NASA Astrophysics Data System (ADS)
Bharuth-Ram, K.
2013-05-01
A brief review is given of the Hyperfine Interactions Conference series and, in particular, of the Joint meetings of the Hyperfine Interactions and Nuclear Quadrupole Interaction (HFI/NQI) Conferences, with respect to number of participants, contributed papers and participant countries. Trends are traced and recommendations are offered to attract a wider participation at future HFI/NQI conferences.
NASA Astrophysics Data System (ADS)
Puttisong, Y.; Wang, X. J.; Buyanova, I. A.; Chen, W. M.
2013-03-01
The effect of hyperfine interaction (HFI) on the recently discovered room-temperature defect-enabled spin-filtering effect in GaNAs alloys is investigated both experimentally and theoretically based on a spin Hamiltonian analysis. We provide direct experimental evidence that the HFI between the electron and nuclear spin of the central Ga atom of the spin-filtering defect, namely, the Gai interstitials, causes strong mixing of the electron spin states of the defect, thereby degrading the efficiency of the spin-filtering effect. We also show that the HFI-induced spin mixing can be suppressed by an application of a longitudinal magnetic field such that the electronic Zeeman interaction overcomes the HFI, leading to well-defined electron spin states beneficial to the spin-filtering effect. The results provide a guideline for further optimization of the defect-engineered spin-filtering effect.
NASA Astrophysics Data System (ADS)
Geng, Rugang; Subedi, Ram C.; Luong, Hoang M.; Pham, Minh T.; Huang, Weichuan; Li, Xiaoguang; Hong, Kunlun; Shao, Ming; Xiao, Kai; Hornak, Lawrence A.; Nguyen, Tho D.
2018-02-01
Hyperfine interaction (HFI), originating from the coupling between spins of charge carriers and nuclei, has been demonstrated to strongly influence the spin dynamics of localized charges in organic semiconductors. Nevertheless, the role of charge localization on the HFI strength in organic thin films has not yet been experimentally investigated. In this study, the statistical relation hypothesis that the effective HFI of holes in regioregular poly(3-hexylthiophene) (P3HT) is proportional to 1 /N0.5 has been examined, where N is the number of the random nuclear spins within the envelope of the hole wave function. First, by studying magnetoconductance in hole-only devices made by isotope-labeled P3HT we verify that HFI is indeed the dominant spin interaction in P3HT. Second, assuming that holes delocalize fully over the P3HT polycrystalline domain, the strength of HFI is experimentally demonstrated to be proportional to 1 /N0.52 in excellent agreement with the statistical relation. Third, the HFI of electrons in P3HT is about 3 times stronger than that of holes due to the stronger localization of the electrons. Finally, the effective HFI in organic light emitting diodes is found to be a superposition of effective electron and hole HFI. Such a statistical relation may be generally applied to other semiconducting polymers. This Letter may provide great benefits for organic optoelectronics, chemical reaction kinetics, and magnetoreception in biology.
Geng, Rugang; Subedi, Ram C; Luong, Hoang M; Pham, Minh T; Huang, Weichuan; Li, Xiaoguang; Hong, Kunlun; Shao, Ming; Xiao, Kai; Hornak, Lawrence A; Nguyen, Tho D
2018-02-23
Hyperfine interaction (HFI), originating from the coupling between spins of charge carriers and nuclei, has been demonstrated to strongly influence the spin dynamics of localized charges in organic semiconductors. Nevertheless, the role of charge localization on the HFI strength in organic thin films has not yet been experimentally investigated. In this study, the statistical relation hypothesis that the effective HFI of holes in regioregular poly(3-hexylthiophene) (P3HT) is proportional to 1/N^{0.5} has been examined, where N is the number of the random nuclear spins within the envelope of the hole wave function. First, by studying magnetoconductance in hole-only devices made by isotope-labeled P3HT we verify that HFI is indeed the dominant spin interaction in P3HT. Second, assuming that holes delocalize fully over the P3HT polycrystalline domain, the strength of HFI is experimentally demonstrated to be proportional to 1/N^{0.52} in excellent agreement with the statistical relation. Third, the HFI of electrons in P3HT is about 3 times stronger than that of holes due to the stronger localization of the electrons. Finally, the effective HFI in organic light emitting diodes is found to be a superposition of effective electron and hole HFI. Such a statistical relation may be generally applied to other semiconducting polymers. This Letter may provide great benefits for organic optoelectronics, chemical reaction kinetics, and magnetoreception in biology.
Hyperfine interactions of trans-lead elements studied by nuclear radiations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansaldo, E.J.
1973-09-16
The applications of nuclear radiation methods to the study of hyperfine interactions (hfi) for elements beyond Pb in the periodic table are reviewed. A general discussion of hfi is presented along with a review of specific methods. The techniques are illustrated whenever possible by their application to the actinides, with emphasis on the unsolved aspects of the results. A special method of sample preparation is ion implantation, in which stable or radioactive ions of practically any element are shot into the host, either by means of isotope separators or the recoil energy of nuclear reactions or radioactive decays. The locationmore » of the implanted (recoiled) atom in the lattice has to be assessed for a reliable determination of the hfi. Therefore, a chapter on the channeling technique is also included. (JRD)« less
Hyperfine interaction and its effects on spin dynamics in organic solids
NASA Astrophysics Data System (ADS)
Yu, Z. G.; Ding, Feizhi; Wang, Haobin
2013-05-01
Hyperfine interaction (HFI) and spin-orbit coupling are two major sources that affect electron spin dynamics. Here we present a systematic study of the HFI and its role in organic spintronic applications. For electron spin dynamics in disordered π-conjugated organics, the HFI can be characterized by an effective magnetic field whose modular square is a weighted sum of contact and dipolar contributions. We determine the effective HFI fields of some common π-conjugated organics studied in the literature via first-principles calculations. Most of them are found to be less than 2 mT. While the H atoms are the major source of the HFI in organics containing only the C and H atoms, many organics contain other nuclear spins, such as Al and N in tris-(8-hydroxyquinoline) aluminum, that contribute to the total HFI. Consequently, the deuteration effect on the HFI in the latter may be much weaker than in the former. The HFI gives rise to multiple resonance peaks in electron spin resonance. In disordered organic solids, these individual resonances are unresolved, leading to a broad peak whose width is proportional to the effective HFI field. As electrons hop among adjacent organic molecules, they experience a randomly varying local HFI field, inducing electron spin relaxation and diffusion. This is analyzed rigorously based on master equations. Electron spin relaxation undergoes a crossover along the ratio between the electron hopping rate η¯ and the Larmor frequency Ω of the HFI field. The spin relaxation rate increases (decreases) with η¯ when η¯≪Ω (η¯≫Ω). A coherent beating of electron spin at Ω is possible when the external field is small compared to the HFI. In this regime, the magnetic field is found to enhance the spin relaxation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purtov, P.A.; Salikhov, K.M.
1987-09-01
Semiclassical HFI description is applicable to calculating the integral CIDNP effect in weak fields. The HFI has been calculated for radicals with sufficiently numerous magnetically equivalent nuclei (n greater than or equal to 5) in satisfactory agreement with CIDNP calculations based on quantum-mechanical description of radical-pair spin dynamics.
Enzymatic mechanisms of biological magnetic sensitivity.
Letuta, Ulyana G; Berdinskiy, Vitaly L; Udagawa, Chikako; Tanimoto, Yoshifumi
2017-10-01
Primary biological magnetoreceptors in living organisms is one of the main research problems in magnetobiology. Intracellular enzymatic reactions accompanied by electron transfer have been shown to be receptors of magnetic fields, and spin-dependent ion-radical processes can be a universal mechanism of biological magnetosensitivity. Magnetic interactions in intermediate ion-radical pairs, such as Zeeman and hyperfine (HFI) interactions, in accordance with proposed strict quantum mechanical theory, can determine magnetic-field dependencies of reactions that produce biologically important molecules needed for cell growth. Hyperfine interactions of electrons with nuclear magnetic moments of magnetic isotopes can explain the most important part of biomagnetic sensitivities in a weak magnetic field comparable to the Earth's magnetic field. The theoretical results mean that magnetic-field dependencies of enzymatic reaction rates in a weak magnetic field that can be independent of HFI constant a, if H < a, and are determined by the rate constant of chemical transformations in the enzyme active site. Both Zeeman and HFI interactions predict strong magnetic-field dependence in weak magnetic fields and magnetic-field independence of enzymatic reaction rate constants in strong magnetic fields. The theoretical results can explain the magnetic sensitivity of E. coli cell and demonstrate that intracellular enzymatic reactions are primary magnetoreceptors in living organisms. Bioelectromagnetics. 38:511-521, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Masses of constituent quarks confined in open bottom hadrons
NASA Astrophysics Data System (ADS)
Borka Jovanović, V.; Borka, D.; Jovanović, P.; Milošević, J.; Ignjatović, S. R.
2014-12-01
We apply color-spin and flavor-spin quark-quark interactions to the meson and baryon constituent quarks, and calculate constituent quark masses, as well as the coupling constants of these interactions. The main goal of this paper was to determine constituent quark masses from light and open bottom hadron masses, using the fitting method we have developed and clustering of hadron groups. We use color-spin Fermi-Breit (FB) and flavor-spin Glozman-Riska (GR) hyperfine interaction (HFI) to determine constituent quark masses (especially b quark mass). Another aim was to discern between the FB and GR HFI because our previous findings had indicated that both interactions were satisfactory. Our improved fitting procedure of constituent quark masses showed that on average color-spin (FB) HFI yields better fits. The method also shows the way how the constituent quark masses and the strength of the interaction constants appear in different hadron environments.
NASA Astrophysics Data System (ADS)
Nizovtsev, A. P.; Kilin, S. Ya; Pushkarchuk, A. L.; Pushkarchuk, V. A.; Kuten, S. A.; Zhikol, O. A.; Schmitt, S.; Unden, T.; Jelezko, F.
2018-02-01
Single NV centers in diamond coupled by hyperfine interaction (hfi) to neighboring 13C nuclear spins are now widely used in emerging quantum technologies as elements of quantum memory adjusted to a nitrogen-vacancy (NV) center electron spin qubit. For nuclear spins with low flip-flop rate, single shot readout was demonstrated under ambient conditions. Here we report on a systematic search for such stable NV-13C systems using density functional theory to simulate the hfi and spatial characteristics of all possible NV-13C complexes in the H-terminated cluster C510[NV]-H252 hosting the NV center. Along with the expected stable ‘NV-axial-13C’ systems wherein the 13C nuclear spin is located on the NV axis, we found for the first time new families of positions for the 13C nuclear spin exhibiting negligible hfi-induced flipping rates due to near-symmetric local spin density distribution. Spatially, these positions are located in the diamond bilayer passing through the vacancy of the NV center and being perpendicular to the NV axis. Analysis of available publications showed that, apparently, some of the predicted non-axial near-stable NV-13C systems have already been observed experimentally. A special experiment performed on one of these systems confirmed the prediction made.
Investigation of giant magnetoconductance in organic devices based on hopping mechanism
NASA Astrophysics Data System (ADS)
Yang, F. J.; Qin, W.; Xie, S. J.
2014-04-01
We suggest a spin-dependent hopping mechanism which includes the effect of the external magnetic field as well as hyperfine interaction (HFI) to explain the observed giant magnetoconductance (MC) in non-magnetic organic devices. Based on the extended Marcus theory, we calculate the MC by using the master equation. It is found that a MC value as large as 91% is obtained under a low driving voltage. For suitable parameters, the theoretical results are in good agreement with the experimental data. Influences of the carrier density, HFI, and the carrier localization on the MC value are investigated. Especially, it is found that a low-dimensional structure of the organic materials is favorable to get a large MC value.
Investigation of giant magnetoconductance in organic devices based on hopping mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, F. J.; Qin, W.; Xie, S. J., E-mail: xsj@sdu.edu.cn
2014-04-14
We suggest a spin-dependent hopping mechanism which includes the effect of the external magnetic field as well as hyperfine interaction (HFI) to explain the observed giant magnetoconductance (MC) in non-magnetic organic devices. Based on the extended Marcus theory, we calculate the MC by using the master equation. It is found that a MC value as large as 91% is obtained under a low driving voltage. For suitable parameters, the theoretical results are in good agreement with the experimental data. Influences of the carrier density, HFI, and the carrier localization on the MC value are investigated. Especially, it is found thatmore » a low-dimensional structure of the organic materials is favorable to get a large MC value.« less
1998-01-23
W. Moench (Duisburg) H. Mughrabi (Erlangen) H. Neuhäuser (Braunschweig) J. Pollmann (Münster) H.-E. Schaefer (Stuttgart) J.-B. Suck (Chemnitz...et al . [4]) and also for the silicon vacancy Vacsi [5] the hyperfine interaction (hfi) constants e.g. are remarkably insensitive to the polytype and...TMs are tetrahedrally surrounded by four C ligands (TMyc in the notation of Wang et al . [6]) or by four Si (TMTgi) ligands. Computational. In our
Organic magnetoresistance based on hopping theory
NASA Astrophysics Data System (ADS)
Yang, Fu-Jiang; Xie, Shi-Jie
2014-09-01
For the organic magnetoresistance (OMAR) effect, we suggest a spin-related hopping of carriers (polarons) based on Marcus theory. The mobility of polarons is calculated with the master equation (ME) and then the magnetoresistance (MR) is obtained. The theoretical results are consistent with the experimental observation. Especially, the sign inversion of the MR under different driving bias voltages found in the experiment is predicted. Besides, the effects of molecule disorder, hyperfine interaction (HFI), polaron localization, and temperature on the MR are investigated.
Astashkin, Andrei V; Neese, Frank; Raitsimring, Arnold M; Cooney, J Jon A; Bultman, Eric; Enemark, John H
2005-11-30
Ka band ESEEM spectroscopy was used to determine the hyperfine (hfi) and nuclear quadrupole (nqi) interaction parameters for the oxo-17O ligand in [Mo 17O(SPh)4]-, a spectroscopic model of the oxo-Mo(V) centers of enzymes. The isotropic hfi constant of 6.5 MHz found for the oxo-17O is much smaller than the values of approximately 20-40 MHz typical for the 17O nucleus of an equatorial OH(2) ligand in molybdenum enzymes. The 17O nqi parameter (e2qQ/h = 1.45 MHz, eta approximately = 0) is the first to be obtained for an oxo group in a metal complex. The parameters of the oxo-17O ligand, as well as other magnetic resonance parameters of [Mo 17O(SPh)4]- predicted by quasi-relativistic DFT calculations, were in good agreement with those obtained in experiment. From the electronic structure of the complex revealed by DFT, it follows that the SOMO is almost entirely molybdenum d(xy) and sulfur p, while the spin density on the oxo-17O is negative, determined by spin polarization mechanisms. The results of this work will enable direct experimental identification of the oxo ligand in a variety of chemical and biological systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maryasov, Alexander G.; Bowman, Michael K.
2004-07-08
It is shown that HYSCORE spectra of paramagnetic centers having nuclei of spin I=1 with isotropic hfi and arbitrary NQI consist of ridges having zero width. A parametric presentation of these ridges is found which shows the range of possible frequencies in the HYSCORE spectrum and aids in spectral assignments and rapid estimation of spin Hamiltonian parameters. An alternative approach for the spectral density calculation is presented that is based on spectral decomposition of the Hamiltonian. Only the eigenvalues of the Hamiltonian are needed in this approach. An atlas of HYSCORE spectra is given in the Supporting Information. This approachmore » is applied to the estimation of the spin Hamiltonian parameters of the oxovanadium-EDTA complex.« less
Dodin, Dmitry V; Ivanov, Anatoly I; Burshtein, Anatoly I
2008-02-07
The Hamiltonian description of the spin-conversion induced by a hyperfine interaction (HFI) in photogenerated radical-ion pairs is substituted for the rate (incoherent) description of the same conversion provided by the widely used earlier elementary spin model. The quantum yields of the free ions as well as the singlet and triplet products of geminate recombination are calculated using distant dependent ionization and recombination rates, instead of their contact analogs. Invoking the simplest models of these rates, we demonstrate with the example of a spin-less system that the diffusional acceleration of radical-ion pair recombination at lower viscosity gives way to its diffusional deceleration (Angulo effect), accomplished with a kinetic plateau inherent with the primitive exponential model. Qualitatively the same behavior is found in real systems, assuming both ionization and recombination is carried out by the Marcus electron-transfer rates. Neglecting the Coulomb interaction between solvated ions, the efficiencies of radical-ion pair recombination to the singlet and triplet products are well fitted to the available experimental data. The magnetic field dependence of these yields is specified.
Brunet, François D; Feola, Julie C; Joly, Helen A
2012-03-15
Reaction mixtures, containing Al atoms and methylethyl ether (MEE) or diethyl ether (DEE) in an adamantane matrix, were prepared with the aid of a metal-atom reactor known as a rotating cryostat. The EPR spectra of the resulting products were recorded from 77-260 K, at 10 K intervals. Al atoms were found to insert into methyl-O, ethyl-O, and C-C bonds to form CH(3)AlOCH(2)CH(3), CH(3)OAlCH(2)CH(3), and CH(3)OCH(2)AlCH(3), respectively, in the case of MEE while DEE produced CH(3)CH(2)AlOCH(2)CH(3) and CH(3)AlCH(2)OCH(2)CH(3), respectively. From the intensity of the transition lines attributed to the Al atom C-O insertion products of MEE, insertion into the methyl-O bond is preferred. The Al hyperfine interaction (hfi) extracted from the EPR spectra of the C-O insertion products was greater than that of the C-C insertion products, that is, 5.4% greater for the DEE system and 7% greater for the MEE system. The increase in Al hfi is thought to arise from the increased electron-withdrawing ability of the substituents bonded to Al. Besides HAlOH, resulting from the reaction of Al atoms with adventitious water, novel mixed HAlOH:MEE and HAlOH:DEE complexes were identified with the aid of isotopic studies involving H(2)(17)O and D(2)O. The Al and H hfi of HAlOH were found to decrease upon complex formation. These findings are consistent with the nuclear hfi calculated using a density functional theory (DFT) method with close agreement between theory and experiment occurring at the B3LYP level using a 6-311+G(2df,p) basis set.
Household Food Insecurity and Mental Health Problems Among Adolescents: What Do Parents Report?
Poole-Di Salvo, Elizabeth; Silver, Ellen J; Stein, Ruth E K
2016-01-01
To investigate whether adolescents living in households with food insecurity have poorer parent-reported mental health (MH) than peers. We analyzed cross-sectional data from ∼8600 adolescents who participated in the 2007 (8th grade) wave of the Early Childhood Longitudinal Study-Kindergarten. Household food insecurity (HFI) was assessed by parental report on the 18-item US Household Food Security Scale. Total Difficulties score >13 on the parent-reported Strengths and Difficulties Questionnaire (SDQ) indicated problems with adolescent MH. SDQ subscale scores (Emotional, Conduct, Hyperactivity, Peer Problems) were also calculated. Associations between HFI and MH were explored in bivariate and multivariable analyses. Interactions of HFI and gender and HFI and receipt of free/reduced-price school lunch were analyzed with regard to problems with MH. A total of 10.2% of adolescents lived with HFI; 11.2% had SDQ >13. Adolescents with HFI had higher rates of overall MH problems (28.7% vs 9.2%), emotional problems (21.6% vs 6.6%), conduct problems (26.5% vs 11.6%), hyperactivity (22.4% vs 11.3%), and peer problems (19.8% vs 8.6%) (all P < .01). After adjustment for confounders, the association between HFI and overall MH problems (odds ratio 2.3; 95% confidence interval 1.6-3.3) remained. Interactions of HFI and gender and HFI and free/reduced-price school lunch were not significant. HFI was associated with increased risk of parent-reported MH problems among both male and female adolescents. Free/reduced-price school lunch did not significantly alter this relationship. Effective interventions to promote MH and reduce HFI among adolescents are necessary. Copyright © 2016 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
Kac, Gilberto; Schlüssel, Michael M; Pérez-Escamilla, Rafael; Velásquez-Melendez, Gustavo; da Silva, Antônio Augusto Moura
2012-01-01
We examined the association between Household Food Insecurity (HFI), weight for height z-score (WHZ) and Body Mass Index for age z-score (BMI-Z) in a representative sample of children 0-60 months of age (n = 3,433) in five Brazilian geographical regions. Data were derived from the 2006-07 Brazilian Demographic and Health Survey. HFI was measured with the Brazilian Food Insecurity Scale. Associations were estimated using multiple linear regression models (β coefficients and 95% CI) taking into account the complex sampling design. Interaction terms between HFI and geographical region and HFI and child sex and child age were assessed. The weighted prevalence of any level of HFI was 48.6%. Severe food insecurity was more prevalent among children from the North region (16.8%), born from mothers with <4 years of schooling (15.9%) and those from families with ≥3 children (18.8%). The interaction between HFI and geographical region was non-significant for BMI-Z (P = 0.119) and WHZ (P = 0.198). Unadjusted results indicated that HFI was negatively associated with BMI-Z (moderate to severe HFI: β = -0.19, 95% CI: -0.35 - -0.03, P = 0.047), and WHZ (moderate to severe HFI: β = -0.26, 95% CI: -0.42 - -0.09, P = 0.009). Estimates lost significance after adjustments for key confounders such as mothers' skin color, mothers' years of schooling, place of household, household income quartiles, mothers' smoking habit, mothers' marital status, number of children 0-60 months in the household, and birth order. HFI is unrelated to weight outcomes among Brazilian children 0-60 months.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight L.B. Jr.; Cobranchi, S.T.; Petty, J.T.
1989-01-15
The first spectroscopic study of the diatomic radical BC is reported which confirms previous theoretical predictions of a /sup 4/summation/sup -/ electronic ground state. The nuclear hyperfine interactions (A tensors) obtained for /sup 11/B, /sup 10/B, and /sup 13/C from the electron spin resonance (ESR) measurements are compared with extensive ab initio CI calculations. The BC molecule is one of the first examples of a small high spin radical for such an in-depth experimental--theoretical comparison. The electronic structure of BC obtained from an analysis of the nuclear hyperfine interaction (hfi) is compared to that obtained from a Mulliken-type population analysismore » conducted on a CI wave function which yields A/sub iso/ and A/sub dip/ results in good agreement with the observed values. The BC radical was generated by the laser vaporization of a boron--carbon mixture and trapped in neon, argon, and krypton matrices at 4 K for a complete ESR characterization. The magnetic parameters (MHz) obtained for /sup 11/B/sup 13/C in solid neon are: g/sub parallel/ = 2.0015(3); g/sub perpendicular/ = 2.0020(3); D(zfs) = 1701(2); /sup 11/B: chemically bondA/sub parallel/chemically bond = 100(1); chemically bondA/sub perpendicular/chemically bond = 79(1); /sup 13/C: chemically bondA/sub parallel/chemically bond = 5(2) and chemically bondA/sub perpendicular/chemically bond = 15(1). Based on comparison with the theoretical results, the most likely choice of signs is that all A values are positive.« less
Novel Small Molecules Disabling the IL-6/IL-6R/GP130 Heterohexamer Complex
2012-10-01
fluctuations over 20 ns MD simulation. The HFI unit of MDL-A showed instability in the gp130 D1-domain binding pocket, whereas the hydrophobic tail...compound containing only an HFI unit was not capable of inhibiting gp130 homodimerization. Our MDLs MD simulation studies showed consistent results...chain attached to the HFI unit which is designed to take advantage of interactions with the “additional” subpockets surrounding the MDL-A binding site
Menon, Samir; Brantner, Gerald; Aholt, Chris; Kay, Kendrick; Khatib, Oussama
2013-01-01
A challenging problem in motor control neuroimaging studies is the inability to perform complex human motor tasks given the Magnetic Resonance Imaging (MRI) scanner's disruptive magnetic fields and confined workspace. In this paper, we propose a novel experimental platform that combines Functional MRI (fMRI) neuroimaging, haptic virtual simulation environments, and an fMRI-compatible haptic device for real-time haptic interaction across the scanner workspace (above torso ∼ .65×.40×.20m(3)). We implement this Haptic fMRI platform with a novel haptic device, the Haptic fMRI Interface (HFI), and demonstrate its suitability for motor neuroimaging studies. HFI has three degrees-of-freedom (DOF), uses electromagnetic motors to enable high-fidelity haptic rendering (>350Hz), integrates radio frequency (RF) shields to prevent electromagnetic interference with fMRI (temporal SNR >100), and is kinematically designed to minimize currents induced by the MRI scanner's magnetic field during motor displacement (<2cm). HFI possesses uniform inertial and force transmission properties across the workspace, and has low friction (.05-.30N). HFI's RF noise levels, in addition, are within a 3 Tesla fMRI scanner's baseline noise variation (∼.85±.1%). Finally, HFI is haptically transparent and does not interfere with human motor tasks (tested for .4m reaches). By allowing fMRI experiments involving complex three-dimensional manipulation with haptic interaction, Haptic fMRI enables-for the first time-non-invasive neuroscience experiments involving interactive motor tasks, object manipulation, tactile perception, and visuo-motor integration.
NASA Astrophysics Data System (ADS)
Bertincourt, B.; Lagache, G.; Martin, P. G.; Schulz, B.; Conversi, L.; Dassas, K.; Maurin, L.; Abergel, A.; Beelen, A.; Bernard, J.-P.; Crill, B. P.; Dole, H.; Eales, S.; Gudmundsson, J. E.; Lellouch, E.; Moreno, R.; Perdereau, O.
2016-04-01
We compare the absolute gain photometric calibration of the Planck/HFI and Herschel/SPIRE instruments on diffuse emission. The absolute calibration of HFI and SPIRE each relies on planet flux measurements and comparison with theoretical far-infrared emission models of planetary atmospheres. We measure the photometric cross calibration between the instruments at two overlapping bands, 545 GHz/500 μm and 857 GHz/350 μm. The SPIRE maps used have been processed in the Herschel Interactive Processing Environment (Version 12) and the HFI data are from the 2015 Public Data Release 2. For our study we used 15 large fields observed with SPIRE, which cover a total of about 120 deg2. We have selected these fields carefully to provide high signal-to-noise ratio, avoid residual systematics in the SPIRE maps, and span a wide range of surface brightness. The HFI maps are bandpass-corrected to match the emission observed by the SPIRE bandpasses. The SPIRE maps are convolved to match the HFI beam and put on a common pixel grid. We measure the cross-calibration relative gain between the instruments using two methods in each field, pixel-to-pixel correlation and angular power spectrum measurements. The SPIRE/HFI relative gains are 1.047 (±0.0069) and 1.003 (±0.0080) at 545 and 857 GHz, respectively, indicating very good agreement between the instruments. These relative gains deviate from unity by much less than the uncertainty of the absolute extended emission calibration, which is about 6.4% and 9.5% for HFI and SPIRE, respectively, but the deviations are comparable to the values 1.4% and 5.5% for HFI and SPIRE if the uncertainty from models of the common calibrator can be discounted. Of the 5.5% uncertainty for SPIRE, 4% arises from the uncertainty of the effective beam solid angle, which impacts the adopted SPIRE point source to extended source unit conversion factor, highlighting that as a focus for refinement.
Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves
Liang, Shiheng; Geng, Rugang; Yang, Baishun; Zhao, Wenbo; Chandra Subedi, Ram; Li, Xiaoguang; Han, Xiufeng; Nguyen, Tho Duc
2016-01-01
We investigated curvature-enhanced spin-orbit coupling (SOC) and spinterface effect in carbon-based organic spin valves (OSVs) using buckyball C60 and C70 molecules. Since the naturally abundant 12C has spinless nuclear, the materials have negligible hyperfine interaction (HFI) and the same intrinsic SOC, but different curvature SOC due to their distinct curvatures. We fitted the thickness dependence of magnetoresistance (MR) in OSVs at various temperatures using the modified Jullière equation. We found that the spin diffusion length in the C70 film is above 120 nm, clearly longer than that in C60 film at all temperatures. The effective SOC ratio of the C70 film to the C60 film was estimated to be about 0.8. This was confirmed by the magneto-electroluminescence (MEL) measurement in fullerene-based light emitting diodes (LED). Next, the effective spin polarization in C70-based OSVs is smaller than that in C60-based OSVs implying that they have different spinterface effect. First principle calculation study shows that the spin polarization of the dz2 orbital electrons of Co atoms contacted with C60 is larger causing better effective spin polarization at the interface. PMID:26786047
Curvature-enhanced Spin-orbit Coupling and Spinterface Effect in Fullerene-based Spin Valves
NASA Astrophysics Data System (ADS)
Liang, Shiheng; Geng, Rugang; Yang, Baishun; Zhao, Wenbo; Chandra Subedi, Ram; Li, Xiaoguang; Han, Xiufeng; Nguyen, Tho Duc
2016-01-01
We investigated curvature-enhanced spin-orbit coupling (SOC) and spinterface effect in carbon-based organic spin valves (OSVs) using buckyball C60 and C70 molecules. Since the naturally abundant 12C has spinless nuclear, the materials have negligible hyperfine interaction (HFI) and the same intrinsic SOC, but different curvature SOC due to their distinct curvatures. We fitted the thickness dependence of magnetoresistance (MR) in OSVs at various temperatures using the modified Jullière equation. We found that the spin diffusion length in the C70 film is above 120 nm, clearly longer than that in C60 film at all temperatures. The effective SOC ratio of the C70 film to the C60 film was estimated to be about 0.8. This was confirmed by the magneto-electroluminescence (MEL) measurement in fullerene-based light emitting diodes (LED). Next, the effective spin polarization in C70-based OSVs is smaller than that in C60-based OSVs implying that they have different spinterface effect. First principle calculation study shows that the spin polarization of the dz2 orbital electrons of Co atoms contacted with C60 is larger causing better effective spin polarization at the interface.
Shamah-Levy, Teresa; Mundo-Rosas, Verónica; Morales-Ruan, Carmen; Cuevas-Nasu, Lucia; Méndez-Gómez-Humarán, Ignacio; Pérez-Escamilla, Rafael
2017-01-01
Objective To examine the association between household food insecurity (HFI) and risk of childhood stunting and to determine whether this association is modified by maternal–child overweight/obesity. Design Observational cross-sectional study. Setting Data come from the Mexican National Health and Nutrition Survey (ENSANUT 2012 by its initials in Spanish), representative of rural and urban areas. Participants Our study sample included 5087 mother–preschool child pairs and 7181 mother–schoolchild pairs. Main outcome measures Differences in the prevalence (95% CI) of each HFI category by socioeconomic characteristics and maternal–child nutritional status were estimated. A logistic regression model was conducted for stunting and overweight among preschool children and for stunting and overweight/obesity among schoolchildren, adjusting for pertinent covariates. HFI was measured according to the Latin American and Caribbean Food Security Scale (ELCSA by its initials in Spanish). Weight and recumbent lenght or height measures were obtained from children. Overweight and obesity in women were determined according to the WHO Growth Reference Charts. The following covariates were included: sex of the child. urbanicity (urban/rural), region of residence and maternal education. Benefiting from food assistance programmes and socioeconomic status index were also included. Results were expressed as adjusted ORs. Results Stunting proved more prevalent in preschool children with moderate or severe HFI (16.2% and 16.8%, respectively) (p=0.036 and p=0.007, respectively) than in their counterparts with mild or no HFI (13.2% and 10.7%, respectively). Furthermore, the interaction between HFI and maternal obesity had a significant impact on stunting in preschool children (p<0.05). Severe HFI increased risk of stunting in children with non-obese mothers but not in those with obese mothers. Conclusion We have discovered a new relationship between HFI and maternal obesity on the one hand and risk of childhood stunting on the other hand. This may reflect a shared mechanism involving dual forms of malnutrition. PMID:28760785
Sun, Chang; Taguchi, Alexander T; Vermaas, Josh V; Beal, Nathan J; O'Malley, Patrick J; Tajkhorshid, Emad; Gennis, Robert B; Dikanov, Sergei A
2016-10-11
The respiratory cytochrome bo 3 ubiquinol oxidase from Escherichia coli has a high-affinity ubiquinone binding site that stabilizes the one-electron reduced ubisemiquinone (SQ H ), which is a transient intermediate during the electron-mediated reduction of O 2 to water. It is known that SQ H is stabilized by two strong hydrogen bonds from R71 and D75 to ubiquinone carbonyl oxygen O1 and weak hydrogen bonds from H98 and Q101 to O4. In this work, SQ H was investigated with orientation-selective Q-band (∼34 GHz) pulsed 1 H electron-nuclear double resonance (ENDOR) spectroscopy on fully deuterated cytochrome (cyt) bo 3 in a H 2 O solvent so that only exchangeable protons contribute to the observed ENDOR spectra. Simulations of the experimental ENDOR spectra provided the principal values and directions of the hyperfine (hfi) tensors for the two strongly coupled H-bond protons (H1 and H2). For H1, the largest principal component of the proton anisotropic hfi tensor T z' = 11.8 MHz, whereas for H2, T z' = 8.6 MHz. Remarkably, the data show that the direction of the H1 H-bond is nearly perpendicular to the quinone plane (∼70° out of plane). The orientation of the second strong hydrogen bond, H2, is out of plane by ∼25°. Equilibrium molecular dynamics simulations on a membrane-embedded model of the cyt bo 3 Q H site show that these H-bond orientations are plausible but do not distinguish which H-bond, from R71 or D75, is nearly perpendicular to the quinone ring. Density functional theory calculations support the idea that the distances and geometries of the H-bonds to the ubiquinone carbonyl oxygens, along with the measured proton anisotropic hfi couplings, are most compatible with an anionic (deprotonated) ubisemiquinone.
Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots.
Gammon, D; Efros, A L; Kennedy, T A; Rosen, M; Katzer, D S; Park, D; Brown, S W; Korenev, V L; Merkulov, I A
2001-05-28
Fine and hyperfine splittings arising from electron, hole, and nuclear spin interactions in the magneto-optical spectra of individual localized excitons are studied. We explain the magnetic field dependence of the energy splitting through competition between Zeeman, exchange, and hyperfine interactions. An unexpectedly small hyperfine contribution to the splitting close to zero applied field is described well by the interplay between fluctuations of the hyperfine field experienced by the nuclear spin and nuclear dipole/dipole interactions.
Effects of sound intensity on temporal properties of inhibition in the pallid bat auditory cortex.
Razak, Khaleel A
2013-01-01
Auditory neurons in bats that use frequency modulated (FM) sweeps for echolocation are selective for the behaviorally-relevant rates and direction of frequency change. Such selectivity arises through spectrotemporal interactions between excitatory and inhibitory components of the receptive field. In the pallid bat auditory system, the relationship between FM sweep direction/rate selectivity and spectral and temporal properties of sideband inhibition have been characterized. Of note is the temporal asymmetry in sideband inhibition, with low-frequency inhibition (LFI) exhibiting faster arrival times compared to high-frequency inhibition (HFI). Using the two-tone inhibition over time (TTI) stimulus paradigm, this study investigated the interactions between two sound parameters in shaping sideband inhibition: intensity and time. Specifically, the impact of changing relative intensities of the excitatory and inhibitory tones on arrival time of inhibition was studied. Using this stimulation paradigm, single unit data from the auditory cortex of pentobarbital-anesthetized cortex show that the threshold for LFI is on average ~8 dB lower than HFI. For equal intensity tones near threshold, LFI is stronger than HFI. When the inhibitory tone intensity is increased further from threshold, the strength asymmetry decreased. The temporal asymmetry in LFI vs. HFI arrival time is strongest when the excitatory and inhibitory tones are of equal intensities or if excitatory tone is louder. As inhibitory tone intensity is increased, temporal asymmetry decreased suggesting that the relative magnitude of excitatory and inhibitory inputs shape arrival time of inhibition and FM sweep rate and direction selectivity. Given that most FM bats use downward sweeps as echolocation calls, a similar asymmetry in threshold and strength of LFI vs. HFI may be a general adaptation to enhance direction selectivity while maintaining sweep-rate selective responses to downward sweeps.
Willis, Sherilyn A; Kuehl, Thomas J; Spiekerman, A Michael; Sulak, Patricia J
2006-08-01
Our objective was to test the hypothesis that shortening the hormone-free interval (HFI) between cycles of 21 days of oral contraceptives (OCs) reduces pituitary secretion of gonadotropins and ovarian production of estradiol and inhibin-B. We used a prospective trial design comparing the standard 7-day HFI and shortened HFI during cycles, with an OC containing 0.03 mg of ethinyl estradiol and 3 mg of drospirenone. Twelve current OC users initially utilized an OC in the standard fashion, with 21 days of active pills and a 7-day HFI, followed by 21 days of active pills with randomization to either a 3-day or a 4-day HFI. Nine daily blood samples were obtained for the measurement of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol and inhibin-B, beginning with active pill 21 days before each HFI of the two cycles. Analysis of variance was used to compare hormones for 9 days bracketing the standard 7-day HFI and to compare, within individuals, the 7-day HFI and the subsequent shortened HFI. During the 7-day HFI, all four hormones significantly (p>.001) increased from baseline. FSH increased beginning on HFI Day 4, inhibin-B increased beginning on HFI Day 5, and LH and estradiol increased beginning on HFI Day 6. Subjects randomized to the 3-day or the 4-day HFI did not differ with regard to age and body size (p=.88) or initial hormone level (p=.67). Greater pituitary and ovarian suppression was seen with the shortened HFI for all four hormones (p<.001). Hormone levels in the 7 days after the last active pill of the second cycle did not differ (p>.4) between the 3-day and the 4-day HFI groups. Shortening the HFI from 7 days to 3 or 4 days blunts increases in the pituitary-ovarian axis during cycles of OC use.
Planck 2013 results. IX. HFI spectral response
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Santos, D.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
The Planck High Frequency Instrument (HFI) spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests was to measure the relative spectral response (includingthe level of out-of-band signal rejection) of all HFI detectors to a known source of electromagnetic radiation individually. This was determined by measuring the interferometric output of a continuously scanned Fourier transform spectrometer with all HFI detectors. As there is no on-board spectrometer within HFI, the ground-based spectral response experiments provide the definitive data set for the relative spectral calibration of the HFI. Knowledge of the relative variations in the spectral response between HFI detectors allows for a more thorough analysis of the HFI data. The spectral response of the HFI is used in Planck data analysis and component separation, this includes extraction of CO emission observed within Planck bands, dust emission, Sunyaev-Zeldovich sources, and intensity to polarization leakage. The HFI spectral response data have also been used to provide unit conversion and colour correction analysis tools. While previous papers describe the pre-flight experiments conducted on the Planck HFI, this paper focusses on the analysis of the pre-flight spectral response measurements and the derivation of data products, e.g. band-average spectra, unit conversion coefficients, and colour correction coefficients, all with related uncertainties. Verifications of the HFI spectral response data are provided through comparisons with photometric HFI flight data. This validation includes use of HFI zodiacal emission observations to demonstrate out-of-band spectral signal rejection better than 108. The accuracy of the HFI relative spectral response data is verified through comparison with complementary flight-data based unit conversion coefficients and colour correction coefficients. These coefficients include those based upon HFI observations of CO, dust, and Sunyaev-Zeldovich emission. General agreement is observed between the ground-based spectral characterization of HFI and corresponding in-flight observations, within the quoted uncertainty of each; explanations are provided for any discrepancies.
Shamah-Levy, Teresa; Mundo-Rosas, Verónica; Morales-Ruan, Carmen; Cuevas-Nasu, Lucia; Méndez-Gómez-Humarán, Ignacio; Pérez-Escamilla, Rafael
2017-07-31
To examine the association between household food insecurity (HFI) and risk of childhood stunting and to determine whether this association is modified by maternal-child overweight/obesity. Observational cross-sectional study. Data come from the Mexican National Health and Nutrition Survey ( ENSANUT 2012 by its initials in Spanish), representative of rural and urban areas. Our study sample included 5087 mother-preschool child pairs and 7181 mother-schoolchild pairs. Differences in the prevalence (95% CI) of each HFI category by socioeconomic characteristics and maternal-child nutritional status were estimated. A logistic regression model was conducted for stunting and overweight among preschool children and for stunting and overweight/obesity among schoolchildren, adjusting for pertinent covariates. HFI was measured according to the Latin American and Caribbean Food Security Scale (ELCSA by its initials in Spanish). Weight and recumbent lenght or height measures were obtained from children. Overweight and obesity in women were determined according to the WHO Growth Reference Charts. The following covariates were included: sex of the child. urbanicity (urban/rural), region of residence and maternal education. Benefiting from food assistance programmes and socioeconomic status index were also included. Results were expressed as adjusted ORs. Stunting proved more prevalent in preschool children with moderate or severe HFI (16.2% and 16.8%, respectively) (p=0.036 and p=0.007, respectively) than in their counterparts with mild or no HFI (13.2% and 10.7%, respectively). Furthermore, the interaction between HFI and maternal obesity had a significant impact on stunting in preschool children (p<0.05). Severe HFI increased risk of stunting in children with non-obese mothers but not in those with obese mothers. We have discovered a new relationship between HFI and maternal obesity on the one hand and risk of childhood stunting on the other hand. This may reflect a shared mechanism involving dual forms of malnutrition. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Habukawa, Chizu; Murakami, Katsumi; Mochizuki, Hiroyuki; Takami, Satoru; Muramatsu, Reiko; Tadaki, Hiromi; Hagiwara, Satomi; Mizuno, Takahisa; Arakawa, Hirokazu; Nagasaka, Yukio
2010-04-01
It is difficult for clinicians to identify changes in breath sounds caused by bronchoconstriction when wheezing is not audible. A breath sound analyser can identify changes in the frequency of breath sounds caused by bronchoconstriction. The present study aimed to identify the changes in the frequency of breath sounds during bronchoconstriction and bronchodilatation using a breath sound analyser. Thirty-six children (8.2 +/- 3.7 years; males : females, 22 : 14) underwent spirometry, methacholine inhalation challenge and breath sound analysis. Methacholine inhalation challenge was performed and baseline respiratory resistance, minimum dose of methacholine (bronchial sensitivity) and speed of bronchoconstriction in response to methacholine (Sm: bronchial reactivity) were calculated. The highest frequency of inspiratory breath sounds (HFI), the highest frequency of expiratory breath sounds (HFE) and the percentage change in HFI and HFE were determined. The HFI and HFE were compared before methacholine inhalation (pre-HFI and pre-HFE), when respiratory resistance reached double the baseline value (max HFI and max HFE), and after bronchodilator inhalation (post-HFI and post-HFE). Breath sounds increased during methacholine-induced bronchoconstriction. Max HFI was significantly greater than pre-HFI (P < 0.001), and decreased to the basal level after bronchodilator inhalation. Post-HFI was significantly lower than max HFI (P < 0.001). HFI and HFE were also significantly changed (P < 0.001). The percentage change in HFI showed a significant correlation with the speed of bronchoconstriction in response to methacholine (P = 0.007). Methacholine-induced bronchoconstriction significantly increased HFI, and the increase in HFI was correlated with bronchial reactivity.
Stochastic hyperfine interactions modeling library-Version 2
NASA Astrophysics Data System (ADS)
Zacate, Matthew O.; Evenson, William E.
2016-02-01
The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized. The original version of SHIML constructed and solved Blume matrices for methods that measure hyperfine interactions of nuclear probes in a single spin state. Version 2 provides additional support for methods that measure interactions on two different spin states such as Mössbauer spectroscopy and nuclear resonant scattering of synchrotron radiation. Example codes are provided to illustrate the use of SHIML to (1) generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A22 can be neglected and (2) generate Mössbauer spectra for polycrystalline samples for pure dipole or pure quadrupole transitions.
Du, Yu-Jia; Lin, Ze-Min; Zhao, Ying-Hua; Feng, Xiu-Ping; Wang, Chang-Qing; Wang, Gang; Wang, Chun-Di; Shi, Wei; Zuo, Jian-Ping; Li, Fan; Wang, Cheng-Zhong
2013-02-01
The anti‑erbB2 scFv‑Fc‑IL‑2 fusion protein (HFI) is the basis for development of a novel targeted anticancer drug, in particular for the treatment of HER2‑positive cancer patients. HFI was fused with the anti‑erbB2 antibody and human IL‑2 by genetic engineering technology and by antibody targeting characteristics of HFI. IL‑2 was recruited to target cells to block HER2 signaling, inhibit or kill tumor cells, improve the immune capacity, reduce the dose of antibody and IL‑2 synergy. In order to analyse HFI drug ability, HFI plasmid stability was verified by HFI expression of the trend of volume changes. Additionally, HFI could easily precipitate and had progressive characteristics and thus, the buffer system of the additive phosphate‑citric acid buffer, arginine, Triton X‑100 or Tween‑80, the establishment of a microfiltration, ion exchange, affinity chromatography and gel filtration chromatography‑based purification process were explored. HFI samples were obtained according to the requirements of purity, activity and homogeneity. In vivo, HFI significantly delayed HER2 overexpression of non‑small cell lung cancer (Calu‑3) in human non‑small cell lung cancer xenografts in nude mice, and the inhibition rate was more than 60% (P<0.05) in the group treated with 1 mg/kg the HFI dose; HFI significantly inhibited HER2 expression of breast cancer (FVB/neu) transgenic mouse tumor growth in 1 mg/kg of the HFI dose group, and in the following treatment the 400 mm3 tumors disappeared completely. Combined with other HFI test data analysis, HFI not only has good prospects, but also laid the foundation for the development of antibody‑cytokine fusion protein‑like drugs.
Hyperfine Fields of 181Ta in UFe4Al8
NASA Astrophysics Data System (ADS)
Marques, J. G.; Barradas, N. P.; Alves, E.; Ramos, A. R.; Gonçalves, A. P.; da Silva, M. F.; Soares, J. C.
2001-11-01
The γ γ Perturbed Angular Correlation technique was used to study the hyperfine interaction of 181Ta at the Hf site(s) in UFe4Al8 at room temperature and 12 K. The data at room temperature are well described by two electric field gradients, while at low temperature two combined hyperfine interactions have to be considered, one with the magnetic hyperfine field collinear with the c-axis and another with the magnetic hyperfine field in the basal plane. The results are compared with previous Mössbauer and neutron diffraction experiments and the lattice site of Hf is discussed.
Hyperostosis frontalis interna in postmenopausal women-Possible relation to osteoporosis.
Djonic, Danijela; Bracanovic, Djurdja; Rakocevic, Zoran; Ivovic, Miomira; Nikolic, Slobodan; Zivkovic, Vladimir; Djuric, Marija
2016-01-01
To improve our understanding of hyperostosis frontalis interna (HFI), we investigated whether HFI was accompanied by changes in the postcranial skeleton. Based on head CT scan analyses, 103 postmenopausal women were divided into controls without HFI and those with HFI, in whom we measured the thickness of frontal, occipital, and parietal bones. Women in the study underwent dual energy x-ray absorptiometry to analyze the bone density of the hip and vertebral region and external geometry of the proximal femora. Additionally, all of the women completed a questionnaire about symptoms and conditions that could be related to HFI. Women with HFI had a significantly higher prevalence of headaches, neurological and psychiatric disorders, and a significantly lower prevalence of having given birth. Increased bone thickness and altered bone structure in women with HFI was localized only on the skull, particularly on the frontal bone, probably due to specific properties of its underlying dura. Bone loss in the postcranial skeleton showed the same pattern in postmenopausal women with HFI as in those without HFI. Recording of HFI in medical records can be helpful in distinguishing whether reported disorders occur as a consequence of HFI or are related to other diseases, but does not appear helpful in identifying women at risk of bone loss.
NASA Astrophysics Data System (ADS)
Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.
1991-08-01
We present a complete analysis of the hyperfine structure of the MnH A 7Π-X 7Σ+ (0,0) band near 5680 Å, studied with sub-Doppler resolution by intermodulated fluorescence spectroscopy. Magnetic hyperfine interactions involving both the 55Mn (I=5/2) and 1H (I=1/2) nuclear spins are observed as well as 55Mn electric quadrupole effects. The manganese Fermi contact interaction in the X 7Σ+ state is the dominant contributor to the observed hyperfine splittings; the ΔF=0, ΔN=0, ΔJ=±1 matrix elements of this interaction mix the electron spin components of the ground state quite strongly at low N, destroying the ``goodness'' of J as a quantum number and inducing rotationally forbidden, ΔJ=±2 and ±3 transitions. The hyperfine splittings of over 50 rotational transitions covering all 7 spin components of both states were analyzed and fitted by least squares, allowing the accurate determination of 14 different hyperfine parameters. Using single electronic configurations to describe the A 7Π and X 7Σ+ states and Herman-Skillman atomic radial wave functions to represent the molecular orbitals, we calculated a priori values for the 55Mn and 1H hyperfine parameters which agree closely with experiment. We show that the five high-spin coupled Mn 3d electrons do not contribute to the manganese hyperfine structure but are responsible for the observed proton magnetic dipolar couplings. Furthermore, the results suggest that the Mn 3d electrons are not significantly involved in bonding and demonstrate that the molecular hyperfine interactions may be quantitatively understood using simple physical interpretations.
Stochastic hyperfine interactions modeling library
NASA Astrophysics Data System (ADS)
Zacate, Matthew O.; Evenson, William E.
2011-04-01
The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When interactions fluctuate at rates comparable to the time scale of a hyperfine method, there is a loss in signal coherence, and spectra are damped. The degree of damping can be used to determine fluctuation rates, provided that theoretical expressions for spectra can be derived for relevant physical models of the fluctuations. SHIML provides routines to help researchers quickly develop code to incorporate stochastic models of fluctuating hyperfine interactions in calculations of hyperfine spectra. Solution method: Calculations are based on the method for modeling stochastic hyperfine interactions for PAC by Winkler and Gerdau [5]. The method is extended to include other hyperfine methods following the work of Dattagupta [6]. The code provides routines for reading model information from text files, allowing researchers to develop new models quickly without the need to modify computer code for each new model to be considered. Restrictions: In the present version of the code, only methods that measure the hyperfine interaction on one probe spin state, such as PAC, μSR, and NMR, are supported. Running time: Varies
A 76-bp deletion in the Mip gene causes autosomal dominant cataract in Hfi mice.
Sidjanin, D J; Parker-Wilson, D M; Neuhäuser-Klaus, A; Pretsch, W; Favor, J; Deen, P M; Ohtaka-Maruyama, C; Lu, Y; Bragin, A; Skach, W R; Chepelinsky, A B; Grimes, P A; Stambolian, D E
2001-06-15
Hfi is a dominant cataract mutation where heterozygotes show hydropic lens fibers and homozygotes show total lens opacity. The Hfi locus was mapped to the distal part of mouse chromosome 10 close to the major intrinsic protein (Mip), which is expressed only in cell membranes of lens fibers. Molecular analysis of Mip revealed a 76-bp deletion that resulted in exon 2 skipping in Mip mRNA. In Hfi/Hfi this deletion resulted in a complete absence of the wildtype Mip. In contrast, Hfi/+ animals had the same amount of wildtype Mip as +/+. Results from pulse-chase expression studies excluded hetero-oligomerization of wildtype and mutant Mip as a possible mechanism for cataract formation in the Hfi/+. We propose that the cataract phenotype in the Hfi heterozygote mutant is due to a detrimental gain of function by the mutant Mip resulting in either cytotoxicity or disruption in processing of other proteins important for the lens. Cataract formation in the Hfi/Hfi mouse is probably a combined result of both the complete loss of wildtype Mip and a gain of function of the mutant Mip. Copyright 2001 Academic Press.
Fluctuating hyperfine interactions: an updated computational implementation
NASA Astrophysics Data System (ADS)
Zacate, M. O.; Evenson, W. E.
2015-04-01
The stochastic hyperfine interactions modeling library (SHIML) is a set of routines written in the C programming language designed to assist in the analysis of stochastic models of hyperfine interactions. The routines read a text-file description of the model, set up the Blume matrix, upon which the evolution operator of the quantum mechanical system depends, and calculate the eigenvalues and eigenvectors of the Blume matrix, from which theoretical spectra of experimental techniques can be calculated. The original version of SHIML constructs Blume matrices applicable for methods that measure hyperfine interactions with only a single nuclear spin state. In this paper, we report an extension of the library to provide support for methods such as Mössbauer spectroscopy and nuclear resonant scattering of synchrotron radiation, which are sensitive to interactions with two nuclear spin states. Examples will be presented that illustrate the use of this extension of SHIML to generate Mössbauer spectra for polycrystalline samples under a number of fluctuating hyperfine field models.
Bracanovic, Djurdja; Djonic, Danijela; Nikolic, Slobodan; Milovanovic, Petar; Rakocevic, Zoran; Zivkovic, Vladimir; Djuric, Marija
2016-11-01
Although seen frequently during dissections and autopsies, Hyperostosis frontalis interna (HFI) - a morphological pattern of the frontal bone thickening - is often ignored and its nature and development are not yet understood sufficiently. Current macroscopic classification defines four grades/stages of HFI based on the morphological appearance and size of the affected area; however, it is unclear if these stages also depict the successive phases in the HFI development. Here we assessed 3D-microarchitecture of the frontal bone in women with various degrees of HFI expression and in an age- and sex-matched control group, hypothesizing that the bone microarchitecture bears imprints of the pathogenesis of HFI and may clarify the phases of its development. Frontal bone samples were collected during routine autopsies from 20 women with HFI (age: 69.9 ± 11.1 years) and 14 women without HFI (age: 74.1 ± 9.7 years). We classified the HFI samples into four groups, each group demonstrating different macroscopic type or stage of HFI. All samples were scanned by micro-computed tomography to evaluate 3D bone microarchitecture in the following regions of interest: total sample, outer table, diploe and inner table. Our results revealed that, compared to the control group, the women with HFI showed a significantly increased bone volume fraction in the region of diploe, along with significantly thicker and more plate-like shaped trabeculae and reduced trabecular separation and connectivity density. Moreover, the inner table of the frontal bone in women with HFI displayed significantly increased total porosity and mean pore diameter compared to controls. Microstructural reorganization of the frontal bone in women with HFI was also reflected in significantly higher porosity and lower bone volume fraction in the inner vs. outer table due to an increased number of pores larger than 100 μm. The individual comparisons between the control group and different macroscopic stages of HFI revealed significant differences only between the control group and the morphologically most pronounced type of HFI. Our microarchitectural findings demonstrated clear differences between the HFI and the control group in the region of diploe and the inner table. Macroscopic grades of HFI could not be distinguished at the level of bone microarchitecture and their consecutive nature cannot be supported. Rather, our study suggests that only two different types of HFI (moderate and severe HFI) have microstructural justification and should be considered further. It is essential to record HFI systematically in human postmortem subjects to provide more data on the mechanisms of its development. © 2016 Anatomical Society.
Western, A G; Bekvalac, J J
2017-03-01
This analysis aims to investigate the impact of industrialization on the prevalence of Hyperostosis Frontalis Interna (HFI), focusing on the roles of age and parity to examine the claim that longevity and changing reproductive patterns have led to increased rates in modern populations. A total of 138 individuals from two documented London skeletal assemblages of the Industrial period were analyzed employing macroscopic observation, digital radiography and MicroCT scanning to establish the prevalence rates of HFI according to modern clinical standards. Statistical analysis was also undertaken on a sub-sample of 51 females of post-menopausal age to identify any relationship between parity and HFI. The majority of cases of HFI were found in older females, reflecting clinical observations. The prevalence rates of HFI corresponded well to those predicted from the proportion of old age females present within populations. Age was therefore shown to be a predominant factor in HFI presence. A plateau in HFI prevalence was noted from the age of 50-59 years onwards. No statistically significant relationship was found between parity and HFI. When recorded consistently, HFI was positively correlated with age and longevity but had also increased among old age females over time. Our results suggest that nulliparity co-occurs with HFI but is not a primary factor in its pathogenesis. Key factors in HFI presence in females are likely to be increased androgens and the dysregulation of insulin and insulin-like growth factor-1. © 2016 Wiley Periodicals, Inc.
Decoding of quantum dots encoded microbeads using a hyperspectral fluorescence imaging method.
Liu, Yixi; Liu, Le; He, Yonghong; Zhu, Liang; Ma, Hui
2015-05-19
We presented a decoding method of quantum dots encoded microbeads with its fluorescence spectra using line scan hyperspectral fluorescence imaging (HFI) method. A HFI method was developed to attain both the spectra of fluorescence signal and the spatial information of the encoded microbeads. A decoding scheme was adopted to decode the spectra of multicolor microbeads acquired by the HFI system. Comparison experiments between the HFI system and the flow cytometer were conducted. The results showed that the HFI system has higher spectrum resolution; thus, more channels in spectral dimension can be used. The HFI system detection and decoding experiment with the single-stranded DNA (ssDNA) immobilized multicolor beads was done, and the result showed the efficiency of the HFI system. Surface modification of the microbeads by use of the polydopamine was characterized by the scanning electron microscopy and ssDNA immobilization was characterized by the laser confocal microscope. These results indicate that the designed HFI system can be applied to practical biological and medical applications.
Hyperostosis frontalis interna: what does it tell us about our health?
May, Hila; Peled, Nathan; Dar, Gali; Abbas, Janan; Hershkovitz, Israel
2011-01-01
To examine whether the prevalence and severity of hyperostosis frontalis interna (HFI) has significantly changed during the past 100 years. Two female populations, 100 years apart, were studied; 992 historic and 568 present day females. Detection of HFI was carried out via direct observation or CT images (Brilliance 64, Philips Medical Systems, Cleveland, Ohio). HFI was graded according to Hershkovitz et al.’s (1999) 4-scale definition and according May et al.’s (2010c) 3-scale definition. Following correction for age, present day females manifested a significantly higher HFI prevalence compared with historic females (P < 0.05). The risk of developing HFI was found to be approximately 2.5 times greater in present day females compared with females living 100 years ago (P < 0.05). In the young age cohort, present day females manifested a significantly higher prevalence of HFI type B (P < 0.05), whereas in the old age cohort, a significant difference in the prevalence of HFI types C and D was noted between the two groups (P < 0.05). HFI tended to appear at a younger age in the present population. The last two decades has witnessed an increase in HFI prevalence(from 55.6% to 75%). HFI prevalence has increased during the last century, especially among young individuals, possibly indicating a profound change in human fertility patterns, together with the introduction of various hormonal treatments) and new dietary habits.
Fallahi, P; Yilmaz, S T; Imamoğlu, A
2010-12-17
We measure the strength and the sign of hyperfine interaction of a heavy hole with nuclear spins in single self-assembled quantum dots. Our experiments utilize the locking of a quantum dot resonance to an incident laser frequency to generate nuclear spin polarization. By monitoring the resulting Overhauser shift of optical transitions that are split either by electron or exciton Zeeman energy with respect to the locked transition using resonance fluorescence, we find that the ratio of the heavy-hole and electron hyperfine interactions is -0.09 ± 0.02 in three quantum dots. Since hyperfine interactions constitute the principal decoherence source for spin qubits, we expect our results to be important for efforts aimed at using heavy-hole spins in quantum information processing.
Study of Cosmic Ray Impact on Planck/HFI Low Temperature Detectors
NASA Astrophysics Data System (ADS)
Miniussi, A.; Puget, J.-L.; Holmes, W.; Patanchon, G.; Catalano, A.; Giraud-Heraud, Y.; Pajot, F.; Piat, M.; Vibert, L.
2014-09-01
Once that the focal plane of the HFI instrument of the Planck mission (launched in May 2009) has reached operational temperature, we have observed the thermal effect of cosmic ray interaction with the Planck satellite, located at Lagrangian point L2. When a particle hits a component of the bolometers (e.g.: thermometer, grid or wafer) composing the focal plane of HFI, a thermal spike (called glitch), due to deposited energy, is observed. Processing these data revealed another effect due to high energy cosmic ray particle showers: High Coincidence Events (HCE), composed of glitches occurring coincidentally in many detectors and with a temperature increase from nK to K after the shower. A flux of about 100 HCE per hour has been calculated. Two types of HCE have been detected: fast and slow. For the first type, the untouched bolometers reach the same temperature as the touched ones in a few seconds which can be explained by a storage of the deposited energy in the stainless steel focal plane. The second type of HCE is not fully understood yet. These effects might be explained by extra conduction from the helium released from cryogenic surfaces, creating a temporary thermal link between the different stages of the HFI.
Chowdhury, Mohammad Rocky Khan; Khan, M M H; Rafiqul Islam, Md; Perera, Nirmala K P; Shumack, Matthew K; Kader, Manzur
2016-05-01
Household food insecurity (HFI) is insufficient access to nutritionally safe and adequate foods to meet the dietary needs for an active and healthy life. We examined the prevalence and determinants of HFI in Bangladeshi children under five with diarrhoea. This study included 365 children (55% boys) who had diarrhoea in the two weeks before the 2011 Bangladesh Demographic Health Survey (BDHS-2011). The Household Food Insecurity Access Scale (HFIAS) was used to assess HFI and Pearson's chi-square test and binary logistic regression analysis were used to investigate the association between HFI and multilevel factors. The prevalence of HFI among children under five with diarrhoea in the two weeks prior to the BDHS-2011 survey was 48%. HFI was significantly higher among the children of uneducated mothers, who were two times more likely to experience HFI, with an adjusted odds ratio (OR) of 2.14 and children who were from the lowest socio-economic status families, who were more than seven times more likely to experience HFI, with an adjusted OR of 7.55. Low maternal education and low socio-economic status were significantly associated with HFI in Bangladeshi children under five with diarrhoea and public health campaigns should take this into account. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Collins, Patricia A; Power, Elaine M; Little, Margaret H
2014-04-09
Household food insecurity (HFI) is a persistent public health problem affecting 3.8 million Canadians. While the causes of HFI are rooted in income insecurity, solutions to HFI have been primarily food-based, with the bulk of activity occurring at the municipal level across Canada. We conceptualize these municipal-level actions as falling within three models: "charitable", "household improvements and supports" and "community food systems". Many initiatives, especially non-charitable ones, generate widespread support, as they aim to increase participants' food security using an empowering and dignified approach. While these initiatives may offer some benefits to their participants, preliminary research suggests that any food-based solution to an income-based problem will have limited reach to food-insecure households and limited impact on participants' experience of HFI. We suspect that widespread support for the local-level food-based approach to HFI has impeded critical judgement of the true potential of these activities to reduce HFI. As these initiatives grow in number across Canada, we are in urgent need of comprehensive and comparative research to evaluate their impact on HFI and to ensure that municipal-level action on HFI is evidence-based.
Klopper, Kyle B; Deane, Shelly M; Dicks, Leon M T
2018-03-01
Human feces were streaked onto MRS Agar adjusted to pH 2.5, 3.0, and 6.4, respectively, and medium supplemented with 1.0% (w/v) bile salts. Two aciduric strains, identified as Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 (based on 16S rDNA and recA sequences), were non-hemolytic and did not hydrolyze mucin. The surface of Lactobacillus reuteri HFI-LD5 cells has a weak negative charge, whereas Lactobacillus rhamnosus HFI-K2 has acidic and basic properties, and produces exopolysaccharides (EPS). None of the strains produce bacteriocins. Both strains are resistant to several antibiotics, including sulfamethoxazole-trimethoprim and sulphonamides. The ability of Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 to grow at pH 2.5 suggests that they will survive passage through the stomach. EPS production may assist in binding to intestinal mucus, especially in the small intestinal tract, protect epithelial cells, and stimulate the immune system. Lactobacillus reuteri HFI-LD5 and Lactobacillus rhamnosus HFI-K2 may be used as probiotics, especially in the treatment of small intestinal bacterial overgrowth (SIBO).
NASA Astrophysics Data System (ADS)
Chen, Jia; An, Chunsheng; Chen, Hong
2018-02-01
We investigate mixing of the lowest-lying qqq configurations with JP = 1/2- caused by the hyperfine interactions between quarks mediated by Goldstone Boson Exchange, One Gluon Exchange, and both Goldstone Boson and One Gluon exchange, respectively. The first orbitally excited nucleon, Σ, Λ and Ξ states are considered. Contributions of both the contact term and tensor term are taken into account. Our numerical results show that mixing of the studied configurations in the two employed hyperfine interaction models are very different. Therefore, the present results, which should affect the strong and electromagnetic decays of baryon resonances, may be used to examine the present employed hyperfine interaction models. Supported by National Natural Science Foundation of China (11675131,11645002), Chongqing Natural Science Foundation (cstc2015jcyjA00032) and Fundamental Research Funds for the Central Universities (SWU115020)
Characterization and Physical Explanation of Energetic Particles on Planck HFI Instrument
NASA Astrophysics Data System (ADS)
Catalano, A.; Ade, P.; Atik, Y.; Benoit, A.; Bréele, E.; Bock, J. J.; Camus, P.; Charra, M.; Crill, B. P.; Coron, N.; Coulais, A.; Désert, F.-X.; Fauvet, L.; Giraud-Héraud, Y.; Guillaudin, O.; Holmes, W.; Jones, W. C.; Lamarre, J.-M.; Macías-Pérez, J.; Martinez, M.; Miniussi, A.; Monfardini, A.; Pajot, F.; Patanchon, G.; Pelissier, A.; Piat, M.; Puget, J.-L.; Renault, C.; Rosset, C.; Santos, D.; Sauvé, A.; Spencer, L.; Sudiwala, R.
2014-09-01
The Planck High Frequency Instrument (HFI) has been surveying the sky continuously from the second Lagrangian point (L2) between August 2009 and January 2012. It operates with 52 high impedance bolometers cooled at 100 mK in a range of frequency between 100 GHz and 1 THz with unprecedented sensitivity, but strong coupling with cosmic radiation. At L2, the particle flux is about 5 and is dominated by protons incident on the spacecraft. Protons with an energy above 40 MeV can penetrate the focal plane unit box causing two different effects: glitches in the raw data from direct interaction of cosmic rays with detectors (producing a data loss of about 15 % at the end of the mission) and thermal drifts in the bolometer plate at 100 mK adding non-Gaussian noise at frequencies below 0.1 Hz. The HFI consortium has made strong efforts in order to correct for this effect on the time ordered data and final Planck maps. This work intends to give a view of the physical explanation of the glitches observed in the HFI instrument in-flight. To reach this goal, we performed several ground-based experiments using protons and particles to test the impact of particles on the HFI spare bolometers with a better control of the environmental conditions with respect to the in-flight data. We have shown that the dominant part of glitches observed in the data comes from the impact of cosmic rays in the silicon die frame supporting the micro-machined bolometric detectors propagating energy mainly by ballistic phonons and by thermal diffusion. The implications of these results for future satellite missions will be discussed.
NASA Astrophysics Data System (ADS)
Catalano, A.; Ade, P.; Atik, Y.; Benoit, A.; Bréele, E.; Bock, J. J.; Camus, P.; Chabot, M.; Charra, M.; Crill, B. P.; Coron, N.; Coulais, A.; Désert, F.-X.; Fauvet, L.; Giraud-Héraud, Y.; Guillaudin, O.; Holmes, W.; Jones, W. C.; Lamarre, J.-M.; Macías-Pérez, J.; Martinez, M.; Miniussi, A.; Monfardini, A.; Pajot, F.; Patanchon, G.; Pelissier, A.; Piat, M.; Puget, J.-L.; Renault, C.; Rosset, C.; Santos, D.; Sauvé, A.; Spencer, L. D.; Sudiwala, R.
2014-09-01
The Planck High Frequency Instrument (HFI) surveyed the sky continuously from August 2009 to January 2012. Its noise and sensitivity performance were excellent (from 11 to 40 aW Hz-1), but the rate of cosmic-ray impacts on the HFI detectors was unexpectedly higher than in other instruments. Furthermore, collisions of cosmic rays with the focal plane produced transient signals in the data (glitches) with a wide range of characteristics and a rate of about one glitch per second. A study of cosmic-ray impacts on the HFI detector modules has been undertaken to categorize and characterize the glitches, to correct the HFI time-ordered data, and understand the residual effects on Planck maps and data products. This paper evaluates the physical origins of glitches observed by the HFI detectors. To better understand the glitches observed by HFI in flight, several ground-based experiments were conducted with flight-spare HFI bolometer modules. The experiments were conducted between 2010 and 2013 with HFI test bolometers in different configurations using varying particles and impact energies. The bolometer modules were exposed to 23 MeV protons from the Orsay IPN Tandem accelerator, and to 241Am and 244Cm α-particle and 55Fe radioactive X-ray sources. The calibration data from the HFI ground-based preflight tests were used to further characterize the glitches and compare glitch rates with statistical expectations under laboratory conditions. Test results provide strong evidence that the dominant family of glitches observed in flight are due to cosmic-ray absorption by the silicon die substrate on which the HFI detectors reside. Glitch energy is propagated to the thermistor by ballistic phonons, while thermal diffusion also contributes. The average ratio between the energy absorbed, per glitch, in the silicon die and thatabsorbed in the bolometer is equal to 650. We discuss the implications of these results for future satellite missions, especially those in the far-infrared to submillimeter and millimeter regions of the electromagnetic spectrum.
