Science.gov

Sample records for hypericum natural products

  1. New Synthetic Methods for Hypericum Natural Products

    SciTech Connect

    Jeon, Insik

    2006-01-01

    Organic chemistry has served as a solid foundation for interdisciplinary research areas, such as molecular biology and medicinal chemistry. An understanding of the biological activities and structural elucidations of natural products can lead to the development of clinically valuable therapeutic options. The advancements of modern synthetic methodologies allow for more elaborate and concise natural product syntheses. The theme of this study centers on the synthesis of natural products with particularly challenging structures and interesting biological activities. The synthetic expertise developed here will be applicable to analog syntheses and to other research problems.

  2. Hypericum perforatum: nature's mood stabilizer.

    PubMed

    Kumar, V; Singh, P N; Muruganandam, A V; Bhattacharya, S K

    2000-11-01

    Hypericum perforatum (HP), better known as St. John's Wort, has been used clinically for centuries. Modern usage is still quite diverse and includes kidney and lung ailments, insomnia and depression. Standardised extracts of HP are widely used in the treatment of psychovegetative disorders and especially for mild forms of depression. Several bioactive constituents of this plant may play important role in its well-known antidepressant activity, which are discussed in the present article. Furthermore, emphasis is also given on its botany, chemistry, pharmacology and clinical efficacy.

  3. Hyperforin production in Hypericum perforatum root cultures.

    PubMed

    Gaid, Mariam; Haas, Paul; Beuerle, Till; Scholl, Stephan; Beerhues, Ludger

    2016-03-20

    Extracts of the medicinal plant Hypericum perforatum are used to treat depression and skin irritation. A major API is hyperforin, characterized by sensitivity to light, oxygen and temperature. Total synthesis of hyperforin is challenging and its content in field-grown plants is variable. We have established in vitro cultures of auxin-induced roots, which are capable of producing hyperforin, as indicated by HPLC-DAD and ESI-MS analyses. The extraction yield and the productivity upon use of petroleum ether after solvent screening were ∼5 mg/g DW and ∼50 mg/L culture after six weeks of cultivation. The root cultures also contained secohyperforin and lupulones, which were not yet detected in intact plants. In contrast, they lacked another class of typical H. perforatum constituents, hypericins, as indicated by the analysis of methanolic extracts. Hyperforins and lupulones were stabilized and enriched as dicyclohexylammonium salts. Upon up-scaling of biomass production and downstream processing, H. perforatum root cultures may provide an alternative platform for the preparation of medicinal extracts and the isolation of APIs. PMID:26876610

  4. Inhibition of Bacterial Growth and Biofilm Production by Constituents from Hypericum spp

    PubMed Central

    Sarkisian, S.A.; Janssen, M.J.; Matta, H.; Henry, G.E.; LaPlante, K.L.; Rowley, D.C.

    2011-01-01

    Biofilm embedded bacterial pathogens such as Staphylococcus spp., Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii are difficult to eradicate and are major sources of bacterial infections. New drugs are needed to combat these pathogens. Hypericum is a plant genus that contains species known to have antimicrobial properties. However, the specific constituents responsible for the antimicrobial properties are not entirely known, nor have most compounds been tested as inhibitors of biofilm development. The investigation presented here tested seven secondary metabolites isolated from the species Hypericum densiflorum, Hypericumellipticum, Hypericum prolificum and Hypericum punctatum as inhibitors of bacterial growth and biofilm production. Assays were conducted against Staphylococcus epidermidis, Staphylococcusaureus, clinical methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Escherichia coli, and Acinetobacter baumannii. Five of the seven compounds demonstrated growth inhibition against the Gram-positive bacteria with minimum inhibitory concentrations (MIC) ranging from 1.95 μg/mL to 7.81 μg/mL. Four of the secondary metabolites inhibited biofilm production by certain Gram-positive strains at sub-MIC concentrations. PMID:22170780

  5. Essential Oil and Volatile Components of the Genus Hypericum (Hypericaceae)

    PubMed Central

    Crockett, Sara L.

    2010-01-01

    The flowering plant genus Hypericum (Hypericaceae) contains the well-known medicinally valuable species Hypericum perforatum (common St. John’s wort). Species of Hypericum contain many bioactive constituents, including proanthocyanins, flavonoids, biflavonoids, xanthones, phenylpropanes and naphthodianthrones that are characterized by their relative hydrophilicity, as well as acylphloroglucinols and essential oil components that are more hydrophobic in nature. A concise review of the scientific literature pertaining to constituents of Hypericum essential oils and volatile fractions is presented. PMID:20923012

  6. Effects of Polysaccharide Elicitors on Secondary Metabolite Production and Antioxidant Response in Hypericum perforatum L. Shoot Cultures

    PubMed Central

    Gadzovska Simic, Sonja; Maury, Stéphane; Delaunay, Alain; Joseph, Claude; Hagège, Daniel

    2014-01-01

    The effects of polysaccharide elicitors such as chitin, pectin, and dextran on the production of phenylpropanoids (phenolics and flavonoids) and naphtodianthrones (hypericin and pseudohypericin) in Hypericum perforatum shoot cultures were studied. Nonenzymatic antioxidant properties (NEAOP) and peroxidase (POD) activity were also observed in shoot extracts. The activities of phenylalanine ammonia lyase (PAL) and chalcone-flavanone isomerase (CHFI) were monitored to estimate channeling in phenylpropanoid/flavonoid pathways of elicited shoot cultures. A significant suppression of the production of total phenolics and flavonoids was observed in elicited shoots from day 14 to day 21 of postelicitation. This inhibition of phenylpropanoid production was probably due to the decrease in CHFI activity in elicited shoots. Pectin and dextran promoted accumulation of naphtodianthrones, particularly pseudohypericin, within 21 days of postelicitation. The enhanced accumulation of naphtodianthrones was positively correlated with an increase of PAL activity in elicited shoots. All tested elicitors induced NEAOP at day 7, while chitin and pectin showed increase in POD activity within the entire period of postelicitation. The POD activity was in significantly positive correlation with flavonoid and hypericin contents, suggesting a strong perturbation of the cell redox system and activation of defense responses in polysaccharide-elicited H. perforatum shoot cultures. PMID:25574489

  7. Pilot-scale culture of Hypericum perforatum L. adventitious roots in airlift bioreactors for the production of bioactive compounds.

    PubMed

    Cui, Xi-Hua; Murthy, Hosakatte Niranjana; Paek, Kee-Yoeup

    2014-09-01

    Hypericum perforatum L. (St. John's Wort) is an important medicinal plant which is widely used in the treatment for depression and irritable bowel syndrome. It is also used as a dietary supplement. Major bioactive phytochemicals of H. perforatum are phenolics and flavonoids. Quality of these phytochemicals is dramatically influenced by environmental and biological factors in the field grown plants. As an alternative, we have developed adventitious root cultures in large-scale bioreactors for the production of useful phytochemicals. Adventitious roots of H. perforatum were cultured in 500 l pilot-scale airlift bioreactors using half-strength Murashige and Skoog medium with an ammonium and nitrate ratio of 5:25 mM and supplemented with 1.0 mg l(-1) indole butyric acid, 0.1 mg l(-1) kinetin, and 3 % sucrose for the production of bioactive phenolics and flavonoids. Then 4.6 and 6.3 kg dry biomass were realized in the 500 l each of drum-type and balloon-type bioreactors, respectively. Accumulation of 66.9 mg g(-1) DW of total phenolics, 48.6 mg g(-1) DW of total flavonoids, 1.3 mg g(-1) DW of chlorogenic acid, 0.01 mg g(-1) DW of hyperin, 0.04 mg g(-1) DW of hypericin, and 0.01 mg g(-1) DW of quercetin could be achieved with adventitious roots cultured in 500 l balloon-type airlift bioreactors. Our findings demonstrate the possibilities of using H. perforatum adventitious root cultures for the production of useful phytochemicals to meet the demand of pharmaceutical and food industry.

  8. Pilot-scale culture of Hypericum perforatum L. adventitious roots in airlift bioreactors for the production of bioactive compounds.

    PubMed

    Cui, Xi-Hua; Murthy, Hosakatte Niranjana; Paek, Kee-Yoeup

    2014-09-01

    Hypericum perforatum L. (St. John's Wort) is an important medicinal plant which is widely used in the treatment for depression and irritable bowel syndrome. It is also used as a dietary supplement. Major bioactive phytochemicals of H. perforatum are phenolics and flavonoids. Quality of these phytochemicals is dramatically influenced by environmental and biological factors in the field grown plants. As an alternative, we have developed adventitious root cultures in large-scale bioreactors for the production of useful phytochemicals. Adventitious roots of H. perforatum were cultured in 500 l pilot-scale airlift bioreactors using half-strength Murashige and Skoog medium with an ammonium and nitrate ratio of 5:25 mM and supplemented with 1.0 mg l(-1) indole butyric acid, 0.1 mg l(-1) kinetin, and 3 % sucrose for the production of bioactive phenolics and flavonoids. Then 4.6 and 6.3 kg dry biomass were realized in the 500 l each of drum-type and balloon-type bioreactors, respectively. Accumulation of 66.9 mg g(-1) DW of total phenolics, 48.6 mg g(-1) DW of total flavonoids, 1.3 mg g(-1) DW of chlorogenic acid, 0.01 mg g(-1) DW of hyperin, 0.04 mg g(-1) DW of hypericin, and 0.01 mg g(-1) DW of quercetin could be achieved with adventitious roots cultured in 500 l balloon-type airlift bioreactors. Our findings demonstrate the possibilities of using H. perforatum adventitious root cultures for the production of useful phytochemicals to meet the demand of pharmaceutical and food industry. PMID:25096393

  9. Do other Hypericum species have medical potential as St. John's wort (Hypericum perforatum)?

    PubMed

    Stojanović, G; Ðorđević, A; Šmelcerović, A

    2013-01-01

    species are: H. sampsonii, H. ascyron, H. foliosum, H. geminiflorum and H. scabrum. However, only a few studies concerning the activity of extracts and isolated compounds were done in vivo. Also, data on the safe usage of Hypericum constituents as phytotherapeutics are scarce. Since some of Hypericum species are scarcely distributed or endemic as well as some of the secondary metabolites are presented in very small amounts, bio-production, especially endophytes, could represent an abundant and reliable source of pharmacologically active metabolites of Hypericum species for exploitation in pharmaceutical industry.

  10. Effects of Hypericum Perforatum, in a rodent model of periodontitis

    PubMed Central

    2010-01-01

    Background Hypericum perforatum is a medicinal plant species containing many polyphenolic compounds, namely flavonoids and phenolic acids. In this study we evaluate the effect of Hypericum perforatum in animal model of periodontitis. Methods Periodontitis was induced in adult male Sprague-Dawley rats by placing a nylon thread ligature around the lower 1st molars. Hypericum perforatum was administered at the dose of 2 mg/kg os, daily for eight days. At day 8, the gingivomucosal tissue encircling the mandibular first molar was removed. Results Periodontitis in rats resulted in an inflammatory process characterized by edema, neutrophil infiltration and cytokine production that was followed by the recruitment of other inflammatory cells, production of a range of inflammatory mediators such as NF-κB and iNOS expression, the nitration of tyrosine residues and activation of the nuclear enzyme poly (ADP-ribose) polymerase; apoptosis and the degree of gingivomucosal tissues injury. We report here that Hypericum perforatum exerts potent anti-inflammatory effects significantly reducing all of the parameters of inflammation as described above. Conclusions Taken together, our results clearly demonstrate that treatment with Hypericum reduces the development of inflammation and tissue injury, events associated with periodontitis. PMID:21092263

  11. A three-step culture system to increase the xanthone production and antifungal activity of Hypericum perforatum subsp. angustifolium in vitro roots.

    PubMed

    Tocci, Noemi; D'Auria, Felicia Diodata; Simonetti, Giovanna; Panella, Simona; Palamara, Anna Teresa; Pasqua, Gabriella

    2012-08-01

    Hypericum perforatum is a well-known medicinal plant. Among all secondary metabolites produced by this species, xanthones are very interesting for their antifungal activity. In the present study, with the aim to improve xanthone production and antifungal activity of H. perforatum subsp. angustifolium (sin. Fröhlich) Borkh in vitro roots, a new methodology consisting of a three-step culture system, has been developed. Regenerated roots of H. perforatum were cultured in a three-step culture system: in the first step, to increase biomass, the roots were cultured in half-strength liquid Murashige and Skoog (MS) medium supplemented with 1 mg L(-1) indole butyric acid (IBA) and 1.5% sucrose. In the second and third steps, to stimulate secondary metabolism, the roots were cultured with 1.1 mg L(-1) 2,4-dichlorophenoxyacetic acid (2,4-D), 0.215 mg L(-1) kinetin (KIN), and 0.186 mg L(-1) 1-naphthalenacetic acid (NAA). In the third step, some of the roots were treated with chitosan. Xanthone production increased 2.7 times following the three-step method. The mean minimal inhibitory concentration (MIC) values were of 36.9, 26.7, and 65 μg mL(-1), against Candida species, Cryptococcus neoformans and dermatophytes, respectively. A positive correlation between xanthone accumulation and antifungal activity has been shown.

  12. Constituents of Hypericum laricifolium and their cyclooxygenase (COX) enzyme activities.

    PubMed

    El-Seedi, Hesham Rushdey; Ringbom, Therese; Torssell, Kurt; Bohlin, Lars

    2003-12-01

    Investigation of the aerial parts of the medicinal plant Hypericum laricifolium led to the isolation of two new natural products, hentriacontanyl caffeate (1a), nonacosanyl caffeate (1b). In addition, stigmasterol, beta-sitosterol, 3-epi-betulinic acid (2), caffeic acid (3), ferulic acid, docosanol, p-hydroxybenzoic acid, 3,4-dimethoxy benzoic acid, quercetin (4), quercetin-3-O-galactoside (5), quercetin-3-O-rutinoside (6), quercetin-3-O-rhamnoside (7), quercetin-3-O-glucuronide (8) and shikimic acid were also isolated. The structures were determined by 1D- and 2D-NMR, mass spectrometry, and chemical transformations. The anti-inflammatory effects of the isolated compounds were discussed briefly. PMID:14646327

  13. Hypericum caprifoliatum and Hypericum connatum affect human trophoblast-like cells differentiation and Ca2+ influx

    PubMed Central

    da Conceição, Aline O.; von Poser, Gilsane Lino; Barbeau, Benoit; Lafond, Julie

    2014-01-01

    Objective To study the effect of crude methanol and n-hexane extracts of Hypericum connatum (H. connatum) and Hypericum caprifoliatum on trophoblast-like cells. Methods BeWo and JEG-3 trophoblast-like cells were submitted to different extract concentrations (1, 5, 10 and 15 µg/mL) and evaluated in relation to cell viability and in vitro trophoblast differentiation and function. Cell viability was evaluated using WST-1 reagent. Differentiation was measured by luciferase production, hCG production/release, and mitogen-activated protein kinase signaling pathway activation. The function of the trophoblast-like cells was measured by 45Ca2+ influx evaluation. Results The results showed a decrease in cell viability/proliferation. Both plants and different extracts induced a significant decrease in hCG production/release and luciferase production. H. connatum did not cause mitogen-activated protein kinase signaling pathway disturbance; however, Hypericum caprifoliatum n-hexane extract at 15 µg/mL inhibited extracellular signal-regulated kinase 1/2 activation. The significant increase in Ca2+ influx by JEG-3 cells was seen after short and long incubation times with H. connatum methanolic extract at 15 µg/mL. Conclusions The results indicated that these two Hypericum species extracts can interfere on trophoblast differentiation and Ca2+ influx, according to their molecular diversity. Although in vivo experiments are necessary to establish their action on placental formation and function, this study suggests that attention must be paid to the potential toxic effect of these plants. PMID:25182721

  14. Conservation Strategies in the Genus Hypericum via Cryogenic Treatment

    PubMed Central

    Bruňáková, Katarína; Čellárová, Eva

    2016-01-01

    In the genus Hypericum, cryoconservation offers a strategy for maintenance of remarkable biodiversity, emerging from large inter- and intra-specific variability in morphological and phytochemical characteristics. Long-term cryostorage thus represents a proper tool for preservation of genetic resources of endangered and threatened Hypericum species or new somaclonal variants with unique properties. Many representatives of the genus are known as producers of pharmacologically important polyketides, namely naphthodianthrones and phloroglucinols. As a part of numerous in vitro collections, the nearly cosmopolitan Hypericum perforatum – Saint John’s wort – has become a suitable model system for application of biotechnological approaches providing an attractive alternative to the traditional methods for secondary metabolite production. The necessary requirements for efficient cryopreservation include a high survival rate along with an unchanged biochemical profile of plants regenerated from cryopreserved cells. Understanding of the processes which are critical for recovery of H. perforatum cells after the cryogenic treatment enables establishment of cryopreservation protocols applicable to a broad number of Hypericum species. Among them, several endemic taxa attract a particular attention due to their unique characteristics or yet unrevealed spectrum of bioactive compounds. In this review, recent advances in the conventional two-step and vitrification-based cryopreservation techniques are presented in relation to the recovery rate and biosynthetic capacity of Hypericum spp. The pre-cryogenic treatments which were identified to be crucial for successful post-cryogenic recovery are discussed. Being a part of genetic predisposition, the freezing tolerance as a necessary precondition for successful post-cryogenic recovery is pointed out. Additionally, a beneficial influence of cold stress on modulating naphthodianthrone biosynthesis is outlined. PMID:27200032

