some corrections at low J. Systematic internal hyperfine perturbations in the X7Σ + state, caused by the Δ N = 0, Δ J = ±1 matrix elements of the 55Mn hyperfine term in the Hamiltonian, have been observed in all seven electron spin components over the entire range of N″ studied. These perturbations destroy the "goodness" of J″ as a quantum number, giving rise to hyperfine-induced Δ J = ±2 rotational branches and to observable energy shifts of the most severely affected levels. The A7Π state, with A = 40.5 cm -1 and B = 6.35 cm -1, evolves rapidly from Hund's case ( a) to case ( b) coupling, which produces anomalous branch patterns at low J. A total of 156 rotational branches have been identified and fitted by least squares to an effective Hamiltonian, providing precise values for the rotational and fine structure constants. Values of the principal constants determined in the fit are (1σ errors in units of the last digit are listed in parentheses): The fine structures of the A7Π and X7Σ + states confirm the assignment of the A ← X transition as Mn 4 pπ ← 4 sσ in the presence of a spectator, nonbonding Mn 3 d5 ( 6S) open core.
Ab initio calculation of hyperfine splitting constants of molecules
NASA Astrophysics Data System (ADS)
Ohta, K.; Nakatsuji, H.; Hirao, K.; Yonezawa, T.
1980-08-01
Hyperfine splitting (hfs) constants of molecules, methyl, ethyl, vinyl, allyl, cyclopropyl, formyl, O3-, NH2, NO2, and NF2 radicals have been calculated by the pseudo-orbital (PO) theory, the unrestricted HF (UHF), projected UHF (PUHF) and single excitation (SE) CI theories. The pseudo-orbital (PO) theory is based on the symmetry-adapted-cluster (SAC) expansion proposed previously. Several contractions of the Gaussian basis sets of double-zeta accuracy have been examined. The UHF results were consistently too large to compare with experiments and the PUHF results were too small. For molecules studied here, the PO theory and SECI theory gave relatively close results. They were in fair agreement with experiments. The first-order spin-polarization self-consistency effect, which was shown to be important for atoms, is relatively small for the molecules. The present result also shows an importance of eliminating orbital-transformation dependence from conventional first-order perturbation calculations. The present calculations have explained well several important variations in the experimental hfs constants.
Measurement of Nitrogen Hyperfine Structure on the 53 CM (562 MHz) Butyronitrile Line
NASA Astrophysics Data System (ADS)
Dewberry, Christopher T.; Grubbs, Garry S. Grubbs, II; Raphelt, Andrew; Cooke, Stephen A.
2009-06-01
Recent improvements to our cavity-based Fourier transform radiofrequency spectrometer will be presented. Amongst other improvements use of Miteq amp, model AMF-6F-00100400-10-10P (0.1 GHz to 4 GHz, 65 dB gain minimum, 1 dB noise figure maximum) together with shielding from an improved Faraday cage have significantly helped us in this regard. Electromagnetic fields within our near-spherical cavity have been modeled and results will be presented. We have been able to easily resolve the nitrogen hyperfine structure on the ^aQ_{0,-1} transition 1_{1,0} ← 1_{1,1} located at 562 MHz. This result will be discussed.
The Optical Bichromatic Force in Molecular Systems
NASA Astrophysics Data System (ADS)
Aldridge, Leland; Galica, Scott; Eyler, E. E.
2015-05-01
The optical bichromatic force has been demonstrated to be useful for slowing atomic beams much more rapidly than radiative forces. Through numerical simulations, we examine several aspects of applying the bichromatic force to molecular beams. One is the unavoidable existence of out-of-system radiative decay, requiring one or more repumping beams. We find that the average deceleration varies strongly with the repumping intensity, but when using optimal parameters, the force approaches the limiting value allowed by population statistics. Another consideration is the effect of fine and hyperfine structure. We examine a simplified multlevel model based on the B <--> X transition in calcium monofluoride. To circumvent optical pumping into coherent dark states, we include two possible schemes: (1) a skewed dc magnetic field, and (2) rapid optical polarization switching. Our results indicate that the bichromatic force remains a viable option for creating large forces in molecular beams, with a reduction in the peak force by approximately an order of magnitude compared to a two-level atom, but little effect on the velocity range over which the force is effective. We also describe our progress towards experimental tests of the bichromatic force on a molecular beam of CaF. Supported by the National Science Foundation.
Kampa, Mario; Lubitz, Wolfgang; van Gastel, Maurice; Neese, Frank
2012-12-01
[NiFe] hydrogenases catalyze the reversible formation of H(2). The [NiFe] heterobimetallic active site is rich in redox states. Here, we investigate the key catalytic state Ni-C of Desulfovibrio vulgaris Miyazaki F hydrogenase using a cluster model that includes the truncated amino acids of the entire second coordination sphere of the enzyme. The optimized geometries, computed g tensors, hyperfine coupling constants, and IR stretching frequencies all agree well with experimental values. For the hydride in the bridging position, only a single minimum on the potential energy surface is found, indicating that the hydride bridges and binds to both nickel and iron. The influence of the second coordination sphere on the electronic structure is investigated by comparing results from the large cluster models with truncated models. The largest interactions of the second coordination sphere with the active site concern the hydrogen bonds with the cyanide ligands, which modulate the bond between iron and these ligands. Secondly, the electronic structure of the active site is found to be sensitive to the protonation state of His88. This residue forms a hydrogen bond with the spin-carrying sulfur atom of Cys549, which in turn tunes the spin density at the nickel and coordinating sulfur atoms. In addition, the unequal distribution of spin density over the equatorial cysteine residues results from different orientations of the cysteine side chains, which are kept in their particular orientation by the secondary structure of the protein.
NASA Astrophysics Data System (ADS)
Kumar, Pradeep; Li, Cheng-Bin; Sahoo, B. K.
2018-03-01
Dependencies of electron correlation effects with the rank and radial behavior of spectroscopic properties are analyzed in the singly charged calcium ion (Ca+). To demonstrate these trends, we have determined field shift constants, magnetic dipole and electric quadrupole hyperfine structure constants, Landé g J factors, and electric quadrupole moments that are described by electronic operators with different radial and angular factors. Radial dependencies are investigated by comparing correlation trends among the properties that have similar angular factors and vice versa. To highlight these observations, we present results from the mean-field approach to all-orders along with intermediate contributions. Contributions from higher relativistic corrections are also given. These findings suggest that sometime lower-order approximations can give results agreeing with the experimental results, but inclusion of some of higher-order correlation effects can cause large disagreement with the experimental values. Therefore, validity of a method for accurate evaluation of atomic properties can be tested by performing calculations of several properties simultaneously that have diverse dependencies on the angular and radial factors and comparing with the available experimental results. Nevertheless, it is imperative to include full triple and quadrupole excitations in the all-order many-body methods for high-precision calculations that are yet to be developed adopting spherical coordinate system for atomic studies.
NASA Astrophysics Data System (ADS)
Mironov, A. E.; Hewitt, J. D.; Eden, J. G.
2017-03-01
We report the selective population of Rb or Cs n p
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillen-Christandl, Katharina; Copsey, Bert D.
2011-02-15
The neutral-atom quantum computing community has successfully implemented almost all necessary steps for constructing a neutral-atom quantum computer. We present computational results of a study aimed at solving the remaining problem of creating a quantum memory with individually addressable sites for quantum computing. The basis of this quantum memory is the diffraction pattern formed by laser light incident on a circular aperture. Very close to the aperture, the diffraction pattern has localized bright and dark spots that can serve as red-detuned or blue-detuned atomic dipole traps. These traps are suitable for quantum computing even for moderate laser powers. In particular,more » for moderate laser intensities ({approx}100 W/cm{sup 2}) and comparatively small detunings ({approx}1000-10 000 linewidths), trap depths of {approx}1 mK and trap frequencies of several to tens of kilohertz are achieved. Our results indicate that these dipole traps can be moved by tilting the incident laser beams without significantly changing the trap properties. We also explored the polarization dependence of these dipole traps. We developed a code that calculates the trapping potential energy for any magnetic substate of any hyperfine ground state of any alkali-metal atom for any laser detuning much smaller than the fine-structure splitting for any given electric field distribution. We describe details of our calculations and include a summary of different notations and conventions for the reduced matrix element and how to convert it to SI units. We applied this code to these traps and found a method for bringing two traps together and apart controllably without expelling the atoms from the trap and without significant tunneling probability between the traps. This approach can be scaled up to a two-dimensional array of many pinholes, forming a quantum memory with single-site addressability, in which pairs of atoms can be brought together and apart for two-qubit gates for quantum computing.« less
Mishra, S N
2009-03-18
Applying the time differential perturbed angular correlation (TDPAC) technique we have measured electric and magnetic hyperfine fields of the (111)Cd impurity in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr and Gd) showing antiferro- and ferromagnetism with unusually high ordering temperatures. The Cd nuclei occupying the Sc site show high magnetic hyperfine fields with saturation values B(hf)(0) = 21 kG, 45 kG and 189 kG in CeScGe, PrScGe and GdScGe, respectively. By comparing the results with the hyperfine field data of Cd in rare-earth metals and estimations from the RKKY model, we find evidence for the presence of additional spin density at the probe nucleus, possibly due to spin polarization of Sc d band electrons. The principal electric field gradient component V(zz) in CeScGe, PrScGe and GdScGe has been determined to be 5.3 × 10(21) V m(-2), 5.5 × 10(21) V m(-2) and 5.6 × 10(21) V m(-2), respectively. Supplementing the experimental measurements, we have carried out ab initio calculations for pure and Cd-doped RScGe compounds with R = Ce, Pr, Nd and Gd using the full potential linearized augmented plane wave (FLAPW) method based on density functional theory (DFT). From the total energies calculated with and without spin polarization we find ferrimagnetic ground states for CeScGe and PrScGe while NdScGe and GdScGe are ferromagnetic. In addition, we find a sizable magnetic moment at the Sc site, increasing from ≈0.10 μ(B) in CeScGe to ≈0.3 μ(B) in GdScGe, confirming the spin polarization of Sc d band electrons. The calculated electric field gradient and magnetic hyperfine fields of the Cd impurity closely agree with the experimental values. We believe spin polarization of Sc 3d band electrons, strongly hybridized with spin polarized 5d band electrons of the rare-earth, enables a long range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between RE 4f moments which in turn leads to high magnetic ordering temperatures in RScGe compounds.
The Submillimeter Spectrum of MnH and MnD (X7Σ+)
NASA Astrophysics Data System (ADS)
Halfen, D. T.; Ziurys, L. M.
2008-01-01
The submillimeter-wave spectrum of the MnH and MnD radicals in their 7Σ+ ground states has been measured in the laboratory using direct absorption techniques. These species were created in the gas phase by the reaction of manganese vapor, produced in a Broida-type oven, with either H2 or D2 gas in the presence of a DC discharge. The N = 0 → 1 transition of MnH near 339 GHz was recorded, which consisted of multiple hyperfine components arising from both the manganese and hydrogen nuclear spins. The N = 2 → 3 transition of MnD near 517 GHz was measured as well, but in this case only the manganese hyperfine interactions were resolved. Both data sets were analyzed with a Hund's case b Hamiltonian, and rotational, fine structure, magnetic hyperfine, and electric quadrupole constants have been determined for the two manganese species. An examination of the magnetic hyperfine constants shows that MnH is primarily an ionic species, but has more covalent character than MnF. MnH is a good candidate species for astronomical searches with Herschel, particularly toward material associated with luminous blue variable stars.
Radiative transfer of HCN: interpreting observations of hyperfine anomalies
NASA Astrophysics Data System (ADS)
Mullins, A. M.; Loughnane, R. M.; Redman, M. P.; Wiles, B.; Guegan, N.; Barrett, J.; Keto, E. R.
2016-07-01
Molecules with hyperfine splitting of their rotational line spectra are useful probes of optical depth, via the relative line strengths of their hyperfine components. The hyperfine splitting is particularly advantageous in interpreting the physical conditions of the emitting gas because with a second rotational transition, both gas density and temperature can be derived. For HCN however, the relative strengths of the hyperfine lines are anomalous. They appear in ratios which can vary significantly from source to source, and are inconsistent with local thermodynamic equilibrium (LTE). This is the HCN hyperfine anomaly, and it prevents the use of simple LTE models of HCN emission to derive reliable optical depths. In this paper, we demonstrate how to model HCN hyperfine line emission, and derive accurate line ratios, spectral line shapes and optical depths. We show that by carrying out radiative transfer calculations over each hyperfine level individually, as opposed to summing them over each rotational level, the anomalous hyperfine emission emerges naturally. To do this requires not only accurate radiative rates between hyperfine states, but also accurate collisional rates. We investigate the effects of different sets of hyperfine collisional rates, derived via the proportional method and through direct recoupling calculations. Through an extensive parameter sweep over typical low-mass star-forming conditions, we show the HCN line ratios to be highly variable to optical depth. We also reproduce an observed effect whereby the red-blue asymmetry of the hyperfine lines (an infall signature) switches sense within a single rotational transition.
Coherent Multiple Light Scattering in Ultracold Atomic Rb
NASA Astrophysics Data System (ADS)
Kulatunga, Pasad; Sukenik, C. I.; Balik, Salim; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.
2003-05-01
Wave transport in mesoscopic systems can be strongly influenced by coherent multiple scattering,which can lead to novel magneto-optic, transmission, and backscattering effects of light in atomic vapors. Although related to traditional studies of radiation trapping, in ultracold vapors negligible frequency or phase redistribution takes place in the scattering, and high-order coherent light scattering occurs. Among other things, this leads to enhancement of the influence of otherwise small non-resonant terms in the scattering amplitudes. We report investigation of multiple coherent light scattering from ultracold Rb atoms confined in a magneto-optic trap (MOT). In experimental studies, measurements are made of the angular, spectral, and polarization-dependent coherent backscattering profile of a low-intensity probe beam tuned near the F = 3 - F' = 4 hyperfine transition. The influence of higher probe beam intensity is also studied. In a theoretical study of angular intensity enhancement of backscattered light, we consider scattering orders up to 10 and a realistic and asymmetric Gaussian atom distribution in the MOT. Supported by NSF, NATO, and RFBR.
NASA Astrophysics Data System (ADS)
Oshtrakh, M. I.; Alenkina, I. V.; Semionkin, V. A.
2016-12-01
Human liver ferritin and its iron-polymaltose pharmaceutical analogues Ferrum Lek, Maltofer® and Ferrifol® were studied using Mössbauer spectroscopy at 295 and 90 K. The Mössbauer spectra were fitted on the basis of a new model of heterogeneous iron core structure using five quadrupole doublets. These components were related to the corresponding more or less close-packed iron core layers/regions demonstrating some variations in the 57Fe hyperfine parameters for the studied samples.
Laboratory rotational spectroscopy of cyano substituted polycyclic aromatic hydrocarbons
NASA Astrophysics Data System (ADS)
McNaughton, Don; Jahn, Michaela K.; Travers, Michael J.; Wachsmuth, Dennis; Godfrey, Peter D.; Grabow, Jens-Uwe
2018-06-01
The rotational spectra of the four cyano substituted polycyclic aromatic hydrocarbon (PAH) molecules 1-cyanonaphthalene, 2-cyanonaphthalene, 9-cyanoanthracene, and 9-cyanophenanthrene have been recorded in molecular expansions using a Stark-modulated millimetre-wave spectrometer and a Fourier transform microwave spectrometer in the centimetre-wave region. The spectra have been assigned and fitted to provide molecular constants and quadrupole hyperfine constants of sufficient accuracy to enable complete hyperfine structure line predictions for interstellar searches. The data may provide a route into detection of small PAHs in the interstellar medium.
White, James D; Scholten, Robert E
2012-11-01
We describe a compact laser wavelength measuring instrument based on a small diffraction grating and a consumer-grade webcam. With just 1 pW of optical power, the instrument achieves absolute accuracy of 0.7 pm, sufficient to resolve individual hyperfine transitions of the rubidium absorption spectrum. Unlike interferometric wavemeters, the instrument clearly reveals multimode laser operation, making it particularly suitable for use with external cavity diode lasers and atom cooling and trapping experiments.
Electrical detection of nuclear spins in organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Malissa, H.; Kavand, M.; Waters, D. P.; Lupton, J. M.; Vardeny, Z. V.; Saam, B.; Boehme, C.
2014-03-01
We present pulsed combined electrically detected electron paramagnetic and nuclear magnetic resonance experiments on MEH-PPV OLEDs. Spin dynamics in these structures are governed by hyperfine interactions between charge carriers and the surrounding hydrogen nuclei, which are abundant in these materials. Hyperfine coupling has been observed by monitoring the device current during coherent spin excitation. Electron spin echoes (ESEs) are detected by applying one additional readout pulse at the time of echo formation. This allows for the application of high-resolution spectroscopy based on ESE detection, such as electron spin echo envelope modulation (ESEEM) and electron nuclear double resonance (ENDOR) available for electrical detection schemes. We conduct electrically detected ESEEM and ENDOR experiments and show how hyperfine interactions in MEH-PPV with and without deuterated polymer side groups can be observed by device current measurements. We acknowledge support by the Department of Energy, Office of Basic Energy Sciences under Award #DE-SC0000909.
NASA Astrophysics Data System (ADS)
Xiaojun, Jiang; Haichao, Zhang; Yuzhu, Wang
2016-03-01
We report the experimental investigation of electromagnetically induced transparency (EIT) in a Zeeman-sublevels Λ-type system of cold 87Rb atoms in free space. We use the Zeeman substates of the hyperfine energy states 52S1/2, F = 2 and 52P3/2, F‧ = 2 of 87Rb D2 line to form a Λ-type EIT scheme. The EIT signal is obtained by scanning the probe light over 1 MHz in 4 ms with an 80 MHz arbitrary waveform generator. More than 97% transparency and 100 kHz EIT window are observed. This EIT scheme is suited for an application of pulsed coherent storage atom clock (Yan B, et al. 2009 Phys. Rev. A 79 063820). Project supported by the National Basic Research Program of China (Grant No. 2011CB921504) and the National Natural Science Foundation of China (Grant No. 91536107).
Structural and magnetic properties of FeCoC system obtained by mechanical alloying
NASA Astrophysics Data System (ADS)
Rincón Soler, A. I.; Rodríguez Jacobo, R. R.; Medina Barreto, M. H.; Cruz-Muñoz, B.
2017-11-01
Fe96-XCoXC4 (x = 0, 10, 20, 30, 40 at. %) alloys were obtained by mechanical alloying of Fe, C and Co powders using high-energy milling. The structural and magnetic properties of the alloy system were analyzed by X-ray diffraction, Scanning Electron Microscopy (SEM), Vibrating Sample Magnetometer (VSM) and Mössbauer Spectrometry at room temperature. The X-ray diffraction patterns showed a BCC-FeCoC structure phase for all samples, as well as a lattice parameter that slightly decreases with Co content. The saturation magnetization and coercive field were analyzed as a function of Co content. The Mössbauer spectra were fitted with a hyperfine magnetic field distribution showing the ferromagnetic behavior and the disordered character of the samples. The mean hyperfine magnetic field remained nearly constant (358 T) with Co content.
Circular dichroism of magnetically induced transitions for D2 lines of alkali atoms
NASA Astrophysics Data System (ADS)
Tonoyan, A.; Sargsyan, A.; Klinger, E.; Hakhumyan, G.; Leroy, C.; Auzinsh, M.; Papoyan, A.; Sarkisyan, D.
2018-03-01
In this letter we study magnetic circular dichroism in alkali atoms exhibiting asymmetric behaviour of magnetically induced transitions. The magnetic field \\textbf{B}\\parallel\\textbf{k} induces transitions between Δ F = +/-2 hyperfine levels of alkali atoms and in the range of ∼0.1{\\text{--}}3 \\text{kG} magnetic field, the intensities of these transitions experience significant enhancement. We have inferred a general rule applicable for the D 2 lines of all alkali atoms, that is the transition intensity enhancement is around four times larger for the case of σ+ than for σ- excitation for Δ F = +2 , whereas it is several hundreds of thousand times larger in the case of σ- than that for σ+ polarization for Δ F = -2 . This asymmetric behaviour results in circular dichroism. For experimental verification we employed half-wavelength-thick atomic vapor nanocells using a derivative of the selective reflection technique, which provides a sub-Doppler spectroscopic linewidth (∼50 \\text{MHz} ). The presented theoretical curves well describe the experimental results. This effect can find applications particularly in parity violation experiments.
Measure synchronization in a spin-orbit-coupled bosonic Josephson junction
NASA Astrophysics Data System (ADS)
Wang, Wen-Yuan; Liu, Jie; Fu, Li-Bin
2015-11-01
We present measure synchronization (MS) in a bosonic Josephson junction with spin-orbit coupling. The two atomic hyperfine states are coupled by a Raman dressing scheme, and they are regarded as two orientations of a pseudo-spin-1 /2 system. A feature specific to a spin-orbit-coupled (SOC) bosonic Josephson junction is that the transition from non-MS to MS dynamics can be modulated by Raman laser intensity, even in the absence of interspin atomic interaction. A phase diagram of non-MS and MS dynamics as functions of Raman laser intensity and Josephson tunneling amplitude is presented. Taking into account interspin atomic interactions, the system exhibits MS breaking dynamics resulting from the competition between intraspin and interspin atomic interactions. When interspin atomic interactions dominate in the competition, the system always exhibits MS dynamics. For interspin interaction weaker than intraspin interaction, a window for non-MS dynamics is present. Since SOC Bose-Einstein condensates provide a powerful platform for studies on physical problems in various fields, the study of MS dynamics is valuable in researching the collective coherent dynamical behavior in a spin-orbit-coupled bosonic Josephson junction.
Structural Studies of CH_3SiF_2-X (x = Nco, Cl) by Microwave Spectroscopy
NASA Astrophysics Data System (ADS)
Guirgis, Gamil A.; Gause, Korreda K.; Seifert, Nathan A.; Zaleski, Daniel P.; Pate, Brooks H.; Palmer, Michael H.; Peebles, Rebecca A.; Peebles, Sean A.; Elmuti, Lena F.; Obenchain, Daniel A.
2012-06-01
The structures of CH_3SiF_2-NCO and CH_3SiF_2-Cl have been studied by molecular rotational spectroscopy in the 6.5-18 GHz band. The rotational spectrum was measured by cavity Fourier transform microwave (FTMW) and chirped-pulse FTMW spectroscopy. The experiment targeted the study of CH_3SiF_2-NCO, but CH_3SiF_2-Cl was also observed as an impurity. Due to the dynamic range achieved on these spectra, all isotopologs with natural abundance ≥0.2% were assigned, which includes two doubly-substituted isotopologs for the chloride (29Si/37Cl and 30Si/37Cl). Strategies for obtaining the molecular structure for these two molecules using either a Kraitchman analysis (to obtain a partial substitution structure) or r_0 analysis (with additional constraints on the structure supplied by the theoretical structure) will be discussed. Derived structural parameters for the CH_3-SiF_2-X base structure are the same for the two compounds. The hyperfine and internal rotation effects in the spectra have been analyzed for all isotopologs and the Hamiltonian parameters are in very good agreement with ab initio results. The barriers to methyl group internal rotation for the two compounds 446(50) cm-1 and 463(3) cm-1 and are independent of the isotopic structure of the heavy atom frame.
NASA Technical Reports Server (NTRS)
Brown, J. M.; Evenson, K. M.; Sears, T. J.
1985-01-01
The GeH radical has been detected in its ground 2 Pi state in the gas phase reaction of fluorine atoms with GeH4 by laser magnetic resonance techniques. Rotational transitions within both 2 Pi 1/2 and 2 Pi 3/2 manifolds have been observed at far-infrared wavelengths and rotational transitions between the two fine structure components have been detected at infrared wavelengths (10 microns). Signals have been observed for all five naturally occurring isotopes of germanium. Nuclear hyperfine structure for H-1 and Ge-73 has also been observed. The data for the dominant isotope (/Ge-74/H) have been fitted to within experimental error by an effective Hamiltonian to give a set of molecular parameters for the X 2 Pi state which is very nearly complete. In addition, the dipole moment of GeH in its ground state has been estimated from the relative intensities of electric and magnetic dipole transitions in the 10 micron spectrum to be 1.24(+ or - 0.10) D.
Gurusinghe, Ranil M; Tubergen, Michael J
2016-05-26
High-resolution rotational spectra were recorded in the 10.5-21.0 GHz frequency range for seven singly methylated indoles. (14)N nuclear quadrupole hyperfine structure and spectral splittings arising from tunneling along the internal rotation of the methyl group were resolved for all indole species. The nuclear quadrupole coupling constants were used to characterize the electronic environment of the nitrogen atom, and the program XIAM was used to fit the barrier to internal rotation to the measured transition frequencies. The best fit barriers were found to be 277.1(2), 374.32(4), 414.(5), 331.6(2), 126.8675(15), 121.413(4), and 426(3) cm(-1) for 1-methylindole through 7-methylindole, respectively. The fitted barriers were found to be in good agreement with barriers calculated at the ωB97XD/6-311++G(d,p) level. The complete set of experimental barriers is compared to theoretical investigations of the origins of methyl torsional barriers and confirms that the magnitude of these barriers is an overall effect of individual hyperconjugative and structural interactions of many bonding/antibonding orbitals.
Fortier, T M; Ashby, N; Bergquist, J C; Delaney, M J; Diddams, S A; Heavner, T P; Hollberg, L; Itano, W M; Jefferts, S R; Kim, K; Levi, F; Lorini, L; Oskay, W H; Parker, T E; Shirley, J; Stalnaker, J E
2007-02-16
We report tests of local position invariance and the variation of fundamental constants from measurements of the frequency ratio of the 282-nm 199Hg+ optical clock transition to the ground state hyperfine splitting in 133Cs. Analysis of the frequency ratio of the two clocks, extending over 6 yr at NIST, is used to place a limit on its fractional variation of <5.8x10(-6) per change in normalized solar gravitational potential. The same frequency ratio is also used to obtain 20-fold improvement over previous limits on the fractional variation of the fine structure constant of |alpha/alpha|<1.3x10(-16) yr-1, assuming invariance of other fundamental constants. Comparisons of our results with those previously reported for the absolute optical frequency measurements in H and 171Yb+ vs other 133Cs standards yield a coupled constraint of -1.5x10(-15)
Precision measurements on trapped antihydrogen in the ALPHA experiment
NASA Astrophysics Data System (ADS)
Eriksson, S.
2018-03-01
Both the 1S-2S transition and the ground state hyperfine spectrum have been observed in trapped antihydrogen. The former constitutes the first observation of resonant interaction of light with an anti-atom, and the latter is the first detailed measurement of a spectral feature in antihydrogen. Owing to the narrow intrinsic linewidth of the 1S-2S transition and use of two-photon laser excitation, the transition energy can be precisely determined in both hydrogen and antihydrogen, allowing a direct comparison as a test of fundamental symmetry. The result is consistent with CPT invariance at a relative precision of around 2×10-10. This constitutes the most precise measurement of a property of antihydrogen. The hyperfine spectrum of antihydrogen is determined to a relative uncertainty of 4×10-4. The excited state and the hyperfine spectroscopy techniques currently both show sensitivity at the few 100 kHz level on the absolute scale. Here, the most recent work of the ALPHA collaboration on precision spectroscopy of antihydrogen is presented together with an outlook on improving the precision of measurements involving lasers and microwave radiation. Prospects of measuring the Lamb shift and determining the antiproton charge radius in trapped antihydrogen in the ALPHA apparatus are presented. Future perspectives of precision measurements of trapped antihydrogen in the ALPHA apparatus when the ELENA facility becomes available to experiments at CERN are discussed. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.
