Sample records for hyperfine coupling hfc

  1. The Mössbauer Parameters of the Proximal Cluster of Membrane-Bound Hydrogenase Revisited: A Density Functional Theory Study.

    PubMed

    Tabrizi, Shadan Ghassemi; Pelmenschikov, Vladimir; Noodleman, Louis; Kaupp, Martin

    2016-01-12

    An unprecedented [4Fe-3S] cluster proximal to the regular [NiFe] active site has recently been found to be responsible for the ability of membrane-bound hydrogenases (MBHs) to oxidize dihydrogen in the presence of ambient levels of oxygen. Starting from proximal cluster models of a recent DFT study on the redox-dependent structural transformation of the [4Fe-3S] cluster, (57)Fe Mössbauer parameters (electric field gradients, isomer shifts, and nuclear hyperfine couplings) were calculated using DFT. Our results revise the previously reported correspondence of Mössbauer signals and iron centers in the [4Fe-3S](3+) reduced-state proximal cluster. Similar conflicting assignments are also resolved for the [4Fe-3S](5+) superoxidized state with particular regard to spin-coupling in the broken-symmetry DFT calculations. Calculated (57)Fe hyperfine coupling (HFC) tensors expose discrepancies in the experimental set of HFC tensors and substantiate the need for additional experimental work on the magnetic properties of the MBH proximal cluster in its reduced and superoxidized redox states.

  2. Density functional calculations of (55)Mn, (14)N and (13)C electron paramagnetic resonance parameters support an energetically feasible model system for the S(2) state of the oxygen-evolving complex of photosystem II.

    PubMed

    Schinzel, Sandra; Schraut, Johannes; Arbuznikov, Alexei V; Siegbahn, Per E M; Kaupp, Martin

    2010-09-10

    Metal and ligand hyperfine couplings of a previously suggested, energetically feasible Mn(4)Ca model cluster (SG2009(-1)) for the S(2) state of the oxygen-evolving complex (OEC) of photosystem II (PSII) have been studied by broken-symmetry density functional methods and compared with other suggested structural and spectroscopic models. This was carried out explicitly for different spin-coupling patterns of the S=1/2 ground state of the Mn(III)(Mn(IV))(3) cluster. By applying spin-projection techniques and a scaling of the manganese hyperfine couplings, computation of the hyperfine and nuclear quadrupole coupling parameters allows a direct evaluation of the proposed models in comparison with data obtained from the simulation of EPR, ENDOR, and ESEEM spectra. The computation of (55)Mn hyperfine couplings (HFCs) for SG2009(-1) gives excellent agreement with experiment. However, at the current level of spin projection, the (55)Mn HFCs do not appear sufficiently accurate to distinguish between different structural models. Yet, of all the models studied, SG2009(-1) is the only one with the Mn(III) site at the Mn(C) center, which is coordinated by histidine (D1-His332). The computed histidine (14)N HFC anisotropy for SG2009(-1) gives much better agreement with ESEEM data than the other models, in which Mn(C) is an Mn(IV) site, thus supporting the validity of the model. The (13)C HFCs of various carboxylates have been compared with (13)C ENDOR data for PSII preparations with (13)C-labelled alanine.

  3. l-Tryptophan Radical Cation Electron Spin Resonance Studies: Connecting Solution-derived Hyperfine Coupling Constants with Protein Spectral Interpretations

    PubMed Central

    Connor, Henry D.; Sturgeon, Bradley E.; Mottley, Carolyn; Sipe, Herbert J.; Mason, Ronald P.

    2009-01-01

    Fast-flow electron spin resonance (ESR) spectroscopy has been used to detect a free radical formed from the reaction of l-tryptophan with Ce4+ in an acidic aqueous environment. Computer simulations of the ESR spectra from l-tryptophan and several isotopically modified forms strongly support the conclusion that the l-tryptophan radical cation has been detected by ESR for the first time. The hyperfine coupling constants (HFCs) determined from the well-resolved isotropic ESR spectra support experimental and computational efforts to understand l-tryptophan's role in protein catalysis of oxidation-reduction processes. l-tryptophan HFCs facilitated the simulation of fast-flow ESR spectra of free radicals from two related compounds, tryptamine and 3-methylindole. Analysis of these three compounds' β-methylene hydrogen HFC data along with equivalent l-tyrosine data has led to a new computational method that can distinguish between these two amino acid free radicals in proteins without dependence on isotope labeling, electron nuclear double resonance or high-field ESR. This approach also produces geometric parameters (dihedral angles for the β-methylene hydrogens) which should facilitate protein site assignment of observed l-tryptophan radicals as has been done for l-tyrosine radicals. PMID:18433127

  4. Hyperfine coupling constants of the nitrogen and phosphorus atoms: A challenge for exact-exchange density-functional and post-Hartree-Fock methods

    NASA Astrophysics Data System (ADS)

    Kaupp, Martin; Arbuznikov, Alexei V.; Heßelmann, Andreas; Görling, Andreas

    2010-05-01

    The isotropic hyperfine coupling constants of the free N(S4) and P(S4) atoms have been evaluated with high-level post-Hartree-Fock and density-functional methods. The phosphorus hyperfine coupling presents a significant challenge to both types of methods. With large basis sets, MP2 and coupled-cluster singles and doubles calculations give much too small values for the phosphorus atom. Triple excitations are needed in coupled-cluster calculations to achieve reasonable agreement with experiment. None of the standard density functionals reproduce even the correct sign of this hyperfine coupling. Similarly, the computed hyperfine couplings depend crucially on the self-consistent treatment in exact-exchange density-functional theory within the optimized effective potential (OEP) method. Well-balanced auxiliary and orbital basis sets are needed for basis-expansion exact-exchange-only OEP approaches to come close to Hartree-Fock or numerical OEP data. Results from the localized Hartree-Fock and Krieger-Li-Iafrate approximations deviate notably from exact OEP data in spite of very similar total energies. Of the functionals tested, only full exact-exchange methods augmented by a correlation functional gave at least the correct sign of the P(S4) hyperfine coupling but with too low absolute values. The subtle interplay between the spin-polarization contributions of the different core shells has been analyzed, and the influence of even very small changes in the exchange-correlation potential could be identified.

  5. Hyperfine coupling of the iodine {\\boldsymbol{D}}{0}_{{\\boldsymbol{u}}}^{+} and β1 g ion-pair states

    NASA Astrophysics Data System (ADS)

    Baturo, V. V.; Cherepanov, I. N.; Lukashov, S. S.; Petrov, A. N.; Poretsky, S. A.; Pravilov, A. M.

    2018-05-01

    Detailed studies of I2(β1 g , v β = 13, J β ∼ D{0}u+, v D = 12, J D and D, 48, J D ∼ β, 47, J β ) rovibronic state coupling have been carried out using two-step two-color, hν 1 + hν 2 and hν 1 + 2hν 2, optical–optical double resonance excitation schemes, respectively. The hyperfine interaction satisfying the | {{Δ }}J| = 0, 1 selection rules (magnetic-dipole interaction) has been observed. No electric-quadrupole hyperfine coupling (| {{Δ }}J| = 2) has been found. The dependences of ratios of luminescence intensities from the rovibronic states populated due to the hyperfine coupling to those from optically populated ones on energy gaps between these states have been experimentally determined. The matrix elements as well as the hyperfine structure constant have been obtained using these dependences. It is shown that they increase slightly with the vibrational quantum number of the states.

  6. Hyperfine structure of 2Σ molecules containing alkaline-earth-metal atoms

    NASA Astrophysics Data System (ADS)

    Aldegunde, Jesus; Hutson, Jeremy M.

    2018-04-01

    Ultracold molecules with both electron spin and an electric dipole moment offer new possibilities in quantum science. We use density-functional theory to calculate hyperfine coupling constants for a selection of molecules important in this area, including RbSr, LiYb, RbYb, CaF, and SrF. We find substantial hyperfine coupling constants for the fermionic isotopes of the alkaline-earth-metal and Yb atoms. We discuss the hyperfine level patterns and Zeeman splittings expected for these molecules. The results will be important both to experiments aimed at forming ultracold open-shell molecules and to their applications.

  7. Scanning nuclear resonance imaging of a hyperfine-coupled quantum Hall system.

    PubMed

    Hashimoto, Katsushi; Tomimatsu, Toru; Sato, Ken; Hirayama, Yoshiro

    2018-06-07

    Nuclear resonance (NR) is widely used to detect and characterise nuclear spin polarisation and conduction electron spin polarisation coupled by a hyperfine interaction. While the macroscopic aspects of such hyperfine-coupled systems have been addressed in most relevant studies, the essential role of local variation in both types of spin polarisation has been indicated in 2D semiconductor systems. In this study, we apply a recently developed local and highly sensitive NR based on a scanning probe to a hyperfine-coupled quantum Hall (QH) system in a 2D electron gas subject to a strong magnetic field. We succeed in imaging the NR intensity and Knight shift, uncovering the spatial distribution of both the nuclear and electron spin polarisation. The results reveal the microscopic origin of the nonequilibrium QH phenomena, and highlight the potential use of our technique in microscopic studies on various electron spin systems as well as their correlations with nuclear spins.

  8. High Resolution Far Infrared Spectroscopy of HFC-134a at Cold Temperatures

    NASA Astrophysics Data System (ADS)

    Wong, Andy; Medcraft, Chris; Thompson, Christopher; Robertson, Evan Gary; Appadoo, Dominique; McNaughton, Don

    2016-06-01

    Since the signing of the Montreal protocol, long-lived chlorofluorocarbons have been banned due to their high ozone depleting potential. In order to minimise the effect of such molecules, hydrofluorocarbons (HFCs) were synthesized as replacement molecules to be used as refrigerants and foam blowing agents. HFC-134a, or 1,1,1,2-tetrafluoroethane, is one of these molecules. Although HFCs do not cause ozone depletion, they are typically strong absorbers within the 10 micron atmospheric window, which lead to high global warming potentials. A high resolution FT-IR analysis of the νb{8} band (near 665 wn) of HFC-134a has been performed to help understand the intermode coupling between the νb{8} vibrational state and unobserved dark states.

  9. Electron paramagnetic resonance of a 10B-containing heterocyclic radical

    NASA Astrophysics Data System (ADS)

    Eaton, Sandra S.; Ngendahimana, Thacien; Eaton, Gareth R.; Jupp, Andrew R.; Stephan, Douglas W.

    2018-05-01

    Electron paramagnetic resonance measurements for a 10B-containing heterocyclic phenanthrenedione radical, (C6F5)2B(O2C14H8), were made at X-band in 9:1 toluene:dichloromethane from 10 to 293 K and in toluene from 180 to 293 K. In well-deoxygenated 0.1 mM toluene solution at room temperature hyperfine couplings to 10B, four pairs of protons and five pairs of fluorines contribute to a continuous wave spectrum with many resolved lines. Hyperfine couplings were adjusted to provide the best fit for spectra of the radical enriched in 10B and the analogous radical synthesized with 10,11B in natural abundance, resulting in small refinements of the hyperfine coupling constants previously reported for the natural abundance sample. Electron spin relaxation rates at temperatures between 15 and 293 K were similar for samples containing 10B and natural isotope abundance. Analysis of electron spin echo envelope modulation and hyperfine correlation spectroscopy data at 80 K found Axx = -7.5 ± 0.3, Ayy = -8.5 ± 0.3, and Azz = -10.8 ± 0.3 MHz for 11B, which indicates small spin density on the boron. The spin echo and hyperfine spectroscopy data for the 10B -containing radical are consistent with the factor of 2.99 smaller hyperfine values for 10B than for 11B.

  10. Spin-state transfer in laterally coupled quantum-dot chains with disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Song; Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026; Bayat, Abolfazl

    2010-08-15

    Quantum dot arrays are a promising medium for transferring quantum information between two distant points without resorting to mobile qubits. Here we study the two most common disorders, namely hyperfine interaction and exchange coupling fluctuations, in quantum dot arrays and their effects on quantum communication through these chains. Our results show that the hyperfine interaction is more destructive than the exchange coupling fluctuations. The average optimal time for communication is not affected by any disorder in the system and our simulations show that antiferromagnetic chains are much more resistive than the ferromagnetic ones against both kind of disorders. Even whenmore » time modulation of a coupling and optimal control is employed to improve the transmission, the antiferromagnetic chain performs much better. We have assumed the quasistatic approximation for hyperfine interaction and time-dependent fluctuations in the exchange couplings. Particularly for studying exchange coupling fluctuations we have considered the static disorder, white noise, and 1/f noise.« less

  11. Theoretical studies of alkyl radicals in the NaY and HY zeolites.

    PubMed

    Ghandi, Khashayar; Zahariev, Federico E; Wang, Yan Alexander

    2005-08-18

    Interplay of quantum mechanical calculations and experimental data on hyperfine coupling constants of ethyl radical in zeolites at several temperatures was engaged to study the geometries and binding energies and to predict the temperature dependence of hyperfine splitting of a series of alkyl radicals in zeolites for the first time. The main focus is on the hyperfine interaction of alkyl radicals in the NaY and HY zeolites. The hyperfine splitting for neutral free radicals and free radical cations is predicted for different zeolite environments. This information can be used to establish the nature of the muoniated alkyl radicals in the NaY and HY zeolites via muSR experiments. The muon hyperfine coupling constants of the ethane radical cation in these zeolites are very large with relatively little dependence on temperature. It was found that the intramolecular dynamics of alkyl free radicals are only weakly affected by their strong binding to zeolites. In contrast, the substrate binding has a significant effect on their intermolecular dynamics.

  12. Electron-Nuclear Quantum Information Processing

    DTIC Science & Technology

    2008-11-13

    quantum information processing that exploits the anisotropic hyperfine coupling. This scheme enables universal control over a 1-electron, N-nuclear spin...exploits the anisotropic hyperfine coupling. This scheme enables universal control over a 1-electron, N-nuclear spin system, addressing only a...sample of irradiated malonic acid. (a) Papers published in peer-reviewed journals (N/A for none) Universal control of nuclear spins via anisotropic

  13. Nuclear spin noise in the central spin model

    NASA Astrophysics Data System (ADS)

    Fröhling, Nina; Anders, Frithjof B.; Glazov, Mikhail

    2018-05-01

    We study theoretically the fluctuations of the nuclear spins in quantum dots employing the central spin model which accounts for the hyperfine interaction of the nuclei with the electron spin. These fluctuations are calculated both with an analytical approach using homogeneous hyperfine couplings (box model) and with a numerical simulation using a distribution of hyperfine coupling constants. The approaches are in good agreement. The box model serves as a benchmark with low computational cost that explains the basic features of the nuclear spin noise well. We also demonstrate that the nuclear spin noise spectra comprise a two-peak structure centered at the nuclear Zeeman frequency in high magnetic fields with the shape of the spectrum controlled by the distribution of the hyperfine constants. This allows for direct access to this distribution function through nuclear spin noise spectroscopy.

  14. Magnitude of finite-nucleus-size effects in relativistic density functional computations of indirect NMR nuclear spin-spin coupling constants.

    PubMed

    Autschbach, Jochen

    2009-09-14

    A spherical Gaussian nuclear charge distribution model has been implemented for spin-free (scalar) and two-component (spin-orbit) relativistic density functional calculations of indirect NMR nuclear spin-spin coupling (J-coupling) constants. The finite nuclear volume effects on the hyperfine integrals are quite pronounced and as a consequence they noticeably alter coupling constants involving heavy NMR nuclei such as W, Pt, Hg, Tl, and Pb. Typically, the isotropic J-couplings are reduced in magnitude by about 10 to 15 % for couplings between one of the heaviest NMR nuclei and a light atomic ligand, and even more so for couplings between two heavy atoms. For a subset of the systems studied, viz. the Hg atom, Hg(2) (2+), and Tl--X where X=Br, I, the basis set convergence of the hyperfine integrals and the coupling constants was monitored. For the Hg atom, numerical and basis set calculations of the electron density and the 1s and 6s orbital hyperfine integrals are directly compared. The coupling anisotropies of TlBr and TlI increase by about 2 % due to finite-nucleus effects.

  15. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, Ahmad Y.; Jensen, Per, E-mail: jensen@uni-wuppertal.de; Yachmenev, Andrey

    2015-12-28

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH{sub 3} radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH{sub 3} in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in verymore » good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.« less

  16. Calculated hyperfine coupling constants for 5,5-dimethyl-1-pyrroline N-oxide radical products in water and benzene

    NASA Astrophysics Data System (ADS)

    Nardali, Ş.; Ucun, F.; Karakaya, M.

    2017-11-01

    The optimized structures of some radical adducts of 5,5-dimethyl-1-pyrroline N-oxide were computed by different methods on ESR spectra. As trapped radicals, H, N3, NH2, CH3, CCl3, OOH in water and F, OH, CF3, CH2OH, OC2H5 in benzene solutions were used. The calculated isotropic hyperfine coupling constants of all the trapped radicals were compared with the corresponding experimental data. The hyperfine coupling constant due to the β proton of the nitroxide radical was seen to be consist with the McConnel's relation αβ = B 0 + B 1cos2θ and, to be effected with the opposite spin density of oxygen nucleus bonded to the nitrogen. It was concluded that in hyperfine calculations the DFT(B3PW91)/LanL2DZ level is superior computational quantum model relative to the used other level. Also, the study has been enriched by the computational of the optimized geometrical parameters, the hyper conjugative interaction energies, the atomic charges and spin densities for all the radical adducts.

  17. Elucidation of electronic structure by the analysis of hyperfine interactions: The MnH A 7Π-X 7Sigma + (0,0) band

    NASA Astrophysics Data System (ADS)

    Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.

    1991-08-01

    We present a complete analysis of the hyperfine structure of the MnH A 7Π-X 7Σ+ (0,0) band near 5680 Å, studied with sub-Doppler resolution by intermodulated fluorescence spectroscopy. Magnetic hyperfine interactions involving both the 55Mn (I=5/2) and 1H (I=1/2) nuclear spins are observed as well as 55Mn electric quadrupole effects. The manganese Fermi contact interaction in the X 7Σ+ state is the dominant contributor to the observed hyperfine splittings; the ΔF=0, ΔN=0, ΔJ=±1 matrix elements of this interaction mix the electron spin components of the ground state quite strongly at low N, destroying the ``goodness'' of J as a quantum number and inducing rotationally forbidden, ΔJ=±2 and ±3 transitions. The hyperfine splittings of over 50 rotational transitions covering all 7 spin components of both states were analyzed and fitted by least squares, allowing the accurate determination of 14 different hyperfine parameters. Using single electronic configurations to describe the A 7Π and X 7Σ+ states and Herman-Skillman atomic radial wave functions to represent the molecular orbitals, we calculated a priori values for the 55Mn and 1H hyperfine parameters which agree closely with experiment. We show that the five high-spin coupled Mn 3d electrons do not contribute to the manganese hyperfine structure but are responsible for the observed proton magnetic dipolar couplings. Furthermore, the results suggest that the Mn 3d electrons are not significantly involved in bonding and demonstrate that the molecular hyperfine interactions may be quantitatively understood using simple physical interpretations.

  18. Hyperfine field and magnetic structure in the B phase of CeCoIn5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Matthias J; Curro, Nicholas J; Young, Ben - Li

    2009-01-01

    We re-analyze Nuclear Magnetic Resonance (NMR) spectra observed at low temperatures and high magnetic fields in the field-induced B-phase of CeCoIn{sub 5}. The NMR spectra are consistent with incommensurate antiferromagnetic order of the Ce magnetic moments. However, we find that the spectra of the In(2) sites depend critically on the direction of the ordered moments, the ordering wavevector and the symmetry of the hyperfine coupling to the Ce spins. Assuming isotropic hyperfine coupling, the NMR spectra observed for H {parallel} [100] are consistent with magnetic order with wavevector Q = {pi}(1+{delta}/a, 1/a, 1/c) and Ce moments ordered antiferromagnetically along themore » [100] direction in real space. If the hyperfine coupling has dipolar symmetry, then the NMR spectra require Ce moments along the [001] direction. The dipolar scenario is also consistent with recent neutron scattering measurements that find an ordered moment of 0.15{micro}{sub B} along [001] and Q{sub n} = {pi}(1+{delta}/a, 1+{delta}c, 1/c) with incommensuration {delta} = 0.12 for field H {parallel} [1{bar 1}0]. Using these parameters, we find that the hyperfine field is consistent with both experiments. We speculate that the B phase of CeCoIn{sub 5} represents an intrinsic phase of modulated superconductivity and antiferromagnetism that can only emerge in a highly clean system.« less

  19. Solid-state EPR strategies for the structural characterization of paramagnetic NO adducts of frustrated Lewis pairs (FLPs)

    NASA Astrophysics Data System (ADS)

    de Oliveira, Marcos; Wiegand, Thomas; Elmer, Lisa-Maria; Sajid, Muhammad; Kehr, Gerald; Erker, Gerhard; Magon, Claudio José; Eckert, Hellmut

    2015-03-01

    Anisotropic interactions present in three new nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs) have been characterized by continuous-wave (cw) and pulsed X-band EPR spectroscopies in solid FLP-hydroxylamine matrices at 100 K. Anisotropic g-tensor values and 11B, 14N, and 31P hyperfine coupling tensor components have been extracted from continuous-wave lineshape analyses, electron spin echo envelope modulation (ESEEM), and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments with the help of computer simulation techniques. Suitable fitting constraints are developed on the basis of density functional theory (DFT) calculations. These calculations reveal that different from the situation in standard nitroxide radicals (TEMPO), the g-tensors are non-coincident with any of the nuclear hyperfine interaction tensors. The determination of these interaction parameters turns out to be successful, as the cw- and pulse EPR experiments are highly complementary in informational content. While the continuous-wave lineshape is largely influenced by the anisotropic hyperfine coupling to 14N and 31P, the ESEEM and HYSCORE spectra contain important information about the 11B hyperfine coupling and nuclear electric quadrupolar interaction. The set of cw- and pulsed EPR experiments, with fitting constraints developed by DFT calculations, defines an efficient strategy for the structural analysis of paramagnetic FLP adducts.

  20. Solid-state EPR strategies for the structural characterization of paramagnetic NO adducts of frustrated Lewis pairs (FLPs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, Marcos de; Magon, Claudio José; Wiegand, Thomas

    2015-03-28

    Anisotropic interactions present in three new nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs) have been characterized by continuous-wave (cw) and pulsed X-band EPR spectroscopies in solid FLP-hydroxylamine matrices at 100 K. Anisotropic g-tensor values and {sup 11}B, {sup 14}N, and {sup 31}P hyperfine coupling tensor components have been extracted from continuous-wave lineshape analyses, electron spin echo envelope modulation (ESEEM), and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments with the help of computer simulation techniques. Suitable fitting constraints are developed on the basis of density functional theory (DFT) calculations. These calculations reveal that differentmore » from the situation in standard nitroxide radicals (TEMPO), the g-tensors are non-coincident with any of the nuclear hyperfine interaction tensors. The determination of these interaction parameters turns out to be successful, as the cw- and pulse EPR experiments are highly complementary in informational content. While the continuous-wave lineshape is largely influenced by the anisotropic hyperfine coupling to {sup 14}N and {sup 31}P, the ESEEM and HYSCORE spectra contain important information about the {sup 11}B hyperfine coupling and nuclear electric quadrupolar interaction. The set of cw- and pulsed EPR experiments, with fitting constraints developed by DFT calculations, defines an efficient strategy for the structural analysis of paramagnetic FLP adducts.« less

  1. Using Hyperfine Electron Paramagnetic Resonance Spectroscopy to Define the Proton-Coupled Electron Transfer Reaction at Fe-S Cluster N2 in Respiratory Complex I.

    PubMed

    Le Breton, Nolwenn; Wright, John J; Jones, Andrew J Y; Salvadori, Enrico; Bridges, Hannah R; Hirst, Judy; Roessler, Maxie M

    2017-11-15

    Energy-transducing respiratory complex I (NADH:ubiquinone oxidoreductase) is one of the largest and most complicated enzymes in mammalian cells. Here, we used hyperfine electron paramagnetic resonance (EPR) spectroscopic methods, combined with site-directed mutagenesis, to determine the mechanism of a single proton-coupled electron transfer reaction at one of eight iron-sulfur clusters in complex I, [4Fe-4S] cluster N2. N2 is the terminal cluster of the enzyme's intramolecular electron-transfer chain and the electron donor to ubiquinone. Because of its position and pH-dependent reduction potential, N2 has long been considered a candidate for the elusive "energy-coupling" site in complex I at which energy generated by the redox reaction is used to initiate proton translocation. Here, we used hyperfine sublevel correlation (HYSCORE) spectroscopy, including relaxation-filtered hyperfine and single-matched resonance transfer (SMART) HYSCORE, to detect two weakly coupled exchangeable protons near N2. We assign the larger coupling with A( 1 H) = [-3.0, -3.0, 8.7] MHz to the exchangeable proton of a conserved histidine and conclude that the histidine is hydrogen-bonded to N2, tuning its reduction potential. The histidine protonation state responds to the cluster oxidation state, but the two are not coupled sufficiently strongly to catalyze a stoichiometric and efficient energy transduction reaction. We thus exclude cluster N2, despite its proton-coupled electron transfer chemistry, as the energy-coupling site in complex I. Our work demonstrates the capability of pulse EPR methods for providing detailed information on the properties of individual protons in even the most challenging of energy-converting enzymes.

  2. First determination of ground state electromagnetic moments of Fe 53

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, A. J.; Minamisono, K.; Rossi, D. M.

    Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less

  3. Polaron spin echo envelope modulations in an organic semiconducting polymer

    DOE PAGES

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2017-06-01

    Here, we present a theoretical analysis of the electron spin echo envelope modulation (ESEEM) spectra of polarons in semiconducting π -conjugated polymers. We show that the contact hyperfine coupling and the dipolar interaction between the polaron and the proton spins give rise to different features in the ESEEM spectra. Our theory enables direct selective probe of different groups of nuclear spins, which affect the polaron spin dynamics. Namely, we demonstrate how the signal from the distant protons (coupled to the polaron spin via dipolar interactions) can be distinguished from the signal coming from the protons residing on the polaron sitemore » (coupled to the polaron spin via contact hyperfine interaction). We propose a method for directly probing the contact hyperfine interaction, that would enable detailed study of the polaron orbital state and its immediate environment. Lastly, we also analyze the decay of the spin echo modulation, and its connection to the polaron transport.« less

  4. First determination of ground state electromagnetic moments of Fe 53

    DOE PAGES

    Miller, A. J.; Minamisono, K.; Rossi, D. M.; ...

    2017-11-16

    Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less

  5. Analysis of Chinese emissions trends of major halocarbons in monitoring the impacts of the Montreal Protocol

    NASA Astrophysics Data System (ADS)

    Li, S.; Park, S.; Park, M.; Kim, J.; Muhle, J.; Fang, X.; Stohl, A.; Weiss, R. F.; Kim, K.

    2013-12-01

    In this study we estimate the emission rates of anthropogenic halocarbons, which include CFC-11, CFC-12, HCFC-22, HCFC-141b, HCFC-142b, HFC-23, HFC-134a, HFC-32, HFC-125 and HFC-152a for China during the period of 2008 and 2012 using an interspecies correlation method (Kim et al., 2010; Li et al., 2011), which is a unique 'top-down' approach using in situ high-precision measurements at Gosan, a remote station on Jeju Island, Korea. Mixing ratios of ambient halocarbons have been measured every two hours using a cryogenic pre-concentration system coupled with gas chromatograph and mass selective detector (GC-MSD) as part of the Advanced Global Atmospheric Gases Experiment network. We first separated air-mass segments originating from China using a back-trajectory analysis to identify Chinese emission from the observations, and found that the mixing ratios of most of compounds presented significant correlations against those of HCFC-22. Based on the correlations, we analyzed emission strengths of individual compounds, which correspond to their slopes against HCFC-22 since the slope can be a useful proxy to demonstrate their emission trends with an assumption of relatively constant emission of HCFC-22 during the analysis period. The analysis showed about 14% increase in the emissions strengths of CFCs (mainly due to CFC-12) between 2008 and 2012 in China. Interestingly, HCFC-141b and HCFC-142b that are commonly known to be used for foam blowing agents revealed opposite trends in their emission strengths: ca. 48% increase of HCFC-141b versus ca. 22% decrease of HCFC-142b, suggesting the possibility of other major sources in case of China. The emission strengths of HFCs have been increasing due to significant emissions of HFC-32, HFC-125 and HFC-134a during the analysis period. However, HFC-23 which is a well-known byproduct of HCFC-22 production processes, showed decrease by about 22% in the emission strength. Reduction in HFC-23 emissions is most likely due to the nationwide effort for the Clean Development Mechanism project benefit of the Kyoto protocol. Emission rates of the halocarbons determined from the empirical emission strengths will certainly vary according to emission trend of our reference species, HCFC-22 in China from 2008 and 2012. Annual and average of HCFC-22 emissions from 2008 to 2012 will be calculated with an inverse method based on FLEXPART transport model. More detailed discussion on the emission rate estimation and its related caveats will be made in the presentation, but overall our analysis highlights the significance of long-term continuous monitoring for CFCs, HCFCs and HFCs in China to investigate impacts of Montreal Protocol regulations.

  6. International Conference on Quantum Chemical Calculations of NMR and EPR Parameters Held in Castle Smolenice, Slovak Republic on September 14-18 1998

    DTIC Science & Technology

    1998-10-21

    site. The electric-field- induced linear shift is also observed in the hyperfine splitting of nuclear quadrupole resonance ( NQR ) spectrum of a nucleus...located at a noncentrosymmetric site in a molecule or in crystal lattice. Thus, the linear electric field effect on the ESR and NQR hyperfine splitting...the electric field effects on ESR and NQR hyperfine couplings. Theoretical methods to calculate the electric field effects within Hartree-Fock

  7. Charge and Spin Currents in Open-Shell Molecules:  A Unified Description of NMR and EPR Observables.

    PubMed

    Soncini, Alessandro

    2007-11-01

    The theory of EPR hyperfine coupling tensors and NMR nuclear magnetic shielding tensors of open-shell molecules in the limit of vanishing spin-orbit coupling (e.g., for organic radicals) is analyzed in terms of spin and charge current density vector fields. The ab initio calculation of the spin and charge current density response has been implemented at the Restricted Open-Shell Hartree-Fock, Unrestricted Hartree-Fock, and unrestricted GGA-DFT level of theory. On the basis of this formalism, we introduce the definition of nuclear hyperfine coupling density, a scalar function of position providing a partition of the EPR observable over the molecular domain. Ab initio maps of spin and charge current density and hyperfine coupling density for small radicals are presented and discussed in order to illustrate the interpretative advantages of the newly introduced approach. Recent NMR experiments providing evidence for the existence of diatropic ring currents in the open-shell singlet pancake-bonded dimer of the neutral phenalenyl radical are directly assessed via the visualization of the induced current density.

  8. Phase equilibria of chlorofluorocarbon alternative refrigerant mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B.G.; Park, J.Y.; Lim, J.S.

    1999-03-01

    Isothermal vapor-liquid equilibrium data were determined for binary systems of difluoromethane/1,1,1,2-tetrafluoroethane (HFC-32/HFC-134a), difluoromethane/pentafluoroethane (HFC-32/HFC-125), difluoromethane/1,1,1-trifluoroethane (HFC-32/HFC-143A), and difluoromethane/1,1-difluoroethane (HFC-32/HFC-152a). The vapor and liquid compositions and pressures were measured in a circulation-type apparatus at 303.15 K and 323.15 K. The experimental data were compared with literature results and correlated with the Canahan-Starling-De Santis equation of state within the uncertainty of {+-}1.0%.

  9. The hyperfine structure in the rotational spectra of D{sub 2}{sup 17}O and HD{sup 17}O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puzzarini, Cristina, E-mail: cristina.puzzarini@unibo.it; Cazzoli, Gabriele; Harding, Michael E.

    2015-03-28

    Guided by theoretical predictions, the hyperfine structures of the rotational spectra of mono- and bideuterated-water containing {sup 17}O have been experimentally investigated. To reach sub-Doppler resolution, required to resolve the hyperfine structure due to deuterium quadrupole coupling as well as to spin-rotation (SR) and dipolar spin-spin couplings, the Lamb-dip technique has been employed. The experimental investigation and in particular, the spectral analysis have been supported by high-level quantum-chemical computations employing coupled-cluster techniques and, for the first time, a complete experimental determination of the hyperfine parameters involved was possible. The experimentally determined {sup 17}O spin-rotation constants of D{sub 2}{sup 17}O andmore » HD{sup 17}O were used to derive the paramagnetic part of the corresponding nuclear magnetic shielding constants. Together with the computed diamagnetic contributions as well as the vibrational and temperature corrections, the latter constants have been employed to confirm the oxygen nuclear magnetic shielding scale, recently established on the basis of spin-rotation data for H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)].« less

  10. Global emissions of the hydrofluorocarbons (HFCs) HFC-365mfc, HFC-245fa, HFC-227ea, and HFC-236fa based on atmospheric observations

    NASA Astrophysics Data System (ADS)

    Vollmer, M. K.; Miller, B. R.; Rigby, M. L.; Reimann, S.; Muhle, J.; Agage, Soge, Snu Members, Kopri Members

    2010-12-01

    We report on the atmospheric measurements and global emissions of the hydrofluorocarbons (HFCs) HFC-365mfc (CH3CH2CF2CF3, 1,1,1,3,3-pentafluorobutane), HFC-245fa (CHF2CH2CF3, 1,1,1,3,3-pentafluoropropane), HFC-227ea (CF3CHFCF3, 1,1,1,2,3,3,3-heptafluoropropane), and HFC-236fa (CF3CH2CF3, 1,1,1,3,3,3-hexafluoropropane). These measurements are from in-situ observations at stations of AGAGE (Advanced Global Atmospheric Gases Experiment) and SOGE (System for Observations of Halogenated Greenhouse Gases in Europe), and from the Korean station Gosan. We also report on flask sample measurements from the Antarctic stations King Sejong and Troll, and extend our records back to the 1970s using archived air samples of both hemispheres. All data are used in a global 12-box 2-dimensional atmospheric transport model to derive global abundances and emission estimates. All four HFCs have strongly increased in the atmosphere in recent years with growth rates at nearly 10 %, resulting in dry air mole fractions at the end of 2009 of 0.49 ppt for HFC-365mfc, 1.00 ppt for HFC-245fa, and 0.51 ppt for HFC-227ea. HFC-236fa, for which we report the first atmospheric measurements, is less abundant and has grown to 0.069 ppt at the end of 2009. Our model results show rapidly growing emissions of HFC-365mfc and HFC-245fa after 2002 but surprisingly these have now started to decline to globally 2.7 kt/yr (HFC-365mfc) and 6.1 kt/yr (HFC-245fa). On the other hand HFC-227ea and HFC-236fa show uninterrupted growth in their emissions of 2.5 kt/yr and 0.2 kt/yr at the end of 2009.

  11. First determination of ground state electromagnetic moments of 53Fe

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Minamisono, K.; Rossi, D. M.; Beerwerth, R.; Brown, B. A.; Fritzsche, S.; Garand, D.; Klose, A.; Liu, Y.; Maaß, B.; Mantica, P. F.; Müller, P.; Nörtershäuser, W.; Pearson, M. R.; Sumithrarachchi, C.

    2017-11-01

    The hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum of the 3 d64 s25D4↔3 d64 s 4 p 5F5 transition, measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ =-0.65 (1 ) μN and Q =+35 (15 ) e2fm2 , respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental values agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full f p shell model space, which support the soft nature of the 56Ni nucleus.

  12. Hyperfine excitation of C2H in collisions with ortho- and para-H2

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2018-06-01

    Accurate estimation of the abundance of the ethynyl (C2H) radical requires accurate radiative and collisional rate coefficients. Hyperfine-resolved rate coefficients for (de-)excitation of C2H in collisions with ortho- and para-H2 are presented in this work. These rate coefficients were computed in time-independent close-coupling quantum scattering calculations that employed a potential energy surface recently computed at the coupled-clusters level of theory that describes the interaction of C2H with H2. Rate coefficients for temperatures from 10 to 300 K were computed for all transitions among the first 40 hyperfine energy levels of C2H in collisions with ortho- and para-H2. These rate coefficients were employed in simple radiative transfer calculations to simulate the excitation of C2H in typical molecular clouds.

  13. Solubility of HFCs in pentaerythritol tetraalkyl esters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahlstroem, A.; Vamling, L.

    2000-02-01

    The solubilities of difluoromethane (HFC32), 1,1,1,2,2-pentafluoroethane (HFC125), 1,1,1,2-tetrafluoroethane (HFC134a), 1,1,1-trifluoroethane (HFC143a) and 1,1-difluoroethane (HFC152a) in pentaerythritol tetranonanoate, pentaerythritol tetra-2-ethylbutanoate, and pentaerythritol tetra-2-ethylhexanoate have been measured at temperatures between 303 and 363 K and pressures between 0.07 and 2.1 MPa. Henry's constant and the activity coefficient for HFCs at infinite dilution were derived for measurements below 0.34 MPa. The measurements were made by an isochoric method with an uncertainty of <2% for Henry's constant and <3% at high pressure. Within the investigated temperature range, solubilities for HFCs in pentaerythritol tetraalkyl esters decrease in the following order: HFC152a > HFC134a > HFC32more » > HFC125 > HFC143a. The experimental data have been correlated with a Flory-Huggins model with an extended temperature dependence, which is able to describe the data with a deviation from measured data of <2.7%.« less

  14. Transient nutation electron spin resonance spectroscopy on spin-correlated radical pairs: A theoretical analysis on hyperfine-induced nuclear modulations

    NASA Astrophysics Data System (ADS)

    Weber, Stefan; Kothe, Gerd; Norris, James R.

    1997-04-01

    The influence of anisotropic hyperfine interaction on transient nutation electron paramagnetic resonance (EPR) of light-induced spin-correlated radical pairs is studied theoretically using the density operator formalism. Analytical expressions for the time evolution of the transient EPR signal during selective microwave excitation of single transitions are derived for a model system comprised of a weakly coupled radical pair and one hyperfine-coupled nucleus with I=1/2. Zero-quantum electron coherence and single-quantum nuclear coherence are created as a result of the sudden light-induced generation of the radical pair state from a singlet-state precursor. Depending on the relative sizes of the nuclear Zeeman frequency and the secular and pseudo-secular parts of the hyperfine coupling, transitions between levels with different nuclear spin orientations are predicted to modulate the time-dependent EPR signal. These modulations are in addition to the well-known transient nutations and electron zero-quantum precessions. Our calculations provide insight into the mechanism of recent experimental observations of coherent nuclear modulations in the time-resolved EPR signals of doublets and radical pairs. Two distinct mechanisms of the modulations are presented for various microwave magnetic field strengths. The first modulation scheme arises from electron and nuclear coherences initiated by the laser excitation pulse and is "read out" by the weak microwave magnetic field. While the relative modulation depth of these oscillations with respect to the signal intensity is independent of the Rabi frequency, ω1, the frequencies of this coherence phenomenon are modulated by the effective microwave amplitude and determined by the nuclear Zeeman interaction and hyperfine coupling constants as well as the electron-electron spin exchange and dipolar interactions between the two radical pair halves. In a second mechanism the modulations are both created and detected by the microwave radiation. Here, the laser pulse merely defines the beginning of the microwave-induced coherent time evolution. This second mechanism appears the most consistent with current experimental observations.

  15. Hyperfine spin interactions between polarons and nuclei in organic light emitting diodes: Magneto-EL measurements

    NASA Astrophysics Data System (ADS)

    Crooker, S. A.; Kelley, M. R.; Martinez, N.; Nie, W.; Mohite, A. D.; Smith, D. L.; Tretiak, S.; Ruden, P. P.

    2014-03-01

    Considerable attention in recent years has focused on the effects of applied magnetic fields on the conductance, photocurrent, electroluminescence (EL), and photoluminescence of nominally nonmagnetic organic semiconductor materials and devices. These magnetic field effects have proven useful in revealing the underlying physical mechanisms and relevant spin interactions that influence the electrical and optical properties in these organic systems (e.g., hyperfine coupling, exchange interactions, and spin-orbit coupling). Here we study the field-dependent properties of organic light-emitting diode (OLEDs) based on MTDATA/LiF/Bphen layered structures, in which exciplex recombination at the interface dominates the EL spectra. Small applied magnetic fields (~10 mT) are found to boost the net EL yield by up to 10%, due to a suppression of the mixing between singlet and triplet polaron pairs which, in turn, arises from hyperfine spin coupling of the polarons to the underlying nuclei of the host molecules. We discuss the dependence of these field-induced effects on the LiF barrier thickness, device bias, and on the orientation of the applied magnetic field, as well as the mechanisms responsible.

  16. One-electron oxidation of individual DNA bases and DNA base stacks.

    PubMed

    Close, David M

    2010-02-04

    In calculations performed with DFT there is a tendency of the purine cation to be delocalized over several bases in the stack. Attempts have been made to see if methods other than DFT can be used to calculate localized cations in stacks of purines, and to relate the calculated hyperfine couplings with known experimental results. To calculate reliable hyperfine couplings it is necessary to have an adequate description of spin polarization which means that electron correlation must be treated properly. UMP2 theory has been shown to be unreliable in estimating spin densities due to overestimates of the doubles correction. Therefore attempts have been made to use quadratic configuration interaction (UQCISD) methods to treat electron correlation. Calculations on the individual DNA bases are presented to show that with UQCISD methods it is possible to calculate hyperfine couplings in good agreement with the experimental results. However these UQCISD calculations are far more time-consuming than DFT calculations. Calculations are then extended to two stacked guanine bases. Preliminary calculations with UMP2 or UQCISD theory on two stacked guanines lead to a cation localized on a single guanine base.

  17. 133Cs-NMR study on aligned powder of competing spin chain compound Cs2Cu2Mo3O12

    NASA Astrophysics Data System (ADS)

    Yagi, A.; Matsui, K.; Goto, T.; Hase, M.; Sasaki, T.

    2018-03-01

    S = 1/2 competing spin chain compound Cs2Cu2Mo3O12 has two dominant exchange interactions of the nearest neighbouring ferromagnetic J 1 = 93 K and the second nearest neighbouring antiferromagnetic J 2 = +33 K, and is expected to show the nematic Tomonaga-Luttinger liquid (TLL) state under high magnetic field region. The recent theoretical study by Sato et al. has shown that in the nematic TLL state, the spin fluctuations are expected to be highly anisotropic, that is, its transverse component is suppressed. Our previous NMR study on the present system showed that the dominant contribution to nuclear spin relaxation comes from the longitudinal component. In order to conclude that the transverse component of spin fluctuations is suppressed, the knowledge of hyperfine coupling is indispensable. This article is solely devoted to investigate the hyperfine coupling of 133Cs-NMR site to prove that the anisotropic part of hyperfine coupling, which connects the nuclear spin relaxation with the transverse spin fluctuations is considerably large to be A an = +770 Oe/μB.

  18. Quantum versus classical hyperfine-induced dynamics in a quantum dota)

    NASA Astrophysics Data System (ADS)

    Coish, W. A.; Loss, Daniel; Yuzbashyan, E. A.; Altshuler, B. L.

    2007-04-01

    In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t <τc, after which they differ markedly.

  19. Atmospheric histories and global emissions of the anthropogenic hydrofluorocarbons HFC-365mfc, HFC-245fa, HFC-227ea, and HFC-236fa

    NASA Astrophysics Data System (ADS)

    Vollmer, Martin K.; Miller, Benjamin R.; Rigby, Matthew; Reimann, Stefan; Mühle, Jens; Krummel, Paul B.; O'Doherty, Simon; Kim, Jooil; Rhee, Tae Siek; Weiss, Ray F.; Fraser, Paul J.; Simmonds, Peter G.; Salameh, Peter K.; Harth, Christina M.; Wang, Ray H. J.; Steele, L. Paul; Young, Dickon; Lunder, Chris R.; Hermansen, Ove; Ivy, Diane; Arnold, Tim; Schmidbauer, Norbert; Kim, Kyung-Ryul; Greally, Brian R.; Hill, Matthias; Leist, Michael; Wenger, Angelina; Prinn, Ronald G.

    2011-04-01

    We report on ground-based atmospheric measurements and emission estimates of the four anthropogenic hydrofluorocarbons (HFCs) HFC-365mfc (CH3CF2CH2CF3, 1,1,1,3,3-pentafluorobutane), HFC-245fa (CHF2CH2CF3, 1,1,1,3,3-pentafluoropropane), HFC-227ea (CF3CHFCF3, 1,1,1,2,3,3,3-heptafluoropropane), and HFC-236fa (CF3CH2CF3, 1,1,1,3,3,3-hexafluoropropane). In situ measurements are from the global monitoring sites of the Advanced Global Atmospheric Gases Experiment (AGAGE), the System for Observations of Halogenated Greenhouse Gases in Europe (SOGE), and Gosan (South Korea). We include the first halocarbon flask sample measurements from the Antarctic research stations King Sejong and Troll. We also present measurements of archived air samples from both hemispheres back to the 1970s. We use a two-dimensional atmospheric transport model to simulate global atmospheric abundances and to estimate global emissions. HFC-365mfc and HFC-245fa first appeared in the atmosphere only ˜1 decade ago; they have grown rapidly to globally averaged dry air mole fractions of 0.53 ppt (in parts per trillion, 10-12) and 1.1 ppt, respectively, by the end of 2010. In contrast, HFC-227ea first appeared in the global atmosphere in the 1980s and has since grown to ˜0.58 ppt. We report the first measurements of HFC-236fa in the atmosphere. This long-lived compound was present in the atmosphere at only 0.074 ppt in 2010. All four substances exhibit yearly growth rates of >8% yr-1 at the end of 2010. We find rapidly increasing emissions for the foam-blowing compounds HFC-365mfc and HFC-245fa starting in ˜2002. After peaking in 2006 (HFC-365mfc: 3.2 kt yr-1, HFC-245fa: 6.5 kt yr-1), emissions began to decline. Our results for these two compounds suggest that recent estimates from long-term projections (to the late 21st century) have strongly overestimated emissions for the early years of the projections (˜2005-2010). Global HFC-227ea and HFC-236fa emissions have grown to average values of 2.4 kt yr-1 and 0.18 kt yr-1 over the 2008-2010 period, respectively.

  20. Radiation effects in x-irradiated hydroxy compounds

    NASA Astrophysics Data System (ADS)

    Budzinski, Edwin E.; Potter, William R.; Box, Harold C.

    1980-01-01

    Radiation effects are compared in single crystals of xylitol, sorbitol, and dulcitol x-irradiated at 4.2 °K. In xylitol and dulcitol, but not in sorbitol, a primary oxidation product is identified as an alkoxy radical. ENDOR measurements detected three proton hyperfine couplings associated with the alkoxy ESR absorption, one of which is attributed to a proton three bond lengths removed from the seat of unpaired spin density. Intermolecular trapping of electrons is observed in all three crystals. ENDOR measurements were made of the hyperfine couplings between the trapped electron and the hydroxy protons forming the trap.

  1. Hydrofluorocarbon (HFC) Emissions in China: An Inventory for 2005-2013 and Projections to 2050.

    PubMed

    Fang, Xuekun; Velders, Guus J M; Ravishankara, A R; Molina, Mario J; Hu, Jianxin; Prinn, Ronald G

    2016-02-16

    Many hydrofluorocarbons (HFCs) that are widely used as substitutes for ozone-depleting substances (now regulated under the Montreal Protocol) are very potent greenhouse gases (GHGs). China's past and future HFC emissions are of great interest because China has emerged as a major producer and consumer of HFCs. Here, we present for the first time a comprehensive inventory estimate of China's HFC emissions during 2005-2013. Results show a rapid increase in HFC production, consumption, and emissions in China during the period and that the emissions of HFC with a relatively high global warming potential (GWP) grew faster than those with a relatively low GWP. The proportions of China's historical HFC CO2-equivalent emissions to China's CO2 emissions or global HFC CO2-equivalent emissions increased rapidly during 2005-2013. Using the "business-as-usual" (BAU) scenario, in which HFCs are used to replace a significant fraction of hydrochlorofluorocarbons (HCFCs) in China (to date, there are no regulations on HFC uses in China), emissions of HFCs are projected to be significant components of China's and global future GHG emissions. However, potentials do exist for minimizing China's HFC emissions (for example, if regulations on HFC uses are established in China). Our findings on China's historical and projected HFC emission trajectories could also apply to other developing countries, with important implications for mitigating global GHG emissions.

  2. Reproductive and developmental toxicity of hydrofluorocarbons used as refrigerants.

    PubMed

    Ema, Makoto; Naya, Masato; Yoshida, Kikuo; Nagaosa, Ryuichi

    2010-04-01

    The present paper summarizes data on the reproductive and developmental toxicity of hydrofluorocarbons (HFCs), including pentafluoroethane (HFC-125), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1-trifluoroethane (HFC-143a), 1,1-difluoroethane (HFC-152a), difluoromethane (HFC-32) and 1,1,1,3,3-pentafluoropropane (HFC-245fa), used as refrigerants, published in openly available scientific literature. No developmental toxicity of HFC-125 was found even at 50,000 ppm in rats or rabbits. Although HFC-134a exhibited no dominant lethal effect or reproductive toxicity in rats, it caused low body weight in pre- and postnatal offspring and slightly retarded skeletal ossification in fetuses at 50,000 ppm in rats. No maternal or developmental toxicity was noted after exposure to HFC-143a even at 40,000 ppm in rats or rabbits or HFC-152a even at 50,000 ppm in rats. HFC-32 is slightly maternally and developmentally toxic at 50,000 ppm in rats, but not in rabbits. HFC-245fa caused decreases in maternal body weight and food consumption at 10,000 and 50,000 ppm and fetal weight at 50 000ppm. No evidence of teratogenicity for these HFCs was noted in rats or rabbits. There is limited information about the reproductive toxicity of these HFCs. Animal studies remain necessary for risk assessments of chemicals because it is difficult to find alternative methods to determine the toxic effects of chemicals. It is required to reduce emissions of organic vapors containing HFCs to reduce the risk of exposure. Copyright 2009 Elsevier Inc. All rights reserved.

  3. Measurements of deuterium quadrupole coupling in propiolic acid and fluorobenzenes using pulsed-beam Fourier transform microwave spectrometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ming; Sargus, Bryan A.; Carey, Spencer J.

    The pure rotational spectra of deuterated propiolic acids (HCCCOOD and DCCCOOH), 1-fluorobenzene (4-d{sub 1}), and 1,2-difluorobenzene (4-d{sub 1}) in their ground states have been measured using two Fourier transform microwave (FTMW) spectrometers at the University of Arizona. For 1-fluorobenzene (4-d{sub 1}), nine hyperfine lines of three different ΔJ = 0 and 1 transitions were measured to check the synthesis method and resolution. For 1,2-difluorobenzene (4-d{sub 1}), we obtained 44 hyperfine transitions from 1 to 12 GHz, including 14 different ΔJ = 0, 1 transitions. Deuterium quadrupole coupling constants along the three principal inertia axes were well determined. For deuterated propiolicmore » acids, 37 hyperfine lines of Pro-OD and 59 hyperfine lines of Pro-CD, covering 11 and 12 different ΔJ = − 1, 0, 1 transitions, respectively, were obtained from 5 to 16 GHz. Deuterium quadrupole coupling constants along the three inertia axes were well resolved for Pro-OD. For Pro-CD, only eQq{sub aa} was determined due to the near coincidence of the CD bond and the least principal inertia axis. Some measurements were made using a newer FTMW spectrometer employing multiple free induction decays as well as background subtraction. For 1-fluorobenzene (4-d{sub 1}) and 1,2-difluorobenzene (4-d{sub 1}), a very large-cavity (1.2 m mirror dia.) spectrometer yielded very high resolution (2 kHz) spectra.« less

  4. Nuclear Hyperfine Structure in the Donor – Acceptor Complexes (CH3)3N-BF3 and (CH)33N-B(CH3)3

    EPA Science Inventory

    The donor-acceptor complexes (CH3)3N-BF3 and (CH3)3N-B(CH3)3 have been reinvestigated at high resolution by rotational spectroscopy in a supersonic jet. Nuclear hyperfine structure resulting from both nitrogen and boron has been resolved and quadrupole coupling constants have bee...

  5. An ESR study of the stable radical in a γ-irradiated single crystal of 17α-dydroxy-progesterone

    NASA Astrophysics Data System (ADS)

    Krzyminiewski, R.; Pietrzak, J.; Konopka, R.

    1990-11-01

    Electron spin resonance spectroscopy was used to investigate γ-radiation damage of 17α-hydroxy-progesterone molecules in a single crystal. Two types of radicals with different rates of recombination were observed and a definite structure was assigned to the specimen by analyzing the orientational variation of the spectra. The unpaired electron of the radical is delocalized in the 2 pz orbitals of the C(6), C(4) and C(3) atoms, giving rise to a hyperfine spectrum by interaction with two equivalent α-protons in positions 4 and 6 and with two non-equivalent β-protons attached to C(7). The hyperfine coupling tensors are reported, together with the g tensor of the radical. The presence of additional intermolecular interactions caused by hydrogen bonding between O(3) and HO(17) of two molecules does not change the type of radical (which is the same as the stable radical in a γ-irradiated single crystal of progesterone) but does increase the hyperfine coupling anisotropy.

  6. [Hyperfine structure analysis in magnetic resonance spectroscopy: from astrophysical measurements towards endogenous biosensors in human tissue].

    PubMed

    Schröder, Leif

    2007-01-01

    The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the A MX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed.

  7. Control of coherence among the spins of a single electron and the three nearest neighbor {sup 13}C nuclei of a nitrogen-vacancy center in diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimo-Oka, T.; Miwa, S.; Suzuki, Y.

    2015-04-13

    Individual nuclear spins in diamond can be optically detected through hyperfine couplings with the electron spin of a single nitrogen-vacancy (NV) center; such nuclear spins have outstandingly long coherence times. Among the hyperfine couplings in the NV center, the nearest neighbor {sup 13}C nuclear spins have the largest coupling strength. Nearest neighbor {sup 13}C nuclear spins have the potential to perform fastest gate operations, providing highest fidelity in quantum computing. Herein, we report on the control of coherences in the NV center where all three nearest neighbor carbons are of the {sup 13}C isotope. Coherence among the three and fourmore » qubits are generated and analyzed at room temperature.« less

  8. Review of ultraviolet absorption cross sections of a series of alternative fluorocarbons

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    1990-01-01

    Solar photolysis is likely to contribute to the stratospheric destruction of those alternative fluorocarbons (HFC's) which have two or more chlorine atoms bonded to the same carbon atom. Two of the eight HFC's considered here fall into this category, namely HFC-123 and HFC141b. For these two species there is good agreement among the various measurements of the ultraviolet cross sections in the wavelength region which is important for atmospheric photodissociation, that is, around 200 nm. There is also good agreement for HFC-124, HFC-22 and HFC-142b. These are the three species which contain one chlorine atom per molecule. The agreement in the measurements is poor for the other species, i.e., those that do not contain chlorine, except in so far as to corroborate that solar photolysis should be negligible relative to destruction by hydroxyl radicals.

  9. Liquid-air partition coefficients of 1,1-difluoroethane (HFC152a), 1,1,1-trifluoroethane (HFC143a), 1,1,1,2-tetrafluoroethane (HFC134a), 1,1,1,2,2-pentafluoroethane (HFC125) and 1,1,1,3,3-pentafluoropropane (HFC245fa).

    PubMed

    Ernstgård, Lena; Lind, Birger; Andersen, Melvin E; Johanson, Gunnar

    2010-01-01

    Blood-air and tissue-blood coefficients (lambda) are essential to characterize the uptake and disposition of volatile substances, e.g. by physiologically based pharmacokinetic (PBPK) modelling. Highly volatile chemicals, including many hydrofluorocarbons (HFC) have low solubility in liquid media. These characteristics pose challenges for determining lambda values. A modified head-space vial equilibrium method was used to determine lambda values for five widely used HFCs. The method is based on automated head-space gas chromatography and injection of equal amount of chemical in two head-space vials with identical air phase volumes but different volumes of the liquid phase. The liquids used were water (physiological saline), fresh human blood, and olive oil. The average lambda values (n = 8) were as follows: 1,1-difluoroethane (HFC152a) - 1.08 (blood-air), 1.11 (water-air) and 5.6 (oil-air); 1,1,1-trifluoroethane (HFC143a) - 0.15, 0.15 and 1.90; 1,1,1,2-tetrafluoroethane (HFC134a) - 0.36, 0.35 and 3.5; 1,1,1,2,2-pentafluoroethane (HFC125) - 0.083, 0.074 and 1.71; and 1,1,1,3,3-pentafluoropropane (HFC245fa) - 0.62, 0.58 and 12.1. The lambda values appeared to be concentration-independent in the investigated range (2-200 ppm). In spite of the low lambda values, the method errors were modest, with coefficients of variation of 9, 11 and 10% for water, blood and oil, respectively.

  10. 40 CFR 98.156 - Data reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tons) of materials other than HCFC-22 and HFC-23 (i.e., unreacted reactants, HCl and other by-products... site for destruction in metric tons. (10) Mass of HFC-23 in storage at the beginning and end of the... thermal oxidizer. (2) Annual mass of HFC-23 destroyed. (3) Annual mass of HFC-23 emitted from the thermal...

  11. Quadrupole splittings in the near-infrared spectrum of 14NH 3

    DOE PAGES

    Twagirayezu, Sylvestre; Hall, Gregory E.; Sears, Trevor J.

    2016-10-13

    Sub-Doppler, saturation dip, spectra of lines in the v 1 + v 3, v 1 + 2v 4 and v 3 + 2v 4 bands of 14NH 3 have been measured by frequency comb-referenced diode laser absorption spectroscopy. The observed spectral line widths are dominated by transit time broadening, and show resolved or partially-resolved hyperfine splittings that are primarily determined by the 14N quadrupole coupling. Modeling of the observed line shapes based on the known hyperfine level structure of the ground state of the molecule shows that, in nearly all cases, the excited state level has hyperfine splittings similar tomore » the same rotational level in the ground state. The data provide accurate frequencies for the line positions and easily separate lines overlapped in Doppler-limited spectra. The observed hyperfine splittings can be used to make and confirm rotational assignments and ground state combination differences obtained from the measured frequencies are comparable in accuracy to those obtained from conventional microwave spectroscopy. Furthermore, several of the measured transitions do not show the quadrupole hyperfine splittings expected based on their existing rotational assignments. Either the assignments are incorrect or the upper levels involved are perturbed in a way that affects the nuclear hyperfine structure.« less

  12. Communication: Spin densities within a unitary group based spin-adapted open-shell coupled-cluster theory: Analytic evaluation of isotropic hyperfine-coupling constants for the combinatoric open-shell coupled-cluster scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, Dipayan, E-mail: datta.dipayan@gmail.com; Gauss, Jürgen, E-mail: gauss@uni-mainz.de

    We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and M{sub S} = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating themore » analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH{sub 2}CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.« less

  13. Discriminating the structure of exo-2-aminonorbornane using nuclear quadrupole coupling interactions.

    PubMed

    Écija, Patricia; Cocinero, Emilio J; Lesarri, Alberto; Millán, Judith; Basterretxea, Francisco; Fernández, José A; Castaño, Fernando

    2011-04-28

    The intrinsic conformational and structural properties of the bicycle exo-2-aminonorbornane have been probed in a supersonic jet expansion using Fourier-transform microwave (FT-MW) spectroscopy and quantum chemical calculations. The rotational spectrum revealed two different conformers arising from the internal rotation of the amino group, exhibiting small (MHz) hyperfine patterns originated by the (14)N nuclear quadrupole coupling interaction. Complementary ab initio (MP2) and DFT (B3LYP and M05-2X) calculations provided comparative predictions for the structural properties, rotational and centrifugal distortion data, hyperfine parameters, and isomerization barriers. Due to the similarity of the rotational constants, the structural assignment of the observed rotamers and the calculation of the torsion angles of the amino group were based on the conformational dependence of the (14)N nuclear quadrupole coupling hyperfine tensor. In the most stable conformation (ss), the two amino N-H bonds are staggered with respect to the adjacent C-H bond. In the second conformer (st), only one of the N-H bonds is staggered and the other is trans. A third predicted conformer (ts) was not detected, consistent with a predicted conformational relaxation to conformer ss through a low barrier of 5.2 kJ mol(-1).

  14. Atmospheric Degradation Initiated by OH Radicals of the Potential Foam Expansion Agent, CF3(CF2)2CH═CH2 (HFC-1447fz): Kinetics and Formation of Gaseous Products and Secondary Organic Aerosols.

    PubMed

    Jiménez, Elena; González, Sergio; Cazaunau, Mathieu; Chen, Hui; Ballesteros, Bernabé; Daële, Véronique; Albaladejo, José; Mellouki, Abdelwahid

    2016-02-02

    The assessment of the atmospheric impact of the potential foam expansion agent, CF3(CF2)2CH═CH2 (HFC-1447fz), requires the knowledge of its degradation routes, oxidation products, and radiative properties. In this paper, the gas-phase reactivity of HFC-1447fz with OH radicals is presented as a function of temperature, obtaining kOH (T = 263-358 K) = (7.4 ± 0.4) × 10(-13)exp{(161 ± 16)/T} (cm(3)·molecule(-1)·s(-1)) (uncertainties: ±2σ). The formation of gaseous oxidation products and secondary organic aerosols (SOAs) from the OH + HFC-1447fz reaction was investigated in the presence of NOx at 298 K. CF3(CF2)2CHO was observed at low- and high-NOx conditions. Evidence of SOA formation (ultrafine particles in the range 10-100 nm) is reported with yields ranging from 0.12 to 1.79%. In addition, the absolute UV (190-368 nm) and IR (500-4000 cm(-1)) absorption cross-sections of HFC-1447fz were determined at room temperature. No appreciable absorption in the solar actinic region (λ > 290 nm) was observed, leaving the removal by OH radicals as the main atmospheric loss process for HFC-1447fz. The major contribution of the atmospheric loss of HFC-1447fz is due to OH reaction (84%), followed by ozone (10%) and chlorine atoms (6%). Correction of the instantaneous radiative efficiency (0.36 W m(-2)·ppbv(-1)) with the relatively short lifetime of HFC-1447fz (ca. 8 days) implies that its global warming potential at a time horizon of 100 year is negligible (0.19) compared to that of HCFC-141b (782) and to that of modern foam-expansion blowing agents (148, 882, and 804 for HFC-152a, HFC-245fa and HFC-365mfc, respectively).

  15. Historical emissions of HFC-23 (CHF3) in China and projections upon policy options by 2050.

    PubMed

    Fang, Xuekun; Miller, Benjamin R; Su, Shenshen; Wu, Jing; Zhang, Jianbo; Hu, Jianxin

    2014-04-01

    Trifluoromethane (CHF3, HFC-23) is one of the hydrofluorocarbons (HFCs) regulated under the Kyoto Protocol with a global warming potential (GWP) of 14 800 (100-year). China's past, present, and future HFC-23 emissions are of considerable interest to researchers and policymakers involved in climate change. In this study, we compiled a comprehensive historical inventory (1980-2012) and a projection (2013-2050) of HFC-23 production, abatements, and emissions in China. Results show that HFC-23 production in China increased from 0.08 ± 0.05 Gg/yr in 1980 to 15.4 ± 2.1 Gg/yr (228 ± 31 Tg/yr CO2-eq) in 2012, while actual HFC-23 emissions reached a peak of 10.5 ± 1.8 Gg/yr (155 ± 27 Tg/y CO2-eq) in 2006, and decreased to a minimum of 7.3 ± 1.3 Gg/yr (108 ± 19 Tg/yr CO2-eq) in 2008 and 2009. Under the examined business-as-usual (BAU) scenario, the cumulative emissions of HFC-23 in China over the period 2013-2050 are projected to be 609 Gg (9015 Tg CO2-eq which approximates China's 2012 CO2 emissions). Currently, China's annual HFC-23 emissions are much higher than those from the developed countries, while it is estimated that by year 2027, China's historic contribution to the global atmospheric burden of HFC-23 will have surpassed that of the developed nations under the BAU scenario.

  16. Molecular beam electric resonance study of KCN, K 13CN and KC 15N

    NASA Astrophysics Data System (ADS)

    van Vaals, J. J.; Leo Meerts, W.; Dymanus, A.

    1984-08-01

    The microwave spectra of the isotopic species K 13CN and KC 15N have been investigated by molecular beam electric resonance spectroscopy, using the seeded beam technique. For both isotopic species about 20 rotational transitions originating in the ground vibrational state were observed in the frequency range 9-38 GHz. The observed transitions were fitted to an asymmetric rotor model to determine the three rotational, as well as the five quartic and three sextic centrifugal distortion constants. The hyperfine spectrum of KCN has been unravelled with the help of microwave-microwave double-resonance techniques. One hundred and forty hyperfine transitions in 11 rotational transitions have been assigned. The hyperfine structures of K 13CN and KC 15N were also studied. For all three isotopic species the quadrupole coupling constants and some spin-rotation coupling constants could be deduced. The rotational constants of the 13C and 15N isotopically substituted species of potassium cyanide, combined with those of the normal isotopic species (determined more accurately in this work), allowed an accurate and unambiguous evaluation of the structure, which was confirmed to be T shaped. Both the effective structure of the ground vibrational state and the substitution structure were evaluated. The results for the effective structural parameters are r CN = 1.169(3) Å, r KC = 2.716(9) Å, and r KN = 2.549(9) Å. The values obtained for the principal hyperfine coupling constant eQqz(N), the angle between the CN axis and zN, and the bond length rCN indicate that in gaseous potassium cyanide the CN group can be considered as an almost unperturbed CN - ion.

  17. High-field Overhauser dynamic nuclear polarization in silicon below the metal-insulator transition.

    PubMed

    Dementyev, Anatoly E; Cory, David G; Ramanathan, Chandrasekhar

    2011-04-21

    Single crystal silicon is an excellent system to explore dynamic nuclear polarization (DNP), as it exhibits a continuum of properties from metallic to insulating as a function of doping concentration and temperature. At low doping concentrations DNP has been observed to occur via the solid effect, while at very high-doping concentrations an Overhauser mechanism is responsible. Here we report the hyperpolarization of (29)Si in n-doped silicon crystals, with doping concentrations in the range of (1-3) × 10(17) cm(-3). In this regime exchange interactions between donors become extremely important. The sign of the enhancement in our experiments and its frequency dependence suggest that the (29)Si spins are directly polarized by donor electrons via an Overhauser mechanism within exchange-coupled donor clusters. The exchange interaction between donors only needs to be larger than the silicon hyperfine interaction (typically much smaller than the donor hyperfine coupling) to enable this Overhauser mechanism. Nuclear polarization enhancement is observed for a range of donor clusters in which the exchange energy is comparable to the donor hyperfine interaction. The DNP dynamics are characterized by a single exponential time constant that depends on the microwave power, indicating that the Overhauser mechanism is a rate-limiting step. Since only about 2% of the silicon nuclei are located within 1 Bohr radius of the donor electron, nuclear spin diffusion is important in transferring the polarization to all the spins. However, the spin-diffusion time is much shorter than the Overhauser time due to the relatively weak silicon hyperfine coupling strength. In a 2.35 T magnetic field at 1.1 K, we observed a DNP enhancement of 244 ± 84 resulting in a silicon polarization of 10.4 ± 3.4% following 2 h of microwave irradiation.

  18. 29Si-NMR study of magnetic anisotropy and hyperfine interactions in the uranium-bsed ferromagnet UNiSi2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Hironori; Baek, Seung H; Bauer, Eric D

    2009-01-01

    UNiSi{sub 2} orders ferromagnetically below T{sub Curie} = 95 K. This material crystallizes in the orthorhombic CeNiSi{sub 2}-type structure. The uranium atoms form double-layers, which are stacked along the crystallographic b axis (the longest axis). From magnetization measurement the easy (hard) magnetization axis is found to be the c axis (b axis). {sup 29}Si-NMR measurements have been performed in the paramagnetic state. In UNiSi{sub 2}, two crystallographic Si sites exist with orthorhombic local symmetry. The Knight shifts on each Si site have been estimated from the spectra of random and oriented powders. The transferred hyperfine couplings have been also derived.more » It is found that the transferred hyperfine coupling constants on each Si site are nearly isotropic, and that their Knight shift anisotropy comes from that of the bulk susceptibility. The nuclear-spin lattice relaxation rate 1/T{sub 1} shows temperature-independent behavior, which indicates the existence of localized 5f electron.« less

  19. Performance analysis of the electric vehicle air conditioner by replacing hydrocarbon refrigerant

    NASA Astrophysics Data System (ADS)

    Santoso, Budi; Tjahjana, D. D. D. P.

    2017-01-01

    The thermal comfort in passenger cabins needs an automotive air-conditioning system. The electric vehicle air conditioner system is driven by an electric compressor which includes a compressor and an electric motor. Almost air-conditioning system uses CFC-12, CFC-22 and HFC-134a as refrigerant. However, CFC-12 and CFC-22 will damage the ozone layer. The extreme huge global warming potentials (GWP) values of CFC-12, CFC-22, and HFC-134a represent the serious greenhouse effect of Earth. This article shows new experimental measurements and analysis by using a mixture of HC-134 to replace HFC-134a. The result is a refrigerating effect, the coefficient of performance and energy factor increase along with cooling capacity, both for HFC-134a and HC-134. The refrigerating effect of HC-134 is almost twice higher than HFC-134a. The coefficient of performance value of HC-134 is also 36.42% greater than HFC-134a. Then, the energy factor value of HC-134 is 3.78% greater than HFC-134a.

  20. Hyperfine field, electric field gradient, quadrupole coupling constant and magnetic properties of challenging actinide digallide

    NASA Astrophysics Data System (ADS)

    Khan, Sajid; Yazdani-Kachoei, M.; Jalali-Asadabadi, S.; Ahmad, Iftikhar

    2017-12-01

    In this paper, we explore the structural and magnetic properties as well as electric field gradient (EFG), hyperfine field (HFF) and quadrupole coupling constant in actinide digallide AcGa2 (Ac = U, Np, Pu) using LDA, GGA, LDA+U, GGA+U and hybrid functional with Wu-Cohen Generalized Gradient approximation HF-WC. Relativistic effects of the electrons are considered by including spin-orbit coupling. The comparison of the calculated structural parameters and magnetic properties with the available experimental results confirms the consistency and hence effectiveness of our theoretical tools. The calculated magnetic moments demonstrate that UGa2 and NpGa2 are ferromagnetic while PuGa2 is antiferromagnetic in nature. The EFG of AcGa2 is reported for the first time. The HFF, EFG and quadrupole coupling constant in AcGa2 (Ac = U, Np, Pu) are mainly originated from f-f and p-p contributions of Ac atom and p-p contribution of Ga atom.

  1. Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.

    PubMed

    Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir

    2015-07-17

    The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.

  2. Evidence for changes in the nucleotide conformation in the active site of H(+)-ATPase as determined by pulsed EPR spectroscopy.

    PubMed

    Schneider, B; Sigalat, C; Amano, T; Zimmermann, J L

    2000-12-19

    The conformation of di- and triphosphate nucleosides in the active site of ATPsynthase (H(+)-ATPase) from thermophilic Bacillus PS3 (TF1) and their interaction with Mg(2+)/Mn(2+) cations have been investigated using EPR, ESEEM, and HYSCORE spectroscopies. For a ternary complex formed by a stoichiometric mixture of TF1, Mn(2+), and ADP, the ESEEM and HYSCORE data reveal a (31)P hyperfine interaction with Mn(2+) (|A((31)P)| approximately 5.20 MHz), significantly larger than that measured for the complex formed by Mn(2+) and ADP in solution (|A((31)P)| approximately 4.50 MHz). The Q-band EPR spectrum of the Mn.TF1.ADP complex indicates that the Mn(2+) binds in a slightly distorted environment with |D| approximately 180 x 10(-4) cm(-1) and |E| approximately 50 x 10(-4) cm(-1). The increased hyperfine coupling with (31)P in the presence of TF1 reflects the specific interaction between the central Mn(2+) and the ADP beta-phosphate, illustrating the role of the enzyme active site in positioning the phosphate chain of the substrate for efficient catalysis. Results with the ternary Mn.TF1.ATP and Mn.TF1.AMP-PNP complexes are interpreted in a similar way with two hyperfine couplings being resolved for each complex (|A((31)P(beta))| approximately 4.60 MHz and |A((31)P(gamma))| approximately 5.90 MHz with ATP, and |A((31)P(beta))| approximately 4.20 MHz and |A((31)P(gamma))| approximately 5.40 MHz with AMP-PNP). In these complexes, the increased hyperfine coupling with (31)P(gamma) compared with (31)P(beta) reflects the smaller Mn.P distance with the gamma-phosphate compared with the beta-phosphate as found in the crystal structure of the analogous enzyme from mitochondria [3.53 vs 3.70 A (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628)] and the different binding modes of the two phosphate groups. The ESEEM and HYSCORE data of a complex formed with Mn(2+), ATP, and the isolated beta subunit show that the (31)P hyperfine coupling is close to that measured in the absence of the protein, indicating a poorly structured nucleotide site in the isolated beta subunit in the presence of ATP. The inhibition data obtained for TF1 incubated in the presence of Mg(2+), ADP, Al(NO(3))(3), and NaF indicate the formation of the inhibited complex with the transition state analogue namely Mg.TF1.ADP.AlF(x) with the equilibrium dissociation constant K(D) = 350 microM and rate constant k = 0.02 min(-1). The ESEEM and HYSCORE data obtained for an inhibited TF1 sample, Mn.TF1.ADP.AlF(x), confirm the formation of the transition state analogue with distinct spectroscopic footprints that can be assigned to Mn.(19)F and Mn.(27)Al hyperfine interactions. The (31)P(beta) hyperfine coupling that is measured in the inhibited complex with the transition state analogue (|A((31)P(beta))| approximately 5.10 MHz) is intermediate between those measured in the presence of ADP and ATP and suggests an increase in the bond between Mn and the P(beta) from ADP upon formation of the transition state.