Monthly food insecurity assessment in rural mkushi district, Zambia: a longitudinal analysis.
Na, Muzi; Caswell, Bess L; Talegawkar, Sameera A; Palmer, Amanda
2017-03-16
Perception-based scales are widely used for household food insecurity (HFI) assessment but were only recently added in national surveys. The frequency of assessments needed to characterize dynamics in HFI over time is largely unknown. The study aims to examine longitudinal changes in monthly reported HFI at both population- and household-level. A total of 157 households in rural Mkushi District whose children were enrolled in the non-intervened arm of an efficacy trial of biofortified maize were included in the analysis. HFI was assessed by a validated 8-item perception-based Likert scale on a monthly basis from October 2012 to March 2013 (6 visits), characterizing mostly the lean season. An HFI index was created by summing scores over the Likert scale, with a possible range of 0-32. The Wilcoxon matched signed-ranks test was used to compare distribution of HFI index between visits. A random effect model was fit to quantify the sources of variance in indices at household level. The median [IQR] HFI index was 4.5 [2, 8], 5 [1, 8], 4 [1, 7], 4 [1, 6], 3 [1, 7] and 4 [1, 6] at the six monthly visits, respectively. HFI index was significantly higher in visit 1 and 2 than visit 3-6 and on average the index decreased by 0.25 points per visit. Within- and between-household variance in the index were 10.6 and 8.8, respectively. The small change in mean monthly HFI index over a single lean season indicated that a seasonal HFI measure may be sufficient for monitoring purposes at population level. Yet, higher variation within households suggests that repeated assessments may be required to avoid risk of misclassification at household level and to target households with the greatest risk of food insecurity.
Homma, I; Isobe, A; Iwase, M; Onimaru, H; Sibuya, M
1987-04-10
The effects of high-frequency airway inflation (HFI) and high-frequency airway deflation (HFD) generated by a triangular pressure pulse generator on pulmonary mechanoreceptors were examined. The cross-correlograms between vagal afferent impulses from the slowly adapting (SAR) and the rapidly adapting receptors (RAR) and the HFI or the HFD pulses were analysed. HFI stimulated SAR and RAR and HFD stimulated RAR, but inhibited SAR. The time lag of the mode in the correlogram between SAR and HFI was shorter than that of the mode in the correlogram between RAR and HFI. The span of the mode and the trough of SAR was shorter than the span of the mode of RAR. This may indicate that the time to peak of the generator potential of RAR is longer than that of SAR.
Hyperostosis frontalis interna and androgen suppression.
May, Hila; Peled, Natan; Dar, Gali; Abbas, Janan; Medlej, Bahaa; Masharawi, Youssef; Hershkovitz, Israel
2010-08-01
Although hyperostosis frontalis interna (HFI) has been documented in the medical literature for over 300 years, its etiology remains undetermined. It is generally assumed to be associated with hormonal disturbances of the gonads. The aim of this study was to examine the association between androgen deprivation and development of HFI in males. Two groups of males over 60-years old were compared: a control group that included 180 healthy males, 45 suffering from benign prostatic hypertrophy (BPH) and a study group of 127 males with prostate cancer: 67 who received complete androgen block treatment, and 60 who received different treatments or none at all. CT head scans were used to identify and classify HFI (Brilliance 64, Philips Medical Systems, slice thickness 3 mm x 1.5 mm). It was found that males who received a complete androgen block manifested significantly higher prevalence of HFI compared to healthy males. However, no significant difference in HFI prevalence was found between males suffering from BPH and healthy males or males with prostate cancer who had not received a complete androgen block. A positive association between length of hormonal treatment and manifestation of HFI was shown. It can be concluded that BPH does not promote development of HFI; males who are hormonally treated for prostate cancer are at a higher risk of developing HFI compared to healthy males; the longer the duration of hormonal treatment, the higher the risk of developing HFI. (c) 2010 Wiley-Liss, Inc.
Nikolić, Slobodan; Djonić, Danijela; Zivković, Vladimir; Babić, Dragan; Juković, Fehim; Djurić, Marija
2010-09-01
The aim of our study was to determine rate of occurrence and appearance of hyperostosis frontalis interna (HFI) in females and correlation of this phenomenon with ageing. The sample included 248 deceased females: 45 of them with different types of HFI, and 203 without HFI, average age 68.3 +/- 15.4 years (range, 19-93), and 58.2 +/- 20.2 years (range, 10-101), respectively. According to our results, the rate of HFI was 18.14%. The older the woman was, the higher the possibility of HFI occurring (Pearson correlation 0.211, N=248, P=0.001), but the type of HFI did not correlate with age (Pearson correlation 0.229, N=45, P=0.131). Frontal and temporal bone were significantly thicker in women with than in women without HFI (t= -10.490, DF=246, P=0.000, and t= -5.658, DF=246, P=0.000, respectively). These bones became thicker with ageing (Pearson correlation 0.178, N=248, P=0.005, and 0.303, N=248, P=0.000, respectively). The best predictors of HFI occurrence were respectively, frontal bone thickness, temporal bone thickness, and age(Wald. coeff.=35.487, P=0.000; Wald. coeff.=3.288, P=0.070, and Wald.coeff. =2.727, P =0.099). Diagnosis of HFI depends not only on frontal bone thickness, but also on waviness of internal plate of the frontal bone, as well as-the involvement of the inner bone surface.
Mulhern, Dawn M; Wilczak, Cynthia A; Dudar, J Christopher
2006-08-01
Hyperostosis frontalis interna (HFI) is a disease characterized by excess bone growth on the internal lamina of the frontal bone and, occasionally, other cranial bones. Although the disease is fairly common in modern populations, its etiology is poorly understood. Hyperostosis frontalis interna has been identified in antiquity, primarily in the Old World, but with a much lower frequency than in modern groups. The purpose of the present study is to report multiple cases of HFI at Pueblo Bonito (Chaco Canyon, New Mexico). Twelve out of 37 adults with observable frontal bones exhibited HFI, ranging from mild to severe, including 11 females and one male. This is the first published case report of HFI in archaeological remains from the New World having a frequency comparable with modern groups. Most archaeological cases of HFI are isolated, so comparative data for multiple cases at one site are rare. The results of this study emphasize the importance of looking for HFI in archaeological remains, although it is rarely observed. Possible genetic and environmental factors for the high frequency of HFI at Chaco Canyon are considered, but additional research is needed to discover the etiology and to better understand why HFI sometimes occurs at modern frequencies in ancient populations.
Hyperfine interaction constants of 14NO2 in 14 500-16 800 cm-1 energy region
NASA Astrophysics Data System (ADS)
Tada, Kohei; Hirata, Michihiro; Kasahara, Shunji
2017-10-01
We observed hyperfine-resolved high-resolution fluorescence excitation spectra of k = 0, N = 1 ← 0 transitions in 82 vibronic bands of the à 2B2 ← X ˜ 2A1 system of 14NO2 in the 14 500-16 800 cm-1 region by crossing a jet-cooled molecular beam and a single-mode dye laser beam at right angles. We determined hyperfine interaction constants of the lower and upper states for all the observed vibronic bands based on the analysis of the hyperfine structures of k = 0, N = 1 ← 0 transitions. Most of the determined Fermi contact interaction constants were found to be distributed in 0.0013-0.0038 cm-1, which are intermediate in magnitude between those in lower and higher energy region reported by other groups. A sharp decreasing of the Fermi contact interaction constant was found in 16 200-16 600 cm-1, and it may be caused by the interaction with the dark C ˜ 2A2 state. The hyperfine interaction constants are powerful clues to obtain reliable vibronic assignment. We tentatively assigned vibronic bands located at 14 836 cm-1, 15 586 cm-1, and 16 322 cm-1 as the transitions to the intrinsic (0,7,0), (0,8,0), and (0,9,0) vibrational levels of the à 2B2 state, respectively.
Appearance of hyperostosis frontalis interna in some osteoarcheological series from Hungary.
Hajdu, T; Fóthi, E; Bernert, Zs; Molnár, E; Lovász, G; Kovári, I; Köhler, K; Marcsik, A
2009-01-01
Hyperostosis frontalis interna (HFI) is a generalised pathological condition with an unknown etiology and variable clinical association. It is characterized by excess bone growth and manifested on the inner table of the frontal bone, occasionally extending onto the temporals, parietals and the occipital. The etiology of HFI is uncertain: it may be an unknown genetic predisposition, a common environmental exposure, or special metabolic diseases. The purpose of the present study is to report cases of HFI in some osteoarcheological series from Hungary and to emphasize the importance of the investigation of HFI in ancient populations. Twenty out of 803 adults with observable frontal bones exhibited HFI, ranging from early to mid-type, including 15 females and 5 males. Some overgrowths with edges were blending into the endocranial surface, and some were prominently protruding from the surface. Advanced cases of HFI (type C) were observed after age 40-60 years.
Flohr, S; Witzel, C
2011-02-01
In 1719 Morgagni described a condition, today known as hyperostosis frontalis interna (HFI), as one sign within a triad consisting of HFI, virilism, and obesity. Today, HFI is predominantly found in older women. Although the etiology of HFI has not yet been determined precisely, the condition has been linked to metabolic disorders. HFI is reported to be rare in the archaeological record and the frequency of the condition is thought to have increased during the 19th and 20th centuries. We present preliminary results on the occurrence of HFI in the commingled human bone assemblage from "tomb VII" discovered underneath the Bronze Age royal palace of the ancient city of Qatna, Syria. A preliminary minimal number of individuals of 70 has been estimated for the as yet not fully analyzed skeletal remains. Skull fragments of nine individuals exhibit endocranial bone formations consistent with HFI. Rarity of stress indicators in the skeletons, the rich grave goods, and the burial place within the area of the Royal palace are suggestive of a high social status and an economically favorable situation of the buried individuals. Assuming that their life style included a high calorie diet in combination with little physical activity, acquired metabolic disorders may have been present in many individuals. The comparatively high number of individuals presenting HFI in the studied sample might therefore be viewed as being related to their high social status. Multiple occurrences of HFI in archaeological skeletal assemblages might serve as a proxy for social status. Copyright © 2010 Elsevier GmbH. All rights reserved.
Suzuki, Satoshi; Watanabe, Yohei; Yazawa, Takashi; Ishigame, Teruhide; Sassa, Motoki; Monma, Tomoyuki; Takawa, Tadashi; Kumamoto, Kensuke; Nakamura, Izumi; Ohoki, Shinji; Hatakeyama, Yuichi; Sakuma, Hiroshi; Ono, Toshiyuki; Omata, Sadao; Takenoshita, Seiichi
2014-01-01
We examined whether conventional ultrasonography (US) and computed tomography (CT) were useful to evaluate liver hardness and hepatic fibrosis by comparing the results with those obtained by a tactile sensor using rats with liver fibrosis. We used 44 Wistar rats in which liver fibrosis was induced by intraperitoneal administration of thioacetamide. The CT and US values of each liver were measured before laparotomy. After laparotomy, a tactile sensor was used to measure liver hardness. We prepared Azan stained sections of each excised liver specimen and calculated the degree of liver fibrosis (HFI: hepatic fibrosis index) by computed color image analysis. The stiffness values and HFI showed a positive correlation (r=0.690, p<0.001), as did the tactile values and HFI (r=0.709, p<0.001).In addition, the stiffness and tactile values correlated positively with each other (r=0.814, p<0.001). There was no correlation between the CT values and HFI, as well as no correlation between the US values and HFI. We confirmed that it was difficult to evaluate liver hardness and HFI by CT or US examination, and considered that, at present, a tactile sensor is useful method for evaluating HFI.
Characterization of the hyperfine interaction of the excited D50 state of Eu3 +:Y2SiO5
NASA Astrophysics Data System (ADS)
Cruzeiro, Emmanuel Zambrini; Etesse, Jean; Tiranov, Alexey; Bourdel, Pierre-Antoine; Fröwis, Florian; Goldner, Philippe; Gisin, Nicolas; Afzelius, Mikael
2018-03-01
We characterize the europium (Eu3 +) hyperfine interaction of the excited state (D50) and determine its effective spin Hamiltonian parameters for the Zeeman and quadrupole tensors. An optical free induction decay method is used to measure all hyperfine splittings under a weak external magnetic field (up to 10 mT) for various field orientations. On the basis of the determined Hamiltonian, we discuss the possibility to predict optical transition probabilities between hyperfine levels for the F70⟷D50 transition. The obtained results provide necessary information to realize an optical quantum memory scheme which utilizes long spin coherence properties of 3 + 151Eu :Y2SiO5 material under external magnetic fields.
El-Hawli, Aisha; Qaradakhi, Tawar; Hayes, Alan; Rybalka, Emma; Smith, Renee; Caprnda, Martin; Opatrilova, Radka; Gazdikova, Katarina; Benckova, Maria; Kruzliak, Peter; Zulli, Anthony
2017-02-01
Coronary artery vasospasm (constriction) caused by reduced nitric oxide bioavailability leads to myocardial infarction. Reduced endothelial release of nitric oxide by the neurotransmitter acetylcholine, leads to paradoxical vasoconstriction as it binds to smooth muscle cell M3 receptors. Thus, inhibition of coronary artery vasospasm will improve clinical outcomes. Inhibition of insulin regulated aminopeptidase has been shown to improve vessel function, thus we tested the hypothesis that HFI419, an inhibitor of insulin regulated aminopeptidase, could reduce blood vessel constriction to acetylcholine. The abdominal aorta was excised from New Zealand white rabbits (n=15) and incubated with 3mM Hcy to induce vascular dysfunction in vitro for 1h. HFI419 was added 5min prior to assessment of vascular function by cumulative doses of acetylcholine. In some rings, vasoconstriction to acetylcholine was observed in aortic rings after pre-incubation with 3mM homocysteine. Incubation with HFI419 inhibited the vasoconstrictive response to acetylcholine, thus improving, but not normalizing, vascular function (11.5±8.9% relaxation vs 79.2±37% constriction, p<0.05). Similarly, in another group with mild vasoconstriction, HFI419 inhibited this effect (34.9±4.6% relaxation vs 11.1±5.2%, constriction, p<0.05). HFI419 had no effect on control aorta or aorta with mild aortic dysfunction. The present study shows that HFI419 prevents acetylcholine mediated vasoconstriction in dysfunctional blood vessels. HFI419 had no effect on normal vasodilation. Our results indicate a therapeutic potential of HFI419 in reducing coronary artery vasospasm. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Magnetic field effect in organic films and devices
NASA Astrophysics Data System (ADS)
Gautam, Bhoj Raj
In this work, we focused on the magnetic field effect in organic films and devices, including organic light emitting diodes (OLEDs) and organic photovoltaic (OPV) cells. We measured magnetic field effect (MFE) such as magnetoconductance (MC) and magneto-electroluminescence (MEL) in OLEDs based on several pi- conjugated polymers and small molecules for fields |B|<100 mT. We found that both MC(B) and MEL(B) responses in bipolar devices and MC(B) response in unipolar devices are composed of two B-regions: (i) an 'ultra-small' region at |B| < 1-2 mT, and (ii) a monotonic response region at |B| >˜2mT. Magnetic field effect (MFE) measured on three isotopes of Poly (dioctyloxy) phenylenevinylene (DOO-PPV) showed that both regular and ultra-small effects are isotope dependent. This indicates that MFE response in OLED is mainly due to the hyperfine interaction (HFI). We also performed spectroscopy of the MFE including magneto-photoinduced absorption (MPA) and magneto-photoluminescence (MPL) at steady state conditions in several systems. This includes pristine Poly[2-methoxy-5-(2-ethylhexyl-oxy)-1,4-phenylene-vinylene] (MEH-PPV) films, MEH-PPV films subjected to prolonged illumination, and MEH-PPV/[6,6]-Phenyl C61 butyric acid methyl ester (PCBM) blend, as well as annealed and pristine C60 thin films. For comparison, we also measured MC and MEL in organic diodes based on the same materials. By directly comparing the MPA and MPL responses in films to MC and MEL in organic diodes based on the same active layers, we are able to relate the MFE in organic diodes to the spin densities of the excitations formed in the device, regardless of whether they are formed by photon absorption or carrier injection from the electrodes. We also studied magneto-photocurrent (MPC) and power conversion efficiency (PCE) of a 'standard' Poly (3-hexylthiophene)/PCBM device at various Galvinoxyl radical wt%. We found that the MPC reduction with Galvinoxyl wt% follows the same trend as that of the PCE enhancement. In addition, we also measured the MPC response of a series of OPV cells. We attribute the observed broad MPC to short-lived charge transfer complex species, where spin mixing is caused by the difference, Deltag of the donor/acceptor g factors; whereas narrow MPC is due to HFI within long-lived polaron-pairs.
Intracranial volume, cranial thickness, and hyperostosis frontalis interna in the elderly.
May, Hila; Mali, Yael; Dar, Gali; Abbas, Janan; Hershkovitz, Israel; Peled, Nathan
2012-01-01
According to the "brain reserve hypothesis," a larger premorbid brain protects against the development of dementia. The aim of this study was to reveal a possible pathophysiology of brain degenerative diseases by studying intracranial bone lesions that act to reduce intracranial volume (ICV), such as hyperostosis frontalis interna (HFI). Three hundred and eighty postmenopausal females (aged 60+) who had undergone a head computerized tomography scan (Brilliance 64, Philips Healthcare, Cleveland, OH) at the Carmel Medical Center, Haifa, Israel, before the study were included. The subjects were divided into four groups according to their degree of HFI. Six measurements of the skull and brain were taken. As HFI becomes more severe, the cranial bone thickness and cranial bone volume increase. This process is accompanied by a decrease in ICV. In none of the HFI groups studied there was a significant association between ICV and cranial bone thickness. The inter-relationships between the various thickness parameters are not disturbed by the degree of HFI. HFI is accompanied by an increase in thickness of all calvarial bones and reduced ICV. In addition, the thickening process initiated by HFI is synchronized among the calvarial bones. Presence of HFI suggests a decrease in brain volume and has a major clinical significance as it may indicate the beginning of degenerative processes of the brain. In addition, as females age, their skulls tend to develop more robust characteristics. Copyright © 2012 Wiley Periodicals, Inc.
Pronicka, Ewa; Adamowicz, Maciej; Kowalik, Agnieszka; Płoski, Rafał; Radomyska, Barbara; Rogaszewska, Małgorzata; Rokicki, Dariusz; Sykut-Cegielska, Jolanta
2007-07-01
Abnormalities in protein glycosylation are reported in fructosemia (HFI) and galactosemia, although, particularly in HFI, the published data are limited to single cases. The purpose was to investigate the usefulness of the carbohydrate-deficient transferrin (CDT) profile for identification and monitoring of these disorders. First we analyzed CDT values before and shortly after the diagnosis in 10 cases of HFI and 17 cases of galactosemia. In all patients, elevated CDT levels were found that significantly (p < 0.0001) decreased with the therapeutic diet (27.3 +/- 11.5% versus 9.3 +/- 5.1% for HFI and 43.8 +/- 14.1% versus 11.2 +/- 4.0% for galactosemia). To evaluate the use of CDT test in monitoring compliance, the test was performed in 25 HFI patients on fructose-restricted diet. We found an elevated CDT level on 104 from 134 tests (mean 11.3 +/- 5.5%, control 1.5%-6.2%). The fructose intake was found to be 90 +/- 70 mg/kg/d, and the diet was unbalanced. A number of patients presented lower height, elevated urinary uric acid excretion, and hypercalciuria. In conclusion, abnormal percentage of CDT (%CDT) values may allow prompt detection of HFI (or galactosemia). Persistence of some abnormalities in HFI on treatment may be caused by trace amounts of fructose ingestion and/or a deficient diet. Regular %CDT measurements are suggested for HFI treatment monitoring.
HYPERFINE-DEPENDENT gf-VALUES OF Mn I LINES IN THE 1.49-1.80 μm H BAND
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, M.; Hutton, R.; Zou, Y.
2015-01-01
The three Mn I lines at 17325, 17339, and 17349 Å are among the 25 strongest lines (log (gf) > 0.5) in the H band. They are all heavily broadened due to hyperfine structure, and the profiles of these lines have so far not been understood. Earlier studies of these lines even suggested that they were blended. In this work, the profiles of these three infrared (IR) lines have been studied theoretically and compared to experimental spectra to assist in the complete understanding of the solar spectrum in the IR. It is shown that the structure of these lines cannot be describedmore » in the conventional way using the diagonal A and B hyperfine interaction constants. The off-diagonal hyperfine interaction not only has a large impact on the energies of the hyperfine levels, but also introduces a large intensity redistribution among the hyperfine lines, changing the line profiles dramatically. By performing large-scale calculations of the diagonal and off-diagonal hyperfine interaction and the gf-values between the upper and lower hyperfine levels and using a semi-empirical fitting procedure, we achieved agreement between our synthetic and experimental spectra. Furthermore, we compare our results with observations of stellar spectra. The spectra of the Sun and the K1.5 III red giant star Arcturus were modeled in the relevant region, 1.73-1.74 μm, using our theoretically predicted gf-values and energies for each individual hyperfine line. Satisfactory fits were obtained and clear improvements were found using our new data compared with the old available Mn I data. A complete list of energies and gf-values for all the 3d {sup 5}4s({sup 7} S)4d e{sup 6}D - 3d {sup 5}4s({sup 7} S)4f w{sup 6}F hyperfine lines are available as supporting material, whereas only the stronger lines are presented and discussed in detail in this paper.« less
21 CFR 10.95 - Participation in outside standard-setting activities.
Code of Federal Regulations, 2011 CFR
2011-04-01
...-setting activities established by the Freedom of Information Staff (HFI-35). (3) The availability for... established by the Freedom of Information Staff (HFI-35). (3) The availability for public disclosure of... activities established by the Freedom of Information Staff (HFI-35): (i) American Association of Food Hygiene...
NASA Astrophysics Data System (ADS)
Baturo, V. V.; Cherepanov, I. N.; Lukashov, S. S.; Petrov, A. N.; Poretsky, S. A.; Pravilov, A. M.
2018-05-01
Detailed studies of I2(β1 g , v β = 13, J β ∼ D{0}u+, v D = 12, J D and D, 48, J D ∼ β, 47, J β ) rovibronic state coupling have been carried out using two-step two-color, hν 1 + hν 2 and hν 1 + 2hν 2, optical–optical double resonance excitation schemes, respectively. The hyperfine interaction satisfying the | {{Δ }}J| = 0, 1 selection rules (magnetic-dipole interaction) has been observed. No electric-quadrupole hyperfine coupling (| {{Δ }}J| = 2) has been found. The dependences of ratios of luminescence intensities from the rovibronic states populated due to the hyperfine coupling to those from optically populated ones on energy gaps between these states have been experimentally determined. The matrix elements as well as the hyperfine structure constant have been obtained using these dependences. It is shown that they increase slightly with the vibrational quantum number of the states.
Competing interactions in semiconductor quantum dots
van den Berg, R.; Brandino, G. P.; El Araby, O.; ...
2014-10-14
In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less
Collins, Patricia A; Gaucher, Megan; Power, Elaine M; Little, Margaret H
2016-06-27
Household food insecurity (HFI) affects approximately 13% of Canadian households and is especially prevalent among low-income households. Actions to address HFI have been occurring primarily at the local level, despite calls for greater income supports from senior governments to reduce poverty. News media may be reinforcing this trend, by emphasizing food-based solutions to HFI and the municipal level as the site where action needs to take place. The objective of this study was to examine the level and framing of print news media coverage of HFI action in Canada. Using a quantitative newspaper content analysis approach, we analyzed 547 articles gathered from 2 national and 16 local/regional English-language newspapers published between January 2007 and December 2012. News coverage increased over time, and over half was produced from Ontario (33%) and British Columbia (22%) combined. Of the 374 articles that profiled a specific action, community gardens/urban agriculture was most commonly profiled (17%), followed by food banks/meal programs (13%); 70% of articles implicated governments to take action on HFI, and of these, 43% implicated municipal governments. Article tone was notably more negative when senior governments were profiled and more neutral and positive when municipal governments were profiled. News media reporting of this issue in Canada may be placing pressure on municipalities to engage in food-based actions to address HFI. A more systematic approach to HFI action in Canada will require more balanced media reporting that acknowledges the limitations of food-based solutions to the income-based problem of HFI.
Coffee, Erin M; Yerkes, Laura; Ewen, Elizabeth P; Zee, Tiffany; Tolan, Dean R
2010-02-01
Mutations in the aldolase B gene (ALDOB) impairing enzyme activity toward fructose-1-phosphate cleavage cause hereditary fructose intolerance (HFI). Diagnosis of the disease is possible by identifying known mutant ALDOB alleles in suspected patients; however, the frequencies of mutant alleles can differ by population. Here, 153 American HFI patients with 268 independent alleles were analyzed to identify the prevalence of seven known HFI-causing alleles (A149P, A174D, N334K, Delta4E4, R59Op, A337V, and L256P) in this population. Allele-specific oligonucleotide hybridization analysis was performed on polymerase chain reaction (PCR)-amplified genomic DNA from these patients. In the American population, the missense mutations A149P and A174D are the two most common alleles, with frequencies of 44% and 9%, respectively. In addition, the nonsense mutations Delta4E4 and R59Op are the next most common alleles, with each having a frequency of 4%. Together, the frequencies of all seven alleles make up 65% of HFI-causing alleles in this population. Worldwide, these same alleles make up 82% of HFI-causing mutations. This difference indicates that screening for common HFI alleles is more difficult in the American population. Nevertheless, a genetic screen for diagnosing HFI in America can be improved by including all seven alleles studied here. Lastly, identification of HFI patients presenting with classic symptoms and who have homozygous null genotypes indicates that aldolase B is not required for proper development or metabolic maintenance.
Schlüssel, Michael Maia; Silva, Antonio Augusto Moura da; Pérez-Escamilla, Rafael; Kac, Gilberto
2013-02-01
Household food insecurity (HFI) may increase obesity risk, but results are not consistent across the life course or between developed/underdeveloped settings. The objective of this paper is to review findings from previous analyses in Brazil among adult women, female adolescents, and children up to five. Data were derived from the 2006 Brazilian Demographic and Health Survey. Associations between HFI (measured with the Brazilian Food Insecurity Scale) and excess weight/obesity were investigated through Poisson regression models. While severe HFI was associated with obesity risk among adult women (PR: 1.49; 95%CI: 1.17-1.90), moderate HFI was associated with excess weight among female adolescents (PR: 1.96; 95%CI: 1.18-3.27). There was no association between HFI and obesity among children (either boys or girls). The nutrition transition in Brazil may be shaping the differential deleterious effect of HFI on body fat accumulation across the life course; the association is already evident among female adolescents and adult women but still not among children.
Interlenghi, Gabriela dos Santos; Salles-Costa, Rosana
2015-11-01
To verify the association between perceived social support and household food insecurity (HFI). A cross-sectional survey. A population-based study with a representative sample of households from a metropolitan area of Rio de Janeiro, Brazil, conducted in 2010. HFI was estimated with the Brazilian Food Insecurity Scale (EBIA). Social support was assessed using the adapted and validated Brazilian version of the Medical Outcomes Study Social Support Survey. Multinomial logistic regression was used to evaluate the association between social support and HFI, adjusting for potential confounders. Adults (n 1022) aged 19-60 years old (27% men, 73% women) who were responsible for feeding the household. Individuals with high scores of social support were less likely to experience moderate HFI (OR=0·96; 95% CI 0·94, 0·99) and severe HFI (OR=0·96; 95% CI 0·94, 0·98). These findings indicate that social support may contribute to reducing HFI in populations vulnerable to poverty. Strategies to increase social relationships should be encouraged in this group to enhance their perceived social support.
NASA Astrophysics Data System (ADS)
de Oliveira, Marcos; Wiegand, Thomas; Elmer, Lisa-Maria; Sajid, Muhammad; Kehr, Gerald; Erker, Gerhard; Magon, Claudio José; Eckert, Hellmut
2015-03-01
Anisotropic interactions present in three new nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs) have been characterized by continuous-wave (cw) and pulsed X-band EPR spectroscopies in solid FLP-hydroxylamine matrices at 100 K. Anisotropic g-tensor values and 11B, 14N, and 31P hyperfine coupling tensor components have been extracted from continuous-wave lineshape analyses, electron spin echo envelope modulation (ESEEM), and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments with the help of computer simulation techniques. Suitable fitting constraints are developed on the basis of density functional theory (DFT) calculations. These calculations reveal that different from the situation in standard nitroxide radicals (TEMPO), the g-tensors are non-coincident with any of the nuclear hyperfine interaction tensors. The determination of these interaction parameters turns out to be successful, as the cw- and pulse EPR experiments are highly complementary in informational content. While the continuous-wave lineshape is largely influenced by the anisotropic hyperfine coupling to 14N and 31P, the ESEEM and HYSCORE spectra contain important information about the 11B hyperfine coupling and nuclear electric quadrupolar interaction. The set of cw- and pulsed EPR experiments, with fitting constraints developed by DFT calculations, defines an efficient strategy for the structural analysis of paramagnetic FLP adducts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, Marcos de; Magon, Claudio José; Wiegand, Thomas
2015-03-28
Anisotropic interactions present in three new nitroxide radicals prepared by N,N addition of NO to various borane-phosphane frustrated Lewis pairs (FLPs) have been characterized by continuous-wave (cw) and pulsed X-band EPR spectroscopies in solid FLP-hydroxylamine matrices at 100 K. Anisotropic g-tensor values and {sup 11}B, {sup 14}N, and {sup 31}P hyperfine coupling tensor components have been extracted from continuous-wave lineshape analyses, electron spin echo envelope modulation (ESEEM), and hyperfine sublevel correlation spectroscopy (HYSCORE) experiments with the help of computer simulation techniques. Suitable fitting constraints are developed on the basis of density functional theory (DFT) calculations. These calculations reveal that differentmore » from the situation in standard nitroxide radicals (TEMPO), the g-tensors are non-coincident with any of the nuclear hyperfine interaction tensors. The determination of these interaction parameters turns out to be successful, as the cw- and pulse EPR experiments are highly complementary in informational content. While the continuous-wave lineshape is largely influenced by the anisotropic hyperfine coupling to {sup 14}N and {sup 31}P, the ESEEM and HYSCORE spectra contain important information about the {sup 11}B hyperfine coupling and nuclear electric quadrupolar interaction. The set of cw- and pulsed EPR experiments, with fitting constraints developed by DFT calculations, defines an efficient strategy for the structural analysis of paramagnetic FLP adducts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
van den Berg, R.; Brandino, G. P.; El Araby, O.
In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less
High-speed uncooled MWIR hostile fire indication sensor
NASA Astrophysics Data System (ADS)
Zhang, L.; Pantuso, F. P.; Jin, G.; Mazurenko, A.; Erdtmann, M.; Radhakrishnan, S.; Salerno, J.
2011-06-01
Hostile fire indication (HFI) systems require high-resolution sensor operation at extremely high speeds to capture hostile fire events, including rocket-propelled grenades, anti-aircraft artillery, heavy machine guns, anti-tank guided missiles and small arms. HFI must also be conducted in a waveband with large available signal and low background clutter, in particular the mid-wavelength infrared (MWIR). The shortcoming of current HFI sensors in the MWIR is the bandwidth of the sensor is not sufficient to achieve the required frame rate at the high sensor resolution. Furthermore, current HFI sensors require cryogenic cooling that contributes to size, weight, and power (SWAP) in aircraft-mounted applications where these factors are at a premium. Based on its uncooled photomechanical infrared imaging technology, Agiltron has developed a low-SWAP, high-speed MWIR HFI sensor that breaks the bandwidth bottleneck typical of current infrared sensors. This accomplishment is made possible by using a commercial-off-the-shelf, high-performance visible imager as the readout integrated circuit and physically separating this visible imager from the MWIR-optimized photomechanical sensor chip. With this approach, we have achieved high-resolution operation of our MWIR HFI sensor at 1000 fps, which is unprecedented for an uncooled infrared sensor. We have field tested our MWIR HFI sensor for detecting all hostile fire events mentioned above at several test ranges under a wide range of environmental conditions. The field testing results will be presented.
Identifying and classifying hyperostosis frontalis interna via computerized tomography.
May, Hila; Peled, Nathan; Dar, Gali; Hay, Ori; Abbas, Janan; Masharawi, Youssef; Hershkovitz, Israel
2010-12-01
The aim of this study was to recognize the radiological characteristics of hyperostosis frontalis interna (HFI) and to establish a valid and reliable method for its identification and classification. A reliability test was carried out on 27 individuals who had undergone a head computerized tomography (CT) scan. Intra-observer reliability was obtained by examining the images three times, by the same researcher, with a 2-week interval between each sample ranking. The inter-observer test was performed by three independent researchers. A validity test was carried out using two methods for identifying and classifying HFI: 46 cadaver skullcaps were ranked twice via computerized tomography scans and then by direct observation. Reliability and validity were calculated using Kappa test (SPSS 15.0). Reliability tests of ranking HFI via CT scans demonstrated good results (K > 0.7). As for validity, a very good consensus was obtained between the CT and direct observation, when moderate and advanced types of HFI were present (K = 0.82). The suggested classification method for HFI, using CT, demonstrated a sensitivity of 84%, specificity of 90.5%, and positive predictive value of 91.3%. In conclusion, volume rendering is a reliable and valid tool for identifying HFI. The suggested three-scale classification is most suitable for radiological diagnosis of the phenomena. Considering the increasing awareness of HFI as an early indicator of a developing malady, this study may assist radiologists in identifying and classifying the phenomena.
Household food insecurity is associated with anemia in adult Mexican women of reproductive age.
Fischer, Nils C; Shamah-Levy, Teresa; Mundo-Rosas, Verónica; Méndez-Gómez-Humarán, Ignacio; Pérez-Escamilla, Rafael
2014-12-01
Anemia is a major cause of maternal mortality. Household food insecurity (HFI) may increase the risk of anemia among women of reproductive age although this hypothesis remains largely untested in representative samples from low- and middle-income countries. Our objective was to investigate the association of HFI with anemia in a nationally representative, cross-sectional sample of Mexican women of reproductive age (12-49 y old). We tested the association between HFI and anemia among 16,944 women of reproductive age using the multiple logistic regression among adolescent (12-20 y) and adult women (21-49 y). HFI was measured with the use of the Latin American and Caribbean Food Security Scale. Hemoglobin was measured with capillary hemoglobin with the use of HemoCue photometer (HemoCue, Inc.) and anemia was defined with the use of WHO standards. The association of HFI and anemia was not significant (P > 0.05) for adolescent women (12-20 y), whereas in adult women (21-49 y), the adjusted odds of having anemia were 31-43% higher among those living in mild to severely food insecure households than adult women residing in food secure households (P < 0.05). HFI is associated with anemia among adult Mexican women. Programs that reduce HFI may also be effective at reducing the risk of anemia among Mexican women. © 2014 American Society for Nutrition.
NASA Astrophysics Data System (ADS)
Soulié, Edgar; Gaugenot, Jacques
1995-04-01
Nettar and Villafranca wrote in the FORTRAN programming language a computer program which simulates the electron paramagnetic resonance (EPR) spectra of powders (Journal of Magnetic Resonance, vol. 64 (1985) pp. 61-65). The spin Hamiltonian which their program can handle includes the Zeeman electronic interaction, the fine interaction up to the sixth order in the electron spin, a general hyperfine interaction, an isotropic nuclear Zeeman term; anisotropic ligand hyperfine terms are treated to first order in perturbation. The above Hamiltonian, without the ligand hyperfine terms, is treated exactly, i.e. the resonance equation for a transition between states labeled i and j is solved numerically: h.ν=Ei(H)-Ej(H).
Carrola, João; Fontaínhas-Fernandes, António; Pires, Maria João; Rocha, Eduardo
2014-02-01
Liver lesions in wild fish have been associated with xenobiotic exposure. Facing reports of pollution in the Douro River estuary (north of Portugal), we have been making field surveys using fishes and targeting histopathological biomarkers of exposure and effect. Herein, we intended to better characterize and report the rate of one poorly understood lesion-hepatocellular fibrillar inclusions (HFI)-found in European flounder (Platichthys flesus). With this report, we aimed to establish sound baseline data that could be viewed as a starting point for future biomonitoring, while offering the world's second only pool of field data on such a liver toxicopathic lesion, which could be compared with data available from the UK estuaries. Sampling was done in the Douro River estuary over 1 year. A total of 72 animals were fished with nets, in spring-summer (SS) and autumn-winter (AW) campaigns. Livers were processed for histopathology and both routine and special staining procedures (alcian blue, periodic acid Schiff (PAS), tetrazonium coupling reaction). Immunohistochemistry targeted AE1/AE3 (pan cytokeratins). The severity of the HFI extent was graded using a system with four levels, varying from 0 (absence of HFI) to 3 (high relative density of cells with HFI). Cells (isolated/groups) with HFI appeared in 35 % or more of the fish, in the total samples of each season, and over 40 % in more homogeneous sub-samples. There were no significant differences when comparing samples versus sub-samples or SS versus AW. When merging the data sets from the two seasons, the frequency of fish with HFI was ≈36 % for the total sample and ≈49 % for the sub-sample. The extreme group (biggest and smallest fish) revealed a HFI frequency of only 16 %, which differed significantly from the total and sub-sampled groups. Immunostaining and PAS were negative for the HFI, and alcian blue could, at times, faintly stain the inclusions. These were positive with the tetrazonium reaction. We showed the presence of HFI in European flounder from the Douro River estuary, proving that they are essentially protein in nature, that no seasonal changes existed in the HFI frequency, and that it was rarer in the smallest and biggest fish groups. Within the ranges of weight/size of our total sample, we estimate that the frequency of HFI in the local flounder is ≈35 %. That rate stands as a baseline value for future assessments, namely for biomonitoring purposes targeting correlations with the estuary pollution status.
Fruit-induced FPIES masquerading as hereditary fructose intolerance.
Fiocchi, Alessandro; Dionisi-Vici, Carlo; Cotugno, Giovanna; Koch, Pierluigi; Dahdah, Lamia
2014-08-01
Hereditary fructose intolerance (HFI) symptoms develop at first introduction of fruit during weaning. We report on an infant with suspected HFI who presented with repeated episodes of vomiting and hypotension after ingestion of fruit-containing meals. The first episode occurred at age 4 months. Despite negative genetic testing for HFI, strict avoidance of fruit ingestion resulted in lack of recurrence of symptoms. Oral-fructose-tolerance testing conducted with an apple mousse did not determine hypoglycemia or fructosuria but caused severe hypotension. Allergy evaluations were negative, and the history was diagnostic for fruit-induced food protein-induced enterocolitis syndrome. Because this non-immunoglobulin E-mediated gastrointestinal food hypersensitivity manifests as profuse, repetitive vomiting, often with diarrhea, leading to acute dehydration and lethargy, it may be misinterpreted as HFI. We advise pediatricians to consider food protein-induced enterocolitis syndrome in the differential diagnosis when there is a suspicion of HFI. Copyright © 2014 by the American Academy of Pediatrics.
Pérez-Escamilla, Rafael; Villalpando, Salvador; Shamah-Levy, Teresa; Méndez-Gómez Humarán, Ignacio
2014-01-01
To examine the independent association of household food insecurity (HFI) with diabetes and hypertension in a nationally representative cross-sectional sample from Mexico. We assessed the association between HFI and self-reported doctor diagnosed diabetes and hypertension among 32 320 adult individuals using multiple logistic regression. HFI was measured using an adapted version for Mexico of the Latin American and Caribbean Food Security Scale (ELCSA). HFI was a risk factor for diabetes among women but not men and for hypertension among both genders. Diabetes odds were higher by 31, 67 and 48%, among women living in mild, moderate, and severe food-insecure (vs. food-secure) households, respectively. Living in moderate to severe food-insecure (vs. food-secure) households was associated with hypertension odds that were 28 and 32% higher, respectively. Decreasing HFI may help improve public health and national development in Mexico.
Hyperostosis frontalis interna: criteria for sexing and aging a skeleton.
May, Hila; Peled, Nathan; Dar, Gali; Cohen, Haim; Abbas, Janan; Medlej, Bahaa; Hershkovitz, Israel
2011-09-01
Estimation of sex and age in skeletons is essential in anthropological and forensic medicine investigations. The aim of the current study was to examine the potential of hyperostosis frontalis interna (HFI) as a criterion for determining sex and age in forensic cases. Macroscopic examination of the inner aspect of the frontal bone of 768 skulls (326 males and 442 females) aged 1 to 103, which had undergone a head computerized tomography scan, was carried out using the volume rendering technique. HFI was divided into two categories: minor and major. HFI is a sex- and age-dependent phenomena, with females manifesting significantly higher prevalence than males (p<0.01). In both females and males, prevalence of HFI increases as age increases (p<0.01). We present herein the probabilities of designating an unknown skull to a specific sex and age cohort according to the presence of HFI (standardized to age distribution in an Israeli population). Moreover, we present the probability of an individual belonging to a specific sex or age cohort according to age or sex (respectively) and severity of HFI. We suggest a valid, reliable, and easy method for sex and age identification of unknown skulls.
Lanaspa, Miguel A; Andres-Hernando, Ana; Orlicky, David J; Cicerchi, Christina; Jang, Cholsoon; Li, Nanxing; Milagres, Tamara; Kuwabara, Masanari; Wempe, Michael F; Rabinowitz, Joshua D; Johnson, Richard J; Tolan, Dean R
2018-04-23
Increasing evidence suggests a role for excessive intake of fructose in the Western diet as a contributor to the current epidemics of metabolic syndrome and obesity. Hereditary fructose intolerance (HFI) is a difficult and potentially lethal orphan disease associated with impaired fructose metabolism. In HFI, the deficiency of aldolase B results in the accumulation of intracellular phosphorylated fructose, leading to phosphate sequestration and depletion, increased adenosine triphosphate (ATP) turnover, and a plethora of conditions that lead to clinical manifestations such as fatty liver, hyperuricemia, Fanconi syndrome, and severe hypoglycemia. Unfortunately, there is currently no treatment for HFI, and avoiding sugar and fructose has become challenging in our society. In this report, through use of genetically modified mice and pharmacological inhibitors, we demonstrate that the absence or inhibition of ketohexokinase (Khk), an enzyme upstream of aldolase B, is sufficient to prevent hypoglycemia and liver and intestinal injury associated with HFI. Herein we provide evidence for the first time to our knowledge of a potential therapeutic approach for HFI. Mechanistically, our studies suggest that it is the inhibition of the Khk C isoform, not the A isoform, that protects animals from HFI.
Hyperfine structure of the hydroxyl free radical (OH) in electric and magnetic fields
NASA Astrophysics Data System (ADS)
Maeda, Kenji; Wall, Michael L.; Carr, Lincoln D.
2015-05-01
We investigate single-particle energy spectra of the hydroxyl free radical (OH) in the lowest electronic and rovibrational level under combined static electric and magnetic fields, as an example of heteronuclear polar diatomic molecules. In addition to the fine-structure interactions, the hyperfine interactions and centrifugal distortion effects are taken into account to yield the zero-field spectrum of the lowest 2Π3 / 2 manifold to an accuracy of less than 2kHz. We also examine level crossings and repulsions in the hyperfine structure induced by applied electric and magnetic fields. Compared to previous work, we found more than 10 percent reduction of the magnetic fields at level repulsions in the Zeeman spectrum subjected to a perpendicular electric field. In addition, we find new level repulsions, which we call Stark-induced hyperfine level repulsions, that require both an electric field and hyperfine structure. It is important to take into account hyperfine structure when we investigate physics of OH molecules at micro-Kelvin temperatures and below. This research was supported in part by AFOSR Grant No.FA9550-11-1-0224 and by the NSF under Grants PHY-1207881 and NSF PHY-1125915. We appreciate the Aspen Center for Physics, supported in part by the NSF Grant No.1066293, for hospitality.
Hyperfine structure in 229gTh3+ as a probe of the 229gTh→ 229mTh nuclear excitation energy.
Beloy, K
2014-02-14
We identify a potential means to extract the 229gTh→ 229mTh nuclear excitation energy from precision microwave spectroscopy of the 5F(5/2,7/2) hyperfine manifolds in the ion 229gTh3+. The hyperfine interaction mixes this ground fine structure doublet with states of the nuclear isomer, introducing small but observable shifts to the hyperfine sublevels. We demonstrate how accurate atomic structure calculations may be combined with the measurement of the hyperfine intervals to quantify the effects of this mixing. Further knowledge of the magnetic dipole decay rate of the isomer, as recently reported, allows an indirect determination of the nuclear excitation energy.
Understanding the double burden of malnutrition in food insecure households in Brazil.
Gubert, Muriel Bauermann; Spaniol, Ana Maria; Segall-Corrêa, Ana Maria; Pérez-Escamilla, Rafael
2017-07-01
Household food insecurity (HFI) has been associated with both obesity among mothers and undernutrition among children. However, this association has not been well investigated in mother/child pairs living in the same household. The objective of this study was to examine the relationship of coexistence of maternal overweight and child stunting with HFI in Brazil. We conducted secondary data analyses of the 2006 Brazilian National Demographic and Health Survey. We analyzed the nutritional status of 4299 pairs of 15-49-year-olds mothers and their children under 5 years of age. The double burden of malnutrition (DBM) was defined as the presence of an overweight mother and a stunted child in the same household. HFI was measured with the Brazilian HFI Measurement Scale. The association between DBM and HFI was examined with hierarchical multivariable logistic regression analyses. Severe HFI was associated with DBM after adjusting for macroeconomic and household level socio-economic and demographic variables (Adjusted OR: 2.65 - CI: 1.17-8.53). Findings suggest that policies and programmes targeting HFI are needed to prevent the coexistence of child chronic undernutrition and maternal overweight/obesity in the same household. These investments are likely to be highly cost-effective as stunting has been identified as one of the major risk factors for poor child development and adult overweight/obesity and a strong risk factor for the development of costly chronic diseases including type 2 diabetes and cardiovascular disease. © 2016 John Wiley & Sons Ltd.
Ab initio calculations of torsionally mediated hyperfine splittings in E states of acetaldehyde
NASA Astrophysics Data System (ADS)
Xu, Li-Hong; Reid, E. M.; Guislain, B.; Hougen, J. T.; Alekseev, E. A.; Krapivin, I.
2017-12-01
Quantum chemistry packages can be used to predict with reasonable accuracy spin-rotation hyperfine interaction constants for methanol, which contains one methyl-top internal rotor. In this work we use one of these packages to calculate components of the spin-rotation interaction tensor for acetaldehyde. We then use torsion-rotation wavefunctions obtained from a fit to the acetaldehyde torsion-rotation spectrum to calculate the expected magnitude of hyperfine splittings analogous to those observed at relatively high J values in the E symmetry states of methanol. We find that theory does indeed predict doublet splittings at moderate J values in the acetaldehyde torsion-rotation spectrum, which closely resemble those seen in methanol, but that the factor of three decrease in hyperfine spin-rotation constants compared to methanol puts the largest of the acetaldehyde splittings a factor of two below presently available Lamb-dip resolution.
Polaron spin echo envelope modulations in an organic semiconducting polymer
Mkhitaryan, V. V.; Dobrovitski, V. V.
2017-06-01
Here, we present a theoretical analysis of the electron spin echo envelope modulation (ESEEM) spectra of polarons in semiconducting π -conjugated polymers. We show that the contact hyperfine coupling and the dipolar interaction between the polaron and the proton spins give rise to different features in the ESEEM spectra. Our theory enables direct selective probe of different groups of nuclear spins, which affect the polaron spin dynamics. Namely, we demonstrate how the signal from the distant protons (coupled to the polaron spin via dipolar interactions) can be distinguished from the signal coming from the protons residing on the polaron sitemore » (coupled to the polaron spin via contact hyperfine interaction). We propose a method for directly probing the contact hyperfine interaction, that would enable detailed study of the polaron orbital state and its immediate environment. Lastly, we also analyze the decay of the spin echo modulation, and its connection to the polaron transport.« less
Shi, Ming; Zhang, Ling; Gu, Hong-Tao; Jiang, Feng-Qin; Qian, Lu; Yu, Ming; Chen, Guo-Jiang; Luo, Qun; Shen, Bei-Fen; Guo, Ning
2007-10-01
To investigate the antitumor activities of an anti-ErbB2 scFv-Fc-interleukin 2 (IL-2) fusion protein (HFI) in vitro and in vivo. Fusion protein HFI was constructed. The efficacy of HFI in mediating tumor cell lysis was determined by colorimetric lactate dehydrogenase release assays. The antitumor activity of HFI was evaluated in tumor xenograft models. The fusion protein was folded as a homodimer formed by covalently linking Fc portions and it retained ErbB2 specificity and IL-2 biological activity. HFI mediated antibody-dependent cell-mediated cytotoxicity (ADCC) at low effector-to-target ratios in vitro and improved the therapeutic efficacy of IL-2 in experiments in vivo. The genetically-engineered anti-ErbB2 scFv-Fc-IL-2 fusion protein exhibited high efficiency both in mediating ADCC in vitro and significant antitumor activity in tumor xenograft models.
Improving the Representation of Human Factors in Operational Analysis
2010-10-01
Defence Equipment and Support (DE&S) via Human Factors Integration Defence Technology Centre ( HFI DTC) activities. In particular this study’s Theme...Framework has been exploited in the HFI DTC Social Organisational Framework study, and the study team has provided a short extract for contribution to...the HFI DTC Handbook. The study has also been explicitly referenced in support to future MOD OA research studies. 8 SUMMARY AND CONCLUSIONS This
Gholami, Ali; Khazaee-Pool, Maryam; Rezaee, Negar; Amirkalali, Bahareh; A Bbasi Ghahremanlo, Abbas; Moradpour, Farhad; Rajabi, Abdolalhalim; Sohrabi, Masoud Reza; Yarmohammadi, Reyhaneh; Mousavi Jahromi, Zahra
2017-06-01
Health-related quality of life (HRQOL) is associated with household food insecurity (HFI). However, the studies examining the relationship between HFI and HRQOL in patients with type 2 diabetes are scarce. Thus, this study was designed to examine the relationship between HFI and HRQOL in rural type 2 diabetic patients. In this cross-sectional study, we included 1847 rural patients with type 2 diabetes in Neyshabur from April to July 2012. HRQOL and HFI were measured with 36-item HRQOL (SF-36) and 6-item version of Household Food Security questionnaires, respectively. HRQOL was divided into eight dimensions and two summary components. We categorized households as high food secure (HFS), low food secure (LFS), and very low food secure (VLFS). Multiple linear regression model was applied to assess the independent effect of food insecurity on HRQOL. The mean age of participants was 59.65 ± 12.3 years (range: 30-97) with 69.8% women. The overall prevalence of HFI was 46.1%, and the total mean score of HRQOL was 51.11. Multiple linear regression model showed that HFI was significantly associated with the total mean score of HRQOL and its eight dimensions. One-way ANOVA test also showed that HRQOL (in all dimensions) was significantly different between 3 groups of household food security status (HFS, LFS, and VLFS) (P < 0.05). The results of this study showed that HFI was associated with all dimensions of HRQOL and it is one of the strongest variables, in association with HRQOL among rural patients with type 2 diabetes.
Hyperfine interactions in titanates: Study of orbital ordering and local magnetic properties
NASA Astrophysics Data System (ADS)
Agzamova, P. A.; Leskova, Yu. V.; Nikiforov, A. E.
2013-05-01
Hyperfine magnetic fields induced on the nuclei of nonmagnetic ions 139La and 89Y in LaTiO3 and YTiO3, respectively, have been microscopically calculated. The dependence of the hyperfine fields on the orbital and magnetic structures of the compounds under study has been analyzed. The comparative analysis of the calculated and known experimental data confirms the existence of the static orbital structure in lanthanum and yttrium titanates.
Wössmann, W; Wiemann, J; Körber, F; Gortner, L
2000-01-01
The diagnosis of HFI is easily missed during childhood. It should be suspected in children presenting with hepatomegaly and an isolated increase in GGT. A carefully taken nutritional history forms the basis of the diagnosis of HFI which can be confirmed by molecular analysis with a sensitivity of > 95%. I.v. fructose tolerance tests and liver biopsies often can be omitted.
Food insecurity and CD4% Among HIV+ children in Gaborone, Botswana.
Mendoza, Jason A; Matshaba, Mogomotsi; Makhanda, Jeremiah; Liu, Yan; Boitshwarelo, Matshwenyego; Anabwani, Gabriel M
2014-08-01
We investigated the association between household food insecurity (HFI) and CD4% among 2-6-year old HIV+ outpatients (n = 78) at the Botswana-Baylor Children's Clinical Center of Excellence in Gaborone, Botswana. HFI was assessed by a validated survey. CD4% data were abstracted from the medical record. We used multiple linear regression with CD4% (dependent variable), HFI (independent variable), and controlled for sociodemographic and clinical covariates. Multiple linear regression showed a significant main effect for HFI [beta = -0.6, 95% confidence interval (CI): -1.0 to -0.1] and child gender (beta = 5.6, 95% CI: 1.3 to 9.8). Alleviating food insecurity may improve pediatric HIV outcomes in Botswana and similar Sub-Saharan settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okubo, Sho; Nakayama, Hirotaka; Sasada, Hiroyuki
Saturated absorption spectra of the {nu}{sub 1} fundamental band of CH{sub 3}I are recorded with a cavity-enhanced cell and a tunable difference frequency generation source having an 86-cm{sup -1} range. The recorded spectral lines are 250 kHz wide, and most of them are resolved into the individual hyperfine components. The Coriolis interaction between the v{sub 1}=1 and (v{sub 2},v{sub 6}{sup l})=(1,2{sup 2}) states locally perturbing the hyperfine structures is analyzed to yield the Coriolis and hyperfine coupling constants with uncertainties similar to those in typical microwave spectroscopy. The spectrometer has demonstrated the potential for precisely determining the energy structure inmore » the vibrational excited states.« less
Rattanavichit, Yupaporn; Chukijrungroat, Natsasi; Saengsirisuwan, Vitoon
2016-12-01
The role of high fructose ingestion (HFI) in the development of conditions mimicking human metabolic syndrome has mostly been demonstrated in male animals; however, the extent of HFI-induced metabolic alterations in females remains unclear. The present study investigated whether HFI-induced metabolic perturbations differ between sexes and whether HFI aggravates the metabolic disturbances under ovarian hormone deprivation. Male, female, and ovariectomized (OVX) Sprague-Dawley rats were given either water or liquid fructose (10% wt/vol) for 6 wk. Blood pressure, glucose tolerance, insulin-stimulated glucose transport activity and signaling proteins, including insulin receptor (IR), insulin receptor substrate 1 (IRS-1), Akt, Akt substrate of 160 kDa (AS160), AMPKα, JNK, p38 MAPK, angiotensin-converting enzyme (ACE), ANG II type 1 receptor (AT 1 R), ACE2, and Mas receptor (MasR) in skeletal muscle, were evaluated. We found that HFI led to glucose intolerance and hypertension in male and OVX rats but not in female rats with intact ovaries. Moreover, HFI did not induce insulin resistance in the skeletal muscle of female and OVX rats but impaired the insulin-stimulated glucose transport activity in the skeletal muscle of male rats, which was accompanied by lower insulin-stimulated IRS-1 Tyr 989 (44%), Akt Ser 473 (30%), and AS160 Ser 588 (43%), and increases in insulin-stimulated IRS-1 Ser 307 (78%), JNK Thr 183 /Tyr 185 (69%), and p38 MAPK Thr 180 /Tyr 182 (81%). The results from the present study show sex differences in the development of metabolic syndrome-like conditions and indicate the protective role of female sex hormones against HFI-induced cardiometabolic abnormalities. Copyright © 2016 the American Physiological Society.
HFI Bolometer Detectors Programmatic CDR
NASA Technical Reports Server (NTRS)
Lange, Andrew E.
2002-01-01
Programmatic Critical Design Review (CDR) of the High Frequency Instrument (HFI) Bolometer Detector on the Planck Surveyor is presented. The topics include: 1) Scientific Requirements and Goals; 2) Silicon Nitride Micromesh 'Spider-Web' Bolometers; 3) Sub-Orbital Heritage: BOOMERANG; 4) Noise stability demonstrated in BOOMERANG; 5) Instrument Partners; 6) Bolometer Environment on Planck/HFI; 7) Bolometer Modules; and 8) Mechanical Interface. Also included are the status of the receivables and delivery plans with Europe. This paper is presented in viewgraph form.
Experimental Studies in a Reconfigurable C4 Test-bed for Network Enabled Capability
2006-06-01
Cross1, Dr R. Houghton1, and Mr R. McMaster1 Defence Technology Centre for Human factors Integration (DTC HFI ) BITlab, School of Engineering and Design...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Defence Technology Centre for Human factors Integration (DTC HFI ) BITlab, School of...studies into NEC by the Human Factors Integration Defence Technology Centre ( HFI -DTC). DEVELOPMENT OF THE TESTBED In brief, the C4 test-bed
A primer on the hormone-free interval for combined oral contraceptives.
Hauck, Brian A; Brown, Vivien
2015-01-01
The dosing, schedules, and other aspects of combined oral contraceptive (COC) design have evolved in recent years to address a variety of issues including short- and long-term safety, bleeding profiles, and contraceptive efficacy. In particular, several newer formulations have altered the length of the hormone-free interval (HFI), in order to minimize two key undesired effects that occur during this time: hormone-withdrawal-associated symptoms (HWaS) and follicular development. This primer reviews our current understanding of the key biological processes that occur during the HFI and how this understanding has led to changes in the dosing and schedule of newer COC formulations. In brief, HWaS are common, underappreciated, and a likely contributor to COC discontinuation; because of this, shortening the HFI and/or supplementing with estrogen during the progestin-free interval may provide relief from these symptoms and improve adherence. A short HFI (with or without estrogen supplementation) may also help maintain effective follicular suppression and contraceptive efficacy, even when the overall dose of estrogen throughout the cycle is low. Taken together, the available data about HWaS and follicular activity during the HFI support the rationale for recent COC designs that use a low estrogen dose and a short HFI. The availability of a variety of COC regimens gives physicians a range of choices when selecting the most appropriate COC for each woman's particular priorities and needs.
Moraes, Claudia Leite de; Marques, Emanuele Souza; Reichenheim, Michael Eduardo; Ferreira, Marcela de Freitas; Salles-Costa, Rosana
2016-11-01
To investigate the direct and indirect associations between psychological and physical intimate partner violence and the occurrence of common mental disorders (CMD) and how they relate to the occurrence of household food insecurity (HFI). This was a population-based cross-sectional study. Intimate partner violence was assessed using the Brazilian version of the Revised Conflict Tactics Scale (CTS2) and HFI was assessed using the Brazilian Food Insecurity Scale. The propositional analytical model was based on a review of the literature and was tested using path analysis. Duque de Caxias, Greater Rio de Janeiro, Brazil (April-December 2010). Women (n 849) who had been in a relationship in the 12 months preceding the interview. Both psychological and physical violence were found to be major risk factors of HFI. Psychological violence was associated with HFI indirectly via physical violence and CMD, and directly by an unidentified path. The effects of physical violence seemed to be manifested exclusively through CMD. Most of the variables in the propositional model related to socio-economic position, demographic characteristics, degree of women's social support and partner alcohol misuse were retained in the 'final' model, indicating that these factors contribute significantly to the increased likelihood of HFI. The results reinforce the importance of considering domestic violence and other psychosocial aspects of family life when implementing interventions designed to reduce/eradicate HFI.
Li, Hong; Byers, Heather M; Diaz-Kuan, Alicia; Vos, Miriam B; Hall, Patricia L; Tortorelli, Silvia; Singh, Rani; Wallenstein, Matthew B; Allain, Meredith; Dimmock, David P; Farrell, Ryan M; McCandless, Shawn; Gambello, Michael J
2018-04-01
Hereditary fructose intolerance (HFI) is an autosomal recessive disorder caused by aldolase B (ALDOB) deficiency resulting in an inability to metabolize fructose. The toxic accumulation of intermediate fructose-1-phosphate causes multiple metabolic disturbances, including postprandial hypoglycemia, lactic acidosis, electrolyte disturbance, and liver/kidney dysfunction. The clinical presentation varies depending on the age of exposure and the load of fructose. Some common infant formulas contain fructose in various forms, such as sucrose, a disaccharide of fructose and glucose. Exposure to formula containing fructogenic compounds is an important, but often overlooked trigger for severe metabolic disturbances in HFI. Here we report four neonates with undiagnosed HFI, all caused by the common, homozygous mutation c.448G>C (p.A150P) in ALDOB, who developed life-threatening acute liver failure due to fructose-containing formulas. These cases underscore the importance of dietary history and consideration of HFI in cases of neonatal or infantile acute liver failure for prompt diagnosis and treatment of HFI. Copyright © 2018 Elsevier Inc. All rights reserved.
Atomic dark matter with hyperfine interactions
NASA Astrophysics Data System (ADS)
Boddy, Kimberly K.; Kaplinghat, Manoj; Kwa, Anna; Peter, Annika H. G.
2017-11-01
We consider dark matter as an analog of hydrogen in a secluded sector and study its astrophysical implications. The self interactions between dark matter particles include elastic scatterings as well as inelastic processes from hyperfine transitions. We show that for a dark hydrogen mass in the 10-100 GeV range and a dark fine-structure constant larger than 0.01, the self-interaction cross section has the right magnitude and velocity dependence to explain the low dark matter density cores seen in small galaxies while being consistent with all constraints from observations of galaxy clusters. Excitations to the hyperfine state and subsequent decays, however, may cause significant cooling losses and affect the evolution of low-mass halos. We also find minimum halo masses in the range of 103.5-107 M⊙, which are significantly larger than the typical predictions for weakly interacting dark matter models. This pattern of observables in structure formation is unique to this model, making it possible to determine the viability of hidden-sector hydrogen as a dark matter candidate.
Theory of long-range interactions for Rydberg states attached to hyperfine-split cores
NASA Astrophysics Data System (ADS)
Robicheaux, F.; Booth, D. W.; Saffman, M.
2018-02-01
The theory is developed for one- and two-atom interactions when the atom has a Rydberg electron attached to a hyperfine-split core state. This situation is relevant for some of the rare-earth and alkaline-earth atoms that have been proposed for experiments on Rydberg-Rydberg interactions. For the rare-earth atoms, the core electrons can have a very substantial total angular momentum J and a nonzero nuclear spin I . In the alkaline-earth atoms there is a single (s ) core electron whose spin can couple to a nonzero nuclear spin for odd isotopes. The resulting hyperfine splitting of the core state can lead to substantial mixing between the Rydberg series attached to different thresholds. Compared to the unperturbed Rydberg series of the alkali-metal atoms, the series perturbations and near degeneracies from the different parity states could lead to qualitatively different behavior for single-atom Rydberg properties (polarizability, Zeeman mixing and splitting, etc.) as well as Rydberg-Rydberg interactions (C5 and C6 matrices).
NASA Astrophysics Data System (ADS)
Crooker, S. A.; Liu, F.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L.; Ruden, P. P.
2014-10-01
We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ˜ 11%) than at the low-energy red end (˜4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.
Association between untreated dental caries and household food insecurity in schoolchildren.
Santin, Gabriela Cristina; Pintarelli, Tatiana Pegoretti; Fraiz, Fabian Calixto; de Oliveira, Ana Cristina Borges; Paiva, Saul Martins; Ferreira, Fernanda Morais
2016-02-01
The aim of the present study was to assess the association between untreated dental caries (UDC) and household food insecurity (HFI) among schoolchildren in different income strata. A population-based study was carried out with a sample of 584 12-y-old schoolchildren. Oral examinations were performed and HFI was determined using a validated scale. Other independent variables were analyzed for being of interest to the stratification of the results (per capita household income) or for acting as potential confounding variables. The prevalence of UDC and HFI was 45% and 39%, respectively. The multivariate models demonstrated that the UDC was significantly more prevalent among children in food-insecure households with per capita income of up to US$ 70.71 than among those in the same income stratum that were free of HFI [PR = 1.52 (95%CI = 1.01-2.29)]. HFI was associated with a greater frequency of UDC among low-income schoolchildren, but had no significant impact on this variable among children from other income strata. Thus, ensuring access to quality food may be a good strategy for minimizing inequities in oral health and reducing dental caries experience among schoolchildren from low-income families.
Cho, Michael; Atrio, Jessica; Lim, Aaron H; Azen, Colleen; Stanczyk, Frank Z
2014-07-01
The objective was to investigate changes in luteinizing hormone (LH), follicle-stimulating hormone (FSH), estradiol (E2) and progesterone (P) during the hormone-free interval (HFI) of 6 combined oral contraceptives (COCs). Blood samples were obtained from 62 women. When COCs were grouped by ethinyl estradiol (EE) dose, there was a significant positive mean slope for LH and FSH during the HFI for the 30- and 35 mcg-EE doses, whereas 20 showed a gradual nonsignificant slope. All E2 slopes were significant. P remained suppressed with all doses. A more rapid rebound of gonadotropin levels is found with higher doses of EE during the HFI. This study showed a more rapid rebound of pituitary hormone levels among women using higher-EE-dosage formulations, which was demonstrated by the statistically significant slope for mean LH and FSH from day 1 to day 7 of the HFI. The degree of suppression did not vary across progestin generations. It remains to be established whether women who experience side effects during their HFI may benefit from using a COC with a lower EE dose to minimize changes in endogenous pituitary hormone levels. Copyright © 2014 Elsevier Inc. All rights reserved.
Multifractal analysis for grading complex fractionated electrograms in atrial fibrillation.
Orozco-Duque, A; Novak, D; Kremen, V; Bustamante, J
2015-11-01
Complex fractionated atrial electrograms provide an important tool for identifying arrhythmogenic substrates that can be used to guide catheter ablation for atrial fibrillation (AF). However, fractionation is a phenomenon that remains unclear. This paper aims to evaluate the multifractal properties of electrograms in AF in order to propose a method based on multifractal analysis able to discriminate between different levels of fractionation. We introduce a new method, the h-fluctuation index (hFI), where h is the generalised Hurst exponent, to extract information from the shape of the multifractal spectrum. Two multifractal frameworks are evaluated: multifractal detrended fluctuation analysis and wavelet transform modulus maxima. hFI is exemplified through its application in synthetic signals, and it is evaluated in a database of electrograms labeled on the basis of four degrees of fractionation. We compare the performance of hFI with other indexes, and find that hFI outperforms them. The results of the study provide evidence that multifractal analysis is useful for studying fractionation phenomena in AF electrograms, and indicate that hFI can be proposed as a tool for grade fractionation associated with the detection of target sites for ablation in AF.
Kobayashi-Kondo-Maskawa-'t Hooft interaction in pentaquarks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitrasinovic, V.
2005-05-01
We review critically the predictions of pentaquarks in the quark model, in particular, those based on the flavor-spin-dependent (Glozman-Riska) hyperfine interaction and the color-spin (one-gluon-exchange Fermi-Breit) one. We include the antiquark interactions and find that: (1) the exotic SU(3) multiplets are not substantially affected in the flavor-spin model, whereas some of the nonexotic multiplets are; and (2) the variational upper bound on the {xi}{sup --}-{theta}{sup +} mass difference in the color-spin hyperfine interaction model is substantially reduced. This leads us to the U{sub A}(1) symmetry breaking Kobayashi-Kondo-Maskawa-'tHooft interaction. We discuss some of its phenomenological consequences for pentaquarks.