  15. Conservation Strategies in the Genus Hypericum via Cryogenic Treatment.

    PubMed

    Bruňáková, Katarína; Čellárová, Eva

    2016-01-01

    In the genus Hypericum, cryoconservation offers a strategy for maintenance of remarkable biodiversity, emerging from large inter- and intra-specific variability in morphological and phytochemical characteristics. Long-term cryostorage thus represents a proper tool for preservation of genetic resources of endangered and threatened Hypericum species or new somaclonal variants with unique properties. Many representatives of the genus are known as producers of pharmacologically important polyketides, namely naphthodianthrones and phloroglucinols. As a part of numerous in vitro collections, the nearly cosmopolitan Hypericum perforatum - Saint John's wort - has become a suitable model system for application of biotechnological approaches providing an attractive alternative to the traditional methods for secondary metabolite production. The necessary requirements for efficient cryopreservation include a high survival rate along with an unchanged biochemical profile of plants regenerated from cryopreserved cells. Understanding of the processes which are critical for recovery of H. perforatum cells after the cryogenic treatment enables establishment of cryopreservation protocols applicable to a broad number of Hypericum species. Among them, several endemic taxa attract a particular attention due to their unique characteristics or yet unrevealed spectrum of bioactive compounds. In this review, recent advances in the conventional two-step and vitrification-based cryopreservation techniques are presented in relation to the recovery rate and biosynthetic capacity of Hypericum spp. The pre-cryogenic treatments which were identified to be crucial for successful post-cryogenic recovery are discussed. Being a part of genetic predisposition, the freezing tolerance as a necessary precondition for successful post-cryogenic recovery is pointed out. Additionally, a beneficial influence of cold stress on modulating naphthodianthrone biosynthesis is outlined. PMID:27200032

  16. Evaluation of the cytotoxicity, mutagenicity and antimutagenicity of a natural antidepressant, Hypericum perforatum L. (St. John’s wort), on vegetal and animal test systems

    PubMed Central

    2013-01-01

    Background St. John’s wort (Hypericum perforatum L.) is an herbaceous plant that is native to Europe, West Asia and North Africa and that is recognized and used worldwide for the treatment of mild and moderate depression. It also has been shown to be therapeutic for the treatment of burns, bruises and swelling and can be used for its wound healing, antiviral, antimicrobial, antioxidant, analgesic, hepato-protective and anxiolytic properties. The aim of this study was to evaluate the potential cytotoxic, mutagenic and antimutagenic action of H. Perforatum. Methods Meristematic cells were used as the test system for Allium cepa L., and bone marrow cells from Rattus norvegicus, ex vivo, were used to calculate the mitotic index and the percentage of chromosomal aberration. Statistical analysis was performed using the chi-square test. Results This medicinal plant had no cytotoxic potential in the vegetal test system evaluated. In the animal test system, none of the acute treatments, including intraperitoneal gavage and subchronic gavage, were cytotoxic or mutagenic. Moreover, this plant presented antimutagenic activity against the clastogenic action of cyclophosphamide, as confirmed in pre-treatment (76% reduction in damage), simultaneous treatment (95%) and post-treatment (97%). Conclusions Thus, the results of this study suggest that the administration of H. perforatum, especially by gavage similar to oral consumption used by humans, is safe and with beneficial antimutagenic potential. PMID:23647762

  17. Commercially available Hypericum perforatum extracts do not decrease immobility of rats in the forced swimming test.

    PubMed

    Guilhermano, Luiz G; Ortiz, Luciana; Ferigolo, Maristela; Barros, Helena M T

    2004-01-01

    There are controversial results of clinical trials on the antidepressant effects of Hypericum perforatum, while several preclinical studies describe antidepressant properties for Hypericum extracts. This study evaluates the antidepressant effect of two commercially available hydroalcoholic extracts of H. perforatum standardized to contain 0.3% hypericin in comparison to imipramine (IMI), in the forced swimming test (FST). Wistar rats were treated with different doses of two Hypericum extracts, of hypericin or of IMI and submitted to the FST. The experiments were videotape recorded to detail immobile and active behaviors of rats during the procedures. The imported extract tested and hypericin did not modify rats' behaviors in the test, while IMI, a classical antidepressant, significantly shortened immobility and prolonged climbing behavior during forced swimming. The locally produced Hypericum extract significantly increased immobility duration as compared to the controls at the same time as climbing efforts were decreased. Therefore, the two different commercially available Brazilian hydroalcoholic H. perforatum extracts did not show the expected effects in a screening test for antidepressant agents, on the contrary, one of the extracts promoted a depressant-like effect in rats. Therefore, these extracts available to the population differ from other Hypericum extracts. At which step of the production or commercialization chain these extracts probably lost their therapeutic potential remains to be evaluated.

  18. Genetic Diversity in Hypericum and AFLP Markers for Species-specific Identification of H. perforatum L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Naturally occurring bioactive compounds originating from plant material are being used worldwide as medicinal treatments for maladies ranging from depression to the common cold. One of the more widely used of these herbal remedies is Hypericum perforatum, commonly known as St. John's Wort. However...

  19. Molluscicidal activity of crude water and hexane extracts of Hypericum species to snails (Radix peregra).

    PubMed

    Teixeira, Tânia; Rainha, Nuno; Rosa, José Silvino; Lima, Elisabete; Baptista, José

    2012-04-01

    In spite of intense research on both chemical constituency and biological activity of Hypericum species, potential applications of their active components for pest control have been less well investigated. In the present study, Hypericum androsaemum (tutsan), Hypericum foliosum (malfurada), and Hypericum undulatum (wavy St. John's wort) aqueous and hexane extracts were studied for their molluscicidal and ovicidal activities against Radix peregra. The molluscicidal activity of the aqueous extracts was low, except for H. androsaemum infusion (median lethal concentration [LC50](adults)  = 317.1 ppm; LC50(juveniles)  = 415 ppm), and less important compared with the toxicity of all three hexane extracts tested: H. androsaemum (LC50(adults)  = 30.47 ppm; LC50(juveniles)  = 73.25 ppm), H. undulatum (LC50(adults)  = 30.55 ppm; LC50(juveniles)  = 60.54 ppm), and H. foliosum (LC50(adults)  = 48.61 ppm; LC50(juveniles)  = 38.81 ppm). An ovicidal effect was observed only with H. androsaemum infusion (1.85% of hatching at 500 ppm) and H. foliosum hexane extract (0.0% of hatching at 100 ppm). A preliminary phytochemical investigation of the lipophylic extracts from these Hypericum sp. revealed a different chemical profile and confirmed the presence of ursolic acid only in H. undulatum as the main compound. The present study indicates that products from hexane extracts of the Hypericum sp. analyzed may be used as potential molluscicides to control snails responsible for transmitting fasciolosis.

  20. A Perspective on Hypericum perforatum Genetic Transformation

    PubMed Central

    Hou, Weina; Shakya, Preeti; Franklin, Gregory

    2016-01-01

    Hypericum perforatum (St John's wort) is a reservoir of diverse classes of biologically active and high value secondary metabolites, which captured the interest of both researchers and the pharmaceutical industry alike. Several studies and clinical trials have shown that H. perforatum extracts possess an astounding array of pharmacological properties. These properties include antidepressant, anti-inflammatory, antiviral, anti-cancer, and antibacterial activities; and are largely attributed to the naphtodianthrones and xanthones found in the genus. Hence, improving their production via genetic manipulation is an important strategy. In spite of the presence of contemporary genome editing tools, genetic improvement of this genus remains challenging without robust transformation methods in place. In the recent past, we found that H. perforatum remains recalcitrant to Agrobacterium tumefaciens mediated transformation partly due to the induction of plant defense responses coming into play. However, H. perforatum transformation is possible via a non-biological method, biolistic bombardment. Some research groups have observed the induction of hairy roots in H. perforatum after Agrobacterium rhizogenes co-cultivation. In this review, we aim at updating the available methods for regeneration and transformation of H. perforatum. In addition, we also propose a brief perspective on certain novel strategies to improve transformation efficiency in order to meet the demands of the pharmaceutical industry via metabolic engineering. PMID:27446112

  1. A Perspective on Hypericum perforatum Genetic Transformation.

    PubMed

    Hou, Weina; Shakya, Preeti; Franklin, Gregory

    2016-01-01

    Hypericum perforatum (St John's wort) is a reservoir of diverse classes of biologically active and high value secondary metabolites, which captured the interest of both researchers and the pharmaceutical industry alike. Several studies and clinical trials have shown that H. perforatum extracts possess an astounding array of pharmacological properties. These properties include antidepressant, anti-inflammatory, antiviral, anti-cancer, and antibacterial activities; and are largely attributed to the naphtodianthrones and xanthones found in the genus. Hence, improving their production via genetic manipulation is an important strategy. In spite of the presence of contemporary genome editing tools, genetic improvement of this genus remains challenging without robust transformation methods in place. In the recent past, we found that H. perforatum remains recalcitrant to Agrobacterium tumefaciens mediated transformation partly due to the induction of plant defense responses coming into play. However, H. perforatum transformation is possible via a non-biological method, biolistic bombardment. Some research groups have observed the induction of hairy roots in H. perforatum after Agrobacterium rhizogenes co-cultivation. In this review, we aim at updating the available methods for regeneration and transformation of H. perforatum. In addition, we also propose a brief perspective on certain novel strategies to improve transformation efficiency in order to meet the demands of the pharmaceutical industry via metabolic engineering. PMID:27446112

  2. Natural Products for Antithrombosis

    PubMed Central

    Chen, Cen; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Xia, Zhi-Ning

    2015-01-01

    Thrombosis is considered to be closely related to several diseases such as atherosclerosis, ischemic heart disease and stroke, as well as rheumatoid arthritis, hyperuricemia, and various inflammatory conditions. More and more studies have been focused on understanding the mechanism of molecular and cellular basis of thrombus formation as well as preventing thrombosis for the treatment of thrombotic diseases. In reality, there is considerable interest in the role of natural products and their bioactive components in the prevention and treatment of thrombosis related disorders. This paper briefly describes the mechanisms of thrombus formation on three aspects, including coagulation system, platelet activation, and aggregation, and change of blood flow conditions. Furthermore, the natural products for antithrombosis by anticoagulation, antiplatelet aggregation, and fibrinolysis were summarized, respectively. PMID:26075003

  3. Natural products as photoprotection.

    PubMed

    Saewan, Nisakorn; Jimtaisong, Ampa

    2015-03-01

    The rise in solar ultraviolet radiation on the earth's surface has led to a depletion of stratospheric ozone over recent decades, thus accelerating the need to protect human skin against the harmful effects of UV radiation such as erythema, edema, hyperpigmentation, photoaging, and skin cancer. There are many different ways to protect skin against UV radiation's harmful effects. The most popular way to reduce the amount of UV radiation penetrating the skin is topical application of sunscreen products that contain UV absorbing or reflecting active molecules. Based on their protection mechanism, the active molecules in sunscreens are broadly divided into inorganic and organic agents. Inorganic sunscreens reflect and scatter UV and visible radiation, while organic sunscreens absorb UV radiation and then re-emit energy as heat or light. These synthetic molecules have limited concentration according to regulation concern. Several natural compounds with UV absorption property have been used to substitute for or to reduce the quantity of synthetic sunscreen agents. In addition to UV absorption property, most natural compounds were found to act as antioxidants, anti-inflammatory, and immunomodulatory agents, which provide further protection against the damaging effects of UV radiation exposure. Compounds derived from natural sources have gained considerable attention for use in sunscreen products and have bolstered the market trend toward natural cosmetics. This adds to the importance of there being a wide selection of active molecules in sunscreen formulations. This paper summarizes a number of natural products derived from propolis, plants, algae, and lichens that have shown potential photoprotection properties against UV radiation exposure-induced skin damage. PMID:25582033

  4. Natural products as photoprotection.

    PubMed

    Saewan, Nisakorn; Jimtaisong, Ampa

    2015-03-01

    The rise in solar ultraviolet radiation on the earth's surface has led to a depletion of stratospheric ozone over recent decades, thus accelerating the need to protect human skin against the harmful effects of UV radiation such as erythema, edema, hyperpigmentation, photoaging, and skin cancer. There are many different ways to protect skin against UV radiation's harmful effects. The most popular way to reduce the amount of UV radiation penetrating the skin is topical application of sunscreen products that contain UV absorbing or reflecting active molecules. Based on their protection mechanism, the active molecules in sunscreens are broadly divided into inorganic and organic agents. Inorganic sunscreens reflect and scatter UV and visible radiation, while organic sunscreens absorb UV radiation and then re-emit energy as heat or light. These synthetic molecules have limited concentration according to regulation concern. Several natural compounds with UV absorption property have been used to substitute for or to reduce the quantity of synthetic sunscreen agents. In addition to UV absorption property, most natural compounds were found to act as antioxidants, anti-inflammatory, and immunomodulatory agents, which provide further protection against the damaging effects of UV radiation exposure. Compounds derived from natural sources have gained considerable attention for use in sunscreen products and have bolstered the market trend toward natural cosmetics. This adds to the importance of there being a wide selection of active molecules in sunscreen formulations. This paper summarizes a number of natural products derived from propolis, plants, algae, and lichens that have shown potential photoprotection properties against UV radiation exposure-induced skin damage.

  5. Marine natural products.

    PubMed

    Blunt, John W; Copp, Brent R; Keyzers, Robert A; Munro, Murray H G; Prinsep, Michèle R

    2015-02-01

    This review covers the literature published in 2013 for marine natural products (MNPs), with 982 citations (644 for the period January to December 2013) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1163 for 2013), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.

  6. Marine natural products.

    PubMed

    Blunt, John W; Copp, Brent R; Keyzers, Robert A; Munro, Murray H G; Prinsep, Michèle R

    2016-03-01

    This review covers the literature published in 2014 for marine natural products (MNPs), with 1116 citations (753 for the period January to December 2014) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1378 in 456 papers for 2014), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.

  7. Marine natural products.

    PubMed

    Blunt, John W; Copp, Brent R; Keyzers, Robert A; Munro, Murray H G; Prinsep, Michèle R

    2014-01-17

    This review covers the literature published in 2012 for marine natural products, with 1035 citations (673 for the period January to December 2012) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1241 for 2012), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included. PMID:24389707

  8. Marine natural products.

    PubMed

    Blunt, John W; Copp, Brent R; Keyzers, Robert A; Munro, Murray H G; Prinsep, Michèle R

    2015-02-01

    This review covers the literature published in 2013 for marine natural products (MNPs), with 982 citations (644 for the period January to December 2013) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1163 for 2013), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included. PMID:25620233

  9. Marine natural products.

    PubMed

    Blunt, John W; Copp, Brent R; Keyzers, Robert A; Munro, Murray H G; Prinsep, Michèle R

    2016-03-01

    This review covers the literature published in 2014 for marine natural products (MNPs), with 1116 citations (753 for the period January to December 2014) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1378 in 456 papers for 2014), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included. PMID:26837534

  10. Hypericum pollen determines the presence of burglars at the scene of a crime: an example of forensic palynology.

    PubMed

    Mildenhall, D C

    2006-11-22

    Two male intruders entered a house in which the sole female occupant slept having left the back door unlocked for the return of her live-in boyfriend. She awoke and saw strangers in her bedroom. The intruders ran off, one leaving a jacket behind on the kitchen floor. One of the intruders subsequently returned to recover his jacket, but in his rush to leave the house he brushed against a flowering Hypericum bush growing just outside the back door. A suspect was arrested later that day and charged with indecent assault on a female and burglary, but denied any involvement and refused to name any associate. A day following the offence the suspect's clothes were taken for forensic examination. Pollen analysis of selected parts of his clothing showed that his track pants contained 14% Hypericum pollen, denim jacket 24%, and polo shirt 27.5%. Traces of Hypericum pollen occurred on other items. Most of these pollen grains still had their cell contents preserved and were on the clothing in clumps consistent with having recently been collected by the clothing and not having been aerially dispersed. The pollen from the Hypericum bush was identical in colour, shape, development, and size range to the pollen from the clothing. The clothes had so much Hypericum pollen on them that they had to have been in direct and intimate contact with a flowering bush. Pollen evidence is by its nature circumstantial and often cannot be used on its own to convict, or more strictly to determine the truth. The suspect may have been in contact with Hypericum elsewhere, but detailed investigations indicated that this was unlikely. In 30 years of New Zealand forensic work Hypericum had only ever been found on clothing in trace amounts. This is but one way in which forensic palynology can assist law enforcement agencies to determine the history behind a criminal action, and demonstrates that forensic palynology should be considered as an integral part of any criminal investigation.

  11. Hypericum pollen determines the presence of burglars at the scene of a crime: an example of forensic palynology.

    PubMed

    Mildenhall, D C

    2006-11-22

    Two male intruders entered a house in which the sole female occupant slept having left the back door unlocked for the return of her live-in boyfriend. She awoke and saw strangers in her bedroom. The intruders ran off, one leaving a jacket behind on the kitchen floor. One of the intruders subsequently returned to recover his jacket, but in his rush to leave the house he brushed against a flowering Hypericum bush growing just outside the back door. A suspect was arrested later that day and charged with indecent assault on a female and burglary, but denied any involvement and refused to name any associate. A day following the offence the suspect's clothes were taken for forensic examination. Pollen analysis of selected parts of his clothing showed that his track pants contained 14% Hypericum pollen, denim jacket 24%, and polo shirt 27.5%. Traces of Hypericum pollen occurred on other items. Most of these pollen grains still had their cell contents preserved and were on the clothing in clumps consistent with having recently been collected by the clothing and not having been aerially dispersed. The pollen from the Hypericum bush was identical in colour, shape, development, and size range to the pollen from the clothing. The clothes had so much Hypericum pollen on them that they had to have been in direct and intimate contact with a flowering bush. Pollen evidence is by its nature circumstantial and often cannot be used on its own to convict, or more strictly to determine the truth. The suspect may have been in contact with Hypericum elsewhere, but detailed investigations indicated that this was unlikely. In 30 years of New Zealand forensic work Hypericum had only ever been found on clothing in trace amounts. This is but one way in which forensic palynology can assist law enforcement agencies to determine the history behind a criminal action, and demonstrates that forensic palynology should be considered as an integral part of any criminal investigation. PMID:16406430

  12. New Potential Pharmaceutical Applications of Hypericum Species.

    PubMed

    Marrelli, Mariangela; Statti, Giancarlo; Conforti, Filomena; Menichini, Francesco

    2016-01-01

    The genus Hypericum includes more than 450 species distributed in Europe, North America, North Africa and West Asia. These plants are widely used in folk medicine for the treatment of inflammation, bacterial and viral infections, burns and gastric disorders. The use for alleviating inflammation and promoting wound healing is well known for H. Perforatum L. (St. John's wort) and other species. Because of its pharmacological activity, H. perforatum L. is one of the most important species of this genus. This plant has been largely utilized for its efficacy in the treatment of mild to moderate depression. However, some other species have been utilized in traditional medicine and have been studied for their phytochemical composition and for their biological activities to date. Hypericum species contain biologically active secondary metabolites belonging to at least ten different classes, with prevalence of naphthodianthrones (hypericin and pseudohypericin), phloroglucinols (hyperforin), flavonoids (rutin, hyperoside, isoquercitrin, quercitrin, quercetin, amentoflavone) and phenylpropanoids (chlorogenic acid). However, great variations in contents have been reported for wild populations worldwide. The purpose of this review is to provide an overview of most recent studies about potential pharmaceutical applications of plants belonging to Hypericum genus. The most interesting isolated active principles and both in vitro and in vivo effects of Hypericum extracts are presented and discussed.