  3. Hyperfine-resolved 3.4-{mu}m spectroscopy of CH{sub 3}I with a widely tunable difference frequency generation source and a cavity-enhanced cell: A case study of a local Coriolis interaction between the v{sub 1}=1 and (v{sub 2},v{sub 6}{sup l})=(1,2{sup 2}) states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okubo, Sho; Nakayama, Hirotaka; Sasada, Hiroyuki

    Saturated absorption spectra of the {nu}{sub 1} fundamental band of CH{sub 3}I are recorded with a cavity-enhanced cell and a tunable difference frequency generation source having an 86-cm{sup -1} range. The recorded spectral lines are 250 kHz wide, and most of them are resolved into the individual hyperfine components. The Coriolis interaction between the v{sub 1}=1 and (v{sub 2},v{sub 6}{sup l})=(1,2{sup 2}) states locally perturbing the hyperfine structures is analyzed to yield the Coriolis and hyperfine coupling constants with uncertainties similar to those in typical microwave spectroscopy. The spectrometer has demonstrated the potential for precisely determining the energy structure inmore » the vibrational excited states.« less

  4. Evaluated rate constants for selected HCFC's and HFC's with OH and O((sup)1D)

    NASA Technical Reports Server (NTRS)

    Hampson, Robert F.; Kurylo, Michael J.; Sander, Stanley P.

    1990-01-01

    The chemistry of HCFC's and HFC's in the troposphere is controlled by reactions with OH in which a hydrogen atom is abstracted from the halocarbon to form water and a halo-alkyl radical. The halo-alkyl radical subsequently reacts with molecular oxygen to form a peroxy radical. The reactions of HCFC's and HFC's with O(exp1D) atoms are unimportant in the troposphere, but may be important in producing active chlorine of OH in the stratosphere. Here, the rate constants for the reactions of OH and O(exp1D) with many HFC's and HCFC's are evaluated. Recommendations are given for the five HCFC's and three HFC's specified by AFEAS as primary alternatives as well as for all other isomers of C1 and C2 HCFC's and HFC's where rate data exist. In addition, recommendations are included for CH3CCl3, CH2Cl2, and CH4.

  5. HFC-23 (CHF3) emission trend response to HCFC-22 (CHClF2) production and recent HFC-23 emission abatement measures

    NASA Astrophysics Data System (ADS)

    Miller, B. R.; Rigby, M.; Kuijpers, L. J. M.; Krummel, P. B.; Steele, L. P.; Leist, M.; Fraser, P. J.; McCulloch, A.; Harth, C.; Salameh, P.; Mühle, J.; Weiss, R. F.; Prinn, R. G.; Wang, R. H. J.; O'Doherty, S.; Greally, B. R.; Simmonds, P. G.

    2010-08-01

    HFC-23 (also known as CHF3, fluoroform or trifluoromethane) is a potent greenhouse gas (GHG), with a global warming potential (GWP) of 14 800 for a 100-year time horizon. It is an unavoidable by-product of HCFC-22 (CHClF2, chlorodifluoromethane) production. HCFC-22, an ozone depleting substance (ODS), is used extensively in commercial refrigeration and air conditioning, in the extruded polystyrene (XPS) foam industries (dispersive applications) and also as a feedstock in fluoropolymer manufacture (a non-dispersive use). Aside from small markets in specialty uses, HFC-23 has historically been considered a waste gas that was, and often still is, simply vented to the atmosphere. Efforts have been made in the past two decades to reduce HFC-23 emissions, including destruction (incineration) in facilities in developing countries under the United Nations Framework Convention on Climate Change's (UNFCCC) Clean Development Mechanism (CDM), and by process optimization and/or voluntary incineration by most producers in developed countries. We present observations of lower-tropospheric mole fractions of HFC-23 measured by "Medusa" GC/MSD instruments from ambient air sampled in situ at the Advanced Global Atmospheric Gases Experiment (AGAGE) network of five remote sites (2007-2009) and in Cape Grim air archive (CGAA) samples (1978-2009) from Tasmania, Australia. These observations are used with the AGAGE 2-D atmospheric 12-box model and an inverse method to produce model mole fractions and a "top-down" HFC-23 emission history. The model 2009 annual mean global lower-tropospheric background abundance is 22.6 (±0.2) pmol mol-1. The derived HFC-23 emissions show a "plateau" during 1997-2003, followed by a rapid ~50% increase to a peak of 15.0 (+1.3/-1.2) Gg/yr in 2006. Following this peak, emissions of HFC-23 declined rapidly to 8.6 (+0.9/-1.0) Gg/yr in 2009, the lowest annual emission of the past 15 years. We derive a 1990-2008 "bottom-up" HFC-23 emission history using data from the United Nations Environment Programme and the UNFCCC. Comparison with the top-down HFC-23 emission history shows agreement within the stated uncertainties. In the 1990s, HFC-23 emissions from developed countries dominated all other sources, then began to decline and eventually became fairly constant during 2003-2008. By this point, with developed countries' emissions essentially at a plateau, the major factor controlling the annual dynamics of global HFC-23 emissions became the historical rise of developing countries' HCFC-22 dispersive use production, which peaked in 2007. Thereafter in 2007-2009, incineration through CDM projects became a larger factor, reducing global HFC-23 emissions despite rapidly rising HCFC-22 feedstock production in developing countries.

  6. HFC-23 (CHF3) emission trend response to HCFC-22 (CHClF2) production and recent HFC-23 emission abatement measures

    NASA Astrophysics Data System (ADS)

    Miller, B. R.; Rigby, M.; Kuijpers, L. J. M.; Krummel, P. B.; Steele, L. P.; Leist, M.; Fraser, P. J.; McCulloch, A.; Harth, C.; Salameh, P.; Mühle, J.; Weiss, R. F.; Prinn, R. G.; Wang, R. H. J.; O'Doherty, S.; Greally, B. R.; Simmonds, P. G.

    2010-05-01

    HFC-23 (also known as CHF3, fluoroform or trifluoromethane) is a potent greenhouse gas (GHG), with a global warming potential (GWP) of 14 800 for a 100-year time horizon. It is an unavoidable by-product of HCFC-22 (CHClF2, chlorodifluoromethane) production. HCFC-22, an ozone depleting substance (ODS), is used extensively in commercial refrigeration and air conditioning, in the extruded polystyrene (XPS) foam industries (dispersive applications) and also as a feedstock in fluoropolymer manufacture (a non-dispersive use). Aside from small markets in specialty uses, HFC-23 has historically been considered a waste gas that was, and often still is, simply vented to the atmosphere. Efforts have been made in the past two decades to reduce HFC-23 emissions, including destruction (incineration) in facilities in developing countries under the United Nations Framework Convention on Climate Change's (UNFCCC) Clean Development Mechanism (CDM), and by process optimization and/or voluntary incineration by most producers in developed countries. We present observations of lower-tropospheric mole fractions of HFC-23 measured by "Medusa" GC/MSD instruments from ambient air sampled in situ at the Advanced Global Atmospheric Gases Experiment (AGAGE) network of five remote sites and in Cape Grim air archive (CGAA) samples (1978-2009) from Tasmania, Australia. These observations are used with the AGAGE 2-D atmospheric 12-box model and an inverse method to produce model mole fractions and a "top-down" HFC-23 emission history. The model 2009 annual mean global lower-tropospheric background abundance is 22.8 (±0.2) pmol mol-1. The derived HFC-23 emissions show a "plateau" during 1997-2003, followed by a rapid ~50% increase to a peak of 15.0 (+1.3/-1.2) Gg/yr in 2006. Following this peak, emissions of HFC-23 declined rapidly to 8.6 (+0.9/-1.0) Gg/yr in 2009, the lowest annual emission of the past 15 years. We derive a 1990-2008 "bottom-up" HFC-23 emission history using data from the United Nations Environment Programme and the UNFCCC. Comparison with the top-down HFC-23 emission history shows agreement within the stated uncertainties. In the 1990s, HFC-23 emissions from developed countries dominated all other sources, then began to decline and eventually became fairly constant during 2003-2008. From the beginning of that plateau, the major factor determining the annual dynamics of global HFC-23 emissions became the historical rise of HCFC-22 production for dispersive uses in developing countries to a peak in 2007. Thereafter in 2007-2009, incineration through CDM projects became a larger factor, reducing global HFC-23 emissions despite rapidly rising HCFC-22 feedstock production in developing countries.

  7. Power spectra and auto correlation analysis of hyperfine-induced long period oscillations in the tunneling current of coupled quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harack, B.; Leary, A.; Coish, W. A.

    2013-12-04

    We outline power spectra and auto correlation analysis performed on temporal oscillations in the tunneling current of coupled vertical quantum dots. The current is monitored for ∼2325 s blocks as the magnetic field is stepped through a high bias feature displaying hysteresis and switching: hallmarks of the hyperfine interaction. Quasi-periodic oscillations of ∼2 pA amplitude and of ∼100 s period are observed in the current inside the hysteretic feature. Compared to the baseline current outside the hysteretic feature the power spectral density is enhanced by up to three orders of magnitude and the auto correlation displays clear long lived oscillationsmore » about zero.« less

  8. HFC-134a emissions from mobile air conditioning in China from 1995 to 2030

    NASA Astrophysics Data System (ADS)

    Su, Shenshen; Fang, Xuekun; Li, Li; Wu, Jing; Zhang, Jianbo; Xu, Weiguang; Hu, Jianxin

    2015-02-01

    Since 1995, 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a) has become the most important substitute of CFC-12 in mobile air conditioning (MAC) in China and MAC sector has dominated all the emissions of HFC-134a. In this study, we developed an accurate, updated and county-level inventory of the HFC-134a emissions from MAC in China for the period of 1995-2030 with an improved bottom-up method. Our estimation indicated that the total HFC-134a emissions kept growing at increase rates of ∼100% per year for 1995-2000 and ∼34% per year for 2001-2010. In 2010, HFC-134a emissions from MAC in China reached 16.7 Gg (10.5-22.7 Gg at 95% confidential interval), equivalent to 21.7 Tg CO2 (CO2-eq). Furthermore, the emissions in China estimated in this study accounted for 9.8% of global HFC-134a emissions and 29.0% of total emissions from Non-Annex_I countries in 2010. Due to the more advanced social-economic conditions and more intensive ownership of automobiles, greater HFC-134a were observed to come from big cities in East China. Under a Business-as-usual (BAU) Scenario, projected emissions will grow to 89.4 (57.9-123.9) Gg (about 75.3-161.1 Tg CO2-eq) in 2030, but under an Alternative Scenario, 88.6% of the projected emissions under BAU scenario could be curbed. Our estimation demonstrates huge emission mitigation potential of HFC-134a in China's MAC sector.

  9. Structure and nature of manganese(II) imidazole complexes in frozen aqueous solutions.

    PubMed

    Un, Sun

    2013-04-01

    A common feature of a large majority of the manganese metalloenzymes, as well as many synthetic biomimetic complexes, is the bonding between the manganese ion and imidazoles. This interaction was studied by examining the nature and structure of manganese(II) imidazole complexes in frozen aqueous solutions using 285 GHz high magnet-field continuous-wave electron paramagnetic resonance (cw-HFEPR) and 95 GHz pulsed electron-nuclear double resonance (ENDOR) and pulsed electron-double resonance detected nuclear magnetic resonance (PELDOR-NMR). The (55)Mn hyperfine coupling and isotropic g values of Mn(II) in frozen imidazole solutions continuously decreased with increasing imidazole concentration. ENDOR and PELDOR-NMR measurements demonstrated that the structural basis for this behavior arose from the imidazole concentration-dependent distribution of three six-coordinate and two four-coordinate species: [Mn(H2O)6](2+), [Mn(imidazole)(H2O)5](2+), [Mn(imidazole)2(H2O)4](2+), [Mn(imidazole)3(H2O)](2+), and [Mn(imidazole)4](2+). The hyperfine and g values of manganese proteins were also fully consistent with this imidazole effect. Density functional theory methods were used to calculate the structures, spin and charge densities, and hyperfine couplings of a number of different manganese imidazole complexes. The use of density functional theory with large exact-exchange admixture calculations gave isotropic (55)Mn hyperfine couplings that were semiquantitative and of predictive value. The results show that the covalency of the Mn-N bonds play an important role in determining not only magnetic spin parameters but also the structure of the metal binding site. The relationship between the isotropic (55)Mn hyperfine value and the number of imidazole ligands provides a quick and easy test for determining whether a protein binds an Mn(II) ion using histidine residues and, if so, how many are involved. Application of this method shows that as much as 40% of the Mn(II) ions in Deinococcus radiodurans are ligated to two histidines (Tabares, L. C.; Un, S. J. Biol. Chem 2013, in press).

  10. O(1D) kinetic study of key ozone depleting substances and greenhouse gases.

    PubMed

    Baasandorj, Munkhbayar; Fleming, Eric L; Jackman, Charles H; Burkholder, James B

    2013-03-28

    A key stratospheric loss process for ozone depleting substances (ODSs) and greenhouse gases (GHGs) is reaction with the O((1)D) atom. In this study, rate coefficients, k, for the O((1)D) atom reaction were measured for the following key halocarbons: chlorofluorocarbons (CFCs) CFCl3 (CFC-11), CF2Cl2 (CFC-12), CFCl2CF2Cl (CFC-113), CF2ClCF2Cl (CFC-114), CF3CF2Cl (CFC-115); hydrochlorofluorocarbons (HCFCs) CHF2Cl (HCFC-22), CH3CClF2 (HCFC-142b); and hydrofluorocarbons (HFCs) CHF3 (HFC-23), CHF2CF3 (HFC-125), CH3CF3 (HFC-143a), and CF3CHFCF3 (HFC-227ea). Total rate coefficients, kT, corresponding to the loss of the O((1)D) atom, were measured over the temperature range 217-373 K using a competitive reactive technique. kT values for the CFC and HCFC reactions were >1 × 10(-10) cm(3) molecule(-1) s(-1), except for CFC-115, and the rate coefficients for the HFCs were in the range (0.095-0.72) × 10(-10) cm(3) molecule(-1) s(-1). Rate coefficients for the CFC-12, CFC-114, CFC-115, HFC-23, HFC-125, HFC-143a, and HFC-227ea reactions were observed to have a weak negative temperature dependence, E/R ≈ -25 K. Reactive rate coefficients, kR, corresponding to the loss of the halocarbon, were measured for CFC-11, CFC-115, HCFC-22, HCFC-142b, HFC-23, HFC-125, HFC-143a, and HFC-227ea using a relative rate technique. The reactive branching ratio obtained was dependent on the composition of the halocarbon and the trend in O((1)D) reactivity with the extent of hydrogen and chlorine substitution is discussed. The present results are critically compared with previously reported kinetic data and the discrepancies are discussed. 2D atmospheric model calculations were used to evaluate the local and global annually averaged atmospheric lifetimes of the halocarbons and the contribution of O((1)D) chemistry to their atmospheric loss. The O((1)D) reaction was found to be a major global loss process for CFC-114 and CFC-115 and a secondary global loss process for the other molecules included in this study.

  11. Cryoinsulation Material Development to Mitigate Obsolescence Risk for Global Warming Potential Foams

    NASA Technical Reports Server (NTRS)

    Protz, Alison; Bruyns, Roland; Nettles, Mindy

    2015-01-01

    Cryoinsulation foams currently being qualified for the Space Launch System (SLS) core stage are nonozone- depleting substances (ODP) and are compliant with current environmental regulations. However, these materials contain the blowing agent HFC-245fa, a hydrofluorocarbon (HFC), which is a Global Warming Potential (GWP) substance. In August 2014, the Environmental Protection Agency (EPA) proposed a policy change to reduce or eliminate certain HFCs, including HFC-245fa, in end-use categories including foam blowing agents beginning in 2017. The policy proposes a limited exception to allow continued use of HFC and HFC-blend foam blowing agents for military or space- and aeronautics-related applications, including rigid polyurethane spray foams, but only until 2022.

  12. The Guanine Cation Radical: Investigation of Deprotonation States by ESR and DFT

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Becker, David; Sevilla, Michael D.

    2008-01-01

    This work reports ESR studies that identify the favored site of deprotonation of the guanine cation radical (G•+) in an aqueous medium at 77 K. Using ESR and UV-visible spectroscopy, one-electron oxidized guanine is investigated in frozen aqueous D2O solutions of 2′-deoxyguanosine (dGuo) at low temperatures at various pHs at which the guanine cation, G•+ (pH 3–5), singly deprotonated species, G(-H)• (pH 7–9) and doubly deprotonated species, G(-2H)•− (pH>11) are found. C-8-deuteration of dGuo to give 8-D-dGuo removes the major proton hyperfine coupling at C-8. This isolates the anisotropic nitrogen couplings for each of the three species and aids our analyses. These anisotropic nitrogen couplings were assigned to specific nitrogen sites by use of 15N substituted derivatives at N1, N2 N3 atoms in dGuo. Both ESR and UV-visible spectra are reported for each of the species: G•+, G(-H)•, and G(-2H)•−. The experimental anisotropic ESR hyperfine couplings are compared to those obtained from DFT calculations for the various tautomers of G(-H)•. Using the B3LYP/6–31G(d) method, the geometries and energies of G•+ and its singly deprotonated state in its two tautomeric forms, G(N1-H)• and G(N2-H)•, were investigated. In a non-hydrated state G(N2-H)• is found to be more stable than G(N1-H)• but on hydration with 7 water molecules G(N1-H)• is found to be more stable than G(N2-H)•. The theoretically calculated hyperfine coupling constants (HFCC) of G•+, G(N1-H)• and G(-2H)•− match the experimentally observed HFCCs best on hydration with 7 or more waters. For G(-2H)•−, the hyperfine coupling constant (HFCC) at the exocyclic nitrogen atom (N2) is especially sensitive to the number of hydrating water molecules; good agreement with experiment is not obtained until 9 or 10 waters of hydration are included. PMID:17125389

  13. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Prakash; Morales, Jorge A., E-mail: jorge.morales@ttu.edu; Perera, Ajith

    2013-11-07

    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. Inmore » this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the {sup 11}B, {sup 17}O, {sup 9}Be, {sup 19}F, {sup 1}H, {sup 13}C, {sup 35}Cl, {sup 33}S,{sup 14}N, {sup 31}P, and {sup 67}Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N{sup 7}-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate experimental ESR spectra, to interpret spin-density distributions, and to characterize and identify radical species is illustrated with our results from large organic radicals. Those include species relevant for organic chemistry, petroleum industry, and biochemistry, such as the cyclo-hexyl, 1-adamatyl, and Zn-porphycene anion radicals, inter alia.« less

  14. Recent increases in the atmospheric growth rate and emissions of HFC-23 (CHF3) and the link to HCFC-22 (CHClF2) production

    NASA Astrophysics Data System (ADS)

    Simmonds, Peter G.; Rigby, Matthew; McCulloch, Archie; Vollmer, Martin K.; Henne, Stephan; Mühle, Jens; O'Doherty, Simon; Manning, Alistair J.; Krummel, Paul B.; Fraser, Paul J.; Young, Dickon; Weiss, Ray F.; Salameh, Peter K.; Harth, Christina M.; Reimann, Stefan; Trudinger, Cathy M.; Steele, L. Paul; Wang, Ray H. J.; Ivy, Diane J.; Prinn, Ronald G.; Mitrevski, Blagoj; Etheridge, David M.

    2018-03-01

    High frequency measurements of trifluoromethane (HFC-23, CHF3), a potent hydrofluorocarbon greenhouse gas, largely emitted to the atmosphere as a by-product of the production of the hydrochlorofluorocarbon HCFC-22 (CHClF2), at five core stations of the Advanced Global Atmospheric Gases Experiment (AGAGE) network, combined with measurements on firn air, old Northern Hemisphere air samples and Cape Grim Air Archive (CGAA) air samples, are used to explore the current and historic changes in the atmospheric abundance of HFC-23. These measurements are used in combination with the AGAGE 2-D atmospheric 12-box model and a Bayesian inversion methodology to determine model atmospheric mole fractions and the history of global HFC-23 emissions. The global modelled annual mole fraction of HFC-23 in the background atmosphere was 28.9 ± 0.6 pmol mol-1 at the end of 2016, representing a 28 % increase from 22.6 ± 0.4 pmol mol-1 in 2009. Over the same time frame, the modelled mole fraction of HCFC-22 increased by 19 % from 199 ± 2 to 237 ± 2 pmol mol-1. However, unlike HFC-23, the annual average HCFC-22 growth rate slowed from 2009 to 2016 at an annual average rate of -0.5 pmol mol-1 yr-2. This slowing atmospheric growth is consistent with HCFC-22 moving from dispersive (high fractional emissions) to feedstock (low fractional emissions) uses, with HFC-23 emissions remaining as a consequence of incomplete mitigation from all HCFC-22 production.Our results demonstrate that, following a minimum in HFC-23 global emissions in 2009 of 9.6 ± 0.6, emissions increased to a maximum in 2014 of 14.5 ± 0.6 Gg yr-1 and then declined to 12.7 ± 0.6 Gg yr-1 (157 Mt CO2 eq. yr-1) in 2016. The 2009 emissions minimum is consistent with estimates based on national reports and is likely a response to the implementation of the Clean Development Mechanism (CDM) to mitigate HFC-23 emissions by incineration in developing (non-Annex 1) countries under the Kyoto Protocol. Our derived cumulative emissions of HFC-23 during 2010-2016 were 89 ± 2 Gg (1.1 ± 0.2 Gt CO2 eq.), which led to an increase in radiative forcing of 1.0 ± 0.1 mW m-2 over the same period. Although the CDM had reduced global HFC-23 emissions, it cannot now offset the higher emissions from increasing HCFC-22 production in non-Annex 1 countries, as the CDM was closed to new entrants in 2009. We also find that the cumulative European HFC-23 emissions from 2010 to 2016 were ˜ 1.3 Gg, corresponding to just 1.5 % of cumulative global HFC-23 emissions over this same period. The majority of the increase in global HFC-23 emissions since 2010 is attributed to a delay in the adoption of mitigation technologies, predominantly in China and East Asia. However, a reduction in emissions is anticipated, when the Kigali 2016 amendment to the Montreal Protocol, requiring HCFC and HFC production facilities to introduce destruction of HFC-23, is fully implemented.

  15. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    NASA Astrophysics Data System (ADS)

    Crooker, S. A.; Liu, F.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L.; Ruden, P. P.

    2014-10-01

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ˜ 11%) than at the low-energy red end (˜4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  16. European emissions of HFC-365mfc, a chlorine-free substitute for the foam blowing agents HCFC-141b and CFC-11.

    PubMed

    Stemmler, Konrad; Folini, Doris; Ubl, Sandy; Vollmer, Martin K; Reimann, Stefan; O'Doherty, Simon; Greally, Brian R; Simmonds, Peter G; Manning, Alistair J

    2007-02-15

    HFC-365mfc (1,1,1,3,3-pentafluorobutane) is an industrial chemical used for polyurethane foam blowing. From early 2003, HFC-365mfc has been commercially produced as a substitute for HCFC-141b, whose use in Europe has been banned since January 2004. We describe the first detection of HFC-365mfc in the atmosphere and report on a 2 year long record at the high Alpine station of Jungfraujoch (Switzerland) and the Atlantic coast station of Mace Head (Ireland). The measurements at Jungfraujoch are used to estimate the central European emissions of HFC-365mfc, HCFC-141b, and CFC-11. For HFC-365mfc, we estimate the central European emissions (Germany, France, Italy, Switzerland, The Netherlands, Belgium, and Luxembourg) in 2003 and 2004 as 400-500 tonnes year(-1). These emissions are about one-third lower on a per capita basis than what we estimate from the Mace Head measurements for the total of Europe. The estimated emissions of HCFC-141b for central Europe are higher (i.e., 7.2-3.5 ktonnes year(-1)) with a decreasing trend in the period from 2000 to 2004. Residual emissions of CFC-11 are estimated at 2.4-4.7 ktonnes year(-1) in the same time period. The Po Valley (northern Italy) appears to be a main source region for HFC-365mfc and for the former blowing agents HCFC-141b and CFC-11. In 2004, the emissions of HFC-365mfc arose from a wider region of Europe, which we attribute to an increased penetration of HFC-365mfc into the European market.

  17. Thermodynamic properties of seven gaseous halogenated hydrocarbons from acoustic measurements: CHClFCF3, CHF2 CF3, CF3 CH3, CHF2CH3, CF3CHFCHF2, CF3CH2CF3, and CHF2CF2CH2F

    NASA Astrophysics Data System (ADS)

    Gillis, K. A.

    1997-01-01

    Measurements of the speed of sound in seven halogenated hydrocarbons are presented. The compounds in this study are 1-chloro-1,2,2,2-tetrafluoroethane (CHClFCF3 or HCFC-124), pentafluoroethane (CHF2 CF3 or HFC-125), 1,1,1-trifluoroethane (CF3CH3 or HFC-143a), 1,1-difluoroethane (CHF2CH3 or HFC-152a), 1,1,1,2,3,3-hexafluoropropane (CF3CHFCHF2 or HFC-236ea), 1,1,1,3,3,3-hexafluoropropane (CF3CH2CF3 or HFC-236fa), and 1,1,2,2,3-pentafluoropropane (CHF2CF2CH2F or HFC-245ca). The measurements were performed with a cylindrical resonator at temperatures between 240 and 400 K and at pressures up to 1.0 MPa. Ideal-gas heat capacities and acoustic virial coefficients were directly deduced from the data. The ideal-gas heat capacity of HFC-125 from this work differs from spectroscopic calculations by less than 0.2% over the measurement range. The coefficients for virial equations of state were obtained from the acoustic data and hard-core square-well intermolecular potentials. Gas densities that were calculated from the virial equations of state for HCFC-124 and HFC-125 differ from independent density measurements by at most 0.15%, for the ranges of temperature and pressure over which both acoustic and Burnett data exist. The uncertainties in the derived properties for the other five compounds are comparable to those for HCFC-124 and HFC-125.

  18. HFC-152a and HFC-134a emission estimates and characterization of CFCs, CFC replacements, and other halogenated solvents measured during the 2008 ARCTAS campaign (CARB phase) over the South Coast Air Basin of California

    NASA Astrophysics Data System (ADS)

    Barletta, B.; Nissenson, P.; Meinardi, S.; Dabdub, D.; Sherwood Rowland, F.; Vancuren, R. A.; Pederson, J.; Diskin, G. S.; Blake, D. R.

    2011-03-01

    This work presents results from the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) study. Whole air samples were obtained on board research flights that flew over California during June 2008 and analyzed for selected volatile organic compounds, including several halogenated species. Samples collected over the South Coast Air Basin of California (SoCAB), which includes much of Los Angeles (LA) County, were compared with samples from inflow air masses over the Pacific Ocean. The levels of many halocarbon species were enhanced significantly over the SoCAB, including compounds regulated by the Montreal Protocol and subsequent amendments. Emissions estimates of HFC-152a (1,1-difluoroethane, CH3CHF2; 0.82 ± 0.11 Gg) and HFC-134a (1,1,1,2-tetrafluoroethane, CH2FCF3; 1.16 ± 0.22 Gg) in LA County for 2008 were obtained using the observed HFC:carbon monoxide (CO) enhancement ratio. Emission rates also were calculated for the SoCAB (1.60 ± 0.22 Gg yr-1 for HFC-152a and 2.12 ± 0.28 Gg yr-1 for HFC-134a) and then extrapolated to the United States (32 ± 4 Gg yr-1 for HFC-152a and 43 ± 6 Gg yr-1 for HFC-134a) using population data. In addition, emission rates of the two HFCs in LA County and SoCAB were calculated by a second method that utilizes air quality modeling. Emissions estimates obtained using both methods differ by less than 25% for the LA County and less than 45% for the SoCAB.

  19. Dominant role of cytochrome P-450 2E1 in human hepatic microsomal oxidation of the CFC-substitute 1,1,1,2-tetrafluoroethane.

    PubMed

    Surbrook, S E; Olson, M J

    1992-01-01

    The chlorofluorocarbon substitute 1,1,1,2-tetrafluoroethane (HFC-134a) is subject to metabolism by cytochrome P-450 in hepatic microsomes from rat, rabbit, and human. In rat and rabbit, the P-450 form 2E1 is a predominant low-KM, high-rate catalyst of HFC-134a biotransformation and is prominently involved in the metabolism of other tetrahaloalkanes of greater toxicity than HFC-134a [e.g. 1,2-dichloro-1,1-difluoroethane (HCFC-132b)]. In this study, we determined that the human ortholog of P-450 2E1 plays a role of similar importance in the metabolism of HFC-134a. In human hepatic microsomes from 12 individuals, preparations from subjects with relatively high P-450 2E1 levels were shown to metabolize HFC-134a at rates 5- to 10-fold greater than microsomes of individuals with lower levels of this enzyme; the increased rate of metabolism of HFC-134a was specifically linked to increased expression of P-450 2E1. The primary evidence for this conclusion is drawn from studies using mechanism-based inactivation of P-450 2E1 by diethyldithiocarbamate, competitive inhibition of HFC-134a oxidation by p-nitrophenol (a high-affinity substrate for P-450 2E1), strong positive correlation of rates of HFC-134a defluorination with p-nitrophenol hydroxylation in the study population, and correlation of P-450 2E1 levels with rates of halocarbon oxidation. Thus, our findings support the conclusion that human metabolism of HFC-134a is qualitatively similar to that of the species (rat and rabbit) used for toxicological assessment of this halocarbon.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Effect of exercise on postprandial lipemia following a higher calorie meal in Yucatan miniature swine.

    PubMed

    Rector, R Scott; Thomas, Tom R; Liu, Ying; Henderson, Kyle K; Holiman, Denise A; Sun, Grace Y; Sturek, Michael

    2004-08-01

    Exercise has been shown to attenuate the postprandial lipemic (PPL) response to a modest kcal high-fat meal in numerous human studies, but has not been fully examined in swine. In addition, the effects of exercise on a high-fat meal of larger magnitude have not been examined in humans or in swine. Thus, the purpose of this study was to examine the PPL response to a single, high-fat/cholesterol (HFC) meal (approximately 3,000 kcal, 1,300 kcal from fat) and determine if exercise attenuates the PPL response. Sedentary, female Yucatan miniature swine (n = 10) completed 3 PPL trials: (1) pre diet (PRE); (2) post HFC diet (POST); and (3) post HFC diet plus exercise (EX, 45 minutes at 75% heart rate maximum). Blood samples were collected before (0 hour) and at 2, 4, 6, and 8 hours after the single HFC meal for PPL analysis. Postheparin lipoprotein lipase (LPL) activity was assessed at 8 hours. While fasting LPL activity was significantly increased with the HFC diet, the PPL response to the HFC meal did not differ depending on diet. Furthermore, the PPL response was not significantly altered with a single session of exercise, perhaps because of the severity of the HFC meal, the sedentary nature of the swine, or because LPL activity was not elevated after exercise. These findings suggest that administration of a HFC meal of this magnitude (approximately 3,000 kcal, 1,300 kcal from fat) will promote significant elevations in postprandial triglyceride (TG) concentrations, overwhelm the adaptive response to a HFC diet (elevated LPL activity), and attenuate the beneficial effects of a single exercise session on this system. Copyright 2004 Elsevier Inc.

  1. Use of human fibrinogen concentrate during proximal aortic reconstruction with deep hypothermic circulatory arrest.

    PubMed

    Hanna, Jennifer M; Keenan, Jeffrey E; Wang, Hanghang; Andersen, Nicholas D; Gaca, Jeffrey G; Lombard, Frederick W; Welsby, Ian J; Hughes, G Chad

    2016-02-01

    Human fibrinogen concentrate (HFC) is approved by the Food and Drug Administration for use at 70 mg/kg to treat congenital afibrinogenemia. We sought to determine whether this dose of HFC increases fibrinogen levels in the setting of high-risk bleeding associated with aortic reconstruction and deep hypothermic circulatory arrest (DHCA). This was a prospective, pilot, off-label study in which 22 patients undergoing elective proximal aortic reconstruction with DHCA were administered 70 mg/kg HFC upon separation from cardiopulmonary bypass (CPB). Fibrinogen levels were measured at baseline, just before, and 10 minutes after HFC administration, on skin closure, and the day after surgery. The primary study outcome was the difference in fibrinogen level immediately after separation from CPB, when HFC was administered, and the fibrinogen level 10 minutes following HFC administration. Additionally, postoperative thromboembolic events were assessed as a safety analysis. The mean baseline fibrinogen level was 317 ± 49 mg/dL and fell to 235 ± 39 mg/dL just before separation from CPB. After HFC administration, the fibrinogen level rose to 331 ± 41 mg/dL (P < .001) and averaged 372 ± 45 mg/dL the next day. No postoperative thromboembolic complications occurred. Administration of 70 mg/kg HFC upon separation from CPB raises fibrinogen levels by approximately 100 mg/dL without an apparent increase in thrombotic complications during proximal aortic reconstruction with DHCA. Further prospective study in a larger cohort of patients will be needed to definitively determine the safety and evaluate the efficacy of HFC as a hemostatic adjunct during these procedures. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  2. NEW CHEMICAL ALTERNATIVE FOR OZONE-DEPLETING SUBSTANCES: HFC-245CA

    EPA Science Inventory

    The report gives results of a preliminary evaluation of a new hydrofluorocarbon (HFC) -- HFC-245ca or 1,1,2,2,3-pentafluoropropane -- as a possible alternative for chlorofluorocarbon (CFC)-11 (trichlorofluoromethane) and hydrochlorofluorocarbon (HCFC)-123 (1,1,1-trifluoro-2,2-dic...

  3. Highly porous activated carbon based adsorption cooling system employing difluoromethane and a mixture of pentafluoroethane and difluoromethane

    NASA Astrophysics Data System (ADS)

    Askalany, Ahmed A.; Saha, Bidyut B.

    2017-01-01

    This paper presents a simulation for a low-grade thermally powered two-beds adsorption cooling system employing HFC-32 and a mixture of HFC-32 and HFC-125 (HFC-410a) with activated carbon of type Maxsorb III. The present simulation model adopts experimentally measured adsorption isotherms, adsorption kinetics and isosteric heat of adsorption data. Effect of operating conditions (mass flow rate of hot water, driving heat source temperature and evaporator temperature) on the system performance has been studied in detail. The simulation results showed that the system could be powered by low-grade heat source temperature (below 85 °C). AC/HFC-32 and AC/HFC-410a adsorption cooling cycles achieved close specific cooling power and coefficient of performance values of 0.15 kW/kg and 0.3, respectively at a regeneration temperature of 90 °C along with evaporator temperature of 10 °C. The investigated semi continuous adsorption cooling system could produce a cooling power of 9 kW.

  4. 133Cs-NMR Study on the Ground State of the Equilateral Triangular Spin Tube CsCrF4

    NASA Astrophysics Data System (ADS)

    Matsui, K.; Goto, T.; Manaka, H.; Miura, Y.

    2018-03-01

    We have investigated the hyperfine coupling between Cs and Cr on the S = 3/2 equilateral triangular spin tube CsCrF4, utilizing 133Cs-NMR. At paramagnetic state above 80 K, we have obtained spectra containing a single peak, which reflects the single crystallographic Cs site. From the temperature dependence of the peak shift and peak width, we evaluated effective values of the isotropic and the anisotropic part of hyperfine coupling. The latter was compared with the calculated dipole contribution. Using obtained parameters with assumed spin structure, we tried to reproduce the broadened spectrum in the ordered state at 2.0 K. The preliminary analysis shows the 120-degree structure does not accord with the observed spectra at the ordered state.

  5. 40 CFR 98.156 - Data reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... destruction device. (c) Each HFC-23 destruction facility shall report the concentration (mass fraction) of HFC... fed into the destruction device in kg/hr. (2) Concentration (mass fraction) of HFC-23 at the outlet of... facility shall report the following information at the facility level: (1) Annual mass of HCFC-22 produced...

  6. 40 CFR 98.156 - Data reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... destruction device. (c) Each HFC-23 destruction facility shall report the concentration (mass fraction) of HFC... fed into the destruction device in kg/hr. (2) Concentration (mass fraction) of HFC-23 at the outlet of... facility shall report the following information at the facility level: (1) Annual mass of HCFC-22 produced...

  7. 40 CFR 98.156 - Data reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... destruction device. (c) Each HFC-23 destruction facility shall report the concentration (mass fraction) of HFC... fed into the destruction device in kg/hr. (2) Concentration (mass fraction) of HFC-23 at the outlet of... facility shall report the following information at the facility level: (1) Annual mass of HCFC-22 produced...

  8. 40 CFR 98.150 - Definition of the source category.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING HCFC-22 Production and HFC-23 Destruction § 98.150 Definition of the source category. The HCFC-22 production and HFC-23 destruction source category consists of HCFC-22 production processes and HFC-23 destruction processes. (a) An HCFC-22 production process...

  9. 40 CFR 98.150 - Definition of the source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING HCFC-22 Production and HFC-23 Destruction § 98.150 Definition of the source category. The HCFC-22 production and HFC-23 destruction source category consists of HCFC-22 production processes and HFC-23 destruction processes. (a) An HCFC-22 production process...

  10. 40 CFR 98.152 - GHGs to report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GREENHOUSE GAS REPORTING HCFC-22 Production and HFC-23 Destruction § 98.152 GHGs to report. (a) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2... must report HFC-23 emissions from HCFC-22 production processes and HFC-23 destruction processes. ...

  11. 40 CFR 98.152 - GHGs to report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GREENHOUSE GAS REPORTING HCFC-22 Production and HFC-23 Destruction § 98.152 GHGs to report. (a) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2... must report HFC-23 emissions from HCFC-22 production processes and HFC-23 destruction processes. ...

  12. 40 CFR 98.152 - GHGs to report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GREENHOUSE GAS REPORTING HCFC-22 Production and HFC-23 Destruction § 98.152 GHGs to report. (a) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2... must report HFC-23 emissions from HCFC-22 production processes and HFC-23 destruction processes. ...

  13. 40 CFR 98.152 - GHGs to report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GREENHOUSE GAS REPORTING HCFC-22 Production and HFC-23 Destruction § 98.152 GHGs to report. (a) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2... must report HFC-23 emissions from HCFC-22 production processes and HFC-23 destruction processes. ...

  14. 40 CFR 98.152 - GHGs to report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GREENHOUSE GAS REPORTING HCFC-22 Production and HFC-23 Destruction § 98.152 GHGs to report. (a) You must report under subpart C of this part (General Stationary Fuel Combustion Sources) the emissions of CO2... must report HFC-23 emissions from HCFC-22 production processes and HFC-23 destruction processes. ...

  15. NEW CHEMICAL ALTERNATIVE FOR OZONE-DEPLETING SUBSTANCES: HFC-236FA

    EPA Science Inventory

    The report gives results of a preliminary evaluation of a new hydrofluorocarbon (HFC)--HFC-236fa or 1,1,1,3,3,3-hexafluoropropane--as a possible alternative for chlorofluorocarbon (CFC)-114 (1,2-dichloro-1,1,2,2-tetrafluoroethane) refrigerant for chillers and as a possible fire s...

  16. Measurements of HFC-134a and HCFC-22 in groundwater and unsaturated-zone air: implications for HFCs and HCFCs as dating tracers

    USGS Publications Warehouse

    Haase, Karl B.; Busenberg, Eurybiades; Plummer, Niel; Casile, Gerolamo; Sanford, Ward E.

    2014-01-01

    A new analytical method using gas chromatography with an atomic emission detector (GC–AED) was developed for measurement of ambient concentrations of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) in soil, air, and groundwater, with the goal of determining their utility as groundwater age tracers. The analytical detection limits of HCFC-22 (difluorochloromethane, CHClF2) and HFC-134a (1,2,2,2-tetrafluoroethane, C2H2F4) in 1 L groundwater samples are 4.3 × 10− 1 and 2.1 × 10− 1 pmol kg− 1, respectively, corresponding to equilibrium gas-phase mixing ratios of approximately 5–6 parts per trillion by volume (pptv). Under optimal conditions, post-1960 (HCFC-22) and post-1995 (HFC-134a) recharge could be identified using these tracers in stable, unmixed groundwater samples. Ambient concentrations of HCFC-22 and HFC-134a were measured in 50 groundwater samples from 27 locations in northern and western parts of Virginia, Tennessee, and North Carolina (USA), and 3 unsaturated-zone profiles were collected in northern Virginia. Mixing ratios of both HCFC-22 and HFC-134a decrease with depth in unsaturated-zone gas profiles with an accompanying increase in CO2 and loss of O2. Apparently, ambient concentrations of HCFC-22 and HFC-134a are readily consumed by methanotrophic bacteria under aerobic conditions in the unsaturated zone. The results of this study indicate that soils are a sink for these two greenhouse gases. These observations contradict the previously reported results from microcosm experiments that found that degradation was limited above-ambient HFC-134a. The groundwater HFC and HCFC concentrations were compared with concentrations of chlorofluorocarbons (CFCs, CFC-11, CFC-12, CFC-113) and sulfur hexafluoride (SF6). Nearly all samples had measured HCFC-22 or HFC-134a that were below concentrations predicted by the CFCs and SF6, with many samples showing a complete loss of HCFC-22 and HFC-134a. This study indicates that HCFC-22 and HFC-134a are not conservative as environmental tracers and leaves in question the usefulness of other HCFCs and HFCs as candidate age tracers.

  17. New Nuclear Magnetic Moment of ^{209}Bi: Resolving the Bismuth Hyperfine Puzzle.

    PubMed

    Skripnikov, Leonid V; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F; Scheibe, Benjamin; Shabaev, Vladimir M; Vogel, Michael; Volotka, Andrey V

    2018-03-02

    A recent measurement of the hyperfine splitting in the ground state of Li-like ^{208}Bi^{80+} has established a "hyperfine puzzle"-the experimental result exhibits a 7σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017)NCAOBW2041-172310.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017)NPAHAX1745-247310.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μ_{I}) of ^{209}Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μ_{I}(^{209}Bi) and combine it with nuclear magnetic resonance measurements of Bi(NO_{3})_{3} in nitric acid solutions and of the hexafluoridobismuthate(V) BiF_{6}^{-} ion in acetonitrile. The result clearly reveals that μ_{I}(^{209}Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.

  18. New Nuclear Magnetic Moment of 209Bi: Resolving the Bismuth Hyperfine Puzzle

    NASA Astrophysics Data System (ADS)

    Skripnikov, Leonid V.; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F.; Scheibe, Benjamin; Shabaev, Vladimir M.; Vogel, Michael; Volotka, Andrey V.

    2018-03-01

    A recent measurement of the hyperfine splitting in the ground state of Li-like 80+208Bi has established a "hyperfine puzzle"—the experimental result exhibits a 7 σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017), 10.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017), 10.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μI) of 209Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μI(209ipts>) and combine it with nuclear magnetic resonance measurements of Bi (NO3 )3 in nitric acid solutions and of the hexafluoridobismuthate(V) BiF6- ion in acetonitrile. The result clearly reveals that μI(209Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.

  19. ENDOR/ESR of Mn atoms and MnH molecules in solid argon

    NASA Astrophysics Data System (ADS)

    van Zee, R. J.; Garland, D. A.; Weltner, W., Jr.

    1986-09-01

    Mn atoms and MnH molecules, the latter formed by reaction between metal and hydrogen atoms, were trapped in solid argon and their ESR/ENDOR spectra measured at 4 K. At each pumping magnetic field two ENDOR lines were observed for 55Mn(I=5/2) atoms, corresponding to hyperfine transitions within the MS =±1/2 levels. Values of the hyperfine interaction constant and nuclear moment of 55Mn were derived from the six sets of data. For MnH, three sets of signals were detected: a proton ``matrix ENDOR'' line, transitions in the MS =0,±1 levels involving MI (55Mn)=1/2, 3/2, 5/2 levels, and proton transitions corresponding to νH and νH±aH. Analysis yielded the hyperfine constant aH =6.8(1) MHz and the nuclear quadrupole coupling constant Q'(55Mn)=-11.81(2) MHz. The latter compared favorably with a theoretical value derived earlier by Bagus and Schaefer. A higher term in the spin Hamiltonian appeared to be necessary to fit the proton hyperfine data.

  20. Hyperfine excitation of CH in collisions with atomic and molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2018-04-01

    We investigate here the excitation of methylidene (CH) induced by collisions with atomic and molecular hydrogen (H and H2). The hyperfine-resolved rate coefficients were obtained from close coupling nuclear-spin-free scattering calculations. The calculations are based upon recent, high-accuracy calculations of the CH(X2Π)-H(2S) and CH(X2Π)-H2 potential energy surfaces. Cross-sections and rate coefficients for collisions with atomic H, para-H2, and ortho-H2 were computed for all transitions between the 32 hyperfine levels for CH(X2Π) involving the n ≤ 4 rotational levels for temperatures between 10 and 300 K. These rate coefficients should significantly aid in the interpretation of astronomical observations of CH spectra. As a first application, the excitation of CH is simulated for conditions in typical molecular clouds.

  1. The influence of risk perception on biosafety level-2 laboratory workers' hand-to-face contact behaviors.

    PubMed

    Johnston, James D; Eggett, Dennis; Johnson, Michele J; Reading, James C

    2014-01-01

    Pathogen transmission in the laboratory is thought to occur primarily through inhalation of infectious aerosols or by direct contact with mucous membranes on the face. While significant research has focused on controlling inhalation exposures, little has been written about hand contamination and subsequent hand-to-face contact (HFC) transmission. HFC may present a significant risk to workers in biosafety level-2 (BSL-2) laboratories where there is typically no barrier between the workers' hands and face. The purpose of this study was to measure the frequency and location of HFC among BSL-2 workers, and to identify psychosocial factors that influence the behavior. Research workers (N = 93) from 21 BSL-2 laboratories consented to participate in the study. Two study personnel measured workers' HFC behaviors by direct observation during activities related to cell culture maintenance, cell infection, virus harvesting, reagent and media preparation, and tissue processing. Following observations, a survey measuring 11 psychosocial predictors of HFC was administered to participants. Study personnel recorded 396 touches to the face over the course of the study (mean = 2.6 HFCs/hr). Of the 93 subjects, 67 (72%) touched their face at least once, ranging from 0.2-16.0 HFCs/hr. Among those who touched their face, contact with the nose was most common (44.9%), followed by contact with the forehead (36.9%), cheek/chin (12.5%), mouth (4.0%), and eye (1.7%). HFC rates were significantly different across laboratories F(20, 72) = 1.85, p = 0.03. Perceived severity of infection predicted lower rates of HFC (p = 0.03). For every one-point increase in the severity scale, workers had 0.41 fewer HFCs/hr (r = -.27, P < 0.05). This study suggests HFC is common among BSL-2 laboratory workers, but largely overlooked as a major route of exposure. Workers' risk perceptions had a modest impact on their HFC behaviors, but other factors not considered in this study, including social modeling and work intensity, may play a stronger role in predicting the behavior. Mucous membrane protection should be considered as part of the BSL-2 PPE ensemble to prevent HFC.

  2. Evaluating the impact of a Connecticut program to reduce availability of unhealthy competitive food in schools.

    PubMed

    Long, Michael W; Henderson, Kathryn E; Schwartz, Marlene B

    2010-10-01

    This article seeks to inform state and local school food policies by evaluating the impact of Connecticut's Healthy Food Certification (HFC), a program which provides monetary incentives to school districts that choose to implement state nutrition standards for all foods sold to students outside reimbursable school meals. Food service directors from all school districts participating in the National School Lunch Program (NSLP) (N = 151) in Connecticut were surveyed about the availability of competitive foods before and after the 2006-2007 implementation of HFC. Food categories were coded as healthy or unhealthy based on whether they met the Connecticut Nutrition Standards. Data on NSLP participation were provided by the State Department of Education. Changes in NSLP participation and availability of unhealthy competitive foods in elementary, middle, and high schools were compared pre- and post-HFC across districts participating (n = 74) versus not participating (n = 77) in HFC. On average, all districts in Connecticut reduced the availability of unhealthy competitive foods, with a significantly greater reduction among HFC districts. Average NSLP participation also increased across the state. Participating in HFC was associated with significantly greater NSLP participation for paid meals in middle school; however, implementing HFC did not increase overall NSLP participation beyond the statewide upward trend. The 2006-2007 school year was marked by a significant decrease in unhealthy competitive foods and an increase in NSLP participation across the state. Participation in Connecticut's voluntary HFC further reduced the availability of unhealthy competitive foods in local school districts, and had either a positive or neutral effect on NSLP participation. © 2010, American School Health Association.

  3. New Regional and Global HFC Projections and Effects of National Regulations and Montreal Protocol Amendment Proposals

    NASA Astrophysics Data System (ADS)

    Velders, G. J. M.

    2015-12-01

    Hydrofluorocarbons (HFCs) are used as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. New global scenarios of HFC emissions reach 4.0-5.3 GtCO2-eq yr-1 in 2050, which corresponds to a projected growth from 2015 to 2050 which is 9% to 29% of that for CO2 over the same time period. New baseline scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. These projections are the first to comprehensively assess production and consumption of individual HFCs in multiple use sectors and geographic regions with emission estimates constrained by atmospheric observations. In 2050, in percent of global HFC emissions, China (~30%), India and the rest of Asia (~25%), Middle East and northern Africa (~10%), and USA (~10%) are the principal source regions; and refrigeration and stationary air conditioning are the major use sectors. National regulations to limit HFC use have been adopted recently in the European Union, Japan and USA, and four proposals have been submitted in 2015 to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries. The new HFC scenarios and effects of national regulations and Montreal Protocol amendment proposals will be presented.

  4. 40 CFR 98.156 - Data reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... destruction device. (c) Each HFC-23 destruction facility shall report the concentration (mass fraction) of HFC...) Concentration (mass fraction) of HFC-23 at the outlet of the destruction device. (3) Flow rate at the outlet of... facility shall report the following information at the facility level: (1) Annual mass of HCFC-22 produced...

  5. Sudden death involving inhalation of 1,1-difluoroethane (HFC-152a) with spray cleaner: three case reports.

    PubMed

    Sakai, Kentaro; Maruyama-Maebashi, Kyoko; Takatsu, Akihiro; Fukui, Kenji; Nagai, Tomonori; Aoyagi, Miwako; Ochiai, Eriko; Iwadate, Kimiharu

    2011-03-20

    Spray cleaner is a cleaning product containing compressed 1,1-difluoroethane (HFC-152a) to blow dust off electric devices and other sensitive equipment; however, it is also inhaled to induce euphoria. This report describes three cases of death involving HFC-152a inhalation with spray cleaner under different circumstances. In case 1, death was during inhalation for euphoria with which led to having frostbite. In case 2, death may have been associated with suicidal intention. Case 3 was also considered an accidental autoerotic death. In all three cases, HFC-152a was detected at 99.2-136.2mg/l in blood samples, 94.5-191.9 mg/l in urine samples and 3.6-18.4 mg in the gastric contents according to gas chromatography with flame ionization detection. To prevent death associated with HFC-152a inhalation from spray cleaner, the danger of the sudden death should be announced to people, given the ready availability of commercial products containing HFC-152a. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Spin-orbit-coupled Fermi gases of two-electron ytterbium atoms

    NASA Astrophysics Data System (ADS)

    He, Chengdong; Song, Bo; Haciyev, Elnur; Ren, Zejian; Seo, Bojeong; Zhang, Shanchao; Liu, Xiong-Jun; Jo, Gyu-Boong

    2017-04-01

    Spin-orbit coupling (SOC) has been realized in bosonic and fermionic atomic gases opening an avenue to novel physics associated with spin-momentum locking. In this talk, we will demonstrate all-optical method coupling two hyperfine ground states of 173Yb fermions through a narrow optical transition 1S0 -> 3P1. An optical AC Stark shift is applied to split the ground hyperfine levels and separate out an effective spin-1/2 subspace from other spin states for the realization of SOC. The spin dephasing dynamics and the asymmetric momentum distribution of the spin-orbit coupled Fermi gas are observed as a hallmark of SOC. The implementation of all-optical SOC for ytterbium fermions should offer a new route to a long-lived spin-orbit coupled Fermi gas and greatly expand our capability in studying novel spin-orbit physics with alkaline-earth-like atoms. Other ongoing experimental works related to SOC will be also discussed. Funded by Croucher Foundation and Research Grants Council (RGC) of Hong Kong (Project ECS26300014, GRF16300215, GRF16311516, and Croucher Innovation Grants); MOST (Grant No. 2016YFA0301604) and NSFC (No. 11574008).

  7. Observations of 1,1-difluoroethane (HFC-152a) at AGAGE and SOGE monitoring stations in 1994-2004 and derived global and regional emission estimates

    NASA Astrophysics Data System (ADS)

    Greally, B. R.; Manning, A. J.; Reimann, S.; McCulloch, A.; Huang, J.; Dunse, B. L.; Simmonds, P. G.; Prinn, R. G.; Fraser, P. J.; Cunnold, D. M.; O'Doherty, S.; Porter, L. W.; Stemmler, K.; Vollmer, M. K.; Lunder, C. R.; Schmidbauer, N.; Hermansen, O.; Arduini, J.; Salameh, P. K.; Krummel, P. B.; Wang, R. H. J.; Folini, D.; Weiss, R. F.; Maione, M.; Nickless, G.; Stordal, F.; Derwent, R. G.

    2007-03-01

    Ground-based in situ measurements of 1,1-difluoroethane (HFC-152a, CH3CHF2) which is regulated under the Kyoto Protocol are reported under the auspices of the AGAGE (Advanced Global Atmospheric Gases Experiment) and SOGE (System of Observation of halogenated Greenhouse gases in Europe) programs. Observations of HFC-152a at five locations (four European and one Australian) over a 10 year period were recorded. The annual average growth rate of HFC-152a in the midlatitude Northern Hemisphere has risen from 0.11 ppt/yr to 0.6 ppt/yr from 1994 to 2004. The Southern Hemisphere annual average growth rate has risen from 0.09 ppt/yr to 0.4 ppt/yr from 1998 to 2004. The 2004 average mixing ratio for HFC-152a was 5.0 ppt and 1.8 ppt in the Northern and Southern hemispheres, respectively. The annual cycle observed for this species in both hemispheres is approximately consistent with measured annual cycles at the same locations in other gases which are destroyed by OH. Yearly global emissions of HFC-152a from 1994 to 2004 are derived using the global mean HFC-152a observations and a 12-box 2-D model. The global emission of HFC-152a has risen from 7 Kt/yr to 28 Kt/yr from 1995 to 2004. On the basis of observations of above-baseline elevations in the HFC-152a record and a consumption model, regional emission estimates for Europe and Australia are calculated, indicating accelerating emissions from Europe since 2000. The overall European emission in 2004 ranges from 1.5 to 4.0 Kt/year, 5-15% of global emissions for 1,1-difluoroethane, while the Australian contribution is negligible at 5-10 tonnes/year, <0.05% of global emissions.

  8. Thermodynamic properties of seven gaseous halogenated hydrocarbons from acoustic measurements: CHClFCF{sub 3}, CHF{sub 2}CF{sub 3}, CF{sub 3}CH{sub 3}, CHF{sub 2}CH{sub 3}, CF{sub 3}CHFCHF{sub 2},CF{sub 3}CH{sub 2}CF{sub 3}, and CHF{sub 2}CF{sub 2}CH{sub 2}F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillis, K.A.

    1997-01-01

    Measurements of the speed of sound in seven halogenated hydrocarbons are presented. The compounds in this study are 1-chloro-,2,2,2-tetrafluoroethane (CHCIFCF{sub 3} or HCFC-124), pentafluoroethane (CHF{sub 2}CF{sub 3} or HFC-125), 1,1,1-trifluoroethane (CF{sub 3}CH{sub 3} or HFC-143a), 1,1-difluoroethane (CHF{sub 2}CH{sub 3} or HFC-152a), 1,1,2,3,3-hexafluoropropane (CF{sub 3}CHFCHF{sub 2} or HFC-236ea), 1,1,1,3,3,3-hexafluoropropane (CF{sub 3}CH{sub 2}CF{sub 3} or HFC-236fa), and 1,1,2,2,3-pentafluoropropane (CHF{sub 2}CF{sub 2}CH{sub 2}F or HFC-245ca). The measurements were performed with a cylindrical resonator at temperatures between 240 and 400 K and at pressures up to 1.0 MPa. Ideal-gas heat capacities and acoustic virial coefficients were directly deduced from the data. The ideal-gas heatmore » capacity of HFC-125 from this work differs from spectroscopic calculations by less than 0.2% over the measurement range. The coefficients for virial equations of state were obtained from the acoustic data and hard-core square-well intermolecular potentials. Gas densities that were calculated from the virial equations of state for HCFC-124 and HFC-125 differ from independent density measurements by at most 0.15%, for the ranges of temperature and pressure over which both acoustic and Burnett data exist. The uncertainties in the derived properties of the other five compounds are comparable to those for HCFC-124 and HFC-125.« less

  9. Investigating high concentrations of three greenhouse gases in the Los Angeles Basin and San Bernardino Valley

    NASA Astrophysics Data System (ADS)

    Kirpes, R.; Blake, D. R.; Marrero, J.

    2013-12-01

    Following the Montreal Protocol of 1987 calling for the phase-out of CFCs and other ozone depleting substances, HCFCs and HFCs were introduced as alternatives despite still being greenhouse gases with high global warming potentials. In this study, whole air samples were collected during four research flights over Southern California aboard the NASA DC-8 Airborne Science Laboratory as part of the NASA Student Airborne Science Program. These samples were then analyzed by gas chromatography using a suite of detectors for many compounds, including HFC-134a, HCFC-22, and HFC-152a. HCFC-22 is primarily used as a refrigerant, while HFC-134a and HFC-152a are also used as aerosol propellants and foam blowing agents. High concentrations of these three compounds were observed for samples taken at low altitudes over urban areas around Los Angeles and San Bernardino. Exceptionally high concentrations were seen for all three compounds in samples taken near the Ontario and San Bernardino airports. Concentrations of HFC-134a, HCFC-22, and HFC-152a were enhanced above background levels near other airports sampled in the Los Angeles Basin and San Bernardino Valley. It is clear that concentrations of these three gases are higher in the San Bernardino Valley than in the Los Angeles Basin, and locations with exceptionally high concentrations were investigated to identify potential point sources. Concentrations of these three compounds were also compared to data from past SARP missions and data collected at Trinidad Head, California since 2005 as part of the AGAGE network. Comparison of the average values for each of these campaigns reveal that the background concentrations of HFC-134a, HCFC-22, and HFC-152a are all increasing with a strong linear trend in Southern California.

  10. Effects of dietary fermentation concentrate of Hericium caput-medusae (Bull.:Fr.) Pers. on growth performance, digestibility, and intestinal microbiology and morphology in broiler chickens.

    PubMed

    Shang, Hong Mei; Song, Hui; Xing, Ya Li; Niu, Shu Li; Ding, Guo Dong; Jiang, Yun Yao; Liang, Feng

    2016-01-15

    The present study was undertaken to investigate the effects of fermentation concentrate of Hericium caput-medusae (Bull.:Fr.) Pers. (HFC) on growth performance, digestibility, intestinal microbiology, and intestinal morphology in broiler chickens. A total of 600 male Arbor Acres broilers were randomly divided into five dietary treatments (20 broilers per pen with six pens per treatment): CON (basal diet), ANT (basal diet supplemented with 5 mg kg(-1) flavomycin) and HFC (basal diet supplemented with 6, 12, and 18 g kg(-1) HFC). The experimental lasted for 42 days. The results revealed that the average daily gain [linear (L), P < 0.01; quadratic (Q), P < 0.01] of broilers increased when the HFC levels increased during the starter (days 1-21), finisher (days 22-42), and the overall experiment period (days 1 to 42). In the small intestinal digesta and the caecum digesta, the Escherichia coli count (L, P < 0.05; Q, P < 0.001) decreased while the Lactobacilli count (L, P < 0.01; Q, P < 0.001) and Bifidobacteria count (L, P < 0.001; Q, P < 0.001) increased when the HFC levels increased. The crude protein digestibility of broilers (L, P < 0.01; Q, P < 0.001) increased when the HFC levels increased. In the duodenum, jejunum, and ileum of broilers, the villus height and villus height to crypt depth ratio (L, P < 0.001; Q, P < 0.001) increased when the HFC levels increased. Dietary supplementation with HFC increased gut Lactobacilli and Bifidobacteria counts and inhibited E. coli growth, improved nutrient utilisation and intestine villus structure, and thus improved the growth of broilers. © 2015 Society of Chemical Industry.

  11. HFC-134a Emissions in China: An Inventory for 1995-2030

    NASA Astrophysics Data System (ADS)

    Su, Shenshen; Fang, Xuekun; Wu, Jing; Li, Li; Hu, Jianxin; Han, Jiarui

    2014-05-01

    HFC-134a is the most important substitute of CFC-12 used in the mobile air-conditioner in China since 1995. The bottom-up method was used to estimate HFC-134a emissions in China, from 1995 to 2030, basing on updated automobile industry data and latest emission characters. From 1995, total HFC-134a emission has kept a high growth rate of nearly 60% per year, and reached 16,414.3 Mg (11,959.4-20,834.5 Mg) in 2010, which was equivalent to 23.5 Mt CO2-eq emissions. Furthermore, the emissions in China accounted for nearly half of total emissions of Non-AnnexI countries in 2008. As for provincial emissions in 2010, provinces with emission greater than 1,000 Mg are Guangdong, Shandong, Jiangsu and Beijing. Quantitative relationship between provincial HFC-134a emissions and GRP of the Tertiary Industry was used to estimate HFC-134a emissions at county level, and Hangzhou municipal district held the maximum emission intensity (4,605 Mg/10,000 km2). For HFC-134a, emissions calculated from the observations within 46 cities through Euler box model are in good agreement with the corresponding emissions estimated from the bottom-up method, verifying that the emission inventory at county level adequately describes the emission spatial pattern. For the future emissions of HFC-134a, projected emissions will reach 89,370.4 Mg (65,959.7- 114,068.2 Mg) in 2030 under the Business-as-usual (BAU) Scenario, but under the Alternative Scenario, a emission reduction potential of 88.6% of the projected BAU emissions would be obtained.

  12. Increase in HFC-134a emissions in response to the success of the Montreal Protocol

    NASA Astrophysics Data System (ADS)

    Fortems-Cheiney, A.; Saunois, M.; Pison, I.; Chevallier, F.; Bousquet, P.; Cressot, C.; Montzka, S. A.; Fraser, P. J.; Vollmer, M. K.; Simmonds, P. G.; Young, D.; O'Doherty, S.; Weiss, R. F.; Artuso, F.; Barletta, B.; Blake, D. R.; Li, S.; Lunder, C.; Miller, B. R.; Park, S.; Prinn, R.; Saito, T.; Steele, L. P.; Yokouchi, Y.

    2015-11-01

    The 1,1,1,2-tetrafluoroethane (HFC-134a), an important alternative to CFC-12 in accordance with the Montreal Protocol on Substances that Deplete the Ozone Layer, is a high global warming potential greenhouse gas. Here we evaluate variations in global and regional HFC-134a emissions and emission trends, from 1995 to 2010, at a relatively high spatial and temporal (3.75° in longitude × 2.5° in latitude and 8 day) resolution, using surface HFC-134a measurements. Our results show a progressive increase of global HFC-134a emissions from 19 ± 2 Gg/yr in 1995 to 167 ± 5 Gg/yr in 2010, with both a slowdown in developed countries and a 20%/yr increase in China since 2005. A seasonal cycle is also seen since 2002, which becomes enhanced over time, with larger values during the boreal summer.

  13. Rolf Landauer and Charles H. Bennett Award Talk: Experimental development of spin qubits in silicon

    NASA Astrophysics Data System (ADS)

    Morello, Andrea

    The modern information era is built on silicon nanoelectronic devices. The future quantum information era might be built on silicon too, if we succeed in controlling the interactions between individual spins hosted in silicon nanostructures. Spins in silicon constitute excellent solid-state qubits, because of the weak spin-orbit coupling and the possibility to remove nuclear spins from the environment through 28Si isotopic enrichment. Substitutional 31P atoms in silicon behave approximately like hydrogen in vacuum, providing two spin 1/2 qubits - the donor-bound electron and the 31P nucleus - that can be coherently controlled, read out in single-shot, and are naturally coupled through the hyperfine interaction. In isotopically-enriched 28Si, these single-atom qubits have demonstrated outstanding coherence times, up to 35 seconds for the nuclear spin, and 1-qubit gate fidelities well above 99.9% for both the electron and the nucleus. The hyperfine coupling provides a built-in interaction to entangle the two qubits within one atom. The combined initialization, control and readout fidelities result in a violation of Bell's inequality with S = 2 . 70 , a record value for solid-state qubits. Despite being identical atomic systems, 31P atoms can be addressed individually by locally modifying the hyperfine interaction through electrostatic gating. Multi-qubit logic gates can be mediated either by the exchange interaction or by electric dipole coupling. Scaling up beyond a single atom presents formidable challenges, but provides a pathway to building quantum processors that are compatible with standard semiconductor fabrication, and retain a nanometric footprint, important for truly large-scale quantum computers. Work supported by US Army Research Office (W911NF-13-1-0024) and Australian Research Council (CE110001027).

  14. High-resolution molecular-beam spectroscopy of NaCN and Na 13CN

    NASA Astrophysics Data System (ADS)

    van Vaals, J. J.; Meerts, W. Leo; Dymanus, A.

    The sodium cyanide molecule was studied by molecular-beam electric-resonance spectroscopy in the microwave region. We used the seeded-beam technique to produce a supersonic beam with strong translational, rotational and vibrational cooling. In the frequency range 9.5-40 GHz we observed and identified for NaCN 186 and for Na 13CN 107 hyperfine transitions in 20 and 16 rotational transitions, respectively, all in the ground vibrational state. The rotational, the five quartic and three sextic centrifugal distortion constants of NaCN are: A″ = 57921.954(7) MHz; B″ = 8369.312(2) MHz, C″ = 7272.712(2) MHz. All quadrupole and several spin-rotation coupling constants for the hyperfine interaction were evaluated. The quadrupole coupling constants (in MHz) for NaCN are: eQq12(Na) = -5.344(5), eQq12 = 2.397(7). eQq12(N) = 2.148(4), eQq12(N) = -4.142(5). From these constants and those of Na 13CN we have determined the principal components of the quadrupole coupling tensor for potassium and nitrogen. The structure of sodium cyanide evaluated from the rotational constants of NaCN and Na 13CN was found to be T shaped, similar to the structure of KCN but completely different from the linear isocyanide configuration of LiNC. The effective structural parameters for sodium cyanide in the ground vibrational state are: rCN = 1.170(4) Å, rNaC = 2.379(15) Å, rN12N = 2.233(15) Å, in gratifying agreement with ab initio calculations. Both the geometrical structure and the hyperfine coupling justify the conclusion that the CN group in gaseous sodium cyanide approximately can be considered as a free CN - ion.

  15. Electrical detection of nuclear spins in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Malissa, H.; Kavand, M.; Waters, D. P.; Lupton, J. M.; Vardeny, Z. V.; Saam, B.; Boehme, C.

    2014-03-01

    We present pulsed combined electrically detected electron paramagnetic and nuclear magnetic resonance experiments on MEH-PPV OLEDs. Spin dynamics in these structures are governed by hyperfine interactions between charge carriers and the surrounding hydrogen nuclei, which are abundant in these materials. Hyperfine coupling has been observed by monitoring the device current during coherent spin excitation. Electron spin echoes (ESEs) are detected by applying one additional readout pulse at the time of echo formation. This allows for the application of high-resolution spectroscopy based on ESE detection, such as electron spin echo envelope modulation (ESEEM) and electron nuclear double resonance (ENDOR) available for electrical detection schemes. We conduct electrically detected ESEEM and ENDOR experiments and show how hyperfine interactions in MEH-PPV with and without deuterated polymer side groups can be observed by device current measurements. We acknowledge support by the Department of Energy, Office of Basic Energy Sciences under Award #DE-SC0000909.

  16. Laser pumping Cs atom magnetometer of theory research based on gradient tensor measuring

    NASA Astrophysics Data System (ADS)

    Yang, Zhang; Chong, Kang; Wang, Qingtao; Lei, Cheng; Zheng, Caiping

    2011-02-01

    At present, due to space exploration, military technology, geological exploration, magnetic navigation, medical diagnosis and biological magnetic fields study of the needs of research and development, the magnetometer is given strong driving force. In this paper, it will discuss the theoretical analysis and system design of laser pumping cesium magnetometer, cesium atomic energy level formed hyperfine structure with the I-J coupling, the hyperfine structure has been further split into Zeeman sublevels for the effects of magnetic field. To use laser pump and RF magnetic field make electrons transition in the hyperfine structure to produce the results of magneto-optical double resonance, and ultimately through the resonant frequency will be able to achieve accurate value of the external magnetic field. On this basis, we further have a discussion about magnetic gradient tensor measuring method. To a large extent, it increases the magnetic field measurement of information.

  17. Proton, muon and ¹³C hyperfine coupling constants of C₆₀X and C₇₀X (X = H, Mu).

    PubMed

    Brodovitch, Jean-Claude; Addison-Jones, Brenda; Ghandi, Khashayar; McKenzie, Iain; Percival, Paul W

    2015-01-21

    The reaction of H atoms with fullerene C70 has been investigated by identifying the radical products formed by addition of the atom muonium (Mu) to the fullerene in solution. Four of the five possible radical isomers of C70Mu were detected by avoided level-crossing resonance (μLCR) spectroscopy, using a dilute solution of enriched (13)C70 in decalin. DFT calculations were used to predict muon and (13)C isotropic hyperfine constants as an aid to assigning the observed μLCR signals. Computational methods were benchmarked against previously published experimental data for (13)C60Mu in solution. Analysis of the μLCR spectrum resulted in the first experimental determination of (13)C hyperfine constants in either C70Mu or C70H. The large number of values confirms predictions that the four radical isomers have extended distributions of unpaired electron spin.

  18. Changing trends and emissions of hydrochlorofluorocarbons (HCFCs) and their hydrofluorocarbon (HFCs) replacements

    NASA Astrophysics Data System (ADS)

    Simmonds, Peter G.; Rigby, Matthew; McCulloch, Archie; O'Doherty, Simon; Young, Dickon; Mühle, Jens; Krummel, Paul B.; Steele, Paul; Fraser, Paul J.; Manning, Alistair J.; Weiss, Ray F.; Salameh, Peter K.; Harth, Chris M.; Wang, Ray H. J.; Prinn, Ronald G.

    2017-04-01

    High-frequency, in situ global observations of HCFC-22 (CHClF2), HCFC-141b (CH3CCl2F), HCFC-142b (CH3CClF2) and HCFC-124 (CHClFCF3) and their main HFC replacements, HFC-134a (CH2FCF3), HFC-125 (CHF2CF3), HFC-143a (CH3CF3) and HFC-32 (CH2F2), have been used to determine their changing global growth rates and emissions in response to the Montreal Protocol and its recent amendments. Global mean mole fractions of HCFC-22, -141b, and -142b have increased throughout the observation period, reaching 234, 24.3 and 22.4 pmol mol-1, respectively, in 2015. HCFC-124 reached a maximum global mean mole fraction of 1.48 pmol mol-1 in 2007 and has since declined by 23 % to 1.14 pmol mol-1 in 2015. The HFCs all show increasing global mean mole fractions. In 2015 the global mean mole fractions (pmol mol-1) were 83.3 (HFC-134a), 18.4 (HFC-125), 17.7 (HFC-143a) and 10.5 (HFC-32). The 2007 adjustment to the Montreal Protocol required the accelerated phase-out of emissive uses of HCFCs with global production and consumption capped in 2013 to mitigate their environmental impact as both ozone-depleting substances and important greenhouse gases. We find that this change has coincided with a stabilisation, or moderate reduction, in global emissions of the four HCFCs with aggregated global emissions in 2015 of 449 ± 75 Gg yr-1, in CO2 equivalent units (CO2 eq.) 0.76 ± 0.1 Gt yr-1, compared with 483 ± 70 Gg yr-1 (0.82 ± 0.1 Gt yr-1 CO2 eq.) in 2010 (uncertainties are 1σ throughout this paper). About 79 % of the total HCFC atmospheric burden in 2015 is HCFC-22, where global emissions appear to have been relatively similar since 2011, in spite of the 2013 cap on emissive uses. We attribute this to a probable increase in production and consumption of HCFC-22 in Montreal Protocol Article 5 (developing) countries and the continuing release of HCFC-22 from the large banks which dominate HCFC global emissions. Conversely, the four HFCs all show increasing mole fraction growth rates with aggregated global HFC emissions of 327 ± 70 Gg yr-1 (0.65 ± 0.12 Gt yr-1 CO2 eq.) in 2015 compared to 240 ± 50 Gg yr-1 (0.47 ± 0.08 Gt yr-1 CO2 eq.) in 2010. We also note that emissions of HFC-125 and HFC-32 appear to have increased more rapidly averaged over the 5-year period 2011-2015, compared to 2006-2010. As noted by Lunt et al. (2015) this may reflect a change to refrigerant blends, such as R-410A, which contain HFC-32 and -125 as a 50 : 50 blend.

  19. 40 CFR 98.154 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the measured mass includes more than trace concentrations of materials other than HFC-23, the..., 2C,2D, or 2F at 40 CFR part 60, appendix A-1, or Method 26 at 40 CFR part 60, appendix A-2. Determine... materials other than HFC-23, the concentrations of the HFC-23 shall be measured at least weekly using...

  20. 40 CFR 98.154 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the measured mass includes more than trace concentrations of materials other than HFC-23, the..., 2C,2D, or 2F at 40 CFR part 60, appendix A-1, or Method 26 at 40 CFR part 60, appendix A-2. Determine... materials other than HFC-23, the concentrations of the HFC-23 shall be measured at least weekly using...

  1. 40 CFR 98.154 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the measured mass includes more than trace concentrations of materials other than HFC-23, the..., 2C,2D, or 2F at 40 CFR part 60, appendix A-1, or Method 26 at 40 CFR part 60, appendix A-2. Determine... materials other than HFC-23, the concentrations of the HFC-23 shall be measured at least weekly using...

  2. Electron-nuclear coherent spin oscillations probed by spin-dependent recombination

    NASA Astrophysics Data System (ADS)

    Azaizia, S.; Carrère, H.; Sandoval-Santana, J. C.; Ibarra-Sierra, V. G.; Kalevich, V. K.; Ivchenko, E. L.; Bakaleinikov, L. A.; Marie, X.; Amand, T.; Kunold, A.; Balocchi, A.

    2018-04-01

    We demonstrate the triggering and detection of coherent electron-nuclear spin oscillations related to the hyperfine interaction in Ga deep paramagnetic centers in GaAsN by band-to-band photoluminescence without an external magnetic field. In contrast to other point defects such as Cr4 + in SiC, Ce3 + in yttrium aluminum garnet crystals, nitrogen-vacancy centers in diamond, and P atoms in silicon, the bound-electron spin in Ga centers is not directly coupled to the electromagnetic field via the spin-orbit interaction. However, this apparent drawback can be turned into an advantage by exploiting the spin-selective capture of conduction band electrons to the Ga centers. On the basis of a pump-probe photoluminescence experiment we measure directly in the temporal domain the hyperfine constant of an electron coupled to a gallium defect in GaAsN by tracing the dynamical behavior of the conduction electron spin-dependent recombination to the defect site. The hyperfine constants and the relative abundance of the nuclei isotopes involved can be determined without the need of an electron spin resonance technique and in the absence of any magnetic field. Information on the nuclear and electron spin relaxation damping parameters can also be estimated from the oscillation amplitude decay and the long-time-delay behavior.