Florea, Viorel G; Rector, Thomas S; Anand, Inder S; Cohn, Jay N
2016-07-01
Heart failure with recovered or improved ejection fraction (HFiEF) has been proposed as a new category of HF. Whether HFiEF is clinically distinct from HF with persistently reduced ejection fraction remains to be validated. Of the 5010 subjects enrolled in the Valsartan Heart Failure Trial (Val-HeFT), 3519 had a baseline left ventricular EF of <35% and a follow-up echocardiographic assessment of EF at 12 months. Of these, 321 (9.1%) patients who had a 12-month EF of >40% constituted the subgroup with HFiEF. EF improved from 28.7±5.6% to 46.5±5.6% in the subgroup with HFiEF and remained reduced (25.2±6.2% and 27.5±7.1%) in the subgroup with HF with reduced ejection fraction. The group with HFiEF had a less severe hemodynamic, biomarker, and neurohormonal profile, and it was treated with a more intense HF medication regimen. Subjects who had higher blood pressure and those treated with a β-blocker or randomized to valsartan had greater odds of being in the HFiEF group, whereas those with an ischemic pathogenesis, a more dilated left ventricle, and a detectable hs-troponin had lower odds of an improvement in EF. Recovery of the EF to >40% was associated with a better survival compared with persistently reduced EF. Our data support HFiEF as a stratum of HF with reduced ejection fraction with a more favorable outcome, which occurs in a minority of patients with HF with reduced ejection fraction who have a lower prevalence of ischemic heart disease, a less severe hemodynamic, biomarker, and neurohormonal profile, and who are treated with a more intense HF medication regimen. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00336336. © 2016 American Heart Association, Inc.
Ali, Disha; Saha, Kuntal K; Nguyen, Phuong H; Diressie, Michael T; Ruel, Marie T; Menon, Purnima; Rawat, Rahul
2013-12-01
Household food insecurity (HFI) is a recognized underlying determinant of child undernutrition, but evidence of associations between HFI and child undernutrition is mixed. The purpose of this study was to investigate if HFI is associated with undernutrition in children aged 6-59.9 mo in Bangladesh (n = 2356), Ethiopia (n = 3422), and Vietnam (n = 3075) and if child dietary diversity (DD) mediated this effect. We used baseline survey data from the Alive & Thrive project. Logistic regression, adjusting for potential confounding factors, was used to determine the magnitude and significance of the association of HFI with stunting, underweight, and wasting. The mediating effect of child DD was tested by using a Sobel-Goodman mediation test. The prevalences of HFI were 66%, 40%, and 32% in Ethiopia, Vietnam, and Bangladesh, respectively. The prevalences of stunting, underweight, and wasting were higher in Bangladesh (47.1%, 43.7%, and 19.1%, respectively) and Ethiopia (50.7%, 27.5%, and 5.9%, respectively) than in Vietnam (20.7%, 15.8%, and 5%, respectively). In the adjusted models, the odds of being stunted or underweight were significantly higher for children in severely food-insecure households in Bangladesh (stunting OR: 1.36; 95% CI: 1.05, 1.76; underweight OR: 1.28; 95% CI: 0.99, 1.65) and Ethiopia (stunting OR: 1.48; 95% CI: 1.09, 2.00; underweight OR: 1.68; 95% CI: 1.22, 2.30) and in moderately food-insecure households in Vietnam (stunting OR: 1.39; 95% CI: 1.16, 1.65; underweight OR: 1.69; 95% CI: 1.28, 2.23). HFI was significantly associated with wasting in Bangladesh where close to 1 in 5 children demonstrated wasting. Child DD did not mediate the relation between HFI and undernutrition in any of the countries. Further research is recommended to investigate potential mediators in this pathway.
[Hereditary fructose intolerance].
Rumping, Lynne; Waterham, Hans R; Kok, Irene; van Hasselt, Peter M; Visser, Gepke
2014-01-01
Hereditary fructose intolerance (HFI) is a rare metabolic disease affecting fructose metabolism. After ingestion of fructose, patients may present with clinical symptoms varying from indefinite gastrointestinal symptoms to life-threatening hypoglycaemia and hepatic failure. A 13-year-old boy was referred to the department of metabolic diseases because of an abnormal fructose loading test. He was known with persistent gastrointestinal symptoms since infancy. His dietary history revealed an avoidance of fruit and sweets. Because malabsorption was suspected, an oral fructose loading test was performed. During this test, he developed severe vagal symptoms which were probably caused by a potentially fatal hypoglycaemia. The diagnosis of HFI was confirmed by genetic analysis. A good dietary history may be of important help in the diagnosis of HFI. On suspicion of HFI, genetic analysis is easy and the first choice in the diagnostic work-up. With timely diagnosis and adequate dietary treatment patients have an excellent prognosis. Fructose loading tests as part of the diagnostics can be dangerous.
Heat-power working regimes of a high-frequency (0.44 MHz) 1000-kW induction plasmatron
NASA Astrophysics Data System (ADS)
Gorbanenko, V. M.; Farnasov, G. A.; Lisafin, A. B.
2015-12-01
The energy working regimes of a superpower high-frequency induction (HFI) plasmatron with a high-frequency (HF) generator are studied. The HFI plasmatron with a power of 1000 kVA and a working frequency of 440 kHz, in which air is used as a plasma-forming gas, can be used for treatment of various oxide powder materials. The energy regimes substantially influence finish products and their costs. Various working regimes of the HFI plasma unit and the following characteristics are studied: the dependence of the vibration power on the anode power, the dependence of the power losses on the anode power at various of plasma-forming gas flow rates, and the coefficients of efficiency of the plasmatron and the HFI-plasma unit at various powers. The effect of the plasma-forming gas flow rate on the bulk temperature is determined.
Adamowicz, M; Płoski, R; Rokicki, D; Morava, E; Gizewska, M; Mierzewska, H; Pollak, A; Lefeber, D J; Wevers, R A; Pronicka, E
2007-06-01
Hereditary fructose intolerance (HFI) is caused by a deficiency of aldolase B due to mutations of the ALDOB gene. The disease poses diagnostic problems because of unspecific clinical manifestations. We report three cases of HFI all of whom had a chronic disease with neurological, nephrological or gastroenterological symptoms, whereas nutritional fructose intolerance, the pathognomonic sign of HFI, was apparent only in retrospect. In all patients a hypoglycosylated pattern of transferrin isoforms was found but was misinterpreted as a sign of CDG Ix. The correct diagnosis was achieved with marked delay (26, 36 and 24 months, respectively) by sequencing of the ALDOB gene two common mutations were identified on both alleles or on one (A150P/A175D, A150P/-, and A150P/A175D). The diagnosis was further supported by normalization of transferrin isoforms on a fructose-free diet. Data available in two patients showed that following the fructose restriction the type I pattern of carbohydrate-deficient transferrin detectable on fructose-containing diet disappeared after 3-4 weeks. These cases illustrate that in the first years of life HFI may show misleading variability in clinical presentation and that protein glycosylation analysis such as transferrin isofocusing may give important diagnostic clues. However, care should be taken not to misinterpret the abnormal results as CDG Ix as well as to remember that a normal profile does not exclude HFI due to the possibility of spontaneous fructose restriction in the diet. The presented data also emphasize the usefulness of ALDOB mutation screening for diagnosis of HFI.
Aldolase-B knockout in mice phenocopies hereditary fructose intolerance in humans.
Oppelt, Sarah A; Sennott, Erin M; Tolan, Dean R
2015-03-01
The rise in fructose consumption, and its correlation with symptoms of metabolic syndrome (MBS), has highlighted the need for a better understanding of fructose metabolism. To that end, valid rodent models reflecting the same metabolism as in humans, both biochemically and physiologically, are critical. A key to understanding any type of metabolism comes from study of disease states that affect such metabolism. A serious defect of fructose metabolism is the autosomal recessive condition called hereditary fructose intolerance (HFI), caused by mutations in the human aldolase B gene (Aldob). Those afflicted with HFI experience liver and kidney dysfunction after fructose consumption, which can lead to death, particularly during infancy. With very low levels of fructose exposure, HFI patients develop non-alcoholic fatty acid liver disease and fibrosis, sharing liver pathologies also seen in MBS. A major step toward establishing that fructose metabolism in mice mimics that of humans is reported by investigating the consequences of targeting the mouse aldolase-B gene (Aldo2) for deletion in mice (Aldo2(-/-)). The Aldo2(-/-) homozygous mice show similar pathology following exposure to fructose as humans with HFI such as failure to thrive, liver dysfunction, and potential morbidity. Establishing that this mouse reflects the symptoms of HFI in humans is critical for comparison of rodent studies to the human condition, where this food source is increasing, and increasingly controversial. This animal should provide a valuable resource for answering remaining questions about fructose metabolism in HFI, as well as help investigate the biochemical mechanisms leading to liver pathologies seen in MBS from high fructose diets. Copyright © 2015 Elsevier Inc. All rights reserved.
Child food insecurity increases risks posed by household food insecurity to young children's health.
Cook, John T; Frank, Deborah A; Levenson, Suzette M; Neault, Nicole B; Heeren, Tim C; Black, Maurine M; Berkowitz, Carol; Casey, Patrick H; Meyers, Alan F; Cutts, Diana B; Chilton, Mariana
2006-04-01
The US Food Security Scale (USFSS) measures household and child food insecurity (CFI) separately. Our goal was to determine whether CFI increases risks posed by household food insecurity (HFI) to child health and whether the Food Stamp Program (FSP) modifies these effects. From 1998 to 2004, 17,158 caregivers of children ages 36 mo were interviewed in six urban medical centers. Interviews included demographics, the USFSS, child health status, and hospitalization history. Ten percent reported HFI, 12% HFI and CFI (H&CFI). Compared with food-secure children, those with HFI had significantly greater adjusted odds of fair/poor health and being hospitalized since birth, and those with H&CFI had even greater adverse effects. Participation in the FSP modified the effects of FI on child health status and hospitalizations, reducing, but not eliminating, them. Children in FSP-participating households that were HFI had lower adjusted odds of fair/poor health [1.37 (95% CI, 1.06-1.77)] than children in similar non-FSP households [1.61 (95% CI, 1.31-1.98)]. Children in FSP-participating households that were H&CFI also had lower adjusted odds of fair/poor health [1.72 (95% CI, 1.34-2.21)] than in similar non-FSP households [2.14 (95% CI, 1.81-2.54)]. HFI is positively associated with fair/poor health and hospitalizations in young children. With H&CFI, odds of fair/poor health and hospitalizations are even greater. Participation in FSP reduces, but does not eliminate, effects of FI on fair/poor health.
Dodin, Dmitry V; Ivanov, Anatoly I; Burshtein, Anatoly I
2013-03-28
The magnetic field effect on the fluorescence of the photoexcited electron acceptor, (1)A∗, and the exciplex, (1)[D(+δ)A(-δ)] formed at contact of (1)A∗ with an electron donor (1)D, is theoretically explored in the framework of Integral Encounter Theory. It is assumed that the excited fluorophore is equilibrated with the exciplex that reversibly dissociates into the radical-ion pair. The magnetic field sensitive stage is the spin conversion in the resulting geminate radical-ion pair, (1, 3)[D(+)...A(-)] that proceeds due to hyperfine interaction. We confirm our earlier conclusion (obtained with a rate description of spin conversion) that in the model with a single nucleus spin 1/2 the magnitude of the Magnetic Field Effect (MFE) also vanishes in the opposite limits of low and high dielectric permittivity of the solvent. Moreover, it is shown that MFE being positive at small hyperfine interaction A, first increases with A but approaching the maximum starts to decrease and even changes the sign.
Spin-Orbit Interactions and Quantum Spin Dynamics in Cold Ion-Atom Collisions
NASA Astrophysics Data System (ADS)
Tscherbul, Timur V.; Brumer, Paul; Buchachenko, Alexei A.
2016-09-01
We present accurate ab initio and quantum scattering calculations on a prototypical hybrid ion-atom system Yb+ -Rb, recently suggested as a promising candidate for the experimental study of open quantum systems, quantum information processing, and quantum simulation. We identify the second-order spin-orbit (SO) interaction as the dominant source of hyperfine relaxation in cold Yb+ -Rb collisions. Our results are in good agreement with recent experimental observations [L. Ratschbacher et al., Phys. Rev. Lett. 110, 160402 (2013)] of hyperfine relaxation rates of trapped Yb+ immersed in an ultracold Rb gas. The calculated rates are 4 times smaller than is predicted by the Langevin capture theory and display a weak T-0.3 temperature dependence, indicating significant deviations from statistical behavior. Our analysis underscores the deleterious nature of the SO interaction and implies that light ion-atom combinations such as Yb+ -Li should be used to minimize hyperfine relaxation and decoherence of trapped ions in ultracold atomic gases.
Spin-state transfer in laterally coupled quantum-dot chains with disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Song; Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026; Bayat, Abolfazl
2010-08-15
Quantum dot arrays are a promising medium for transferring quantum information between two distant points without resorting to mobile qubits. Here we study the two most common disorders, namely hyperfine interaction and exchange coupling fluctuations, in quantum dot arrays and their effects on quantum communication through these chains. Our results show that the hyperfine interaction is more destructive than the exchange coupling fluctuations. The average optimal time for communication is not affected by any disorder in the system and our simulations show that antiferromagnetic chains are much more resistive than the ferromagnetic ones against both kind of disorders. Even whenmore » time modulation of a coupling and optimal control is employed to improve the transmission, the antiferromagnetic chain performs much better. We have assumed the quasistatic approximation for hyperfine interaction and time-dependent fluctuations in the exchange couplings. Particularly for studying exchange coupling fluctuations we have considered the static disorder, white noise, and 1/f noise.« less
Theoretical studies of alkyl radicals in the NaY and HY zeolites.
Ghandi, Khashayar; Zahariev, Federico E; Wang, Yan Alexander
2005-08-18
Interplay of quantum mechanical calculations and experimental data on hyperfine coupling constants of ethyl radical in zeolites at several temperatures was engaged to study the geometries and binding energies and to predict the temperature dependence of hyperfine splitting of a series of alkyl radicals in zeolites for the first time. The main focus is on the hyperfine interaction of alkyl radicals in the NaY and HY zeolites. The hyperfine splitting for neutral free radicals and free radical cations is predicted for different zeolite environments. This information can be used to establish the nature of the muoniated alkyl radicals in the NaY and HY zeolites via muSR experiments. The muon hyperfine coupling constants of the ethane radical cation in these zeolites are very large with relatively little dependence on temperature. It was found that the intramolecular dynamics of alkyl free radicals are only weakly affected by their strong binding to zeolites. In contrast, the substrate binding has a significant effect on their intermolecular dynamics.
Quantum versus classical hyperfine-induced dynamics in a quantum dota)
NASA Astrophysics Data System (ADS)
Coish, W. A.; Loss, Daniel; Yuzbashyan, E. A.; Altshuler, B. L.
2007-04-01
In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t <τc, after which they differ markedly.
Uncovering the Hidden Molecular Signatures of Breast Cancer
2011-05-01
0389$&0>!1&! :79).3$$7! ,3D&! 0/8&! )56/%83:)/5! %&=3%*)5=! 93:)&5:! .$)5).3$! 3::%)4(:&0! )5.$(*)5=! :(8/%! =%3*&>! 0:3=&>! HFI ! 0:3:(0>! N&%A! 0:3:(0...5! :,&! 93%:).($3%! ’(&0:)/5! 4&)5=! 302&*! /6! :,&! 93:)&5:! *3:30&:;! P/%! &G389$&>! =)D&5! 3! :%350.%)9:)/53$! 0)=53:(%&! /6! HFI ! 3.:)D3:)/5! B:,3...0>! :,&!=&5&!0&:!./%%&09/5*)5=!:/! :%350.%)9:0! :,3:!3%&!*)66&%&5:)3$$7!&G9%&00&*! 1,&5! HFI ! )0! /D&%R&G9%&00&*E>! 93:)&5:0! 3%&! /%*&%&*! 3
Political rhetoric from Canada can inform healthy public policy argumentation.
Patterson, Patrick B; McIntyre, Lynn; Anderson, Laura C; Mah, Catherine L
2017-10-01
Household food insecurity (HFI), insufficient income to obtain adequate food, is a growing problem in Canada and other Organisation of economic cooperation and development (OECD) countries. Government political orientations impact health policies and outcomes. We critically examined Canadian political rhetoric around HFI from 1995 to 2012 as a means to support effective healthy public policy argumentation. We analysed a data set comprised of Hansard extracts on HFI from the legislative debates of the Canadian federal and three provincial governments, using thematic coding guided by interpretivist theories of policy. Extracts were examined for content, jurisdiction, the political affiliation of the legislator speaking and governing status. Members of non-governing, or 'opposition' parties, dominated the rhetoric. A central hunger-as-poverty theme was used by legislators across the political spectrum, both in government and in opposition. Legislators differed in terms of policy approach around how income should flow to citizens facing HFI: income intervention on the left, pragmatism in the centre, reliance on markets on the right. This analysis is a case-example from Canada and caution must be exercised in terms of the generalizability of findings across jurisdictions. Despite this limitation, our findings can help healthy public policy advocates in designing and communicating HFI policy interventions in OECD countries with a similar left-right spectrum. First, even with a divisive health policy issue such as actions to address HFI, core themes around poverty are widely understood. Secondly, the non-polarizing centrist, pragmatist, approach may be strategically valuable. Thirdly, it is important to treat the rhetoric of opposition members differently from that of government members. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Exploration of the relationship between household food insecurity and diabetes in Canada.
Gucciardi, Enza; Vogt, Janet A; DeMelo, Margaret; Stewart, Donna E
2009-12-01
To determine the household food insecurity (HFI) prevalence in Canadians with diabetes and its relationship with diabetes management, self-care practices, and health status. We analyzed data from Canadians with diabetes aged >or=12 years (n = 6,237) from cycle 3.1 of the Canadian Community Health Survey, a population-based cross-sectional survey conducted in 2005. The HFI prevalence in Canadians with diabetes was compared with that in those without diabetes. The relationships between HFI and management services, self-care practices, and health status were examined for Ontarians with diabetes (n = 2,523). HFI was more prevalent among individuals with diabetes (9.3% [8.2-10.4]) than among those without diabetes (6.8% [6.5-7.0]) and was not associated with diabetes management services but was associated with physical inactivity (odds ratio 1.54 [95% CI 1.10-2.17]), lower fruit and vegetable consumption (0.52 [0.33-0.81]), current smoking (1.71 [1.09-2.69]), unmet health care needs (2.71 [1.74-4.23]), having been an overnight patient (2.08 [1.43-3.04]), having a mood disorder (2.18 [1.54-3.08]), having effects from a stroke (2.39 [1.32-4.32]), lower satisfaction with life (0.28 [0.18-0.43]), self-rated general (0.37 [0.21-0.66]) and mental (0.17 [0.10-0.29]) health, and higher self-perceived stress (2.04 [1.30-3.20]). The odds of HFI were higher for an individual in whom diabetes was diagnosed at age <40 years (3.08 [1.96-4.84]). HFI prevalence is higher among Canadians with diabetes and is associated with an increased likelihood of unhealthy behaviors, psychological distress, and poorer physical health.
High-pitched breath sounds indicate airflow limitation in asymptomatic asthmatic children.
Habukawa, Chizu; Nagasaka, Yukio; Murakami, Katsumi; Takemura, Tsukasa
2009-04-01
Asthmatic children may have airway dysfunction even when asymptomatic, indicating that their long-term treatment is less than optimal. Although airway dysfunction can be identified on lung function testing, performing these tests can be difficult in infants. We studied whether breath sounds reflect subtle airway dysfunction in asthmatic children. The highest frequency of inspiratory breaths sounds (HFI) and the highest frequency of expiratory breath sounds (HFE) were measured in 131 asthmatic children while asymptomatic and with no wheezes for more than 2 weeks. No child was being treated with inhaled corticosteroids (ICS). Breath sounds were recorded and analysed by sound spectrography and compared with spirometric parameters. After initial evaluation, cases with more than step 2 (mild persistent) asthma were treated using inhaled fluticasone (100-200 microg/day) for 1 month, and then breath sound analysis and pulmonary function testing were repeated. On initial evaluation, HFI correlated with the percentage of predicted FEF(50) (%FEF(50)), (r = -0.45, P < 0.001), the percentage of predicted FEF(75) (%FEF(75)) (r = -0.456, P < 0.001), and FEV(1) as a percentage of FVC (FEV(1)/FVC (%)) (r = -0.32, P < 0.001). HFI did not correlate with the percentage of predicted PEF (%PEF). The 69 children with lower than normal %FEF(50) were then treated with ICS. The %FEF(50) and %FEF(75) improved after ICS treatment, and increases in %FEF(50) (P < 0.005) correlated with decreases in HFI (P < 0.001). Higher HFI in asymptomatic asthmatic children may indicate small airway obstruction. Additional ICS treatment may improve the pulmonary function indices representing small airway function with simultaneous HFI decreases in such patients.
Planck 2013 results. VIII. HFI photometric calibration and mapmaking
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bertincourt, B.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Filliard, C.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Lellouch, E.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Maurin, L.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Moreno, R.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Santos, D.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Techene, S.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
This paper describes the methods used to produce photometrically calibrated maps from the Planck High Frequency Instrument (HFI) cleaned, time-ordered information. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To obtain the best calibration accuracy over such a large range, two different photometric calibration schemes have to be used. The 545 and 857 GHz data are calibrated by comparing flux-density measurements of Uranus and Neptune with models of their atmospheric emission. The lower frequencies (below 353 GHz) are calibrated using the solar dipole. A component of this anisotropy is time-variable, owing to the orbital motion of the satellite in the solar system. Photometric calibration is thus tightly linked to mapmaking, which also addresses low-frequency noise removal. By comparing observations taken more than one year apart in the same configuration, we have identified apparent gain variations with time. These variations are induced by non-linearities in the read-out electronics chain. We have developed an effective correction to limit their effect on calibration. We present several methods to estimate the precision of the photometric calibration. We distinguish relative uncertainties (between detectors, or between frequencies) and absolute uncertainties. Absolute uncertainties lie in the range from 0.54% to 10% from 100 to 857 GHz. We describe the pipeline used to produce the maps from the HFI timelines, based on the photometric calibration parameters, and the scheme used to set the zero level of the maps a posteriori. We also discuss the cross-calibration between HFI and the SPIRE instrument on board Herschel. Finally we summarize the basic characteristics of the set of HFI maps included in the 2013 Planck data release.
Collective nuclear stabilization in single quantum dots by noncollinear hyperfine interaction
NASA Astrophysics Data System (ADS)
Yang, Wen; Sham, L. J.
2012-06-01
We present a theory of efficient suppression of the collective nuclear spin fluctuation, which prolongs the electron spin coherence time through the noncollinear hyperfine interaction between the nuclear spins and the hole spin. This provides a general paradigm to combat decoherence by direct control of environmental noise, and a possible solution to the puzzling observation of symmetric broadening of the absorption spectra in two recent experiments [Xu , Nature (London)NATUAS0028-083610.1038/nature08120 459, 1105 (2009) and Latta , Nature Phys.1745-247310.1038/nphys1363 5, 758 (2009)].
Nuclear spin noise in the central spin model
NASA Astrophysics Data System (ADS)
Fröhling, Nina; Anders, Frithjof B.; Glazov, Mikhail
2018-05-01
We study theoretically the fluctuations of the nuclear spins in quantum dots employing the central spin model which accounts for the hyperfine interaction of the nuclei with the electron spin. These fluctuations are calculated both with an analytical approach using homogeneous hyperfine couplings (box model) and with a numerical simulation using a distribution of hyperfine coupling constants. The approaches are in good agreement. The box model serves as a benchmark with low computational cost that explains the basic features of the nuclear spin noise well. We also demonstrate that the nuclear spin noise spectra comprise a two-peak structure centered at the nuclear Zeeman frequency in high magnetic fields with the shape of the spectrum controlled by the distribution of the hyperfine constants. This allows for direct access to this distribution function through nuclear spin noise spectroscopy.
Electrical detection of nuclear spins in organic light-emitting diodes
NASA Astrophysics Data System (ADS)
Malissa, H.; Kavand, M.; Waters, D. P.; Lupton, J. M.; Vardeny, Z. V.; Saam, B.; Boehme, C.
2014-03-01
We present pulsed combined electrically detected electron paramagnetic and nuclear magnetic resonance experiments on MEH-PPV OLEDs. Spin dynamics in these structures are governed by hyperfine interactions between charge carriers and the surrounding hydrogen nuclei, which are abundant in these materials. Hyperfine coupling has been observed by monitoring the device current during coherent spin excitation. Electron spin echoes (ESEs) are detected by applying one additional readout pulse at the time of echo formation. This allows for the application of high-resolution spectroscopy based on ESE detection, such as electron spin echo envelope modulation (ESEEM) and electron nuclear double resonance (ENDOR) available for electrical detection schemes. We conduct electrically detected ESEEM and ENDOR experiments and show how hyperfine interactions in MEH-PPV with and without deuterated polymer side groups can be observed by device current measurements. We acknowledge support by the Department of Energy, Office of Basic Energy Sciences under Award #DE-SC0000909.
Smith, Lindsey; Ng, Shu Wen; Popkin, Barry M.
2015-01-01
Healthier foods initiatives (HFIs) by national food retailers offer an opportunity to improve the nutritional profile of packaged food purchases (PFPS). Using a longitudinal dataset of US household PFPs, with methods to account for selectivity of shopping at a specific retailer, we modeled the effect of Walmart’s HFI using counterfactual simulations to examine observed vs. expected changes in the nutritional profile of Walmart PFPs. From 2000 to 2013, Walmart PFPs showed major declines in energy, sodium, and sugar density, as well as declines in sugary beverages, grain-based desserts, snacks, and candy, beyond trends at similar retailers. However, post-HFI declines were similar to what we expected based on pre-HFI trends, suggesting that these changes were not attributable to Walmart’s HFI. These results suggest that food retailer-based HFIs may not be sufficient to improve the nutritional profile of food purchases. PMID:26526244
Menon, Samir; Zhu, Jack; Goyal, Deeksha; Khatib, Oussama
2017-07-01
Haptic interfaces compatible with functional magnetic resonance imaging (Haptic fMRI) promise to enable rich motor neuroscience experiments that study how humans perform complex manipulation tasks. Here, we present a large-scale study (176 scans runs, 33 scan sessions) that characterizes the reliability and performance of one such electromagnetically actuated device, Haptic fMRI Interface 3 (HFI-3). We outline engineering advances that ensured HFI-3 did not interfere with fMRI measurements. Observed fMRI temporal noise levels with HFI-3 operating were at the fMRI baseline (0.8% noise to signal). We also present results from HFI-3 experiments demonstrating that high resolution fMRI can be used to study spatio-temporal patterns of fMRI blood oxygenation dependent (BOLD) activation. These experiments include motor planning, goal-directed reaching, and visually-guided force control. Observed fMRI responses are consistent with existing literature, which supports Haptic fMRI's effectiveness at studying the brain's motor regions.
Schulzki, Grit; Nüßlein, Birgit; Sievers, Hartwig
2017-01-15
Teas and raw materials used as ingredients of herbal and fruit infusions (HFI) were analysed by means of ICP-MS for their content of aluminium, arsenic, cadmium, copper, lead and mercury in the dry product and in the infusion. Samples of tea (Camellia sinensis L. Kuntze) were selected to include different origins, types (black, green), leaf grades (whole leaf, broken, fannings, dust) and manufacturing techniques (orthodox, "crush, tear, curl"). The selected HFI raw materials (chamomile, elderberries, fennel, hibiscus, mate, peppermint, rooibos and rose hip) cover the most important matrices (flower, fruit, seed, herb, leaf) and reflect the economic significance of these HFI materials in trade. Infusions were prepared under standardised conditions representing typical household brewing. Transition rates for the investigated metals vary significantly but are mostly well below 100%. We propose default transition rates for metals to avoid overestimation of exposure levels from tea/HFI consumption. Copyright © 2016. Published by Elsevier Ltd.
Weigel, M Margaret; Armijos, Maria Mercedes
2015-01-01
Data from a nationally representative survey of Ecuadorian households with reproductive-aged women (n = 10,784) were used to analyze the prevalence of household food insufficiency (HFI) and its association with sociodemographic characteristics, food acquisition and expenditure patterns, dietary diversity, and anthropometric indicators. Fifteen percent of households had food insufficiency and 15% had marginal food sufficiency. HFI was associated with poverty-linked indicators. Marginally food sufficient households reported social and economic capital than food which appeared protective against HFI. Food insufficiency was associated with reduced household acquisition/expenditures on high quality protein and micronutrient-rich food sources. HFI was not associated with adult or adolescent female overweight/obesity but was associated with short adult stature (< 1.45 m). The ongoing nutrition transition in Ecuador is expected to continue to modify population food security, diet, and nutrition. Systematic surveillance of household level food security is needed to inform recent food-related policies and programs implemented by the Ecuadorian government.
Koltovaya, N A; Guerasimova, A S; Tchekhouta, I A; Devin, A B
2003-08-01
An increase in the mitochondrial rho(-) mutagenesis is a well-known response of yeast cells to mutations in numerous nuclear genes as well as to various kinds of stress. Despite extensive studies for several decades, the biological significance of this response is still not fully understood. The genetic approach to solving this enigma includes a study of genes that are required for the high incidence of spontaneous rho(-) mutants. We have obtained mutations of a few nuclear genes of that sort and found that mutations in certain genes, including CDC28, the central cell-cycle regulation gene, result in a decrease in spontaneous rho(-) mutability and simultaneously affect the maintenance of the yeast chromosomes and plasmids. Two more genes resembling CDC28 in this respect are identified in the present work as a result of the characterization of four new mutants. These two genes are NET1 and HFI1 which mediate important regulatory protein-protein interactions in the yeast cell. The effects of four mutations, including net1-srm and hfi1-srm, on the maintenance of the yeast mitochondrial genome, chromosomes and plasmids, as well as on the cell's sensitivity to ionizing radiation, are also described. The data presented suggest that the pleiotropic srm mutations determining coordinate changes in the fidelity of mitotic transmission of chromosomes, plasmids and mtDNA molecules identify genes that most probably operate high up in the hierarchy of the general genetic regulation of yeast. Copyright 2003 John Wiley & Sons, Ltd.
Determination of the Cosmic Infrared Background from COBE/FIRAS and Planck HFI Data
NASA Astrophysics Data System (ADS)
Kogut, Alan
Current determinations of the cosmic infrared background (CIB) at far-infrared to millimeter wavelengths have large uncertainties, on the order of 30%. We propose to make new, more accurate determinations of the CIB at these wavelengths using COBE /FIRAS and Planck High Frequency Instrument (HFI) Data. This work will enable a factor of two improvement in our understanding of the CIB. Planck was not designed to measure the monopole component of sky brightness, so the FIRAS data will be used to recalibrate the zero level of the HFI maps. Correlation of the recalibrated HFI maps with Galactic H I 21-cm line emission will be used to separate the Galactic foreground emission and determine the CIB in the HFI bands from 217 to 857 GHz, or 1380 to 350 microns. The high angular resolution and sensitivity of the HFI data will allow the correlations with H I to be established more accurately and to lower H I column density than is possible with the 7± resolution FIRAS data, resulting in significant improvement in the accuracy of the derived CIB. Correlations of the CIB-subtracted 857 GHz map with FIRAS maps averaged over broad frequency bins will then be used to determine CIB values at frequencies not observed by Planck. Uncertainties in the CIB results are expected to be as low as 14% for the HFI 857 GHz band. Our results will allow more accurate determination of the fraction of the CIB that is resolved by deep source surveys, and a tighter limit to be placed on the contribution to the CIB of any diffuse emission such as emission from intergalactic dust. Possible gray extinction by intergalactic dust may produce significant systematic error in determinations of dark energy parameters from type Ia supernova measurements, and our results will be important for placing a tighter upper limit on such extinction. Our CIB results will also provide tighter constraints on models of the evolution of star-forming galaxies, and will be important in constraining the evolution in density and luminosity of ultraluminous starburst galaxies at high redshift.
The validation of a home food inventory.
Fulkerson, Jayne A; Nelson, Melissa C; Lytle, Leslie; Moe, Stacey; Heitzler, Carrie; Pasch, Keryn E
2008-11-04
Home food inventories provide an efficient method for assessing home food availability; however, few are validated. The present study's aim was to develop and validate a home food inventory that is easily completed by research participants in their homes and includes a comprehensive range of both healthful and less healthful foods that are associated with obesity. A home food inventory (HFI) was developed and tested with two samples. Sample 1 included 51 adult participants and six trained research staff who independently completed the HFI in participants' homes. Sample 2 included 342 families in which parents completed the HFI and the Diet History Questionnaire (DHQ) and students completed three 24-hour dietary recall interviews. HFI items assessed 13 major food categories as well as two categories assessing ready-access to foods in the kitchen and the refrigerator. An obesogenic household food availability score was also created. To assess criterion validity, participants' and research staffs' assessment of home food availability were compared (staff = gold standard). Criterion validity was evaluated with kappa, sensitivity, and specificity. Construct validity was assessed with correlations of five HFI major food category scores with servings of the same foods and associated nutrients from the DHQ and dietary recalls. Kappa statistics for all 13 major food categories and the two ready-access categories ranged from 0.61 to 0.83, indicating substantial agreement. Sensitivity ranged from 0.69 to 0.89, and specificity ranged from 0.86 to 0.95. Spearman correlations between staff and participant major food category scores ranged from 0.71 to 0.97. Correlations between the HFI scores and food group servings and nutrients on the DHQ (parents) were all significant (p < .05) while about half of associations between the HFI and dietary recall interviews (adolescents) were significant (p < .05). The obesogenic home food availability score was significantly associated (p < .05) with energy intake of both parents and adolescents. This new home food inventory is valid, participant-friendly, and may be useful for community-based behavioral nutrition and obesity prevention research. The inventory builds on previous measures by including a wide range of healthful and less healthful foods rather than foods targeted for a specific intervention.
Kuehl, Thomas J; Speikermann, A Michael; Willis, Sherilyn A; Coffee, Andrea; Sulak, Patricia J
2008-04-01
To compare hormone levels and symptoms during transition from standard to extended oral contraceptive (OC) regimens. A prospective analysis of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol, and inhibin-B levels with symptoms during 21/7-day vs. 168/7-day extended OCs containing 3 mg of drosperinone and 30 mcg of ethinyl estradiol. Blood samples were obtained from 10 subjects in each of 4 weeks in the 21/7 regimen, in the first 6 weeks of the extended regimen, and again the week before, the week of and the week after the 7-day hormone-free interval (HFI) at the end of the extended regimen. All 4 hormones followed a cyclic pattern with decreasing levels during the 3 active pill weeks of the 21/7 cycle, followed by an increase during the 7-day HFI, which continued into the extended regimen. Levels then decreased during the extended regimen and remained low at week 24. During the 7-day HFI after the extended regimen FSH and LH again increased above baseline (p > 0.07). Hormone withdrawal symptoms increased at the end of 21 active pills with increasing severity during the 7-day HFI. Absence of pituitary and ovarian suppression associated with HFI leads to fluctuations in hormones and associated hormone withdrawal symptoms.
Razak, K A
2012-04-01
Frequency-modulated (FM) sweeps are common components of species-specific vocalizations. The intensity of FM sweeps can cover a wide range in the natural environment, but whether intensity affects neural selectivity for FM sweeps is unclear. Bats, such as the pallid bat, which use FM sweeps for echolocation, are suited to address this issue, because the intensity of echoes will vary with target distance. In this study, FM sweep rate selectivity of pallid bat auditory cortex neurons was measured using downward sweeps at different intensities. Neurons became more selective for FM sweep rates present in the bat's echolocation calls as intensity increased. Increased selectivity resulted from stronger inhibition of responses to slower sweep rates. The timing and bandwidth of inhibition generated by frequencies on the high side of the excitatory tuning curve [sideband high-frequency inhibition (HFI)] shape rate selectivity in cortical neurons in the pallid bat. To determine whether intensity-dependent changes in FM rate selectivity were due to altered inhibition, the timing and bandwidth of HFI were quantified at multiple intensities using the two-tone inhibition paradigm. HFI arrived faster relative to excitation as sound intensity increased. The bandwidth of HFI also increased with intensity. The changes in HFI predicted intensity-dependent changes in FM rate selectivity. These data suggest that neural selectivity for a sweep parameter is not static but shifts with intensity due to changes in properties of sideband inhibition.
NASA Astrophysics Data System (ADS)
Crooker, S. A.; Kelley, M. R.; Martinez, N.; Nie, W.; Mohite, A. D.; Smith, D. L.; Tretiak, S.; Ruden, P. P.
2014-03-01
Considerable attention in recent years has focused on the effects of applied magnetic fields on the conductance, photocurrent, electroluminescence (EL), and photoluminescence of nominally nonmagnetic organic semiconductor materials and devices. These magnetic field effects have proven useful in revealing the underlying physical mechanisms and relevant spin interactions that influence the electrical and optical properties in these organic systems (e.g., hyperfine coupling, exchange interactions, and spin-orbit coupling). Here we study the field-dependent properties of organic light-emitting diode (OLEDs) based on MTDATA/LiF/Bphen layered structures, in which exciplex recombination at the interface dominates the EL spectra. Small applied magnetic fields (~10 mT) are found to boost the net EL yield by up to 10%, due to a suppression of the mixing between singlet and triplet polaron pairs which, in turn, arises from hyperfine spin coupling of the polarons to the underlying nuclei of the host molecules. We discuss the dependence of these field-induced effects on the LiF barrier thickness, device bias, and on the orientation of the applied magnetic field, as well as the mechanisms responsible.
Scanning nuclear resonance imaging of a hyperfine-coupled quantum Hall system.
Hashimoto, Katsushi; Tomimatsu, Toru; Sato, Ken; Hirayama, Yoshiro
2018-06-07
Nuclear resonance (NR) is widely used to detect and characterise nuclear spin polarisation and conduction electron spin polarisation coupled by a hyperfine interaction. While the macroscopic aspects of such hyperfine-coupled systems have been addressed in most relevant studies, the essential role of local variation in both types of spin polarisation has been indicated in 2D semiconductor systems. In this study, we apply a recently developed local and highly sensitive NR based on a scanning probe to a hyperfine-coupled quantum Hall (QH) system in a 2D electron gas subject to a strong magnetic field. We succeed in imaging the NR intensity and Knight shift, uncovering the spatial distribution of both the nuclear and electron spin polarisation. The results reveal the microscopic origin of the nonequilibrium QH phenomena, and highlight the potential use of our technique in microscopic studies on various electron spin systems as well as their correlations with nuclear spins.
High-resolution internal state control of ultracold 23Na87Rb molecules
NASA Astrophysics Data System (ADS)
Guo, Mingyang; Ye, Xin; He, Junyu; Quéméner, Goulven; Wang, Dajun
2018-02-01
We report the full internal state control of ultracold 23Na87Rb molecules, including vibrational, rotational, and hyperfine degrees of freedom. Starting from a sample of weakly bound Feshbach molecules, we realize the creation of molecules in single hyperfine levels of both the rovibrational ground and excited states with a high-efficiency and high-resolution stimulated Raman adiabatic passage. This capability brings broad possibilities for investigating ultracold polar molecules with different chemical reactivities and interactions with a single molecular species. Moreover, starting from the rovibrational and hyperfine ground state, we achieve rotational and hyperfine control with one- and two-photon microwave spectroscopy to reach levels not accessible by the stimulated Raman transfer. The combination of these two techniques results in complete control over the internal state of ultracold polar molecules, which paves the way to study state-dependent molecular collisions and state-controlled chemical reactions.
NASA Astrophysics Data System (ADS)
Lomsadze, Bachana; Cundiff, Steven T.
2018-06-01
Frequency-comb based multidimensional coherent spectroscopy is a novel optical method that enables high-resolution measurement in a short acquisition time. The method's resolution makes multidimensional coherent spectroscopy relevant for atomic systems that have narrow resonances. We use double-quantum multidimensional coherent spectroscopy to reveal collective hyperfine resonances in rubidium vapor at 100 °C induced by dipole-dipole interactions. We observe tilted and elongated line shapes in the double-quantum 2D spectra, which have never been reported for Doppler-broadened systems. The elongated line shapes suggest that the signal is predominately from the interacting atoms that have a near zero relative velocity.
Scaling GDL for Multi-cores to Process Planck HFI Beams Monte Carlo on HPC
NASA Astrophysics Data System (ADS)
Coulais, A.; Schellens, M.; Duvert, G.; Park, J.; Arabas, S.; Erard, S.; Roudier, G.; Hivon, E.; Mottet, S.; Laurent, B.; Pinter, M.; Kasradze, N.; Ayad, M.
2014-05-01
After reviewing the majors progress done in GDL -now in 0.9.4- on performance and plotting capabilities since ADASS XXI paper (Coulais et al. 2012), we detail how a large code for Planck HFI beams Monte Carlo was successfully transposed from IDL to GDL on HPC.
NASA Astrophysics Data System (ADS)
D'yachkov, A. B.; Firsov, V. A.; Gorkunov, A. A.; Labozin, A. V.; Mironov, S. M.; Saperstein, E. E.; Tolokonnikov, S. V.; Tsvetkov, G. O.; Panchenko, V. Y.
2017-01-01
Laser resonant photoionization spectroscopy was used to study the hyperfine structure of the optical 3d84s2 {}3F4→ 3d84s4p {}3G^o3 and 3d94s {}3D3→ 3d84s4p {}3G^o3 transitions of 63Ni and 61Ni isotopes. Experimental spectra allowed us to derive hyperfine interaction constants and determine the magnetic dipole moment of the nuclear ground state of 63Ni for the first time: μ=+0.496(5)μ_N. The value obtained agrees well with the prediction of the self-consistent theory of finite Fermi systems.
EPR hyperfine structure of the Mo-related defect in CdWO4
NASA Astrophysics Data System (ADS)
Elsts, E.; Rogulis, U.
2005-01-01
The hyperfine structure (hf) of the electron paramagnetic resonance (EPR) spectrum of Mo-related impurity defects in CdWO4 crystals observed previously (U. Rogulis, Radiat. Meas. 29, 287 (1998) [1]) is reconsidered taking into account interactions with two different groups of neighbouring Cd nuclei. The best fit calculated EPR spectrum to the experimental is obtained considering 2 groups of 3 and 2 equivalent Cd nuclei, respectively.
Schröder, Leif
2007-01-01
The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the A MX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed.
Household food insecurity, nutritional status and morbidity in Brazilian children.
Gubert, Muriel Bauermann; Spaniol, Ana Maria; Bortolini, Gisele Ane; Pérez-Escamilla, Rafael
2016-08-01
To identify the association of household food insecurity (HFI) with anthropometric status, the risk of vitamin A deficiency and anaemia, morbidities such as cough and fever, and hospitalizations for diarrhoea and pneumonia in children under 5 years old. Cross-sectional study using data from the 2006 Brazilian Demographic and Health Survey. HFI was measured with the Brazilian Food Insecurity Measurement Scale (EBIA). Vitamin A deficiency and anaemia were assessed in blood samples. Child morbidities were reported by the child's mother and included cough, fever, and hospitalizations for diarrhoea and pneumonia. Regression results were expressed as unadjusted and adjusted OR and corresponding 95 % CI for severe food insecurity, with statistical significance set at P<0·05. Nationally representative survey. Children (n 4064) under 5 years old. There was no association between HFI and vitamin A deficiency, pneumonia, wasting or overweight. The prevalence of cough, fever, hospitalization for diarrhoea and stunting were associated with degree of HFI severity. There was a significant association of morbidities and stunting with severe food insecurity (v. food secure). After controlling for confounders, the association between severe food insecurity (v. food secure/rest of food insecurity categories) and the prevalence of common morbidities remained strong, showing that severely food-insecure children had a greater likelihood of experiencing cough (adjusted OR=1·79) and of being hospitalized for diarrhoea (adjusted OR=2·55). Severe HFI was associated with cough and severe diarrhoea among Brazilian children.
Fels, Heather; Steward, Rachel; Melamed, Alexander; Granat, Anna; Stanczyk, Frank Z; Mishell, Daniel R
2013-06-01
This study analyzes levels of progesterone, estradiol, norethindrone (NET) and ethinyl estradiol (EE) in serum and levels of NET in cervical mucus on the last day of the hormone-free interval (HFI) in users of 24/4 [norethindrone acetate (NETA)/EE-24] vs. 21/7 (NETA/EE-21) regimens. This was a randomized controlled, crossover, equivalency trial. Subjects were randomized to receive NETA/EE-24 or NETA/EE-21 for 2 months and then switched between study drugs. Blood and cervical mucus samples were obtained on Days 12-16 and on the last day of the HFI. From April 2010 to November 2011, 32 subjects were enrolled with 18 subjects completing all study visits. There were no statistically significant differences in either day 12-16 (p=.54) or last hormone-free day (p=.33) cervical mucus NET concentrations between the regimens. On the last day of the HFI, median serum progesterone levels did not differ significantly; however, users of NETA/EE-24 had higher levels of serum NET (p<.001) and users of NETA/EE-21 had higher levels of serum estradiol (p=.01). This data supports the fact that inhibition of the pituitary-ovarian axis occurs during oral contraceptive use and during the HFI. We demonstrated that a reduced HFI of 4 days resulted in better suppression of the ovarian hormone production, thereby reducing the risk of ovulation and potential contraceptive failure. Copyright © 2013 Elsevier Inc. All rights reserved.
Davit-Spraul, Anne; Costa, Catherine; Zater, Mokhtar; Habes, Dalila; Berthelot, Jacques; Broué, Pierre; Feillet, François; Bernard, Olivier; Labrune, Philippe; Baussan, Christiane
2008-08-01
We investigated the molecular basis of hereditary fructose intolerance (HFI) in 160 patients from 92 families by means of a PCR-based mutation screening strategy, consisting of restriction enzyme digestion and direct sequencing. Sixteen different mutations of the aldolase B (ALDOB) gene were identified in HFI patients. As in previous studies, p.A150P (64%), p.A175D (16%) and p.N335K (5%) were the most common mutated alleles, followed by p.R60X, p.A338V, c.360_363delCAAA (p.N120KfsX30), c.324G>A (p.K108K) and c.625-1G>A. Eight novel mutations were also identified in 10 families with HFI: a one-base deletion (c.146delT (p.V49GfsX27)), a small deletion (c.953del42bp), a small insertion (c.689ins TGCTAA (p.K230MfsX136)), one splice site mutation (c.112+1G>A), one nonsense mutation (c.444G>A (p.W148X)), and three missense mutations (c.170G>C (p.R57P), c.839C>A (p.A280P) and c.932T>C (p.L311P)). Our strategy allows to diagnose 75% of HFI patients using restriction enzymatic analysis and to enlarge the diagnosis to 97% of HFI patients when associated with direct sequencing.
Sulak, Patricia J; Carl, Jenny; Gopalakrishnan, Isai; Coffee, Andrea; Kuehl, Thomas J
2004-10-01
To evaluate in a clinical practice setting the acceptance, continuation and variability of extending the active interval of oral contraceptives (OCs) with introduction of a shortened hormone-free interval (HFI) to manage breakthrough bleeding. A retrospective review was undertaken of patients seen by one obstetrician/gynecologist and counseled on extending the active interval of OCs with a shortened HFI of 3-4 days to manage bleeding. Electronic medical records were searched for the phrase "extending the number of active pills" for patients counseled between January 1, 2000, and January 31, 2003, with follow-up through January 31, 2004. A structured query of each patient's initial and follow-up records was performed. The 220 patients counseled on the extended regimen were 14-52 years of age (mean 36.4, SD 9.3 years). At initial counseling before extending, the majority of patients cited more than one reason for using OCs in the standard fashion with 59% using OCs for noncontraceptive reasons. Reasons for extending the active interval of OCs included premenstrual symptoms (45%), dysmenorrhea/pelvic pain (40%), heavy withdrawal bleeding (36%), menstrual associated headaches (35%), convenience (13%), acne associated with menses (10%) and other (15%). Of the 181 patients with follow-up data, 174 (96%) attempted an extended regimen with 121 (67%) continuing to do so at last follow-up. Follow-up intervals ranged from 0.3 to 3.8 years (mean 1.6 years). Using Kaplan-Meier product limit survival analysis, 60% of patients continued using extended patterns of OCs for more than 2 years. For 121 currently extending, the HFI varied from 0 to 7 days with 88% utilizing a 0 to 4 day HFI. Sixty percent of patients offered extending the active interval and shortening the HFI of OCs initiate and continue this pattern for more than 2 years without serious sequelae or pregnancy while individually directing both the number of days of continuous pills and the length of the HFI. Copyright 2004 Elsevier Inc.
Na, Muzi; Mehra, Sucheta; Christian, Parul; Ali, Hasmot; Shaikh, Saijuddin; Shamim, Abu Ahmed; Labrique, Alain B; Klemm, Rolf Dw; Wu, Lee Sf; West, Keith P
2016-10-01
Household food insecurity (HFI) can lead to a poor diet and malnutrition. Yet, little is known about the extent to which maternal diet covaries with food insecurity during pregnancy and lactation. Longitudinal associations between HFI and maternal dietary diversity from early pregnancy to 3 mo postpartum were examined in rural Bangladesh. We repeatedly assessed dietary intake by using a 7-d food-frequency questionnaire in the first and third trimesters of pregnancy and at 3 mo postpartum among 14,600 women enrolled into an antenatal micronutrient supplementation trial. Maternal dietary diversity score (DDS) was constructed as the sum of 10 food groups reportedly consumed at each assessment. Households were classified at 6 mo postpartum as being food secure or having mild, moderate, or severe HFI on the basis of a 9-item standard scale. Generalized estimating equations were used to estimate the longitudinal relation between HFI status and DDS and the likelihood of individual food-group consumption, adjusting for confounders at the maternal and household levels. The DDS decreased with progressively worse HFI, an association best explained by a derived household wealth index. Compared with women from food-secure households, women of mild, moderate, and severe HFI were less likely, in a dose-response fashion, to have consumed dairy products [adjusted ORs (95% CIs): 0.73 (0.69, 0.78), 0.62 (0.58, 0.66), and 0.52 (0.48, 0.55), respectively], eggs [0.81 (0.76, 0.85), 0.73 (0.68, 0.77), and 0.61 (0.57, 0.65)], meat [0.83 (0.79, 0.88), 0.73 (0.69, 0.78), and 0.60 (0.56, 0.64)], fish [0.87 (0.80, 0.94), 0.76 (0.70, 0.83), and 0.59 (0.54, 0.65)], legumes and nuts [0.88 (0.83, 0.93), 0.81 (0.76, 0.87), and 0.79 (0.74, 0.85)], and yellow and orange fruit and vegetables [0.85 (0.80, 0.91), 0.78 (0.73, 0.84), and 0.72 (0.67, 0.78)]. Neither intakes of dark-green leafy vegetables nor of vegetable oil were associated with HFI status. Antenatal and postnatal maternal dietary diversity, especially intakes of animal-source foods, fruit, and vegetables, declined with worsening food insecurity in rural Bangladesh. © 2016 American Society for Nutrition.
Brearley, Matt; Walker, Anthony
2015-01-01
Rapidly cooling firefighters post emergency response is likely to increase the operational effectiveness of fire services during prolonged incidents. A variety of techniques have therefore been examined to return firefighters core body temperature to safe levels prior to fire scene re-entry or redeployment. The recommendation of forearm immersion (HFI) in cold water by the National Fire and Protection Association preceded implementation of this active cooling modality by a number of fire services in North America, South East Asia and Australia. The vascularity of the hands and forearms may expedite body heat removal, however, immersion of the torso, pelvis and/or lower body, otherwise known as multi-segment immersion (MSI), exposes a greater proportion of the body surface to water than HFI, potentially increasing the rates of cooling conferred. Therefore, this review sought to establish the efficacy of HFI and MSI to rapidly reduce firefighters core body temperature to safe working levels during rest periods. A total of 38 studies with 55 treatments (43 MSI, 12 HFI) were reviewed. The core body temperature cooling rates conferred by MSI were generally classified as ideal (n = 23) with a range of ~0.01 to 0.35 °C min(-1). In contrast, all HFI treatments resulted in unacceptably slow core body temperature cooling rates (~0.01 to 0.05 °C min(-1)). Based upon the extensive field of research supporting immersion of large body surface areas and comparable logistics of establishing HFI or MSI, it is recommended that fire and rescue management reassess their approach to fireground rehabilitation of responders. Specifically, we question the use of HFI to rapidly lower firefighter core body temperature during rest periods. By utilising MSI to restore firefighter Tc to safe working levels, fire and rescue services would adopt an evidence based approach to maintaining operational capability during arduous, sustained responses. While the optimal MSI protocol will be determined by the specifics of an individual response, maximising the body surface area immersed in circulated water of up to 26 °C for 15 min is likely to return firefighter Tc to safe working levels during rest periods. Utilising cooler water temperatures will expedite Tc cooling and minimise immersion duration.
NASA Astrophysics Data System (ADS)
Kirova, T.; Cinins, A.; Efimov, D. K.; Bruvelis, M.; Miculis, K.; Bezuglov, N. N.; Auzinsh, M.; Ryabtsev, I. I.; Ekers, A.
2017-10-01
This paper is devoted to clarifying the implications of hyperfine (HF) interaction in the formation of adiabatic (i.e., "laser-dressed") states and their expression in the Autler-Townes (AT) spectra. We first use the Morris-Shore model [J. R. Morris and B. W. Shore, Phys. Rev. A 27, 906 (1983), 10.1103/PhysRevA.27.906] to illustrate how bright and dark states are formed in a simple reference system where closely spaced energy levels are coupled to a single state with a strong laser field with the respective Rabi frequency ΩS. We then expand the simulations to realistic hyperfine level systems in Na atoms for a more general case when non-negligible HF interaction can be treated as a perturbation in the total system Hamiltonian. A numerical analysis of the adiabatic states that are formed by coupling of the 3 p3 /2 and 4 d5 /2 states by the strong laser field and probed by a weak laser field on the 3 s1 /2-3 p3 /2 transition yielded two important conclusions. Firstly, the perturbation introduced by the HF interaction leads to the observation of what we term "chameleon" states—states that change their appearance in the AT spectrum, behaving as bright states at small to moderate ΩS, and fading from the spectrum similarly to dark states when ΩS is much larger than the HF splitting of the 3 p3 /2 state. Secondly, excitation by the probe field from two different HF levels of the ground state allows one to address orthogonal sets of adiabatic states; this enables, with appropriate choice of ΩS and the involved quantum states, a selective excitation of otherwise unresolved hyperfine levels in excited electronic states.
High-field Overhauser dynamic nuclear polarization in silicon below the metal-insulator transition.
Dementyev, Anatoly E; Cory, David G; Ramanathan, Chandrasekhar
2011-04-21
Single crystal silicon is an excellent system to explore dynamic nuclear polarization (DNP), as it exhibits a continuum of properties from metallic to insulating as a function of doping concentration and temperature. At low doping concentrations DNP has been observed to occur via the solid effect, while at very high-doping concentrations an Overhauser mechanism is responsible. Here we report the hyperpolarization of (29)Si in n-doped silicon crystals, with doping concentrations in the range of (1-3) × 10(17) cm(-3). In this regime exchange interactions between donors become extremely important. The sign of the enhancement in our experiments and its frequency dependence suggest that the (29)Si spins are directly polarized by donor electrons via an Overhauser mechanism within exchange-coupled donor clusters. The exchange interaction between donors only needs to be larger than the silicon hyperfine interaction (typically much smaller than the donor hyperfine coupling) to enable this Overhauser mechanism. Nuclear polarization enhancement is observed for a range of donor clusters in which the exchange energy is comparable to the donor hyperfine interaction. The DNP dynamics are characterized by a single exponential time constant that depends on the microwave power, indicating that the Overhauser mechanism is a rate-limiting step. Since only about 2% of the silicon nuclei are located within 1 Bohr radius of the donor electron, nuclear spin diffusion is important in transferring the polarization to all the spins. However, the spin-diffusion time is much shorter than the Overhauser time due to the relatively weak silicon hyperfine coupling strength. In a 2.35 T magnetic field at 1.1 K, we observed a DNP enhancement of 244 ± 84 resulting in a silicon polarization of 10.4 ± 3.4% following 2 h of microwave irradiation.
NASA Astrophysics Data System (ADS)
Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.
1990-06-01
Sub-Doppler spectra of the A 7Π-X 7Σ+ (0,0) band of gas phase MnH near 5680 Å were recorded by intermodulated fluorescence spectroscopy. The spectra reveal hyperfine splittings arising from both the 55Mn and 1H nuclear spins. Internal hyperfine perturbations have been observed between the different spin components of the ground state at low N`. From a preliminary analysis of several rotational lines originating from the isolated and unperturbed F1(J`=3) spin component of the X 7Σ+(N`=0) level, the 55Mn Fermi contact interaction in the ground state has been measured as bF=Aiso =276(1) MHz. This value is 11% smaller than the value obtained by Weltner et al. from an electron-nuclear double resonance (ENDOR) study of MnH in an argon matrix at 4 K. This unprecedented gas-to-matrix shift in the Fermi contact parameter is discussed.
An ESR study of the stable radical in a γ-irradiated single crystal of 17α-dydroxy-progesterone
NASA Astrophysics Data System (ADS)
Krzyminiewski, R.; Pietrzak, J.; Konopka, R.
1990-11-01
Electron spin resonance spectroscopy was used to investigate γ-radiation damage of 17α-hydroxy-progesterone molecules in a single crystal. Two types of radicals with different rates of recombination were observed and a definite structure was assigned to the specimen by analyzing the orientational variation of the spectra. The unpaired electron of the radical is delocalized in the 2 pz orbitals of the C(6), C(4) and C(3) atoms, giving rise to a hyperfine spectrum by interaction with two equivalent α-protons in positions 4 and 6 and with two non-equivalent β-protons attached to C(7). The hyperfine coupling tensors are reported, together with the g tensor of the radical. The presence of additional intermolecular interactions caused by hydrogen bonding between O(3) and HO(17) of two molecules does not change the type of radical (which is the same as the stable radical in a γ-irradiated single crystal of progesterone) but does increase the hyperfine coupling anisotropy.
NASA Astrophysics Data System (ADS)
Weber, Stefan; Kothe, Gerd; Norris, James R.
1997-04-01
The influence of anisotropic hyperfine interaction on transient nutation electron paramagnetic resonance (EPR) of light-induced spin-correlated radical pairs is studied theoretically using the density operator formalism. Analytical expressions for the time evolution of the transient EPR signal during selective microwave excitation of single transitions are derived for a model system comprised of a weakly coupled radical pair and one hyperfine-coupled nucleus with I=1/2. Zero-quantum electron coherence and single-quantum nuclear coherence are created as a result of the sudden light-induced generation of the radical pair state from a singlet-state precursor. Depending on the relative sizes of the nuclear Zeeman frequency and the secular and pseudo-secular parts of the hyperfine coupling, transitions between levels with different nuclear spin orientations are predicted to modulate the time-dependent EPR signal. These modulations are in addition to the well-known transient nutations and electron zero-quantum precessions. Our calculations provide insight into the mechanism of recent experimental observations of coherent nuclear modulations in the time-resolved EPR signals of doublets and radical pairs. Two distinct mechanisms of the modulations are presented for various microwave magnetic field strengths. The first modulation scheme arises from electron and nuclear coherences initiated by the laser excitation pulse and is "read out" by the weak microwave magnetic field. While the relative modulation depth of these oscillations with respect to the signal intensity is independent of the Rabi frequency, ω1, the frequencies of this coherence phenomenon are modulated by the effective microwave amplitude and determined by the nuclear Zeeman interaction and hyperfine coupling constants as well as the electron-electron spin exchange and dipolar interactions between the two radical pair halves. In a second mechanism the modulations are both created and detected by the microwave radiation. Here, the laser pulse merely defines the beginning of the microwave-induced coherent time evolution. This second mechanism appears the most consistent with current experimental observations.
NASA Astrophysics Data System (ADS)
Zhang, Tingxian; Xie, Luyou; Li, Jiguang; Lu, Zehuang
2017-07-01
We calculated the magnetic dipole and the electric quadrupole hyperfine interaction constants of 3 s 3 p 3,1P1o states and the isotope shift, including mass and field shift, factors for transitions from these two states to the ground state 3 s 2 1S0 in Al+ ions using the multiconfiguration Dirac-Hartree-Fock method. The effects of the electron correlations and the Breit interaction on these physical quantities were investigated in detail based on the active space approach. It is found that the core-core and the higher order correlations are considerable for evaluating the uncertainties of the atomic parameters concerned. The uncertainties of the hyperfine interaction constants in this work are less than 1.6%. Although the isotope shift factors are highly sensitive to the electron correlations, reasonable uncertainties were obtained by exploring the effects of the electron correlations. Moreover, we found that the relativistic nuclear recoil corrections to the mass shift factors are very small and insensitive to the electron correlations for Al+. These atomic parameters present in this work are valuable for extracting the nuclear electric quadrupole moments and the mean-square charge radii of Al isotopes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, G.; Miller, R.; Ogden, L.
2016-09-05
Separating the influence of hyperfine from spin-orbit interactions in spin-dependent carrier recombination and dissociation processes necessitates magnetic resonance spectroscopy over a wide range of frequencies. We have designed compact and versatile coplanar waveguide resonators for continuous-wave electrically detected magnetic resonance and tested these on organic light-emitting diodes. By exploiting both the fundamental and higher-harmonic modes of the resonators, we cover almost five octaves in resonance frequency within a single setup. The measurements with a common π-conjugated polymer as the active material reveal small but non-negligible effects of spin-orbit interactions, which give rise to a broadening of the magnetic resonance spectrummore » with increasing frequency.« less
NASA Astrophysics Data System (ADS)
Pal'Chikov, V. G.
2000-08-01
A quantum-electrodynamical (QED) perturbation theory is developed for hydrogen and hydrogen-like atomic systems with interaction between bound electrons and radiative field being treated as the perturbation. The dependence of the perturbed energy of levels on hyperfine structure (hfs) effects and on the higher-order Stark effect is investigated. Numerical results have been obtained for the transition probability between the hfs components of hydrogen-like bismuth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, M.B.
1962-09-01
The method of atomic-beam radiofrequency spectroscopy was used to determine some nuclear and atomic properties of Lu/sup 176m/, Br/sup 80/, Br/sup 80m/, and I/sup 132/. Hyperfine structure me asurements were raade to determine the magnetic dipole interaction constants and the electric quadrupole interaction constants of all these isotopes. Also the nuclear spin and the electronic g/sub J/ factor were measured for Lu/sup 176m/, and the nuclear magnetic dipole moments and the electric quadrupole moments for the isotopes were calculated. All results are listed. 62 references. (auth)
NASA Astrophysics Data System (ADS)
Jeong, Junho; Briere, Tina M.; Sahoo, N.; Das, T. P.; Ohira, Seiko; Nishiyama, K.; Nagamine, K.
2000-08-01
First-principles unrestricted Hartree-Fock theory is used to obtain the trapping sites for muon and muonium in ferromagnetic p-Cl-Ph-CHN-TEMPO (4-( p-chlorobenzylideneamino)- 2,2,6,6-tetramethylpiperidin-1-yloxyl) and the hyperfine interaction tensors for these sites. Using the calculated hyperfine interactions to fit the two experimentally observed muon spin rotation frequencies, it has been concluded that the two most likely candidates for explaining the experimental data are a muon trapped at the chlorine site and a singlet muonium state at the radical oxygen. The direction of the easy axis is also determined.
Nagaoka's atomic model and hyperfine interactions.
Inamura, Takashi T
2016-01-01
The prevailing view of Nagaoka's "Saturnian" atom is so misleading that today many people have an erroneous picture of Nagaoka's vision. They believe it to be a system involving a 'giant core' with electrons circulating just outside. Actually, though, in view of the Coulomb potential related to the atomic nucleus, Nagaoka's model is exactly the same as Rutherford's. This is true of the Bohr atom, too. To give proper credit, Nagaoka should be remembered together with Rutherford and Bohr in the history of the atomic model. It is also pointed out that Nagaoka was a pioneer of understanding hyperfine interactions in order to study nuclear structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modi, K. B., E-mail: kunalbmodi2003@yahoo.com; Raval, P. Y.; Dulera, S. V.
Two specimens of copper ferrite, CuFe{sub 2}O{sub 4}, have been synthesized by double sintering ceramic technique with different thermal history i.e. slow cooled and quenched. X-ray diffractometry has confirmed single phase fcc spinel structure for slow cooled sample while tetragonal distortion is present in quenched sample. Mossbauer spectral analysis for slow-cooled copper ferrite reveals super position of two Zeeman split sextets along with paramagnetic singlet in the centre position corresponds to delafossite (CuFeO{sub 2}) phase that is completely absent in quenched sample. The hyperfine interaction parameters are highly influenced by heat treatment employed.
Carpenter, Janet S; Bakoyannis, Giorgos; Otte, Julie L; Chen, Chen X; Rand, Kevin L; Woods, Nancy; Newton, Katherine; Joffe, Hadine; Manson, JoAnn E; Freeman, Ellen W; Guthrie, Katherine A
2017-08-01
To conduct psychometric analyses to condense the Hot Flash-Related Daily Interference Scale (HFRDIS) into a shorter form termed the Hot Flash Interference (HFI) scale; evaluate cut-points for both scales; and establish minimally important differences (MIDs) for both scales. We analyzed baseline and postrandomization patient-reported data pooled across three randomized trials aimed at reducing vasomotor symptoms (VMS) in 899 midlife women. Trials were conducted across five MsFLASH clinical sites between July 2009 and October 2012. We eliminated HFRDIS items based on experts' content validity ratings and confirmatory factor analysis, and evaluated cut-points and established MIDs by mapping HFRDIS and HFI to other measures. The three-item HFI (interference with sleep, mood, and concentration) demonstrated strong internal consistency (alphas of 0.830 and 0.856), showed good fit to the unidimensional "hot flash interference factor," and strong convergent validity with HFRDIS scores, diary VMS, and menopausal quality of life. For both scales, cut-points of mild (0-3.9), moderate (4-6.9), and severe (7-10) interference were associated with increasing diary VMS ratings, sleep, and anxiety. The average MID was 1.66 for the HFRDIS and 2.34 for the HFI. The HFI is a brief assessment of VMS interference and will be useful in busy clinics to standardize VMS assessment or in research studies where response burden may be an issue. The scale cut-points and MIDs should prove useful in targeting those most in need of treatment, monitoring treatment response, and interpreting existing and future research findings.
A case of extensive hyperostosis frontalis interna in an 87-year-old female human cadaver.
Talarico, Ernest F; Prather, Andrew D; Hardt, Kevin D
2008-04-01
Hyperostosis frontalis interna (HFI) is a condition that involves thickening of the inner surface of the frontal bone with sparing of the midline. Little is known about the etiology and clinical presentation of HFI. We report unusual findings in a woman with extensive Type D hyperostosis of the frontal bone and a large hyperostotic nodule in the parietal bone with impingement on the precentral gyrus, distinguishing this from the common form of HFI. The scalp was dissected from the cranial vault, and the calvaria and brain were removed and digitally imaged. Bone specimens were embedded in methyl methacrylate plastic, sectioned, and stained using the Von Kossa Method with MacNeal's tetrachrome. Medical records were reviewed, and additional history was obtained through interviews with the donor's family. The calvaria had extensive, bilateral thickening of the frontal bone with irregular topography and clearly demarcated borders. The dura was adherent to all hyperostotic regions. A 3.5-cm nodule was visible on the inner table of the left parietal bone. The dura and cerebrum showed compression in this region, but it was unclear if this resulted in clinical ramifications. Microscopic analysis revealed a larger proportion of cancellous bone was present in regions of macroscopic hyperostosis. Quantitative analysis of sections through areas of gross hyperostosis demonstrated a lower proportion of lamellar bone than in the control. The patient exhibited symptoms that have been correlated to HFI in previous studies. We suggest that the HFI disease process was responsible for the manifestation of these symptoms in this patient. (c) 2008 Wiley-Liss, Inc.
Burgos, Jose L; Yee, Daniel; Csordas, Thomas; Vargas-Ojeda, Adriana C; Segovia, Luis A; Strathdee, Steffanie A; Olivares-Nevarez, Jose A; Ojeda, Victoria D
2015-01-01
The sizeable US Latino population calls for increasing the pipeline of minority and bilingual physicians who can provide culturally competent care. Currently, only 5.5% of US providers are Hispanic/Latino, compared with 16% of the US population (i.e., >50.5 million persons). By 2060, it is predicted that about one-third of all US residents will be of Latino ethnicity. This article describes the Health Frontiers in Tijuana Undergraduate Internship Program (HFiT-UIP), a new quarterly undergraduate internship program based at a US-Mexico binational student-run free clinic and sponsored by the University of California, San Diego School of Medicine and the Universidad Autónoma de Baja California in Tijuana, Mexico. The HFiT-UIP provides learning opportunities for students and underrepresented minorities interested in medical careers, specifically Latino health. The HFiT-UIP might serve as a model for other educational partnerships across the US-Mexico border region and may help minority and other undergraduates seeking academic and community-based enrichment experiences. The HFiT-UIP can also support students' desires to learn about Latino, border, and global health within resource-limited settings.