  13. New Potential Pharmaceutical Applications of Hypericum Species.

    PubMed

    Marrelli, Mariangela; Statti, Giancarlo; Conforti, Filomena; Menichini, Francesco

    2016-01-01

    The genus Hypericum includes more than 450 species distributed in Europe, North America, North Africa and West Asia. These plants are widely used in folk medicine for the treatment of inflammation, bacterial and viral infections, burns and gastric disorders. The use for alleviating inflammation and promoting wound healing is well known for H. Perforatum L. (St. John's wort) and other species. Because of its pharmacological activity, H. perforatum L. is one of the most important species of this genus. This plant has been largely utilized for its efficacy in the treatment of mild to moderate depression. However, some other species have been utilized in traditional medicine and have been studied for their phytochemical composition and for their biological activities to date. Hypericum species contain biologically active secondary metabolites belonging to at least ten different classes, with prevalence of naphthodianthrones (hypericin and pseudohypericin), phloroglucinols (hyperforin), flavonoids (rutin, hyperoside, isoquercitrin, quercitrin, quercetin, amentoflavone) and phenylpropanoids (chlorogenic acid). However, great variations in contents have been reported for wild populations worldwide. The purpose of this review is to provide an overview of most recent studies about potential pharmaceutical applications of plants belonging to Hypericum genus. The most interesting isolated active principles and both in vitro and in vivo effects of Hypericum extracts are presented and discussed. PMID:26156546

  14. Pest management with natural products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2012 Philadelphia ACS Symposium on Natural Products for Pest Management introduced recent discoveries and applications of natural products from insect, terrestrial plant, microbial, and synthetic sources for the management of insects, weeds, plant pathogenic microbes, and nematodes. The symposiu...

  15. Natural Products for Cancer Prevention

    PubMed Central

    Greenlee, Heather

    2013-01-01

    OBJECTIVES To review the clinical trial literature on the use and effects of natural products for cancer prevention. DATA SOURCES Clinical trials published in PubMed. CONCLUSION There is a growing body of literature on the use of natural products for cancer prevention. To date, few trials have demonstrated conclusive benefit. Current guidelines recommend against the use of natural products for cancer prevention. IMPLICATIONS FOR NURSING PRACTICE Clinicians should ask patients about their use of natural products and motivations for use. If patients are using natural products specifically for cancer prevention, they should be counseled on the current guidelines, as well as their options for other cancer prevention strategies. PMID:22281308

  16. Polyprenylated Phloroglucinols from Hypericum maculatum.

    PubMed

    Nedialkov, Paraskev T; Momekov, Georgi; Kokanova-Nedialkova, Zlatina K; Heilmann, Jörg

    2015-07-01

    A detailed phytochemical investigation of the dichloromethane extract of the aerial parts of Hypericum maculatum Crantz. led to the isolation of four new (2-5) and six known (1a/b, 6-10) polyprenylated phloroglucinol derivatives. The new compounds were identified by means of spectral methods (MS, NMR, IR, UV) as (E)-4-(3,7-dimethylocta-2,6-dien-1-yl)-5-hydroxy-2-(3-methylbut-2-en-1-yl)-3,6-dioxocyclohexa-1,4-dien-1-yl isobutyrate (2), (E)-2-(3,7-dimethylocta-2,6-dien-1-yl)-5-hydroxy-4-(3-methylbut-2-en-1-yl)-3,6-dioxocyclohexa-1,4-dien-1-yl isobutyrate (3), (E)-4-(3,7-dimethylocta-2,6-dien-1-yl)-5-hydroxy-2-(3-methylbut-2-en-1-yl)-3,6-dioxocyclohexa-1,4-dien-1-yl 2-methylbutanoate (4) and (E)-2-(3,7-dimethylocta-2,6-dien-1-yl)-5-hydroxy-4-(3-methylbut-2-en-1-yl)-3,6-dioxocyclohexa-1,4-dien-1-yl 2-methylbutanoate (5). The known compounds have been identified as hyperpolyphyllirin/hyperibine J (1a/b), erectquione A (6), (E)-1-(3-(3,7-dimethylocta-2,6-dien--yl)-2,4,6-trihydroxyphenyl)-2-methylpropan-1-one (7), (E)-1-(3-(3,7-dimethylocta-2,6-dien-1-yl)- 2,4,6-trihydroxyphenyl)-2-methylbutan-1-one (8), 1-(5,7-dihydroxy-2-methyl-2-(4-methylpent-3-en-1-yl)chroman-8-yl)-2-methylpropan-1-one (9) and 1-(6,8-dihydroxy-1,1,4a-trimethyl-2,3,4,4a,9,9a-hexahydro-1H-xanthen-5-yl)-2-methylpropan-1-one (10). The stereochemistry of 1a is described for the first time. The cytotoxicity of 1-6 on SKW-3, BV-173 and K-562 tumor cell lines was determined using MTT based assays. PMID:26411018

  17. Attitudes and knowledge toward natural products safety in the pharmacy setting: an Italian study.

    PubMed

    Cuzzolin, Laura; Benoni, Giuseppina

    2009-07-01

    The lack of a professional supervision may expose consumers of natural products to risks; pharmacists play an important role in giving information about these substances. A survey was designed to investigate the attitudes and knowledge of consumers and pharmacists toward the safety of natural products. Twenty-three pharmacies participated in the project. On the basis of a pre-structured 17-item questionnaire, face-to-face interviews were conducted with consumers buying a natural product over a 6-month period. A further 8 items had to be compiled by pharmacists about the purchased product. During the study period, 1420 interviews were carried out. The most frequently purchased products were echinacea, propolis, garlic, guggul, ginkgo, liquorice, ginseng, glucomannan, guarana, valerian, and passionflower; 71.8% of consumers reported to have been taking conventional medicines along with natural products. Some (3.9%) referred to adverse effects in the last year: allergic reactions after cartilage of shark, propolis and thyme; anxiety after hypericum; hypotension and tachycardia after a mix containing chamomile, valerian and melissa; pyrosis and stomach-ache after laxative-depurative herbs. Pharmacists referred to some adverse effects observed in the past in relation to the products bought by consumers involved in this study. Findings from this study demonstrate that in general consumers need information on herbal safety and pharmacists are more likely to answer correctly about the use of herbs rather than about cautions, adverse effects and interactions.

  18. Novel polyprenylated phloroglucinols from Hypericum sampsonii.

    PubMed

    Chen, Jih-Jung; Chen, Hong-Jhang; Lin, Yun-Lian

    2014-01-01

    Hypericum sampsonii Hance (Clusiaceae) is a folk medicine used in Taiwan to treat blood stasis, relieve swelling, and as an anti-hepatitis drug. Two new polyprenylated phloroglucinol derivatives, hypersampsone R (1) and hypersampsone S (2), and a known prenylated benzophenone, hyperibone K (3) were isolated from the aerial parts of H. sampsonii. Their structures were determined by extensive 1D and 2D NMR, and MS spectral analyses. PMID:25460308

  19. Supramolecular complexations of natural products.

    PubMed

    Schneider, Hans-Jörg; Agrawal, Pawan; Yatsimirsky, Anatoly K

    2013-08-21

    Complexations of natural products with synthetic receptors as well as the use of natural products as host compounds are reviewed, with an emphasis on possible practical uses or on biomedical significance. Applications such as separation, sensing, enzyme monitoring, and protection of natural drugs are first outlined. We then discuss examples of complexes with all important classes of natural compounds, such as amino acids, peptides, nucleosides/nucleotides, carbohydrates, catecholamines, flavonoids, terpenoids/steroids, alkaloids, antibiotics and toxins. PMID:23703643

  20. Xanthones from aerial parts of Hypericum laricifolium Juss.

    PubMed

    Ramírez-Gonzáilez, Irama; Amaro-Luis, Juan Manuel; Bahsas, Alí

    2013-12-01

    From the aerial parts of Hypericum laricifolium Juss., twelve compounds were isolated and identified. They were the xanthones: 1-hydroxy-7-methoxy-xanthone (1), 1,7-dihydroxy-xanthone (2), 2-hydroxy-xanthone (3), 6-deoxyisojacareubin (4), 1,3-dihydroxy-6-methoxy-xanthone (6), and 1,5,6-trihydroxy-7-methoxy-xanthone (7), together with beta-sitosterol, betulinic acid, vanillic acid, isoquercitrin and a mixture of quercetin and isorhamnetin. All the compounds were characterized by spectroscopic and mass spectrometric methods, and by comparison with literature data. Thisis the first report on the presence of xanthones in H.laricifolium. 1,3-Dihydroxy-6-methoxy-xanthone has been previously synthesized, but this is the first report of its isolation from a natural source. PMID:24555284

  1. Phenolic Profile of Dark-Grown and Photoperiod-Exposed Hypericum perforatum L. Hairy Root Cultures

    PubMed Central

    Petreska Stanoeva, Jasmina; Stefova, Marina; Simic, Sonja Gadzovska

    2013-01-01

    Hypericum perforatum L. is a medicinal plant considered as an important natural source of secondary metabolites with a wide range of pharmacological attributes. Hairy roots (HR) were induced from root segments of in vitro grown seedlings from H. perforatum after cocultivation with Agrobacterium rhizogenes A4. Investigations have been made to study the production of phenolic compounds in dark-grown (HR1) and photoperiod-exposed (HR2) cultures. The chromatographic analysis of phenolic acids, flavonols, flavan-3-ols, and xanthones revealed marked differences between HR1 and HR2 cultures. The production of quinic acid, kaempferol, and seven identified xanthones was increased in HR2. Moreover, HR2 showed a capability for de novo biosynthesis of two phenolic acids (3-p-coumaroylquinic acid and 3-feruloylquinic acid), three flavonol glycosides (kaempferol hexoside, hyperoside, and quercetin acetylglycoside), and five xanthones (tetrahydroxy-one-methoxyxanthone, 1,3,5-trihydroxy-6-methoxyxanthone, 1,3,5,6-tetrahydroxy-2-prenylxanthone, paxanthone, and banaxanthone E). On the other side, HR1 cultures were better producers of flavan-3-ols (catechin, epicatechin, and proanthocyanidin dimers) than HR2. This is the first comparative study on phenolic profile of H. perforatum HR cultures grown under dark and photoperiod conditions. PMID:24453880

  2. Natural Products as Molecular Messengers*

    PubMed Central

    Meinwald, Jerrold

    2011-01-01

    The chemistry of naturally-occurring compounds has long been pursued in the search for medicines, dyes, pesticides, flavors, and fragrances. In addition, the deeper aim of understanding life itself as a chemical phenomenon has motivated generations of scientists. One consequence of such studies has been the realization that natural products often serve central roles as biological signaling agents. We consider natural products from the viewpoint of the organisms that produce and/or respond to them, and suggest how a naturally-occurring compound may acquire its role in chemical communication. PMID:21190370

  3. Shoot Tip Meristem Cryopreservation of Hypericum Species.

    PubMed

    Bruňáková, Katarína; Čellárová, Eva

    2016-01-01

    Based on our long-standing experience with in vitro culture of Hypericum perforatum, a clonal multiplication system and vitrification-based cryopreservation protocols have been applied to several Hypericum species: H. humifusum L., H. annulatum Moris, H. tomentosum L., H. tetrapterum Fries, H. pulchrum L., and H. rumeliacum Boiss. The shoot tips were cryopreserved using a uniform procedure that includes pretreatment with abscisic acid (ABA), PVS3 cryoprotection, and direct immersion into the liquid nitrogen (LN). The freezing-tolerant Hypericum species were pre-exposed to the cold acclimation conditions performed by a 7-day exposure to 4 °C. The content of naphtodianthrones (hypericins) including hypericin, pseudohypericin, and their protoforms was quantified by HPLC. Ploidy of plants was determined by both flow cytometry of leaf tissue and chromosome counts of root tip meristematic cells. We have shown that the post-thaw recovery rate of the shoot tips, pretreated with 0.076 μM ABA for 7 days at room temperature, led to the post-cryogenic survival from 5 % in H. tomentosum to 21 % in H. annulatum. As compared to the untreated (control) plants, the content of hypericins in plants regenerated after cryopreservation remained unchanged or decreased in H. perforatum, H. humifusum, H. annulatum, H. tomentosum, H. tetrapterum, and H. rumeliacum. However, the pre-exposition of the freezing-tolerant H. perforatum to cold acclimation prior to excision of the shoot tips has improved the post-thaw recovery to 45 % and resulted in threefold increase of the total hypericin content. PMID:27108308

  4. An in vitro and hydroponic growing system for hypericin, pseudohypericin, and hyperforin production of St. John's wort (Hypericum perforatum CV new stem).

    PubMed

    Murch, Susan J; Rupasinghe, H P Vasantha; Saxena, Praveen K

    2002-12-01

    While the interest in medicinal plants continues to grow, there is a lack of basic information with respect to efficient protocols for plant production. Recently, in vitro regeneration protocols have been developed to provide masses of sterile, consistent St. John's wort. The current study assessed the potential for acclimatization of in vitro grown St. John's wort plantlets to a nutrient film technique (NFT) hydroponic system in a controlled environment greenhouse. Quantitative analyses of hypericin, hyperforin and pseudohypericin in flower tissues were used as the parameters to assess the quality of the greenhouse-grown plants. The three bioactive compounds were found to be present in similar or higher amounts than previously reported values for field-grown plants. These data provide evidence that greenhouse hydroponic systems can be effectively used for the efficient production of St. John's wort and other medicinal plants.

  5. Polycyclic Polyprenylated Acylphloroglucinol Congeners from Hypericum scabrum.

    PubMed

    Gao, Wan; Hou, Wei-Zhen; Zhao, Jun; Xu, Fang; Li, Li; Xu, Fang; Sun, Hua; Xing, Jian-Guo; Peng, Ying; Wang, Xiao-Liang; Ji, Teng-Fei; Gu, Zheng-Yi

    2016-06-24

    Twenty polycyclic polyprenylated acylphloroglucinols (PPAPs), including the new compounds hyperscabrones A-I (1-9), were isolated from the air-dried aerial parts of Hypericum scabrum. These compounds comprise seven different structural types. All structures were determined by NMR spectroscopic methods and both experimental and calculated electronic circular dichroism (ECD) spectra. The evaluation of their neuroprotective effects on glutamate-induced toxicity in SK-N-SH cells showed that compounds 4-7 exhibited significant neuroprotection at 10 μM. Additionally, compounds 3, 4, 7, and 9 showed moderate hepatoprotective activities against paracetamol-induced HepG2 cell damage at 10 μM. PMID:27280968

  6. Cytotoxic polycyclic polyprenylated acylphloroglucinols from Hypericum attenuatum.

    PubMed

    Zhou, Zhong-bo; Zhang, Yang-mei; Pan, Ke; Luo, Jian-guang; Kong, Ling-yi

    2014-06-01

    Six new polycyclic polyprenylated acylphloroglucinols, attenuatumiones A-F (1-6), together with twelve known analogs (7-18) were isolated from the whole plant of Hypericum attenuatum. Their structures were elucidated by spectroscopic methods, and the absolute configuration of C-13 in attenuatumione C (3) was deduced via the circular dichroism datum of the in situ formed [Rh2(OCOCF3)4] complexes. All isolates were evaluated for the cytotoxic activities on three human cancer cell lines. Compound 3 showed moderate cytotoxic activities with IC50 values of 10.12 and 10.56 μM against SMMC7721 and U2OS, respectively. PMID:24603092

  7. Acylphloroglucinol and xanthones from Hypericum ellipticum.

    PubMed

    Manning, Kylie; Petrunak, Elyse; Lebo, Michelle; González-Sarrías, Antonio; Seeram, Navindra P; Henry, Geneive E

    2011-05-01

    An acylphloroglucinol, elliptophenone A, and two xanthones, elliptoxanthone A and elliptoxanthone B, were isolated from the aerial portions of Hypericum ellipticum together with three known xanthones, 1,3,7-trihydroxy-8-(3-methyl-2-butenyl)-9H-xanthen-9-one, 1,6-dihydroxy-4-methoxy-9H-xanthen-9-one, and 1,4,5-trihydroxy-9H-xanthen-9-one. Their structures were determined by spectroscopic analyses. The acylphloroglucinol and xanthones were evaluated for cytotoxicity using three human colon cancer cell lines cell lines (HT-29, HCT-116 and Caco-2) and a normal human colon cell line (CCD-18Co). PMID:21338993

  8. Hypericum perforatum-induced hepatotoxicity with possible association with copaiba (Copaifera langsdorffii Desf):case report

    PubMed Central

    Agollo, Marjorie Costa; Miszputen, Sender Jankiel; Diament, Jayme

    2014-01-01

    We report a case of liver damage in an elderly patient after the use of herbal products of Hypericum perforatum and copaiba (Copaifera langsdorffii Desf). Hepatotoxicity related to Hypericum perforatum is anecdotally known, but for copaiba, widely used as anti-inflammatory, there is just experimental data in the national literature. This report aimed to draw attention to the possible toxic effects of this association as well as to the clinical recovery of the patient after discontinuing their use. There is a tendency to suspect of the action of drugs to justify a non-viral acute liver injury, because of the large number of drugs responsible for hepatotoxicity. There are experiments and clinical reports in the literature describing some herbal products, including Hypericum perforatum, as the causative agents of this aggression, and are considered innocuous and used with no restrictions. We must remember that adverse reactions also occur with these substances; hence, they should be investigated when collecting the patient´s history, for leading to severe liver failure. PMID:25167337

  9. Natural products in crop protection.

    PubMed

    Dayan, Franck E; Cantrell, Charles L; Duke, Stephen O

    2009-06-15

    The tremendous increase in crop yields associated with the 'green' revolution has been possible in part by the discovery and utilization of chemicals for pest control. However, concerns over the potential impact of pesticides on human health and the environment has led to the introduction of new pesticide registration procedures, such as the Food Quality Protection Act in the United States. These new regulations have reduced the number of synthetic pesticides available in agriculture. Therefore, the current paradigm of relying almost exclusively on chemicals for pest control may need to be reconsidered. New pesticides, including natural product-based pesticides are being discovered and developed to replace the compounds lost due to the new registration requirements. This review covers the historical use of natural products in agricultural practices, the impact of natural products on the development of new pesticides, and the future prospects for natural products-based pest management.