  3. Hyperfine interactions and electric dipole moments in the [16.0]1.5(v = 6), [16.0]3.5(v = 7), and X2Δ(5/2) states of iridium monosilicide, IrSi.

    PubMed

    Le, Anh; Steimle, Timothy C; Morse, Michael D; Garcia, Maria A; Cheng, Lan; Stanton, John F

    2013-12-19

    The (6,0)[16.0]1.5-X(2)Δ(5/2) and (7,0)[16.0]3.5-X(2)Δ(5/2) bands of IrSi have been recorded using high-resolution laser-induced fluorescence spectroscopy. The field-free spectra of the (191)IrSi and (193)IrSi isotopologues were modeled to generate a set of fine, magnetic hyperfine, and nuclear quadrupole hyperfine parameters for the X(2)Δ(5/2)(v = 0), [16.0]1.5(v = 6), and [16.0]3.5 (v = 7) states. The observed optical Stark shifts for the (193)IrSi and (191)IrSi isotopologues were analyzed to produce the permanent electric dipole moments, μ(el), of -0.414(6) D and 0.782(6) D for the X(2)Δ(5/2) and [16.0]1.5 (v = 6) states, respectively. Properties of the X(2)Δ(5/2) state computed using relativistic coupled-cluster methods clearly indicate that electron correlation plays an essential role. Specifically, inclusion of correlation changes the sign of the dipole moment and is essential for achieving good accuracy for the nuclear quadrupole coupling parameter eQq0.

  4. Paramagnetic species on catalytic surfaces--DFT investigations into structure sensitivity of the hyperfine coupling constants.

    PubMed

    Sojka, Zbigniew; Pietrzyk, Piotr

    2004-05-01

    Structure sensitivity of the hyperfine coupling constants was investigated by means of DFT calculations for selected surface paramagnetic species. A *CH2OH radical trapped on silica and intrazeolite copper nitrosyl adducts encaged in ZSM-5 were taken as the examples. The surface of amorphous silica was modeled with a [Si5O8H10] cluster, whereas the zeolite hosting sites were epitomized by [Si4AlO5(OH)10]- cluster. Three different coordination modes of the *CH2OH radical were considered and the isotropic 13C and 1H hyperfine constants of the resultant van der Waals complexes, calculated with B3LYP/6-311G(d), were discussed in terms of the angular deformations caused by hydrogen bonds with the cluster. The magnetic parameters of the eta1-N[CuNO]11 and eta1-O[CuNO]11 linkage isomers were calculated at the BPW91/LanL2DZ and 6-311G(df) level. For the most stable eta1-N adduct a clear dependence of the spin density distribution within the Cu-NO moiety on changes in the Cu-N-O angle and the Cu-N bond distance was observed and accounted for by varying spin polarization and delocalization contributions.

  5. ESR imaging investigations of two-phase systems.

    PubMed

    Herrmann, Werner; Stösser, Reinhard; Borchert, Hans-Hubert

    2007-06-01

    The possibilities of electron spin resonance (ESR) and electron spin resonance imaging (ESRI) for investigating the properties of the spin probes TEMPO and TEMPOL in two-phase systems have been examined in the systems water/n-octanol, Miglyol/Miglyol, and Precirol/Miglyol. Phases and regions of the phase boundary could be mapped successfully by means of the isotropic hyperfine coupling constants, and, moreover, the quantification of rotational and lateral diffusion of the spin probes was possible. For the quantitative treatment of the micropolarity, a simplified empirical model was established on the basis of the Nernst distribution and the experimentally determined isotropic hyperfine coupling constants. The model does not only describe the summarized micropolarities of coexisting phases, but also the region of the phase boundary, where solvent molecules of different polarities and tendencies to form hydrogen bonds compete to interact with the NO group of the spin probe. Copyright 2007 John Wiley & Sons, Ltd.

  6. Delocalization of Coherent Triplet Excitons in Linear Rigid Rod Conjugated Oligomers.

    PubMed

    Hintze, Christian; Korf, Patrick; Degen, Frank; Schütze, Friederike; Mecking, Stefan; Steiner, Ulrich E; Drescher, Malte

    2017-02-02

    In this work, the triplet state delocalization in a series of monodisperse oligo(p-phenyleneethynylene)s (OPEs) is studied by pulsed electron paramagnetic resonance (EPR) and pulsed electron nuclear double resonance (ENDOR) determining zero-field splitting, optical spin polarization, and proton hyperfine couplings. Neither the zero-field splitting parameters nor the optical spin polarization change significantly with OPE chain length, in contrast to the hyperfine coupling constants, which showed a systematic decrease with chain length n according to a 2/(1 + n) decay law. The results provide striking evidence for the Frenkel-type nature of the triplet excitons exhibiting full coherent delocalization in the OPEs under investigation with up to five OPE repeat units and with a spin density distribution described by a nodeless particle in the box wave function. The same model is successfully applied to recently published data on π-conjugated porphyrin oligomers.

  7. Confinement and Diffusion Effects in Dynamical Nuclear Polarization in Low Dimensional Nanostructures

    NASA Astrophysics Data System (ADS)

    Henriksen, Dan; Tifrea, Ionel

    2012-02-01

    We investigate the dynamic nuclear polarization as it results from the hyperfine coupling between nonequilibrium electronic spins and nuclear spins in semiconductor nanostructures. The natural confinement provided by low dimensional nanostructures is responsible for an efficient nuclear spin - electron spin hyperfine coupling [1] and for a reduced value of the nuclear spin diffusion constant [2]. In the case of optical pumping, the induced nuclear spin polarization is position dependent even in the presence of nuclear spin diffusion. This effect should be measurable via optically induced nuclear magnetic resonance or time-resolved Faraday rotation experiments. We discuss the implications of our calculations for the case of GaAs quantum well structures.[4pt] [1] I. Tifrea and M. E. Flatt'e, Phys. Rev. B 84, 155319 (2011).[0pt] [2] A. Malinowski and R. T. Harley, Solid State Commun. 114, 419 (2000).

  8. Hyperfine interaction in the Autler-Townes effect: The formation of bright, dark, and chameleon states

    NASA Astrophysics Data System (ADS)

    Kirova, T.; Cinins, A.; Efimov, D. K.; Bruvelis, M.; Miculis, K.; Bezuglov, N. N.; Auzinsh, M.; Ryabtsev, I. I.; Ekers, A.

    2017-10-01

    This paper is devoted to clarifying the implications of hyperfine (HF) interaction in the formation of adiabatic (i.e., "laser-dressed") states and their expression in the Autler-Townes (AT) spectra. We first use the Morris-Shore model [J. R. Morris and B. W. Shore, Phys. Rev. A 27, 906 (1983), 10.1103/PhysRevA.27.906] to illustrate how bright and dark states are formed in a simple reference system where closely spaced energy levels are coupled to a single state with a strong laser field with the respective Rabi frequency ΩS. We then expand the simulations to realistic hyperfine level systems in Na atoms for a more general case when non-negligible HF interaction can be treated as a perturbation in the total system Hamiltonian. A numerical analysis of the adiabatic states that are formed by coupling of the 3 p3 /2 and 4 d5 /2 states by the strong laser field and probed by a weak laser field on the 3 s1 /2-3 p3 /2 transition yielded two important conclusions. Firstly, the perturbation introduced by the HF interaction leads to the observation of what we term "chameleon" states—states that change their appearance in the AT spectrum, behaving as bright states at small to moderate ΩS, and fading from the spectrum similarly to dark states when ΩS is much larger than the HF splitting of the 3 p3 /2 state. Secondly, excitation by the probe field from two different HF levels of the ground state allows one to address orthogonal sets of adiabatic states; this enables, with appropriate choice of ΩS and the involved quantum states, a selective excitation of otherwise unresolved hyperfine levels in excited electronic states.

  9. Aggregate frequency width, nuclear hyperfine coupling and Jahn-Teller effect of Cu2+ impurity ion ESR in SrLaAlO4 dielectric resonator at 20 millikelvin

    NASA Astrophysics Data System (ADS)

    Hosain, M. A.; Le Floch, J.-M.; Krupka, J.; Tobar, M. E.

    2018-01-01

    The impurity paramagnetic ion, Cu2+ substitutes Al in the SrLaAlO4 single crystal lattice, this results in a CuO6 elongated octahedron, and the resulting measured g-factors satisfy four-fold axes variation condition. The aggregate frequency width of the electron spin resonance with the required minimum level of impurity concentration has been evaluated in this single crystal SrLaAlO4 at 20 millikelvin. Measured parallel hyperfine constants, A\\Vert Cu , were determined to be -155.7×10-4~cm-1, ~ -163.0×10-4~cm-1, ~ -178.3×10-4~cm-1 and -211.1×10-4~cm-1 at 9.072~GHz~(WGH4, 1, 1) for the nuclear magnetic quantum number M_I=+\\frac{3}{2}, +\\frac{1}{2}, -\\frac{1}{2} , and -\\frac{3}{2} respectively. The anisotropy of the hyperfine structure reveals the characteristics of the static Jahn-Teller effect. The second-order-anisotropy term, ˜ (\\fracspin{-orbit~coupling}{10D_q}){\\hspace{0pt}}2 , is significant and cannot be disregarded, with the local strain dominating over the observed Zeeman-anisotropy-energy difference. The Bohr electron magneton, β=9.23× 10-24 JT-1 , (within -0.43% so-called experimental error) has been found using the measured spin-Hamiltonian parameters. Measured nuclear dipolar hyperfine structure parameter P\\Vert=12.3×10-4~cm-1 shows that the mean inverse third power of the electron distance from the nucleus is < r-3_q>≃ 5.23 a.u. for Cu2+ ion in the substituted Al3+ ion site assuming nuclear electric quadruple moment Q=-0.211 barn.

  10. 40 CFR Appendix C to Subpart B of... - SAE J2788 Standard for Recovery/Recycle and Recovery/Recycle/Recharging Equipment for HFC-134a...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for the recovery/recycling of HFC-134a that has been directly removed from, and is intended for reuse in, mobile air-conditioning systems and recovery/recycling and system recharging of recycled... requirements for recovery and recycling of HFC-134a that has been directly removed from, and is intended for...

  11. 40 CFR Appendix C to Subpart B of... - SAE J2788 Standard for Recovery/Recycle and Recovery/Recycle/Recharging Equipment for HFC-134a...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for the recovery/recycling of HFC-134a that has been directly removed from, and is intended for reuse in, mobile air-conditioning systems and recovery/recycling and system recharging of recycled... requirements for recovery and recycling of HFC-134a that has been directly removed from, and is intended for...

  12. 40 CFR Appendix C to Subpart B of... - SAE J2788 Standard for Recovery/Recycle and Recovery/Recycle/Recharging Equipment for HFC-134a...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for the recovery/recycling of HFC-134a that has been directly removed from, and is intended for reuse in, mobile air-conditioning systems and recovery/recycling and system recharging of recycled... requirements for recovery and recycling of HFC-134a that has been directly removed from, and is intended for...

  13. Deep-Reaching Hydrodynamic Flow Confinement: Micrometer-Scale Liquid Localization for Open Substrates With Topographical Variations.

    PubMed

    Oskooei, Ali; Kaigala, Govind V

    2017-06-01

    We present a method for nonintrusive localization and reagent delivery on immersed biological samples with topographical variation on the order of hundreds of micrometers. Our technique, which we refer to as the deep-reaching hydrodynamic flow confinement (DR-HFC), is simple and passive: it relies on a deep-reaching hydrodynamic confinement delivered through a simple microfluidic probe design to perform localized microscale alterations on substrates as deep as 600 μm. Designed to scan centimeter-scale areas of biological substrates, our method passively prevents sample intrusion by maintaining a large gap between the probe and the substrate. The gap prevents collision of the probe and the substrate and reduces the shear stress experienced by the sample. We present two probe designs: linear and annular DR-HFC. Both designs comprise a reagent-injection aperture and aspiration apertures that serve to confine the reagent. We identify the design parameters affecting reagent localization and depth by DR-HFC and study their individual influence on the operation of DR-HFC numerically. Using DR-HFC, we demonstrate localized binding of antihuman immunoglobulin G (IgG) onto an activated substrate at various depths from 50 to 600 μm. DR-HFC provides a readily implementable approach for noninvasive processing of biological samples applicable to the next generation of diagnostic and bioanalytical devices.

  14. Rayleigh scattering measurements of several fluorocarbon gases.

    PubMed

    Zadoo, Serena; Thompson, Jonathan E

    2011-11-01

    Integrating nephelometers are commonly used to monitor airborne particulate matter. However, they must be calibrated prior to use. The Rayleigh scattering coefficients (b(RS), Mm(-1)), scattering cross sections (σ(RS), cm(2)), and Rayleigh multipliers for tetrafluoromethane (R-14), sulfur hexafluoride, pentafluoroethane (HFC-125), hexafluoropropene (HFC-216), 1,1,1,2,3,3,3,-heptafluoropropane (HFC-227ea), and octafluorocyclobutane (C-318) are reported from measurements made using a Radiance Research M903 integrating nephelometer operating at λ = 530 nm and calibration with gases of known scattering constants. Rayleigh multipliers (±90% conf. int.) were found to be 2.6 ± 0.5, 6.60 ± 0.07, 7.5 ± 1, 14.8 ± 0.9, 15.6 ± 0.5, and 22.3 ± 0.8 times that of air, respectively. To the best of our knowledge, these are the first reported values for R-14, HFC-216, HFC-125, and C-318. Experimental accuracy is supported through measurements of values for SF(6) and HFC-227ea which agree to within 3% of previous literature reports. In addition to documenting fundamental Rayleigh scattering data for the first time, the information presented within will find use for calibration of optical scattering sensors such as integrating nephelometers.

  15. ENDOR with band-selective shaped inversion pulses

    NASA Astrophysics Data System (ADS)

    Tait, Claudia E.; Stoll, Stefan

    2017-04-01

    Electron Nuclear DOuble Resonance (ENDOR) is based on the measurement of nuclear transition frequencies through detection of changes in the polarization of electron transitions. In Davies ENDOR, the initial polarization is generated by a selective microwave inversion pulse. The rectangular inversion pulses typically used are characterized by a relatively low selectivity, with full inversion achieved only for a limited number of spin packets with small resonance offsets. With the introduction of pulse shaping to EPR, the rectangular inversion pulses can be replaced with shaped pulses with increased selectivity. Band-selective inversion pulses are characterized by almost rectangular inversion profiles, leading to full inversion for spin packets with resonance offsets within the pulse excitation bandwidth and leaving spin packets outside the excitation bandwidth largely unaffected. Here, we explore the consequences of using different band-selective amplitude-modulated pulses designed for NMR as the inversion pulse in ENDOR. We find an increased sensitivity for small hyperfine couplings compared to rectangular pulses of the same bandwidth. In echo-detected Davies-type ENDOR, finite Fourier series inversion pulses combine the advantages of increased absolute ENDOR sensitivity of short rectangular inversion pulses and increased sensitivity for small hyperfine couplings of long rectangular inversion pulses. The use of pulses with an almost rectangular frequency-domain profile also allows for increased control of the hyperfine contrast selectivity. At X-band, acquisition of echo transients as a function of radiofrequency and appropriate selection of integration windows during data processing allows efficient separation of contributions from weakly and strongly coupled nuclei in overlapping ENDOR spectra within a single experiment.

  16. Evaluation of HFC 245ca and HFC 236ea as foam blowing agents

    NASA Technical Reports Server (NTRS)

    Sharpe, Jon; Macarthur, Doug; Kollie, Tom; Graves, Ron; Liu, Matthew; Hendriks, Robert V.

    1995-01-01

    Hydrochlorofluorocarbon (HCFC) 141b has been selected as the interim blowing agent for use in urethane insulations on NASA's Space Shuttle External Tank. Due to the expected limited commercial lifetime of this material, research efforts at the NASA Thermal Protection Systems Materials Research Laboratory at the Marshall Space Flight Center are now being devoted to the identification and development of alternatives with zero ozone depletion potential. Physical blowing agents identified to date have included hydrocarbons, fluorocarbons, hydrofluoroethers, and more predominantly, hydrofluorocarbons (HFCs). The majority of the HFC evaluations in industry have focused on the more readily available, low boiling candidates such as HFC 134a. Higher boiling HFC candidates that could be handled at ambient conditions and use current processing equipment would be more desirable. This paper will describe results from a research program of two such candidate HFC's performed as a cooperative effort between Martin Marietta Manned Space Systems, the U.S. Environmental Protection Agency, and Oak Ridge National Laboratories. The purpose of this effort was to perform a cursory evaluation of the developmental HFC's 245ca and 236ea as blowing agents in urethane based insulations. These two materials were selected from screening tests of 37 C2, C3, and C4 isomers based on physical properties, atmospheric lifetime, flammability, estimated toxicity, difficulty of synthesis, suitability for dual use as a refrigerant, and other factors. Solubility of the two materials in typical foam components was tested, pour foaming trials were performed, and preliminary data were gathered regarding foam insulation performance.

  17. Abundance and sources of atmospheric halocarbons in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Schoenenberger, Fabian; Henne, Stephan; Hill, Matthias; Vollmer, Martin K.; Kouvarakis, Giorgos; Mihalopoulos, Nikolaos; O'Doherty, Simon; Maione, Michela; Emmenegger, Lukas; Peter, Thomas; Reimann, Stefan

    2018-03-01

    A wide range of anthropogenic halocarbons is released to the atmosphere, contributing to stratospheric ozone depletion and global warming. Using measurements of atmospheric abundances for the estimation of halocarbon emissions on the global and regional scale has become an important top-down tool for emission validation in the recent past, but many populated and developing areas of the world are only poorly covered by the existing atmospheric halocarbon measurement network. Here we present 6 months of continuous halocarbon observations from Finokalia on the island of Crete in the Eastern Mediterranean. The gases measured are the hydrofluorocarbons (HFCs), HFC-134a (CH2FCF3), HFC-125 (CHF2CF3), HFC-152a (CH3CHF2) and HFC-143a (CH3CF3) and the hydrochlorofluorocarbons (HCFCs), HCFC-22 (CHClF2) and HCFC-142b (CH3CClF2). The Eastern Mediterranean is home to 250 million inhabitants, consisting of a number of developed and developing countries, for which different emission regulations exist under the Kyoto and Montreal protocols. Regional emissions of halocarbons were estimated with Lagrangian atmospheric transport simulations and a Bayesian inverse modeling system, using measurements at Finokalia in conjunction with those from Advanced Global Atmospheric Gases Experiment (AGAGE) sites at Mace Head (Ireland), Jungfraujoch (Switzerland) and Monte Cimone (Italy). Measured peak mole fractions at Finokalia showed generally smaller amplitudes for HFCs than at the European AGAGE sites except for periodic peaks of HFC-152a, indicating strong upwind sources. Higher peak mole fractions were observed for HCFCs, suggesting continued emissions from nearby developing regions such as Egypt and the Middle East. For 2013, the Eastern Mediterranean inverse emission estimates for the four analyzed HFCs and the two HCFCs were 13.9 (11.3-19.3) and 9.5 (6.8-15.1) Tg CO2eq yr-1, respectively. These emissions contributed 16.8 % (13.6-23.3 %) and 53.2 % (38.1-84.2 %) to the total inversion domain, which covers the Eastern Mediterranean as well as central and western Europe. Greek bottom-up HFC emissions reported to the UNFCCC were higher than our top-down estimates, whereas for Turkey our estimates agreed with UNFCCC-reported values for HFC-125 and HFC-143a, but were much and slightly smaller for HFC-134a and HFC-152a, respectively. Sensitivity estimates suggest an improvement of the a posteriori emission estimates, i.e., a reduction of the uncertainties by 40-80 % in the entire inversion domain, compared to an inversion using only the existing central European AGAGE observations.

  18. Linear Hyperfine Tuning of Donor Spins in Silicon Using Hydrostatic Strain

    NASA Astrophysics Data System (ADS)

    Mansir, J.; Conti, P.; Zeng, Z.; Pla, J. J.; Bertet, P.; Swift, M. W.; Van de Walle, C. G.; Thewalt, M. L. W.; Sklenard, B.; Niquet, Y. M.; Morton, J. J. L.

    2018-04-01

    We experimentally study the coupling of group V donor spins in silicon to mechanical strain, and measure strain-induced frequency shifts that are linear in strain, in contrast to the quadratic dependence predicted by the valley repopulation model (VRM), and therefore orders of magnitude greater than that predicted by the VRM for small strains |ɛ |<10-5. Through both tight-binding and first principles calculations we find that these shifts arise from a linear tuning of the donor hyperfine interaction term by the hydrostatic component of strain and achieve semiquantitative agreement with the experimental values. Our results provide a framework for making quantitative predictions of donor spins in silicon nanostructures, such as those being used to develop silicon-based quantum processors and memories. The strong spin-strain coupling we measure (up to 150 GHz per strain, for Bi donors in Si) offers a method for donor spin tuning—shifting Bi donor electron spins by over a linewidth with a hydrostatic strain of order 10-6—as well as opportunities for coupling to mechanical resonators.

  19. Substituting HCFC-22 for HFC-410A: an environmental impact trade-off between the ozone depletion and climate change regimes

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Fang, X.; Zhang, J.

    2015-12-01

    After the phase-out of hydrochlorofluorocarbons (HCFCs) as ozone-depleting substances pursuant to the requirements of the Montreal Protocol, hydrofluorocarbons (HFCs) are worldwide used as substitutes although the bulk of them are potent greenhouse gases (GHGs). Therefore, the alternation may bring side effect on global climate change. The trade-off of its environmental impacts between the ozone depletion and climate change regimes necessitates a quantification of the past and future consumption and emissions of both the original HCFCs and their alternative HFCs. Now a dilemma arise in China's RAC industry that HCFC-22, which has an ozone-depleting potential (ODP) of 0.055, has been replaced by HFC-410A, which is a blended potent GHG from respective 50% HFC-32 and HFC-125 with a global warming potential (GWP) of 1923.5. Here, we present our results of estimates of consumption and emissions of HCFC-22 and HFC-410A from 1994 to 2050. Historic emissions of HCFC-22 contributed to global total HCFCs by 4.0% (3.0%-5.6%) ODP-weighted. Projection under a baseline scenario shows future accumulative emissions of HFC-410A make up 5.9%-11.0% of global GWP-weighted HFCs emissions, and its annual contribution to national overall CO2 emissions can be 5.5% in 2050. This makes HCFC-22 and HFC-410A emissions of significant importance in ozone depletion and climate change regimes. Two mitigation scenarios were set to assess the mitigation performance under the North America Proposal and an accelerated schedule. In practice of international environmental agreement, "alternative to alternative" should be developed to avoid regrettable alternations.

  20. Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions

    NASA Astrophysics Data System (ADS)

    Velders, Guus J. M.; Fahey, David W.; Daniel, John S.; Andersen, Stephen O.; McFarland, Mack

    2015-12-01

    Hydrofluorocarbons (HFCs) are manufactured for use as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. While HFCs do not deplete ozone, many are potent greenhouse gases that contribute to climate change. Here, new global scenarios show that baseline emissions of HFCs could reach 4.0-5.3 GtCO2-eq yr-1 in 2050. The new baseline (or business-as-usual) scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. The scenarios rely on detailed data reported by countries to the United Nations; projections of gross domestic product and population; and recent observations of HFC atmospheric abundances. In the baseline scenarios, by 2050 China (31%), India and the rest of Asia (23%), the Middle East and northern Africa (11%), and the USA (10%) are the principal source regions for global HFC emissions; and refrigeration (40-58%) and stationary air conditioning (21-40%) are the major use sectors. The corresponding radiative forcing could reach 0.22-0.25 W m-2 in 2050, which would be 12-24% of the increase from business-as-usual CO2 emissions from 2015 to 2050. National regulations to limit HFC use have already been adopted in the European Union, Japan and USA, and proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries.

  1. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    PubMed

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  2. Theory of long-range interactions for Rydberg states attached to hyperfine-split cores

    NASA Astrophysics Data System (ADS)

    Robicheaux, F.; Booth, D. W.; Saffman, M.

    2018-02-01

    The theory is developed for one- and two-atom interactions when the atom has a Rydberg electron attached to a hyperfine-split core state. This situation is relevant for some of the rare-earth and alkaline-earth atoms that have been proposed for experiments on Rydberg-Rydberg interactions. For the rare-earth atoms, the core electrons can have a very substantial total angular momentum J and a nonzero nuclear spin I . In the alkaline-earth atoms there is a single (s ) core electron whose spin can couple to a nonzero nuclear spin for odd isotopes. The resulting hyperfine splitting of the core state can lead to substantial mixing between the Rydberg series attached to different thresholds. Compared to the unperturbed Rydberg series of the alkali-metal atoms, the series perturbations and near degeneracies from the different parity states could lead to qualitatively different behavior for single-atom Rydberg properties (polarizability, Zeeman mixing and splitting, etc.) as well as Rydberg-Rydberg interactions (C5 and C6 matrices).

  3. Sound-velocity measurements for HFC-134a and HFC-152a with a spherical resonator

    NASA Astrophysics Data System (ADS)

    Hozumi, T.; Koga, T.; Sato, H.; Watanabe, K.

    1993-07-01

    A spherical acoustic resonator was developed for measuring sound velocities in the gaseous phase and ideal-gas specific heats for new refrigerants. The radius of the spherical resonator, being about 5 cm, was determined by measuring sound velocities in gaseous argon at temperatures from 273 to 348 K and pressures up to 240 kPa. The measurements of 23 sound velocities in gaseous HFC-134a (1,1,1,2-tetrafluoroethane) at temperatures of 273 and 298 K and pressures from 10 to 250 kPa agree well with the measurements of Goodwin and Moldover. In addition, 92 sound velocities in gaseous HFC-152a (1,1-difluoroethane) with an accuracy of ±0.01% were measured at temperatures from 273 to 348 K and pressures up to 250 kPa. The ideal-gas specific heats as well as the second acoustic virial coefficients have been obtained for both these important alternative refrigerants. The second virial coefficients for HFC-152a derived from the present sound velocity measurements agree extremely well with the reported second virial coefficient values obtained with a Burnett apparatus.

  4. Composition effects on mechanical properties of tungsten-rhenium-hafnium-carbon alloys

    NASA Technical Reports Server (NTRS)

    Witzke, W. R.

    1973-01-01

    The mechanical properties of rod and sheet fabricated from arc melted W-4Re-Hf-C alloys containing up to about 0.8 mol percent hafnium carbide (HfC) were evaluated in the as-worked condition. The DBTT's of electropolished bend and tensile specimens were independent of HfC content in this range but dependent on excess Hf or C above that required for stoichiometric HfC. Low temperature ductility was a maximum at Hf contents slightly in excess of stoichiometric. Variations in high temperature strength were also dependent on excess Hf and C. Maximum creep strengthening also occurred at Hf contents in excess of stoichiometric. Analysis of extracted second phase particles indicated that creep strength was reduced by increasing WC content in the HfC particles.

  5. Overview of hybrid fiber-coaxial network deployment in the deregulated UK environment

    NASA Astrophysics Data System (ADS)

    Cox, Alan L.

    1995-11-01

    Cable operators in the U.K. enjoy unprecedented license to construct networks and operate cable TV and telecommunications services within their franchise areas. In general, operators have built hybrid-fiber-coax (HFC) networks for cable TV in parallel with fiber-copper-pair networks for telephony. The commonly used network architectures are reviewed, together with their present and future capacities. Despite this dual-technology approach, there is considerable interest in the integration of telephony services onto the HFC network and the development of new interactive services for which HFC may be more suitable than copper pairs. Certain technological and commercial developments may have considerable significance for HFC networks and their operators. These include the digitalization of TV distribution and the rising demand for high-rate digital access lines. Possible scenarios are discussed.

  6. Research in Image-Based Cooperation for Autonomous Conventional Aerial Vehicles

    DTIC Science & Technology

    2008-12-31

    sensors, readily available in the market , with poor signal characteristics. Of course, many of the state values cannot be measured directly, due to...22) where H[x(tfe)5ffc]4^ (23) The extended Kalman filter measurement update incorporates the measurement z(tfc) = zfc by means of Kfc ...P^HnHfcP^ + Rfc]- 1 (24) x+ = xfc-+ Kfc [zfc-Hfc(xfc-)] (25) K = Pfc-KfcHfcPfc- (26) where H is given by eq. (23). Here, R is the

  7. Future emissions and atmospheric fate of HFC-1234yf from mobile air conditioners in Europe.

    PubMed

    Henne, Stephan; Shallcross, Dudley E; Reimann, Stefan; Xiao, Ping; Brunner, Dominik; O'Doherty, Simon; Buchmann, Brigitte

    2012-02-07

    HFC-1234yf (2,3,3,3-tetrafluoropropene) is under discussion for replacing HFC-134a (1,1,1,2-tetrafluoroethane) as a cooling agent in mobile air conditioners (MACs) in the European vehicle fleet. Some HFC-1234yf will be released into the atmosphere, where it is almost completely transformed to the persistent trifluoroacetic acid (TFA). Future emissions of HFC-1234yf after a complete conversion of the European vehicle fleet were assessed. Taking current day leakage rates and predicted vehicle numbers for the year 2020 into account, European total HFC-1234yf emissions from MACs were predicted to range between 11.0 and 19.2 Gg yr(-1). Resulting TFA deposition rates and rainwater concentrations over Europe were assessed with two Lagrangian chemistry transport models. Mean European summer-time TFA mixing ratios of about 0.15 ppt (high emission scenario) will surpass previously measured levels in background air in Germany and Switzerland by more than a factor of 10. Mean deposition rates (wet + dry) of TFA were estimated to be 0.65-0.76 kg km(-2) yr(-1), with a maxium of ∼2.0 kg km(-2) yr(-1) occurring in Northern Italy. About 30-40% of the European HFC-1234yf emissions were deposited as TFA within Europe, while the remaining fraction was exported toward the Atlantic Ocean, Central Asia, Northern, and Tropical Africa. Largest annual mean TFA concentrations in rainwater were simulated over the Mediterranean and Northern Africa, reaching up to 2500 ng L(-1), while maxima over the continent of about 2000 ng L(-1) occurred in the Czech Republic and Southern Germany. These highest annual mean concentrations are at least 60 times lower than previously determined to be a safe level for the most sensitive aquatic life-forms. Rainwater concentrations during individual rain events would still be 1 order of magnitude lower than the no effect level. To verify these results future occasional sampling of TFA in the atmospheric environment should be considered. If future HFC-1234yf emissions surpass amounts used here studies of TFA accumulation in endorheic basins and other sensitive areas should be aspired.

  8. THERMODYNAMIC PROPERTIES OF SELECTED HFC REFRIGERANTS

    EPA Science Inventory

    Hydrofluorocarbon (HFC) refrigerants are possible alternatives to replace ozone-depleting chlorofluorocarbon and hydrochlorofluorocarbon (HCFC) refrigerants. The flammability of a proposed new refrigerant is a major consideration in assessing its utility for a particular applicat...

  9. Theoretical study of the hyperfine parameters of OH

    NASA Technical Reports Server (NTRS)

    Chong, Delano P.; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.

    1991-01-01

    In the present study of the hyperfine parameters of O-17H as a function of the one- and n-particle spaces, all of the parameters except oxygen's spin density, b sub F(O), are sufficiently easily tractable to allow concentration on the computational requirements for accurate determination of b sub F(O). Full configuration-interaction (FCI) calculations in six Gaussian basis sets yield unambiguous results for (1) the effect of uncontracting the O s and p basis sets; (2) that of adding diffuse s and p functions; and (3) that of adding polarization functions to O. The size-extensive modified coupled-pair functional method yields b sub F values which are in fair agreement with FCI results.

  10. Double resonance calibration of g factor standards: Carbon fibers as a high precision standard

    NASA Astrophysics Data System (ADS)

    Herb, Konstantin; Tschaggelar, Rene; Denninger, Gert; Jeschke, Gunnar

    2018-04-01

    The g factor of paramagnetic defects in commercial high performance carbon fibers was determined by a double resonance experiment based on the Overhauser shift due to hyperfine coupled protons. Our carbon fibers exhibit a single, narrow and perfectly Lorentzian shaped ESR line and a g factor slightly higher than gfree with g = 2.002644 =gfree · (1 + 162ppm) with a relative uncertainty of 15ppm . This precisely known g factor and their inertness qualify them as a high precision g factor standard for general purposes. The double resonance experiment for calibration is applicable to other potential standards with a hyperfine interaction averaged by a process with very short correlation time.

  11. Dark state polarizing a nuclear spin in the vicinity of a nitrogen-vacancy center

    NASA Astrophysics Data System (ADS)

    Wang, Yang-Yang; Qiu, Jing; Chu, Ying-Qi; Zhang, Mei; Cai, Jianming; Ai, Qing; Deng, Fu-Guo

    2018-04-01

    The nuclear spin in the vicinity of a nitrogen-vacancy (NV) center possesses long coherence time and convenient manipulation assisted by the strong hyperfine interaction with the NV center. It is suggested for the subsequent quantum information storage and processing after appropriate initialization. However, current experimental schemes are either sensitive to the inclination and magnitude of the magnetic field or require thousands of repetitions to achieve successful realization. Here, we propose a method to polarize a 13C nuclear spin in the vicinity of an NV center via a dark state. We demonstrate theoretically and numerically that it is robust to polarize various nuclear spins with different hyperfine couplings and noise strengths.

  12. Calculating hyperfine couplings in large ionic crystals containing hundreds of QM atoms: subsystem DFT is the key.

    PubMed

    Kevorkyants, Ruslan; Wang, Xiqiao; Close, David M; Pavanello, Michele

    2013-11-14

    We present an application of the linear scaling frozen density embedding (FDE) formulation of subsystem DFT to the calculation of isotropic hyperfine coupling constants (hfcc's) of atoms belonging to a guanine radical cation embedded in a guanine hydrochloride monohydrate crystal. The model systems range from an isolated guanine to a 15,000 atom QM/MM cluster where the QM region is comprised of 36 protonated guanine cations, 36 chlorine anions, and 42 water molecules. Our calculations show that the embedding effects of the surrounding crystal cannot be reproduced by small model systems nor by a pure QM/MM procedure. Instead, a large QM region is needed to fully capture the complicated nature of the embedding effects in this system. The unprecedented system size for a relativistic all-electron isotropic hfcc calculation can be approached in this work because the local nature of the electronic structure of the organic crystals considered is fully captured by the FDE approach.

  13. Transport-related triplet states and hyperfine couplings in organic tandem solar cells probed by pulsed electrically detected magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kraffert, Felix; Bahro, Daniel; Meier, Christoph; Denne, Maximilian; Colsmann, Alexander; Behrends, Jan

    2017-09-01

    Tandem solar cells constitute the most successful organic photovoltaic devices with power conversion efficiencies comparable to thin-film silicon solar cells. Especially their high open-circuit voltage - only achievable by a well-adjusted layer stacking - leads to their high efficiencies. Nevertheless, the microscopic processes causing the lossless recombination of charge carriers within the recombination zone are not well understood yet. We show that advanced pulsed electrically detected magnetic resonance techniques such as electrically detected (ED)-Rabi nutation measurements and electrically detected hyperfine sublevel correlation (ED-HYSCORE) spectroscopy help to understand the role of triplet excitons in these microscopic processes. We investigate fully working miniaturised organic tandem solar cells and detect current-influencing doublet states in different layers as well as triplet excitons located on the fullerene-based acceptor. We apply ED-HYSCORE in order to study the nuclear spin environment of the relevant electron/hole spins and detect a significant amount of the low abundant 13C nuclei coupled to the observer spins.

  14. Evidence for under-reported western European emissions of the potent greenhouse gas HFC-23

    NASA Astrophysics Data System (ADS)

    Keller, Christoph A.; Brunner, Dominik; Henne, Stephan; Vollmer, Martin K.; O'Doherty, Simon; Reimann, Stefan

    2011-08-01

    Western European emission inventories of the potent greenhouse gas trifluoromethane (HFC-23) are validated at a country level by combining 2-hourly atmospheric in-situ measurements at Jungfraujoch (Switzerland) and Mace Head (Ireland) with Lagrangian transport simulations. HFC-23 has an atmospheric lifetime of ˜270 yr and a 100-yr global warming potential (GWP) of 14,800 and is unintentionally produced during the manufacture of chlorodifluoromethane (HCFC-22). For the study region we derive emissions of 144-216 Mg/yr for July 2008-July 2010, which are 60-140% higher than the official emissions gathered from the national reports for the year 2009. The largest discrepancy is found for Italy, where our estimate of 26-56 Mg/yr exceeds the national inventory (2.6 Mg/yr) by more than an order of magnitude. These findings suggest that non-reported emissions from Annex 1 countries partly explain the recently derived gap between global bottom-up and top-down HFC-23 emission estimates. The results presented here provide independent information to relevant authorities on effective reporting of HFC-23 emissions, and demonstrate the potential of atmospheric measurements for real-world verification of greenhouse gas emissions.

  15. Infrared absorption cross-sections, radiative efficiency and global warming potential of HFC-43-10mee

    NASA Astrophysics Data System (ADS)

    Le Bris, Karine; DeZeeuw, Jasmine; Godin, Paul J.; Strong, Kimberly

    2018-06-01

    HFC-43-10mee (C5H2F10) is a substitute for CFC-113, HCFC-141b and methyl chloroform, as well as an alternative to perfluorocarbons with high radiative efficiencies. Recent observations have shown that the global mean tropospheric abundance of HFC-43-10mee has increased steadily from the 1990s to reach 0.211 ppt in 2012. To date, the emission of this compound is not regulated. The radiative efficiency (RE) of HFC-43-10mee has recently been re-evaluated at 0.42 W m-2 ppb-1, giving a 100-year time horizon global warming potential (GWP100) of 1650. However, the initial RE, from which the new values were derived, originated from an unpublished source. We calculated a new RE of 0.36 W m-2 ppb-1 and a GWP100 of 1410 from laboratory absorption cross-section spectra of a pure vapour of HFC-43-10mee. Acquisitions were performed in the 550-3500 cm-1 spectral range using Fourier transform spectroscopy. The results were compared with the broadened spectra from the Pacific Northwest National Laboratory (PNNL) database and with theoretical calculations using density functional theory.

  16. Infrared absorption cross sections of alternative CFCs

    NASA Technical Reports Server (NTRS)

    Clerbaux, Cathy; Colin, Reginald; Simon, Paul C.

    1994-01-01

    Absorption cross sections have obtained in the infrared atmospheric window, between 600 and 1500 cm(exp -1), for 10 alternative hydrohalocarbons: HCFC-22, HCFC-123, HCFC-124, HCFC-141b, HCFC-142b, HCFC-225ca, HCFC-225cb, HFC-125, HFC-134a, and HFC-152a. The measurements were made at three temperatures (287K, 270K and 253K) with a Fourier transform spectrometer operating at 0.03 cm(exp -1) apodized resolution. Integrated cross sections are also derived for use in radiative models to calculate the global warming potentials.

  17. Final Technical Report HFC Concrete: A Low­Energy, Carbon-Dioxide­Negative Solution for reducing Industrial Greenhouse Gas Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Larry McCandlish, Principal Investigator; Dr. Richard Riman, Co-Principal Investigator

    2012-05-14

    Solidia/CCSM received funding for further research and development of its Low Temperature Solidification Process (LTS), which is used to create hydrate-free concrete (HFC). LTS/HFC is a technology/materials platform that offers wide applicability in the built infrastructure. Most importantly, it provides a means of making concrete without Portland cement. Cement and concrete production is a major consumer of energy and source of industrial greenhouse gas (GHG) emissions. The primary goal of this project was to develop and commercialize a novel material, HFC, which by replacing traditional concrete and cement, reduces both energy use and GHG emissions in the built infrastructure. Traditionalmore » concrete uses Portland Cement (PC) as a binder. PC production involves calcination of limestone at {approx}1450 C, which releases significant amounts of CO{sub 2} gas to the atmosphere and consumes a large amount of energy due to the high temperature required. In contrast, HFC is a carbonate-based hydrate-free concrete (HFC) that consumes CO{sub 2} gas in its production. HFC is made by reaction of silicate minerals with CO{sub 2} at temperatures below 100 C, more than an order-of-magnitude below the temperature required to make PC. Because of this significant difference in temperature, it is estimated that we will be able to reduce energy use in the cement and concrete industry by up to 30 trillion Btu by 2020. Because of the insulating properties of HFC, we believe we will also be able to significantly reduce energy use in the Building sector, though the extent of this saving is not yet quantified. It is estimated that production of a tonne of PC-based concrete requires about 6.2 million Btu of energy and produces over 1 tonne of CO{sub 2} emissions (Choate, 2003). These can be reduced to 1.9 million Btu and 0.025 tonnes of CO{sub 2} emissions per tonne of HFC (with overall CO{sub 2}-negativity possible by increasing carbonation yield). In this way, by replacing PC-based concrete with HFC in infrastructure we can reduce energy use in concrete production by 70%, and reduce CO{sub 2} emissions by 98%; thus the potential to reduce the impact of building materials on global warming and climate change is highly significant. Low Temperature Solidification (LTS) is a breakthrough technology that enables the densification of inorganic materials via a hydrothermal process. The resulting product exhibits excellent control of chemistry and microstructure, to provide durability and mechanical performance that exceeds that of concrete or natural stone. The technology can be used in a wide range of applications including facade panels, interior tiles, roof tiles, countertops, and pre-cast concrete. Replacing traditional building materials and concrete in these applications will result in significant reduction in both energy consumption and CO{sub 2} emissions.« less

  18. Health facility committees and facility management - exploring the nature and depth of their roles in Coast Province, Kenya

    PubMed Central

    2011-01-01

    Background Community participation has been emphasized internationally as a way of enhancing accountability, as well as a means to enhance health goals in terms of coverage, access and effective utilization. In rural health facilities in Kenya, initiatives to increase community accountability have focused on Health Facility Committees (HFCs). In Coast Province the role of HFCs has been expanded with the introduction of direct funding of rural facilities. We explored the nature and depth of managerial engagement of HFCs at the facility level in two rural districts in this Coastal setting, and how this has contributed to community accountability Methods We conducted structured interviews with the health worker in-charge and with patients in 30 health centres and dispensaries. These data were supplemented with in-depth interviews with district managers, and with health workers and HFC members in 12 health centres and dispensaries. In-depth interviews with health workers and HFC members included a participatory exercise to stimulate discussion of the nature and depth of their roles in facility management. Results HFCs were generally functioning well and played an important role in facility operations. The breadth and depth of engagement had reportedly increased after the introduction of direct funding of health facilities which allowed HFCs to manage their own budgets. Although relations with facility staff were generally good, some mistrust was expressed between HFC members and health workers, and between HFC members and the broader community, partially reflecting a lack of clarity in HFC roles. Moreover, over half of exit interviewees were not aware of the HFC's existence. Women and less well-educated respondents were particularly unlikely to know about the HFC. Conclusions There is potential for HFCs to play an active and important role in health facility management, particularly where they have control over some facility level resources. However, to optimise their contribution, efforts are needed to improve their training, clarify their roles, and improve engagement with the wider community. PMID:21936958

  19. Health facility committees and facility management - exploring the nature and depth of their roles in Coast Province, Kenya.

    PubMed

    Goodman, Catherine; Opwora, Antony; Kabare, Margaret; Molyneux, Sassy

    2011-09-22

    Community participation has been emphasized internationally as a way of enhancing accountability, as well as a means to enhance health goals in terms of coverage, access and effective utilization. In rural health facilities in Kenya, initiatives to increase community accountability have focused on Health Facility Committees (HFCs). In Coast Province the role of HFCs has been expanded with the introduction of direct funding of rural facilities. We explored the nature and depth of managerial engagement of HFCs at the facility level in two rural districts in this Coastal setting, and how this has contributed to community accountability We conducted structured interviews with the health worker in-charge and with patients in 30 health centres and dispensaries. These data were supplemented with in-depth interviews with district managers, and with health workers and HFC members in 12 health centres and dispensaries. In-depth interviews with health workers and HFC members included a participatory exercise to stimulate discussion of the nature and depth of their roles in facility management. HFCs were generally functioning well and played an important role in facility operations. The breadth and depth of engagement had reportedly increased after the introduction of direct funding of health facilities which allowed HFCs to manage their own budgets. Although relations with facility staff were generally good, some mistrust was expressed between HFC members and health workers, and between HFC members and the broader community, partially reflecting a lack of clarity in HFC roles. Moreover, over half of exit interviewees were not aware of the HFC's existence. Women and less well-educated respondents were particularly unlikely to know about the HFC. There is potential for HFCs to play an active and important role in health facility management, particularly where they have control over some facility level resources. However, to optimise their contribution, efforts are needed to improve their training, clarify their roles, and improve engagement with the wider community.

  20. Historical and projected emissions of HCFC-22 and HFC-410A from China's room air conditioning sector

    NASA Astrophysics Data System (ADS)

    Wang, Ziyuan; Fang, Xuekun; Li, Li; Bie, Pengju; Li, Zhifang; Hu, Jianxin; Zhang, Boya; Zhang, Jianbo

    2016-05-01

    Recent decades witnessed the increase in production and uses of HCFC-22 (chlorodifluoromethane, CHClF2) and its alternative, HFC-410A (a blend of difluoromethane and pentafluoroethane), in China in response to the booming of room air conditioners (RACs) for both domestic use and exports. HCFC-22 is an ozone-depleting substance under the Montreal Protocol, while both HCFC-22 and HFC-410A are greenhouse gases (GHGs). This study provides a most comprehensive consumption and emission inventory of refrigerants emissions (HCFC-22 and HFC-410A) from RAC sector during 1995-2014, for the first time. Our estimates show that HCFC-22 emissions increased from 0.7 Gg/yr in 1995 to 48.2 Gg/yr in 2014. The accumulative emissions contributed to global total HCFCs emissions by 4.4% (3.3%-6.1%) CFC-11-equivalent (CFC-11-eq) and 5.4% (4.1%-7.5%) CO2-equivalent (CO2-eq) during 1995-2012. If left uncontrolled, accumulative emissions of HFC-410A will be12.4 (7.1-20.2) CO2-eq Pg during 2015-2050, which can offset the global climate benefits achieved by the Montreal Protocol. The HFC-410A emissions from China's RAC sector are estimated to be of importance to both global HFCs emissions and China's GHG emissions. Further, we probed the emission mitigation performances of the current 2014 North American Proposal scenario and a modified more ambitious scenario. The emissions of two mitigation scenarios are only 28% and 22% of the emissions without mitigation actions, respectively. This study is the first effort to map the transition of eliminated substance HCFC-22 and its alternative HFC-410A in RAC sector. Therefore, alternative chemicals should be scrutinized with cautions before they are promoted and applied.

  1. Modeling and design study using HFC-236ea as an alternative refrigerant in a centrifugal compressor. Final report, January 1994-September 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovic, P.; Shapiro, H.N.

    1997-04-01

    The Environmental Protection Agency (EPA) in cooperation with the Navy has been seeking a CFC-114 drop-in placement. One alternative HFC refrigerant which appears to satisfy all physical and chemical characteristics for the Navy fleet was found to be HFC-236ea refrigerant. The project represents a part of the investigation directed to evaluate this CFC-114 alternative refrigerant as a possible drop-in replacement in Navy chillers. The objective of the study was to conduct a thorough literature review regarding centrifugal compressors and the, on the basis of the information gathered, build an accurate but simple compressor model utilizing the available compressor experimental data.more » Further, the developed compressor model would be used to suggest eventual design adjustments to enhance compressor performance with the alternative HFC-236ea refrigerant.« less

  2. EPR study of a gamma-irradiated (2-hydroxyethyl)triphenylphosphonium chloride single crystal

    NASA Astrophysics Data System (ADS)

    Karakaş, E.; Türkkan, E.; Dereli, Ö.; Sayιn, Ü.; Tapramaz, R.

    2011-12-01

    In this study, gamma-irradiated single crystals of (2-hydroxyethyl)triphenylphosphonium chloride [CH2CH2OH P(C6H5)3Cl] were investigated with electron paramagnetic resonance (EPR) spectroscopy at room temperature for different orientations in the magnetic field. The single crystals were irradiated with a 60Co-γ-ray source at 0.818 kGy/h for about 36 h. Taking the chemical structure and the experimental spectra of the irradiated single crystal of the title compound into consideration, a paramagnetic species was produced with the unpaired electron delocalized around 31P and several 1H nuclei. The anisotropic hyperfine values due to the 31P nucleus, slightly anisotropic hyperfine values due to the 1H nuclei and the g-tensor of the radical were measured from the spectra. Depending on the molecular structure and measured parameters, three possible radicals were modeled using the B3LYP/6-31+G(d) level of density-functional theory, and EPR parameters were calculated for modeled radicals using the B3LYP/TZVP method/basis set combination. The calculated hyperfine coupling constants were found to be in good agreement with the observed EPR parameters. The experimental and theoretically simulated spectra for each of the three crystallographic axes were well matched with one of the modeled radicals (discussed in the text). We thus identified the radical C˙H2CH2 P(C 6H5)3 Cl as a paramagnetic species produced in a single crystal of the title compound in two magnetically distinct sites. The experimental g-factor and hyperfine coupling constants of the radical were found to be anisotropic, with the isotropic values g iso = 2.0032, ? G, ? G, ? G and ? G for site 1 and g iso=2.0031, ? G, ? G ? G and ? G for site 2.

  3. Dynamics of soil organic carbon in density fractions during post-agricultural succession over two lithology types, southwest China.

    PubMed

    Wen, Li; Li, Dejun; Chen, Hao; Wang, Kelin

    2017-10-01

    Agricultural abandonment has been proposed as an effective way to enhance soil organic carbon (SOC) sequestration. Nevertheless, SOC sequestration in the long term is largely determined by whether the stable SOC fractions will increase. Here the dynamics of SOC fractions during post-agricultural succession were investigated in a karst region, southwest China using a space-for-time substitution approach. Cropland, grassland, shrubland and secondary forest were selected from areas underlain by dolomite and limestone, respectively. Density fractionation was used to separate bulk SOC into free light fraction (FLFC) and heavy fraction (HFC). FLFC contents were similar over dolomite and limestone, but bulk SOC and HFC contents were greater over limestone than over dolomite. FLFC content in the forest was greater than in the other vegetation types, but bulk SOC and HFC contents increased from the cropland through to the forest for areas underlain by dolomite. The contents of bulk SOC and its fractions were similar among the four vegetation types over limestone. The proportion of FLFC in bulk SOC was higher over dolomite than over limestone, but the case was inverse for the proportion of HFC, indicating SOC over limestone was more stable. However, the proportions of both FLFC and HFC were similar among the four vegetation types, implying that SOC stability was not changed by cropland conversion. Exchangeable calcium explained most of the variance of HFC content. Our study suggests that lithology not only affects SOC content and its stability, but modulates the dynamics of SOC fractions during post-agricultural succession. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Antiobesity Effects of Sansa (Crataegi fructus) on 3T3-L1 Cells and on High-Fat-High-Cholesterol Diet-Induced Obese Rats.

    PubMed

    Lee, Jae-Joon; Lee, Hyun-Joo; Oh, Seon-Woo

    2017-01-01

    This study was performed to investigate the effects of Crataegi fructus ethanol extracts (CFEEs) on the differentiation of 3T3-L1 cells, and to evaluate the effects of C. fructus powder (CFP) on lipid metabolism and its antiobesity effect in rats fed a high-fat and high-cholesterol (HFC) diet. Both in vitro and in vivo studies were performed for physiological activity and antiobesity effects on the serum, liver, and adipose tissues in obesity-induced rats. CFEEs showed significant inhibitory action on differentiation and triglyceride (TG) accumulation in 3T3-L1 mature cells in a dose-dependent manner. Subcutaneous, mesenteric, epididymal, and total adipose tissue weights of HFC diet group were heavier than those of normal diet (N) group, whereas those of groups fed CFP were significantly decreased. Levels of serum TGs, total cholesterol (TC), and low-density lipoprotein cholesterol were significantly decreased in the CFP groups than in the HFC group, whereas the serum high-density lipoprotein cholesterol level decreased in the HFC group and markedly increased in the CFP groups. TC and TG levels in the liver and adipose tissues were significantly lower in CFP groups than in the HFC groups. In addition, feeding with CFP significantly reduced the occurrence of fatty liver deposits and steatosis, and inhibited an HFC diet-induced increase in adipocyte size. These results suggest that C. fructus may improve lipid metabolism in the serum, liver, and adipose tissue, and may potentially reduce lipid storage.

  5. Cycle performance testing of nonazeotropic mixtures of HFC-142A/HCFC-124 and HFC-32/HCFC-124 with enhanced surface heat exchangers

    NASA Astrophysics Data System (ADS)

    Vineyard, E. A.; Conklin, J. C.; Brown, A. J.

    In an effort to improve the efficiency of residential heat pumps using alternative refrigerants, two nonazeotropic refrigerant mixtures (NARM's) were tested over a range of heat exchanger capacities to determine their cooling mode performance at US Department of Energy (DOE) heat pump rating conditions of 82 F (27.8 C). The two mixtures, 30% HFC-32/70% HCFC-124 and 75% HFC-143a/25% HCFC-124, were selected on the basis of a previous study that screened refrigerant pairs using such factors as boiling point, stability, ozone depletion potential (ODP), and coefficient of performance (COP) to determine suitable candidates for residential heat pump performance. Three refrigerant-side heat transfer enhancements were tested to determine improvements to overall system performance. Comparisons were made on the basis of the COP as a function of capacity. The results for one of the heat exchanger combinations, a segmented evaporator and finned condenser, were quite promising. Improvements in COP, relative to that for HCFC-22, were from 9 to 17% for the 30% HFC-32/70% HCFC-124 mixture and from 5 to 9% for the 75% HFC-143a/25% HCFC-124 NARM. Another combination, a smooth tube evaporator with a perforated foil insert and finned condenser, had similar gains at low capacities but experienced decreased performance at the higher capacities. The final combination, a smooth tube evaporator with a perforated foil insert and smooth tube condenser with a bent tab insert resulted in poor performance.

  6. Global and regional emissions estimates of 1,1-difluoroethane (HFC-152a, CH3CHF2) from in situ and air archive observations

    NASA Astrophysics Data System (ADS)

    Simmonds, P. G.; Rigby, M.; Manning, A. J.; Lunt, M. F.; O'Doherty, S.; Young, D.; McCulloch, A.; Fraser, P. J.; Henne, S.; Vollmer, M. K.; Reimann, S.; Wenger, A.; Mühle, J.; Harth, C. M.; Salameh, P. K.; Arnold, T.; Weiss, R. F.; Krummel, P. B.; Steele, L. P.; Dunse, B. L.; Miller, B. R.; Lunder, C. R.; Hermansen, O.; Schmidbauer, N.; Saito, T.; Yokouchi, Y.; Park, S.; Li, S.; Yao, B.; Zhou, L. X.; Arduini, J.; Maione, M.; Wang, R. H. J.; Prinn, R. G.

    2015-08-01

    High frequency, ground-based, in situ measurements from eleven globally-distributed sites covering 1994-2014, combined with measurements of archived air samples dating from 1978 onward and atmospheric transport models, have been used to estimate the growth of 1,1-difluoroethane (HFC-152a, CH3CHF2) mole fractions in the atmosphere and the global emissions required to derive the observed growth. HFC-152a is a significant greenhouse gas but since it does not contain chlorine or bromine, HFC-152a makes no direct contribution to the destruction of stratospheric ozone and is therefore used as a substitute for the ozone depleting chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). HFC-152a has exhibited substantial atmospheric growth since the first measurements reaching a maximum annualised global growth rate of 0.81 ± 0.05 ppt yr-1 in 2006, implying a substantial increase in emissions up to 2006. However, since 2007, the annualised rate of growth has slowed to 0.38 ± 0.04 ppt yr-1 in 2010 with a further decline to an average rate of change in 2013-2014 of -0.06 ± 0.05 ppt yr-1. The average Northern Hemisphere (NH) mixing ratio in 1994 was 1.2 ppt rising to a mixing ratio of 10.2 ppt in December 2014. Average annual mixing ratios in the Southern Hemisphere (SH) in 1994 and 2014 were 0.34 and 4.4 ppt, respectively. We estimate global emissions of HFC-152a have risen from 7.3 ± 5.6 Gg yr-1 in 1994 to a maximum of 54.4 ± 17.1 Gg yr-1 in 2011, declining to 52.5 ± 20.1 Gg yr-1 in 2014 or 7.2 ± 2.8 Tg-CO2 eq yr-1. Analysis of mixing ratio enhancements above regional background atmospheric levels suggests substantial emissions from North America, Asia and Europe. Global HFC emissions (so called "bottom up" emissions) reported by the United Nations Framework Convention on Climate Change (UNFCCC) are based on cumulative national emission data reported to the UNFCCC, which in turn are based on national consumption data. There appears to be a significant underestimate of "bottom-up" global emissions of HFC-152a, possibly arising from largely underestimated USA emissions and undeclared Asian emissions.

  7. Atomic Spectra and the Vector Model

    NASA Astrophysics Data System (ADS)

    Candler, A. C.

    2015-05-01

    12. Displaced terms; 13. Combination of several electrons; 14. Short periods; 15. Long periods; 16. Rare earths; 17. Intensity relsations; 18. Sum rules and (jj) coupling; 19. Series limit; 20. Hyperfine structure; 21. Quadripole radiation; 22. Fluorescent crystals; Appendix 5. Key to references; Appendix 6. Bibliography; Subject index; Author index.

  8. Gd(III) complexes as paramagnetic tags: Evaluation of the spin delocalization over the nuclei of the ligand

    NASA Astrophysics Data System (ADS)

    Collauto, A.; Feintuch, A.; Qi, M.; Godt, A.; Meade, T.; Goldfarb, D.

    2016-02-01

    Complexes of the Gd(III) ion are currently being established as spin labels for distance determination in biomolecules by pulse dipolar spectroscopy. Because Gd(III) is an f ion, one expects electron spin density to be localized on the Gd(III) ion - an important feature for the mentioned application. Most of the complex ligands have nitrogens as Gd(III) coordinating atoms. Therefore, measurement of the 14N hyperfine coupling gives access to information on the localization of the electron spin on the Gd(III) ion. We carried out W-band, 1D and 2D 14N and 1H ENDOR measurements on the Gd(III) complexes Gd-DOTA, Gd-538, Gd-595, and Gd-PyMTA that serve as spin labels for Gd-Gd distance measurements. The obtained 14N spectra are particularly well resolved, revealing both the hyperfine and nuclear quadrupole splittings, which were assigned using 2D Mims ENDOR experiments. Additionally, the spectral contributions of the two different types of nitrogen atoms of Gd-PyMTA, the aliphatic N atom and the pyridine N atom, were distinguishable. The 14N hyperfine interaction was found to have a very small isotropic hyperfine component of -0.25 to -0.37 MHz. Furthermore, the anisotropic hyperfine interactions with the 14N nuclei and with the non-exchangeable protons of the ligands are well described by the point-dipole approximation using distances derived from the crystal structures. We therefore conclude that the spin density is fully localized on the Gd(III) ion and that the spin density distribution over the nuclei of the ligands is rightfully ignored when analyzing distance measurements.

  9. TWO-PHASE FLOW OF TWO HFC REFRIGERANT MIXTURES THROUGH SHORT-TUBE ORIFICES

    EPA Science Inventory

    The report gives results of an experimental investigation to develop an acceptable flow model for short tube orifice expansion devices used in heat pumps. The refrigerants investigated were two hydrofluorocarbon (HFC) mixtures considered hydrochlorofluorocarbon (HCFC)-22 replacem...

  10. Where's water? The many binding sites of hydantoin.

    PubMed

    Gruet, Sébastien; Pérez, Cristóbal; Steber, Amanda L; Schnell, Melanie

    2018-02-21

    Prebiotic hydantoin and its complexes with one and two water molecules are investigated using high-resolution broadband rotational spectroscopy in the 2-8 GHz frequency range. The hyperfine structure due to the nuclear quadrupole coupling of the two 14 N atoms is analysed for the monomer and the complexes. This characteristic hyperfine structure will support a definitive assignment from low frequency radioastronomy data. Experiments with H 2 18 O provide accurate experimental information on the preferred binding sites of water, which are compared with quantum-chemically calculated coordinates. In the 2-water complexes, the water molecules bind to hydantoin as a dimer instead of individually, indicating the strong water-water interactions. This information provides first insight on how hydantoin interacts with water on the molecular level.

  11. Effects of Extract from Cole Pollen on Lipid Metabolism in Experimental Hyperlipidemic Rats

    PubMed Central

    Geng, Yue; Tu, Wen-li; Zhang, Jing-jing; Zhang, Liang; Zhang, Jian

    2014-01-01

    In order to evaluate the effects of extract by SCE (supercritical carbon dioxide extraction) from cole pollen on lipid metabolism in hyperlipidemic rats, the experimental hyperlipidemic rats were established by providing with high fat diets, and randomized into six groups. After four weeks of perfusion diets into stomach, the rats were executed, and lipid levels of serum and hepatic tissue were detected. The serum levels of TC and TG were significantly lower in the pollen extract groups and MC group than in HFC group. Hepatic TC levels were decreased in rats fed pollen extract and lovastatin compared with HFC group. A higher concentration of HDL-C and apoAI in hepatic tissue was measured after intake of the pollen extract compared to the HFC group (P < 0.05). LCAT activity in serum of pollen extract groups was significantly higher than that in HFC group, and also HMG-CoA reductase showed decreasing tendency in pollen extract groups. The contents of DHA in pollen extract groups were found higher than those in HFC group. Cole pollen extract enriched in alpha-linolenic acid is likely to be a novel source of ALA which is probably responsible for favorable lipid changes through promoting transportation, excretion, and metabolism of cholesterol in hepatic tissue and serum. PMID:25152932

  12. Fingerprints of single nuclear spin energy levels using STM - ENDOR

    NASA Astrophysics Data System (ADS)

    Manassen, Yishay; Averbukh, Michael; Jbara, Moamen; Siebenhofer, Bernhard; Shnirman, Alexander; Horovitz, Baruch

    2018-04-01

    We performed STM-ENDOR experiments where the intensity of one of the hyperfine components detected in ESR-STM is recorded while an rf power is irradiated into the tunneling junction and its frequency is swept. When the latter frequency is near a nuclear transition a dip in ESR-STM signal is observed. This experiment was performed in three different systems: near surface SiC vacancies where the electron spin is coupled to a next nearest neighbor 29Si nucleus; Cu deposited on Si(111)7x7 surface, where the unpaired electron of the Cu atom is coupled to the Cu nucleus (63Cu, 65Cu) and on Tempo molecules adsorbed on Au(111), where the unpaired electron is coupled to a Nitrogen nucleus (14N). While some of the hyperfine values are unresolved in the ESR-STM data due to linewidth we find that they are accurately determined in the STM-ENDOR data including those from remote nuclei, which are not detected in the ESR-STM spectrum. Furthermore, STM-ENDOR can measure single nuclear Zeeman frequencies, distinguish between isotopes through their different nuclear magnetic moments and detect quadrupole spectra. We also develop and solve a Bloch type equation for the coupled electron-nuclear system that facilitates interpretation of the data. The improved spectral resolution of STM - ENDOR opens many possibilities for nanometric scale chemical analysis.

  13. Fingerprints of single nuclear spin energy levels using STM - ENDOR.

    PubMed

    Manassen, Yishay; Averbukh, Michael; Jbara, Moamen; Siebenhofer, Bernhard; Shnirman, Alexander; Horovitz, Baruch

    2018-04-01

    We performed STM-ENDOR experiments where the intensity of one of the hyperfine components detected in ESR-STM is recorded while an rf power is irradiated into the tunneling junction and its frequency is swept. When the latter frequency is near a nuclear transition a dip in ESR-STM signal is observed. This experiment was performed in three different systems: near surface SiC vacancies where the electron spin is coupled to a next nearest neighbor 29 Si nucleus; Cu deposited on Si(111)7x7 surface, where the unpaired electron of the Cu atom is coupled to the Cu nucleus ( 63 Cu, 65 Cu) and on Tempo molecules adsorbed on Au(111), where the unpaired electron is coupled to a Nitrogen nucleus ( 14 N). While some of the hyperfine values are unresolved in the ESR-STM data due to linewidth we find that they are accurately determined in the STM-ENDOR data including those from remote nuclei, which are not detected in the ESR-STM spectrum. Furthermore, STM-ENDOR can measure single nuclear Zeeman frequencies, distinguish between isotopes through their different nuclear magnetic moments and detect quadrupole spectra. We also develop and solve a Bloch type equation for the coupled electron-nuclear system that facilitates interpretation of the data. The improved spectral resolution of STM - ENDOR opens many possibilities for nanometric scale chemical analysis. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Alteration of sweet taste in high-fat diet induced obese rats after 4 weeks treatment with exenatide.

    PubMed

    Zhang, Xiao-juan; Wang, Yu-qing; Long, Yang; Wang, Lei; Li, Yun; Gao, Fa-bao; Tian, Hao-ming

    2013-09-01

    Exenatide, a glucagon-like peptide-1 (GLP-1) receptor agonist, is effective in inducing weight loss. The exact mechanisms are not fully understood. Reduced appetite and food intake may play important roles. Sweet taste contributes to food palatability, which promotes appetite. Interestingly, GLP-1 and its receptor are expressed in the taste buds of rodents and their interaction has an effect on mediating sweet taste sensitivity. Our aim was to investigate whether sweet taste will be changed after long term treatment with exenatide. The results showed that high-fat diet induced obese rats (HF-C) presented metabolic disorders in food intake, body weight, blood glucose and lipid metabolism compared with long term exenatide treated obese rats (EX) and normal chow fed control rats (NC). Meanwhile, greater preference for sweet taste was observed in HF-C rats but not in EX rats. Compared with NC rats, brain activities induced by sweet taste stimulation were stronger in HF-C rats, however these stronger activities were not found in EX rats. We further found reduced sweet taste receptor T1R3 in circumvallte taste buds of HF-C rats, while GLP-1 was increased. Besides, serum leptin was evaluated in HF-C rats with decreased leptin receptor expressed in taste buds. These changes were not observed in EX rats, which suggest them to be the underlying hormone and molecular mechanisms responsible for alterations in sweet taste of HF-C rats and EX rats. In summary, our results suggest that long term treatment with exenatide could benefit dietary obese rats partially by reversing sweet taste changes. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. TRANSPORT PROPERTY MEASUREMENTS OF HFC-236EA

    EPA Science Inventory

    The report gives results of an evaluation of transport properties of 1,1,1,2,3,3,-hexafluoropropane (HFC-236ea), with liquid viscosity and thermal conductivity being the two main transport properties of interest. In addition, the specific heat and density of refrigerant/lubrican...

  16. Evaluation for Practical Application of HFC Refrigerants

    NASA Astrophysics Data System (ADS)

    Uemura, Shigehiro; Noguchi, Masahiro; Inagaki, Sadayasu; Teraoka, Takuya

    Production restriction of CFCs which are used for refrigerators and air conditioners has been implemented through the international mutual agreement approved by the Montreal Protocol. Due to the less impact on the ozone layer dep1etion, alternative refrigerants for CFCs had included HCFC-123 and HCFC-22. However, H CFC-123 and HCFC-22 do not completely prevent the ozone layer depletion. This paper presents the investigation results of HFC-125, H FC-143a, HFC-152a, and HFC-32 which prevent the ozone layer depletion and are candidates for alternatives of CFCs and HCFCs. The test results of thermal stability of these refrigerants are similar to those of CFC-12 and HCFC-22. The test results show that each refrigerant has different material compatibility. The test results of lubricant solubility show that synthetic oi1s are soluble in these refrigerants, but the mineral oils currently in use for CFCs and HCFCs are not. The refrigeration performance based on the calculated thermodynamic properties corresponds with that of the experimental results.

  17. Emission estimates of HCFCs and HFCs in California from the 2010 CalNex study

    NASA Astrophysics Data System (ADS)

    Barletta, Barbara; Carreras-Sospedra, Marc; Cohan, Alex; Nissenson, Paul; Dabdub, Donald; Meinardi, Simone; Atlas, Elliot; Lueb, Rich; Holloway, John S.; Ryerson, Thomas B.; Pederson, James; VanCuren, Richard A.; Blake, Donald R.

    2013-02-01

    The CalNex 2010 (California Research at the Nexus of Air Quality and Climate Change) study was designed to evaluate the chemical composition of air masses over key source regions in California. During May to June 2010, air samples were collected on board a National Oceanic and Atmospheric Administration (NOAA) WP-3D aircraft over the South Coast Air Basin of California (SoCAB) and the Central Valley (CV). This paper analyzes six effective greenhouse gases—chlorodifluoromethane (HCFC-22), 1,1-dichloro-1-fluoroethane (HCFC-141b), 1-chloro-1,1-difluoroethane (HCFC-142b), 2-chloro-1,1,1,2-tetrafluoroethane (HCFC-124), 1,1,1,2-tetrafluoroethane (HFC-134a), and 1,1-difluoroethane (HFC-152a)—providing the most comprehensive characterization of chlorofluorocarbon (CFC) replacement compound emissions in California. Concentrations of measured HCFCs and HFCs are enhanced greatly throughout the SoCAB and CV, with highest levels observed in the SoCAB: 310 ± 92 pptv for HCFC-22, 30.7 ± 18.6 pptv for HCFC-141b, 22.9 ± 2.0 pptv for HCFC-142b, 4.86 ± 2.56 pptv for HCFC-124, 109 ± 46.4 pptv for HFC-134a, and 91.2 ± 63.9 pptv for HFC-152a. Annual emission rates are estimated for all six compounds in the SoCAB using the measured halocarbon to carbon monoxide (CO) mixing ratios and CO emissions inventories. Emission rates of 3.05 ± 0.70 Gg for HCFC-22, 0.27 ± 0.07 Gg for HCFC-141b, 0.06 ± 0.01 Gg for HCFC-142b, 0.11 ± 0.03 Gg for HCFC-124, 1.89 ± 0.43 Gg for HFC-134a, and 1.94 ± 0.45 Gg for HFC-152b for the year 2010 are calculated for the SoCAB. These emissions are extrapolated from the SoCAB region to the state of California using population data. Results from this study provide a baseline emission rate that will help future studies determine if HCFC and HFC mitigation strategies are successful.

  18. Structural and electronic studies of metal carbide clusterfullerene Sc2C2@Cs-C72

    NASA Astrophysics Data System (ADS)

    Feng, Yongqiang; Wang, Taishan; Wu, Jingyi; Feng, Lai; Xiang, Junfeng; Ma, Yihan; Zhang, Zhuxia; Jiang, Li; Shu, Chunying; Wang, Chunru

    2013-07-01

    We present a metal carbide clusterfullerene Sc2C2@Cs(10528)-C72, whose structure has been baffling for many years. A motional endohedral Sc2C2 cluster, special molecule geometry and electronic structure were found in Sc2C2@Cs(10528)-C72. The paramagnetic Sc2C2@Cs-C72 anion radical was successfully prepared by a chemical reduction method and hyperfine couplings in the ESR spectrum were observed.We present a metal carbide clusterfullerene Sc2C2@Cs(10528)-C72, whose structure has been baffling for many years. A motional endohedral Sc2C2 cluster, special molecule geometry and electronic structure were found in Sc2C2@Cs(10528)-C72. The paramagnetic Sc2C2@Cs-C72 anion radical was successfully prepared by a chemical reduction method and hyperfine couplings in the ESR spectrum were observed. Electronic supplementary information (ESI) available: Experimental details, HPLC chromatogram, and DFT calculations. CCDC 917712. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3nr01739g

  19. Relativistic coupled-cluster-theory analysis of energies, hyperfine-structure constants, and dipole polarizabilities of Cd+

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Bin; Yu, Yan-Mei; Sahoo, B. K.

    2018-02-01

    Roles of electron correlation effects in the determination of attachment energies, magnetic-dipole hyperfine-structure constants, and electric-dipole (E 1 ) matrix elements of the low-lying states in the singly charged cadmium ion (Cd+) have been analyzed. We employ the singles and doubles approximated relativistic coupled-cluster (RCC) method to calculate these properties. Intermediate results from the Dirac-Hartree-Fock approximation,the second-order many-body perturbation theory, and considering only the linear terms of the RCC method are given to demonstrate propagation of electron correlation effects in this ion. Contributions from important RCC terms are also given to highlight the importance of various correlation effects in the evaluation of these properties. At the end, we also determine E 1 polarizabilities (αE 1) of the ground and 5 p 2P1 /2 ;3 /2 states of Cd+ in the ab initio approach. We estimate them again by replacing some of the E 1 matrix elements and energies from the measurements to reduce their uncertainties so that they can be used in the high-precision experiments of this ion.

  20. HEAT TRANSFER EVALUATION OF HFC-236FA IN CONDENSATION AND EVAPORATION

    EPA Science Inventory

    The report gives results of an evaluation of the shell-side heat transfer performance of hydrofluorocarbon (HFC)-236fa, which is considered to be a potential substitute for chlorofluorocarbon (CFC)-114 in Navy shipboard chillers, for both conventional finned [1024- and 1575-fpm (...

  1. Global and regional emissions estimates of 1,1-difluoroethane (HFC-152a, CH3CHF2) from in situ and air archive observations

    NASA Astrophysics Data System (ADS)

    Simmonds, P. G.; Rigby, M.; Manning, A. J.; Lunt, M. F.; O'Doherty, S.; McCulloch, A.; Fraser, P. J.; Henne, S.; Vollmer, M. K.; Mühle, J.; Weiss, R. F.; Salameh, P. K.; Young, D.; Reimann, S.; Wenger, A.; Arnold, T.; Harth, C. M.; Krummel, P. B.; Steele, L. P.; Dunse, B. L.; Miller, B. R.; Lunder, C. R.; Hermansen, O.; Schmidbauer, N.; Saito, T.; Yokouchi, Y.; Park, S.; Li, S.; Yao, B.; Zhou, L. X.; Arduini, J.; Maione, M.; Wang, R. H. J.; Ivy, D.; Prinn, R. G.