Clouthier, Dennis J; Kalume, Aimable
2016-01-21
Laser-induced fluorescence and wavelength resolved emission spectra of the B (4)Σ(-)-X (4)Σ(-) band system of the gas phase cold aluminum carbide free radical have been obtained using the pulsed discharge jet technique. The radical was produced by electron bombardment of a precursor mixture of trimethylaluminum in high pressure argon. High resolution spectra show that each rotational line of the 0-0 and 1-1 bands of AlC is split into at least three components, with very similar splittings and intensities in both the P- and R-branches. The observed structure was reproduced by assuming bβS magnetic hyperfine coupling in the excited state, due to a substantial Fermi contact interaction of the unpaired electron in the aluminum 3s orbital. Rotational analysis has yielded ground and excited state equilibrium bond lengths in good agreement with the literature and our own ab initio values. Small discrepancies in the calculated intensities of the hyperfine lines suggest that the upper state spin-spin constant λ' is of the order of ≈ 0.025-0.030 cm(-1).
Laboratory detection of the rotational-tunnelling spectrum of the hydroxymethyl radical, CH2OH
NASA Astrophysics Data System (ADS)
Bermudez, C.; Bailleux, S.; Cernicharo, J.
2017-02-01
Context. Of the two structural isomers of CH3O, methoxy is the only radical whose astronomical detection has been reported through the observation of several rotational lines at 2 and 3 mm wavelengths. Although the hydroxymethyl radical, CH2OH, is known to be thermodynamically the most stable (by 3300 cm-1), it has so far eluded rotational spectroscopy presumably because of its high chemical reactivity. Aims: Recent high-resolution ( 10 MHz) sub-Doppler rovibrationally resolved infrared spectra of CH2OH (symmetric CH stretching a-type band) provided accurate ground vibrational state rotational constants, thus reviving the quest for its millimeter-wave spectrum in laboratory and subsequently in space. Methods: The search and assignment of the rotational spectrum of this fundamental species were guided by our quantum chemical calculations and by using rotational constants derived from high-resolution IR data. The hydroxymethyl radical was produced by hydrogen abstraction from methanol by atomic chlorine. Results: Ninety-six b-type rotational transitions between the v = 0 and v = 1 tunnelling sublevels involving 25 fine-structure components of Q branches (with Ka = 1 ← 0) and 4 fine-structure components of R branches (assigned to Ka = 0 ← 1) were measured below 402 GHz. Hyperfine structure alternations due to the two identical methylenic hydrogens were observed and analysed based on the symmetry and parity of the rotational levels. A global fit including infrared and millimeter-wave lines has been conducted using Pickett's reduced axis system Hamiltonian. The recorded transitions (odd ΔKa) did not allow us to evaluate the Coriolis tunnelling interaction term. The comparison of the experimentally determined constants for both tunnelling levels with their computed values secures the long-awaited first detection of the rotational-tunnelling spectrum of this radical. In particular, a tunnelling rate of 139.73 ± 0.10 MHz (4.6609(32) × 10-3 cm-1) was obtained along with the rotational constants, electron spin-rotation interaction parameters and several hyperfine coupling terms. Conclusions: The laboratory characterization of CH2OH by millimeter-wave spectroscopy now offers the possibility for its astronomical detection for the first time.
NASA Astrophysics Data System (ADS)
Thomas, Javix; Sukhorukov, Oleksandr; Jaeger, Wolfgang; Xu, Yunjie
2012-06-01
The hydrogen bonded complex of ammonia with methyl lactate, a chiral alpha-hydroxyester, has been studied using rotational spectroscopy and high level ab initio calculations. Previous studies showed that methyl lactate can exist in a number of conformers. However, only the most stable one which has an intramolecular hydrogen bonded ring formed with its alcoholic hydroxyl and its carbonyl oxygen atom was detected experimentally An extensive ab initio search has been performed to locate all possible low energy conformers of the methyl lactate-ammonia contact pair. Five lowest energy conformers have been identified at the MP2/6-311++G(d,p) level. The lowest energy conformer favors an insertion arrangement, where ammonia is inserted into the existing intramolecular hydrogen bonded ring in the most stable methyl lactate conformer. Broadband scans for the rotational spectra of possible binary conformers have been carried out using a chirped-pulse Fourier transform microwave (FTMW) instrument. The most stable binary adduct was identified and assigned. The final frequency measurements have been done with a cavity based FTMW instrument. The spectrum observed shows complicated fine and hyperfine splitting patterns, likely due to the internal rotations of the methyl groups of methyl lactate and that of ammonia, as well as the 14N quadrupolar nucleus. The binary adduct with 15NH3 has also been studied to simplify the splitting pattern and to aid the assignments of the extensive splittings. The isotopic data and the fine and hyperfine structures will be discussed in terms of internal rotation dynamics and geometry of the hydrogen bonded adduct.
NASA Astrophysics Data System (ADS)
Zhang, Huaming; Yu, Xiaopeng; Xiao, Wenbo
2017-12-01
The electron paramagnetic resonance parameters (g factors g ‖, g ⊥ and hyperfine structure constants A ‖, A ⊥) of a tetragonal V4+ center in oxyfluoroborate glasses (20Li2O-10Li2F2-70B2O3) are theoretically investigated by using the perturbation formulas for a 3d1 ion in tetragonally compressed octahedra. The calculated results are in good agreement with the experimental data. Local structure parameters of [VO6]8- clusters are obtained from the calculation (i.e., R‖ ≈ 1.74 Å and R⊥ ≈ 1.985 Å for the metal-ligand distances parallel and perpendicular to the C4 axis, respectively). It is shown that the local structure around the V4+ ion possesses a compressed tetragonal distortion along C 4 axis. The signs of the hyperfine structure constants A‖ and A ⊥ for V4+ centers in oxyfluoroborate glasses were also suggested in the discussion.
NASA Astrophysics Data System (ADS)
Thompsen, J. M.; Brewster, M. A.; Ziurys, L. M.
2002-06-01
The pure rotational spectrum of MnS (v=0) in its X 6Sigma+ ground state has been recorded using millimeter and submillimeter direct absorption techniques in the range 160-502 GHz. MnS was synthesized in the gas phase by the reaction of manganese vapor and CS2 in a high-temperature Broida-type oven. Fourteen rotational transitions for this radical were measured, each consisting of six fine-structure components. In the lower rotational lines, hyperfine structure, arising from the 55Mn nuclear spin of 5/2, was also resolved in each spin component. These data were analyzed using a case (b) Hamiltonian, and rotational, fine structure, and hyperfine parameters determined for MnS. In the analysis, the third-order correction to the spin-rotation interaction, gammaS, and the fourth-order spin-spin coupling term, theta, were found necessary for an acceptable fit. The hyperfine constants determined suggest that MnS is more covalent than MnO, but more ionic than MnH. There additionally appears to be considerable sdsigma hybridization in molecular orbital formation for this molecule. Bond lengths of the 3d transition-metal sulfides were compared as well, and those of MnS, CuS, and TiS do not follow the trend of their oxide analogs. This result indicates that there are significant bonding differences between transition-metal sulfides and transition-metal oxides.
Rotational spectroscopic study of carbonyl sulfide solvated with hydrogen molecules.
Michaud, Julie M; Jäger, Wolfgang
2008-10-14
Rotational spectra of small-sized (H(2))(N)-OCS clusters with N = 2-7 were measured using a pulsed-jet Fourier transform microwave spectrometer. These include spectra of pure (para-H(2))(N)-OCS clusters, pure (ortho-H(2))(N)-OCS clusters, and mixed ortho-H(2) and para-H(2) containing clusters. The rotational lines of ortho-H(2) molecules containing clusters show proton spin-proton spin hyperfine structure, and the pattern evolves as the number of ortho-H(2) molecules in the cluster increases. Various isotopologues of the clusters were investigated, including those with O(13)CS, OC(33)S, OC(34)S, and O(13)C(34)S. Nuclear quadrupole hyperfine structures of rotational transitions were observed for (33)S (nuclear spin quantum number I = 3/2) containing isotopologues. The (33)S nuclear quadrupole coupling constants are compared to the corresponding constant of the OCS monomer and those of the He(N)-OCS clusters. The assignment of the number of solvating hydrogen molecules N is supported by the analyses of the proton spin-proton spin hyperfine structures of the mixed clusters, the dependence of line intensities on sample conditions (pressure and concentrations), and the agreement of the (para-H(2))(N)-OCS and (ortho-H(2))(N)-OCS rotational constants with those from a previous infrared study [J. Tang and A. R. W. McKellar, J. Chem. Phys. 121, 3087 (2004)].
NASA Astrophysics Data System (ADS)
Burns, Patrick
2004-12-01
In this dissertation we report the results of three experiments designed to provide new information on the structure and interactions of the NaK molecule. Specifically these experiments investigate 2(A)1Sigma +(upsilonA, J) + M → 1(b)3 pi0(upsilonb, J) + M collisional excitation transfers (where M is a collision partner), hyperfine structure of the NaK 1(b)3pi and 1(b)3pi0 ˜ 2(A)1Sigma+ spin-orbit interactions, and the structure and spectra of the NaK 43Sigma+ state, respectively. In this first experiment, populations of collisionally populated levels were recorded near the NaK 1(b)3pi0(upsilon =18, J = 44) ˜ 2(A)1Sigma+ (upsilon = 20, J = 44) center of spin-orbit perturbation. Our data indicate that population is transferred from the pumped level, 2(A) 1Sigma+(upsilon = 20, J = 49), directly to the surrounding "daughter" levels [1(b)3Sigma 0(upsilon =18, J = 45--48) and 2(A)1Sigma +(upsilon = 20, J = 45--48)]. The relative populations of the daughter levels appear anomalous, as their populations do not monotonically decrease for levels further away in energy from the pumped level. We have measured the hyperfine structure of mutually perturbing ro-vibrational levels of the 1(b)3pi0 and 2(A)1Sigma + states of the NaK molecule, using the PFOODR method with co-propagating lasers. Unperturbed 1(b)3pi0 levels are split into four hyperfine components by the Fermi contact interaction b FI·S. Mixing between the 1(b)3pi0 and 2(A)1Sigma + levels imparts hyperfine structure to the nominally singlet component, and reduces the hyperfine splitting of the nominally triplet component, of the perturbed levels. We determined a value for the Fermi constant, bF= (0.00989 +/- 0.00027) cm-1, and the magnitude of the electronic part of the 1(b)3pi 0 ˜ 2(A)1Sigma+ spin-orbit coupling, |Hel| = (15.65 +/- 0.14) cm-1 , from an analysis of the measured hyperfine splittings of the mixed singlet-triplet levels. High-resolution spectra have been observed for numerous vibrational-rotational levels (upsilon, N) of the 43Sigma + state of NaK. A potential curve was obtained from the data using the inverse perturbation approximation method. Measured bound-free emission, 43Sigma+ → 1(a)3Sigma +, was used to determine both the absolute vibrational numbering and the transition dipole moment function M(R). Each (upsilon, N) level is typically split into three sets of sublevels by the Fermi contact interaction bFI·S. Further splitting (of order 0.004 cm-1) has been attributed to the spin-rotation interaction gammaN·S. The values of bF that fit the data best are ˜(0.99 +/- 0.04) x 10-2 cm-1, with weak dependence on upsilon. The best fit values of gamma are in the range 1--6 x 10-4 cm-1 and depend strongly on upsilon.
NASA Astrophysics Data System (ADS)
Feldker, T.; Fürst, H.; Ewald, N. V.; Joger, J.; Gerritsma, R.
2018-03-01
We report on spectroscopic results on the 1/2 2S → 3/2 2P transition in single trapped Yb+ ions. We measure the isotope shifts for all stable Yb+ isotopes except +173Yb, as well as the hyperfine splitting of the 3/2 2P state in +171Yb. Our results are in agreement with previous measurements but are a factor of 5-9 more precise. For the hyperfine constant A (3/2 2P)=875.4 (10 )MHz our results also agree with previous measurements but deviate significantly from theoretical predictions. We present experimental results on the branching ratios for the decay of the 3/2 2P state. We find branching fractions for the decay to the 3/2 2D state and 5/2 2D state of 0.17(1)% and 1.08(5)%, respectively, in rough agreement with theoretical predictions. Furthermore, we measured the isotope shifts of the 7/2 2F →1D[5/2 ] 5 /2 transition and determine the hyperfine structure constant for the 1D[5/2 ] 5 /2 state in +171Yb to be A (1D[5/2 ] 5 /2)=-107 (6 ) MHz .
133Cs-NMR Study on the Ground State of the Equilateral Triangular Spin Tube CsCrF4
NASA Astrophysics Data System (ADS)
Matsui, K.; Goto, T.; Manaka, H.; Miura, Y.
2018-03-01
We have investigated the hyperfine coupling between Cs and Cr on the S = 3/2 equilateral triangular spin tube CsCrF4, utilizing 133Cs-NMR. At paramagnetic state above 80 K, we have obtained spectra containing a single peak, which reflects the single crystallographic Cs site. From the temperature dependence of the peak shift and peak width, we evaluated effective values of the isotropic and the anisotropic part of hyperfine coupling. The latter was compared with the calculated dipole contribution. Using obtained parameters with assumed spin structure, we tried to reproduce the broadened spectrum in the ordered state at 2.0 K. The preliminary analysis shows the 120-degree structure does not accord with the observed spectra at the ordered state.
Mössbauer spectra of iron (III) sulfide particles
NASA Astrophysics Data System (ADS)
Kubono, I.; Nishida, N.; Kobayashi, Y.; Yamada, Y.
2017-11-01
Trivalent iron sulfide (Fe2 S 3) particles were synthesized using a modified polyol method. These particles exhibited a needle-like shape (diameter = 10-50 nm, length = 350-1000 nm) and generated a clear XRD pattern. Mössbauer spectra of the product showed a paramagnetic doublet at room temperature and distributed hyperfine magnetic splitting at low temperature. The Curie temperature of this material was determined to be approximately 60 K. The data suggest that the Fe2 S 3 had a structure similar to that of maghemite ( γ-Fe2 O 3) with a lattice constant of a = 10.6 Å. The XRD pattern calculated from this structure was in agreement with the experimental pattern and the calculated hyperfine magnetic field was also equivalent to that observed in the experimental Mössbauer spectrum.
Electron electric dipole moment and hyperfine interaction constants for ThO
NASA Astrophysics Data System (ADS)
Fleig, Timo; Nayak, Malaya K.
2014-06-01
A recently implemented relativistic four-component configuration interaction approach to study P- and T-odd interaction constants in atoms and molecules is employed to determine the electron electric dipole moment effective electric field in the Ω=1 first excited state of the ThO molecule. We obtain a value of Eeff=75.2GV/cm with an estimated error bar of 3% and 10% smaller than a previously reported result (Skripnikov et al., 2013). Using the same wavefunction model we obtain an excitation energy of TvΩ=1=5410 (cm), in accord with the experimental value within 2%. In addition, we report the implementation of the magnetic hyperfine interaction constant A|| as an expectation value, resulting in A||=-1339 (MHz) for the Ω=1 state in ThO. The smaller effective electric field increases the previously determined upper bound (Baron et al., 2014) on the electron electric dipole moment to |de|<9.7×10-29e cm and thus mildly mitigates constraints to possible extensions of the Standard Model of particle physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haeberli, W.
1981-04-01
This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited statemore » (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.« less
Funamori, Nobumasa; Kojima, Kenji M.; Wakabayashi, Daisuke; Sato, Tomoko; Taniguchi, Takashi; Nishiyama, Norimasa; Irifune, Tetsuo; Tomono, Dai; Matsuzaki, Teiichiro; Miyazaki, Masanori; Hiraishi, Masatoshi; Koda, Akihiro; Kadono, Ryosuke
2015-01-01
Hydrogen in the Earth's deep interior has been thought to exist as a hydroxyl group in high-pressure minerals. We present Muon Spin Rotation experiments on SiO2 stishovite, which is an archetypal high-pressure mineral. Positive muon (which can be considered as a light isotope of proton) implanted in stishovite was found to capture electron to form muonium (corresponding to neutral hydrogen). The hyperfine-coupling parameter and the relaxation rate of spin polarization of muonium in stishovite were measured to be very large, suggesting that muonium is squeezed in small and anisotropic interstitial voids without binding to silicon or oxygen. These results imply that hydrogen may also exist in the form of neutral atomic hydrogen in the deep mantle. PMID:25675890
Extending the electron spin coherence time of atomic hydrogen by dynamical decoupling.
Mitrikas, George; Efthimiadou, Eleni K; Kordas, George
2014-02-14
We study the electron spin decoherence of encapsulated atomic hydrogen in octasilsesquioxane cages induced by the (1)H and (29)Si nuclear spin bath. By applying the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence we significantly suppress the low-frequency noise due to nuclear spin flip-flops up to the point where a maximum T2 = 56 μs is observed. Moreover, dynamical decoupling with the CPMG sequence reveals the existence of two other sources of decoherence: first, a classical magnetic field noise imposed by the (1)H nuclear spins of the cage organic substituents, which can be described by a virtual fluctuating magnetic field with the proton Larmor frequency, and second, decoherence due to anisotropic hyperfine coupling between the electron and the inner (29)Si spins of the cage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni Zhichun; Wang Xiaowei; Wu Erdong
2005-12-01
Conversion electron Moessbauer spectroscopy (CEMS) and x-ray diffraction (XRD) analysis have been used to investigate the relationship between characteristics of phase transformation and the treatment time in surface nanocrystallized 316L stainless steel induced by surface mechanical attrition treatment (SMAT). A similar trend of development of the martensitic phase upon the treatment time has been observed from both CEMS and XRD measurements. However, in the CEMS measurement, two types of martensite phase with different magnetic hyperfine fields are revealed. Based on a random distribution of the non-iron coordinating atoms, a three-element theoretical model is developed to illustrate the difference of twomore » types of martensite phase. The calculated results indicate the segregation of the non-iron atoms associated with SMAT treatment.« less
NASA Astrophysics Data System (ADS)
Funamori, Nobumasa; Kojima, Kenji M.; Wakabayashi, Daisuke; Sato, Tomoko; Taniguchi, Takashi; Nishiyama, Norimasa; Irifune, Tetsuo; Tomono, Dai; Matsuzaki, Teiichiro; Miyazaki, Masanori; Hiraishi, Masatoshi; Koda, Akihiro; Kadono, Ryosuke
2015-02-01
Hydrogen in the Earth's deep interior has been thought to exist as a hydroxyl group in high-pressure minerals. We present Muon Spin Rotation experiments on SiO2 stishovite, which is an archetypal high-pressure mineral. Positive muon (which can be considered as a light isotope of proton) implanted in stishovite was found to capture electron to form muonium (corresponding to neutral hydrogen). The hyperfine-coupling parameter and the relaxation rate of spin polarization of muonium in stishovite were measured to be very large, suggesting that muonium is squeezed in small and anisotropic interstitial voids without binding to silicon or oxygen. These results imply that hydrogen may also exist in the form of neutral atomic hydrogen in the deep mantle.
Mössbauer effect studies of Fe-C combinatorially sputtered thin films
NASA Astrophysics Data System (ADS)
Al-Maghrabi, M. A.; Sanderson, R. J.; Dunlap, R. A.
2013-08-01
Alloys of Fe1- x C x were produced using combinatorial sputtering methods. The composition of the films as a function of position was determined using electron microprobe techniques and the results have shown that a composition range of about 0.35 < x < 0.75 was obtained. X-ray diffraction methods were employed to study the structure of the thin films and showed that all portions of the films were amorphous or nanostructured. Room temperature 57Fe Mössbauer spectroscopy was utilized to study the atomic environment around the Fe atoms. Hyperfine field distributions of ferromagnetic alloys, as extracted from the Mössbauer analysis, suggested the existence of two classes of Fe sites: (1) classes of Fe sites that have primarily Fe neighbours corresponding to a high-field component in the distribution and (2) classes of Fe sites that have a greater number of C neighbours, corresponding to a low-field component. The magnetic splitting decreased as a function of increasing carbon concentration and alloys with x greater than about 0.68 were primarily paramagnetic in nature. These spectra exhibited distributions of quadrupole splitting with mean splitting in excess of 1.0 mm/s. This indicates a higher degree of local asymmetry around the Fe sites than typically seen in other Fe-metalloid systems.
NASA Astrophysics Data System (ADS)
Bommier, Véronique
2016-06-01
Context. The spectrum of the linear polarization, which is formed by scattering and observed on the solar disk close to the limb, is very different from the intensity spectrum and thus able to provide new information, in particular about anisotropies in the solar surface plasma and magnetic fields. In addition, a large number of lines show far wing polarization structures assigned to partial redistribution (PRD), which we prefer to denote as Rayleigh/Raman scattering. The two-level or two-term atom approximation without any lower level polarization is insufficient for many lines. Aims: In the previous paper of this series, we presented our theory generalized to the multilevel and multiline atom and comprised of statistical equilibrium equations for the atomic density matrix elements and radiative transfer equation for the polarized radiation. The present paper is devoted to applying this theory to model the second solar spectrum of the Na I D1 and D2 lines. Methods: The solution method is iterative, of the lambda-iteration type. The usual acceleration techniques were considered or even applied, but we found these to be unsuccessful, in particular because of nonlinearity or large number of quantities determining the radiation at each depth. Results: The observed spectrum is qualitatively reproduced in line center, but the convergence is yet to be reached in the far wings and the observed spectrum is not totally reproduced there. Conclusions: We need to investigate noniterative resolution methods. The other limitation lies in the one-dimensional (1D) atmosphere model, which is unable to reproduce the intermittent matter structure formed of small loops or spicules in the chromosphere. This modeling is rough, but the computing time in the presence of hyperfine structure and PRD prevents us from envisaging a three-dimensional (3D) model at this instant.
NASA Astrophysics Data System (ADS)
Hosain, M. A.; Le Floch, J.-M.; Krupka, J.; Tobar, M. E.
2018-01-01
The impurity paramagnetic ion, Cu2+ substitutes Al in the SrLaAlO4 single crystal lattice, this results in a CuO6 elongated octahedron, and the resulting measured g-factors satisfy four-fold axes variation condition. The aggregate frequency width of the electron spin resonance with the required minimum level of impurity concentration has been evaluated in this single crystal SrLaAlO4 at 20 millikelvin. Measured parallel hyperfine constants, A\\Vert Cu , were determined to be -155.7×10-4~cm-1, ~ -163.0×10-4~cm-1, ~ -178.3×10-4~cm-1 and -211.1×10-4~cm-1 at 9.072~GHz~(WGH4, 1, 1) for the nuclear magnetic quantum number M_I=+\\frac{3}{2}, +\\frac{1}{2}, -\\frac{1}{2} , and -\\frac{3}{2} respectively. The anisotropy of the hyperfine structure reveals the characteristics of the static Jahn-Teller effect. The second-order-anisotropy term, ˜ (\\fracspin{-orbit~coupling}{10D_q}){\\hspace{0pt}}2 , is significant and cannot be disregarded, with the local strain dominating over the observed Zeeman-anisotropy-energy difference. The Bohr electron magneton, β=9.23× 10-24 JT-1 , (within -0.43% so-called experimental error) has been found using the measured spin-Hamiltonian parameters. Measured nuclear dipolar hyperfine structure parameter P\\Vert=12.3×10-4~cm-1 shows that the mean inverse third power of the electron distance from the nucleus is < r-3_q>≃ 5.23 a.u. for Cu2+ ion in the substituted Al3+ ion site assuming nuclear electric quadruple moment Q=-0.211 barn.
Schinzel, Sandra; Schraut, Johannes; Arbuznikov, Alexei V; Siegbahn, Per E M; Kaupp, Martin
2010-09-10
Metal and ligand hyperfine couplings of a previously suggested, energetically feasible Mn(4)Ca model cluster (SG2009(-1)) for the S(2) state of the oxygen-evolving complex (OEC) of photosystem II (PSII) have been studied by broken-symmetry density functional methods and compared with other suggested structural and spectroscopic models. This was carried out explicitly for different spin-coupling patterns of the S=1/2 ground state of the Mn(III)(Mn(IV))(3) cluster. By applying spin-projection techniques and a scaling of the manganese hyperfine couplings, computation of the hyperfine and nuclear quadrupole coupling parameters allows a direct evaluation of the proposed models in comparison with data obtained from the simulation of EPR, ENDOR, and ESEEM spectra. The computation of (55)Mn hyperfine couplings (HFCs) for SG2009(-1) gives excellent agreement with experiment. However, at the current level of spin projection, the (55)Mn HFCs do not appear sufficiently accurate to distinguish between different structural models. Yet, of all the models studied, SG2009(-1) is the only one with the Mn(III) site at the Mn(C) center, which is coordinated by histidine (D1-His332). The computed histidine (14)N HFC anisotropy for SG2009(-1) gives much better agreement with ESEEM data than the other models, in which Mn(C) is an Mn(IV) site, thus supporting the validity of the model. The (13)C HFCs of various carboxylates have been compared with (13)C ENDOR data for PSII preparations with (13)C-labelled alanine.
NASA Astrophysics Data System (ADS)
Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.
1990-06-01
Sub-Doppler spectra of the A 7Π-X 7Σ+ (0,0) band of gas phase MnH near 5680 Å were recorded by intermodulated fluorescence spectroscopy. The spectra reveal hyperfine splittings arising from both the 55Mn and 1H nuclear spins. Internal hyperfine perturbations have been observed between the different spin components of the ground state at low N`. From a preliminary analysis of several rotational lines originating from the isolated and unperturbed F1(J`=3) spin component of the X 7Σ+(N`=0) level, the 55Mn Fermi contact interaction in the ground state has been measured as bF=Aiso =276(1) MHz. This value is 11% smaller than the value obtained by Weltner et al. from an electron-nuclear double resonance (ENDOR) study of MnH in an argon matrix at 4 K. This unprecedented gas-to-matrix shift in the Fermi contact parameter is discussed.
Electron paramagnetic resonance of gamma-irradiated single crystals of 3-nitroacetanilide
NASA Astrophysics Data System (ADS)
Aşik, Biray
2008-06-01
The electron paramagnetic resonance of single crystals of 3-nitroacetanilide has been observed and analyzed for different orientations of the crystal in the magnetic field, after being damaged at 300 K by γ-irradiation. The crystals have been investigated between 123 and 300 K. The spectra were found to be temperature independent. The irradiation of 3-nitroacetanilide by γ-rays produces radicals at the nitrogen atoms in the molecule. The principal values of the hyperfine coupling tensor of the unpaired electron and the principal values of the g-tensor were determined.
Polarization nondegenerate fiber Fabry-Perot cavities with large tunable splittings
NASA Astrophysics Data System (ADS)
Cui, Jin-Ming; Zhou, Kun; Zhao, Ming-Shu; Ai, Ming-Zhong; Hu, Chang-Kang; Li, Qiang; Liu, Bi-Heng; Peng, Jin-Lan; Huang, Yun-Feng; Li, Chuan-Feng; Guo, Guang-Can
2018-04-01
We demonstrate a type of microcavity with large tunable splitting of polarization modes. This polarization nondegenerate cavity consists of two ellipsoidal concave mirrors with controllable eccentricity by CO2 laser machining on fiber end facets. The experiment shows that the cavities can combine the advantages of high finesse above 104 and large tunable polarization mode splitting to the GHz range. As the splitting of the cavity can be finely controlled to match atom hyperfine levels or optomechanics phonons, it will blaze a way in experiments on cavity quantum electrodynamics and cavity optomechanics.
Spectroscopic diagnostics of solar flares
NASA Astrophysics Data System (ADS)
Bely-Dubau, F.; Dubau, J.; Faucher, P.; Loulergue, M.; Steenman-Clarke, L.
Observations made with the X-ray polychromator (XRP) on board the Solar Maximum Mission satellite were analyzed. Data from the bent crystal spectrometer portion of the XRP experiment, in the spectral domain 1 to 3 A, with high spectral and temporal resolution, were used. Results for the spectrum analysis of iron are given. The possibility of polarization effects is considered. Although it is demonstrated that hyperfine analyses of a given spectrum are obtainable, provided calculations include large quantities of high precision atomic data, the interpretation is limited by the hypothesis of homogeneity of the emitting plasma.
57Fe Mössbauer study of unusual magnetic structure of multiferroic 3R-AgFeO2
NASA Astrophysics Data System (ADS)
Sobolev, A.; Rusakov, V.; Moskvin, A.; Gapochka, A.; Belik, A.; Glazkova, I.; Akulenko, A.; Demazeau, G.; Presniakov, I.