  10. Natural Products as Aromatase Inhibitors

    PubMed Central

    Balunas, Marcy J.; Su, Bin; Brueggemeier, Robert W.; Kinghorn, A. Douglas

    2010-01-01

    With the clinical success of several synthetic aromatase inhibitors (AIs) in the treatment of postmenopausal estrogen receptor-positive breast cancer, researchers have also been investigating also the potential of natural products as AIs. Natural products from terrestrial and marine organisms provide a chemically diverse array of compounds not always available through current synthetic chemistry techniques. Natural products that have been used traditionally for nutritional or medicinal purposes (e.g., botanical dietary supplements) may also afford AIs with reduced side effects. A thorough review of the literature regarding natural product extracts and secondary metabolites of plant, microbial, and marine origin that have been shown to exhibit aromatase inhibitory activity is presented herein. PMID:18690828

  11. Polyprenylated Tetraoxygenated Xanthones from the Roots of Hypericum monogynum and Their Neuroprotective Activities.

    PubMed

    Xu, Wen-Jun; Li, Rui-Jun; Quasie, Olga; Yang, Ming-Hua; Kong, Ling-Yi; Luo, Jun

    2016-08-26

    Ten new polyprenylated tetraoxygenated xanthones, monogxanthones A-J (1-10), together with eight known analogues (4b, 11-17) were identified from the roots of Hypericum monogynum. The structures of these new polyprenylated xanthones (1-10), a class of compounds rarely found in plants of the genus Hypericum, were elucidated by the interpretation of their HRESIMS, 1D and 2D NMR, and electronic circular dichroism data. Compounds 1 and 2 exhibited neuroprotective effects against corticosterone (Cort)-induced lesions of PC12 cells at concentrations of 6.25, 12.50, and 25.00 μM, with cell viability greater than 75%, as well as inhibitory effects on nitric oxide production in lipopolysaccharide-induced BV2 microglia cells, with IC50 values of 7.47 ± 0.65 and 9.60 ± 0.12 μM, respectively. Collectively, these results shed new light on the potential of polyprenylated xanthones from the genus Hypericum in the development of antidepression therapies. PMID:27525351

  12. Phytochemicals from Echinacea and Hypericum

    PubMed Central

    Bae, Jaehoon; Kim, Junwon

    2006-01-01

    Reaction of trienes with α,β-unsaturated aldehydes produces bicyclic products via a tandem Diels-Alder/ene reaction. The adduct from tiglic aldehyde was converted into isoligularone by conversion to a furan followed by benzylic oxidation. PMID:17917688

  13. Natural Products as Chemical Probes

    PubMed Central

    Carlson, Erin E.

    2010-01-01

    Natural products have evolved to encompass a broad spectrum of chemical and functional diversity. It is this diversity, along with their structural complexity, that enables nature’s small molecules to target a nearly limitless number of biological macromolecules and to often do so in a highly selective fashion. Because of these characteristics, natural products have seen great success as therapeutic agents. However, this vast pool of compounds holds much promise beyond the development of future drugs. These features also make them ideal tools for the study of biological systems. Recent examples of the use of natural products and their derivatives as chemical probes to explore biological phenomena and assemble biochemical pathways are presented here. PMID:20509672

  14. Synthesis of Polycyclic Natural Products

    SciTech Connect

    Tuan Hoang Nguyen

    2003-05-31

    With the continuous advancements in molecular biology and modern medicine, organic synthesis has become vital to the support and extension of those discoveries. The isolations of new natural products allow for the understanding of their biological activities and therapeutic value. Organic synthesis is employed to aid in the determination of the relationship between structure and function of these natural products. The development of synthetic methodologies in the course of total syntheses is imperative for the expansion of this highly interdisciplinary field of science. In addition to the practical applications of total syntheses, the structural complexity of natural products represents a worthwhile challenge in itself. The pursuit of concise and efficient syntheses of complex molecules is both gratifying and enjoyable.

  15. EIA's Natural Gas Production Data

    EIA Publications

    2009-01-01

    This special report examines the stages of natural gas processing from the wellhead to the pipeline network through which the raw product becomes ready for transportation and eventual consumption, and how this sequence is reflected in the data published by the Energy Information Administration (EIA).

  16. Natural products: DNA double whammy

    NASA Astrophysics Data System (ADS)

    Gates, Kent S.

    2014-06-01

    The lomaiviticins are exceedingly potent antibiotic agents, but the mechanism responsible for this activity has so far been unclear. Now, efficient generation of double-strand breaks in DNA by lomaiviticin A has been linked to the remarkable cytotoxicity of these diazobenzofluorene-containg natural products.

  17. Natural Products from Mangrove Actinomycetes

    PubMed Central

    Xu, Dong-Bo; Ye, Wan-Wan; Han, Ying; Deng, Zi-Xin; Hong, Kui

    2014-01-01

    Mangroves are woody plants located in tropical and subtropical intertidal coastal regions. The mangrove ecosystem is becoming a hot spot for natural product discovery and bioactivity survey. Diverse mangrove actinomycetes as promising and productive sources are worth being explored and uncovered. At the time of writing, we report 73 novel compounds and 49 known compounds isolated from mangrove actinomycetes including alkaloids, benzene derivatives, cyclopentenone derivatives, dilactones, macrolides, 2-pyranones and sesquiterpenes. Attractive structures such as salinosporamides, xiamycins and novel indolocarbazoles are highlighted. Many exciting compounds have been proven as potential new antibiotics, antitumor and antiviral agents, anti-fibrotic agents and antioxidants. Furthermore, some of their biosynthetic pathways have also been revealed. This review is an attempt to consolidate and summarize the past and the latest studies on mangrove actinomycetes natural product discovery and to draw attention to their immense potential as novel and bioactive compounds for marine drugs discovery. PMID:24798926

  18. Natural products as antimitotic agents.

    PubMed

    Dall'Acqua, Stefano

    2014-01-01

    Natural products still play an important role in the medicinal chemistry, especially in some therapeutic areas. As example more than 60% of currently-used anticancer agents are derives from natural sources including plants, marine organisms or micro-organism. Thus natural products (NP) are an high-impact source of new "lead compounds" or new potential therapeutic agents despite the large development of biotechnology and combinatorial chemistry in the drug discovery and development. Many examples of anticancer drugs as paclitaxel, combretastatin, bryostatin and discodermolide have shown the importance of NP in the anticancer chemotherapy through many years. Many organisms have been studied as sources of drugs namely plants, micro-organisms and marine organisms and the obtained NP can be considered a group of "privileged chemical structures" evolved in nature to interact with other organisms. For this reason NP are a good starting points for pharmaceutical research and also for library design. Tubulin and microtubules are one of the most studied targets for the search of anticancer compounds. Microtubule targeting agents (MTA) also named antimitotic agents are compounds that are able to perturb mitosis but are also able to arrest cell growing during interphase. The anticancer drugs, taxanes and vinca alkaloids have established tubulin as important target in cancer therapy. More recently the vascular disrupting agents (VDA) combretastatin analogues were studied for their antimitotics properties. This review will consider the anti mitotic NP and their potential impact in the development of new therapeutic agents.

  19. Fluorescent profiling of natural product producers.

    PubMed

    Sandler, Joel S; Fenical, William; Gulledge, Brian M; Chamberlin, A Richard; La Clair, James J

    2005-07-01

    The identification of natural product producer organisms remains a problem for both isolation and natural product classification. A concise screen is developed through fluorescent modification of a set of natural products that offer a common activity. Through real-time multicolor microscopy, the processing, storage, and effects of a natural product are rapidly screened at the level of the strain and individual organism.

  20. Topical application of St. John's wort (Hypericum perforatum).

    PubMed

    Wölfle, Ute; Seelinger, Günter; Schempp, Christoph M

    2014-02-01

    St. John's wort (Hypericum perforatum) has been intensively investigated for its antidepressive activity, but dermatological applications also have a long tradition. Topical St. John's wort preparations such as oils or tinctures are used for the treatment of minor wounds and burns, sunburns, abrasions, bruises, contusions, ulcers, myalgia, and many others. Pharmacological research supports the use in these fields. Of the constituents, naphthodianthrones (e.g., hypericin) and phloroglucinols (e.g., hyperforin) have interesting pharmacological profiles, including antioxidant, anti-inflammatory, anticancer, and antimicrobial activities. In addition, hyperforin stimulates growth and differentiation of keratinocytes, and hypericin is a photosensitizer which can be used for selective treatment of nonmelanoma skin cancer. However, clinical research in this field is still scarce. Recently, sporadic trials have been conducted in wound healing, atopic dermatitis, psoriasis, and herpes simplex infections, partly with purified single constituents and modern dermatological formulations. St. John's wort also has a potential for use in medical skin care. Composition and stability of pharmaceutical formulations vary greatly depending on origin of the plant material, production method, lipophilicity of solvents, and storage conditions, and this must be regarded with respect to practical as well as scientific purposes.

  1. Natural products for cancer chemotherapy

    PubMed Central

    Demain, Arnold L.; Vaishnav, Preeti

    2011-01-01

    Summary For over 40 years, natural products have served us well in combating cancer. The main sources of these successful compounds are microbes and plants from the terrestrial and marine environments. The microbes serve as a major source of natural products with anti‐tumour activity. A number of these products were first discovered as antibiotics. Another major contribution comes from plant alkaloids, taxoids and podophyllotoxins. A vast array of biological metabolites can be obtained from the marine world, which can be used for effective cancer treatment. The search for novel drugs is still a priority goal for cancer therapy, due to the rapid development of resistance to chemotherapeutic drugs. In addition, the high toxicity usually associated with some cancer chemotherapy drugs and their undesirable side‐effects increase the demand for novel anti‐tumour drugs active against untreatable tumours, with fewer side‐effects and/or with greater therapeutic efficiency. This review points out those technologies needed to produce the anti‐tumour compounds of the future. PMID:21375717

  2. Antimalarial natural products: a review

    PubMed Central

    Mojab, Faraz

    2012-01-01

    Objective: Malaria is an infectious disease commonplace in tropical countries. For many years, major antimalarial drugs consisted of natural products, but since 1930s these drugs have been largely replaced with a series of synthetic drugs. This article tries to briefly indicate that some plants which previously were used to treat malaria, as a result of deficiencies of synthetic drugs, have revived into useful products once more. It also attempts to describe some tests which can be used to evaluate plant extracts for antimalarial activity. Materials and Methods: By referring to some recent literatures, data were collected about plants used for the treatment of malaria, evaluation of plant extracts for antimalarial activity, modes of action of natural antimalarial agents, and recent research on antimalarial plants in Iran and other countries. Results and Conclusion: There is an urgent need for the development of new treatments for malaria. Many countries have a vast precedence in the use of medicinal plants and the required knowledge spans many centuries. Although malaria is controlled in Iran, some researchers tend to study malaria and related subjects. In vitro biological tests for the detection of antimalarial activities in plant extracts are currently available. It is vital that the efficacy and safety of traditional medicines be validated and their active constituents be identified in order to establish reliable quality control measures. PMID:25050231

  3. Crystal Structure of Hyp-1, a Hypericum perforatum PR-10 Protein, in Complex with Melatonin

    PubMed Central

    Sliwiak, Joanna; Dauter, Zbigniew; Jaskolski, Mariusz

    2016-01-01

    Hyp-1, a PR-10-fold protein from Hypericum perforatum, was crystallized in complex with melatonin (MEL). The structure confirms the conserved protein fold and the presence of three unusual ligand binding sites, two of which are internal chambers (1,2), while the third one (3) is formed as an invagination of the protein surface. The MEL ligand in site 1 is well defined while that in site 3 seems to be rotating between the side chains of Lys33 and Tyr150 that act as a molecular vise. The patch of electron density in site 2 does not allow unambiguous modeling of a melatonin molecule but suggests a possible presence of its degradation product. This pattern of ligand occupation is reproducible in repeated crystallization/structure determination experiments. Although the binding of melatonin by Hyp-1 does not appear to be very strong (for example, MEL cannot displace the artificial fluorescence probe ANS), it is strong enough to suggest a physiological role of this interaction. For example, trans-zeatin, which is a common ligand of PR-10 proteins, does not overcompete melatonin for binding to Hyp-1 as it does not affect the crystallization process of the Hyp-1/MEL complex, and among a number of potential natural mediators tested, melatonin was the only one to form a crystalline complex with Hyp-1 with the use of standard crystallization screens. Hyp-1 is the second protein in the Protein Data Bank for which melatonin binding has been demonstrated crystallographically, the first one being human quinone reductase. PMID:27242869

  4. Natural and engineered biosynthesis of fluorinated natural products.

    PubMed

    Walker, Mark C; Chang, Michelle C Y

    2014-09-21

    Both natural products and synthetic organofluorines play important roles in the discovery and design of pharmaceuticals. The combination of these two classes of molecules has the potential to be useful in the ongoing search for new bioactive compounds but our ability to produce site-selectively fluorinated natural products remains limited by challenges in compatibility between their high structural complexity and current methods for fluorination. Living systems provide an alternative route to chemical fluorination and could enable the production of organofluorine natural products through synthetic biology approaches. While the identification of biogenic organofluorines has been limited, the study of the native organisms and enzymes that utilize these compounds can help to guide efforts to engineer the incorporation of this unusual element into complex pharmacologically active natural products. This review covers recent advances in understanding both natural and engineered production of organofluorine natural products.

  5. Natural and engineered biosynthesis of fluorinated natural products.

    PubMed

    Walker, Mark C; Chang, Michelle C Y

    2014-09-21

    Both natural products and synthetic organofluorines play important roles in the discovery and design of pharmaceuticals. The combination of these two classes of molecules has the potential to be useful in the ongoing search for new bioactive compounds but our ability to produce site-selectively fluorinated natural products remains limited by challenges in compatibility between their high structural complexity and current methods for fluorination. Living systems provide an alternative route to chemical fluorination and could enable the production of organofluorine natural products through synthetic biology approaches. While the identification of biogenic organofluorines has been limited, the study of the native organisms and enzymes that utilize these compounds can help to guide efforts to engineer the incorporation of this unusual element into complex pharmacologically active natural products. This review covers recent advances in understanding both natural and engineered production of organofluorine natural products. PMID:24776946

  6. Glycosylation and Activities of Natural Products.

    PubMed

    Huang, Gangliang; Lv, Meijiao; Hu, Jinchuan; Huang, Kunlin; Xu, Hong

    2016-01-01

    Natural products are widely found in nature, their number and variety are numerous, the structures are complex and diverse. These natural products have many physiological and pharmacological activities. Glycosylation can increase the diversity of structure and function of natural product, it has become the focus of drug research and development. The impacts of glycosylation of natural products to water solubility, pharmacological activities, bioavailability, or others were described in this review, which provides a reference for the development and application of glycosylated natural products. PMID:27499190

  7. Isolation of marine natural products.

    PubMed

    Houssen, Wael E; Jaspars, Marcel

    2012-01-01

    Marine macro- and micro-biota offer a wealth of chemically diverse compounds that have been evolutionary preselected to modulate biochemical pathways. Many industrial and academic groups are accessing this source using advanced technology platforms. The previous edition of this chapter offered some practical guidance in the process of extraction and isolation of marine natural products with more emphasis on the procedures adapted to the physical and chemical characteristics of the isolated compounds. Automation and direct integration of the isolation technology into high-throughput screening (HTS) systems were also reported. In this edition, we refer to some new topics which are heavily represented in the literature. These include methods for sampling the deep ocean and the procedures for culturing high-pressure-adapted (piezophilic) marine microorganisms to be amenable to laboratory investigation. A brief discussion on genomic-guided approaches to detect the presence of biosynthetic loci even those that are silent or cryptic is also included.

  8. Enantiomeric Natural Products: Occurrence and Biogenesis**

    PubMed Central

    Finefield, Jennifer M.; Sherman, David H.; Kreitman, Martin; Williams, Robert M.