    2016-01-01

    High frequency, in situ observations from 11 globally distributed sites for the period 1994-2014 and archived air measurements dating from 1978 onward have been used to determine the global growth rate of 1,1-difluoroethane (HFC-152a, CH3CHF2). These observations have been combined with a range of atmospheric transport models to derive global emission estimates in a top-down approach. HFC-152a is a greenhouse gas with a short atmospheric lifetime of about 1.5 years. Since it does not contain chlorine or bromine, HFC-152a makes no direct contribution to the destruction of stratospheric ozone and is therefore used as a substitute for the ozone depleting chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). The concentration of HFC-152a has grown substantially since the first direct measurements in 1994, reaching a maximum annual global growth rate of 0.84 ± 0.05 ppt yr-1 in 2006, implying a substantial increase in emissions up to 2006. However, since 2007, the annual rate of growth has slowed to 0.38 ± 0.04 ppt yr-1 in 2010 with a further decline to an annual average rate of growth in 2013-2014 of -0.06 ± 0.05 ppt yr-1. The annual average Northern Hemisphere (NH) mole fraction in 1994 was 1.2 ppt rising to an annual average mole fraction of 10.1 ppt in 2014. Average annual mole fractions in the Southern Hemisphere (SH) in 1998 and 2014 were 0.84 and 4.5 ppt, respectively. We estimate global emissions of HFC-152a have risen from 7.3 ± 5.6 Gg yr-1 in 1994 to a maximum of 54.4 ± 17.1 Gg yr-1 in 2011, declining to 52.5 ± 20.1 Gg yr-1 in 2014 or 7.2 ± 2.8 Tg-CO2 eq yr-1. Analysis of mole fraction enhancements above regional background atmospheric levels suggests substantial emissions from North America, Asia, and Europe. Global HFC emissions (so called "bottom up" emissions) reported by the United Nations Framework Convention on Climate Change (UNFCCC) are based on cumulative national emission data reported to the UNFCCC, which in turn are based on national consumption data. There appears to be a significant underestimate ( > 20 Gg) of "bottom-up" reported emissions of HFC-152a, possibly arising from largely underestimated USA emissions and undeclared Asian emissions.

  2. π to σ Radical Tautomerization in One-Electron Oxidized 1-Methylcytosine and its Analogs

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Bishop, Casandra T.; Wiegand, Tyler J.; Hindi, Ragda M.; Adhikary, Ananya; Sevilla, Michael D.

    2015-01-01

    In this work iminyl σ-radical formation in several one-electron oxidized cytosine analogs including 1-MeC, cidofovir, 2′-deoxycytidine (dCyd), and 2′-deoxycytidine 5′-monophosphate (5′-dCMP) were investigated in homogeneous aqueous (D2O or H2O) glassy solutions at low temperatures employing electron spin resonance (ESR) spectroscopy. Employing density functional theory (DFT) (DFT/B3LYP/6-31G* method), the calculated hyperfine coupling constant (HFCC) values of iminyl σ-radical agree quite well with the experimentally observed ones thus confirming its assignment. ESR and DFT studies show that the cytosine-iminyl σ-radical is a tautomer of the deprotonated cytosine π-cation radical (cytosine π-aminyl radical, C(N4-H)•). Employing 1-MeC samples at various pHs ranging ca. 8 to ca. 11, ESR studies show that the tautomeric equilibrium between C(N4-H)• and the iminyl σ-radical at low temperature is too slow to be established without added base. ESR and DFT studies agree that in the iminyl-σ radical, the unpaired spin is localized to the exocyclic nitrogen (N4) in an in-plane pure p-orbital. This gives rise to an anisotropic nitrogen hyperfine coupling (Azz = 40 G) from N4 and a near isotropic β-nitrogen coupling of 9.7 G from the cytosine ring nitrogen at N3. Iminyl σ-radical should exist in its N3-protonated form as the N3-protonated iminyl σ-radical is stabilized in solution by over 30 kcal/mol (ΔG= −32 kcal/mol) over its conjugate base, the N3-deprotonated form. This is the first observation of an isotropic β-hyperfine ring nitrogen coupling in an N-centered DNA-radical. Our theoretical calculations predict that the cytosine iminyl σ-radical can be formed in dsDNA by a radiation-induced ionization–deprotonation process that is only 10 kcal/mol above the lowest energy path. PMID:26237072

  3. Quantitative analysis of dinuclear manganese(II) EPR spectra

    NASA Astrophysics Data System (ADS)

    Golombek, Adina P.; Hendrich, Michael P.

    2003-11-01

    A quantitative method for the analysis of EPR spectra from dinuclear Mn(II) complexes is presented. The complex [(Me 3TACN) 2Mn(II) 2(μ-OAc) 3]BPh 4 ( 1) (Me 3TACN= N, N', N''-trimethyl-1,4,7-triazacyclononane; OAc=acetate 1-; BPh 4=tetraphenylborate 1-) was studied with EPR spectroscopy at X- and Q-band frequencies, for both perpendicular and parallel polarizations of the microwave field, and with variable temperature (2-50 K). Complex 1 is an antiferromagnetically coupled dimer which shows signals from all excited spin manifolds, S=1 to 5. The spectra were simulated with diagonalization of the full spin Hamiltonian which includes the Zeeman and zero-field splittings of the individual manganese sites within the dimer, the exchange and dipolar coupling between the two manganese sites of the dimer, and the nuclear hyperfine coupling for each manganese ion. All possible transitions for all spin manifolds were simulated, with the intensities determined from the calculated probability of each transition. In addition, the non-uniform broadening of all resonances was quantitatively predicted using a lineshape model based on D- and r-strain. As the temperature is increased from 2 K, an 11-line hyperfine pattern characteristic of dinuclear Mn(II) is first observed from the S=3 manifold. D- and r-strain are the dominate broadening effects that determine where the hyperfine pattern will be resolved. A single unique parameter set was found to simulate all spectra arising for all temperatures, microwave frequencies, and microwave modes. The simulations are quantitative, allowing for the first time the determination of species concentrations directly from EPR spectra. Thus, this work describes the first method for the quantitative characterization of EPR spectra of dinuclear manganese centers in model complexes and proteins. The exchange coupling parameter J for complex 1 was determined ( J=-1.5±0.3 cm-1; H ex=-2J S1· S2) and found to be in agreement with a previous determination from magnetization. The phenomenon of exchange striction was found to be insignificant for 1.

  4. Investigation into the fractionation of refrigerant blends. Final technical report, March 1994--December 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biancardi, F.R.; Michels, H.; Sienel, T.

    1996-01-01

    As a means of complying with current and impending national and international environmental regulations restricting the use and disposal of conventional CFC and HCFC refrigerants which contribute to the global ozone depletion effects, the HVAC industry is vigorously evaluating and testing BFC refrigerant blends. While analyses and system performance tools have shown that BFC refrigerant blends offer certain performance, capacity and operational advantages, there are significant possible service and operational issues that are raised by the use of blends. Many of these issues occur due to the fractionation of the blends. Therefore, the objective of this program is to conductmore » analyses and experimental tests aimed at understanding these issues, develop approaches or techniques to predict these effects and convey to the industry safe and reliable approaches. As a result, analytical models, verified by laboratory data, have been developed that predict the fractionation effects of HFC refrigerant blends when (1) exposed to selected POE lubricants, (2) during the system charging process from large liquid containers, and (3) during system startup, operation and shutdown within various system components (where two-phase refrigerant exists), and during selected system and component leakage scenarios. Model predictions and experimental results are presented for HFC refrigerant blends containing HFC-32, HFC-134a, and HFC-125 and the data are generalized for various operating conditions and scenarios.« less

  5. Frequencies of inaudible high-frequency sounds differentially affect brain activity: positive and negative hypersonic effects.

    PubMed

    Fukushima, Ariko; Yagi, Reiko; Kawai, Norie; Honda, Manabu; Nishina, Emi; Oohashi, Tsutomu

    2014-01-01

    The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs) above the human audible range (max. 20 kHz) activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz) of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz) to observe changes in the alpha2 frequency component (10-13 Hz) of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG), which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC). When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect), while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect). These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chen; Gupta, Rahul; Pallem, Venkateswara

    The authors report a systematic study aimed at evaluating the impact of molecular structure parameters of hydrofluorocarbon (HFC) precursors on plasma deposition of fluorocarbon (FC) films and etching performance of a representative ultra-low-k material, along with amorphous carbon. The precursor gases studied included fluorocarbon and hydrofluorocarbon gases whose molecular weights and chemical structures were systematically varied. Gases with three different degrees of unsaturation (DU) were examined. Trifluoromethane (CHF{sub 3}) is the only fully saturated gas that was tested. The gases with a DU value of one are 3,3,3-trifluoropropene (C{sub 3}H{sub 3}F{sub 3}), hexafluoropropene (C{sub 3}F{sub 6}), 1,1,3,3,3-pentafluoro-1-propene (C{sub 3}HF{sub 5}),more » (E)-1,2,3,3,3-pentafluoropropene (C{sub 3}HF{sub 5} isomer), heptafluoropropyl trifluorovinyl ether (C{sub 5}F{sub 10}O), octafluorocyclobutane (C{sub 4}F{sub 8}), and octafluoro-2-butene (C{sub 4}F{sub 8} isomer). The gases with a DU value of two includes hexafluoro-1,3-butadiene (C{sub 4}F{sub 6}), hexafluoro-2-butyne (C{sub 4}F{sub 6} isomer), octafluorocyclopentene (C{sub 5}F{sub 8}), and decafluorocyclohexene (C{sub 6}F{sub 10}). The work was performed in a dual frequency capacitively coupled plasma reactor. Real-time characterization of deposition and etching was performed using in situ ellipsometry, and optical emission spectroscopy was used for characterization of CF{sub 2} radicals in the gas phase. The chemical composition of the deposited FC films was examined by x-ray photoelectron spectroscopy. The authors found that the CF{sub 2} fraction, defined as the number of CF{sub 2} groups in a precursor molecule divided by the total number of carbon atoms in the molecule, determines the CF{sub 2} optical emission intensity of the plasma. CF{sub 2} optical emission, however, is not the dominant factor that determines HFC film deposition rates. Rather, HFC film deposition rates are determined by the number of weak bonds in the precursor molecule, which include a ring structure, C=C, C≡C, and C–H bonds. These bonds are broken preferentially in the plasma, and/or at the surface and fragments arriving at the substrate surface presumably provide dangling bonds that efficiently bond to the substrate or other fragments. Upon application of a radio-frequency bias to the substrate, substrate etching is induced. Highly polymerizing gases show decreased substrate etching rates as compared to HFC gases characterized by a lower HFC film deposition rate. This can be explained by a competition between deposition and etching reactions, and an increased energy and etchant dissipation in relatively thicker steady state FC films that form on the substrate surface. Deposited HFC films exhibit typically a high CF{sub 2} density at the film surface, which correlates with both the CF{sub 2} fractions in the precursor molecular structure and the deposition rate. The FC films deposited using hydrogen-containing precursors show higher degrees of crosslinking and lower F/C ratios than precursors without hydrogen, and exhibit a lower etch rate of substrate material. A small gap structure that blocks direct ion bombardment was used to simulate the sidewall plasma environment of a feature and was employed for in situ ellipsometry measurements. It is shown that highly polymerizing precursors with a DU of two enable protection of low-k sidewalls during plasma exposure from oxygen-related damage by protective film deposition. Dielectric film modifications are seen for precursors with a lower DU.« less

  7. Spin-orbit-coupled Bose-Einstein condensates of rotating polar molecules

    NASA Astrophysics Data System (ADS)

    Deng, Y.; You, L.; Yi, S.

    2018-05-01

    An experimental proposal for realizing spin-orbit (SO) coupling of pseudospin 1 in the ground manifold 1Σ (υ =0 ) of (bosonic) bialkali polar molecules is presented. The three spin components are composed of the ground rotational state and two substates from the first excited rotational level. Using hyperfine resolved Raman processes through two select excited states resonantly coupled by a microwave, an effective coupling between the spin tensor and linear momentum is realized. The properties of Bose-Einstein condensates for such SO-coupled molecules exhibiting dipolar interactions are further explored. In addition to the SO-coupling-induced stripe structures, the singly and doubly quantized vortex phases are found to appear, implicating exciting opportunities for exploring novel quantum physics using SO-coupled rotating polar molecules with dipolar interactions.

  8. Structure of Radicals from X-irradiated Guanine Derivatives: An Experimental and Computational Study of Sodium Guanosine Dihydrate Single Crystals

    PubMed Central

    Jayatilaka, Nayana; Nelson, William H.

    2008-01-01

    In sodium guanosine dihydrate single crystals, the guanine moiety is deprotonated at N1 due to growth from high-pH (>12) solutions. EPR and ENDOR study of crystals x-irradiated at 10 K detected evidence for three radical forms. Radical R1,characterized by two proton and two nitrogen hyperfine interactions, was identified as the product of net hydrogenation at N7 of the N1-deprotonated guanine unit. R1 exhibited an unusually distorted structure leading to net positive isotropic components of the hydrogen couplings. Radical R2, characterized by one proton and one nitrogen hyperfine coupling was identified as the primary electron loss product. This product is equivalent to that of deprotonation at N1 by the guanine cation and represents the first ENDOR characterization of that product. Radical R3, characterized by a single hydrogen hyperfine coupling, was identified as the product of net dehydrogenation at C1 of the ribose moiety. The identification of radicals R1-R3 was supported by DFT calculations on several possible structures using the B3LYP/6-311G(2df,p)//6-31G(d,p) approach. Radical R4, detected after warming the crystals to room temperature, was identified as the well-known product of net hydrogenation of C8 of the (N1-deprotonated) guanine component. Radical R1, evidently formed by protonation of the primary electron addition product, was present as roughly 60% of the total radicals detected at 10 K. Radical R2 was present as roughly 27% of the total yield, and the concentration of R3 contributed the remaining 13%. R3 is evidently the product of oneelectron oxidation followed by deprotonation; thus, the balance of oxidation and reduction products is approximately equal within experimental uncertainty. PMID:17249824

  9. Study of nanostructural organization of ionic liquids by electron paramagnetic resonance spectroscopy.

    PubMed

    Merunka, Dalibor; Peric, Mirna; Peric, Miroslav

    2015-02-19

    The X-band electron paramagnetic resonance spectroscopy (EPR) of a stable, spherical nitroxide spin probe, perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDTO) has been used to study the nanostructural organization of a series of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids (ILs) with alkyl chain lengths from two to eight carbons. By employing nonlinear least-squares fitting of the EPR spectra, we have obtained values of the rotational correlation time and hyperfine coupling splitting of pDTO to high precision. The rotational correlation time of pDTO in ILs and squalane, a viscous alkane, can be fit very well to a power law functionality with a singular temperature, which often describes a number of physical quantities measured in supercooled liquids. The viscosity of the ILs and squalane, taken from the literature, can also be fit to the same power law expression, which means that the rotational correlation times and the ionic liquid viscosities have similar functional dependence on temperature. The apparent activation energy of both the rotational correlation time of pDTO and the viscous flow of ILs and squalane increases with decreasing temperature; in other words, they exhibit strong non-Arrhenius behavior. The rotational correlation time of pDTO as a function of η/T, where η is the shear viscosity and T is the temperature, is well described by the Stokes-Einstein-Debye (SED) law, while the hydrodynamic probe radii are solvent dependent and are smaller than the geometric radius of the probe. The temperature dependence of hyperfine coupling splitting is the same in all four ionic liquids. The value of the hyperfine coupling splitting starts decreasing with increasing alkyl chain length in the ionic liquids in which the number of carbons in the alkyl chain is greater than four. This decrease together with the decrease in the hydrodynamic radius of the probe indicates a possible existence of nonpolar nanodomains.

  10. Identification of the Ga interstitial in Al(x)Ga(1-x)As by optically detected magnetic resonance

    NASA Technical Reports Server (NTRS)

    Kennedy, T. A.; Spencer, M. G.

    1986-01-01

    A new optically detected magnetic resonance spectrum in Al(x)Ga(1-x)As is reported and assigned to native Ga interstitials. Luminescence-quenching signals were observed over the energy region from 0.75 to 1.1 eV. The optically detected magnetic resonance is nearly isotropic, with spin-Hamiltonian parameters g = 2.025 + or - 0.006, central hyperfine splitting A(Ga-69) = 0.050 + or - 0.001/cm, and A(Ga-71) = 0.064 + or - 0.001/cm for H near the 001 line. The strong hyperfine coupling denotes an electronic state of A1 symmetry, which current theories predict for the Ga interstitial but not the Ga antisite. The slight anisotropy probably indicates that the Ga(i) is paired with a second, unknown defect.

  11. Double resonance calibration of g factor standards: Carbon fibers as a high precision standard.

    PubMed

    Herb, Konstantin; Tschaggelar, Rene; Denninger, Gert; Jeschke, Gunnar

    2018-04-01

    The g factor of paramagnetic defects in commercial high performance carbon fibers was determined by a double resonance experiment based on the Overhauser shift due to hyperfine coupled protons. Our carbon fibers exhibit a single, narrow and perfectly Lorentzian shaped ESR line and a g factor slightly higher than g free with g=2.002644=g free ·(1+162ppm) with a relative uncertainty of 15ppm. This precisely known g factor and their inertness qualify them as a high precision g factor standard for general purposes. The double resonance experiment for calibration is applicable to other potential standards with a hyperfine interaction averaged by a process with very short correlation time. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. COMPARISON OF CFC-114 AND HFC-236EA PERFORMANCE IN SHIPBOARD VAPOR COMPRESSION SYSTEMS

    EPA Science Inventory

    The report gives results of a comparison of the performance of two refrigerants - 1,1,1,2,3,3-hexafluoropropane (HFC-236ea) and 1,2-dichloro-tetrafluoroethane (CFC-114) - in shipboard vapor compression refrigeration systems. (NOTE: In compliance with the Montreal Protocol and Dep...

  13. HEAT TRANSFER EVALUATION OF HFC-236EA WITH HIGH PERFORMANCE ENHANCED TUBES IN CONDENSATION AND EVAPORATION

    EPA Science Inventory

    The report gives results of an evaluation of the heat transfer performance of pure hydrofluorocarbon (HFC)-236ea for high performance enhanced tubes which had not been previously used in Navy shipboard chillers. Shell-side heat transfer coefficient data are presented for condensa...

  14. HEAT TRANSFER EVALUATION OF HFC-236EA AND CFC-114 IN CONDENSATION AND EVAPORATION

    EPA Science Inventory

    The report gives results of a heat transfer evaluation of the refrigerants hexafluoropropane (HFC-236ea) and 1,1,2,2-dichloro-tetrafluoroethane (CFC-114). (NOTE: With the mandatory phase-out of chlorofluorocarbons (CFCs), as dictated by the Montreal Protocol and Clean Air Act Ame...

  15. NEW CHEMICAL ALTERNATIVE FOR OZONE-DEPLETING SUBSTANCES: HFC-236EA

    EPA Science Inventory

    The report gives results of a preliminary evaluation of a new hydrofluorocarbon (HFC-236ea or 1, 1, 1, 2, 3, 3-hexafluoropropane) as a possible alternative for chlorofluorocarbon (CFC)-114 (1, 2-dichloro-1, 1, 2, 2-tetrafluoroethane) refrigerant in chillers and high-temperature i...

  16. The pure rotational spectra of the open-shell diatomic molecules PbI and SnI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Corey J., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk; Needham, Lisa-Maria E.; Walker, Nicholas R., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk

    2015-12-28

    Pure rotational spectra of the ground electronic states of lead monoiodide and tin monoiodide have been measured using a chirped pulsed Fourier transform microwave spectrometer over the 7-18.5 GHz region for the first time. Each of PbI and SnI has a X {sup 2}Π{sub 1/2} ground electronic state and may have a hyperfine structure that aids the determination of the electron electric dipole moment. For each species, pure rotational transitions of a number of different isotopologues and their excited vibrational states have been assigned and fitted. A multi-isotopologue Dunham-type analysis was carried out on both species producing values for Y{submore » 01}, Y{sub 02}, Y{sub 11}, and Y{sub 21}, along with Λ-doubling constants, magnetic hyperfine constants and nuclear quadrupole coupling constants. The Born-Oppenheimer breakdown parameters for Pb have been evaluated and the parameter rationalized in terms of finite nuclear field effects. Analysis of the bond lengths and hyperfine interaction indicates that the bonding in both PbI and SnI is ionic in nature. Equilibrium bond lengths have been evaluated for both species.« less

  17. Hyperfine rather than spin splittings dominate the fine structure of the B (4)Σ(-)-X (4)Σ(-) bands of AlC.

    PubMed

    Clouthier, Dennis J; Kalume, Aimable

    2016-01-21

    Laser-induced fluorescence and wavelength resolved emission spectra of the B (4)Σ(-)-X (4)Σ(-) band system of the gas phase cold aluminum carbide free radical have been obtained using the pulsed discharge jet technique. The radical was produced by electron bombardment of a precursor mixture of trimethylaluminum in high pressure argon. High resolution spectra show that each rotational line of the 0-0 and 1-1 bands of AlC is split into at least three components, with very similar splittings and intensities in both the P- and R-branches. The observed structure was reproduced by assuming bβS magnetic hyperfine coupling in the excited state, due to a substantial Fermi contact interaction of the unpaired electron in the aluminum 3s orbital. Rotational analysis has yielded ground and excited state equilibrium bond lengths in good agreement with the literature and our own ab initio values. Small discrepancies in the calculated intensities of the hyperfine lines suggest that the upper state spin-spin constant λ' is of the order of ≈ 0.025-0.030 cm(-1).

  18. Sleep Instabilities Assessed by Cardiopulmonary Coupling Analysis Increase During Childhood and Adolescence.

    PubMed

    Cysarz, Dirk; Linhard, Maijana; Seifert, Georg; Edelhäuser, Friedrich

    2018-01-01

    The electrocardiogram-based cardiopulmonary coupling (CPC) technique may be used to track sleep instabilities. With progressing age, maturational changes during childhood and adolescence affect sleep. The objective was to assess developmental changes in sleep instabilities in a natural setting. ECGs during nighttime sleep on regular school days were recorded from 363 subjects aged 4 to 22 years (204 females). The estimated total sleep time (ETST) decreased from 598 to 445 min during childhood and adolescence. Stable sleep linearly decreased with progressing age (high frequency coupling (HFC): 70-48% ETST). Unstable sleep [low frequency coupling (LFC): 9-19% ETST], sleep fragmentation or disordered breathing (elevated LFC: 4-12% ETST), and wake/REM states [very low frequency coupling (VLFC): 20-32% ETST] linearly increased with age. Hence, with progressing age the sleep of children and adolescents shortens, becomes more unstable and is more often affected by fragmentation or sleep disordered breathing, especially in the age group >13 years. It remains to be clarified whether some of the changes are caused by a social jetlag, i.e., the misalignment of body clock and social time especially in adolescents.

  19. The tetrahydrobiopterin radical with high- and low-spin heme in neuronal nitric oxide synthase -- a new indicator of the extent of NOS coupling

    PubMed Central

    Krzyaniak, Matthew D.; Cruce, Alex A.; Vennam, Preethi; Lockart, Molly; Berka, Vladimir; Tsai, Ah-Lim; Bowman, Michael K.

    2016-01-01

    Reaction intermediates trapped during the single-turnover reaction of the neuronal ferrous nitric oxide synthase oxygenase domain (Fe(II)nNOSOX) show four EPR spectra of free radicals. Fully-coupled nNOSOX with cofactor (tetrahydrobiopterin, BH4) and substrate (l-arginine) forms the typical BH4 cation radical with an EPR spectrum ~4.0 mT wide and hyperfine tensors similar to reports for a biopterin cation radical in inducible NOSOX (iNOSOX). With excess thiol, nNOSox lacking BH4 and l-arg is known to produce superoxide. In contrast, we find that nNOSOX with BH4 but no l-arg forms two radicals with rather different, fast (~ 250 µs at 5 K) and slower (~ 500 µs at 20 K), electron spin relaxation rates and a combined ~7.0 mT wide EPR spectrum. Rapid freeze-quench CW- and pulsed-EPR measurements are used to identify these radicals and their origin. These two species are the same radical with identical nuclear hyperfine couplings, but with spin-spin couplings to high-spin (4.0 mT component) or low-spin (7.0 mT component) Fe(III) heme. Uncoupled reactions of nNOS leave the enzyme in states that can be chemically reduced to sustain unregulated production of NO and reactive oxygen species in ischemia-reperfusion injury. The broad EPR signal is a convenient indicator of uncoupled nNOS reactions producing low-spin Fe(III) heme. PMID:27989753

  20. Computational Studies of Magnetically Doped Semiconductor Nanoclusters

    NASA Astrophysics Data System (ADS)

    Gutsev, Lavrenty Gennady

    Spin-polarized unrestricted density functional theory is used to calculate the molecular properties of magnetic semiconductor quantum dots doped with 3d-metal atoms. We calculate total energies of the low spin antiferromagnetically coupled states using a spin-flipping algorithm leading to the broken-symmetry states. Given the novel nature of the materials studied, we simulate experimental observables such as hyperfine couplings, ionization/ energies, electron affinities, first and second order polarizabilities, band gaps and exchange coupling constants. Specifically, we begin our investigation with pure clusters of (CdSe )16 and demonstrate the dependence of molecular observables on geometrical structures. We also show that the many isomers of this cluster are energetically quite closely spaced, and thus it would be necessary to employ a battery of tests to experimentally distinguish them. Next, we discuss Mn-doping into the cage (CdSe)9 cluster as well as the zinc-blende stacking type cluster (CdSe)36. We show that the local exchange coupling mechanism is ligand-mediated superexchange and simulate the isotropic hyperfine constants. Finally, we discuss a novel study where (CdSe)9 is doped with Mn or Fe up to a full replacement of all the Cd's and discuss the transition points for the magnetic behavior and specifically the greatly differing band-gap shifts. We also outline an unexpected pattern in the polarizability of the material as metals are added and compare our results with the results from theoretical studies of the bulk material.

  1. Advanced refractory metals and composites for extraterrestrial power systems

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Grobstein, Toni L.

    1990-01-01

    Concepts for future space power systems include nuclear and focused solar heat sources coupled to static and dynamic power-conversion devices; such systems must be designed for service lives as long as 30 years, despite service temperatures of the order of 1600 K. Materials are a critical technology-development factor in such aspects of these systems as reactor fuel containment, environmental protection, power management, and thermal management. Attention is given to the prospective performance of such refractory metals as Nb, W, and Mo alloys, W fiber-reinforced Nb-matrix composites, and HfC precipitate-strengthened W-Re alloys.

  2. MODELING AND DESIGN STUDY USING HFC-236EA AS AN ALTERNATIVE REFRIGERANT IN A CENTRIFUGAL COMPRESSOR

    EPA Science Inventory

    The report gives results of an investigation of the operation of a centrifugal compressor--part of a chlorofluorocarbon (CFC)-114 chiller installation--with the new refrigerant hydrofluorocarbon (HFC)-236ea, a proposed alternative to CFC-114. A large set of CFC-236ea operating da...

  3. IDENTIFYING AND EVALUATING ALTERNATIVES TO CFC-114 FOR NAVY SHIPBOARD CHILLERS

    EPA Science Inventory

    The paper outlines EPA's role in investigating alternatives to replace the chlorofluorocarbon CFC-114 (1,1,2,2-tetrafluorodichloroethane) as the refrigerant in retrofitted Navy shipboard chillers. The isomers HFC-236ea (1,1,1,2,3,3-hexafluoropropane) and HFC-236fa (1,1,1,3,3,3-he...

  4. Investigating the highest melting temperature materials: A laser melting study of the TaC-HfC system.

    PubMed

    Cedillos-Barraza, Omar; Manara, Dario; Boboridis, K; Watkins, Tyson; Grasso, Salvatore; Jayaseelan, Daniel D; Konings, Rudy J M; Reece, Michael J; Lee, William E

    2016-12-01

    TaC, HfC and their solid solutions are promising candidate materials for thermal protection structures in hypersonic vehicles because of their very high melting temperatures (>4000 K) among other properties. The melting temperatures of slightly hypostoichiometric TaC, HfC and three solid solution compositions (Ta 1-x Hf x C, with x = 0.8, 0.5 and 0.2) have long been identified as the highest known. In the current research, they were reassessed, for the first time in the last fifty years, using a laser heating technique. They were found to melt in the range of 4041-4232 K, with HfC having the highest and TaC the lowest. Spectral radiance of the hot samples was measured in situ, showing that the optical emissivity of these compounds plays a fundamental role in their heat balance. Independently, the results show that the melting point for HfC 0.98 , (4232 ± 84) K, is the highest recorded for any compound studied until now.

  5. Investigating the highest melting temperature materials: A laser melting study of the TaC-HfC system

    NASA Astrophysics Data System (ADS)

    Cedillos-Barraza, Omar; Manara, Dario; Boboridis, K.; Watkins, Tyson; Grasso, Salvatore; Jayaseelan, Daniel D.; Konings, Rudy J. M.; Reece, Michael J.; Lee, William E.

    2016-12-01

    TaC, HfC and their solid solutions are promising candidate materials for thermal protection structures in hypersonic vehicles because of their very high melting temperatures (>4000 K) among other properties. The melting temperatures of slightly hypostoichiometric TaC, HfC and three solid solution compositions (Ta1-xHfxC, with x = 0.8, 0.5 and 0.2) have long been identified as the highest known. In the current research, they were reassessed, for the first time in the last fifty years, using a laser heating technique. They were found to melt in the range of 4041-4232 K, with HfC having the highest and TaC the lowest. Spectral radiance of the hot samples was measured in situ, showing that the optical emissivity of these compounds plays a fundamental role in their heat balance. Independently, the results show that the melting point for HfC0.98, (4232 ± 84) K, is the highest recorded for any compound studied until now.

  6. Investigating the highest melting temperature materials: A laser melting study of the TaC-HfC system

    PubMed Central

    Cedillos-Barraza, Omar; Manara, Dario; Boboridis, K.; Watkins, Tyson; Grasso, Salvatore; Jayaseelan, Daniel D.; Konings, Rudy J. M.; Reece, Michael J.; Lee, William E.

    2016-01-01

    TaC, HfC and their solid solutions are promising candidate materials for thermal protection structures in hypersonic vehicles because of their very high melting temperatures (>4000 K) among other properties. The melting temperatures of slightly hypostoichiometric TaC, HfC and three solid solution compositions (Ta1−xHfxC, with x = 0.8, 0.5 and 0.2) have long been identified as the highest known. In the current research, they were reassessed, for the first time in the last fifty years, using a laser heating technique. They were found to melt in the range of 4041–4232 K, with HfC having the highest and TaC the lowest. Spectral radiance of the hot samples was measured in situ, showing that the optical emissivity of these compounds plays a fundamental role in their heat balance. Independently, the results show that the melting point for HfC0.98, (4232 ± 84) K, is the highest recorded for any compound studied until now. PMID:27905481

  7. Hydrofluorocarbon (HFC) Scenarios, Climate Effects and the Montreal Protocol

    NASA Astrophysics Data System (ADS)

    Velders, G. J. M.; Fahey, D. W.; Daniel, J. S.

    2016-12-01

    The Montreal Protocol has reduced the use of ozone-depleting substances by more than 95% from its peak levels in the 1980s. As a direct result the use of hydrofluorocarbons (HFCs) as substitute compounds has increased significantly. National regulations to limit HFC use have been adopted recently in the European Union, Japan and USA, and four proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. The Parties of the Montreal Protocol have discussed these proposals during their meetings in 2016. The effects of the national regulations and Montreal Protocol amendment proposals on climate forcings and surface temperatures will be presented. Global scenarios of HFC emissions reach 4.0-5.3 GtCO2-eq yr-1 in 2050, which corresponds to a projected growth from 2015 to 2050 which is 9% to 29% of that for CO2 over the same time period. In 2050, in percent of global HFC emissions, China ( 30%), India and the rest of Asia ( 25%), Middle East and northern Africa ( 10%), and USA ( 10%) are the principal source regions; and refrigeration and stationary air conditioning are the major use sectors. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. This corresponds to a reduction in surface temperature attributed to HFCs from 0.1 oC to 0.04 oC in 2050 and from 0.3-0.4 oC to 0.02 oC in 2100.

  8. Global Emissions of Refrigerants HCFC-22 and HFC-134a: Unforeseen Seasonal Contributions

    NASA Astrophysics Data System (ADS)

    Xiang, B.; Patra, P. K.; Montzka, S. A.; Miller, S. M.; Elkins, J. W.; Moore, F.; Atlas, E. L.; Miller, B. R.; Prinn, R. G.; Wofsy, S. C.

    2014-12-01

    HCFC-22 (CHClF2) and HFC-134a (CH2FCF3) are two major gases currently used worldwide in domestic and commercial refrigeration and air conditioning. HCFC-22 contributes to stratospheric ozone depletion and both species are potent greenhouse gases, and their global emissions continue to rise at the present. In this work, we study aircraft based in-situ observations of HCFC-22 and HFC-134a over the Pacific Ocean in a three-year span (HIaper Pole-to-Pole Observation of carbon cycle and greenhouse gases study, HIPPO 2009-2011) and combine these data with long-term observations from global surface sites (NOAA and AGAGE networks). We find a steady increase in global annual emissions of HCFC-22 and HFC-134a for the past two decades (on average 3% and 4% per year, respectively). Emissions of HFC-134a since 2000 are consistently higher, with 60% more in recent years (2009-2011), compared to the United Nations Framework Convention on Climate Change (UNFCCC) inventory. Using both HIPPO and surface data, we quantify and verify enhanced summertime emissions of HFC-134a and HCFC-22 that are about three times those in the wintertime. This unforeseen large seasonal contribution indicates unaccounted mechanisms controlling refrigerant gas emissions, missing in the existing inventory estimates. Possible mechanisms for greater refrigerant leakages in the summer are: 1) higher vapor pressure in the sealed compartment of the system at summer high temperatures (saturated vapor pressure is ~ 3 times at 303 K compared to that at 273 K for both species), and 2) more frequent use of refrigeration and air conditioners in the summer (vapor pressure in the compressor line is higher when in use than not in use). Our results suggest that the engineering of the refrigeration and air conditioning systems can greatly influence the release of these two species to the atmosphere.

  9. Global emissions of refrigerants HCFC-22 and HFC-134a: Unforeseen seasonal contributions

    PubMed Central

    Xiang, Bin; Montzka, Stephen A.; Miller, Scot M.; Elkins, James W.; Moore, Fred L.; Atlas, Elliot L.; Miller, Ben R.; Weiss, Ray F.; Prinn, Ronald G.; Wofsy, Steven C.

    2014-01-01

    HCFC-22 (CHClF2) and HFC-134a (CH2FCF3) are two major gases currently used worldwide in domestic and commercial refrigeration and air conditioning. HCFC-22 contributes to stratospheric ozone depletion, and both species are potent greenhouse gases. In this work, we study in situ observations of HCFC-22 and HFC-134a taken from research aircraft over the Pacific Ocean in a 3-y span [HIaper-Pole-to-Pole Observations (HIPPO) 2009–2011] and combine these data with long-term ground observations from global surface sites [National Oceanic and Atmospheric Administration (NOAA) and Advanced Global Atmospheric Gases Experiment (AGAGE) networks]. We find the global annual emissions of HCFC-22 and HFC-134a have increased substantially over the past two decades. Emissions of HFC-134a are consistently higher compared with the United Nations Framework Convention on Climate Change (UNFCCC) inventory since 2000, by 60% more in recent years (2009–2012). Apart from these decadal emission constraints, we also quantify recent seasonal emission patterns showing that summertime emissions of HCFC-22 and HFC-134a are two to three times higher than wintertime emissions. This unforeseen large seasonal variation indicates that unaccounted mechanisms controlling refrigerant gas emissions are missing in the existing inventory estimates. Possible mechanisms enhancing refrigerant losses in summer are (i) higher vapor pressure in the sealed compartment of the system at summer high temperatures and (ii) more frequent use and service of refrigerators and air conditioners in summer months. Our results suggest that engineering (e.g., better temperature/vibration-resistant system sealing and new system design of more compact/efficient components) and regulatory (e.g., reinforcing system service regulations) steps to improve containment of these gases from working devices could effectively reduce their release to the atmosphere. PMID:25422438

  10. Chocolate flavanols and skin photoprotection: a parallel, double-blind, randomized clinical trial.

    PubMed

    Mogollon, Jaime Andres; Boivin, Catherine; Lemieux, Simone; Blanchet, Claudine; Claveau, Joël; Dodin, Sylvie

    2014-06-27

    Solar ultraviolet (UV) radiation has deleterious effects on the skin, including sunburn, photoaging and cancer. Chocolate flavanols are naturally-occurring antioxidant and anti-inflammatory molecules that could play a role in preventing cutaneous UV damage. We investigated the influence of 12-week high-flavanol chocolate (HFC) consumption on skin sensitivity to UV radiation, measured by minimal erythema dose (MED). We also evaluated skin elasticity and hydration. In this 2-group, parallel, double-blind, randomized controlled trial, 74 women aged 20-65 years and Fitzpatrick skin phototypes I or II were recruited from the general community in Quebec City, for randomization to either HFC (n = 33) or low-flavanol chocolate (LFC) (n = 41). A blocked randomisation (4), considering date of entry, skin type and age as factors, generated a sequentially-numbered allocation list. Study participants and research assistants were blinded. Totally, 30 g of chocolate were consumed daily for 12 weeks, followed by a 3-week washout period. MED was assessed at baseline and at 6, 9, 12 and 15 weeks. Main outcome was changes in MED at week 12. 33 participants in the HFC group and 41 in the LFC group were analyzed with 15 weeks of follow-up. Both groups showed similarly-increased MED at 12 weeks (HFC: 0.0252 ± 0.1099 J/cm2 [mean ± standard deviation (SD)]; LFC: 0.0151 ± 0.1118; mean difference (MD): 0.0100 J/cm2; 95% confidence interval (CI): -0.0417 to 0.0618). However, after 3-week washout, the HFC group presented decreased MED (-0.0248 ± 0.1145) whereas no effect was seen in the LFC group (0.0168 ± 0.1698) (MD: -0.0417; 95% CI: -0.1106 to 0.0272). Net temple elasticity increased slightly but significantly by 0.09 ± 0.12 mm in the HFC group at 12 weeks compared to 0.02 ± 0.12 mm in the LFC group (MD: 0.06; 95% CI: 0.01 to 0.12 ). No significant adverse events were reported. Our study failed to demonstrate a statistically-significant protective effect of HFC vs. LFC consumption on skin sensitivity to UV radiation as measured by MED. ClinicalTrials.gov identifier: NCT01444625.

  11. Ambient mixing ratios of atmospheric halogenated compounds at five background stations in China

    NASA Astrophysics Data System (ADS)

    Zhang, Gen; Yao, Bo; Vollmer, Martin K.; Montzka, Stephen A.; Mühle, Jens; Weiss, Ray F.; O'Doherty, Simon; Li, Yi; Fang, Shuangxi; Reimann, Stefan

    2017-07-01

    High precision measurements of three chlorofluorocarbons (CFCs), three hydrochlorofluorocarbons (HCFCs), six hydrofluorocarbons (HFCs), three perfluorocarbons (PFCs), and sulfur hexafluoride (SF6) were made at five Chinese background stations from January 2011 to December 2012. Their station means in the background air were 239.5 ± 0.69 parts-per-trillion dry-air mole fraction mixing ratios (ppt) for CFC-11, 536.5 ± 1.49 ppt for CFC-12, 74.66 ± 0.09 ppt for CFC-113, 232.1 ± 4.77 ppt for HCFC-22, 23.78 ± 0.29 ppt for HCFC-141b, 22.92 ± 0.42 ppt for HCFC-142b, 11.75 ± 0.43 ppt for HFC-125, 71.32 ± 1.35 ppt for HFC-134a, 13.62 ± 0.43 ppt for HFC-143a, 9.10 ± 1.26 ppt for HFC-152a, 25.45 ± 0.1 ppt for HFC-23, 7.28 ± 0.48 ppt for HFC-32, 4.32 ± 0.03 ppt for PFC-116, 0.63 ± 0.04 ppt for PFC-218, 1.36 ± 0.01 ppt for PFC-318, and 7.67 ± 0.03 ppt for SF6, respectively, which were comparable with those measured at the two Northern Hemisphere (NH) AGAGE stations: Mace Head, Ireland (MHD) and Trinidad Head, California, USA (THD). Compared with our results for earlier years from in-situ measurement at SDZ, background-air mixing ratios of CFCs are now declining, while those for HCFCs, HFCs, PFCs, and SF6 are still increasing. The ratios of the number of sampling events in which measured mixing ratios were elevated above background (pollution events) relative to the total sample frequency (POL/SUM) for CFCs, HCFCs, and HFCs were found to be station dependent, generally LAN > SDZ > LFS > XGL > WLG. The enhancement (△, polluted mixing ratios minus background mixing ratios) generally show distinct patterns, with HCFCs (40.7-175.4 ppt) > HFCs (15.8-66.3 ppt)> CFCs (15.8-33.8 ppt)> PFCs (0.1-0.9 ppt) at five stations, especially for HCFC-22 ranging from 36.9 ppt to 138.2 ppt. Combining with the molecular weights, our findings imply biggest emissions of HCFCs in the regions around these Chinese sites compared to HFCs and CFCs, while the smallest of PFCs, consistent with CFCs being phased out and replaced with HCFCs in China. In addition, relative emission strengths (emission was expressed by mole fractions) of these halocarbons in China were inferred as HCFC-22 > HCFC-141b > HFC-134a > HCFC-142b for the Yangtze River Delta (YRD) and as HCFC-22 > HCFC-142b > HCFC-141b ≈ HFC-134a in the North China Plain (NCP).

  12. Integrable pair-transition-coupled nonlinear Schrödinger equations.

    PubMed

    Ling, Liming; Zhao, Li-Chen

    2015-08-01

    We study integrable coupled nonlinear Schrödinger equations with pair particle transition between components. Based on exact solutions of the coupled model with attractive or repulsive interaction, we predict that some new dynamics of nonlinear excitations can exist, such as the striking transition dynamics of breathers, new excitation patterns for rogue waves, topological kink excitations, and other new stable excitation structures. In particular, we find that nonlinear wave solutions of this coupled system can be written as a linear superposition of solutions for the simplest scalar nonlinear Schrödinger equation. Possibilities to observe them are discussed in a cigar-shaped Bose-Einstein condensate with two hyperfine states. The results would enrich our knowledge on nonlinear excitations in many coupled nonlinear systems with transition coupling effects, such as multimode nonlinear fibers, coupled waveguides, and a multicomponent Bose-Einstein condensate system.

  13. Comparing three different modes of electroretinography in experimental glaucoma: diagnostic performance and correlation to structure.

    PubMed

    Wilsey, Laura; Gowrisankaran, Sowjanya; Cull, Grant; Hardin, Christy; Burgoyne, Claude F; Fortune, Brad

    2017-04-01

    To compare diagnostic performance and structure-function correlations of multifocal electroretinogram (mfERG), full-field flash ERG (ff-ERG) photopic negative response (PhNR) and transient pattern-reversal ERG (PERG) in a non-human primate (NHP) model of experimental glaucoma (EG). At baseline and after induction of chronic unilateral IOP elevation, 43 NHP had alternating weekly recordings of retinal nerve fiber layer thickness (RNFLT) by spectral domain OCT (Spectralis) and retinal function by mfERG (7F slow-sequence stimulus, VERIS), ff-ERG (red 0.42 log cd-s/m 2 flashes on blue 30 scotopic cd/m 2 background, LKC UTAS-E3000), and PERG (0.8° checks, 99% contrast, 100 cd/m 2 mean, 5 reversals/s, VERIS). All NHP were followed at least until HRT-confirmed optic nerve head posterior deformation, most to later stages. mfERG responses were filtered into low- and high-frequency components (LFC, HFC, >75 Hz). Peak-to-trough amplitudes of LFC features (N1, P1, N2) and HFC RMS amplitudes were measured and ratios calculated for HFC:P1 and N2:P1. ff-ERG parameters included A-wave (at 10 ms), B-wave (trough-to-peak) and PhNR (baseline-to-trough) amplitudes as well as PhNR:B-wave ratio. PERG parameters included P50 and N95 amplitudes as well as N95:P50 ratio and N95 slope. Diagnostic performance of retinal function parameters was compared using the area under the receiver operating characteristic curve (A-ROC) to discriminate between EG and control eyes. Correlations to RNFLT were compared using Steiger's test. Study duration was 15 ± 8 months. At final follow-up, structural damage in EG eyes measured by RNFLT ranged from 9% above baseline (BL) to 58% below BL; 29/43 EG eyes (67%) and 0/43 of the fellow control eyes exhibited significant (>7%) loss of RNFLT from BL. Using raw parameter values, the largest A-ROC findings for mfERG were: HFC (0.82) and HFC:P1 (0.90); for ff-ERG: PhNR (0.90) and PhNR:B-wave (0.88) and for PERG: P50 (0.64) and N95 (0.61). A-ROC increased when data were expressed as % change from BL, but the pattern of results persisted. At 95% specificity, the diagnostic sensitivity of mfERG HFC:P1 ratio was best, followed by PhNR and PERG. The correlation to RNFLT was stronger for mfERG HFC (R = 0.65) than for PhNR (R = 0.59) or PERG N95 (R = 0.36), (p = 0.20, p = 0.0006, respectively). The PhNR flagged a few EG eyes at the final time point that had not been flagged by mfERG HFC or PERG. Diagnostic performance and structure-function correlation were strongest for mfERG HFC as compared with ff-ERG PhNR or PERG in NHP EG.

  14. Laser ablated hydantoin: A high resolution rotational study.

    PubMed

    Alonso, Elena R; Kolesniková, Lucie; Alonso, José L

    2017-09-28

    Laser ablation techniques coupled with broadband and narrowband Fourier transform microwave spectroscopies have allowed the high resolution rotational study of solid hydantoin, an important target in astrochemistry as a possible precursor of glycine. The complicated hyperfine structure arising from the presence of two 14 N nuclei in non-equivalent positions has been resolved and interpreted in terms of the nuclear quadrupole coupling interactions. The results reported in this work provide a solid base for the interstellar searches of hydantoin in the astrophysical surveys. The values of the nuclear quadrupole coupling constants have been also discussed in terms of the electronic environment around the respective nitrogen atom.

  15. Room-temperature coupling between electrical current and nuclear spins in OLEDs

    NASA Astrophysics Data System (ADS)

    Malissa, H.; Kavand, M.; Waters, D. P.; van Schooten, K. J.; Burn, P. L.; Vardeny, Z. V.; Saam, B.; Lupton, J. M.; Boehme, C.

    2014-09-01

    The effects of external magnetic fields on the electrical conductivity of organic semiconductors have been attributed to hyperfine coupling of the spins of the charge carriers and hydrogen nuclei. We studied this coupling directly by implementation of pulsed electrically detected nuclear magnetic resonance spectroscopy in organic light-emitting diodes (OLEDs). The data revealed a fingerprint of the isotope (protium or deuterium) involved in the coherent spin precession observed in spin-echo envelope modulation. Furthermore, resonant control of the electric current by nuclear spin orientation was achieved with radiofrequency pulses in a double-resonance scheme, implying current control on energy scales one-millionth the magnitude of the thermal energy.

  16. The NaK 1 1,3delta states: theoretical and experimental studies of fine and hyperfine structure of rovibrational levels near the dissociation limit.

    PubMed

    Wilkins, A D; Morgus, L; Hernandez-Guzman, J; Huennekens, J; Hickman, A P

    2005-09-22

    Earlier high-resolution spectroscopic studies of the fine and hyperfine structure of rovibrational levels of the 1 3delta state of NaK have been extended to include high lying rovibrational levels with v < or = 59, of which the highest levels lie within approximately 4 cm(-1) of the dissociation limit. A potential curve is determined using the inverted perturbation approximation method that reproduces these levels to an accuracy of approximately 0.026 cm(-1). For the largest values of v, the outer turning points occur near R approximately 12.7 angstroms, which is sufficiently large to permit the estimation of the C6 coefficient for this state. The fine and hyperfine structure of the 1 3delta rovibrational levels has been fit using the matrix diagonalization method that has been applied to other states of NaK, leading to values of the spin-orbit coupling constant A(v) and the Fermi contact constant b(F). New values determined for v < or = 33 are consistent with values determined by a simpler method and reported earlier. The measured fine and hyperfine structure for v in the range 44 < or = v < or = 49 exhibits anomalous behavior whose origin is believed to be the mixing between the 1 3delta and 1 1delta states. The matrix diagonalization method has been extended to treat this interaction, and the results provide an accurate representation of the complicated patterns that arise. The analysis leads to accurate values for A(v) and b(F) for all values of v < or = 49. For higher v (50 < or = v < or = 59), several rovibrational levels have been assigned, but the pattern of fine and hyperfine structure is difficult to interpret. Some of the observed features may arise from effects not included in the current model.

  17. Analytical method validation for the determination of 2,3,3,3-tetrafluoropropene in air samples using gas chromatography with flame ionization detection.

    PubMed

    Mawn, Michael P; Kurtz, Kristine; Stahl, Deborah; Chalfant, Richard L; Koban, Mary E; Dawson, Barbara J

    2013-01-01

    A new low global warming refrigerant, 2,3,3,3-tetrafluoro propene, or HFO-1234yf, has been successfully evaluated for automotive air conditioning, and is also being evaluated for stationary refrigeration and air conditioning systems. Due to the advantageous environmental properties of HFO-1234yf versus HFC-134a, coupled with its similar physical properties and system performance, HFO-1234yf is also being evaluated to replace HFC-134a in refrigeration applications where neat HFC-134a is currently used. This study reports on the development and validation of a sampling and analytical method for the determination of HFO-1234yf in air. Different collection media were screened for desorption and simulated sampling efficiency with three-section (350/350/350 mg) Anasorb CSC showing the best results. Therefore, air samples were collected using two 3-section Anasorb CSC sorbent tubes in series at 0.02 L/min for up to 8 hr for sample volumes of up to 9.6 L. The sorbent tubes were extracted in methylene chloride, and analyzed by gas chromatography with flame ionization detection. The method was validated from 0.1× to 20× the target level of 0.5 ppm (2.3 mg/m(3)) for a 9.6 L air volume. Desorption efficiencies for HFO-1234yf were 88 to 109% for all replicates over the validation range with a mean overall recovery of 93%. Simulated sampling efficiencies ranged from 87 to 104% with a mean of 94%. No migration or breakthrough to the back tube was observed under the sampling conditions evaluated. HFO-1234yf samples showed acceptable storage stability on Anasorb CSC sorbent up to a period of 30 days when stored under ambient, refrigerated, or frozen temperature conditions.

  18. Estimated 2017 Refrigerant Emissions of 2,3,3,3-Tetrafluoropropene (HFC-1234yf) in the United States Resulting from Automobile Air Conditioning

    EPA Science Inventory

    In response to recent regulations and concern over climate change, the global automotive community is evaluating alternatives to the current refrigerant used in automobile air conditioning units, 1,1,1,2-tetrafluoroethane, HFC-134a. One potential alternative is 2,3,3,3-tetrafluor...

  19. 40 CFR 98.154 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the concentrations of the process samples. (b) The mass flow of the product stream containing the HFC... concentration and volumetric flow rate determined by measurement of volumetric flow rate using EPA Method 2, 2A... volumetric flow rate at the inlet or by a metering device for HFC-23 sent to the device. Determine a new...

  20. Determination of properties of PVE lubricants with HFC refrigerants[PolyVinylEther

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Masato; Sakanoue, Shuichi; Tazaki, Toshihiro

    1999-07-01

    Polyalkyleneglycol (PAG) and polyol ester (POE) have been developed as refrigeration lubricants, used with HFC134a. PAG is used for automotive air conditioning systems and POE is used for domestic reciprocating refrigerators and for A/C systems. Although PAG exhibits good lubricity performance, it is difficult to use for domestic reciprocating refrigerators due to its low dielectric property. POE is difficult to use for automotive A/C systems, due to hydrolysis and poor lubricity performance. Polyvinylether (PVE) can be used in place of PAG and POE with HFC refrigerants. PVE is used for A/C systems as well as refrigerator and freezer applications. PVEmore » is an ideal lubricant for use with HFCs.« less

  1. Modulated magnetic structure of F e3P O7 as seen by 57Fe Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Sobolev, A. V.; Akulenko, A. A.; Glazkova, I. S.; Pankratov, D. A.; Presniakov, I. A.

    2018-03-01

    The paper reports results of the 57Fe Mössbauer measurements on an F e3P O4O3 powder sample recorded at various temperatures, including the point of magnetic phase transition TN≈163 K . The spectra measured above TN consist of a quadrupole doublet with high quadrupole splitting of Δ300 K≈1.10 mm /s , emphasizing that F e3 + ions are located in crystal positions with a strong electric-field gradient (EFG). To predict the sign and orientation of the main components of the EFG tensor, we calculated the EFG using the density-functional-theory approach. In the temperature range T

  2. Electronic and Magnetic Structures, Magnetic Hyperfine Fields and Electric Field Gradients in UX3 (X = In, Tl, Pb) Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Khan, Sajid; Yazdani-Kachoei, Majid; Jalali-Asadabadi, Saeid; Farooq, Muhammad Bilal; Ahmad, Iftikhar

    2018-02-01

    Cubic uranium compounds such as UX3 (X is a non-transition element of groups IIIA or IVA) exhibit highly diverse magnetic properties, including Pauli paramagnetism, spin fluctuation and anti-ferromagnetism. In the present paper, we explore the structural, electronic and magnetic properties as well as the hyperfine fields (HFFs) and electric field gradients (EFGs) with quadrupole coupling constant of UX3 (X = In, Tl, Pb) compounds using local density approximation, Perdew-Burke-Ernzerhof parametrization of generalized gradient approximation (PBE-GGA) including the Hubbard U parameter (GGA + U), a revised version of PBE-GGA that improves equilibrium properties of densely packed solids and their surfaces (PBEsol-GGA), and a hybrid functional (HF-PBEsol). The spin orbit-coupling calculations have been added to investigate the relativistic effect of electrons in these materials. The comparison between the experimental parameters and our calculated structural parameters we confirm the consistency and effectiveness of our theoretical tools. The computed magnetic moments show that magnetic moment increases from indium to lead in the UX3 family, and all these compounds are antiferromagnetic in nature. The EFGs and HFFs, as well as the quadrupole coupling constant of UX3 (X = In, Tl, Pb), are discussed in detail. These properties primarily originate from f and p states of uranium and post-transition sites.

  3. Ultrafast coherent excitation of a trapped ion qubit for fast gates and photon frequency qubits.

    PubMed

    Madsen, M J; Moehring, D L; Maunz, P; Kohn, R N; Duan, L-M; Monroe, C

    2006-07-28

    We demonstrate ultrafast coherent excitation of an atomic qubit stored in the hyperfine levels of a single trapped cadmium ion. Such ultrafast excitation is crucial for entangling networks of remotely located trapped ions through the interference of photon frequency qubits, and is also a key component for realizing ultrafast quantum gates between Coulomb-coupled ions.

  4. DFT and ENDOR Study of Bixin Radical Cations and Neutral Radicals on Silica-Alumina.

    PubMed

    Tay-Agbozo, Sefadzi S; Krzyaniak, Matthew D; Bowman, Michael K; Street, Shane; Kispert, Lowell D

    2015-06-18

    Bixin, a carotenoid found in annatto (Bixa orellana), is unique among natural carotenoids by being water-soluble. We stabilized free radicals from bixin on the surface of silica-alumina (Si-Al) and characterized them by pulsed electron-nuclear double resonance (ENDOR). DFT calculations of unpaired electron spin distribution for various bixin radicals predict the EPR hyperfine couplings. Least-square fitting of experimental ENDOR spectra by spectra calculated from DFT hyperfine couplings characterized the radicals trapped on Si-Al. DFT predicts that the trans bixin radical cation is more stable than the cis bixin radical cation by 1.26 kcal/mol. This small energy difference is consistent with the 26% trans and 23% cis radical cations in the ENDOR spectrum. The remainder of the ENDOR spectrum is due to several neutral radicals formed by loss of a H(+) ion from the 9, 9', 13, or 13' methyl group, a common occurrence in all water-insoluble carotenoids previously studied. Although carboxyl groups of bixin strongly affect its solubility relative to other natural carotenoids, they do not alter properties of its free radicals based on DFT calculations and EPR measurements which remain similar to typical water-insoluble carotenoids.

  5. Cold Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Raithel, Georg

    2017-04-01

    Cold atomic systems have opened new frontiers in atomic and molecular physics, including several types of Rydberg molecules. Three types will be reviewed. Long-range Rydberg-ground molecules, first predicted in and observed in, are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules. A classification into Hund's cases will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction of neutral Rydberg-Rydberg molecules is dipole-dipole, while for ionic Rydberg molecules it is dipole-monopole. Higher-order terms are discussed. FUNDING: NSF (PHY-1506093), NNSF of China (61475123).

  6. The Hydrogenase Activity of the Molybdenum/Copper-containing Carbon Monoxide Dehydrogenase of Oligotropha carboxidovorans*

    PubMed Central

    Wilcoxen, Jarett; Hille, Russ

    2013-01-01

    The reaction of the air-tolerant CO dehydrogenase from Oligotropha carboxidovorans with H2 has been examined. Like the Ni-Fe CO dehydrogenase, the enzyme can be reduced by H2 with a limiting rate constant of 5.3 s−1 and a dissociation constant Kd of 525 μm; both kred and kred/Kd, reflecting the breakdown of the Michaelis complex and the reaction of free enzyme with free substrate in the low [S] regime, respectively, are largely pH-independent. During the reaction with H2, a new EPR signal arising from the Mo/Cu-containing active site of the enzyme is observed which is distinct from the signal seen when the enzyme is reduced by CO, with greater g anisotropy and larger hyperfine coupling to the active site 63,65Cu. The signal also exhibits hyperfine coupling to at least two solvent-exchangeable protons of bound substrate that are rapidly exchanged with solvent. Proton coupling is also evident in the EPR signal seen with the dithionite-reduced native enzyme, and this coupling is lost in the presence of bicarbonate. We attribute the coupled protons in the dithionite-reduced enzyme to coordinated water at the copper site in the native enzyme and conclude that bicarbonate is able to displace this water from the copper coordination sphere. On the basis of our results, a mechanism for H2 oxidation is proposed which involves initial binding of H2 to the copper of the binuclear center, displacing the bound water, followed by sequential deprotonation through a copper-hydride intermediate to reduce the binuclear center. PMID:24165123

  7. Determination of ganglioside composition and structure in human brain hemangioma by chip-based nanoelectrospray ionization tandem mass spectrometry.

    PubMed

    Schiopu, Catalin; Flangea, Corina; Capitan, Florina; Serb, Alina; Vukelić, Zeljka; Kalanj-Bognar, Svjetlana; Sisu, Eugen; Przybylski, Michael; Zamfir, Alina D

    2009-12-01

    We report here on a preliminary investigation of ganglioside composition and structure in human hemangioma, a benign tumor in the frontal cortex (HFC) in comparison to normal frontal cortex (NFC) tissue using for the first time advanced mass spectrometric methods based on fully automated chip-nanoelectrospray (nanoESI) high-capacity ion trap (HCT) and collision-induced dissociation (CID). The high ionization efficiency, sensitivity and reproducibility provided by the chip-nanoESI approach allowed for a reliable MS-based ganglioside comparative assay. Unlike NFC, ganglioside mixture extracted from HFC was found dominated by species of short glycan chains exhibiting lower overall sialic acid content. In HFC, only GT1 (d18:1/20:0), and GT3 (d18:1/25:1) polysialylated species were detected. Interestingly, none of these trisialylated forms was detected in NFC, suggesting that such components might selectively be associated with HFC. Unlike the case of previously investigated high malignancy gliosarcoma, in HFC one modified O-Ac-GD2 and one modified O-Ac-GM4 gangliosides were observed. This aspect suggests that these O-acetylated structures could be associated with cerebral tumors having reduced malignancy grade. Fragmentation analysis by CID in MS(2) mode using as precursors the ions corresponding to GT1 (d18:1/20:0) and GD1 (d18:1/20:0) provided data corroborating for the first time the presence of the common GT1a and GT1b isomers and the incidence of unusual GT1c and GT1d glycoforms in brain hemangioma tumor.

  8. 40 CFR Appendix L to Subpart G of... - Substitutes Listed in the January 27, 2003, Final Rule, Effective March 28, 2003

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... environments protected by HFC227-BC extinguishing systemsEach HFC227-BC extinguisher should be clearly labelled... Agent Fire Extinguishing Systems. See additional comments 1, 2, 3, 4, 5. Additional comments. 1—Should... or performance requirements. 4—The agent should be recovered from the fire protection system in...

  9. 40 CFR Appendix L to Subpart G of... - Substitutes Listed in the January 27, 2003, Final Rule, Effective March 28, 2003

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... environments protected by HFC227-BC extinguishing systemsEach HFC227-BC extinguisher should be clearly labelled... Agent Fire Extinguishing Systems. See additional comments 1, 2, 3, 4, 5. Additional comments. 1—Should... or performance requirements. 4—The agent should be recovered from the fire protection system in...

  10. 40 CFR Appendix L to Subpart G of... - Substitutes Listed in the January 27, 2003, Final Rule, Effective March 28, 2003

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... environments protected by HFC227-BC extinguishing systemsEach HFC227-BC extinguisher should be clearly labelled... Agent Fire Extinguishing Systems. See additional comments 1, 2, 3, 4, 5. Additional comments. 1—Should... or performance requirements. 4—The agent should be recovered from the fire protection system in...

  11. 40 CFR Appendix C to Subpart B of... - SAE J2788 Standard for Recovery/Recycle and Recovery/Recycle/Recharging Equipment for HFC-134a...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for the recovery/recycling of HFC-134a that has been directly removed from, and is intended for reuse in, mobile air-conditioning systems and recovery/recycling and system recharging of recycled... The purpose of this SAE Standard is to establish the specific minimum equipment performance...

  12. Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br

    NASA Technical Reports Server (NTRS)

    Hsu, K.-J.; Demore, W. B.

    1994-01-01

    Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2) and (for CH2Cl2) HFC-161 (CH3CH2F). Using absolute rate constants for HFC-152a and HFC-161, which we have determined relative to those for CH4, CH3CCl3, and C2H6, temperature dependent rate constants of both compounds were derived. The derived rate constant for CH3Br is in good agreement with recent absolute measurements. However, for the chloromethanes all the rate constants are lower at atmospheric temperatures than previously reported, especially for CH2Cl2 where the present rate constant is about a factor of 1.6 below the JPL 92-20 value. The new rate constant appears to resolve a discrepancy between the observed atmospheric concentrations and those calculated from the previous rate constant and estimated release rates.

  13. Zinc Extraction from Zinc Plants Residue Using Selective Alkaline Leaching and Electrowinning

    NASA Astrophysics Data System (ADS)

    Ashtari, Pedram; Pourghahramani, Parviz

    2015-10-01

    Annually, a great amount of zinc plants residue is produced in Iran. One of them is hot filter cake (known as HFC) which can be used as a secondary resource of zinc, cobalt and manganese. Unfortunately, despite its heavy metal content, the HFC is not treated. For the first time, zinc was selectively leached from HFC employing alkaline leaching. Secondly, leaching was optimized to achieve maximum recovery using this method. Effects of factors like NaOH concentration (C = 3, 5, 7 and 9 M), temperature (T = 50, 70, 90 and 105 °C), solid/liquid ratio (weight/volume, S/L = 1/10 and 1/5 W/V) and stirring speed (R = 500 and 800 rpm) were studied on HFC leaching. L16 orthogonal array (OA, two factors in four levels and two factors in two levels) was applied to determine the optimum condition and the most significant factor affecting the overall zinc extraction. As a result, maximum zinc extraction was 83.4 %. Afterwards, a rough test was conducted for zinc electrowinning from alkaline solution according to the common condition available in literature by which pure zinc powder (99.96 %) was successfully obtained.

  14. Evaluation of cermet materials suitable for lithium lubricated thrust bearings for high temperature operation

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.; Hendrixson, W. H.

    1974-01-01

    Cerment materials (HfC - 10 wt% W; HfC - 10 wt% TaC - 10 wt%W; HfC - 2 wt% CbC - 8 wt% Mo;Hfn - 10 wt% W; Hfn - 10 wt% TaN - 10 wt% W; and ZrC - 17 wt% W) were evaluated for possible use as lithium-lubricated bearings in the control system of a nuclear reactor. Tests of compatibility with lithium were made in T-111 (Ta-8W-2Hf) capsules at temperatures up to 1090 C. The tendencies of HfC-TaC-W, HfC-CbC-Mo, and HfN-W to bond to themselves and to the refractory alloys T-111 and TZM when enclosed in lithium-filled capsules under a pressure of 2000 psi at 980 and 1200 C for 1933 hours were evaluated. Thermal expansion characteristics were determined for the same three materials from room temperature to 1200 C. On the basis of these tests, HfC-10 TaC-10W and HfN-10W were selected as the best and second best candidates, respectively, of the materials tested for the bearing application.

  15. Energy Efficient Commercial Refrigeration with Carbon Dioxide Refrigerant and Scroll Expanders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieckmann, John

    Current supermarket refrigeration systems are built around conventional fluorocarbon refrigerants – HFC-134a and the HFC blends R-507 and R404A, which replaced the CFC refrigerants, R-12 and R-502, respectively, used prior to the Montreal Protocol phase out of ozone depleting substances. While the HFC refrigerants are non-ozone depleting, they are strong greenhouse gases, so there has been continued interest in replacing them, particularly in applications with above average refrigerant leakage. Large supermarket refrigeration systems have proven to be particularly difficult to maintain in a leak-tight condition. Refrigerant charge losses of 15% of total charge per year are the norm, making themore » global warming impact of refrigerant emissions comparable to that associated with the energy consumption of these systems.« less

  16. Radiative transfer of HCN: interpreting observations of hyperfine anomalies

    NASA Astrophysics Data System (ADS)

    Mullins, A. M.; Loughnane, R. M.; Redman, M. P.; Wiles, B.; Guegan, N.; Barrett, J.; Keto, E. R.

    2016-07-01

    Molecules with hyperfine splitting of their rotational line spectra are useful probes of optical depth, via the relative line strengths of their hyperfine components. The hyperfine splitting is particularly advantageous in interpreting the physical conditions of the emitting gas because with a second rotational transition, both gas density and temperature can be derived. For HCN however, the relative strengths of the hyperfine lines are anomalous. They appear in ratios which can vary significantly from source to source, and are inconsistent with local thermodynamic equilibrium (LTE). This is the HCN hyperfine anomaly, and it prevents the use of simple LTE models of HCN emission to derive reliable optical depths. In this paper, we demonstrate how to model HCN hyperfine line emission, and derive accurate line ratios, spectral line shapes and optical depths. We show that by carrying out radiative transfer calculations over each hyperfine level individually, as opposed to summing them over each rotational level, the anomalous hyperfine emission emerges naturally. To do this requires not only accurate radiative rates between hyperfine states, but also accurate collisional rates. We investigate the effects of different sets of hyperfine collisional rates, derived via the proportional method and through direct recoupling calculations. Through an extensive parameter sweep over typical low-mass star-forming conditions, we show the HCN line ratios to be highly variable to optical depth. We also reproduce an observed effect whereby the red-blue asymmetry of the hyperfine lines (an infall signature) switches sense within a single rotational transition.

  17. Chocolate flavanols and skin photoprotection: a parallel, double-blind, randomized clinical trial

    PubMed Central

    2014-01-01

    Background Solar ultraviolet (UV) radiation has deleterious effects on the skin, including sunburn, photoaging and cancer. Chocolate flavanols are naturally-occurring antioxidant and anti-inflammatory molecules that could play a role in preventing cutaneous UV damage. We investigated the influence of 12-week high-flavanol chocolate (HFC) consumption on skin sensitivity to UV radiation, measured by minimal erythema dose (MED). We also evaluated skin elasticity and hydration. Methods In this 2-group, parallel, double-blind, randomized controlled trial, 74 women aged 20–65 years and Fitzpatrick skin phototypes I or II were recruited from the general community in Quebec City, for randomization to either HFC (n = 33) or low-flavanol chocolate (LFC) (n = 41). A blocked randomisation (4), considering date of entry, skin type and age as factors, generated a sequentially-numbered allocation list. Study participants and research assistants were blinded. Totally, 30 g of chocolate were consumed daily for 12 weeks, followed by a 3-week washout period. MED was assessed at baseline and at 6, 9, 12 and 15 weeks. Main outcome was changes in MED at week 12. Results 33 participants in the HFC group and 41 in the LFC group were analyzed with 15 weeks of follow-up. Both groups showed similarly-increased MED at 12 weeks (HFC: 0.0252 ± 0.1099 J/cm2 [mean ± standard deviation (SD)]; LFC: 0.0151 ± 0.1118; mean difference (MD): 0.0100 J/cm2; 95% confidence interval (CI): -0.0417 to 0.0618). However, after 3-week washout, the HFC group presented decreased MED (-0.0248 ± 0.1145) whereas no effect was seen in the LFC group (0.0168 ± 0.1698) (MD: -0.0417; 95% CI: -0.1106 to 0.0272). Net temple elasticity increased slightly but significantly by 0.09 ± 0.12 mm in the HFC group at 12 weeks compared to 0.02 ± 0.12 mm in the LFC group (MD: 0.06; 95% CI: 0.01 to 0.12 ). No significant adverse events were reported. Conclusion Our study failed to demonstrate a statistically-significant protective effect of HFC vs. LFC consumption on skin sensitivity to UV radiation as measured by MED. Trial registration ClinicalTrials.gov identifier: NCT01444625 PMID:24970388

  18. On the exact solvability of the anisotropic central spin model: An operator approach

    NASA Astrophysics Data System (ADS)

    Wu, Ning

    2018-07-01

    Using an operator approach based on a commutator scheme that has been previously applied to Richardson's reduced BCS model and the inhomogeneous Dicke model, we obtain general exact solvability requirements for an anisotropic central spin model with XXZ-type hyperfine coupling between the central spin and the spin bath, without any prior knowledge of integrability of the model. We outline basic steps of the usage of the operators approach, and pedagogically summarize them into two Lemmas and two Constraints. Through a step-by-step construction of the eigen-problem, we show that the condition gj‧2 - gj2 = c naturally arises for the model to be exactly solvable, where c is a constant independent of the bath-spin index j, and {gj } and { gj‧ } are the longitudinal and transverse hyperfine interactions, respectively. The obtained conditions and the resulting Bethe ansatz equations are consistent with that in previous literature.

  19. Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot.

    PubMed

    Högele, A; Kroner, M; Latta, C; Claassen, M; Carusotto, I; Bulutay, C; Imamoglu, A

    2012-05-11

    Resonant optical excitation of lowest-energy excitonic transitions in self-assembled quantum dots leads to nuclear spin polarization that is qualitatively different from the well-known optical orientation phenomena. By carrying out a comprehensive set of experiments, we demonstrate that nuclear spin polarization manifests itself in quantum dots subjected to finite external magnetic field as locking of the higher energy Zeeman transition to the driving laser field, as well as the avoidance of the resonance condition for the lower energy Zeeman branch. We interpret our findings on the basis of dynamic nuclear spin polarization originating from noncollinear hyperfine interaction and find excellent agreement between experiment and theory. Our results provide evidence for the significance of noncollinear hyperfine processes not only for nuclear spin diffusion and decay, but also for buildup dynamics of nuclear spin polarization in a coupled electron-nuclear spin system.

  20. Coherent manipulation of an NV center and one carbon nuclear spin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scharfenberger, Burkhard; Nemoto, Kae; Munro, William J.

    2014-12-04

    We study a three-qubit system formed by the NV center’s electronic and nuclear spin plus an adjacent spin 1/2 carbon {sup 13}C. Specifically, we propose a manipulation scheme utilizing the hyperfine coupling of the effective S=1 degree of freedom of the vacancy electrons to the two adjacent nuclear spins to achieve accurate coherent control of all three qubits.

  1. Dynamic nuclear polarization assisted spin diffusion for the solid effect case.

    PubMed

    Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon

    2011-02-21

    The dynamic nuclear polarization (DNP) process in solids depends on the magnitudes of hyperfine interactions between unpaired electrons and their neighboring (core) nuclei, and on the dipole-dipole interactions between all nuclei in the sample. The polarization enhancement of the bulk nuclei has been typically described in terms of a hyperfine-assisted polarization of a core nucleus by microwave irradiation followed by a dipolar-assisted spin diffusion process in the core-bulk nuclear system. This work presents a theoretical approach for the study of this combined process using a density matrix formalism. In particular, solid effect DNP on a single electron coupled to a nuclear spin system is considered, taking into account the interactions between the spins as well as the main relaxation mechanisms introduced via the electron, nuclear, and cross-relaxation rates. The basic principles of the DNP-assisted spin diffusion mechanism, polarizing the bulk nuclei, are presented, and it is shown that the polarization of the core nuclei and the spin diffusion process should not be treated separately. To emphasize this observation the coherent mechanism driving the pure spin diffusion process is also discussed. In order to demonstrate the effects of the interactions and relaxation mechanisms on the enhancement of the nuclear polarization, model systems of up to ten spins are considered and polarization buildup curves are simulated. A linear chain of spins consisting of a single electron coupled to a core nucleus, which in turn is dipolar coupled to a chain of bulk nuclei, is considered. The interaction and relaxation parameters of this model system were chosen in a way to enable a critical analysis of the polarization enhancement of all nuclei, and are not far from the values of (13)C nuclei in frozen (glassy) organic solutions containing radicals, typically used in DNP at high fields. Results from the simulations are shown, demonstrating the complex dependences of the DNP-assisted spin diffusion process on variations of the relevant parameters. In particular, the effect of the spin lattice relaxation times on the polarization buildup times and the resulting end polarization are discussed, and the quenching of the polarizations by the hyperfine interaction is demonstrated.

  2. Characterization of Water Coordination to Ferrous Nitrosyl Complexes with fac-N2O, cis-N2O2, and N2O3 Donor Ligands.

    PubMed

    McCracken, John; Cappillino, Patrick J; McNally, Joshua S; Krzyaniak, Matthew D; Howart, Michael; Tarves, Paul C; Caradonna, John P

    2015-07-06

    Electron paramagnetic resonance (EPR) experiments were done on a series of S = (3)/2 ferrous nitrosyl model complexes prepared with chelating ligands that mimic the 2-His-1-carboxylate facial triad iron binding motif of the mononuclear nonheme iron oxidases. These complexes formed a comparative family, {FeNO}(7)(N2Ox)(H2O)3-x with x = 1-3, where the labile coordination sites for the binding of NO and solvent water were fac for x = 1 and cis for x = 2. The continuous-wave EPR spectra of these three complexes were typical of high-spin S = (3)/2 transition-metal ions with resonances near g = 4 and 2. Orientation-selective hyperfine sublevel correlation (HYSCORE) spectra revealed cross peaks arising from the protons of coordinated water in a clean spectral window from g = 3.0 to 2.3. These cross peaks were absent for the {FeNO}(7)(N2O3) complex. HYSCORE spectra were analyzed using a straightforward model for defining the spin Hamiltonian parameters of bound water and showed that, for the {FeNO}(7)(N2O2)(H2O) complex, a single water conformer with an isotropic hyperfine coupling, Aiso = 0.0 ± 0.3 MHz, and a dipolar coupling of T = 4.8 ± 0.2 MHz could account for the data. For the {FeNO}(7)(N2O)(H2O)2 complex, the HYSCORE cross peaks assigned to coordinated water showed more frequency dispersion and were analyzed with discrete orientations and hyperfine couplings for the two water molecules that accounted for the observed orientation-selective contour shapes. The use of three-pulse electron spin echo envelope modulation (ESEEM) data to quantify the number of water ligands coordinated to the {FeNO}(7) centers was explored. For this aspect of the study, HYSCORE spectra were important for defining a spectral window where empirical integration of ESEEM spectra would be the most accurate.