2017-07-01
We report new results of a 57Fe Mössbauer study of hyperfine magnetic interactions in the layered multiferroic 3R-AgFeO2 demonstrating two magnetic phase transitions at T N1 and T N2. The asymptotic value β * ≈ 0.34 for the critical exponent obtained from the temperature dependence of the hyperfine field H hf(T) at 57Fe the nuclei below T N1 ≈ 14 K indicates that 3R-AgFeO2 shows quasi-3D critical behavior. The spectra just above T N1 (T N1 < T < T * ≈ 41 K) demonstrate a relaxation behavior due to critical spin fluctuations which indicates the occurrence of short-range correlations. At the intermediate temperature range, T N2 < T < T N1, the 57Fe Mössbauer spectra are described in terms of collinear spin-density-waves (SDW) with the inclusion of many high-order harmonics, indicating that the real magnetic structure of the ferrite appears to be more complicated than a pure sinusoidally modulated SDW. Below T < T N2 ≈ 9 K, the hyperfine field H hf reveals a large spatial anisotropy (ΔH anis ≈ 30 kOe) which is related with a local intra-cluster (FeO6) spin-dipole term that implies a conventional contribution of the polarized oxygen ions. We proposed a simple two-parametric formula to describe the dependence of H anis on the distortions of the (FeO6) clusters. Analysis of different mechanisms of spin and hyperfine interactions in 3R-AgFeO2 and its structural analogue CuFeO2 points to a specific role played by the topology of the exchange coupling and the oxygen polarization in the delafossite-like structures.
Sojka, Zbigniew; Pietrzyk, Piotr
2004-05-01
Structure sensitivity of the hyperfine coupling constants was investigated by means of DFT calculations for selected surface paramagnetic species. A *CH2OH radical trapped on silica and intrazeolite copper nitrosyl adducts encaged in ZSM-5 were taken as the examples. The surface of amorphous silica was modeled with a [Si5O8H10] cluster, whereas the zeolite hosting sites were epitomized by [Si4AlO5(OH)10]- cluster. Three different coordination modes of the *CH2OH radical were considered and the isotropic 13C and 1H hyperfine constants of the resultant van der Waals complexes, calculated with B3LYP/6-311G(d), were discussed in terms of the angular deformations caused by hydrogen bonds with the cluster. The magnetic parameters of the eta1-N[CuNO]11 and eta1-O[CuNO]11 linkage isomers were calculated at the BPW91/LanL2DZ and 6-311G(df) level. For the most stable eta1-N adduct a clear dependence of the spin density distribution within the Cu-NO moiety on changes in the Cu-N-O angle and the Cu-N bond distance was observed and accounted for by varying spin polarization and delocalization contributions.
Arbitrary Dicke-State Control of Symmetric Rydberg Ensembles
NASA Astrophysics Data System (ADS)
Deutsch, Ivan
2017-04-01
We study the production of arbitrary superpositions of Dicke states via optimal control. We show that N atomic hyperfine qubits, interacting symmetrically via the Rydberg blockade, are well described by the Jaynes-Cummings Model (JCM), familiar in cavity QED. In this isomorphism, the presence or absence of a collective Rydberg excitation plays the role of the two-level system and the number of symmetric excitations of the hyperfine qubits plays the role of the bosonic excitations of the JCM. This system is fully controllable through the addition of phase-modulated microwaves that drive transitions between the Rydberg-dressed states. In the weak dressing regime, this results in a single-axis twisting Hamiltonian, plus time-dependent rotations of the collective spin. For strong dressing we control the entire Jaynes-Cummings ladder. Using optimal control, we design microwave waveforms that can generate arbitrary states in the symmetric subspace. This includes cat states, Dicke states, and spin squeezed states. With currently feasible parameters, it is possible to generate arbitrary symmetric states of _10 hyperfine qubits in 1 microsec, assuming a fast microwave phase switching time. The same control can be achieved with a ``dressed-ground control'' scheme, which reduces the demands for fast phase switching at the expense of increased total control time. More generally, we can achieve control on larger ensembles of qubits by designing waveforms that are bandwidth limited within the coherence time of the system. We use this to study general questions of the ``quantum speed limit'' and information content in a waveform that is needed to generate arbitrary quantum states.
Precision measurements on trapped antihydrogen in the ALPHA experiment.
Eriksson, S
2018-03-28
Both the 1S-2S transition and the ground state hyperfine spectrum have been observed in trapped antihydrogen. The former constitutes the first observation of resonant interaction of light with an anti-atom, and the latter is the first detailed measurement of a spectral feature in antihydrogen. Owing to the narrow intrinsic linewidth of the 1S-2S transition and use of two-photon laser excitation, the transition energy can be precisely determined in both hydrogen and antihydrogen, allowing a direct comparison as a test of fundamental symmetry. The result is consistent with CPT invariance at a relative precision of around 2×10 -10 This constitutes the most precise measurement of a property of antihydrogen. The hyperfine spectrum of antihydrogen is determined to a relative uncertainty of 4×10 -4 The excited state and the hyperfine spectroscopy techniques currently both show sensitivity at the few 100 kHz level on the absolute scale. Here, the most recent work of the ALPHA collaboration on precision spectroscopy of antihydrogen is presented together with an outlook on improving the precision of measurements involving lasers and microwave radiation. Prospects of measuring the Lamb shift and determining the antiproton charge radius in trapped antihydrogen in the ALPHA apparatus are presented. Future perspectives of precision measurements of trapped antihydrogen in the ALPHA apparatus when the ELENA facility becomes available to experiments at CERN are discussed.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'. © 2018 The Author(s).
Laboratory Rotational Spectroscopy of Astrophysical Interesting Diatomic Hydrides
NASA Astrophysics Data System (ADS)
Halfen, DeWayne; Ziurys, L.
2008-05-01
Diatomic hydride are among the most common molecular species in the interstellar medium (ISM). The low molecular mass and thus moments of inertia cause their rotational spectra to lie entirely in the submillimeter and far-infrared regions. Hence, the future airborne and space-borne platforms, such as SOFIA and Herschel, are primed to explore these prevalent molecules. However, in order to detect these species in the ISM, their rotational spectra must first be measured in the laboratory. Using submillimeter direct absorption methods in the Ziurys laboratory, we have recorded the spectra of several diatomic hydrides of astrophysical interest. We have measured the pure rotational spectrum of MnH (X7Σ+: N = 0 - 1) and MnD (N = 2 - 3), as well as the deuterium and carbon-13 isotopologues of CH, CD (X2Πr: N = 1 - 1 and 1 - 2) and 13CH (N = 1 - 1). Manganese hydride and deuteride were created in a DC discharge of H2 or D2 and manganese vapor, generated in a Broida-type oven. CD and 13CH were produced in an AC discharge of argon and CD4 or 13CH4. For MnH, the five strongest manganese hyperfine transitions were recorded in its N = 0 - 1 transition, each of which are additionally split by hydrogen hyperfine interactions. CD and 13CH also have multiple hyperfine components due to the D, 13C, and/or H atoms. The direct measurement of these fundamental transitions will allow for unambiguous astronomical detections. The results of these studies will be presented.
Millimeter wave spectrum of nitromethane
NASA Astrophysics Data System (ADS)
Ilyushin, Vadim
2018-03-01
A new study of the millimeter wave spectrum of nitromethane, CH3NO2, is reported. The new measurements covering the frequency range from 49 GHz to 237 GHz have been carried out using the spectrometer in IRA NASU (Ukraine). Transitions belonging to the |m| ≤ 8 torsional states have been analyzed using the Rho-axis-method and the RAM36 program, which has been modified for this study to take into account the quadrupole hyperfine structure due to presence of the nitrogen atom. A data set consisting of 5925 microwave line frequencies and including transitions with J up to 55 was fit using a model consisting of 97 parameters, and a weighted root-mean-square deviation of 0.84 was achieved. The analysis of the spectrum covers the m torsional states lying below the lowest small amplitude vibration in nitromethane molecule, which is the NO2 in plane rock at 475 cm-1. It serves as a preparatory step in further studies of intervibrational interactions in this molecule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modi, K. B., E-mail: kunalbmodi2003@yahoo.com; Raval, P. Y.; Dulera, S. V.
Two specimens of copper ferrite, CuFe{sub 2}O{sub 4}, have been synthesized by double sintering ceramic technique with different thermal history i.e. slow cooled and quenched. X-ray diffractometry has confirmed single phase fcc spinel structure for slow cooled sample while tetragonal distortion is present in quenched sample. Mossbauer spectral analysis for slow-cooled copper ferrite reveals super position of two Zeeman split sextets along with paramagnetic singlet in the centre position corresponds to delafossite (CuFeO{sub 2}) phase that is completely absent in quenched sample. The hyperfine interaction parameters are highly influenced by heat treatment employed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cazzoli, Gabriele; Lattanzi, Valerio; Puzzarini, Cristina
2015-06-10
The rotational spectrum of the mono-deuterated isotopologue of water, HD{sup 16}O, has been investigated in the millimeter- and submillimeter-wave frequency regions, up to 1.6 THz. The Lamb-dip technique has been exploited to obtain sub-Doppler resolution and to resolve the hyperfine (hf) structure due to the deuterium and hydrogen nuclei, thus enabling the accurate determination of the corresponding hf parameters. Their experimental determination has been supported by high-level quantum-chemical calculations. The Lamb-dip measurements have been supplemented by Doppler-limited measurements (weak high-J and high-frequency transitions) in order to extend the predictive capability of the available spectroscopic constants. The possibility of resolving hfmore » splittings in astronomical spectra has been discussed.« less
NASA Astrophysics Data System (ADS)
Caliskan, Betul; Caliskan, Ali Cengiz; Er, Emine
2017-09-01
Succinic anhydride single crystals were exposed to 60Co-gamma irradiation at room temperature. The irradiated single crystals were investigated at 125 K by Electron Paramagnetic Resonance (EPR) Spectroscopy. The investigation of EPR spectra of irradiated single crystals of succinic anhydride showed the presence of two succinic anhydride anion radicals. The anion radicals observed in gamma-irradiated succinic anhydride single crystal were created by the scission of the carbon-oxygen double bond. The structure of EPR spectra demonstrated that the hyperfine splittings arise from the same radical species. The reduction of succinic anhydride was identified which is formed by the addition of an electron to oxygen of the Csbnd O bond. The g values, the hyperfine structure constants and direction cosines of the radiation damage centers observed in succinic anhydride single crystal were obtained.
Correlation effects in fcc-Fe(x)Ni(1-x) alloys investigated by means of the KKR-CPA.
Minár, J; Mankovsky, S; Šipr, O; Benea, D; Ebert, H
2014-07-09
The electronic structure and magnetic properties of the disordered alloy system fcc-FexNi1-x (fcc: face centered cubic) have been investigated by means of the KKR-CPA (Korringa-Kohn-Rostoker coherent potential approximation) band structure method. To investigate the impact of correlation effects, the calculations have been performed on the basis of the LSDA (local spin density approximation), the LSDA + U as well as the LSDA + DMFT (dynamical mean field theory). It turned out that the inclusion of correlation effects hardly changed the spin magnetic moments and the related hyperfine fields. The spin-orbit induced orbital magnetic moments and hyperfine fields, on the other hand, show a pronounced and element-specific enhancement. These findings are in full accordance with the results of a recent experimental study.
Fine Structure in Helium-like Fluorine by Fast-Beam Laser Spectroscopy
NASA Astrophysics Data System (ADS)
Myers, E. G.; Thompson, J. K.; Silver, J. D.
1998-05-01
With the aim of providing an additional precise test of higher-order corrections to high precision calculations of fine structure in helium and helium-like ions(T. Zhang, Z.-C. Yan and G.W.F. Drake, Phys. Rev. Lett. 77), 1715 (1996)., a measurement of the 2^3P_2,F - 2^3P_1,F' fine structure in ^19F^7+ is in progress. The method involves doppler-tuned laser spectroscopy using a CO2 laser on a foil-stripped fluorine ion beam. We aim to achieve a higher precision, compared to an earlier measurement(E.G. Myers, P. Kuske, H.J. Andrae, I.A. Armour, H.A. Klein, J.D. Silver, and E. Traebert, Phys. Rev. Lett. 47), 87 (1981)., by using laser beams parallel and anti-parallel to the ion beam, to obtain partial cancellation of the doppler shift(J.K. Thompson, D.J.H. Howie and E.G. Myers, Phys. Rev. A 57), 180 (1998).. A calculation of the hyperfine structure, allowing for relativistic, QED and nuclear size effects, will be required to obtain the ``hyperfine-free'' fine structure interval from the measurements.
Structural and electronic studies of metal carbide clusterfullerene Sc2C2@Cs-C72
NASA Astrophysics Data System (ADS)
Feng, Yongqiang; Wang, Taishan; Wu, Jingyi; Feng, Lai; Xiang, Junfeng; Ma, Yihan; Zhang, Zhuxia; Jiang, Li; Shu, Chunying; Wang, Chunru
2013-07-01
We present a metal carbide clusterfullerene Sc2C2@Cs(10528)-C72, whose structure has been baffling for many years. A motional endohedral Sc2C2 cluster, special molecule geometry and electronic structure were found in Sc2C2@Cs(10528)-C72. The paramagnetic Sc2C2@Cs-C72 anion radical was successfully prepared by a chemical reduction method and hyperfine couplings in the ESR spectrum were observed.We present a metal carbide clusterfullerene Sc2C2@Cs(10528)-C72, whose structure has been baffling for many years. A motional endohedral Sc2C2 cluster, special molecule geometry and electronic structure were found in Sc2C2@Cs(10528)-C72. The paramagnetic Sc2C2@Cs-C72 anion radical was successfully prepared by a chemical reduction method and hyperfine couplings in the ESR spectrum were observed. Electronic supplementary information (ESI) available: Experimental details, HPLC chromatogram, and DFT calculations. CCDC 917712. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3nr01739g
Hyperfine Fields of 181Ta in UFe4Al8
NASA Astrophysics Data System (ADS)
Marques, J. G.; Barradas, N. P.; Alves, E.; Ramos, A. R.; Gonçalves, A. P.; da Silva, M. F.; Soares, J. C.
2001-11-01
The γ γ Perturbed Angular Correlation technique was used to study the hyperfine interaction of 181Ta at the Hf site(s) in UFe4Al8 at room temperature and 12 K. The data at room temperature are well described by two electric field gradients, while at low temperature two combined hyperfine interactions have to be considered, one with the magnetic hyperfine field collinear with the c-axis and another with the magnetic hyperfine field in the basal plane. The results are compared with previous Mössbauer and neutron diffraction experiments and the lattice site of Hf is discussed.
Observation of Feshbach resonances between ultracold Na and Rb atoms
NASA Astrophysics Data System (ADS)
Wang, Fudong; Xiong, Dezhi; Li, Xiaoke; Wang, Dajun
2013-03-01
Absolute ground-state 23Na87Rb molecule has a large electric dipole moment of 3.3 Debye and its two body exchange chemical reaction is energetically forbidden at ultracold temperatures. It is thus a nice candidate for studying quantum gases with dipolar interactions. We have built an experiment setup to investigate ultracold collisions between Na and Rb atoms as a first step toward the production of ground state molecular samples. Ultracold mixtures are first obtained by evaporative cooling of Rb and sympathetic cooling of Na. They are then transferred to a crossed dipole trap and prepared in different spin combinations for Feshbach resonance study. Several resonances below 1000 G are observed with both atoms prepared in either | F = 1,mF = 1 > or | F = 1,mF = - 1 > hyperfine states. Most of them are within 30 G of predicted values§ based on potentials obtained by high quality molecular spectroscopy studies. This work is supported by RGC Hong Kong. § E. Tiemann, private communications
A highly miniaturized vacuum package for a trapped ion atomic clock
Schwindt, Peter D. D.; Jau, Yuan-Yu; Partner, Heather; ...
2016-05-12
We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm 3 in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, the packagemore » was sealed with a copper pinch-off and was then pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of 171Yb +. The fractional frequency stability of the clock was measured to be 2 × 10 -11 / τ 1/2.« less
DOE R&D Accomplishments Database
Chu, S.
1976-10-01
A measurement of the 6{sup 2}P{sub ?} --> 7{sup 2}P{sub ?} forbidden magnetic dipole matrix element in atomic thallium is described. A pulsed, linearly polarized dye laser tuned to the transition frequency is used to excite the thallium vapor from the 6{sup 2}P{sub ?} ground state to the 7{sup 2}P{sub ?} excited state. Interference between the magnetic dipole M1 amplitude and a static electric field induced E1 amplitude results in an atomic polarization of the 7{sup 2}P{sub ?} state, and the subsequent circular polarization of 535 nm fluorescence. The circular polarization is seen to be proportional to / as expected, and measured for several transitions between hyperfine levels of the 6{sup 2}P{sub ?} and 7{sup 2}P{sub ?} states. The result is = -(2.11 +- 0.30) x 10{sup -5} parallel bar e parallel bar dirac constant/2mc, in agreement with theory.
14N Quadrupole Coupling in the Microwave Spectra of N-Vinylformamide
NASA Astrophysics Data System (ADS)
Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Bailey, William C.
2016-06-01
The microwave spectra of two conformers, trans and cis, of the title compound were recorded using two molecular beam Fourier transform microwave spectrometers operating in the frequency range 2 GHz to 40 GHz, and aimed at analysis of their 14N quadrupole hyperfine structures. Rotational constants, centrifugal distortion constants, and nuclear quadrupole coupling constants (NQCCs) χaa and χbb - χcc, were all determined with very high accuracy. Two fits including 176 and 117 hyperfine transitions were performed for the trans and cis conformers, respectively. Standard deviations of both fits are close to the measurement accuracy of 2 kHz. The NQCCs of the two conformers are almost exactly the same, and are compared with values found for other saturated and unsaturated formamides. Complementary quantum chemical calculations - MP2/6-311++G(d,p) rotational constants, MP2/cc-pVTZ centrifugal distortion constants, and B3PW91/6-311+G(d,p)//MP2/6-311++G(d,p) nuclear quadrupole coupling constants - give spectroscopic parameters in excellent agreement with the experimental parameters. B3PW91/6-311+G(d,p) calculated electric field gradients, in conjunction with eQ/h = 4.599(12) MHz/a.u., yields more reliable NQCCs for formamides possessing conjugated π-electron systems than does the B3PW91/6-311+G(df,pd) model recommended in Ref., whereas this latter performs better for aliphatic formamides. We conclude from this that f-polarization functions on heavy atoms hinder rather than help with modeling of conjugated π-electron systems. W. C. Bailey, Chem. Phys., 2000, 252, 57 W. C. Bailey, Calculation of Nuclear Quadrupole Coupling Constants in Gaseous State Molecules, http://nqcc.wcbailey.net/index.html.
NASA Astrophysics Data System (ADS)
Cocinero, Emilio J.; Uriarte, Iciar; Ecija, Patricia; Favero, Laura B.; Spada, Lorenzo; Calabrese, Camilla; Caminati, Walther
2016-06-01
Microwave spectroscopy has been restricted to the investigation of small molecules in the last years. However, with the advent of FTMW and CP-FTMW spectroscopies coupled with laser vaporization techniques it has turned into a very competitive methodology in the studies of moderate-size biomolecules. Here, we present the study of purine, characterized by two aromatic rings, one six- and one five-membered, fused together to give a planar aromatic bicycle. Biologically, it is the mainframe of two of the five nucleobases of DNA and RNA. Two tautomers were observed by FTMW spectroscopy coupled to UV ultrafast laser vaporization system. The population ratio of the two main tautomers [N(7)H]/[N(9)H] is about 1/40 in the gas phase. It contrasts with the solid state where only the N(7)H species is present, or in solution where a mixture of both tautomers is observed. For both species, a full quadrupolar hyperfine analysis has been performed. This has led to the determination of the full sets of diagonal quadrupole coupling constants of the four 14N atoms, which have provided crucial information for the unambiguous identification of both species. T. J. Balle and W. H. Flygare Rev. Sci. Instrum. 52, 33-45, 1981 J.-U. Grabow, W. Stahl and H. Dreizler Rev. Sci. Instrum. 67, 4072-4084, 1996 G. G. Brown, B. D. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman and B. H. Pate Rev. Sci. Instrum. 79, 0531031/1-053103/13, 2008 E. J. Cocinero, A. Lesarri, P. écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. 51, 3119-3124, 2012
Influence of the ac-Stark shift on GPS atomic clock timekeeping
NASA Astrophysics Data System (ADS)
Formichella, V.; Camparo, J.; Tavella, P.
2017-01-01
The ac-Stark shift (or light shift) is a fundamental aspect of the field/atom interaction arising from virtual transitions between atomic states, and as Alfred Kastler noted, it is the real-photon counterpart of the Lamb shift. In the rubidium atomic frequency standards (RAFS) flying on Global Positioning System (GPS) satellites, it plays an important role as one of the major perturbations defining the RAFS' frequency: the rf-discharge lamp in the RAFS creates an atomic signal via optical pumping and simultaneously perturbs the atoms' ground-state hyperfine splitting via the light shift. Though the significance of the light shift has been known for decades, to date there has been no concrete evidence that it limits the performance of the high-quality RAFS flying on GPS satellites. Here, we show that the long-term frequency stability of GPS RAFS is primarily determined by the light shift as a consequence of stochastic jumps in lamplight intensity. Our results suggest three paths forward for improved GPS system timekeeping: (1) reduce the light-shift coefficient of the RAFS by careful control of the lamp's spectrum; (2) operate the lamp under conditions where lamplight jumps are not so pronounced; and (3) employ a light source for optical pumping that does not suffer pronounced light jumps (e.g., a diode laser).
NASA Astrophysics Data System (ADS)
De Almeida, Wagner B.; O'Malley, Patrick J.
2018-03-01
Ubiquinone is the key electron and proton transfer agent in biology. Its mechanism involves the formation of its intermediate one-electron reduced form, the ubisemiquinone radical. This is formed in a protein-bound form which permits the semiquinone to vary its electronic and redox properties. This can be achieved by hydrogen bonding acceptance by one or both oxygen atoms or as we now propose by restricted orientations for the methoxy groups of the headgroup. We show how the orientation of the two methoxy groups of the quinone headgroup affects the electronic structure of the semiquinone form and demonstrate a large dependence of the ubisemiquinone spin density distribution on the orientation each methoxy group takes with respect to the headgroup ring plane. This is shown to significantly modify associated hyperfine couplings which in turn needs to be accounted for in interpreting experimental values in vivo. The study uncovers the key potential role the methoxy group orientation can play in controlling the electronic structure and spin density of ubisemiquinone and provides an electronic-level insight into the variation in electron affinity and redox potential of ubiquinone as a function of the methoxy orientation. Taken together with the already known influence of cofactor conformation on heme and chlorophyll electronic structure, it reveals a more widespread role for cofactor conformational control of electronic structure and associated electron transfer in biology.
Muon contact hyperfine field in metals: A DFT calculation
NASA Astrophysics Data System (ADS)
Onuorah, Ifeanyi John; Bonfà, Pietro; De Renzi, Roberto
2018-05-01
In positive muon spin rotation and relaxation spectroscopy it is becoming customary to take advantage of density functional theory (DFT) based computational methods to aid the experimental data analysis. DFT-aided muon site determination is especially useful for measurements performed in magnetic materials, where large contact hyperfine interactions may arise. Here we present a systematic analysis of the accuracy of the ab initio estimation of muon's hyperfine contact field on elemental transition metals, performing state-of-the-art spin-polarized plane-wave DFT and using the projector-augmented pseudopotential approach, which allows one to include the core state effects due to the spin ordering. We further validate this method in not-so-simple, noncentrosymmetric metallic compounds, presently of topical interest for their spiral magnetic structure giving rise to skyrmion phases, such as MnSi and MnGe. The calculated hyperfine fields agree with experimental values in all cases, provided the spontaneous spin magnetization of the metal is well reproduced within the approach. To overcome the known limits of the conventional mean-field approximation of DFT on itinerant magnets, we adopt the so-called reduced Stoner theory [L. Ortenzi et al., Phys. Rev. B 86, 064437 (2012), 10.1103/PhysRevB.86.064437]. We establish the accuracy of the estimated muon contact field in metallic compounds with DFT and our results show improved agreement with experiments compared to those of earlier publications.
A partitioned correlation function interaction approach for describing electron correlation in atoms
NASA Astrophysics Data System (ADS)
Verdebout, S.; Rynkun, P.; Jönsson, P.; Gaigalas, G.; Froese Fischer, C.; Godefroid, M.
2013-04-01
The traditional multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) methods are based on a single orthonormal orbital basis. For atoms with many closed core shells, or complicated shell structures, a large orbital basis is needed to saturate the different electron correlation effects such as valence, core-valence and correlation within the core shells. The large orbital basis leads to massive configuration state function (CSF) expansions that are difficult to handle, even on large computer systems. We show that it is possible to relax the orthonormality restriction on the orbital basis and break down the originally very large calculations into a series of smaller calculations that can be run in parallel. Each calculation determines a partitioned correlation function (PCF) that accounts for a specific correlation effect. The PCFs are built on optimally localized orbital sets and are added to a zero-order multireference (MR) function to form a total wave function. The expansion coefficients of the PCFs are determined from a low dimensional generalized eigenvalue problem. The interaction and overlap matrices are computed using a biorthonormal transformation technique (Verdebout et al 2010 J. Phys. B: At. Mol. Phys. 43 074017). The new method, called partitioned correlation function interaction (PCFI), converges rapidly with respect to the orbital basis and gives total energies that are lower than the ones from ordinary MCHF and CI calculations. The PCFI method is also very flexible when it comes to targeting different electron correlation effects. Focusing our attention on neutral lithium, we show that by dedicating a PCF to the single excitations from the core, spin- and orbital-polarization effects can be captured very efficiently, leading to highly improved convergence patterns for hyperfine parameters compared with MCHF calculations based on a single orthogonal radial orbital basis. By collecting separately optimized PCFs to correct the MR function, the variational degrees of freedom in the relative mixing coefficients of the CSFs building the PCFs are inhibited. The constraints on the mixing coefficients lead to small off-sets in computed properties such as hyperfine structure, isotope shift and transition rates, with respect to the correct values. By (partially) deconstraining the mixing coefficients one converges to the correct limits and keeps the tremendous advantage of improved convergence rates that comes from the use of several orbital sets. Reducing ultimately each PCF to a single CSF with its own orbital basis leads to a non-orthogonal CI approach. Various perspectives of the new method are given.
NASA Astrophysics Data System (ADS)
Harmening, Thomas; Hermes, Wilfried; Eul, Matthias; Pöttgen, Rainer
2010-02-01
The stannide EuRuSn 3 was synthesized by induction melting of the elements in a sealed tantalum tube in a water-cooled quartz glass sample chamber. The structure was refined on the basis of single crystal X-ray diffractometer data (LaRuSn 3 type, Pm3¯n, a = 976.0(1) pm, wR2 = 0.0399, 317 F2 values, and 13 variables). EuRuSn 3 shows modified Curie-Weiss behaviour in the temperature range 50-305 K with an experimental magnetic moment of 7.34(1) μB per formula unit. Thus, the europium atoms are not in a purely divalent state. Low field susceptibility measurement indicates a ferro- or ferrimagnetic ordering at TC = 11.2(2) K and magnetization measurements indicate EuRuSn 3 as a non-collinear ferro- or ferrimagnet. 151Eu Mössbauer spectroscopic measurements suggested one europium site to be static mixed valent with a Eu 2+/Eu 3+ ratio close to one and the other site purely divalent. This was supported by substituting the Eu 3+ atoms with Y 3+ in a sample with a composition of Eu 0.7Y 0.3RuSn 3 ( a = 971.24(8) pm, wR2 = 0.0485, 313 F2 values, 14 variables). The 119Sn Mössbauer spectra show a pronounced Gol'danskii-Karyagin effect in the paramagnetic range and a magnetic hyperfine field distribution at 4.2 K, due to the complex magnetic structure. The influence of the valence electron concentration on the europium valence was tested via Ru/Pd substitution. A EuRu 0.8Pd 0.2Sn 3 sample shows almost purely divalent europium.
Resonant quantum transitions in trapped antihydrogen atoms.
Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Capra, A; Cesar, C L; Charlton, M; Deller, A; Donnan, P H; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Shields, C R; Silveira, D M; Stracka, S; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S
2012-03-07
The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and--by comparison with measurements on its antimatter counterpart, antihydrogen--the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.
NASA Technical Reports Server (NTRS)
Nelis, Thomas; Brown, John M.; Evenson, Kenneth M.
1990-01-01
The CH radical has been detected in its a 4Sigma(-) state by the technique of laser magnetic resonance at far-infrared wavelengths. Spectra relating to different spin components of the first three rotational transitions have been recorded. The molecule was generated either by the reaction of F atoms with CH4, with a trace of added oxygen or by the reaction of O atoms with C2H2. The observed resonances have been analyzed and fitted to determine the parameters of an effective Hamiltonian for a molecule in a 4Sigma state. The principal quantities determined are the rotational constant B0 = 451 138.434(94) MHz and the spin-spin parameter lambda(0) = 2785.83(18) MHz. Proton hyperfine parameters have also been determined.
Comment on "Electron spin resonance studies in β-FeSi2 crystals" [J. Appl. Phys. 80, 1678 (1996)
NASA Astrophysics Data System (ADS)
Irmscher, K.; Gehlhoff, W.; Lange, H.
1997-06-01
In a recent article [J. Appl. Phys. 80, 1678 (1996)] Aksenov et al. reported on electron paramagnetic resonance (EPR) studies in β-FeSi2 crystals grown by chemical vapor transport. They did not perform a rigorous measurement of the angular variation of the EPR line positions. Consequently, there has been a drastic loss of information and most of their conclusions turn out to be erroneous. It is shown that the anisotropic signals (Ai,Bi) do not arise from spin triplet states but from centers with S=1/2 and their origins are not Ni2+ ions but Ni+ (Ai) and Cr- (Bi) ions substituting for Fe on one of its two inequivalent lattice sites. The analysis of the line structure of the isotropic signal (C) is incorrect and hence, the structure cannot be attributed to a ligand hyperfine interaction with four iron atoms. Finally, the determination of an acceptor activation energy from the temperature dependence of the C signal is not justified since no correction for the EPR intensity dependence due to the thermal population difference of the Zeeman levels was included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utschig, L. M.; Dalosto, S. D.; Thurnauer, M. C.
Metal ion binding to a surface site on photosynthetic reaction centers (RCs) modulates light-induced electron and proton transfer events in the RC. Whereas many studies have elucidated aspects of metal ion modulation events in Rhodobacter sphaeroides RCs, much less is understood about the surface site in Blastochloris viridis (Blc. viridis) RCs. Interestingly, electron paramagnetic resonance studies revealed two spectroscopically distinct Cu{sup 2+} surface site environments in Blc. viridis RCs. Herein, Cu{sup 2+} has been used to spectroscopically probe the structure of these Cu{sup 2+} site(s) in response to freezing conditions, temperature, and charge separation. One Cu{sup 2+} environment in Blc.more » viridis RCs, termed CuA, exhibits temperature-dependent conformational flexibility. Different conformation states of the CuA{sup 2+} site are trapped when the RC is frozen in the dark either by fast-freeze or slow-freeze procedure. The second Cu{sup 2+} environment, termed CuB, is structurally invariant to different freezing conditions and shows resolved hyperfine coupling to three nitrogen atoms. Cu{sup 2+} is most likely binding at the same location on the RC, but in different coordination environments which may reflect two distinct conformational states of the isolated Blc. viridis RC protein.« less
High-resolution molecular-beam spectroscopy of NaCN and Na 13CN
NASA Astrophysics Data System (ADS)
van Vaals, J. J.; Meerts, W. Leo; Dymanus, A.
The sodium cyanide molecule was studied by molecular-beam electric-resonance spectroscopy in the microwave region. We used the seeded-beam technique to produce a supersonic beam with strong translational, rotational and vibrational cooling. In the frequency range 9.5-40 GHz we observed and identified for NaCN 186 and for Na 13CN 107 hyperfine transitions in 20 and 16 rotational transitions, respectively, all in the ground vibrational state. The rotational, the five quartic and three sextic centrifugal distortion constants of NaCN are: A″ = 57921.954(7) MHz; B″ = 8369.312(2) MHz, C″ = 7272.712(2) MHz. All quadrupole and several spin-rotation coupling constants for the hyperfine interaction were evaluated. The quadrupole coupling constants (in MHz) for NaCN are: eQq12(Na) = -5.344(5), eQq12 = 2.397(7). eQq12(N) = 2.148(4), eQq12(N) = -4.142(5). From these constants and those of Na 13CN we have determined the principal components of the quadrupole coupling tensor for potassium and nitrogen. The structure of sodium cyanide evaluated from the rotational constants of NaCN and Na 13CN was found to be T shaped, similar to the structure of KCN but completely different from the linear isocyanide configuration of LiNC. The effective structural parameters for sodium cyanide in the ground vibrational state are: rCN = 1.170(4) Å, rNaC = 2.379(15) Å, rN12N = 2.233(15) Å, in gratifying agreement with ab initio calculations. Both the geometrical structure and the hyperfine coupling justify the conclusion that the CN group in gaseous sodium cyanide approximately can be considered as a free CN - ion.
Full hyperfine structure analysis of singly ionized molybdenum
NASA Astrophysics Data System (ADS)
Bouazza, Safa
2017-03-01
For a first time a parametric study of hyperfine structure of Mo II configuration levels is presented. The newly measured A and B hyperfine structure (hfs) constants values of Mo II 4d5, 4d45s and 4d35s2 configuration levels, for both 95 and 97 isotopes, using Fast-ion-beam laser-induced fluorescence spectroscopy [1] are gathered with other few data available in literature. A fitting procedure of an isolated set of these three lowest even-parity configuration levels has been performed by taking into account second-order of perturbation theory including the effects of closed shell-open shell excitations. Moreover the same study was done for Mo II odd-parity levels; for both parities two sets of fine structure parameters as well as the leading eigenvector percentages of levels and Landé-factor gJ, relevant for this paper are given. We present also predicted singlet, triplet and quintet positions of missing experimental levels up to 85000 cm-1. The single-electron hfs parameter values were extracted in their entirety for 97Mo II and for 95Mo II: for instance for 95Mo II, a4d 01 =-133.37 MHz and a5p 01 =-160.25 MHz for 4d45p; a4d 01 =-140.84 MHz, a5p 01 =-170.18 MHz and a5s 10 =-2898 MHz for 4d35s5p; a5s 10 =-2529 (2) MHz and a4d 01 =-135.17 (0.44) MHz for the 4d45s. These parameter values were analysed and compared with diverse ab-initio calculations. We closed this work with giving predicted values of magnetic dipole and electric quadrupole hfs constants of all known levels, whose splitting are not yet measured.
Taguchi, Alexander T; O'Malley, Patrick J; Wraight, Colin A; Dikanov, Sergei A
2015-05-07
By utilizing a combined pulsed EPR and DFT approach, the high-resolution structure of the QB site semiquinone (SQB) was determined. The development of such a technique is crucial toward an understanding of protein-bound semiquinones on the structural level, as (i) membrane protein crystallography typically results in low resolution structures, and (ii) obtaining protein crystals in the semiquinone form is rarely feasible. The SQB hydrogen bond network was investigated with Q- (∼34 GHz) and X-band (∼9.7 GHz) pulsed EPR spectroscopy on fully deuterated reactions centers from Rhodobacter sphaeroides. Simulations in the SQB g-tensor reference frame provided the principal values and directions of the H-bond proton hyperfine tensors. Three protons were detected, one with an anisotropic tensor component, T = 4.6 MHz, assigned to the histidine NδH of His-L190, and two others with similar anisotropic constants T = 3.2 and 3.0 MHz assigned to the peptide NpH of Gly-L225 and Ile-L224, respectively. Despite the strong similarity in the peptide couplings, all hyperfine tensors were resolved in the Q-band ENDOR spectra. The Euler angles describing the series of rotations that bring the hyperfine tensors into the SQB g-tensor reference frame were obtained by least-squares fitting of the spectral simulations to the ENDOR data. These Euler angles show the locations of the hydrogen bonded protons with respect to the semiquinone. Our geometry optimized model of SQB used in previous DFT work is in strong agreement with the angular constraints from the spectral simulations, providing the foundation for future joint pulsed EPR and DFT semiquinone structural determinations in other proteins.
Magnetic interactions in NiO at ultrahigh pressure
Potapkin, Vasily; Dubrovinsky, Leonid; Sergueev, I.; ...
2016-05-24
Here, magnetic properties of NiO have been studied in the multimegabar pressure range by nuclear forward scattering of synchrotron radiation using the 67.4 keV M ssbauer transition of 61Ni. The observed magnetic hyperfine splitting confirms the antiferromagnetic state of NiO up to 280 GPa, the highest pressure where magnetism has been observed so far, in any material. Remarkably, the hyperfine field increases from 8.47 T at ambient pressure to ~24 T at the highest pressure, ruling out the possibility of a magnetic collapse. A joint x-ray diffraction and extended x-ray-absorption fine structure investigation reveals that NiO remains in a distortedmore » sodium chloride structure in the entire studied pressure range. Ab initio calculations support the experimental observations, and further indicate a complete absence of Mott transition in NiO up to at least 280 GPa.« less
NASA Astrophysics Data System (ADS)
Crooker, S. A.; Kelley, M. R.; Martinez, N.; Nie, W.; Mohite, A. D.; Smith, D. L.; Tretiak, S.; Ruden, P. P.
2014-03-01
Considerable attention in recent years has focused on the effects of applied magnetic fields on the conductance, photocurrent, electroluminescence (EL), and photoluminescence of nominally nonmagnetic organic semiconductor materials and devices. These magnetic field effects have proven useful in revealing the underlying physical mechanisms and relevant spin interactions that influence the electrical and optical properties in these organic systems (e.g., hyperfine coupling, exchange interactions, and spin-orbit coupling). Here we study the field-dependent properties of organic light-emitting diode (OLEDs) based on MTDATA/LiF/Bphen layered structures, in which exciplex recombination at the interface dominates the EL spectra. Small applied magnetic fields (~10 mT) are found to boost the net EL yield by up to 10%, due to a suppression of the mixing between singlet and triplet polaron pairs which, in turn, arises from hyperfine spin coupling of the polarons to the underlying nuclei of the host molecules. We discuss the dependence of these field-induced effects on the LiF barrier thickness, device bias, and on the orientation of the applied magnetic field, as well as the mechanisms responsible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantinidis, I.; Satterlee, J.D.; Pandey, R.K.
1988-04-19
This work indicates a high degree of purity for our preparations of all three of the primary Glycera dibranchiata monomer hemoglobins and details assignments of the heme methyl and vinyl protons in the hyperfine shift region of the ferric (aquo.) protein forms. The assignments were carried out by reconstituting the apoproteins of each component with selectively deuteriated hemes. The results indicate that even though the individual component preparations consist of essentially a single protein, the proton NMR spectra indicate spectroscopic heterogeneity. Evidence is presented for identification and classification of major and minor protein forms that are present in solutions ofmore » each component. Finally, in contrast to previous results, a detailed analysis of the proton hyperfine shift patterns of the major and minor forms of each component, in comparison to the major and minor forms of metmyoglobin, leads to the conclusions that the corresponding forms of the proteins from each species have strikingly similar heme-globin contacts and display nearly identical heme electronic structures and coordination numbers.« less
Fourier transform millimeter-wave spectroscopy of the ethyl radical in the electronic ground state.
Kim, Eunsook; Yamamoto, Satoshi
2004-02-15
The pure rotational spectrum of the ethyl radical (C2H5) has been detected for the first time with the Fourier transform millimeter-wave spectrometer. The ethyl radical is produced by discharging the C2H5I gas diluted in Ar. The 1(01)-0(00) rotational transition of the ethyl radical is observed in the frequency range from 43,680 to 43,780 MHz. The observed spectrum shows a very complicated pattern of the fine and hyperfine structures of a doublet radical with the nuclear spins of five protons. The fine and hyperfine components are assigned with the aid of measurements of the Zeeman splittings. As a result, the 22 lines are ascribed to the transitions in the ground vibronic state (A2"). The rotational constant, the spin-rotation interaction constant, and hyperfine interaction constants are determined by the least-squares fit. The Fermi contact term of the alpha-proton is determined to be -64.1654 MHz in the gas phase, indicating that the structure of the -CH2 is essentially planar. The present rotational spectroscopic study further supports that the methyl group of the ethyl radical can be regarded as a nearly free internal rotor with a low energy barrier. A few unassigned lines still remain, which may be vibrational satellites of the internal rotation mode. Copyright 2004 American Institute of Physics
High-Fidelity Trapped-Ion Quantum Logic Using Near-Field Microwaves.
Harty, T P; Sepiol, M A; Allcock, D T C; Ballance, C J; Tarlton, J E; Lucas, D M
2016-09-30
We demonstrate a two-qubit logic gate driven by near-field microwaves in a room-temperature microfabricated surface ion trap. We introduce a dynamically decoupled gate method, which stabilizes the qubits against fluctuating energy shifts and avoids the need to null the microwave field. We use the gate to produce a Bell state with fidelity 99.7(1)%, after accounting for state preparation and measurement errors. The gate is applied directly to ^{43}Ca^{+} hyperfine "atomic clock" qubits (coherence time T_{2}^{*}≈50 s) using the oscillating magnetic field gradient produced by an integrated microwave electrode.
Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots.
Gammon, D; Efros, A L; Kennedy, T A; Rosen, M; Katzer, D S; Park, D; Brown, S W; Korenev, V L; Merkulov, I A
2001-05-28
Fine and hyperfine splittings arising from electron, hole, and nuclear spin interactions in the magneto-optical spectra of individual localized excitons are studied. We explain the magnetic field dependence of the energy splitting through competition between Zeeman, exchange, and hyperfine interactions. An unexpectedly small hyperfine contribution to the splitting close to zero applied field is described well by the interplay between fluctuations of the hyperfine field experienced by the nuclear spin and nuclear dipole/dipole interactions.
Nuclear-spin optical rotation in xenon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savukov, Igor Mykhaylovich
We report that the nuclear-spin optical rotation (NSOR) effect, which has potential applications in correlated nuclear-spin-resonance optical spectroscopy, has previously been explored experimentally and theoretically in liquid Xe. Calculations of the Xe NSOR constant are very challenging because the result is sensitive to correlations, relativistic effects, and the choice of basis, with strong cancellation between contributions from lowest and remaining states. The relativistic configuration-interaction many-body-theory approach, presented here, is promising because this approach has been successful in predicting various properties of noble-gas atoms, such as energies, oscillator strengths (OSs), Verdet constants, and photoionization cross sections. However, correlations become stronger alongmore » the sequence of noble-gas atoms and the theoretical accuracy in Xe is not as high as, for example, in neon and argon. To improve the accuracy of the Xe Verdet and NSOR constants, which are calculated as explicit sums over the excited states, theoretical values for the several lowest levels are replaced with empirical values of energies, OSs, and hyperfine structure constants. We found that the Xe Verdet constant is in excellent agreement with accurate measurements. To take into account liquid effects, empirical data for energy shifts were also used to correct the NSOR constant. In conclusion, the resulting Xe NSOR constant is in a good agreement with experiment, although the liquid-state effect is treated quite approximately.« less
Nuclear-spin optical rotation in xenon
Savukov, Igor Mykhaylovich
2015-10-29
We report that the nuclear-spin optical rotation (NSOR) effect, which has potential applications in correlated nuclear-spin-resonance optical spectroscopy, has previously been explored experimentally and theoretically in liquid Xe. Calculations of the Xe NSOR constant are very challenging because the result is sensitive to correlations, relativistic effects, and the choice of basis, with strong cancellation between contributions from lowest and remaining states. The relativistic configuration-interaction many-body-theory approach, presented here, is promising because this approach has been successful in predicting various properties of noble-gas atoms, such as energies, oscillator strengths (OSs), Verdet constants, and photoionization cross sections. However, correlations become stronger alongmore » the sequence of noble-gas atoms and the theoretical accuracy in Xe is not as high as, for example, in neon and argon. To improve the accuracy of the Xe Verdet and NSOR constants, which are calculated as explicit sums over the excited states, theoretical values for the several lowest levels are replaced with empirical values of energies, OSs, and hyperfine structure constants. We found that the Xe Verdet constant is in excellent agreement with accurate measurements. To take into account liquid effects, empirical data for energy shifts were also used to correct the NSOR constant. In conclusion, the resulting Xe NSOR constant is in a good agreement with experiment, although the liquid-state effect is treated quite approximately.« less
Two-Photon Absorption Spectroscopy of Rubidium with a Dual-Comb Tequnique
NASA Astrophysics Data System (ADS)
Nishiyama, Akiko; Yoshida, Satoru; Hariki, Takuya; Nakajima, Yoshiaki; Minoshima, Kaoru
2017-06-01
Dual-comb spectroscopies have great potential for high-resolution molecular and atomic spectroscopies, thanks to the broadband comb spectrum consisting of dense narrow modes. In this study, we apply the dual-comb system to Doppler-free two-photon absorption spectroscopy. The outputs of two frequency combs excite several two-photon transitions of rubidium, and we obtained broadband Doppler-free spectra from dual-comb fluorescence signals. The fluorescence detection scheme circumvents the sensitivity limit which is effectively determined by the dynamic range of photodetectors in absorption-based dual-comb spectroscopies. Our system realized high-sensitive, Doppler-free high-resolution and broadband atomic spectroscopy. A part of observed spectra of 5S_{1/2} - 5D_{5/2} transition is shown in the figure. The hyperfine structures of the F" = 1 - F' = 3,2,1 transitions are fully-resolved and the spectral widths are approximately 5 MHz. The absolute frequency axis is precisely calibrated from comb mode frequencies which were stabilized to a GPS-disciplined clock. This work was supported by JST through the ERATO MINOSHIMA Intelligent Optical Synthesizer Project and Grant-in-Aid for JSPS Fellows (16J02345). A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, K. and Minoshima, Opt. Express 24, 25894 (2016). A. Hipke, S. A. Meek, T. Ideguchi, T.W. Hänsch, and N. Picqué, Phys. Rev. A 90, 011805(R) (2014).
Ion-Atom Cold Collisions and Atomic Clocks
NASA Technical Reports Server (NTRS)
Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.
1997-01-01
Collisions between ultracold neutral atoms have for some time been the subject of investigation, initially with hydrogen and more recently with laser cooled alkali atoms. Advances in laser cooling and trapping of neutral atoms in a Magneto-Optic Trap (MOT) have made cold atoms available as the starting point for many laser cooled atomic physics investigations. The most spectacularly successful of these, the observation of Bose-Einstein Condensation (BEC) in a dilute ultra-cold spin polarized atomic vapor, has accelerated the study of cold collisions. Experimental and theoretical studies of BEC and the long range interaction between cold alkali atoms is at the boundary of atomic and low temperature physics. Such studies have been difficult and would not have been possible without the development and advancement of laser cooling and trapping of neutral atoms. By contrast, ion-atom interactions at low temperature, also very difficult to study prior to modern day laser cooling, have remained largely unexplored. But now, many laboratories worldwide have almost routine access to cold neutral atoms. The combined technologies of ion trapping, together with laser cooling of neutrals has made these studies experimentally feasible and several very important, novel applications might come out of such investigations . This paper is an investigation of ion-atom interactions in the cold and ultra-cold temperature regime. Some of the collisional ion-atom interactions present at room temperature are very much reduced in the low temperature regime. Reaction rates for charge transfer between unlike atoms, A + B(+) approaches A(+) + B, are expected to fall rapidly with temperature, approximately as T(sup 5/2). Thus, cold mixtures of atoms and ions are expected to coexist for very long times, unlike room temperature mixtures of the same ion-atom combination. Thus, it seems feasible to cool ions via collisions with laser cooled atoms. Many of the conventional collisional interactions, exploited as a useful tool at room temperature and higher, are greatly enhanced at low energy. For example, collisional spin transfer from one species of polarized atoms to another has long been a useful method for polarizing a sample of atoms where no other means was available. Because optical pumping cannot be used to polarize the nuclear spin of Xe-129 or He-3 (for use in nmr imaging of the lungs), the nuclear spins are polarized via collisions with an optically pumped Rb vapor in a cell containing both gases. In another case, a spin polarized thermal Cs beam was used to polarize the hyperfine states of trapped He(+)-3 ions in order to measure their hyperfine clock transition frequency. The absence of an x-ray light source to optically pump the ground state of the He(+)-3 ion necessitated this alternative state preparation. Similarly, Cd(+) and Sr(+) ions were spin-oriented via collisions in a cell with optically pumped Rb vapor. Resonant RF spin changing transitions in the ground state of the ions were detected by changes in the Rb resonance light absorption. Because cold collision spin exchange rates scale with temperature as T(sup -1/2) this technique is expected to be a far more powerful tool than the room temperature counterpart. This factor of 100 or more enhancement in spin exchange reaction rates at low temperatures is the basis for a novel trapped ion clock where laser cooled neutrals will cool, state select and monitor the ion clock transition. The advantage over conventional direct laser cooling of trapped ions is that the very expensive and cumbersome UV laser light sources, required to excite the ionic cooling transition, are effectively replaced by simple diode lasers.
NASA Astrophysics Data System (ADS)
Topcu, Turker; Derevianko, Andrei
2014-05-01
Long range interactions between neutral Rydberg atoms has emerged as a potential means for implementing quantum logical gates. These experiments utilize hyperfine manifold of ground state atoms to act as a qubit basis, while exploiting the Rydberg blockade mechanism to mediate conditional quantum logic. The necessity for overcoming several sources of decoherence makes magic wavelength trapping in optical lattices an indispensable tool for gate experiments. The common wisdom is that atoms in Rydberg states see trapping potentials that are essentially that of a free electron, and can only be trapped at laser intensity minima. We show that although the polarizability of a Rydberg state is always negative, the optical potential can be both attractive or repulsive at long wavelengths (up to ~104 nm). This opens up the possibility of magic trapping Rydberg states with ground state atoms in optical lattices, thereby eliminating the necessity to turn off trapping fields during gate operations. Because the wavelengths are near the CO2 laser band, the photon scattering and the ensuing motional heating is also reduced compared to conventional traps near low lying resonances, alleviating an important source of decoherence. This work was supported by the National Science Foundation (NSF) Grant No. PHY-1212482.
Yang, Jiaheng; He, Xiaodong; Guo, Ruijun; Xu, Peng; Wang, Kunpeng; Sheng, Cheng; Liu, Min; Wang, Jin; Derevianko, Andrei; Zhan, Mingsheng
2016-09-16
We demonstrate that the coherence of a single mobile atomic qubit can be well preserved during a transfer process among different optical dipole traps (ODTs). This is a prerequisite step in realizing a large-scale neutral atom quantum information processing platform. A qubit encoded in the hyperfine manifold of an ^{87}Rb atom is dynamically extracted from the static quantum register by an auxiliary moving ODT and reinserted into the static ODT. Previous experiments were limited by decoherences induced by the differential light shifts of qubit states. Here, we apply a magic-intensity trapping technique which mitigates the detrimental effects of light shifts and substantially enhances the coherence time to 225±21 ms. The experimentally demonstrated magic trapping technique relies on the previously neglected hyperpolarizability contribution to the light shifts, which makes the light shift dependence on the trapping laser intensity parabolic. Because of the parabolic dependence, at a certain "magic" intensity, the first order sensitivity to trapping light-intensity variations over ODT volume is eliminated. We experimentally demonstrate the utility of this approach and measure hyperpolarizability for the first time. Our results pave the way for constructing scalable quantum-computing architectures with single atoms trapped in an array of magic ODTs.
A compact micro-wave synthesizer for transportable cold-atom interferometers
NASA Astrophysics Data System (ADS)
Lautier, J.; Lours, M.; Landragin, A.
2014-06-01
We present the realization of a compact micro-wave frequency synthesizer for an atom interferometer based on stimulated Raman transitions, applied to transportable inertial sensing. Our set-up is intended to address the hyperfine transitions of 87Rb at 6.8 GHz. The prototype is evaluated both in the time and the frequency domain by comparison with state-of-the-art frequency references developed at Laboratoire national de métrologie et d'essais-Systémes de référence temps espace (LNE-SYRTE). In free-running mode, it features a residual phase noise level of -65 dB rad2 Hz-1 at 10 Hz offset frequency and a white phase noise level in the order of -120 dB rad2 Hz-1 for Fourier frequencies above 10 kHz. The phase noise effect on the sensitivity of the atomic interferometer is evaluated for diverse values of cycling time, interrogation time, and Raman pulse duration. To our knowledge, the resulting contribution is well below the sensitivity of any demonstrated cold atom inertial sensors based on stimulated Raman transitions. The drastic improvement in terms of size, simplicity, and power consumption paves the way towards field and mobile operations.
EPR study of a gamma-irradiated (2-hydroxyethyl)triphenylphosphonium chloride single crystal
NASA Astrophysics Data System (ADS)
Karakaş, E.; Türkkan, E.; Dereli, Ö.; Sayιn, Ü.; Tapramaz, R.
2011-12-01
In this study, gamma-irradiated single crystals of (2-hydroxyethyl)triphenylphosphonium chloride [CH2CH2OH P(C6H5)3Cl] were investigated with electron paramagnetic resonance (EPR) spectroscopy at room temperature for different orientations in the magnetic field. The single crystals were irradiated with a 60Co-γ-ray source at 0.818 kGy/h for about 36 h. Taking the chemical structure and the experimental spectra of the irradiated single crystal of the title compound into consideration, a paramagnetic species was produced with the unpaired electron delocalized around 31P and several 1H nuclei. The anisotropic hyperfine values due to the 31P nucleus, slightly anisotropic hyperfine values due to the 1H nuclei and the g-tensor of the radical were measured from the spectra. Depending on the molecular structure and measured parameters, three possible radicals were modeled using the B3LYP/6-31+G(d) level of density-functional theory, and EPR parameters were calculated for modeled radicals using the B3LYP/TZVP method/basis set combination. The calculated hyperfine coupling constants were found to be in good agreement with the observed EPR parameters. The experimental and theoretically simulated spectra for each of the three crystallographic axes were well matched with one of the modeled radicals (discussed in the text). We thus identified the radical C˙H2CH2 P(C 6H5)3 Cl as a paramagnetic species produced in a single crystal of the title compound in two magnetically distinct sites. The experimental g-factor and hyperfine coupling constants of the radical were found to be anisotropic, with the isotropic values g iso = 2.0032, ? G, ? G, ? G and ? G for site 1 and g iso=2.0031, ? G, ? G ? G and ? G for site 2.
Angular-momentum couplings in ultra-long-range giant dipole molecules
NASA Astrophysics Data System (ADS)
Stielow, Thomas; Scheel, Stefan; Kurz, Markus
2018-02-01
In this article we extend the theory of ultra-long-range giant dipole molecules, formed by an atom in a giant dipole state and a ground-state alkali-metal atom, by angular-momentum couplings known from recent works on Rydberg molecules. In addition to s -wave scattering, the next higher order of p -wave scattering in the Fermi pseudopotential describing the binding mechanism is considered. Furthermore, the singlet and triplet channels of the scattering interaction as well as angular-momentum couplings such as hyperfine interaction and Zeeman interactions are included. Within the framework of Born-Oppenheimer theory, potential energy surfaces are calculated in both first-order perturbation theory and exact diagonalization. Besides the known pure triplet states, mixed-spin character states are obtained, opening up a whole new landscape of molecular potentials. We determine exact binding energies and wave functions of the nuclear rotational and vibrational motion numerically from the various potential energy surfaces.