    2012-01-01

    In Nature, chiral natural products are usually produced in optically pure form; however, on occasion Nature is known to produce enantiomerically opposite metabolites. These enantiomeric natural products can arise in Nature from a single species, or from different genera and/or species. Extensive research has been carried out over the years in an attempt to understand the biogenesis of naturally occurring enantiomers, however, many fascinating puzzles and stereochemical anomalies still remain. PMID:22555867

  9. Variation in Breeding Systems in Hypericum Perforatum and Prunella Vulgaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effective conservation of new crop germplasm and its efficient use in new-crop development both rely on a clear understanding of the crop's reproductive biology. Hypericum perforatum (St. John's wort) and Prunella vulgaris (Common selfheal) are two medicinal plant species with potential for crop...

  10. [Content of rare earth elements in wild Hypericum japonicum Thunb].

    PubMed

    Wei, Zhen-Lin; Rui, Yu-Kui; Tian, Zhi-Huan

    2009-06-01

    Rare earth elements are important nutritional elements for human health, and today more and more attention has been paid to the effective components in Chinese traditional medicine, especially to rare earth elements. Fifteen rare earth elements in wild hypericum japonicum Thunb were analyzed by the methods of ICP-MS. The results showed that the concentrations of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Tm, Lu and Y ranged from 6 ng x g(-1) x DW to 14 522 ng x g(-1) x DW, and among them the concentrations of La, Ce and Nd were higher than 2 000 ng x g(-1) x DW. Compared with the concentration of rare earth elements in rice, corn, wheat and barley, the total concentration of rare earth elements in hypericum japonicum Thunb was much higher, which could be the mechanism of curative effect of hypericum japonicum Thunb on liverish diseases. The character of elements and the content of rare earth elements in soil should be responsible for the difference, but the distributive mechanism of rare earth elements in hypericum japonicum Thunb should be further studied.

  11. Two new prenylated phloroglucinol derivatives from Hypericum scabrum.

    PubMed

    Yang, Jian-Bo; Liu, Rang-Dong; Ren, Jin; Wei, Qian; Wang, Ai-Guo; Su, Ya-Lun

    2016-05-01

    Two new prenylated phloroglucinol derivatives (1-2), and a known compound furohyperforim isomer 2 (3), were isolated from the aerial parts of Hypericum scabrum. Their structures were elucidated by various spectroscopic methods, including MS, IR, UV, and NMR. PMID:26982201

  12. Cytotoxic Activity and Apoptosis Induction of Hypericum scabrum L.

    PubMed Central

    Hamzeloo-Moghadam, Maryam; Khalaj, Amir; Malekmohammadi, Maryam

    2015-01-01

    Background: One of the acquired biological hallmarks of tumor multistep development is the resistance of cancer cells to apoptosis; therefore, induction of apoptosis is an important therapeutic approach. Hypericum species are spread throughout the world and have been investigated for their biological properties. Objectives: Our previous studies had demonstrated cytotoxicity of Hypericum scabrum L. methanol extract against some tumor cell lines, suggesting the species for further studies. The objectives of the present study were to determine the most cytotoxic fraction of Hypericum scabrum L. and to assess the apoptosis induction ability of the most effective fraction as well as its methanol extract. The laboratory evidence has been presented to support the potency of Iranian Traditional Medicine (ITM) medicinal plants as a source of different biological activity surveys and drug discoveries. Materials and Methods: The present research is a descriptive study. The sampling strategy was based on ITM data of cancer phytotherapy. Hypericum scabrum was collected from Alborz province, Iran (2012) and the herbarium specimen was taxonomically identified. The petroleum ether, dichloromethane, and methanol fractions have been evaluated for cytotoxicity against M-CF7, A-549, HT-29, and HepG-2 cell lines through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide or MTT assay. The apoptosis induction ability has been assessed by activated caspase-3 inspection and Annexin V FITC/PI (propidium iodide) assays. Results: Di-chloromethane fraction demonstrated IC50 values of 25.72 μg/mL and 24.73 μg/mL against HT-29 and HepG-2 cell lines, respectively and IC50 values of petroleum ether fraction were 22.6 μg/mL and 18.31 μg/mL against HT-29 and HepG-2, respectively. The methanol fraction did not show cytotoxic activity. Both the methanol extract and the petroleum ether fraction of Hypericum scabrum L. revealed apoptosis induction ability. Conclusions: Considering the

  13. Recent Advances in Natural Product Discovery

    PubMed Central

    Luo, Yunzi; Cobb, Ryan E.; Zhao, Huimin

    2014-01-01

    Natural products have been and continue to be the source and inspiration for a substantial fraction of human therapeutics. Although the pharmaceutical industry has largely turned its back on natural product discovery efforts, such efforts continue to flourish in academia with promising results. Natural products have traditionally been identified from a top-down perspective, but more recently genomics- and bioinformatics-guided bottom-up approaches have provided powerful alternative strategies. Here we review recent advances in natural product discovery from both angles, including diverse sampling and innovative culturing and screening approaches, as well as genomics-driven discovery and genetic manipulation techniques for both native and heterologous expression. PMID:25260043

  14. Counting on natural products for drug design

    NASA Astrophysics Data System (ADS)

    Rodrigues, Tiago; Reker, Daniel; Schneider, Petra; Schneider, Gisbert

    2016-06-01

    Natural products and their molecular frameworks have a long tradition as valuable starting points for medicinal chemistry and drug discovery. Recently, there has been a revitalization of interest in the inclusion of these chemotypes in compound collections for screening and achieving selective target modulation. Here we discuss natural-product-inspired drug discovery with a focus on recent advances in the design of synthetically tractable small molecules that mimic nature's chemistry. We highlight the potential of innovative computational tools in processing structurally complex natural products to predict their macromolecular targets and attempt to forecast the role that natural-product-derived fragments and fragment-like natural products will play in next-generation drug discovery.

  15. Super Natural II--a database of natural products.

    PubMed

    Banerjee, Priyanka; Erehman, Jevgeni; Gohlke, Björn-Oliver; Wilhelm, Thomas; Preissner, Robert; Dunkel, Mathias

    2015-01-01

    Natural products play a significant role in drug discovery and development. Many topological pharmacophore patterns are common between natural products and commercial drugs. A better understanding of the specific physicochemical and structural features of natural products is important for corresponding drug development. Several encyclopedias of natural compounds have been composed, but the information remains scattered or not freely available. The first version of the Supernatural database containing ∼ 50,000 compounds was published in 2006 to face these challenges. Here we present a new, updated and expanded version of natural product database, Super Natural II (http://bioinformatics.charite.de/supernatural), comprising ∼ 326,000 molecules. It provides all corresponding 2D structures, the most important structural and physicochemical properties, the predicted toxicity class for ∼ 170,000 compounds and the vendor information for the vast majority of compounds. The new version allows a template-based search for similar compounds as well as a search for compound names, vendors, specific physical properties or any substructures. Super Natural II also provides information about the pathways associated with synthesis and degradation of the natural products, as well as their mechanism of action with respect to structurally similar drugs and their target proteins. PMID:25300487

  16. Identification and biosynthesis of acylphloroglucinols in Hypericum gentianoides.

    PubMed

    Crispin, Matthew C; Hur, Manhoi; Park, Taeseong; Kim, Young Hwan; Wurtele, Eve Syrkin

    2013-07-01

    Species of the genus Hypericum contain a rich array of unusual polyketides, however, only a small proportion of the over 450 Hypericum species, other than the popular medicinal supplement St. John's Wort (Hypericum perforatum), have even been chemically characterized. Hypericum gentianoides, a small annual used medicinally by Cherokee Americans, contains bioactive acylphloroglucinols. Here, we identify acylphloroglucinol constituents of H. gentianoides and determine a potential pathway to their synthesis. Liquid chromatography/electrospray ionization-mass spectrometry (LC/ESI-MS) and HPLC-UV indicate that the level of accumulation and profile of acylphloroglucinols in H. gentianoides vary little seasonally when grown in a greenhouse, but do vary with development and are highly dependent on the accession, highlighting the importance of the selection of plant material for study. We identify the chemical structures of the nine prevalent polyketides, based on LC/ESI-MS and hybrid quadrupole orthogonal time-of-flight (Q-TOF) mass spectrometry; these metabolites include one monomeric phlorisobutyrophenone (PIB) derivative and eight dimeric acylphloroglucinols. Q-TOF spectrometry was used to identify eight additional PIB derivatives that were not detected by LC/ESI-MS. These data lead us to propose that diacylphloroglucinols are synthesized via modification of PIB to yield diverse phloroglucinol and filicinic acids moieties, followed by dimerization of a phloroglucinol and a filicinic acid monomer to yield the observed complement of diacylphloroglucinols. The metabolomics data from H. gentianoides are accessible in plant metabolomics resource (PMR) (http://www.metnetdb.org/pmr), a public metabolomics database with analysis software for plants and microbial organisms. PMID:23600727

  17. Natural products that inhibit carbonic anhydrase.

    PubMed

    Poulsen, Sally-Ann; Davis, Rohan A

    2014-01-01

    The chemical diversity, binding specificity and propensity to interact with biological targets has inspired many researchers to utilize natural products as molecular probes. Almost all reported carbonic anhydrase inhibitors comprise a zinc binding group in their structure of which the primary sulfonamide moiety (-SO2NH2) is the foremost example and to a lesser extent the primary sulfamate (-O-SO2NH2) and sulfamide (-NH-SO2NH2) groups. Natural products that comprise these zinc binding groups in their structure are however rare and relatively few natural products have been explored as a source for novel carbonic anhydrase inhibitors. This chapter will highlight the recent and growing interest in carbonic anhydrase inhibitors sourced from nature, demonstrating that natural product chemical space presents a rich source of potential alternate chemotypes for the discovery of novel drug-like carbonic anhydrase inhibitors. PMID:24146386

  18. Targeting Nuclear Receptors with Marine Natural Products

    PubMed Central

    Yang, Chunyan; Li, Qianrong; Li, Yong

    2014-01-01

    Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators. PMID:24473166

  19. Targeting nuclear receptors with marine natural products.

    PubMed

    Yang, Chunyan; Li, Qianrong; Li, Yong

    2014-01-27

    Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators.

  20. Follow-up of natural products isolation.

    PubMed

    Cannell, Richard J P; Sarker, Satyajit D; Nahar, Lutfun

    2012-01-01

    Follow-up of natural products isolation refers to re-isolation of compound(s) of interest in larger amounts for further pharmacological testing, conclusive structure elucidation, structure modifications to synthesize analogs for structure-activity relationships (SAR) studies, preformulation and formulation studies or clinical trials. In addition to conventional synthetic chemistry approaches, several other methodologies can be applied for following-up natural products isolation. This chapter outlines, with specific examples, various strategies and methods involved in follow-up of natural products isolation. PMID:22367909

  1. Biodegradation potential of a modified natural product

    SciTech Connect

    Sajjad, W.

    1996-12-31

    Biodegradation potential of a modified natural product for treating petroleum contaminated soils was investigated along with some commercially available microbial cultures in three different scales from a laboratory to pilot to case studies. The modified natural product is lignocellulosic in nature and proprietary product of a company in Iowa. The production process of this product involves mechanical size reduction, blending/coating, and aerobic digestion of hay, corn cob residue, straw or crop residue in presence of poultry manure. The degradation kinetics of the petroleum products in the contaminated soils were measured both directly and indirectly. Residual petroleum products in different soils (treated and untreated) at various time periods were quantified by gas chromatographic (GC) analysis on extracted samples. The indirect assessment of the kinetics of biological activity involved the measurement of CO{sub 2} evolved from flasks (250 ml capacity) containing contaminated soil (about 50 ml) with various treatments. The results indicated that the biodegradation kinetics of petroleum products in the contaminated soils were significantly improved by treatment with this modified natural product. In most cases tested, this product performed significantly better than the available commercial bacterial cultures for biological removal of petroleum products from contaminated soils. This study also demonstrated the significance of temperature and moisture content in biodegradation kinetics.

  2. Metal content monitoring in Hypericum perforatum pharmaceutical derivatives by atomic absorption and emission spectrometry.

    PubMed

    Gomez, María R; Soledad, Cerutti; Olsina, Roberto A; Silva, María F; Martínez, Luis D

    2004-02-18

    Metals have been investigated in different plant materials in order to establish their normal concentration range and consider their role in plants as part of human medicinal treatment. Metal monitoring as a pattern recognition method is a promising tool in the characterization and/or standardization of phytomedicines. In the present work measurable amounts of Ca, Cu, K, Li, Mg, Mn, Na, Ni, and Zn were detected in phytopharmaceutical derivatives of Hypericum perforatum by atomic techniques. Atomic methodologies like flame atomic absorption spectrometry (FAAS) and electrothermal atomic absorption spectrometry (ETAAS) allow reliable determination of mineral content in pharmaceutical quality control of medicinal plants. Additionally, capillary electrophoresis (CE) patterns of characteristic components (fingerprints) have been performed for the search of adulterants in phytopharmaceutical products. PMID:15127813

  3. Characterizing the Metabolic Fingerprint and Anti-inflammatory Activity of Hypericum gentianoides

    PubMed Central

    Hillwig, Matthew L.; Hammer, Kimberly D. P.; Birt, Diane F.; Wurtele, Eve Syrkin

    2009-01-01

    In this paper we characterize the metabolic fingerprint and first reported anti-inflammatory activity of Hypericum gentianoides. H. gentianoides has a history of medical use by Native Americans, but it has been studied very little for biological activity. High-performance liquid chromatography (HPLC) and liquid chromatography–electrospray ionization–mass spectrometry (LC-ESI-MS) analyses of a methanol extract show that H. gentianoides contains a family of over nine related compounds that have retention times, mass spectra, and a distinctive UV absorption spectra characteristic of certain acyl-phloroglucinols. These metabolites are abundant relative to other secondary products present in H. gentianoides, accounting for approximately 0.2 g per gram of dry plant tissue. H. gentianoides methanol extracts and a specific semipreparative HPLC fraction from these extracts containing the putative acyl-phloroglucinols reduce prostaglandin E2 synthesis in mammalian macrophages. PMID:18512936

  4. Hypermongones A-J, Rare Methylated Polycyclic Polyprenylated Acylphloroglucinols from the Flowers of Hypericum monogynum.

    PubMed

    Xu, Wen-Jun; Zhu, Meng-Di; Wang, Xiao-Bing; Yang, Ming-Hua; Luo, Jun; Kong, Ling-Yi

    2015-05-22

    Hypermongones A-J (1-10), rare methylated polycyclic polyprenylated acylphloroglucinol derivatives, together with three known simple acylphloroglucinols (11-13) as their plausible biogenetic precursors, were identified from the flowers of Hypericum monogynum. The structures of 1-10 were elucidated by analysis of their 1D and 2D NMR spectroscopic data; the absolute configuration of their polycyclic skeleton was determined by the electronic circular dichroism exciton chirality method and was subsequently confirmed by an X-ray diffraction study of 1. The evaluation of their inhibitory effects on nitric oxide (NO) production in lipopolysaccharide-induced RAW264.7 cells revealed that compound 7 exhibited significant NO inhibition activity, with an IC50 value of 9.5 μM. PMID:25924023

  5. Marine actinomycete diversity and natural product discovery.

    PubMed

    Jensen, Paul R; Mincer, Tracy J; Williams, Philip G; Fenical, William

    2005-01-01

    Microbial natural products remain an important resource for drug discovery yet the microorganisms inhabiting the world's oceans have largely been overlooked in this regard. The recent discovery of novel secondary metabolites from taxonomically unique populations of marine actinomycetes suggests that these bacteria add an important new dimension to microbial natural product research. Continued efforts to characterize marine actinomycete diversity and how adaptations to the marine environment affect secondary metabolite production will create a better understanding of the potential utility of these bacteria as a source of useful products for biotechnology.

  6. Cancer wars: Natural products strike back

    NASA Astrophysics Data System (ADS)

    Basmadjian, Christine; Zhao, Qian; Djehal, Amel; Bentouhami, Embarek; Nebigil, Canan; Johnson, Roger; Serova, Maria; De Gramont, Armand; Faivre, Sandrine; Raymond, Eric; Désaubry, Laurent

    2014-05-01

    Natural products have historically been a mainstay source of anticancer drugs, but in the 90’s they fell out of favor in pharmaceutical companies with the emergence of targeted therapies, which rely on antibodies or small synthetic molecules identified by high throughput screening. Although targeted therapies greatly improved the treatment of a few cancers, the benefit has remained disappointing for many sol¬¬id tumors, which revitalized the interest in natural products. With the approval of rapamycin in 2007, twelve novel natural product derivatives have been brought to market. The present review describes the discovery and development of these new anticancer drugs and highlights the peculiarities of natural product and new trends in this exciting field of drug discovery.

  7. Cancer wars: natural products strike back

    PubMed Central

    Basmadjian, Christine; Zhao, Qian; Bentouhami, Embarek; Djehal, Amel; Nebigil, Canan G.; Johnson, Roger A.; Serova, Maria; de Gramont, Armand; Faivre, Sandrine; Raymond, Eric; Désaubry, Laurent G.

    2014-01-01

    Natural products have historically been a mainstay source of anticancer drugs, but in the 90's they fell out of favor in pharmaceutical companies with the emergence of targeted therapies, which rely on antibodies or small synthetic molecules identified by high throughput screening. Although targeted therapies greatly improved the treatment of a few cancers, the benefit has remained disappointing for many solid tumors, which revitalized the interest in natural products. With the approval of rapamycin in 2007, 12 novel natural product derivatives have been brought to market. The present review describes the discovery and development of these new anticancer drugs and highlights the peculiarities of natural product and new trends in this exciting field of drug discovery. PMID:24822174

  8. Natural products from the genus tephrosia.

    PubMed

    Chen, Yinning; Yan, Tao; Gao, Chenghai; Cao, Wenhao; Huang, Riming

    2014-01-01

    The genus Tephrosia, belonging to the Leguminosae family, is a large pantropical genus of more than 350 species, many of which have important traditional uses in agriculture. This review not only outlines the source, chemistry and biological evaluations of natural products from the genus Tephrosia worldwide that have appeared in literature from 1910 to December 2013, but also covers work related to proposed biosynthetic pathways and synthesis of some natural products from the genus Tephrosia, with 105 citations and 168 new compounds.