  3. New Substrate-Guided Method of Predicting Slow Conducting Isthmuses of Ventricular Tachycardia: Preliminary Analysis to the Combined Use of Voltage Limit Adjustment and Fast-Fourier Transform Analysis.

    PubMed

    Kuroki, Kenji; Nogami, Akihiko; Igarashi, Miyako; Masuda, Keita; Kowase, Shinya; Kurosaki, Kenji; Komatsu, Yuki; Naruse, Yoshihisa; Machino, Takeshi; Yamasaki, Hiro; Xu, Dongzhu; Murakoshi, Nobuyuki; Sekiguchi, Yukio; Aonuma, Kazutaka

    2018-04-01

    Several conducting channels of ventricular tachycardia (VT) can be identified using voltage limit adjustment (VLA) of substrate mapping. However, the sensitivity or specificity to predict a VT isthmus is not high by using VLA alone. This study aimed to evaluate the efficacy of the combined use of VLA and fast-Fourier transform analysis to predict VT isthmuses. VLA and fast-Fourier transform analyses of local ventricular bipolar electrograms during sinus rhythm were performed in 9 postinfarction patients who underwent catheter ablation for a total of 13 monomorphic VTs. Relatively higher voltage areas on an electroanatomical map were defined as high voltage channels (HVCs), and relatively higher fast-Fourier transform areas were defined as high-frequency channels (HFCs). HVCs were classified into full or partial HVCs (the entire or >30% of HVC can be detectable, respectively). Twelve full HVCs were identified in 7 of 9 patients. HFCs were located on 7 of 12 full HVCs. Five VT isthmuses (71%) were included in the 7 full HVC+/HFC+ sites, whereas no VT isthmus was found in the 5 full HVC+/HFC- sites. HFCs were identical to 9 of 16 partial HVCs. Eight VT isthmuses (89%) were included in the 9 partial HVC+/HFC+ sites, whereas no VT isthmus was found in the 7 partial HVC+/HFC- sites. All HVC+/HFC+ sites predicted VT isthmus with a sensitivity of 100% and a specificity of 80%. Combined use of VLA and fast-Fourier transform analysis may be a useful method to detect VT isthmuses. © 2018 American Heart Association, Inc.

  4. Spectrophotometric photodynamic detection involving extracorporeal treatment with hexaminolevulinate for bladder cancer cells in voided urine.

    PubMed

    Nakai, Yasushi; Ozawa, Toshiyuki; Mizuno, Fumiko; Onishi, Sayuri; Owari, Takuya; Hori, Syunta; Morizawa, Yosuke; Tatsumi, Yosihiro; Miyake, Makito; Tanaka, Nobumichi; Tsuruta, Daisuke; Fujimoto, Kiyohide

    2017-11-01

    To evaluate the feasibility of hexaminolevulinate (HAL) for the photodynamic detection of cancer cells in voided urine. This study included 50 patients with bladder cancer that was confirmed histologically after transurethral resection (bladder cancer group) and 50 outpatients without a history of urothelial carcinoma or cancer-related findings (no malignancy group). One third of the voided urine samples were incubated with aminolevulinic acid (ALA-treated samples), one third were incubated with HAL (HAL-treated samples), and the remaining samples were incubated without treatment (untreated samples). For detecting cellular protoporphyrin IX levels, the intensity of the samples at the excitation wavelength of 405 nm was measured using a spectrophotometer. The difference between the intensity of the ALA-treated or HAL-treated samples and the untreated samples at 635 nm was calculated. HAL-induced fluorescence cytology (HFC) showed that the difference was significantly higher in patients with high-grade tumors than in those with low-grade tumors (p = 0.0003) and the difference was significantly higher in patients with low-grade tumors than in those without a history of urothelial carcinoma or cancer-related findings (p = 0.021). The areas under the receiver operating characteristic curves of ALA-induced fluorescence cytology (AFC) and HFC were 0.77 and 0.81, respectively. The AUC of HFC was significantly higher than that of AFC (p < 0.0001). The overall sensitivity values for conventional cytology, AFC, and HFC were 49, 74, and 74%, respectively. The overall specificity values for AFC and HFC were 70 and 94%, respectively. Spectrophotometric photodynamic detection involving extracorporeal treatment with HAL for bladder cancer cells in voided urine showed high accuracy. This bladder cancer detection method is easy and cost-effective, and has the potential for clinical use.

  5. Hollow Fluffy Co3O4 Cages as Efficient Electroactive Materials for Supercapacitors and Oxygen Evolution Reaction.

    PubMed

    Zhou, Xuemei; Shen, Xuetao; Xia, Zhaoming; Zhang, Zhiyun; Li, Jing; Ma, Yuanyuan; Qu, Yongquan

    2015-09-16

    Nano-/micrometer multiscale hierarchical structures not only provide large surface areas for surface redox reactions but also ensure efficient charge conductivity, which is of benefit for utilization in areas of electrochemical energy conversion and storage. Herein, hollow fluffy cages (HFC) of Co3O4, constructed of ultrathin nanosheets, were synthesized by the formation of Co(OH)2 hollow cages and subsequent calcination at 250 °C. The large surface area (245.5 m2 g(-1)) of HFC Co3O4 annealed at 250 °C ensures the efficient interaction between electrolytes and electroactive components and provides more active sites for the surface redox reactions. The hierarchical structures minimize amount of the grain boundaries and facilitate the charge transfer process. Thin thickness of nanosheets (2-3 nm) ensures the highly active sites for the surface redox reactions. As a consequence, HFC Co3O4 as the supercapacitor electrode exhibits a superior rate capability, shows an excellent cycliability of 10,000 cycles at 10 A g(-1), and delivers large specific capacitances of 948.9 and 536.8 F g(-1) at 1 and 40 A g(-1), respectively. Catalytic studies of HFC Co3O4 for oxygen evolution reaction display a much higher turnover frequency of 1.67×10(-2) s(-1) in pH 14.0 KOH electrolyte at 400 mV overpotential and a lower Tafel slope of 70 mV dec(-1). HFC Co3O4 with the efficient electrochemical activity and good stability can remain a promising candidate for the electrochemical energy conversion and storage.

  6. Design and methodology of the NorthStar Study: NT-proBNP stratified follow-up in outpatient heart failure clinics -- a randomized Danish multicenter study.

    PubMed

    Schou, Morten; Gustafsson, Finn; Videbaek, Lars; Markenvard, John; Ulriksen, Hans; Ryde, Henrik; Jensen, Jens C H; Nielsen, Tonny; Knudsen, Anne S; Tuxen, Christian D; Handberg, Jens; Sørensen, Per J; Espersen, Geert; Lind-Rasmussen, Søren; Keller, Niels; Egstrup, Kenneth; Nielsen, Olav W; Abdulla, Jawdat; Nyvad, Ole; Toft, Jens; Hildebrandt, Per R

    2008-10-01

    Randomized clinical trials have shown that newly discharged and symptomatic patients with chronic heart failure (CHF) benefit from follow-up in a specialized heart failure clinic (HFC). Clinical stable and educated patients are usually discharged from the HFC when on optimal therapy. It is unknown if risk stratification using natriuretic peptides could identify patients who would benefit from longer-term follow-up. Furthermore, data on the use of natriuretic peptides for monitoring of stable patients with CHF are sparse. The aims of this study are to test the hypothesis that clinical stable, educated, and medical optimized patients with CHF with N-terminal pro-brain natriuretic peptide (NT-proBNP) levels > or = 1,000 pg/mL benefit from long-term follow-up in an HFC and to assess the efficacy of NT-proBNP monitoring. A total of 1,250 clinically stable, medically optimized, and educated patients with CHF will be enrolled from 18 HFCs in Denmark. The patients will be randomized to treatment in general practice, to a standard follow-up program in the HFC, or to NT-proBNP monitoring in the HFC. The patients will be followed for 30 months (median). Data will be collected from 2006 to 2009. At present (March 2008), 720 patients are randomized. Results expect to be presented in the second half of 2010. This article outlines the design of the NorthStar study. If our hypotheses are confirmed, the results will help cardiologists and nurses in HFCs to identify patients who may benefit from long-term follow-up. Our results may also indicate whether patients with CHF will benefit from adding serial NT-proBNP measurements to usual clinical monitoring.

  7. Reanalysis and extension of the MnH A7Π- X7Σ + (0, 0) band: Fine structure and hyperfine-induced rotational branches

    NASA Astrophysics Data System (ADS)

    Varberg, Thomas D.; Gray, Jeffrey A.; Field, Robert W.; Merer, Anthony J.

    1992-12-01

    The A7Π- X7Σ + (0, 0) band of MnH at 568 nm has been recorded by laser fluorescence excitation spectroscopy. The original rotational analysis of Nevin [ Proc. R. Irish Acad.48A, 1-45 (1942); 50A, 123-137 (1945)] has been extended with some corrections at low J. Systematic internal hyperfine perturbations in the X7Σ + state, caused by the Δ N = 0, Δ J = ±1 matrix elements of the 55Mn hyperfine term in the Hamiltonian, have been observed in all seven electron spin components over the entire range of N″ studied. These perturbations destroy the "goodness" of J″ as a quantum number, giving rise to hyperfine-induced Δ J = ±2 rotational branches and to observable energy shifts of the most severely affected levels. The A7Π state, with A = 40.5 cm -1 and B = 6.35 cm -1, evolves rapidly from Hund's case ( a) to case ( b) coupling, which produces anomalous branch patterns at low J. A total of 156 rotational branches have been identified and fitted by least squares to an effective Hamiltonian, providing precise values for the rotational and fine structure constants. Values of the principal constants determined in the fit are (1σ errors in units of the last digit are listed in parentheses): The fine structures of the A7Π and X7Σ + states confirm the assignment of the A ← X transition as Mn 4 pπ ← 4 sσ in the presence of a spectator, nonbonding Mn 3 d5 ( 6S) open core.

  8. Characterising molecules for fundamental physics: an accurate spectroscopic model of methyltrioxorhenium derived from new infrared and millimetre-wave measurements.

    PubMed

    Asselin, Pierre; Berger, Yann; Huet, Thérèse R; Margulès, Laurent; Motiyenko, Roman; Hendricks, Richard J; Tarbutt, Michael R; Tokunaga, Sean K; Darquié, Benoît

    2017-02-08

    Precise spectroscopic analysis of polyatomic molecules enables many striking advances in physical chemistry and fundamental physics. We use several new high-resolution spectroscopic devices to improve our understanding of the rotational and rovibrational structure of methyltrioxorhenium (MTO), the achiral parent of a family of large oxorhenium compounds that are ideal candidate species for a planned measurement of parity violation in chiral molecules. Using millimetre-wave and infrared spectroscopy in a pulsed supersonic jet, a cryogenic buffer gas cell, and room temperature absorption cells, we probe the ground state and the Re[double bond, length as m-dash]O antisymmetric and symmetric stretching excited states of both CH 3 187 ReO 3 and CH 3 185 ReO 3 isotopologues in the gas phase with unprecedented precision. By extending the rotational spectra to the 150-300 GHz range, we characterize the ground state rotational and hyperfine structure up to J = 43 and K = 41, resulting in refinements to the rotational, quartic and hyperfine parameters, and the determination of sextic parameters and a centrifugal distortion correction to the quadrupolar hyperfine constant. We obtain rovibrational data for temperatures between 6 and 300 K in the 970-1015 cm -1 range, at resolutions down to 8 MHz and accuracies of 30 MHz. We use these data to determine more precise excited-state rotational, Coriolis and quartic parameters, as well as the ground-state centrifugal distortion parameter D K of the 187 Re isotopologue. We also account for hyperfine structure in the rovibrational transitions and hence determine the upper state rhenium atom quadrupole coupling constant eQq'.

  9. Characterization, shaping, and joining of SiC/superalloy sheet for exhaust system components

    NASA Technical Reports Server (NTRS)

    Cornie, J. A.

    1977-01-01

    Hafnium carbide was shown to be virtually inert when in contact with silicon carbide and Waspaloy for at least 200 hr at 1093 C (2000 F). Extensive interaction was noted with other superalloys such as HA-188. A continuous CVD HfC deposition process was developed for deposition of up to 8 microns on .14 mm (.0056 in.) SiC tungsten core filament at rates as high as .6 m/min. The rate can be increased by increasing the length of the reactor and the output of the power supply used in resistive heating of the filament substrate. The strength of HfC coated filament varies with thickness in a Griffith-like manner. This strength reduction was greater for HfC coatings than for tungsten coatings, presumably because of the greater ductility of tungsten.

  10. Automated detection and tracking of solar and heliospheric features in the frame of the European project HELIO

    NASA Astrophysics Data System (ADS)

    Bonnin, X.; Aboudarham, J.; Fuller, N.; Renie, C.; Perez-Suarez, D.; Gallagher, P.; Higgins, P.; Krista, L.; Csillaghy, A.; Bentley, R.

    2011-12-01

    In the frame of the European project HELIO, the Observatoire de Paris-Meudon is in charge of the Heliophysics Feature Catalogue (HFC), a service which provides access to existing solar and heliospheric feature data. In order to create a catalogue as exhaustive as possible, recognition codes are developed to automatically detect and track features. At the time, HFC contains data of filaments, active regions, coronal holes, sunspots and type III radio bursts for a full solar cycle. The insertion of prominences and type II radio bursts should be done in the short term. We present here an overview of some of the algorithms used to populate HFC. The development of such fast and robust techniques also addresses the needs of the Space Weather community in terms of near real-time monitoring capabilities.

  11. Polybasic esters: Novel synthetic lubricants designed for use in HFC compressors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lilje, K.C.; Sabahi, M.; Hamid, S.

    1995-12-31

    The replacement of ozone-depleting refrigerants with ozone-friendly hydrofluorocarbons (HFCs) requires the use of lubricants that have not historically been used in refrigeration compressors and systems. Polyalkylene glycol (PAG) and polyol ester (POE) lubricants have been extensively evaluated in various refrigeration applications and are being used commercially. Novel synthetic lubricants have been developed based on polybasic esters (PBEs) resulting from malonate-acrylate Michael adducts. These lubricants were designed to address problems encountered in current HFC systems. PBE-based fluids show desired miscibility with R-134a and other HFC blends, excellent hydrolytic stability, no copper plating (even in wet systems), and excellent lubricity. All ofmore » these properties are obtained without the use of performance-enhancing additives. Key physical property data, bench and compressor test results, and compatibility study results will be presented.« less

  12. What the multiline signal (MLS) simulation data with average of weighted computations reveal about the Mn hyperfine interactions and oxidation states of the manganese cluster in OEC?

    NASA Astrophysics Data System (ADS)

    Baituti, Bernard

    2017-11-01

    Understanding the structure of oxygen evolving complex (OEC) fully still remains a challenge. Lately computational chemistry with the data from more detailed X-ray diffraction (XRD) OEC structure, has been used extensively in exploring the mechanisms of water oxidation in the OEC (Gatt et al., J. Photochem. Photobiol. B 104(1-2), 80-93 2011). Knowledge of the oxidation states is very crucial for understanding the core principles of catalysis by photosystem II (PSII) and catalytic mechanism of OEC. The present study involves simulation studies of the X-band continuous wave electron-magnetic resonance (CW-EPR) generated S 2 state signals, to investigate whether the data is in agreement with the four manganese ions in the OEC, being organised as a `3 + 1' (trimer plus one) model (Gatt et al., Angew. Chem. Int. Ed. 51, 12025-12028 2012; Petrie et al., Chem. A Eur. J. 21, 6780-6792 2015; Terrett et al., Chem. Commun. (Camb.) 50, 8-11 2014) or `dimer of dimers' model (Terrett et al. 2016). The question that still remains is how much does each Mn ion contribute to the " g2multiline" signal through its hyperfine interactions in OEC also to differentiate between the `high oxidation state (HOS)' and `low oxidation state (LOS)' paradigms? This is revealed in part by the structure of multiline (ML) signal studied in this project. Two possibilities have been proposed for the redox levels of the Mn ions within the catalytic cluster, the so called `HOS' and `LOS' paradigms (Gatt et al., J. Photochem. Photobiol. B 104(1-2), 80-93 2011). The method of data analysis involves numerical simulations of the experimental spectra on relevant models of the OEC cluster. The simulations of the X-band CW-EPR multiline spectra, revealed three manganese ions having hyperfine couplings with large anisotropy. These are most likely Mn III centres and these clearly support the `LOS' OEC paradigm model, with a mean oxidation of 3.25 in the S2 state. This is consistent with the earlier data by Jin et al. (Phys. Chem. Chem. Phys. (PCCP) 16(17), 7799-812 2014), but the present results clearly indicate that heterogeneity in hyperfine couplings exist in samples as typically prepared.

  13. Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota

    PubMed Central

    Li, Xiufen; Guo, Juan; Ji, Kailong; Zhang, Ping

    2016-01-01

    Dietary fiber has been shown to prevent high-fat diet induced obesity through modulating the gut microbiota; however, quality difference in fiber type is largely unknown. We performed a 6 week study on C57BL/6J mice fed a macronutrient matched high-fat diet with different fiber types including cellulose (HFC), bamboo shoot fiber (HFBS) and several other commonly consumed fibers. Our results showed that the HFBS group exhibited the lowest weight gain among all diet groups and had improved lipid profiles and glycemic control compared with the HFC group. As revealed by 16S rRNA gene sequencing, loss of diversity in the gut microbiota induced by the HFC diet was largely prevented by the HFBS diet. Moreover, compared with the HFC diet, the HFBS diet resulted in markedly increased relative abundance of Bacteroidetes and strong inhibition of Verrucomicrobia, two divisions strongly correlated with body weight. In conclusion, the present study provides evidence of a quality difference among different types of dietary fibers and shows that bamboo shoot fiber is the most effective in suppressing high-fat diet induced obesity. Our findings indicate that bamboo shoot fiber is a potential prebiotic fiber which modulates the gut microbiota and improves host metabolism. PMID:27599699

  14. Cold Rydberg molecules

    NASA Astrophysics Data System (ADS)

    Raithel, Georg; Zhao, Jianming

    2017-04-01

    Cold atomic systems have opened new frontiers at the interface of atomic and molecular physics. These include research on novel types of Rydberg molecules. Three types of molecules will be reviewed. Long-range, homonuclear Rydberg molecules, first predicted in [1] and observed in [2], are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium [3]). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules [3]. A classification into Hund's cases [3, 4, 5] will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction term of neutral Rydberg-Rydberg molecules is between two dipoles, while for ionic Rydberg molecules it is between a dipole and a monopole. NSF (PHY-1506093), NNSF of China (61475123).

  15. Bandwidth-limited control and ringdown suppression in high-Q resonators.

    PubMed

    Borneman, Troy W; Cory, David G

    2012-12-01

    We describe how the transient behavior of a tuned and matched resonator circuit and a ringdown suppression pulse may be integrated into an optimal control theory (OCT) pulse-design algorithm to derive control sequences with limited ringdown that perform a desired quantum operation in the presence of resonator distortions of the ideal waveform. Inclusion of ringdown suppression in numerical pulse optimizations significantly reduces spectrometer deadtime when using high quality factor (high-Q) resonators, leading to increased signal-to-noise ratio (SNR) and sensitivity of inductive measurements. To demonstrate the method, we experimentally measure the free-induction decay of an inhomogeneously broadened solid-state free radical spin system at high Q. The measurement is enabled by using a numerically optimized bandwidth-limited OCT pulse, including ringdown suppression, robust to variations in static and microwave field strengths. We also discuss the applications of pulse design in high-Q resonators to universal control of anisotropic-hyperfine coupled electron-nuclear spin systems via electron-only modulation even when the bandwidth of the resonator is significantly smaller than the hyperfine coupling strength. These results demonstrate how limitations imposed by linear response theory may be vastly exceeded when using a sufficiently accurate system model to optimize pulses of high complexity. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. 14N Quadrupole Coupling in the Microwave Spectra of N-Vinylformamide

    NASA Astrophysics Data System (ADS)

    Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Bailey, William C.

    2016-06-01

    The microwave spectra of two conformers, trans and cis, of the title compound were recorded using two molecular beam Fourier transform microwave spectrometers operating in the frequency range 2 GHz to 40 GHz, and aimed at analysis of their 14N quadrupole hyperfine structures. Rotational constants, centrifugal distortion constants, and nuclear quadrupole coupling constants (NQCCs) χaa and χbb - χcc, were all determined with very high accuracy. Two fits including 176 and 117 hyperfine transitions were performed for the trans and cis conformers, respectively. Standard deviations of both fits are close to the measurement accuracy of 2 kHz. The NQCCs of the two conformers are almost exactly the same, and are compared with values found for other saturated and unsaturated formamides. Complementary quantum chemical calculations - MP2/6-311++G(d,p) rotational constants, MP2/cc-pVTZ centrifugal distortion constants, and B3PW91/6-311+G(d,p)//MP2/6-311++G(d,p) nuclear quadrupole coupling constants - give spectroscopic parameters in excellent agreement with the experimental parameters. B3PW91/6-311+G(d,p) calculated electric field gradients, in conjunction with eQ/h = 4.599(12) MHz/a.u., yields more reliable NQCCs for formamides possessing conjugated π-electron systems than does the B3PW91/6-311+G(df,pd) model recommended in Ref., whereas this latter performs better for aliphatic formamides. We conclude from this that f-polarization functions on heavy atoms hinder rather than help with modeling of conjugated π-electron systems. W. C. Bailey, Chem. Phys., 2000, 252, 57 W. C. Bailey, Calculation of Nuclear Quadrupole Coupling Constants in Gaseous State Molecules, http://nqcc.wcbailey.net/index.html.

  17. Three-dimensional vortex-bright solitons in a spin-orbit-coupled spin-1 condensate

    NASA Astrophysics Data System (ADS)

    Gautam, Sandeep; Adhikari, S. K.

    2018-01-01

    We demonstrate stable and metastable vortex-bright solitons in a three-dimensional spin-orbit-coupled three-component hyperfine spin-1 Bose-Einstein condensate (BEC) using numerical solution and variational approximation of a mean-field model. The spin-orbit coupling provides attraction to form vortex-bright solitons in both attractive and repulsive spinor BECs. The ground state of these vortex-bright solitons is axially symmetric for weak polar interaction. For a sufficiently strong ferromagnetic interaction, we observe the emergence of a fully asymmetric vortex-bright soliton as the ground state. We also numerically investigate moving solitons. The present mean-field model is not Galilean invariant, and we use a Galilean-transformed mean-field model for generating the moving solitons.

  18. Molecules in high spin states: The millimeter and submillimeter spectrum of the MnS radical (X 6Sigma+)

    NASA Astrophysics Data System (ADS)

    Thompsen, J. M.; Brewster, M. A.; Ziurys, L. M.

    2002-06-01

    The pure rotational spectrum of MnS (v=0) in its X 6Sigma+ ground state has been recorded using millimeter and submillimeter direct absorption techniques in the range 160-502 GHz. MnS was synthesized in the gas phase by the reaction of manganese vapor and CS2 in a high-temperature Broida-type oven. Fourteen rotational transitions for this radical were measured, each consisting of six fine-structure components. In the lower rotational lines, hyperfine structure, arising from the 55Mn nuclear spin of 5/2, was also resolved in each spin component. These data were analyzed using a case (b) Hamiltonian, and rotational, fine structure, and hyperfine parameters determined for MnS. In the analysis, the third-order correction to the spin-rotation interaction, gammaS, and the fourth-order spin-spin coupling term, theta, were found necessary for an acceptable fit. The hyperfine constants determined suggest that MnS is more covalent than MnO, but more ionic than MnH. There additionally appears to be considerable sdsigma hybridization in molecular orbital formation for this molecule. Bond lengths of the 3d transition-metal sulfides were compared as well, and those of MnS, CuS, and TiS do not follow the trend of their oxide analogs. This result indicates that there are significant bonding differences between transition-metal sulfides and transition-metal oxides.

  19. Hyperfine-induced spin relaxation of a diffusively moving carrier in low dimensions: Implications for spin transport in organic semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2015-08-24

    The hyperfine coupling between the spin of a charge carrier and the nuclear spin bath is a predominant channel for the carrier spin relaxation in many organic semiconductors. We theoretically investigate the hyperfine-induced spin relaxation of a carrier performing a random walk on a d-dimensional regular lattice, in a transport regime typical for organic semiconductors. We show that in d=1 and 2, the time dependence of the space-integrated spin polarization P(t) is dominated by a superexponential decay, crossing over to a stretched-exponential tail at long times. The faster decay is attributed to multiple self-intersections (returns) of the random-walk trajectories, whichmore » occur more often in lower dimensions. We also show, analytically and numerically, that the returns lead to sensitivity of P(t) to external electric and magnetic fields, and this sensitivity strongly depends on dimensionality of the system (d=1 versus d=3). We investigate in detail the coordinate dependence of the time-integrated spin polarization σ(r), which can be probed in the spin-transport experiments with spin-polarized electrodes. We also demonstrate that, while σ(r) is essentially exponential, the effect of multiple self-intersections can be identified in transport measurements from the strong dependence of the spin-decay length on the external magnetic and electric fields.« less

  20. Rotational spectroscopic study of carbonyl sulfide solvated with hydrogen molecules.

    PubMed

    Michaud, Julie M; Jäger, Wolfgang

    2008-10-14

    Rotational spectra of small-sized (H(2))(N)-OCS clusters with N = 2-7 were measured using a pulsed-jet Fourier transform microwave spectrometer. These include spectra of pure (para-H(2))(N)-OCS clusters, pure (ortho-H(2))(N)-OCS clusters, and mixed ortho-H(2) and para-H(2) containing clusters. The rotational lines of ortho-H(2) molecules containing clusters show proton spin-proton spin hyperfine structure, and the pattern evolves as the number of ortho-H(2) molecules in the cluster increases. Various isotopologues of the clusters were investigated, including those with O(13)CS, OC(33)S, OC(34)S, and O(13)C(34)S. Nuclear quadrupole hyperfine structures of rotational transitions were observed for (33)S (nuclear spin quantum number I = 3/2) containing isotopologues. The (33)S nuclear quadrupole coupling constants are compared to the corresponding constant of the OCS monomer and those of the He(N)-OCS clusters. The assignment of the number of solvating hydrogen molecules N is supported by the analyses of the proton spin-proton spin hyperfine structures of the mixed clusters, the dependence of line intensities on sample conditions (pressure and concentrations), and the agreement of the (para-H(2))(N)-OCS and (ortho-H(2))(N)-OCS rotational constants with those from a previous infrared study [J. Tang and A. R. W. McKellar, J. Chem. Phys. 121, 3087 (2004)].

  1. Atmospheric observations and inverse modelling for quantifying emissions of point-source synthetic greenhouse gases in East Asia

    NASA Astrophysics Data System (ADS)

    Arnold, Tim; Manning, Alistair; Li, Shanlan; Kim, Jooil; Park, Sunyoung; Muhle, Jens; Weiss, Ray

    2017-04-01

    The fluorinated species carbon tetrafluoride (CF4; PFC-14), nitrogen trifluoride (NF3) and trifluoromethane (CHF3; HFC-23) are potent greenhouse gases with 100-year global warming potentials of 6,630, 16,100 and 12,400, respectively. Unlike the majority of CFC-replacements that are emitted from fugitive and mobile emission sources, these gases are mostly emitted from large single point sources - semiconductor manufacturing facilities (all three), aluminium smelting plants (CF4) and chlorodifluoromethane (HCFC-22) factories (HFC-23). In this work we show that atmospheric measurements can serve as a basis to calculate emissions of these gases and to highlight emission 'hotspots'. We use measurements from one Advanced Global Atmospheric Gases Experiment (AGAGE) long term monitoring sites at Gosan on Jeju Island in the Republic of Korea. This site measures CF4, NF3 and HFC-23 alongside a suite of greenhouse and stratospheric ozone depleting gases every two hours using automated in situ gas-chromatography mass-spectrometry instrumentation. We couple each measurement to an analysis of air history using the regional atmospheric transport model NAME (Numerical Atmospheric dispersion Modelling Environment) driven by 3D meteorology from the Met Office's Unified Model, and use a Bayesian inverse method (InTEM - Inversion Technique for Emission Modelling) to calculate yearly emission changes over seven years between 2008 and 2015. We show that our 'top-down' emission estimates for NF3 and CF4 are significantly larger than 'bottom-up' estimates in the EDGAR emissions inventory (edgar.jrc.ec.europa.eu). For example we calculate South Korean emissions of CF4 in 2010 to be 0.29±0.04 Gg/yr, which is significantly larger than the Edgar prior emissions of 0.07 Gg/yr. Further, inversions for several separate years indicate that emission hotspots can be found without prior spatial information. At present these gases make a small contribution to global radiative forcing, however, given that the impact of these long-lived gases could rise significantly and that point sources of such gases can be mitigated, atmospheric monitoring could be an important tool for aiding emissions reduction policy.

  2. Identification of the substrate radical intermediate derived from ethanolamine during catalysis by ethanolamine ammonia-lyase.

    PubMed

    Bender, Güneş; Poyner, Russell R; Reed, George H

    2008-10-28

    Rapid-mix freeze-quench (RMFQ) methods and electron paramagnetic resonance (EPR) spectroscopy have been used to characterize the steady-state radical in the deamination of ethanolamine catalyzed by adenosylcobalamin (AdoCbl)-dependent ethanolamine ammonia-lyase (EAL). EPR spectra of the radical intermediates formed with the substrates, [1-13C]ethanolamine, [2-13C]ethanolamine, and unlabeled ethanolamine were acquired using RMFQ trapping methods from 10 ms to completion of the reaction. Resolved 13C hyperfine splitting in EPR spectra of samples prepared with [1-13C]ethanolamine and the absence of such splitting in spectra of samples prepared with [2-13C]ethanolamine show that the unpaired electron is localized on C1 (the carbinol carbon) of the substrate. The 13C splitting from C1 persists from 10 ms throughout the time course of substrate turnover, and there was no evidence of a detectable amount of a product like radical having unpaired spin on C2. These results correct an earlier assignment for this radical intermediate [Warncke, K., et al. (1999) J. Am. Chem. Soc. 121, 10522-10528]. The EPR signals of the substrate radical intermediate are altered by electron spin coupling to the other paramagnetic species, cob(II)alamin, in the active site. The dipole-dipole and exchange interactions as well as the 1-13C hyperfine splitting tensor were analyzed via spectral simulations. The sign of the isotropic exchange interaction indicates a weak ferromagnetic coupling of the two unpaired electrons. A Co2+-radical distance of 8.7 A was obtained from the magnitude of the dipole-dipole interaction. The orientation of the principal axes of the 13C hyperfine splitting tensor shows that the long axis of the spin-bearing p orbital on C1 of the substrate radical makes an angle of approximately 98 degrees with the unique axis of the d(z2) orbital of Co2+.

  3. ESR lineshape and {sup 1}H spin-lattice relaxation dispersion in propylene glycol solutions of nitroxide radicals – Joint analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruk, D., E-mail: danuta.kruk@matman.uwm.edu.pl; Hoffmann, S. K.; Goslar, J.

    2013-12-28

    Electron Spin Resonance (ESR) spectroscopy and Nuclear Magnetic Relaxation Dispersion (NMRD) experiments are reported for propylene glycol solutions of the nitroxide radical: 4-oxo-TEMPO-d{sub 16} containing {sup 15}N and {sup 14}N isotopes. The NMRD experiments refer to {sup 1}H spin-lattice relaxation measurements in a broad frequency range (10 kHz–20 MHz). A joint analysis of the ESR and NMRD data is performed. The ESR lineshapes give access to the nitrogen hyperfine tensor components and the rotational correlation time of the paramagnetic molecule. The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement in solutions of nitroxide radicals, recentlymore » presented by Kruk et al. [J. Chem. Phys. 138, 124506 (2013)]. The theory includes the effect of the electron spin relaxation on the {sup 1}H relaxation of the solvent. The {sup 1}H relaxation is caused by dipole-dipole interactions between the electron spin of the radical and the proton spins of the solvent molecules. These interactions are modulated by three dynamic processes: relative translational dynamics of the involved molecules, molecular rotation, and electron spin relaxation. The sensitivity to rotation originates from the non-central positions of the interacting spin in the molecules. The electronic relaxation is assumed to stem from the electron spin–nitrogen spin hyperfine coupling, modulated by rotation of the radical molecule. For the interpretation of the NMRD data, we use the nitrogen hyperfine coupling tensor obtained from ESR and fit the other relevant parameters. The consistency of the unified analysis of ESR and NMRD, evaluated by the agreement between the rotational correlation times obtained from ESR and NMRD, respectively, and the agreement of the translation diffusion coefficients with literature values obtained for pure propylene glycol, is demonstrated to be satisfactory.« less

  4. Possible atmospheric lifetimes and chemical reaction mechanisms for selected HCFCs, HFCs, CH3CCl3, and their degradation products against dissolution and/or degradation in seawater and cloudwater

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Chameides, W. L.

    1990-01-01

    For a wide variety of atmospheric species including CO2, HNO3, and SO2, dissolution in seawater or cloudwater followed by hydrolysis or chemical reaction represents a primary pathway for removal from the atmosphere. In order to determine if this mechanism can also remove significant amounts of atmospheric chlorofluorocarbons (HCFC's), fluorocarbons (HFC's), and their degradation products, an investigation was undertaken as part of the Alternative Fluorocarbons Environmental Acceptability Study (AFEAS). In this investigation, the rates at which CHCl2CF3 (HCFC-123), CCl2FCH3 (HCFC-141b), CClF2CH3 (HCFC-142b), CHClF2 (HCFC-22), CHClFCF3 (HCFC-124) CH2FCF3 (HFC-134a) CHF2CH3 (HFC-152a), CHF2CF3 (HFC-125), and CH3CCl3 can be dissolved in the oceans and in cloudwater were estimated from the species' thermodynamic and chemical properties using simple mathematical formulations to simulate the transfer of gases from the atmosphere to the ocean or cloudwater. The ability of cloudwater and rainwater to remove gas phase degradation products of these compounds was also considered as was the aqueous phase chemistry of the degradation products. The results of this investigation are described.

  5. Photoacoustic-Based-Close-Loop Temperature Control for Nanoparticle Hyperthermia.

    PubMed

    Xiaohua, Feng; Fei, Gao; Yuanjin, Zheng

    2015-07-01

    Hyperthermia therapy requires tight temperature control to achieve selective killing of cancerous tissue with minimal damage on surrounding healthy tissues. To this end, accurate temperature monitoring and subsequent heating control are critical. However, an economic, portable, and real-time temperature control solution is currently lacking. To bridge this gap, we present a novel portable close-loop system for hyperthermia temperature control, in which photoacoustic technique is proposed for noninvasive real-time temperature measurement. Exploiting the high sensitivity of photoacoustics, the temperature is monitored with an accuracy of around 0.18 °C and then fed back to a controller implemented on field programmable gate array (FPGA) for temperature control. Dubbed as portable hyperthermia feedback controller (pHFC), it stabilizes the temperature at preset values by regulating the hyperthermia power with a proportional-integral-derivative (PID) algorithm; and to facilitate digital implementation, the pHFC further converts the PID output into switching values (0 and 1) with the pulse width modulation (PWM) algorithm. Proof-of-concept hyperthermia experiments demonstrate that the pHFC system is able to bring the temperature from baseline to predetermined value with an accuracy of 0.3° and a negligible temperature overshoot. The pHFC can potentially be translated to clinical applications with customized hyperthermia system design. This paper can facilitate future efforts in seamless integration of close-loop temperature control solution and various clinical hyperthermia systems.

  6. Bichromatic laser cooling in a three-level system

    NASA Astrophysics Data System (ADS)

    Gupta, R.; Xie, C.; Padua, S.; Batelaan, H.; Metcalf, H.

    1993-11-01

    We report a 1D study of optical forces on atoms in a two-frequency laser field. The light couples two ground state hyperfine structure levels to a common excited state of 85Rb, thus forming a Λ system. We observe a new type of sub-Doppler coupling with blue-tuned light that uses neither polarization gradients nor magnetic fields, efficient heating with red tuning, and the spatial phase dependence of these. We observed deflection from a rectified dipole force and determined its velocity dependence and capture range. We report velocity selective resonances associated with Raman transitions. A simplified semiclassical calculation agrees qualitatively with our measurements.

  7. Oxygen-17 and molybdenum-95 coupling in spectroscopic models of molybdoenzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, G.L.; Kony, M.; Tiekink, E.R.

    1988-09-28

    Assignment of (Mo/sup V/OS) and cis-(Mo/sup V/O(SH)) centers in active xanthine oxidase (very rapid and rapid ESR signals) are supported by generation of these species in solution. The ESR parameters were measured using /sup 17/O and /sup 95/Mo and are reported herein. The data revealed variations in relative magnitudes of the hyperfine components, and the different patterns of angles reflect significant differences in electronic structure. The same electronic differences appear to be responsible for the variations in magnitude and anisotropy of the /sup 17/O coupling, assigned to bound product Mo-/sup 17/OR in both enzyme signals.

  8. Hyperfine structure parametrisation in Maple

    NASA Astrophysics Data System (ADS)

    Gaigalas, G.; Scharf, O.; Fritzsche, S.

    2006-02-01

    In hyperfine structure examinations, routine high resolution spectroscopy methods have to be combined with exact fine structure calculations. The so-called magnetic A and electric B factor of the fine structure levels allow to check for a correct fine structure analysis, to find errors in the level designation, to find new levels and to probe the electron wavefunctions and its mixing coefficients. This is done by parametrisation of these factors into different contributions of the subshell electrons, which are split further into their radial and spin-angular part. Due to the routine with which hyperfine structure measurements are done, a tool for keeping the necessary information together, performing checks online with the experiment and deriving standard quantities is of great help. MAPLE [Maple is a registered trademark of Waterloo Maple Inc.] is a highly-developed symbolic programming language, often referred to as the pocket calculator of the future. Packages for theoretical atomic calculation exist ( RACAH and JUCYS) and the language meets all the requirements to keep and present information accessible for the user in a fast and practical way. We slightly extended the RACAH package [S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51] and set up an environment for experimental hyperfine structure calculations, the HFS package. Supplying the fine structure and nuclear data, one is in the position to obtain information about the hyperfine spectrum, the different contributions to the splitting and to perform a least square fit of the radial parameters based on the semiempirical method. Experimentalist as well as theoretical physicist can do a complete hyperfine structure analysis using MAPLE. Program summaryTitle of program: H FS Catalogue number: ADXD Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXD Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computers for which the program is designed: All computers with a license of the computer algebra package MAPLE Installations: University of Kassel (Germany) Operating systems under which the program has been tested: Linux 9.0 Program language used:MAPLE, Release 7, 8 and 9 Memory required to execute with typical data: 5 MB No. of lines in distributed program, including test data, etc.: 34 300 No. of bytes in distributed program, including test data, etc.: 954 196 Distribution format: tar.gz Nature of the physical problem: Atomic state functions of an many configuration many electron atom with several open shells are defined by a number of quantum numbers, by their coupling and selection rules such as the Pauli exclusion principal or parity conservation. The matrix elements of any one-particle operator acting on these wavefunctions can be analytically integrated up to the radial part [G. Gaigalas, O. Scharf, S. Fritzsche, Central European J. Phys. 2 (2004) 720]. The decoupling of the interacting electrons is general, the obtained submatrix element holds all the peculiarities of the operator in question. These so-called submatrix elements are the key to do hyperfine structure calculations. The interaction between the electrons and the atomic nucleus leads to an additional splitting of the fine structure lines, the hyperfine structure. The leading components are the magnetic dipole interaction defining the so-called A factor and the electric quadrupole interaction, defining the so-called B factor. They express the energetic splitting of the spectral lines. Moreover, they are obtained directly by experiments and can be calculated theoretically in an ab initio approach. A semiempirical approach allows the fitting of the radial parts of the wavefunction to the experimentally obtained A and B factors. Method of solution: Extending the existing csf_LS() and asf_LS() to several open shells and implementing a data structure level_LS() for the fine structure level, the atomic environment is defined in MAPLE. It is used in a general approach to decouple the interacting shells for any one-particle operator. Further submatrix elements for the magnetic dipole and electric quadrupole interaction are implemented, allowing to calculate the A and B factors up to the radial part. Several procedures for standard quantities of the hyperfine structure are defined, too. The calculations are accelerated by using a hyper-geometric approach for three, six and nine symbols. Restrictions onto the complexity of the problem: Only atomic state functions in nonrelativistic LS-coupling with states having l⩽3 are supported. Typical running time: The program replies promptly on most requests. The least square fit depends heavily on the number of levels and can take a few minutes.

  9. Evaluation of stratospheric age of air from CF4, C2F6, C3F8, CHF3, HFC-125, HFC-227ea and SF6; implications for the calculations of halocarbon lifetimes, fractional release factors and ozone depletion potentials

    NASA Astrophysics Data System (ADS)

    Leedham Elvidge, Emma; Bönisch, Harald; Brenninkmeijer, Carl A. M.; Engel, Andreas; Fraser, Paul J.; Gallacher, Eileen; Langenfelds, Ray; Mühle, Jens; Oram, David E.; Ray, Eric A.; Ridley, Anna R.; Röckmann, Thomas; Sturges, William T.; Weiss, Ray F.; Laube, Johannes C.

    2018-03-01

    In a changing climate, potential stratospheric circulation changes require long-term monitoring. Stratospheric trace gas measurements are often used as a proxy for stratospheric circulation changes via the mean age of air values derived from them. In this study, we investigated five potential age of air tracers - the perfluorocarbons CF4, C2F6 and C3F8 and the hydrofluorocarbons CHF3 (HFC-23) and HFC-125 - and compare them to the traditional tracer SF6 and a (relatively) shorter-lived species, HFC-227ea. A detailed uncertainty analysis was performed on mean ages derived from these new tracers to allow us to confidently compare their efficacy as age tracers to the existing tracer, SF6. Our results showed that uncertainties associated with the mean age derived from these new age tracers are similar to those derived from SF6, suggesting that these alternative compounds are suitable in this respect for use as age tracers. Independent verification of the suitability of these age tracers is provided by a comparison between samples analysed at the University of East Anglia and the Scripps Institution of Oceanography. All five tracers give younger mean ages than SF6, a discrepancy that increases with increasing mean age. Our findings qualitatively support recent work that suggests that the stratospheric lifetime of SF6 is significantly less than the previous estimate of 3200 years. The impact of these younger mean ages on three policy-relevant parameters - stratospheric lifetimes, fractional release factors (FRFs) and ozone depletion potentials - is investigated in combination with a recently improved methodology to calculate FRFs. Updates to previous estimations for these parameters are provided.

  10. Association between urinary 1-hydroxypyrene and genotoxic effects in coke oven workers

    PubMed Central

    Siwinska, E; Mielzynska, D; Kapka, L

    2004-01-01

    Methods: Blood and urine samples were collected immediately after a shift at the end of a working week from 50 coke oven workers and 50 control workers not exposed to PAHs. Methods included: (1) biomarkers of exposure: urinary 1-hydroxypyrene (HpU), urinary mutagenicity by the plate Salmonella test with strains TA98 and YG1024 after metabolic activation, expressed as mutagenic rate (MR98 and MR1024, respectively), urinary cotinine; and (2) biomarkers of biological effects in peripheral blood lymphocytes (PBL): sister chromatid exchanges (SCE/cell), cells of high frequency of SCE (% HFC), micronuclei (MN/1000 cells), chromosomal aberrations (CA/100 cells), and DNA damage by the Comet assay. Results: Occupational exposure to PAH resulted in significantly increased levels of HpU and mutagenic effect of urine. Median values of these biomarkers in coke oven workers were: 9.0 µmol/mol creatinine for HpU, 2.7 for MR98, and 8.2 for MR1024, compared to the controls: HpU = 0.6 µmol/mol creatinine, MR98 = 1.2, and MR1024 = 5.5. Occupational exposure caused significant induction of SCE, HFC, and MN in coke oven workers: median SCE = 5.9, HFC = 12.0%, MN = 6.0 compared to the controls: 3.9, 5.0%, and 3.0, respectively. No effect of occupational exposure was found in relation to CA and DNA damage measured with the Comet assay. HpU concentration was positively associated with SCE and HFC. The concentration of urinary 1-hydroxypyrene corresponding to a 5% probability of increased SCE was 1.0 µmol/mol creatinine. Conclusions: The occupational exposure to PAHs resulted in measurable biological effects (SCE, HFC, MN). In coke oven workers an increased level of SCE was not observed below the level of 1.0 µmol HpU/mol creatinine. PMID:14985527

  11. Recent trends in global emissions of hydrochlorofluorocarbons and hydrofluorocarbons: reflecting on the 2007 adjustments to the Montreal Protocol.

    PubMed

    Montzka, S A; McFarland, M; Andersen, S O; Miller, B R; Fahey, D W; Hall, B D; Hu, L; Siso, C; Elkins, J W

    2015-05-14

    Global-scale atmospheric measurements are used to investigate the effectiveness of recent adjustments to production and consumption controls on hydrochlorofluorocarbons (HCFCs) under the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) and to assess recent projections of large increases in hydrofluorocarbon (HFC) production and emission. The results show that aggregate global HCFC emissions did not increase appreciably during 2007-2012 and suggest that the 2007 Adjustments to the Montreal Protocol played a role in limiting HCFC emissions well in advance of the 2013 cap on global production. HCFC emissions varied between 27 and 29 kt CFC-11-equivalent (eq)/y or 0.76 and 0.79 GtCO2-eq/y during this period. Despite slower than projected increases in aggregate HCFC emissions since 2007, total emissions of HFCs used as substitutes for HCFCs and chlorofluorocarbons (CFCs) have not increased more rapidly than rates projected [Velders, G. J. M.; Fahey, D. W.; Daniel, J. S.; McFarland, M.; Andersen, S. O. The Large Contribution of Projected HFC Emissions to Future Climate Forcing. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 10949-10954] for 2007-2012. HFC global emission magnitudes related to this substitution totaled 0.51 (-0.03, +0.04) GtCO2-eq/y in 2012, a magnitude about two times larger than emissions reported to the United Nations Framework Convention on Climate Change (UNFCCC) for these HFCs. Assuming accurate reporting to the UNFCCC, the results imply that developing countries (non-Annex I Parties) not reporting to the UNFCCC now account for nearly 50% of global HFC emissions used as substitutes for ozone-depleting substances (ODSs). Global HFC emissions (as CO2-eq) from ODS substitution can be attributed approximately equally to mobile air conditioning, commercial refrigeration, and the sum of all other applications.

  12. U.S. emissions of HFC-134a derived for 2008-2012 from an extensive flask-air sampling network

    NASA Astrophysics Data System (ADS)

    Hu, Lei; Montzka, Stephen A.; Miller, John B.; Andrews, Aryln E.; Lehman, Scott J.; Miller, Benjamin R.; Thoning, Kirk; Sweeney, Colm; Chen, Huilin; Godwin, David S.; Masarie, Kenneth; Bruhwiler, Lori; Fischer, Marc L.; Biraud, Sebastien C.; Torn, Margaret S.; Mountain, Marikate; Nehrkorn, Thomas; Eluszkiewicz, Janusz; Miller, Scot; Draxler, Roland R.; Stein, Ariel F.; Hall, Bradley D.; Elkins, James W.; Tans, Pieter P.

    2015-01-01

    national and regional emissions of HFC-134a are derived for 2008-2012 based on atmospheric observations from ground and aircraft sites across the U.S. and a newly developed regional inverse model. Synthetic data experiments were first conducted to optimize the model assimilation design and to assess model-data mismatch errors and prior flux error covariances computed using a maximum likelihood estimation technique. The synthetic data experiments also tested the sensitivity of derived national and regional emissions to a range of assumed prior emissions, with the goal of designing a system that was minimally reliant on the prior. We then explored the influence of additional sources of error in inversions with actual observations, such as those associated with background mole fractions and transport uncertainties. Estimated emissions of HFC-134a range from 52 to 61 Gg yr-1 for the contiguous U.S. during 2008-2012 for inversions using air transport from Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model driven by the 12 km resolution meteorogical data from North American Mesoscale Forecast System (NAM12) and all tested combinations of prior emissions and background mole fractions. Estimated emissions for 2008-2010 were 20% lower when specifying alternative transport from Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by the Weather Research and Forecasting (WRF) meteorology. Our estimates (for HYSPLIT-NAM12) are consistent with annual emissions reported by U.S. Environmental Protection Agency for the full study interval. The results suggest a 10-20% drop in U.S. national HFC-134a emission in 2009 coincident with a reduction in transportation-related fossil fuel CO2 emissions, perhaps related to the economic recession. All inversions show seasonal variation in national HFC-134a emissions in all years, with summer emissions greater than winter emissions by 20-50%.

  13. Hepatitis B virus infection on male partner has negative impact on in-vitro fertilization

    NASA Astrophysics Data System (ADS)

    Lubis, H. P.; Halim, B.; Adenin, I.; Rusda, M.; Prasetiawan, E.

    2018-03-01

    It is common to see HBV-infected couple seeking for fertility treatment in reproductive medical centers. The effect of hepatitis B virus (HBV) infection on pregnancy outcome after In Vitro Fertilization (IVF) treatment has been a controversy. The study aims this was to evaluate the outcome of in vitro fertilization in couples with the male partner being HBsAg-seropositive. A retrospective analytic study was in HBV-infected and non-HBV infected male partner groups who have been treated with in vitro fertilization (IVF) from October 2016 until May 2017 in HFC IVF Center. From 101 couples, 17 (16.83%) male partners were HBV seropositive. They had similar semen parameters compared to thenon-HBV infected group. Couples with the male partner being HBsAg-seropositive had significantly lower fertilized oocytes and cleaved embryos compared to thenon-HBV infected group. We also found lower clinical pregnancy rate in infected male partner group compared to control group (23.52% vs 51% respectively). Statistically, there was a significant difference in clinical pregnancy rate between HBV-infected group and control group (p<0.05). An hbv-infected male partner may lower the clinical pregnancy rate in couple undergoing IVF treatment. Therefore, the mechanism of impact of HBV infection on IVF outcome needs further exploration.

  14. Hyperfine interaction in K 2Ba[Fe(NO 2) 6

    NASA Astrophysics Data System (ADS)

    Padmakumar, K.; Manoharan, P. T.

    2000-04-01

    Magnetic hyperfine splitting observed in the low temperature Mössbauer spectrum of potassium barium hexanitro ferrate(II), in the absence of any external field, is attributed to the 5T 2g state of the central metal atom further split into a ground 5E g state and a first excited 5B 2g state under a distorted octahedral symmetry in contrast to the earlier prediction of 1A 1g ground state on the basis of room temperature Mössbauer spectral and other properties. The central iron atom is co-ordianted to six nitrito groups (NO 2-), having an oxidation state of +2. The temperature dependence of Mössbauer spectra is explained on the basis of electronic relaxation among the spin-orbit coupled levels of the 5E g ground state. Various kinds of electronic relaxation mechanisms have been compared to explain the proposed mechanism. The observed temperature dependent spectra with varying internal magnetic field and line width can be explained by simple spin lattice relaxation.

  15. Rate Constants for the Reactions of OH with CH(sub 3)Cl, CH(sub 2) C1(sub 2), CHC1(sub 3)and CH(sub 3)Br

    NASA Technical Reports Server (NTRS)

    Hsu, H-J.; DeMore, W.

    1994-01-01

    Rate constants for the reactions of OH with CH3C1, CH2Cl2, CHCl3 and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2)and for CH2Cl2, HFC-161 (CH3CH2F).

  16. Vapor-liquid equilibria for difluoromethane + dichloromethane at 303.2 and 313.2 K and 1,1-difluoroethane + vinyl chloride at 303.2 and 323.2 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, J.S.; Lee, Y.W.; Lee, Y.Y.

    1997-05-01

    Isothermal vapor-liquid equilibria for difluoromethane (HFC-32) + dichloromethane at 303.2 K and 313.2 K and 1,1-difluoroethane (HFC-152a) + vinyl chloride at 303.2 K and 323.2 K were measured in a circulation-type apparatus. The experimental data were correlated with the Peng-Robinson equation of state using the Wong and Sandler mixing rule, and the relevant parameters are presented.

  17. Hyperfine Fields of 181Ta in UFe4Al8

    NASA Astrophysics Data System (ADS)

    Marques, J. G.; Barradas, N. P.; Alves, E.; Ramos, A. R.; Gonçalves, A. P.; da Silva, M. F.; Soares, J. C.

    2001-11-01

    The γ γ Perturbed Angular Correlation technique was used to study the hyperfine interaction of 181Ta at the Hf site(s) in UFe4Al8 at room temperature and 12 K. The data at room temperature are well described by two electric field gradients, while at low temperature two combined hyperfine interactions have to be considered, one with the magnetic hyperfine field collinear with the c-axis and another with the magnetic hyperfine field in the basal plane. The results are compared with previous Mössbauer and neutron diffraction experiments and the lattice site of Hf is discussed.

  18. Hyperfine structure measurements of neutral vanadium by laser-induced fluorescence spectroscopy in the wavelength range from 750 nm to 860 nm

    NASA Astrophysics Data System (ADS)

    Başar, Gü.; Güzelçimen, F.; Öztürk, I. K.; Er, A.; Bingöl, D.; Kröger, S.; Başar, Gö.

    2017-11-01

    The hyperfine structure of 57 spectral lines of neutral vanadium has been investigated using a hollow cathode lamp by laser-induced fluorescence spectroscopy in the wavelength range from 750 nm to 860 nm. New magnetic dipole hyperfine structure constants A have been determined for 14 atomic energy levels and new electric quadrupole hyperfine structure constants B for two levels. Additionally previously published hyperfine structure constants A of 56 levels have been measured again. In five cases, the old A values have been rejected and replaced by improved values.

  19. Revealing weak spin-orbit coupling effects on charge carriers in a π -conjugated polymer

    NASA Astrophysics Data System (ADS)

    Malissa, H.; Miller, R.; Baird, D. L.; Jamali, S.; Joshi, G.; Bursch, M.; Grimme, S.; van Tol, J.; Lupton, J. M.; Boehme, C.

    2018-04-01

    We measure electrically detected magnetic resonance on organic light-emitting diodes made of the polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] at room temperature and high magnetic fields where spectral broadening of the resonance due to spin-orbit coupling (SOC) exceeds that due to the local hyperfine fields. Density-functional-theory calculations on an open-shell model of the material reveal g -tensors of charge-carrier spins in the lowest unoccupied (electron) and highest occupied (hole) molecular orbitals. These tensors are used for simulations of magnetic resonance line shapes. Besides providing the first quantification and direct observation of SOC effects on charge-carrier states in these weakly SO-coupled hydrocarbons, this procedure demonstrates that spin-related phenomena in these materials are fundamentally monomolecular in nature.

  20. Collaborative Research: Polymeric Multiferroics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Shenqiang

    2017-04-20

    The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of molecular charge-transfer crystals has been emerged as a fascinating opportunity for the development of all-organic electrics and spintronics due to its weak hyperfine interaction and low spin-orbit coupling; nevertheless, direct observations of room temperature magnetic spin ordering have yet to be accomplished in organic charge-transfer solids. Furthermore, room temperature magnetoelectric coupling effect hitherto known multiferroics, is anticipated in organic donor-acceptor complexes because of magnetic field effects on charge-transfer dipoles, yet this is also unexplored. The PI seeks to fundamentalmore » understanding of the control of organic crystals to demonstrate and explore room temperature multiferroicity. The experimental results have been verified through the theoretical modeling.« less

  1. Automatic classification of killer whale vocalizations using dynamic time warping.

    PubMed

    Brown, Judith C; Miller, Patrick J O

    2007-08-01

    A set of killer whale sounds from Marineland were recently classified automatically [Brown et al., J. Acoust. Soc. Am. 119, EL34-EL40 (2006)] into call types using dynamic time warping (DTW), multidimensional scaling, and kmeans clustering to give near-perfect agreement with a perceptual classification. Here the effectiveness of four DTW algorithms on a larger and much more challenging set of calls by Northern Resident whales will be examined, with each call consisting of two independently modulated pitch contours and having considerable overlap in contours for several of the perceptual call types. Classification results are given for each of the four algorithms for the low frequency contour (LFC), the high frequency contour (HFC), their derivatives, and weighted sums of the distances corresponding to LFC with HFC, LFC with its derivative, and HFC with its derivative. The best agreement with the perceptual classification was 90% attained by the Sakoe-Chiba algorithm for the low frequency contours alone.

  2. Elevated-Temperature Deformation Properties of a HfC Modified Ti-48Al-2Mn-2Nb Matrix Particulate Composite

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Farmer, S. C.; Bors, D. A.; Ray, R.; Lee, D. S.

    1994-01-01

    Rapid solidification techniques in combination with HIPing have been used to produce Ti-48Al-2Mn-2Nb and a Ti-48Al-2Mn-2Nb+15 wt% HfC composite. While the composite does contain several second phases within the gamma + alpha(sub 2) matrix, none was identified to be HfC. The elevated-temperature properties were determined by constant velocity compression and constant load tensile testing in air between 1000 and 1173 K. Such testing indicated that the elevated temperature strengths of the HfC-modified aluminide was superior to those of the unreinforced matrix with the best 1100 K temperature slow strain rate properties for both materials being achieved after high-temperature annealing prior to testing. Examination of the microstructures after deformation in combination with the measured stress exponents and activation energies suggest that creep resistance of the HfC-modified form is due to solid-solution strengthening from carbon and hafnium rather than the presence of second phases.

  3. Experimental evaluation of automotive air-conditioning using HFC-134a and HC-134a

    NASA Astrophysics Data System (ADS)

    Nasution, Henry; Zainudin, Muhammad Amir; Aziz, Azhar Abdul; Latiff, Zulkarnain Abdul; Perang, Mohd Rozi Mohd; Rahman, Abd Halim Abdul

    2012-06-01

    An experimental study to evaluate the energy consumption of an automotive air conditioning is presented. In this study, these refrigerants will be tested using the experimental rig which simulated the actual cars as a cabin complete with a cooling system component of the actual car that is as the blower, evaporator, condenser, radiators, electric motor, which acts as a vehicle engine, and then the electric motor will operate the compressor using a belt and pulley system, as well as to the alternator will recharge the battery. The compressor working with the fluids HFC-134a and HC-134a and has been tested varying the speed in the range 1000, 1500, 2000 and 2500 rpm. The measurements taken during the one hour experimental periods at 2-minutes interval times for temperature setpoint of 20°C with internal heat loads 0, 500, 700 and 1000 W. The final results of this study show an overall better energy consumption of the HFC-134a compared with the HC-134a.

  4. Final Project Closeout Report for Sprint Hydrogen Fuel Cell (HFC) Deployment Project in California, Gulf Coast and Eastern Seaboard Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenny, Kevin; Bradley, Dwayne

    2015-09-01

    Sprint is one of the telecommunications industry leaders in the deployment of hydrogen fuel cell (HFC) systems to provide backup power for their mission critical wireless network facilities. With several hundred fuel cells commissioned in California, states in the gulf coast region, and along the upper eastern seaboard. A strong incentive for advancing the integration of fuel cells into the Sprint network came through the award of a Department of Energy (DOE) grant focused on Market Transformation activities for project (EE0000486). This grant was funded by the 2009 American Recovery and Reinvestment Act (ARRA). The funding provided by DOE ($7.295M)more » was allocated to support the installation of 260 new HFC systems, equipped with an on-site refillable Medium Pressure Hydrogen Storage Solution (MPHSS), as well as for the conversion of 21 low pressure hydrogen systems to the MPHSS, in hopes of reducing barriers to market acceptance.« less

  5. Are chlorine-free compounds a solution for health problems caused by ozone-depleting substances?

    PubMed

    Valić, F; Beritić-Stahuljak, D

    1996-01-01

    In January 1996, the Government of Croatia and United Nations Environment Programme (UNEP) signed an agreement on the phasing out of ozone-depleting substances in Croatia, making the problem of identifying adequate substitutes a high priority. In this paper, the main ecologic characteristics of chlorine-containing fully halogenated chlorofluorocarbons (CFCs) and partially halogenated chlorofluorocarbons (HCFCs) compared with chlorine-free hydrofluorocarbons (HFCs) are presented. The data showed HCFCs to be ecologically more acceptable than CFCs, particularly regarding the ozone-depleting potential (ODP), and have therefore been proposed as substitutes for CFCs. However, although having lower ODP, long-term they could still harm the stratospheric ozone layer, and are therefore hardly acceptable. HFCs are promising substitutes which, having no chlorine, have no ODP. Six were toxicologically evaluated; three of them were found flammable. Toxicological characteristics of three nonflammable compounds (HFC 125, HFC 134a and HFC 227ea) are presented. Their toxicity, not yet completely evaluated, appears to be low.

  6. The gamut of alkoxy radicals

    NASA Astrophysics Data System (ADS)

    Box, Harold C.; Budzinski, Edwin E.; Freund, Harold G.

    1984-12-01

    It is shown that various radicals exhibiting diverse ESR and ENDOR spectral characteristics are nonetheless a closely related family of alkoxy radicals. The relationship is established by correlating the g tensor with crystal structure and by relating dihedral angles inferred from proton hyperfine couplings to dihedral angles inferred from the g tensor and crystal structure. The analysis also serves to demonstrate that an ESR absorption observed in x-irradiated single crystals of uridine 5'-monophosphate is due to an alkoxy radical.

  7. Dietary fiber prevents obesity-related liver lipotoxicity by modulating sterol-regulatory element binding protein pathway in C57BL/6J mice fed a high-fat/cholesterol diet.

    PubMed

    Han, Shufen; Jiao, Jun; Zhang, Wei; Xu, Jiaying; Wan, Zhongxiao; Zhang, Weiguo; Gao, Xiaoran; Qin, Liqiang

    2015-10-29

    Adequate intake of dietary fibers has proven metabolic and cardiovascular benefits, molecular mechanisms remain still limited. This study was aimed to investigate the effects of cereal dietary fiber on obesity-related liver lipotoxicity in C57BL/6J mice fed a high-fat/cholesterol (HFC) diet and underlying mechanism. Forty-eight adult male C57BL/6J mice were randomly given a reference chow diet, or a high fat/cholesterol (HFC) diet supplemented with or without oat fiber or wheat bran fiber for 24 weeks. Our results showed mice fed oat or wheat bran fiber exhibited lower weight gain, lipid profiles and insulin resistance, compared with HFC diet. The two cereal dietary fibers potently decreased protein expressions of sterol regulatory element binding protein-1 and key factors involved in lipogenesis, including fatty acid synthase and acetyl-CoA carboxylase in target tissues. At molecular level, the two cereal dietary fibers augmented protein expressions of peroxisome proliferator-activated receptor alpha and gamma, liver X receptor alpha, and ATP-binding cassette transporter A1 in target tissues. Our findings indicated that cereal dietary fiber supplementation abrogated obesity-related liver lipotoxicity and dyslipidemia in C57BL/6J mice fed a HFC diet. In addition, the efficacy of oat fiber is greater than wheat bran fiber in normalizing these metabolic disorders and pathological profiles.

  8. Modeling and testing of fractionation effects with refrigerant blends in an actual residential heat pump system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biancardi, F.R.; Pandy, D.R.; Sienel, T.H.

    1997-12-31

    The heating, ventilating, and air-conditioning (HVAC) industry is actively evaluating and testing hydrofluorocarbon (HFC) refrigerant blends as a means of complying with current and impending national and international environmental regulations restricting the use and disposal of conventional chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigerants that contribute to the global ozone-depletion effects. While analyses and system performance tools have shown that HFC refrigerant blends offer certain performance, capacity, and operational advantages, there are significant possible service and operational issues that are raised by the use of blends. Many of these issues occur due to the fractionation of the blends. Therefore, the objectivemore » of this program was to conduct analyses and experimental tests aimed at understanding these issues, develop approaches or techniques to predict these effects, and convey to the industry safe and reliable approaches. As a result, analytical models verified by laboratory data have been developed that predict the fractionation effects of HFC refrigerant blends (1) when exposed to selected POE lubricants, (2) during the system charging process from large liquid containers, and (3) during system start-up, operation, and shutdown within various system components (where two-phase refrigerant exists) and during selected system and component leakage scenarios. Model predictions and experimental results are presented for HFC refrigerant blends containing R-32, R-134a, and R-125 and the data are generalized for various operating conditions and scenarios.« less

  9. Dietary fiber prevents obesity-related liver lipotoxicity by modulating sterol-regulatory element binding protein pathway in C57BL/6J mice fed a high-fat/cholesterol diet

    PubMed Central

    Han, Shufen; Jiao, Jun; Zhang, Wei; Xu, Jiaying; Wan, Zhongxiao; Zhang, Weiguo; Gao, Xiaoran; Qin, Liqiang

    2015-01-01

    Adequate intake of dietary fibers has proven metabolic and cardiovascular benefits, molecular mechanisms remain still limited. This study was aimed to investigate the effects of cereal dietary fiber on obesity-related liver lipotoxicity in C57BL/6J mice fed a high-fat/cholesterol (HFC) diet and underlying mechanism. Forty-eight adult male C57BL/6J mice were randomly given a reference chow diet, or a high fat/choleserol (HFC) diet supplemented with or without oat fiber or wheat bran fiber for 24 weeks. Our results showed mice fed oat or wheat bran fiber exhibtied lower weight gain, lipid profiles and insulin resistance, compared with HFC diet. The two cereal dietary fibers potently decreased protein expressions of sterol regulatory element binding protein-1 and key factors involved in lipogenesis, including fatty acid synthase and acetyl-CoA carboxylase in target tissues. At molecular level, the two cereal dietary fibers augmented protein expressions of peroxisome proliferator-activated receptor alpha and gamma, liver X receptor alpha, and ATP-binding cassette transporter A1 in target tissues. Our findings indicated that cereal dietary fiber supplementation abrogated obesity-related liver lipotoxicity and dyslipidemia in C57BL/6J mice fed a HFC diet. In addition, the efficacy of oat fiber is greater than wheat bran fiber in normalizing these metabolic disorders and pathological profiles. PMID:26510459

  10. Fine- and hyperfine-structure effects in molecular photoionization. II. Resonance-enhanced multiphoton ionization and hyperfine-selective generation of molecular cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch

    2016-07-28

    Resonance-enhanced multiphoton ionization (REMPI) is a widely used technique for studying molecular photoionization and producing molecular cations for spectroscopy and dynamics studies. Here, we present a model for describing hyperfine-structure effects in the REMPI process and for predicting hyperfine populations in molecular ions produced by this method. This model is a generalization of our model for fine- and hyperfine-structure effects in one-photon ionization of molecules presented in Paper I [M. Germann and S. Willitsch, J. Chem. Phys. 145, 044314 (2016)]. This generalization is achieved by covering two main aspects: (1) treatment of the neutral bound-bound transition including the hyperfine structuremore » that makes up the first step of the REMPI process and (2) modification of our ionization model to account for anisotropic populations resulting from this first excitation step. Our findings may be used for analyzing results from experiments with molecular ions produced by REMPI and may serve as a theoretical background for hyperfine-selective ionization experiments.« less

  11. Single crystal X- and Q-band EPR spectroscopy of a binuclear Mn(2)(III,IV) complex relevant to the oxygen-evolving complex of photosystem II.

    PubMed

    Yano, Junko; Sauer, Kenneth; Girerd, Jean-Jacques; Yachandra, Vittal K

    2004-06-23

    The anisotropic g and hyperfine tensors of the Mn di-micro-oxo complex, [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN, were derived by single-crystal EPR measurements at X- and Q-band frequencies. This is the first simulation of EPR parameters from single-crystal EPR spectra for multinuclear Mn complexes, which are of importance in several metalloenzymes; one of them is the oxygen-evolving complex in photosystem II (PS II). Single-crystal [Mn(2)(III,IV)O(2)(phen)(4)](PF(6))(3).CH(3)CN EPR spectra showed distinct resolved (55)Mn hyperfine lines in all crystal orientations, unlike single-crystal EPR spectra of other Mn(2)(III,IV) di-micro-oxo bridged complexes. We measured the EPR spectra in the crystal ab- and bc-planes, and from these spectra we obtained the EPR spectra of the complex along the unique a-, b-, and c-axes of the crystal. The crystal orientation was determined by X-ray diffraction and single-crystal EXAFS (Extended X-ray Absorption Fine Structure) measurements. In this complex, the three crystallographic axes, a, b, and c, are parallel or nearly parallel to the principal molecular axes of Mn(2)(III,IV)O(2)(phen)(4) as shown in the crystallographic data by Stebler et al. (Inorg. Chem. 1986, 25, 4743). This direct relation together with the resolved hyperfine lines significantly simplified the simulation of single-crystal spectra in the three principal directions due to the reduction of free parameters and, thus, allowed us to define the magnetic g and A tensors of the molecule with a high degree of reliability. These parameters were subsequently used to generate the solution EPR spectra at both X- and Q-bands with excellent agreement. The anisotropic g and hyperfine tensors determined by the simulation of the X- and Q-band single-crystal and solution EPR spectra are as follows: g(x) = 1.9887, g(y) = 1.9957, g(z) = 1.9775, and hyperfine coupling constants are A(III)(x) = |171| G, A(III)(y) = |176| G, A(III)(z) = |129| G, A(IV)(x) = |77| G, A(IV)(y) = |74| G, A(IV)(z) = |80| G.

  12. Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins

    NASA Astrophysics Data System (ADS)

    Norris, Leigh Morgan

    Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater than or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f>1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.

  13. Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins

    NASA Astrophysics Data System (ADS)

    Norris, Leigh Morgan

    Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f >1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.

  14. Ultrafast Study of Dynamic Exchange Coupling in Ferromagnet/Oxide/Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Ou, Yu-Sheng

    Spintronics is the area of research that aims at utilizing the quantum mechanical spin degree of freedom of electrons in solid-state materials for information processing and data storage application. Since the discovery of the giant magnetoresistance, the field of spintronics has attracted lots of attention for its numerous potential advantages over contemporary electronics, such as less power consumption, high integration density and non-volatility. The realization of a spin battery, defined by the ability to create spin current without associated charge current, has been a long-standing goal in the field of spintronics. The demonstration of pure spin current in ferromagnet/nonmagnetic material hybrid structures by ferromagnetic resonance spin pumping has defined a thrilling direction for this field. As such, this dissertation targets at exploring the spin and magnetization dynamics in ferromagnet/oxide/semiconductor heterostructures (Fe/MgO/GaAs) using time-resolved optical pump-probe spectroscopy with the long-range goal of understanding the fundamentals of FMR-driven spin pumping. Fe/GaAs heterostructures are complex systems that contain multiple spin species, including paramagnetic spins (GaAs electrons), nuclear spins (Ga and As nuclei) and ferromagnetic spins (Fe). Optical pump-probe studies on their interplay have revealed a number of novel phenomena that has not been explored before. As such they will be the major focus of this dissertation. First, I will discuss the effect of interfacial exchange coupling on the GaAs free-carrier spin relaxation. Temperature- and field-dependent spin-resolved pump-probe studies reveal a strong correlation of the electron spin relaxation with carrier freeze-out, in quantitative agreement with a theoretical interpretation that at low temperatures the free-carrier spin lifetime is dominated by inhomogeneity in the local hyperfine field due to carrier localization. Second, we investigate the impact of tunnel barrier thickness on GaAs electron spin dynamics in Fe/MgO/GaAs heterostructures. Comparison of the Larmor frequency between samples with thick and thin MgO barriers reveals a four-fold variation in exchange coupling strength, and investigation of the spin lifetimes argues that inhomogeneity in the local hyperfine field dominates free-carrier spin relaxation across the entire range of barrier thickness. These results provide additional evidence to support the theory of hyperfine-dominated spin relaxation in GaAs. Third, we investigated the origin and dynamics of an emergent spin population by pump power and magnetic field dependent spin-resolved pump-probe studies. Power dependent study confirms its origin to be filling of electronic states in GaAs, and further field dependent studies reveal the impact of contact hyperfine coupling on the dynamics of electron spins occupying distinct electronic states. Beyond above works, we also pursue optical detection of dynamic spin pumping in Fe/MgO/GaAs heterostructures in parallel. I will discuss the development and progress that we have made toward this goal. This project can be simply divided into two phases. In the first phase, we focused on microwave excitation and optical detection of spin pumping. In the second phase, we focused on all-optical excitation and detection of spin pumping. A number of measurement strategies have been developed and executed in both stages to hunt for a spin pumping signal. I will discuss the preliminary data based upon them.

  15. Comparison of HFC-134a and the ternary blend, Suva MP39, as replacements for the refrigerant, CGC-12

    NASA Astrophysics Data System (ADS)

    Fletcher, Lyn E.

    1993-09-01

    The refrigerant gas CFC-12 has been widely used in Royal Australian Navy (RAN) equipment. With the Montreal protocol phase-out of this and other ozone depleting substances, alternative refrigerant gases must be identified. These replacements would ideally have the same efficiency as CFC-12, cause no health and safety risks and allow changeover to proceed with minimal costs. This paper reviews the attributes of two refrigerant gases, HFC-134a and Suva MP39, which are being considered by the RAN.

  16. NMR studies of field induced magnetism in CeCoIn5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Matthias; Curro, Nicholas J; Young, Ben - Li

    2009-01-01

    Recent Nuclear Magnetic Resonance and elastic neutron scattering experiments have revealed conclusively the presence of static incommensurate magnetism in the field-induced B phase of CeCoIns, We analyze the NMR data assuming the hyperfine coupling to the 1n(2) nuclei is anisotropic and simulate the spectra for several different magnetic structures, The NMR data are consistent with ordered Ce moments along the [001] direction, but are relatively insensitive to the direction of the incommensurate wavevector.

  17. Electron spin resonance of (CO 2 H)CH 2 CH 2 CH(CO 2 H) in irradiated glutaric acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horsfield, A.; Morton, J. R.; Whiffen, D. H.