NASA Astrophysics Data System (ADS)
Collauto, A.; Feintuch, A.; Qi, M.; Godt, A.; Meade, T.; Goldfarb, D.
2016-02-01
Complexes of the Gd(III) ion are currently being established as spin labels for distance determination in biomolecules by pulse dipolar spectroscopy. Because Gd(III) is an f ion, one expects electron spin density to be localized on the Gd(III) ion - an important feature for the mentioned application. Most of the complex ligands have nitrogens as Gd(III) coordinating atoms. Therefore, measurement of the 14N hyperfine coupling gives access to information on the localization of the electron spin on the Gd(III) ion. We carried out W-band, 1D and 2D 14N and 1H ENDOR measurements on the Gd(III) complexes Gd-DOTA, Gd-538, Gd-595, and Gd-PyMTA that serve as spin labels for Gd-Gd distance measurements. The obtained 14N spectra are particularly well resolved, revealing both the hyperfine and nuclear quadrupole splittings, which were assigned using 2D Mims ENDOR experiments. Additionally, the spectral contributions of the two different types of nitrogen atoms of Gd-PyMTA, the aliphatic N atom and the pyridine N atom, were distinguishable. The 14N hyperfine interaction was found to have a very small isotropic hyperfine component of -0.25 to -0.37 MHz. Furthermore, the anisotropic hyperfine interactions with the 14N nuclei and with the non-exchangeable protons of the ligands are well described by the point-dipole approximation using distances derived from the crystal structures. We therefore conclude that the spin density is fully localized on the Gd(III) ion and that the spin density distribution over the nuclei of the ligands is rightfully ignored when analyzing distance measurements.
Magnetism of the 35 K superconductor CsEuFe4As4
NASA Astrophysics Data System (ADS)
Albedah, Mohammed A.; Nejadsattari, Farshad; Stadnik, Zbigniew M.; Liu, Yi; Cao, Guang-Han
2018-04-01
The results of ab initio hyperfine-interaction parameters calculations, and of x-ray diffraction and 57Fe and 151Eu Mössbauer spectroscopy study of the new 35 K superconductor CsEuFe4As4 are reported. The superconductor crystallizes in the tetragonal space group P4/mmm with the lattice parameters a = 3.8956(1) Å and c = 13.6628(5) Å. It is demonstrated unequivocally that there is no magnetic order of the Fe magnetic moments down to 2.1 K and that the ferromagnetic order is associated with the Eu magnetic moments. The Curie temperature TC = 15.97(8) K determined from the temperature dependence of the hyperfine magnetic field at 151Eu nuclei is shown to be compatible with the temperature dependence of the transferred hyperfine magnetic field at 57Fe nuclei that is induced by the ferromagnetically ordered Eu sublattice. The Eu magnetic moments are shown to be perpendicular to the crystallographic c-axis. The temperature dependence of the principal component of the electric field gradient tensor, both at Fe and Eu sites, is well described by a T 3/2 power-law relation. Good agreement between the calculated and measured hyperfine-interaction parameters is observed. The Debye temperature of CsEuFe4As4 is found to be 295(3) K.
Mössbauer spectroscopy measurements on the 35.5 K superconductor Rb1 -δEuFe4As4
NASA Astrophysics Data System (ADS)
Albedah, Mohammed A.; Nejadsattari, Farshad; Stadnik, Zbigniew M.; Liu, Yi; Cao, Guang-Han
2018-04-01
The results of x-ray diffraction and 57Fe and 151Eu Mössbauer spectroscopy measurements, supplemented with ab initio hyperfine-interaction parameter calculations, on the new 35.5 K superconductor Rb1 -δEuFe4As4 are presented. The superconductor crystallizes in the tetragonal space group P 4 /m m m with the lattice parameters a =3.8849 (1 ) Å and c =13.3370 (3 ) Å. It is shown that there is no magnetic order of the Fe magnetic moments down to 2.1 K and that the ferromagnetic order is associated solely with the Eu magnetic moments. The Curie temperature TC=16.54 (8 ) K is determined from the temperature dependence of both the hyperfine magnetic field at 151Eu nuclei and the transferred hyperfine magnetic field at 57Fe nuclei that is induced by the ferromagnetically ordered Eu sublattice. The Eu magnetic moments are demonstrated to be perpendicular to the crystallographic c axis. The temperature dependence of the principal component of the electric field gradient tensor, at both Fe and Eu sites, is well described by a T3 /2 power-law relation. Good agreement between the calculated and measured hyperfine-interaction parameters is observed. The Debye temperature of Rb1 -δEuFe4As4 is found to be 391(8) K.
Control of Spatially Inhomogeneous Shear Flows
2009-11-27
vectors fi with unit norm represent the eigenfunctions of H∗H, i.e. H∗ Hfi = σ 2i fi , (3.11) then the output energy will be given by the square of the so...modes, it is convenient to show that φoci are the eigenmodes of PQ; multiplying (3.11) with Lc yields LcH∗ Hfi = PQφoci = σ 2i φoci . (3.18) The
Bermúdez-Millán, Angela; Pérez-Escamilla, Rafael; Segura-Pérez, Sofia; Damio, Grace; Chhabra, Jyoti; Osborn, Chandra Y; Wagner, Julie
2016-10-01
Evidence increasingly indicates that poor sleep quality is a major public health concern. Household food insecurity (HFI) disproportionately affects Latinos and is a novel risk factor for poor sleep quality. Psychological distress may be a potential mechanism through which HFI affects sleep quality. Sleep, food insecurity, and distress are linked to type 2 diabetes mellitus. We examined the relations between HFI, psychological distress, and sleep quality and tested whether psychological distress mediates the relation between HFI and sleep in people with diabetes mellitus. Latinos with type 2 diabetes mellitus (n = 121) who completed baseline assessments for the CALMS-D (Community Health Workers Assisting Latinos Manage Stress and Diabetes) stress management intervention trial completed the US Household Food Security Survey, and measures of depressive symptoms [Personal Health Questionnaire Depression Scale (PHQ-8)], anxiety symptoms [Patient-Reported Outcomes Measurement Information System (PROMIS)-short], diabetes distress [Problem Areas in Diabetes Questionnaire (PAID-5)], and sleep quality [Pittsburgh Sleep Quality Index (PSQI)]. Psychological distress was operationalized with the PHQ-8, PROMIS-short, and PAID-5 scales. We used unadjusted and adjusted indirect effect tests with bias-corrected bootstrapped 95% CIs on 10,000 samples to test both relations between variables and potential mediation. Mean age was 61 y, 74% were women, and 67% were food insecure. Experiencing HFI was associated with both greater psychological distress and worse sleep quality (P < 0.05). Depressive symptoms (adjusted R 2 : 2.22, 95% CI: 1.27, 3.42), anxiety symptoms (adjusted R 2 : 1.70, 95% CI: 0.87, 2.85), and diabetes mellitus distress (adjusted R 2 : 0.60, 95% CI: 0.11, 1.32) each mediated the relation between HFI and worse sleep quality with and without adjustment for age, education, income, marital status, and employment status. Household food insecurity is a common and potent household stressor that is associated with suboptimal sleep quality through psychological distress. Efforts to improve food security and decrease psychological distress may yield improved sleep in this high-risk population. The CALMS-D stress management trial was registered at clinicaltrials.gov as NCT01578096. © 2016 American Society for Nutrition.
Nagaoka’s atomic model and hyperfine interactions
INAMURA, Takashi T.
2016-01-01
The prevailing view of Nagaoka’s “Saturnian” atom is so misleading that today many people have an erroneous picture of Nagaoka’s vision. They believe it to be a system involving a ‘giant core’ with electrons circulating just outside. Actually, though, in view of the Coulomb potential related to the atomic nucleus, Nagaoka’s model is exactly the same as Rutherford’s. This is true of the Bohr atom, too. To give proper credit, Nagaoka should be remembered together with Rutherford and Bohr in the history of the atomic model. It is also pointed out that Nagaoka was a pioneer of understanding hyperfine interactions in order to study nuclear structure. PMID:27063182
Aghanim, N.; Ashdown, M.; Aumont, J.; ...
2016-12-12
This study describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration procedures, new and more complete end-to-end simulations, and a set of robust internal consistency checks on the resulting maps. These maps, at 100, 143, 217, and 353 GHz, are early versions of those that will be released in final form later in 2016. The improvements allow us to determine the cosmic reionization optical depth τ using, for the first time, the low-multipole EE data from HFI, reducingmore » significantly the central value and uncertainty, and hence the upper limit. Two different likelihood procedures are used to constrain τ from two estimators of the CMB E- and B-mode angular power spectra at 100 and 143 GHz, after debiasing the spectra from a small remaining systematic contamination. These all give fully consistent results. A further consistency test is performed using cross-correlations derived from the Low Frequency Instrument maps of the Planck 2015 data release and the new HFI data. For this purpose, end-to-end analyses of systematic effects from the two instruments are used to demonstrate the near independence of their dominant systematic error residuals. The tightest result comes from the HFI-based τ posterior distribution using the maximum likelihood power spectrum estimator from EE data only, giving a value 0.055 ± 0.009. Finally, in a companion paper these results are discussed in the context of the best-fit PlanckΛCDM cosmological model and recent models of reionization.« less
Jones, Andrew D; Mundo-Rosas, Verónica; Cantoral, Alejandra; Levy, Teresa Shamah
2017-10-01
We aimed to determine the association between household food insecurity (HFI) and the co-occurrence of overweight and anemia among women of reproductive age in the Mexican population. We analyzed data on 4,039 nonpregnant female adolescents (15-19 years) and 10,760 nonpregnant adult women of reproductive age (20-49 years) from the 2012 National Health and Nutrition Survey of Mexico. The survey uses a two-stage sampling design, stratified by rural and urban regions. The Latin American and Caribbean Food Security Scale was used to assess HFI. We assessed overweight and obesity in women based on World Health Organization classifications for body mass index, and BMI-for-age Z-scores for female adolescents, and defined anemia as an altitude-adjusted hemoglobin (Hb) concentration < 120 g/L based on measurement of capillary Hb concentrations. In multiple logistic regression models adjusting for potential confounding covariates, HFI was not associated with the co-occurrence of anemia and overweight among female adolescents. The adjusted odds of women of reproductive age from mildly and moderately food-insecure households, respectively, experiencing concurrent anemia and overweight were 48% (OR: 1.48; 95% CI: 1.15, 1.91) and 49% (OR: 1.49; 95% CI: 1.08, 2.06) higher than among women from food-secure households. Severe HFI was not associated with concurrent overweight and anemia among female adolescents or women. HFI may be a shared mechanism for dual forms of malnutrition within the same individual, simultaneously contributing to overconsumption and dietary inadequacy. © 2016 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aghanim, N.; Ashdown, M.; Aumont, J.
This study describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration procedures, new and more complete end-to-end simulations, and a set of robust internal consistency checks on the resulting maps. These maps, at 100, 143, 217, and 353 GHz, are early versions of those that will be released in final form later in 2016. The improvements allow us to determine the cosmic reionization optical depth τ using, for the first time, the low-multipole EE data from HFI, reducingmore » significantly the central value and uncertainty, and hence the upper limit. Two different likelihood procedures are used to constrain τ from two estimators of the CMB E- and B-mode angular power spectra at 100 and 143 GHz, after debiasing the spectra from a small remaining systematic contamination. These all give fully consistent results. A further consistency test is performed using cross-correlations derived from the Low Frequency Instrument maps of the Planck 2015 data release and the new HFI data. For this purpose, end-to-end analyses of systematic effects from the two instruments are used to demonstrate the near independence of their dominant systematic error residuals. The tightest result comes from the HFI-based τ posterior distribution using the maximum likelihood power spectrum estimator from EE data only, giving a value 0.055 ± 0.009. Finally, in a companion paper these results are discussed in the context of the best-fit PlanckΛCDM cosmological model and recent models of reionization.« less
Stopa, Jack D; Chandani, Sushil; Tolan, Dean R
2011-02-08
Hereditary fructose intolerance (HFI) is a disease of carbohydrate metabolism that can result in hyperuricemia, hypoglycemia, liver and kidney failure, coma, and death. Currently, the only treatment for HFI is a strict fructose-free diet. HFI arises from aldolase B deficiency, and the most predominant HFI mutation is an alanine to proline substitution at position 149 (A149P). The resulting aldolase B with the A149P substitution (AP-aldolase) has activity that is <100-fold that of the wild type. The X-ray crystal structure of AP-aldolase at both 4 and 18 °C reveals disordered adjacent loops of the (α/β)(8) fold centered around the substitution, which leads to a dimeric structure as opposed to the wild-type tetramer. The effects of osmolytes were tested for restoration of structure and function. An initial screen of osmolytes (glycerol, sucrose, polyethylene glycol, 2,4-methylpentanediol, glutamic acid, arginine, glycine, proline, betaine, sarcosine, and trimethylamine N-oxide) reveals that glycine, along with similarly structured compounds, betaine and sarcosine, protects AP-aldolase structure and activity from thermal inactivation. The concentration and functional moieties required for thermal protection show a zwitterion requirement. The effects of osmolytes in restoring structure and function of AP-aldolase are described. Testing of zwitterionic osmolytes of increasing size and decreasing fractional polar surface area suggests that osmolyte-mediated AP-aldolase stabilization occurs neither primarily through excluded volume effects nor through transfer free energy effects. These data suggest that AP-aldolase is stabilized by binding to the native structure, and they provide a foundation for developing stabilizing compounds for potential therapeutics for HFI.
NASA Astrophysics Data System (ADS)
Planck Collaboration; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battye, R.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carron, J.; Challinor, A.; Chiang, H. C.; Colombo, L. P. L.; Combet, C.; Comis, B.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Finelli, F.; Forastieri, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; Ghosh, T.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hivon, E.; Huang, Z.; Ilić, S.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leahy, J. P.; Levrier, F.; Liguori, M.; Lilje, P. B.; López-Caniego, M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Meinhold, P. R.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Mottet, S.; Naselsky, P.; Natoli, P.; Oxborrow, C. A.; Pagano, L.; Paoletti, D.; Partridge, B.; Patanchon, G.; Patrizii, L.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Plaszczynski, S.; Polastri, L.; Polenta, G.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirri, G.; Sunyaev, R.; Suur-Uski, A.-S.; Tauber, J. A.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Van Tent, F.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; White, M.; Zacchei, A.; Zonca, A.
2016-12-01
This paper describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration procedures, new and more complete end-to-end simulations, and a set of robust internal consistency checks on the resulting maps. These maps, at 100, 143, 217, and 353 GHz, are early versions of those that will be released in final form later in 2016. The improvements allow us to determine the cosmic reionization optical depth τ using, for the first time, the low-multipole EE data from HFI, reducing significantly the central value and uncertainty, and hence the upper limit. Two different likelihood procedures are used to constrain τ from two estimators of the CMB E- and B-mode angular power spectra at 100 and 143 GHz, after debiasing the spectra from a small remaining systematic contamination. These all give fully consistent results. A further consistency test is performed using cross-correlations derived from the Low Frequency Instrument maps of the Planck 2015 data release and the new HFI data. For this purpose, end-to-end analyses of systematic effects from the two instruments are used to demonstrate the near independence of their dominant systematic error residuals. The tightest result comes from the HFI-based τ posterior distribution using the maximum likelihood power spectrum estimator from EE data only, giving a value 0.055 ± 0.009. In a companion paper these results are discussed in the context of the best-fit PlanckΛCDM cosmological model and recent models of reionization.
Hussein, Hassan Ali; Abdel-Raheem, Sherief Mohamed
2013-04-01
The objective of the present experiment is to study the effect of feed intake restriction on the reproductive performance and pregnancy rate in Egyptian buffalo heifers. Thirty anestrus buffalo heifers were randomly divided into two equal groups. The low feed intake (LFI, n=15, 50 % restriction) group was fed a diet that consists of 3 kg concentrate, 1 kg wheat straw, and 3 kg fresh alfalfa, while the high feed intake (HFI, n=15) group was fed double the amount given to the LFI group for 4 months. All animals were weighed, transrectally examined, and visually checked for the signs of estrus, and blood samples were collected. Heifers in heat were mated with one fertile bull. The number of heifers showing estrus activity was 93.3 % in HFI vs. 20 % in LFI (P<0.01). Ovarian activity started earlier (P=0.03) in the HFI than LFI group. The weight at breeding, the diameter of the dominant follicle, number of heifers showing ovulations, number of services per conception, pregnancy rate, and overall mean of progesterone and estrogen concentrations were significantly higher (P<0.01) in the HFI than in the LFI group. The level of serum total protein, albumin, globulin, glucose, total cholesterol, and calcium were significantly higher (P<0.05) in the HFI group. Restriction of the daily feed intake to 50 % from NRC recommendations impair reproductive performance in terms of increasing the age at first service and reducing the pregnancy rate in buffalo heifers. In conclusion, feed intake could be effective in improvement of reproductive performance in buffalo heifers and further studies should be done on large scale of buffaloes in this point.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopher, A.; Lapidot, A.; Vaisman, N.
1990-07-01
An inborn deficiency in the ability of aldolase B to split fructose 1-phosphate is found in humans with hereditary fructose intolerance (HFI). A stable isotope procedure to elucidate the mechanism of conversion of fructose to glucose in normal children and in HFI children has been developed. A constant infusion of D-(U-{sup 13}C)fructose was given nasogastrically to control and to HFI children. Hepatic fructose conversion to glucose was estimated by examination of {sup 13}C NMR spectra of plasma glucose. Significantly lower values ({approx}3-fold) for fructose conversion to glucose were obtained for the HFI patients as compared to the controls. A quantitativemore » determination of the metabolic pathways of fructose conversion to glucose was derived from {sup 13}C NMR measurement of plasma ({sup 13}C)glucose isotopomer populations. The finding of isotopomer populations of three adjacent {sup 13}C atoms at glucose C-4 ({sup 13}C{sub 3}-{sup 13}C{sub 4}-{sup 13}C{sub 5}) suggests that there is a direct pathway from fructose, by-passing fructose-1-phosphate aldolase, to fructose 1,6-bisphosphate. The metabolism of fructose by fructose-1-phosphate aldolase activity accounts for only {approx}50% of the total amount of hepatic fructose conversion to glucose. In view of the marked decline by 67% in synthesis of glucose from fructose in HFI subjects found in this study, the extent of ({sup 13}C)glucose formation from a trace amount of (U-{sup 13}C)fructose infused into the patient can be used as a safe and noninvasive diagnostic test for inherent faulty fructose metabolism.« less
Goshima, Satoshi; Kanematsu, Masayuki; Kondo, Hiroshi; Watanabe, Haruo; Noda, Yoshifumi; Fujita, Hiroshi; Bae, Kyongtae T
2015-05-01
To evaluate whether a hepatic fibrosis index (HFI), quantified on the basis of hepatic contour abnormality, is a risk factor for the development of hepatocellular carcinoma (HCC) in patients with chronic hepatitis C. Our institutional review board approved this retrospective study and written informed consent was waved. During a 14-month period, consecutive 98 patients with chronic hepatitis C who had no medical history of HCC treatment (56 men and 42 women; mean age, 70.7 years; range, 48-91 years) were included in this study. Gadoxetic acid-enhanced hepatocyte specific phase was used to detect and analyze hepatic contour abnormality. Hepatic contour abnormality was quantified and converted to HFI using in-house proto-type software. We compared HFI between patients with (n=54) and without HCC (n=44). Serum levels of albumin, total bilirubin, aspartate transferase, alanine transferase, percent prothrombin time, platelet count, alpha-fetoprotein, protein induced by vitamin K absence-II, and HFI were tested as possible risk factors for the development of HCC by determining the odds ratio with logistic regression analysis. HFIs were significantly higher in patients with HCC (0.58±0.86) than those without (0.36±0.11) (P<0.001). Logistic analysis revealed that only HFI was a significant risk factor for HCC development with an odds ratio (95% confidence interval) of 26.4 (9.0-77.8) using a cutoff value of 0.395. The hepatic fibrosis index, generated using a computer-aided assessment of hepatic contour abnormality, may be a useful imaging biomarker for the prediction of HCC development in patients with chronic hepatitis C. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Planck 2015 results. VIII. High Frequency Instrument data processing: Calibration and maps
NASA Astrophysics Data System (ADS)
Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bertincourt, B.; Bielewicz, P.; Bock, J. J.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leahy, J. P.; Lellouch, E.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Moreno, R.; Morgante, G.; Mortlock, D.; Moss, A.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rusholme, B.; Sandri, M.; Santos, D.; Sauvé, A.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
This paper describes the processing applied to the cleaned, time-ordered information obtained from the Planck High Frequency Instrument (HFI) with the aim of producing photometrically calibrated maps in temperature and (for the first time) in polarization. The data from the entire 2.5-year HFI mission include almost five full-sky surveys. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To obtain the best accuracy on the calibration over such a large range, two different photometric calibration schemes have been used. The 545 and 857 GHz data are calibrated using models of planetary atmospheric emission. The lower frequencies (from 100 to 353 GHz) are calibrated using the time-variable cosmological microwave background dipole, which we call the orbital dipole. This source of calibration only depends on the satellite velocity with respect to the solar system. Using a CMB temperature of TCMB = 2.7255 ± 0.0006 K, it permits an independent measurement of the amplitude of the CMB solar dipole (3364.3 ± 1.5 μK), which is approximatively 1σ higher than the WMAP measurement with a direction that is consistent between the two experiments. We describe the pipeline used to produce the maps ofintensity and linear polarization from the HFI timelines, and the scheme used to set the zero level of the maps a posteriori. We also summarize the noise characteristics of the HFI maps in the 2015 Planck data release and present some null tests to assess their quality. Finally, we discuss the major systematic effects and in particular the leakage induced by flux mismatch between the detectors that leads to spurious polarization signal.
Hyperostosis frontalis interna in a Neandertal from Marillac (Charente, France).
Garralda, María Dolores; Maureille, Bruno; Vandermeersch, Bernard
2014-02-01
The site of Marillac (Charente, France) has yielded an important stratigraphic sequence containing numerous Neandertal remains (some of them with peri-mortem manipulations) from lithofacies 2 (Quina Mousterian). This level has been correlated with MIS 4 and is associated with a TL date of 57,600 ± 4600 years BP (before present). The study of one of the cranial fragments (Marillac 3) revealed a grade 2 or Type B Hyperostosis frontalis interna (HFI), remodelling and altering the internal table of the thick frontal bone. This pathology has been analysed macroscopically together with radiography and sections made using a microscanner and a scanner. The development of the HFI is compared with published evidence for Sangiran 3 (Homo erectus), two other Neandertals (Forbes' Quarry and Shanidar 5), and several archaeological samples. Forbes' Quarry seems to display more advanced HFI than either Shanidar 5 or Marillac 3. The three Neandertals may be considered mature individuals (≥40 years) and it seems likely that the aetiology of this pathology may be associated with hormonal alterations, as has been suggested for past and extant populations. While the prevalence of HFI in contemporary post-menopausal women is well documented, the identification of HFI amongst males from several archaeological samples (Neanderthals, Ancient Egypt, Syrian Bronze Age or the Anasazi), with different stages of development, confirm that the pathology affected both sexes in past populations. Additional data and research are still needed to elucidate the etiopathogenesis of this illness and to better understand the relationship between environmental factors and their possible influences/consequences for the development of metabolic disorders in prehistoric populations. Copyright © 2014 Elsevier Ltd. All rights reserved.
238U Mössbauer study on the magnetic properties of uranium-based heavy fermion superconductors
NASA Astrophysics Data System (ADS)
Tsutsui, Satoshi; Nakada, Masami; Nasu, Saburo; Haga, Yoshinori; Honma, Tetsuo; Yamamoto, Etsuji; Ohkuni, Hitoshi; Ōnuki, Yoshichika
2000-07-01
We have performed 238U Mössbauer spectroscopy of uranium-based heavy fermion superconductors, UPd2Al3 and URu2Si2, in order to investigate their physical properties, mainly their magnetic properties. The slow relaxation of magnetic hyperfine interaction in a paramagnetic state and the static hyperfine field has been observed in an antiferromagnetic ordered state for each compound. The line-widths have maximum at their characteristic temperatures where their magnetic susceptibilities have maximum values.
Ferreira, Carlos R; Devaney, Joseph M; Hofherr, Sean E; Pollard, Laura M; Cusmano-Ozog, Kristina
2017-02-01
We describe a patient with failure to thrive, hepatomegaly, liver dysfunction, and elevation of multiple plasma lysosomal enzyme activities mimicking mucolipidosis II or III, in whom a diagnosis of hereditary fructose intolerance (HFI) was ultimately obtained. She presented before introduction of solid foods, given her consumption of a fructose-containing infant formula. We present the most extensive panel of lysosomal enzyme activities reported to date in a patient with HFI, and propose that multiple enzyme elevations in plasma, especially when in conjunction with a normal plasma α-mannosidase activity, should elicit a differential diagnosis of HFI. We also performed a review of the literature on the different etiologies of elevated lysosomal enzyme activities in serum or plasma. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordonali, L.; Borsa, F.; Consorzio INSTM, Via Giusti 9, I-50121 Firenze
2014-04-14
A detailed experimental investigation of the {sup 19}F nuclear magnetic resonance is made on single crystals of the homometallic Cr{sub 8} antiferromagnetic molecular ring and heterometallic Cr{sub 7}Cd and Cr{sub 7}Ni rings in the low temperature ground state. Since the F{sup −} ion is located midway between neighboring magnetic metal ions in the ring, the {sup 19}F-NMR spectra yield information about the local electronic spin density and {sup 19}F hyperfine interactions. In Cr{sub 8}, where the ground state is a singlet with total spin S{sub T} = 0, the {sup 19}F-NMR spectra at 1.7 K and low external magnetic fieldmore » display a single narrow line, while when the magnetic field is increased towards the first level crossing field, satellite lines appear in the {sup 19}F-NMR spectrum, indicating a progressive increase in the Boltzmann population of the first excited state S{sub T} = 1. In the heterometallic rings, Cr{sub 7}Cd and Cr{sub 7}Ni, whose ground state is magnetic with S{sub T} = 3/2 and S{sub T} = 1/2, respectively, the {sup 19}F-NMR spectrum has a complicated structure which depends on the strength and orientation of the magnetic field, due to both isotropic and anisotropic transferred hyperfine interactions and classical dipolar interactions. From the {sup 19}F-NMR spectra in single crystals we estimated the transferred hyperfine constants for both the F{sup −}-Ni{sup 2+} and the F{sup −}-Cd{sup 2+} bonds. The values of the hyperfine constants compare well to the ones known for F{sup −}-Ni{sup 2+} in KNiF{sub 3} and NiF{sub 2} and for F{sup −}-Cr{sup 3+} in K{sub 2}NaCrF{sub 6}. The results are discussed in terms of hybridization of the 2s, 2p orbitals of the F{sup −} ion and the d orbitals of the magnetic ion. Finally, we discuss the implications of our results for the electron-spin decoherence.« less
Burgos, Jose L; Yee, Daniel C; Vargas-Ojeda, Adriana Carolina; Ojeda, Victoria D
2016-01-01
We describe the creation of the Health Frontiers in Tijuana (HFiT) Undergraduate Internship Program (UIP), a novel global health experience for U.S. and Mexican undergraduate students based at the binational HFiT student-run free clinic. The UIP introduces students to a diverse underserved patient population, and U.S.-Mexico border public health.
Weigel, M. Margaret; Armijos, Rodrigo X.; Racines, Marcia; Cevallos, William
2016-01-01
Household food insecurity (HFI) is becoming an increasingly important issue in Latin America and other regions undergoing rapid urbanization and nutrition transition. The survey investigated the association of HFI with the nutritional status of 794 adult women living in households with children in low-income neighborhoods in Quito, Ecuador. Data were collected on sociodemographic characteristics, household food security status, and nutritional status indicators (dietary intake, anthropometry, and blood hemoglobin). Data were analyzed using multivariate methods. The findings identified revealed a high HFI prevalence (81%) among the urban households that was associated with lower per capita income and maternal education; long-term neighborhood residency appeared protective. HFI was associated with lower dietary quality and diversity and an increased likelihood of anemia and short stature but not increased high-calorie food intake or generalized or abdominal obesity. Although significant progress has been made in recent years, low dietary diversity, anemia, and growth stunting/short stature in the Ecuadorian maternal-child population continue to be major public health challenges. The study findings suggest that improving urban food security may help to improve these nutritional outcomes. They also underscore the need for food security policies and targeted interventions for urban households and systematic surveillance to assess their impact. PMID:27110253
Armijos, Rodrigo X.; Racines, Marcia; Cevallos, William; Castro, Nancy P.
2016-01-01
Chronic physical and mental health conditions account for a rising proportion of morbidity, mortality, and disability in the Americas region. Household food insecurity (HFI) has been linked to chronic disease in US and Canadian women but it is uncertain if the same is true for low- and middle-income Latin American countries in epidemiologic transition. We conducted a survey to investigate the association of HFI with the physical and mental health of 794 women with children living in low-income Quito, Ecuador, neighborhoods. Data were collected on HFI and health indicators including self-reported health (SF-1), mental health (MHI-5), blood pressure, and self-reported mental and physical health complaints. Fasting blood glucose and lipids were measured in a subsample. The multivariate analyses revealed that HFI was associated with poorer self-rated health, low MHI-5 scores, and mental health complaints including stress, depression, and ethnospecific illnesses. It was also associated with chest tightness/discomfort/pain, dental disease, and gastrointestinal illness but not other conditions. The findings suggest that improving food security in low-income households may help reduce the burden of mental distress in women with children. The hypothesized link with diabetes and hypertension may become more apparent as Ecuador moves further along in the epidemiologic transition. PMID:27752266
Weigel, M Margaret; Armijos, Rodrigo X; Racines, Marcia; Cevallos, William; Castro, Nancy P
2016-01-01
Chronic physical and mental health conditions account for a rising proportion of morbidity, mortality, and disability in the Americas region. Household food insecurity (HFI) has been linked to chronic disease in US and Canadian women but it is uncertain if the same is true for low- and middle-income Latin American countries in epidemiologic transition. We conducted a survey to investigate the association of HFI with the physical and mental health of 794 women with children living in low-income Quito, Ecuador, neighborhoods. Data were collected on HFI and health indicators including self-reported health (SF-1), mental health (MHI-5), blood pressure, and self-reported mental and physical health complaints. Fasting blood glucose and lipids were measured in a subsample. The multivariate analyses revealed that HFI was associated with poorer self-rated health, low MHI-5 scores, and mental health complaints including stress, depression, and ethnospecific illnesses. It was also associated with chest tightness/discomfort/pain, dental disease, and gastrointestinal illness but not other conditions. The findings suggest that improving food security in low-income households may help reduce the burden of mental distress in women with children. The hypothesized link with diabetes and hypertension may become more apparent as Ecuador moves further along in the epidemiologic transition.
Weigel, M Margaret; Armijos, Rodrigo X; Racines, Marcia; Cevallos, William
2016-01-01
Household food insecurity (HFI) is becoming an increasingly important issue in Latin America and other regions undergoing rapid urbanization and nutrition transition. The survey investigated the association of HFI with the nutritional status of 794 adult women living in households with children in low-income neighborhoods in Quito, Ecuador. Data were collected on sociodemographic characteristics, household food security status, and nutritional status indicators (dietary intake, anthropometry, and blood hemoglobin). Data were analyzed using multivariate methods. The findings identified revealed a high HFI prevalence (81%) among the urban households that was associated with lower per capita income and maternal education; long-term neighborhood residency appeared protective. HFI was associated with lower dietary quality and diversity and an increased likelihood of anemia and short stature but not increased high-calorie food intake or generalized or abdominal obesity. Although significant progress has been made in recent years, low dietary diversity, anemia, and growth stunting/short stature in the Ecuadorian maternal-child population continue to be major public health challenges. The study findings suggest that improving urban food security may help to improve these nutritional outcomes. They also underscore the need for food security policies and targeted interventions for urban households and systematic surveillance to assess their impact.
Rationale for eliminating the hormone-free interval in modern oral contraceptives.
London, Andrew; Jensen, Jeffrey T
2016-07-01
Although most low-dose combined oral contraceptives (COCs) include 7-day hormone-free intervals (HFIs), these COCs could incompletely suppress ovarian activity. To review the impact of HFIs on ovarian suppression and tolerability, and evaluate the utility of COCs without traditional 7-day HFIs. PubMed was searched for clinical studies published in English between January 1980 and April 2015 on the impact of HFIs and HFI modifications in COCs. Articles assessing contraceptive efficacy or tolerability as the primary focus were included. Abstracts of 319 articles were screened. Analysis of the 161 articles selected revealed that suppression of ovarian activity with low-dose COCs with 7-day HFIs is suboptimal. Loss of ovarian suppression during 7-day HFIs is commonly associated with follicular development, and most dominant follicles appear during this period. By contrast, increased ovarian suppression was noted in regimens that shortened or eliminated the HFI, or that substituted low-dose ethinyl estradiol for the HFI. Extended regimens with modified HFIs may provide greater ovarian suppression with the potential for increased contraceptive effectiveness. Additional research is needed to evaluate whether COC regimens that include 10μg ethinyl estradiol instead of an HFI may improve tolerability. Copyright © 2016 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.
Is it possible to predict office hysteroscopy failure?
Cobellis, Luigi; Castaldi, Maria Antonietta; Giordano, Valentino; De Franciscis, Pasquale; Signoriello, Giuseppe; Colacurci, Nicola
2014-10-01
The purpose of this study was to develop a clinical tool, the HFI (Hysteroscopy Failure Index), which gives criteria to predict hysteroscopic examination failure. This was a retrospective diagnostic test study, aimed to validate the HFI, set at the Department of Gynaecology, Obstetric and Reproductive Science of the Second University of Naples, Italy. The HFI was applied to our database of 995 consecutive women, who underwent office based to assess abnormal uterine bleeding (AUB), infertility, cervical polyps, and abnormal sonographic patterns (postmenopausal endometrial thickness of more than 5mm, endometrial hyperechogenic spots, irregular endometrial line, suspect of uterine septa). Demographic characteristics, previous surgery, recurrent infections, sonographic data, Estro-Progestins, IUD and menopausal status were collected. Receiver operating characteristic (ROC) curve analysis was used to assess the ability of the model to identify patients who were correctly identified (true positives) divided by the total number of failed hysteroscopies (true positives+false negatives). Positive and Negative Likelihood Ratios with 95%CI were calculated. The HFI score is able to predict office hysteroscopy failure in 76% of cases. Moreover, the Positive likelihood ratio was 11.37 (95% CI: 8.49-15.21), and the Negative likelihood ratio was 0.33 (95% CI: 0.27-0.41). Hysteroscopy failure index was able to retrospectively predict office hysteroscopy failure. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Ghosh, K; Shetty, S; Sahu, D
2010-01-01
Care of persons with haemophilia (PWH) in western countries is the responsibility of the government of those countries with or without funding from health insurers. Haemophilia societies in western countries work as pressure groups to ensure better care, and they disseminate information on the disease and some of the societies even support medical research for haemophilia care. In India, Haemophilia Federation of India (HFI) was established in 1982 with few haemophilia families and sympathizers of their cause; subsequently more than 65 chapters involving more than 12 500 PWH came up under HFI. HFI and its constituent chapters are unique in the world in the sense that they are not only trying to involve state and federal government to take responsibility for delivering haemophilia care, but they are also using various innovative and integrative techniques to deliver haemophilia care to PWH themselves, till the time federal and state governments of the country make suitable arrangement for their care. In this study, several of these approaches are discussed with the understanding that 80% of worlds' haemophilia population needs similar help, and the national haemophilia organizations (NMO) of various developing countries will find some of the approaches useful and adaptable to their own circumstances.
ENDOR/ESR of Mn atoms and MnH molecules in solid argon
NASA Astrophysics Data System (ADS)
van Zee, R. J.; Garland, D. A.; Weltner, W., Jr.
1986-09-01
Mn atoms and MnH molecules, the latter formed by reaction between metal and hydrogen atoms, were trapped in solid argon and their ESR/ENDOR spectra measured at 4 K. At each pumping magnetic field two ENDOR lines were observed for 55Mn(I=5/2) atoms, corresponding to hyperfine transitions within the MS =±1/2 levels. Values of the hyperfine interaction constant and nuclear moment of 55Mn were derived from the six sets of data. For MnH, three sets of signals were detected: a proton ``matrix ENDOR'' line, transitions in the MS =0,±1 levels involving MI (55Mn)=1/2, 3/2, 5/2 levels, and proton transitions corresponding to νH and νH±aH. Analysis yielded the hyperfine constant aH =6.8(1) MHz and the nuclear quadrupole coupling constant Q'(55Mn)=-11.81(2) MHz. The latter compared favorably with a theoretical value derived earlier by Bagus and Schaefer. A higher term in the spin Hamiltonian appeared to be necessary to fit the proton hyperfine data.
NASA Astrophysics Data System (ADS)
Nardali, Ş.; Ucun, F.; Karakaya, M.
2017-11-01
The optimized structures of some radical adducts of 5,5-dimethyl-1-pyrroline N-oxide were computed by different methods on ESR spectra. As trapped radicals, H, N3, NH2, CH3, CCl3, OOH in water and F, OH, CF3, CH2OH, OC2H5 in benzene solutions were used. The calculated isotropic hyperfine coupling constants of all the trapped radicals were compared with the corresponding experimental data. The hyperfine coupling constant due to the β proton of the nitroxide radical was seen to be consist with the McConnel's relation αβ = B 0 + B 1cos2θ and, to be effected with the opposite spin density of oxygen nucleus bonded to the nitrogen. It was concluded that in hyperfine calculations the DFT(B3PW91)/LanL2DZ level is superior computational quantum model relative to the used other level. Also, the study has been enriched by the computational of the optimized geometrical parameters, the hyper conjugative interaction energies, the atomic charges and spin densities for all the radical adducts.
Ultrafast time scale X-rotation of cold atom storage qubit using Rubidium clock states
NASA Astrophysics Data System (ADS)
Song, Yunheung; Lee, Han-Gyeol; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook
2017-04-01
Ultrafast-time-scale optical interaction is a local operation on the electronic subspace of an atom, thus leaving its nuclear state intact. However, because atomic clock states are maximally entangled states of the electronic and nuclear degrees of freedom, their entire Hilbert space should be accessible only with local operations and classical communications (LOCC). Therefore, it may be possible to achieve hyperfine qubit gates only with electronic transitions. Here we show an experimental implementation of ultrafast X-rotation of atomic hyperfine qubits, in which an optical Rabi oscillation induces a geometric phase between the constituent fine-structure states, thus bringing about the X-rotation between the two ground hyperfine levels. In experiments, cold atoms in a magneto-optical trap were controlled with a femtosecond laser pulse from a Ti:sapphire laser amplifier. Absorption imaging of the as-controlled atoms initially in the ground hyperfine state manifested polarization dependence, strongly agreeing with the theory. The result indicates that single laser pulse implementations of THz clock speed qubit controls are feasible for atomic storage qubits. Samsung Science and Technology Foundation [SSTF-BA1301-12].
NASA Astrophysics Data System (ADS)
Burns, Patrick
2004-12-01
In this dissertation we report the results of three experiments designed to provide new information on the structure and interactions of the NaK molecule. Specifically these experiments investigate 2(A)1Sigma +(upsilonA, J) + M → 1(b)3 pi0(upsilonb, J) + M collisional excitation transfers (where M is a collision partner), hyperfine structure of the NaK 1(b)3pi and 1(b)3pi0 ˜ 2(A)1Sigma+ spin-orbit interactions, and the structure and spectra of the NaK 43Sigma+ state, respectively. In this first experiment, populations of collisionally populated levels were recorded near the NaK 1(b)3pi0(upsilon =18, J = 44) ˜ 2(A)1Sigma+ (upsilon = 20, J = 44) center of spin-orbit perturbation. Our data indicate that population is transferred from the pumped level, 2(A) 1Sigma+(upsilon = 20, J = 49), directly to the surrounding "daughter" levels [1(b)3Sigma 0(upsilon =18, J = 45--48) and 2(A)1Sigma +(upsilon = 20, J = 45--48)]. The relative populations of the daughter levels appear anomalous, as their populations do not monotonically decrease for levels further away in energy from the pumped level. We have measured the hyperfine structure of mutually perturbing ro-vibrational levels of the 1(b)3pi0 and 2(A)1Sigma + states of the NaK molecule, using the PFOODR method with co-propagating lasers. Unperturbed 1(b)3pi0 levels are split into four hyperfine components by the Fermi contact interaction b FI·S. Mixing between the 1(b)3pi0 and 2(A)1Sigma + levels imparts hyperfine structure to the nominally singlet component, and reduces the hyperfine splitting of the nominally triplet component, of the perturbed levels. We determined a value for the Fermi constant, bF= (0.00989 +/- 0.00027) cm-1, and the magnitude of the electronic part of the 1(b)3pi 0 ˜ 2(A)1Sigma+ spin-orbit coupling, |Hel| = (15.65 +/- 0.14) cm-1 , from an analysis of the measured hyperfine splittings of the mixed singlet-triplet levels. High-resolution spectra have been observed for numerous vibrational-rotational levels (upsilon, N) of the 43Sigma + state of NaK. A potential curve was obtained from the data using the inverse perturbation approximation method. Measured bound-free emission, 43Sigma+ → 1(a)3Sigma +, was used to determine both the absolute vibrational numbering and the transition dipole moment function M(R). Each (upsilon, N) level is typically split into three sets of sublevels by the Fermi contact interaction bFI·S. Further splitting (of order 0.004 cm-1) has been attributed to the spin-rotation interaction gammaN·S. The values of bF that fit the data best are ˜(0.99 +/- 0.04) x 10-2 cm-1, with weak dependence on upsilon. The best fit values of gamma are in the range 1--6 x 10-4 cm-1 and depend strongly on upsilon.
Theoretical hyperfine structures of 19F i and 17O i
NASA Astrophysics Data System (ADS)
Aourir, Nouria; Nemouchi, Messaoud; Godefroid, Michel; Jönsson, Per
2018-03-01
Multiconfiguration Hartree-Fock (MCHF) and multiconfiguration Dirac-Hartree-Fock (MCDHF) calculations are performed for the 2 p5P2o , 2 p4(3P ) 3 s 4P , 2 p4(3P ) 3 s 2P , and 2 p4(3P ) 3 p 4So states of 19F i to determine their hyperfine constants. Several computing strategies are considered to investigate electron correlation and relativistic effects. High-order correlation contributions are included in MCHF calculations based on single and double multireference expansions. The largest components of the single reference MCHF wave functions are selected to define the multireference (MR) sets. In this scheme, relativistic corrections are evaluated in the Breit-Pauli approximation. A similar strategy is used for the calculation of MCDHF relativistic wave functions and hyperfine parameters. While correlation and relativistic corrections are found to be rather small for the ground state, we highlight large relativistic effects on the hyperfine constant A3 /2 of 2 p4(3P ) 3 p 4So and, to a lesser extent, on A1 /2 of 2 p4(3P ) 3 s 4P . As expected for such a light system, electron correlation effects dominate over relativity in the calculation of the hyperfine interaction of all other levels considered. We also revisit the hyperfine constants of 2 p3(4S ) 3 s S5o and 2 p3(4S ) 3 p 5P in 17O using similar strategies. The results are found to be in excellent agreement with experiment.
Hyperfine excitation of C2H in collisions with ortho- and para-H2
NASA Astrophysics Data System (ADS)
Dagdigian, Paul J.
2018-06-01
Accurate estimation of the abundance of the ethynyl (C2H) radical requires accurate radiative and collisional rate coefficients. Hyperfine-resolved rate coefficients for (de-)excitation of C2H in collisions with ortho- and para-H2 are presented in this work. These rate coefficients were computed in time-independent close-coupling quantum scattering calculations that employed a potential energy surface recently computed at the coupled-clusters level of theory that describes the interaction of C2H with H2. Rate coefficients for temperatures from 10 to 300 K were computed for all transitions among the first 40 hyperfine energy levels of C2H in collisions with ortho- and para-H2. These rate coefficients were employed in simple radiative transfer calculations to simulate the excitation of C2H in typical molecular clouds.
The fine-structure intervals of (N-14)+ by far-infrared laser magnetic resonance
NASA Technical Reports Server (NTRS)
Brown, John M.; Varberg, Thomas D.; Evenson, Kenneth M.; Cooksy, Andrew L.
1994-01-01
The far-infrared laser magnetic resonance spectra associated with both fine-structure transitions in (N-14)+ in its ground P-3 state have been recorded. This is the first laboratory observation of the J = 1 left arrow 0 transition and its frequency has been determined two orders of magnitude more accurately than previously. The remeasurement of the J = 2 left arrow 1 spectrum revealed a small error in the previous laboratory measurements. The fine-structure splittings (free of hyperfine interactions) determined in this work are (delta)E(sub 10) = 1461.13190 (61) GHz, (delta)E(sub 21) = 2459.38006 (37) GHz. Zero-field transition frequencies which include the effects of hyperfine structure have also been calculated. Refined values for the hyperfine constants and the g(sub J) factors have been obtained.
2006-09-01
hi 0T − Tsi 0T , 10 where the molar enthalpy, hi 0T, and the molar entropy, si 0T, may be expressed as hi 0T = Hfi Tr + Tr T cpi 0...TdT , 11 si 0T = si 0Tr + Tr T cpi 0 T T dT . 12 In Eqs. 11 and 12, Hfi Tr is the enthalpy of formation of species i at the
Bolometric detectors for the high frequency instrument on the Planck surveyor
NASA Technical Reports Server (NTRS)
Koch, T. C.; Paine, C.; Husted, L.; Yun, M.; Lange, A.; Bock, J.; Jones, B.; Ade, P.; Sudiwala, R.
2002-01-01
The High Frequency Instrument (HFI) on Planck will obtain all-sky images of the Cosmic Microwave Background (CMB) and other astrophysical sources of emission with resolution of 9 arcniin at 100 GHz, 7 arcmin at 143 GHz and 5 arcniin at 217, 353, 545 and 857 GHz. The HFI focal plane will contain 48 silicon nitride micromesh bolometric detectors operating from a 100 mK heat sink. Four detectors in each of the 6 bands will detect the sum of the power in both linear polarizations. An additional 4 pair of detectors will provide sensitivity to linear polarization of emission at 143, 217 and 353 GHz. We report on the development of these detectors, which are being produced at the JPL Micro Devices Laboratory, packaged at JPL Electronics Packaging, characterized at 100 mK before delivery to our HFI consortium partners at the UWCC, UK.
Where's water? The many binding sites of hydantoin.
Gruet, Sébastien; Pérez, Cristóbal; Steber, Amanda L; Schnell, Melanie
2018-02-21
Prebiotic hydantoin and its complexes with one and two water molecules are investigated using high-resolution broadband rotational spectroscopy in the 2-8 GHz frequency range. The hyperfine structure due to the nuclear quadrupole coupling of the two 14 N atoms is analysed for the monomer and the complexes. This characteristic hyperfine structure will support a definitive assignment from low frequency radioastronomy data. Experiments with H 2 18 O provide accurate experimental information on the preferred binding sites of water, which are compared with quantum-chemically calculated coordinates. In the 2-water complexes, the water molecules bind to hydantoin as a dimer instead of individually, indicating the strong water-water interactions. This information provides first insight on how hydantoin interacts with water on the molecular level.
Hyperfine fields of Fe in Nd2Fe14BandSm2Fe17N3
NASA Astrophysics Data System (ADS)
Akai, Hisazumi; Ogura, Masako
2015-03-01
High saturation magnetization of rare-earth magnets originates from Fe and the strong magnetic anisotropy stems from f-states of rare-earth elements such as Nd and Sm. Therefore the hyperfine fields of both Fe and rare-earth provide us with important pieces of information: Fe NMR enable us to detect site dependence of the local magnetic moment and magnetic anisotropy (Fe sites also contribute to the magnetic anisotropy) while rare-earth NQR directly give the information of electric field gradients (EFG) that are related to the shape of the f-electron cloud as well as the EFG produced by ligands. In this study we focus on the hyperfine fields of materials used as permanent magnets, Nd2Fe14BandSm2Fe17N3 from theoretical points of view. The detailed electronic structure together with the hyperfine interactions are discussed on the basis of the first-principles calculation. In particular, the relations between the observed hyperfine fields and the magnetic properties are studies in detail. The effects of doping of those materials by other elements such as Dy and the effects of N adding in Sm2Fe17N3 will be discussed. This work was supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.
NASA Astrophysics Data System (ADS)
Oshtrakh, M. I.; Alenkina, I. V.; Semionkin, V. A.
2016-12-01
Human liver ferritin and its iron-polymaltose pharmaceutical analogues Ferrum Lek, Maltofer® and Ferrifol® were studied using Mössbauer spectroscopy at 295 and 90 K. The Mössbauer spectra were fitted on the basis of a new model of heterogeneous iron core structure using five quadrupole doublets. These components were related to the corresponding more or less close-packed iron core layers/regions demonstrating some variations in the 57Fe hyperfine parameters for the studied samples.
Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol
NASA Astrophysics Data System (ADS)
Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.; Ilyushin, V. V.; Alekseev, E. A.; Mescheryakov, A. A.; Hougen, J. T.; Xu, Li-Hong
2016-07-01
This paper presents an explanation based on torsionally mediated proton-spin-overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = - 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric "torsionally mediated spin-rotation operators" by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e±niα. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A1 and A2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.
Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.
2016-07-14
This paper presents an explanation based on torsionally mediated proton-spin–overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = − 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e.,more » to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric “torsionally mediated spin-rotation operators” by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e{sup ±niα}. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A{sub 1} and A{sub 2} states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.« less
Research investigation directed toward extending the useful range of the electromagnetic spectrum
NASA Technical Reports Server (NTRS)
Hartmann, S. R.
1971-01-01
The lifetimes and fine structure of He(-) were studied using time-of-flight techniques and quenching by a static axial magnetic field. Using level-crossing spectroscopy the hyperfine constants A and B and the lifetime of the 3 2P3/2 state of Li-7 were measured. Polarization of the Ru 7S level was created as a first step in determining the hyperfine structure of the alkali excited S state. The parametric interaction between light and microwaves in optically pumped Rb-87 vapor were investigated. Measurements and analyses of transitions in formaldehyde and its isotopic species and in the lowest two excited vibrational states of H2CO were also made, as well as of transitions in furan, pyrrole, formic acid, and cyanoacetylene. The Hanle effect was studied in the NO molecule, and RF oscillators were developed with flat, wideband output to observe excited state hyperfine transitions at zero field. Data was generated on the time-dependent behavior of photon echoes in ruby. Stimulated Raman scattering was studied in atomic Tl vapor. A Q switched, temperature-tuned ruby laser was developed which operates between 6934 and 6938 A. The frequency shift due to resonant interaction between identical radiating atoms was calculated.
Ground-State Hyperfine Structure of Heavy Hydrogen-Like Ions
NASA Astrophysics Data System (ADS)
Kühl, T.; Borneis, S.; Dax, A.; Engel, T.; Faber, S.; Gerlach, M.; Holbrow, C.; Huber, G.; Marx, D.; Merz, P.; Quint, W.; Schmitt, F.; Seelig, P.; Tomaselli, M.; Winter, H.; Wuertz, M.; Beckert, K.; Franzke, B.; Nolden, F.; Reich, H.; Steck, M.
Contributions of quantum electrodynamics (QED) to the combined electric and magnetic interaction between the electron and the nucleus can be studied by optical spectroscopy in high-Z hydrogen-like heavy ions. The transition studied is the ground-state hyperfine structure transition, well known from the 21 cm line in atomic hydrogen. The hyperfine splitting of the is ground state of hydrogen-like systems constitutes the simplest and most basic magnetic interaction in atomic physics. The Z3-increase leads to a transition energy in the UV-region of the optical spectrum for the case of Bi82+. At the same time, the QED correction rises to nearly 1 fraction of higher order contributions. This situation is particularly useful for a comparison with non-perturbative QED calculations. The combination of exceptionally intense electric and magnetic fields electric and magnetic fields is unique. This transition has become accessible to precision laser spectroscopy at the high-energy heavy-ion storage ring at GSI-Darmstadt in the hydrogen-like 209Bi82+ and 207Pb81+. In the meantime, 165Ho66+ and 185,187Re74+ were also studied with reduced resolution by conventional optical spectroscopy at the SuperEBIT ion trap at Lawrence Livermore National Laboratory.
Hyperfine structure parametrisation in Maple
NASA Astrophysics Data System (ADS)
Gaigalas, G.; Scharf, O.; Fritzsche, S.
2006-02-01
In hyperfine structure examinations, routine high resolution spectroscopy methods have to be combined with exact fine structure calculations. The so-called magnetic A and electric B factor of the fine structure levels allow to check for a correct fine structure analysis, to find errors in the level designation, to find new levels and to probe the electron wavefunctions and its mixing coefficients. This is done by parametrisation of these factors into different contributions of the subshell electrons, which are split further into their radial and spin-angular part. Due to the routine with which hyperfine structure measurements are done, a tool for keeping the necessary information together, performing checks online with the experiment and deriving standard quantities is of great help. MAPLE [Maple is a registered trademark of Waterloo Maple Inc.] is a highly-developed symbolic programming language, often referred to as the pocket calculator of the future. Packages for theoretical atomic calculation exist ( RACAH and JUCYS) and the language meets all the requirements to keep and present information accessible for the user in a fast and practical way. We slightly extended the RACAH package [S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51] and set up an environment for experimental hyperfine structure calculations, the HFS package. Supplying the fine structure and nuclear data, one is in the position to obtain information about the hyperfine spectrum, the different contributions to the splitting and to perform a least square fit of the radial parameters based on the semiempirical method. Experimentalist as well as theoretical physicist can do a complete hyperfine structure analysis using MAPLE. Program summaryTitle of program: H FS Catalogue number: ADXD Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXD Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computers for which the program is designed: All computers with a license of the computer algebra package MAPLE Installations: University of Kassel (Germany) Operating systems under which the program has been tested: Linux 9.0 Program language used:MAPLE, Release 7, 8 and 9 Memory required to execute with typical data: 5 MB No. of lines in distributed program, including test data, etc.: 34 300 No. of bytes in distributed program, including test data, etc.: 954 196 Distribution format: tar.gz Nature of the physical problem: Atomic state functions of an many configuration many electron atom with several open shells are defined by a number of quantum numbers, by their coupling and selection rules such as the Pauli exclusion principal or parity conservation. The matrix elements of any one-particle operator acting on these wavefunctions can be analytically integrated up to the radial part [G. Gaigalas, O. Scharf, S. Fritzsche, Central European J. Phys. 2 (2004) 720]. The decoupling of the interacting electrons is general, the obtained submatrix element holds all the peculiarities of the operator in question. These so-called submatrix elements are the key to do hyperfine structure calculations. The interaction between the electrons and the atomic nucleus leads to an additional splitting of the fine structure lines, the hyperfine structure. The leading components are the magnetic dipole interaction defining the so-called A factor and the electric quadrupole interaction, defining the so-called B factor. They express the energetic splitting of the spectral lines. Moreover, they are obtained directly by experiments and can be calculated theoretically in an ab initio approach. A semiempirical approach allows the fitting of the radial parts of the wavefunction to the experimentally obtained A and B factors. Method of solution: Extending the existing csf_LS() and asf_LS() to several open shells and implementing a data structure level_LS() for the fine structure level, the atomic environment is defined in MAPLE. It is used in a general approach to decouple the interacting shells for any one-particle operator. Further submatrix elements for the magnetic dipole and electric quadrupole interaction are implemented, allowing to calculate the A and B factors up to the radial part. Several procedures for standard quantities of the hyperfine structure are defined, too. The calculations are accelerated by using a hyper-geometric approach for three, six and nine symbols. Restrictions onto the complexity of the problem: Only atomic state functions in nonrelativistic LS-coupling with states having l⩽3 are supported. Typical running time: The program replies promptly on most requests. The least square fit depends heavily on the number of levels and can take a few minutes.
First determination of ground state electromagnetic moments of Fe 53
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, A. J.; Minamisono, K.; Rossi, D. M.
Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less
First determination of ground state electromagnetic moments of Fe 53
Miller, A. J.; Minamisono, K.; Rossi, D. M.; ...
2017-11-16
Here, the hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ= –0.65(1)μ N and Q=+35(15)e 2fm 2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental valuesmore » agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, C.C.; Tolan, D.R.
1993-04-01
Hereditary fructose intolerance (HFI) is a potentially fatal autosomal recessive disease resulting from the catalytic deficiency of fructose 1-phosphate aldolase (aldolase B) in fructose-metabolizing tissues. The A149P mutation in exon 5 of the aldolase B gene, located on chromosome 9q2l.3-q22.2, is widespread and the most common HFI mutation, accounting for 57% of HFI chromosomes. The possible origin of this mutation was studied by linkage to polymorphisms within the aldolase B gene. DNA fragments of the aldolase B gene containing the polymorphic marker loci from HFI patients homozygous for the A149P allele were amplified by PCR. Absolute linkage to a commonmore » Pvull RFLP allele was observed in 10 A149P homozygotes. In a more informative study, highly heterozygous polymorphisms were detected by direct sequence determination of a PCR-amplified aldolase B gene fragment. Two two-allele, single-base-pair polymorphisms, themselves in absolute linkage disequilibrium, in intron 8 (C at nucleotide 84 and A at nucleotide 105, or T at 84 and G at 105) of the aldolase B gene were identified. Mendelian segregation of these polymorphisms was confirmed in three families. Allele-specific oligonucleotide (ASO) hybridizations with probes for both sequence polymorphisms showed that 47% of 32 unrelated individuals were heterozygous at these loci; the calculated PIC value was .37. Finally, ASO hybridizations of PCR-amplified DNA from 15 HFI patients homozygous for the A149P allele with probes for these sequence polymorphisms revealed absolute linkage disequilibrium between the A149P mutation and the 84T/105G allele. These results are consistent with a single origin of the A149P allele and subsequent spread by genetic drift. 32 refs., 4 figs., 3 tabs.« less
Modulated magnetic structure of F e3P O7 as seen by 57Fe Mössbauer spectroscopy
NASA Astrophysics Data System (ADS)
Sobolev, A. V.; Akulenko, A. A.; Glazkova, I. S.; Pankratov, D. A.; Presniakov, I. A.
2018-03-01
The paper reports results of the 57Fe Mössbauer measurements on an F e3P O4O3 powder sample recorded at various temperatures, including the point of magnetic phase transition TN≈163 K . The spectra measured above TN consist of a quadrupole doublet with high quadrupole splitting of Δ300 K≈1.10 mm /s , emphasizing that F e3 + ions are located in crystal positions with a strong electric-field gradient (EFG). To predict the sign and orientation of the main components of the EFG tensor, we calculated the EFG using the density-functional-theory approach. In the temperature range T
The Submillimeter Spectrum of MnH and MnD (X7Σ+)
NASA Astrophysics Data System (ADS)
Halfen, D. T.; Ziurys, L. M.
2008-01-01
The submillimeter-wave spectrum of the MnH and MnD radicals in their 7Σ+ ground states has been measured in the laboratory using direct absorption techniques. These species were created in the gas phase by the reaction of manganese vapor, produced in a Broida-type oven, with either H2 or D2 gas in the presence of a DC discharge. The N = 0 → 1 transition of MnH near 339 GHz was recorded, which consisted of multiple hyperfine components arising from both the manganese and hydrogen nuclear spins. The N = 2 → 3 transition of MnD near 517 GHz was measured as well, but in this case only the manganese hyperfine interactions were resolved. Both data sets were analyzed with a Hund's case b Hamiltonian, and rotational, fine structure, magnetic hyperfine, and electric quadrupole constants have been determined for the two manganese species. An examination of the magnetic hyperfine constants shows that MnH is primarily an ionic species, but has more covalent character than MnF. MnH is a good candidate species for astronomical searches with Herschel, particularly toward material associated with luminous blue variable stars.
Hyperfine Quantum Beat Spectroscopy of the Cs 8p level with Pulsed Pump-Probe Technique
NASA Astrophysics Data System (ADS)
Bayram, Burcin; Popov, Oleg; Kelly, Stephen; Boyle, Patrick; Salsman, Andrew
2013-05-01
Quantum beats arising from the hyperfine interaction were measured in a three-level excitation (lambda) scheme: pump for the 6s2S1 / 2 --> 8p2P3 / 2 and stimulated emission pump (probe) for the 8p2P3 / 2 --> 5d2D5 / 2 transitions of atomic cesium. In the technique, pump laser instantaneously excites the hot atomic vapor and creates anisotropy in the 8p2P3 / 2 level, and probe laser comes after some time delay. Delaying the probe time allows us to map out the motion of the polarized atoms like a stroboscope. According to the observed evolution of the hyperfine structure dependent parameters, e.g. alignment and atomic polarization, by delaying the arrival time of the stimulated emission pump laser (SEP), precise values of the magnetic dipole and electric quadrupole coefficients are obtained with an improved precision over previous results. The usefulness of the PUMP-SEP excitation scheme for the polarization hyperfine quantum beat measurements without complications from the Doppler effect will also be discussed. The financial support of the Research Corporation under the Grant number CC7133 and MiamiUniversity, College of the Arts and Sciences are acknowledged.
G. Geof Wang; Zhi-Ping Wang; Aaron D. Stottlemyer; Thomas A. Waldrop
2013-01-01
Both the National Fire Plan (http://199.134.225.50/nwcc/t2_wa4/ pdf/RuralAssistance.pdf) and the Healthy Forest Initiative (http://www.fs.fed.us/projects/ hfi/2003/august/documents/hfi-fact-sheet. pdf) call for reduction of hazardous fuels. Consequently, estimations of forest fuel loading at various scales become necessary. The Forest Inventory and Analysis (FIA)...
Schneider, B; Sigalat, C; Amano, T; Zimmermann, J L
2000-12-19
The conformation of di- and triphosphate nucleosides in the active site of ATPsynthase (H(+)-ATPase) from thermophilic Bacillus PS3 (TF1) and their interaction with Mg(2+)/Mn(2+) cations have been investigated using EPR, ESEEM, and HYSCORE spectroscopies. For a ternary complex formed by a stoichiometric mixture of TF1, Mn(2+), and ADP, the ESEEM and HYSCORE data reveal a (31)P hyperfine interaction with Mn(2+) (|A((31)P)| approximately 5.20 MHz), significantly larger than that measured for the complex formed by Mn(2+) and ADP in solution (|A((31)P)| approximately 4.50 MHz). The Q-band EPR spectrum of the Mn.TF1.ADP complex indicates that the Mn(2+) binds in a slightly distorted environment with |D| approximately 180 x 10(-4) cm(-1) and |E| approximately 50 x 10(-4) cm(-1). The increased hyperfine coupling with (31)P in the presence of TF1 reflects the specific interaction between the central Mn(2+) and the ADP beta-phosphate, illustrating the role of the enzyme active site in positioning the phosphate chain of the substrate for efficient catalysis. Results with the ternary Mn.TF1.ATP and Mn.TF1.AMP-PNP complexes are interpreted in a similar way with two hyperfine couplings being resolved for each complex (|A((31)P(beta))| approximately 4.60 MHz and |A((31)P(gamma))| approximately 5.90 MHz with ATP, and |A((31)P(beta))| approximately 4.20 MHz and |A((31)P(gamma))| approximately 5.40 MHz with AMP-PNP). In these complexes, the increased hyperfine coupling with (31)P(gamma) compared with (31)P(beta) reflects the smaller Mn.P distance with the gamma-phosphate compared with the beta-phosphate as found in the crystal structure of the analogous enzyme from mitochondria [3.53 vs 3.70 A (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628)] and the different binding modes of the two phosphate groups. The ESEEM and HYSCORE data of a complex formed with Mn(2+), ATP, and the isolated beta subunit show that the (31)P hyperfine coupling is close to that measured in the absence of the protein, indicating a poorly structured nucleotide site in the isolated beta subunit in the presence of ATP. The inhibition data obtained for TF1 incubated in the presence of Mg(2+), ADP, Al(NO(3))(3), and NaF indicate the formation of the inhibited complex with the transition state analogue namely Mg.TF1.ADP.AlF(x) with the equilibrium dissociation constant K(D) = 350 microM and rate constant k = 0.02 min(-1). The ESEEM and HYSCORE data obtained for an inhibited TF1 sample, Mn.TF1.ADP.AlF(x), confirm the formation of the transition state analogue with distinct spectroscopic footprints that can be assigned to Mn.(19)F and Mn.(27)Al hyperfine interactions. The (31)P(beta) hyperfine coupling that is measured in the inhibited complex with the transition state analogue (|A((31)P(beta))| approximately 5.10 MHz) is intermediate between those measured in the presence of ADP and ATP and suggests an increase in the bond between Mn and the P(beta) from ADP upon formation of the transition state.
Hyperfine quenching of the 2s2 2p5 3 s3P2 state of Ne-like ions
NASA Astrophysics Data System (ADS)
Safronova, U. I.; Stafford, A.; Safronova, A. S.
2017-04-01
The many-body perturbation theory (RMBPT) is used to calculate energies and multipole matrix elements to evaluate hyperfine quenching of the 2s2 2p5 3 s 3P2 state in Ne-like ions. In particular, the 3P2 excited state decays to the 1S0 ground state by M2 emission, while both 1P1 and 3P1 states decay to the ground-state by E1 emission, which is substantially faster. For odd-A nuclei, the hyperfine interaction induces admixtures of 3P1 and 1P1 states into the 3P2 state, resulting in an increase of the 3P2 transition rate and a corresponding reduction of the 3P2 lifetime. We consider 22 Ne like ions with Z = 14 - 94 and nuclear moment I =1/2. We found that the largess hyperfine quenching contribution by a factor of 2 are for Ne-like 31P and 203Tl. The smallest (less than 1%) induced contribution are the following Ne-like ions: 57Fe, 107Ag, 109Ag, 183W, and 187Os ions. For another 15 Ne-like ions the hyperfine quenching contribution is between 15% and 35%. Applications to x-ray line polarization of Ne-like lines is considered. This work is supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002954.
Rolf Landauer and Charles H. Bennett Award Talk: Experimental development of spin qubits in silicon
NASA Astrophysics Data System (ADS)
Morello, Andrea
The modern information era is built on silicon nanoelectronic devices. The future quantum information era might be built on silicon too, if we succeed in controlling the interactions between individual spins hosted in silicon nanostructures. Spins in silicon constitute excellent solid-state qubits, because of the weak spin-orbit coupling and the possibility to remove nuclear spins from the environment through 28Si isotopic enrichment. Substitutional 31P atoms in silicon behave approximately like hydrogen in vacuum, providing two spin 1/2 qubits - the donor-bound electron and the 31P nucleus - that can be coherently controlled, read out in single-shot, and are naturally coupled through the hyperfine interaction. In isotopically-enriched 28Si, these single-atom qubits have demonstrated outstanding coherence times, up to 35 seconds for the nuclear spin, and 1-qubit gate fidelities well above 99.9% for both the electron and the nucleus. The hyperfine coupling provides a built-in interaction to entangle the two qubits within one atom. The combined initialization, control and readout fidelities result in a violation of Bell's inequality with S = 2 . 70 , a record value for solid-state qubits. Despite being identical atomic systems, 31P atoms can be addressed individually by locally modifying the hyperfine interaction through electrostatic gating. Multi-qubit logic gates can be mediated either by the exchange interaction or by electric dipole coupling. Scaling up beyond a single atom presents formidable challenges, but provides a pathway to building quantum processors that are compatible with standard semiconductor fabrication, and retain a nanometric footprint, important for truly large-scale quantum computers. Work supported by US Army Research Office (W911NF-13-1-0024) and Australian Research Council (CE110001027).