Hg-201 (+) CO-Magnetometer for HG-199(+) Trapped Ion Space Atomic Clocks
NASA Technical Reports Server (NTRS)
Burt, Eric A. (Inventor); Taghavi, Shervin (Inventor); Tjoelker, Robert L. (Inventor)
2011-01-01
Local magnetic field strength in a trapped ion atomic clock is measured in real time, with high accuracy and without degrading clock performance, and the measurement is used to compensate for ambient magnetic field perturbations. First and second isotopes of an element are co-located within the linear ion trap. The first isotope has a resonant microwave transition between two hyperfine energy states, and the second isotope has a resonant Zeeman transition. Optical sources emit ultraviolet light that optically pump both isotopes. A microwave radiation source simultaneously emits microwave fields resonant with the first isotope's clock transition and the second isotope's Zeeman transition, and an optical detector measures the fluorescence from optically pumping both isotopes. The second isotope's Zeeman transition provides the measure of magnetic field strength, and the measurement is used to compensate the first isotope's clock transition or to adjust the applied C-field to reduce the effects of ambient magnetic field perturbations.
NASA Astrophysics Data System (ADS)
Salah, Wa'el; Hassouneh, Ola
2017-04-01
We computed the energy levels, oscillator strengths f_{ij}, the radiative transition rates A_{ij}, the Landé g -factor, the magnetic dipole moment and the electric quadrupole hyperfine constants of the intermediate Rydberg series ns [k]J ( 4 ≤ n ≤ 6), nd [k]J (3 ≤ n ≤ 4), np [k]J (4 ≤ n ≤ 5) relative to the ground state 3p6 1S0 for neutral argon atom spectra. The values are obtained in the framework of the multiconfiguration Dirac-Hartree-Fock (MCDHF) approach. In this approach, Breit interaction, leading quantum electrodynamics (QED) effects and self-energy correction are taken into account. Moreover, these spectroscopic parameters have been calculated for many levels belonging to the configuration 3p54s, 3p55s, 3p56s, 3p53d, 3p54d, 3p54p, 3p55p as well as for transitions between levels 3p54s-3p54p, 3p54p-3p53d, 3p54p-3p55s, 3p55s-3p55p and 3p55p-3p56s. The large majority of the lines from the 4p-5s and 4p-3d, 5s-5p and 5p-6s transition arrays have been observed and the calculations are consistent with the J -file-sum rule. The obtained theoretical values are compared with previous experimental and theoretical data available in the literature. An overall satisfactory agreement is noticed allowing assessing the reliability of our data.
Hyperfine interaction and its effects on spin dynamics in organic solids
NASA Astrophysics Data System (ADS)
Yu, Z. G.; Ding, Feizhi; Wang, Haobin
2013-05-01
Hyperfine interaction (HFI) and spin-orbit coupling are two major sources that affect electron spin dynamics. Here we present a systematic study of the HFI and its role in organic spintronic applications. For electron spin dynamics in disordered π-conjugated organics, the HFI can be characterized by an effective magnetic field whose modular square is a weighted sum of contact and dipolar contributions. We determine the effective HFI fields of some common π-conjugated organics studied in the literature via first-principles calculations. Most of them are found to be less than 2 mT. While the H atoms are the major source of the HFI in organics containing only the C and H atoms, many organics contain other nuclear spins, such as Al and N in tris-(8-hydroxyquinoline) aluminum, that contribute to the total HFI. Consequently, the deuteration effect on the HFI in the latter may be much weaker than in the former. The HFI gives rise to multiple resonance peaks in electron spin resonance. In disordered organic solids, these individual resonances are unresolved, leading to a broad peak whose width is proportional to the effective HFI field. As electrons hop among adjacent organic molecules, they experience a randomly varying local HFI field, inducing electron spin relaxation and diffusion. This is analyzed rigorously based on master equations. Electron spin relaxation undergoes a crossover along the ratio between the electron hopping rate η¯ and the Larmor frequency Ω of the HFI field. The spin relaxation rate increases (decreases) with η¯ when η¯≪Ω (η¯≫Ω). A coherent beating of electron spin at Ω is possible when the external field is small compared to the HFI. In this regime, the magnetic field is found to enhance the spin relaxation.
Molecular hyperfine fields in organic magnetoresistance devices
NASA Astrophysics Data System (ADS)
Giro, Ronaldo; Rosselli, Flávia P.; dos Santos Carvalho, Rafael; Capaz, Rodrigo B.; Cremona, Marco; Achete, Carlos A.
2013-03-01
We calculate molecular hyperfine fields in organic magnetoresistance (OMAR) devices using ab initio calculations. To do so, we establish a protocol for the accurate determination of the average hyperfine field Bhf and apply it to selected molecular ions: NPB, TPD, and Alq3. Then, we make devices with precisely the same molecules and perform measurements of the OMAR effect, in order to address the role of hole-transport layer in the characteristic magnetic field B0 of OMAR. Contrary to common belief, we find that molecular hyperfine fields are not only caused by hydrogen nuclei. We also find that dipolar contributions to the hyperfine fields can be comparable to the Fermi contact contributions. However, such contributions are restricted to nuclei located in the same molecular ion as the charge carrier (intramolecular), as extramolecular contributions are negligible.
Manipulation of ultracold Rb atoms using a single linearly chirped laser pulse.
Collins, T A; Malinovskaya, S A
2012-06-15
At ultracold temperatures, atoms are free from thermal motion, which makes them ideal objects of investigations aiming to advance high-precision spectroscopy, metrology, quantum computation, producing Bose condensates, etc. The quantum state of ultracold atoms may be created and manipulated by making use of quantum control methods employing low-intensity pulses. We theoretically investigate population dynamics of ultracold Rb vapor induced by nanosecond linearly chirped pulses having kW/cm2 beam intensity and show a possibility of controllable population transfer between hyperfine (HpF) levels of 5(2)/S(1/2) state through Raman transitions. Satisfying the one-photon resonance condition with the lowest of the HpF states of 5(2)/P(1/2) or 5(2)/P(3/2) state allows us to enter the adiabatic region of population transfer at very low field intensities, such that corresponding Rabi frequencies are less than or equal to the HpF splitting. This methodology provides a robust way to create a specifically designed superposition state in Rb in the basis of HpF levels and perform state manipulation controllable on the picosecond-to-nanosecond time scale.
A highly miniaturized vacuum package for a trapped ion atomic clock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwindt, Peter D. D., E-mail: pschwin@sandia.gov; Jau, Yuan-Yu; Partner, Heather
2016-05-15
We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm{sup 3} in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, it wasmore » sealed with a copper pinch-off and was subsequently pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of {sup 171}Y b{sup +}. The fractional frequency stability of the clock was measured to be 2 × 10{sup −11}/τ{sup 1/2}.« less
First FAMU observation of muon transfer from μp atoms to higher-Z elements
NASA Astrophysics Data System (ADS)
Mocchiutti, E.; Bonvicini, V.; Carbone, R.; Danailov, M.; Furlanetto, E.; Gadedjisso-Tossou, K. S.; Guffanti, D.; Pizzolotto, C.; Rachevski, A.; Stoychev, L.; Vallazza, E.; Zampa, G.; Niemela, J.; Ishida, K.; Adamczak, A.; Baccolo, G.; Benocci, R.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Clemenza, M.; Curioni, A.; Maggi, V.; Mazza, R.; Moretti, M.; Nastasi, M.; Previtali, E.; Bakalov, D.; Danev, P.; Stoilov, M.; Baldazzi, G.; Campana, G.; D'Antone, I.; Furini, M.; Fuschino, F.; Labanti, C.; Margotti, A.; Meneghini, S.; Morgante, G.; Rignanese, L. P.; Rossi, P. L.; Zuffa, M.; Cervi, T.; De Bari, A.; Menegolli, A.; De Vecchi, C.; Nardò, R.; Rossella, M.; Tomaselli, A.; Colace, L.; De Vincenzi, M.; Iaciofano, A.; Somma, F.; Tortora, L.; Ramponi, R.; Vacchi, A.
2018-02-01
The FAMU experiment aims to accurately measure the hyperfine splitting of the ground state of the muonic hydrogen atom. A measurement of the transfer rate of muons from hydrogen to heavier gases is necessary for this purpose. In June 2014, within a preliminary experiment, a pressurized gas-target was exposed to the pulsed low-energy muon beam at the RIKEN RAL muon facility (Rutherford Appleton Laboratory, U.K.). The main goal of the test was the characterization of both the noise induced by the pulsed beam and the X-ray detectors. The apparatus, to some extent rudimental, has served admirably to this task. Technical results have been published that prove the validity of the choices made and pave the way for the next steps. This paper presents the results of physical relevance of measurements of the muon transfer rate to carbon dioxide, oxygen, and argon from non-thermalized excited μp atoms. The analysis methodology and the approach to the systematics errors are useful for the subsequent study of the transfer rate as function of the kinetic energy of the μp currently under way.
Electron spin resonance of an irradiated single crystal of potassium hydrogen maleate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwasaki, Machio; Itoh, Koichi
1963-09-15
Electron spin resonance absorptions of x-irradiated single crystals of potassium hydrogen maleate and potassium deuterium maleate were observed. Both compounds gave the same hyperfine structures, although the slightly sharper line widths were observed for the deuterium exchanged compound.
Using Hyperfine Structure Limits to Characterize the Formaldehyde Maser in G32.74-0.07
NASA Astrophysics Data System (ADS)
Araya, Esteban; Nazmus Sakib, Md; Olmi, Luca; Hofner, Peter; Kurtz, Stan; Hoffman, Ian M.; Linz, Hendrik
2018-06-01
Formaldehyde (H2CO) masers are a rare variety of astrophysical masers, but they have the virtue of exclusively tracing the interiors of high-mass star forming regions. We report observations conducted with the 305m Arecibo Telescope and the Karl G. Jansky Very Large Array (VLA) of the 6 cm H2CO maser in the region of high-mass star formation G32.74-0.07. This maser is among the narrowest H2CO masers known, and thus it is an excellent candidate to study the excitation of the hyperfine components of the transition. The Arecibo and VLA results are consistent, the maser flux density observed with Arecibo is recovered in the VLA image within the rms noise of the spectra, and the fitted line widths of the two observations agree to within formal errors. Our high signal-to-noise (~7 mJy rms) and high spectral resolution (0.05 km/s) observations allow us to set strong limits on the hyperfine structure of the line. The line profile is consistent with unsaturated emission, with a maser gain of approximately 3, and an amplified background radio continuum of ~1 mJy. VLA observations confirm the presence of a continuum source at the location of the maser. The continuum source is characterized by a spectral index of +0.9 at 5 GHz, which is indicative of thermal Bremsstrahlung in the optically thick/thin transition.
NASA Astrophysics Data System (ADS)
Zheng, Chuanjiang; Yu, Dunbo; Li, Kuoshe; Luo, Yang; Jin, Jinling; Lu, Shuo; Li, Hongwei; Mao, Yongjun; Quan, Ningtao
2016-08-01
Melt spun ribbons of a series of SmFe12Bx (x=0.0, 0.5, 0.75, 1.0, 1.25, and 1.5) have been prepared by the melt spinning technique. Sm-Fe-B melt spun ribbons with single phase TbCu7-type structure were prepared from the SmFe12Bx (x=0.5, 0.75, and 1.0) alloys at the surface velocity around 40 m/s. The addition of boron not only inhibits the appearance of soft magnetic phase α-Fe, but also enhances the ability of amorphous formation for melt spun Sm-Fe ribbons. The concentration of boron atoms, however, exceeds the limit of the solubility (x>1.0) of Sm-Fe alloys, which does not impede the appearance of α-Fe but accelerates the formation of metastable phase Sm2Fe23B3 that is unfavorable to their magnetic properties. Moreover, it is found that the addition of boron whose concentration is 0.0≤x≤0.75 can stabilize the metastable TbCu7-type structure because of the increase of the lattice parameter ratio c/a. The magnetic properties of as-annealed SmFe12B1.0 melt spun ribbons with an energy product of 2.19MGOe, a coercivity of 2.36 kOe and a remanence of 4.8 kGs have been achieved. The microstructural characteristics of as-annealed melt spun SmFe12 and SmFe12B1.0 ribbons have been discussed as well. The following sequence of the hyperfine field H(6l)
Magnetic Moments and Hyperfine Parameters of Fe3-xCrxAl0.5Si0.5
NASA Astrophysics Data System (ADS)
Rećko, Katarzyna; Go, Anna; Satuła, Dariusz; Biernacka, Maria; Dobrzyński, Ludwik; Waliszewski, Janusz; Milczarek, Jacek J.; Szymański, Krzysztof
2012-04-01
Results of X-ray, neutron, magnetization and Mössbauer measurements on polycrystalline samples of Fe3-xCrx Al0.5Si0.5 (x=0, 0.125, 0.250, 0.375, and 0.5) alloys, crystallizing in DO3 type of structure, are presented. X-ray and neutron diffraction confirmed the phase homogeneity of all the samples. The unit cell volume has been proved to be independent of the chromium content. Neutron and Mössbauer measurements disclosed that Cr atoms occupy preferentially B-sites, while D-sites are almost entirely occupied by Al and Si. The total magnetisation as well as the individual magnetic moments μFe(A,C), μFe(B) and μCr(B,D) have been found to vary linearly with chromium concentration. Influence of local environments on the formation of magnetic moments in Fe3Al0.5Si0.5 when chromium is substituted for iron was examined using self-consistent spin-polarized tight-binding linear muffin-tin orbital method (TB-LMTO).
NASA Astrophysics Data System (ADS)
Calabrese, Camilla; Maris, Assimo; Evangelisti, Luca; Piras, Anna; Parravicini, Valentina; Melandri, Sonia
2018-02-01
Abstract We describe an experimental and quantum chemical study for the accurate determination of the conformational space of small molecular systems governed by intramolecular non-covalent interactions. The model systems investigated belong to the biological relevant aminoalcohol’s family, and include 2-aminophenylethanol, 2-methylaminophenylethanol, noradrenaline, adrenaline 2-aminoethanol and N-methyl-2-aminoethanol. For the latter molecule, the rotational spectrum in the 6-18 and 59.6-74.4 GHz ranges was recorded in the isolated conditions of a free jet expansion. Based on the analysis of the rotational spectra, two different conformational species and 11 isotopologues were observed and their spectroscopic constants, including 14N-nuclear hyperfine coupling constants and methyl internal rotation barriers, were determined. From the experimental data a structural determination was obtained, which was also used to benchmark accurate quantum chemical calculations on the whole conformational space. Atom in molecules and non-covalent interactions theories allowed the characterization of the position of the intramolecular non-covalent interactions and the energies involved, highlighting the subtle balance responsible of the stabilization of all the molecular systems.
Optical Lattice Clocks with Weakly Bound Molecules.
Borkowski, Mateusz
2018-02-23
Optical molecular clocks promise unparalleled sensitivity to the temporal variation of the electron-to-proton mass ratio and insight into possible new physics beyond the standard model. We propose to realize a molecular clock with bosonic ^{174}Yb_{2} molecules, where the forbidden ^{1}S_{0}→^{3}P_{0} clock transition would be induced magnetically. The use of a bosonic species avoids possible complications due to the hyperfine structure present in fermionic species. While direct clock line photoassociation would be challenging, weakly bound ground state molecules could be produced by stimulated Raman adiabatic passage and used instead. The recent scattering measurements [L. Franchi, et al. New J. Phys. 19, 103037 (2017)NJOPFM1367-263010.1088/1367-2630/aa8fb4] enable us to determine the positions of target ^{1}S_{0}+^{3}P_{0} vibrational levels and calculate the Franck-Condon factors for clock transitions between ground and excited molecular states. The resulting magnetically induced Rabi frequencies are similar to those for atoms hinting that an experimental realization is feasible. A successful observation could pave the way towards Hz-level molecular spectroscopy.
NASA Astrophysics Data System (ADS)
Pihan-Le Bars, H.; Guerlin, C.; Lasseri, R.-D.; Ebran, J.-P.; Bailey, Q. G.; Bize, S.; Khan, E.; Wolf, P.
2017-04-01
We introduce an improved model that links the frequency shift of the 133Cs hyperfine Zeeman transitions |F =3 ,mF ⟩↔|F =4 ,mF ⟩ to the Lorentz-violating Standard Model extension (SME) coefficients of the proton and neutron. The new model uses Lorentz transformations developed to second order in boost and additionally takes the nuclear structure into account, beyond the simple Schmidt model used previously in Standard Model extension analyses, thereby providing access to both proton and neutron SME coefficients including the isotropic coefficient c˜T T. Using this new model in a second analysis of the data delivered by the FO2 dual Cs/Rb fountain at Paris Observatory and previously analyzed in [1], we improve by up to 13 orders of magnitude the present maximum sensitivities for laboratory tests [2] on the c˜Q, c˜T J, and c˜T T coefficients for the neutron and on the c˜Q coefficient for the proton, reaching respectively 10-20, 10-17, 10-13, and 10-15 GeV .
Study of CPO resonances on the intercombination line in 173Yb
NASA Astrophysics Data System (ADS)
Kumar, Pushpander; Singh, Alok K.; Bharti, Vineet; Natarajan, Vasant; Pandey, Kanhaiya
2018-02-01
We study coherent population oscillations in an odd isotope of the two-electron atom Yb. The experiments are done using magnetic sublevels of the {F}g=5/2\\to {F}e=3/2 hyperfine transition in 173Yb of the {}1{{{S}}}0\\to {}3{{{P}}}1 intercombination line. The experiments are done both with and without an applied magnetic field. In the absence of an applied field, the complicated sublevel structure along with the saturated fluorescence effect causes the linewidth to be larger than the 190 kHz natural linewidth of the transition. In the presence of a field (of magnitude 330 mG), a well-defined quantization axis is present which results in the formation of two M-type systems. The total fluorescence is then limited by spin coherence among the ground sublevels. In addition, the pump beam gets detuned from resonance which results in a reduced scattering rate from the {}3{{{P}}}1 state. Both of these effects result in a reduction of the linewidth to a subnatural value of about 100 kHz.
Optical Lattice Clocks with Weakly Bound Molecules
NASA Astrophysics Data System (ADS)
Borkowski, Mateusz
2018-02-01
Optical molecular clocks promise unparalleled sensitivity to the temporal variation of the electron-to-proton mass ratio and insight into possible new physics beyond the standard model. We propose to realize a molecular clock with bosonic 174Yb2 molecules, where the forbidden 1S0 →3P0 clock transition would be induced magnetically. The use of a bosonic species avoids possible complications due to the hyperfine structure present in fermionic species. While direct clock line photoassociation would be challenging, weakly bound ground state molecules could be produced by stimulated Raman adiabatic passage and used instead. The recent scattering measurements [L. Franchi, et al. New J. Phys. 19, 103037 (2017), 10.1088/1367-2630/aa8fb4] enable us to determine the positions of target 1S0 +3P0 vibrational levels and calculate the Franck-Condon factors for clock transitions between ground and excited molecular states. The resulting magnetically induced Rabi frequencies are similar to those for atoms hinting that an experimental realization is feasible. A successful observation could pave the way towards Hz-level molecular spectroscopy.
NASA Astrophysics Data System (ADS)
Halfen, D. T.; Ziurys, L. M.
2006-11-01
The pure rotational spectrum of the molecular ion TiF + in its 3Φr ground state has been measured in the range 327-542 GHz using millimeter-wave direct absorption techniques combined with velocity modulation spectroscopy. TiF + was made in an AC discharge from a mixture of TiCl 4, F 2 in He, and argon. Ten transitions of this ion were recorded. In every transition, fluorine hyperfine interactions, as well as the fine structure splittings, were resolved. The fine structure pattern was found to be regular with almost equal spacing in frequency between the three spin components, in contrast to TiCl +, which is perturbed in the ground state. The data were fit with a case ( a) Hamiltonian and rotational, fine structure, and hyperfine constants were determined. The bond length established for TiF +, r0 = 1.7775 Å, was found to be shorter than that of TiF, r0 = 1.8342 Å—also established from mm-wave data. The hyperfine parameters determined are consistent with a δ1π1 electron configuration with the electrons primarily located on the titanium nucleus. The nuclear spin-orbit constant a indicates that the unpaired electrons are closer to the fluorine nucleus in TiF + relative to TiF, as expected with the decrease in bond length for the ion. The shorter bond distance is thought to arise from increased charge on the titanium nucleus as a result of a Ti 2+F - configuration. A similar decrease in bond length was found for TiCl + relative to TiCl.
Electronic structure and magnetic properties of dilute U impurities in metals
NASA Astrophysics Data System (ADS)
Mohanta, S. K.; Cottenier, S.; Mishra, S. N.
2016-05-01
The electronic structure and magnetic moment of dilute U impurity in metallic hosts have been calculated from first principles. The calculations have been performed within local density approximation of the density functional theory using Augmented plane wave+local orbital (APW+lo) technique, taking account of spin-orbit coupling and Coulomb correlation through LDA+U approach. We present here our results for the local density of states, magnetic moment and hyperfine field calculated for an isolated U impurity embedded in hosts with sp-, d- and f-type conduction electrons. The results of our systematic study provide a comprehensive insight on the pressure dependence of 5f local magnetism in metallic systems. The unpolarized local density of states (LDOS), analyzed within the frame work of Stoner model suggest the occurrence of local moment for U in sp-elements, noble metals and f-block hosts like La, Ce, Lu and Th. In contrast, U is predicted to be nonmagnetic in most transition metal hosts except in Sc, Ti, Y, Zr, and Hf consistent with the results obtained from spin polarized calculation. The spin and orbital magnetic moments of U computed within the frame of LDA+U formalism show a scaling behavior with lattice compression. We have also computed the spin and orbital hyperfine fields and a detail analysis has been carried out. The host dependent trends for the magnetic moment, hyperfine field and 5f occupation reflect pressure induced change of electronic structure with U valency changing from 3+ to 4+ under lattice compression. In addition, we have made a detailed analysis of the impurity induced host spin polarization suggesting qualitatively different roles of f-band electrons on moment stability. The results presented in this work would be helpful towards understanding magnetism and spin fluctuation in U based alloys.
Zeeman-hyperfine structures and isotope effect in the spectrum of Tl I
NASA Astrophysics Data System (ADS)
Bouazza, Safa; Sobolewski, Łukasz Marek; Kwela, Jerzy
2018-01-01
The Zeeman structures of seventeen lines of 205Tl I (Z = 81) covering the UV-NIR spectral range (351.92-1151.28) nm were investigated. Landé gJ-factors for eighteen levels were determined for the first time. Furthermore, we have performed fine structure studies for both even- and odd-configuration levels and determined the relevant parameters. For the 6 s 6p2 configuration we have refined the suggested level energies and predicted positions for missing levels. With regard to hyperfine structure (hfs), we have justified the surprisingly huge value of the magnetic hfs constant A(6s2 10 s) . Moreover, we have extracted the single-electron hfs constant parameter values for the lowest even-parity configurations of 205Tl I; for instance a10s10 (6s2 10 s) = 1015(9) MHz and a6s10 (6 s 6p2) = 217306(205) MHz. Regarding isotope shift analysis we have observed that Dirac-Fock calculations, preferably chosen to take into account the contribution of the p1/2 contact-electron, are in good agreement with experimental data for low-lying levels of each configuration under study.
The pure rotational spectra of the open-shell diatomic molecules PbI and SnI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Corey J., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk; Needham, Lisa-Maria E.; Walker, Nicholas R., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk
2015-12-28
Pure rotational spectra of the ground electronic states of lead monoiodide and tin monoiodide have been measured using a chirped pulsed Fourier transform microwave spectrometer over the 7-18.5 GHz region for the first time. Each of PbI and SnI has a X {sup 2}Π{sub 1/2} ground electronic state and may have a hyperfine structure that aids the determination of the electron electric dipole moment. For each species, pure rotational transitions of a number of different isotopologues and their excited vibrational states have been assigned and fitted. A multi-isotopologue Dunham-type analysis was carried out on both species producing values for Y{submore » 01}, Y{sub 02}, Y{sub 11}, and Y{sub 21}, along with Λ-doubling constants, magnetic hyperfine constants and nuclear quadrupole coupling constants. The Born-Oppenheimer breakdown parameters for Pb have been evaluated and the parameter rationalized in terms of finite nuclear field effects. Analysis of the bond lengths and hyperfine interaction indicates that the bonding in both PbI and SnI is ionic in nature. Equilibrium bond lengths have been evaluated for both species.« less
53Cr NMR study of CuCrO2 multiferroic
NASA Astrophysics Data System (ADS)
Smol'nikov, A. G.; Ogloblichev, V. V.; Verkhovskii, S. V.; Mikhalev, K. N.; Yakubovskii, A. Yu.; Kumagai, K.; Furukawa, Y.; Sadykov, A. F.; Piskunov, Yu. V.; Gerashchenko, A. P.; Barilo, S. N.; Shiryaev, S. V.
2015-11-01
The magnetically ordered phase of the CuCrO2 single crystal has been studied by the nuclear magnetic resonance (NMR) method on 53Cr nuclei in the absence of an external magnetic field. The 53Cr NMR spectrum is observed in the frequency range νres = 61-66 MHz. The shape of the spectrum depends on the delay tdel between pulses in the pulse sequence τπ/2- t del-τπ- t del-echo. The spin-spin and spin-lattice relaxation times have been measured. Components of the electric field gradient, hyperfine fields, and the magnetic moment on chromium atoms have been estimated.
NASA Astrophysics Data System (ADS)
Schwindt, Peter D. D.; Jau, Yuan-Yu; Partner, Heather; Serkland, Darwin K.; Boye, Robert; Fang, Lu; Casias, Adrian; Manginell, Ronald P.; Moorman, Matthew; Prestage, John; Yu, Nan
2011-06-01
We are developing a highly miniaturized trapped ion clock to probe the 12.6 GHz hyperfine transition in the 171Yb+ ion. The clock development is being funded by the Integrated Micro Primary Atomic Clock Technology (IMPACT) program from DARPA where the stated goals are to develop a clock that consumes 50 mW of power, has a size of 5 cm3, and has a long-term frequency stability of 10-14 at one month. One of the significant challenges will be to develop miniature single-frequency lasers at 369 nm and 935 nm and the optical systems to deliver light to the ions and to collect ion fluorescence on a detector.
Structural phase transition of as-synthesized Sr-Mn nanoferrites by annealing temperature
NASA Astrophysics Data System (ADS)
Amer, M. A.; Meaz, T. M.; Attalah, S. S.; Ghoneim, A. I.
2015-11-01
The Sr0.2Mn0.8Fe2O4 nanoparticle ferrites were synthesized by the co-precipitation method and annealed at different temperatures T. XRD, TEM, FT-IR, VSM and Mössbauer techniques were used to characterize the samples. This study proved that the structural phase of nanoferrites was transformed from cubic spinel for T≤500 °C to Z-type hexagonal for T≥700 °C. The structural transformation was attributed to Jahn-Teller effect of the Mn3+ ions and/or atomic disorder existed in the crystal lattice. The obtained spectra and parameters for the samples were affected by the transformation process. The lattice constant a showed a splitting to a and c for T>500 °C. The lattice constant c, grain and crystallite size R, strain, octahedral B-site band position and force constant, Debye temperature, coercivity Hc, remnant magnetization, squareness and magnetic moment, spontaneous magnetization and hyperfine magnetic fields showed increase against T. The lattice constant a, distortion and dislocation parameters, specific surface area, tetrahedral A-site band position and force constant, threshold frequency, Young's and bulk moduli, saturation magnetization Ms, area ratio of B-/A-sites, A-site line width were decreased with T. Experimental and theoretical densities, porosity, Poison ratio, stiffness constants, rigidity modulus, B-site line width and spontaneous magnetization showed dependence on T, whereas Ms and Hc proved dependence on R.
NASA Technical Reports Server (NTRS)
Stacey, G. J.; Townes, C. H.; Geis, N.; Madden, S. C.; Herrmann, F.; Genzel, R.; Poglitsch, A.; Jackson, J. M.
1991-01-01
The detection of the F = 1 - 0 hyperfine component of the 158-micron forbidden C-13 II fine-structure line in the interstellar medium is reported. A 12-point intensity map was obtained of the forbidden C-13 distribution over the inner 190-arcsec (R.A.) X 190-arcsec (decl.) regions of the Orion Nebula using an imaging Fabry-Perot interferometer. The forbidden C-12 II/C-13 II line intensity ratio varies significantly over the region mapped. It is highest (86 +/-0) in the core of the Orion H II region, and significantly lower (62 +/-7) in the outer regions of the map, reflecting higher optical depth in the forbidden C-12 II line here. It is suggested that this enhanced optical depth is the result of limb brightening of the optically thin forbidden C-13 II line at the edges of the bowl-shaped H II region blister.