    It is concluded from electron spin resonance spectra that the radical (CO 2 H)CH 2 CH 2 CH(CO 2 H) remains trapped in a glutaric acid crystal after gamma -irradiation. This radical is found in two different conformations. Approximate hyperfine coupling constants are given for each, although exact interpretation is hindered by the overlapping of spectra. Reasons for the formation of the two forms of the radical are discussed.

  18. Activities report in nuclear physics and particle acceleration

    NASA Astrophysics Data System (ADS)

    Jansen, J. F. W.; Demeijer, R. J.

    1984-04-01

    Research on nuclear resonances; charge transfer; breakup of light and heavy ions; reaction mechanisms of heavy ion collisions; high-spin states; and fundamental symmetries in weak interactions are outlined. Group theoretical methods applied to supersymmetries; phenomenological description of rotation-vibration coupling; a microscopic theory of collective variables; the binding energy of hydrogen adsorbed on stepped platinium; and single electron capture are discussed. Isotopes for nuclear medicine, for off-line nuclear spectroscopy work, and for the study of hyperfine interactions were produced.

  19. Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots.

    PubMed

    Gammon, D; Efros, A L; Kennedy, T A; Rosen, M; Katzer, D S; Park, D; Brown, S W; Korenev, V L; Merkulov, I A

    2001-05-28

    Fine and hyperfine splittings arising from electron, hole, and nuclear spin interactions in the magneto-optical spectra of individual localized excitons are studied. We explain the magnetic field dependence of the energy splitting through competition between Zeeman, exchange, and hyperfine interactions. An unexpectedly small hyperfine contribution to the splitting close to zero applied field is described well by the interplay between fluctuations of the hyperfine field experienced by the nuclear spin and nuclear dipole/dipole interactions.

  20. Observation of EIA in closed and open caesium atomic system

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Ming; Zhao, Yan-Ting; Huang, Tao; Xiao, Lian-Tuan; Jia, Suo-Tang

    2005-04-01

    We present an experimental study on electromagnetically induced absorption (EIA) in the closed transition of a degenerate two-level Cs atomic system. The coupling and probe lasers coupled with the transition 6S1/2F=4 → 6P3/2F'=5 of caesium atom. The signal of EIA was obtained and the frequency detuning and intensity effect of the pumping laser were experimentally investigated. The EIA signal in 6S1/2 F=4 → 6P3/2 F'=4 and 6S1/2 F=4 → 6P3/2 F'=3 open transitions was also obtained. As the repumping laser couples with the transition of 6S1/2 F=3 → 6P3/2 F'=4, the EIA signal is increased due to the hyperfine optical pumping.

  1. Convergence of QM/MM and Cluster Models for the Spectroscopic Properties of the Oxygen-Evolving Complex in Photosystem II.

    PubMed

    Retegan, Marius; Neese, Frank; Pantazis, Dimitrios A

    2013-08-13

    The latest crystal structure of photosystem II at 1.9 Å resolution, which resolves the topology of the Mn4CaO5 oxygen evolving complex (OEC) at atomistic detail, enables a better correlation between structural features and spectroscopic properties than ever before. Building on the refined crystallographic model of the OEC and the protein, we present combined quantum mechanical/molecular mechanical (QM/MM) studies of the spectroscopic properties of the natural catalyst embedded in the protein matrix. Focusing on the S2 state of the catalytic cycle, we examine the convergence of not only structural parameters but also of the intracluster magnetic interactions in terms of exchange coupling constants and of experimentally relevant (55)Mn, (17)O, and (14)N hyperfine coupling constants with respect to QM/MM partitioning using five QM regions of increasing size. This enables us to assess the performance of the method and to probe second sphere effects by identifying amino acid residues that principally affect the spectroscopic properties of the OEC. Comparison between QM-only and QM/MM treatments reveals that whereas QM/MM models converge quickly to stable values, the QM cluster models need to incorporate significantly larger parts of the second coordination sphere and surrounding water molecules to achieve convergence for certain properties. This is mainly due to the sensitivity of the QM-only models to fluctuations in the hydrogen bonding network and ligand acidity. Additionally, a hydrogen bond that is typically omitted in QM-only treatments is shown to determine the hyperfine coupling tensor of the unique Mn(III) ion by regulating the rotation plane of the ligated D1-His332 imidazole ring, the only N-donor ligand of the OEC.

  2. Solving the Tautomeric Equilibrium of Purine Through the Analysis of the Complex Hyperfine Structure of the Four 14N Nuclei

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Uriarte, Iciar; Ecija, Patricia; Favero, Laura B.; Spada, Lorenzo; Calabrese, Camilla; Caminati, Walther

    2016-06-01

    Microwave spectroscopy has been restricted to the investigation of small molecules in the last years. However, with the advent of FTMW and CP-FTMW spectroscopies coupled with laser vaporization techniques it has turned into a very competitive methodology in the studies of moderate-size biomolecules. Here, we present the study of purine, characterized by two aromatic rings, one six- and one five-membered, fused together to give a planar aromatic bicycle. Biologically, it is the mainframe of two of the five nucleobases of DNA and RNA. Two tautomers were observed by FTMW spectroscopy coupled to UV ultrafast laser vaporization system. The population ratio of the two main tautomers [N(7)H]/[N(9)H] is about 1/40 in the gas phase. It contrasts with the solid state where only the N(7)H species is present, or in solution where a mixture of both tautomers is observed. For both species, a full quadrupolar hyperfine analysis has been performed. This has led to the determination of the full sets of diagonal quadrupole coupling constants of the four 14N atoms, which have provided crucial information for the unambiguous identification of both species. T. J. Balle and W. H. Flygare Rev. Sci. Instrum. 52, 33-45, 1981 J.-U. Grabow, W. Stahl and H. Dreizler Rev. Sci. Instrum. 67, 4072-4084, 1996 G. G. Brown, B. D. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman and B. H. Pate Rev. Sci. Instrum. 79, 0531031/1-053103/13, 2008 E. J. Cocinero, A. Lesarri, P. écija, F. J. Basterretxea, J. U. Grabow, J. A. Fernández and F. Castaño Angew. Chem. Int. Ed. 51, 3119-3124, 2012

  3. Trifluoroacetic Acid from Degradation of HCFCs and HFCs: A Three-dimensional Modeling Study

    NASA Technical Reports Server (NTRS)

    Kotamarthi, V. R.; Rodriguez, J. M.; Ko, M. K. W.; Tromp, T. K.; Sze, N. D.

    1998-01-01

    Trifluoroacetic acid (TFA; CF3 COOH) is produced by the degradation of the halocarbon replacements HFC-134a, HCFC-124, and HCFC-123. The formation of TFA occurs by HFC/HCFC reacting with OH to yield CF3COX (X = F or CI), followed by in-cloud hydrolysis of CF3COX to form TFA. The TFA formed in the clouds may be reevaporated but is finally deposited onto the surface by washout or dry deposition. Concern has been expressed about the possible long-term accumulation of TFA in certain aquatic environments, pointing to the need to obtain information on the concentrations of TFA in rainwater over scales ranging from local to continental. Based on projected concentrations for HFC-134a, HCFC-124, and HCFC-123 of 80, 10, and 1 pptv in the year 2010, mass conservation arguments imply an annually averaged global concentration of 0.16 microg/L if washout were the only removal mechanism for TFA. We present 3-D simulations of the HFC/HCFC precursors of TFA that include the rates of formation and deposition of TFA based on assumed future emissions. An established (GISS/Harvard/ UCI) but coarse-resolution (8 deg latitude by 10 deg longitude) chemical transport model was used. The anually averaged rainwater concentration of 0.12 gg/L (global) was calculated for the year 2010, when both washout and dry deposition are included as the loss mechanism for TFA from the atmosphere. For some large regions in midnorthern latitudes, values are larger, 0.15-0.20 microg/L. The highest monthly averaged rainwater concentrations of TFA for northern midlatitudes were calculated for the month of July, corresponding to 0.3-0.45 microg/L in parts of North America and Europe. Recent laboratory experiments have suggested that a substantial amount of vibrationally excited CF3CHFO is produced in the degradation of HFC-134a, decreasing the yield of TFA from this compound by 60%. This decrease would reduce the calculated amounts of TFA in rainwater in the year 2010 by 26%, for the same projected concentrations of precursors.

  4. Trifluoroacetic Acid from Degradation of HCFCs and HFCs: A Three-Dimensional Modeling Study. Appendix P

    NASA Technical Reports Server (NTRS)

    Kotamarthi, V. R.; Rodriquez, J. M.; Ko, M. K. W.; Tromp, T. K.; Sze, N. D.; Prather, Michael J.

    1998-01-01

    Trifluoroacetic acid (TFA; CF3 COOH) is produced by the degradation of the halocarbon replacements HFC-134a, HCFC-124, and HCFC-123. The formation of TFA occurs by HFC/HCFC reacting with OH to yield CF3COX (X = F or CI), followed by in-cloud hydrolysis of CF to form TFA. The TFA formed in the clouds may be reevaporated but is finally deposited onto the surface by washout or dry deposition. Concern has been expressed about the possible long-term accumulation of TFA in certain aquatic environments, pointing to the need to obtain information on the concentrations of TFA in rainwater over scales ranging from local to continental. Based on projected concentrations for HFC-134a, HCFC-124, and HCFC-123 of 80, 10, and 1 pptv in the year 2010, mass conservation arguments imply an annually averaged global concentration of 0.16 micro g/L if washout were the only removal mechanism for TFA. We present 3-D simulations of the HFC/HCFC precursors of TFA that include the rates of formation and deposition of TFA based on assumed future emissions. An established (GISS[Harvard/ UCI) but coarse-resolution (8 deg latitude by 10 deg longitude) chemical transport model was used. The annually averaged rainwater concentration of 0.12 micro g/L (global) was calculated for the year 2010, when both washout and dry deposition are included as the loss mechanism for TFA from the atmosphere. For some large regions in midnorthern latitudes, values are larger. 0.15-0.20 micro g/L. The highest monthly averaged rainwater concentrations of TFA for northern midlatitudes were calculated for the month of July, corresponding to 0.3 - 0.45 micro g/L in parts of North America and Europe. Recent laboratory experiments have suggested that a substantial amount of vibrationally excited CF3CHFO is produced in the degradation of HFC-134a, decreasing the yield of TFA from this compound by 60%. This decrease would reduce the calculated amounts of TFA in rainwater in the year 2010 by 26%, for the same projected concentrations of precursors.

  5. Trifluoroacetic Acid from Degradation of HCFCs and HFCs: A Three-Dimensional Modeling Study

    NASA Technical Reports Server (NTRS)

    Kotamarthi, V. R.; Rodriquez, J. M.; Ko, M. K. W.; Tromp, T. K.; Sze, N. D.

    1998-01-01

    Trifluoroacetic acid (TFA; CF3COOH) is produced by the degradation of the halocarbon replacements HFC-134a, HCFC-124, and HCFC-123. The formation of TFA occurs by HFC/HCFC reacting with OH to yield CF3COX (X = F or CI), followed by in-cloud hydrolysis of CF3COX to form TFA. The TFA formed in the clouds may be reevaporated but is finally deposited onto the surface by washout or dry deposition. Concern has been expressed about the possible long-term accumulation of TFA in certain aquatic environments, pointing to the need to obtain information on the concentrations of TFA in rainwater over scales ranging from local to continental. Based on projected concentrations for HFC-134a, HCFC-124, and HCFC-123 of 80, 10, and 1 pptv in the year 2010, mass conservation arguments imply an annually averaged global concentration of 0.16 micro g/L if washout were the only removal mechanism for TFA. We present 3-D simulations of the HFC/HCFC precursors of TFA that include the rates of formation and deposition of TFA based on assumed future emissions. An established (GISS/Harvard/ UCI) but coarse-resolution (8 deg latitude by 10 deg longitude) chemical transport model was used. The annually averaged rainwater concentration of 0.12 micro g/L (global) was calculated for the year 2010, when both washout and dry deposition are included as the loss mechanism for TFA from the atmosphere. For some large regions in midnorthern latitudes, values are larger, 0.15-0.20 micro g/L. The highest monthly averaged rainwater concentrations of TFA for northern midlatitudes were calculated for the month of July, corresponding to 0.3-0.45 micro g/L in parts of North America and Europe. Recent laboratory experiments have suggested that a substantial amount of vibrationally excited CF3CHFO is produced in the degradation of HFC-134a, decreasing the yield of TFA from this compound by 60%. This decrease would reduce the calculated amounts of TFA in rainwater in the year 2010 by 26%, for the same projected concentrations of precursors.

  6. Medium-chain triglyceride ameliorates insulin resistance and inflammation in high fat diet-induced obese mice.

    PubMed

    Geng, Shanshan; Zhu, Weiwei; Xie, Chunfeng; Li, Xiaoting; Wu, Jieshu; Liang, Zhaofeng; Xie, Wei; Zhu, Jianyun; Huang, Cong; Zhu, Mingming; Wu, Rui; Zhong, Caiyun

    2016-04-01

    The aim of the present study was to investigate the in vivo effects of dietary medium-chain triglyceride (MCT) on inflammation and insulin resistance as well as the underlying potential molecular mechanisms in high fat diet-induced obese mice. Male C57BL/6J mice (n = 24) were fed one of the following three diets for a period of 12 weeks: (1) a modified AIN-76 diet with 5 % corn oil (normal diet); (2) a high-fat control diet (17 % w/w lard and 3 % w/w corn oil, HFC); (3) an isocaloric high-fat diet supplemented with MCT (17 % w/w MCT and 3 % w/w corn oil, HF-MCT). Glucose metabolism was evaluated by fasting blood glucose levels and intraperitoneal glucose tolerance test. Insulin sensitivity was evaluated by fasting serum insulin levels and the index of homeostasis model assessment-insulin resistance. The levels of serum interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α were measured by ELISA, and hepatic activation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways was determined using western blot analysis. Compared to HFC diet, consumption of HF-MCT did not induce body weight gain and white adipose tissue accumulation in mice. HFC-induced increases in serum fasting glucose and insulin levels as well as glucose intolerance were prevented by HF-MCT diet. Meanwhile, HF-MCT resulted in significantly lower serum IL-6 level and higher IL-10 level, and lower expression levels of inducible nitric oxide synthase and cyclooxygenase-2 protein in liver tissues when compared to HFC. In addition, HF-MCT attenuated HFC-triggered hepatic activation of NF-κB and p38 MAPK. Our study demonstrated that MCT was efficacious in suppressing body fat accumulation, insulin resistance, inflammatory response, and NF-κB and p38 MAPK activation in high fat diet-fed mice. These data suggest that MCT may exert beneficial effects against high fat diet-induced insulin resistance and inflammation.

  7. Hyperfine structure in 229gTh3+ as a probe of the 229gTh→ 229mTh nuclear excitation energy.

    PubMed

    Beloy, K

    2014-02-14

    We identify a potential means to extract the 229gTh→ 229mTh nuclear excitation energy from precision microwave spectroscopy of the 5F(5/2,7/2) hyperfine manifolds in the ion 229gTh3+. The hyperfine interaction mixes this ground fine structure doublet with states of the nuclear isomer, introducing small but observable shifts to the hyperfine sublevels. We demonstrate how accurate atomic structure calculations may be combined with the measurement of the hyperfine intervals to quantify the effects of this mixing. Further knowledge of the magnetic dipole decay rate of the isomer, as recently reported, allows an indirect determination of the nuclear excitation energy.

  8. Atmospheric degradation mechanisms of hydrogen containing chlorofluorocarbons (HCFC) and fluorocarbons (HFC)

    NASA Technical Reports Server (NTRS)

    Zellner, Reinhard

    1990-01-01

    The current knowledge of atmospheric degradation of hydrogen containing chlorofluorocarbons (HCFC 22 (CHClF2), HCFC 123 (CHCl2CF3), HCFC 124 (CHClFCF3), HCFC 141b (CFCl2CH3), HCFC 142b (CF2ClCH3)) and fluorocarbons (HFC 125 (CHF2CF3), HFC 134a (CH2FCF3), HFC 152a (CHF2CH3)) is assessed. Except for the initiation reaction by OH radicals, there are virtually no experimental data available concerning the subsequent oxidative breakdown of these molecules. However, from an analogy to the degradation mechanisms of simple alkanes, some useful guidelines as to the expected intermediates and final products can be derived. A noteable exception from this analogy, however, appears for the oxi-radicals. Here, halogen substitution induces new reaction types (C-Cl and C-C bond ruptures) which are unknown to the unsubstituted analogues and which modify the nature of the expected carbonyl products. Based on an evaluation of these processes using estimated bond strength data, the following simplified rules with regards to the chlorine content of the HCFC's may be deduced: (1) HCFC's containing one chlorine atom such as 22 and 142b seem to release their chlorine content essentially instantaneous with the initial attack on the parent by OH radicals, and for HCFC 124, such release is apparently prevented; (2) HCFC's such as 123 and 141b with two chlorine atoms are expected to release only one of these instantaneously; and the second chlorine atom may be stored in potentially long-lived carbonyl compounds such as CF3CClO or CClFO.

  9. Rotation Dynamics Do Not Determine the Unexpected Isotropy of Methyl Radical EPR Spectra.

    PubMed

    Benetis, Nikolas P; Dmitriev, Yurij; Mocci, Francesca; Laaksonen, Aatto

    2015-09-03

    A simple first-principles electronic structure computation, further qc (quantum chemistry) computation, of the methyl radical gives three equal hf (hyperfine) couplings for the three protons with the unpaired electron. The corresponding dipolar tensors were notably rhombic and had different orientations and regular magnitude components, as they should, but what the overall A-tensor was seen by the electron spin is a different story! The final g = (2.002993, 2.002993, 2.002231) tensor and the hf coupling results obtained in vacuum, at the B3LYP/EPRIII level of theory clearly indicate that in particular the above A = (-65.19, -65.19, 62.54) MHz tensor was axial to a first approximation without considering any rotational dynamics for the CH3. This approximation was not applicable, however, for the trifluoromethyl CF3 radical, a heavier and nonplanar rotor with very anisotropic hf coupling, used here for comparison. Finally, a derivation is presented explaining why there is actually no need for the CH3 radicals to consider additional rotational dynamics in order for the electron to obtain an axially symmetric hf (hyperfine) tensor by considering the simultaneous dipolar couplings of the three protons. An additional consequence is an almost isotropic A-tensor for the electron spin of the CH3 radical. To the best of our knowledge, this point has not been discussed in the literature before. The unexpected isotropy of the EPR parameters of CH3 was solely attributed to the rotational dynamics and was not clearly separated from the overall symmetry of the species. The present theoretical results allowed a first explanation of the "forbidden" satellite lines in the CH3 EPR spectrum. The satellites are a fingerprint of the radical rotation, helping thus in distinguishing the CH3 reorientation from quantum rotation at very low temperatures.

  10. Genotoxicity surveillance programme in workers dismantling World War I chemical ammunition.

    PubMed

    Mateuca, R A; Carton, C; Roelants, M; Roesems, S; Lison, D; Kirsch-Volders, M

    2010-06-01

    To evaluate the effectiveness of personal protective measures in a dismantling plant for chemical weapons from World War I of the Belgian Defence. Seventeen NIOSH level B-equipped plant workers exposed to arsenic trichloride (AsCl(3)) in combination with phosgene or hydrogen cyanide (HCN) were compared to 24 NIOSH level C-protected field workers occasionally exposed to genotoxic chemicals (including AsCl(3)-phosgene/HCN) when collecting chemical ammunition, and 19 matched referents. Chromosomal aberrations (CA), micronuclei (MNCB and MNMC), sister chromatid exchanges (SCE) and high frequency cells (HFC) were analysed in peripheral blood lymphocytes. Urinary arsenic levels and genetic polymorphisms in major DNA repair enzymes (hOGG1(326), XRCC1(399), XRCC3(241)) were also assessed. SCE and HFC levels were significantly higher in plant-exposed versus referent subjects, but MNCB and MNMC were not different. MNCB, SCE and HFC levels were significantly higher and MNMC levels significantly lower in field-exposed workers versus referents. AsCl(3) exposure was not correlated with genotoxicity biomarkers. Protective measures for plant-exposed workers appear adequate, but protection for field-exposed individuals could be improved.

  11. Isobaric heat capacity for liquid 1-chloro-1,1-difluoroethane and 1,1-difluoroethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakagawa, Shinsuke; Hori, Tatsuhi; Sato, Haruki

    1993-01-01

    The isobaric heat capacities (C[sub P]) for liquid 1-chloro-1,1-difluoroethane (HCFC-142b) and 1,1-difluoroethane (HFC-152a) have been measured by means of flow calorimetry. For HCFC-142b, 31 C[sub P] values have been measured at temperatures from 276 to 350 K and pressures from 1.0 to 3.0 MPa. For HFC-152a, 36 C[sub P] have been measured at temperature from 276 to 360 K and pressures from 1.0 to 3.2 MPa. The uncertainties are estimated as [plus minus] 13 mK in temperature, [plus minus]3 kPa in pressure, and [plus minus] kPa in pressure, and [plus minus]0.4% for most of the C[sub P] measurements. The puritymore » of samples used for both HCFC-142b and HFC-152a measurements was 99.95 mol%. Correlations of liquid C[sub P] as a function of temperature and pressure have been developed for both refrigerants on the basis of the measurements.« less

  12. Infrared laser induced population transfer and parity selection in 14NH3: A proof of principle experiment towards detecting parity violation in chiral molecules

    NASA Astrophysics Data System (ADS)

    Dietiker, P.; Miloglyadov, E.; Quack, M.; Schneider, A.; Seyfang, G.

    2015-12-01

    We have set up an experiment for the efficient population transfer by a sequential two photon—absorption and stimulated emission—process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference ΔpvE between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν1 and ν3 fundamentals as well as the 2ν4 overtone of 14NH3, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν1, ν3, and 2ν4 levels in the context of previously known data for ν2 and its overtone, as well as ν4, and the ground state. Thus, now, 14N quadrupole coupling constants for all fundamentals and some overtones of 14NH3 are known and can be used for further theoretical analysis.

  13. Infrared laser induced population transfer and parity selection in (14)NH3: A proof of principle experiment towards detecting parity violation in chiral molecules.

    PubMed

    Dietiker, P; Miloglyadov, E; Quack, M; Schneider, A; Seyfang, G

    2015-12-28

    We have set up an experiment for the efficient population transfer by a sequential two photon-absorption and stimulated emission-process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference ΔpvE between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν1 and ν3 fundamentals as well as the 2ν4 overtone of (14)NH3, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν1, ν3, and 2ν4 levels in the context of previously known data for ν2 and its overtone, as well as ν4, and the ground state. Thus, now, (14)N quadrupole coupling constants for all fundamentals and some overtones of (14)NH3 are known and can be used for further theoretical analysis.

  14. Molecular hyperfine fields in organic magnetoresistance devices

    NASA Astrophysics Data System (ADS)

    Giro, Ronaldo; Rosselli, Flávia P.; dos Santos Carvalho, Rafael; Capaz, Rodrigo B.; Cremona, Marco; Achete, Carlos A.

    2013-03-01

    We calculate molecular hyperfine fields in organic magnetoresistance (OMAR) devices using ab initio calculations. To do so, we establish a protocol for the accurate determination of the average hyperfine field Bhf and apply it to selected molecular ions: NPB, TPD, and Alq3. Then, we make devices with precisely the same molecules and perform measurements of the OMAR effect, in order to address the role of hole-transport layer in the characteristic magnetic field B0 of OMAR. Contrary to common belief, we find that molecular hyperfine fields are not only caused by hydrogen nuclei. We also find that dipolar contributions to the hyperfine fields can be comparable to the Fermi contact contributions. However, such contributions are restricted to nuclei located in the same molecular ion as the charge carrier (intramolecular), as extramolecular contributions are negligible.

  15. The nuclear magnetic moment of 208Bi and its relevance for a test of bound-state strong-field QED

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Billowes, J.; Bissell, M. L.; Blaum, K.; Garcia Ruiz, R. F.; Heylen, H.; Malbrunot-Ettenauer, S.; Neyens, G.; Nörtershäuser, W.; Plunien, G.; Sailer, S.; Shabaev, V. M.; Skripnikov, L. V.; Tupitsyn, I. I.; Volotka, A. V.; Yang, X. F.

    2018-04-01

    The hyperfine structure splitting in the 6p3 3/2 4S → 6p2 7 s 1/2 4P transition at 307 nm in atomic 208Bi was measured with collinear laser spectroscopy at ISOLDE, CERN. The hyperfine A and B factors of both states were determined with an order of magnitude improved accuracy. Based on these measurements, theoretical input for the hyperfine structure anomaly, and results from hyperfine measurements on hydrogen-like and lithium-like 209Bi80+,82+, the nuclear magnetic moment of 208Bi has been determined to μ (208Bi) = + 4.570 (10)μN. Using this value, the transition energy of the ground-state hyperfine splitting in hydrogen-like and lithium-like 208Bi80+,82+ and their specific difference of -67.491(5)(148) meV are predicted. This provides a means for an experimental confirmation of the cancellation of nuclear structure effects in the specific difference in order to exclude such contributions as the cause of the hyperfine puzzle, the recently reported 7-σ discrepancy between experiment and bound-state strong-field QED calculations of the specific difference in the hyperfine structure splitting of 209Bi80+,82+.

  16. Electrical control of single hole spins in nanowire quantum dots.

    PubMed

    Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P

    2013-03-01

    The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.

  17. Influence of the nuclear Zeeman effect on mode locking in pulsed semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Beugeling, Wouter; Uhrig, Götz S.; Anders, Frithjof B.

    2017-09-01

    The coherence of the electron spin in a semiconductor quantum dot is strongly enhanced by mode locking through nuclear focusing, where the synchronization of the electron spin to periodic pulsing is slowly transferred to the nuclear spins of the semiconductor material, mediated by the hyperfine interaction between these. The external magnetic field that drives the Larmor oscillations of the electron spin also subjects the nuclear spins to a Zeeman-like coupling, albeit a much weaker one. For typical magnetic fields used in experiments, the energy scale of the nuclear Zeeman effect is comparable to that of the hyperfine interaction, so that it is not negligible. In this work, we analyze the influence of the nuclear Zeeman effect on mode locking quantitatively. Within a perturbative framework, we calculate the Overhauser-field distribution after a prolonged period of pulsing. We find that the nuclear Zeeman effect can exchange resonant and nonresonant frequencies. We distinguish between models with a single type and with multiple types of nuclei. For the latter case, the positions of the resonances depend on the individual g factors, rather than on the average value.

  18. Hyperfine structure measurements of neutral iodine atom (127I) using Fourier Transform Spectrometry

    NASA Astrophysics Data System (ADS)

    Ashok, Chilukoti; Vishwakarma, S. R.; Bhatt, Himal; Ankush, B. K.; Deo, M. N.

    2018-01-01

    We report the hyperfine Structure (hfs) splitting observations of neutral iodine atom (II) in the 6000 - 10,000 cm-1 near infrared spectral region. The measurements were carried out using a high-resolution Fourier Transform Spectrometer (FTS), where an electrodeless discharge lamp (EDL), excited using microwaves, was employed as the light source and InGaAs as the light detector. A specially designed setup was used to lower the plasma temperature of the medium so as to reduce the Doppler width and consequently to increase the spectral resolution of hfs components. A total of 183 lines with hfs splitting have been observed, out of which hfs in 53 spectral lines are reported for the first time. On the basis of hfs analysis, we derived the magnetic dipole and electric quadrupole coupling constants, A and B respectively for 30 even and 30 odd energy levels and are compared with the values available in the literature. New hfs values for 5 even and 4 odd levels are also reported here for the first time.

  19. HETDEX tracker control system design and implementation

    NASA Astrophysics Data System (ADS)

    Beno, Joseph H.; Hayes, Richard; Leck, Ron; Penney, Charles; Soukup, Ian

    2012-09-01

    To enable the Hobby-Eberly Telescope Dark Energy Experiment, The University of Texas at Austin Center for Electromechanics and McDonald Observatory developed a precision tracker and control system - an 18,000 kg robot to position a 3,100 kg payload within 10 microns of a desired dynamic track. Performance requirements to meet science needs and safety requirements that emerged from detailed Failure Modes and Effects Analysis resulted in a system of 13 precision controlled actuators and 100 additional analog and digital devices (primarily sensors and safety limit switches). Due to this complexity, demanding accuracy requirements, and stringent safety requirements, two independent control systems were developed. First, a versatile and easily configurable centralized control system that links with modeling and simulation tools during the hardware and software design process was deemed essential for normal operation including motion control. A second, parallel, control system, the Hardware Fault Controller (HFC) provides independent monitoring and fault control through a dedicated microcontroller to force a safe, controlled shutdown of the entire system in the event a fault is detected. Motion controls were developed in a Matlab-Simulink simulation environment, and coupled with dSPACE controller hardware. The dSPACE real-time operating system collects sensor information; motor commands are transmitted over a PROFIBUS network to servo amplifiers and drive motor status is received over the same network. To interface the dSPACE controller directly to absolute Heidenhain sensors with EnDat 2.2 protocol, a custom communication board was developed. This paper covers details of operational control software, the HFC, algorithms, tuning, debugging, testing, and lessons learned.

  20. Effect of Jahn-Teller ion in zinc sodium sulphate hexahydrate: a case of low hyperfine coupling constant for Cu(II) ion

    NASA Astrophysics Data System (ADS)

    Naidu, K. C.; Shiyamala, C.; Mithira, S.; Natarajan, B.; Venkatesan, R.; Rao, P. S.

    2005-06-01

    Single crystal electron paramagnetic resonance (EPR) studies of Cu(II) doped zinc sodium sulphate hexahydrate are carried out from room temperature (RT) to 123 K. The RT spectra show unresolved hyperfine lines and hence angular variation studies are also carried out at 123 K to obtain spin Hamiltonian parameters. The spin Hamiltonian parameters calculated from the 123 K spectra are: g(11)=2.039, g(22)=2.232, g(33)=2.394, A(11)=5.64 mT, A(22)=4.20 mT, and A(33)=7.94 mT. The g-matrix values at RT and 123 K have matched fairly well with each other. The low hyperfine value (A(33)), obtained at 123 K, has been explained by considering considerable admixture of d(x 2-y 2) ground state with d(z 2) excited state and the delocalization of the unpaired spin density onto the ligands. The admixture coefficients of ground state wave function are: a=0.346, b=0.935, c=0.055, d=0.040, e=-0.040, where a and b correspond to admixture coefficients for d(z 2) and d(x 2-y 2), respectively. Angular variation of Cu(II) resonances in the three orthogonal axes shows that the impurity has entered a substitutional site in the host lattice in place of Zn(II). Bonding parameters, kappa=0.295, P=245.4x10(-4), alpha(2)=0.709, alpha=0.8421 and alpha'=0.6034, have also been calculated to fully characterize the EPR.

  1. A High Resolution Spectroscopic Study of the Nu2 Band of Hydrogen Sulfide and the 1-0 Band of Hydrogen Iodide. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Strow, L. L.

    1981-01-01

    A tunable diode laser spectrometer was constructed and used to study: (1) the effects of centrifugal distortion on the transition frequencies and strengths of the nu sub 2 band of H2S, and (2) nuclear quadrupole hyperfine structure in the 1-0 band of HI. A total of 126 line frequencies and 94 line strengths in the nu sub 2 band of H2S were measured. The average accuracy of the line frequency measurements was + or - 0.0016 cm. The line strengths were measured to an average accuracy of about 3 percent. The effect of the finite spectral width of the diode laser on the measurement of line strengths is discussed. The observed H2S line frequencies were fit to Watson's AS and NS reduced Hamiltonian in both the Ir and IIIr coordinate representations in order to determine the best set of rotation distortion constants for the upper state of the nu sub 2 band. Comparisons of the observed line strengths in this band to rigid rotor line strengths are also presented. Nuclear quadrupole hyperfine structure in the low J lines of the 1-0 band of HI was observed. The upper vibrational state nuclear quadrupole coupling constant, determined from the observed splittings, was -1850 MHz + or - 12 MHz or 1.2 percent + or - 0.7 percent larger than the ground state coupling constant.

  2. HYPERFINE-DEPENDENT gf-VALUES OF Mn I LINES IN THE 1.49-1.80 μm H BAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, M.; Hutton, R.; Zou, Y.

    2015-01-01

    The three Mn I lines at 17325, 17339, and 17349 Å are among the 25 strongest lines (log (gf) > 0.5) in the H band. They are all heavily broadened due to hyperfine structure, and the profiles of these lines have so far not been understood. Earlier studies of these lines even suggested that they were blended. In this work, the profiles of these three infrared (IR) lines have been studied theoretically and compared to experimental spectra to assist in the complete understanding of the solar spectrum in the IR. It is shown that the structure of these lines cannot be describedmore » in the conventional way using the diagonal A and B hyperfine interaction constants. The off-diagonal hyperfine interaction not only has a large impact on the energies of the hyperfine levels, but also introduces a large intensity redistribution among the hyperfine lines, changing the line profiles dramatically. By performing large-scale calculations of the diagonal and off-diagonal hyperfine interaction and the gf-values between the upper and lower hyperfine levels and using a semi-empirical fitting procedure, we achieved agreement between our synthetic and experimental spectra. Furthermore, we compare our results with observations of stellar spectra. The spectra of the Sun and the K1.5 III red giant star Arcturus were modeled in the relevant region, 1.73-1.74 μm, using our theoretically predicted gf-values and energies for each individual hyperfine line. Satisfactory fits were obtained and clear improvements were found using our new data compared with the old available Mn I data. A complete list of energies and gf-values for all the 3d {sup 5}4s({sup 7} S)4d e{sup 6}D - 3d {sup 5}4s({sup 7} S)4f w{sup 6}F hyperfine lines are available as supporting material, whereas only the stronger lines are presented and discussed in detail in this paper.« less

  3. Stochastic hyperfine interactions modeling library

    NASA Astrophysics Data System (ADS)

    Zacate, Matthew O.; Evenson, William E.

    2011-04-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When interactions fluctuate at rates comparable to the time scale of a hyperfine method, there is a loss in signal coherence, and spectra are damped. The degree of damping can be used to determine fluctuation rates, provided that theoretical expressions for spectra can be derived for relevant physical models of the fluctuations. SHIML provides routines to help researchers quickly develop code to incorporate stochastic models of fluctuating hyperfine interactions in calculations of hyperfine spectra. Solution method: Calculations are based on the method for modeling stochastic hyperfine interactions for PAC by Winkler and Gerdau [5]. The method is extended to include other hyperfine methods following the work of Dattagupta [6]. The code provides routines for reading model information from text files, allowing researchers to develop new models quickly without the need to modify computer code for each new model to be considered. Restrictions: In the present version of the code, only methods that measure the hyperfine interaction on one probe spin state, such as PAC, μSR, and NMR, are supported. Running time: Varies

  4. Angular-momentum couplings in ultra-long-range giant dipole molecules

    NASA Astrophysics Data System (ADS)

    Stielow, Thomas; Scheel, Stefan; Kurz, Markus

    2018-02-01

    In this article we extend the theory of ultra-long-range giant dipole molecules, formed by an atom in a giant dipole state and a ground-state alkali-metal atom, by angular-momentum couplings known from recent works on Rydberg molecules. In addition to s -wave scattering, the next higher order of p -wave scattering in the Fermi pseudopotential describing the binding mechanism is considered. Furthermore, the singlet and triplet channels of the scattering interaction as well as angular-momentum couplings such as hyperfine interaction and Zeeman interactions are included. Within the framework of Born-Oppenheimer theory, potential energy surfaces are calculated in both first-order perturbation theory and exact diagonalization. Besides the known pure triplet states, mixed-spin character states are obtained, opening up a whole new landscape of molecular potentials. We determine exact binding energies and wave functions of the nuclear rotational and vibrational motion numerically from the various potential energy surfaces.

  5. The effect of electromagnetically induced transparency in a potassium nanocell

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Amiryan, A.; Leroy, C.; Vartanyan, T. A.; Sarkisyan, D.

    2017-07-01

    The effect of electromagnetically induced transparency (EIT) has been experimentally implemented for the first time for the (4 S 1/2-4 P 1/2-4 S 1/2) Λ-system of potassium atom levels in a nanocell with a 770-nm-thick column of atomic vapor. It is shown that, at such a small thickness of the vapor column, the EIT resonance can be observed only when the coupling-laser frequency is in exact resonance with the frequency of the corresponding atomic transition. The EIT resonance disappears even if the coupling-laser frequency differs slightly (by 50 MHz) from that of the corresponding atomic transition, which is due to the high thermal velocity of K atoms. The EIT resonance and related velocity selective optical pumping resonances caused by optical pumping (formed by the coupling) can be simultaneously recorded because of the small ( 462 MHz) hyperfine splitting of the lower 4 S 1/2 level.

  6. New botanical drug, HL tablet, reduces hepatic fat as measured by magnetic resonance spectroscopy in patients with nonalcoholic fatty liver disease: A placebo-controlled, randomized, phase II trial.

    PubMed

    Jeong, Jae Yoon; Sohn, Joo Hyun; Baek, Yang Hyun; Cho, Yong Kyun; Kim, Yongsoo; Kim, Hyeonjin

    2017-08-28

    To evaluate the efficacy and safety of HL tablet extracted from magnolia officinalis for treating patients with nonalcoholic fatty liver disease (NAFLD). Seventy-four patients with NAFLD diagnosed by ultrasonography were randomly assigned to 3 groups given high dose (400 mg) HL tablet, low dose (133.4 mg) HL tablet and placebo, respectively, daily for 12 wk. The primary endpoint was post-treatment change of hepatic fat content (HFC) measured by magnetic resonance spectroscopy. Secondary endpoints included changes of serum aspartate aminotransferase, alanine aminotransferase (ALT), cholesterol, triglyceride, free fatty acid, homeostasis model assessment-estimated insulin resistance, and body mass index (BMI). The mean HFC of the high dose HL group, but not of the low dose group, declined significantly after 12 wk of treatment (high dose vs placebo, P = 0.033; low dose vs placebo, P = 0.386). The mean changes of HFC from baseline at week 12 were -1.7% ± 3.1% in the high dose group ( P = 0.018), -1.21% ± 4.97% in the low dose group ( P = 0.254) and 0.61% ± 3.87% in the placebo group (relative changes compared to baseline, high dose were: -12.1% ± 23.5%, low dose: -3.2% ± 32.0%, and placebo: 7.6% ± 44.0%). Serum ALT levels also tended to decrease in the groups receiving HL tablet while other factors were unaffected. There were no moderate or severe treatment-related safety issues during the study. HL tablet is effective in reducing HFC without any negative lipid profiles, BMI changes and adverse effects.

  7. New botanical drug, HL tablet, reduces hepatic fat as measured by magnetic resonance spectroscopy in patients with nonalcoholic fatty liver disease: A placebo-controlled, randomized, phase II trial

    PubMed Central

    Jeong, Jae Yoon; Sohn, Joo Hyun; Baek, Yang Hyun; Cho, Yong Kyun; Kim, Yongsoo; Kim, Hyeonjin

    2017-01-01

    AIM To evaluate the efficacy and safety of HL tablet extracted from magnolia officinalis for treating patients with nonalcoholic fatty liver disease (NAFLD). METHODS Seventy-four patients with NAFLD diagnosed by ultrasonography were randomly assigned to 3 groups given high dose (400 mg) HL tablet, low dose (133.4 mg) HL tablet and placebo, respectively, daily for 12 wk. The primary endpoint was post-treatment change of hepatic fat content (HFC) measured by magnetic resonance spectroscopy. Secondary endpoints included changes of serum aspartate aminotransferase, alanine aminotransferase (ALT), cholesterol, triglyceride, free fatty acid, homeostasis model assessment-estimated insulin resistance, and body mass index (BMI). RESULTS The mean HFC of the high dose HL group, but not of the low dose group, declined significantly after 12 wk of treatment (high dose vs placebo, P = 0.033; low dose vs placebo, P = 0.386). The mean changes of HFC from baseline at week 12 were -1.7% ± 3.1% in the high dose group (P = 0.018), -1.21% ± 4.97% in the low dose group (P = 0.254) and 0.61% ± 3.87% in the placebo group (relative changes compared to baseline, high dose were: -12.1% ± 23.5%, low dose: -3.2% ± 32.0%, and placebo: 7.6% ± 44.0%). Serum ALT levels also tended to decrease in the groups receiving HL tablet while other factors were unaffected. There were no moderate or severe treatment-related safety issues during the study. CONCLUSION HL tablet is effective in reducing HFC without any negative lipid profiles, BMI changes and adverse effects. PMID:28932090

  8. Social accountability in primary health care in West and Central Africa: exploring the role of health facility committees.

    PubMed

    Lodenstein, Elsbet; Mafuta, Eric; Kpatchavi, Adolphe C; Servais, Jean; Dieleman, Marjolein; Broerse, Jacqueline E W; Barry, Alpha Amadou Bano; Mambu, Thérèse M N; Toonen, Jurrien

    2017-06-13

    Social accountability has been emphasised as an important strategy to increase the quality, equity, and responsiveness of health services. In many countries, health facility committees (HFCs) provide the accountability interface between health providers and citizens or users of health services. This article explores the social accountability practices facilitated by HFCs in Benin, Guinea and the Democratic Republic of Congo. The paper is based on a cross-case comparison of 11 HFCs across the three countries. The HFCs were purposefully selected based on the (past) presence of community participation support programs. The cases were derived from qualitative research involving document analysis as well as interviews and focus group discussions with health workers, citizens, committee members, and local authorities. Most HFCs facilitate social accountability by engaging with health providers in person or through meetings to discuss service failures, leading to changes in the quality of services, such as improved health worker presence, the availability of night shifts, the display of drug prices and replacement of poorly functioning health workers. Social accountability practices are however often individualised and not systematic, and their success depends on HFC leadership and synergy with other community structures. The absence of remuneration for HFC members does not seem to affect HFC engagement in social accountability. Most HFCs in this study offer a social accountability forum, but the informal and non-systematic character and limited community consultation leave opportunities for the exclusion of voices of marginalised groups. More inclusive, coherent and authoritative social accountability practices can be developed by making explicit the mandate of HFC in the planning, monitoring, and supervision of health services; providing instruments for organising local accountability processes; strengthening opportunities for community input and feedback; and strengthening links to formal administrative accountability mechanisms in the health system.

  9. Quantifying India's HFC emissions from whole-air samples collected on the UK-India Monsoon campaign

    NASA Astrophysics Data System (ADS)

    Say, Daniel; Ganesan, Anita; O'Doherty, Simon; Bauguitte, Stephane; Rigby, Matt; Lunt, Mark

    2017-04-01

    With a population exceeding 1 billion and a rapidly expanding economy, greenhouse gas (GHG) emissions from India are of global significance. As of 2010, India's anthropogenic GHG emissions accounted for 5.6% of the global total, with this share predicted to grow significantly in the coming decades. We focus here on hydrofluorocarbons (HFCs), a diverse range of potent GHGs, whose role as replacements for ozone-depleting CFCs and HCFCs in air-conditioning and refrigeration applications (among others) has led to rapid atmospheric accumulation. Recent efforts to reduce their consumption (and subsequent emission) culminated in an amendment to the Montreal Protocol; member states are now required to phase-down their use of HFCs, with the first cuts planned for 2019. Despite the potential climate implications, atmospheric measurements of HFCs in India, required for quantifying their emissions using top-down inverse methods, have not previously existed. Here we present the first Indian hydrofluorocarbon (HFC) observations, obtained during two months of low altitude (<2000 m) flights. Of the 176 whole air samples collected on board the UK's NERC-FAAM (Facility for Airborne Atmospheric Measurements) research aircraft, the majority were obtained above the Indo-Gangetic Plains of Northern India, where population density is greatest. Using a small subset of samples filled above the Arabian Sea, we derive compound specific baselines, to which the remaining samples are compared. Significant mole fraction enhancements are observed for all major HFCs, indicating the presence of regional emissions sources. Little enhancement is observed in the concentration of various HFC predecessors, including CFCs, suggesting India's success in phasing out the majority of ozone depleting substances. Using these atmospheric observations and the NAME (Numerical Atmospheric dispersion Modelling Environment) atmospheric transport model, we present the first regional HFC flux estimates for India.

  10. Developmental conditioning of endothelium-derived hyperpolarizing factor-mediated vasorelaxation

    PubMed Central

    Stead, Rebecca; Musa, Moji G.; Bryant, Claire L.; Lanham, Stuart A.; Johnston, David A.; Reynolds, Richard; Torrens, Christopher; Fraser, Paul A.; Clough, Geraldine F.

    2016-01-01

    Objectives: The endothelium maintains vascular homeostasis through the release of endothelium-derived relaxing factors (EDRF) and endothelium-derived hyperpolarization (EDH). The balance in EDH : EDRF is disturbed in cardiovascular disease and may also be susceptible to developmental conditioning through exposure to an adverse uterine environment to predispose to later risk of hypertension and vascular disease. Methods: Developmentally conditioned changes in EDH : EDRF signalling pathways were investigated in cremaster arterioles (18–32 μm diameter) and third-order mesenteric arteries of adult male mice offspring of dams fed either a fat-rich (high fat, HF, 45% energy from fat) or control (C, 10% energy from fat) diet. After weaning, offspring either continued on high fat or were placed on control diets to give four dietary groups (C/C, HF/C, C/HF, and HF/HF) and studied at 15 weeks of age. Results: EDH via intermediate (IKCa) and small (SKca) conductance calcium-activated potassium channels contributed less than 10% to arteriolar acetylcholine-induced relaxation in in-situ conditioned HF/C offspring compared with ∼60% in C/C (P < 0.01). The conditioned reduction in EDH signalling in HF/C offspring was reversed in offspring exposed to a high-fat diet both before and after weaning (HF/HF, 55%, P < 0.01 vs. HF/C). EDH signalling was unaffected in arterioles from C/HF offspring. The changes in EDH : EDRF were associated with altered endothelial cell expression and localization of IKCa channels. Conclusion: This is the first evidence that EDH-mediated microvascular relaxation is susceptible to an adverse developmental environment through down-regulation of the IKCa signalling pathway. Conditioned offspring exposed to a ‘second hit’ (HF/HF) exhibit adaptive vascular mechanisms to preserve dilator function. PMID:26682783

  11. Developmental conditioning of endothelium-derived hyperpolarizing factor-mediated vasorelaxation.

    PubMed

    Stead, Rebecca; Musa, Moji G; Bryant, Claire L; Lanham, Stuart A; Johnston, David A; Reynolds, Richard; Torrens, Christopher; Fraser, Paul A; Clough, Geraldine F

    2016-03-01

    The endothelium maintains vascular homeostasis through the release of endothelium-derived relaxing factors (EDRF) and endothelium-derived hyperpolarization (EDH). The balance in EDH : EDRF is disturbed in cardiovascular disease and may also be susceptible to developmental conditioning through exposure to an adverse uterine environment to predispose to later risk of hypertension and vascular disease. Developmentally conditioned changes in EDH : EDRF signalling pathways were investigated in cremaster arterioles (18-32  μm diameter) and third-order mesenteric arteries of adult male mice offspring of dams fed either a fat-rich (high fat, HF, 45% energy from fat) or control (C, 10% energy from fat) diet. After weaning, offspring either continued on high fat or were placed on control diets to give four dietary groups (C/C, HF/C, C/HF, and HF/HF) and studied at 15 weeks of age. EDH via intermediate (IKCa) and small (SKca) conductance calcium-activated potassium channels contributed less than 10% to arteriolar acetylcholine-induced relaxation in in-situ conditioned HF/C offspring compared with ∼60% in C/C (P < 0.01). The conditioned reduction in EDH signalling in HF/C offspring was reversed in offspring exposed to a high-fat diet both before and after weaning (HF/HF, 55%, P < 0.01 vs. HF/C). EDH signalling was unaffected in arterioles from C/HF offspring. The changes in EDH : EDRF were associated with altered endothelial cell expression and localization of IKCa channels. This is the first evidence that EDH-mediated microvascular relaxation is susceptible to an adverse developmental environment through down-regulation of the IKCa signalling pathway. Conditioned offspring exposed to a 'second hit' (HF/HF) exhibit adaptive vascular mechanisms to preserve dilator function.

  12. Influence of GSTM1 and GSTT1 genotypes and confounding factors on the frequency of sister chromatid exchange and micronucleus among road construction workers.

    PubMed

    Kumar, Anil; Yadav, Anita; Giri, Shiv Kumar; Dev, Kapil; Gautam, Sanjeev Kumar; Gupta, Ranjan; Aggarwal, Neeraj

    2011-07-01

    In the present study, we have investigated the influence of polymorphism of GSTM1 and GSTT1 genes and confounding factors such as age, sex, exposure duration and consumption habits on cytogenetic biomarkers. Frequency of sister chromatid exchanges (SCEs), high frequency cell (HFC) and cytokinesis blocked micronuclei (CBMN) were evaluated in peripheral blood lymphocytes of 115 occupationally exposed road construction workers and 105 unexposed individuals. The distribution of null and positive genotypes of glutathione-S transferase gene was evaluated by multiplex PCR among control and exposed subjects. An increased frequency of CBMN (7.03±2.08); SCE (6.95±1.76) and HFC (6.28±1.69) were found in exposed subjects when compared to referent (CBMN - 3.35±1.10; SCE - 4.13±1.30 and HFC - 3.98±1.56). These results were found statistically significant at p<0.05. When the effect of confounding factors on the frequency of studied biomarkers was evaluated, a strong positive interaction was found. The individuals having GSTM1 and GSTT1 null genotypes had higher frequency of CBMN, SCE and HFC. The association between GSTM1 and GSTT1 genotypes and studied biomarkers was found statistically significant at p<0.05. Our findings suggest that individuals having null type of GST are more susceptible to cytogenetic damage by occupational exposure regardless of confounding factors. There is a significant effect of polymorphism of these genes on cytogenetic biomarkers which are considered as early effects of genotoxic carcinogens. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Global and regional emissions of HFC-125 (CHF2CF3) from in situ and air archive atmospheric observations at AGAGE and SOGE observatories

    NASA Astrophysics Data System (ADS)

    O'Doherty, S.; Cunnold, D. M.; Miller, B. R.; Mühle, J.; McCulloch, A.; Simmonds, P. G.; Manning, A. J.; Reimann, S.; Vollmer, M. K.; Greally, B. R.; Prinn, R. G.; Fraser, P. J.; Steele, L. P.; Krummel, P. B.; Dunse, B. L.; Porter, L. W.; Lunder, C. R.; Schmidbauer, N.; Hermansen, O.; Salameh, P. K.; Harth, C. M.; Wang, R. H. J.; Weiss, R. F.

    2009-12-01

    High-frequency, in situ observations from the Advanced Global Atmospheric Gases Experiment (AGAGE) and System for Observation of halogenated Greenhouse gases in Europe (SOGE) networks for the period 1998 to 2008, combined with archive flask measurements dating back to 1978, have been used to capture the rapid growth of HFC-125 (CHF2CF3) in the atmosphere. HFC-125 is the fifth most abundant HFC, and it currently makes the third largest contribution of the HFCs to atmospheric radiative forcing. At the beginning of 2008 the global average was 5.6 ppt in the lower troposphere and the growth rate was 16% yr-1. The extensive observations have been combined with a range of modeling techniques to derive global emission estimates in a top-down approach. It is estimated that 21 kt were emitted globally in 2007, and the emissions are estimated to have increased 15% yr-1 since 2000. These estimates agree within approximately 20% with values reported to the United Nations Framework Convention on Climate Change (UNFCCC) provided that estimated emissions from East Asia are included. Observations of regionally polluted air masses at individual AGAGE sites have been used to produce emission estimates for Europe (the EU-15 countries), the United States, and Australia. Comparisons between these top-down estimates and bottom-up estimates based on reports by individual countries to the UNFCCC show a range of approximately four in the differences. This process of independent verification of emissions, and an understanding of the differences, is vital for assessing the effectiveness of international treaties, such as the Kyoto Protocol.

  14. Total environmental warming impact (TEWI) calculations for alternative automative air-conditioning systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sand, J.R.; Fischer, S.K.

    1997-01-01

    The Montreal Protocol phase-out of chlorofluorocarbons (CFCs) has required manufacturers to develop refrigeration and air-conditioning systems that use refrigerants that can not damage stratospheric ozone. Most refrigeration industries have adapted their designs to use hydrochlorofluorocarbon (HCFC) or hydrofluorocarbon (HFC) refrigerants; new automobile air- conditioning systems use HFC-134a. These industries are now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants on global warming. Automobile air-conditioning has three separate impacts on global warming; (1) the effects of refrigerant inadvertently released to the atmosphere from accidents, servicing, and leakage; (2) the efficiency of the cooling equipmentmore » (due to the emission of C0{sub 2} from burning fuel to power the system); and (3) the emission of C0{sub 2} from burning fuel to transport the system. The Total Equivalent Warming Impact (TEWI) is an index that should be used to compare the global warming effects of alternative air-conditioning systems because it includes these contributions from the refrigerant, cooling efficiency, and weight. This paper compares the TEWI of current air-conditioning systems using HFC-134a with that of transcritical vapor compression system using carbon dioxide and systems using flammable refrigerants with secondary heat transfer loops. Results are found to depend on both climate and projected efficiency of C0{sub 2}systems. Performance data on manufacturing prototype systems are needed to verify the potential reductions in TEWI. Extensive field testing is also required to determine the performance, reliability, and ``serviceability`` of each alternative to HFC-134a to establish whether the potential reduction of TEWI can be achieved in a viable consumer product.« less

  15. 57Fe Mössbauer study of unusual magnetic structure of multiferroic 3R-AgFeO2

    NASA Astrophysics Data System (ADS)

    Sobolev, A.; Rusakov, V.; Moskvin, A.; Gapochka, A.; Belik, A.; Glazkova, I.; Akulenko, A.; Demazeau, G.; Presniakov, I.

    2017-07-01

    We report new results of a 57Fe Mössbauer study of hyperfine magnetic interactions in the layered multiferroic 3R-AgFeO2 demonstrating two magnetic phase transitions at T N1 and T N2. The asymptotic value β *  ≈  0.34 for the critical exponent obtained from the temperature dependence of the hyperfine field H hf(T) at 57Fe the nuclei below T N1  ≈  14 K indicates that 3R-AgFeO2 shows quasi-3D critical behavior. The spectra just above T N1 (T N1  <  T  <  T  *  ≈  41 K) demonstrate a relaxation behavior due to critical spin fluctuations which indicates the occurrence of short-range correlations. At the intermediate temperature range, T N2  <  T  <  T N1, the 57Fe Mössbauer spectra are described in terms of collinear spin-density-waves (SDW) with the inclusion of many high-order harmonics, indicating that the real magnetic structure of the ferrite appears to be more complicated than a pure sinusoidally modulated SDW. Below T  <  T N2  ≈  9 K, the hyperfine field H hf reveals a large spatial anisotropy (ΔH anis  ≈  30 kOe) which is related with a local intra-cluster (FeO6) spin-dipole term that implies a conventional contribution of the polarized oxygen ions. We proposed a simple two-parametric formula to describe the dependence of H anis on the distortions of the (FeO6) clusters. Analysis of different mechanisms of spin and hyperfine interactions in 3R-AgFeO2 and its structural analogue CuFeO2 points to a specific role played by the topology of the exchange coupling and the oxygen polarization in the delafossite-like structures.

  16. The hyperfine excitation of OH radicals by He

    NASA Astrophysics Data System (ADS)

    Marinakis, Sarantos; Kalugina, Yulia; Lique, François

    2016-04-01

    Hyperfine-resolved collisions between OH radicals and He atoms are investigated using quantum scattering calculations and the most recent ab initio potential energy surface, which explicitly takes into account the OH vibrational motion. Such collisions play an important role in astrophysics, in particular in the modelling of OH masers. The hyperfine-resolved collision cross sections are calculated for collision energies up to 2500 cm-1 from the nuclear spin free scattering S-matrices using a recoupling technique. The collisional hyperfine propensities observed are discussed. As expected, the results from our work suggest that there is a propensity for collisions with ΔF = Δj. The new OH-He hyperfine cross sections are expected to significantly help in the modelling of OH masers from current and future astronomical observations. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.

  17. Electron paramagnetic resonance of gamma-irradiated single crystals of 3-nitroacetanilide

    NASA Astrophysics Data System (ADS)

    Aşik, Biray

    2008-06-01

    The electron paramagnetic resonance of single crystals of 3-nitroacetanilide has been observed and analyzed for different orientations of the crystal in the magnetic field, after being damaged at 300 K by γ-irradiation. The crystals have been investigated between 123 and 300 K. The spectra were found to be temperature independent. The irradiation of 3-nitroacetanilide by γ-rays produces radicals at the nitrogen atoms in the molecule. The principal values of the hyperfine coupling tensor of the unpaired electron and the principal values of the g-tensor were determined.

  18. Hyperfine-Structure-Induced Depolarization of Impulsively Aligned I2 Molecules

    NASA Astrophysics Data System (ADS)

    Thomas, Esben F.; Søndergaard, Anders A.; Shepperson, Benjamin; Henriksen, Niels E.; Stapelfeldt, Henrik

    2018-04-01

    A moderately intense 450 fs laser pulse is used to create rotational wave packets in gas phase I2 molecules. The ensuing time-dependent alignment, measured by Coulomb explosion imaging with a delayed probe pulse, exhibits the characteristic revival structures expected for rotational wave packets but also a complex nonperiodic substructure and decreasing mean alignment not observed before. A quantum mechanical model attributes the phenomena to coupling between the rotational angular momenta and the nuclear spins through the electric quadrupole interaction. The calculated alignment trace agrees very well with the experimental results.

  19. Enolization of acetone in superheated water detected via radical formation.

    PubMed

    Ghandi, Khashayar; Addison-Jones, Brenda; Brodovitch, Jean-Claude; McCollum, Brett M; McKenzie, Iain; Percival, Paul W

    2003-08-13

    Muoniated free radicals have been detected in muon-irradiated aqueous solutions of acetone at high temperatures and pressures. At temperatures below 250 degrees C, the radical product is consistent with muonium addition to the keto form of acetone. However, at higher temperatures, a different radical was detected, which is attributed to muonium addition to the enol form. Muon hyperfine coupling constants have been determined for both radicals over a wide range of temperatures, significantly extending the range of conditions under which these radicals and the keto-enol equilibrium have been studied.

  20. Measure synchronization in a spin-orbit-coupled bosonic Josephson junction

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Yuan; Liu, Jie; Fu, Li-Bin

    2015-11-01

    We present measure synchronization (MS) in a bosonic Josephson junction with spin-orbit coupling. The two atomic hyperfine states are coupled by a Raman dressing scheme, and they are regarded as two orientations of a pseudo-spin-1 /2 system. A feature specific to a spin-orbit-coupled (SOC) bosonic Josephson junction is that the transition from non-MS to MS dynamics can be modulated by Raman laser intensity, even in the absence of interspin atomic interaction. A phase diagram of non-MS and MS dynamics as functions of Raman laser intensity and Josephson tunneling amplitude is presented. Taking into account interspin atomic interactions, the system exhibits MS breaking dynamics resulting from the competition between intraspin and interspin atomic interactions. When interspin atomic interactions dominate in the competition, the system always exhibits MS dynamics. For interspin interaction weaker than intraspin interaction, a window for non-MS dynamics is present. Since SOC Bose-Einstein condensates provide a powerful platform for studies on physical problems in various fields, the study of MS dynamics is valuable in researching the collective coherent dynamical behavior in a spin-orbit-coupled bosonic Josephson junction.

  1. Characterization of RPC operation with new environmental friendly mixtures for LHC application and beyond

    NASA Astrophysics Data System (ADS)

    Guida, R.; Capeans, M.; Mandelli, B.

    2016-07-01

    The large muon trigger systems based on Resistive Plate Chambers (RPC) at the LHC experiments are currently operated with R134a based mixture. Unfortunately R134a is considered a greenhouse gas with high impact on the enviroment and therefore will be subject to regulations aiming in strongly reducing the available quantity on the market. The immediat effects might be instability on the price and incertitude in the product availability. Alternative gases (HFO-1234yf and HFO-1234ze) have been already identified by industry for specific applications as replacement of R134a. Moreover, HFCs similar to the R134a but with lower global warming potential (GWP) are already available (HFC-245fa, HFC-32, HFC-152a). The present contribution describes the results obtained with RPCs operated with new enviromemtal friendly gases. A particular attention has been addressed to the possibility of maintening the current operation conditions (i.e. currently used applied voltage and front-end electronics) in order to be able to use a new mixture for RPC systems even where the common infrastructure (i.e. high voltage and detector components) cannot be replaced for operation at higher applied voltages.

  2. Aberrant functional connectivity in Papez circuit correlates with memory performance in cognitively intact middle-aged APOE4 carriers.

    PubMed

    Li, Wenjun; Antuono, Piero G; Xie, Chunming; Chen, Gang; Jones, Jennifer L; Ward, B Douglas; Singh, Suraj P; Franczak, Malgorzata B; Goveas, Joseph S; Li, Shi-Jiang

    2014-08-01

    The main objective of this study is to detect the early changes in resting-state Papez circuit functional connectivity using the hippocampus as the seed, and to determine the associations between altered functional connectivity (FC) and the episodic memory performance in cognitively intact middle-aged apolipoprotein E4 (APOE4) carriers who are at risk of Alzheimer's disease (AD). Forty-six cognitively intact, middle-aged participants, including 20 APOE4 carriers and 26 age-, sex-, and education-matched noncarriers were studied. The resting-state FC of the hippocampus (HFC) was compared between APOE4 carriers and noncarriers. APOE4 carriers showed significantly decreased FC in brain areas that involve learning and memory functions, including the frontal, cingulate, thalamus and basal ganglia regions. Multiple linear regression analysis showed significant correlations between HFC and the episodic memory performance. Conjunction analysis between neural correlates of memory and altered HFC showed the overlapping regions, especially the subcortical regions such as thalamus, caudate nucleus, and cingulate cortices involved in the Papez circuit. Thus, changes in connectivity in the Papez circuit may be used as an early risk detection for AD. Copyright © 2014. Published by Elsevier Ltd.

  3. Attenuation of fluorocarbons released from foam insulation in landfills.

    PubMed

    Scheutz, Charlotte; Dote, Yutaka; Fredenslund, Anders M; Mosbaek, Hans; Kjeldsen, Peter

    2007-11-15

    Chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs) have been used as blowing agents (BAs) for foam insulation in home appliances and building materials, which after the end of their useful life are disposed of in landfills. The objective of this project was to evaluate the potential for degradation of BAs in landfills, and to develop a landfill model, which could simulate the fate of BAs in landfills. The investigation was performed by use of anaerobic microcosm studies using different types of organic waste and anaerobic digested sludge as inoculum. The BAs studied were CFC-11, CFC-12, HCFC-141b, HFC-134a, and HFC-245fa. Experiments considering the fate of some of the expected degradations products of CFC-11 and CFC-12 were included like HCFC-21, HCFC-22, HCFC-31, HCFC-32, and HFC-41. Degradation of all studied CFCs and HCFCs was observed regardless the type of waste used. In general, the degradation followed first-order kinetics. CFC-11 was rapidly degraded from 590 microg L(-1) to less than 5 microg L(-1) within 15-20 days. The degradation pattern indicated a sequential production of HCFC-21, HCFC-31, and HFC-41. However, the production of degradation products did not correlate with a stoichiometric removal of CFC-11 indicating that other degradation products were produced. HCFC-21 and HCFC-31 were further degraded whereas no further degradation of HFC-41 was observed. The degradation rate coefficient was directly correlated with the number of chlorine atoms attached to the carbon. The highest degradation rate coefficient was obtained for CFC-11, whereas lower rates were seen for HCFC-21 and HCFC-31. Equivalent results were obtained for CFC-12. HCFC-141b was also degraded with rates comparable to HCFC-21 and CFC-12. Anaerobic degradation of the studied HFCs was not observed in any of the experiments within a run time of up to 200 days. The obtained degradation rate coefficients were used as input for an extended version of an existing landfill fate model incorporating a time dependent BA release from co-disposed foam insulation waste. Predictions with the model indicate that the emission of foam released BAs may be strongly attenuated by microbial degradation reactions. Sensitivity analysis suggests that there is a need for determination of degradation rates under more field realistic scenarios.

  4. SI-traceable standards for atmospheric monitoring of halogenated gases

    NASA Astrophysics Data System (ADS)

    Guillevic, Myriam; Wyss, Simon A.; Pascale, Céline; Vollmer, Martin K.; Niederhauser, Bernhard; Reimann, Stefan

    2017-04-01

    To support atmospheric monitoring of greenhouse gases and in particular halogenated gases, we have developed a method to produce reference gas mixtures at nmol/mol (ppb) to pmol/mol levels (ppt). This method is dynamic and SI-traceable. This work is conducted in the framework of the EMRP projects HIGHGAS and KEY-VOCs as well as METAS' AtmoChemECV project. The method has been already applied to HFC-125 (pentafluoroethane, widely used in air conditioners), HFC-1234yf (2,3,3,3-tetrafluoropropene, a car air conditioner fluid of growing importance) and SF6 (insulant in electric switch-gears). It is currently being extended to HCFC-132b and CFC-13. It is particularly suitable for gas species and/or concentration ranges that are not stable in cylinders and it can be applied to a large variety of molecules related to air pollution and climate change (e.g., NO2, volatile organic compounds such as BTEX, NH3, water vapour at ppm level, CFCs, HCFCs, HFCs). The expanded uncertainty is less than 3 % (95 % confidence interval or k=2). The generation process is composed of four successive steps. In the first step the matrix gas, nitrogen or synthetic air is purified. Then this matrix gas is spiked with the pure substance, using a permeation device which contains a few grams of the pure substance (e.g., HFC-125) in the liquid form and loses it linearly over time by permeation through a membrane. This mass loss is precisely calibrated in our lab in Bern, using a magnetic suspension balance. In a third step the desired concentration is reached by dilution of the high concentration mixture exiting the permeation chamber with a chosen flow of the matrix gas in one or two subsequent dilution steps. All flows are piloted by mass flow controllers. All parts in contact with the gas mixture - including the balance - are passivated using coated surfaces, to reduce adsorption/desorption processes as much as possible. In the last step the mixture can be i) directly used to calibrate an analyser, ii) sampled on sorbent tubes or iii) pressurized into Silconert2000-coated stainless steel cylinders by cryo-filling. We focus here on standards made for the gases HFC-125 and HFC-1234yf. We present here the method, the uncertainty budget as well as first results of intercomparisons to other references.

  5. Oxidation Resitant HfC-TaC Rocket Thruster for High Performance Propellants

    NASA Technical Reports Server (NTRS)

    Patterson, Mark

    1999-01-01

    The purpose of this reasearch effort was to develop high temperature, oxidation resistant thrusters which would lessen the thruster cooling requirements, resulting in increased performance and longer life for onboard propulsion systems for spacecraft. This research effort focussed on developing ceramic matrix composites (CMCs) for this application, and specifically investigated the use of HfC stabilized with TaC. This material composition can potentially operate in a stoichiometric oxygen to hydrogen ratio at a temperature of 5000 deg F (2760 deg C) in a radiatively cooled mode. Various compositions of Hafnium Carbide (HfC) and Tantalum Carbide (TaC) were deposited by chemical vapor deposition (CVD) and tested, in an attempt to identify the composition which offered the best oxidation resistance. Although it was identified that small amounts of TaC appeared to offer improved oxidation resistance over HfC alone, an optimal composition was not identified. A 251bf thruster was fabricated from a novel CMC sandwich construction with a HfC-TaC matrix, and survived two test firings, each of 5 seconds before a failure in the injector caused the run to be aborted. It was not possible to control the relative stoichiometry of the HfC and TaC composition throughout the reactor due to the large difference in the thermodynamics of the HfC and TaC formation from their respective chlorides. This also resulted in an inability to infiltrate TaC into the preform under the experimental conditions investigated. Other material compositions were fabricated and tested and two material systems; HfC-SiC functionally graded to C(sub f)/C and Re functionally graded to C(sub f)/C were selected for further testing. These functionally graded composites have use in a number of propulsion applications presently of interest to NASA and the defense industry. Their ability to withstand extremely hostile thermal environments and the light-weight and high-strength exhibited from the C(sub f)/C composite make these materials particularly suited for these applications. In the Phase III which is presently underway, Re functionally graded to C(sub f)/C is being further developed and tested for application in the thrust cells for the Linear Aerospike Engine for the X33 and RLV.

  6. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.

    PubMed

    Germann, Matthias; Willitsch, Stefan

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  7. Stochastic hyperfine interactions modeling library-Version 2

    NASA Astrophysics Data System (ADS)

    Zacate, Matthew O.; Evenson, William E.

    2016-02-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized. The original version of SHIML constructed and solved Blume matrices for methods that measure hyperfine interactions of nuclear probes in a single spin state. Version 2 provides additional support for methods that measure interactions on two different spin states such as Mössbauer spectroscopy and nuclear resonant scattering of synchrotron radiation. Example codes are provided to illustrate the use of SHIML to (1) generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A22 can be neglected and (2) generate Mössbauer spectra for polycrystalline samples for pure dipole or pure quadrupole transitions.

  8. Air pollution is associated with the development of atherosclerosis via the cooperation of CD36 and NLRP3 inflammasome in ApoE-/- mice.

    PubMed

    Du, Xihao; Jiang, Shuo; Zeng, Xuejiao; Zhang, Jia; Pan, Kun; Zhou, Ji; Xie, Yuquan; Kan, Haidong; Song, Weimin; Sun, Qinghua; Zhao, Jinzhuo

    2018-06-15

    Previous studies have indicated that the main air pollutant fine particulate matter (≤2.5 μm; PM 2.5 ) exposure is associated with the development of atherosclerosis. Although the mechanism is not fully illustrated, the inflammatory responses play an important role. The present study aimed to explore whether PM 2.5 -exacerbated atherosclerosis was mediated by the cooperation of cluster of differentiation 36 (CD36) and nucleotide-binding oligomerization domain-like receptor protein (NLRP3) inflammasome in apolipoprotein E -/- (ApoE -/- ) mice. Thirty-two ApoE -/- mice were randomly divided into two groups. One group was fed with high fat chow (HFC) for 10 weeks to establish atherosclerotic model, and the other was fed with normal chow (NC). From week 11, the mice were exposed to concentrated PM 2.5 (PM) or filtered air (FA) using Shanghai Meteorological and Environmental Animal Exposure System for 16 weeks. In both NC and HFC groups, PM 2.5 exposure induced the formation of atherosclerosis plaque. Similarly, PM mice appeared higher lipid content in the aortic root than that in the FA mice. Compared with the FA mice, PM mice appeared a decrease in high density lipoprotein-cholesterol (HDL-C) and apolipoprotein A1 along with an increase in apolipoprotein B, low density lipoprotein-cholesterol (LDL-C) and oxidized low-density lipoprotein (ox-LDL). Moreover, PM 2.5 exposure induced increase of CD36 in serum and aorta. In both NC and HFC groups, NLRP3 inflammasome activation-related indicators were activated or increased in the aorta of the PM mice when compared with the FA mice. The cooperation of CD36 and NLRP3 inflammasome activation may be the potential mechanisms linkixposed to concentrated PM 2.5 (PM) or filtered air (FA) using Shanghai Meteorological and Environmental Animal Exposure System for 16 weeks. In both NC and HFC groups, PM 2.5 exposure induced the formation of atherosclerosis plaque. Similarly, PM mice appeared higher lipid content in the aortic root than that in the FA mice. Compared with the FA mice, PM mice appeared a decrease in high density lipoprotein-cholesterol (HDL-C) and apolipoprotein A1 along with an increase in apolipoprotein B, low density lipoprotein-cholesterol (LDL-C) and oxidized low-density lipoprotein (ox-LDL). Moreover, PM 2.5 exposure induced increase of CD36 in serum and aorta. In both NC and HFC groups, NLRP3 inflammasome activation-related indicators were activated or increased in the aorta of the PM mice when compared with the FA mice. The cooperation of CD36 and NLRP3 inflammasome activation may be the potential mechanisms linking air pollution and HFC-induced atherosclerosis even in the mice with NC intake. Copyright © 2018. Published by Elsevier B.V.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S. L., E-mail: shuch@ist.hokudai.ac.jp; Takayama, J.; Murayama, A.

    Time-resolved optical spin orientation spectroscopy was employed to investigate the temperature-dependent electron spin injection in In{sub 0.1}Ga{sub 0.9}As quantum well (QW) and In{sub 0.5}Ga{sub 0.5}As quantum dots (QDs) tunnel-coupled nanostructures with 4, 6, and 8 nm-thick GaAs barriers. The fast picosecond-ranged spin injection from QW to QD excited states (ES) was observed to speed up with temperature, as induced by pronounced longitudinal-optical (LO)-phonon-involved multiple scattering process, which contributes to a thermally stable and almost fully spin-conserving injection within 5–180 K. The LO-phonon coupling was also found to cause accelerated electron spin relaxation of QD ES at elevated temperature, mainly via hyperfine interactionmore » with random nuclear field.« less

  10. Quantum Chemical Calculations of Torsionally Mediated Hyperfine Splittings in States of E Symmetry of Acetaldehyde (CH_{3}CHO)

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong; Reid, Elias M.; Guislain, Bradley; Hougen, Jon T.; Alekseev, E. A.; Krapivin, Igor

    2017-06-01

    Hyperfine splittings in methanol have been revisited in three recent publications. (i) Coudert et al. [JCP 143 (2015) 044304] published an analysis of splittings observed in the low-J range. They calculated 32 spin-rotation, 32 spin-spin, and 16 spin-torsion hyperfine constants using the ACES2 package. Three of these constants were adjusted to fit hyperfine patterns for 12 transitions. (ii) Three present authors and collaborators [JCP 145 (2016) 024307] analyzed medium to high-J experimental Lamb-dip measurements in methanol and presented a theoretical spin-rotation explanation that was based on torsionally mediated spin-rotation hyperfine operators. These contain, in addition to the usual nuclear spin and overall rotational operators, factors in the torsional angle α of the form {e^{plusmn;{inα}}}. Such operators have non-zero matrix elements between the two components of a torsion-rotation ^{tr}E state, but have zero matrix elements within a ^{tr}A state. More than 55 hyperfine splittings were successfully fitted using three parameters and the fitted values agree well with ab initio values obtained in (i). (iii) Lankhaar et al. [JCP 145 (2016) 244301] published a reanalysis of the data set from (i), using CFOUR recalculated hyperfine constants based on their rederivation of the relevant expressions. They explain why their choice of fixed and floated parameters leads to numerical values for all parameters that seem to be more physical than those in (i). The results in (ii) raise the question of whether large torsionally-mediated spin-rotation splittings will occur in other methyl-rotor-containing molecules. This abstract presents ab initio calculations of torsionally mediated hyperfine splittings in the E states of acetaldehyde using the same three operators as in (ii) and spin-rotation constants computed by Gaussian09. We explored the first 13 K states for J from 10 to 40 and ν_{t} = 0, 1, and 2. Our calculations indicate that hyperfine splittings in CH_{3}CHO are just below current measurement capability. This conclusion is confirmed by available experimental measurements.