  9. Antioxidant, antimicrobial activities and fatty acid components of flower, leaf, stem and seed of Hypericum scabrum.

    PubMed

    Shafaghat, Ali

    2011-11-01

    The hexane extracts of flower, leaf, stem, and seed of Hypericum scabrum, which were collected from northwestern Iran, were obtained by extraction in a Soxhlet apparatus. The fatty acids were converted to methyl esters and determined by gas chromatography/flame ionization detector (GC/FID) and gas chromatography/mass spectrometry (GC/MS) systems. The hexane extract from the flower, leaf, stem, and seed contained 39.1%, 43.2%, 29.0%, and 37.6% of omega-3 fatty acids, respectively. The other main components of the flower extract were tetracosane (12.2%) and palmitic acid (9.3%), and that of the leaf extract was palmitic acid (7.4%). The stem and seed extracts contained bis(2-ethylhexyl)phthalate (18.7% and 35.7%), nonacosane (11.7% and 3.9%) and linoleic acid (6.5% and 6.9%) as major components. The hexane extracts of different parts from H. scabrum represent an important source of omega-3 fatty acids in several Hypericum species. The antioxidant activity of all hexane extracts was evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging method. The results indicate that hexane extracts from different parts of H. scabrum possess considerable antioxidant activity. The highest radical scavenging activity was detected in seed, which had an IC50 = 165 microg/mL. The antimicrobial activity of the extracts of those samples were determined against seven Gram-positive and Gram-negative bacteria (Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, S. epidermidis, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae), as well as three fungi (Candida albicans, Saccharomyces cerevisiae, and Aspergillus niger). The bioassay showed that the oil exhibited moderate antimicrobial activity. This study reveals that the all parts of this plant are attractive sources of fatty acid components, especially the essential ones, as well as of effective natural antioxidants. PMID:22224301

  10. How EIA Estimates Natural Gas Production

    EIA Publications

    2004-01-01

    The Energy Information Administration (EIA) publishes estimates monthly and annually of the production of natural gas in the United States. The estimates are based on data EIA collects from gas producing states and data collected by the U. S. Minerals Management Service (MMS) in the Department of Interior. The states and MMS collect this information from producers of natural gas for various reasons, most often for revenue purposes. Because the information is not sufficiently complete or timely for inclusion in EIA's Natural Gas Monthly (NGM), EIA has developed estimation methodologies to generate monthly production estimates that are described in this document.

  11. Sequence-selective DNA recognition: natural products and nature's lessons.

    PubMed

    Tse, Winston C; Boger, Dale L

    2004-12-01

    Biologically active, therapeutically useful, DNA binding natural products continue to reveal new paradigms for sequence-selective recognition, to enlist beautiful mechanisms of in situ activation for DNA modification, to define new therapeutic targets, to exploit new mechanisms to achieve cellular selectivity, and to provide a rich source of new drugs. These attributes arise in compact structures of complex integrated function.

  12. Cinnamate:CoA ligase initiates the biosynthesis of a benzoate-derived xanthone phytoalexin in Hypericum calycinum cell cultures.

    PubMed

    Gaid, Mariam M; Sircar, Debabrata; Müller, Andreas; Beuerle, Till; Liu, Benye; Ernst, Ludger; Hänsch, Robert; Beerhues, Ludger

    2012-11-01

    Although a number of plant natural products are derived from benzoic acid, the biosynthesis of this structurally simple precursor is poorly understood. Hypericum calycinum cell cultures accumulate a benzoic acid-derived xanthone phytoalexin, hyperxanthone E, in response to elicitor treatment. Using a subtracted complementary DNA (cDNA) library and sequence information about conserved coenzyme A (CoA) ligase motifs, a cDNA encoding cinnamate:CoA ligase (CNL) was isolated. This enzyme channels metabolic flux from the general phenylpropanoid pathway into benzenoid metabolism. HcCNL preferred cinnamic acid as a substrate but failed to activate benzoic acid. Enzyme activity was strictly dependent on the presence of Mg²⁺ and K⁺ at optimum concentrations of 2.5 and 100 mM, respectively. Coordinated increases in the Phe ammonia-lyase and HcCNL transcript levels preceded the accumulation of hyperxanthone E in cell cultures of H. calycinum after the addition of the elicitor. HcCNL contained a carboxyl-terminal type 1 peroxisomal targeting signal made up by the tripeptide Ser-Arg-Leu, which directed an amino-terminal reporter fusion to the peroxisomes. Masking the targeting signal by carboxyl-terminal reporter fusion led to cytoplasmic localization. A phylogenetic tree consisted of two evolutionarily distinct clusters. One cluster was formed by CoA ligases related to benzenoid metabolism, including HcCNL. The other cluster comprised 4-coumarate:CoA ligases from spermatophytes, ferns, and mosses, indicating divergence of the two clades prior to the divergence of the higher plant lineages.

  13. Naturally occurring products in cancer therapy

    PubMed Central

    Rajesh, E.; Sankari, Leena S.; Malathi, L.; Krupaa, Jayasri R.

    2015-01-01

    Natural products have been used for the treatment of various diseases and are becoming an important research area for drug discovery. These products, especially phytochemicals have been extensively studies and have exhibited anti-carcinogenic activities by interfering with the initiation, development and progression of cancer through the modulation of various mechanisms including cellular proliferation, differentiation, apoptosis, angiogenesis, and metastasis. This concept is gaining attention because it is a cost-effective alternative to cancer treatment. In this article, we have discussed some of the naturally occurring products used in cancer treatment. PMID:26015704

  14. Natural product discovery: past, present, and future.

    PubMed

    Katz, Leonard; Baltz, Richard H

    2016-03-01

    Microorganisms have provided abundant sources of natural products which have been developed as commercial products for human medicine, animal health, and plant crop protection. In the early years of natural product discovery from microorganisms (The Golden Age), new antibiotics were found with relative ease from low-throughput fermentation and whole cell screening methods. Later, molecular genetic and medicinal chemistry approaches were applied to modify and improve the activities of important chemical scaffolds, and more sophisticated screening methods were directed at target disease states. In the 1990s, the pharmaceutical industry moved to high-throughput screening of synthetic chemical libraries against many potential therapeutic targets, including new targets identified from the human genome sequencing project, largely to the exclusion of natural products, and discovery rates dropped dramatically. Nonetheless, natural products continued to provide key scaffolds for drug development. In the current millennium, it was discovered from genome sequencing that microbes with large genomes have the capacity to produce about ten times as many secondary metabolites as was previously recognized. Indeed, the most gifted actinomycetes have the capacity to produce around 30-50 secondary metabolites. With the precipitous drop in cost for genome sequencing, it is now feasible to sequence thousands of actinomycete genomes to identify the "biosynthetic dark matter" as sources for the discovery of new and novel secondary metabolites. Advances in bioinformatics, mass spectrometry, proteomics, transcriptomics, metabolomics and gene expression are driving the new field of microbial genome mining for applications in natural product discovery and development.

  15. Natural product discovery: past, present, and future.

    PubMed

    Katz, Leonard; Baltz, Richard H

    2016-03-01

    Microorganisms have provided abundant sources of natural products which have been developed as commercial products for human medicine, animal health, and plant crop protection. In the early years of natural product discovery from microorganisms (The Golden Age), new antibiotics were found with relative ease from low-throughput fermentation and whole cell screening methods. Later, molecular genetic and medicinal chemistry approaches were applied to modify and improve the activities of important chemical scaffolds, and more sophisticated screening methods were directed at target disease states. In the 1990s, the pharmaceutical industry moved to high-throughput screening of synthetic chemical libraries against many potential therapeutic targets, including new targets identified from the human genome sequencing project, largely to the exclusion of natural products, and discovery rates dropped dramatically. Nonetheless, natural products continued to provide key scaffolds for drug development. In the current millennium, it was discovered from genome sequencing that microbes with large genomes have the capacity to produce about ten times as many secondary metabolites as was previously recognized. Indeed, the most gifted actinomycetes have the capacity to produce around 30-50 secondary metabolites. With the precipitous drop in cost for genome sequencing, it is now feasible to sequence thousands of actinomycete genomes to identify the "biosynthetic dark matter" as sources for the discovery of new and novel secondary metabolites. Advances in bioinformatics, mass spectrometry, proteomics, transcriptomics, metabolomics and gene expression are driving the new field of microbial genome mining for applications in natural product discovery and development. PMID:26739136

  16. Molecular phylogenetics and morphological evolution of St. John's wort (Hypericum; Hypericaceae).

    PubMed

    Nürk, Nicolai M; Madriñán, Santiago; Carine, Mark A; Chase, Mark W; Blattner, Frank R

    2013-01-01

    Phylogenetic hypotheses for the large cosmopolitan genus Hypericum (St. John's wort) have previously been based on morphology, and molecular studies have thus far included only a few species. In this study, we used 360 sequences of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA (nrDNA) for 206 species representing Hypericum (incl. Triadenum and Thornea) and three other genera of Hypericaceae to generate an explicit phylogenetic hypothesis for the genus using parsimony and model-based methods. The results indicate that the small genus Triadenum is nested in a clade within Hypericum containing most of the New World species. Sister to Hypericum is Thornea from Central America. Within Hypericum, three large clades and two smaller grades were found; these are based on their general morphology, especially characters used previously in taxonomy of the genus. Relative to the most recent classification, around 60% of the sections of Hypericum were monophyletic. We used a Bayesian approach to reconstruct ancestral states of selected morphological characters, which resulted in recognition of characters that support major clades within the genus and a revised interpretation of morphological evolution in Hypericum. The shrubby habit represents the plesiomorphic state from which herbs evolved several times. Arborescent species have radiated convergently in high-elevation habitats in tropical Africa and South America.

  17. Using Genomics for Natural Product Structure Elucidation.

    PubMed

    Tietz, Jonathan I; Mitchell, Douglas A

    2016-01-01

    Natural products (NPs) are the most historically bountiful source of chemical matter for drug development-especially for anti-infectives. With insights gleaned from genome mining, interest in natural product discovery has been reinvigorated. An essential stage in NP discovery is structural elucidation, which sheds light not only on the chemical composition of a molecule but also its novelty, properties, and derivatization potential. The history of structure elucidation is replete with techniquebased revolutions: combustion analysis, crystallography, UV, IR, MS, and NMR have each provided game-changing advances; the latest such advance is genomics. All natural products have a genetic basis, and the ability to obtain and interpret genomic information for structure elucidation is increasingly available at low cost to non-specialists. In this review, we describe the value of genomics as a structural elucidation technique, especially from the perspective of the natural product chemist approaching an unknown metabolite. Herein we first introduce the databases and programs of interest to the natural products chemist, with an emphasis on those currently most suited for general usability. We describe strategies for linking observed natural product-linked phenotypes to their corresponding gene clusters. We then discuss techniques for extracting structural information from genes, illustrated with numerous case examples. We also provide an analysis of the biases and limitations of the field with recommendations for future development. Our overview is not only aimed at biologically-oriented researchers already at ease with bioinformatic techniques, but also, in particular, at natural product, organic, and/or medicinal chemists not previously familiar with genomic techniques.

  18. Computational approaches to natural product discovery.

    PubMed

    Medema, Marnix H; Fischbach, Michael A

    2015-09-01

    Starting with the earliest Streptomyces genome sequences, the promise of natural product genome mining has been captivating: genomics and bioinformatics would transform compound discovery from an ad hoc pursuit to a high-throughput endeavor. Until recently, however, genome mining has advanced natural product discovery only modestly. Here, we argue that the development of algorithms to mine the continuously increasing amounts of (meta)genomic data will enable the promise of genome mining to be realized. We review computational strategies that have been developed to identify biosynthetic gene clusters in genome sequences and predict the chemical structures of their products. We then discuss networking strategies that can systematize large volumes of genetic and chemical data and connect genomic information to metabolomic and phenotypic data. Finally, we provide a vision of what natural product discovery might look like in the future, specifically considering longstanding questions in microbial ecology regarding the roles of metabolites in interspecies interactions.

  19. Computational approaches to natural product discovery

    PubMed Central

    Medema, Marnix H.; Fischbach, Michael A.

    2016-01-01

    From the earliest Streptomyces genome sequences, the promise of natural product genome mining has been captivating: genomics and bioinformatics would transform compound discovery from an ad hoc pursuit to a high-throughput endeavor. Until recently, however, genome mining has advanced natural product discovery only modestly. Here, we argue that the development of algorithms to mine the continuously increasing amounts of (meta)genomic data will enable the promise of genome mining to be realized. We review computational strategies that have been developed to identify biosynthetic gene clusters in genome sequences and predict the chemical structures of their products. We then discuss networking strategies that can systematize large volumes of genetic and chemical data, and connect genomic information to metabolomic and phenotypic data. Finally, we provide a vision of what natural product discovery might look like in the future, specifically considering long-standing questions in microbial ecology regarding the roles of metabolites in interspecies interactions. PMID:26284671

  20. Investigation of the Antioxidant and Hepatoprotective Potential of Hypericum mysorense

    PubMed Central

    Hariharapura, Raghu C.; Srinivasan, Ramamurthy; Ashok, Godavarthi; Dongre, Santoshkumar H.; Jagani, Hitesh V.; Vijayan, Pottekkad

    2014-01-01

    Background: Hypericum is a well-known plant genus in herbal medicine. Hypericum mysorense (Family: Hypericaceae), a plant belonging to the same genus, is well known in folklore medicine for its varied therapeutic potential. Objective: The aim of the present study was to investigate the different parts of the plant for antioxidant and hepatoprotective properties. Materials and Methods: The methanol extracts of Hypericum mysorense prepared from various parts of the plant were tested in vitro for their free radical scavenging activity against ABTS• (diammonium salt), DPPH• (1,1-diphenyl-2-picrylhydrazyl), NO•, O2•− and •OH radicals, using standard systems of assays. The total antioxidant capacity, total phenolic and total flavonoid content of the extracts were analyzed. Further, the leaf and flowering top extracts were tested for their in vivo antioxidant and hepatoprotective activities on Wistar rats using a carbon tetrachloride-induced hepatic injury model. Results: The leaf and flowering top extract showed potent antioxidant activity and also possessed highest total phenolic and flavonoid content. The antioxidant activity and the total phenolic and flavonoid content present in these extracts showed a good correlation. The leaf and flowering top extracts at 200 mg/kg restored aspartate amino transferase (ASAT), alanine amino transferase (ALAT), alkaline phosphatase (ALP), total bilirubin and protein levels significantly in CCl4-intoxicated rats. The tested extracts also showed a significant (p < 0.001) reduction in 2-thiobarbituric acid reactive substance (TBARS) levels with an increase in SOD and CAT levels. The histopathology of liver did not show any toxicity after the treatment with the extracts. The active extracts were standardized using two marker compounds, hyperoside and rutin, which were isolated from the plant by HPLC. HPLC studies revealed that the maximum concentration of hyperoside and rutin is present in the flowering top extract. PMID

  1. Antibiotics: natural products essential to human health.

    PubMed

    Demain, Arnold L

    2009-11-01

    For more than 50 years, natural products have served us well in combating infectious bacteria and fungi. Microbial and plant secondary metabolites helped to double our life span during the 20th century, reduced pain and suffering, and revolutionized medicine. Most antibiotics are either (i) natural products of microorganisms, (ii) semi-synthetically produced from natural products, or (iii) chemically synthesized based on the structure of the natural products. Production of antibiotics began with penicillin in the late 1940s and proceeded with great success until the 1970-1980s when it became harder and harder to discover new and useful products. Furthermore, resistance development in pathogens became a major problem, which is still with us today. In addition, new pathogens are continually emerging and there are still bacteria that are not eliminated by any antibiotic, e.g., Pseudomonas aeruginosa. In addition to these problems, many of the major pharmaceutical companies have abandoned the antibiotic field, leaving much of the discovery efforts to small companies, new companies, and the biotechnology industries. Despite these problems, development of new antibiotics has continued, albeit at a much lower pace than in the last century. We have seen the (i) appearance of newly discovered antibiotics (e.g., candins), (ii) development of old but unutilized antibiotics (e.g., daptomycin), (iii) production of new semi-synthetic versions of old antibiotics (e.g., glycylcyclines, streptogrammins), as well as the (iv) very useful application of old but underutilized antibiotics (e.g., teicoplanin).