Resonance ionization laser ion sources for on-line isotope separators (invited).
Marsh, B A
2014-02-01
A Resonance Ionization Laser Ion Source (RILIS) is today considered an essential component of the majority of Isotope Separator On Line (ISOL) facilities; there are seven laser ion sources currently operational at ISOL facilities worldwide and several more are under development. The ionization mechanism is a highly element selective multi-step resonance photo-absorption process that requires a specifically tailored laser configuration for each chemical element. For some isotopes, isomer selective ionization may even be achieved by exploiting the differences in hyperfine structures of an atomic transition for different nuclear spin states. For many radioactive ion beam experiments, laser resonance ionization is the only means of achieving an acceptable level of beam purity without compromising isotope yield. Furthermore, by performing element selection at the location of the ion source, the propagation of unwanted radioactivity downstream of the target assembly is reduced. Whilst advances in laser technology have improved the performance and reliability of laser ion sources and broadened the range of suitable commercially available laser systems, many recent developments have focused rather on the laser/atom interaction region in the quest for increased selectivity and/or improved spectral resolution. Much of the progress in this area has been achieved by decoupling the laser ionization from competing ionization processes through the use of a laser/atom interaction region that is physically separated from the target chamber. A new application of gas catcher laser ion source technology promises to expand the capabilities of projectile fragmentation facilities through the conversion of otherwise discarded reaction fragments into high-purity low-energy ion beams. A summary of recent RILIS developments and the current status of laser ion sources worldwide is presented.
Diode Laser Velocity Measurements by Modulated Filtered Rayleigh Scattering
NASA Technical Reports Server (NTRS)
Mach, J. J.; Varghese, P. L.; Jagodzinski, J. J.
1999-01-01
The ability of solid-state lasers to be tuned in operating frequency at MHz rates by input current modulation, while maintaining a relatively narrow line-width, has made them useful for spectroscopic measurements. Their other advantages include low cost, reliability, durability, compact size, and modest power requirements, making them a good choice for a laser source in micro-gravity experiments in drop-towers and in flight. For their size, they are also very bright. In a filtered Rayleigh scattering (FRS) experiment, a diode laser can be used to scan across an atomic or molecular absorption line, generating large changes in transmission at the resonances for very small changes in frequency. The hyperfine structure components of atomic lines of alkali metal vapors are closely spaced and very strong, which makes such atomic filters excellent candidates for sensitive Doppler shift detection and therefore for high-resolution velocimetry. In the work we describe here we use a Rubidium vapor filter, and work with the strong D(sub 2) transitions at 780 nm that are conveniently accessed by near infrared diode lasers. The low power output of infrared laser diodes is their primary drawback relative to other laser systems commonly used for velocimetry. However, the capability to modulate the laser frequency rapidly and continuously helps mitigate this. Using modulation spectroscopy and a heterodyne detection scheme with a lock-in amplifier, one can extract sub-microvolt signals occurring at a specific frequency from a background that is orders of magnitude stronger. The diode laser modulation is simply achieved by adding a small current modulation to the laser bias current. It may also be swept repetitively in wavelength using an additional lower frequency current ramp.
Schneider, B; Sigalat, C; Amano, T; Zimmermann, J L
2000-12-19
The conformation of di- and triphosphate nucleosides in the active site of ATPsynthase (H(+)-ATPase) from thermophilic Bacillus PS3 (TF1) and their interaction with Mg(2+)/Mn(2+) cations have been investigated using EPR, ESEEM, and HYSCORE spectroscopies. For a ternary complex formed by a stoichiometric mixture of TF1, Mn(2+), and ADP, the ESEEM and HYSCORE data reveal a (31)P hyperfine interaction with Mn(2+) (|A((31)P)| approximately 5.20 MHz), significantly larger than that measured for the complex formed by Mn(2+) and ADP in solution (|A((31)P)| approximately 4.50 MHz). The Q-band EPR spectrum of the Mn.TF1.ADP complex indicates that the Mn(2+) binds in a slightly distorted environment with |D| approximately 180 x 10(-4) cm(-1) and |E| approximately 50 x 10(-4) cm(-1). The increased hyperfine coupling with (31)P in the presence of TF1 reflects the specific interaction between the central Mn(2+) and the ADP beta-phosphate, illustrating the role of the enzyme active site in positioning the phosphate chain of the substrate for efficient catalysis. Results with the ternary Mn.TF1.ATP and Mn.TF1.AMP-PNP complexes are interpreted in a similar way with two hyperfine couplings being resolved for each complex (|A((31)P(beta))| approximately 4.60 MHz and |A((31)P(gamma))| approximately 5.90 MHz with ATP, and |A((31)P(beta))| approximately 4.20 MHz and |A((31)P(gamma))| approximately 5.40 MHz with AMP-PNP). In these complexes, the increased hyperfine coupling with (31)P(gamma) compared with (31)P(beta) reflects the smaller Mn.P distance with the gamma-phosphate compared with the beta-phosphate as found in the crystal structure of the analogous enzyme from mitochondria [3.53 vs 3.70 A (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628)] and the different binding modes of the two phosphate groups. The ESEEM and HYSCORE data of a complex formed with Mn(2+), ATP, and the isolated beta subunit show that the (31)P hyperfine coupling is close to that measured in the absence of the protein, indicating a poorly structured nucleotide site in the isolated beta subunit in the presence of ATP. The inhibition data obtained for TF1 incubated in the presence of Mg(2+), ADP, Al(NO(3))(3), and NaF indicate the formation of the inhibited complex with the transition state analogue namely Mg.TF1.ADP.AlF(x) with the equilibrium dissociation constant K(D) = 350 microM and rate constant k = 0.02 min(-1). The ESEEM and HYSCORE data obtained for an inhibited TF1 sample, Mn.TF1.ADP.AlF(x), confirm the formation of the transition state analogue with distinct spectroscopic footprints that can be assigned to Mn.(19)F and Mn.(27)Al hyperfine interactions. The (31)P(beta) hyperfine coupling that is measured in the inhibited complex with the transition state analogue (|A((31)P(beta))| approximately 5.10 MHz) is intermediate between those measured in the presence of ADP and ATP and suggests an increase in the bond between Mn and the P(beta) from ADP upon formation of the transition state.
Infrared and EPR Spectroscopic Studies of 2-C 2H 2F and 1-C 2H 2F Radicals Isolated in Solid Argon
NASA Astrophysics Data System (ADS)
Goldschleger, I. U.; Akimov, A. V.; Misochko, E. Ya.; Wight, C. A.
2001-02-01
2-fluorovinyl radicals were generated in solid argon by solid-state chemical reactions of mobile F atoms with acetylene and its deuterated analogues. Highly resolved EPR spectra of the stabilized radicals CHF•CH, CDF•CD, CHF•CD, and CDF•CH were obtained for the first time. The observed spectra were assigned to cis-2-fluorovinyl radical based on excellent agreement between the measured (aF = 6.50, aβH = 3.86, aαH = 0.25 mT) hyperfine constants and those calculated using density functional (B3LYP) theory. Analogous experiments carried out using infrared spectroscopy yielded a complete assignment of the vibrational frequencies. An unusual reversible photochemical conversion is observed in which cis-2-fluorovinyl radicals can be partially converted to 1-fluorovinyl radicals by pulsed laser photolysis at 532 nm. Photolysis at 355 nm converts 1-fluorovinyl back to cis-2-fluorovinyl. High-resolution EPR and infrared spectra of 1-fluorovinyl were obtained for the first time. The measured hyperfine constants (aF = 13.71, aH1 = 4.21, aH2 = 1.16 mT) are in good agreement with calculated values.
Lamb shifts and hyperfine structure in 6Li+ and 7Li+: Theory and experiment
NASA Astrophysics Data System (ADS)
Riis, E.; Sinclair, A. G.; Poulsen, O.; Drake, G. W. F.; Rowley, W. R. C.; Levick, A. P.
1994-01-01
High-precision laser-resonance measurements accurate to +/-0.5 MHz or better are reported for transitions among the 1s2s 3S1-1s2p 3PJ hyperfine manifolds for each of J=0, 1, and 2 in both 6Li+ and 7Li+. A detailed analysis of hyperfine structure is performed for both the S and P states, using newly calculated values for the magnetic dipole and electric quadrupole coupling constants, and the hyperfine shifts subtracted from the measurements. The resulting transition frequencies are then analyzed on three different levels. First, the isotope shifts in the fine-structure splittings are calculated from the relativistic reduced mass and recoil terms in the Breit interaction, and compared with experiment at the +/-0.5-MHz level of accuracy. This comparison is particularly significant because J-independent theoretical uncertainties reduce through cancellation to the +/-0.01-MHz level. Second, the isotope shifts in the full transition frequencies are used to deduce the difference in rms nuclear radii. The result is Rrms(6Li)-Rrms(7Li)=0.15+/-0.01 fm, in agreement with nuclear scattering data, but with substantially improved accuracy. Third, high-precision calculations of the low-order non-QED contributions to the transition frequencies are subtracted from the measurements to obtain the residual QED shifts. The isotope-averaged and spin-averaged effective shift for 7Li+ is 37 429.40+/-0.39 MHz, with an additional uncertainty of +/-1.5 MHz due to finite nuclear size corrections. The accuracy of 11 parts per million is the best two-electron Lamb shift measurement in the literature, and is comparable to the accuracies achieved in hydrogen. Theoretical contributions to the two-electron Lamb shift are discussed, including terms of order (αZ)4 recently obtained by Chen, Cheng, and Johnson [Phys. Rev. A 47, 3692 (1993)], and the results used to extract a QED shift for the 2 3S1 state. The result of 30 254+/-12 MHz is shown to be in good accord with theory (30 250+/-30 MHz) when two-electron corrections to the Bethe logarithm are taken into account by a 1/Z expansion method.
NASA Astrophysics Data System (ADS)
Baituti, Bernard
2017-11-01
Understanding the structure of oxygen evolving complex (OEC) fully still remains a challenge. Lately computational chemistry with the data from more detailed X-ray diffraction (XRD) OEC structure, has been used extensively in exploring the mechanisms of water oxidation in the OEC (Gatt et al., J. Photochem. Photobiol. B 104(1-2), 80-93 2011). Knowledge of the oxidation states is very crucial for understanding the core principles of catalysis by photosystem II (PSII) and catalytic mechanism of OEC. The present study involves simulation studies of the X-band continuous wave electron-magnetic resonance (CW-EPR) generated S 2 state signals, to investigate whether the data is in agreement with the four manganese ions in the OEC, being organised as a `3 + 1' (trimer plus one) model (Gatt et al., Angew. Chem. Int. Ed. 51, 12025-12028 2012; Petrie et al., Chem. A Eur. J. 21, 6780-6792 2015; Terrett et al., Chem. Commun. (Camb.) 50, 8-11 2014) or `dimer of dimers' model (Terrett et al. 2016). The question that still remains is how much does each Mn ion contribute to the " g2multiline" signal through its hyperfine interactions in OEC also to differentiate between the `high oxidation state (HOS)' and `low oxidation state (LOS)' paradigms? This is revealed in part by the structure of multiline (ML) signal studied in this project. Two possibilities have been proposed for the redox levels of the Mn ions within the catalytic cluster, the so called `HOS' and `LOS' paradigms (Gatt et al., J. Photochem. Photobiol. B 104(1-2), 80-93 2011). The method of data analysis involves numerical simulations of the experimental spectra on relevant models of the OEC cluster. The simulations of the X-band CW-EPR multiline spectra, revealed three manganese ions having hyperfine couplings with large anisotropy. These are most likely Mn III centres and these clearly support the `LOS' OEC paradigm model, with a mean oxidation of 3.25 in the S2 state. This is consistent with the earlier data by Jin et al. (Phys. Chem. Chem. Phys. (PCCP) 16(17), 7799-812 2014), but the present results clearly indicate that heterogeneity in hyperfine couplings exist in samples as typically prepared.
Stochastic hyperfine interactions modeling library-Version 2
NASA Astrophysics Data System (ADS)
Zacate, Matthew O.; Evenson, William E.
2016-02-01
The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized. The original version of SHIML constructed and solved Blume matrices for methods that measure hyperfine interactions of nuclear probes in a single spin state. Version 2 provides additional support for methods that measure interactions on two different spin states such as Mössbauer spectroscopy and nuclear resonant scattering of synchrotron radiation. Example codes are provided to illustrate the use of SHIML to (1) generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A22 can be neglected and (2) generate Mössbauer spectra for polycrystalline samples for pure dipole or pure quadrupole transitions.
Internal state control of a dense sample of ultracold 23Na87Rb molecules
NASA Astrophysics Data System (ADS)
Ye, Xin; Guo, Mingyang; He, Junyu; Wang, Dajun; Quemener, Goulven; Gonzalez-Martinez, Maykel; Dulieu, Oliver
2017-04-01
We report the optimized production of ultracold 23Na87Rb molecules with completely controlled population distribution among internal states. Starting from a sample of 104 weakly bound Feshbach molecules, we achieved a hyperfine-structure-resolved STIRAP transfer to the ground state with an efficiency up to 95%. By tuning the frequency difference between the Raman lasers and applying an additional microwave signal, we realized the preparation of NaRb samples in different vibrational, rotational, and hyperfine levels. Based on this achievement, some results on molecular collisions with a range of possible loss channels will also be reported. This work was supported by the French ANR/Hong Kong RGC COPOMOL project (Grant No. A-CUHK403/13), the RGC General Research Fund (Grant No. CUHK14301815).
Studies of Landé gJ-factors of singly ionized lanthanum by laser-induced fluorescence spectroscopy
NASA Astrophysics Data System (ADS)
Werbowy, S.; Güney, C.; Windholz, L.
2016-08-01
Laser-induced fluorescence spectroscopy, using a cooled hollow cathode discharge lamp as source of ions, was used to observe the Zeeman splitting of 18 lines of La II in the wavelength range 629.6-680.9 nm, in external intermediate magnetic fields up to 800 G. The recorded hyperfine-Zeeman patterns were analyzed in detail using already known accurate hyperfine structure A- and B-constants. From the recordings the Landé gJ-factors for some levels belonging to the 5d2, 5d6s, 5d6p, 4f5d, 4f6s and 4f6p configurations of La II were determined. The obtained experimental gJ-factors are compared with earlier measurements and theoretical calculations.
NASA Astrophysics Data System (ADS)
Dajda, N.; Dixon, J. M.; Smith, M. E.; Carthey, N.; Bishop, P. T.
2003-01-01
Solid state NMR spectra of 29Si are reported from pure and vanadium-doped zircon (V-ZrSiO4) samples. The vanadium concentration is varied up to ˜1-mol % V4+ by using both conventional-firing and sol-gel routes, and 51V NMR data are also recorded. 17O NMR of 17O isotopically enriched samples shows that the initial gel is completely amorphous with the whole range of possible M-O-M' linkages detected, and that this structure evolves into a fully ordered ZrSiO4 structure with calcination. Static 91Zr NMR data is reported from a pure zircon sample. The NMR data are used to quantify the amount of vanadium entering the zircon structure, and to elucidate its site preference within the lattice. Two contact shifted peaks with very different T1 relaxation from the main zircon peak but attributable to the zircon lattice are observed in the 29Si NMR spectra for all samples. These spectra are consistent with vanadium substitution on both the tetrahedral and dodecahedral sites, with a slight preference for the silicon site. The data show that the relative occupation of these two sites is almost independent of the preparation method and vanadium concentration. At a higher vanadium concentration a third additional peak is observed which may indicate another substitution site. Variable temperature NMR and susceptibility measurements indicate the hyperfine nature of the interactions influencing silicon from V4+ ions in the different sites.
Controlled rephasing of single spin-waves in a quantum memory based on cold atoms
NASA Astrophysics Data System (ADS)
Farrera, Pau; Albrecht, Boris; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues; Quantum Photonics With Solids; Atoms Team
2015-05-01
Quantum memories for light allow a reversible transfer of quantum information between photons and long lived matter quantum bits. In atomic ensembles, this information is commonly stored in the form of single collective spin excitations (spin-waves). In this work we demonstrate that we can actively control the dephasing of the spin-waves created in a quantum memory based on a cold Rb87 atomic ensemble. The control is provided by an external magnetic field gradient, which induces an inhomogeneous broadening of the atomic hyperfine levels. We show that acting on this gradient allows to control the dephasing of individual spin-waves and to induce later a rephasing. The spin-waves are then mapped into single photons, and we demonstrate experimentally that the active rephasing preserves the sub-Poissonian statistics of the retrieved photons. Finally we show that this rephasing control enables the creation and storage of multiple spin-waves in different temporal modes, which can be selectively readout. This is an important step towards the implementation of a functional temporally multiplexed quantum memory for quantum repeaters. We acknowledge support from the ERC starting grant, the Spanish Ministry of Economy and Competitiveness, the Fondo Europeo de Desarrollo Regional, and the International PhD- fellowship program ``la Caixa''-Severo Ochoa @ICFO.
A compact micro-wave synthesizer for transportable cold-atom interferometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lautier, J.; Lours, M.; Landragin, A., E-mail: arnaud.landragin@obspm.fr
2014-06-15
We present the realization of a compact micro-wave frequency synthesizer for an atom interferometer based on stimulated Raman transitions, applied to transportable inertial sensing. Our set-up is intended to address the hyperfine transitions of {sup 87}Rb at 6.8 GHz. The prototype is evaluated both in the time and the frequency domain by comparison with state-of-the-art frequency references developed at Laboratoire national de métrologie et d'essais−Systémes de référence temps espace (LNE-SYRTE). In free-running mode, it features a residual phase noise level of −65 dB rad{sup 2} Hz{sup −1} at 10 Hz offset frequency and a white phase noise level in themore » order of −120 dB rad{sup 2} Hz{sup −1} for Fourier frequencies above 10 kHz. The phase noise effect on the sensitivity of the atomic interferometer is evaluated for diverse values of cycling time, interrogation time, and Raman pulse duration. To our knowledge, the resulting contribution is well below the sensitivity of any demonstrated cold atom inertial sensors based on stimulated Raman transitions. The drastic improvement in terms of size, simplicity, and power consumption paves the way towards field and mobile operations.« less
NASA Astrophysics Data System (ADS)
Bhandarkar, Y. V.; Ghaisas, S. V.; Ogale, S. B.
1988-07-01
Ion-beam mixing at an Fe:metallic glass (Fe67Co18B14Si1) interface is studied by employing the technique of conversion electron Mössbauer spectroscopy (CEMS). A 230-Å-thick overlayer of iron (enriched to 33% in the concentration of 57Fe Mössbauer isotope) was deposited on the shiny surface of metallic glass and such composites were bombarded with 100-keV Kr+ ions at dose values in the range between 1×1015 and 2×1016 ions/cm2. The transformations in the local atomic arrangements across the interface were investigated by monitoring the changes in the hyperfine-interaction parameters. It is shown that mixing leads to significant changes in the composition, in the vicinity of the interface as a function of the ion dose. At low dose (1×1015 ions/cm2) the local atomic coordination is found to be rich in the transition-metal concentration, while at a higher dose (2×1016 ions/cm2) it is observed to be rich in the boron concentration. Interestingly, at an intermediate dose 1×1016 ions/cm2 the composite near the interface region partially crystallizes and this structural state is found to revert back to the amorphous state upon thermal annealing at 300 °C. The observations made on the basis of CEMS are well supported by x-ray diffraction measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haase, Christa; Agner, Josef A.; Merkt, Frederic
2013-06-28
A laser-based, pulsed, narrow-band source of submillimeter-wave radiation has been developed that is continuously tunable from 0.1 THz to 14.3 THz. The source is based on difference-frequency mixing in the nonlinear crystal trans-4{sup Prime }-(dimethylamino)-N-methyl-4-stilbazolium tosylate. By varying the pulse length, the bandwidth of the submillimeter-wave radiation can be adjusted between 85 MHz and 2.8 MHz. This new radiation source has been integrated in a vacuum-ultraviolet-submillimeter-ware double-resonance spectrometer, with which low-frequency transitions of atoms and molecules in supersonic beams can be detected mass-selectively by photoionization and time-of-flight mass spectrometry. The properties of the radiation source and spectrometer are demonstrated inmore » a study of 33f Leftwards-Arrow nd Rydberg-Rydberg transitions in Xe with n in the range 16-31. The frequency calibration of the submillimeter-wave radiation was performed with an accuracy of 2.8 MHz. The narrowest lines observed experimentally have a full-width at half-maximum of {approx}3 MHz, which is sufficient to fully resolve the hyperfine structure of the Rydberg-Rydberg transitions of {sup 129}Xe and {sup 131}Xe. A total of 72 transitions were measured in the range between 0.937 THz and 14.245 THz and their frequencies are compared with frequencies calculated by multichannel quantum defect theory.« less
NASA Astrophysics Data System (ADS)
Ponciano-Ojeda, F.; Hernández-Gómez, S.; López-Hernández, O.; Mojica-Casique, C.; Colín-Rodríguez, R.; Ramírez-Martínez, F.; Flores-Mijangos, J.; Sahagún, D.; Jáuregui, R.; Jiménez-Mier, J.
2015-10-01
Direct evidence of excitation of the 5 p3 /2→6 p3 /2 electric-dipole-forbidden transition in atomic rubidium is presented. The experiments were performed in a room-temperature rubidium cell with continuous-wave external cavity diode lasers. Optical-optical double-resonance spectroscopy with counterpropagating beams allows the detection of the nondipole transition free of Doppler broadening. The 5 p3 /2 state is prepared by excitation with a laser locked to the maximum F cyclic transition of the D2 line, and the forbidden transition is produced by excitation with a 911 nm laser. Production of the forbidden transition is monitored by detection of the 420 nm fluorescence that results from decay of the 6 p3 /2 state. Spectra with three narrow lines (≈13 MHz FWHM) with the characteristic F -1 , F , and F +1 splitting of the 6 p3 /2 hyperfine structure in both rubidium isotopes were obtained. The results are in very good agreement with a direct calculation that takes into account the 5 s →5 p3 /2 preparation dynamics, the 5 p3 /2→6 p3 /2 nondipole excitation geometry, and the 6 p3 /2→5 s1 /2 decay. The comparison also shows that the electric-dipole-forbidden transition is a very sensitive probe of the preparation dynamics.
NASA Astrophysics Data System (ADS)
Xu, Li-Hong; Reid, Elias M.; Guislain, Bradley; Hougen, Jon T.; Alekseev, E. A.; Krapivin, Igor
2017-06-01
Hyperfine splittings in methanol have been revisited in three recent publications. (i) Coudert et al. [JCP 143 (2015) 044304] published an analysis of splittings observed in the low-J range. They calculated 32 spin-rotation, 32 spin-spin, and 16 spin-torsion hyperfine constants using the ACES2 package. Three of these constants were adjusted to fit hyperfine patterns for 12 transitions. (ii) Three present authors and collaborators [JCP 145 (2016) 024307] analyzed medium to high-J experimental Lamb-dip measurements in methanol and presented a theoretical spin-rotation explanation that was based on torsionally mediated spin-rotation hyperfine operators. These contain, in addition to the usual nuclear spin and overall rotational operators, factors in the torsional angle α of the form {e^{plusmn;{inα}}}. Such operators have non-zero matrix elements between the two components of a torsion-rotation ^{tr}E state, but have zero matrix elements within a ^{tr}A state. More than 55 hyperfine splittings were successfully fitted using three parameters and the fitted values agree well with ab initio values obtained in (i). (iii) Lankhaar et al. [JCP 145 (2016) 244301] published a reanalysis of the data set from (i), using CFOUR recalculated hyperfine constants based on their rederivation of the relevant expressions. They explain why their choice of fixed and floated parameters leads to numerical values for all parameters that seem to be more physical than those in (i). The results in (ii) raise the question of whether large torsionally-mediated spin-rotation splittings will occur in other methyl-rotor-containing molecules. This abstract presents ab initio calculations of torsionally mediated hyperfine splittings in the E states of acetaldehyde using the same three operators as in (ii) and spin-rotation constants computed by Gaussian09. We explored the first 13 K states for J from 10 to 40 and ν_{t} = 0, 1, and 2. Our calculations indicate that hyperfine splittings in CH_{3}CHO are just below current measurement capability. This conclusion is confirmed by available experimental measurements.
A circularly polarized optical dipole trap and other developments in laser trapping of atoms
NASA Astrophysics Data System (ADS)
Corwin, Kristan Lee
Several innovations in laser trapping and cooling of alkali atoms are described. These topics share a common motivation to develop techniques for efficiently manipulating cold atoms. Such advances facilitate sensitive precision measurements such as parity non- conservation and 8-decay asymmetry in large trapped samples, even when only small quantities of the desired species are available. First, a cold, bright beam of Rb atoms is extracted from a magneto-optical trap (MOT) using a very simple technique. This beam has a flux of 5 × 109 atoms/s and a velocity of 14 m/s, and up to 70% of the atoms in the MOT were transferred to the atomic beam. Next, a highly efficient MOT for radioactive atoms is described, in which more than 50% of 221Fr atoms contained in a vapor cell are loaded into a MOT. Measurements were also made of the 221Fr 7 2P1/2 and 7 2P3/2 energies and hyperfine constants. To perform these experiments, two schemes for stabilizing the frequency of the light from a diode laser were developed and are described in detail. Finally, a new type of trap is described and a powerful cooling technique is demonstrated. The circularly polarized optical dipole trap provides large samples of highly spin-polarized atoms, suitable for many applications. Physical processes that govern the transfer of large numbers of atoms into the trap are described, and spin-polarization is measured to be 98(1)%. In addition, the trap breaks the degeneracy of the atomic spin states much like a magnetic trap does. This allows for RF and microwave cooling via both forced evaporation and a Sisyphus mechanism. Preliminary application of these techniques to the atoms in the circularly polarized dipole trap has successfully decreased the temperature by a factor of 4 while simultaneously increasing phase space density.
Electric dipole hyperfine structure of TIF
NASA Astrophysics Data System (ADS)
Hinds, Edward A.; Sandars, P. G. H.
1980-02-01
The authors have calculated the electric dipole interaction energy of the 205TI nucleus in TIF assuming a nonzero electric dipole moment dp on the proton. The result is used in the accompanying experimental paper to obtain a new value of (-1.4+/-6)×10-21 e cm for dp.
Beam maser measurements of CH3OH rotational transitions
NASA Technical Reports Server (NTRS)
Gaines, L.; Casleton, K. H.; Kukolich, S. G.
1974-01-01
Precise measurements of rotational transitions in methanol are reported that were made by means of beam maser spectrometers. No hyperfine structure was resolved at a resonance line width of 8 kHz. Accurate center frequencies for the transitions measured are useful for determining Doppler shifts for observed interstellar lines.
Fluctuating hyperfine interactions: an updated computational implementation
NASA Astrophysics Data System (ADS)
Zacate, M. O.; Evenson, W. E.
2015-04-01
The stochastic hyperfine interactions modeling library (SHIML) is a set of routines written in the C programming language designed to assist in the analysis of stochastic models of hyperfine interactions. The routines read a text-file description of the model, set up the Blume matrix, upon which the evolution operator of the quantum mechanical system depends, and calculate the eigenvalues and eigenvectors of the Blume matrix, from which theoretical spectra of experimental techniques can be calculated. The original version of SHIML constructs Blume matrices applicable for methods that measure hyperfine interactions with only a single nuclear spin state. In this paper, we report an extension of the library to provide support for methods such as Mössbauer spectroscopy and nuclear resonant scattering of synchrotron radiation, which are sensitive to interactions with two nuclear spin states. Examples will be presented that illustrate the use of this extension of SHIML to generate Mössbauer spectra for polycrystalline samples under a number of fluctuating hyperfine field models.
Theoretical studies of alkyl radicals in the NaY and HY zeolites.