Planck 2013 results. VI. High Frequency Instrument data processing
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bowyer, J. W.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herent, O.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.; Maris, M.; Marleau, F.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melot, F.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Orieux, F.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sanselme, L.; Santos, D.; Sauvé, A.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Techene, S.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
Wedescribe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857GHz with an angular resolution ranging from 9.´7 to 4.´6. The detector noise per (effective) beam solid angle is respectively, 10, 6 , 12, and 39 μK in the four lowest HFI frequency channels (100-353GHz) and 13 and 14 kJy sr-1 in the 545 and 857 GHz channels. Relative to the 143 GHz channel, these two high frequency channels are calibrated to within 5% and the 353 GHz channel to the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 <ℓ < 2500), are calibrated relative to 143 GHz to better than 0.2%.
Laser magnetic resonance in supersonic plasmas - The rotational spectrum of SH(+)
NASA Technical Reports Server (NTRS)
Hovde, David C.; Saykally, Richard J.
1987-01-01
The rotational spectrum of v = 0 and v = 1X3Sigma(-)SH(+) was measured by laser magnetic resonance. Rotationally cold (Tr = 30 K), vibrationally excited (Tv = 3000 K) ions were generated in a corona excited supersonic expansion. The use of this source to identify ion signals is described. Improved molecular parameters were obtained; term values are presented from which astrophysically important transitions may be calculated. Accurate hyperfine parameters for both vibrational levels were determined and the vibrational dependence of the Fermi contact interaction was resolved. The hyperfine parameters agree well with recent many-body perturbation theory calculations.
Hammant, T C; Hart, A G; von Hippel, G M; Horgan, R R; Monahan, C J
2011-09-09
We present the first application of the background field method to nonrelativistic QCD (NRQCD) on the lattice in order to determine the one-loop radiative corrections to the coefficients of the NRQCD action in a manifestly gauge-covariant manner. The coefficients of the σ·B term in the NRQCD action and the four-fermion spin-spin interaction are computed at the one-loop level; the resulting shift of the hyperfine splitting of bottomonium is found to bring the lattice predictions in line with experiment.
NASA Astrophysics Data System (ADS)
Ficek, Filip; Fadeev, Pavel; Flambaum, Victor V.; Jackson Kimball, Derek F.; Kozlov, Mikhail G.; Stadnik, Yevgeny V.; Budker, Dmitry
2018-05-01
Heretofore undiscovered spin-0 or spin-1 bosons can mediate exotic spin-dependent interactions between standard model particles. Here, we carry out the first search for semileptonic spin-dependent interactions between matter and antimatter. We compare theoretical calculations and spectroscopic measurements of the hyperfine structure of antiprotonic helium to constrain exotic spin- and velocity-dependent interactions between electrons and antiprotons.
Ficek, Filip; Fadeev, Pavel; Flambaum, Victor V; Jackson Kimball, Derek F; Kozlov, Mikhail G; Stadnik, Yevgeny V; Budker, Dmitry
2018-05-04
Heretofore undiscovered spin-0 or spin-1 bosons can mediate exotic spin-dependent interactions between standard model particles. Here, we carry out the first search for semileptonic spin-dependent interactions between matter and antimatter. We compare theoretical calculations and spectroscopic measurements of the hyperfine structure of antiprotonic helium to constrain exotic spin- and velocity-dependent interactions between electrons and antiprotons.
Mutations in the Promoter Region of the Aldolase B Gene that cause Hereditary Fructose Intolerance
Coffee, Erin M.; Tolan, Dean R.
2010-01-01
SUMMARY Hereditary fructose intolerance (HFI) is a potentially fatal inherited metabolic disease caused by a deficiency of aldolase B activity in the liver and kidney. Over 40 disease-causing mutations are known in the protein-coding region of ALDOB. Mutations upstream of the protein-coding portion of ALDOB are reported here for the first time. DNA sequence analysis of 61 HFI patients revealed single base mutations in the promoter, intronic enhancer, and the first exon, which is entirely untranslated. One mutation, g.–132G>A, is located within the promoter at an evolutionarily conserved nucleotide within a transcription factor-binding site. A second mutation, IVS1+1G>C, is at the donor splice site of the first exon. In vitro electrophoretic mobility shift assays show a decrease in nuclear extract-protein binding at the g.–132G>A mutant site. The promoter mutation results in decreased transcription using luciferase reporter plasmids. Analysis of cDNA from cells transfected with plasmids harboring the IVS1+1G>C mutation results in aberrant splicing leading to complete retention of the first intron (~ 5 kb). The IVS1+1G>C splicing mutation results in loss of luciferase activity from a reporter plasmid. These novel mutations in ALDOB represent 2% of alleles in American HFI patients, with IVS1+1G>C representing a significantly higher allele frequency (6%) among HFI patients of Hispanic and African-American ethnicity. PMID:20882353
Poupard, Laurent; Court-Fortune, Isabelle; Pichot, Vincent; Chouchou, Florian; Barthélémy, Jean-Claude; Roche, Frédéric
2011-12-01
Several studies have correlated the ratio of the very low frequency power spectral density of heart rate increment (%VLFI) with obstructive sleep apnoea syndrome (OSAS). However, patients with impaired heart rate variability may exhibit large variations of heart rate increment (HRI) spectral pattern and alter the screening accuracy of the method. To overcome this limitation, the present study uses the high-frequency increment (HFI) peak in the HRI spectrum, which corresponds to the respiratory influence on RR variations over the frequency range 0.2 to 0.4 Hz. We evaluated 288 consecutive patients referred for snoring, observed nocturnal breathing cessation and/or daytime sleepiness. Patients were classified as OSAS if their apnoea plus hypopnoea index (AHI) during polysomnography exceeded 15 events per hour. Synchronized electrocardiogram Holter monitoring allowed HRI analysis. Using a %VLFI threshold >2.4% for identifying the presence of OSAS, sensitivity for OSAS was 74.9%, specificity 51%, positive predictive value 54.9% and negative predictive value 71.7% (33 false negative subjects). Using threshold for %VLFI >2.4% and HFI peak position >0.4 Hz, negative predictive value increased to 78.2% while maintaining specificity at 50.6%. Among 11 subjects with %VLFI <2.4% and HFI peak >0.4 Hz, nine demonstrated moderate to severe OSAS (AHI >30). HFI represents a minimal physiological criterion for applying %VLFI by ensuring that heart rate variations are band frequency limited.
Coherent Control of Ground State NaK Molecules
NASA Astrophysics Data System (ADS)
Yan, Zoe; Park, Jee Woo; Loh, Huanqian; Will, Sebastian; Zwierlein, Martin
2016-05-01
Ultracold dipolar molecules exhibit anisotropic, tunable, long-range interactions, making them attractive for the study of novel states of matter and quantum information processing. We demonstrate the creation and control of 23 Na40 K molecules in their rovibronic and hyperfine ground state. By applying microwaves, we drive coherent Rabi oscillations of spin-polarized molecules between the rotational ground state (J=0) and J=1. The control afforded by microwave manipulation allows us to pursue engineered dipolar interactions via microwave dressing. By driving a two-photon transition, we are also able to observe Ramsey fringes between different J=0 hyperfine states, with coherence times as long as 0.5s. The realization of long coherence times between different molecular states is crucial for applications in quantum information processing. NSF, AFOSR- MURI, Alfred P. Sloan Foundation, DARPA-OLE
Electron-nuclear coherent spin oscillations probed by spin-dependent recombination
NASA Astrophysics Data System (ADS)
Azaizia, S.; Carrère, H.; Sandoval-Santana, J. C.; Ibarra-Sierra, V. G.; Kalevich, V. K.; Ivchenko, E. L.; Bakaleinikov, L. A.; Marie, X.; Amand, T.; Kunold, A.; Balocchi, A.
2018-04-01
We demonstrate the triggering and detection of coherent electron-nuclear spin oscillations related to the hyperfine interaction in Ga deep paramagnetic centers in GaAsN by band-to-band photoluminescence without an external magnetic field. In contrast to other point defects such as Cr4 + in SiC, Ce3 + in yttrium aluminum garnet crystals, nitrogen-vacancy centers in diamond, and P atoms in silicon, the bound-electron spin in Ga centers is not directly coupled to the electromagnetic field via the spin-orbit interaction. However, this apparent drawback can be turned into an advantage by exploiting the spin-selective capture of conduction band electrons to the Ga centers. On the basis of a pump-probe photoluminescence experiment we measure directly in the temporal domain the hyperfine constant of an electron coupled to a gallium defect in GaAsN by tracing the dynamical behavior of the conduction electron spin-dependent recombination to the defect site. The hyperfine constants and the relative abundance of the nuclei isotopes involved can be determined without the need of an electron spin resonance technique and in the absence of any magnetic field. Information on the nuclear and electron spin relaxation damping parameters can also be estimated from the oscillation amplitude decay and the long-time-delay behavior.
Écija, Patricia; Cocinero, Emilio J; Lesarri, Alberto; Millán, Judith; Basterretxea, Francisco; Fernández, José A; Castaño, Fernando
2011-04-28
The intrinsic conformational and structural properties of the bicycle exo-2-aminonorbornane have been probed in a supersonic jet expansion using Fourier-transform microwave (FT-MW) spectroscopy and quantum chemical calculations. The rotational spectrum revealed two different conformers arising from the internal rotation of the amino group, exhibiting small (MHz) hyperfine patterns originated by the (14)N nuclear quadrupole coupling interaction. Complementary ab initio (MP2) and DFT (B3LYP and M05-2X) calculations provided comparative predictions for the structural properties, rotational and centrifugal distortion data, hyperfine parameters, and isomerization barriers. Due to the similarity of the rotational constants, the structural assignment of the observed rotamers and the calculation of the torsion angles of the amino group were based on the conformational dependence of the (14)N nuclear quadrupole coupling hyperfine tensor. In the most stable conformation (ss), the two amino N-H bonds are staggered with respect to the adjacent C-H bond. In the second conformer (st), only one of the N-H bonds is staggered and the other is trans. A third predicted conformer (ts) was not detected, consistent with a predicted conformational relaxation to conformer ss through a low barrier of 5.2 kJ mol(-1).
NASA Astrophysics Data System (ADS)
Panduro, E. Chavez; Cabrejos, J. Bravo
2010-01-01
The mineralogical characterization of two clay samples from the Central Andean Region of Peru, denominated White Greda and Red Greda, is reported. These clays contain the clay minerals mica and illite respectively. Both clays were treated thermally in an oxidising atmosphere under controlled conditions up to 1,100°C with the purpose of obtaining information about structural changes that may be useful for pottery manufacture. X-ray fluorescence was used for the elemental characterization of the samples and X-ray diffractometry was used to determine the collapse and formation of the mineral phases present in the samples caused by thermal treatment. At temperatures above 1,000°C it is observed the formation of spinel in the case of White Greda and of hematite, corundum and cristobalite in the case of Red Greda. Room temperature transmission Mössbauer spectroscopy allowed the monitoring of the variation of the hyperfine parameters with the thermal treatment temperature; In the case of the evolution of the quadruple splitting of the paramagnetic Fe3 + sites with temperature, in both clays, the analyses reproduced results such as the “camel back” curve shape, found by other workers (Wagner and Wagner, Hyperfine Interact 154:35-82, 2004; Wagner and Kyek, Hyperfine Interact 154:5-33, 2004).
Teledermatology in Tijuana, Mexico.
Brown, Megan
2016-12-01
The Health Frontiers in Tijuana (HFiT) clinic is a binational partnership between the University of California, San Diego School of Medicine (San Diego, California); the Universidad Autónoma de Baja California School of Medicine (Tijuana, Mexico); and Desayunador Salesiano Padre Chava, a community grassroots organization in Tijuana, Mexico. Health Frontiers in Tijuana provides accessible quality health care for the underserved in Tijuana's Zona Norte. This article is a narrative meant to share my clinical experience as a dermatology resident who worked with HFiT to establish teledermatology services at this clinic.
Electron electric dipole moment and hyperfine interaction constants for ThO
NASA Astrophysics Data System (ADS)
Fleig, Timo; Nayak, Malaya K.
2014-06-01
A recently implemented relativistic four-component configuration interaction approach to study P- and T-odd interaction constants in atoms and molecules is employed to determine the electron electric dipole moment effective electric field in the Ω=1 first excited state of the ThO molecule. We obtain a value of Eeff=75.2GV/cm with an estimated error bar of 3% and 10% smaller than a previously reported result (Skripnikov et al., 2013). Using the same wavefunction model we obtain an excitation energy of TvΩ=1=5410 (cm), in accord with the experimental value within 2%. In addition, we report the implementation of the magnetic hyperfine interaction constant A|| as an expectation value, resulting in A||=-1339 (MHz) for the Ω=1 state in ThO. The smaller effective electric field increases the previously determined upper bound (Baron et al., 2014) on the electron electric dipole moment to |de|<9.7×10-29e cm and thus mildly mitigates constraints to possible extensions of the Standard Model of particle physics.
NASA Astrophysics Data System (ADS)
Chen, Zhan-Bin; Dong, Chen-Zhong
2018-06-01
The angular distribution and polarization properties of the X-rays produced by the hyperfine-induced transition are investigated within a fully relativistic distorted-wave approximation. The calculations are performed for the 1 s2 p 3/2 3P2 F i = 3/2 → 1 s 2 1S0 F f = 1/2 component of the Kα 1 decay for highly charged He-like 119Sn48+ and 207Tl79+ ions with nuclear spin I = 1/2 following impact excitations by an un-polarized and a completely longitudinally-polarized electron beam, respectively. The Breit interaction and mutipole mixing between the leading M2 decay and the hyperfine-induced E1 decay corrections to both linear and circular polarizations of the emitted X-ray radiations are evaluated. All these effects are found to be significant and may potentially explain the disagreement between the theories and experiments related to the polarization properties of the X-ray radiation.
First determination of ground state electromagnetic moments of 53Fe
NASA Astrophysics Data System (ADS)
Miller, A. J.; Minamisono, K.; Rossi, D. M.; Beerwerth, R.; Brown, B. A.; Fritzsche, S.; Garand, D.; Klose, A.; Liu, Y.; Maaß, B.; Mantica, P. F.; Müller, P.; Nörtershäuser, W.; Pearson, M. R.; Sumithrarachchi, C.
2017-11-01
The hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum of the 3 d64 s25D4↔3 d64 s 4 p 5F5 transition, measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ =-0.65 (1 ) μN and Q =+35 (15 ) e2fm2 , respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental values agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full f p shell model space, which support the soft nature of the 56Ni nucleus.
Validation of a home food inventory among low-income Spanish- and Somali-speaking families.
Hearst, Mary O; Fulkerson, Jayne A; Parke, Michelle; Martin, Lauren
2013-07-01
To refine and validate an existing home food inventory (HFI) for low-income Somali- and Spanish-speaking families. Formative assessment was conducted using two focus groups, followed by revisions of the HFI, translation of written materials and instrument validation in participants’ homes. Twin Cities Metropolitan Area, Minnesota, USA. Thirty low-income families with children of pre-school age (fifteen Spanish-speaking; fifteen Somali-speaking) completed the HFI simultaneously with, but independently of, a trained staff member. Analysis consisted of calculation of both item-specific and average food group kappa coefficients, specificity, sensitivity and Spearman’s correlation between participants’ and staff scores as a means of assessing criterion validity of individual items, food categories and the obesogenic score. The formative assessment revealed the need for few changes/additions for food items typically found in Spanish-speaking households. Somali-speaking participants requested few additions, but many deletions, including frozen processed food items, non-perishable produce and many sweets as they were not typical food items kept in the home. Generally, all validity indices were within an acceptable range, with the exception of values associated with items such as ‘whole wheat bread’ (k = 0.16). The obesogenic score (presence of high-fat, high-energy foods) had high criterion validity with k = 0.57, sensitivity = 91.8%, specificity = 70.6% and Spearman correlation = 0.78. The revised HFI is a valid assessment tool for use among Spanish and Somali households. This instrument refinement and validation process can be replicated with other population groups.
The effect of fluid intake on chronic kidney transplant failure: a pilot study.
Magpantay, Laurene; Ziai, Farzad; Oberbauer, Rainer; Haas, Martin
2011-11-01
Transplant recipients are generally instructed to increase their daily fluid intake so as to preserve kidney function. However, studies supporting this hypothesis are lacking. Prospective, randomized study at a tertiary care university hospital. Patients with chronic kidney transplant failure. Assignment to normal fluid intake (NFI: 2 L/day) or high fluid intake (HFI: 4 L/day) for 12 months. The effect of fluid intake on the decrease in estimated glomerular filtration rate (eGFR) was estimated by a mixed-effects general linear model. The analysis was adjusted for the observation period, age, intake of angiotensin-converting enzyme inhibitors or angiotensin II type 1 receptor blockers, diuretics, and transplant duration. A total of 33 patients were randomized to NFI and 29 to HFI. After 12 months, the mean eGFR had decreased to a similar extent in both groups (NFI: 44 ± 9 mL/min vs. 41 ± 9 mL/min; HFI: 46 ± 15 mL/min vs. 44 ± 15 mL/min). In the multivariate analysis, only the observation period had a significant effect on the decrease in eGFR. Randomization to NFI or HFI nor any other variable was associated with kidney function. The association between urine volume and urine osmolality was lost after 12 months. Recommendation of higher fluid intake does not seem to improve chronic kidney transplant failure. However, the lack of association between urine osmolality and reported urine volume at a later stage implies a loss of adherence to fluid intake over time. Copyright © 2011 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Severe food insecurity is associated with obesity among Brazilian adolescent females.
Kac, Gilberto; Velásquez-Melendez, Gustavo; Schlüssel, Michael M; Segall-Côrrea, Ana Maria; Silva, Antônio Am; Pérez-Escamilla, Rafael
2012-10-01
To determine whether household food insecurity (HFI) is associated with a higher prevalence of excessive weight (EW) in a large random sample of Brazilian female adolescents. Nationally representative cross-sectional study. EW was the outcome variable (BMI ≥ 85th percentile of WHO reference for adolescents aged 15-18 years and BMI ≥ 25 kg/m(2) for those aged 19 years). HFI was measured with the Brazilian Food Insecurity Scale. Associations were measured using crude and adjusted prevalence ratios (PR) with 95 % confidence intervals through Poisson regression models taking into account the complex sampling design. Data were derived from the third wave of the Demographic and Health Survey conducted in 2006-2007, in Brazil. The sample included 1529 female adolescents aged 15-19 years. The prevalence of any level of HFI was 40.8 %, with 26.6 % of households experiencing mild, 9.4 % moderate and 4.8 % severe food insecurity. The overall prevalence of EW was 21.9 % (12.9 % were overweight and 9.0 % obese). EW prevalence among those living in severely, moderately and mildly food-insecure households was 36.8 %, 14.9 % and 16.5 %, respectively (P for the overall association = 0.036). Women living in severely food-insecure households had an increased prevalence of EW compared with their food-secure counterparts (PR = 1.96; 95 % CI 1.18, 3.27; P = 0.007), after adjusting for important confounders. The study suggests that severe but not mild or moderate HFI is independently associated with EW among adolescents residing in Brazil, a middle-income country undergoing the nutrition transition.
Microstructure, hyperfine interaction and magnetic transition of Fe-25%Ni-5%Si-x%Co alloys
NASA Astrophysics Data System (ADS)
Gungunes, H.
2016-12-01
Morphological and magnetic properties in Fe-25%Ni-5%Si-x%Co (x = 0, 10, 15) alloys are investigated. Scanning electron microscopy (SEM), Mössbauer spectroscopy and AC magnetic susceptibility measurements are used to determine the physical properties of alloys. The martensite morphology changed depending on the Co content. The Mössbauer study shows that the volume fraction and hyperfine field of martensite increases while isomer shift values decrease with increasing Co content. On the other hand; AC susceptibility results showed that; Co is an effective element which can be used to control both the magnetic transition and martensitic transformation temperatures.
Belcastro, Maria Giovanna; Todero, Antonio; Fornaciari, Gino; Mariotti, Valentina
2011-01-01
The famous castrato singer Farinelli (1705–1782) was exhumed by our research group in July 2006 for the purpose of gaining some insight into his biological profile through a study of his skeletal remains. Farinelli was castrated before puberty to preserve the treble pitch of the boy's voice into adult life. His powerful and sweet voice became legendary. In spite of its bad preservation state, the skeleton displayed some interesting characteristics that are probably related to the effects of castration, including long limb-bones, persistence of epiphyseal lines and osteoporosis. In particular, the frontal bone was affected by severe hyperostosis frontalis interna (HFI). This condition consists in a symmetrical thickening of the inner table of the bone. The epidemiology of HFI shows that it is relatively common in postmenopausal women but very rare in men. Men affected by this pathology suffer from diseases, syndromes or treatments causing androgen deficiency. In the case of Farinelli, castration was probably responsible for the onset and development of this lesion. PMID:21740437
Belcastro, Maria Giovanna; Todero, Antonio; Fornaciari, Gino; Mariotti, Valentina
2011-11-01
The famous castrato singer Farinelli (1705-1782) was exhumed by our research group in July 2006 for the purpose of gaining some insight into his biological profile through a study of his skeletal remains. Farinelli was castrated before puberty to preserve the treble pitch of the boy's voice into adult life. His powerful and sweet voice became legendary. In spite of its bad preservation state, the skeleton displayed some interesting characteristics that are probably related to the effects of castration, including long limb-bones, persistence of epiphyseal lines and osteoporosis. In particular, the frontal bone was affected by severe hyperostosis frontalis interna (HFI). This condition consists in a symmetrical thickening of the inner table of the bone. The epidemiology of HFI shows that it is relatively common in postmenopausal women but very rare in men. Men affected by this pathology suffer from diseases, syndromes or treatments causing androgen deficiency. In the case of Farinelli, castration was probably responsible for the onset and development of this lesion. © 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland.
The dynamics of the optically driven Lambda transition of the 15N-V- center in diamond.
González, Gabriel; Leuenberger, Michael N
2010-07-09
Recent experimental results demonstrate the possibility of writing quantum information in the ground state triplet of the (15)N-V(-) center in diamond by means of an optically driven spin non-conserving two-photon Lambda transition in the presence of a strong applied electric field. Our calculations show that the hyperfine interaction in the (15)N-V(-) center is capable of mediating such a transition. We use a density matrix approach to describe the exact dynamics for the allowed optical spin non-conserving transitions between two sublevels of the ground state triplet. This approach allows us to calculate the Rabi oscillations, by means of which we obtain a Rabi frequency with an upper bound determined by the hyperfine interaction. This result is crucial for the success of implementing optically driven quantum information processing with the N-V center in diamond.
Interaction-induced decay of a heteronuclear two-atom system
Xu, Peng; Yang, Jiaheng; Liu, Min; He, Xiaodong; Zeng, Yong; Wang, Kunpeng; Wang, Jin; Papoular, D. J.; Shlyapnikov, G. V.; Zhan, Mingsheng
2015-01-01
Two-atom systems in small traps are of fundamental interest for understanding the role of interactions in degenerate cold gases and for the creation of quantum gates in quantum information processing with single-atom traps. One of the key quantities is the inelastic relaxation (decay) time when one of the atoms or both are in a higher hyperfine state. Here we measure this quantity in a heteronuclear system of 87Rb and 85Rb in a micro optical trap and demonstrate experimentally and theoretically the presence of both fast and slow relaxation processes, depending on the choice of the initial hyperfine states. This experimental method allows us to single out a particular relaxation process thus provides an extremely clean platform for collisional physics studies. Our results have also implications for engineering of quantum states via controlled collisions and creation of two-qubit quantum gates. PMID:26199051
Hyperfine frequencies of {sup 87}Rb and {sup 133}Cs atoms in Xe gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuyer, B. H.; Xia, T.; Jau, Y.-Y.
2011-09-15
The microwave resonant frequencies of ground-state {sup 87}Rb and {sup 133}Cs atoms in Xe buffer gas are shown to have a relatively large nonlinear dependence on the Xe pressure, presumably because of RbXe or CsXe van der Waals molecules. The nonlinear shifts for Xe are opposite in sign to the previously measured shifts for Ar and Kr, even though all three gases have negative linear shifts. The Xe data show striking discrepancies with the previous theory for nonlinear shifts. Most of this discrepancy is eliminated by accounting for the spin-rotation interaction, {gamma}N{center_dot}S, in addition to the hyperfine-shift interaction, {delta} Amore » I{center_dot}S, in the molecules. To the limit of our experimental accuracy, the shifts of {sup 87}Rb and {sup 133}Cs in He, Ne, and N{sub 2} were linear with pressure.« less
Radiative transfer of HCN: interpreting observations of hyperfine anomalies
NASA Astrophysics Data System (ADS)
Mullins, A. M.; Loughnane, R. M.; Redman, M. P.; Wiles, B.; Guegan, N.; Barrett, J.; Keto, E. R.
2016-07-01
Molecules with hyperfine splitting of their rotational line spectra are useful probes of optical depth, via the relative line strengths of their hyperfine components. The hyperfine splitting is particularly advantageous in interpreting the physical conditions of the emitting gas because with a second rotational transition, both gas density and temperature can be derived. For HCN however, the relative strengths of the hyperfine lines are anomalous. They appear in ratios which can vary significantly from source to source, and are inconsistent with local thermodynamic equilibrium (LTE). This is the HCN hyperfine anomaly, and it prevents the use of simple LTE models of HCN emission to derive reliable optical depths. In this paper, we demonstrate how to model HCN hyperfine line emission, and derive accurate line ratios, spectral line shapes and optical depths. We show that by carrying out radiative transfer calculations over each hyperfine level individually, as opposed to summing them over each rotational level, the anomalous hyperfine emission emerges naturally. To do this requires not only accurate radiative rates between hyperfine states, but also accurate collisional rates. We investigate the effects of different sets of hyperfine collisional rates, derived via the proportional method and through direct recoupling calculations. Through an extensive parameter sweep over typical low-mass star-forming conditions, we show the HCN line ratios to be highly variable to optical depth. We also reproduce an observed effect whereby the red-blue asymmetry of the hyperfine lines (an infall signature) switches sense within a single rotational transition.
NASA Astrophysics Data System (ADS)
Basel, Tek Prasad
We studied optical, electrical, and magnetic field responses of films and devices based on organic semiconductors that are used for organic light emitting diodes (OLEDs) and photovoltaic (OPV) solar cell applications. Our studies show that the hyperfine interaction (HFI)-mediated spin mixing is the key process underlying various magnetic field effects (MFE) and spin transport in aluminum tris(8-hydroxyquinoline)[Alq3]-based OLEDs and organic spin-valve (OSV). Conductivity-detected magnetic resonance in OLEDs and magneto-resistance (MR) in OSVs show substantial isotope dependence. In contrast, isotope-insensitive behavior in the magneto-conductance (MC) of same devices is explained by the collision of spin ½ carriers with triplet polaron pairs. We used steady state optical spectroscopy for studying the energy transfer dynamics in films and OLEDs based on host-guest blends of the fluorescent polymer and phosphorescent molecule. We have also studied the magnetic-field controlled color manipulation in these devices, which provide a strong proof for the `polaron-pair' mechanism underlying the MFE in organic devices. The critical issue that hampers organic spintronics device applications is significant magneto-electroluminescence (MEL) at room temperature (RT). Whereas inorganic spin valves (ISVs) show RT magneto-resistance, MR>80%, however, the devices do not exhibit electroluminescence (EL). In contrast, OLEDs show substantive EL emission, and are particularly attractive because of their flexibility, low cost, and potential for multicolor display. We report a conceptual novel hybrid organic/inorganic spintronics device (h-OLED), where we employ both ISV with large MR at RT, and OLED that has efficient EL emission. We investigated the charge transfer process in an OPV solar cell through optical, electrical, and magnetic field measurements of thin films and devices based on a low bandgap polymer, PTB7 (fluorinated poly-thienothiophene-benzodithiophene). We found that one of the major losses that limit the power conversion efficiency of OPV devices is the formation of triplet excitons in the polymer through recombination of charge-transfer (CT) excitons at the interface, and presented a method to suppress the dissociation of CT states by incorporating the spin ½ additive, galvinoxyl in the bulk heterojunction architecture of the active organic blend layer.
Fourier transform millimeter-wave spectroscopy of the ethyl radical in the electronic ground state.
Kim, Eunsook; Yamamoto, Satoshi
2004-02-15
The pure rotational spectrum of the ethyl radical (C2H5) has been detected for the first time with the Fourier transform millimeter-wave spectrometer. The ethyl radical is produced by discharging the C2H5I gas diluted in Ar. The 1(01)-0(00) rotational transition of the ethyl radical is observed in the frequency range from 43,680 to 43,780 MHz. The observed spectrum shows a very complicated pattern of the fine and hyperfine structures of a doublet radical with the nuclear spins of five protons. The fine and hyperfine components are assigned with the aid of measurements of the Zeeman splittings. As a result, the 22 lines are ascribed to the transitions in the ground vibronic state (A2"). The rotational constant, the spin-rotation interaction constant, and hyperfine interaction constants are determined by the least-squares fit. The Fermi contact term of the alpha-proton is determined to be -64.1654 MHz in the gas phase, indicating that the structure of the -CH2 is essentially planar. The present rotational spectroscopic study further supports that the methyl group of the ethyl radical can be regarded as a nearly free internal rotor with a low energy barrier. A few unassigned lines still remain, which may be vibrational satellites of the internal rotation mode. Copyright 2004 American Institute of Physics
Muon contact hyperfine field in metals: A DFT calculation
NASA Astrophysics Data System (ADS)
Onuorah, Ifeanyi John; Bonfà, Pietro; De Renzi, Roberto
2018-05-01
In positive muon spin rotation and relaxation spectroscopy it is becoming customary to take advantage of density functional theory (DFT) based computational methods to aid the experimental data analysis. DFT-aided muon site determination is especially useful for measurements performed in magnetic materials, where large contact hyperfine interactions may arise. Here we present a systematic analysis of the accuracy of the ab initio estimation of muon's hyperfine contact field on elemental transition metals, performing state-of-the-art spin-polarized plane-wave DFT and using the projector-augmented pseudopotential approach, which allows one to include the core state effects due to the spin ordering. We further validate this method in not-so-simple, noncentrosymmetric metallic compounds, presently of topical interest for their spiral magnetic structure giving rise to skyrmion phases, such as MnSi and MnGe. The calculated hyperfine fields agree with experimental values in all cases, provided the spontaneous spin magnetization of the metal is well reproduced within the approach. To overcome the known limits of the conventional mean-field approximation of DFT on itinerant magnets, we adopt the so-called reduced Stoner theory [L. Ortenzi et al., Phys. Rev. B 86, 064437 (2012), 10.1103/PhysRevB.86.064437]. We establish the accuracy of the estimated muon contact field in metallic compounds with DFT and our results show improved agreement with experiments compared to those of earlier publications.
Planck 2013 results. XIII. Galactic CO emission
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Dempsey, J. T.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Fukui, Y.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Handa, T.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hily-Blant, P.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Moore, T. J. T.; Morgante, G.; Morino, J.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nakajima, T.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Okuda, T.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Thomas, H. S.; Toffolatti, L.; Tomasi, M.; Torii, K.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yamamoto, H.; Yoda, T.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
Rotational transition lines of CO play a major role in molecular radio astronomy as a mass tracer and in particular in the study of star formation and Galactic structure. Although a wealth of data exists for the Galactic plane and some well-known molecular clouds, there is no available high sensitivity all-sky survey of CO emission to date. Such all-sky surveys can be constructed using the Planck HFI data because the three lowest CO rotational transition lines at 115, 230 and 345 GHz significantly contribute to the signal of the 100, 217 and 353 GHz HFI channels, respectively. Two different component separation methods are used to extract the CO maps from Planck HFI data. The maps obtained are then compared to one another and to existing external CO surveys. From these quality checks the best CO maps, in terms of signal to noise ratio and/or residual contamination by other emission, are selected. Three different sets of velocity-integrated CO emission maps are produced with different trade-offs between signal-to-noise, angular resolution, and reliability. Maps for the CO J = 1 → 0, J = 2 → 1, and J = 3 → 2 rotational transitions are presented and described in detail. They are shown to be fully compatible with previous surveys of parts of the Galactic plane as well as with undersampled surveys of the high latitude sky. The Planck HFI velocity-integrated CO maps for the J = 1 → 0, J = 2 → 1, and J = 3 →2 rotational transitions provide an unprecedented all-sky CO view of the Galaxy. These maps are also of great interest to monitor potential CO contamination of the Planck studies of the cosmological microwave background.
Seam-weld quality of modern ERW/HFI line pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groeneveld, T.P.; Barnes, C.R.
1991-09-01
This study was undertaken to determine whether the seam-weld quality of modern ERW (electric resistance-welded)/HFI (high-frequency induction) welded pipe has been improved and justifies more widespread use of this type of pipe in critical applications. Wider use of ERW/HFI line pipe in gas-transmission lines would be expected to reduce construction costs. Five recently produced, heavy wall pipes fabricated using high-frequency electric-resistance welding (ERW) processes to make the seam weld and one pipe fabricated using the high-frequency induction (HFI) welding process to make the seam weld were studied. Four of the pipes were Grade X-60, one was Grade X-65, and onemore » was Grade X-70. All of the pipes were produced from microalloyed, controlled-rolled steels, and the weld zones were post-weld normalized. Ultrasonic inspection of the seam welds in the six pipe sections evaluated revealed no indications of defects. The tensile properties of all of the weld zones exceeded the minimum specified yield strengths for the respective grades of pipe and all of the pipes exhibited ductile failures either in the weld zone or in the base metal. Five of the six pipes exhibited ductile failures either in the weld zone or in the base metal. Five of the six pipes exhibited relatively low 85% shear area transition temperatures and relatively high upper-shelf energy absorptions as determined with Charpy V-notch specimens. In addition, for two of the three joints of pipe for which the properties were determined at both ends of the pipe, the tensile and impact properties showed little variation from end-to-end. However, for the other joint of pipe, the impact properties varied substantially from one end to the other.« less
Kammerer-Jacquet, Solène-Florence; Brunot, Angelique; Bensalah, Karim; Campillo-Gimenez, Boris; Lefort, Mathilde; Bayat, Sahar; Ravaud, Alain; Dupuis, Frantz; Yacoub, Mokrane; Verhoest, Gregory; Peyronnet, Benoit; Mathieu, Romain; Lespagnol, Alexandra; Mosser, Jean; Edeline, Julien; Laguerre, Brigitte; Bernhard, Jean-Christophe; Rioux-Leclercq, Nathalie
2017-10-01
The selection of patients with metastatic clear cell renal cell carcinoma (ccRCC) who may benefit from targeted tyrosine kinase inhibitors has been a challenge, even more so now with the advent of new therapies. Hilar fat infiltration (HFI) is a validated prognostic factor in nonmetastatic ccRCC (TNM 2009 staging system) but has never been studied in metastatic patients. We aimed to assess its phenotype and prognostic effect in patients with metastatic ccRCC treated with first-line sunitinib. In a multicentric study, we retrospectively included 90 patients and studied the corresponding ccRCC at the pathological, immunohistochemical, and molecular levels. Patient and tumor characteristics were compared using univariate and multivariate analysis. All the features were then studied by Cox models for prognostic effect. HFI was found in 42 patients (46.7%), who had worse prognosis (Heng criteria) (P = 0.003), liver metastases (P = 0.036), and progressive diseases at first radiological evaluation (P = 0.024). The corresponding ccRCC was associated with poor pathological prognostic factors that are well known in nonmetastatic ccRCC. For these patients, median progression-free survival was 4 months vs. 13 months (P = 0.02), and median overall survival was 14 months vs. 29 months (P = 0.006). In a multivariate Cox model integrating all the variables, only poor prognosis, according to the Heng criteria and HFI, remained independently associated with both progression-free survival and overall survival. HFI was demonstrated for the first time to be an independent poor prognostic factor. Its potential role in predicting resistance to antiangiogenic therapy warrants further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Oshtrakh, M. I.; Alenkina, I. V.; Vinogradov, A. V.; Konstantinova, T. S.; Semionkin, V. A.
2015-04-01
Study of human spleen and liver tissues from healthy persons and two patients with mantle cell lymphoma and acute myeloid leukemia was carried out using Mössbauer spectroscopy with a high velocity resolution. Small variations in the 57Fe hyperfine parameters for normal and patient's tissues were detected and related to small variations in the 57Fe local microenvironment in ferrihydrite cores. The differences in the relative parts of more crystalline and more amorphous core regions were also supposed for iron storage proteins in normal and patients' spleen and liver tissues.
Theoretical study of the hyperfine parameters of OH
NASA Technical Reports Server (NTRS)
Chong, Delano P.; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.
1991-01-01
In the present study of the hyperfine parameters of O-17H as a function of the one- and n-particle spaces, all of the parameters except oxygen's spin density, b sub F(O), are sufficiently easily tractable to allow concentration on the computational requirements for accurate determination of b sub F(O). Full configuration-interaction (FCI) calculations in six Gaussian basis sets yield unambiguous results for (1) the effect of uncontracting the O s and p basis sets; (2) that of adding diffuse s and p functions; and (3) that of adding polarization functions to O. The size-extensive modified coupled-pair functional method yields b sub F values which are in fair agreement with FCI results.
Double resonance calibration of g factor standards: Carbon fibers as a high precision standard
NASA Astrophysics Data System (ADS)
Herb, Konstantin; Tschaggelar, Rene; Denninger, Gert; Jeschke, Gunnar
2018-04-01
The g factor of paramagnetic defects in commercial high performance carbon fibers was determined by a double resonance experiment based on the Overhauser shift due to hyperfine coupled protons. Our carbon fibers exhibit a single, narrow and perfectly Lorentzian shaped ESR line and a g factor slightly higher than gfree with g = 2.002644 =gfree · (1 + 162ppm) with a relative uncertainty of 15ppm . This precisely known g factor and their inertness qualify them as a high precision g factor standard for general purposes. The double resonance experiment for calibration is applicable to other potential standards with a hyperfine interaction averaged by a process with very short correlation time.
Nuclear Resonance Scattering of Circularly Polarized SR
NASA Astrophysics Data System (ADS)
Szymanski, K.; Satula, D.; Dobrzynski, L.; Kalska, B.
2004-09-01
Results of the experiments with nuclear resonance scattering of synchrotron radiation aiming at construction of the circularly polarized beam suitable for nuclear hyperfine studies are reported. Si(4 0 0) single crystal slab, 100 μ m thick, was used as a quarter wave plate. Observed twofold reduction of the intensity in proposed geometry is due to the Si crystal itself. Hyperfine interactions are used to probe polarization state of the synchrotron beam. Too large angular beam divergence did not allow for achieving full circular polarization of photons. Consequently, further experiments are proposed to overcame beam divergence problems. A number of calculations presented in the paper show that cheap and easily available Si plate can serve as an effective desired polarizer.
Dark state polarizing a nuclear spin in the vicinity of a nitrogen-vacancy center
NASA Astrophysics Data System (ADS)
Wang, Yang-Yang; Qiu, Jing; Chu, Ying-Qi; Zhang, Mei; Cai, Jianming; Ai, Qing; Deng, Fu-Guo
2018-04-01
The nuclear spin in the vicinity of a nitrogen-vacancy (NV) center possesses long coherence time and convenient manipulation assisted by the strong hyperfine interaction with the NV center. It is suggested for the subsequent quantum information storage and processing after appropriate initialization. However, current experimental schemes are either sensitive to the inclination and magnitude of the magnetic field or require thousands of repetitions to achieve successful realization. Here, we propose a method to polarize a 13C nuclear spin in the vicinity of an NV center via a dark state. We demonstrate theoretically and numerically that it is robust to polarize various nuclear spins with different hyperfine couplings and noise strengths.
Electrical control of single hole spins in nanowire quantum dots.
Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P
2013-03-01
The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.
Petersen, Philippe A D; Silva, Andreia S; Gonçalves, Marcos B; Lapolli, André L; Ferreira, Ana Maria C; Carbonari, Artur W; Petrilli, Helena M
2014-06-03
In this work, perturbed angular correlation (PAC) spectroscopy is used to study differences in the nuclear quadrupole interactions of Cd probes in DNA molecules of mice infected with the Y-strain of Trypanosoma cruzi. The possibility of investigating the local genetic alterations in DNA, which occur along generations of mice infected with T. cruzi, using hyperfine interactions obtained from PAC measurements and density functional theory (DFT) calculations in DNA bases is discussed. A comparison of DFT calculations with PAC measurements could determine the type of Cd coordination in the studied molecules. To the best of our knowledge, this is the first attempt to use DFT calculations and PAC measurements to investigate the local environment of Cd ions bound to DNA bases in mice infected with Chagas disease. The obtained results also allowed the detection of local changes occurring in the DNA molecules of different generations of mice infected with T. cruzi, opening the possibility of using this technique as a complementary tool in the characterization of complicated biological systems.
Planck 2013 results. X. HFI energetic particle effects: characterization, removal, and simulation
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miniussi, A.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Sanselme, L.; Santos, D.; Sauvé, A.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
We describe the detection, interpretation, and removal of the signal resulting from interactions of high energy particles with the Planck High Frequency Instrument (HFI). There are two types of interactions: heating of the 0.1 K bolometer plate; and glitches in each detector time stream. The transientresponses to detector glitch shapes are not simple single-pole exponential decays and fall into three families. The glitch shape for each family has been characterized empirically in flight data and these shapes have been used to remove glitches from the detector time streams. The spectrum of the count rate per unit energy is computed for each family and a correspondence is made to the location on the detector of the particle hit. Most of the detected glitches are from Galactic protons incident on the die frame supporting the micro-machined bolometric detectors. In the Planck orbit at L2, the particle flux is around 5 cm-2 s-1 and is dominated by protons incident on the spacecraft with energy >39 MeV, at a rate of typically one event per second per detector. Different categories of glitches have different signatures in the time stream. Two of the glitch types have a low amplitude component that decays over nearly 1 s. This component produces excess noise if not properly removed from the time-ordered data. We have used a glitch detection and subtraction method based on the joint fit of population templates. The application of this novel glitch subtraction method removes excess noise from the time streams. Using realistic simulations, we find that this method does not introduce signal bias into the Planck data.
One-electron oxidation of individual DNA bases and DNA base stacks.
Close, David M
2010-02-04
In calculations performed with DFT there is a tendency of the purine cation to be delocalized over several bases in the stack. Attempts have been made to see if methods other than DFT can be used to calculate localized cations in stacks of purines, and to relate the calculated hyperfine couplings with known experimental results. To calculate reliable hyperfine couplings it is necessary to have an adequate description of spin polarization which means that electron correlation must be treated properly. UMP2 theory has been shown to be unreliable in estimating spin densities due to overestimates of the doubles correction. Therefore attempts have been made to use quadratic configuration interaction (UQCISD) methods to treat electron correlation. Calculations on the individual DNA bases are presented to show that with UQCISD methods it is possible to calculate hyperfine couplings in good agreement with the experimental results. However these UQCISD calculations are far more time-consuming than DFT calculations. Calculations are then extended to two stacked guanine bases. Preliminary calculations with UMP2 or UQCISD theory on two stacked guanines lead to a cation localized on a single guanine base.
133Cs-NMR study on aligned powder of competing spin chain compound Cs2Cu2Mo3O12
NASA Astrophysics Data System (ADS)
Yagi, A.; Matsui, K.; Goto, T.; Hase, M.; Sasaki, T.
2018-03-01
S = 1/2 competing spin chain compound Cs2Cu2Mo3O12 has two dominant exchange interactions of the nearest neighbouring ferromagnetic J 1 = 93 K and the second nearest neighbouring antiferromagnetic J 2 = +33 K, and is expected to show the nematic Tomonaga-Luttinger liquid (TLL) state under high magnetic field region. The recent theoretical study by Sato et al. has shown that in the nematic TLL state, the spin fluctuations are expected to be highly anisotropic, that is, its transverse component is suppressed. Our previous NMR study on the present system showed that the dominant contribution to nuclear spin relaxation comes from the longitudinal component. In order to conclude that the transverse component of spin fluctuations is suppressed, the knowledge of hyperfine coupling is indispensable. This article is solely devoted to investigate the hyperfine coupling of 133Cs-NMR site to prove that the anisotropic part of hyperfine coupling, which connects the nuclear spin relaxation with the transverse spin fluctuations is considerably large to be A an = +770 Oe/μB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakai, Hironori; Baek, Seung H; Bauer, Eric D
2009-01-01
UNiSi{sub 2} orders ferromagnetically below T{sub Curie} = 95 K. This material crystallizes in the orthorhombic CeNiSi{sub 2}-type structure. The uranium atoms form double-layers, which are stacked along the crystallographic b axis (the longest axis). From magnetization measurement the easy (hard) magnetization axis is found to be the c axis (b axis). {sup 29}Si-NMR measurements have been performed in the paramagnetic state. In UNiSi{sub 2}, two crystallographic Si sites exist with orthorhombic local symmetry. The Knight shifts on each Si site have been estimated from the spectra of random and oriented powders. The transferred hyperfine couplings have been also derived.more » It is found that the transferred hyperfine coupling constants on each Si site are nearly isotropic, and that their Knight shift anisotropy comes from that of the bulk susceptibility. The nuclear-spin lattice relaxation rate 1/T{sub 1} shows temperature-independent behavior, which indicates the existence of localized 5f electron.« less
Two-component Thermal Dust Emission Model: Application to the Planck HFI Maps
NASA Astrophysics Data System (ADS)
Meisner, Aaron M.; Finkbeiner, Douglas P.
2014-06-01
We present full-sky, 6.1 arcminute resolution maps of dust optical depth and temperature derived by fitting the Finkbeiner et al. (1999) two-component dust emission model to the Planck HFI and IRAS 100 micron maps. This parametrization of the far infrared thermal dust SED as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody dust emission model. We expect our Planck-based maps of dust temperature and optical depth to form the basis for a next-generation, high-resolution extinction map which will additionally incorporate small-scale detail from WISE imaging.
The Helmet Fit Index--An intelligent tool for fit assessment and design customisation.
Ellena, Thierry; Subic, Aleksandar; Mustafa, Helmy; Pang, Toh Yen
2016-07-01
Helmet safety benefits are reduced if the headgear is poorly fitted on the wearer's head. At present, there are no industry standards available to assess objectively how a specific protective helmet fits a particular person. A proper fit is typically defined as a small and uniform distance between the helmet liner and the wearer's head shape, with a broad coverage of the head area. This paper presents a novel method to investigate and compare fitting accuracy of helmets based on 3D anthropometry, reverse engineering techniques and computational analysis. The Helmet Fit Index (HFI) that provides a fit score on a scale from 0 (excessively poor fit) to 100 (perfect fit) was compared with subjective fit assessments of surveyed cyclists. Results in this study showed that quantitative (HFI) and qualitative (participants' feelings) data were related when comparing three commercially available bicycle helmets. Findings also demonstrated that females and Asian people have lower fit scores than males and Caucasians, respectively. The HFI could provide detailed understanding of helmet efficiency regarding fit and could be used during helmet design and development phases. Copyright © 2016 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Reaction of 1H-1-oxo-2,4,6,8-tetrakis(tert-butyl)phenoxazine with certain group II-IV metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karsanov, I.V.; Ivakhnenko, E.P.; Khandkarova, V.S.
1987-07-10
It has already been shown that 2-amino-4,6-di(tert-butyl)phenol reacts with 3,5-di(tert-butyl)-o-benzoquinone to form 1H-1-oxo-2,4,6,8-tetrakis(tert-butyl)phenoxazine (I), which is readily reduced by alkali metals to the corresponding semiquinone anion-radical (II), and further to the diamagnetic dianion (IIA). They made use of this ability of (I) to undergo reduction to prepare anion-radical salts with different group II-IV metals in the form of their amalgams. In the EPR spectrum of the anion-radical complex (III) formed in the reduction of (I) by a thallium amalgam, the HFI constants of the unpaired electron with magnetic nuclei of the organic ligand are close to those of the K-saltmore » (II), and a substantial HFI is observed with the /sup 203,205/Tl nuclei. This unequivocally proves that the complex has a semiquinone structure, since an HFI on the /sup 203,205/Tl nuclei of such an order of magnitude is characteristic of o-benzoquinone salts with a thallium cation.« less
NASA Astrophysics Data System (ADS)
Halfen, D. T.; Ziurys, L. M.
2005-02-01
The pure rotational spectrum of the MnCl radical (X 7Σ+) has been recorded in the range 141-535 GHz using millimeter-submillimeter direct absorption spectroscopy. This work is the first time the molecule has been studied with rotational resolution in its ground electronic state. MnCl was synthesized by the reaction of manganese vapor, produced in a Broida-type oven, with Cl2. Transitions of both chlorine isotopomers were measured, as well as lines originating in several vibrationally excited states. The presence of several spin components and manganese hyperfine interactions resulted in quite complex spectra, consisting of multiple blended features. Because 42 rotational transitions were measured for Mn35Cl over a wide range of frequencies with high signal-to-noise, a very accurate set of rotational, fine structure, and hyperfine constants could be determined with the aid of spectral simulations. Spectroscopic constants were also determined for Mn37Cl and several vibrationally excited states. The values of the spin-rotation and spin-spin parameters were found to be relatively small (γ=11.2658 MHz and λ=1113.10 MHz for Mn35Cl); in the case of λ, excited electronic states contributing to the second-order spin-orbit interaction may be canceling each other. The Fermi contact hyperfine term was found to be large in manganese chloride with bF(Mn35Cl)=397.71 MHz, a result of the manganese 4s character mixing into the 12σ orbital. This orbital is spσ hybridized, and contains some Mn 4pσ character, as well. Hence, it also contributes to the dipolar constant c, which is small and positive for this radical (c=32.35 MHz for Mn35Cl). The hyperfine parameters in MnCl are similar to those of MnH and MnF, suggesting that the bonding in these three molecules is comparable.
Calculation of the spin-polarized electronic structure of an interstitial iron impurity in silicon
NASA Astrophysics Data System (ADS)
Katayama-Yoshida, H.; Zunger, Alex
1985-06-01
We apply our self-consistent, all-electron, spin-polarized Green's-function method within an impurity-centered, dynamic basis set to study the interstitial iron impurity in silicon. We use two different formulations of the interelectron interactions: the local-spin-density (LSD) formalism and the self-interaction-corrected (SIC) local-spin-density (SIC-LSD) formalism. We find that the SIC-LSD approach is needed to obtain the correct high-spin ground state of Si:Fe+. We propose a quantitative explanation to the observed donor ionization energy and the high-spin ground states for Si:Fe+ within the SIC-LSD approach. For both Si:Fe0 and Si:Fe+, this approach leads to a hyperfine field, contact spin density, and ionization energy in better agreement with experiments than the simple LSD approach. The apparent dichotomy between the covalently delocalized nature of Si:Fe as suggested on the one hand by its reduced hyperfine field (relative to the free atom) and extended spin density and by the occurrence of two closely spaced, stable charge states (within 0.4 eV) and on the other hand by the atomically localized picture (suggested, for example, by the stability of a high-spin, ground-state configuration) is resolved. We find a large reduction in the hyperfine field and contact spin density due to the covalent hybridization between the impurity 3d orbitals and the tails of the delocalized sp3 hybrid orbitals of the surrounding silicon atoms. Using the calculated results, we discuss (i) the underlying mechanism for the stability and plurality of charged states, (ii) the covalent reduction in the hyperfine field, (iii) the remarkable constancy of the impurity Mössbauer isomer shift for different charged states, (iv) comparison with the multiple charged states in ionic crystals, and (v) some related speculation about the mechanism of (Fe2+/Fe3+) oxidation-reduction ionizations in heme proteins and electron-transporting biological systems.
Halfen, D T; Ziurys, L M
2005-02-01
The pure rotational spectrum of the MnCl radical (X (7)Sigma(+)) has been recorded in the range 141-535 GHz using millimeter-submillimeter direct absorption spectroscopy. This work is the first time the molecule has been studied with rotational resolution in its ground electronic state. MnCl was synthesized by the reaction of manganese vapor, produced in a Broida-type oven, with Cl(2). Transitions of both chlorine isotopomers were measured, as well as lines originating in several vibrationally excited states. The presence of several spin components and manganese hyperfine interactions resulted in quite complex spectra, consisting of multiple blended features. Because 42 rotational transitions were measured for Mn(35)Cl over a wide range of frequencies with high signal-to-noise, a very accurate set of rotational, fine structure, and hyperfine constants could be determined with the aid of spectral simulations. Spectroscopic constants were also determined for Mn(37)Cl and several vibrationally excited states. The values of the spin-rotation and spin-spin parameters were found to be relatively small (gamma=11.2658 MHz and lambda=1113.10 MHz for Mn(35)Cl); in the case of lambda, excited electronic states contributing to the second-order spin-orbit interaction may be canceling each other. The Fermi contact hyperfine term was found to be large in manganese chloride with b(F)(Mn(35)Cl)=397.71 MHz, a result of the manganese 4s character mixing into the 12sigma orbital. This orbital is spsigma hybridized, and contains some Mn 4psigma character, as well. Hence, it also contributes to the dipolar constant c, which is small and positive for this radical (c=32.35 MHz for Mn(35)Cl). The hyperfine parameters in MnCl are similar to those of MnH and MnF, suggesting that the bonding in these three molecules is comparable.
Tetraquarks with colour-blind forces in chiral quark models
NASA Astrophysics Data System (ADS)
Pepin, S.; Stancu, Fl.; Genovese, M.; Richard, J.-M.
1997-02-01
We discuss the stability of multiquark systems within the recent model of Glozman et al. where the chromomagnetic hyperfine interaction is replaced by pseudoscalar-meson exchange contributions. We find that such an interaction binds a heavy tetraquark systems QQqq (Q = c, b and q = u, d) by 0.2-0.4 GeV. This is at variance with results of previous models where ccqq is unstable.
Dynamic nuclear polarization assisted spin diffusion for the solid effect case.
Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon
2011-02-21
The dynamic nuclear polarization (DNP) process in solids depends on the magnitudes of hyperfine interactions between unpaired electrons and their neighboring (core) nuclei, and on the dipole-dipole interactions between all nuclei in the sample. The polarization enhancement of the bulk nuclei has been typically described in terms of a hyperfine-assisted polarization of a core nucleus by microwave irradiation followed by a dipolar-assisted spin diffusion process in the core-bulk nuclear system. This work presents a theoretical approach for the study of this combined process using a density matrix formalism. In particular, solid effect DNP on a single electron coupled to a nuclear spin system is considered, taking into account the interactions between the spins as well as the main relaxation mechanisms introduced via the electron, nuclear, and cross-relaxation rates. The basic principles of the DNP-assisted spin diffusion mechanism, polarizing the bulk nuclei, are presented, and it is shown that the polarization of the core nuclei and the spin diffusion process should not be treated separately. To emphasize this observation the coherent mechanism driving the pure spin diffusion process is also discussed. In order to demonstrate the effects of the interactions and relaxation mechanisms on the enhancement of the nuclear polarization, model systems of up to ten spins are considered and polarization buildup curves are simulated. A linear chain of spins consisting of a single electron coupled to a core nucleus, which in turn is dipolar coupled to a chain of bulk nuclei, is considered. The interaction and relaxation parameters of this model system were chosen in a way to enable a critical analysis of the polarization enhancement of all nuclei, and are not far from the values of (13)C nuclei in frozen (glassy) organic solutions containing radicals, typically used in DNP at high fields. Results from the simulations are shown, demonstrating the complex dependences of the DNP-assisted spin diffusion process on variations of the relevant parameters. In particular, the effect of the spin lattice relaxation times on the polarization buildup times and the resulting end polarization are discussed, and the quenching of the polarizations by the hyperfine interaction is demonstrated.
NASA Astrophysics Data System (ADS)
Liu, Feilong; Kelley, Megan R.; Crooker, Scott A.; Nie, Wanyi; Mohite, Aditya D.; Ruden, P. Paul; Smith, Darryl L.
2014-12-01
The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the electron/hole polarons and the hydrogen nuclei of the host molecules. In this paper, we present an analytical theory of magnetoelectroluminescence for organic semiconductors. To be specific, we focus on bilayer heterostructure devices. In the case we are considering, light generation at the interface of the donor and acceptor layers results from the formation and recombination of exciplexes. The spin physics is described by a stochastic Liouville equation for the electron/hole spin density matrix. By finding the steady-state analytical solution using Bloch-Wangsness-Redfield theory, we explore how the singlet/triplet exciplex ratio is affected by the hyperfine interaction strength and by the external magnetic field. To validate the theory, spectrally resolved electroluminescence experiments on BPhen/m-MTDATA devices are analyzed. With increasing emission wavelength, the width of the magnetic field modulation curve of the electroluminescence increases while its depth decreases. These observations are consistent with the model.
SU(6), triquark states, and the pentaquark
NASA Astrophysics Data System (ADS)
Majee, Swarup Kumar; Raychaudhuri, Amitava
2008-04-01
The purported observation of a state Θ+ with strangeness S=+1 led to its quark model interpretation in terms of a pentaquark combination involving a triquark-diquark structure—the Karliner-Lipkin model. In this work, the proper color-spin symmetry properties for the qq qmacr triquark are elucidated by calculating the SU(6) unitary scalar factors and Racah coefficients. Using these results, the color-spin hyperfine interactions, including flavor symmetry breaking therein, become straightforward to incorporate and the pentaquark masses are readily obtained. We examine the effect on the pentaquark mass of (a) deviations from the flavor symmetric limit and (b) different strengths of the doublet and triplet hyperfine interactions. Reference values of these parameters yield a Θ+ mass prediction of 1601 MeV but it can comfortably accommodate 1540 MeV for alternate choices. In the same framework, other pentaquark states Ξ(S=-2) and Θc (with charm C=-1) are expected at 1783 MeV and 2757 MeV, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harack, B.; Leary, A.; Coish, W. A.
2013-12-04
We outline power spectra and auto correlation analysis performed on temporal oscillations in the tunneling current of coupled vertical quantum dots. The current is monitored for ∼2325 s blocks as the magnetic field is stepped through a high bias feature displaying hysteresis and switching: hallmarks of the hyperfine interaction. Quasi-periodic oscillations of ∼2 pA amplitude and of ∼100 s period are observed in the current inside the hysteretic feature. Compared to the baseline current outside the hysteretic feature the power spectral density is enhanced by up to three orders of magnitude and the auto correlation displays clear long lived oscillationsmore » about zero.« less
Inflight characterization and correction of Planck/HFI analog to digital converter nonlinearity
NASA Astrophysics Data System (ADS)
Sauvé, A.; Couchot, F.; Patanchon, G.; Montier, L.
2016-07-01
The Planck Satellite launched in 2009 was targeted to observe the anisotropies of the Cosmic Microwave Back-ground (CMB) to an unprecedented sensitivity. While the Analog to Digital Converter of the HFI (High Frequency Instrument) readout electronics had not been properly characterized on ground, it has been shown to add a systematic nonlinearity effect up to 2% of the cosmological signal. This was a limiting factor for CMB science at large angular scale. We will present the in-flight analysis and method used to characterize and correct this effect down to 0.05% level. We also discuss how to avoid this kind of complex issue for future missions.
Bolometric detectors for the Planck surveyor
NASA Technical Reports Server (NTRS)
Yun, M.; Koch, T.; Bock, J.; Holmes, W.; Hustead, L.; Wild, L.; Mulder, J.; Turner, A.; Lange, A.; Bhatia, R.
2002-01-01
The High Frequency Instrument on the NASA/ESA Planck Surveyor, scheduled for launch in 2007, will map the entire sky in 6 frequency bands ranging from 100 GHz to 857 GHz to probe Cosmic Microwave Background (CMB) anisotropy and polarization with angular resolution ranging from 9' to 5'. The HFI focal plane will contain 48 silicon nitride micromesh bolometers operating from a 100 mK heat sink. Four detectors in each of the 6 bands will detect unpolarized radiation. An additional 4 pairs of detectors will provide sensitivity to linear polarization of emission at 143, 217 and 353 GHz. We report on the development and characterization of these detectors before delivery to the European HFI consortium.
Adam, R.; Ade, P. A. R.; Aghanim, N.; ...
2016-09-20
The Planck High Frequency Instrument (HFI) has observed the full sky at six frequencies (100, 143, 217, 353, 545, and 857 GHz) in intensity and at four frequencies in linear polarization (100, 143, 217, and 353 GHz). In order to obtain sky maps, the time-ordered information (TOI) containing the detector and pointing samples must be processed and the angular response must be assessed. The full mission TOI is included in the Planck 2015 release. This study describes the HFI TOI and beam processing for the 2015 release. HFI calibration and map making are described in a companion paper. The mainmore » pipeline has been modified since the last release (2013 nominal mission in intensity only), by including a correction for the nonlinearity of the warm readout and by improving the model of the bolometer time response. The beam processing is an essential tool that derives the angular response used in all the Planck science papers and we report an improvement in the effective beam window function uncertainty of more than a factor of 10 relative to the2013 release. Noise correlations introduced by pipeline filtering function are assessed using dedicated simulations. Finally, angular cross-power spectra using data sets that are decorrelated in time are immune to the main systematic effects.« less
McCurdy, Karen; Kisler, Tiffani; Gorman, Kathleen S.; Metallinos-Katsaras, Elizabeth
2015-01-01
Objective Examine how income-related challenges around food and health are associated with variation in self-reported maternal body weight among low-income mothers. Design Cross-sectional, correlational design. Convenience sample recruited from 7 daycare centers and a Supplemental Nutrition Assistance Program outreach project. Maternal self-report data collected between October 2009 and May 2011. Setting Two Northeastern cities. Participants Sample of 166 mothers; 67% overweight or obese, 55% Hispanic, 42% reporting household food insecurity (HFI). Main Outcome Measures Maternal self-reported height and weight to calculate Body Mass Index (BMI). Independent variables: food program participation, supermarket use, 8-item food shopping practices scale, HFI, maternal depressive symptoms, self-rated health (SRH). Analysis Hierarchical multiple regression analysis tested relationships between maternal BMI with the independent variables of interest, adjusting for demographic confounds. Results Shopping practices to stretch food dollars (P = .04), using community food assistance programs (P < .05), and HFI (P < .04) correlated with heavier maternal BMIs; higher SRH corresponded to lower BMIs (P =.004). Conclusions and Implications Some strategies low-income mothers use to manage food resources are associated with heavier BMIs. Nutrition educators, public health practitioners, and researchers need to collaboratively address the associations between these strategies, food insecurity, poor health, and unhealthy weight. PMID:25794991
NASA Astrophysics Data System (ADS)
Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bertincourt, B.; Bielewicz, P.; Bock, J. J.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leahy, J. P.; Lellouch, E.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Moreno, R.; Morgante, G.; Mortlock, D.; Moss, A.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Sauvé, A.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
The Planck High Frequency Instrument (HFI) has observed the full sky at six frequencies (100, 143, 217, 353, 545, and 857 GHz) in intensity and at four frequencies in linear polarization (100, 143, 217, and 353 GHz). In order to obtain sky maps, the time-ordered information (TOI) containing the detector and pointing samples must be processed and the angular response must be assessed. The full mission TOI is included in the Planck 2015 release. This paper describes the HFI TOI and beam processing for the 2015 release. HFI calibration and map making are described in a companion paper. The main pipeline has been modified since the last release (2013 nominal mission in intensity only), by including a correction for the nonlinearity of the warm readout and by improving the model of the bolometer time response. The beam processing is an essential tool that derives the angular response used in all the Planck science papers and we report an improvement in the effective beam window function uncertainty of more than a factor of 10 relative to the2013 release. Noise correlations introduced by pipeline filtering function are assessed using dedicated simulations. Angular cross-power spectra using data sets that are decorrelated in time are immune to the main systematic effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, R.; Ade, P. A. R.; Aghanim, N.
The Planck High Frequency Instrument (HFI) has observed the full sky at six frequencies (100, 143, 217, 353, 545, and 857 GHz) in intensity and at four frequencies in linear polarization (100, 143, 217, and 353 GHz). In order to obtain sky maps, the time-ordered information (TOI) containing the detector and pointing samples must be processed and the angular response must be assessed. The full mission TOI is included in the Planck 2015 release. This study describes the HFI TOI and beam processing for the 2015 release. HFI calibration and map making are described in a companion paper. The mainmore » pipeline has been modified since the last release (2013 nominal mission in intensity only), by including a correction for the nonlinearity of the warm readout and by improving the model of the bolometer time response. The beam processing is an essential tool that derives the angular response used in all the Planck science papers and we report an improvement in the effective beam window function uncertainty of more than a factor of 10 relative to the2013 release. Noise correlations introduced by pipeline filtering function are assessed using dedicated simulations. Finally, angular cross-power spectra using data sets that are decorrelated in time are immune to the main systematic effects.« less
McCurdy, Karen; Kisler, Tiffani; Gorman, Kathleen S; Metallinos-Katsaras, Elizabeth
2015-01-01
To examine how income-related challenges regarding food and health are associated with variation in self-reported maternal body weight among low-income mothers. Cross-sectional design. Two Northeastern cities. Seven day care centers and a Supplemental Nutrition Assistance Program outreach project. Sample of 166 mothers; 67% were overweight or obese, 55% were Hispanic, and 42% reported household food insecurity (HFI). Maternal self-reported height and weight to calculate body mass index (BMI). Independent variables were food program participation, supermarket use, 8-item food shopping practices scale, HFI, maternal depressive symptoms, and self-rated health. Hierarchical multiple regression analysis tested relationships between maternal BMI with the independent variables of interest, adjusting for demographic confounds. Shopping practices to stretch food dollars (P = .04), using community food assistance programs (P < .05), and HFI (P < .04) correlated with heavier maternal BMIs; higher self-rated health corresponded to lower BMIs (P = .004). Some strategies low-income mothers use to manage food resources are associated with heavier BMIs. Nutrition educators, public health practitioners, and researchers need to collaboratively address the associations between these strategies, food insecurity, poor health, and unhealthy weight. Copyright © 2015 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
Wilkins, A D; Morgus, L; Hernandez-Guzman, J; Huennekens, J; Hickman, A P
2005-09-22
Earlier high-resolution spectroscopic studies of the fine and hyperfine structure of rovibrational levels of the 1 3delta state of NaK have been extended to include high lying rovibrational levels with v < or = 59, of which the highest levels lie within approximately 4 cm(-1) of the dissociation limit. A potential curve is determined using the inverted perturbation approximation method that reproduces these levels to an accuracy of approximately 0.026 cm(-1). For the largest values of v, the outer turning points occur near R approximately 12.7 angstroms, which is sufficiently large to permit the estimation of the C6 coefficient for this state. The fine and hyperfine structure of the 1 3delta rovibrational levels has been fit using the matrix diagonalization method that has been applied to other states of NaK, leading to values of the spin-orbit coupling constant A(v) and the Fermi contact constant b(F). New values determined for v < or = 33 are consistent with values determined by a simpler method and reported earlier. The measured fine and hyperfine structure for v in the range 44 < or = v < or = 49 exhibits anomalous behavior whose origin is believed to be the mixing between the 1 3delta and 1 1delta states. The matrix diagonalization method has been extended to treat this interaction, and the results provide an accurate representation of the complicated patterns that arise. The analysis leads to accurate values for A(v) and b(F) for all values of v < or = 49. For higher v (50 < or = v < or = 59), several rovibrational levels have been assigned, but the pattern of fine and hyperfine structure is difficult to interpret. Some of the observed features may arise from effects not included in the current model.
Planck early results. IV. First assessment of the High Frequency Instrument in-flight performance
NASA Astrophysics Data System (ADS)
Planck HFI Core Team; Ade, P. A. R.; Aghanim, N.; Ansari, R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Banday, A. J.; Bartelmann, M.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bradshaw, T.; Bréelle, E.; Bucher, M.; Camus, P.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Charra, J.; Charra, M.; Chary, R.-R.; Chiang, C.; Church, S.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Cressiot, C.; Crill, B. P.; Crook, M.; de Bernardis, P.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dolag, K.; Dole, H.; Doré, O.; Douspis, M.; Efstathiou, G.; Eng, P.; Filliard, C.; Forni, O.; Fosalba, P.; Fourmond, J.-J.; Ganga, K.; Giard, M.; Girard, D.; Giraud-Héraud, Y.; Gispert, R.; Górski, K. M.; Gratton, S.; Griffin, M.; Guyot, G.; Haissinski, J.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hills, R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.; Kaplan, J.; Kneissl, R.; Knox, L.; Lagache, G.; Lamarre, J.-M.; Lami, P.; Lange, A. E.; Lasenby, A.; Lavabre, A.; Lawrence, C. R.; Leriche, B.; Leroy, C.; Longval, Y.; Macías-Pérez, J. F.; Maciaszek, T.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.; Mann, R.; Mansoux, B.; Masi, S.; Matsumura, T.; McGehee, P.; Melin, J.-B.; Mercier, C.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Mortlock, D.; Murphy, A.; Nati, F.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Osborne, S.; Paine, C.; Pajot, F.; Patanchon, G.; Peacocke, T.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Pons, R.; Ponthieu, N.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Reach, W. T.; Renault, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Santos, D.; Savini, G.; Schaefer, B. M.; Shellard, P.; Spencer, L.; Starck, J.-L.; Stassi, P.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sygnet, J.-F.; Tauber, J. A.; Thum, C.; Torre, J.-P.; Touze, F.; Tristram, M.; van Leeuwen, F.; Vibert, L.; Vibert, D.; Wade, L. A.; Wandelt, B. D.; White, S. D. M.; Wiesemeyer, H.; Woodcraft, A.; Yurchenko, V.; Yvon, D.; Zacchei, A.