  2. Synthetic Biological Approaches to Natural Product Biosynthesis

    PubMed Central

    Winter, Jaclyn M; Tang, Yi

    2012-01-01

    Small molecules produced in Nature continue to be an inspiration for the development of new therapeutic agents. These natural products possess exquisite chemical diversity, which gives rise to their wide range of biological activities. In their host organism, natural products are assembled and modified by dedicated biosynthetic pathways that Nature has meticulously developed. Often times, the complex structures or chemical modifications instated by these pathways are difficult to replicate using traditional synthetic methods. An alternative approach for creating or enhancing the structural variation of natural products is through combinatorial biosynthesis. By rationally reprogramming and manipulating the biosynthetic machinery responsible for their production, unnatural metabolites that were otherwise inaccessible can be obtained. Additionally, new chemical structures can be synthesized or derivatized by developing the enzymes that carry out these complicated chemical reactions into biocatalysts. In this review, we will discuss a variety of combinatorial biosynthetic strategies, their technical challenges, and highlight some recent (since 2007) examples of rationally designed unnatural metabolites, as well as platforms that have been established for the production and modification of clinically important pharmaceutical compounds. PMID:22221832

  3. Psychoactive natural products: overview of recent developments.

    PubMed

    Ujváry, István

    2014-01-01

    Natural psychoactive substances have fascinated the curious mind of shamans, artists, scholars and laymen since antiquity. During the twentieth century, the chemical composition of the most important psychoactive drugs, that is opium, cannabis, coca and "magic mushrooms", has been fully elucidated. The mode of action of the principal ingredients has also been deciphered at the molecular level. In the past two decades, the use of herbal drugs, such as kava, kratom and Salvia divinorum, began to spread beyond their traditional geographical and cultural boundaries. The aim of the present paper is to briefly summarize recent findings on the psychopharmacology of the most prominent psychoactive natural products. Current knowledge on a few lesser-known drugs, including bufotenine, glaucine, kava, betel, pituri, lettuce opium and kanna is also reviewed. In addition, selected cases of alleged natural (or semi-natural) products are also mentioned. PMID:24695249

  4. Countercurrent Separation of Natural Products: An Update

    PubMed Central

    2015-01-01

    This work assesses the current instrumentation, method development, and applications in countercurrent chromatography (CCC) and centrifugal partition chromatography (CPC), collectively referred to as countercurrent separation (CCS). The article provides a critical review of the CCS literature from 2007 since our last review (J. Nat. Prod.2008, 71, 1489–1508), with a special emphasis on the applications of CCS in natural products research. The current state of CCS is reviewed in regard to three continuing topics (instrumentation, solvent system development, theory) and three new topics (optimization of parameters, workflow, bioactivity applications). The goals of this review are to deliver the necessary background with references for an up-to-date perspective of CCS, to point out its potential for the natural product scientist, and thereby to induce new applications in natural product chemistry, metabolome, and drug discovery research involving organisms from terrestrial and marine sources. PMID:26177360

  5. Natural Product Sugar Biosynthesis and Enzymatic Glycodiversification**

    PubMed Central

    Thibodeaux, Christopher J.; Melançon, Charles E.; Liu, Hung-wen

    2009-01-01

    Many biologically active small molecule natural products produced by microorganisms derive their activities from sugar substituents. Changing the structures of these sugars can have a profound impact on the biological properties of the parent compounds. This realization has inspired attempts to derivatize the sugar moieties of these natural products through exploitation of the sugar biosynthetic machinery. This approach requires an understanding of the biosynthetic pathway of each target sugar and detailed mechanistic knowledge of the key enzymes. Scientists have begun to unravel the biosynthetic logic behind the assembly of many glycosylated natural products, and have found that a core set of enzyme activities is mixed and matched to synthesize the diverse sugar structures observed in nature. Remarkably, many of these sugar biosynthetic enzymes and glycosyltransferases also exhibit relaxed substrate specificity. The promiscuity of these enzymes has prompted efforts to modify the sugar structures and/or alter the glycosylation patterns of natural products via metabolic pathway engineering and/or enzymatic glycodiversification. In applied biomedical research, these studies will enable the development of new glycosylation tools and generate novel glycoforms of secondary metabolites with useful biological activity. PMID:19058170

  6. Antiviral Natural Products and Herbal Medicines

    PubMed Central

    Lin, Liang-Tzung; Hsu, Wen-Chan; Lin, Chun-Ching

    2014-01-01

    Viral infections play an important role in human diseases, and recent outbreaks in the advent of globalization and ease of travel have underscored their prevention as a critical issue in safeguarding public health. Despite the progress made in immunization and drug development, many viruses lack preventive vaccines and efficient antiviral therapies, which are often beset by the generation of viral escape mutants. Thus, identifying novel antiviral drugs is of critical importance and natural products are an excellent source for such discoveries. In this mini-review, we summarize the antiviral effects reported for several natural products and herbal medicines. PMID:24872930

  7. Effect of Hypericum perforatum on intraperitoneal adhesion formation in rats

    PubMed Central

    Hızlı, Fatih; Köşüş, Aydın; Yılmaz, Saynur; Köşüş, Nermin; Haltaş, Hacer; Dede, Hülya; Kafalı, Hasan

    2013-01-01

    Introduction The aim of this study was to evaluate the efficacy of Hypericum perforatum for prevention of adhesion formation in rats. Material and methods Twenty-four female wistar rats underwent left uterine horn adhesion model. Rats were randomised into 4 groups. Group 1 (Control): Closure of abdominal incision without any agent administration. Group 2: Closure of incision after administration of intraperitoneal (i.p.) Ringer's lactate solution. Group 3: Closure of incision after administration of i.p. olive oil (diluent of H. perforatum). Group 4: Hypericum perforatum extract (Ecodab®) was administered i.p. before the closure of incision. Fourteen days later, relaparatomy was performed and surgical adhesion scores, inflammation and fibrosis scores were noted. Groups were compared according to these scores. Results There was statistical significant difference between ringer's lactate group and olive oil group according to surgical adhesion score (p = 0.009). However, groups were not different according to inflammation and fibrosis scores (p > 0.05). Conclusions Despite antiinflammatory, antioxidants and antimicrobial properties of H. perforatum, our results revealed no positive effect of H. perforatum on the prevention of intraperitoneal adhesion formation. PMID:24904678

  8. Metabolic Engineering for the Production of Natural Products

    PubMed Central

    Pickens, Lauren B.; Tang, Yi; Chooi, Yit-Heng

    2014-01-01

    Natural products and natural product derived compounds play an important role in modern healthcare as frontline treatments for many diseases and as inspiration for chemically synthesized therapeutics. With advances in sequencing and recombinant DNA technology, many of the biosynthetic pathways responsible for the production of these chemically complex and pharmaceutically valuable compounds have been elucidated. With an ever expanding toolkit of biosynthetic components, metabolic engineering is an increasingly powerful method to improve natural product titers and generate novel compounds. Heterologous production platforms have enabled access to pathways from difficult to culture strains; systems biology and metabolic modeling tools have resulted in increasing predictive and analytic capabilities; advances in expression systems and regulation have enabled the fine-tuning of pathways for increased efficiency, and characterization of individual pathway components has facilitated the construction of hybrid pathways for the production of new compounds. These advances in the many aspects of metabolic engineering have not only yielded fascinating scientific discoveries but also make it an increasingly viable approach for the optimization of natural product biosynthesis. PMID:22432617

  9. An automated Genomes-to-Natural Products platform (GNP) for the discovery of modular natural products

    PubMed Central

    Johnston, Chad W.; Skinnider, Michael A.; Wyatt, Morgan A.; Li, Xiang; Ranieri, Michael R. M.; Yang, Lian; Zechel, David L.; Ma, Bin; Magarvey, Nathan A.

    2015-01-01

    Bacterial natural products are a diverse and valuable group of small molecules, and genome sequencing indicates that the vast majority remain undiscovered. The prediction of natural product structures from biosynthetic assembly lines can facilitate their discovery, but highly automated, accurate, and integrated systems are required to mine the broad spectrum of sequenced bacterial genomes. Here we present a genome-guided natural products discovery tool to automatically predict, combinatorialize and identify polyketides and nonribosomal peptides from biosynthetic assembly lines using LC–MS/MS data of crude extracts in a high-throughput manner. We detail the directed identification and isolation of six genetically predicted polyketides and nonribosomal peptides using our Genome-to-Natural Products platform. This highly automated, user-friendly programme provides a means of realizing the potential of genetically encoded natural products. PMID:26412281

  10. New Methodology for Natural Gas Production Estimates

    EIA Publications

    2010-01-01

    A new methodology is implemented with the monthly natural gas production estimates from the EIA-914 survey this month. The estimates, to be released April 29, 2010, include revisions for all of 2009. The fundamental changes in the new process include the timeliness of the historical data used for estimation and the frequency of sample updates, both of which are improved.

  11. Chocolate: A Marvelous Natural Product of Chemistry

    ERIC Educational Resources Information Center

    Tannenbaum, Ginger

    2004-01-01

    The study of chocolate, a natural product, can be beneficial for the chemistry students as they ask frequently about the relevancy of their chemistry classes. The history of chocolate, its chemical and physical changes during processing, its composition, different crystalline forms, tempering and its viscosity are discussed.

  12. Natural Products for Chemoprevention of Breast Cancer.

    PubMed

    Ko, Eun-Yi; Moon, Aree

    2015-12-01

    Breast cancer is the primary cause of cancer death in women. Although current therapies have shown some promise against breast cancer, there is still no effective cure for the majority of patients in the advanced stages of breast cancer. Development of effective agents to slow, reduce, or reverse the incidence of breast cancer in high-risk women is necessary. Chemoprevention of breast cancer by natural products is advantageous, as these compounds have few side effects and low toxicity compared to synthetic compounds. In the present review, we summarize natural products which exert chemopreventive activities against breast cancer, such as curcumin, sauchinone, lycopene, denbinobin, genipin, capsaicin, and ursolic acid. This review examines the current knowledge about natural compounds and their mechanisms that underlie breast cancer chemopreventive activity both in vitro and in vivo. The present review may provide information on the use of these compounds for the prevention of breast cancer. PMID:26734584

  13. Natural Products for Chemoprevention of Breast Cancer

    PubMed Central

    Ko, Eun-Yi; Moon, Aree

    2015-01-01

    Breast cancer is the primary cause of cancer death in women. Although current therapies have shown some promise against breast cancer, there is still no effective cure for the majority of patients in the advanced stages of breast cancer. Development of effective agents to slow, reduce, or reverse the incidence of breast cancer in high-risk women is necessary. Chemoprevention of breast cancer by natural products is advantageous, as these compounds have few side effects and low toxicity compared to synthetic compounds. In the present review, we summarize natural products which exert chemopreventive activities against breast cancer, such as curcumin, sauchinone, lycopene, denbinobin, genipin, capsaicin, and ursolic acid. This review examines the current knowledge about natural compounds and their mechanisms that underlie breast cancer chemopreventive activity both in vitro and in vivo. The present review may provide information on the use of these compounds for the prevention of breast cancer. PMID:26734584

  14. Natural products in modern life science

    PubMed Central

    Göransson, Ulf; Alsmark, Cecilia; Wedén, Christina; Backlund, Anders

    2010-01-01

    With a realistic threat against biodiversity in rain forests and in the sea, a sustainable use of natural products is becoming more and more important. Basic research directed against different organisms in Nature could reveal unexpected insights into fundamental biological mechanisms but also new pharmaceutical or biotechnological possibilities of more immediate use. Many different strategies have been used prospecting the biodiversity of Earth in the search for novel structure–activity relationships, which has resulted in important discoveries in drug development. However, we believe that the development of multidisciplinary incentives will be necessary for a future successful exploration of Nature. With this aim, one way would be a modernization and renewal of a venerable proven interdisciplinary science, Pharmacognosy, which represents an integrated way of studying biological systems. This has been demonstrated based on an explanatory model where the different parts of the model are explained by our ongoing research. Anti-inflammatory natural products have been discovered based on ethnopharmacological observations, marine sponges in cold water have resulted in substances with ecological impact, combinatory strategy of ecology and chemistry has revealed new insights into the biodiversity of fungi, in depth studies of cyclic peptides (cyclotides) has created new possibilities for engineering of bioactive peptides, development of new strategies using phylogeny and chemography has resulted in new possibilities for navigating chemical and biological space, and using bioinformatic tools for understanding of lateral gene transfer could provide potential drug targets. A multidisciplinary subject like Pharmacognosy, one of several scientific disciplines bridging biology and chemistry with medicine, has a strategic position for studies of complex scientific questions based on observations in Nature. Furthermore, natural product research based on intriguing scientific

  15. The case of Hypericum rochelii Griseb. & Schenk and Hypericum umbellatum A. Kern. essential oils: chemical composition and antimicrobial activity.

    PubMed

    Dorđević, Aleksandra; Lazarević, Jelena; Smelcerović, Andrija; Stojanović, Gordana

    2013-04-15

    The chemical composition and antimicrobial activity studies on the essential oils of Hypericum rochelii Griseb. & Schenk and Hypericum umbellatum A. Kern. have been carried out for the first time. Seventy-nine compounds were identified in the essential oil of H. rochelii with n-nonane (24.7%), β-pinene (22.4%), germacrene D (7.5%), n-undecane (6.8%) and α-pinene (5.8%) as main constituents. One hundred and twenty-six compounds were identified in H. umbellatum essential oil with germacrene D (6.1%), (E)-nerolidol (4.4%), n-nonane (4.0%), (E)-caryophyllene (3.0%) and caryophyllene oxide (3.0%) as the most abundant components. Both oils were characterized by the presence of many components which could have numerous applications in food, pharmaceutical and perfume industries. Taxa studied herein belong to the section Drosocarpium Spach, and their intrasectional placement based on the essential oil profiles was discussed. The oils were tested in a broth microdilution assay against five bacterial and two fungal strains and found to have mainly moderate antimicrobial effects.

  16. Natural production of biological optical systems

    NASA Astrophysics Data System (ADS)

    Choi, Seung Ho; Kim, Young L.

    2015-03-01

    Synthesis and production in nature often provide ideas to design and fabricate advanced biomimetic photonic materials and structures, leading to excellent physical properties and enhanced performance. In addition, the recognition and utilization of natural or biological substances have been typical routes to develop biocompatible and biodegradable materials for medical applications. In this respect, biological lasers utilizing such biomaterials and biostructures have been received considerable attention, given a variety of implications and potentials for bioimaging, biosensing, implantation, and therapy. However, without relying on industrial facilities, eco-friendly massive production of such optical components or systems has not yet been investigated. We show examples of bioproduction of biological lasers using agriculture and fisheries. We anticipate that such approaches will open new possibilities for scalable eco-friendly `green' production of biological photonics components and systems.

  17. Natural gas production and consumption 1979

    SciTech Connect

    Not Available

    1981-01-01

    Total marketed production of natural gas in the United States during 1979 was 20,471 billion cubic feet, an increase of approximately 497 billion cubic feet, or 2.5 percent over 1978. Texas and Louisiana, the two leading producing states, accounted for 70.5 percent of total 1979 marketed production. In 1979, deliveries of natural gas to residential, commercial, industrial, electric utilities, and other consumers totaled 18,141 billion cubic feet. Total consumption, which includes lease, plant, and pipeline fuel in addition to deliveries to consumers, was 20,241 billion cubic feet in 1979 compared to 19,627 billion cubic feet in 1978, an increase of 3.1 percent. Movements of natural gas into and out of each state are presented. Louisiana accounted for the largest quantity of net deliveries, 5,107 billion cubic feet, followed by Texas and Oklahoma with net deliveries of 2,772 billion cubic feet and 914 billion cubic feet, respectively. Imports of natural gas by pipeline from Canada and as liquefied natural gas (LNG) from Algeria totaled 1,253 billion cubic feet in 1979. Total imports increased 288 billion cubic feet, or 29.8 percent, from 1978 levels. Exports of LNG to Japan and pipeline shipments to Canada and Mexico increased 6.0 percent from 52.5 billion cubic feet in 1978 to 55.7 billion cubic feet in 1979. LNG shipments to Japan accounted for 92.1 percent of total exports in 1979.

  18. Natural product inhibitors of ocular angiogenesis

    PubMed Central

    Sulaiman, Rania S.; Basavarajappa, Halesha D.; Corson, Timothy W.

    2014-01-01

    Natural products are characterized by high chemical diversity and biochemical specificity; therefore, they are appealing as lead compounds for drug discovery. Given the importance of angiogenesis to many pathologies, numerous natural products have been explored as potential anti-angiogenic drugs. Ocular angiogenesis underlies blinding eye diseases such as retinopathy of prematurity (ROP) in children, proliferative diabetic retinopathy (DR) in adults of working age, and age-related macular degeneration (AMD) in the elderly. Despite the presence of effective therapy in many cases, these diseases are still a significant health burden. Anti-VEGF biologics are the standard of care, but may cause ocular or systemic side effects after intraocular administration and patients may be refractory. Many anti-angiogenic compounds inhibit tumor growth and metastasis alone or in combination therapy, but a more select subset of them has been tested in the context of ocular neovascular diseases. Here, we review the promise of natural products as anti-angiogenic agents, with a specific focus on retinal and choroidal neovascularization. The multifunctional curcumin and the chalcone isoliquiritigenin have demonstrated promising anti-angiogenic effects in mouse models of DR and choroidal neovascularization (CNV) respectively. The homoisoflavanone cremastranone and the flavonoid deguelin have been shown to inhibit ocular neovascularization in more than one disease model. The isoflavone genistein and the flavone apigenin on the other hand are showing potential in the prevention of retinal and choroidal angiogenesis with long-term administration. Many other products with antiangiogenic potential in vitro such as the lactone withaferin A, the flavonol quercetin, and the stilbenoid combretastatin A4 are awaiting investigation in different ocular disease relevant animal models. These natural products may serve as lead compounds for the design of more specific, efficacious, and affordable

  19. Natural product inhibitors of ocular angiogenesis.

    PubMed

    Sulaiman, Rania S; Basavarajappa, Halesha D; Corson, Timothy W

    2014-12-01

    Natural products are characterized by high chemical diversity and biochemical specificity; therefore, they are appealing as lead compounds for drug discovery. Given the importance of angiogenesis to many pathologies, numerous natural products have been explored as potential anti-angiogenic drugs. Ocular angiogenesis underlies blinding eye diseases such as retinopathy of prematurity (ROP) in children, proliferative diabetic retinopathy (DR) in adults of working age, and age-related macular degeneration (AMD) in the elderly. Despite the presence of effective therapy in many cases, these diseases are still a significant health burden. Anti-VEGF biologics are the standard of care, but may cause ocular or systemic side effects after intraocular administration and patients may be refractory. Many anti-angiogenic compounds inhibit tumor growth and metastasis alone or in combination therapy, but a more select subset of them has been tested in the context of ocular neovascular diseases. Here, we review the promise of natural products as anti-angiogenic agents, with a specific focus on retinal and choroidal neovascularization. The multifunctional curcumin and the chalcone isoliquiritigenin have demonstrated promising anti-angiogenic effects in mouse models of DR and choroidal neovascularization (CNV) respectively. The homoisoflavanone cremastranone and the flavonoid deguelin have been shown to inhibit ocular neovascularization in more than one disease model. The isoflavone genistein and the flavone apigenin on the other hand are showing potential in the prevention of retinal and choroidal angiogenesis with long-term administration. Many other products with anti-angiogenic potential in vitro such as the lactone withaferin A, the flavonol quercetin, and the stilbenoid combretastatin A4 are awaiting investigation in different ocular disease-relevant animal models. These natural products may serve as lead compounds for the design of more specific, efficacious, and affordable

  20. European Directive fragrances in natural products.

    PubMed

    Scheman, Andrew; Scheman, Nicole; Rakowski, Ella-Marie

    2014-01-01

    Information on the presence of European Directive fragrance (EUF) allergens in plants and foods is important for numerous reasons. If an individual is allergic to an EUF and is avoiding fragrance, it is possible that they may still be exposed to the allergen in a natural product. In addition, because many of these allergens are also found in foods, it is possible that ingestion of a food containing the allergen may induce systemic contact allergy. Finally, individuals with lip dermatitis may react to contact with foods that contain the allergen. In this article, we have used the data available to identify which plants and foods contain EUF. When available, concentrations of EUF in natural products are provided. The goal of this article is to narrow down the list of botanicals to avoid for specific EUF allergies.