Ghandi, Khashayar; Zahariev, Federico E; Wang, Yan Alexander
2005-08-18
Interplay of quantum mechanical calculations and experimental data on hyperfine coupling constants of ethyl radical in zeolites at several temperatures was engaged to study the geometries and binding energies and to predict the temperature dependence of hyperfine splitting of a series of alkyl radicals in zeolites for the first time. The main focus is on the hyperfine interaction of alkyl radicals in the NaY and HY zeolites. The hyperfine splitting for neutral free radicals and free radical cations is predicted for different zeolite environments. This information can be used to establish the nature of the muoniated alkyl radicals in the NaY and HY zeolites via muSR experiments. The muon hyperfine coupling constants of the ethane radical cation in these zeolites are very large with relatively little dependence on temperature. It was found that the intramolecular dynamics of alkyl free radicals are only weakly affected by their strong binding to zeolites. In contrast, the substrate binding has a significant effect on their intermolecular dynamics.
NASA Astrophysics Data System (ADS)
Naghshara, H.; Sobhanian, S.; Khorram, S.; Sadeghi, N.
2011-01-01
In a dc-magnetron discharge with argon feed gas, densities of copper atoms in the ground state Cu(2S1/2) and metastable state Cu*(2D5/2) were measured by the resonance absorption technique, using a commercial hollow cathode lamp as light source. The operating conditions were 0.3-14 µbar argon pressure and 10-200 W magnetron discharge power. The deposition rate of copper in a substrate positioned at 18 cm from the target was also measured with a quartz microbalance. The gas temperature, in the range 300-380 K, was deduced from the emission spectral profile of N2(C 3Πu - B 3Πg) 0-0 band at 337 nm when trace of nitrogen was added to the argon feed gas. The isotope-shifts and hyperfine structures of electronic states of Cu have been taken into account to deduce the emission and absorption line profiles, and hence for the determination of atoms' densities from the measured absorption rates. To prevent error in the evaluation of Cu density, attributed to the line profile distortion by auto-absorption inside the lamp, the lamp current was limited to 5 mA. Density of Cu(2S1/2) atoms and deposition rate both increased with the enhanced magnetron discharge power. But at fixed power, the copper density augmented with argon pressure whereas the deposition rate followed the opposite trend. Whatever the gas pressure, the density of Cu*(2D5/2) metastable atoms remained below the detection limit of 1 × 1010 cm-3 for magnetron discharge powers below 50 W and hence increased much more rapidly than the density of Cu(2S1/2) atoms, over passing this later at some discharge power, whose value decreases with increasing argon pressure. This behaviour is believed to result from the enhancement of plasma density with increasing discharge power and argon pressure, which would increase the excitation rate of copper into metastable states. At fixed pressure, the deposition rate followed the same trend as the total density of copper atoms in the ground and metastable states. Two important conclusions of this work are (i) copper atoms sputtered from the target under ion bombardment are almost all in the ground state Cu(2S1/2) and hence in the plasma volume they can be excited into the metastable states; (ii) all atoms in the long-lived ground and metastable states contribute to the deposition of copper layer on the substrate.
NASA Astrophysics Data System (ADS)
Alenkina, I. V.; Kumar, A.; Berkovsky, A. L.; Oshtrakh, M. I.
2018-02-01
A comparative study of tetrameric rabbit hemoglobin and monomeric soybean leghemoglobin a in the oxy- and deoxy-forms was carried out using 57Fe Mössbauer spectroscopy with a high velocity resolution in order to analyze the heme iron electronic structure and stereochemistry in relation to the Mössbauer hyperfine parameters. The Mössbauer spectra of tetrameric rabbit hemoglobin in both forms were fitted using two quadrupole doublets related to the 57Fe in ɑ- and β-subunits. In contrast, the Mössbauer spectra of monomeric soybean leghemoglobin a were fitted using: (i) two quadrupole doublets for the oxy-form related to two conformational states of the distal His E7 imidazole ring and different hydrogen bonding of oxygen molecule in the oxy-form and (ii) using three quadrupole doublets for deoxy-form related to three conformational states of the proximal His F8 imidazole ring. Small variations of Mössbauer hyperfine parameters related to small differences in the heme iron electronic structure and stereochemistry in tetrameric rabbit hemoglobin and monomeric soybean leghemoglobin a are discussed.
Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization
Hoff, Daniel E.M.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Mardini, Michael; Barnes, Alexander B.
2015-01-01
Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198 GHz MAS DNP probe. Our calculations show that a microwave power input of 17 W is required to generate an average EPR nutation frequency of 0.84 MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5 kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. PMID:26482131
NASA Astrophysics Data System (ADS)
Panduro, E. Chavez; Cabrejos, J. Bravo
2010-01-01
The mineralogical characterization of two clay samples from the Central Andean Region of Peru, denominated White Greda and Red Greda, is reported. These clays contain the clay minerals mica and illite respectively. Both clays were treated thermally in an oxidising atmosphere under controlled conditions up to 1,100°C with the purpose of obtaining information about structural changes that may be useful for pottery manufacture. X-ray fluorescence was used for the elemental characterization of the samples and X-ray diffractometry was used to determine the collapse and formation of the mineral phases present in the samples caused by thermal treatment. At temperatures above 1,000°C it is observed the formation of spinel in the case of White Greda and of hematite, corundum and cristobalite in the case of Red Greda. Room temperature transmission Mössbauer spectroscopy allowed the monitoring of the variation of the hyperfine parameters with the thermal treatment temperature; In the case of the evolution of the quadruple splitting of the paramagnetic Fe3 + sites with temperature, in both clays, the analyses reproduced results such as the “camel back” curve shape, found by other workers (Wagner and Wagner, Hyperfine Interact 154:35-82, 2004; Wagner and Kyek, Hyperfine Interact 154:5-33, 2004).
Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization.
Hoff, Daniel E M; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Mardini, Michael; Barnes, Alexander B
2015-11-01
Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198GHz MAS DNP probe. Our calculations show that a microwave power input of 17W is required to generate an average EPR nutation frequency of 0.84MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. Copyright © 2015 Elsevier Inc. All rights reserved.
Miglierini, Marcel B; Procházka, Vít; Vrba, Vlastimil; Švec, Peter; Janičkovič, Dušan; Matúš, Peter
2018-06-07
We demonstrate the use of two nuclear-based analytical methods that can follow the modifications of microstructural arrangement of iron-based metallic glasses (MGs). Despite their amorphous nature, the identification of hyperfine interactions unveils faint structural modifications. For this purpose, we have employed two techniques that utilize nuclear resonance among nuclear levels of a stable 57 Fe isotope, namely Mössbauer spectrometry and nuclear forward scattering (NFS) of synchrotron radiation. The effects of heat treatment upon (Fe2.85Co1)77Mo8Cu1B14 MG are discussed using the results of ex situ and in situ experiments, respectively. As both methods are sensitive to hyperfine interactions, information on structural arrangement as well as on magnetic microstructure is readily available. Mössbauer spectrometry performed ex situ describes how the structural arrangement and magnetic microstructure appears at room temperature after the annealing under certain conditions (temperature, time), and thus this technique inspects steady states. On the other hand, NFS data are recorded in situ during dynamically changing temperature and NFS examines transient states. The use of both techniques provides complementary information. In general, they can be applied to any suitable system in which it is important to know its steady state but also transient states.
Tuning of the Hanle effect from EIT to EIA using spatially separated probe and control beams.
Bhattarai, Mangesh; Bharti, Vineet; Natarajan, Vasant
2018-05-14
We demonstrate a technique for continuous tuning of the Hanle effect from electromagnetically induced transparency (EIT) to electromagnetically induced absorption (EIA) by changing the polarization ellipticity of a control beam. In contrast to previous work in this field, we use spatially separated probe and control beams. The experiments are done using magnetic sublevels of the F g = 4 → F e = 5 closed hyperfine transition in the 852 nm D 2 line of 133 Cs. The atoms are contained in a room temperature vapor cell with anti-relaxation (paraffin) coating on the walls. The paraffin coating is necessary for the atomic coherence to be transported between the beams. The experimental results are supported by a density-matrix analysis of the system, which also explains the observed amplitude and zero-crossing of the resonances. Such continuous tuning of the sign of a resonance has important applications in quantum memory and other precision measurements.
A single dopant atom in silicon sees the light
NASA Astrophysics Data System (ADS)
Rogge, Sven
2014-03-01
Optical access to a single qubit is very attractive since it allows for readout with unprecedented high spectral resolution and long distance coupling. Substantial progress has been demonstrated for nitrogen-vacancy centers in diamond (Bernien, Nature, 2013). Optical access to qubits in silicon been an important goal but has to date only been achieved in the ensemble limit (Steger, Science, 2012). Here, we present the photoionization of an individual erbium dopant in silicon (Yin, Nature, 2013). A single-electron transistor is used as a single-shot charge detector to observe the resonant ionization of a single atom as a function of photon energy. This allows for optical addressing and electrical detection of individual erbium dopants with exceptionally narrow line width. The hyperfine coupling is clearly resolved which paves the way to single shot readout of the nuclear spin. This hybrid approach is a first step towards an optical interface to dopants in silicon. in collaboration with Chunming Yin, Milos Rancic, Gabriele G. de Boo, Nikolas Stavrias, Jeffrey C. McCallum, Matthew J. Sellars.
NASA Astrophysics Data System (ADS)
Ali, Sabir; Ray, Ayan; Chakrabarti, Alok
2016-02-01
Electromagnetically Induced Transparency as a novel type optical memory has gained enough attention in the field of research related to optical communication. This kind of transparency is an artificially created spectral window used to slow and spatially compress light pulses. Hence controlling and manipulation of such transparency window in a multilevel atom-photon system will, in turn, help in opening newer avenues of applications. In the present work an inverted Y linkage (established in the 5S1/2 → 5P3/2 → 5D5/2 hyperfine levels of 87Rb atom) is used for this purpose. The formation of matched double dark resonance in the system has been studied in details. On the application front we have demonstrated using the system as an attenuator of optical switch. This type of necessity may arise for futuristic optical communication system. Overall the system response resembles the performance of a combination logic gate.
Magnetic interactions at Ce impurities in REMn2Ge2 (RE = La, Ce, Pr, Nd) compounds
NASA Astrophysics Data System (ADS)
Bosch-Santos, B.; Cabrera-Pasca, G. A.; Saxena, R. N.; Burimova, A. N.; Carbonari, A. W.
2018-05-01
In the work reported in this paper, the temperature dependence of the magnetic hyperfine field (Bh f) at 140Ce nuclei replacing Pr atoms in PrMn2Ge2 compound was measured by the perturbed angular correlation technique to complete the sequence of measurements in REMn2Ge2 (RE = La, Ce, Pr, Nd). Results show an anomalous behavior different from the expected Brillouin curve. A model was used to fit the data showing that the Ce impurity contribution (Bhfimp) to Bhf is negative for NdMn2Ge2 below 210 K. The impurity contribution (Bhfimp) at 0 K for all compounds is much smaller than that for the free Ce3+, showing that the 4f band of Ce is more likely highly hybridized with 5d band of the host. Results show that direction of the localized magnetic moment at Mn atoms strongly affects the exchange interaction at Ce impurities.
Electromagnetic wave absorbing properties and hyperfine interactions of Fe—Cu—Nb—Si—B nanocomposites
NASA Astrophysics Data System (ADS)
Han, Man-Gui; Guo, Wei; Wu, Yan-Hui; Liu, Min; Magundappa, L. Hadimani
2014-08-01
The Fe—Cu—Nb—Si—B alloy nanocomposite containing two ferromagnetic phases (amorphous phase and nanophase phase) is obtained by properly annealing the as-prepared alloys. High resolution transmission electron microscopy (HR-TEM) images show the coexistence of these two phases. It is found that Fe—Si nanograins are surrounded by the retained amorphous ferromagnetic phase. Mössbauer spectroscopy measurements show that the nanophase is the D03-type Fe—Si phase, which is employed to find the atomic fractions of resonant 57Fe atoms in these two phases. The microwave permittivity and permeability spectra of Fe—Cu—Nb—Si—B nanocomposite are measured in the frequency range of 0.5 GHz-10 GHz. Large relative microwave permeability values are obtained. The results show that the absorber containing the nanocomposite flakes with a volume fraction of 28.59% exhibits good microwave absorption properties. The reflection loss of the absorber is less than -10 dB in a frequency band of 1.93 GHz-3.20 GHz.
NASA Astrophysics Data System (ADS)
Moreno, Marco P.; Nogueira, Giovana T.; Felinto, Daniel; Vianna, Sandra S.
2017-08-01
The two-photon transition 5 S -5 P -5 D in rubidium vapor is investigated by detecting the fluorescence from the 6 P3 /2 state when the atomic system is excited by the combined action of a cw diode laser and a frequency comb. The cw laser plays a role as a velocity-selective filter and allows for sub-Doppler spectroscopy over a large spectral range including the 5 D3 /2 and 5 D5 /2 states. For a counterpropagating beam configuration, the response of each atomic velocity group is well characterized within the Doppler profile and the excited hyperfine levels are clearly resolved. The contribution of the optical pumping to the direct two-photon process is also revealed. The results are well described in a frequency domain picture by considering the interaction of each velocity group with the cw laser and the modes of the frequency comb.
Tunable High Q Superconducting Microwave Resonator for Hybrid System with ^87Rb atoms
NASA Astrophysics Data System (ADS)
Kim, Zaeill; Voigt, K. D.; Lee, Jongmin; Hoffman, J. E.; Grover, J. A.; Ravets, S.; Zaretskey, V.; Palmer, B. S.; Hafezi, M.; Taylor, J. M.; Anderson, J. R.; Dragt, A. J.; Lobb, C. J.; Orozco, L. A.; Rolston, S. L.; Wellstood, F. C.
2012-02-01
We have developed a frequency tuning system for a ``lumped-element'' thin-film superconducting Al microwave resonator [1] on sapphire intended for coupling to hyperfine ground states of cold trapped ^87Rb atoms, which are separated by about fRb=6.83 GHz. At T=12 mK and on resonance at 6.81 GHz, the loaded quality factor was 120,000. By moving a carefully machined Al pin towards the inductor of the resonator using a piezo stage, we were able to tune the resonance frequency over a range of 35 MHz and within a few kHz of fRb. While measuring the power dependent response of the resonator at each tuned frequency, we observed anomalous decreases in the quality factor at several frequencies. These drops were more pronounced at lower power. We discuss our results, which suggest these resonances are attributable to discrete two-level systems.[4pt] [1] Z. Kim et al., AIP ADVANCES 1, 042107 (2011).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pustelny, S., E-mail: pustelny@uj.edu.pl; Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300; Schultze, V.
A dichroic atomic vapor laser lock (DAVLL) system exploiting buffer-gas-filled millimeter-scale vapor cells is presented. This system offers similar stability as achievable with conventional DAVLL system using bulk vapor cells, but has several important advantages. In addition to its compactness, it may provide continuous stabilization in a multi-gigahertz range around the optical transition. This range may be controlled either by changing the temperature of the vapor or by application of a buffer gas under an appropriate pressure. In particular, we experimentally demonstrate the ability of the system to lock the laser frequency between two hyperfine components of the {sup 85}Rbmore » ground state or as far as 16 GHz away from the closest optical transition.« less
{pi} junction and spontaneous current state in a superfluid Fermi gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashimura, Takashi; Tsuchiya, Shunji; CREST
2011-07-15
We discuss an idea to realize a spontaneous current in a superfluid Fermi gas. When a polarized Fermi superfluid (N{sub {up_arrow}}>N{sub {down_arrow}}, where N{sub {sigma}} is the number of atoms in the hyperfine state described by pseudospin {sigma}={up_arrow},{down_arrow}) is loaded onto a ring-shaped trap with a weak potential barrier, some excess atoms ({Delta}N=N{sub {up_arrow}}-N{sub {down_arrow}}) are localized around the barrier. As shown in our previous paper [T. Kashimura, S. Tsuchiya, and Y. Ohashi, Phys. Rev. A 82, 033617 (2010)], this polarized potential barrier works as a {pi} junction in the sense that the superfluid order parameter changes its sign acrossmore » the barrier. Because of this, the phase of the superfluid order parameter outside the junction is shown to be twisted by {pi} along the ring, which naturally leads to a circulating supercurrent. While the ordinary supercurrent state is obtained as a metastable state, this spontaneous current state is shown to be more stable than the case with no current. Our results indicate that localized excess atoms would be useful for the manipulation of the superfluid order parameter in cold Fermi gases.« less
Comparison of collimated blue-light generation in 85Rb atoms via the D1 and D2 lines
NASA Astrophysics Data System (ADS)
Prajapati, Nikunj; Akulshin, Alexander M.; Novikova, Irina
2018-05-01
We experimentally studied the characteristics of the collimated blue light (CBL) produced in ${}^{85}$Rb vapor by two resonant laser fields exciting atoms into the $5D_{3/2}$ state, using either the $5P_{1/2}$ or the $5P_{3/2}$ intermediate state. We compared the CBL output at different values of frequency detunings, powers, and polarizations of the pump lasers in these two cases, and confirmed the observed trends using a simple theoretical model. We also demonstrated that the addition of the repump laser, preventing the accumulation of atomic population in the uncoupled hyperfine ground state, resulted in nearly an order of magnitude increase in CBL power output. Overall, we found that the $5S_{1/2} - 5P_{1/2} - 5D_{3/2}$ excitation pathway results in stronger CBL generation, as we detected up to $4.25~\\mu$W using two pumps of the same linear polarization. The optimum CBL output for the $5S_{1/2} - 5P_{3/2} - 5D_{3/2}$ excitation pathway required the two pump lasers to have the same circular polarization, but resulted only in a maximum CBL power of $450$~nW.
The millimeter-wave spectrum of the MgH and MgD radicals
NASA Technical Reports Server (NTRS)
Ziurys, L. M.; Barclay, W. L., Jr.; Anderson, M. A.
1993-01-01
The pure rotational spectrum of MgH radical (X 2 Sigma (+)) in its ground state v = 0 and v = 1 vibrational modes has been observed in the laboratory using millimeter/submillimeter direct absorption spectroscopy. The rotational spectra of two isotopically substituted species, MgD and (Mg-26)H, have been detected as well. All six hyperfine components of the N = 0 -1 transition of MgH in its v = 0 and v = 1 states have been directly measured to an accuracy of +/-50 kHz, and the five components have been observed for (Mg-26)H. The N = 0 +/-1 and N = 1 -2 transitions of MgD have also been detected. Rotational, fine structure, and hyperfine constants were determined for all species from a nonlinear least-squared fit to the data using a 2 Sigma Hamiltonian.
Characterization of the hyperfine interaction of the excited D50 state of Eu3 +:Y2SiO5
NASA Astrophysics Data System (ADS)
Cruzeiro, Emmanuel Zambrini; Etesse, Jean; Tiranov, Alexey; Bourdel, Pierre-Antoine; Fröwis, Florian; Goldner, Philippe; Gisin, Nicolas; Afzelius, Mikael
2018-03-01
We characterize the europium (Eu3 +) hyperfine interaction of the excited state (D50) and determine its effective spin Hamiltonian parameters for the Zeeman and quadrupole tensors. An optical free induction decay method is used to measure all hyperfine splittings under a weak external magnetic field (up to 10 mT) for various field orientations. On the basis of the determined Hamiltonian, we discuss the possibility to predict optical transition probabilities between hyperfine levels for the F70⟷D50 transition. The obtained results provide necessary information to realize an optical quantum memory scheme which utilizes long spin coherence properties of 3 + 151Eu :Y2SiO5 material under external magnetic fields.
Redox-dependent structure change and hyperfine nuclear magnetic resonance shifts in cytochrome c
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Yiquing; Roder, H.; Englander, S.W.
1990-04-10
Proton nuclear magnetic resonance assignments for reduced and oxidized equine cytochrome c show that many individual protons exhibit different chemical shifts in the two protein forms, reflecting diamagnetic shift effects due to structure change, and in addition contact and pseudocontact shifts that occur only in the paramagnetic oxidized form. To evaluate the chemical shift differences for structure change, the authors removed the pseudocontact shift contribution by a calculation based on knowledge of the electron spin g tensor. The g-tensor calculation, when repeated using only 12 available C{sub {alpha}}H proton resonances for cytochrom c from tuna, proved to be remarkably stable.more » The derived g tensor was then used together with spatial coordinates for the oxidized form to calculate the pseudocontact shift contribution to proton resonances at 400 identifiable sites throughout the protein, so that the redox-dependent chemical shift discrepancy, could be evaluated. Large residual changes in chemical shift define the Fermi contact shifts, where are found as expected to be limited to the immediate covalent structure of the heme and its ligands and to be asymmetrically distributed over the heme. The chemical shift discrepancies observed appear in the main to reflect structure-dependent diamagnetic shifts rather than hyperfine effects due to displacements in the pseudocontact shift field. Although 51 protons in 29 different residues exhibit significant chemical shift changes, the general impressions one of small structural adjustments to redox-dependent strain rather than sizeable structural displacements or rearrangements.« less
Niobium hyperfine structure in crystal calcium tungstate
NASA Technical Reports Server (NTRS)
Tseng, D. L.; Kikuchi, C.
1972-01-01
A study of the niobium hyperfine structure in single crystal calcium tungstate was made by the combination of the technique of electron paramagnetic resonance and electron nuclear double resonance (EPR/ENDOR). The microwave frequency was about 9.4 GHz and the radio frequency from 20MHz to 70 MHz. The rare earth ions Nd(3+), U(3+), or Tm(3+) were added as the charge compensator for Nb(5+). To create niobium paramagnetic centers, the sample was irradiated at 77 deg K with a 10 thousand curie Co-60 gamma source for 1 to 2 hours at a dose rate of 200 K rads per hour and then transferred quickly into the cavity. In a general direction of magnetic field, the spectra showed 4 sets of 10 main lines corresponding to 4 nonequivalent sites of niobium with I = 9/2. These 4 sets of lines coalesced into 2 sets of 10 in the ab-plane and into a single set of 10 along the c-axis. This symmetry suggested that the tungsten ions are substituted by the niobium ions in the crystal.
NASA Astrophysics Data System (ADS)
Li, Cheng-Bin; Yu, Yan-Mei; Sahoo, B. K.
2018-02-01
Roles of electron correlation effects in the determination of attachment energies, magnetic-dipole hyperfine-structure constants, and electric-dipole (E 1 ) matrix elements of the low-lying states in the singly charged cadmium ion (Cd+) have been analyzed. We employ the singles and doubles approximated relativistic coupled-cluster (RCC) method to calculate these properties. Intermediate results from the Dirac-Hartree-Fock approximation,the second-order many-body perturbation theory, and considering only the linear terms of the RCC method are given to demonstrate propagation of electron correlation effects in this ion. Contributions from important RCC terms are also given to highlight the importance of various correlation effects in the evaluation of these properties. At the end, we also determine E 1 polarizabilities (αE 1) of the ground and 5 p 2P1 /2 ;3 /2 states of Cd+ in the ab initio approach. We estimate them again by replacing some of the E 1 matrix elements and energies from the measurements to reduce their uncertainties so that they can be used in the high-precision experiments of this ion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprecher, Daniel; Merkt, Frédéric, E-mail: frederic.merkt@phys.chem.ethz.ch; Jungen, Christian
2014-03-14
Multichannel quantum-defect theory (MQDT) is used to calculate the electron binding energies of np Rydberg states of H{sub 2}, HD, and D{sub 2} around n = 60 at an accuracy of better than 0.5 MHz. The theory includes the effects of rovibronic channel interactions and the hyperfine structure, and has been extended to the calculation of the asymmetric hyperfine structure of Rydberg states of a heteronuclear diatomic molecule (HD). Starting values for the eigenquantum-defect parameters of MQDT were extracted from ab initio potential-energy functions for the low-lying p Rydberg states of molecular hydrogen and subsequently refined in a global weighted fitmore » to available experimental data on the singlet and triplet Rydberg states of H{sub 2} and D{sub 2}. The electron binding energies of high-np Rydberg states derived in this work represent important quantities for future determinations of the adiabatic ionization energies of H{sub 2}, HD, and D{sub 2} at sub-MHz accuracy.« less
NASA Astrophysics Data System (ADS)
Mei, Yang; Wei, Cheng-Fu; Zheng, Wen-Chen
2016-02-01
Detailed theoretical calculations for the spin-Hamiltonian parameters (g factors gi and hyperfine structure constants Ai, where i=x, y, z) of the rhombic W5+ center in CaWO4:Y3+ crystal are performed by using the high-order perturbation formulas for d1 ions in rhombic tetrahedral clusters with the ground state |dz2>. These formulas consist of the contributions from two mechanisms, the crystal-field (CF) mechanism connected with CF excited states in the vastly-used CF theory and the frequently-neglected charge-transfer (CT) mechanism related to CT excited states. The calculated results agree well with the experimental values. The calculations indicate that for W5+ ion (or other high valence state dn ions) in crystals, the model calculations of spin-Hamiltonian parameters should take both the CF and CT mechanisms into account. The signs of hyperfine structure constants Ai are suggested and the forming (or defect model) of rhombic W5+ center in CaWO4:Y3+ crystal is confirmed from the calculations.
Hyperfine Fields in Nanocrystalline Fe0.48Al0.52
NASA Astrophysics Data System (ADS)
Szymański, K.; Satuła, D.; Dobrzyński, L.; Voronina, E.; Yelsukov, E. P.
2004-12-01
Mössbauer measurements with circularly polarized radiation were performed on a nanocrystalline, disordered Fe48Al52 alloy. The analysis of the data for various polarization states resulted in the characterization of the hyperfine magnetic field distribution and the dependence of the average z-component of hyperfine field on the chemical environment. An increasing number of Al in the first coordination shell causes not only a decrease of magnetic moments but also introduces noncollinearity.
Electron paramagnetic resonance of a 10B-containing heterocyclic radical
NASA Astrophysics Data System (ADS)
Eaton, Sandra S.; Ngendahimana, Thacien; Eaton, Gareth R.; Jupp, Andrew R.; Stephan, Douglas W.
2018-05-01
Electron paramagnetic resonance measurements for a 10B-containing heterocyclic phenanthrenedione radical, (C6F5)2B(O2C14H8), were made at X-band in 9:1 toluene:dichloromethane from 10 to 293 K and in toluene from 180 to 293 K. In well-deoxygenated 0.1 mM toluene solution at room temperature hyperfine couplings to 10B, four pairs of protons and five pairs of fluorines contribute to a continuous wave spectrum with many resolved lines. Hyperfine couplings were adjusted to provide the best fit for spectra of the radical enriched in 10B and the analogous radical synthesized with 10,11B in natural abundance, resulting in small refinements of the hyperfine coupling constants previously reported for the natural abundance sample. Electron spin relaxation rates at temperatures between 15 and 293 K were similar for samples containing 10B and natural isotope abundance. Analysis of electron spin echo envelope modulation and hyperfine correlation spectroscopy data at 80 K found Axx = -7.5 ± 0.3, Ayy = -8.5 ± 0.3, and Azz = -10.8 ± 0.3 MHz for 11B, which indicates small spin density on the boron. The spin echo and hyperfine spectroscopy data for the 10B -containing radical are consistent with the factor of 2.99 smaller hyperfine values for 10B than for 11B.
Fallahi, P; Yilmaz, S T; Imamoğlu, A
2010-12-17
We measure the strength and the sign of hyperfine interaction of a heavy hole with nuclear spins in single self-assembled quantum dots. Our experiments utilize the locking of a quantum dot resonance to an incident laser frequency to generate nuclear spin polarization. By monitoring the resulting Overhauser shift of optical transitions that are split either by electron or exciton Zeeman energy with respect to the locked transition using resonance fluorescence, we find that the ratio of the heavy-hole and electron hyperfine interactions is -0.09 ± 0.02 in three quantum dots. Since hyperfine interactions constitute the principal decoherence source for spin qubits, we expect our results to be important for efforts aimed at using heavy-hole spins in quantum information processing.
Jayatilaka, Nayana; Nelson, William H.