2011-12-01
The Planck High Frequency Instrument (HFI) is designed to measure the temperature and polarization anisotropies of the cosmic microwave background and Galactic foregrounds in six ~30% bands centered at 100, 143, 217, 353, 545, and 857 GHz at an angular resolution of 10' (100 GHz), 7' (143 GHz), and 5' (217 GHz and higher). HFI has been operating flawlessly since launch on 14 May 2009, with the bolometers reaching 100 mK the first week of July. The settings of the readout electronics, including bolometer bias currents, that optimize HFI's noise performance on orbit are nearly the same as the ones chosen during ground testing. Observations of Mars, Jupiter, and Saturn have confirmed that the optical beams and the time responses of the detection chains are in good agreement with the predictions of physical optics modeling and pre-launch measurements. The Detectors suffer from a high flux of cosmic rays due to historically low levels of solar activity. As a result of the redundancy of Planck's observation strategy, theremoval of a few percent of data contaminated by glitches does not significantly affect the instrumental sensitivity. The cosmic ray flux represents a significant and variable heat load on the sub-Kelvin stage. Temporal variation and the inhomogeneous distribution of the flux results in thermal fluctuations that are a probable source of low frequency noise. The removal of systematic effects in the time ordered data provides a signal with an average noise equivalent power that is 70% of the goal in the 0.6-2.5 Hz range. This is slightly higher than was achieved during the pre-launch characterization but better than predicted in the early phases of the project. The improvement over the goal is a result of the low level of instrumental background loading achieved by the optical and thermal design of the HFI. Corresponding author: J.-M. Lamarre, jean-michel.lamarre@obspm.fr
The unexpected truth about dates and hypoglycemia.
Yasawy, Mohammed I
2016-01-01
Dates are a concentrated source of essential nutrients, vitamins, minerals, and carbohydrates (CHOs), which are necessary for the maintenance of optimum health. Most of the CHOs in dates come from sugars including glucose and fructose. Dates are commonly consumed in Saudi Arabia, particularly at the time of breaking the fast to provide instant energy and maintain blood sugar level. However, dates may cause hypoglycemia in a rare condition named as heredity fructose intolerance (HFI), and a few families have been to see us with a history of that nature. This is to report the preliminary results of an on-going study of a group of patients who get symptoms of hypoglycemia following the ingestion of dates and have suffered for years without an accurate diagnosis. This report is based on three patients, from the same family, living in a date growing region of the Kingdom of Saudi Arabia (KSA). The patients had been to several medical centers without getting any definite answers or diagnosis until they were referred to the Gastroenterology Clinic of King Fahd Hospital of the University, Al-Khobar, KSA. The data were obtained by careful history and laboratory investigations, and a final diagnosis of HFI made on fructose intolerance test (FIT). The patients reported that they had avoided eating dates because of various symptoms, such as bloating, nausea, and even hypoglycemia when larger amounts were consumed. Their other symptoms included sleepiness, sweating, and shivering. After full examinations and necessary laboratory tests based on the above symptoms, FIT was performed and the patients were diagnosed with HFI. They were referred to a dietitian who advised a fructose-free diet. They felt well and were free of symptoms. HFI may remain undiagnosed until adulthood and may lead to disastrous complications and even death. The diagnosis can only be suspected after a careful dietary history is taken supported by FIT. This can prevent serious complications. Restricting dietary fructose may give relief from symptoms in a high proportion of patients with this disorder.
Association between food insecurity and anemia among women of reproductive age.
Ghose, Bishwajit; Tang, Shangfeng; Yaya, Sanni; Feng, Zhanchun
2016-01-01
Food insecurity and hidden hunger (micronutrient deficiency) affect about two billion people globally. Household food insecurity (HFI) has been shown to be associated with one or multiple micronutrient (MMN) deficiencies among women and children. Chronic food insecurity leads to various deficiency disorders, among which anemia stands out as the most prevalent one. As a high malnutrition prevalent country, Bangladesh has one of the highest rates of anemia among all Asian countries. In this study, we wanted to investigate for any association exists between HFI and anemia among women of reproductive age in Bangladesh. Information about demographics, socioeconomic and anemia status on 5,666 married women ageing between 13 and 40 years were collected from a nationally representative cross-sectional survey Bangladesh Demographic and Health Survey (BDHS 2011). Food security was measured by the Household Food Insecurity Access Scale (HFIAS). Capillary hemoglobin concentration (Hb) measured by HemoCue® was used as the biomarker of anemia. Data were analysed using cross-tabulation, chi-square tests and multiple logistic regression methods. Anemia prevalence was 41.7%. Logistic regression showed statistically significant association with anemia and type of residency (p = 0.459; OR = 0.953, 95%CI = 0.840-1.082), wealth status (Poorest: p < 0.001; OR = 1.369, 95%CI = 1.176-1.594; and average: p = 0.030; 95%CI = 1.017-1.398), educational attainment (p < 0.001; OR = 1.276, 95%CI = 1.132-1.439) and household food insecurity (p < 0.001; 95%CI = 1.348-1.830). Women who reported food insecurity were about 1.6 times more likely to suffer from anemia compared to their food secure counterparts. HFI is a significant predictor of anemia among women of reproductive age in Bangladesh. Programs targeting HFI could prove beneficial for anemia reduction strategies. Gender aspects of food and nutrition insecurity should be taken into consideration in designing national anemia prevention frameworks.
Planck 2013 results. VII. HFI time response and beams
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bowyer, J. W.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Haissinski, J.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matsumura, T.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polegre, A. M.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sandri, M.; Santos, D.; Sauvé, A.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.
2014-11-01
This paper characterizes the effective beams, the effective beam window functions and the associated errors for the Planck High Frequency Instrument (HFI) detectors. The effective beam is theangular response including the effect of the optics, detectors, data processing and the scan strategy. The window function is the representation of this beam in the harmonic domain which is required to recover an unbiased measurement of the cosmic microwave background angular power spectrum. The HFI is a scanning instrument and its effective beams are the convolution of: a) the optical response of the telescope and feeds; b) the processing of the time-ordered data and deconvolution of the bolometric and electronic transfer function; and c) the merging of several surveys to produce maps. The time response transfer functions are measured using observations of Jupiter and Saturn and by minimizing survey difference residuals. The scanning beam is the post-deconvolution angular response of the instrument, and is characterized with observations of Mars. The main beam solid angles are determined to better than 0.5% at each HFI frequency band. Observations of Jupiter and Saturn limit near sidelobes (within 5°) to about 0.1% of the total solid angle. Time response residuals remain as long tails in the scanning beams, but contribute less than 0.1% of the total solid angle. The bias and uncertainty in the beam products are estimated using ensembles of simulated planet observations that include the impact of instrumental noise and known systematic effects. The correlation structure of these ensembles is well-described by five error eigenmodes that are sub-dominant to sample variance and instrumental noise in the harmonic domain. A suite of consistency tests provide confidence that the error model represents a sufficient description of the data. The total error in the effective beam window functions is below 1% at 100 GHz up to multipole ℓ ~ 1500, and below 0.5% at 143 and 217 GHz up to ℓ ~ 2000.
Development of a collinear laser spectrometer facility at VECC: First test result
NASA Astrophysics Data System (ADS)
Ali, Md Sabir; Ray, Ayan; Raja, Waseem; Bandyopadhyay, Arup; Naik, Vaishali; Polley, Asish; Chakrabarti, Alok
2018-04-01
We report here the development of collinear laser spectroscopy (CLS) system at VECC for the study of hyperfine spectrum and isotopic shift of stable and unstable isotopes. The facility is first of its kind in the country allowing measurement of hyperfine splitting of atomic levels using atomic beams. The CLS system is installed downstream of the focal plane of the existing isotope separator online (ISOL) facility at VECC and is recently commissioned by successfully resolving the fluorescence spectrum of the hyperfine levels in ^{85,87}Rb. The atomic beams of Rb were produced by charge exchange of 8 keV Rb ion beam which were produced, extracted and transported to the charge exchange cell using the ion sources, extractor and the beam-line magnets of the ISOL facility. The laser propagating opposite to the ion / atom beam direction was allowed to interact with the atom beam and fluorescence spectrum was recorded. The experimental set-up and the experiment conducted are reported in detail. The measures needed to be carried out for improving the sensitivity to a level necessary for studying short-lived exotic nuclei have also been discussed.
The pure rotational spectra of the open-shell diatomic molecules PbI and SnI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Corey J., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk; Needham, Lisa-Maria E.; Walker, Nicholas R., E-mail: cje8@le.ac.uk, E-mail: nick.walker@newcastle.ac.uk
2015-12-28
Pure rotational spectra of the ground electronic states of lead monoiodide and tin monoiodide have been measured using a chirped pulsed Fourier transform microwave spectrometer over the 7-18.5 GHz region for the first time. Each of PbI and SnI has a X {sup 2}Π{sub 1/2} ground electronic state and may have a hyperfine structure that aids the determination of the electron electric dipole moment. For each species, pure rotational transitions of a number of different isotopologues and their excited vibrational states have been assigned and fitted. A multi-isotopologue Dunham-type analysis was carried out on both species producing values for Y{submore » 01}, Y{sub 02}, Y{sub 11}, and Y{sub 21}, along with Λ-doubling constants, magnetic hyperfine constants and nuclear quadrupole coupling constants. The Born-Oppenheimer breakdown parameters for Pb have been evaluated and the parameter rationalized in terms of finite nuclear field effects. Analysis of the bond lengths and hyperfine interaction indicates that the bonding in both PbI and SnI is ionic in nature. Equilibrium bond lengths have been evaluated for both species.« less
Clouthier, Dennis J; Kalume, Aimable
2016-01-21
Laser-induced fluorescence and wavelength resolved emission spectra of the B (4)Σ(-)-X (4)Σ(-) band system of the gas phase cold aluminum carbide free radical have been obtained using the pulsed discharge jet technique. The radical was produced by electron bombardment of a precursor mixture of trimethylaluminum in high pressure argon. High resolution spectra show that each rotational line of the 0-0 and 1-1 bands of AlC is split into at least three components, with very similar splittings and intensities in both the P- and R-branches. The observed structure was reproduced by assuming bβS magnetic hyperfine coupling in the excited state, due to a substantial Fermi contact interaction of the unpaired electron in the aluminum 3s orbital. Rotational analysis has yielded ground and excited state equilibrium bond lengths in good agreement with the literature and our own ab initio values. Small discrepancies in the calculated intensities of the hyperfine lines suggest that the upper state spin-spin constant λ' is of the order of ≈ 0.025-0.030 cm(-1).
NASA Astrophysics Data System (ADS)
Başar, Gü.; Güzelçimen, F.; Öztürk, I. K.; Er, A.; Bingöl, D.; Kröger, S.; Başar, Gö.
2017-11-01
The hyperfine structure of 57 spectral lines of neutral vanadium has been investigated using a hollow cathode lamp by laser-induced fluorescence spectroscopy in the wavelength range from 750 nm to 860 nm. New magnetic dipole hyperfine structure constants A have been determined for 14 atomic energy levels and new electric quadrupole hyperfine structure constants B for two levels. Additionally previously published hyperfine structure constants A of 56 levels have been measured again. In five cases, the old A values have been rejected and replaced by improved values.
Electric dipole hyperfine structure of TIF
NASA Astrophysics Data System (ADS)
Hinds, Edward A.; Sandars, P. G. H.
1980-02-01
The authors have calculated the electric dipole interaction energy of the 205TI nucleus in TIF assuming a nonzero electric dipole moment dp on the proton. The result is used in the accompanying experimental paper to obtain a new value of (-1.4+/-6)×10-21 e cm for dp.
NASA Astrophysics Data System (ADS)
Zhang, Chun Mei; Chen, Chao; Sun, Yan; Gou, Bing Cong; Shao, Bin
2015-04-01
The Rayleigh-Ritz variational method with multiconfiguration interaction wave functions is used to obtain the energies of high-lying multi-excited quartet states 1 s 22 s2 pnl and 1 s 22 p 2 nl 4Pe,o ( n ≥ 2) in B-like neon, including the mass polarization and relativistic corrections. The fine structure and hyperfine structure of the excited quartet states for this system are investigated. Configuration structures of the high-lying multi-excited series are further identified by relativistic corrections and fine structure splittings. The transition rates and wavelengths are also calculated. Calculated wavelengths include the quantum electrodynamic effects. The results are compared with other theoretical and experimental data in the literature.
Double resonance calibration of g factor standards: Carbon fibers as a high precision standard.
Herb, Konstantin; Tschaggelar, Rene; Denninger, Gert; Jeschke, Gunnar
2018-04-01
The g factor of paramagnetic defects in commercial high performance carbon fibers was determined by a double resonance experiment based on the Overhauser shift due to hyperfine coupled protons. Our carbon fibers exhibit a single, narrow and perfectly Lorentzian shaped ESR line and a g factor slightly higher than g free with g=2.002644=g free ·(1+162ppm) with a relative uncertainty of 15ppm. This precisely known g factor and their inertness qualify them as a high precision g factor standard for general purposes. The double resonance experiment for calibration is applicable to other potential standards with a hyperfine interaction averaged by a process with very short correlation time. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Spin noise spectroscopy of ZnO
NASA Astrophysics Data System (ADS)
Horn, H.; Berski, F.; Balocchi, A.; Marie, X.; Mansur-Al-Suleiman, M.; Bakin, A.; Waag, A.; Hübner, J.; Oestreich, M.
2013-12-01
We investigate the thermal equilibrium dynamics of electron spins bound to donors in nanoporous ZnO by optical spin noise spectroscopy. The spin noise spectra reveal two noise contributions: A weak spin noise signal from undisturbed localized donor electrons with a dephasing time of 24 ns due to hyperfine interaction and a strong spin noise signal with a spin dephasing time of 5 ns which we attribute to localized donor electrons which interact with lattice defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch
2016-07-28
Resonance-enhanced multiphoton ionization (REMPI) is a widely used technique for studying molecular photoionization and producing molecular cations for spectroscopy and dynamics studies. Here, we present a model for describing hyperfine-structure effects in the REMPI process and for predicting hyperfine populations in molecular ions produced by this method. This model is a generalization of our model for fine- and hyperfine-structure effects in one-photon ionization of molecules presented in Paper I [M. Germann and S. Willitsch, J. Chem. Phys. 145, 044314 (2016)]. This generalization is achieved by covering two main aspects: (1) treatment of the neutral bound-bound transition including the hyperfine structuremore » that makes up the first step of the REMPI process and (2) modification of our ionization model to account for anisotropic populations resulting from this first excitation step. Our findings may be used for analyzing results from experiments with molecular ions produced by REMPI and may serve as a theoretical background for hyperfine-selective ionization experiments.« less
57Fe Mössbauer study of unusual magnetic structure of multiferroic 3R-AgFeO2
NASA Astrophysics Data System (ADS)
Sobolev, A.; Rusakov, V.; Moskvin, A.; Gapochka, A.; Belik, A.; Glazkova, I.; Akulenko, A.; Demazeau, G.; Presniakov, I.
2017-07-01
We report new results of a 57Fe Mössbauer study of hyperfine magnetic interactions in the layered multiferroic 3R-AgFeO2 demonstrating two magnetic phase transitions at T N1 and T N2. The asymptotic value β * ≈ 0.34 for the critical exponent obtained from the temperature dependence of the hyperfine field H hf(T) at 57Fe the nuclei below T N1 ≈ 14 K indicates that 3R-AgFeO2 shows quasi-3D critical behavior. The spectra just above T N1 (T N1 < T < T * ≈ 41 K) demonstrate a relaxation behavior due to critical spin fluctuations which indicates the occurrence of short-range correlations. At the intermediate temperature range, T N2 < T < T N1, the 57Fe Mössbauer spectra are described in terms of collinear spin-density-waves (SDW) with the inclusion of many high-order harmonics, indicating that the real magnetic structure of the ferrite appears to be more complicated than a pure sinusoidally modulated SDW. Below T < T N2 ≈ 9 K, the hyperfine field H hf reveals a large spatial anisotropy (ΔH anis ≈ 30 kOe) which is related with a local intra-cluster (FeO6) spin-dipole term that implies a conventional contribution of the polarized oxygen ions. We proposed a simple two-parametric formula to describe the dependence of H anis on the distortions of the (FeO6) clusters. Analysis of different mechanisms of spin and hyperfine interactions in 3R-AgFeO2 and its structural analogue CuFeO2 points to a specific role played by the topology of the exchange coupling and the oxygen polarization in the delafossite-like structures.
QCCM - Center for NMR Quantum Information Processing
2011-02-16
2008, 77, 010802, 1 – 6. 8. Universal control of nuclear spins via anisotropic hyperfine interactions J. S. Hodges, J. C. Yang, C. Ramanthan and D. G...sample environmental noise over a broad frequency range 0.2-20MHz, and we observe a 1/fα-type spectrum which we independently confirm with a Rabi
Liu, Feilong; Kelley, Megan R.; Crooker, Scott A.; ...
2014-12-22
The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the electron/hole polarons and the hydrogen nuclei of the host molecules. In this paper, we present an analytical theory of magnetoelectroluminescence for organic semiconductors. To be specific, we focus on bilayer heterostructure devices. In the case we are considering, light generation at the interface of the donor and acceptor layers results from the formation and recombination of exciplexes. The spin physics is described by a stochastic Liouville equation for the electron/hole spin density matrix. By finding the steady-state analytical solutionmore » using Bloch-Wangsness-Redfield theory, we explore how the singlet/triplet exciplex ratio is affected by the hyperfine interaction strength and by the external magnetic field. In order to validate the theory, spectrally resolved electroluminescence experiments on BPhen/m-MTDATA devices are analyzed. With increasing emission wavelength, the width of the magnetic field modulation curve of the electroluminescence increases while its depth decreases. Furthermore, these observations are consistent with the model.« less
Influence of the nuclear Zeeman effect on mode locking in pulsed semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Beugeling, Wouter; Uhrig, Götz S.; Anders, Frithjof B.
2017-09-01
The coherence of the electron spin in a semiconductor quantum dot is strongly enhanced by mode locking through nuclear focusing, where the synchronization of the electron spin to periodic pulsing is slowly transferred to the nuclear spins of the semiconductor material, mediated by the hyperfine interaction between these. The external magnetic field that drives the Larmor oscillations of the electron spin also subjects the nuclear spins to a Zeeman-like coupling, albeit a much weaker one. For typical magnetic fields used in experiments, the energy scale of the nuclear Zeeman effect is comparable to that of the hyperfine interaction, so that it is not negligible. In this work, we analyze the influence of the nuclear Zeeman effect on mode locking quantitatively. Within a perturbative framework, we calculate the Overhauser-field distribution after a prolonged period of pulsing. We find that the nuclear Zeeman effect can exchange resonant and nonresonant frequencies. We distinguish between models with a single type and with multiple types of nuclei. For the latter case, the positions of the resonances depend on the individual g factors, rather than on the average value.
NASA Technical Reports Server (NTRS)
Green, S.
1972-01-01
Previous accurate dipole moment calculation techniques are modified to be applicable to higher excited states of symmetry. The self-consistent fields and configuration interactions are calculated for the X(2)Sigma(+) and B(2)Sigma(+) states of CN. Spin hyperfine constants and spin density at the nucleus are considered in the context of one-electron operator properties. The values of the self-consistent field and configuration interaction for the spin density are compared with experimental values for several diatomic molecules.
Bender, Güneş; Poyner, Russell R; Reed, George H
2008-10-28
Rapid-mix freeze-quench (RMFQ) methods and electron paramagnetic resonance (EPR) spectroscopy have been used to characterize the steady-state radical in the deamination of ethanolamine catalyzed by adenosylcobalamin (AdoCbl)-dependent ethanolamine ammonia-lyase (EAL). EPR spectra of the radical intermediates formed with the substrates, [1-13C]ethanolamine, [2-13C]ethanolamine, and unlabeled ethanolamine were acquired using RMFQ trapping methods from 10 ms to completion of the reaction. Resolved 13C hyperfine splitting in EPR spectra of samples prepared with [1-13C]ethanolamine and the absence of such splitting in spectra of samples prepared with [2-13C]ethanolamine show that the unpaired electron is localized on C1 (the carbinol carbon) of the substrate. The 13C splitting from C1 persists from 10 ms throughout the time course of substrate turnover, and there was no evidence of a detectable amount of a product like radical having unpaired spin on C2. These results correct an earlier assignment for this radical intermediate [Warncke, K., et al. (1999) J. Am. Chem. Soc. 121, 10522-10528]. The EPR signals of the substrate radical intermediate are altered by electron spin coupling to the other paramagnetic species, cob(II)alamin, in the active site. The dipole-dipole and exchange interactions as well as the 1-13C hyperfine splitting tensor were analyzed via spectral simulations. The sign of the isotropic exchange interaction indicates a weak ferromagnetic coupling of the two unpaired electrons. A Co2+-radical distance of 8.7 A was obtained from the magnitude of the dipole-dipole interaction. The orientation of the principal axes of the 13C hyperfine splitting tensor shows that the long axis of the spin-bearing p orbital on C1 of the substrate radical makes an angle of approximately 98 degrees with the unique axis of the d(z2) orbital of Co2+.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruk, D., E-mail: danuta.kruk@matman.uwm.edu.pl; Hoffmann, S. K.; Goslar, J.
2013-12-28
Electron Spin Resonance (ESR) spectroscopy and Nuclear Magnetic Relaxation Dispersion (NMRD) experiments are reported for propylene glycol solutions of the nitroxide radical: 4-oxo-TEMPO-d{sub 16} containing {sup 15}N and {sup 14}N isotopes. The NMRD experiments refer to {sup 1}H spin-lattice relaxation measurements in a broad frequency range (10 kHz–20 MHz). A joint analysis of the ESR and NMRD data is performed. The ESR lineshapes give access to the nitrogen hyperfine tensor components and the rotational correlation time of the paramagnetic molecule. The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement in solutions of nitroxide radicals, recentlymore » presented by Kruk et al. [J. Chem. Phys. 138, 124506 (2013)]. The theory includes the effect of the electron spin relaxation on the {sup 1}H relaxation of the solvent. The {sup 1}H relaxation is caused by dipole-dipole interactions between the electron spin of the radical and the proton spins of the solvent molecules. These interactions are modulated by three dynamic processes: relative translational dynamics of the involved molecules, molecular rotation, and electron spin relaxation. The sensitivity to rotation originates from the non-central positions of the interacting spin in the molecules. The electronic relaxation is assumed to stem from the electron spin–nitrogen spin hyperfine coupling, modulated by rotation of the radical molecule. For the interpretation of the NMRD data, we use the nitrogen hyperfine coupling tensor obtained from ESR and fit the other relevant parameters. The consistency of the unified analysis of ESR and NMRD, evaluated by the agreement between the rotational correlation times obtained from ESR and NMRD, respectively, and the agreement of the translation diffusion coefficients with literature values obtained for pure propylene glycol, is demonstrated to be satisfactory.« less
Hostile fire indicator threat data collection for helicopter-mounted applications
NASA Astrophysics Data System (ADS)
Naz, P.; Hengy, S.; De Mezzo, S.
2013-05-01
This paper briefly describes the set-up of the sensors and the instrumentation deployed by the French-German Research Institute of Saint-Louis (ISL) during the last NATO/ACG3/SG2 HFI Threat Data Collection (Trial PROTEUS which has been conducted during the summer 2012 in Slovenia). The main purpose of this trial was the measurements of weapon and ammunition signatures for threat warning and hostile fire indicator (HFI) system development. The used weapons vary from small caliber rifles to anti-tank rockets in ground-to-ground shooting configurations. For the ISL team, the objectives consisted in measuring the acoustic signals for detection and localization of weapon firing events. Experimental results of sound localization obtained by using ground based sensors are presented and analyzed under various conditions.
Le, Anh; Steimle, Timothy C; Morse, Michael D; Garcia, Maria A; Cheng, Lan; Stanton, John F
2013-12-19
The (6,0)[16.0]1.5-X(2)Δ(5/2) and (7,0)[16.0]3.5-X(2)Δ(5/2) bands of IrSi have been recorded using high-resolution laser-induced fluorescence spectroscopy. The field-free spectra of the (191)IrSi and (193)IrSi isotopologues were modeled to generate a set of fine, magnetic hyperfine, and nuclear quadrupole hyperfine parameters for the X(2)Δ(5/2)(v = 0), [16.0]1.5(v = 6), and [16.0]3.5 (v = 7) states. The observed optical Stark shifts for the (193)IrSi and (191)IrSi isotopologues were analyzed to produce the permanent electric dipole moments, μ(el), of -0.414(6) D and 0.782(6) D for the X(2)Δ(5/2) and [16.0]1.5 (v = 6) states, respectively. Properties of the X(2)Δ(5/2) state computed using relativistic coupled-cluster methods clearly indicate that electron correlation plays an essential role. Specifically, inclusion of correlation changes the sign of the dipole moment and is essential for achieving good accuracy for the nuclear quadrupole coupling parameter eQq0.
Hyperfine fields and anisotropy of the orbital moment in epitaxial Mn5Ge3 films studied by 55Mn NMR
NASA Astrophysics Data System (ADS)
Kalvig, R.; Jedryka, E.; Wojcik, M.; Allodi, G.; De Renzi, R.; Petit, M.; Michez, L.
2018-05-01
55Mn NMR was used to perform the atomic-scale study of the anisotropic properties of Mn5Ge3 /Ge(111) epitaxial films with thicknesses between 9 and 300 nm. The NMR spectra have been recorded as a function of strong external magnetic field applied in the film plane and perpendicular to it. Two 55Mn NMR resonances have been observed, corresponding to the two manganese sites 4 d and 6 g , in the hexagonal D 88 structure; in zero field their frequency is centered around 207.5 and 428 MHz, respectively. The anisotropy of 55Mn hyperfine fields between the hexagonal c direction and the c plane at both Mn sites was evidenced and attributed to the anisotropic term due to the unquenched Mn orbital momentum. The anisotropy of the orbital contribution to hyperfine fields was determined as 1.52 T in the 4 d site and up to 2.77 T in the 6 g site. The 4 d site reveals a quadrupolar interaction due to the strong electric field gradient: Vz z=5.3 ×1019V/m2 in this site, which is shown to be oriented along the hexagonal c axis.
NASA Astrophysics Data System (ADS)
Zhou, Fuyang; Li, Jiguang; Qu, Yizhi; Wang, Jianguo
2017-11-01
The hyperfine induced 4{f}145s5p{}3{{{P}}}0,2o-4{f}145{s}2{}1{{{S}}}0 transition probabilities for highly charged Sm-like ions are calculated within the framework of the multiconfiguration Dirac-Hartree-Fock method. Electron correlation, the Breit interaction and quantum electrodynamical effects are taken into account. For ions ranging from Z = 79 to Z=94,4{f}145s5p{}3{{{P}}}0o is the first excited state, and the hyperfine induced transition (HIT) is a dominant decay channel. For the 4{f}145s5p{}3{{{P}}}2o state, the HIT rates of Sm-like ions with Z=82-94 are reported as well as the magnetic dipole (M1) {}3{{{P}}}2o-{}3{{{P}}}1o, the electric quadrupole (E2) {}3{{{P}}}2o-{}3{{{P}}}0,1o, and the magnetic quadrupole (M2) {}3{{{P}}}2o-{}1{{{S}}}0 transition probabilities. It is found that M1 transition from the 4{f}145s5p{}3{{{P}}}2o state is the most important decay channel in this range on Z≥slant 82.
NASA Technical Reports Server (NTRS)
Vessot, Robert F. C.
1989-01-01
Clocks have played a strong role in the development of general relativity. The concept of the proper clock is presently best realized by atomic clocks, whose development as precision instruments has evolved very rapidly in the last decades. To put a historical prospective on this progress since the year AD 1000, the time stability of various clocks expressed in terms of seconds of time error over one day of operation is shown. This stability of operation must not be confused with accuracy. Stability refers to the constancy of a clock operation as compared to that of some other clocks that serve as time references. Accuracy, on the other hand, is the ability to reproduce a previously defined frequency. The issues are outlined that must be considered when accuracy and stability of clocks and oscillators are studied. In general, the most widely used resonances result from the hyperfine interaction of the nuclear magnetic dipole moment and that of the outermost electron, which is characteristic of hydrogen and the alkali atoms. During the past decade hyperfine resonances of ions have also been used. The principal reason for both the accuracy and the stability of atomic clocks is the ability of obtaining very narrow hyperfine transition resonances by isolating the atom in some way so that only the applied stimulating microwave magnetic field is a significant source of perturbation. It is also important to make resonance transitions among hyperfine magnetic sublevels where separation is independent, at least to first order, of the magnetic field. In the case of ions stored in traps operating at high magnetic fields, one selects the trapping field to be consistent with a field-independent transition of the trapped atoms.
The pure rotational spectrum of TiF (X 4Φr): 3d transition metal fluorides revisited
NASA Astrophysics Data System (ADS)
Sheridan, P. M.; McLamarrah, S. K.; Ziurys, L. M.
2003-11-01
The pure rotational spectrum of TiF in its X 4Φr (v=0) ground state has been measured using millimeter/sub-millimeter wave direct absorption techniques in the range 140-530 GHz. In ten out of the twelve rotational transitions recorded, all four spin-orbit components were observed, confirming the 4Φr ground state assignment. Additional small splittings were resolved in several of the spin components in lower J transitions, which appear to arise from magnetic hyperfine interactions of the 19F nucleus. In contrast, no evidence for Λ-doubling was seen in the data. The rotational transitions of TiF were analyzed using a case (a) Hamiltonian, resulting in the determination of rotational and fine structure constants, as well as hyperfine parameters for the fluorine nucleus. The data were readily fit in a case (a) basis, indicating strong first order spin-orbit coupling and minimal second-order effects, as also evidenced by the small value of λ, the spin-spin parameter. Moreover, only one higher order term, η, the spin-orbit/spin-spin interaction term, was needed in the analysis, again suggesting limited perturbations in the ground state. The relative values of the a, b, and c hyperfine constants indicate that the three unpaired electrons in this radical lie in orbitals primarily located on the titanium atom and support the molecular orbital picture of TiF with a σ1δ1π1 single electron configuration. The bond length of TiF (1.8342 Å) is significantly longer than that of TiO, suggesting that there are differences in the bonding between 3d transition metal fluorides and oxides.
Mendt, Matthias; Barth, Benjamin; Hartmann, Martin; Pöppl, Andreas
2017-12-14
The low-temperature binding of nitric oxide (NO) in the metal-organic framework MIL-100(Al) has been investigated by pulsed electron nuclear double resonance and hyperfine sublevel correlation spectroscopy. Three NO adsorption species have been identified. Among them, one species has been verified experimentally to bind directly to an 27 Al atom and all its relevant 14 N and 27 Al hyperfine interaction parameters have been determined spectroscopically. Those parameters fit well to the calculated ones of a theoretical cluster model, which was derived by density functional theory (DFT) in the present work and describes the low temperature binding of NO to the regular coordinatively unsaturated Al 3+ site of the MIL-100(Al) structure. As a result, the Lewis acidity of that site has been characterized using the NO molecule as an electron paramagnetic resonance active probe. The DFT derived wave function analysis revealed a bent end-on coordination of the NO molecule adsorbed at that site which is almost purely ionic and has a weak binding energy. The calculated flat potential energy surface of this species indicates the ability of the NO molecule to freely rotate at intermediate temperatures while it is still binding to the Al 3+ site. For the other two NO adsorption species, no structural models could be derived, but one of them is indicated to be adsorbed at the organic part of the metal-organic framework. Hyperfine interactions with protons, weakly coupled to the observed NO adsorption species, have also been measured by pulsed electron paramagnetic resonance and found to be consistent with their attribution to protons of the MIL-100(Al) benzenetricarboxylate ligand molecules.
Structure and nature of manganese(II) imidazole complexes in frozen aqueous solutions.
Un, Sun
2013-04-01
A common feature of a large majority of the manganese metalloenzymes, as well as many synthetic biomimetic complexes, is the bonding between the manganese ion and imidazoles. This interaction was studied by examining the nature and structure of manganese(II) imidazole complexes in frozen aqueous solutions using 285 GHz high magnet-field continuous-wave electron paramagnetic resonance (cw-HFEPR) and 95 GHz pulsed electron-nuclear double resonance (ENDOR) and pulsed electron-double resonance detected nuclear magnetic resonance (PELDOR-NMR). The (55)Mn hyperfine coupling and isotropic g values of Mn(II) in frozen imidazole solutions continuously decreased with increasing imidazole concentration. ENDOR and PELDOR-NMR measurements demonstrated that the structural basis for this behavior arose from the imidazole concentration-dependent distribution of three six-coordinate and two four-coordinate species: [Mn(H2O)6](2+), [Mn(imidazole)(H2O)5](2+), [Mn(imidazole)2(H2O)4](2+), [Mn(imidazole)3(H2O)](2+), and [Mn(imidazole)4](2+). The hyperfine and g values of manganese proteins were also fully consistent with this imidazole effect. Density functional theory methods were used to calculate the structures, spin and charge densities, and hyperfine couplings of a number of different manganese imidazole complexes. The use of density functional theory with large exact-exchange admixture calculations gave isotropic (55)Mn hyperfine couplings that were semiquantitative and of predictive value. The results show that the covalency of the Mn-N bonds play an important role in determining not only magnetic spin parameters but also the structure of the metal binding site. The relationship between the isotropic (55)Mn hyperfine value and the number of imidazole ligands provides a quick and easy test for determining whether a protein binds an Mn(II) ion using histidine residues and, if so, how many are involved. Application of this method shows that as much as 40% of the Mn(II) ions in Deinococcus radiodurans are ligated to two histidines (Tabares, L. C.; Un, S. J. Biol. Chem 2013, in press).
Merki-Feld, Gabriele S; Epple, Gina; Caveng, Nina; Imthurn, Bruno; Seifert, Burkhardt; Sandor, Peter; Gantenbein, Andreas R
2017-08-25
Menstrually related migraine (MRM) in the hormone-free interval (HFI) of combined hormonal contraceptives (CHC) are according to the ICHD definition also estrogen withdrawal migraines (EWH). MRMs are less responsive to acute medication. Therefore short-term prevention, initiated 1-2 days before onset of the anticipated bleeding and continued for 6 days, is recommended. Such a long prophylactic triptan use might increase the risk for medication overuse headache in women suffering in addition from non-menstrual migraines. In CHC users onset of hormone decline is predictable. It is however unknown, whether the EWHs are rather associated with onset of hormone withdrawal or onset of bleeding. Improved understanding of this relation might contribute to better define and shorten the time interval for prevention. For this observational diary-based pilot study we collected data from daily conducted headache diaries of CHC users with MRM in at least two of three cycles, visiting our clinic from 2009 to 2015. We analyzed frequency of migraines for each hormone free day, onset of migraine, onset of bleeding and the relation of migraine to onset of bleeding in the 7-day period following estrogen withdrawal. We identified in addition the onset of migraine attacks lasting more than 1 day (episodes). Forty patient charts met the inclusion criteria, what allowed us to analyze 103 cycles. The mean number of migraine days in the HFI was 2.2 ± 1.6. Migraine started typically on days 1-5 and bleeding on days 3-5. In relation to first day of bleeding, migraines started on days -1 to 4. Almost half of the migraine attacks lasted longer than 24 h, despite the use of rescue medication. MRM in CHC users starts on bleeding days -1 to 4, what differs from findings in the natural cycle. Referring to the HFI interval migraine started mostly on days 1-5. According to these data, it seems to be reasonable to initiate short-term prevention at the last day of pill use or the first day of the HFI and continue for 5 days.
Planck intermediate results. LII. Planet flux densities
NASA Astrophysics Data System (ADS)
Planck Collaboration; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carron, J.; Chiang, H. C.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Finelli, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hivon, E.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kim, J.; Kisner, T. S.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Lellouch, E.; Levrier, F.; Liguori, M.; Lilje, P. B.; Lindholm, V.; López-Caniego, M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Moreno, R.; Morgante, G.; Natoli, P.; Oxborrow, C. A.; Paoletti, D.; Partridge, B.; Patanchon, G.; Patrizii, L.; Perdereau, O.; Piacentini, F.; Plaszczynski, S.; Polenta, G.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Romelli, E.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirri, G.; Spencer, L. D.; Suur-Uski, A.-S.; Tauber, J. A.; Tavagnacco, D.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wehus, I. K.; Zacchei, A.
2017-11-01
Measurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100-857 GHz) and these are then compared with models and existing data. In our analysis, we have also included estimates of the brightness of Jupiter and Saturn at the three frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz). The results provide constraints on the intrinsic brightness and the brightness time-variability of these planets. The majority of the planet flux density estimates are limited by systematic errors, but still yield better than 1% measurements in many cases. Applying data from Planck HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama Cosmology Telescope (ACT) to a model that incorporates contributions from Saturn's rings to the planet's total flux density suggests a best fit value for the spectral index of Saturn's ring system of βring = 2.30 ± 0.03 over the 30-1000 GHz frequency range. Estimates of the polarization amplitude of the planets have also been made in the four bands that have polarization-sensitive detectors (100-353 GHz); this analysis provides a 95% confidence level upper limit on Mars's polarization of 1.8, 1.7, 1.2, and 1.7% at 100, 143, 217, and 353 GHz, respectively. The average ratio between the Planck-HFI measurements and the adopted model predictions for all five planets (excluding Jupiter observations for 353 GHz) is 1.004, 1.002, 1.021, and 1.033 for 100, 143, 217, and 353 GHz, respectively. Model predictions for planet thermodynamic temperatures are therefore consistent with the absolute calibration of Planck-HFI detectors at about the three-percent level. We compare our measurements with published results from recent cosmic microwave background experiments. In particular, we observe that the flux densities measured by Planck HFI and WMAP agree to within 2%. These results allow experiments operating in the mm-wavelength range to cross-calibrate against Planck and improve models of radiative transport used in planetary science.
Vicente, José; González-Herrero, Pablo; García-Sánchez, Yolanda; Jones, Peter G
2009-03-02
The reaction of AgClO(4) with piperidinium 2,7-di-tert-butyl-9H-fluorene-9-carbodithioate (pipH)[S(2)C(t-Bu-Hfy)] (1) (t-Bu-Hfy = 2,7-di-tert-butylfluoren-9-yl) afforded [Ag(n){S(2)C(t-Bu-Hfy)}(n)] (2), which reacted with phosphines to give [Ag{S(2)C(t-Bu-Hfy)}L(2)] [L = PPh(3) (3a); L(2) = bis(diphenylphosphino)ethane (dppe, 3b), 1,1'-bis(diphenylphosphino)ferrocene (dppf, 3c). By reacting complex 2 with AgClO(4) and piperidine in a 1:1:1 molar ratio, the dodecanuclear cluster [Ag(12){S(2)C(t-Bu-fy)}(6)] (4) (t-Bu-fy = 2,7-di-tert-butylfluoren-9-ylidene) was obtained. Compound 4 can also be directly prepared from the reaction of 1 with AgClO(4) and piperidine in a 1:2:1 molar ratio. The reactions of 1 with AgClO(4), phosphines, and piperidine afforded the compounds [Ag(6){S(2)C(t-Bu-fy)}(3)L(5)] [1:2:2:1 molar ratio; L = PPh(3) (5a), P(p-To)(3) (5b)], [Ag(4){S(2)C(t-Bu-fy)}(2)(dppf)(2)] (6) (1:2:1:1 molar ratio), [Ag(n){S(2)C(t-Bu-fy)}(n/2){P(i-Pr)(3)}(n)] (7) (1:2:2:1 molar ratio), or [Ag(8){S(2)C(t-Bu-fy)}(4){P(i-Pr)(3)}(4)] (8) (1:2:1:1 molar ratio). Complexes 5a,b, 6, 7, and 8 can be also obtained by reacting 4 with the corresponding phosphine in the appropriate molar ratio. The crystal structures of 4, 5b, and 8 have been determined by X-ray diffraction studies. The nuclearity of complex 6 was established from its (31)P{(1)H} NMR data, which reveal a very fast dynamic process leading to an average coupling of each of the P atoms of the dppf ligands with four Ag atoms.
Molecular hyperfine fields in organic magnetoresistance devices
NASA Astrophysics Data System (ADS)
Giro, Ronaldo; Rosselli, Flávia P.; dos Santos Carvalho, Rafael; Capaz, Rodrigo B.; Cremona, Marco; Achete, Carlos A.
2013-03-01
We calculate molecular hyperfine fields in organic magnetoresistance (OMAR) devices using ab initio calculations. To do so, we establish a protocol for the accurate determination of the average hyperfine field Bhf and apply it to selected molecular ions: NPB, TPD, and Alq3. Then, we make devices with precisely the same molecules and perform measurements of the OMAR effect, in order to address the role of hole-transport layer in the characteristic magnetic field B0 of OMAR. Contrary to common belief, we find that molecular hyperfine fields are not only caused by hydrogen nuclei. We also find that dipolar contributions to the hyperfine fields can be comparable to the Fermi contact contributions. However, such contributions are restricted to nuclei located in the same molecular ion as the charge carrier (intramolecular), as extramolecular contributions are negligible.
The nuclear magnetic moment of 208Bi and its relevance for a test of bound-state strong-field QED
NASA Astrophysics Data System (ADS)
Schmidt, S.; Billowes, J.; Bissell, M. L.; Blaum, K.; Garcia Ruiz, R. F.; Heylen, H.; Malbrunot-Ettenauer, S.; Neyens, G.; Nörtershäuser, W.; Plunien, G.; Sailer, S.; Shabaev, V. M.; Skripnikov, L. V.; Tupitsyn, I. I.; Volotka, A. V.; Yang, X. F.
2018-04-01
The hyperfine structure splitting in the 6p3 3/2 4S → 6p2 7 s 1/2 4P transition at 307 nm in atomic 208Bi was measured with collinear laser spectroscopy at ISOLDE, CERN. The hyperfine A and B factors of both states were determined with an order of magnitude improved accuracy. Based on these measurements, theoretical input for the hyperfine structure anomaly, and results from hyperfine measurements on hydrogen-like and lithium-like 209Bi80+,82+, the nuclear magnetic moment of 208Bi has been determined to μ (208Bi) = + 4.570 (10)μN. Using this value, the transition energy of the ground-state hyperfine splitting in hydrogen-like and lithium-like 208Bi80+,82+ and their specific difference of -67.491(5)(148) meV are predicted. This provides a means for an experimental confirmation of the cancellation of nuclear structure effects in the specific difference in order to exclude such contributions as the cause of the hyperfine puzzle, the recently reported 7-σ discrepancy between experiment and bound-state strong-field QED calculations of the specific difference in the hyperfine structure splitting of 209Bi80+,82+.
Manipulation of the spin memory of electrons in n-GaAs.
Dzhioev, R I; Korenev, V L; Merkulov, I A; Zakharchenya, B P; Gammon, D; Efros, Al L; Katzer, D S
2002-06-24
We report on the optical manipulation of the electron spin relaxation time in a GaAs-based heterostructure. Experimental and theoretical study shows that the average electron spin relaxes through hyperfine interaction with the lattice nuclei, and that the rate can be controlled by electron-electron interactions. This time has been changed from 300 ns down to 5 ns by variation of the laser frequency. This modification originates in the optically induced depletion of an n-GaAs layer.
Activities report in nuclear physics and particle acceleration
NASA Astrophysics Data System (ADS)
Jansen, J. F. W.; Demeijer, R. J.
1984-04-01
Research on nuclear resonances; charge transfer; breakup of light and heavy ions; reaction mechanisms of heavy ion collisions; high-spin states; and fundamental symmetries in weak interactions are outlined. Group theoretical methods applied to supersymmetries; phenomenological description of rotation-vibration coupling; a microscopic theory of collective variables; the binding energy of hydrogen adsorbed on stepped platinium; and single electron capture are discussed. Isotopes for nuclear medicine, for off-line nuclear spectroscopy work, and for the study of hyperfine interactions were produced.
Nuclear magnetic shielding in boronlike ions
NASA Astrophysics Data System (ADS)
Volchkova, A. M.; Varentsova, A. S.; Zubova, N. A.; Agababaev, V. A.; Glazov, D. A.; Volotka, A. V.; Shabaev, V. M.; Plunien, G.
2017-10-01
The relativistic treatment of the nuclear magnetic shielding effect in boronlike ions is presented. The leading-order contribution of the magnetic-dipole hyperfine interaction is calculated. Along with the standard second-order perturbation theory expression, the solutions of the Dirac equation in the presence of magnetic field are employed. All methods are found to be in agreement with each other and with the previous calculations for hydrogenlike and lithiumlike ions. The effective screening potential is used to account approximately for the interelectronic interaction.
Generation and detection of the cyclohexadienyl radical in phosphonium ionic liquids.
Lauzon, J M; Arseneau, D J; Brodovitch, J C; Clyburne, J A C; Cormier, P; McCollum, B; Ghandi, K
2008-10-21
The formation of the cyclohexadienyl radical, C(6)H(6)Mu, in ionic and molecular solvents has been compared. This is the first time that a muoniated free radical is reported in an ionic liquid. In marked contrast to molecular liquids, free radical generation in ionic liquids is significantly enhanced. Comparison of the hyperfine interactions in the ionic liquid and in molecular solvents and with theoretical calculations, suggests significant and unforeseen solvent interaction with the cyclohexadienyl radical.
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED
NASA Astrophysics Data System (ADS)
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-05-01
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-05-16
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.
ESR imaging investigations of two-phase systems.
Herrmann, Werner; Stösser, Reinhard; Borchert, Hans-Hubert
2007-06-01
The possibilities of electron spin resonance (ESR) and electron spin resonance imaging (ESRI) for investigating the properties of the spin probes TEMPO and TEMPOL in two-phase systems have been examined in the systems water/n-octanol, Miglyol/Miglyol, and Precirol/Miglyol. Phases and regions of the phase boundary could be mapped successfully by means of the isotropic hyperfine coupling constants, and, moreover, the quantification of rotational and lateral diffusion of the spin probes was possible. For the quantitative treatment of the micropolarity, a simplified empirical model was established on the basis of the Nernst distribution and the experimentally determined isotropic hyperfine coupling constants. The model does not only describe the summarized micropolarities of coexisting phases, but also the region of the phase boundary, where solvent molecules of different polarities and tendencies to form hydrogen bonds compete to interact with the NO group of the spin probe. Copyright 2007 John Wiley & Sons, Ltd.
On the exact solvability of the anisotropic central spin model: An operator approach
NASA Astrophysics Data System (ADS)
Wu, Ning
2018-07-01
Using an operator approach based on a commutator scheme that has been previously applied to Richardson's reduced BCS model and the inhomogeneous Dicke model, we obtain general exact solvability requirements for an anisotropic central spin model with XXZ-type hyperfine coupling between the central spin and the spin bath, without any prior knowledge of integrability of the model. We outline basic steps of the usage of the operators approach, and pedagogically summarize them into two Lemmas and two Constraints. Through a step-by-step construction of the eigen-problem, we show that the condition gj‧2 - gj2 = c naturally arises for the model to be exactly solvable, where c is a constant independent of the bath-spin index j, and {gj } and { gj‧ } are the longitudinal and transverse hyperfine interactions, respectively. The obtained conditions and the resulting Bethe ansatz equations are consistent with that in previous literature.
Combined multifrequency EPR and DFT study of dangling bonds in a-Si:H
NASA Astrophysics Data System (ADS)
Fehr, M.; Schnegg, A.; Rech, B.; Lips, K.; Astakhov, O.; Finger, F.; Pfanner, G.; Freysoldt, C.; Neugebauer, J.; Bittl, R.; Teutloff, C.
2011-12-01
Multifrequency pulsed electron paramagnetic resonance (EPR) spectroscopy using S-, X-, Q-, and W-band frequencies (3.6, 9.7, 34, and 94 GHz, respectively) was employed to study paramagnetic coordination defects in undoped hydrogenated amorphous silicon (a-Si:H). The improved spectral resolution at high magnetic field reveals a rhombic splitting of the g tensor with the following principal values: gx=2.0079, gy=2.0061, and gz=2.0034, and shows pronounced g strain, i.e., the principal values are widely distributed. The multifrequency approach furthermore yields precise 29Si hyperfine data. Density functional theory (DFT) calculations on 26 computer-generated a-Si:H dangling-bond models yielded g values close to the experimental data but deviating hyperfine interaction values. We show that paramagnetic coordination defects in a-Si:H are more delocalized than computer-generated dangling-bond defects and discuss models to explain this discrepancy.
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-01-01
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron–nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction. PMID:28508892
Magnetic interactions in NiO at ultrahigh pressure
Potapkin, Vasily; Dubrovinsky, Leonid; Sergueev, I.; ...
2016-05-24
Here, magnetic properties of NiO have been studied in the multimegabar pressure range by nuclear forward scattering of synchrotron radiation using the 67.4 keV M ssbauer transition of 61Ni. The observed magnetic hyperfine splitting confirms the antiferromagnetic state of NiO up to 280 GPa, the highest pressure where magnetism has been observed so far, in any material. Remarkably, the hyperfine field increases from 8.47 T at ambient pressure to ~24 T at the highest pressure, ruling out the possibility of a magnetic collapse. A joint x-ray diffraction and extended x-ray-absorption fine structure investigation reveals that NiO remains in a distortedmore » sodium chloride structure in the entire studied pressure range. Ab initio calculations support the experimental observations, and further indicate a complete absence of Mott transition in NiO up to at least 280 GPa.« less
Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot.
Högele, A; Kroner, M; Latta, C; Claassen, M; Carusotto, I; Bulutay, C; Imamoglu, A
2012-05-11
Resonant optical excitation of lowest-energy excitonic transitions in self-assembled quantum dots leads to nuclear spin polarization that is qualitatively different from the well-known optical orientation phenomena. By carrying out a comprehensive set of experiments, we demonstrate that nuclear spin polarization manifests itself in quantum dots subjected to finite external magnetic field as locking of the higher energy Zeeman transition to the driving laser field, as well as the avoidance of the resonance condition for the lower energy Zeeman branch. We interpret our findings on the basis of dynamic nuclear spin polarization originating from noncollinear hyperfine interaction and find excellent agreement between experiment and theory. Our results provide evidence for the significance of noncollinear hyperfine processes not only for nuclear spin diffusion and decay, but also for buildup dynamics of nuclear spin polarization in a coupled electron-nuclear spin system.
Influence of the astrophysical requirements on dilution refrigerator design
NASA Astrophysics Data System (ADS)
Sirbi, Adriana; Pouilloux, Benjamin; Benoit, Alain; Lamarre, Jean-Michel
1999-12-01
A 300 K to 0.1 K space prototype is developed in cooperation with CRTBT, IAS Air Liquide and RAL, under CNES and ESA contracts, to demonstrate the feasibility of such a cooling system. The heart of the system is a 4 K to 0.1 K open cycle dilution refrigerator circulating 3He and 4He. All the tests are now completed. The design of this system is chosen like the nominal solution for PLANCK/HFI instrument. Since scientific requirements have changed, the design of the prototype has to be adjusted to receive the focal plane of HFI (High Frequency Instrument) instrument of PLANCK. The main goal is to optimise 3He consumption without degrading both mechanical and thermal performances. This paper presents the prototype architecture, the dilution refrigerator and the associated tests. The suitability to PLANCK mission is also assessed.
NASA Astrophysics Data System (ADS)
Cheng, Cheng; Huang, Qing-Guo; Wang, Sai
2014-12-01
We make a joint analysis of BICEP2 and recently released Planck HFI 353 GHz dust polarization data, and find that there is no evidence for the primordial gravitational waves and the bound on the tensor-to-scalar ratio becomes r < 0.083 at 95% confidence level in the base ΛCDM + tensor model. Extending to the model with running of scalar spectral index, the bound is a little bit relaxed to r < 0.116 at 95% confidence level. Our results imply that the inflation model with a single monomial potential is marginally disfavored at around 95% confidence level. Especially, the m2phi2/2 inflation model is disfavored at more than 2σ level. However, the Starobinsky inflation model gives a nice fit.
Hyperfine structure of 2Σ molecules containing alkaline-earth-metal atoms
NASA Astrophysics Data System (ADS)
Aldegunde, Jesus; Hutson, Jeremy M.
2018-04-01
Ultracold molecules with both electron spin and an electric dipole moment offer new possibilities in quantum science. We use density-functional theory to calculate hyperfine coupling constants for a selection of molecules important in this area, including RbSr, LiYb, RbYb, CaF, and SrF. We find substantial hyperfine coupling constants for the fermionic isotopes of the alkaline-earth-metal and Yb atoms. We discuss the hyperfine level patterns and Zeeman splittings expected for these molecules. The results will be important both to experiments aimed at forming ultracold open-shell molecules and to their applications.
NASA Astrophysics Data System (ADS)
Mentink-Vigier, Frédéric; Binet, Laurent; Vignoles, Gerard; Gourier, Didier; Vezin, Hervé
2010-11-01
The hyperfine interactions of the unpaired electron with eight surrounding G69a and G71a nuclei in Ti-doped β-Ga2O3 were analyzed by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopies. They are dominated by strong isotropic hyperfine couplings due to a direct Fermi contact interaction with Ga nuclei in octahedral sites of rutile-type chains oriented along b axis, revealing a large anisotropic spatial extension of the electron wave function. Titanium in β-Ga2O3 is thus best described as a diffuse (Ti4+-e-) pair rather than as a localized Ti3+ . Both electron and G69a nuclear spin Rabi oscillations could be observed by pulsed EPR and pulsed ENDOR, respectively. The electron spin decoherence time is about 1μs (at 4 K) and an upper bound of 520μs (at 8 K) is estimated for the nuclear decoherence time. Thus, β-Ga2O3:Ti appears to be a potential spin-bus system for quantum information processing with a large nuclear spin quantum register.
NASA Astrophysics Data System (ADS)
Raithel, Georg
2017-04-01
Cold atomic systems have opened new frontiers in atomic and molecular physics, including several types of Rydberg molecules. Three types will be reviewed. Long-range Rydberg-ground molecules, first predicted in and observed in, are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules. A classification into Hund's cases will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction of neutral Rydberg-Rydberg molecules is dipole-dipole, while for ionic Rydberg molecules it is dipole-monopole. Higher-order terms are discussed. FUNDING: NSF (PHY-1506093), NNSF of China (61475123).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Correa, E. L., E-mail: eduardo.correa@usp.br; Bosch-Santos, B.; Cavalcante, F. H. M.
2016-05-15
The magnetic behavior of Gd{sub 2}O{sub 3} nanoparticles, produced by thermal decomposition method and subsequently annealed at different temperatures, was investigated by magnetization measurements and, at an atomic level, by perturbed γ − γ angular correlation (PAC) spectroscopy measuring hyperfine interactions at {sup 111}In({sup 111}Cd) probe nuclei. Nanoparticle structure, size and shape were characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). Magnetization measurements were carried out to characterize the paramagnetic behavior of the samples. XRD results show that all samples crystallize in the cubic-C form of the bixbyite structure with space group Ia3. TEM images showed that particlesmore » annealed at 873 K present particles with highly homogeneous sizes in the range from 5 nm to 10 nm and those annealed at 1273 K show particles with quite different sizes from 5 nm to 100 nm, with a wide size distribution. PAC and magnetization results show that samples annealed at 873 and 1273 K are paramagnetic. Magnetization measurements show no indication of blocking temperatures for all samples down to 2 K and the presence of antiferromagnetic correlations.« less
NASA Astrophysics Data System (ADS)
Wang, K.; Li, S.; Jönsson, P.; Fu, N.; Dang, W.; Guo, X. L.; Chen, C. Y.; Yan, J.; Chen, Z. B.; Si, R.
2017-01-01
Extensive self-consistent multi-configuration Dirac-Fock (MCDF) calculations and second-order many-body perturbation theory (MBPT) calculations are performed for the lowest 272 states belonging to the 2s22p3, 2s2p4, 2p5, 2s22p23l, and 2s2p33l (l=s, p, d) configurations of N-like Kr XXX. Complete and consistent data sets of level energies, wavelengths, line strengths, oscillator strengths, lifetimes, AJ, BJ hyperfine interaction constants, Landé gJ-factors, and electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), magnetic quadrupole (M2) transition rates among all these levels are given. The present MCDF and MBPT results are compared with each other and with other available experimental and theoretical results. The mean relative difference between our two sets of level energies is only about 0.003% for these 272 levels. The accuracy of the present calculations are high enough to facilitate identification of many observed spectral lines. These accurate data can be served as benchmark for other calculations and can be useful for fusion plasma research and astrophysical applications.
Ultranarrow Optical Inhomogeneous Linewidth in a Stoichiometric Rare-Earth Crystal.
Ahlefeldt, R L; Hush, M R; Sellars, M J
2016-12-16
We obtain a low optical inhomogeneous linewidth of 25 MHz in the stoichiometric rare-earth crystal EuCl_{3}·6H_{2}O by isotopically purifying the crystal in ^{35}Cl. With this linewidth, an important limit for stoichiometric rare-earth crystals is surpassed: the hyperfine structure of ^{153}Eu is spectrally resolved, allowing the whole population of ^{153}Eu^{3+} ions to be prepared in the same hyperfine state using hole-burning techniques. This material also has a very high optical density, and can have long coherence times when deuterated. This combination of properties offers new prospects for quantum information applications. We consider two of these: quantum memories and quantum many-body studies. We detail the improvements in the performance of current memory protocols possible in these high optical depth crystals, and describe how certain memory protocols, such as off-resonant Raman memories, can be implemented for the first time in a solid-state system. We explain how the strong excitation-induced interactions observed in this material resemble those seen in Rydberg systems, and describe how these interactions can lead to quantum many-body states that could be observed using standard optical spectroscopy techniques.
Preliminary performance measurements of bolometers for the planck high frequency instrument
NASA Technical Reports Server (NTRS)
Holmes, W.; Bock, J.; Ganga, K.; Hristov, V. V.; Hustead, L.; Koch, T.; Lange, A. E.; Paine, C.; Yun, M.
2002-01-01
We report on the characterization of bolometers fabricated at the Jet Propulsion Laboratory for the High Frequency Instrument (HFI) of the joint ESA/NASA Herschel/Planck mission to be launched in 2007.
NASA Astrophysics Data System (ADS)
Baituti, Bernard
2017-11-01
Understanding the structure of oxygen evolving complex (OEC) fully still remains a challenge. Lately computational chemistry with the data from more detailed X-ray diffraction (XRD) OEC structure, has been used extensively in exploring the mechanisms of water oxidation in the OEC (Gatt et al., J. Photochem. Photobiol. B 104(1-2), 80-93 2011). Knowledge of the oxidation states is very crucial for understanding the core principles of catalysis by photosystem II (PSII) and catalytic mechanism of OEC. The present study involves simulation studies of the X-band continuous wave electron-magnetic resonance (CW-EPR) generated S 2 state signals, to investigate whether the data is in agreement with the four manganese ions in the OEC, being organised as a `3 + 1' (trimer plus one) model (Gatt et al., Angew. Chem. Int. Ed. 51, 12025-12028 2012; Petrie et al., Chem. A Eur. J. 21, 6780-6792 2015; Terrett et al., Chem. Commun. (Camb.) 50, 8-11 2014) or `dimer of dimers' model (Terrett et al. 2016). The question that still remains is how much does each Mn ion contribute to the " g2multiline" signal through its hyperfine interactions in OEC also to differentiate between the `high oxidation state (HOS)' and `low oxidation state (LOS)' paradigms? This is revealed in part by the structure of multiline (ML) signal studied in this project. Two possibilities have been proposed for the redox levels of the Mn ions within the catalytic cluster, the so called `HOS' and `LOS' paradigms (Gatt et al., J. Photochem. Photobiol. B 104(1-2), 80-93 2011). The method of data analysis involves numerical simulations of the experimental spectra on relevant models of the OEC cluster. The simulations of the X-band CW-EPR multiline spectra, revealed three manganese ions having hyperfine couplings with large anisotropy. These are most likely Mn III centres and these clearly support the `LOS' OEC paradigm model, with a mean oxidation of 3.25 in the S2 state. This is consistent with the earlier data by Jin et al. (Phys. Chem. Chem. Phys. (PCCP) 16(17), 7799-812 2014), but the present results clearly indicate that heterogeneity in hyperfine couplings exist in samples as typically prepared.
The hyperfine excitation of OH radicals by He
NASA Astrophysics Data System (ADS)
Marinakis, Sarantos; Kalugina, Yulia; Lique, François
2016-04-01
Hyperfine-resolved collisions between OH radicals and He atoms are investigated using quantum scattering calculations and the most recent ab initio potential energy surface, which explicitly takes into account the OH vibrational motion. Such collisions play an important role in astrophysics, in particular in the modelling of OH masers. The hyperfine-resolved collision cross sections are calculated for collision energies up to 2500 cm-1 from the nuclear spin free scattering S-matrices using a recoupling technique. The collisional hyperfine propensities observed are discussed. As expected, the results from our work suggest that there is a propensity for collisions with ΔF = Δj. The new OH-He hyperfine cross sections are expected to significantly help in the modelling of OH masers from current and future astronomical observations. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.
Investigation of Cr substitution in Co ferrite (CoCrxFe2-xO4) using Mossbauer spectroscopy
NASA Astrophysics Data System (ADS)
Krieble, K.; Lo, C. C. H.; Melikhov, Y.; Snyder, J. E.
2006-04-01
Substitution of other metals for Fe in cobalt ferrite has been proposed as a method to tailor the magnetic and magnetoelastic properties for sensor and actuator applications [H. Zheng et al., Science 303, 661 (2004)]. However, to understand the effect of Cr substitution, one needs atomic-level information on the local environments and interactions of the transition-metal ions. In this study, Mossbauer spectroscopy was used to investigate the local environments of the Fe atoms in these materials. A series of five powder samples with compositions CoCrxFe2-xO4 (x=0.0 to 0.8) was investigated using transmission geometry. Results show two distinct six-line hyperfine patterns, indicating Fe in A and B spinel sites. Increasing Cr concentration is seen to decrease the hyperfine field strength for both A and B sites, as well as increasing the width of those distributions. Results for Cr substitution show generally similar behavior to a prior study using Mn; however, Cr substitution has more pronounced effects: the hyperfine fields decrease and distribution widths increase at greater rates for Cr substitution, and the differences between A and B site behavior are more pronounced. Results are consistent with a model in which Cr has an even stronger B-site preference than Mn, and displaces more of the Co from the B to the A sites.
NASA Astrophysics Data System (ADS)
Thompsen, J. M.; Brewster, M. A.; Ziurys, L. M.
2002-06-01
The pure rotational spectrum of MnS (v=0) in its X 6Sigma+ ground state has been recorded using millimeter and submillimeter direct absorption techniques in the range 160-502 GHz. MnS was synthesized in the gas phase by the reaction of manganese vapor and CS2 in a high-temperature Broida-type oven. Fourteen rotational transitions for this radical were measured, each consisting of six fine-structure components. In the lower rotational lines, hyperfine structure, arising from the 55Mn nuclear spin of 5/2, was also resolved in each spin component. These data were analyzed using a case (b) Hamiltonian, and rotational, fine structure, and hyperfine parameters determined for MnS. In the analysis, the third-order correction to the spin-rotation interaction, gammaS, and the fourth-order spin-spin coupling term, theta, were found necessary for an acceptable fit. The hyperfine constants determined suggest that MnS is more covalent than MnO, but more ionic than MnH. There additionally appears to be considerable sdsigma hybridization in molecular orbital formation for this molecule. Bond lengths of the 3d transition-metal sulfides were compared as well, and those of MnS, CuS, and TiS do not follow the trend of their oxide analogs. This result indicates that there are significant bonding differences between transition-metal sulfides and transition-metal oxides.
Germann, Matthias; Willitsch, Stefan
2016-07-28
We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.
The experimental-theoretical model of the jet HF induction discharge of atmospheric pressure
NASA Astrophysics Data System (ADS)
Gainullin, R.; Kirpichnikov, A.
2017-11-01
The paper considers theexperimental-theoretical model devised to determine the regularities of the quasi-stationary electromagnetic field structure of the HFI discharge burning in the inductor of finite dimensions at atmospheric pressure.
ESR spectrum of Cr(V) with 2,3-dioxynaphthalene in a liquid crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novosadov, N.A.; Mukhtarov, A.S.; Usmanov, Z.I.
1987-01-01
Research has previously been reported on the complex formed by Cr(V) with 2,3-dioxynaphthalene (I) in solution in DMFA. An open question remaining is the mutual orientation of the molecular symmetry axes and the magnetic ones. The authors give results on the complex formed by Cr(V) with I obtained by ESR in 4-methoxy-benzylidene-n-4'-butylaniline (MBBA). The ESR spectrum of Cr(V) with I in the nematic phase of MBBA is a strong line due to /sup 52/Cr with g = 1.978 and four weak lines due to /sup 53/Cr at the natural content with HFI constant a* = 11.8 x 10/sup -4/ T;more » when the MBBA is converted to the isotropic phase, the observed HFI constant from /sup 53/Cr increases to 18 x 10/sup -4/ T, while the g factor is unaltered.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Cheng; Huang, Qing-Guo; Wang, Sai, E-mail: chcheng@itp.ac.cn, E-mail: huangqg@itp.ac.cn, E-mail: wangsai@itp.ac.cn
2014-12-01
We make a joint analysis of BICEP2 and recently released Planck HFI 353 GHz dust polarization data, and find that there is no evidence for the primordial gravitational waves and the bound on the tensor-to-scalar ratio becomes r < 0.083 at 95% confidence level in the base ΛCDM + tensor model. Extending to the model with running of scalar spectral index, the bound is a little bit relaxed to r < 0.116 at 95% confidence level. Our results imply that the inflation model with a single monomial potential is marginally disfavored at around 95% confidence level. Especially, the m{sup 2}φ{supmore » 2}/2 inflation model is disfavored at more than 2σ level. However, the Starobinsky inflation model gives a nice fit.« less
Towards a Full-sky, High-resolution Dust Extinction Map with WISE and Planck
NASA Astrophysics Data System (ADS)
Meisner, Aaron M.; Finkbeiner, D. P.
2014-01-01
We have recently completed a custom processing of the entire WISE 12 micron All-sky imaging data set. The result is a full-sky map of diffuse, mid-infrared Galactic dust emission with angular resolution of 15 arcseconds, and with contaminating artifacts such as compact sources removed. At the same time, the 2013 Planck HFI maps represent a complementary data set in the far-infrared, with zero-point relatively immune to zodiacal contamination and angular resolution superior to previous full-sky data sets at similar frequencies. Taken together, these WISE and Planck data products present an opportunity to improve upon the SFD (1998) dust extinction map, by virtue of enhanced angular resolution and potentially better-controlled systematics on large scales. We describe our continuing efforts to construct and test high-resolution dust extinction and temperature maps based on our custom WISE processing and Planck HFI data.