  11. Fine and hyperfine collisional excitation of C6H by He

    NASA Astrophysics Data System (ADS)

    Walker, Kyle M.; Lique, François; Dawes, Richard

    2018-01-01

    Hydrogenated carbon chains have been detected in interstellar and circumstellar media and accurate modelling of their abundances requires collisional excitation rate coefficients with the most abundant species. Among them, the C6H molecule is one of the most abundant towards many lines of sight. Hence, we determined fine and hyperfine-resolved rate coefficients for the excitation of C6H(X2Π) due to collisions with He. We present the first interaction potential energy surface for the C6H-He system, obtained from highly correlated ab initio calculations and characterized by a large anisotropy due to the length of the molecule. We performed dynamical calculations for transitions among the first fine structure levels (up to J = 30.5) of both spin-orbit manifolds of C6H using the close-coupling method, and rate coefficients are determined for temperatures ranging from 5 to 100 K. The largest rate coefficients for even ΔJ transitions conserve parity, while parity-breaking rate coefficients are favoured for odd ΔJ. Spin-orbit changing rate coefficients are several orders of magnitude lower than transitions within a single manifold. State-to-state hyperfine-resolved cross-sections for the first levels (up to J = 13.5) in the Ω = 3/2 spin-orbit manifold are deduced using recoupling techniques. Rate coefficients are obtained and the propensity rule ΔJ = ΔF is seen. These new data will help determine the abundance of C6H in astrophysical environments such as cold dense molecular clouds, star-forming regions and circumstellar envelopes, and will help in the interpretation of the puzzling C6H-/C6H abundance ratios deduced from observations.

  12. The pure rotational spectrum of TiF (X 4Φr): 3d transition metal fluorides revisited

    NASA Astrophysics Data System (ADS)

    Sheridan, P. M.; McLamarrah, S. K.; Ziurys, L. M.

    2003-11-01

    The pure rotational spectrum of TiF in its X 4Φr (v=0) ground state has been measured using millimeter/sub-millimeter wave direct absorption techniques in the range 140-530 GHz. In ten out of the twelve rotational transitions recorded, all four spin-orbit components were observed, confirming the 4Φr ground state assignment. Additional small splittings were resolved in several of the spin components in lower J transitions, which appear to arise from magnetic hyperfine interactions of the 19F nucleus. In contrast, no evidence for Λ-doubling was seen in the data. The rotational transitions of TiF were analyzed using a case (a) Hamiltonian, resulting in the determination of rotational and fine structure constants, as well as hyperfine parameters for the fluorine nucleus. The data were readily fit in a case (a) basis, indicating strong first order spin-orbit coupling and minimal second-order effects, as also evidenced by the small value of λ, the spin-spin parameter. Moreover, only one higher order term, η, the spin-orbit/spin-spin interaction term, was needed in the analysis, again suggesting limited perturbations in the ground state. The relative values of the a, b, and c hyperfine constants indicate that the three unpaired electrons in this radical lie in orbitals primarily located on the titanium atom and support the molecular orbital picture of TiF with a σ1δ1π1 single electron configuration. The bond length of TiF (1.8342 Å) is significantly longer than that of TiO, suggesting that there are differences in the bonding between 3d transition metal fluorides and oxides.

  13. Low-temperature binding of NO adsorbed on MIL-100(Al)-A case study for the application of high resolution pulsed EPR methods and DFT calculations.

    PubMed

    Mendt, Matthias; Barth, Benjamin; Hartmann, Martin; Pöppl, Andreas

    2017-12-14

    The low-temperature binding of nitric oxide (NO) in the metal-organic framework MIL-100(Al) has been investigated by pulsed electron nuclear double resonance and hyperfine sublevel correlation spectroscopy. Three NO adsorption species have been identified. Among them, one species has been verified experimentally to bind directly to an 27 Al atom and all its relevant 14 N and 27 Al hyperfine interaction parameters have been determined spectroscopically. Those parameters fit well to the calculated ones of a theoretical cluster model, which was derived by density functional theory (DFT) in the present work and describes the low temperature binding of NO to the regular coordinatively unsaturated Al 3+ site of the MIL-100(Al) structure. As a result, the Lewis acidity of that site has been characterized using the NO molecule as an electron paramagnetic resonance active probe. The DFT derived wave function analysis revealed a bent end-on coordination of the NO molecule adsorbed at that site which is almost purely ionic and has a weak binding energy. The calculated flat potential energy surface of this species indicates the ability of the NO molecule to freely rotate at intermediate temperatures while it is still binding to the Al 3+ site. For the other two NO adsorption species, no structural models could be derived, but one of them is indicated to be adsorbed at the organic part of the metal-organic framework. Hyperfine interactions with protons, weakly coupled to the observed NO adsorption species, have also been measured by pulsed electron paramagnetic resonance and found to be consistent with their attribution to protons of the MIL-100(Al) benzenetricarboxylate ligand molecules.

  14. Hydrogen bond network around the semiquinone of the secondary quinone acceptor Q(B) in bacterial photosynthetic reaction centers.

    PubMed

    Taguchi, Alexander T; O'Malley, Patrick J; Wraight, Colin A; Dikanov, Sergei A

    2015-05-07

    By utilizing a combined pulsed EPR and DFT approach, the high-resolution structure of the QB site semiquinone (SQB) was determined. The development of such a technique is crucial toward an understanding of protein-bound semiquinones on the structural level, as (i) membrane protein crystallography typically results in low resolution structures, and (ii) obtaining protein crystals in the semiquinone form is rarely feasible. The SQB hydrogen bond network was investigated with Q- (∼34 GHz) and X-band (∼9.7 GHz) pulsed EPR spectroscopy on fully deuterated reactions centers from Rhodobacter sphaeroides. Simulations in the SQB g-tensor reference frame provided the principal values and directions of the H-bond proton hyperfine tensors. Three protons were detected, one with an anisotropic tensor component, T = 4.6 MHz, assigned to the histidine NδH of His-L190, and two others with similar anisotropic constants T = 3.2 and 3.0 MHz assigned to the peptide NpH of Gly-L225 and Ile-L224, respectively. Despite the strong similarity in the peptide couplings, all hyperfine tensors were resolved in the Q-band ENDOR spectra. The Euler angles describing the series of rotations that bring the hyperfine tensors into the SQB g-tensor reference frame were obtained by least-squares fitting of the spectral simulations to the ENDOR data. These Euler angles show the locations of the hydrogen bonded protons with respect to the semiquinone. Our geometry optimized model of SQB used in previous DFT work is in strong agreement with the angular constraints from the spectral simulations, providing the foundation for future joint pulsed EPR and DFT semiquinone structural determinations in other proteins.

  15. Electronic structure and magnetic properties of dilute U impurities in metals

    NASA Astrophysics Data System (ADS)

    Mohanta, S. K.; Cottenier, S.; Mishra, S. N.

    2016-05-01

    The electronic structure and magnetic moment of dilute U impurity in metallic hosts have been calculated from first principles. The calculations have been performed within local density approximation of the density functional theory using Augmented plane wave+local orbital (APW+lo) technique, taking account of spin-orbit coupling and Coulomb correlation through LDA+U approach. We present here our results for the local density of states, magnetic moment and hyperfine field calculated for an isolated U impurity embedded in hosts with sp-, d- and f-type conduction electrons. The results of our systematic study provide a comprehensive insight on the pressure dependence of 5f local magnetism in metallic systems. The unpolarized local density of states (LDOS), analyzed within the frame work of Stoner model suggest the occurrence of local moment for U in sp-elements, noble metals and f-block hosts like La, Ce, Lu and Th. In contrast, U is predicted to be nonmagnetic in most transition metal hosts except in Sc, Ti, Y, Zr, and Hf consistent with the results obtained from spin polarized calculation. The spin and orbital magnetic moments of U computed within the frame of LDA+U formalism show a scaling behavior with lattice compression. We have also computed the spin and orbital hyperfine fields and a detail analysis has been carried out. The host dependent trends for the magnetic moment, hyperfine field and 5f occupation reflect pressure induced change of electronic structure with U valency changing from 3+ to 4+ under lattice compression. In addition, we have made a detailed analysis of the impurity induced host spin polarization suggesting qualitatively different roles of f-band electrons on moment stability. The results presented in this work would be helpful towards understanding magnetism and spin fluctuation in U based alloys.

  16. Ground-state hyperfine splitting for Rb, Cs, Fr, Ba+, and Ra+

    NASA Astrophysics Data System (ADS)

    Ginges, J. S. M.; Volotka, A. V.; Fritzsche, S.

    2017-12-01

    We have systematically investigated the ground-state hyperfine structure for alkali-metal atoms 87Rb,133Cs, and 211Fr and alkali-metal-like ions +135Ba and +225Ra, which are of particular interest for parity violation studies. The quantum electrodynamic one-loop radiative corrections have been rigorously evaluated within an extended Furry picture employing core-Hartree and Kohn-Sham atomic potentials. Moreover, the effect of the nuclear magnetization distribution on the hyperfine structure intervals has been studied in detail and its uncertainty has been estimated. Finally, the theoretical description of the hyperfine structure has been completed with full many-body calculations performed in the all-orders correlation potential method.

  17. High-precision optical measurement of the 2S hyperfine interval in atomic hydrogen.

    PubMed

    Kolachevsky, N; Fischer, M; Karshenboim, S G; Hänsch, T W

    2004-01-23

    We have applied an optical method to the measurement of the 2S hyperfine interval in atomic hydrogen. The interval has been measured by means of two-photon spectroscopy of the 1S-2S transition on a hydrogen atomic beam shielded from external magnetic fields. The measured value of the 2S hyperfine interval is equal to 177 556 860(16) Hz and represents the most precise measurement of this interval to date. The theoretical evaluation of the specific combination of 1S and 2S hyperfine intervals D21 is in fair agreement (within 1.4 sigma) with the value for D21 deduced from our measurement.

  18. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O{sub 2} reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ionsmore » produced by photoionization.« less

  19. EFFECTIVE HYPERFINE-STRUCTURE FUNCTIONS OF AMMONIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustovičová, L.; Soldán, P.; Špirko, V., E-mail: spirko@marge.uochb.cas.cz

    The hyperfine structure of the rotation-inversion ( v {sub 2} = 0{sup +}, 0{sup −}, 1{sup +}, 1{sup −}) states of the {sup 14}NH{sub 3} and {sup 15}NH{sub 3} ammonia isotopomers is rationalized in terms of effective (ro-inversional) hyperfine-structure (hfs) functions. These are determined by fitting to available experimental data using the Hougen’s effective hyperfine-structure Hamiltonian within the framework of the non-rigid inverter theory. Involving only a moderate number of mass independent fitting parameters, the fitted hfs functions provide a fairly close reproduction of a large majority of available experimental data, thus evidencing adequacy of these functions for reliable prediction.more » In future experiments, this may help us derive spectroscopic constants of observed inversion and rotation-inversion transitions deperturbed from hyperfine effects. The deperturbed band centers of ammonia come to the forefront of fundamental physics especially as the probes of a variable proton-to-electron mass ratio.« less

  20. Fluctuating hyperfine interactions: an updated computational implementation

    NASA Astrophysics Data System (ADS)

    Zacate, M. O.; Evenson, W. E.

    2015-04-01

    The stochastic hyperfine interactions modeling library (SHIML) is a set of routines written in the C programming language designed to assist in the analysis of stochastic models of hyperfine interactions. The routines read a text-file description of the model, set up the Blume matrix, upon which the evolution operator of the quantum mechanical system depends, and calculate the eigenvalues and eigenvectors of the Blume matrix, from which theoretical spectra of experimental techniques can be calculated. The original version of SHIML constructs Blume matrices applicable for methods that measure hyperfine interactions with only a single nuclear spin state. In this paper, we report an extension of the library to provide support for methods such as Mössbauer spectroscopy and nuclear resonant scattering of synchrotron radiation, which are sensitive to interactions with two nuclear spin states. Examples will be presented that illustrate the use of this extension of SHIML to generate Mössbauer spectra for polycrystalline samples under a number of fluctuating hyperfine field models.

  1. Innovation and reliability of atomic standards for PTTI applications

    NASA Technical Reports Server (NTRS)

    Kern, R.

    1981-01-01

    Innovation and reliability in hyperfine frequency standards and clock systems are discussed. Hyperfine standards are defined as those precision frequency sources and clocks which use a hyperfine atomic transition for frequency control and which have realized significant commercial production and acceptance (cesium, hydrogen, and rubidium atoms). References to other systems such as thallium and ammonia are excluded since these atomic standards have not been commercially exploited in this country.

  2. Hyperfine structure of the hydroxyl free radical (OH) in electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Maeda, Kenji; Wall, Michael L.; Carr, Lincoln D.

    2015-05-01

    We investigate single-particle energy spectra of the hydroxyl free radical (OH) in the lowest electronic and rovibrational level under combined static electric and magnetic fields, as an example of heteronuclear polar diatomic molecules. In addition to the fine-structure interactions, the hyperfine interactions and centrifugal distortion effects are taken into account to yield the zero-field spectrum of the lowest 2Π3 / 2 manifold to an accuracy of less than 2kHz. We also examine level crossings and repulsions in the hyperfine structure induced by applied electric and magnetic fields. Compared to previous work, we found more than 10 percent reduction of the magnetic fields at level repulsions in the Zeeman spectrum subjected to a perpendicular electric field. In addition, we find new level repulsions, which we call Stark-induced hyperfine level repulsions, that require both an electric field and hyperfine structure. It is important to take into account hyperfine structure when we investigate physics of OH molecules at micro-Kelvin temperatures and below. This research was supported in part by AFOSR Grant No.FA9550-11-1-0224 and by the NSF under Grants PHY-1207881 and NSF PHY-1125915. We appreciate the Aspen Center for Physics, supported in part by the NSF Grant No.1066293, for hospitality.

  3. Revised energy levels of singly ionized lanthanum

    NASA Astrophysics Data System (ADS)

    Güzelçimen, Feyza; Tonka, Mehdi; Uddin, Zaheer; Bhatti, Naveed Anjum; Windholz, Laurentius; Kröger, Sophie; Başar, Gönül

    2018-05-01

    Based on the experimental wavenumbers of 344 spectral lines from calibrated Fourier transform (FT) spectra as well as wavenumbers of 81 lines from the wavelength tables from literature, the energy of 115 fine structure levels of singly ionized lanthanum has been revised by weighted global fits. The classifications of the lines are provided by numerous previous investigations of lanthanum by different spectroscopic methods and authors. For the high accurate determination of the center of gravity wavenumbers from the experimental spectrum, the hyperfine constants of the involved levels have been taken into account, if possible. For the 94 levels with known hyperfine constants the accuracy of energy values is better than 0.01 cm-1. For 34 levels the magnetic dipole hyperfine constants A have been determined from FT spectra as part of this work. For four of these 34 levels even electric quadrupole hyperfine constants B could be estimated. For levels, which have experimentally unknown hyperfine constants and which are connected only by lines not found in the FT spectra but taken from literature, the uncertainties of energy values are about a factor of 10 higher. A list of all revised level energies together with a compilation of hyperfine structure data is given as well as a list of all lines used.

  4. Giant titanium electron wave function in gallium oxide: A potential electron-nuclear spin system for quantum information processing

    NASA Astrophysics Data System (ADS)

    Mentink-Vigier, Frédéric; Binet, Laurent; Vignoles, Gerard; Gourier, Didier; Vezin, Hervé

    2010-11-01

    The hyperfine interactions of the unpaired electron with eight surrounding G69a and G71a nuclei in Ti-doped β-Ga2O3 were analyzed by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopies. They are dominated by strong isotropic hyperfine couplings due to a direct Fermi contact interaction with Ga nuclei in octahedral sites of rutile-type chains oriented along b axis, revealing a large anisotropic spatial extension of the electron wave function. Titanium in β-Ga2O3 is thus best described as a diffuse (Ti4+-e-) pair rather than as a localized Ti3+ . Both electron and G69a nuclear spin Rabi oscillations could be observed by pulsed EPR and pulsed ENDOR, respectively. The electron spin decoherence time is about 1μs (at 4 K) and an upper bound of 520μs (at 8 K) is estimated for the nuclear decoherence time. Thus, β-Ga2O3:Ti appears to be a potential spin-bus system for quantum information processing with a large nuclear spin quantum register.

  5. Effect of WO3 on EPR, structure and electrical conductivity of vanadyl doped WO3·M2O·B2O3 (M=Li, Na) glasses

    NASA Astrophysics Data System (ADS)

    Sheoran, A.; Agarwal, A.; Sanghi, S.; Seth, V. P.; Gupta, S. K.; Arora, M.

    2011-12-01

    Glasses with composition xWO3·(30-x)M2O·70B2O3 (M=Li, Na; 0≤x≤15) doped with 2 mol% V2O5 have been prepared using the melt-quench technique. The electron paramagnetic resonance spectra have been recorded in X-band (ν≈9.14 GHz) at room temperature (RT). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) only due to V4+ ions, which exist as VO2+ ions in octahedral coordination with a tetragonal compression in the present glass system. The tetragonality increases with WO3:M2O ratio and also there is an expansion of 3dxy orbit of unpaired electron in the vanadium ion. The study of IR transmission spectra over a range 400-4000 cm-1 depicts the presence of WO6 group. The DC conductivity (σ) has been measured in the temperature range 423-623 K and is found to be predominantly ionic.

  6. The HERMES Polarized Atomic Beam Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nass, A.

    2003-07-30

    The atomic beam source (ABS) provides nuclear polarized hydrogen or deuterium atoms for the HERMES target at flow rates of about 6.5 {center_dot} 1016H-vector/s (hydrogen in two hyperfine substates) and 6.0 {center_dot} 1016D-vector/s (deuterium in three hyperfine substates). The degree of dissociation of 93% for H (95% for D) at the entrance of the storage cell and the nuclear polarization of around 0.97 (H) and 0.92 (D) have been found to be constant within a a couple of percent over the whole running period of the HERMES experiment. A new dissociator (MWD) based on a microwave discharge at 2.45 GHzmore » has been developed and installed into the HERMES-ABS in 2000. Since the velocity distribution of the MWD differs from that of the RFD the intensity could be increased further with a modified sextupole magnet system. For this purpose the way for a new start generator for sextupole tracking calculations was opened. Monte-Carlo simulations were successfully used to describe the gas expansion between nozzle, skimmer and collimator. A new type of beam monitor was used to study the beam formation after the nozzle.« less

  7. Chirp echo Fourier transform EPR-detected NMR

    NASA Astrophysics Data System (ADS)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies.

  8. Morphology and microhardness of TiC coatings on titanium treated with high-frequency currents

    NASA Astrophysics Data System (ADS)

    Voyko, Aleksey V.; Fomina, Marina A.; Koshuro, Vladimir A.; Fomin, Aleksandr A.; Rodionov, Igor V.; Atkin, Vsevolod S.; Galushka, Viktor V.; Zakharevich, Andrey M.; Skaptsov, Alexander A.

    2018-04-01

    The treatment with high frequency currents (HFC) is traditionally used to improve the mechanical properties of metal products, in particular hardness and wear resistance. A new method of carburization of titanium samples in a solid carburizer using HFC is proposed in the work. The temperature of the carburization is characterized by a wide range from 1000 to 1400 °C. As a result of thermochemical treatment, a hard coating of TiC (H ≥ 20 GPa) with a microstructure (d = 7-14 μm) consisting of nanoparticles (d = 10-12 nm) is formed on the titanium surface. These coatings are widely used in friction pairs for various purposes, including machinery, instrumentation and medicine.

  9. Toxicology of atmospheric degradation products of selected hydrochlorofluorocarbons

    NASA Technical Reports Server (NTRS)

    Kaminsky, Laurence S.

    1990-01-01

    Trifluoroacetic acid (TFA) is a liquid with a sharp biting odor. It has been proposed as the product of environmental degradation of the hydrochlorofluorocarbons HCFC-123, HCFC-124, HFC-134a, and HFC-125. Compounds HCFC-141b and HCFC-142b could yield mixed fluorochloroacetic acids, for which there is no available toxicologic data. The release of hydrochlorofluorocarbons into the environment could also give rise to HF, but the additional fluoride burden (1 to 3 ppb) in rainwater is trivial compared to levels in fluoridated drinking water (1 ppm), and would provide an insignificant risk to humans. Thus, in this paper only the toxocologic data on TFA is reviewed to assess the potential risks of environmental exposure.

  10. Research and Development Opportunities for Joining Technologies in HVAC&R

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetzler, William; Guernsey, Matt; Young, Jim

    The Building Technologies Office (BTO) works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. This opportunity assessment aims to advance BTO’s energy savings, GHG reduction, and other program goals by identifying research and development (R&D) initiatives for joining technologies in heating, ventilation, air-conditioning, and refrigeration (HVAC&R) systems. Improving joining technologies for HVAC&R equipment has the potential to increase lifetime equipment operating efficiency, decrease equipment and project cost, and most importantly reduce hydroflourocarbon (HFC) refrigerant leakage to support HFC phasedown and GHG reductionmore » goals.« less

  11. Hydrogen bonding and spin density distribution in the QB semiquinone of bacterial reaction centers and comparison with the QA site

    PubMed Central

    Martin, Erik; Samoilova, Rimma I.; Narasimhulu, Kupala V.; Lin, Tzu-Jen; O’Malley, Patrick J.; Wraight, Colin A.; Dikanov, Sergei A.

    2011-01-01

    In the photosynthetic reaction center from Rhodobacter sphaeroides, the primary (QA) and secondary (QB) electron acceptors are both ubiquinone-10, but with very different properties and functions. To investigate the protein environment that imparts these functional differences, we have applied X-band HYSCORE, a 2D pulsed EPR technique, to characterize the exchangeable protons around the semiquinone (SQ) in the QA and QB sites, using samples of 15N-labeled reaction centers, with the native high spin Fe2+ exchanged for diamagnetic Zn2+, prepared in 1H2O and 2H2O solvent. The powder HYSCORE method is first validated against the orientation-selected Q-band ENDOR study of the QA SQ by Flores et al. (Biophys. J. 2007, 92, 671–682), with good agreement for two exchangeable protons with anisotropic hyperfine tensor components, T, both in the range 4.6–5.4 MHz. HYSCORE was then applied to the QB SQ where we found proton lines corresponding to T~5.2, 3.7 MHz and T~1.9 MHz. Density functional-based quantum mechanics/molecular mechanics (QM/MM) calculations, employing a model of the QB site, were used to assign the observed couplings to specific hydrogen bonding interactions with the QB SQ. These calculations allow us to assign the T=5.2 MHz proton to the His-L190 NδH…O4 (carbonyl) hydrogen bonding interaction. The T =3.7 MHz spectral feature most likely results from hydrogen bonding interactions of O1 (carbonyl) with both Gly-L225 peptide NH and Ser-L223 hydroxyl OH, which possess calculated couplings very close to this value. The smaller 1.9 MHz coupling is assigned to a weakly bound peptide NH proton of Ile-L224. The calculations performed with this structural model of the QB site show less asymmetric distribution of unpaired spin density over the SQ than seen for the QA site, consistent with available experimental data for 13C and 17O carbonyl hyperfine couplings. The implications of these interactions for QB function and comparisons with the QA site are discussed. PMID:21417328

  12. Manipulation of individual hyperfine states in cold trapped molecular ions and application to HD+ frequency metrology.

    PubMed

    Bressel, U; Borodin, A; Shen, J; Hansen, M; Ernsting, I; Schiller, S

    2012-05-04

    Advanced techniques for manipulation of internal states, standard in atomic physics, are demonstrated for a charged molecular species for the first time. We address individual hyperfine states of rovibrational levels of a diatomic ion by optical excitation of individual hyperfine transitions, and achieve controlled transfer of population into a selected hyperfine state. We use molecular hydrogen ions (HD+) as a model system and employ a novel frequency-comb-based, continuous-wave 5  μm laser spectrometer. The achieved spectral resolution is the highest obtained so far in the optical domain on a molecular ion species. As a consequence, we are also able to perform the most precise test yet of the ab initio theory of a molecule.

  13. Characterization of the hyperfine interaction of the excited D50 state of Eu3 +:Y2SiO5

    NASA Astrophysics Data System (ADS)

    Cruzeiro, Emmanuel Zambrini; Etesse, Jean; Tiranov, Alexey; Bourdel, Pierre-Antoine; Fröwis, Florian; Goldner, Philippe; Gisin, Nicolas; Afzelius, Mikael

    2018-03-01

    We characterize the europium (Eu3 +) hyperfine interaction of the excited state (D50) and determine its effective spin Hamiltonian parameters for the Zeeman and quadrupole tensors. An optical free induction decay method is used to measure all hyperfine splittings under a weak external magnetic field (up to 10 mT) for various field orientations. On the basis of the determined Hamiltonian, we discuss the possibility to predict optical transition probabilities between hyperfine levels for the F70⟷D50 transition. The obtained results provide necessary information to realize an optical quantum memory scheme which utilizes long spin coherence properties of 3 + 151Eu :Y2SiO5 material under external magnetic fields.

  14. Studies of molecular physics in sodium-potassium: An analysis of the 4(3)Sigma+ state and interactions between the 2(A)(1)Sigma+ and 1(b)(3)Pi states

    NASA Astrophysics Data System (ADS)

    Burns, Patrick

    2004-12-01

    In this dissertation we report the results of three experiments designed to provide new information on the structure and interactions of the NaK molecule. Specifically these experiments investigate 2(A)1Sigma +(upsilonA, J) + M → 1(b)3 pi0(upsilonb, J) + M collisional excitation transfers (where M is a collision partner), hyperfine structure of the NaK 1(b)3pi and 1(b)3pi0 ˜ 2(A)1Sigma+ spin-orbit interactions, and the structure and spectra of the NaK 43Sigma+ state, respectively. In this first experiment, populations of collisionally populated levels were recorded near the NaK 1(b)3pi0(upsilon =18, J = 44) ˜ 2(A)1Sigma+ (upsilon = 20, J = 44) center of spin-orbit perturbation. Our data indicate that population is transferred from the pumped level, 2(A) 1Sigma+(upsilon = 20, J = 49), directly to the surrounding "daughter" levels [1(b)3Sigma 0(upsilon =18, J = 45--48) and 2(A)1Sigma +(upsilon = 20, J = 45--48)]. The relative populations of the daughter levels appear anomalous, as their populations do not monotonically decrease for levels further away in energy from the pumped level. We have measured the hyperfine structure of mutually perturbing ro-vibrational levels of the 1(b)3pi0 and 2(A)1Sigma + states of the NaK molecule, using the PFOODR method with co-propagating lasers. Unperturbed 1(b)3pi0 levels are split into four hyperfine components by the Fermi contact interaction b FI·S. Mixing between the 1(b)3pi0 and 2(A)1Sigma + levels imparts hyperfine structure to the nominally singlet component, and reduces the hyperfine splitting of the nominally triplet component, of the perturbed levels. We determined a value for the Fermi constant, bF= (0.00989 +/- 0.00027) cm-1, and the magnitude of the electronic part of the 1(b)3pi 0 ˜ 2(A)1Sigma+ spin-orbit coupling, |Hel| = (15.65 +/- 0.14) cm-1 , from an analysis of the measured hyperfine splittings of the mixed singlet-triplet levels. High-resolution spectra have been observed for numerous vibrational-rotational levels (upsilon, N) of the 43Sigma + state of NaK. A potential curve was obtained from the data using the inverse perturbation approximation method. Measured bound-free emission, 43Sigma+ → 1(a)3Sigma +, was used to determine both the absolute vibrational numbering and the transition dipole moment function M(R). Each (upsilon, N) level is typically split into three sets of sublevels by the Fermi contact interaction bFI·S. Further splitting (of order 0.004 cm-1) has been attributed to the spin-rotation interaction gammaN·S. The values of bF that fit the data best are ˜(0.99 +/- 0.04) x 10-2 cm-1, with weak dependence on upsilon. The best fit values of gamma are in the range 1--6 x 10-4 cm-1 and depend strongly on upsilon.

  15. Infrared laser induced population transfer and parity selection in {sup 14}NH{sub 3}: A proof of principle experiment towards detecting parity violation in chiral molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietiker, P.; Miloglyadov, E.; Quack, M., E-mail: Martin@Quack.ch

    We have set up an experiment for the efficient population transfer by a sequential two photon—absorption and stimulated emission—process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference Δ{sub pv}E between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for eachmore » step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν{sub 1} and ν{sub 3} fundamentals as well as the 2ν{sub 4} overtone of {sup 14}NH{sub 3}, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν{sub 1}, ν{sub 3}, and 2ν{sub 4} levels in the context of previously known data for ν{sub 2} and its overtone, as well as ν{sub 4}, and the ground state. Thus, now, {sup 14}N quadrupole coupling constants for all fundamentals and some overtones of {sup 14}NH{sub 3} are known and can be used for further theoretical analysis.« less

  16. High-global warming potential F-gas emissions in California: comparison of ambient-based versus inventory-based emission estimates, and implications of refined estimates.

    PubMed

    Gallagher, Glenn; Zhan, Tao; Hsu, Ying-Kuang; Gupta, Pamela; Pederson, James; Croes, Bart; Blake, Donald R; Barletta, Barbara; Meinardi, Simone; Ashford, Paul; Vetter, Arnie; Saba, Sabine; Slim, Rayan; Palandre, Lionel; Clodic, Denis; Mathis, Pamela; Wagner, Mark; Forgie, Julia; Dwyer, Harry; Wolf, Katy

    2014-01-21

    To provide information for greenhouse gas reduction policies, the California Air Resources Board (CARB) inventories annual emissions of high-global-warming potential (GWP) fluorinated gases, the fastest growing sector of greenhouse gas (GHG) emissions globally. Baseline 2008 F-gas emissions estimates for selected chlorofluorocarbons (CFC-12), hydrochlorofluorocarbons (HCFC-22), and hydrofluorocarbons (HFC-134a) made with an inventory-based methodology were compared to emissions estimates made by ambient-based measurements. Significant discrepancies were found, with the inventory-based emissions methodology resulting in a systematic 42% under-estimation of CFC-12 emissions from older refrigeration equipment and older vehicles, and a systematic 114% overestimation of emissions for HFC-134a, a refrigerant substitute for phased-out CFCs. Initial, inventory-based estimates for all F-gas emissions had assumed that equipment is no longer in service once it reaches its average lifetime of use. Revised emission estimates using improved models for equipment age at end-of-life, inventories, and leak rates specific to California resulted in F-gas emissions estimates in closer agreement to ambient-based measurements. The discrepancies between inventory-based estimates and ambient-based measurements were reduced from -42% to -6% for CFC-12, and from +114% to +9% for HFC-134a.

  17. Emissions of halocarbons from mobile vehicle air conditioning system in Hong Kong.

    PubMed

    Yan, H H; Guo, H; Ou, J M

    2014-08-15

    During the implementation of Montreal Protocol, emission inventories of halocarbons in different sectors at regional scale are fundamental to the formulation of relevant management strategy and inspection of the implementation efficiency. This study investigated the emission profile of halocarbons used in the mobile vehicle air conditioning system, the leading sector of refrigeration industry in terms of the refrigerant bank, market and emission, in the Hong Kong Special Administrative Region, using a bottom-up approach developed by 2006 IPCC Good Practice Guidance. The results showed that emissions of CFC-12 peaked at 53 tons ODP (Ozone Depletion Potential) in 1992 and then gradually diminished, whereas HFC-134a presented an increasing emission trend since 1990s and the emissions of HFC-134a reached 65,000 tons CO2-equivelant (CO2-eq) by the end of 2011. Uncertainty analysis revealed relatively high levels of uncertainties for special-purpose vehicles and government vehicles. Moreover, greenhouse gas (GHG) abatements under different scenarios indicated that potential emission reduction of HFC-134a ranged from 4.1 to 8.4 × 10(5)tons CO2-eq. The findings in this study advance our knowledge of halocarbon emissions from mobile vehicle air conditioning system in Hong Kong. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Effects of Dietary Conjugated Linoleic Acid and Biopolymer Encapsulation on Lipid Metabolism in Mice

    PubMed Central

    Hur, Sun Jin; Kim, Doo Hwan; Chun, Se Chul; Lee, Si Kyung

    2013-01-01

    Forty mice were randomly divided into four groups on the basis of the diet to be fed as follows: 5% (low) fat diet (T1: LF); 20% (high) fat diet (T2: HF); 20% fat containing 1% conjugated linoleic acid (CLA) (T3: HFC); and 20% fat containing 1% CLA with 0.5% biopolymers (T4: HFCB). The high-fat with CLA diet groups (HFC and HFCB) and the low-fat diet group (LF) tended to have lower body weights and total adipose tissue weights than those of the high-fat diet group (HF). Serum leptin and triglyceride were significantly lower in the high fat with CLA-fed groups (HFC and HFCB) and the low-fat diet group (LF) than those in the high-fat diet group (HF). It is noteworthy that the high-fat with CLA and biopolymers group (HFCB) showed the lowest serum triglyceride and cholesterol concentrations. In the high-fat-fed group (HF), voluntary travel distance as a measure of physical activity decreased after three weeks of feeding. However, the CLA-fed groups showed increased physical activity. The groups fed high-fat diets supplemented with CLA alone and with CLA and biopolymers had higher viscosity of small intestinal contents than that in the low- and high-fat dietary groups. PMID:23531540

  19. Radiation-Induced Damage to Nucleic Acid Constituents

    NASA Astrophysics Data System (ADS)

    Kim, Heasook

    The objective of this research was to identify the primary free radical species produced by ionizing radiation in DNA. The ultimate goal would be to use these data obtained from model compounds to analyze radiation-induced damage in DNA itself. The different single crystals were studied in detail. The first was the sodium salt of guanosine-3 ^':5^' -cyclic monophosphate (cyclic GMP). The results of studies on crystals irradiated at 4.2^ circK distinguished two species. One of these species exhibited a non-exchangeable proton coupling that was characterized by ENDOR spectroscopy and shown to be sigma proton. The spin density on C8 was deduced from the ENDOR hyperfine coupling tensor and found to be 0.15. The second species also exhibited a non-exchangeable sigma proton coupling and a beta proton coupling. The spin densities on C8 and N9 were deduced from ENDOR measurements to be 0.09 and 0.36. The former is attributed to the oxidation product and the latter to the primary reduction product. These products are respectively the guanine cation and anion. The second single crystal studied was a sodium salt of 2^'-deoxyguanosine -5^'-monophosphate tetrahydrate. The ESR and ENDOR spectra obtained from this crystal after x-irradiation at 4.2^circK were complex and the paramagnetic species were tentatively identified as ionic species. The third DNA model compound studied was thymidine. Single crystal of thymidine were irradiated at 1.6^ circK and at 4.2^circ K. The lower temperature preserved a more primitive stage of the radiation damage process. ENDOR measurements distinguished three paramagnetic species. The most interesting component of the paramagnetic absorption in crystals irradiated at 1.6^circK is attributed to trapped electron. These electrons are stabilized by the electrostatic fields generated by hydroxy dipoles. The hyperfine couplings between the trapped electron and the proton of these polar groups were deduced from ENDOR measurements. The ESR and ENDOR measurements described in this report were carried out DNA model compounds x-irradiated and measured at lower temperatures than reported previously. The experiments have demonstrated that an earlier stage of radiation damage can sometimes be stabilized and characterized in single crystals by maintaining the sample at 1.4 ^circK. (Abstract shortened with permission of author.).

  20. Optical Polarization of Nuclear Spins in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Falk, Abram L.; Klimov, Paul V.; Ivády, Viktor; Szász, Krisztián; Christle, David J.; Koehl, William F.; Gali, Ádám; Awschalom, David D.

    2015-06-01

    We demonstrate optically pumped dynamic nuclear polarization of 29Si nuclear spins that are strongly coupled to paramagnetic color centers in 4 H - and 6 H -SiC. The 9 9 % ±1 % degree of polarization that we observe at room temperature corresponds to an effective nuclear temperature of 5 μ K . By combining ab initio theory with the experimental identification of the color centers' optically excited states, we quantitatively model how the polarization derives from hyperfine-mediated level anticrossings. These results lay a foundation for SiC-based quantum memories, nuclear gyroscopes, and hyperpolarized probes for magnetic resonance imaging.

  1. The129I hyperfine interaction in fatty acids studied by Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Burda, K.; Strzałka, K.; Stanek, J.

    1993-12-01

    Oleic acid substituted by iodine and saponified by Ca2+ cations has been studied by129I Mössbauer spectroscopy. The quadrupole coupling constants and isomer shifts, determined from the γ-resonance spectra recorded at 4.2 K, have been described by 5p and 5s orbital populations of iodine. It was also found that saponification of the fatty acid has no significant influence on the measured iodine bonds. However, the increased order of fatty acids in soap form is reflected by narrowing of the resonant linewidth due to the reduction of the electric field gradient distribution.

  2. Hyperfine interactions in titanates: Study of orbital ordering and local magnetic properties

    NASA Astrophysics Data System (ADS)

    Agzamova, P. A.; Leskova, Yu. V.; Nikiforov, A. E.

    2013-05-01

    Hyperfine magnetic fields induced on the nuclei of nonmagnetic ions 139La and 89Y in LaTiO3 and YTiO3, respectively, have been microscopically calculated. The dependence of the hyperfine fields on the orbital and magnetic structures of the compounds under study has been analyzed. The comparative analysis of the calculated and known experimental data confirms the existence of the static orbital structure in lanthanum and yttrium titanates.

  3. Hyperfine structure of excited states and quadrupole moment of Ne-21 using laser-induced line-narrowing techniques.

    NASA Technical Reports Server (NTRS)

    Ducas, T. W.; Feld, M. S.; Ryan, L. W., Jr.; Skribanowitz, N.; Javan, A.

    1972-01-01

    Observation results are presented on the optical hyperfine structure in Ne-21 obtained with the aid of laser-induced line-narrowing techniques. The output from a long stabilized single-mode 1.15-micron He-Ne laser focused into an external sample cell containing Ne-21 was used in implementing these techniques. Their applicability is demonstrated for optical hyperfine structure observation in systems whose features are ordinarily masked by Doppler broadening.

  4. Two-photon exchange correction to the hyperfine splitting in muonic hydrogen

    NASA Astrophysics Data System (ADS)

    Tomalak, Oleksandr

    2017-12-01

    We reevaluate the Zemach, recoil and polarizability corrections to the hyperfine splitting in muonic hydrogen expressing them through the low-energy proton structure constants and obtain the precise values of the Zemach radius and two-photon exchange (TPE) contribution. The uncertainty of TPE correction to S energy levels in muonic hydrogen of 105 ppm exceeds the ppm accuracy level of the forthcoming 1S hyperfine splitting measurements at PSI, J-PARC and RIKEN-RAL.

  5. Hyperfine Fields in Nanocrystalline Fe0.48Al0.52

    NASA Astrophysics Data System (ADS)

    Szymański, K.; Satuła, D.; Dobrzyński, L.; Voronina, E.; Yelsukov, E. P.

    2004-12-01

    Mössbauer measurements with circularly polarized radiation were performed on a nanocrystalline, disordered Fe48Al52 alloy. The analysis of the data for various polarization states resulted in the characterization of the hyperfine magnetic field distribution and the dependence of the average z-component of hyperfine field on the chemical environment. An increasing number of Al in the first coordination shell causes not only a decrease of magnetic moments but also introduces noncollinearity.

  6. Spin-Orbit-Coupled Interferometry with Ring-Trapped Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Helm, J. L.; Billam, T. P.; Rakonjac, A.; Cornish, S. L.; Gardiner, S. A.

    2018-02-01

    We propose a method of atom interferometry using a spinor Bose-Einstein condensate with a time-varying magnetic field acting as a coherent beam splitter. Our protocol creates long-lived superpositional counterflow states, which are of fundamental interest and can be made sensitive to both the Sagnac effect and magnetic fields on the sub-μ G scale. We split a ring-trapped condensate, initially in the mf=0 hyperfine state, into superpositions of internal mf=±1 states and condensate superflow, which are spin-orbit coupled. After interrogation, the relative phase accumulation can be inferred from a population transfer to the mf=±1 states. The counterflow generation protocol is adiabatically deterministic and does not rely on coupling to additional optical fields or mechanical stirring techniques. Our protocol can maximize the classical Fisher information for any rotation, magnetic field, or interrogation time and so has the maximum sensitivity available to uncorrelated particles. Precision can increase with the interrogation time and so is limited only by the lifetime of the condensate.

  7. The microwave spectrum of a triplet carbene: HCCN in the X 3Sigma - state

    NASA Astrophysics Data System (ADS)

    Saito, Shuji; Endo, Yasuki; Hirota, Eizi

    1984-02-01

    A simple carbene, the HCCN radical, has been identified in the gas phase using a microwave spectroscopic method. The HCCN molecule was generated in a free space absorption cell by the reaction of CH3CN with the microwave discharge products of CF4. Five rotational transitions, each split into three fine structure components, were observed in the region of 110 to 198 GHz. No hyperfine structure was resolved, although some of the observed lines showed broadening. The rotational constant, the centrifugal distortion constant, the spin-spin coupling constant, and the spin-rotation coupling constant were determined with good precision. The observed spectrum is completely consistent with that expected for a linear molecule in a 3Σ state, in agreement with an earlier matrix EPR study of Bernheim et al. [J. Chem. Phys. 43, 196 (1965)].

  8. Measurement of a heavy-hole hyperfine interaction in InGaAs quantum dots using resonance fluorescence.

    PubMed

    Fallahi, P; Yilmaz, S T; Imamoğlu, A

    2010-12-17

    We measure the strength and the sign of hyperfine interaction of a heavy hole with nuclear spins in single self-assembled quantum dots. Our experiments utilize the locking of a quantum dot resonance to an incident laser frequency to generate nuclear spin polarization. By monitoring the resulting Overhauser shift of optical transitions that are split either by electron or exciton Zeeman energy with respect to the locked transition using resonance fluorescence, we find that the ratio of the heavy-hole and electron hyperfine interactions is -0.09 ± 0.02 in three quantum dots. Since hyperfine interactions constitute the principal decoherence source for spin qubits, we expect our results to be important for efforts aimed at using heavy-hole spins in quantum information processing.

  9. Experimental observation and determination of the laser-induced frequency shift of hyperfine levels of ultracold polar molecules

    NASA Astrophysics Data System (ADS)

    Liu, Wenliang; Wang, Xiaofeng; Wu, Jizhou; Su, Xingliang; Wang, Shen; Sovkov, Vladimir B.; Ma, Jie; Xiao, Liantuan; Jia, Suotang

    2017-08-01

    We report on the experimental observation and quantitative determination of the laser-induced frequency shift (LIFS) of the ultracold polar molecules formed by photoassociation (PA). The experiments are performed by detecting a series of double PA spectra with a molecular hyperfine structure, which are induced by two PA lasers with a precise and adjustable frequency reference. We find that the LIFS of the molecular hyperfine levels shows a linear dependence on PA laser intensity.

  10. Matrix elements of hyperfine structure operators in the SL and jj representations for the s, p{sup N}, and d{sup N} configurations and the SL-jj transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, W.J.

    1997-09-01

    Matrix elements of the hyperfine operators corresponding to the magnetic-dipole (A) and electric-quadrupole (B) hyperfine structures constants are given as linear combinations of the appropriate radial integrals for all states of the s, p{sup N}, and d{sub N} configurations in both the SL and pure jj representations. The associated SL-jj transformations are also given. 13 refs., 10 tabs.

  11. Lamb shifts and hyperfine structure in 6Li+ and 7Li+: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Riis, E.; Sinclair, A. G.; Poulsen, O.; Drake, G. W. F.; Rowley, W. R. C.; Levick, A. P.

    1994-01-01

    High-precision laser-resonance measurements accurate to +/-0.5 MHz or better are reported for transitions among the 1s2s 3S1-1s2p 3PJ hyperfine manifolds for each of J=0, 1, and 2 in both 6Li+ and 7Li+. A detailed analysis of hyperfine structure is performed for both the S and P states, using newly calculated values for the magnetic dipole and electric quadrupole coupling constants, and the hyperfine shifts subtracted from the measurements. The resulting transition frequencies are then analyzed on three different levels. First, the isotope shifts in the fine-structure splittings are calculated from the relativistic reduced mass and recoil terms in the Breit interaction, and compared with experiment at the +/-0.5-MHz level of accuracy. This comparison is particularly significant because J-independent theoretical uncertainties reduce through cancellation to the +/-0.01-MHz level. Second, the isotope shifts in the full transition frequencies are used to deduce the difference in rms nuclear radii. The result is Rrms(6Li)-Rrms(7Li)=0.15+/-0.01 fm, in agreement with nuclear scattering data, but with substantially improved accuracy. Third, high-precision calculations of the low-order non-QED contributions to the transition frequencies are subtracted from the measurements to obtain the residual QED shifts. The isotope-averaged and spin-averaged effective shift for 7Li+ is 37 429.40+/-0.39 MHz, with an additional uncertainty of +/-1.5 MHz due to finite nuclear size corrections. The accuracy of 11 parts per million is the best two-electron Lamb shift measurement in the literature, and is comparable to the accuracies achieved in hydrogen. Theoretical contributions to the two-electron Lamb shift are discussed, including terms of order (αZ)4 recently obtained by Chen, Cheng, and Johnson [Phys. Rev. A 47, 3692 (1993)], and the results used to extract a QED shift for the 2 3S1 state. The result of 30 254+/-12 MHz is shown to be in good accord with theory (30 250+/-30 MHz) when two-electron corrections to the Bethe logarithm are taken into account by a 1/Z expansion method.

  12. Molecular beam study of the a 3Σ+ state of NaK up to the dissociation limit

    NASA Astrophysics Data System (ADS)

    Temelkov, I.; Knöckel, H.; Pashov, A.; Tiemann, E.

    2015-03-01

    We provide spectroscopic data for the a 3Σ+ state of the 23Na39K molecule. The experiment is done in an ultrasonic beam apparatus, starting from the ground state X 1Σ+and driving the population to the a 3Σ+ state, using a Λ scheme with fixed pump and scanning dump laser. The signals are observed as dips of the total fluorescence. The intermediate level is chosen to be strongly perturbed by the B 1Π/c 3Σ+ states mixing to overcome the singlet-triplet transfer prohibition. We observed highly resolved hyperfine spectra of various rovibrational levels of the a 3Σ+state from va=2 up to the highest vibrational levels for rotational quantum numbers Na=4 ,6 ,8 . By the typical experimental linewidth of 17 MHz, the vibrational dependence of the hyperfine splitting is clearly revealed for NaK. The absolute frequency measurements of the vibrational levels are used for improvement of the a 3Σ+ potential curve and of the derived scattering length of all natural isotope combinations. Applying the Λ scheme in the reverse direction can provide a pathway for efficient transfer of ultracold 23Na39K molecules from the Na(3 s )+K(4 s ) asymptote to the lowest levels of the ground state. We show spectra that couple the absolute ground state vX=0 ,J =0 with an appropriate intermediate state for direct realization of the reverse path. The refined theoretical model of the coupled excited states of the Na(3 s )+K(4 p ) asymptote allows predictions of efficient paths for 23Na40K ; one example is calculated.

  13. Second rank direction cosine spherical tensor operators and the nuclear electric quadrupole hyperfine structure Hamiltonian of rotating molecules

    NASA Astrophysics Data System (ADS)

    di Lauro, C.

    2018-03-01

    Transformations of vector or tensor properties from a space-fixed to a molecule-fixed axis system are often required in the study of rotating molecules. Spherical components λμ,ν of a first rank irreducible tensor can be obtained from the direction cosines between the two axis systems, and a second rank tensor with spherical components λμ,ν(2) can be built from the direct product λ × λ. It is shown that the treatment of the interaction between molecular rotation and the electric quadrupole of a nucleus is greatly simplified, if the coefficients in the axis-system transformation of the gradient of the electric field of the outer charges at the coupled nucleus are arranged as spherical components λμ,ν(2). Then the reduced matrix elements of the field gradient operators in a symmetric top eigenfunction basis, including their dependence on the molecule-fixed z-angular momentum component k, can be determined from the knowledge of those of λ(2) . The hyperfine structure Hamiltonian Hq is expressed as the sum of terms characterized each by a value of the molecule-fixed index ν, whose matrix elements obey the rule Δk = ν. Some of these terms may vanish because of molecular symmetry, and the specific cases of linear and symmetric top molecules, orthorhombic molecules, and molecules with symmetry lower than orthorhombic are considered. Each ν-term consists of a contraction of the rotational tensor λ(2) and the nuclear quadrupole tensor in the space-fixed frame, and its matrix elements in the rotation-nuclear spin coupled representation can be determined by the standard spherical tensor methods.

  14. Curie-type paramagnetic NMR relaxation in the aqueous solution of Ni(II).

    PubMed

    Mareš, Jiří; Hanni, Matti; Lantto, Perttu; Lounila, Juhani; Vaara, Juha

    2014-04-21

    Ni(2+)(aq) has been used for many decades as a model system for paramagnetic nuclear magnetic resonance (pNMR) relaxation studies. More recently, its magnetic properties and also nuclear magnetic relaxation rates have been studied computationally. We have calculated electron paramagnetic resonance and NMR parameters using quantum-mechanical (QM) computation of molecular dynamics snapshots, obtained using a polarizable empirical force field. Statistical averages of hyperfine coupling, g- and zero-field splitting tensors, as well as the pNMR shielding terms, are compared to the available experimental and computational data. In accordance with our previous work, the isotropic hyperfine coupling as well as nuclear shielding values agree well with experimental measurements for the (17)O nuclei of water molecules in the first solvation shell of the nickel ion, whereas larger deviations are found for (1)H centers. We report, for the first time, the Curie-type contribution to the pNMR relaxation rate using QM calculations together with Redfield relaxation theory. The Curie relaxation mechanism is analogous to chemical shift anisotropy relaxation, well-known in diamagnetic NMR. Due to the predominance of other types of paramagnetic relaxation mechanisms for this system, it is possible to extract the Curie term only computationally. The Curie mechanism alone would result in around 16 and 20 s(-1) of relaxation rates (R1 and R2 respectively) for the (1)H nuclei of water molecules bonded to the Ni(2+) center, in a magnetic field of 11.7 T. The corresponding (17)O relaxation rates are around 33 and 38 s(-1). We also report the Curie contribution to the relaxation rate for molecules beyond the first solvation shell in a 1 M solution of Ni(2+) in water.

  15. Research on Spectroscopy, Opacity, and Atmospheres

    NASA Astrophysics Data System (ADS)

    Kurucz, Robert L.

    1996-01-01

    The main accomplishment was the merging of all the atomic line data into one wavelength-sorted list that is simple to use. We have combined all the atomic files from a CDROM into 534,910 line files GFALL.DAT and GFELEN.DAT. These are the data we use to compute spectra. They are not up to date. References are given in GFALL.REF or GFELEK.REF. There are no references after 1988, and for light elements there are no references after 1979. One new development is the inclusion of hyperfine splitting for the iron group elements using hyperfine data from the literature through 1993. The data are very incomplete. We have supplied a program for splitting the line list for a species. It reads the hyperfine and isotopic splitting parameters for levels and computes the splittings whenever those levels appear. Lines with no splitting data are copied untouched. Because Sc, Mn, and Co are monoisotopic, only the hyperfine splittings are needed. Since 51V is much more abundant than 50V, the isotope shifts are small for 51V, and we approximate V with 51V. GFALLHYP.DAT has 754,946 lines including hyperfine Sc I, V I, Mn I, and Co I.

  16. More environment-friendly and safer working gas mixtures for Bakelite RPCs operated in streamer mode

    NASA Astrophysics Data System (ADS)

    Zhang, Qingmin; Lv, Zhipeng; Lv, Jinge; Zhang, Jiawen; Xu, Jilei; Ning, Zhe

    2017-08-01

    This paper presents experimental results of RPCs performances with different working gas mixtures. Owing to Freon's high global warming potential, its threat to RPCs aging and its large consumption in large particle physics experiments, studies to minimize the concentration of HFC-134A, and even its complete replacement, have been undertaken. In addition, the reduction of iso-butane is also a favorable strategy, due to the flammability level of the gas mixture. Freon-less working gas mixture of Ar/HFC-134A/i-C4H10/CO2=20/0/8/72 was chosen with plateau efficiency of 86.3% and noise rate of 0.61 Hz/cm2. For working gas with lower ratio of Freon, Ar/HFC-134A/i-C4H10/CO2=20/20/8/52 was suggested with plateau efficiency of 91.0% and noise rate of 0.19 Hz/cm2, in which Freon was decreased by 22% compared to the BESIII RPC gas mixture. Furthermore, iso-butane was decreased to 6% with RPC's efficiency of 90% and noise rate of 0.20 Hz/cm2 achieved. Finally, the explanation of RPC's different performances at various working gas mixtures has been validated by the investigation of secondary streamers. This study will be helpful for RPC's application in future large particle physics experiments, in which RPCs can run in streamer mode.

  17. Transitioning to Low-GWP Alternatives in Commercial Refrigeration

    EPA Pesticide Factsheets

    This fact sheet provides information on low-GWP alternatives in commercial refrigeration. It discusses HFC alternatives, market trends, challenges to market entry for alternatives, and potential solutions.

  18. Optogalvanic spectroscopy of lanthanum hyperfine structure

    NASA Astrophysics Data System (ADS)

    Nelson, Amanda; Hankes, Jessie; Banner, Patrick; Olmschenk, Steven

    2017-04-01

    Optogalvanic spectroscopy is a sensitive technique to measure optical transitions of atoms and ions produced in a high voltage discharge. Advantages of this technique include a comparatively simple optical setup and the ability to interrogate excited state transitions. Here, we use optogalavanic spectroscopy in a hollow cathode lamp to measure the hyperfine spectrum of several transitions in lanthanum. Hyperfine coefficients are determined for the corresponding energy levels and compared to available previous measurements. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  19. Single-source-precursor synthesis of dense SiC/HfCxN1-x-based ultrahigh-temperature ceramic nanocomposites

    NASA Astrophysics Data System (ADS)

    Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel

    2014-10-01

    A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1.A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1. Electronic supplementary information (ESI) available: Raman spectroscopy characterization of the SiHfCN-based ceramics. See DOI: 10.1039/c4nr03376k

  20. Chirp echo Fourier transform EPR-detected NMR.

    PubMed

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. A field programmable gate array-based time-resolved scaler for collinear laser spectroscopy with bunched radioactive potassium beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, D. M., E-mail: rossi@nscl.msu.edu; Davis, M.; Ringle, R.

    A new data acquisition system including a Field Programmable Gate Array (FPGA) based time-resolved scaler was developed for laser-induced fluorescence and beam bunch coincidence measurements. The FPGA scaler was tested in a collinear laser-spectroscopy experiment on radioactive {sup 37}K at the BEam COoler and LAser spectroscopy (BECOLA) facility at the National Superconducting Cyclotron Laboratory at Michigan State University. A 1.29 μs bunch width from the buncher and a bunch repetition rate of 2.5 Hz led to a background suppression factor of 3.1 × 10{sup 5} in resonant photon detection measurements. The hyperfine structure of {sup 37}K and its isotope shiftmore » relative to the stable {sup 39}K were determined using 5 × 10{sup 4} s{sup −1} {sup 37}K ions injected into the BECOLA beam line. The obtained hyperfine coupling constants A({sup 2}S{sub 1/2}) = 120.3(1.4) MHz, A({sup 2}P{sub 1/2}) = 15.2(1.1) MHz, and A({sup 2}P{sub 3/2}) = 1.4(8) MHz, and the isotope shift δν{sup 39,} {sup 37} = −264(3) MHz are consistent with the previously determined values, where available.« less

  2. Structural investigation and electron paramagnetic resonance of vanadyl doped alkali niobium borate glasses.

    PubMed

    Agarwal, A; Sheoran, A; Sanghi, S; Bhatnagar, V; Gupta, S K; Arora, M

    2010-03-01

    Glasses with compositions xNb(2)O(5).(30-x)M(2)O.69B(2)O(3) (where M=Li, Na, K; x=0, 4, 8 mol%) doped with 1 mol% V(2)O(5) have been prepared using normal melt quench technique. The IR transmission spectra of the glasses have been studied over the range 400-4000 cm(-1). The changes caused by the addition of Nb(2)O(5) on the structure of these glasses have been reported. The electron paramagnetic resonance spectra of VO(2+) ions in these glasses have been recorded in X-band (9.14 GHz) at room temperature (300 K). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) due to V(4+) ions which exist as VO(2+) ions in octahedral coordination with a tetragonal compression in the present glasses. The tetragonality of V(4+)O(6) complex decreases with increasing concentration of Nb(2)O(5). The 3d(xy) orbit contracts with increase in Nb(2)O(5):M(2)O ratio. Values of the theoretical optical basicity, Lambda(th), have also been reported. Copyright 2009 Elsevier B.V. All rights reserved.

  3. Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol

    NASA Astrophysics Data System (ADS)

    Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.; Ilyushin, V. V.; Alekseev, E. A.; Mescheryakov, A. A.; Hougen, J. T.; Xu, Li-Hong

    2016-07-01

    This paper presents an explanation based on torsionally mediated proton-spin-overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = - 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric "torsionally mediated spin-rotation operators" by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e±niα. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A1 and A2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.

  4. Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.

    2016-07-14

    This paper presents an explanation based on torsionally mediated proton-spin–overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = − 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e.,more » to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric “torsionally mediated spin-rotation operators” by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e{sup ±niα}. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A{sub 1} and A{sub 2} states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.« less

  5. Mixing of the lowest-lying qqq configurations with JP =1/2- in different hyperfine interaction models

    NASA Astrophysics Data System (ADS)

    Chen, Jia; An, Chunsheng; Chen, Hong

    2018-02-01

    We investigate mixing of the lowest-lying qqq configurations with JP = 1/2- caused by the hyperfine interactions between quarks mediated by Goldstone Boson Exchange, One Gluon Exchange, and both Goldstone Boson and One Gluon exchange, respectively. The first orbitally excited nucleon, Σ, Λ and Ξ states are considered. Contributions of both the contact term and tensor term are taken into account. Our numerical results show that mixing of the studied configurations in the two employed hyperfine interaction models are very different. Therefore, the present results, which should affect the strong and electromagnetic decays of baryon resonances, may be used to examine the present employed hyperfine interaction models. Supported by National Natural Science Foundation of China (11675131,11645002), Chongqing Natural Science Foundation (cstc2015jcyjA00032) and Fundamental Research Funds for the Central Universities (SWU115020)

  6. Ab initio calculations of torsionally mediated hyperfine splittings in E states of acetaldehyde

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong; Reid, E. M.; Guislain, B.; Hougen, J. T.; Alekseev, E. A.; Krapivin, I.

    2017-12-01

    Quantum chemistry packages can be used to predict with reasonable accuracy spin-rotation hyperfine interaction constants for methanol, which contains one methyl-top internal rotor. In this work we use one of these packages to calculate components of the spin-rotation interaction tensor for acetaldehyde. We then use torsion-rotation wavefunctions obtained from a fit to the acetaldehyde torsion-rotation spectrum to calculate the expected magnitude of hyperfine splittings analogous to those observed at relatively high J values in the E symmetry states of methanol. We find that theory does indeed predict doublet splittings at moderate J values in the acetaldehyde torsion-rotation spectrum, which closely resemble those seen in methanol, but that the factor of three decrease in hyperfine spin-rotation constants compared to methanol puts the largest of the acetaldehyde splittings a factor of two below presently available Lamb-dip resolution.

  7. High-resolution internal state control of ultracold 23Na87Rb molecules

    NASA Astrophysics Data System (ADS)

    Guo, Mingyang; Ye, Xin; He, Junyu; Quéméner, Goulven; Wang, Dajun

    2018-02-01

    We report the full internal state control of ultracold 23Na87Rb molecules, including vibrational, rotational, and hyperfine degrees of freedom. Starting from a sample of weakly bound Feshbach molecules, we realize the creation of molecules in single hyperfine levels of both the rovibrational ground and excited states with a high-efficiency and high-resolution stimulated Raman adiabatic passage. This capability brings broad possibilities for investigating ultracold polar molecules with different chemical reactivities and interactions with a single molecular species. Moreover, starting from the rovibrational and hyperfine ground state, we achieve rotational and hyperfine control with one- and two-photon microwave spectroscopy to reach levels not accessible by the stimulated Raman transfer. The combination of these two techniques results in complete control over the internal state of ultracold polar molecules, which paves the way to study state-dependent molecular collisions and state-controlled chemical reactions.

  8. 1300 K compressive properties of several dispersion strengthened NiAl materials

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Gaydosh, D. J.; Kumar, K. S.

    1990-01-01

    To examine the potential of rapid solidification technology (RST) as a means to fabricate dispersion-strengthened aluminides, cylindrical compression samples were machined from the gauge section of their tensile specimens and tested in air at 1300 K. While microscopy indicates that RST can produce fine dispersions of TiB2, TiC and HfC in a NiAl matrix, the mechanical property data reveal that only HfC successfully strengthens the intermetallic matrix. The high stress exponents (above 10) and/or independence of strain rate on stress for NiAl-HfC materials suggest elevated temperature mechanical behavior similar to that found in oxide dispersion-strengthened alloys. Furthermore, an apparent example of departure side pinning has been observed, and as such, it is indicative of a threshold stress for creep.

  9. Oil-return characteristics of refrigerant oils in split heat pump system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaresan, S.G.; Radermacher, R.

    1996-08-01

    Currently, HFC substitute refrigerants for R-22 are being evaluated in air-conditioning and heat pump applications. The oil return characteristics and heat transfer effects of the lubricants are being studied again. Based on commercial refrigeration experience POEs are the lubricants of choice for HFC refrigerants. POEs have two major drawbacks: hygroscopicity and high cost. Thus the question is raised to what extent is it possible to replace POEs with a lower cost, but immiscible, oil such as mineral oil. It is the purpose of this study to experimentally investigate the oil return behavior of R-407C with mineral oil in a splitmore » three-ton heat pump in comparison to R407C/POE and R-22/Mineral Oil.« less

  10. Approaches to Measuring Entanglement in Chemical Magnetometers

    PubMed Central

    2013-01-01

    Chemical magnetometers are radical pair systems such as solutions of pyrene and N,N-dimethylaniline (Py–DMA) that show magnetic field effects in their spin dynamics and their fluorescence. We investigate the existence and decay of quantum entanglement in free geminate Py–DMA radical pairs and discuss how entanglement can be assessed in these systems. We provide an entanglement witness and propose possible observables for experimentally estimating entanglement in radical pair systems with isotropic hyperfine couplings. As an application, we analyze how the field dependence of the entanglement lifetime in Py–DMA could in principle be used for magnetometry and illustrate the propagation of measurement errors in this approach. PMID:24372396

  11. Rabi oscillation and electron-spin-echo envelope modulation of the photoexcited triplet spin system in silicon

    NASA Astrophysics Data System (ADS)

    Akhtar, Waseem; Sekiguchi, Takeharu; Itahashi, Tatsumasa; Filidou, Vasileia; Morton, John J. L.; Vlasenko, Leonid; Itoh, Kohei M.

    2012-09-01

    We report on a pulsed electron paramagnetic resonance (EPR) study of the photoexcited triplet state (S=1) of oxygen-vacancy centers in silicon. Rabi oscillations between the triplet sublevels are observed using coherent manipulation with a resonant microwave pulse. The Hahn echo and stimulated echo decay profiles are superimposed with strong modulations known as electron-spin-echo envelope modulation (ESEEM). The ESEEM spectra reveal a weak but anisotropic hyperfine coupling between the triplet electron spin and a 29Si nuclear spin (I=1/2) residing at a nearby lattice site, that cannot be resolved in conventional field-swept EPR spectra.

  12. Creating Spin-One Fermions in the Presence of Artificial Spin-Orbit Fields: Emergent Spinor Physics and Spectroscopic Properties

    NASA Astrophysics Data System (ADS)

    Kurkcuoglu, Doga Murat; de Melo, C. A. R. Sá

    2018-05-01

    We propose the creation and investigation of a system of spin-one fermions in the presence of artificial spin-orbit coupling, via the interaction of three hyperfine states of fermionic atoms to Raman laser fields. We explore the emergence of spinor physics in the Hamiltonian described by the interaction between light and atoms, and analyze spectroscopic properties such as dispersion relation, Fermi surfaces, spectral functions, spin-dependent momentum distributions and density of states. Connections to spin-one bosons and SU(3) systems is made, as well relations to the Lifshitz transition and Pomeranchuk instability are presented.

  13. Theoretical explanation of spin-Hamiltonian parameters and local structure for the orthorhombic MnO2 -4 clusters in K2CrO4 : Mn6 + crystal

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Xie, Linhua

    2017-12-01

    In this paper, the spin-Hamiltonian parameters (g factors gx, gy, gz and hyperfine structure constants A Ax, Ay, Az) and the absorption spectrum of K2CrO4 : Mn6 + crystal are theoretically explained by using the high-order perturbation theory, the double-spin-orbit-coupling model theory and the double-mechanism theory (the crystal field mechanism and the charge-transfer (CT) mechanism). The calculation results show that the contribution of the CT mechanism cannot be neglected for Mn6 + ions in orthorhombic clusters with the ground state ?.

  14. Laser-stimulated electric quadrupole transitions in the molecular hydrogen ion H2+

    NASA Astrophysics Data System (ADS)

    Korobov, V. I.; Danev, P.; Bakalov, D.; Schiller, S.

    2018-03-01

    Molecular hydrogen ions are of metrological relevance due to the possibility of precise theoretical evaluation of their spectrum and of external-field-induced shifts. We report the results of the calculations of the rate of laser-induced electric quadrupole transitions between a large set of ro-vibrational states of H2+. The hyperfine and Zeeman structure of the E 2 transition spectrum and the effects of the laser polarization are treated in detail. The treatment is generally applicable to molecules in 2Σ states. We also present the nuclear spin-electron spin-coupling constants, computed with a precision ten times higher than previously obtained.

  15. Theoretical hyperfine structures of 19F i and 17O i

    NASA Astrophysics Data System (ADS)

    Aourir, Nouria; Nemouchi, Messaoud; Godefroid, Michel; Jönsson, Per

    2018-03-01

    Multiconfiguration Hartree-Fock (MCHF) and multiconfiguration Dirac-Hartree-Fock (MCDHF) calculations are performed for the 2 p5P2o , 2 p4(3P ) 3 s 4P , 2 p4(3P ) 3 s 2P , and 2 p4(3P ) 3 p 4So states of 19F i to determine their hyperfine constants. Several computing strategies are considered to investigate electron correlation and relativistic effects. High-order correlation contributions are included in MCHF calculations based on single and double multireference expansions. The largest components of the single reference MCHF wave functions are selected to define the multireference (MR) sets. In this scheme, relativistic corrections are evaluated in the Breit-Pauli approximation. A similar strategy is used for the calculation of MCDHF relativistic wave functions and hyperfine parameters. While correlation and relativistic corrections are found to be rather small for the ground state, we highlight large relativistic effects on the hyperfine constant A3 /2 of 2 p4(3P ) 3 p 4So and, to a lesser extent, on A1 /2 of 2 p4(3P ) 3 s 4P . As expected for such a light system, electron correlation effects dominate over relativity in the calculation of the hyperfine interaction of all other levels considered. We also revisit the hyperfine constants of 2 p3(4S ) 3 s S5o and 2 p3(4S ) 3 p 5P in 17O using similar strategies. The results are found to be in excellent agreement with experiment.

  16. Quantum Theory of Hyperfine Structure Transitions in Diatomic Molecules.

    ERIC Educational Resources Information Center

    Klempt, E.; And Others

    1979-01-01

    Described is an advanced undergraduate laboratory experiment in which radio-frequency transitions between molecular hyperfine structure states may be observed. Aspects of the quantum theory applied to the analysis of this physical system, are discussed. (Authors/BT)

  17. Magnetism and Hyperfine Parameters in Iron Rich Gd_2Fe_{17-x}Si_x Intermetallics

    NASA Astrophysics Data System (ADS)

    Nouri, K.; Bartoli, T.; Chrobak, A.; Moscovici, J.; Bessais, L.

    2018-04-01

    Gd_2Fe_{17-x}Si_x (x = 0.25 , 0.5 and 1) samples were synthesized by arc melting and annealed at 1073 K for 1 week. X-ray diffraction analysis by the Rietveld method has shown that these materials crystallize in the rhombohedral Th_2Zn_{17} -type structure (space group R\\bar{3}m ). The Curie temperature increases with Si content x, whereas the unit-cell parameters decrease slightly. The temperature dependence of magnetization data revealed that Gd_2Fe_{17-x}Si_x exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of the Curie temperature. Exchange coupling parameters of R-R, M-M and R-M (R—rare earth, M—transition metal) have been determined from M(T) magnetization curves based on the mean field theory calculation. The magnetic entropy change Δ S_M and the relative cooling power were estimated from isothermal magnetization curves for all samples. In the proximity of {T}_C and in an applied field of 1.56 T, Δ S_M reached a maximum values of 1.38, 1.67 and 3.07 J/kg K for x = 0.25, 0.5 and 1, respectively. We have calculated the magnetic moment per Fe atom from magnetization measurements at 293 K up to 17 kOe, and it decreases with Si content. These results are verified by the Mössbauer spectrometry measurements obtained at the same temperature. The Mössbauer spectra analysis is based on the correlation between the Wigner-Seitz volume and the isomer-shift evolution of each specific site 6c, 9d, 18f, and 18h of the R\\bar{3} m structure. For all Si concentrations, the magnitude of the hyperfine fields are {H_HF}{6c} > {H_HF}{9d} > {H_HF}{18f} > {H_HF}{18h} . The mean hyperfine field decreases with the Si content.

  18. Magnetism and Hyperfine Parameters in Iron Rich Gd_2Fe_{17-x}Si_x Intermetallics

    NASA Astrophysics Data System (ADS)

    Nouri, K.; Bartoli, T.; Chrobak, A.; Moscovici, J.; Bessais, L.

    2018-07-01

    Gd_2Fe_{17-x}Si_x (x = 0.25, 0.5 and 1) samples were synthesized by arc melting and annealed at 1073 K for 1 week. X-ray diffraction analysis by the Rietveld method has shown that these materials crystallize in the rhombohedral Th_2Zn_{17}-type structure (space group R\\bar{3}m). The Curie temperature increases with Si content x, whereas the unit-cell parameters decrease slightly. The temperature dependence of magnetization data revealed that Gd_2Fe_{17-x}Si_x exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of the Curie temperature. Exchange coupling parameters of R- R, M- M and R- M ( R—rare earth, M—transition metal) have been determined from M( T) magnetization curves based on the mean field theory calculation. The magnetic entropy change Δ S_M and the relative cooling power were estimated from isothermal magnetization curves for all samples. In the proximity of {T}_C and in an applied field of 1.56 T, Δ S_M reached a maximum values of 1.38, 1.67 and 3.07 J/kg K for x = 0.25, 0.5 and 1, respectively. We have calculated the magnetic moment per Fe atom from magnetization measurements at 293 K up to 17 kOe, and it decreases with Si content. These results are verified by the Mössbauer spectrometry measurements obtained at the same temperature. The Mössbauer spectra analysis is based on the correlation between the Wigner-Seitz volume and the isomer-shift evolution of each specific site 6 c, 9 d, 18 f, and 18 h of the R\\bar{3}m structure. For all Si concentrations, the magnitude of the hyperfine fields are {H_HF}{6c} > {H_HF}{9d} > {H_HF}{18f} > {H_HF}{18h}. The mean hyperfine field decreases with the Si content.

  19. Electron paramagnetic resonance studies on conformation states and metal ion exchange properties of vanadium bromoperoxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Boer, E.; Boon, K.; Wever, R.

    An electron paramagnetic resonance (EPR) study was carried out to examine structural aspects of vanadium-containing bromoperoxidase from the brown seaweed Ascophyllum nodosum. At high pH, the reduced form of bromoperoxidase showed an apparently axially symmetric EPR signal with 16 hyperfine lines. When the pH was lowered, a new EPR spectrum was formed. When EPR spectra of the reduced enzyme were recorded in the pH range from 4.2 to 8.4, it appeared that these changes were linked to a functional group with an apparent pK/sub a/ of about 5.4. In D/sub 2/O this value for the pK/sub a/ was 5.3. Itmore » is suggested that these effects arise from protonation of histidine or aspartate/glutamate residues near the metal ion. The values for the isotropic hyperfine coupling constant of the reduced enzyme at both high and low pH are also consistent with a ligand field containing nitrogen and/or oxygen donor atoms. When reduced bromoperoxidase was dissolved in D/sub 2/O or H/sub 2//sup 17/O instead of H/sub 2//sup 16/O, vanadium (IV) hyperfine line widths were markedly affected, demonstrating that water is a ligand of the metal ion. Together with previous work these findings suggest that vanadium (IV) is not involved in catalytic turnover and confirm the model in which the vanadium (V) ion of the native enzyme only serves to bind both hydrogen peroxide and bromide. After excess vanadate was added to a homogeneous preparation of purified bromoperoxidase, the extent of vanadium bound to the protein increased from 0.5 to 1.1, with a concomitant enhancement of enzymic activity. Finally, it is demonstrated that both vanadate (VO/sub 4//sup 3 -/) and molybdate (MoO/sub 4//sup 2 -/) compete for the same site on apobromoperoxidase.« less

  20. Transitioning to Low-GWP Alternatives in Commercial Refrigeration

    EPA Pesticide Factsheets

    This fact sheet provides information on low-GWP alternatives in newly manufactured commercial refrigeration equipment. It discusses HFC alternatives, market trends, challenges to market entry for alternatives, and potential solutions.

  1. Transitioning to Low-GWP Alternatives in Domestic Refrigeration

    EPA Pesticide Factsheets

    This fact sheet provides information on low-GWP alternatives in newly manufactured domestic refrigeration equipment. It discusses HFC alternatives, market trends, challenges to market entry for alternatives, and potential solutions.

  2. Broadband network selection issues

    NASA Astrophysics Data System (ADS)

    Leimer, Michael E.