2008-01-01
In sodium guanosine dihydrate single crystals, the guanine moiety is deprotonated at N1 due to growth from high-pH (>12) solutions. EPR and ENDOR study of crystals x-irradiated at 10 K detected evidence for three radical forms. Radical R1,characterized by two proton and two nitrogen hyperfine interactions, was identified as the product of net hydrogenation at N7 of the N1-deprotonated guanine unit. R1 exhibited an unusually distorted structure leading to net positive isotropic components of the hydrogen couplings. Radical R2, characterized by one proton and one nitrogen hyperfine coupling was identified as the primary electron loss product. This product is equivalent to that of deprotonation at N1 by the guanine cation and represents the first ENDOR characterization of that product. Radical R3, characterized by a single hydrogen hyperfine coupling, was identified as the product of net dehydrogenation at C1 of the ribose moiety. The identification of radicals R1-R3 was supported by DFT calculations on several possible structures using the B3LYP/6-311G(2df,p)//6-31G(d,p) approach. Radical R4, detected after warming the crystals to room temperature, was identified as the well-known product of net hydrogenation of C8 of the (N1-deprotonated) guanine component. Radical R1, evidently formed by protonation of the primary electron addition product, was present as roughly 60% of the total radicals detected at 10 K. Radical R2 was present as roughly 27% of the total yield, and the concentration of R3 contributed the remaining 13%. R3 is evidently the product of oneelectron oxidation followed by deprotonation; thus, the balance of oxidation and reduction products is approximately equal within experimental uncertainty. PMID:17249824
NASA Astrophysics Data System (ADS)
Brage, Tomas; Judge, Philip G.; Aboussaïd, Abdellatif; Godefroid, Michel R.; Jönsson, Per; Ynnerman, Anders; Froese Fischer, Charlotte; Leckrone, David S.
1998-06-01
The J = 0 --> J' = 0 radiative transitions, usually viewed as allowed through two-photon decay, may also be induced by the hyperfine (HPF) interaction in atoms or ions having a nonzero nuclear spin. We compute new and review existing decay rates for the nsnp 3PoJ --> ns2 1SJ'=0 transitions in ions of the Be (n = 2) and Mg (n = 3) isoelectronic sequences. The HPF induced decay rates for the J = 0 --> J' = 0 transitions are many orders of magnitude larger than those for the competing two-photon processes, and when present are typically 1 or 2 orders of magnitude smaller than the decay rates of the magnetic quadrupole (J = 2 --> J' = 0) transitions for these ions. Several HPF induced transitions are potentially of astrophysical interest in ions of C, N, Na, Mg, Al, Si, K, Cr, Fe, and Ni. We highlight those cases that may be of particular diagnostic value for determining isotopic abundance ratios and/or electron densities from UV or EUV emission-line data. We present our atomic data in the form of scaling laws so that, given the isotopic nuclear spin and magnetic moment, a simple expression yields estimates for HPF induced decay rates. We examine some UV and EUV solar and nebular data in light of these new results and suggest possible applications for future study. We could not find evidence for the existence of HPF induced lines in the spectra we examined, but we demonstrate that existing data have come close to providing interesting upper limits. For the planetary nebula SMC N2, we derive an upper limit of 0.1 for 13C/12C from Goddard High-Resolution Spectrograph data obtained by Clegg. It is likely that more stringent limits could be obtained using newer data with higher sensitivities in a variety of objects.
Fingerprints of single nuclear spin energy levels using STM - ENDOR
NASA Astrophysics Data System (ADS)
Manassen, Yishay; Averbukh, Michael; Jbara, Moamen; Siebenhofer, Bernhard; Shnirman, Alexander; Horovitz, Baruch
2018-04-01
We performed STM-ENDOR experiments where the intensity of one of the hyperfine components detected in ESR-STM is recorded while an rf power is irradiated into the tunneling junction and its frequency is swept. When the latter frequency is near a nuclear transition a dip in ESR-STM signal is observed. This experiment was performed in three different systems: near surface SiC vacancies where the electron spin is coupled to a next nearest neighbor 29Si nucleus; Cu deposited on Si(111)7x7 surface, where the unpaired electron of the Cu atom is coupled to the Cu nucleus (63Cu, 65Cu) and on Tempo molecules adsorbed on Au(111), where the unpaired electron is coupled to a Nitrogen nucleus (14N). While some of the hyperfine values are unresolved in the ESR-STM data due to linewidth we find that they are accurately determined in the STM-ENDOR data including those from remote nuclei, which are not detected in the ESR-STM spectrum. Furthermore, STM-ENDOR can measure single nuclear Zeeman frequencies, distinguish between isotopes through their different nuclear magnetic moments and detect quadrupole spectra. We also develop and solve a Bloch type equation for the coupled electron-nuclear system that facilitates interpretation of the data. The improved spectral resolution of STM - ENDOR opens many possibilities for nanometric scale chemical analysis.
Fingerprints of single nuclear spin energy levels using STM - ENDOR.
Manassen, Yishay; Averbukh, Michael; Jbara, Moamen; Siebenhofer, Bernhard; Shnirman, Alexander; Horovitz, Baruch
2018-04-01
We performed STM-ENDOR experiments where the intensity of one of the hyperfine components detected in ESR-STM is recorded while an rf power is irradiated into the tunneling junction and its frequency is swept. When the latter frequency is near a nuclear transition a dip in ESR-STM signal is observed. This experiment was performed in three different systems: near surface SiC vacancies where the electron spin is coupled to a next nearest neighbor 29 Si nucleus; Cu deposited on Si(111)7x7 surface, where the unpaired electron of the Cu atom is coupled to the Cu nucleus ( 63 Cu, 65 Cu) and on Tempo molecules adsorbed on Au(111), where the unpaired electron is coupled to a Nitrogen nucleus ( 14 N). While some of the hyperfine values are unresolved in the ESR-STM data due to linewidth we find that they are accurately determined in the STM-ENDOR data including those from remote nuclei, which are not detected in the ESR-STM spectrum. Furthermore, STM-ENDOR can measure single nuclear Zeeman frequencies, distinguish between isotopes through their different nuclear magnetic moments and detect quadrupole spectra. We also develop and solve a Bloch type equation for the coupled electron-nuclear system that facilitates interpretation of the data. The improved spectral resolution of STM - ENDOR opens many possibilities for nanometric scale chemical analysis. Copyright © 2018 Elsevier Inc. All rights reserved.
Proposal for Laser Cooling of Alkaline Earth Monoalkoxide Free Radicals
NASA Astrophysics Data System (ADS)
Baum, Louis; Kozyryev, Ivan; Matsuda, Kyle; Doyle, John M.
2016-05-01
Cold samples of polyatomic molecules will open new avenues in physics, chemistry, and quantum science. Non-diagonal Franck-Condon factors, technically challenging wavelengths, and the lack of strong electronic transitions inhibit direct laser cooling of nonlinear molecules. We identify a scheme for optical cycling in certain molecules with six or more atoms. Replacing hydrogen in alcohols with an alkaline earth metal (M) leads to alkaline earth monoalkoxide free radicals (MOR), which have favorable properties for laser cooling. M-O bond is very ionic, so the metal orbitals are slightly affected by the nature of R on the ligand. Diagonal Franck-Condon factors, laser accessible transitions, and a small hyperfine structure make MOR molecules suitable for laser cooling. We explore a scheme for optical cycling on the A - X transition of SrOCH3 . Molecules lost to dark vibrational states will be repumped on the B - X transition. Extension to larger species is possible through expansion of the R group since transitions involve the promotion of the metal-centered nonbonding valence electron. We will detail our estimations of the Franck-Condon factors, simulations of the cooling process and describe progress towards the Doppler cooling of MOR polyatomics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazante, Alexandre P., E-mail: abazante@chem.ufl.edu; Bartlett, Rodney J.; Davidson, E. R.
The benzene radical anion is studied with ab initio coupled-cluster theory in large basis sets. Unlike the usual assumption, we find that, at the level of theory investigated, the minimum energy geometry is non-planar with tetrahedral distortion at two opposite carbon atoms. The anion is well known for its instability to auto-ionization which poses computational challenges to determine its properties. Despite the importance of the benzene radical anion, the considerable attention it has received in the literature so far has failed to address the details of its structure and shape-resonance character at a high level of theory. Here, we examinemore » the dynamic Jahn-Teller effect and its impact on the anion potential energy surface. We find that a minimum energy geometry of C{sub 2} symmetry is located below one D{sub 2h} stationary point on a C{sub 2h} pseudo-rotation surface. The applicability of standard wave function methods to an unbound anion is assessed with the stabilization method. The isotropic hyperfine splitting constants (A{sub iso}) are computed and compared to data obtained from experimental electron spin resonance experiments. Satisfactory agreement with experiment is obtained with coupled-cluster theory and large basis sets such as cc-pCVQZ.« less
27Al, 63Cu NMR spectroscopy and electrical transport in Heusler Cu-Mn-Al alloy powders
NASA Astrophysics Data System (ADS)
Nadutov, V. M.; Perekos, A. O.; Kokorin, V. V.; Trachevskii, V. V.; Konoplyuk, S. M.; Vashchuk, D. L.
2018-02-01
The ultrafine powder of the Heusler Cu-13,1Mn-12,6Al (wt.%) alloy produced by electrical spark dispersion (ESD) in ethanol and the pellets prepared by pressing of the powders and aged in various gas environment (air, Ar, vacuum) were studied by XRD, nuclear magnetic resonance, magnetic and electric transport methods. The constituent phases were identified as b.c.c. α-Cu-Mn-Al, f.c.c. γ-Cu-Mn-Al, Cu2MnAl, and oxides. The sizes of the coherently scattering domains (CSD) and the saturation magnetizations were in the range of 4-90 nm and 0-1.5 Am2/kg, respectively. 27Al and 63Cu NMR spectra of the powders and pellets have shown hyperfine structure caused by contributions from atomic nuclei of the constituent phases. The aging of pellets in different gas environments had effect on their phase composition but no effect on dispersion of the phases. In contrast to the as-cast alloy, electrical resistance of the pellets evidenced semiconducting behavior at elevated temperatures due to the presence of metal oxides formed on the surfaces of nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, J. E.; Wood, M. P.; Den Hartog, E. A.
2015-01-01
New emission branching fraction measurements for 836 lines of the first spectrum of vanadium (V I) are determined from hollow cathode lamp spectra recorded with the National Solar Observatory 1 m Fourier transform spectrometer (FTS) and a high-resolution echelle spectrometer. The branching fractions are combined with recently published radiative lifetimes from laser-induced fluorescence measurements to determine accurate absolute atomic transition probabilities for the 836 lines. The FTS data are also used to extract new hyperfine structure A coefficients for 26 levels of neutral vanadium. These new laboratory data are applied to determine the V abundance in the Sun and metal-poormore » star HD 84937, yielding log ε(V) = 3.956 ± 0.004 (σ = 0.037) based on 93 V I lines and log ε(V) = 1.89 ± 0.03 (σ = 0.07) based on nine V I lines, respectively, using the Holweger-Müller 1D model. These new V I abundance values for the Sun and HD 84937 agree well with our earlier determinations based upon V II.« less
VizieR Online Data Catalog: Rotational frequencies of TiO isotopologues (Lincowski+, 2016)
NASA Astrophysics Data System (ADS)
Lincowski, A. P.; Halfen, D. T.; Ziurys, L. M.
2017-03-01
Pure rotational spectra of the rare isotopologues of titanium oxide, 46TiO, 47TiO, 49TiO, and 50TiO, have been recorded using a combination of Fourier transform millimeter-wave (FTmmW) and millimeter/submillimeter direct absorption techniques in the frequency range 62-538GHz. This study is the first complete spectroscopic characterization of these species in their X3Δr ground electronic states. The isotopologues were created by the reaction of N2O or O2 and titanium vapor, produced either by laser ablation or in a Broida-type oven, and observed in the natural Ti isotopic abundances. Between 10 and 11 rotational transitions J+1<->J were measured for each species, typically in all 3 spin-orbit ladders Ω=1, 2, and 3. For 47TiO and 49TiO, hyperfine structure was resolved, originating from the titanium-47 and titanium-49 nuclear spins of I=5/2 and 7/2, respectively. For the Ω=1 and 3 components, the hyperfine structure was found to follow a classic Lande pattern, while that for Ω=2 appeared to be perturbed, likely a result of mixing with the nearby isoconfigurational a1Δ state. The spectra were analyzed with a case (a) Hamiltonian, and rotational, spin-orbit, and spin-spin parameters were determined for each species, as well as magnetic hyperfine and electric quadrupole constants for the two molecules with nuclear spins. The most abundant species, 48TiO, has been detected in circumstellar envelopes. These measurements will enable other titanium isotopologues to be studied at millimeter wavelengths, providing Ti isotope ratios that can test models of nucleosynthesis. (1 data file).
Millimeter/Submillimeter Spectroscopy of TiO (X3Δr): The Rare Titanium Isotopologues
NASA Astrophysics Data System (ADS)
Lincowski, A. P.; Halfen, D. T.; Ziurys, L. M.
2016-12-01
Pure rotational spectra of the rare isotopologues of titanium oxide, 46TiO, 47TiO, 49TiO, and 50TiO, have been recorded using a combination of Fourier transform millimeter-wave (FTmmW) and millimeter/submillimeter direct absorption techniques in the frequency range 62-538 GHz. This study is the first complete spectroscopic characterization of these species in their X 3Δ r ground electronic states. The isotopologues were created by the reaction of N2O or O2 and titanium vapor, produced either by laser ablation or in a Broida-type oven, and observed in the natural Ti isotopic abundances. Between 10 and 11 rotational transitions J + 1 ≤ftrightarrow J were measured for each species, typically in all 3 spin-orbit ladders Ω = 1, 2, and 3. For 47TiO and 49TiO, hyperfine structure was resolved, originating from the titanium-47 and titanium-49 nuclear spins of I = 5/2 and 7/2, respectively. For the Ω = 1 and 3 components, the hyperfine structure was found to follow a classic Landé pattern, while that for Ω = 2 appeared to be perturbed, likely a result of mixing with the nearby isoconfigurational a 1Δ state. The spectra were analyzed with a case (a) Hamiltonian, and rotational, spin-orbit, and spin-spin parameters were determined for each species, as well as magnetic hyperfine and electric quadrupole constants for the two molecules with nuclear spins. The most abundant species, 48TiO, has been detected in circumstellar envelopes. These measurements will enable other titanium isotopologues to be studied at millimeter wavelengths, providing Ti isotope ratios that can test models of nucleosynthesis.
1998-10-21
site. The electric-field- induced linear shift is also observed in the hyperfine splitting of nuclear quadrupole resonance ( NQR ) spectrum of a nucleus...located at a noncentrosymmetric site in a molecule or in crystal lattice. Thus, the linear electric field effect on the ESR and NQR hyperfine splitting...the electric field effects on ESR and NQR hyperfine couplings. Theoretical methods to calculate the electric field effects within Hartree-Fock
Quantum control and quantum tomography on neutral atom qudits
NASA Astrophysics Data System (ADS)
Sosa Martinez, Hector
Neutral atom systems are an appealing platform for the development and testing of quantum control and measurement techniques. This dissertation presents experimental investigations of control and measurement tools using as a testbed the 16-dimensional hyperfine manifold associated with the electronic ground state of cesium atoms. On the control side, we present an experimental realization of a protocol to implement robust unitary transformations in the presence of static and dynamic perturbations. We also present an experimental realization of inhomogeneous quantum control. Specifically, we demonstrate our ability to perform two different unitary transformations on atoms that see different light shifts from an optical addressing field. On the measurement side, we present experimental realizations of quantum state and process tomography. The state tomography project encompasses a comprehensive evaluation of several measurement strategies and state estimation algorithms. Our experimental results show that in the presence of experimental imperfections, there is a clear tradeoff between accuracy, efficiency and robustness in the reconstruction. The process tomography project involves an experimental demonstration of efficient reconstruction by using a set of intelligent probe states. Experimental results show that we are able to reconstruct unitary maps in Hilbert spaces with dimension ranging from d=4 to d=16. To the best of our knowledge, this is the first time that a unitary process in d=16 is successfully reconstructed in the laboratory.
Conformation and hydrogen bonding in 4-Aminobutanol
NASA Astrophysics Data System (ADS)
Khalil, Andrew S.; Duguay, Taylor M.; Lavrich, Richard J.
2017-06-01
Rotational spectra of the most abundant and four 13C isotopomers of 4-aminobutanol have been recorded in natural abundance using a Fourier-transform microwave spectrometer. For the most abundant isotopomer, 56 hyperfine components from the fifteen a- and b-type transitions measured were fit to the quadupole coupling constants, χaa = -3.843(3) MHz, χbb = 1.971(3) MHz. Rotational and centrifugal distortion constants determined from fits of the resulting unsplit line centers to the Watson A-reduction Hamiltonian are A = 4484.893(3) MHz, B = 2830.721(1) MHz, C = 1942.9710(3) MHz, ΔJ = 0.98(3) kHz, ΔJK = 1.4(1) kHz, ΔK = - 2.6(5) kHz, δJ = 0.27(1) kHz, and δK = 1.7(1) kHz. Between nine and eleven rotational transitions were measured for the 13C isotopes and rotational constants were determined by fixing the distortion constants to the values found for the normal isotope. The five sets of moments of inertia were used to determine the 4-aminobutanol substitution structure as well to perform a least-squares fit of the lowest energy ab initio structure. The heavy atom coordinates determined from these two methods are in excellent agreement. The conformation of 4-aminobutanol is stabilized by an intramolecular hydrogen bond from the alcohol proton to amino nitrogen with a resulting hydrogen bond distance of 1.891 Å. The experimental structure is consistent with the lowest energy ab initio [MP2/6-311++G(d,p)] structure.
Rajapakshe, Asha; Astashkin, Andrei V.; Klein, Eric L.; Reichmann, Debora; Mendel, Ralf R.; Bittner, Florian; Enemark, John H.
2011-01-01
Mitochondrial amidoxime reducing components (mARC-1 and mARC-2) represent a novel group of Mo containing enzymes in eukaryotes. These proteins form the catalytic part of a three-component enzyme complex known to be responsible for the reductive activation of several N-hydroxylated prodrugs. No X-ray crystal structures are available for these enzymes as yet. Previous biochemical investigation by B. Wahl et al. (J. Biol. Chem. 285 (2010) 37847–37859) has revealed that two of the Mo coordination positions are occupied by sulfur atoms from a pyranopterindithiolate (molybdopterin, MPT) cofactor. In this work, we have used continuous wave and pulsed electron paramagnetic resonance (EPR) and density functional theoretical (DFT) calculations to determine the nature of remaining ligands in the Mo(V) state of the active site of mARC-2. The experiments with samples in D2O have identified the exchangeable equatorial ligand as a hydroxyl group. The experiments on samples in H217O-enriched buffer have shown the presence of a slowly exchangeable axial oxo ligand. The comparison of the experimental 1H and 17O hyperfine interactions with those calculated using DFT has shown that the remaining non-exchangeable equatorial ligand is, most likely, protein-derived, and that the possibility of an equatorial oxo ligand can be excluded. PMID:21916412
NASA Astrophysics Data System (ADS)
Yu, Geng-Hua; Yan, Hui; Zhong, Jia-Qi; Liu, Hong; Zhu, Xiao-Ling; Yang, Wei
2018-01-01
The experimental measurements of the isotope shifts (ISs) for the 1S0-3P1 spin-forbidden transition at 791 nm in neutral barium have been carried out with a thermal barium atom beam. The hyperfine structure (HFS) constants a and b of the odd isotopes 137Ba and 135Ba for this transition have been extracted from the experimental results: a(137Ba) = 1149.9(1.0) MHz, b(137Ba)= -41.6(0.5) MHz, a(135Ba) = 1028.0(1.0) MHz, b(135Ba) = -27.5(0.5) MHz. The measured IS results with the reference isotope 138Ba are 183.7(1.0) MHz (137Ba-138Ba), 108.5(0.3) MHz (136Ba-138Ba) and 218.9(1.0) MHz (135Ba-138Ba). Our IS measurements are in good agreement with the previous experiments. The field shift (FS) factor Fk and the mass shift (MS) coefficient ΔKMS for this spin-forbidden transition have be determined experimentally as -3.19(4) GHz ṡ fm-2 and -242(20) GHz ṡ amu, respectively. The results provided herein could be used for further checks theoretically and experimentally, and could also contribute to the study on the nuclear structure of the barium isotopic nuclei.
Massiczek, O.; Friedreich, S.; Juhász, B.; Widmann, E.; Zmeskal, J.
2011-01-01
The design and properties of a new cryogenic set-up for laser–microwave–laser hyperfine structure spectroscopy of antiprotonic helium – an experiment performed at the CERN-Antiproton Decelerator (AD), Geneva, Switzerland – are described. Similar experiments for 4He have been performed at the AD for several years. Due to the usage of a liquid helium operated cryostat and therefore necessary refilling of coolants, a loss of up to 10% beamtime occurred. The decision was made to change the cooling system to a closed-circuit cryocooler. New hermetically sealed target cells with minimised 3He gas volume and different dimensions of the microwave resonator for measuring the 3He transitions were needed. A new set-up has been designed and tested at Stefan Meyer Institute in Vienna before being used for the 2009 and 2010 beamtimes at the AD. PMID:22267883
NASA Astrophysics Data System (ADS)
Henriksen, Dan; Tifrea, Ionel
2012-02-01
We investigate the dynamic nuclear polarization as it results from the hyperfine coupling between nonequilibrium electronic spins and nuclear spins in semiconductor nanostructures. The natural confinement provided by low dimensional nanostructures is responsible for an efficient nuclear spin - electron spin hyperfine coupling [1] and for a reduced value of the nuclear spin diffusion constant [2]. In the case of optical pumping, the induced nuclear spin polarization is position dependent even in the presence of nuclear spin diffusion. This effect should be measurable via optically induced nuclear magnetic resonance or time-resolved Faraday rotation experiments. We discuss the implications of our calculations for the case of GaAs quantum well structures.[4pt] [1] I. Tifrea and M. E. Flatt'e, Phys. Rev. B 84, 155319 (2011).[0pt] [2] A. Malinowski and R. T. Harley, Solid State Commun. 114, 419 (2000).
Hyperfine Structure and Exchange Narrowing of Paramagnetic Resonance
DOE R&D Accomplishments Database
Townes, C. H.; Turkevich, J.
1950-01-01
Discussion of electronic paramagnetic resonance for the free radical ?, ?-diphenyl ?-picryl hydrazyl as observed by its effect on the transmission of microwave through a TE{sub 01} cavity with a small amount of the free radical placed approximately on the axis of the cavity; the half-width of this resonance at half maximum absorption was 1.45 oersteds.
EPR and FTIR spectroscopic studies of MO-Al2O3-Bi2O3-B2O3-MnO2(M = Pb, Zn and Cd) glasses
NASA Astrophysics Data System (ADS)
Lalitha Phani, A. V.; Sekhar, K. Chandra; Chakradhar, R. P. S.; Narasimha Chary, M.; Shareefuddin, Md
2018-03-01
Glasses of the system (30-x)MO-xAl2O3-15Bi2O3-54.5B2O3-0.5MnO2 [M = Pb, Zn & Cd] (x = 0, 5, 10 & 15 mol%) were prepared by the normal melt quenching method. The amorphous nature of the prepared glasses was confirmed by the XRD studies. The EPR and FTIR studies were carried out at room temperature (RT). The EPR spectra exhibited three resonance signals at g ≈ 2.0 with a hyperfine structure, an absorption around g = 4.3 and a distinct shoulder at g = 3.3. Deconvoluted spectra were drawn for g ≈ 2.0 to resolve the six hyperfine lines. The electron paramagnetic resonance signal at g ≈ 2.0 indicates that the Mn2+ ions are in nearly perfectly octahedral symmetry. The low field signals at g = 3.3 and g = 4.3 are attributed to the Mn2+ ion which are in distorted rhombic symmetries. The hyperfine (HF) splitting constant (A) values suggested that the bonding between Mn2+ ions and its ligands is ionic in nature. The presence of BO3 and BO4 borate units, metal oxide cation units, Mn2+ and Bi-O bond vibrations in BiO3 units were noticed from the FTIR spectra.
NASA Astrophysics Data System (ADS)
Box, Harold C.; Budzinski, Edwin E.; Freund, Harold G.
1984-12-01
It is shown that various radicals exhibiting diverse ESR and ENDOR spectral characteristics are nonetheless a closely related family of alkoxy radicals. The relationship is established by correlating the g tensor with crystal structure and by relating dihedral angles inferred from proton hyperfine couplings to dihedral angles inferred from the g tensor and crystal structure. The analysis also serves to demonstrate that an ESR absorption observed in x-irradiated single crystals of uridine 5'-monophosphate is due to an alkoxy radical.
Hyperfine structure and isotope shift analysis of singly ionized titanium
NASA Astrophysics Data System (ADS)
Bouazza, Safa
2013-04-01
The even-parity low configuration system of Ti II has been considered on the basis of the experimental data found in the literature, and its fine structure has been reanalyzed by simultaneous parameterization of one- and two-body interactions for the model space (3d + 4s)3. Furthermore, the main one-electron hyperfine structure parameters for these configurations have been evaluated. For instance, for 3d24s1, a_{3{\\rm{d}}}^{01} = - {\\rm{63}}.{\\rm{2}}\\left( {{\\rm{3}}.{\\rm{1}}} \\right)\\,{\\rm{MHz}} and a_{4{\\rm{s}}}^{10} = - {\\rm{984}}.{\\rm{1}}\\left( {{\\rm{7}}.{\\rm{1}}} \\right)\\,{\\rm{MHz}} . Field shifts (FS) and specific mass shifts (SMS) of the main Ti II configurations are deduced by means of ab initio estimates combined with a small quantity of experimental isotope shift data available in the literature: FS(3d3) = -63.3 MHz, FS(3d24p1) = -49.7 MHz, FS(3d14s2) = 98.2 MHz, FS(4s24P1) = 163.4 MHz and SMS(3d3) = 1453.3 MHz, SMS(3d14s2) = -2179.7 MHz, …, referred to 3d24s1 for the pair Ti46-Ti48.
Agarwal, A; Sheoran, A; Sanghi, S; Bhatnagar, V; Gupta, S K; Arora, M
2010-03-01
Glasses with compositions xNb(2)O(5).(30-x)M(2)O.69B(2)O(3) (where M=Li, Na, K; x=0, 4, 8 mol%) doped with 1 mol% V(2)O(5) have been prepared using normal melt quench technique. The IR transmission spectra of the glasses have been studied over the range 400-4000 cm(-1). The changes caused by the addition of Nb(2)O(5) on the structure of these glasses have been reported. The electron paramagnetic resonance spectra of VO(2+) ions in these glasses have been recorded in X-band (9.14 GHz) at room temperature (300 K). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) due to V(4+) ions which exist as VO(2+) ions in octahedral coordination with a tetragonal compression in the present glasses. The tetragonality of V(4+)O(6) complex decreases with increasing concentration of Nb(2)O(5). The 3d(xy) orbit contracts with increase in Nb(2)O(5):M(2)O ratio. Values of the theoretical optical basicity, Lambda(th), have also been reported. Copyright 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Herlitschke, M.; Disch, S.; Sergueev, I.; Schlage, K.; Wetterskog, E.; Bergström, L.; Hermann, R. P.
2016-04-01
The manuscript reports the investigation of spin disorder in maghemite nanoparticles of different shape by a combination of polarized small-angle neutron scattering (SANSPOL) and nuclear forward scattering (NFS) techniques. Both methods are sensitive to magnetization on the nanoscale. SANSPOL allows for investigation of the particle morphology and spatial magnetization distribution and NFS extends this nanoscale information to the atomic scale, namely the orientation of the hyperfine field experienced by the iron nuclei. The studied nanospheres and nanocubes with diameters of 7.4 nm and 10.6 nm, respectively, exhibit a significant spin disorder. This effect leads to a reduction of the magnetization to 44% and 58% of the theoretical maghemite bulk value, observed consistently by both techniques.
Atomic vapor laser isotope separation of lead-210 isotope
Scheibner, K.F.; Haynam, C.A.; Johnson, M.A.; Worden, E.F.
1999-08-31
An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207. 5 figs.
Atomic vapor laser isotope separation of lead-210 isotope
Scheibner, Karl F.; Haynam, Christopher A.; Johnson, Michael A.; Worden, Earl F.
1999-01-01
An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207.