NASA Astrophysics Data System (ADS)
Xu, Li-Hong; Reid, Elias M.; Guislain, Bradley; Hougen, Jon T.; Alekseev, E. A.; Krapivin, Igor
2017-06-01
Hyperfine splittings in methanol have been revisited in three recent publications. (i) Coudert et al. [JCP 143 (2015) 044304] published an analysis of splittings observed in the low-J range. They calculated 32 spin-rotation, 32 spin-spin, and 16 spin-torsion hyperfine constants using the ACES2 package. Three of these constants were adjusted to fit hyperfine patterns for 12 transitions. (ii) Three present authors and collaborators [JCP 145 (2016) 024307] analyzed medium to high-J experimental Lamb-dip measurements in methanol and presented a theoretical spin-rotation explanation that was based on torsionally mediated spin-rotation hyperfine operators. These contain, in addition to the usual nuclear spin and overall rotational operators, factors in the torsional angle α of the form {e^{plusmn;{inα}}}. Such operators have non-zero matrix elements between the two components of a torsion-rotation ^{tr}E state, but have zero matrix elements within a ^{tr}A state. More than 55 hyperfine splittings were successfully fitted using three parameters and the fitted values agree well with ab initio values obtained in (i). (iii) Lankhaar et al. [JCP 145 (2016) 244301] published a reanalysis of the data set from (i), using CFOUR recalculated hyperfine constants based on their rederivation of the relevant expressions. They explain why their choice of fixed and floated parameters leads to numerical values for all parameters that seem to be more physical than those in (i). The results in (ii) raise the question of whether large torsionally-mediated spin-rotation splittings will occur in other methyl-rotor-containing molecules. This abstract presents ab initio calculations of torsionally mediated hyperfine splittings in the E states of acetaldehyde using the same three operators as in (ii) and spin-rotation constants computed by Gaussian09. We explored the first 13 K states for J from 10 to 40 and ν_{t} = 0, 1, and 2. Our calculations indicate that hyperfine splittings in CH_{3}CHO are just below current measurement capability. This conclusion is confirmed by available experimental measurements.
Hyperfine Level Interactions of Diamond Nitrogen Vacancy Ensembles Under Transverse Magnetic Fields
2015-10-06
eigenvalues 0, ±h̄, corresponding to ms = 0,±1 [18]. Figure 1 shows the calculated energy levels as a function of axial field for a fixed transverse...Progress in 5 Physics 77, 056503 (2014). [9] G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo , H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, Nature 500
NMR studies of electronic structure in crystalline and amorphous Zr2PdH/x/
NASA Technical Reports Server (NTRS)
Bowman, R. C., Jr.; Johnson, W. L.; Maeland, A. J.; Rhim, W.-K.
1983-01-01
The proton Knight shifts and spin-lattice relaxation times have been measured in crystalline and amorphous Ze2PdH(x). Core polarization from the Zr d-band dominates the proton hyperfine interactions. The density of Fermi level d-electron states is reduced in the amorphous phase relative to the electron density in crystalline Zr2PdH(x).
NUCLEAR CHEMISTRY ANNUAL REPORT 1970
DOE Office of Scientific and Technical Information (OSTI.GOV)
Authors, Various
Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.
Chang, H-P; Wang, M-L; Hsu, C-Y; Liu, M-E; Chan, M-H; Chen, Y-H
2011-12-01
This study investigated the effects of indole-3-carbinol (I3C), a compound from cruciferous vegetables, on various parameters related to obesity, in particular, the parameters of infiltration by macrophages and of inflammatory cytokines expressed during the co-culture of adipocytes and macrophages. Male C57BL/6 mice were fed with a control diet (C group), high-fat diet (HF group) and HF+5 mg kg(-1) I3C (HFI group). The I3C was intraperitoneally injected (HFI group) for 12 weeks. Epididymal adipose tissue (AT) was collected and stained for F4/80, a marker of macrophages. The immunohistochemical staining for F4/80 indicated a greater presence of macrophages in the HF group than in AT from the control and HFI groups. Furthermore, I3C treatment, in an in vitro cell culture system, decreased expression of inducible nitric oxide synthase (iNOS), decreased nitrite content and enhanced expression of peroxisome proliferator-activated receptor (PPAR-γ). Moreover, in vitro cell culture studies revealed that I3C inhibited intracellular lipid accumulation in hypertrophied adipocytes. In macrophage and primary adipocyte co-culture, I3C inhibited expression of interleukin-6 (IL-6). In vivo treatment with I3C reduced the infiltration of macrophages in AT, and in vitro addition of I3C to co-cultured macrophages and adipocytes reduced nitrite production and IL-6 expression. With cultures of adipocytes only, I3C inhibited accumulation of intracellular lipid, either by disrupting differentiation, or by directly inhibiting triglyceride synthesis.
Ground-state hyperfine splitting for Rb, Cs, Fr, Ba+, and Ra+
NASA Astrophysics Data System (ADS)
Ginges, J. S. M.; Volotka, A. V.; Fritzsche, S.
2017-12-01
We have systematically investigated the ground-state hyperfine structure for alkali-metal atoms 87Rb,133Cs, and 211Fr and alkali-metal-like ions +135Ba and +225Ra, which are of particular interest for parity violation studies. The quantum electrodynamic one-loop radiative corrections have been rigorously evaluated within an extended Furry picture employing core-Hartree and Kohn-Sham atomic potentials. Moreover, the effect of the nuclear magnetization distribution on the hyperfine structure intervals has been studied in detail and its uncertainty has been estimated. Finally, the theoretical description of the hyperfine structure has been completed with full many-body calculations performed in the all-orders correlation potential method.
High-precision optical measurement of the 2S hyperfine interval in atomic hydrogen.
Kolachevsky, N; Fischer, M; Karshenboim, S G; Hänsch, T W
2004-01-23
We have applied an optical method to the measurement of the 2S hyperfine interval in atomic hydrogen. The interval has been measured by means of two-photon spectroscopy of the 1S-2S transition on a hydrogen atomic beam shielded from external magnetic fields. The measured value of the 2S hyperfine interval is equal to 177 556 860(16) Hz and represents the most precise measurement of this interval to date. The theoretical evaluation of the specific combination of 1S and 2S hyperfine intervals D21 is in fair agreement (within 1.4 sigma) with the value for D21 deduced from our measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch
2016-07-28
We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O{sub 2} reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ionsmore » produced by photoionization.« less
EFFECTIVE HYPERFINE-STRUCTURE FUNCTIONS OF AMMONIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustovičová, L.; Soldán, P.; Špirko, V., E-mail: spirko@marge.uochb.cas.cz
The hyperfine structure of the rotation-inversion ( v {sub 2} = 0{sup +}, 0{sup −}, 1{sup +}, 1{sup −}) states of the {sup 14}NH{sub 3} and {sup 15}NH{sub 3} ammonia isotopomers is rationalized in terms of effective (ro-inversional) hyperfine-structure (hfs) functions. These are determined by fitting to available experimental data using the Hougen’s effective hyperfine-structure Hamiltonian within the framework of the non-rigid inverter theory. Involving only a moderate number of mass independent fitting parameters, the fitted hfs functions provide a fairly close reproduction of a large majority of available experimental data, thus evidencing adequacy of these functions for reliable prediction.more » In future experiments, this may help us derive spectroscopic constants of observed inversion and rotation-inversion transitions deperturbed from hyperfine effects. The deperturbed band centers of ammonia come to the forefront of fundamental physics especially as the probes of a variable proton-to-electron mass ratio.« less
Innovation and reliability of atomic standards for PTTI applications
NASA Technical Reports Server (NTRS)
Kern, R.
1981-01-01
Innovation and reliability in hyperfine frequency standards and clock systems are discussed. Hyperfine standards are defined as those precision frequency sources and clocks which use a hyperfine atomic transition for frequency control and which have realized significant commercial production and acceptance (cesium, hydrogen, and rubidium atoms). References to other systems such as thallium and ammonia are excluded since these atomic standards have not been commercially exploited in this country.
Observation of the hyperfine spectrum of antihydrogen.
Ahmadi, M; Alves, B X R; Baker, C J; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Cohen, S; Collister, R; Eriksson, S; Evans, A; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Johnson, M A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Mathers, M; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; Stracka, S; Stutter, G; So, C; Tharp, T D; Thompson, J E; Thompson, R I; van der Werf, D P; Wurtele, J S
2017-08-02
The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 10 13 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger's relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen-the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 10 4 . This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.
Observation of the hyperfine spectrum of antihydrogen
NASA Astrophysics Data System (ADS)
Ahmadi, M.; Alves, B. X. R.; Baker, C. J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Ishida, A.; Johnson, M. A.; Jones, S. A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Mathers, M.; Maxwell, D.; McKenna, J. T. K.; Menary, S.; Michan, J. M.; Momose, T.; Munich, J. J.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; Stracka, S.; Stutter, G.; So, C.; Tharp, T. D.; Thompson, J. E.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.
2017-08-01
The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 1013 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger’s relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen—the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 104. This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.
Quadrupole splittings in the near-infrared spectrum of 14NH 3
Twagirayezu, Sylvestre; Hall, Gregory E.; Sears, Trevor J.
2016-10-13
Sub-Doppler, saturation dip, spectra of lines in the v 1 + v 3, v 1 + 2v 4 and v 3 + 2v 4 bands of 14NH 3 have been measured by frequency comb-referenced diode laser absorption spectroscopy. The observed spectral line widths are dominated by transit time broadening, and show resolved or partially-resolved hyperfine splittings that are primarily determined by the 14N quadrupole coupling. Modeling of the observed line shapes based on the known hyperfine level structure of the ground state of the molecule shows that, in nearly all cases, the excited state level has hyperfine splittings similar tomore » the same rotational level in the ground state. The data provide accurate frequencies for the line positions and easily separate lines overlapped in Doppler-limited spectra. The observed hyperfine splittings can be used to make and confirm rotational assignments and ground state combination differences obtained from the measured frequencies are comparable in accuracy to those obtained from conventional microwave spectroscopy. Furthermore, several of the measured transitions do not show the quadrupole hyperfine splittings expected based on their existing rotational assignments. Either the assignments are incorrect or the upper levels involved are perturbed in a way that affects the nuclear hyperfine structure.« less
Revised energy levels of singly ionized lanthanum
NASA Astrophysics Data System (ADS)
Güzelçimen, Feyza; Tonka, Mehdi; Uddin, Zaheer; Bhatti, Naveed Anjum; Windholz, Laurentius; Kröger, Sophie; Başar, Gönül
2018-05-01
Based on the experimental wavenumbers of 344 spectral lines from calibrated Fourier transform (FT) spectra as well as wavenumbers of 81 lines from the wavelength tables from literature, the energy of 115 fine structure levels of singly ionized lanthanum has been revised by weighted global fits. The classifications of the lines are provided by numerous previous investigations of lanthanum by different spectroscopic methods and authors. For the high accurate determination of the center of gravity wavenumbers from the experimental spectrum, the hyperfine constants of the involved levels have been taken into account, if possible. For the 94 levels with known hyperfine constants the accuracy of energy values is better than 0.01 cm-1. For 34 levels the magnetic dipole hyperfine constants A have been determined from FT spectra as part of this work. For four of these 34 levels even electric quadrupole hyperfine constants B could be estimated. For levels, which have experimentally unknown hyperfine constants and which are connected only by lines not found in the FT spectra but taken from literature, the uncertainties of energy values are about a factor of 10 higher. A list of all revised level energies together with a compilation of hyperfine structure data is given as well as a list of all lines used.
Dzhioev, R I; Korenev, V L
2007-07-20
The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.
NASA Astrophysics Data System (ADS)
Dzhioev, R. I.; Korenev, V. L.
2007-07-01
The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.
Canadian Vehicle Protection Program (EO considerations)
2012-10-09
HFI); EO and Acoustic Sensing. – Situational Awareness Technologies Evaluation (SITUATE). – Urban Gated Laser Retro -reflection Scanner (UGLARES...llery Rockets Terminal Defeat of VSRBM 1 Destroy Soft Destroy Soft UAVs Destroy In-Flight Artillery Shells UAVs at at Long Range Short Range
Bressel, U; Borodin, A; Shen, J; Hansen, M; Ernsting, I; Schiller, S
2012-05-04
Advanced techniques for manipulation of internal states, standard in atomic physics, are demonstrated for a charged molecular species for the first time. We address individual hyperfine states of rovibrational levels of a diatomic ion by optical excitation of individual hyperfine transitions, and achieve controlled transfer of population into a selected hyperfine state. We use molecular hydrogen ions (HD+) as a model system and employ a novel frequency-comb-based, continuous-wave 5 μm laser spectrometer. The achieved spectral resolution is the highest obtained so far in the optical domain on a molecular ion species. As a consequence, we are also able to perform the most precise test yet of the ab initio theory of a molecule.
Development of a sensitive setup for laser spectroscopy studies of very exotic calcium isotopes
NASA Astrophysics Data System (ADS)
Garcia Ruiz, R. F.; Gorges, C.; Bissell, M.; Blaum, K.; Gins, W.; Heylen, H.; Koenig, K.; Kaufmann, S.; Kowalska, M.; Krämer, J.; Lievens, P.; Malbrunot-Ettenauer, S.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Yordanov, D. T.; Yang, X. F.
2017-04-01
An experimental setup for sensitive high-resolution measurements of hyperfine structure spectra of exotic calcium isotopes has been developed and commissioned at the COLLAPS beam line at ISOLDE, CERN. The technique is based on the radioactive detection of decaying isotopes after optical pumping and state selective neutralization (ROC) (Vermeeren et al 1992 Phys. Rev. Lett. 68 1679). The improvements and developments necessary to extend the applicability of the experimental technique to calcium isotopes produced at rates as low as few ions s-1 are discussed. Numerical calculations of laser-ion interaction and ion-beam simulations were explored to obtain the optimum performance of the experimental setup. Among the implemented features are a multi-step optical pumping region for sensitive measurements of isotopes with hyperfine splitting, a high-voltage platform for adequate control of low-energy ion beams and simultaneous β-detection of neutralized and remaining ions. The commissioning of the experimental setup, and the first online results on neutron-rich calcium isotopes are presented.
Technology for On-Chip Qubit Control with Microfabricated Surface Ion Traps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Highstrete, Clark; Scott, Sean Michael; Nordquist, Christopher D.
2013-11-01
Trapped atomic ions are a leading physical system for quantum information processing. However, scalability and operational fidelity remain limiting technical issues often associated with optical qubit control. One promising approach is to develop on-chip microwave electronic control of ion qubits based on the atomic hyperfine interaction. This project developed expertise and capabilities at Sandia toward on-chip electronic qubit control in a scalable architecture. The project developed a foundation of laboratory capabilities, including trapping the 171Yb + hyperfine ion qubit and developing an experimental microwave coherent control capability. Additionally, the project investigated the integration of microwave device elements with surface ionmore » traps utilizing Sandia’s state-of-the-art MEMS microfabrication processing. This effort culminated in a device design for a multi-purpose ion trap experimental platform for investigating on-chip microwave qubit control, laying the groundwork for further funded R&D to develop on-chip microwave qubit control in an architecture that is suitable to engineering development.« less
Free Radical Metabolism of Methyleugenol and Related Compounds
2015-01-01
Methyleugenol, the methyl ether of eugenol, both of which are flavorant constituents of spices, has been listed by the National Toxicology Program’s Report on Carcinogens as reasonably anticipated to be a human carcinogen. This finding is based on the observation of increased incidence of malignant tumors at multiple tissue sites in experimental animals of different species. By contrast, eugenol is not listed. In this study, we show that both methyleugenol and eugenol readily undergo peroxidative metabolism in vitro to form free radicals with large hyperfine interactions of the methylene allylic hydrogen atoms. These large hyperfine splittings indicate large electron densities adjacent to those hydrogen atoms. Methyleugenol undergoes autoxidation such that the commercial product contains 10–30 mg/L hydroperoxide and is capable of activating peroxidases without the presence of added hydrogen peroxide. Additionally, the hydroperoxide is not a good substrate for catalase, which demonstrates that these antioxidant defenses will not be effective in protecting against methyleugenol exposure. PMID:24564854
NASA Astrophysics Data System (ADS)
Michioka, Chishiro; Suzuki, Kazuya; Mibu, Ko
2002-10-01
We applied 57Fe Mössbauer spectroscopy for investigating the Ising spin triangular lattice antiferromagnet (TLA) (CeS)1.16[Fe0.33(NbS2)2] between 2 and 300 K. The spectra revealed that the relaxation time of the hyperfine field markedly changes in the intermediate phase between TN1=22 K and TN2=15 K due to strong spin fluctuation. The relaxation of the hyperfine field is not sufficiently fast as a paramagnet even at 77 K, which is much higher than TN1, and the inverse susceptibility of (LaS)1.14[Fe0.33(NbS2)2] deviates from the Curie-Weiss law below 100 K. These results indicate that an unusual short-range order exists above TN1. The temperature dependence of the Mössbauer spectra can be explained by phase transition of the three-dimensional TLA model with weak interlayer exchange interactions.
Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.
Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir
2015-07-17
The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.
Hyperfine interaction in K 2Ba[Fe(NO 2) 6
NASA Astrophysics Data System (ADS)
Padmakumar, K.; Manoharan, P. T.
2000-04-01
Magnetic hyperfine splitting observed in the low temperature Mössbauer spectrum of potassium barium hexanitro ferrate(II), in the absence of any external field, is attributed to the 5T 2g state of the central metal atom further split into a ground 5E g state and a first excited 5B 2g state under a distorted octahedral symmetry in contrast to the earlier prediction of 1A 1g ground state on the basis of room temperature Mössbauer spectral and other properties. The central iron atom is co-ordianted to six nitrito groups (NO 2-), having an oxidation state of +2. The temperature dependence of Mössbauer spectra is explained on the basis of electronic relaxation among the spin-orbit coupled levels of the 5E g ground state. Various kinds of electronic relaxation mechanisms have been compared to explain the proposed mechanism. The observed temperature dependent spectra with varying internal magnetic field and line width can be explained by simple spin lattice relaxation.
NASA Astrophysics Data System (ADS)
Briere, T. M.; Jeong, J.; Das, T. P.; Ohira, S.; Nagamine, K.
2000-08-01
The muon and muonium bonding sites of the 4-arylmethyleneamino-2,2,6,6-tetramethylpiperidin-1-yloxyl radical crystals with aryl groups consisting of biphenyl and 4-pyridyl were studied via ab initio Hartree-Fock theory. The hyperfine fields, including both intramolecular and intermolecular interactions, were calculated at the sites of interest and compared to zero field μSR results.
Miglierini, Marcel B; Procházka, Vít; Vrba, Vlastimil; Švec, Peter; Janičkovič, Dušan; Matúš, Peter
2018-06-07
We demonstrate the use of two nuclear-based analytical methods that can follow the modifications of microstructural arrangement of iron-based metallic glasses (MGs). Despite their amorphous nature, the identification of hyperfine interactions unveils faint structural modifications. For this purpose, we have employed two techniques that utilize nuclear resonance among nuclear levels of a stable 57 Fe isotope, namely Mössbauer spectrometry and nuclear forward scattering (NFS) of synchrotron radiation. The effects of heat treatment upon (Fe2.85Co1)77Mo8Cu1B14 MG are discussed using the results of ex situ and in situ experiments, respectively. As both methods are sensitive to hyperfine interactions, information on structural arrangement as well as on magnetic microstructure is readily available. Mössbauer spectrometry performed ex situ describes how the structural arrangement and magnetic microstructure appears at room temperature after the annealing under certain conditions (temperature, time), and thus this technique inspects steady states. On the other hand, NFS data are recorded in situ during dynamically changing temperature and NFS examines transient states. The use of both techniques provides complementary information. In general, they can be applied to any suitable system in which it is important to know its steady state but also transient states.
NASA Astrophysics Data System (ADS)
Raithel, Georg; Zhao, Jianming
2017-04-01
Cold atomic systems have opened new frontiers at the interface of atomic and molecular physics. These include research on novel types of Rydberg molecules. Three types of molecules will be reviewed. Long-range, homonuclear Rydberg molecules, first predicted in [1] and observed in [2], are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium [3]). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules [3]. A classification into Hund's cases [3, 4, 5] will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction term of neutral Rydberg-Rydberg molecules is between two dipoles, while for ionic Rydberg molecules it is between a dipole and a monopole. NSF (PHY-1506093), NNSF of China (61475123).
Precision measurements on trapped antihydrogen in the ALPHA experiment
NASA Astrophysics Data System (ADS)
Eriksson, S.
2018-03-01
Both the 1S-2S transition and the ground state hyperfine spectrum have been observed in trapped antihydrogen. The former constitutes the first observation of resonant interaction of light with an anti-atom, and the latter is the first detailed measurement of a spectral feature in antihydrogen. Owing to the narrow intrinsic linewidth of the 1S-2S transition and use of two-photon laser excitation, the transition energy can be precisely determined in both hydrogen and antihydrogen, allowing a direct comparison as a test of fundamental symmetry. The result is consistent with CPT invariance at a relative precision of around 2×10-10. This constitutes the most precise measurement of a property of antihydrogen. The hyperfine spectrum of antihydrogen is determined to a relative uncertainty of 4×10-4. The excited state and the hyperfine spectroscopy techniques currently both show sensitivity at the few 100 kHz level on the absolute scale. Here, the most recent work of the ALPHA collaboration on precision spectroscopy of antihydrogen is presented together with an outlook on improving the precision of measurements involving lasers and microwave radiation. Prospects of measuring the Lamb shift and determining the antiproton charge radius in trapped antihydrogen in the ALPHA apparatus are presented. Future perspectives of precision measurements of trapped antihydrogen in the ALPHA apparatus when the ELENA facility becomes available to experiments at CERN are discussed. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.
NASA Technical Reports Server (NTRS)
Ducas, T. W.; Feld, M. S.; Ryan, L. W., Jr.; Skribanowitz, N.; Javan, A.
1972-01-01
Observation results are presented on the optical hyperfine structure in Ne-21 obtained with the aid of laser-induced line-narrowing techniques. The output from a long stabilized single-mode 1.15-micron He-Ne laser focused into an external sample cell containing Ne-21 was used in implementing these techniques. Their applicability is demonstrated for optical hyperfine structure observation in systems whose features are ordinarily masked by Doppler broadening.
Two-photon exchange correction to the hyperfine splitting in muonic hydrogen
NASA Astrophysics Data System (ADS)
Tomalak, Oleksandr
2017-12-01
We reevaluate the Zemach, recoil and polarizability corrections to the hyperfine splitting in muonic hydrogen expressing them through the low-energy proton structure constants and obtain the precise values of the Zemach radius and two-photon exchange (TPE) contribution. The uncertainty of TPE correction to S energy levels in muonic hydrogen of 105 ppm exceeds the ppm accuracy level of the forthcoming 1S hyperfine splitting measurements at PSI, J-PARC and RIKEN-RAL.
Hyperfine Fields in Nanocrystalline Fe0.48Al0.52
NASA Astrophysics Data System (ADS)
Szymański, K.; Satuła, D.; Dobrzyński, L.; Voronina, E.; Yelsukov, E. P.
2004-12-01
Mössbauer measurements with circularly polarized radiation were performed on a nanocrystalline, disordered Fe48Al52 alloy. The analysis of the data for various polarization states resulted in the characterization of the hyperfine magnetic field distribution and the dependence of the average z-component of hyperfine field on the chemical environment. An increasing number of Al in the first coordination shell causes not only a decrease of magnetic moments but also introduces noncollinearity.
Electron paramagnetic resonance of a 10B-containing heterocyclic radical
NASA Astrophysics Data System (ADS)
Eaton, Sandra S.; Ngendahimana, Thacien; Eaton, Gareth R.; Jupp, Andrew R.; Stephan, Douglas W.
2018-05-01
Electron paramagnetic resonance measurements for a 10B-containing heterocyclic phenanthrenedione radical, (C6F5)2B(O2C14H8), were made at X-band in 9:1 toluene:dichloromethane from 10 to 293 K and in toluene from 180 to 293 K. In well-deoxygenated 0.1 mM toluene solution at room temperature hyperfine couplings to 10B, four pairs of protons and five pairs of fluorines contribute to a continuous wave spectrum with many resolved lines. Hyperfine couplings were adjusted to provide the best fit for spectra of the radical enriched in 10B and the analogous radical synthesized with 10,11B in natural abundance, resulting in small refinements of the hyperfine coupling constants previously reported for the natural abundance sample. Electron spin relaxation rates at temperatures between 15 and 293 K were similar for samples containing 10B and natural isotope abundance. Analysis of electron spin echo envelope modulation and hyperfine correlation spectroscopy data at 80 K found Axx = -7.5 ± 0.3, Ayy = -8.5 ± 0.3, and Azz = -10.8 ± 0.3 MHz for 11B, which indicates small spin density on the boron. The spin echo and hyperfine spectroscopy data for the 10B -containing radical are consistent with the factor of 2.99 smaller hyperfine values for 10B than for 11B.
Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins
NASA Astrophysics Data System (ADS)
Norris, Leigh Morgan
Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater than or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f>1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.
Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins
NASA Astrophysics Data System (ADS)
Norris, Leigh Morgan
Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f >1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.
Planck focal plane instruments: advanced modelization and combined analysis
NASA Astrophysics Data System (ADS)
Zonca, Andrea; Mennella, Aniello
2012-08-01
This thesis is the result of my work as research fellow at IASF-MI, Milan section of the Istituto di Astrofisica Spaziale e Fisica Cosmica, part of INAF, Istituto Nazionale di Astrofisica. This work started in January 2006 in the context of the PhD school program in Astrophysics held at the Physics Department of Universita' degli Studi di Milano under the supervision of Aniello Mennella. The main topic of my work is the software modelling of the Low Frequency Instrument (LFI) radiometers. The LFI is one of the two instruments on-board the European Space Agency Planck Mission for high precision measurements of the anisotropies of the Cosmic Microwave Background (CMB). I was also selected to participate at the International Doctorate in Antiparticles Physics, IDAPP. IDAPP is funded by the Italian Ministry of University and Research (MIUR) and coordinated by Giovanni Fiorentini (Universita' di Ferrara) with the objective of supporting the growing collaboration between the Astrophysics and Particles Physics communities. It is an international program in collaboration with the Paris PhD school, involving Paris VI, VII and XI Universities, leading to a double French-Italian doctoral degree title. My work was performed with the co-tutoring of Jean-Michel Lamarre, Instrument Scientist of the High Frequency Instrument (HFI), the bolometric instrument on-board Planck. Thanks to this collaboration I had the opportunity to work with the HFI team for four months at the Paris Observatory, so that the focus of my activity was broadened and included the study of cross-correlation between HFI and LFI data. Planck is the first CMB mission to have on-board the same satellite very different detection technologies, which is a key element for controlling systematic effects and improve measurements quality.
Desai, Jigar R; Hyde, Craig L; Kabadi, Shaum; St Louis, Matthew; Bonato, Vinicius; Katrina Loomis, A; Galaznik, Aaron; Berger, Marc L
2017-03-01
Opportunities to leverage observational data for precision medicine research are hampered by underlying sources of bias and paucity of methods to handle resulting uncertainty. We outline an approach to account for bias in identifying comorbid associations between 2 rare genetic disorders and type 2 diabetes (T2D) by applying a positive and negative control disease paradigm. Association between 10 common and 2 rare genetic disorders [Hereditary Fructose Intolerance (HFI) and α-1 antitrypsin deficiency] and T2D was compared with the association between T2D and 7 negative control diseases with no established relationship with T2D in 4 observational databases. Negative controls were used to estimate how much bias and variance existed in datasets when no effect should be observed. Unadjusted association for common and rare genetic disorders and T2D was positive and variable in magnitude and distribution in all 4 databases. However, association between negative controls and T2D was 200% greater than expected indicating the magnitude and confidence intervals for comorbid associations are sensitive to systematic bias. A meta-analysis using this method demonstrated a significant association between HFI and T2D but not for α-1 antitrypsin deficiency. For observational studies, when covariate data are limited or ambiguous, positive and negative controls provide a method to account for the broadest level of systematic bias, heterogeneity, and uncertainty. This provides greater confidence in assessing associations between diseases and comorbidities. Using this approach we were able to demonstrate an association between HFI and T2D. Leveraging real-world databases is a promising approach to identify and corroborate potential targets for precision medicine therapies.
NASA Astrophysics Data System (ADS)
Sauvé, Alexandre; Montier, Ludovic
2016-12-01
Context: Bolometers are high sensitivity detector commonly used in Infrared astronomy. The HFI instrument of the Planck satellite makes extensive use of them, but after the satellite launch two electronic related problems revealed critical. First an unexpected excess response of detectors at low optical excitation frequency for ν < 1 Hz, and secondly the Analog To digital Converter (ADC) component had been insufficiently characterized on-ground. These two problems require an exquisite knowledge of detector response. However bolometers have highly nonlinear characteristics, coming from their electrical and thermal coupling making them very difficult to model. Goal: We present a method to build the analytical transfer function in frequency domain which describe the voltage response of an Alternative Current (AC) biased bolometer to optical excitation, based on the standard bolometer model. This model is built using the setup of the Planck/HFI instrument and offers the major improvement of being based on a physical model rather than the currently in use had-hoc model based on Direct Current (DC) bolometer theory. Method: The analytical transfer function expression will be presented in matrix form. For this purpose, we build linearized versions of the bolometer electro thermal equilibrium. A custom description of signals in frequency is used to solve the problem with linear algebra. The model performances is validated using time domain simulations. Results: The provided expression is suitable for calibration and data processing. It can also be used to provide constraints for fitting optical transfer function using real data from steady state electronic response and optical response. The accurate description of electronic response can also be used to improve the ADC nonlinearity correction for quickly varying optical signals.
An all sky map of the CO emission extracted from Planck
NASA Astrophysics Data System (ADS)
Aumont, Jonathan
2012-07-01
The High Frequency Instrument (HFI) on board of the Planck satellite, observing the sky in the 100 to 857 GHz frequency range, is sensitive to the light emitted by the CO molecule through its rotational transition lines. We present here the first all sky map of the CO emission ever compiled, taking advantage of the Planck HFI high sensitivity and sky coverage. The processing of this map is first presented, from calibration of the response of the HFI bolometers to the CO lines, to the component separation method that was applied to separate the CO signal from other Galactic components and from the CMB radiation. After having quantified the characteristics of the map, in terms of noise statistics and level, large scale systematics and zero level assessment, we test its reliability by confronting it with ground measurements of the integrated intensity of the ^{12}CO (J=1-0) line. First, we show a very good agreement to the Dame et al. 2001 data, in and around the bright molecular cloud regions, always within the combined uncertainties in the absolute calibration of ground based data and the varying ^{13}CO/^{12}CO line ratio. We additionally use the Hartmann et al. 1998 and Magnani et al. 2000 measurements, sampling the high Galactic latitudes sky with a grid of more than 15,000 degree-spaced positions, and find compatibility both for where they do measure CO and where they don't. As being an all sky map, it can be used to find CO clouds that were never observed by dedicated ground measurements and we illustrate this ability in the Pegasus region around previous observations by Dame et al. 2001 and Yamamoto et al. 2003.
Mishra, S N
2009-03-18
Applying the time differential perturbed angular correlation (TDPAC) technique we have measured electric and magnetic hyperfine fields of the (111)Cd impurity in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr and Gd) showing antiferro- and ferromagnetism with unusually high ordering temperatures. The Cd nuclei occupying the Sc site show high magnetic hyperfine fields with saturation values B(hf)(0) = 21 kG, 45 kG and 189 kG in CeScGe, PrScGe and GdScGe, respectively. By comparing the results with the hyperfine field data of Cd in rare-earth metals and estimations from the RKKY model, we find evidence for the presence of additional spin density at the probe nucleus, possibly due to spin polarization of Sc d band electrons. The principal electric field gradient component V(zz) in CeScGe, PrScGe and GdScGe has been determined to be 5.3 × 10(21) V m(-2), 5.5 × 10(21) V m(-2) and 5.6 × 10(21) V m(-2), respectively. Supplementing the experimental measurements, we have carried out ab initio calculations for pure and Cd-doped RScGe compounds with R = Ce, Pr, Nd and Gd using the full potential linearized augmented plane wave (FLAPW) method based on density functional theory (DFT). From the total energies calculated with and without spin polarization we find ferrimagnetic ground states for CeScGe and PrScGe while NdScGe and GdScGe are ferromagnetic. In addition, we find a sizable magnetic moment at the Sc site, increasing from ≈0.10 μ(B) in CeScGe to ≈0.3 μ(B) in GdScGe, confirming the spin polarization of Sc d band electrons. The calculated electric field gradient and magnetic hyperfine fields of the Cd impurity closely agree with the experimental values. We believe spin polarization of Sc 3d band electrons, strongly hybridized with spin polarized 5d band electrons of the rare-earth, enables a long range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between RE 4f moments which in turn leads to high magnetic ordering temperatures in RScGe compounds.
NASA Astrophysics Data System (ADS)
Liu, Wenliang; Wang, Xiaofeng; Wu, Jizhou; Su, Xingliang; Wang, Shen; Sovkov, Vladimir B.; Ma, Jie; Xiao, Liantuan; Jia, Suotang
2017-08-01
We report on the experimental observation and quantitative determination of the laser-induced frequency shift (LIFS) of the ultracold polar molecules formed by photoassociation (PA). The experiments are performed by detecting a series of double PA spectra with a molecular hyperfine structure, which are induced by two PA lasers with a precise and adjustable frequency reference. We find that the LIFS of the molecular hyperfine levels shows a linear dependence on PA laser intensity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, W.J.
1997-09-01
Matrix elements of the hyperfine operators corresponding to the magnetic-dipole (A) and electric-quadrupole (B) hyperfine structures constants are given as linear combinations of the appropriate radial integrals for all states of the s, p{sup N}, and d{sub N} configurations in both the SL and pure jj representations. The associated SL-jj transformations are also given. 13 refs., 10 tabs.
1998-10-21
site. The electric-field- induced linear shift is also observed in the hyperfine splitting of nuclear quadrupole resonance ( NQR ) spectrum of a nucleus...located at a noncentrosymmetric site in a molecule or in crystal lattice. Thus, the linear electric field effect on the ESR and NQR hyperfine splitting...the electric field effects on ESR and NQR hyperfine couplings. Theoretical methods to calculate the electric field effects within Hartree-Fock
Păcurar, Daniela; Leşanu, Gabriela; Dijmărescu, Irina; Ţincu, Iulia Florentina; Gherghiceanu, Mihaela; Orăşeanu, Dumitru
2017-01-01
Celiac disease (CD) has been associated with several genetic and immune disorders, but association between CD and hereditary fructose intolerance (HFI) is extremely rare. HFI is an autosomal recessive disease caused by catalytic deficiency of aldolase B (fructose-1,6-bisphosphate aldolase). We report the case of a 5-year-old boy suffering from CD, admitted with an initial diagnosis of Reye's-like syndrome. He presented with episodic unconsciousness, seizures, hypoglycemia, hepatomegaly and abnormal liver function. The patient has been on an exclusion diet for three years, but he still had symptoms: stunting, hepatomegaly, high transaminases, but tissue transglutaminase antibodies were negative. Liver biopsy showed hepatic steatosis and mitochondrial damage. The dietary history showed an aversion to fruits, vegetables and sweet-tasting foods. The fructose tolerance test was positive, revealing the diagnostic of hereditary fructose intolerance. Appropriate dietary management and precautions were recommended. The patient has been symptom-free and exhibited normal growth and development until 10 years of age.
2014-09-18
compensation) during growth due to their preferred trivalent charge states. The electron paramagnetic resonance spectrum of the singly ionized chromium ...neutral nitrogen acceptor in ZnO . . . . . . . . . . . . . . . . . . 45 16 Spectrum of the singly ionized chromium acceptor in TiO2 . . . . . . . . . 49...is a single crystal of magnesium oxide that has been doped with chromium . Chromium Cr3+ substitutes for magnesium Mg2+ and creates a paramagnetic
NASA Astrophysics Data System (ADS)
Kaupp, Martin; Arbuznikov, Alexei V.; Heßelmann, Andreas; Görling, Andreas
2010-05-01
The isotropic hyperfine coupling constants of the free N(S4) and P(S4) atoms have been evaluated with high-level post-Hartree-Fock and density-functional methods. The phosphorus hyperfine coupling presents a significant challenge to both types of methods. With large basis sets, MP2 and coupled-cluster singles and doubles calculations give much too small values for the phosphorus atom. Triple excitations are needed in coupled-cluster calculations to achieve reasonable agreement with experiment. None of the standard density functionals reproduce even the correct sign of this hyperfine coupling. Similarly, the computed hyperfine couplings depend crucially on the self-consistent treatment in exact-exchange density-functional theory within the optimized effective potential (OEP) method. Well-balanced auxiliary and orbital basis sets are needed for basis-expansion exact-exchange-only OEP approaches to come close to Hartree-Fock or numerical OEP data. Results from the localized Hartree-Fock and Krieger-Li-Iafrate approximations deviate notably from exact OEP data in spite of very similar total energies. Of the functionals tested, only full exact-exchange methods augmented by a correlation functional gave at least the correct sign of the P(S4) hyperfine coupling but with too low absolute values. The subtle interplay between the spin-polarization contributions of the different core shells has been analyzed, and the influence of even very small changes in the exchange-correlation potential could be identified.
Research on Spectroscopy, Opacity, and Atmospheres
NASA Astrophysics Data System (ADS)
Kurucz, Robert L.
1996-01-01
The main accomplishment was the merging of all the atomic line data into one wavelength-sorted list that is simple to use. We have combined all the atomic files from a CDROM into 534,910 line files GFALL.DAT and GFELEN.DAT. These are the data we use to compute spectra. They are not up to date. References are given in GFALL.REF or GFELEK.REF. There are no references after 1988, and for light elements there are no references after 1979. One new development is the inclusion of hyperfine splitting for the iron group elements using hyperfine data from the literature through 1993. The data are very incomplete. We have supplied a program for splitting the line list for a species. It reads the hyperfine and isotopic splitting parameters for levels and computes the splittings whenever those levels appear. Lines with no splitting data are copied untouched. Because Sc, Mn, and Co are monoisotopic, only the hyperfine splittings are needed. Since 51V is much more abundant than 50V, the isotope shifts are small for 51V, and we approximate V with 51V. GFALLHYP.DAT has 754,946 lines including hyperfine Sc I, V I, Mn I, and Co I.
Optogalvanic spectroscopy of lanthanum hyperfine structure
NASA Astrophysics Data System (ADS)
Nelson, Amanda; Hankes, Jessie; Banner, Patrick; Olmschenk, Steven
2017-04-01
Optogalvanic spectroscopy is a sensitive technique to measure optical transitions of atoms and ions produced in a high voltage discharge. Advantages of this technique include a comparatively simple optical setup and the ability to interrogate excited state transitions. Here, we use optogalavanic spectroscopy in a hollow cathode lamp to measure the hyperfine spectrum of several transitions in lanthanum. Hyperfine coefficients are determined for the corresponding energy levels and compared to available previous measurements. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.
Arbitrary Dicke-State Control of Symmetric Rydberg Ensembles
NASA Astrophysics Data System (ADS)
Deutsch, Ivan
2017-04-01
We study the production of arbitrary superpositions of Dicke states via optimal control. We show that N atomic hyperfine qubits, interacting symmetrically via the Rydberg blockade, are well described by the Jaynes-Cummings Model (JCM), familiar in cavity QED. In this isomorphism, the presence or absence of a collective Rydberg excitation plays the role of the two-level system and the number of symmetric excitations of the hyperfine qubits plays the role of the bosonic excitations of the JCM. This system is fully controllable through the addition of phase-modulated microwaves that drive transitions between the Rydberg-dressed states. In the weak dressing regime, this results in a single-axis twisting Hamiltonian, plus time-dependent rotations of the collective spin. For strong dressing we control the entire Jaynes-Cummings ladder. Using optimal control, we design microwave waveforms that can generate arbitrary states in the symmetric subspace. This includes cat states, Dicke states, and spin squeezed states. With currently feasible parameters, it is possible to generate arbitrary symmetric states of _10 hyperfine qubits in 1 microsec, assuming a fast microwave phase switching time. The same control can be achieved with a ``dressed-ground control'' scheme, which reduces the demands for fast phase switching at the expense of increased total control time. More generally, we can achieve control on larger ensembles of qubits by designing waveforms that are bandwidth limited within the coherence time of the system. We use this to study general questions of the ``quantum speed limit'' and information content in a waveform that is needed to generate arbitrary quantum states.
Precision measurements on trapped antihydrogen in the ALPHA experiment.
Eriksson, S
2018-03-28
Both the 1S-2S transition and the ground state hyperfine spectrum have been observed in trapped antihydrogen. The former constitutes the first observation of resonant interaction of light with an anti-atom, and the latter is the first detailed measurement of a spectral feature in antihydrogen. Owing to the narrow intrinsic linewidth of the 1S-2S transition and use of two-photon laser excitation, the transition energy can be precisely determined in both hydrogen and antihydrogen, allowing a direct comparison as a test of fundamental symmetry. The result is consistent with CPT invariance at a relative precision of around 2×10 -10 This constitutes the most precise measurement of a property of antihydrogen. The hyperfine spectrum of antihydrogen is determined to a relative uncertainty of 4×10 -4 The excited state and the hyperfine spectroscopy techniques currently both show sensitivity at the few 100 kHz level on the absolute scale. Here, the most recent work of the ALPHA collaboration on precision spectroscopy of antihydrogen is presented together with an outlook on improving the precision of measurements involving lasers and microwave radiation. Prospects of measuring the Lamb shift and determining the antiproton charge radius in trapped antihydrogen in the ALPHA apparatus are presented. Future perspectives of precision measurements of trapped antihydrogen in the ALPHA apparatus when the ELENA facility becomes available to experiments at CERN are discussed.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'. © 2018 The Author(s).
Laboratory Rotational Spectroscopy of Astrophysical Interesting Diatomic Hydrides
NASA Astrophysics Data System (ADS)
Halfen, DeWayne; Ziurys, L.
2008-05-01
Diatomic hydride are among the most common molecular species in the interstellar medium (ISM). The low molecular mass and thus moments of inertia cause their rotational spectra to lie entirely in the submillimeter and far-infrared regions. Hence, the future airborne and space-borne platforms, such as SOFIA and Herschel, are primed to explore these prevalent molecules. However, in order to detect these species in the ISM, their rotational spectra must first be measured in the laboratory. Using submillimeter direct absorption methods in the Ziurys laboratory, we have recorded the spectra of several diatomic hydrides of astrophysical interest. We have measured the pure rotational spectrum of MnH (X7Σ+: N = 0 - 1) and MnD (N = 2 - 3), as well as the deuterium and carbon-13 isotopologues of CH, CD (X2Πr: N = 1 - 1 and 1 - 2) and 13CH (N = 1 - 1). Manganese hydride and deuteride were created in a DC discharge of H2 or D2 and manganese vapor, generated in a Broida-type oven. CD and 13CH were produced in an AC discharge of argon and CD4 or 13CH4. For MnH, the five strongest manganese hyperfine transitions were recorded in its N = 0 - 1 transition, each of which are additionally split by hydrogen hyperfine interactions. CD and 13CH also have multiple hyperfine components due to the D, 13C, and/or H atoms. The direct measurement of these fundamental transitions will allow for unambiguous astronomical detections. The results of these studies will be presented.
21 CFR 21.41 - Processing of requests.
Code of Federal Regulations, 2010 CFR
2010-04-01
... PRIVACY Procedures for Notification of and Access to Records in Privacy Act Record Systems § 21.41... consult with the individual concerning the appropriate treatment of the request. (c) The FDA Privacy Act Coordinator (HFI-30) in the Freedom of Information Staff shall be responsibile for the handling of Privacy Act...
NASA Astrophysics Data System (ADS)
Gerasimov, A.; Kirpichnikov, A.; Sabirova, F.; Gainullin, R.
2017-11-01
On the basis of theoretical analysis of distributions of the conductivity, current density and specific power of heat release in the high-frequency induction discharge, a law of crowding of maxima of these values has been established.
2015-07-15
performing optically detected CW ESR and on-resonance Rabi nutation of the elec- tronic spins (see figure 5). We observed increased homogeneity (as...different crystal axes. Here the magnetic field applied was ∼ 100G. Right: Rabi nutations 2.3 Sensitivity In order to test the performance of this first...resonant driving, which are strongly dependent on the hyperfine interaction. 5 Fig. 6: 14N Rabi oscillations at B = 450G, B1 ≈ 3.3G in the three NV
Laser-sodium interaction for the polychromatic laser guide star project
NASA Astrophysics Data System (ADS)
Bellanger, Veronique; Petit, Alain D.
2002-02-01
We developed a code aimed at determining the laser parameters leading to the maximum return flux of photons at 0.33 micrometers for a polychromatic sodium Laser Guide Star. This software relies upon a full 48-level collisionless and magnetic-field-free density-matrix description of the hyperfine structure of Na and includes Doppler broadening and Zeeman degeneracy. Experimental validation of BEACON was conducted on the SILVA facilities and will also be discussed in this paper.
The influence of coordinated defects on inhomogeneous broadening in cubic lattices
NASA Astrophysics Data System (ADS)
Matheson, P. L.; Sullivan, Francis P.; Evenson, William E.
2016-12-01
The joint probability distribution function (JPDF) of electric field gradient (EFG) tensor components in cubic materials is dominated by coordinated pairings of defects in shells near probe nuclei. The contributions from these inner shell combinations and their surrounding structures contain the essential physics that determine the PAC-relevant quantities derived from them. The JPDF can be used to predict the nature of inhomogeneous broadening (IHB) in perturbed angular correlation (PAC) experiments by modeling the G 2 spectrum and finding expectation values for V zz and η. The ease with which this can be done depends upon the representation of the JPDF. Expanding on an earlier work by Czjzek et al. (Hyperfine Interact. 14, 189-194, 1983), Evenson et al. (Hyperfine Interact. 237, 119, 2016) provide a set of coordinates constructed from the EFG tensor invariants they named W 1 and W 2. Using this parameterization, the JPDF in cubic structures was constructed using a point charge model in which a single trapped defect (TD) is the nearest neighbor to a probe nucleus. Individual defects on nearby lattice sites pair with the TD to provide a locus of points in the W 1- W 2 plane around which an amorphous-like distribution of probability density grows. Interestingly, however, marginal, separable PDFs appear adequate to model IHB relevant cases. We present cases from simulations in cubic materials illustrating the importance of these near-shell coordinations.
Orbitally excited spectra and decay of cc¯ meson
NASA Astrophysics Data System (ADS)
Chaturvedi, Raghav; Rai, A. K.
2018-05-01
We use the hydrogen like trial wave function for computation of the mass spectra and decay properties of charmonia within the framework of phenomenological quark anti-quark Coulomb plus power potential with varying potential index from 0.5 to 2.0. The spin-spin hyperfine interaction is considered to incorporate splitting of the ground and radially excited states energy levels, further spin-orbit and tensor interactions are employed to calculate the masses of orbitally excited states. We construct the Regge trajectories from the mass spectra in (J, M2) and (nr, M2) planes. We also compute γγ decay width of P wave states of cc¯.
NASA Astrophysics Data System (ADS)
Kurkcuoglu, Doga Murat; de Melo, C. A. R. Sá
2018-05-01
We propose the creation and investigation of a system of spin-one fermions in the presence of artificial spin-orbit coupling, via the interaction of three hyperfine states of fermionic atoms to Raman laser fields. We explore the emergence of spinor physics in the Hamiltonian described by the interaction between light and atoms, and analyze spectroscopic properties such as dispersion relation, Fermi surfaces, spectral functions, spin-dependent momentum distributions and density of states. Connections to spin-one bosons and SU(3) systems is made, as well relations to the Lifshitz transition and Pomeranchuk instability are presented.
Quantum Theory of Hyperfine Structure Transitions in Diatomic Molecules.
ERIC Educational Resources Information Center
Klempt, E.; And Others
1979-01-01
Described is an advanced undergraduate laboratory experiment in which radio-frequency transitions between molecular hyperfine structure states may be observed. Aspects of the quantum theory applied to the analysis of this physical system, are discussed. (Authors/BT)
NASA Astrophysics Data System (ADS)
Wang, K.; Zhang, C. Y.; Jönsson, P.; Si, R.; Zhao, X. H.; Chen, Z. B.; Guo, X. L.; Chen, C. Y.; Yan, J.
2018-03-01
Employing two state-of-the-art methods, multiconfiguration Dirac-Hartree-Fock and second-order many-body perturbation theory, highly accurate calculations are performed for the lowest 272 fine-structure levels arising from the 2s22p3, 2s2p4, 2p5, 2s22p23l (l = s , p , d), 2s2p33l (l = s , p , d), and 2p43l (l = s , p , d) configurations in nitrogen-like Ge XXVI. Complete and consistent atomic data, including excitation energies, lifetimes, wavelengths, hyperfine structures, Landé gJ-factors, and E1, E2, M1, M2 line strengths, oscillator strengths, and transition rates among these 272 levels are provided. Comparisons are made between the present two data sets, as well as with other available experimental and theoretical values. The present data are accurate enough for identification and deblending of emission lines involving the n = 3 levels, and are also useful for modeling and diagnosing fusion plasmas.
The Early Iron Age of the Mössbauer Era
NASA Astrophysics Data System (ADS)
Hanna, Stanley S.
This account of the early days of Mössbauer spectroscopy in the United States was delivered by Stanley S. Hanna at the International Conference on the Mössbauer Effect 1989 in Vancouver, BC, Canada. It is one of a series of invited talks discussing the history and some newer developments of Mössbauer studies. They all appeared in Hyperfine Interactions 90 (1990). Stanley's narrative gives a vivid account of the struggle to understand the hyperfine spectrum of iron, which nowadays is often just an experiment a physics major has to carry out in the physics lab course. With the permission of the author, one of the editors (GMK) has made a few alterations and abridgments to adjust this text to the present volume. GMK came to Argonne Nat'l. Lab. at a much later time than the one described in this article. But he got to know personally most of the actors of the wild time recounted here, and also was told their personal experiences. GMK also had the good fortune to work with Stanley Hanna and his (then) graduate student Gene Sprouse at Stanford.
Gold atoms and clusters on MgO(100) films; an EPR and IRAS study
NASA Astrophysics Data System (ADS)
Yulikov, M.; Sterrer, M.; Risse, T.; Freund, H.-J.
2009-06-01
Single gold atoms deposited on single crystalline MgO(1 0 0) films grown on Mo(1 0 0) are characterized by electron paramagnetic resonance spectroscopy as well as IR spectroscopy using CO as probe molecules. In this article we describe the first angular dependent measurements to determine the principal hyperfine components of a secondary hyperfine interaction, namely, with 17O of the MgO. The values determined here are in perfect agreement with theoretical expectations and corroborate the previously reported binding mechanism of Au atoms on the oxygen anions of the MgO terrace. The temperature dependent EPR data reveal an onset of Au atom mobility at about 80 K while the formation of Au particles occurs only above 125 K. By an analysis of the EPR line width in combination with STM measurements it is possible to deduce an increase of the interatomic distance above 80 K. The Au/CO complexes show a somewhat smaller temperature stability as compared to the Au atoms. The observed thermal stability is in perfect agreement with theoretical predictions for CO desorption.
Electron spin resonance identification di-carbon-related centers in irradiated silicon
NASA Astrophysics Data System (ADS)
Hayashi, S.; Saito, H.; Itoh, K. M.; Vlasenko, M. P.; Vlasenko, L. S.
2018-04-01
A previously unreported electron spin resonance (ESR) spectrum was found in γ-ray irradiated silicon by the detection of the change in microwave photoconductivity arising from spin-dependent recombination (SDR). In the specially prepared silicon crystals doped by 13C isotope, a well resolved hyperfine structure of SDR-ESR lines due to the interaction between electrons and two equivalent carbon atoms having nuclear spin I = 1/2 was observed. The Si-KU4 spectrum is described by spin Hamiltonian for spin S = 1 and of g and D tensors of orthorhombic symmetry with principal values g1 = 2.008, g2 = 2.002, and g3 =2.007; and D1 = ± 103 MHz, D2 = ∓170 MHz, and D3 = ± 67 MHz where axes 1, 2, and 3 are parallel to the [1 1 ¯ 0 ], [110], and [001] crystal axes, respectively. The hyperfine splitting arising from 13C nuclei is about 0.35 mT. A possible microstructure of the detect leading to the Si-KU4 spectrum is discussed.
NASA Astrophysics Data System (ADS)
Olea-Azar, C.; Abarca, B.; Norambuena, E.; Opazo, L.; Jullian, C.; Valencia, S.; Ballesteros, R.; Chadlaoui, M.
2008-11-01
The electron spin resonance (ESR) spectra of free radicals obtained by electrolytic reduction of triazolopyridyl pyridyl ketones and dipyridyl ketones derivatives were measured in dimethylsulfoxide (DMSO). The hyperfine patterns indicate that the spin density delocalization is dependent of the rings presented in the molecule. The electrochemistry of these compounds was characterized using cyclic voltammetry, in DMSO as solvent. When one carbonyl is present in the molecule one step in the reduction mechanism was observed while two carbonyl are present two steps were detected. The first wave was assigned to the generation of the correspondent free radical species, and the second wave was assigned to the dianion derivatives. The phase-solubility measurements indicated an interaction between molecules selected and cyclodextrins in water. These inclusion complexes are 1:1 with βCD, and HP-βCD. The values of Ks showed a different kind of complexes depending on which rings are included. AM1 and DFT calculations were performed to obtain the optimized geometries, theoretical hyperfine constants, and spin distributions, respectively. The theoretical results are in complete agreement with the experimental ones.
Linear Hyperfine Tuning of Donor Spins in Silicon Using Hydrostatic Strain
NASA Astrophysics Data System (ADS)
Mansir, J.; Conti, P.; Zeng, Z.; Pla, J. J.; Bertet, P.; Swift, M. W.; Van de Walle, C. G.; Thewalt, M. L. W.; Sklenard, B.; Niquet, Y. M.; Morton, J. J. L.
2018-04-01
We experimentally study the coupling of group V donor spins in silicon to mechanical strain, and measure strain-induced frequency shifts that are linear in strain, in contrast to the quadratic dependence predicted by the valley repopulation model (VRM), and therefore orders of magnitude greater than that predicted by the VRM for small strains |ɛ |<10-5. Through both tight-binding and first principles calculations we find that these shifts arise from a linear tuning of the donor hyperfine interaction term by the hydrostatic component of strain and achieve semiquantitative agreement with the experimental values. Our results provide a framework for making quantitative predictions of donor spins in silicon nanostructures, such as those being used to develop silicon-based quantum processors and memories. The strong spin-strain coupling we measure (up to 150 GHz per strain, for Bi donors in Si) offers a method for donor spin tuning—shifting Bi donor electron spins by over a linewidth with a hydrostatic strain of order 10-6—as well as opportunities for coupling to mechanical resonators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprecher, Daniel; Merkt, Frédéric, E-mail: frederic.merkt@phys.chem.ethz.ch; Jungen, Christian
2014-03-14
Multichannel quantum-defect theory (MQDT) is used to calculate the electron binding energies of np Rydberg states of H{sub 2}, HD, and D{sub 2} around n = 60 at an accuracy of better than 0.5 MHz. The theory includes the effects of rovibronic channel interactions and the hyperfine structure, and has been extended to the calculation of the asymmetric hyperfine structure of Rydberg states of a heteronuclear diatomic molecule (HD). Starting values for the eigenquantum-defect parameters of MQDT were extracted from ab initio potential-energy functions for the low-lying p Rydberg states of molecular hydrogen and subsequently refined in a global weighted fitmore » to available experimental data on the singlet and triplet Rydberg states of H{sub 2} and D{sub 2}. The electron binding energies of high-np Rydberg states derived in this work represent important quantities for future determinations of the adiabatic ionization energies of H{sub 2}, HD, and D{sub 2} at sub-MHz accuracy.« less
The 68mCu/68Cu isotope as a new probe for hyperfine studies: The nuclear moments
NASA Astrophysics Data System (ADS)
Fenta, A. S.; Pallada, S.; Correia, J. G.; Stachura, M.; Johnston, K.; Gottberg, A.; Mokhles Gerami, A.; Röder, J.; Grawe, H.; Brown, B. A.; Köster, U.; Mendonça, T. M.; Ramos, J. P.; Marsh, B. A.; Day Goodacre, T.; Amaral, V. S.; Pereira, L. M. C.; Borge, M. J. G.; Haas, H.
2016-09-01
Time Differential Perturbed Angular Correlation of γ-rays (TDPAC) experiments were performed for the first time in the decay of 68m Cu (6-, 721 \\text{keV}, 3.75 \\text{min}) produced at the ISOLDE facility at CERN. Due to the short half-life of the source isotope, the measurements were carried out online. The intermediate state (2+, 84.1 \\text{keV}, 7.84 \\text{ns}) offers the unique opportunity to study the electromagnetic fields acting at a copper probe in condensed matter via hyperfine interactions. The present work allowed determination of the nuclear moments for this state. The electric quadrupole moment |Q(2+,84.1 \\text{keV})|=0.110(3) \\text{b} was obtained from an experiment performed in Cu2O and the magnetic dipole moment |μ|=2.857(6) μ_\\text{N} from measurements in cobalt and nickel foils. The results are discussed in the framework of shell model calculations and the additivity rule for nuclear moments with respect to the robustness of the N = 40 sub-shell.
A computer program for analyzing unresolved Mossbauer hyperfine spectra
NASA Technical Reports Server (NTRS)
Schiess, J. R.; Singh, J. J.
1978-01-01
The program for analyzing unresolved Mossbauer hyperfine spectra was written in FORTRAN 4 language for the Control Data CYBER 170 series digital computer system with network operating system 1.1. With the present dimensions, the program requires approximately 36,000 octal locations of core storage. A typical case involving two innermost coordination shells in which the amplitudes and the peak positions of all three components were estimated in 25 iterations requires 30 seconds on CYBER 173. The program was applied to determine the effects of various near neighbor impurity shells on hyperfine fields in dilute FeAl alloys.
Nuclear chemistry. Annual report, 1974
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conzett, H.E.; Edelstein, N.M.; Tsang, C.F.
1975-07-01
The 1974 Nuclear Chemistry Annual Report contains information on research in the following areas: nuclear science (nuclear spectroscopy and radioactivity, nuclear reactions and scattering, nuclear theory); chemical and atomic physics (heavy ion-induced atomic reactions, atomic and molecular spectroscopy, photoelectron spectroscopy and hyperfine interactions); physical, inorganic, and analytical chemistry (x-ray crystallography, physical and inorganic chemistry, geochemistry); and instrumentation. Thesis abstracts, 1974 publication titles, and an author index are also included. Papers having a significant amount of information are listed separately by title. (RWR)
Storage rings for spin-polarized hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, D.; Lovelace, R.V.E.; Lee, D.
1989-11-01
A strong-focusing storage ring is proposed for the long-term magnetic confinement of a collisional gas of neutral spin-polarized hydrogen atoms in the Za{l arrow} and Zb{l arrow} hyperfine states. The trap uses the interaction of the magnetic moments of the gas atoms with a static magnetic field. Laser cooling and evaporative cooling can be utilized to enhance the confinement and to offset the influence of viscous heating. An important application of the trap is to the attainment of Bose--Einstein condensation.
Rotational spectra of the X 2Sigma(+) states of CaH and CaD
NASA Technical Reports Server (NTRS)
Frum, C. I.; Oh, J. J.; Cohen, E. A.; Pickett, H. M.
1993-01-01
The rotational spectra of the 2Sigma(2+) ground states of calcium monohydride and monodeuteride have been recorded in absorption between 250 and 700 GHz. The gas phase free radicals have been produced in a ceramic furnace by the reaction of elemental calcium with molecular hydrogen or deuterium in the presence of an electrical discharge. The molecular constants including the rotational constant, centrifugal distortion constants, spin-rotation constants, and magnetic hyperfine interaction constants have been extracted from the spectra.
Nuclear forward scattering of synchrotron radiation by 99Ru
Bessas, D.; Merkel, D. G.; Chumakov, A. I.; ...
2014-10-03
In this study, we measured nuclear forward scattering spectra utilizing the 99Ru transition, 89.571(3) keV, with a notably mixed E2/M1 multipolarity. The extension of the standard evaluation routines to include mixed multipolarity allows us to extract electric and magnetic hyperfine interactions from 99Ru-containing compounds. This paves the way for several other high-energy Mössbauer transitions, E~90 keV. Lastly, the high energy of such transitions allows for operando nuclear forward scattering studies in real devices.
Strong Photoassociation in Ultracold Fermions
NASA Astrophysics Data System (ADS)
Jing, Li; Jamison, Alan; Rvachov, Timur; Ebadi, Sepher; Son, Hyungmok; Jiang, Yijun; Zwierlein, Martin; Ketterle, Wolfgang
2016-05-01
Despite many studies there are still open questions about strong photoassociation in ultracold gases. Photoassociation occurs only at short range and thus can be used as a tool to probe and control the two-body correlation function in an interacting many-body system and to engineer Hamiltonians using dissipation. We propose the possibility to slow down decoherence by photoassociation through the quantum Zeno effect. This can realized by shining strong photoassociation light on the superposition of the lowest two hyperfine states of Lithium 6. NSF, ARO-MURI, Samsung, NSERC.
Voigt, Jeff; Sasha John, M; Taylor, Andrew; Krucoff, Mitchell; Reynolds, Matthew R; Michael Gibson, C
2014-05-01
The annual cost of heart failure (HF) is estimated at $39.2 billion. This has been acknowledged to underestimate the true costs for care. The objective of this analysis is to more accurately assess these costs. Publicly available data sources were used. Cost calculations incorporated relevant factors such as Medicare hospital cost-to-charge ratios, reimbursement from both government and private insurance, and out-of-pocket expenditures. A recently published Atherosclerosis Risk in Communities (ARIC) HF scheme was used to adjust the HF classification scheme. Costs were calculated with HF as the primary diagnosis (HF in isolation, or HFI) or HF as one of the diagnoses/part of a disease milieu (HF syndrome, or HFS). Total direct costs for HF were calculated at $60.2 billion (HFI) and $115.4 billion (HFS). Indirect costs were $10.6 billion for both. Costs attributable to HF may represent a much larger burden to US health care than what is commonly referenced. These revised and increased costs have implications for policy makers.
Spin-orbit signatures in the dynamics of singlet-triplet qubits in double quantum dots
NASA Astrophysics Data System (ADS)
Rolon, Juan E.; Cota, Ernesto; Ulloa, Sergio E.
2017-05-01
We characterize numerically and analytically the signatures of the spin-orbit interaction in a two-electron GaAs double quantum dot in the presence of an external magnetic field. In particular, we obtain the return probability of the singlet state by simulating Landau-Zener voltage detuning sweeps which traverse the singlet-triplet (S -T+ ) resonance. Our results indicate that non-spin-conserving interdot tunneling processes arising from the spin-orbit interaction have well defined signatures. These allow direct access to the spin-orbit interaction scales and are characterized by a frequency shift and Fourier amplitude modulation of the Rabi flopping dynamics of the singlet-triplet qubits S -T0 and S -T+ . By applying the Bloch-Feshbach projection formalism, we demonstrate analytically that the aforementioned effects originate from the interplay between spin-orbit interaction and processes driven by the hyperfine interaction between the electron spins and those of the GaAs nuclei.
Spin manipulation and spin-lattice interaction in magnetic colloidal quantum dots
NASA Astrophysics Data System (ADS)
Moro, Fabrizio; Turyanska, Lyudmila; Granwehr, Josef; Patanè, Amalia
2014-11-01
We report on the spin-lattice interaction and coherent manipulation of electron spins in Mn-doped colloidal PbS quantum dots (QDs) by electron spin resonance. We show that the phase memory time,TM , is limited by Mn-Mn dipolar interactions, hyperfine interactions of the protons (1H) on the QD capping ligands with Mn ions in their proximity (<1 nm), and surface phonons originating from thermal fluctuations of the capping ligands. In the low Mn concentration limit and at low temperature, we achieve a long phase memory time constant TM˜0.9 μ s , thus enabling the observation of Rabi oscillations. Our findings suggest routes to the rational design of magnetic colloidal QDs with phase memory times exceeding the current limits of relevance for the implementation of QDs as qubits in quantum information processing.
NASA Astrophysics Data System (ADS)
Felder, Raymond; Touahri, D.; Acef, Ouali; Hilico, L.; Zondy, Jean-Jacques; Clairon, Andre; de Beauvoir, Beatrice; Biraben, Francois; Julien, Lucile; Nez, Francois; Millerioux, Yves P.
1995-04-01
The absolute frequency measurement of each hyperfine component of the 5S3/2 and 5S5/2 levels in rubidium was done at ENS more than one year ago using Ti-Sa lasers. We built two devices based on diode lasers to study some metrological properties. We measure the frequency differences between hyperfine components of the 5S5/2 level and we calculate the corresponding hyperfine constants. We also measure the frequency interval between the 5S3/2 and 5S5/2 levels using a Schottky diode. The measured stability in terms of Allan variance is 3*10-13t-1/2 up to 2000 s. The light shift is investigated and the difference between our two systems is 1.7 kHz. The repeatability of one system is better than 10-12 and will allow the absolute frequency measurement at this level via the LPTF frequency synthesis chain.
Hyperfine Structure Constants of Energetically High-lying Levels of Odd Parity of Atomic Vanadium
NASA Astrophysics Data System (ADS)
Güzelçimen, F.; Yapıcı, B.; Demir, G.; Er, A.; Öztürk, I. K.; Başar, Gö.; Kröger, S.; Tamanis, M.; Ferber, R.; Docenko, D.; Başar, Gü.
2014-09-01
High-resolution Fourier transform spectra of a vanadium-argon plasma have been recorded in the wavelength range of 365-670 nm (15,000-27,400 cm-1). Optical bandpass filters were used in the experimental setup to enhance the sensitivity of the Fourier transform spectrometer. In total, 138 atomic vanadium spectral lines showing resolved or partially resolved hyperfine structure have been analyzed to determine the magnetic dipole hyperfine structure constants A of the involved energy levels. One of the investigated lines has not been previously classified. As a result, the magnetic dipole hyperfine structure constants A for 90 energy levels are presented: 35 of them belong to the configuration 3d 34s4p and 55 to the configuration 3d 44p. Of these 90 constants, 67 have been determined for the first time, with 23 corresponding to the configuration 3d 34s4p and 44 to 3d 44p.
NASA Technical Reports Server (NTRS)
Singh, G.
1973-01-01
An experimental study for creating population differences in the ground states of alkali atoms (Cesium 133) is presented. Studies made on GaAs-junction lasers and the achievement of population inversions among the hyperfine levels in the ground state of Cs 133 by optically pumping it with radiation from a GaAs diode laser. Laser output was used to monitor the populations in the ground state hyperfine levels as well as to perform the hyperfine pumping. A GaAs laser operated at about 77 K was used to scan the 8521 A line of Cs 133. Experiments were performed both with neon-filled and with paraflint-coated cells containing the cesium vapor. Investigations were also made for the development of the triple resonance coherent pulse technique and for the detection of microwave induced hyperfine trasistions by destroying the phase relationships produced by a radio frequency pulse. A pulsed cesium resonance lamp developed, and the lamp showed clean and reproducible switching characteristics.
NASA Astrophysics Data System (ADS)
Elantkowska, Magdalena; Ruczkowski, Jarosław; Sikorski, Andrzej; Dembczyński, Jerzy
2017-11-01
A parametric analysis of the hyperfine structure (hfs) for the even parity configurations of atomic terbium (Tb I) is presented in this work. We introduce the complete set of 4fN-core states in our high-performance computing (HPC) calculations. For calculations of the huge hyperfine structure matrix, requiring approximately 5000 hours when run on a single CPU, we propose the methods utilizing a personal computer cluster or, alternatively a cluster of Microsoft Azure virtual machines (VM). These methods give a factor 12 performance boost, enabling the calculations to complete in an acceptable time.
Hyperfine structure investigations for the odd-parity configuration system in atomic holmium
NASA Astrophysics Data System (ADS)
Stefanska, D.; Furmann, B.
2018-02-01
In this work new experimental results of the hyperfine structure (hfs) in the holmium atom are reported, concerning the odd-parity level system. Investigations were performed by the method of laser induced fluorescence in a hollow cathode discharge lamp on 97 spectral lines in the visible part of the spectrum. Hyperfine structure constants: magnetic dipole - A and electric quadrupole - B for 40 levels were determined for the first time; for another 21 levels the hfs constants available in the literature were remeasured. Results for the A constants can be viewed as fully reliable; for B constants further possibilities of improving the accuracy are considered.
High-resolution molecular-beam spectroscopy of NaCN and Na 13CN
NASA Astrophysics Data System (ADS)
van Vaals, J. J.; Meerts, W. Leo; Dymanus, A.