    1996-01-01

    Selecting the best network for a given cable or telephone company provider is not as obvious as it appears. The cost and performance trades between Hybrid Fiber Coax (HFC), Fiber to the Curb (FTTC) and Asymmetric Digital Subscriber Line networks lead to very different choices based on the existing plant and the expected interactive subscriber usage model. This paper presents some of the issues and trades that drive network selection. The majority of the Interactive Television trials currently underway or planned are based on HFC networks. As a throw away market trial or a short term strategic incursion into a cable market, HFC may make sense. In the long run, if interactive services see high demand, HFC costs per node and an ever shrinking neighborhood node size to service large numbers of subscribers make FTTC appear attractive. For example, thirty-three 64-QAM modulators are required to fill the 550 MHz to 750 MHz spectrum with compressed video streams in 6 MHz channels. This large amount of hardware at each node drives not only initial build-out costs, but operations and maintenance costs as well. FTTC, with its potential for digitally switching large amounts of bandwidth to an given home, offers the potential to grow with the interactive subscriber base with less downstream cost. Integrated telephony on these networks is an issue that appears to be an afterthought for most of the networks being selected at the present time. The major players seem to be videocentric and include telephony as a simple add-on later. This may be a reasonable view point for the telephone companies that plan to leave their existing phone networks untouched. However, a phone company planning a network upgrade or a cable company jumping into the telephony business needs to carefully weigh the cost and performance issues of the various network choices. Each network type provides varying capability in both upstream and downstream bandwidth for voice channels. The noise characteristics vary as well. Cellular quality will not be tolerated by the home or business consumer. The network choices are not simple or obvious. Careful consideration of the cost and performance trades along with cable or telephone company strategic plans is required to ensure selecting the best network.

  3. A computer program for analyzing unresolved Mossbauer hyperfine spectra

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Singh, J. J.

    1978-01-01

    The program for analyzing unresolved Mossbauer hyperfine spectra was written in FORTRAN 4 language for the Control Data CYBER 170 series digital computer system with network operating system 1.1. With the present dimensions, the program requires approximately 36,000 octal locations of core storage. A typical case involving two innermost coordination shells in which the amplitudes and the peak positions of all three components were estimated in 25 iterations requires 30 seconds on CYBER 173. The program was applied to determine the effects of various near neighbor impurity shells on hyperfine fields in dilute FeAl alloys.

  4. Theoretical study of spin Hall effect in conjugated Organic semiconductors

    NASA Astrophysics Data System (ADS)

    Mahani, M. R.; Delin, A.

    The spin Hall effect (SHE), a direct conversion between electronic and spin currents, is a rapidly growing branch of spintronics. The study of SHE in conjugated polymers has gained momentum recently due to the weak spin-orbit couplings and hyperfine interactions in these materials. Our calculations of SHE based on the recent work, are the result of the misalignment of pi-orbitals in triads consisting of three molecules. In disordered organics, where the electronic conduction is through hopping of the electrons among randomly oriented molecules, instead of identifying a hopping triad to represent the entire system, we numerically solve the master equations for electrical and spin hall conductivities by summing the contributions from all triads in a sufficiently large system. The interference between the direct and indirect hoppings in these triads leads to SHE proportional to the orientation vector of molecule at the first order of spin-orbit coupling. Hence, our results show, the degree of molecular alignment as well as the strength of the spin-orbit coupling can be used to control the SHE in organics.

  5. Morphology effects on spin-dependent transport and recombination in polyfluorene thin films

    NASA Astrophysics Data System (ADS)

    Miller, Richards; van Schooten, K. J.; Malissa, H.; Joshi, G.; Jamali, S.; Lupton, J. M.; Boehme, C.

    2016-12-01

    We have studied the role of spin-dependent processes on conductivity in polyfluorene (PFO) thin films by preforming continuous wave (cw) electrically detected magnetic resonance (EDMR) spectroscopy at temperatures between 10 K and room temperature using microwave frequencies between about 1 GHz and 20 GHz, as well as pulsed EDMR at the X band (10 GHz). Variable frequency EDMR allows us to establish the role of spin-orbit coupling in spin-dependent processes whereas pulsed EDMR allows for the observation of coherent spin motion effects. We used PFO for this study in order to allow for the investigation of the effects of microscopic morphological ordering since this material can adopt two distinct intrachain morphologies: an amorphous (glassy) phase, in which monomer units are twisted with respect to each other, and an ordered (β) phase, where all monomers lie within one plane. In thin films of organic light-emitting diodes, the appearance of a particular phase can be controlled by deposition parameters and solvent vapor annealing, and is verified by electroluminescence spectroscopy. Under bipolar charge-carrier injection conditions, we conducted multifrequency cw EDMR, electrically detected Rabi spin-beat experiments, and Hahn echo and inversion-recovery measurements. Coherent echo spectroscopy reveals electrically detected electron-spin-echo envelope modulation due to the coupling of the carrier spins to nearby nuclear spins. Our results demonstrate that, while conformational disorder can influence the observed EDMR signals, including the sign of the current changes on resonance as well as the magnitudes of local hyperfine fields and charge-carrier spin-orbit interactions, it does not qualitatively affect the nature of spin-dependent transitions in this material. In both morphologies, we observe the presence of at least two different spin-dependent recombination processes. At room temperature and 10 K, polaron-pair recombination through weakly spin-spin coupled intermediate charge-carrier pair states is dominant, while at low temperatures, additional signatures of spin-dependent charge transport through the interaction of polarons with triplet excitons are seen in the half-field resonance of a triplet spin-1 species. This additional contribution arises since triplet lifetimes are increased at lower temperatures. We tentatively conclude that spectral broadening induced by hyperfine coupling is slightly weaker in the more ordered β-phase than in the glassy phase since protons are more evenly spaced, whereas broadening effects due to spin-orbit coupling, which impacts the distribution of g -factors, appear to be somewhat more significant in the β-phase.

  6. 10 CFR 300.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... these forms of distributed energy. Base period means a period of 1-4 years used to derive the average... fossil fuels or other materials, such as HFC leaks from refrigeration, SF6 from electrical power...

  7. 10 CFR 300.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... these forms of distributed energy. Base period means a period of 1-4 years used to derive the average... fossil fuels or other materials, such as HFC leaks from refrigeration, SF6 from electrical power...

  8. 10 CFR 300.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... these forms of distributed energy. Base period means a period of 1-4 years used to derive the average... fossil fuels or other materials, such as HFC leaks from refrigeration, SF6 from electrical power...

  9. 10 CFR 300.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... these forms of distributed energy. Base period means a period of 1-4 years used to derive the average... fossil fuels or other materials, such as HFC leaks from refrigeration, SF6 from electrical power...

  10. 10 CFR 300.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... these forms of distributed energy. Base period means a period of 1-4 years used to derive the average... fossil fuels or other materials, such as HFC leaks from refrigeration, SF6 from electrical power...

  11. Timeline of Actions on HFCs

    EPA Pesticide Factsheets

    The Kigali amendment to phase down HFCs was the result of years of negotiation by parties to the Montreal Protocol, with numerous HFC amendment proposals submitted by North America, Island States, India, and the European Union.

  12. The APO*E3-Leiden mouse as an animal model for basal laminar deposit

    PubMed Central

    Kliffen, M.; Lutgens, E.; Daemen, M.; de Muinck, E. D; Mooy, C.; de Jong, P. T V M

    2000-01-01

    AIM—To investigate the APO*E3-Leiden mouse as an animal model for age related maculopathy (ARM) related extracellular deposits.
METHODS—Eyes were obtained from APO*E3-Leiden transgenic mice on a high fat/cholesterol (HFC) diet (n=12) or on a normal mouse chow (n=6), for 9 months. As controls, eyes were collected from APO-E knockout mice on the same diets. From each mouse one eye was processed for microscopic evaluation and immunohistochemistry with a polyclonal antibody directed against human apo-E. Electron microscopy was also performed.
RESULTS—All 12 eyes of the APO*E3-Leiden mice on an HFC diet contained basal laminar deposit (BLD; class 1 to class 3), whereas two of six APO*E3-Leiden mice on normal chow showed BLD class 1. The ultrastructural aspects of this BLD were comparable with those seen in early BLD in humans, and BLD showed immunoreaction with anti-human-apo-E antibodies. No BLD was found in any of the control mice. Drusen were not detected in any of the mice.
CONCLUSION—These results indicate that APO*E3-Leiden mice can be used as animal model for the pathogenesis of BLD, and that a HFC diet enhances the accumulation of this deposit. Furthermore, this study supports the previously suggested involvement of dysfunctional apo-E in the accumulation of extracellular deposits in ARM.

 PMID:11090485

  13. Haptic-Multimodal Flight Control System Update

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Schutte, Paul C.; Williams, Ralph A.

    2011-01-01

    The rapidly advancing capabilities of autonomous aircraft suggest a future where many of the responsibilities of today s pilot transition to the vehicle, transforming the pilot s job into something akin to driving a car or simply being a passenger. Notionally, this transition will reduce the specialized skills, training, and attention required of the human user while improving safety and performance. However, our experience with highly automated aircraft highlights many challenges to this transition including: lack of automation resilience; adverse human-automation interaction under stress; and the difficulty of developing certification standards and methods of compliance for complex systems performing critical functions traditionally performed by the pilot (e.g., sense and avoid vs. see and avoid). Recognizing these opportunities and realities, researchers at NASA Langley are developing a haptic-multimodal flight control (HFC) system concept that can serve as a bridge between today s state of the art aircraft that are highly automated but have little autonomy and can only be operated safely by highly trained experts (i.e., pilots) to a future in which non-experts (e.g., drivers) can safely and reliably use autonomous aircraft to perform a variety of missions. This paper reviews the motivation and theoretical basis of the HFC system, describes its current state of development, and presents results from two pilot-in-the-loop simulation studies. These preliminary studies suggest the HFC reshapes human-automation interaction in a way well-suited to revolutionary ease-of-use.

  14. Tim2 is expressed in mouse fetal hepatocytes and regulates their differentiation.

    PubMed

    Watanabe, Natsumi; Tanaka, Minoru; Suzuki, Kaori; Kumanogoh, Atsushi; Kikutani, Hitoshi; Miyajima, Atsushi

    2007-05-01

    Liver development is regulated by various extracellular molecules such as cytokines and cell surface proteins. Although several such regulators have been identified, additional molecules are likely to be involved in liver development. To identify such molecules, we employed the signal sequence trap (SST) method to screen cDNAs encoding a secreted or membrane protein from fetal liver and obtained a number of clones. Among them, we found that T cell immunoglobulin and mucin domain 2 (Tim2) was expressed specifically on immature hepatocytes in the fetal liver. Tim2 has been shown to regulate immune responses, but its role in liver development had not been studied. We have examined the possible role of Tim2 in hepatocyte differentiation. At first, we prepared a soluble Tim2 fusion protein consisting of its extracellular domain and the Fc domain of human IgG (Tim2-hFc) and found that it bound to fetal and adult hepatocytes, suggesting that there are Tim2-binding molecules on hepatocytes. Second, Tim2-hFc inhibited the differentiation of hepatocytes in fetal liver primary culture, i.e., the expression of mature hepatic enzymes and accumulation of glycogen were severely reduced. Third, Tim2-hFc also inhibited proliferation of fetal hepatocytes. Fourth, down-regulation of Tim2 expression by small interfering RNA (siRNA) enhanced the expression of liver differentiation marker genes. It is strongly suggested that Tim2 is involved in the differentiation of fetal hepatocytes.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, D. D.; Yver Kwok, C.; Cameron-Smith, P.

    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototypemore » network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH 2FCF 3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.« less

  16. Single-source-precursor synthesis of dense SiC/HfC(x)N(1-x)-based ultrahigh-temperature ceramic nanocomposites.

    PubMed

    Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel

    2014-11-21

    A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfC(x)N(1-x)-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfC(x)N(1-x)-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfC(x)N(1-x)-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm(-1), the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm(-1).

  17. Performance of a GaAlAs laser diode stabilized on a hyperfine component of two-photon transitions in rubidium at 778 nm

    NASA Astrophysics Data System (ADS)

    Felder, Raymond; Touahri, D.; Acef, Ouali; Hilico, L.; Zondy, Jean-Jacques; Clairon, Andre; de Beauvoir, Beatrice; Biraben, Francois; Julien, Lucile; Nez, Francois; Millerioux, Yves P.

    1995-04-01

    The absolute frequency measurement of each hyperfine component of the 5S3/2 and 5S5/2 levels in rubidium was done at ENS more than one year ago using Ti-Sa lasers. We built two devices based on diode lasers to study some metrological properties. We measure the frequency differences between hyperfine components of the 5S5/2 level and we calculate the corresponding hyperfine constants. We also measure the frequency interval between the 5S3/2 and 5S5/2 levels using a Schottky diode. The measured stability in terms of Allan variance is 3*10-13t-1/2 up to 2000 s. The light shift is investigated and the difference between our two systems is 1.7 kHz. The repeatability of one system is better than 10-12 and will allow the absolute frequency measurement at this level via the LPTF frequency synthesis chain.

  18. Hyperfine Structure Constants of Energetically High-lying Levels of Odd Parity of Atomic Vanadium

    NASA Astrophysics Data System (ADS)

    Güzelçimen, F.; Yapıcı, B.; Demir, G.; Er, A.; Öztürk, I. K.; Başar, Gö.; Kröger, S.; Tamanis, M.; Ferber, R.; Docenko, D.; Başar, Gü.

    2014-09-01

    High-resolution Fourier transform spectra of a vanadium-argon plasma have been recorded in the wavelength range of 365-670 nm (15,000-27,400 cm-1). Optical bandpass filters were used in the experimental setup to enhance the sensitivity of the Fourier transform spectrometer. In total, 138 atomic vanadium spectral lines showing resolved or partially resolved hyperfine structure have been analyzed to determine the magnetic dipole hyperfine structure constants A of the involved energy levels. One of the investigated lines has not been previously classified. As a result, the magnetic dipole hyperfine structure constants A for 90 energy levels are presented: 35 of them belong to the configuration 3d 34s4p and 55 to the configuration 3d 44p. Of these 90 constants, 67 have been determined for the first time, with 23 corresponding to the configuration 3d 34s4p and 44 to 3d 44p.

  19. The optical pumping of alkali atoms using coherent radiation from semi-conductor injection lasers and incoherent radiation from resonance lamps

    NASA Technical Reports Server (NTRS)

    Singh, G.

    1973-01-01

    An experimental study for creating population differences in the ground states of alkali atoms (Cesium 133) is presented. Studies made on GaAs-junction lasers and the achievement of population inversions among the hyperfine levels in the ground state of Cs 133 by optically pumping it with radiation from a GaAs diode laser. Laser output was used to monitor the populations in the ground state hyperfine levels as well as to perform the hyperfine pumping. A GaAs laser operated at about 77 K was used to scan the 8521 A line of Cs 133. Experiments were performed both with neon-filled and with paraflint-coated cells containing the cesium vapor. Investigations were also made for the development of the triple resonance coherent pulse technique and for the detection of microwave induced hyperfine trasistions by destroying the phase relationships produced by a radio frequency pulse. A pulsed cesium resonance lamp developed, and the lamp showed clean and reproducible switching characteristics.

  20. Construction of the energy matrix for complex atoms. Part VIII: Hyperfine structure HPC calculations for terbium atom

    NASA Astrophysics Data System (ADS)

    Elantkowska, Magdalena; Ruczkowski, Jarosław; Sikorski, Andrzej; Dembczyński, Jerzy

    2017-11-01

    A parametric analysis of the hyperfine structure (hfs) for the even parity configurations of atomic terbium (Tb I) is presented in this work. We introduce the complete set of 4fN-core states in our high-performance computing (HPC) calculations. For calculations of the huge hyperfine structure matrix, requiring approximately 5000 hours when run on a single CPU, we propose the methods utilizing a personal computer cluster or, alternatively a cluster of Microsoft Azure virtual machines (VM). These methods give a factor 12 performance boost, enabling the calculations to complete in an acceptable time.

  1. Hyperfine structure investigations for the odd-parity configuration system in atomic holmium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Furmann, B.

    2018-02-01

    In this work new experimental results of the hyperfine structure (hfs) in the holmium atom are reported, concerning the odd-parity level system. Investigations were performed by the method of laser induced fluorescence in a hollow cathode discharge lamp on 97 spectral lines in the visible part of the spectrum. Hyperfine structure constants: magnetic dipole - A and electric quadrupole - B for 40 levels were determined for the first time; for another 21 levels the hfs constants available in the literature were remeasured. Results for the A constants can be viewed as fully reliable; for B constants further possibilities of improving the accuracy are considered.

  2. Transitioning to Low-GWP Alternatives in Motor Vehicle Air Conditioning Systems

    EPA Pesticide Factsheets

    This fact sheet provides information on low-GWP alternatives in newly manufactured motor vehicle air conditioning systems. It discusses HFC alternatives, market trends, challenges to market entry for alternatives, and potential solutions.

  3. Transitioning to Low-GWP Alternatives in Building and Construction Foams

    EPA Pesticide Factsheets

    This fact sheet provides information on low-GWP foam blowing alternatives used in building and construction applications. It discusses HFC alternatives, market trends, challenges to market entry for alternatives, and potential solutions.

  4. GTE_PEMTB_DC8 Parameters 15

    Atmospheric Science Data Center

    2013-02-19

    ... NMHC/Halocarbons/Alkyl Nitrates: Methyl Chloride F-12 F-114 F-11 HCFC-141B HCFC-134a HCFC-22 ... 2,2,4-trimethylpentane 2,3,4-trimethylpethane Methylene Chloride Chloroform Perchloroethylene HFC-134A HCFC22 ...

  5. Initial Development of an Exploding Aerosol Can Simulator

    DTIC Science & Technology

    1998-04-01

    product quantities used. Although some mixes of antiperspirants and body sprays contain higher fractional concentrations of hydrocarbon propellant than... Antiperspirant HFC 152a 15-25% Hydrocarbon A-17 35-45% Cyclomethicone 25-27% Fragrance ə

  6. Transitioning to Low-GWP Alternatives in Transport Refrigeration

    EPA Pesticide Factsheets

    This fact sheet provides information on low-GWP refrigerant and foam blowing agent alternatives used in transport refrigeration equipment. It discusses HFC alternatives, market trends, challenges to market entry for alternatives, and potential solutions.

  7. Transitioning to Low-GWP Alternatives in Aerosols

    EPA Pesticide Factsheets

    This fact sheet provides information on low-GWP alternatives for non-medical commercial aerosols, relevant to the Montreal Protocol. It discusses HFC alternatives, market trends, and challenges to market entry for alternatives and potential solutions.

  8. Hyperfine fields of Fe in Nd2Fe14BandSm2Fe17N3

    NASA Astrophysics Data System (ADS)

    Akai, Hisazumi; Ogura, Masako

    2015-03-01

    High saturation magnetization of rare-earth magnets originates from Fe and the strong magnetic anisotropy stems from f-states of rare-earth elements such as Nd and Sm. Therefore the hyperfine fields of both Fe and rare-earth provide us with important pieces of information: Fe NMR enable us to detect site dependence of the local magnetic moment and magnetic anisotropy (Fe sites also contribute to the magnetic anisotropy) while rare-earth NQR directly give the information of electric field gradients (EFG) that are related to the shape of the f-electron cloud as well as the EFG produced by ligands. In this study we focus on the hyperfine fields of materials used as permanent magnets, Nd2Fe14BandSm2Fe17N3 from theoretical points of view. The detailed electronic structure together with the hyperfine interactions are discussed on the basis of the first-principles calculation. In particular, the relations between the observed hyperfine fields and the magnetic properties are studies in detail. The effects of doping of those materials by other elements such as Dy and the effects of N adding in Sm2Fe17N3 will be discussed. This work was supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  9. Hyperfine excitation of linear molecules by para- and ortho-H{sub 2}: Application to the HCl–H{sub 2} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanza, Mathieu; Lique, François, E-mail: francois.lique@univ-lehavre.fr

    The determination of hyperfine structure resolved excitation cross sections and rate coefficients due to H{sub 2} collisions is required to interpret astronomical spectra. In this paper, we present several theoretical approaches to compute these data. An almost exact recoupling approach and approximate sudden methods are presented. We apply these different approaches to the HCl–H{sub 2} collisional system in order to evaluate their respective accuracy. HCl–H{sub 2} hyperfine structure resolved cross sections and rate coefficients are then computed using recoupling and approximate sudden methods. As expected, the approximate sudden approaches are more accurate when the collision energy increases and the resultsmore » suggest that these approaches work better for para-H{sub 2} than for ortho-H{sub 2} colliding partner. For the first time, we present HCl–H{sub 2} hyperfine structure resolved rate coefficients, computed here for temperatures ranging from 5 to 300 K. The usual Δj{sub 1} = ΔF{sub 1} propensity rules are observed for the hyperfine transitions. The new rate coefficients will significantly help the interpretation of interstellar HCl emission lines observed with current and future telescopes. We expect that these new data will allow a better determination of the HCl abundance in the interstellar medium, that is crucial to understand the interstellar chlorine chemistry.« less

  10. Hyperfine interaction constants of 14NO2 in 14 500-16 800 cm-1 energy region

    NASA Astrophysics Data System (ADS)

    Tada, Kohei; Hirata, Michihiro; Kasahara, Shunji

    2017-10-01

    We observed hyperfine-resolved high-resolution fluorescence excitation spectra of k = 0, N = 1 ← 0 transitions in 82 vibronic bands of the à 2B2 ← X ˜ 2A1 system of 14NO2 in the 14 500-16 800 cm-1 region by crossing a jet-cooled molecular beam and a single-mode dye laser beam at right angles. We determined hyperfine interaction constants of the lower and upper states for all the observed vibronic bands based on the analysis of the hyperfine structures of k = 0, N = 1 ← 0 transitions. Most of the determined Fermi contact interaction constants were found to be distributed in 0.0013-0.0038 cm-1, which are intermediate in magnitude between those in lower and higher energy region reported by other groups. A sharp decreasing of the Fermi contact interaction constant was found in 16 200-16 600 cm-1, and it may be caused by the interaction with the dark C ˜ 2A2 state. The hyperfine interaction constants are powerful clues to obtain reliable vibronic assignment. We tentatively assigned vibronic bands located at 14 836 cm-1, 15 586 cm-1, and 16 322 cm-1 as the transitions to the intrinsic (0,7,0), (0,8,0), and (0,9,0) vibrational levels of the à 2B2 state, respectively.

  11. EPR Spectroscopy of Radical Ions of a 2,3-Diamino-1,4-naphthoquinone Derivative.

    PubMed

    Tarábek, Ján; Wen, Jin; Dron, Paul I; Pospíšil, Lubomír; Michl, Josef

    2018-05-18

    We report the electron paramagnetic resonance spectra of the radical cation and radical anion of 1,2,2,3-tetramethyl-2,3-dihydro-1 H-naphtho[2,3- d]imidazole-4,9-dione (1) and its doubly 13 C labeled analogue 2, of interest for singlet fission. The hyperfine coupling constants are in excellent agreement with density functional theory calculations and establish the structures beyond doubt. Unlike the radical cation 1 •+ , the radical anion 1 •- and its parent 1 have pyramidalized nitrogen atoms and inequivalent methyl groups 15 and 16, in agreement with the calculations. The distinction is particularly clear with the labeled analogue 2 •- .

  12. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue

    2012-05-01

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samskog, P.; Kispert, L.D.; Lund, A.

    Three different radicals were identified by EPR in x-ray irradiated single crystals of trehalose at 3 K. The species are the trapped electron, a hydroxy alkyl radical, and an alkoxy radical. The electron is trapped in an intermolecular site formed by two hydroxyl groups, one on the carbohydrate and the other on a water molecule as evidenced by the anisotropic proton hyperfine couplings. A geometric model for the trapping site is presented. The trapped electron decays by cleavage of an OH bond and the liberated hydrogen atom abstracts another hydrogen atom from an adjacent carbon atom forming a hydroxy alkylmore » radical. The site of the alkoxy radical has been identified. The primary reaction mechanism is discussed.« less

  14. Magnetic anisotropy on the single crystal UNi4B probed by 11B NMR

    NASA Astrophysics Data System (ADS)

    Kishimoto, Yasuki; Matsuno, Haruki; Kotegawa, Hisashi; Tou, Hideki; Saito, Hiraku; Amitsuka, Hiroshi; Homma, Yoshiya; Nakamura, Ai; Li, Dexin; Honda, Fuminori; Aoki, Dai

    2018-05-01

    We have performed a susceptibility M / H and 11B NMR measurements to investigate the static magnetic anisotropy of a single crystal UNi4B. The Knight shift 11K and the hyperfine coupling constant Ahf evaluated by 11K- M / H plot show anisotropic behavior between H ∥ [ 11 2 bar 0 ] and H ∥ [ 0001 ] , reflecting the bulk susceptibility. The evaluated transferred term Atr of Ahf for H ∥ [ 11 2 bar 0 ] is much larger than the one for H ∥ [ 0001 ] . The strong hybridization in the [0001]-plane due to a itinerant 5f-electron is strongly associated with the unique magnetic structure in this compound.

  15. Diode laser spectroscopy of the MnD radical ( 7Σ) and the determination of mass-independent parameters

    NASA Astrophysics Data System (ADS)

    Urban, Rolf-Dieter; Jones, Harold

    1991-03-01

    The infrared spectrum of the manganese deuteride radical has been observed in its ground electronic state ( 7Σ) using a diode-laser spectrometer. The hyperfine structure of a number of infrared transitions in the bands ν=1←0, ν=2←1 and ν=3←2 were measured with a nominal accuracy of ±0.001 cm -1. In all cases, the complete structure was easily resolved. Dunham parameters, spin—rotation and spin—spin coupling parameters were determined from the MnD data. A simultaneous fit of these data with those determined previously for MnH was carried out to determine mass-independent parameters and mass-scaling coefficients.

  16. Using Hyperfine Structure to Quantify the Effects of Substitution on the Electron Distribution Within a Pyridine Ring: a Study of 2-, 3-, and 4-PICOLYLAMINE

    NASA Astrophysics Data System (ADS)

    McDivitt, Lindsey M.; Himes, Korrina M.; Bailey, Josiah R.; McMahon, Timothy J.; Bird, Ryan G.

    2017-06-01

    The ground state rotational spectra of the three methylamine substituted pyridines, 2-, 3-, and 4-picolylamine, were collected and analyzed over the frequency range of 7-17.5 GHz using chirped-pulsed Fourier transform microwave spectroscopy. All three molecules show a distinctive quadrupole splitting, which is representative of the local electronic environment around the two different ^{14}N nuclei, with the pyridine nitrogen being particularly sensitive to the pi-electron distribution within the ring. The role that the position of the methylamine group plays on the quadrupole coupling constants on both nitrogens will be discussed and compared to other substituted pyridines.

  17. 47,49Ti NMR: hyperfine interactions in oxides and metals.

    PubMed

    Bastow, T J; Gibson, M A; Forwood, C T

    1998-10-01

    A 47,49Ti NMR characterisation is given of various polymorphs of TiO2 (anatase, rutile and brookite), Ti2O3, perovskites CaTiO3 and BaTiO3, FeTiO3, TiB2, titanium metal, the titanium aluminides Ti3Al, TiAl, TiAl2, TiAl3, and TiAg. Values of chemical or Knight shift, nuclear quadrupole coupling constant and asymmetry parameter were derived from the (1/2, -1/2) powder lineshapes. For TiB2, titanium metal, TiAl, and TiAl3, where +/- (1/2, 3/2), and higher satellite transitions were observed, a value for the axial component of the Knight shift was obtained.

  18. A dynamic nuclear polarization strategy for multi-dimensional Earth's field NMR spectroscopy.

    PubMed

    Halse, Meghan E; Callaghan, Paul T

    2008-12-01

    Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth's field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth's magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring (14)N nucleus via the hyperfine interaction. A high-quality 2D (19)F-(1)H COSY spectrum acquired in the Earth's magnetic field with DNP enhancement is presented and compared to simulation.

  19. Influence of Fe-substitution on structural, magnetic and magnetocaloric properties of Nd2Fe17-xCox solid solutions

    NASA Astrophysics Data System (ADS)

    Bouchaala, N.; Jemmali, M.; Bartoli, T.; Nouri, K.; Hentech, I.; Walha, S.; Bessais, L.; Salah, A. Ben

    2018-02-01

    Nd2Fe17-xCox (x = 0 , 1 , 2 , 3 , 4) intermetallic compounds, obtained under arc-melting conditions, have been investigated by means of X-ray diffraction analysis (XRD), Mössbauer spectrometry and magnetic measurements. The Rietveld refinement revealed that the sample is a pure compound with rhombohedral Th2Zn17-type structure (R 3 bar m space group) with the following lattice parameters: a = 8.5792 (2) Å, c = 12.4615 (2) Å. Using Mössbauer spectrometry analysis coupled with structural consideration we have unambiguously determined the cobalt atoms preferred inequivalent crystallographic site. Nd2Fe17 show an increase of 3.5 T in their weighted average hyperfine fields upon cobalt substitution. Whatever the cobalt content, the hyperfine field of these compounds follow this sequence Hhf { 6 c } >Hhf { 9 d } >Hhf { 18 f } >Hhf { 18 h }. The magnetic measurements showed that the Curie temperature increases with the Co content. The magnetic entropy change (ΔSM) was estimated from isothermal magnetization curves and it increases from 3.35 J/Kg K for x = 0 to 5.83 J/Kg K for x = 2 at μ0 H = 1.6 T . The relative cooling power (RCP) is in the range of 11.6 J/kg (x = 0) and 16 J/kg (x = 2).

  20. Large-Scale Computation of Nuclear Magnetic Resonance Shifts for Paramagnetic Solids Using CP2K.

    PubMed

    Mondal, Arobendo; Gaultois, Michael W; Pell, Andrew J; Iannuzzi, Marcella; Grey, Clare P; Hutter, Jürg; Kaupp, Martin

    2018-01-09

    Large-scale computations of nuclear magnetic resonance (NMR) shifts for extended paramagnetic solids (pNMR) are reported using the highly efficient Gaussian-augmented plane-wave implementation of the CP2K code. Combining hyperfine couplings obtained with hybrid functionals with g-tensors and orbital shieldings computed using gradient-corrected functionals, contact, pseudocontact, and orbital-shift contributions to pNMR shifts are accessible. Due to the efficient and highly parallel performance of CP2K, a wide variety of materials with large unit cells can be studied with extended Gaussian basis sets. Validation of various approaches for the different contributions to pNMR shifts is done first for molecules in a large supercell in comparison with typical quantum-chemical codes. This is then extended to a detailed study of g-tensors for extended solid transition-metal fluorides and for a series of complex lithium vanadium phosphates. Finally, lithium pNMR shifts are computed for Li 3 V 2 (PO 4 ) 3 , for which detailed experimental data are available. This has allowed an in-depth study of different approaches (e.g., full periodic versus incremental cluster computations of g-tensors and different functionals and basis sets for hyperfine computations) as well as a thorough analysis of the different contributions to the pNMR shifts. This study paves the way for a more-widespread computational treatment of NMR shifts for paramagnetic materials.

  1. Non-flipping 13C spins near an NV center in diamond: hyperfine and spatial characteristics by density functional theory simulation of the C510[NV]H252 cluster

    NASA Astrophysics Data System (ADS)

    Nizovtsev, A. P.; Kilin, S. Ya; Pushkarchuk, A. L.; Pushkarchuk, V. A.; Kuten, S. A.; Zhikol, O. A.; Schmitt, S.; Unden, T.; Jelezko, F.

    2018-02-01

    Single NV centers in diamond coupled by hyperfine interaction (hfi) to neighboring 13C nuclear spins are now widely used in emerging quantum technologies as elements of quantum memory adjusted to a nitrogen-vacancy (NV) center electron spin qubit. For nuclear spins with low flip-flop rate, single shot readout was demonstrated under ambient conditions. Here we report on a systematic search for such stable NV-13C systems using density functional theory to simulate the hfi and spatial characteristics of all possible NV-13C complexes in the H-terminated cluster C510[NV]-H252 hosting the NV center. Along with the expected stable ‘NV-axial-13C’ systems wherein the 13C nuclear spin is located on the NV axis, we found for the first time new families of positions for the 13C nuclear spin exhibiting negligible hfi-induced flipping rates due to near-symmetric local spin density distribution. Spatially, these positions are located in the diamond bilayer passing through the vacancy of the NV center and being perpendicular to the NV axis. Analysis of available publications showed that, apparently, some of the predicted non-axial near-stable NV-13C systems have already been observed experimentally. A special experiment performed on one of these systems confirmed the prediction made.

  2. Transitioning to Low-GWP Alternatives in Residential and Commercial Air Conditioning

    EPA Pesticide Factsheets

    This fact sheet provides information on low-GWP alternatives in newly manufactured residential and commercial air conditioning systems. It discusses HFC alternatives, market trends, challenges to market entry for alternatives, and potential solutions.

  3. GTE_PEMTB_P3B Parameters 17

    Atmospheric Science Data Center

    2013-02-19

    ... NMHC/Halocarbons/Alkyl Nitrates: Methyl Chloride F-12 F-114 F-11 HCFC-141B HCFC-134a HCFC-22 ... 2,2,4-trimethylpentane 2,3,4-trimethylpethane Methylene Chloride Chloroform Perchloroethylene HFC-134A HCFC22 ...

  4. Reducing Hydrofluorocarbon (HFC) Use and Emissions in the Federal Sector through SNAP

    EPA Pesticide Factsheets

    Certain HFCs have high global-warming potential, raising concern about their impacts as they become increasingly used as replacements for ozone-depleting substances (ODS) being phased out under the Clean Air Act (CAA).

  5. Modified Peng-Robinson Equation of State for Pure and Mixture Refrigerants with R-32,R-125 and R-134a

    NASA Astrophysics Data System (ADS)

    Ll, Jin; Sato, Haruki; Watanabe, Koichi

    On the basis of critically-evaluated thermodynamic property data among those recently published, a new Peng-Robinson equation of state for the HFC refrigerants,R-32,R-125 and R-134a,has be end eveloped so as to represent the VLE properties in the vapor-liquid coexisting phase at temperatures 223K-323K. In accord with a challenge to correlate the binary and/or ternary interatction parameters as functions of temperature, we have also applied the present modified Peng-Robinson equation of state to the promising alternative HFC refrigerant mixtures, i.e., R-32/125,R-32/134a and R-32/125/134a systems. The developed equation of state improves significantly its effectiveness for practical engineering property calculations at refrigerantion and air-conditioning industries in comparison with conventional Peng-Robinson equation.

  6. Deep fiber networks: new ready-to-deploy architectures yield technical and economic benefits

    NASA Astrophysics Data System (ADS)

    Sipes, Donald L., Jr.; Loveless, Robert

    2001-07-01

    The advent of digital technology in HFC networks has opened up a myriad of opportunities for MSOs. The introduction of these advanced services comes at a cost: namely, the need for increased capacity; and especially increased reusable bandwidth. In HFC networks all services are ostensibly broadcast: the prime difference between services being the footprint over which these services are broadcast. Channel lineups for broadcast video services typically cover the largest are. Advertising zones are typically second, usually on the order of a typical 20K home hub. For initial penetrations for high speed data services such as cable modems, a typical hub site will be divided into several sectors using a single 6 MHz channel. Telephony services are broadcast over the smallest area, typically a 6 MHz channel for each node. Naturally as penetration of these services increase, the broadcast area for each will also decrease.

  7. A fundamental equation of state for 1,1-difluoroethane (HFC-152a)

    NASA Astrophysics Data System (ADS)

    Tillner-Roth, R.

    1995-01-01

    A fundamental equation ofstale for HFC-152a ( 1,1-dilluorocthane) is presented covering temperatures between the triple-point temperature ( 154.56 K) and 435 K for pressures up to 311 M Pa. The equation is based on reliable ( p, g, T) data in the range mentioned above. These are generally represented within ±0.1 % of density. Furthermore. experimental values of the vapor pressure, the saturated liquid density, and some isobaric heat capacities in the liquid were included during the correlation process. The new equation of state is compared with experimental data and also with the equation of state developed by Tamatsu et al. Differences between the two equations of state generally result from using different experimental input data. It is shown that the new equation of state allows an accurate calculation of various thermodynamic properties for most technical applications.

  8. Reducing the Carbon Footprint of Commercial Refrigeration Systems Using Life Cycle Climate Performance Analysis: From System Design to Refrigerant Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fricke, Brian A; Abdelaziz, Omar; Vineyard, Edward Allan

    In this paper, Life Cycle Climate Performance (LCCP) analysis is used to estimate lifetime direct and indirect carbon dioxide equivalent gas emissions of various refrigerant options and commercial refrigeration system designs, including the multiplex DX system with various hydrofluorocarbon (HFC) refrigerants, the HFC/R744 cascade system incorporating a medium-temperature R744 secondary loop, and the transcritical R744 booster system. The results of the LCCP analysis are presented, including the direct and indirect carbon dioxide equivalent emissions for each refrigeration system and refrigerant option. Based on the results of the LCCP analysis, recommendations are given for the selection of low GWP replacement refrigerantsmore » for use in existing commercial refrigeration systems, as well as for the selection of commercial refrigeration system designs with low carbon dioxide equivalent emissions, suitable for new installations.« less

  9. New immiscible refrigeration lubricant for HFCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunami, Motoshi; Takigawa, Katsuya; Suda, Satoshi

    1995-12-31

    This study examines the capability of a family of very low-viscosity alkylbenzenes (AB) used in high-side rotary compressors for HFCs. In the development of refrigeration lubricants for HFCs, miscibility is one of the most important problems to be solved. Therefore, PAG (polyalkylene glycols) and POE (polyol esters), which have good miscibility, have been applied in new HFC applications. However, it is difficult for these lubricants to maintain long-term durability in high-side rotary compressors. In friction tests under high HFC pressure, ABs with much lower viscosities than mineral oil maintained a much stronger oil film than the combination of mineral oil/R-12more » or POE/HFCs. These results were also proven by compressor durability tests. From the study of the solubility of ABs and HFCs, it is suggested that the total amount of refrigerant can be reduced because HFCs are barely soluble with ABs inside the high-side shell.« less

  10. Computer-aided method for the determination of Hansen solubility parameters. Application to the miscibility of refrigerating lubricant and new refrigerant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remigy, J.C.; Nakache, E.; Brechot, P.D.

    This article presents a method which allows one to find the Hansen solubility parameters by means of data processing. In the first part, the authors present the thermodynamical principle of Hansen parameters, and then they explain the model used to find parameters from experimental data. They validate the method by studying the solubility parameters of CFC-12 (dichlorodifluoromethane), HFC-134a (1,1,1,2-tetrafluoroethane), neopentylglycol esters, trimethylolpropane esters, dipentaerythritol esters, and pentaerythritol esters. Then, the variation of Hansen parameters are studied as well as the relation between the miscibility temperature (the temperature at which a blend passes from the miscible state to the immiscible state)more » and the interaction distance. The authors establish the critical interaction distance of HFC-134a which determines the solubility limit and they study its variation with temperature.« less

  11. Hyperfine structure of electronic levels and the first measurement of the nuclear magnetic moment of 63Ni

    NASA Astrophysics Data System (ADS)

    D'yachkov, A. B.; Firsov, V. A.; Gorkunov, A. A.; Labozin, A. V.; Mironov, S. M.; Saperstein, E. E.; Tolokonnikov, S. V.; Tsvetkov, G. O.; Panchenko, V. Y.

    2017-01-01

    Laser resonant photoionization spectroscopy was used to study the hyperfine structure of the optical 3d84s2 {}3F4→ 3d84s4p {}3G^o3 and 3d94s {}3D3→ 3d84s4p {}3G^o3 transitions of 63Ni and 61Ni isotopes. Experimental spectra allowed us to derive hyperfine interaction constants and determine the magnetic dipole moment of the nuclear ground state of 63Ni for the first time: μ=+0.496(5)μ_N. The value obtained agrees well with the prediction of the self-consistent theory of finite Fermi systems.

  12. Whither HFI/NQI?

    NASA Astrophysics Data System (ADS)

    Bharuth-Ram, K.

    2013-05-01

    A brief review is given of the Hyperfine Interactions Conference series and, in particular, of the Joint meetings of the Hyperfine Interactions and Nuclear Quadrupole Interaction (HFI/NQI) Conferences, with respect to number of participants, contributed papers and participant countries. Trends are traced and recommendations are offered to attract a wider participation at future HFI/NQI conferences.

  13. Potential energy and dipole moment surfaces for HF@C60: Prediction of spectral and electric response properties

    NASA Astrophysics Data System (ADS)

    Kalugina, Yulia N.; Roy, Pierre-Nicholas

    2017-12-01

    We present a five-dimensional potential energy surface (PES) for the HF@C60 system computed at the DF-LMP2/cc-pVTZ level of theory. We also calculated a five-dimensional dipole moment surface (DMS) based on DFT(PBE0)/cc-pVTZ calculations. The HF and C60 molecules are considered rigid with bond length rHF = 0.9255 Å (gas phase ground rovibrational state geometry). The C60 geometry is of Ih symmetry. The ab initio points were fitted to obtain a PES in terms of bipolar spherical harmonics. The minimum of the PES corresponds to a geometry where the center of mass of HF is located 0.11 Å away from the center of the cage with an interaction energy of -6.929 kcal/mol. The DMS was also represented in terms of bipolar spherical harmonics. The PES was used to calculate the rotation-translation bound states of HF@C60, and good agreement was found relative to the available experimental data [A. Krachmalnicoff et al., Nat. Chem. 8, 953 (2016)] except for the splitting of the first rotational excitation levels. We propose an empirical adjustment to the PES in order to account for the experimentally observed symmetry breaking. The form of that effective PES is additive. We also propose an effective Hamiltonian with an adjusted rotational constant in order to quantitatively reproduce the experimental results including the splitting of the first rotational state. We use our models to compute the molecular volume polarizability of HF confined by C60 and obtain good agreement with experiment.

  14. Potential energy and dipole moment surfaces for HF@C60: Prediction of spectral and electric response properties.

    PubMed

    Kalugina, Yulia N; Roy, Pierre-Nicholas

    2017-12-28

    We present a five-dimensional potential energy surface (PES) for the HF@C 60 system computed at the DF-LMP2/cc-pVTZ level of theory. We also calculated a five-dimensional dipole moment surface (DMS) based on DFT(PBE0)/cc-pVTZ calculations. The HF and C 60 molecules are considered rigid with bond length r HF = 0.9255 Å (gas phase ground rovibrational state geometry). The C 60 geometry is of I h symmetry. The ab initio points were fitted to obtain a PES in terms of bipolar spherical harmonics. The minimum of the PES corresponds to a geometry where the center of mass of HF is located 0.11 Å away from the center of the cage with an interaction energy of -6.929 kcal/mol. The DMS was also represented in terms of bipolar spherical harmonics. The PES was used to calculate the rotation-translation bound states of HF@C 60 , and good agreement was found relative to the available experimental data [A. Krachmalnicoff et al., Nat. Chem. 8, 953 (2016)] except for the splitting of the first rotational excitation levels. We propose an empirical adjustment to the PES in order to account for the experimentally observed symmetry breaking. The form of that effective PES is additive. We also propose an effective Hamiltonian with an adjusted rotational constant in order to quantitatively reproduce the experimental results including the splitting of the first rotational state. We use our models to compute the molecular volume polarizability of HF confined by C 60 and obtain good agreement with experiment.

  15. Electron attachment and positive ion chemistry of monohydrogenated fluorocarbon radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiens, Justin P.; Shuman, Nicholas S.; Miller, Thomas M.

    Rate coefficients and product branching fractions for electron attachment and for reaction with Ar{sup +} are measured over the temperature range 300–585 K for three monohydrogenated fluorocarbon (HFC) radicals (CF{sub 3}CHF, CHF{sub 2}CF{sub 2}, and CF{sub 3}CHFCF{sub 2}), as well as their five closed-shell precursors (1-HC{sub 2}F{sub 4}I, 2-HC{sub 2}F{sub 4}I, 2-HC{sub 2}F{sub 4}Br, 1-HC{sub 3}F{sub 6}I, 2-HC{sub 3}F{sub 6}Br). Attachment to the HFC radicals is always fairly inefficient (between 0.1% and 10% of the Vogt–Wannier capture rate), but generally faster than attachment to analogous perfluorinated carbon radicals. The primary products in all cases are HF-loss to yield C{sub n}F{submore » m−1}{sup −} anions, with only a minor branching to F{sup −} product. In all cases the temperature dependences are weak. Attachment to the precursor halocarbons is near the capture rate with a slight negative temperature dependence in all cases except for 2-HC{sub 2}F{sub 4}Br, which is ∼10% efficient at 300 K and becomes more efficient, approaching the capture rate at higher temperatures. All attachment kinetics are successfully reproduced using a kinetic modeling approach. Reaction of the HFC radicals with Ar{sup +} proceeds at or near the calculated collisional rate coefficient in all cases, yielding a wide variety of product ions.« less

  16. Sources, fates, toxicity, and risks of trifluoroacetic acid and its salts: Relevance to substances regulated under the Montreal and Kyoto Protocols.

    PubMed

    Solomon, Keith R; Velders, Guus J M; Wilson, Stephen R; Madronich, Sasha; Longstreth, Janice; Aucamp, Pieter J; Bornman, Janet F

    2016-01-01

    Trifluoroacetic acid (TFA) is a breakdown product of several hydrochlorofluorocarbons (HCFC), regulated under the Montreal Protocol (MP), and hydrofluorocarbons (HFC) used mainly as refrigerants. Trifluoroacetic acid is (1) produced naturally and synthetically, (2) used in the chemical industry, and (3) a potential environmental breakdown product of a large number (>1 million) chemicals, including pharmaceuticals, pesticides, and polymers. The contribution of these chemicals to global amounts of TFA is uncertain, in contrast to that from HCFC and HFC regulated under the MP. TFA salts are stable in the environment and accumulate in terminal sinks such as playas, salt lakes, and oceans, where the only process for loss of water is evaporation. Total contribution to existing amounts of TFA in the oceans as a result of the continued use of HCFCs, HFCs, and hydrofluoroolefines (HFOs) up to 2050 is estimated to be a small fraction (<7.5%) of the approximately 0.2 μg acid equivalents/L estimated to be present at the start of the millennium. As an acid or as a salt TFA is low to moderately toxic to a range of organisms. Based on current projections of future use of HCFCs and HFCs, the amount of TFA formed in the troposphere from substances regulated under the MP is too small to be a risk to the health of humans and environment. However, the formation of TFA derived from degradation of HCFC and HFC warrants continued attention, in part because of a long environmental lifetime and due many other potential but highly uncertain sources.

  17. Designing optimal greenhouse gas observing networks that consider performance and cost

    DOE PAGES

    Lucas, D. D.; Yver Kwok, C.; Cameron-Smith, P.; ...

    2015-06-16

    Emission rates of greenhouse gases (GHGs) entering into the atmosphere can be inferred using mathematical inverse approaches that combine observations from a network of stations with forward atmospheric transport models. Some locations for collecting observations are better than others for constraining GHG emissions through the inversion, but the best locations for the inversion may be inaccessible or limited by economic and other non-scientific factors. We present a method to design an optimal GHG observing network in the presence of multiple objectives that may be in conflict with each other. As a demonstration, we use our method to design a prototypemore » network of six stations to monitor summertime emissions in California of the potent GHG 1,1,1,2-tetrafluoroethane (CH 2FCF 3, HFC-134a). We use a multiobjective genetic algorithm to evolve network configurations that seek to jointly maximize the scientific accuracy of the inferred HFC-134a emissions and minimize the associated costs of making the measurements. The genetic algorithm effectively determines a set of "optimal" observing networks for HFC-134a that satisfy both objectives (i.e., the Pareto frontier). The Pareto frontier is convex, and clearly shows the tradeoffs between performance and cost, and the diminishing returns in trading one for the other. Without difficulty, our method can be extended to design optimal networks to monitor two or more GHGs with different emissions patterns, or to incorporate other objectives and constraints that are important in the practical design of atmospheric monitoring networks.« less

  18. European emissions of halogenated greenhouse gases inferred from atmospheric measurements.

    PubMed

    Keller, Christoph A; Hill, Matthias; Vollmer, Martin K; Henne, Stephan; Brunner, Dominik; Reimann, Stefan; O'Doherty, Simon; Arduini, Jgor; Maione, Michela; Ferenczi, Zita; Haszpra, Laszlo; Manning, Alistair J; Peter, Thomas

    2012-01-03

    European emissions of nine representative halocarbons (CFC-11, CFC-12, Halon 1211, HCFC-141b, HCFC-142b, HCFC-22, HFC-125, HFC-134a, HFC-152a) are derived for the year 2009 by combining long-term observations in Switzerland, Italy, and Ireland with campaign measurements from Hungary. For the first time, halocarbon emissions over Eastern Europe are assessed by top-down methods, and these results are compared to Western European emissions. The employed inversion method builds on least-squares optimization linking atmospheric observations with calculations from the Lagrangian particle dispersion model FLEXPART. The aggregated halocarbon emissions over the study area are estimated at 125 (106-150) Tg of CO(2) equiv/y, of which the hydrofluorocarbons (HFCs) make up the most important fraction with 41% (31-52%). We find that chlorofluorocarbon (CFC) emissions from banks are still significant and account for 35% (27-43%) of total halocarbon emissions in Europe. The regional differences in per capita emissions are only small for the HFCs, while emissions of CFCs and hydrochlorofluorocarbons (HCFCs) tend to be higher in Western Europe compared to Eastern Europe. In total, the inferred per capita emissions are similar to estimates for China, but 3.5 (2.3-4.5) times lower than for the United States. Our study demonstrates the large benefits of adding a strategically well placed measurement site to the existing European observation network of halocarbons, as it extends the coverage of the inversion domain toward Eastern Europe and helps to better constrain the emissions over Central Europe.

  19. Hyperfine excitation of OH+ by H

    NASA Astrophysics Data System (ADS)

    Lique, François; Bulut, Niyazi; Roncero, Octavio

    2016-10-01

    The OH+ ions are widespread in the interstellar medium and play an important role in the interstellar chemistry as they act as precursors to the H2O molecule. Accurate determination of their abundance rely on their collisional rate coefficients with atomic hydrogen and electrons. In this paper, we derive OH+-H fine and hyperfine-resolved rate coefficients by extrapolating recent quantum wave packet calculations for the OH+ + H collisions, including inelastic and exchange processes. The extrapolation method used is based on the infinite order sudden approach. State-to-state rate coefficients between the first 22 fine levels and 43 hyperfine levels of OH+ were obtained for temperatures ranging from 10 to 1000 K. Fine structure-resolved rate coefficients present a strong propensity rule in favour of Δj = ΔN transitions. The Δj = ΔF propensity rule is observed for the hyperfine transitions. The new rate coefficients will help significantly in the interpretation of OH+ spectra from photon-dominated region (PDR), and enable the OH+ molecule to become a powerful astrophysical tool for studying the oxygen chemistry.

  20. Ultrafast time scale X-rotation of cold atom storage qubit using Rubidium clock states

    NASA Astrophysics Data System (ADS)

    Song, Yunheung; Lee, Han-Gyeol; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook

    2017-04-01

    Ultrafast-time-scale optical interaction is a local operation on the electronic subspace of an atom, thus leaving its nuclear state intact. However, because atomic clock states are maximally entangled states of the electronic and nuclear degrees of freedom, their entire Hilbert space should be accessible only with local operations and classical communications (LOCC). Therefore, it may be possible to achieve hyperfine qubit gates only with electronic transitions. Here we show an experimental implementation of ultrafast X-rotation of atomic hyperfine qubits, in which an optical Rabi oscillation induces a geometric phase between the constituent fine-structure states, thus bringing about the X-rotation between the two ground hyperfine levels. In experiments, cold atoms in a magneto-optical trap were controlled with a femtosecond laser pulse from a Ti:sapphire laser amplifier. Absorption imaging of the as-controlled atoms initially in the ground hyperfine state manifested polarization dependence, strongly agreeing with the theory. The result indicates that single laser pulse implementations of THz clock speed qubit controls are feasible for atomic storage qubits. Samsung Science and Technology Foundation [SSTF-BA1301-12].

  1. ``Dressing'' lines and vertices in calculations of matrix elements with the coupled-cluster method and determination of Cs atomic properties

    NASA Astrophysics Data System (ADS)

    Derevianko, Andrei; Porsev, Sergey G.

    2005-03-01

    We consider evaluation of matrix elements with the coupled-cluster method. Such calculations formally involve infinite number of terms and we devise a method of partial summation (dressing) of the resulting series. Our formalism is built upon an expansion of the product C†C of cluster amplitudes C into a sum of n -body insertions. We consider two types of insertions: particle (hole) line insertion and two-particle (two-hole) random-phase-approximation-like insertion. We demonstrate how to “dress” these insertions and formulate iterative equations. We illustrate the dressing equations in the case when the cluster operator is truncated at single and double excitations. Using univalent systems as an example, we upgrade coupled-cluster diagrams for matrix elements with the dressed insertions and highlight a relation to pertinent fourth-order diagrams. We illustrate our formalism with relativistic calculations of the hyperfine constant A(6s) and the 6s1/2-6p1/2 electric-dipole transition amplitude for the Cs atom. Finally, we augment the truncated coupled-cluster calculations with otherwise omitted fourth order diagrams. The resulting analysis for Cs is complete through the fourth order of many-body perturbation theory and reveals an important role of triple and disconnected quadruple excitations.

  2. Research on Spectroscopy, Opacity, and Atmospheres

    NASA Astrophysics Data System (ADS)

    Kurucz, Robert L.; Bell, Barbara

    1996-01-01

    This line list is a replacement for the Kurucz-Peytremann line list. We have combined all the atomic files from CDROM 18 into 534910 line files GFALL.DAT and GFELEM.DAT. These are the data we actually use to compute spectra. They are not up to date. References are given in GFALL.REF or GFELEN.REF. There are no references after 1988. For light elements there are no references after 1979. We have the literature into the 1990's but have not had manpower or funding to update everything. Our current plan is to make a new semiempirical calculation for each species and at that time to include all the data from the literature. One new development is the inclusion of hyperfine splitting for the iron group elements using hyperfine data from the literature through 1993. The data are very incomplete. We have not yet included data for isotopic splitting. We supply a program for splitting the line list for a species. It reads the hyperfine and isotopic splitting parameters for levels and computes the oplittings whenever those levels appear. Lines with no splitting data are copied untouched. Because Sc, Mn, and Co are monoisotopic, only the hyperfine splittings are needed. Since 51V is much more abundant than S0V, the isotope shifts are small for 51V, and we approximate V with 51V. GFALLKYP.DAT has 754946 lines including hyperfine Sc(I), V(I), Mn(I), and Co(I). A bibliography for last year (1994-1995) is also attached.

  3. Hyperfine quenching of the 2s2 2p5 3 s3P2 state of Ne-like ions

    NASA Astrophysics Data System (ADS)

    Safronova, U. I.; Stafford, A.; Safronova, A. S.

    2017-04-01

    The many-body perturbation theory (RMBPT) is used to calculate energies and multipole matrix elements to evaluate hyperfine quenching of the 2s2 2p5 3 s 3P2 state in Ne-like ions. In particular, the 3P2 excited state decays to the 1S0 ground state by M2 emission, while both 1P1 and 3P1 states decay to the ground-state by E1 emission, which is substantially faster. For odd-A nuclei, the hyperfine interaction induces admixtures of 3P1 and 1P1 states into the 3P2 state, resulting in an increase of the 3P2 transition rate and a corresponding reduction of the 3P2 lifetime. We consider 22 Ne like ions with Z = 14 - 94 and nuclear moment I =1/2. We found that the largess hyperfine quenching contribution by a factor of 2 are for Ne-like 31P and 203Tl. The smallest (less than 1%) induced contribution are the following Ne-like ions: 57Fe, 107Ag, 109Ag, 183W, and 187Os ions. For another 15 Ne-like ions the hyperfine quenching contribution is between 15% and 35%. Applications to x-ray line polarization of Ne-like lines is considered. This work is supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002954.

  4. Evidence for a dipolar-coupled AM system in carnosine in human calf muscle from in vivo 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Bachert, Peter

    2003-10-01

    Spin systems with residual dipolar couplings such as creatine, taurine, and lactate in skeletal muscle tissue exhibit first-order spectra in in vivo 1H NMR spectroscopy at 1.5 T because the coupled protons are represented by (nearly) symmetrized eigenfunctions. The imidazole ring protons (H2, H4) of carnosine are suspected to form also a coupled system. The ring's stiffness could enable a connectivity between these anisochronous protons with the consequence of second-order spectra at low field strength. Our purpose was to study whether this deviation from the Paschen-Back condition can be used to detect the H2-H4 coupling in localized 1D 1H NMR spectra obtained at 1.5 T (64 MHz) from the human calf in a conventional whole-body scanner. As for the hydrogen hyperfine interaction, a Breit-Rabi equation was derived to describe the transition from Zeeman to Paschen-Back regime for two dipolar-coupled protons. The ratio of the measurable coupling strength ( Sk) and the difference in resonance frequencies of the coupled spins (Δ ω) induces quantum-state mixing of various degree upon definition of an appropriate eigenbase of the coupled spin system. The corresponding Clebsch-Gordan coefficients manifest in characteristic energy corrections in the Breit-Rabi formula. These additional terms were used to define an asymmetry parameter of the line positions as a function of Sk and Δ ω. The observed frequency shifts of the resonances were found to be consistent with this parameter within the accuracy achievable in in vivo NMR spectroscopy. Thus it was possible to identify the origin of satellite peaks of H2, H4 and to describe this so far not investigated type of residual dipolar coupling in vivo.

  5. 40 CFR 98.410 - Definition of the source category.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... reuse or recycling of a fluorinated GHG, the creation of HFC-23 during the production of HCFC-22, the... reuse or recycling of nitrous oxide or the creation of by-products that are released or destroyed at the...

  6. 40 CFR 98.410 - Definition of the source category.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reuse or recycling of a fluorinated GHG, the creation of HFC-23 during the production of HCFC-22, the... reuse or recycling of nitrous oxide or the creation of by-products that are released or destroyed at the...

  7. 40 CFR 98.410 - Definition of the source category.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reuse or recycling of a fluorinated GHG, the creation of HFC-23 during the production of HCFC-22, the... reuse or recycling of nitrous oxide or the creation of by-products that are released or destroyed at the...

  8. 40 CFR 98.410 - Definition of the source category.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reuse or recycling of a fluorinated GHG, the creation of HFC-23 during the production of HCFC-22, the... reuse or recycling of nitrous oxide or the creation of by-products that are released or destroyed at the...

  9. Highly Effective, Low Toxicity, Low Environmental Impact Total Flooding Fire Suppressants

    NASA Technical Reports Server (NTRS)

    Glass, S. M.; Dhooge, P. M.; Nimitz, J. S.

    2001-01-01

    Halon 1301 (CF3Br) has been used for decades as the primary fire suppression agent for areas where powder agents cannot be used because of concerns for sensitive equipment. Halon 1301 is an excellent extinguishing agent, effective at about 3% in air and quite non-toxic. It has an effective exposure limit much greater than its extinguishing concentration, so it can be used in normally occupied areas. The ability of a chemical to destroy stratospheric ozone is its ozone-depletion potential (ODP). ODP is the amount of ozone destroyed per pound of a chemical, relative to the standard CFC-11 with an ODP = 1.0. Because halons have been implicated in stratospheric ozone depletion, their production was stopped at the end of 1995 under the provisions of the Montreal Protocol plus later amendments. In the US, the Clean Air Act Amendments of 1990, Presidential directives, and DoD Directive 6050.9 implemented this phaseout. These regulations and penalties have provided strong incentives for US businesses to decrease CFC use. The Omnibus Budget Reconciliation Act of 1989 mandates high Federal taxes on CFCs and halons, designed to price them out of the market. The taxes also capture for the government the windfall profits that would otherwise go to producers as scarcity drives up prices. Several replacements have been developed for Halon 1301. One is carbon dioxide, which has been used as a firefighting agent for many years. However, a high concentration of carbon dioxide is necessary to inert fuels. The effective concentration for inerting with carbon dioxide is approximately 29%, which is above the concentration lethal to humans. HFC-227ea is being used extensively to replace Halon 1301 systems in nominally occupied areas and some normally unoccupied areas. However, since the effective concentration of HFC-227ea is about three to four times that of Halon 1301 the extinguishing systems have to be larger and new extinguishing systems have to be installed. HFC-125 is also being sold as an extinguishing agent (Nimitz). It has problems similar to HFC-227ea, with a greater concentration needed for effectiveness and the need to use a larger system. This is a particularly onerous penalty in aircraft and spacecraft, where weight and space are extremely important, and substitution is often impossible in existing aircraft due to space limitations.

  10. High-dose supplementation with natural α-tocopherol does neither alter the pharmacodynamics of atorvastatin nor its phase I metabolism in guinea pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podszun, Maren C.; Grebenstein, Nadine; Hofmann, Ute

    It has been hypothesized in the literature that intake of high-dosage vitamin E supplements might alter the expression of cytochrome P{sub 450} enzymes (CYP), particularly CYP3A4, which may lead to adverse nutrient–drug interactions. Because previously published studies reported conflicting findings, we investigated the pharmacodynamics of the lipid-lowering drug atorvastatin (ATV), a CYP3A4 substrate, in response to high-dose α-tocopherol (αT) feeding and determined protein expression and activities of relevant CYP. Groups of ten female Dunkin–Hartley guinea pigs were fed a control (5% fat) or a high-fat control diet (HFC; 21% fat, 0.15% cholesterol) or the HFC diet fortified with αT (250more » mg/kg diet), ATV (300 mg/kg diet) or both ATV + αT for 6 weeks. Relative to control, HFC animals had increased serum cholesterol concentrations, which were significantly reduced by ATV. High-dose αT feeding in combination with ATV (ATV + αT), albeit not αT feeding alone (αT), significantly lowered serum cholesterol relative to HFC, but did not alter the cholesterol-lowering activity of the drug compared to the ATV treated guinea pigs. Protein expression of CYP3A4, CYP4F2, CYP20A1 and OATP C was similar in all groups. Accordingly, no differences in plasma concentrations of phase I metabolites of ATV were observed between the ATV and ATV + αT groups. In conclusion, feeding guinea pigs high-doses of αT for 6 weeks did neither alter the hepatic expression of CYP, nor the pharmacodynamics and metabolism of ATV. High-dose αT intake is thus unlikely to change the efficacy of drugs metabolized by CYP enzymes, particularly by CYP3A4. -- Highlights: ► Vitamin E-atorvastatin interactions were studied in hypercholesterolemic guinea pigs. ► High-dose α-tocopherol did not alter the lipid-lowering efficacy of atorvastatin. ► α-Tocopherol did not change the expression of CYP3A4, CYP4F2, CYP20A or OATP C. ► α-Tocopherol did not affect phase I metabolism of atorvastatin. ► Vitamin E does not change atorvastatin pharmacodynamics or toxicity in guinea pigs.« less

  11. A single dopant atom in silicon sees the light

    NASA Astrophysics Data System (ADS)

    Rogge, Sven

    2014-03-01

    Optical access to a single qubit is very attractive since it allows for readout with unprecedented high spectral resolution and long distance coupling. Substantial progress has been demonstrated for nitrogen-vacancy centers in diamond (Bernien, Nature, 2013). Optical access to qubits in silicon been an important goal but has to date only been achieved in the ensemble limit (Steger, Science, 2012). Here, we present the photoionization of an individual erbium dopant in silicon (Yin, Nature, 2013). A single-electron transistor is used as a single-shot charge detector to observe the resonant ionization of a single atom as a function of photon energy. This allows for optical addressing and electrical detection of individual erbium dopants with exceptionally narrow line width. The hyperfine coupling is clearly resolved which paves the way to single shot readout of the nuclear spin. This hybrid approach is a first step towards an optical interface to dopants in silicon. in collaboration with Chunming Yin, Milos Rancic, Gabriele G. de Boo, Nikolas Stavrias, Jeffrey C. McCallum, Matthew J. Sellars.

  12. Coherent coupling between a quantum dot and a donor in silicon

    DOE PAGES

    Harvey-Collard, Patrick; Jacobson, N. Tobias; Rudolph, Martin; ...

    2017-10-18

    Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show thatmore » the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.« less

  13. Optimized pulse shaping for trapped ion quantum computing

    NASA Astrophysics Data System (ADS)

    Manning, T.; Debnath, Shantanu; Choi, Taeyoung; Figgatt, Caroline; Monroe, Chris

    2013-05-01

    We perform entangling phase gates between pairs of qubits in a chain of trapped atomic ytterbium ions. Beat notes between frequency comb lines of a pulsed laser coherently drive Raman transitions that couple the hyperfine qubits to multiple collective transverse modes of motion. By optimizing the phase and amplitude of segmented laser pulses, we demonstrate a five-segment scheme to entangle two qubits with high fidelity over a range of detunings. We compare this special case of full control of spin-motion entanglement to a traditional single-segment gate. We extend this scheme to selectively entangle pairs of qubits in larger chains using individual optical addressing, where we couple to all the motional modes. We show how these robust gates can achieve high fidelities for practical gate times in an approach that scales realistically to much larger numbers of qubits. This work is supported by grants from the U.S. Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; and the NSF Physics Frontier Center at JQI.

  14. Microfabricated Microwave-Integrated Surface Ion Trap

    NASA Astrophysics Data System (ADS)

    Revelle, Melissa C.; Blain, Matthew G.; Haltli, Raymond A.; Hollowell, Andrew E.; Nordquist, Christopher D.; Maunz, Peter

    2017-04-01

    Quantum information processing holds the key to solving computational problems that are intractable with classical computers. Trapped ions are a physical realization of a quantum information system in which qubits are encoded in hyperfine energy states. Coupling the qubit states to ion motion, as needed for two-qubit gates, is typically accomplished using Raman laser beams. Alternatively, this coupling can be achieved with strong microwave gradient fields. While microwave radiation is easier to control than a laser, it is challenging to precisely engineer the radiated microwave field. Taking advantage of Sandia's microfabrication techniques, we created a surface ion trap with integrated microwave electrodes with sub-wavelength dimensions. This multi-layered device permits co-location of the microwave antennae and the ion trap electrodes to create localized microwave gradient fields and necessary trapping fields. Here, we characterize the trap design and present simulated microwave performance with progress towards experimental results. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).

  15. Theoretical study of hyperfine coupling constants and electron spin g factors for X2Σ diatomics from Groups 1 and 2

    NASA Astrophysics Data System (ADS)

    Bruna, Pablo J.; Grein, Friedrich

    The ESR parameters of the cations Be 2 + , Mg 2 + , Ca 2 + , BeMg + , BeCa + , MgCa + and the mixed radicals ZBe, ZMg, ZCa (Z = Li, Na, K), all having a X 2 Σu + (1 σg 2 1 σu )/X 2 Sigma + (1 σ2 2 σ) ground state, have been studied theoretically. The A iso and A dip constants have been calculated with UHF, CISD, MP2, B3LYP, PW91PW91 wavefunctions, and 6-311+G(2df) basis sets. The electron spin g factors (magnetic moment μs) have been evaluated from correlated (MRDCI) wavefunctions, using a Hamiltonian based on Breit-Pauli theory with perturbation expansions up to second order, and 6-311+ G(2d) basis sets. As expected for s-rich radicals, the hyperfine spectra are governed by the A iso terms. Both Δg|| and Δg Υ̂values are negative, but Δg|| lies close to zero. For Δg Υ̂, the coupling with 1 2 Π(u) dominates the sum-over-states expansions. Although the singly occupied MOs (SOMO) are mostly of s character, the | Δg Υ̂| are relatively large, up to 5200 ppm for cationic, and up to 7850 ppm for neutral radicals. These large values are caused by low excitation energies and high magnetic transition moments, the latter due to the fact that the σ*( s - s ) SOMO has the same nodal properties as a p σorbital. Of the radicals considered here, an ESR spectrum is available only for Mg2+. Our theoretical A iso of-287 MHz reproduces well the matrix result (-291 MHz). Calculated values of-10 ppm for Deltag|| and of-1280 ppm for Deltag Υ̂give an average < Δg> =-860 ppm that lies within the experimental range of-600( ±300) ppm in Ne, and of-1300( ±500) ppm in Ar matrices.

  16. Conformational differences between the methoxy groups of QA and QB site ubisemiquinones in bacterial reaction centers: a key role for methoxy group orientation in modulating ubiquinone redox potential.

    PubMed

    Taguchi, Alexander T; O'Malley, Patrick J; Wraight, Colin A; Dikanov, Sergei A

    2013-07-09

    Ubiquinone is an almost universal, membrane-associated redox mediator. Its ability to accept either one or two electrons allows it to function in critical roles in biological electron transport. The redox properties of ubiquinone in vivo are determined by its environment in the binding sites of proteins and by the dihedral angle of each methoxy group relative to the ring plane. This is an attribute unique to ubiquinone among natural quinones and could account for its widespread function with many different redox complexes. In this work, we use the photosynthetic reaction center as a model system for understanding the role of methoxy conformations in determining the redox potential of the ubiquinone/semiquinone couple. Despite the abundance of X-ray crystal structures for the reaction center, quinone site resolution has thus far been too low to provide a reliable measure of the methoxy dihedral angles of the primary and secondary quinones, QA and QB. We performed 2D ESEEM (HYSCORE) on isolated reaction centers with ubiquinones (13)C-labeled at the headgroup methyl and methoxy substituents, and have measured the (13)C isotropic and anisotropic components of the hyperfine tensors. Hyperfine couplings were compared to those derived by DFT calculations as a function of methoxy torsional angle allowing estimation of the methoxy dihedral angles for the semiquinones in the QA and QB sites. Based on this analysis, the orientation of the 2-methoxy groups are distinct in the two sites, with QB more out of plane by 20-25°. This corresponds to an ≈50 meV larger electron affinity for the QB quinone, indicating a substantial contribution to the experimental difference in redox potentials (60-75 mV) of the two quinones. The methods developed here can be readily extended to ubiquinone-binding sites in other protein complexes.

  17. A path integral molecular dynamics study of the hyperfine coupling constants of the muoniated and hydrogenated acetone radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oba, Yuki; Kawatsu, Tsutomu; Tachikawa, Masanori, E-mail: tachi@yokohama-cu.ac.jp

    2016-08-14

    The on-the-fly ab initio density functional path integral molecular dynamics (PIMD) simulations, which can account for both the nuclear quantum effect and thermal effect, were carried out to evaluate the structures and “reduced” isotropic hyperfine coupling constants (HFCCs) for muoniated and hydrogenated acetone radicals (2-muoxy-2-propyl and 2-hydoxy-2-propyl) in vacuo. The reduced HFCC value from a simple geometry optimization calculation without both the nuclear quantum effect and thermal effect is −8.18 MHz, and that by standard ab initio molecular dynamics simulation with only the thermal effect and without the nuclear quantum effect is 0.33 MHz at 300 K, where these twomore » methods cannot distinguish the difference between muoniated and hydrogenated acetone radicals. In contrast, the reduced HFCC value of the muoniated acetone radical by our PIMD simulation is 32.1 MHz, which is about 8 times larger than that for the hydrogenated radical of 3.97 MHz with the same level of calculation. We have found that the HFCC values are highly correlated with the local molecular structures; especially, the Mu—O bond length in the muoniated acetone radical is elongated due to the large nuclear quantum effect of the muon, which makes the expectation value of the HFCC larger. Although our PIMD result calculated in vacuo is about 4 times larger than the measured experimental value in aqueous solvent, the ratio of these HFCC values between muoniated and hydrogenated acetone radicals in vacuo is in reasonable agreement with the ratio of the experimental values in aqueous solvent (8.56 MHz and 0.9 MHz); the explicit presence of solvent molecules has a major effect on decreasing the reduced muon HFCC of in vacuo calculations for the quantitative reproduction.« less

  18. Hyperfine coupling constants on inner-sphere water molecules of Gd(III)-based MRI contrast agents.

    PubMed

    Esteban-Gómez, David; de Blas, Andrés; Rodríguez-Blas, Teresa; Helm, Lothar; Platas-Iglesias, Carlos

    2012-11-12

    Herein we present a theoretical investigation of the hyperfine coupling constants (HFCCs) on the inner-sphere water molecules of [Gd(H(2)O)(8)](3+) and different Gd(III)-based magnetic resonance imaging contrast agents such as [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)]. DFT calculations performed on the [Gd(H(2)O)(8)](3+) model system show that both hybrid-GGA functionals (BH&HLYP, B3PW91 and PBE1PBE) and the hybrid meta-GGA functional TPSSh provide (17)O HFCCs in close agreement with the experimental data. The use of all-electron relativistic approaches based on the DKH2 approximation and the use of relativistic effective core potentials (RECP) provide results of essentially the same quality. The accurate calculation of HFCCs on the [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)] complexes requires an adequate description of solvent effects. This was achieved by using a mixed cluster/continuum approach that includes explicitly two second-sphere water molecules. The calculated isotropic (17)O HFCCs (A(iso)) fall within the range 0.40-0.56 MHz, and show deviations from the corresponding experimental values typically lower than 0.05 MHz. The A(iso) values are significantly affected by the distance between the oxygen atom of the coordinated water molecule and the Gd(III) ion, as well as by the orientation of the water molecule plane with respect to the Gd-O vector. (1)H HFCCs of coordinated water molecules and (17)O HFCCs of second-sphere water molecules take values close to zero. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Materials for optical memory: Resolved hyperfine structure in KY3F10:Ho3+

    NASA Astrophysics Data System (ADS)

    Popova, M. N.

    2013-08-01

    Basic principles of creating a quantum optical memory (QOM) and requirements for relevant materials, in particular, for crystals doped with rare-earth ions, are briefly reviewed. A combined approach to studying the hyperfine structure, which is essential for QOM applications, is presented on the example of KY3F10:Ho3+.

  20. Local magnetic moment formation at 119Sn Mössbauer impurity in RCo2 (R=Gd,Tb,Dy,Ho,Er) Laves phase compounds

    NASA Astrophysics Data System (ADS)

    de Oliveira, A. L.; de Oliveira, N. A.; Troper, A.

    2008-04-01

    In this work, we theoretically study the local magnetic moment formation and the systematics of the magnetic hyperfine fields at a Mösbauer Sn119 impurity diluted at the R site (R=Gd,Tb,Dy,Ho,Er) of the cubic Laves phase intermetallic compounds RCo2. One considers that the magnetic hyperfine fields have two contributions, (i) the contribution from R ions, calculated via an extended Daniel-Friedel [J. Phys. Chem. Solids 24, 1601 (1963)] model, and (ii) the contribution from the induced magnetic moments arising from the Co neighboring sites. Our calculated self-consistent total magnetic hyperfine fields are in a good agreement with recent experimental data.

Top