The sodium cyanide molecule was studied by molecular-beam electric-resonance spectroscopy in the microwave region. We used the seeded-beam technique to produce a supersonic beam with strong translational, rotational and vibrational cooling. In the frequency range 9.5-40 GHz we observed and identified for NaCN 186 and for Na 13CN 107 hyperfine transitions in 20 and 16 rotational transitions, respectively, all in the ground vibrational state. The rotational, the five quartic and three sextic centrifugal distortion constants of NaCN are: A″ = 57921.954(7) MHz; B″ = 8369.312(2) MHz, C″ = 7272.712(2) MHz. All quadrupole and several spin-rotation coupling constants for the hyperfine interaction were evaluated. The quadrupole coupling constants (in MHz) for NaCN are: eQq12(Na) = -5.344(5), eQq12 = 2.397(7). eQq12(N) = 2.148(4), eQq12(N) = -4.142(5). From these constants and those of Na 13CN we have determined the principal components of the quadrupole coupling tensor for potassium and nitrogen. The structure of sodium cyanide evaluated from the rotational constants of NaCN and Na 13CN was found to be T shaped, similar to the structure of KCN but completely different from the linear isocyanide configuration of LiNC. The effective structural parameters for sodium cyanide in the ground vibrational state are: rCN = 1.170(4) Å, rNaC = 2.379(15) Å, rN12N = 2.233(15) Å, in gratifying agreement with ab initio calculations. Both the geometrical structure and the hyperfine coupling justify the conclusion that the CN group in gaseous sodium cyanide approximately can be considered as a free CN - ion.
Fine and hyperfine collisional excitation of C6H by He
NASA Astrophysics Data System (ADS)
Walker, Kyle M.; Lique, François; Dawes, Richard
2018-01-01
Hydrogenated carbon chains have been detected in interstellar and circumstellar media and accurate modelling of their abundances requires collisional excitation rate coefficients with the most abundant species. Among them, the C6H molecule is one of the most abundant towards many lines of sight. Hence, we determined fine and hyperfine-resolved rate coefficients for the excitation of C6H(X2Π) due to collisions with He. We present the first interaction potential energy surface for the C6H-He system, obtained from highly correlated ab initio calculations and characterized by a large anisotropy due to the length of the molecule. We performed dynamical calculations for transitions among the first fine structure levels (up to J = 30.5) of both spin-orbit manifolds of C6H using the close-coupling method, and rate coefficients are determined for temperatures ranging from 5 to 100 K. The largest rate coefficients for even ΔJ transitions conserve parity, while parity-breaking rate coefficients are favoured for odd ΔJ. Spin-orbit changing rate coefficients are several orders of magnitude lower than transitions within a single manifold. State-to-state hyperfine-resolved cross-sections for the first levels (up to J = 13.5) in the Ω = 3/2 spin-orbit manifold are deduced using recoupling techniques. Rate coefficients are obtained and the propensity rule ΔJ = ΔF is seen. These new data will help determine the abundance of C6H in astrophysical environments such as cold dense molecular clouds, star-forming regions and circumstellar envelopes, and will help in the interpretation of the puzzling C6H-/C6H abundance ratios deduced from observations.
NASA Astrophysics Data System (ADS)
Halfen, D. T.; Ziurys, L. M.
2006-11-01
The pure rotational spectrum of the molecular ion TiF + in its 3Φr ground state has been measured in the range 327-542 GHz using millimeter-wave direct absorption techniques combined with velocity modulation spectroscopy. TiF + was made in an AC discharge from a mixture of TiCl 4, F 2 in He, and argon. Ten transitions of this ion were recorded. In every transition, fluorine hyperfine interactions, as well as the fine structure splittings, were resolved. The fine structure pattern was found to be regular with almost equal spacing in frequency between the three spin components, in contrast to TiCl +, which is perturbed in the ground state. The data were fit with a case ( a) Hamiltonian and rotational, fine structure, and hyperfine constants were determined. The bond length established for TiF +, r0 = 1.7775 Å, was found to be shorter than that of TiF, r0 = 1.8342 Å—also established from mm-wave data. The hyperfine parameters determined are consistent with a δ1π1 electron configuration with the electrons primarily located on the titanium nucleus. The nuclear spin-orbit constant a indicates that the unpaired electrons are closer to the fluorine nucleus in TiF + relative to TiF, as expected with the decrease in bond length for the ion. The shorter bond distance is thought to arise from increased charge on the titanium nucleus as a result of a Ti 2+F - configuration. A similar decrease in bond length was found for TiCl + relative to TiCl.
NASA Astrophysics Data System (ADS)
Ysard, N.; Köhler, M.; Jones, A.; Miville-Deschênes, M.-A.; Abergel, A.; Fanciullo, L.
2015-05-01
Context. The Planck-HFI all-sky survey from 353 to 857 GHz combined with the IRAS data at 100 μm (3000 GHz, IRIS version of the data) show that the dust properties vary from line of sight to line of sight in the diffuse interstellar medium (ISM) at high Galactic latitude (1019 ≤ NH ≤ 2.5 × 1020 H/cm2, for a sky coverage of ~12%). Aims: These observations contradict the usual thinking of uniform dust properties, even in the most diffuse areas of the sky. Thus, our aim is to explain these variations with changes in the ISM properties and with evolution of the grain properties. Methods: Our starting point is the latest core-mantle dust model. This model consists of small aromatic-rich carbon grains, larger amorphous carbonaceous grains with an aliphatic-rich core and an aromatic-rich mantle, and amorphous silicates (mixture of olivine and pyroxene types) with Fe/FeS nano-inclusions covered by aromatic-rich carbon mantles. We explore whether variations in the radiation field or in the gas density distribution in the diffuse ISM could explain the observed variations. The dust properties are also varied in terms of their mantle thickness, metallic nano-inclusions, carbon abundance locked in the grains, and size distributions. Results: We show that variations in the radiation field intensity and gas density distribution cannot explain variations observed with Planck-HFI but that radiation fields harder than the standard ISRF may participate in creating part of the observed variations. We further show that variations in the mantle thickness on the grains coupled with changes in their size distributions can reproduce most of the observations. We concurrently put a limit on the mantle thickness of the silicates, which should not exceed ~ 10 to 15 nm, and find that aromatic-rich mantles are definitely needed for the carbonaceous grain population with a thickness of at least 5 to 7.5 nm. We also find that changes in the carbon cosmic abundance included in the grains could explain part of the variations in dust observations. Finally, we show that varying the composition of metallic nano-inclusions in the silicates cannot account for the variations, at the same time showing that the amount of FeS they contain cannot be > 50% by volume. Conclusions: With small variations in the dust properties, we are able to explain most of the variations in the dust emission observed by Planck-HFI in the diffuse ISM. We also find that the small realistic changes in the dust properties that we consider almost perfectly match the anti-correlation and scatter in the observed β - T relation.
Hyperfine field and magnetic structure in the B phase of CeCoIn5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Matthias J; Curro, Nicholas J; Young, Ben - Li
2009-01-01
We re-analyze Nuclear Magnetic Resonance (NMR) spectra observed at low temperatures and high magnetic fields in the field-induced B-phase of CeCoIn{sub 5}. The NMR spectra are consistent with incommensurate antiferromagnetic order of the Ce magnetic moments. However, we find that the spectra of the In(2) sites depend critically on the direction of the ordered moments, the ordering wavevector and the symmetry of the hyperfine coupling to the Ce spins. Assuming isotropic hyperfine coupling, the NMR spectra observed for H {parallel} [100] are consistent with magnetic order with wavevector Q = {pi}(1+{delta}/a, 1/a, 1/c) and Ce moments ordered antiferromagnetically along themore » [100] direction in real space. If the hyperfine coupling has dipolar symmetry, then the NMR spectra require Ce moments along the [001] direction. The dipolar scenario is also consistent with recent neutron scattering measurements that find an ordered moment of 0.15{micro}{sub B} along [001] and Q{sub n} = {pi}(1+{delta}/a, 1+{delta}c, 1/c) with incommensuration {delta} = 0.12 for field H {parallel} [1{bar 1}0]. Using these parameters, we find that the hyperfine field is consistent with both experiments. We speculate that the B phase of CeCoIn{sub 5} represents an intrinsic phase of modulated superconductivity and antiferromagnetism that can only emerge in a highly clean system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanza, Mathieu; Lique, François, E-mail: francois.lique@univ-lehavre.fr
The determination of hyperfine structure resolved excitation cross sections and rate coefficients due to H{sub 2} collisions is required to interpret astronomical spectra. In this paper, we present several theoretical approaches to compute these data. An almost exact recoupling approach and approximate sudden methods are presented. We apply these different approaches to the HCl–H{sub 2} collisional system in order to evaluate their respective accuracy. HCl–H{sub 2} hyperfine structure resolved cross sections and rate coefficients are then computed using recoupling and approximate sudden methods. As expected, the approximate sudden approaches are more accurate when the collision energy increases and the resultsmore » suggest that these approaches work better for para-H{sub 2} than for ortho-H{sub 2} colliding partner. For the first time, we present HCl–H{sub 2} hyperfine structure resolved rate coefficients, computed here for temperatures ranging from 5 to 300 K. The usual Δj{sub 1} = ΔF{sub 1} propensity rules are observed for the hyperfine transitions. The new rate coefficients will significantly help the interpretation of interstellar HCl emission lines observed with current and future telescopes. We expect that these new data will allow a better determination of the HCl abundance in the interstellar medium, that is crucial to understand the interstellar chlorine chemistry.« less
Recent trends in precision measurements of atomic and nuclear properties with lasers and ion traps
NASA Astrophysics Data System (ADS)
Block, Michael
2017-11-01
The X. international workshop on "Application of Lasers and Storage Devices in Atomic Nuclei Research" took place in Poznan in May 2016. It addressed the latest experimental and theoretical achievements in laser and ion trap-based investigations of radionuclides, highly charged ions and antiprotons. The precise determination of atomic and nuclear properties provides a stringent benchmark for theoretical models and eventually leads to a better understanding of the underlying fundamental interactions and symmetries. This article addresses some general trends in this field and highlights select recent achievements presented at the workshop. Many of these are covered in more detail within the individual contributions to this special issue of Hyperfine Interactions.
21 CFR 20.3 - Certification and authentication of Food and Drug Administration records.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Certification and authentication of Food and Drug... authentication of Food and Drug Administration records. (a) Upon request, the Food and Drug Administration will... or for authentication of records shall be sent in writing to the Freedom of Information Staff (HFI-35...
New Nuclear Magnetic Moment of ^{209}Bi: Resolving the Bismuth Hyperfine Puzzle.
Skripnikov, Leonid V; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F; Scheibe, Benjamin; Shabaev, Vladimir M; Vogel, Michael; Volotka, Andrey V
2018-03-02
A recent measurement of the hyperfine splitting in the ground state of Li-like ^{208}Bi^{80+} has established a "hyperfine puzzle"-the experimental result exhibits a 7σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017)NCAOBW2041-172310.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017)NPAHAX1745-247310.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μ_{I}) of ^{209}Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μ_{I}(^{209}Bi) and combine it with nuclear magnetic resonance measurements of Bi(NO_{3})_{3} in nitric acid solutions and of the hexafluoridobismuthate(V) BiF_{6}^{-} ion in acetonitrile. The result clearly reveals that μ_{I}(^{209}Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.
New Nuclear Magnetic Moment of 209Bi: Resolving the Bismuth Hyperfine Puzzle
NASA Astrophysics Data System (ADS)
Skripnikov, Leonid V.; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F.; Scheibe, Benjamin; Shabaev, Vladimir M.; Vogel, Michael; Volotka, Andrey V.
2018-03-01
A recent measurement of the hyperfine splitting in the ground state of Li-like 80+208Bi has established a "hyperfine puzzle"—the experimental result exhibits a 7 σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017), 10.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017), 10.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μI) of 209Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μI(209ipts>) and combine it with nuclear magnetic resonance measurements of Bi (NO3 )3 in nitric acid solutions and of the hexafluoridobismuthate(V) BiF6- ion in acetonitrile. The result clearly reveals that μI(209Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.
Hyperfine excitation of OH+ by H
NASA Astrophysics Data System (ADS)
Lique, François; Bulut, Niyazi; Roncero, Octavio
2016-10-01
The OH+ ions are widespread in the interstellar medium and play an important role in the interstellar chemistry as they act as precursors to the H2O molecule. Accurate determination of their abundance rely on their collisional rate coefficients with atomic hydrogen and electrons. In this paper, we derive OH+-H fine and hyperfine-resolved rate coefficients by extrapolating recent quantum wave packet calculations for the OH+ + H collisions, including inelastic and exchange processes. The extrapolation method used is based on the infinite order sudden approach. State-to-state rate coefficients between the first 22 fine levels and 43 hyperfine levels of OH+ were obtained for temperatures ranging from 10 to 1000 K. Fine structure-resolved rate coefficients present a strong propensity rule in favour of Δj = ΔN transitions. The Δj = ΔF propensity rule is observed for the hyperfine transitions. The new rate coefficients will help significantly in the interpretation of OH+ spectra from photon-dominated region (PDR), and enable the OH+ molecule to become a powerful astrophysical tool for studying the oxygen chemistry.
Magnetic properties of Ni-Cu-Mn ferrite system
NASA Astrophysics Data System (ADS)
Roumaih, Kh.
2011-10-01
Three groups according to the substitution of Cu 2+ and Mn 3+ in the system Ni 1-xCu xFe 2-yMn yO 4 ferrite with x = 0.2, 0.5, 0.8, and y varying from 0.0 to 1.0 in steps of 0.25 are prepared by solid state reactions. The phases of the Ni 1-xCu xFe 2-yMn yO 4 ferrite have been confirmed by X-ray diffraction (XRD). The results demonstrate that all of the synthesized materials are spinel with cubic unit cell and the lattice constant increased with increases of the Cu and Mn ions for all samples. The hyperfine interaction was studied by the Mössbauer spectroscopy at room temperature for all samples. The spectra of all samples show two well-resolved Zeeman patterns corresponding to A- and B-sites. The hyperfine field decreases with increasing Cu and Mn ions concentration. The Curie temperature, TC, was calculated from the temperature dependence of magnetization curves. The hysteresis curve recorded at room temperature shows that the samples are ferrimagnetic materials. The cation distribution was estimated from the results of Mössbauer spectroscopy and magnetic measurements.
NASA Astrophysics Data System (ADS)
Sheoran, A.; Agarwal, A.; Sanghi, S.; Seth, V. P.; Gupta, S. K.; Arora, M.
2011-12-01
Glasses with composition xWO3·(30-x)M2O·70B2O3 (M=Li, Na; 0≤x≤15) doped with 2 mol% V2O5 have been prepared using the melt-quench technique. The electron paramagnetic resonance spectra have been recorded in X-band (ν≈9.14 GHz) at room temperature (RT). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) only due to V4+ ions, which exist as VO2+ ions in octahedral coordination with a tetragonal compression in the present glass system. The tetragonality increases with WO3:M2O ratio and also there is an expansion of 3dxy orbit of unpaired electron in the vanadium ion. The study of IR transmission spectra over a range 400-4000 cm-1 depicts the presence of WO6 group. The DC conductivity (σ) has been measured in the temperature range 423-623 K and is found to be predominantly ionic.
Polarization effects in the interaction between multi-level atoms and two optical fields
NASA Astrophysics Data System (ADS)
Colín-Rodríguez, R.; Flores-Mijangos, J.; Hernández-Gómez, S.; Jáuregui, R.; López-Hernández, O.; Mojica-Casique, C.; Ponciano-Ojeda, F.; Ramírez-Martínez, F.; Sahagún, D.; Volke-Sepúlveda, K.; Jiménez-Mier, J.
2015-06-01
Polarized velocity selective spectra for rubidium atoms in a room temperature cell are presented. The experiments were performed in the lambda configuration (D2 manifold) and in the 5s\\to 5{{p}3/2}\\to 5{{d}j} ladder configuration. For the lambda configuration the effect of the probe beam intensity in the absorption and polarization spectra are compared with results of a rate equation approximation. Good overall agreement between experiment and theory is found. The results indicate different saturation rates for each of the atomic transitions. Distinctive polarization signals with hyperfine-resolved components are found for the ladder 5{{d}3/2} and 5{{d}5/2} upper states. Fluorescence detection of the 420 nm that results from the second step in the cascade decay 5{{d}j}\\to 6{{p}{{j\\prime }}}\\to 5s was used in the ladder experiments. This fluorescence was also used for the detection of the 5{{p}3/2}\\to 6{{p}3/2} electric dipole forbidden transition in atomic rubidium that occurs at 911 nm. The 6{{p}3/2} hyperfine structure was resolved in this continuous wave, non-dipole excitation.
Lamb shifts and hyperfine structure in 6Li+ and 7Li+: Theory and experiment
NASA Astrophysics Data System (ADS)
Riis, E.; Sinclair, A. G.; Poulsen, O.; Drake, G. W. F.; Rowley, W. R. C.; Levick, A. P.
1994-01-01
High-precision laser-resonance measurements accurate to +/-0.5 MHz or better are reported for transitions among the 1s2s 3S1-1s2p 3PJ hyperfine manifolds for each of J=0, 1, and 2 in both 6Li+ and 7Li+. A detailed analysis of hyperfine structure is performed for both the S and P states, using newly calculated values for the magnetic dipole and electric quadrupole coupling constants, and the hyperfine shifts subtracted from the measurements. The resulting transition frequencies are then analyzed on three different levels. First, the isotope shifts in the fine-structure splittings are calculated from the relativistic reduced mass and recoil terms in the Breit interaction, and compared with experiment at the +/-0.5-MHz level of accuracy. This comparison is particularly significant because J-independent theoretical uncertainties reduce through cancellation to the +/-0.01-MHz level. Second, the isotope shifts in the full transition frequencies are used to deduce the difference in rms nuclear radii. The result is Rrms(6Li)-Rrms(7Li)=0.15+/-0.01 fm, in agreement with nuclear scattering data, but with substantially improved accuracy. Third, high-precision calculations of the low-order non-QED contributions to the transition frequencies are subtracted from the measurements to obtain the residual QED shifts. The isotope-averaged and spin-averaged effective shift for 7Li+ is 37 429.40+/-0.39 MHz, with an additional uncertainty of +/-1.5 MHz due to finite nuclear size corrections. The accuracy of 11 parts per million is the best two-electron Lamb shift measurement in the literature, and is comparable to the accuracies achieved in hydrogen. Theoretical contributions to the two-electron Lamb shift are discussed, including terms of order (αZ)4 recently obtained by Chen, Cheng, and Johnson [Phys. Rev. A 47, 3692 (1993)], and the results used to extract a QED shift for the 2 3S1 state. The result of 30 254+/-12 MHz is shown to be in good accord with theory (30 250+/-30 MHz) when two-electron corrections to the Bethe logarithm are taken into account by a 1/Z expansion method.
Research on Spectroscopy, Opacity, and Atmospheres
NASA Astrophysics Data System (ADS)
Kurucz, Robert L.; Bell, Barbara
1996-01-01
This line list is a replacement for the Kurucz-Peytremann line list. We have combined all the atomic files from CDROM 18 into 534910 line files GFALL.DAT and GFELEM.DAT. These are the data we actually use to compute spectra. They are not up to date. References are given in GFALL.REF or GFELEN.REF. There are no references after 1988. For light elements there are no references after 1979. We have the literature into the 1990's but have not had manpower or funding to update everything. Our current plan is to make a new semiempirical calculation for each species and at that time to include all the data from the literature. One new development is the inclusion of hyperfine splitting for the iron group elements using hyperfine data from the literature through 1993. The data are very incomplete. We have not yet included data for isotopic splitting. We supply a program for splitting the line list for a species. It reads the hyperfine and isotopic splitting parameters for levels and computes the oplittings whenever those levels appear. Lines with no splitting data are copied untouched. Because Sc, Mn, and Co are monoisotopic, only the hyperfine splittings are needed. Since 51V is much more abundant than S0V, the isotope shifts are small for 51V, and we approximate V with 51V. GFALLKYP.DAT has 754946 lines including hyperfine Sc(I), V(I), Mn(I), and Co(I). A bibliography for last year (1994-1995) is also attached.
The Production and Study of Cold Antiprotons and Antihydrogen
2015-08-03
Grafström, R. Hagel- berg, G. Kessler, and et al ., Phys. Lett. B 237, 303 (1990). [8] C. Zimmermann and T. Hänsch, Hyperfine Interact. 76, 47 (1993). [9...C. Parthey, A. Matveev, J. Alnis, B. Bernhardt, A. Beyer, R. Holzwarth, A. Maistrou, R. Pohl, K. Pre- dehl, T. Udem, T. Wilken, N. Kolachevsky, et al ...D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould , and H. J. Metcalf, Phys. Rev. Lett. 61, 169 ( 1988 ). [15] J. Walz and T. Hänsch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gómez, A. M., E-mail: amgomezl-1@uqvirtual.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co
The experimental study of nuclear magnetic moments, using the Transient Field technique, makes use of spin-orbit hyperfine interactions to generate strong magnetic fields, above the kilo-Tesla regime, capable to create a precession of the nuclear spin. A theoretical description of such magnetic fields is still under theoretical research, and the use of parametrizations is still a common way to address the lack of theoretical information. In this contribution, a review of the main parametrizations utilized in the measurements of Nuclear Magnetic Moments will be presented, the challenges to create a theoretical description from first principles will be discussed.
Moessbauer studies in Zn(2+)0.3 Mn(2+)0.7 Mn(3+) (2-y) Fe(3+) (2-y) O4
NASA Technical Reports Server (NTRS)
Gupta, R. G.; Mendiratta, R. G.; Escue, W. T.
1975-01-01
The Mossbauer effect has proven to be effective in the study of nuclear hyperfine interactions. Ferrite systems having the formula (Zn(2+)0.3)(Mn(2+)0.7)(Mn(3+)y)(Fe(3+)2-y)(O4) were prepared and studied. These systems can be interpreted as mangacese-doped zinc and a part of iron ions. A systematic study of these systems is presented to promote an understanding of their microstructure for which various theories were proposed.
Nuclear forward scattering for high energy mössbauer transitions.
Sergueev, I; Chumakov, A I; Beaume-Dang, T H Deschaux; Rüffer, R; Strohm, C; van Bürck, U
2007-08-31
We have studied nuclear forward scattering of synchrotron radiation for the 67.41 keV resonance of 61Ni using a silicon crystal monochromator with low-index reflections and a multielement detector. This approach can be extended to other high-energy Mössbauer transitions and does not pose any restrictions on the sample environment. Under conditions of large sample thickness and short nuclear lifetime, typical for work with high-energy nuclear resonances, the nuclear decay follows a universal dependence where both thickness effects and hyperfine interactions are taken into account by time scaling.
Hyperfine-Structure-Induced Depolarization of Impulsively Aligned I2 Molecules
NASA Astrophysics Data System (ADS)
Thomas, Esben F.; Søndergaard, Anders A.; Shepperson, Benjamin; Henriksen, Niels E.; Stapelfeldt, Henrik
2018-04-01
A moderately intense 450 fs laser pulse is used to create rotational wave packets in gas phase I2 molecules. The ensuing time-dependent alignment, measured by Coulomb explosion imaging with a delayed probe pulse, exhibits the characteristic revival structures expected for rotational wave packets but also a complex nonperiodic substructure and decreasing mean alignment not observed before. A quantum mechanical model attributes the phenomena to coupling between the rotational angular momenta and the nuclear spins through the electric quadrupole interaction. The calculated alignment trace agrees very well with the experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesseux, G. G., E-mail: lesseux@ifi.unicamp.br; Urbano, R. R.; Iwamoto, W.
2014-05-07
The Electron Spin Resonance (ESR) of diluted Er{sup 3+} magnetic ions in Au nanoparticles (NPs) is reported. The NPs were synthesized by reducing chloro triphenyl-phosphine gold(I) and erbium(III) trifluoroacetate. The Er{sup 3+} g-value along with the observed hyperfine splitting indicate that the Er{sup 3+} impurities are in a local cubic symmetry. Furthermore, the Er{sup 3+} ESR spectra show that the exchange interaction between the 4f and the conduction electrons (ce) is absent or negligible in Au{sub 1–x}Er{sub x} NPs, in contrast to the ESR results in bulk Au{sub 1–x}Er{sub x}. Therefore, the nature of this interaction needs to be reexaminedmore » at the nano scale range.« less
Yeon, Su-Jung; Hong, Go-Eun; Kim, Chang-Kyu; Park, Woo Joon; Kim, Soo-Ki; Lee, Chi-Ho
2015-01-01
This experiment investigated whether yogurt containing fermented pepper juice (FPJY) affects cholesterol level in high fat and high cholesterol diet (HFCD) fed rat. Twenty five Sprague-Dawley male rats of 7 wk were divided into 5 groups, and fed following diets for 9 wk; CON (control diet), HFCD (HFCD), PY (HFCD supplemented with 2% of plain yogurt), LFY (HFCD supplemented with 2% of FPJY), and HFY (HFCD supplemented with 5% of FPJY). In the LFY group, hepatic total lipid level decreased significantly compared to the HFCD group (p<0.05). Serum HDL cholesterol level tended to increase and hepatic total cholesterol level decreased and were comparable to the CON group (p>0.05). In HFY group, body weight and hepatic total lipid level significantly decreased over the HFCD group (p<0.05). Serum and hepatic total cholesterol level, kidney, and body fat weights decreased, and were compared to the CON group (p>0.05). Liver weight decreased as FPJY content was increased. Results suggested FPJY would inhibit organ hypertrophy and accumulation of body fat, hepatic lipid, and cholesterol in HFCD fed rat.
Materials for optical memory: Resolved hyperfine structure in KY3F10:Ho3+
NASA Astrophysics Data System (ADS)
Popova, M. N.
2013-08-01
Basic principles of creating a quantum optical memory (QOM) and requirements for relevant materials, in particular, for crystals doped with rare-earth ions, are briefly reviewed. A combined approach to studying the hyperfine structure, which is essential for QOM applications, is presented on the example of KY3F10:Ho3+.
NASA Astrophysics Data System (ADS)
de Oliveira, A. L.; de Oliveira, N. A.; Troper, A.
2008-04-01
In this work, we theoretically study the local magnetic moment formation and the systematics of the magnetic hyperfine fields at a Mösbauer Sn119 impurity diluted at the R site (R=Gd,Tb,Dy,Ho,Er) of the cubic Laves phase intermetallic compounds RCo2. One considers that the magnetic hyperfine fields have two contributions, (i) the contribution from R ions, calculated via an extended Daniel-Friedel [J. Phys. Chem. Solids 24, 1601 (1963)] model, and (ii) the contribution from the induced magnetic moments arising from the Co neighboring sites. Our calculated self-consistent total magnetic hyperfine fields are in a good agreement with recent experimental data.
Determination of hyperfine-induced transition rates from observations of a planetary nebula.
Brage, Tomas; Judge, Philip G; Proffitt, Charles R
2002-12-31
Observations of the planetary nebula NGC3918 made with the STIS instrument on the Hubble Space Telescope reveal the first unambiguous detection of a hyperfine-induced transition 2s2p 3P(o)(0)-->2s2 1S0 in the berylliumlike emission line spectrum of N IV at 1487.89 A. A nebular model allows us to confirm a transition rate of 4x10(-4) sec(-1)+/-33% for this line. The measurement represents the first independent confirmation of the transition rate of hyperfine-induced lines in low ionization stages, and it provides support for the techniques used to compute these transitions for the determination of very low densities and isotope ratios.
Method and apparatus for quantum information processing using entangled neutral-atom qubits
Jau, Yuan Yu; Biedermann, Grant; Deutsch, Ivan
2018-04-03
A method for preparing an entangled quantum state of an atomic ensemble is provided. The method includes loading each atom of the atomic ensemble into a respective optical trap; placing each atom of the atomic ensemble into a same first atomic quantum state by impingement of pump radiation; approaching the atoms of the atomic ensemble to within a dipole-dipole interaction length of each other; Rydberg-dressing the atomic ensemble; during the Rydberg-dressing operation, exciting the atomic ensemble with a Raman pulse tuned to stimulate a ground-state hyperfine transition from the first atomic quantum state to a second atomic quantum state; and separating the atoms of the atomic ensemble by more than a dipole-dipole interaction length.
Three-dimensional vortex-bright solitons in a spin-orbit-coupled spin-1 condensate
NASA Astrophysics Data System (ADS)
Gautam, Sandeep; Adhikari, S. K.
2018-01-01
We demonstrate stable and metastable vortex-bright solitons in a three-dimensional spin-orbit-coupled three-component hyperfine spin-1 Bose-Einstein condensate (BEC) using numerical solution and variational approximation of a mean-field model. The spin-orbit coupling provides attraction to form vortex-bright solitons in both attractive and repulsive spinor BECs. The ground state of these vortex-bright solitons is axially symmetric for weak polar interaction. For a sufficiently strong ferromagnetic interaction, we observe the emergence of a fully asymmetric vortex-bright soliton as the ground state. We also numerically investigate moving solitons. The present mean-field model is not Galilean invariant, and we use a Galilean-transformed mean-field model for generating the moving solitons.
Spin and charge transport through 1D Moire Crystals
NASA Astrophysics Data System (ADS)
Barraud, Clement; Bonnet, Romeo; Martin, Pascal; Della Rocca, Maria Luisa; Lafarge, Philippe; Laboratoire Matériaux Et Phénomènes Quantiques Team; Laboratoire Itodys Team
Multiwall carbon nanotubes are good candidates for propagating spin information over large distances due to the large mobility of the carriers and to the weak spin-orbit coupling and hyperfine interactions. In this talk, I will present an experimental study concerning charge and spin transport through large diameter multiwall carbon nanotubes presenting intershell interactions leading to superlattice effects (1D Moire). After a description of 1D Moire crystals and to the implication of such superlattices in quantum transport, I will show that spin transport seems to be very efficient close to the new van Hove singularities. Clear magnetoresistance signals of the order of 40 % are reported at low temperatures. We acknowledge financial supports from the Labex SEAM and DIM NANO-K.
Constraints on Exotic Dipole-Dipole Couplings between Electrons at the Micrometer Scale
NASA Astrophysics Data System (ADS)
Kotler, Shlomi; Ozeri, Roee; Kimball, Derek F. Jackson
2015-08-01
New constraints on exotic dipole-dipole interactions between electrons at the micrometer scale are established, based on a recent measurement of the magnetic interaction between two trapped 88Sr+ ions. For light bosons (mass≤0.1 eV ) we obtain a 90% confidence interval for an axial-vector-mediated interaction strength of |gAegAe/4 π ℏc | ≤1.2 ×10-17 . Assuming C P T invariance, this constraint is compared to that on anomalous electron-positron interactions, derived from positronium hyperfine spectroscopy. We find that the electron-electron constraint is 6 orders of magnitude more stringent than the electron-positron counterpart. Bounds on pseudoscalar-mediated interaction as well as on torsion gravity are also derived and compared with previous work performed at different length scales. Our constraints benefit from the high controllability of the experimental system which contained only two trapped particles. It therefore suggests a useful new platform for exotic particle searches, complementing other experimental efforts.
Constraints on Exotic Dipole-Dipole Couplings between Electrons at the Micrometer Scale.
Kotler, Shlomi; Ozeri, Roee; Kimball, Derek F Jackson
2015-08-21
New constraints on exotic dipole-dipole interactions between electrons at the micrometer scale are established, based on a recent measurement of the magnetic interaction between two trapped 88Sr(+) ions. For light bosons (mass≤0.1 eV) we obtain a 90% confidence interval for an axial-vector-mediated interaction strength of |g(A)(e)g(A)(e)/4πℏc|≤1.2×10(-17). Assuming CPT invariance, this constraint is compared to that on anomalous electron-positron interactions, derived from positronium hyperfine spectroscopy. We find that the electron-electron constraint is 6 orders of magnitude more stringent than the electron-positron counterpart. Bounds on pseudoscalar-mediated interaction as well as on torsion gravity are also derived and compared with previous work performed at different length scales. Our constraints benefit from the high controllability of the experimental system which contained only two trapped particles. It therefore suggests a useful new platform for exotic particle searches, complementing other experimental efforts.
Electron-Nuclear Quantum Information Processing
2008-11-13
quantum information processing that exploits the anisotropic hyperfine coupling. This scheme enables universal control over a 1-electron, N-nuclear spin...exploits the anisotropic hyperfine coupling. This scheme enables universal control over a 1-electron, N-nuclear spin system, addressing only a...sample of irradiated malonic acid. (a) Papers published in peer-reviewed journals (N/A for none) Universal control of nuclear spins via anisotropic
An EPR investigation of the dynamic Jahn-Teller effect in SrCl2:y(2 plus) and SrCl2:Sc(2 plus)
NASA Technical Reports Server (NTRS)
Herrington, J. R.; Estle, T. L.; Boatner, L. A.
1972-01-01
EPR spectra have been observed for SrCl2:Y(2+) and SrCl2:Sc(2+) at liquid helium temperatures. At 1.2 K the spectra were dominated by anisotropic hyperfine patterns whose lineshapes and angular dependences were explained using second order solutions of the effective Hamiltonian for an isolated 2Eg state split by large random internal strains. Pronounced asymmetries in some of the strin produced lineshapes for Srcl2:Sc(2+) are shown to result from second order terms in the solution of the effective Hamiltonian. Coexisting with the anisotropic hyperfine patterns are weak nearly isotropic hyperfine patterns with typical lineshapes. Variations in the apparent intensity of lines in these weak hyperfine patterns as functions of the applied magnetic field direction and temperature imply that these lines result from averaging by vibronic relaxation of a portion of the anisotropic pattern. The effective Hamiltonian parameters for SrCl2:La(2+), SrCl2:y(2+), and SrCl2:SC(2+) are analyzed in terms of crystal field theory modified to include a dynamic Jahn-Teller effect.
NASA Technical Reports Server (NTRS)
Dobson, Chris C.; Sung, C. C.
1998-01-01
Optical pumping of the ground states of sodium can radically alter the shape of the laser induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections for (Delta)F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), (Delta)F cross sections. The hyperfine cross sections measured using this method, which is thought to be novel, are compared with cross sections for transitions involving polarized magnetic substates, m(sub F), measured previously using polarization sensitive absorption. Also, fine structure transition ((Delta)J) cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.
NASA Technical Reports Server (NTRS)
Dobson, Chris C.; Sung, C. C.
1999-01-01
Optical pumping of the ground states of sodium can radically alter the shape of the laser-induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections lor DELTA.F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), DELTA.F cross sections. The hyperfine cross sections measured using this method, which to our knowledge is novel, are compared with cross sections for transitions involving polarized magnetic substates m(sub F) measured previously using polarization sensitive absorption. Also, fine-structure transition cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.
Hyperfine field and electronic structure of magnetite below the Verwey transition
NASA Astrophysics Data System (ADS)
Řezníček, R.; Chlan, V.; Štěpánková, H.; Novák, P.
2015-03-01
Magnetite represents a prototype compound with a mixed valence of iron cations. Its structure and electron ordering below the Verwey transition have been studied for decades. A recently published precise crystallographic structure [Senn et al., Nature (London) 481, 173 (2012), 10.1038/nature10704] accompanied by a suggestion of a "trimeron" model has given a new impulse to magnetite research. Here we investigate hyperfine field anisotropy in the C c phase of magnetite by quantitative reanalysis of published measurements of the dependences of the 57Fe nuclear magnetic resonance frequencies on the external magnetic field direction. Further, ab initio density-functional-theory-based calculations of hyperfine field depending on the magnetization direction using the recently reported crystal structure are carried out, and analogous hyperfine anisotropy data linked to particular crystallographic sites are determined. These two sets of data are compared, and mutually matching groups of the iron B sites in the 8:5:3 ratio are found. Moreover, information on electronic structure is obtained from the ab initio calculations. Our results are compared with the trimeron model and with an alternative analysis [Patterson, Phys. Rev. B 90, 075134 (2014), 10.1103/PhysRevB.90.075134] as well.
Sensitive sub-Doppler nonlinear spectroscopy for hyperfine-structure analysis using simple atomizers
NASA Astrophysics Data System (ADS)
Mickadeit, Fritz K.; Kemp, Helen; Schafer, Julia; Tong, William M.
1998-05-01
Laser wave-mixing spectroscopy is presented as a sub-Doppler method that offers not only high spectral resolution, but also excellent detection sensitivity. It offers spectral resolution suitable for hyperfine structure analysis and isotope ratio measurements. In a non-planar backward- scattering four-wave mixing optical configuration, two of the three input beams counter propagate and the Doppler broadening is minimized, and hence, spectral resolution is enhanced. Since the signal is a coherent beam, optical collection is efficient and signal detection is convenient. This simple multi-photon nonlinear laser method offers un usually sensitive detection limits that are suitable for trace-concentration isotope analysis using a few different types of simple analytical atomizers. Reliable measurement of hyperfine structures allows effective determination of isotope ratios for chemical analysis.
2012-06-22
mechanical and structural failure and decomposition in ultra-fast time regimes. Our research teams are exploring novel ways to convert mechanical ...energy to thermal energy by examining initiation mechanisms , multi-phase combustion, detonation and the mechanisms that lead to the release of energy...understanding of the mechanisms of structural stability by doping Fe in LiCoPO4 and effectiveness of HFiP in stopping further oxidation of electrolytes are
Research@ARL: Energy & Energetics
2012-06-01
enabling us to probe chemical, mechanical and structural failure and decomposition in ultra-fast time regimes. Our research teams are exploring novel ways...to convert mechanical energy to thermal energy by examining initiation mechanisms , multi-phase combustion, detonation and the mechanisms that lead...storage life. The understanding of the mechanisms of structural stability by doping Fe in LiCoPO4 and effectiveness of HFiP in stopping further
Nuclear Hyperfine Structure in the Donor – Acceptor Complexes (CH3)3N-BF3 and (CH)33N-B(CH3)3
The donor-acceptor complexes (CH3)3N-BF3 and (CH3)3N-B(CH3)3 have been reinvestigated at high resolution by rotational spectroscopy in a supersonic jet. Nuclear hyperfine structure resulting from both nitrogen and boron has been resolved and quadrupole coupling constants have bee...
Angular-momentum couplings in ultra-long-range giant dipole molecules
NASA Astrophysics Data System (ADS)
Stielow, Thomas; Scheel, Stefan; Kurz, Markus
2018-02-01
In this article we extend the theory of ultra-long-range giant dipole molecules, formed by an atom in a giant dipole state and a ground-state alkali-metal atom, by angular-momentum couplings known from recent works on Rydberg molecules. In addition to s -wave scattering, the next higher order of p -wave scattering in the Fermi pseudopotential describing the binding mechanism is considered. Furthermore, the singlet and triplet channels of the scattering interaction as well as angular-momentum couplings such as hyperfine interaction and Zeeman interactions are included. Within the framework of Born-Oppenheimer theory, potential energy surfaces are calculated in both first-order perturbation theory and exact diagonalization. Besides the known pure triplet states, mixed-spin character states are obtained, opening up a whole new landscape of molecular potentials. We determine exact binding energies and wave functions of the nuclear rotational and vibrational motion numerically from the various potential energy surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey-Collard, Patrick; Jacobson, N. Tobias; Rudolph, Martin
Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show thatmore » the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.« less
Theory of Nuclear Quadrupole Interactions in the Chemical Ferromagnet p-Cl-Ph-CH-N=TEMPO
NASA Astrophysics Data System (ADS)
Briere, Tina M.; Jeong, Junho; Sahoo, N.; Das, T. P.; Ohira, S.; Nishiyama, K.; Nagamine, K.
2002-03-01
The study(Junho Jeong et al., Physica B 289-290, 132 (2000).) of the magnetic hyperfine properties of chemical ferromagnets provides valuable information about the electronic spin distributions in the individual molecules. Insights into the electronic charge distributions and their anisotropy can be obtained from electric quadrupole interactions for the different nuclei in these systems. For this purpose we have studied the nuclear quadrupole interactions(T. P. Das and E. L. Hahn "Nuclear Quadrupole Resonance Spectroscopy", Academic Press Inc., New York, 1958.) for the 14^N nuclei in the NO group and the bridge nitrogen, the 17^O nucleus in the NO group and the 35^Cl nucleus in the p-Cl-Ph-CH-N=TEMPO system both by itself and in the presence of trapped μ and Mu. Comparison will be made between our results and available experimental quadrupole coupling constant (e^2qQ) and asymmetry parameter (η) data.
Jayatilaka, Nayana; Nelson, William H.
2008-01-01
In sodium guanosine dihydrate single crystals, the guanine moiety is deprotonated at N1 due to growth from high-pH (>12) solutions. EPR and ENDOR study of crystals x-irradiated at 10 K detected evidence for three radical forms. Radical R1,characterized by two proton and two nitrogen hyperfine interactions, was identified as the product of net hydrogenation at N7 of the N1-deprotonated guanine unit. R1 exhibited an unusually distorted structure leading to net positive isotropic components of the hydrogen couplings. Radical R2, characterized by one proton and one nitrogen hyperfine coupling was identified as the primary electron loss product. This product is equivalent to that of deprotonation at N1 by the guanine cation and represents the first ENDOR characterization of that product. Radical R3, characterized by a single hydrogen hyperfine coupling, was identified as the product of net dehydrogenation at C1 of the ribose moiety. The identification of radicals R1-R3 was supported by DFT calculations on several possible structures using the B3LYP/6-311G(2df,p)//6-31G(d,p) approach. Radical R4, detected after warming the crystals to room temperature, was identified as the well-known product of net hydrogenation of C8 of the (N1-deprotonated) guanine component. Radical R1, evidently formed by protonation of the primary electron addition product, was present as roughly 60% of the total radicals detected at 10 K. Radical R2 was present as roughly 27% of the total yield, and the concentration of R3 contributed the remaining 13%. R3 is evidently the product of oneelectron oxidation followed by deprotonation; thus, the balance of oxidation and reduction products is approximately equal within experimental uncertainty. PMID:17249824
Anomalous behavior of the magnetic hyperfine field at 140Ce impurities at La sites in LaMnSi2
NASA Astrophysics Data System (ADS)
Domienikan, C.; Bosch-Santos, B.; Cabrera-Pasca, G. A.; Saxena, R. N.; Carbonari, A. W.
2018-05-01
Magnetic hyperfine field has been measured in the orthorhombic intermetallic compound LaMnSi2 with perturbed angular correlation (PAC) spectroscopy using radioactive 140La(140Ce) nuclear probes. Magnetization measurements were also carried out in this compound with MPSM-SQUID magnetometer. Samples of LaMnSi2 compound were prepared by arc melting the component metals with high purity under argon atmosphere followed by annealing at 1000°C for 60 h under helium atmosphere and quenching in water. X-ray analysis confirmed the samples to be in a single phase with correct crystal structure expected for LaMnSi2 compound. The radioactive 140La (T1/2 = 40 h) nuclei were produced by direct irradiation of the sample with neutrons in the IEA-R1 nuclear research reactor at IPEN with a flux of ˜ 1013 n cm-2s-1 for about 3 - 4 min. The PAC measurements were carried out with a six BaF2 detector spectrometer at several temperatures between 10 K and 400 K. Temperature dependence of the hyperfine field, Bhf was found to be anomalous. A modified two-state model explained this anomalous behavior where the effective magnetic hyperfine field at 140Ce is believed to have two contributions, one from the unstable localized spins at Ce impurities and another from the magnetic Mn atoms of the host. The competition of these two contributions explains the anomalous behavior observed for the temperature dependence of the magnetic hyperfine field at 140Ce. The ferromagnetic transition temperature (TC) of LaMnSi2 was determined to be 400(1) K confirming the magnetic measurements.
Ogura, Hiroshi; Evans, John P; de Montellano, Paul R Ortiz; La Mar, Gerd N
2008-01-08
The triple mutant of the solubilized, 265-residue construct of human heme oxygenase, K18E/E29K/R183E-hHO, has been shown to redirect the exclusive alpha-regioselectivity of wild-type hHO to primarily beta,delta-selectivity in the cleavage of heme (Wang, J., Evans, J. P., Ogura, H., La Mar, G. N., and Ortiz de Montellano, P. R. (2006) Biochemistry 45, 61-73). The 1H NMR hyperfine shift pattern for the substrate and axial His CbetaH's and the substrate-protein contacts of the cyanide-inhibited protohemin and 2,4-dimethyldeuterohemin complexes of the triple mutant have been analyzed in detail and compared to data for the WT complex. It is shown that protein contacts for the major solution isomers for both substrates in the mutant dictate approximately 90 degrees in-plane clockwise rotation relative to that in the WT. The conventional interpretation of the pattern of substrate methyl hyperfine shifts, however, indicates substrate rotations of only approximately 50 degrees . This paradox is resolved by demonstrating that the axial His25 imidazole ring also rotates counterclockwise with respect to the protein matrix in the mutant relative to that in the WT. The axial His25 CbetaH hyperfine shifts are shown to serve as independent probes of the imidazole plane orientation relative to the protein matrix. The analysis indicates that the pattern of heme methyl hyperfine shifts cannot be used alone to determine the in-plane orientation of the substrate as it relates to the stereospecificity of heme cleavage, without explicit consideration of the orientation of the axial His imidazole plane relative to the protein matrix.
Dynamic quadrupole interactions in semiconductors
NASA Astrophysics Data System (ADS)
Dang, Thien Thanh; Schell, Juliana; Lupascu, Doru C.; Vianden, Reiner
2018-04-01
The time differential perturbed angular correlation, TDPAC, technique has been used for several decades to study electric quadrupole hyperfine interactions in semiconductors such as dynamic quadrupole interactions (DQI) resulting from after-effects of the nuclear decay as well as static quadrupole interactions originating from static defects around the probe nuclei such as interstitial ions, stresses in the crystalline structure, and impurities. Nowadays, the quality of the available semiconductor materials is much better, allowing us to study purely dynamic interactions. We present TDPAC measurements on pure Si, Ge, GaAs, and InP as a function of temperature between 12 K and 110 K. The probe 111In (111Cd) was used. Implantation damage was recovered by thermal annealing. Si experienced the strongest DQI with lifetime, τg, increasing with rising temperature, followed by Ge. In contrast, InP and GaAs, which have larger band gaps and less electron concentration than Si and Ge in the same temperature range, presented no DQI. The results obtained also allow us to conclude that indirect band gap semiconductors showed the dynamic interaction, whereas the direct band gap semiconductors, restricted to GaAs and InP, did not.
Measure synchronization in a spin-orbit-coupled bosonic Josephson junction
NASA Astrophysics Data System (ADS)
Wang, Wen-Yuan; Liu, Jie; Fu, Li-Bin
2015-11-01
We present measure synchronization (MS) in a bosonic Josephson junction with spin-orbit coupling. The two atomic hyperfine states are coupled by a Raman dressing scheme, and they are regarded as two orientations of a pseudo-spin-1 /2 system. A feature specific to a spin-orbit-coupled (SOC) bosonic Josephson junction is that the transition from non-MS to MS dynamics can be modulated by Raman laser intensity, even in the absence of interspin atomic interaction. A phase diagram of non-MS and MS dynamics as functions of Raman laser intensity and Josephson tunneling amplitude is presented. Taking into account interspin atomic interactions, the system exhibits MS breaking dynamics resulting from the competition between intraspin and interspin atomic interactions. When interspin atomic interactions dominate in the competition, the system always exhibits MS dynamics. For interspin interaction weaker than intraspin interaction, a window for non-MS dynamics is present. Since SOC Bose-Einstein condensates provide a powerful platform for studies on physical problems in various fields, the study of MS dynamics is valuable in researching the collective coherent dynamical behavior in a spin-orbit-coupled bosonic Josephson junction.
Observed Ωc0 resonances as pentaquark states
NASA Astrophysics Data System (ADS)
An, C. S.; Chen, H.
2017-08-01
In the present work, we investigate the spectrum of several low-lying s s c q q ¯ pentaquark configurations employing the constituent quark model, within which the hyperfine interaction between quarks is taken to be mediated by Goldstone boson exchange. Our numerical results show that four s s c q q ¯ configurations with JP=1 /2- or JP=3 /2- lie at energies very close to the recently observed five Ωc0 states by the LHCb Collaboration; this indicates that the s s c q q ¯ pentaquark configurations may form sizable components of the observed Ωc0 resonances.
EPR studies of Er 3+, Nd 3+ and Ce 3+ in YAlO 3 single crystals
NASA Astrophysics Data System (ADS)
Asatryan, H. R.; Rosa, J.; Mareš, J. A.
1997-10-01
EPR spectra of Er 3+, Nd 3+ and Ce 3+ ions in YAlO 3 lattice have been studied. These spectra can be described by spin Hamiltonian with an effective spin S = {1}/{2} and rhombohedric symmetry. The g factors as well as the constants of hyperfine interaction of Nd 3+ and Er 3+ were obtained. It was stated that all the resonances which are upon the interest of this article, belong to the RE 3+ ions replacing the Y 3+ cations in the YAlO 3 lattice.
The129I hyperfine interaction in fatty acids studied by Mössbauer spectroscopy
NASA Astrophysics Data System (ADS)
Burda, K.; Strzałka, K.; Stanek, J.
1993-12-01
Oleic acid substituted by iodine and saponified by Ca2+ cations has been studied by129I Mössbauer spectroscopy. The quadrupole coupling constants and isomer shifts, determined from the γ-resonance spectra recorded at 4.2 K, have been described by 5p and 5s orbital populations of iodine. It was also found that saponification of the fatty acid has no significant influence on the measured iodine bonds. However, the increased order of fatty acids in soap form is reflected by narrowing of the resonant linewidth due to the reduction of the electric field gradient distribution.
How water interacts with halogenated anesthetics: the rotational spectrum of isoflurane-water.
Gou, Qian; Feng, Gang; Evangelisti, Luca; Vallejo-López, Montserrat; Spada, Lorenzo; Lesarri, Alberto; Cocinero, Emilio J; Caminati, Walther
2014-02-10
The rotational spectra of several isotopologues of the 1:1 complex between the inhaled anesthetic isoflurane and water have been recorded and analyzed by using Fourier transform microwave spectroscopy. The rotational spectrum showed a single rotamer, corresponding to the configuration in which the most stable conformer of isolated isoflurane is linked to the water molecule through an almost linear C-H⋅⋅⋅O weak hydrogen bond. All transitions display a hyperfine structure due to the (35)Cl (or (37)Cl) nuclear quadrupole effects. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Isotropic Inelastic Collisions in a Multiterm Atom with Hyperfine Structure
NASA Astrophysics Data System (ADS)
Belluzzi, Luca; Landi Degl'Innocenti, Egidio; Trujillo Bueno, Javier
2015-10-01
A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron-atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D1 and D2 lines is presented.
Usselman, Robert J.; Hill, Iain; Singel, David J.; Martino, Carlos F.
2014-01-01
The effects of weak magnetic fields on the biological production of reactive oxygen species (ROS) from intracellular superoxide (O2 •−) and extracellular hydrogen peroxide (H2O2) were investigated in vitro with rat pulmonary arterial smooth muscle cells (rPASMC). A decrease in O2 •− and an increase in H2O2 concentrations were observed in the presence of a 7 MHz radio frequency (RF) at 10 μTRMS and static 45 μT magnetic fields. We propose that O2 •− and H2O2 production in some metabolic processes occur through singlet-triplet modulation of semiquinone flavin (FADH•) enzymes and O2 •− spin-correlated radical pairs. Spin-radical pair products are modulated by the 7 MHz RF magnetic fields that presumably decouple flavin hyperfine interactions during spin coherence. RF flavin hyperfine decoupling results in an increase of H2O2 singlet state products, which creates cellular oxidative stress and acts as a secondary messenger that affects cellular proliferation. This study demonstrates the interplay between O2 •− and H2O2 production when influenced by RF magnetic fields and underscores the subtle effects of low-frequency magnetic fields on oxidative metabolism, ROS signaling, and cellular growth. PMID:24681944
Lifetime and relative g factor measurements in 104 , 106 , 108Pd isotopes
NASA Astrophysics Data System (ADS)
Ilie, G.; Werner, V.; Radeck, D.; Ahn, T.; Beausang, C. W.; Bettermann, L.; Casperson, R. J.; Chevrier, R.; Cooper, N.; Bonniwell, T. C.; Heinz, A.; Holland, E.; McCarthy, D.; Pauerstein, B.; Smith, M. K.; Terry, J. R.; Williams, E.
2011-10-01
The purpose of this research was the proof-of-principle for the new g-plunger technique to measure the deorientation and the lifetime of a state after an inverse kinematics reaction. The deorientation effect is due to the hyperfine interaction between the nuclear spin and the surrounding electron configurations. The attenuation of γ-ray angular distributions has been measured for the 21+ and 41+ states of 104Pd, 106Pd and 108Pd. The beams with energies of 324 MeV, 330 MeV and 336 MeV, respectively, were Coulomb excited into their 21+ state on a 24Mg target. Forward scattered Mg was detected after passing a Cu foil, which served as a stopper for the beam. We measured the time-dependence of the attenuation as a function of distance, in parallel to measuring the lifetimes of the 21+ and 41+ states. This attenuation is used to measure the g factor of the decaying states relative to each other. In this work, hyperfine parameters have been calibrated for the Pd isotopes. The results of this work and a discussion of the parameterization used to fit the data in this work will be presented. Research was supported by the U.S. Department of Energy under Grant No. DE-FG02-91ER-40609.
Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat
NASA Technical Reports Server (NTRS)
Borsa, F.; Rigamonti, A.
1990-01-01
La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for O = to or less than 0.3 and in the temperature range 1.6 + 450 K are analyzed in terms of Cu(++) magnetic correlations and dynamics. It is described how the magnetic correlations that would result from Cu-Cu exchange are reduced by mobile charge defects related to x-doping. A comprehensive picture is given which explains satisfactorily the x and T dependence of the correlation time, of the correlation length and of the Neel temperature T(sub n)(x) as well as being consistent with known electrical resistivity and magnetic susceptibility measurements. It is discussed how, in the superconducting samples, the mobile defects also cause the decrease, for T yields T(sub c)(+) of the hyperfine Cu electron-nucleus effective interaction, leading to the coexistence of quasi-localized, reduced magnetic moments from 3d Cu electrons and mobile oxygen p-hole carriers. The temperature dependence of the effective hyperfine field around the superconducting transition yields an activation energy which could be related to the pairing energy. New specific heat measurements are also presented and discussed in terms of the above picture.
Detection of the MW Transition Between Ortho and Para States
NASA Astrophysics Data System (ADS)
Kanamori, Hideto; Dehghani, Zeinab Tafti; Mizoguchi, Asao; Endo, Yasuki
2017-06-01
Thorough the detailed analysis of the hyperfine resolved rotational transitions, we have been pointed out that there exists not a little interaction between ortho and para states in the molecular Hamiltonian of S_2Cl_2. Using the ortho-para mixed molecular wavefunctions derived from the Hamiltonian, we calculated the transition moment and frequency of the ortho-para forbidden transitions in the cm- and mm-wave region, and picked up some promising candidate transitions for the spectroscopic detection. In the experiment, the S_2Cl_2 vapor with Ar buffer gas in a supersonic jet condition was used with FTMW spectrometer at National Chiao Tung University. As a result, seven hyperfine resolved rotational transitions in the cm-wave region were detected as the ortho-para transition at the predicted frequency within the experimental error range. The observed intensity was 10^{-3} smaller than that of an allowed transition, which is also consistent with the prediction. This is the first time the electric dipole transition between ortho and para states has been detected in a free isolated molecule. A. Mizoguchi, S. Ota, H. Kanamori, Y. Sumiyoshi, and Y. Endo, J. Mol. Spectrosc, 250, 86 (2008) Z. T. Dehghani, S. Ota, A. Mizoguchi and H. Kanamori, J. Phys. Chem. A, 117(39), 10041, (2013)
Hyperfine structure and isotope shift analysis of singly ionized titanium
NASA Astrophysics Data System (ADS)
Bouazza, Safa
2013-04-01
The even-parity low configuration system of Ti II has been considered on the basis of the experimental data found in the literature, and its fine structure has been reanalyzed by simultaneous parameterization of one- and two-body interactions for the model space (3d + 4s)3. Furthermore, the main one-electron hyperfine structure parameters for these configurations have been evaluated. For instance, for 3d24s1, a_{3{\\rm{d}}}^{01} = - {\\rm{63}}.{\\rm{2}}\\left( {{\\rm{3}}.{\\rm{1}}} \\right)\\,{\\rm{MHz}} and a_{4{\\rm{s}}}^{10} = - {\\rm{984}}.{\\rm{1}}\\left( {{\\rm{7}}.{\\rm{1}}} \\right)\\,{\\rm{MHz}} . Field shifts (FS) and specific mass shifts (SMS) of the main Ti II configurations are deduced by means of ab initio estimates combined with a small quantity of experimental isotope shift data available in the literature: FS(3d3) = -63.3 MHz, FS(3d24p1) = -49.7 MHz, FS(3d14s2) = 98.2 MHz, FS(4s24P1) = 163.4 MHz and SMS(3d3) = 1453.3 MHz, SMS(3d14s2) = -2179.7 MHz, …, referred to 3d24s1 for the pair Ti46-Ti48.
Sub-Doppler infrared spectroscopy of propargyl radical (H{sub 2}CCCH) in a slit supersonic expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chih-Hsuan; Nesbitt, David J.
The acetylenic CH stretch mode (ν{sub 1}) of propargyl (H{sub 2}CCCH) radical has been studied at sub-Doppler resolution (∼60 MHz) via infrared laser absorption spectroscopy in a supersonic slit-jet discharge expansion, where low rotational temperatures (T{sub rot} = 13.5(4) K) and lack of spectral congestion permit improved determination of band origin and rotational constants for the excited state. For the lowest J states primarily populated in the slit jet cooled expansion, fine structure due to the unpaired electron spin is resolved completely, which permits accurate analysis of electron spin-rotation interactions in the vibrationally excited states (ε{sub aa} = − 518.1(1.8),more » ε{sub bb} = − 13.0(3), ε{sub cc} = − 1.8(3) MHz). In addition, hyperfine broadening in substantial excess of the sub-Doppler experimental linewidths is observed due to nuclear spin–electron spin contributions at the methylenic (—CH{sub 2}) and acetylenic (—CH) positions, which permits detailed modeling of the fine/hyperfine structure line contours. The results are consistent with a delocalized radical spin density extending over both methylenic and acetylenic C atoms, in excellent agreement with simple resonance structures as well as ab initio theoretical calculations.« less
Agarwal, A; Sheoran, A; Sanghi, S; Bhatnagar, V; Gupta, S K; Arora, M
2010-03-01
Glasses with compositions xNb(2)O(5).(30-x)M(2)O.69B(2)O(3) (where M=Li, Na, K; x=0, 4, 8 mol%) doped with 1 mol% V(2)O(5) have been prepared using normal melt quench technique. The IR transmission spectra of the glasses have been studied over the range 400-4000 cm(-1). The changes caused by the addition of Nb(2)O(5) on the structure of these glasses have been reported. The electron paramagnetic resonance spectra of VO(2+) ions in these glasses have been recorded in X-band (9.14 GHz) at room temperature (300 K). The spin Hamiltonian parameters, dipolar hyperfine coupling parameter and Fermi contact interaction parameter have been calculated. It is observed that the resultant resonance spectra contain hyperfine structures (hfs) due to V(4+) ions which exist as VO(2+) ions in octahedral coordination with a tetragonal compression in the present glasses. The tetragonality of V(4+)O(6) complex decreases with increasing concentration of Nb(2)O(5). The 3d(xy) orbit contracts with increase in Nb(2)O(5):M(2)O ratio. Values of the theoretical optical basicity, Lambda(th), have also been reported. Copyright 2009 Elsevier B.V. All rights reserved.
Hyperfine excitation of CH in collisions with atomic and molecular hydrogen
NASA Astrophysics Data System (ADS)
Dagdigian, Paul J.
2018-04-01
We investigate here the excitation of methylidene (CH) induced by collisions with atomic and molecular hydrogen (H and H2). The hyperfine-resolved rate coefficients were obtained from close coupling nuclear-spin-free scattering calculations. The calculations are based upon recent, high-accuracy calculations of the CH(X2Π)-H(2S) and CH(X2Π)-H2 potential energy surfaces. Cross-sections and rate coefficients for collisions with atomic H, para-H2, and ortho-H2 were computed for all transitions between the 32 hyperfine levels for CH(X2Π) involving the n ≤ 4 rotational levels for temperatures between 10 and 300 K. These rate coefficients should significantly aid in the interpretation of astronomical observations of CH spectra. As a first application, the excitation of CH is simulated for conditions in typical molecular clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herojit Singh, L.; Govindaraj, R., E-mail: govind@igcar.gov.in; Rajagopalan, S.
Mössbauer spectroscopic studies have been carried out at different temperatures across ferromagnetic to paramagnetic transition in Ni{sub 50}Fe{sub 35}Co{sub 15} and the evolution of hyperfine parameters such as centre shift and magnetic hyperfine fields with temperature has been studied. Mössbauer spectrum obtained at 300 K in Ni{sub 50}Fe{sub 35}Co{sub 15} exhibiting fcc crystal structure is a six line pattern with the mean value of the hyperfine field close to 33 Tesla. Ferromagnetic to paramagnetic transition has been observed to occur in this system around 895 K matching with that of magnetization results. Debye temperature of this nickel rich alloy ismore » deduced to be around 470 K matching with that of Ni. Effect of prolonged annealing at 750 K on the magnetic property is also investigated with respect to the thermal stability of the alloy.« less
Spin-orbit-coupled Bose-Einstein condensates of rotating polar molecules
NASA Astrophysics Data System (ADS)
Deng, Y.; You, L.; Yi, S.
2018-05-01
An experimental proposal for realizing spin-orbit (SO) coupling of pseudospin 1 in the ground manifold 1Σ (υ =0 ) of (bosonic) bialkali polar molecules is presented. The three spin components are composed of the ground rotational state and two substates from the first excited rotational level. Using hyperfine resolved Raman processes through two select excited states resonantly coupled by a microwave, an effective coupling between the spin tensor and linear momentum is realized. The properties of Bose-Einstein condensates for such SO-coupled molecules exhibiting dipolar interactions are further explored. In addition to the SO-coupling-induced stripe structures, the singly and doubly quantized vortex phases are found to appear, implicating exciting opportunities for exploring novel quantum physics using SO-coupled rotating polar molecules with dipolar interactions.
Leading logarithmic corrections to the muonium hyperfine splitting and to the hydrogen Lamb shift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karshenboim, S.G.
1994-12-31
Main leading corrections with recoil logarithm log(M/m) and low-energy logarithm log(Za) to the Muonium hyperfine splitting axe discussed. Logarithmic corrections have magnitudes of 0.1 {divided_by} 0.3 kHz. Non-leading higher order corrections axe expected to be not larger than 0.1 kHz. Leading logarithmic correction to the Hydrogen Lamb shift is also obtained.
Angular Distribution of Hyperfine Magnetic Field in Fe3O4 and Fe66Ni34 from Mössbauer Polarimetry
NASA Astrophysics Data System (ADS)
Szymański, K.; Satuła, D.; Dobrzyński, L.
2004-12-01
Experimental determination of some angular averages of hyperfine field is demonstrated. The averages relates to magnetic structure. Exemplary results of the measurements for Fe3O4 and Fe66Ni34 show that it is possible to obtain valuable information about the field magnitudes and orientations even when distributions of fields are present in the system under study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puzzarini, Cristina, E-mail: cristina.puzzarini@unibo.it; Cazzoli, Gabriele; Harding, Michael E.
2015-03-28
Guided by theoretical predictions, the hyperfine structures of the rotational spectra of mono- and bideuterated-water containing {sup 17}O have been experimentally investigated. To reach sub-Doppler resolution, required to resolve the hyperfine structure due to deuterium quadrupole coupling as well as to spin-rotation (SR) and dipolar spin-spin couplings, the Lamb-dip technique has been employed. The experimental investigation and in particular, the spectral analysis have been supported by high-level quantum-chemical computations employing coupled-cluster techniques and, for the first time, a complete experimental determination of the hyperfine parameters involved was possible. The experimentally determined {sup 17}O spin-rotation constants of D{sub 2}{sup 17}O andmore » HD{sup 17}O were used to derive the paramagnetic part of the corresponding nuclear magnetic shielding constants. Together with the computed diamagnetic contributions as well as the vibrational and temperature corrections, the latter constants have been employed to confirm the oxygen nuclear magnetic shielding scale, recently established on the basis of spin-rotation data for H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)].« less
NASA Astrophysics Data System (ADS)
Feldker, T.; Fürst, H.; Ewald, N. V.; Joger, J.; Gerritsma, R.
2018-03-01
We report on spectroscopic results on the 1/2 2S → 3/2 2P transition in single trapped Yb+ ions. We measure the isotope shifts for all stable Yb+ isotopes except +173Yb, as well as the hyperfine splitting of the 3/2 2P state in +171Yb. Our results are in agreement with previous measurements but are a factor of 5-9 more precise. For the hyperfine constant A (3/2 2P)=875.4 (10 )MHz our results also agree with previous measurements but deviate significantly from theoretical predictions. We present experimental results on the branching ratios for the decay of the 3/2 2P state. We find branching fractions for the decay to the 3/2 2D state and 5/2 2D state of 0.17(1)% and 1.08(5)%, respectively, in rough agreement with theoretical predictions. Furthermore, we measured the isotope shifts of the 7/2 2F →1D[5/2 ] 5 /2 transition and determine the hyperfine structure constant for the 1D[5/2 ] 5 /2 state in +171Yb to be A (1D[5/2 ] 5 /2)=-107 (6 ) MHz .
Jayne Fingerman Johnson; David N. Bengston; David P. Fan; Kristen C. Nelson
2006-01-01
The Healthy Forests Initiative (HFI) and Healthy Forests Restoration Act (HFRA) represent major policy and legislative responses to the fuels management problem in the United States. This study examined the nature and evolution of the public discussion and debate about these policy responses. Computer content analysis was used to analyze favorable and unfavorable...
util_2comp: Planck-based two-component dust model utilities
NASA Astrophysics Data System (ADS)
Meisner, Aaron
2014-11-01
The util_2comp software utilities generate predictions of far-infrared Galactic dust emission and reddening based on a two-component dust emission model fit to Planck HFI, DIRBE and IRAS data from 100 GHz to 3000 GHz. These predictions and the associated dust temperature map have angular resolution of 6.1 arcminutes and are available over the entire sky. Implementations in IDL and Python are included.
Saaka, Mahama; Oladele, Jeremiah; Larbi, Asamoah; Hoeschle-Zeledon, Irmgard
2017-11-01
There is limited information on the magnitude and determinants of household food insecurity (HFI) and how it relates to the nutritional status of pregnant women in Northern Ghana. The magnitude, determinants of HFI, and how it relates to the nutritional status of pregnant women were evaluated in the Africa RISING West Africa project intervention communities in Northern Ghana. The prevalence of moderate and severe household hunger was 25.9% (95% CI: 19.0, 34.3) and 6.8% (95% CI: 4.2, 10.9) respectively. The independent predictors of maternal thinness were region of residence, gestational age and maternal age. Compared to women in the first trimester, women in the third trimester were 2.2 times more likely of being underweight adjusted odds ratio (AOR = 2.19, CI: 1.02, 4.70). Women who were under 20 years of age were 11.9 times more likely of being thin compared to women aged more than 35 years (AOR = 11.97, CI: 2.55, 5. 67). Food insecurity was highly prevalent but it was not associated with maternal thinness of pregnant women. The risk of maternal thinness increased as the gestational age increased and this has a great potential of adversely influencing pregnancy outcomes and overall quality of life.
Subpicosecond X rotations of atomic clock states
NASA Astrophysics Data System (ADS)
Song, Yunheung; Lee, Han-gyeol; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook
2018-05-01
We demonstrate subpicosecond-timescale population transfer between the pair of hyperfine ground states of atomic rubidium using a single laser-pulse. Our scheme utilizes the geometric and dynamic phases induced during Rabi oscillation through the fine-structure excited state to construct an X rotation gate for the hyperfine-state qubit system. The experiment performed with a femtosecond laser and cold rubidium atoms, in a magnetooptical trap, shows over 98% maximal population transfer between the clock states.