  1. New chemistry from natural product biosynthesis.

    PubMed

    Hubert, Catherine B; Barry, Sarah M

    2016-06-15

    Catalysts are a vital part of synthetic chemistry. However, there are still many important reactions for which catalysts have not been developed. The use of enzymes as biocatalysts for synthetic chemistry is growing in importance due to the drive towards sustainable methods for producing both bulk chemicals and high value compounds such as pharmaceuticals, and due to the ability of enzymes to catalyse chemical reactions with excellent stereoselectivity and regioselectivity. Such challenging transformations are a common feature of natural product biosynthetic pathways. In this mini-review, we discuss the potential to use biosynthetic pathways as a starting point for biocatalyst discovery. We introduce the reader to natural product assembly and tailoring, then focus on four classes of enzyme that catalyse C─H bond activation reactions to functionalize biosynthetic precursors. Finally, we briefly discuss the challenges involved in novel enzyme discovery.

  2. Genome Mining for Ribosomally Synthesized Natural Products

    PubMed Central

    Velásquez, Juan E.; van der Donk, Wilfred

    2011-01-01

    In recent years, the number of known peptide natural products that are synthesized via the ribosomal pathway has rapidly grown. Taking advantage of sequence homology among genes encoding precursor peptides or biosynthetic proteins, in silico mining of genomes combined with molecular biology approaches has guided the discovery of a large number of new ribosomal natural products, including lantipeptides, cyanobactins, linear thiazole/oxazole-containing peptides, microviridins, lasso peptides, amatoxins, cyclotides, and conopeptides. In this review, we describe the strategies used for the identification of these ribosomally-synthesized and posttranslationally modified peptides (RiPPs) and the structures of newly identified compounds. The increasing number of chemical entities and their remarkable structural and functional diversity may lead to novel pharmaceutical applications. PMID:21095156

  3. (+)-discodermolide: a marine natural product against cancer.

    PubMed

    De Souza, Marcus Vinícius Nora

    2004-06-11

    (+)-discodermolide was isolated in 1990 by Gunasekera et al. from the deep-water Caribbean sponge Discodermia dissoluta. It attacks cancer cells in a similar way to the successful cancer drug Taxol that has become the best-selling anticancer drug in history. Taxol is also the first natural product described that stabilizes the microtubules involved in many aspects of cellular biology and that represent an important target of anticancer chemotherapeutics. However, (+)-discodermolide appears to be far more potent than Taxol against tumors that have developed multiple-drug resistance, with an IC50 in the low nanomolar range. Due to these excellent results, this natural product was licensed to Novartis Pharmaceutical Corporation in early 1998. The present review covers the history, biological activity, total synthesis, and synthetic analogs of (+)-discodermolide.

  4. New chemistry from natural product biosynthesis.

    PubMed

    Hubert, Catherine B; Barry, Sarah M

    2016-06-15

    Catalysts are a vital part of synthetic chemistry. However, there are still many important reactions for which catalysts have not been developed. The use of enzymes as biocatalysts for synthetic chemistry is growing in importance due to the drive towards sustainable methods for producing both bulk chemicals and high value compounds such as pharmaceuticals, and due to the ability of enzymes to catalyse chemical reactions with excellent stereoselectivity and regioselectivity. Such challenging transformations are a common feature of natural product biosynthetic pathways. In this mini-review, we discuss the potential to use biosynthetic pathways as a starting point for biocatalyst discovery. We introduce the reader to natural product assembly and tailoring, then focus on four classes of enzyme that catalyse C─H bond activation reactions to functionalize biosynthetic precursors. Finally, we briefly discuss the challenges involved in novel enzyme discovery. PMID:27284036

  5. Standardization for natural product synthetic biology.

    PubMed

    Zhao, Huimin; Medema, Marnix H

    2016-08-27

    Standardization is one of the foundational features of modern-day engineering, and the use of standardized parts and processes is a key element that distinguishes bona fide synthetic biology from traditional genetic engineering. Here, we discuss the role of standardization in natural product synthetic biology, focusing on standardization of data on biosynthetic pathways and gene clusters, as well as the role of standardization in the process of biosynthetic gene cluster engineering. PMID:27313083

  6. Natural and Heterologous Production of Bacteriocins

    NASA Astrophysics Data System (ADS)

    Cintas, Luis M.; Herranz, Carmen; Hernández, Pablo E.

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, and their use as natural and nontoxic food preservatives has been the source of considerable interest for the research community. In addition, bacteriocins have been investigated for their potential use in human and veterinary applications and in the animal production field. In the native bacterial strain, most bacteriocins are synthesized as biologically inactive precursors, with N-terminal extensions, that are cleaved concomitantly during export of the bacteriocin by dedicated ABC transporters, or the general secretory pathway (GSP) or Sec-dependent pathway. However, a few bacteriocins are synthesized without an N-terminal extension, and others are circularized through a head-to-tail peptide bond, complicating the elucidation of their processing and transport across the cytoplasmic membrane. The high cost of synthetic bacteriocin synthesis and their low yields from many natural producers recommends the exploration of recombinant microbial systems for the heterologous production of bacteriocins. Other advantages of such systems include production of bacteriocins in safer hosts, increased bacteriocin production, control of bacteriocin gene expression, production of food ingredients with antimicrobial activity, construction of multibacteriocinogenic strains with a wider antagonistic spectrum, a better adaptation of the selected hosts to food environments, and providing antagonistic properties to lactic acid bacteria (LAB) used as starter, protective, or probiotic cultures. The recombinant production of bacteriocins mostly relies on the use of expression vectors that replicate in Gram-negative bacteria, Gram-positive bacteria, and yeasts, whereas the production of bacteriocins in heterologous LAB hosts may be essentially based on the expression of native biosynthetic genes, by exchanging or replacing leader peptides and/or dedicated processing and secretion systems (ABC transporters

  7. Interaction of St John's wort (Hypericum perforatum) with clozapine.

    PubMed

    Van Strater, Annelies C P; Bogers, Jan P A M

    2012-03-01

    St John's wort (Hypericum perforatum) is notorious for its ability to induce the enzymes of the P450 system. Especially, it induces CYP1A2 and CYP3A4, enzymes that are closely involved in the metabolism of clozapine. We present a patient with schizophrenia, who was stable on a fixed dose with stable plasma level of clozapine, and who deteriorated after she started self-medicating with St John's wort. The reduced plasma clozapine level and the psychiatric condition normalized after the withdrawal of St John's wort. It is possible that, beside the induction of P450-enzymes, the induction of P-glycoprotein by St John's wort aggravated psychiatric deterioration of the patient. Physicians should be alert to patients self-medicating with over-the-counter medicines, especially when these medicines can lower clozapine concentrations below the therapeutic range.

  8. Identification and biosynthesis of acylphloroglucinols in Hypericum gentianoides

    PubMed Central

    Crispin, Matthew C.; Hur, Manhoi; Park, Taeseong; Kim, Young Hwan; Wurtele, Eve Syrkin

    2013-01-01

    Species of the genus Hypericum contain a rich array of unusual polyketides, however, only a small proportion of the over 450 Hypericum species, other than the popular medicinal supplement St. John’s Wort (H. perforatum), have even been chemically characterized. H. gentianoides, a small annual used medicinally by Cherokee Americans, contains bioactive acylphloroglucinols. Here, we identify acylphloroglucinol constituents of H. gentianoides and determine a potential pathway to their synthesis. Liquid chromatography/electrospray ionization-mass spectrometry (LC/ESI-MS) and HPLC-UV indicate that the level of accumulation and profile of acylphloroglucinols in H. gentianoides vary little seasonally when grown in a greenhouse, but do vary with development and are highly dependent on the accession, highlighting the importance of the selection of plant material for study. We identify the chemical structures of the nine prevalent polyketides, based on LC/ESI-MS and hybrid quadrupole orthogonal time-of-flight mass (Q-TOF) spectrometry; these metabolites include one monomeric phlorisobutyrophenone (PIB) derivative and eight dimeric acylphloroglucinols. Q-TOF spectrometry was used to identify eight additional PIB derivatives that were not detected by LC/ESI-MS. These data lead us to propose that diacylphloroglucinols are synthesized via modification of PIB to yield diverse phloroglucinol and filicinic acids moieties, followed by dimerization of a phloroglucinol and a filicinic acid monomer to yield the observed complement of diacylphloroglucinols. The metabolomics data from H. gentianoides are accessible in PMR (http://www.metnetdb.org/pmr), a public metabolomics database with analysis software for plants and microbial organisms. PMID:23600727

  9. Cyclooxygenase inhibitory natural products: current status.

    PubMed

    Jachak, Sanjay M

    2006-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are of huge therapeutic benefit in the treatment of rheumatoid arthritis and various types of inflammatory conditions. The target for these drugs is cyclooxygenase (COX), a rate-limiting enzyme involved in the conversion of arachidonic acid into inflammatory prostaglandins. COX-2 selective inhibitors are believed to have the same anti-inflammatory, anti-pyretic and analgesic activities as that of nonselective inhibitor NSAIDs with little or none of the gastrointestinal side effects. Thus, in the last 6-7 years several selective COX-2 inhibitors including coxibs were discovered and introduced into clinic. Recent reports evidence that selective COX-2 inhibitor such as rofecoxib, can lead to thrombotic cardiovascular events through inhibition of prostacyclin formation in the infracted heart. This has resulted in withdrawal of rofecoxib from the clinic in September 2004. Moreover, the COX-2/COX-1 selectivity ratio is vital in the design of COX-2 inhibitory drugs, as it is clear from rofecoxib, which is more than 50-fold COX-2 selective. After looking at all above mentioned facts, natural product-based compounds seem better as these compounds are generally supposed to be devoid of severe side effects. The literature indicates that natural product-based compounds are mainly COX-1 selective. Through minor semi-synthetic changes in the structures, their selectivity towards COX-2 can be increased. The present review article addresses natural product COX inhibitors of plant and marine origin, reported during last ten years and their advantages, possible leads for further development and current status. In addition we describe our experience in the characterization, design and synthesis of potential natural COX inhibitors. PMID:16529558

  10. Neurotrophic Natural Products: Chemistry and Biology

    PubMed Central

    Xu, Jing; Lacoske, Michelle H.

    2014-01-01

    Neurodegenerative diseases and spinal cord injury affect approximately 50 million people worldwide, bringing the total healthcare cost to over 600 billion dollars per year. Nervous system growth factors, that is, neurotrophins, are a potential solution to these disorders, since they could promote nerve regeneration. An average of 500 publications per year attests to the significance of neurotrophins in biomedical sciences and underlines their potential for therapeutic applications. Nonetheless, the poor pharmacokinetic profile of neurotrophins severely restricts their clinical use. On the other hand, small molecules that modulate neurotrophic activity offer a promising therapeutic approach against neurological disorders. Nature has provided an impressive array of natural products that have potent neurotrophic activities. This Review highlights the current synthetic strategies toward these compounds and summarizes their ability to induce neuronal growth and rehabilitation. It is anticipated that neurotrophic natural products could be used not only as starting points in drug design but also as tools to study the next frontier in biomedical sciences: the brain activity map project. PMID:24353244

  11. Phylogenetic approaches to natural product structure prediction.

    PubMed

    Ziemert, Nadine; Jensen, Paul R

    2012-01-01

    Phylogenetics is the study of the evolutionary relatedness among groups of organisms. Molecular phylogenetics uses sequence data to infer these relationships for both organisms and the genes they maintain. With the large amount of publicly available sequence data, phylogenetic inference has become increasingly important in all fields of biology. In the case of natural product research, phylogenetic relationships are proving to be highly informative in terms of delineating the architecture and function of the genes involved in secondary metabolite biosynthesis. Polyketide synthases and nonribosomal peptide synthetases provide model examples in which individual domain phylogenies display different predictive capacities, resolving features ranging from substrate specificity to structural motifs associated with the final metabolic product. This chapter provides examples in which phylogeny has proven effective in terms of predicting functional or structural aspects of secondary metabolism. The basics of how to build a reliable phylogenetic tree are explained along with information about programs and tools that can be used for this purpose. Furthermore, it introduces the Natural Product Domain Seeker, a recently developed Web tool that employs phylogenetic logic to classify ketosynthase and condensation domains based on established enzyme architecture and biochemical function.

  12. Microbial production of natural raspberry ketone.

    PubMed

    Beekwilder, Jules; van der Meer, Ingrid M; Sibbesen, Ole; Broekgaarden, Mans; Qvist, Ingmar; Mikkelsen, Joern D; Hall, Robert D

    2007-10-01

    Raspberry ketone is an important compound for the flavour industry. It is frequently used in products such as soft drinks, sweets, puddings and ice creams. The compound can be produced by organic synthesis. Demand for "natural" raspberry ketone is growing considerably. However, this product is extremely expensive. Consequently, there is a remaining desire to better understand how raspberry ketone is synthesized in vivo, and which genes and enzymes are involved. With this information we will then be in a better position to design alternative production strategies such as microbial fermentation. This article focuses on the identification and application of genes potentially linked to raspberry ketone synthesis. We have isolated candidate genes from both raspberry and other plants, and these have been introduced into bacterial and yeast expression systems. Conditions have been determined that result in significant levels of raspberry ketone, up to 5 mg/L. These results therefore lay a strong foundation for a potentially renewable source of "natural" flavour compounds making use of plant genes.

  13. Screening of natural products for antimicrobial agents.

    PubMed

    Silver, L; Bostian, K

    1990-07-01

    Antimicrobial research is geared toward the discovery and development of novel chemical structures such as therapeutic antimicrobial agents. The continuing problem of development of resistance to existing antibacterial agents and the dearth of good antifungal agents motivates this effort toward innovation. Selection of possible new enzyme targets for antibiotic inhibition may be made on theoretical grounds, but it appears premature to select any single, previously unvalidated target for the intensive study required for rational drug design. Instead, a broad screen of chemical entities can be undertaken, dedicated to the discovery of novel antimicrobial inhibitors. A number of target areas are under investigation, including fungal mRNA splicing and bacterial DNA synthesis. A major part of the endeavor is in the historically productive area of natural product screening. To make the best use of natural product resources for the discovery of novel antibiotics, a balance is struct between screening for inhibitors of rationally chosen targets for which clinically useful inhibitors are not yet available, and screening more broadly to ensure that rare activities of unanticipated mode-of-action are not missed.

  14. Natural products for dental caries prevention.

    PubMed

    Badria, Farid A; Zidan, Omar A

    2004-01-01

    Selected natural compounds were evaluated for their effects on dental caries due to different strains of Streptococcus mutans bacteria. Out of 39 tested compounds, four (catechol, emetine, quinine, and flavone) showed potent inhibitory activity on different strains of S. mutans at 6.25 microg/mL or less with inhibition of adherence <50%, two compounds (5,7-dihydroxy-4'-methoxy isoflavone and ellagic acid) exhibited a moderate inhibitory effect at 12.5 microg/mL with inhibition to adherence <50%, and 12 compounds exhibited weak antibacterial activity at 125 microg/mL or more with inhibition of adherence <25%. These compounds represent three major classes of natural products: tannins, alkaloids, and flavonoids. Further study for possible application of these compounds as inhibitors for dental caries is underway. PMID:15383236

  15. Dithiolopyrrolone Natural Products: Isolation, Synthesis and Biosynthesis

    PubMed Central

    Qin, Zhiwei; Huang, Sheng; Yu, Yi; Deng, Hai

    2013-01-01

    Dithiolopyrrolones are a class of antibiotics that possess the unique pyrrolinonodithiole (4H-[1,2] dithiolo [4,3-b] pyrrol-5-one) skeleton linked to two variable acyl groups. To date, there are approximately 30 naturally occurring dithiolopyrrolone compounds, including holomycin, thiolutin, and aureothricin, and more recently thiomarinols, a unique class of hybrid marine bacterial natural products containing a dithiolopyrrolone framework linked by an amide bridge with an 8-hydroxyoctanoyl chain linked to a monic acid. Generally, dithiolopyrrolone antibiotics have broad-spectrum antibacterial activity against various microorganisms, including Gram-positive and Gram-negative bacteria, and even parasites. Holomycin appeared to be active against rifamycin-resistant bacteria and also inhibit the growth of the clinical pathogen methicillin-resistant Staphylococcus aureus N315. Its mode of action is believed to inhibit RNA synthesis although the exact mechanism has yet to be established in vitro. A recent work demonstrated that the fish pathogen Yersinia ruckeri employs an RNA methyltransferase for self-resistance during the holomycin production. Moreover, some dithiolopyrrolone derivatives have demonstrated promising antitumor activities. The biosynthetic gene clusters of holomycin have recently been identified in S. clavuligerus and characterized biochemically and genetically. The biosynthetic gene cluster of thiomarinol was also identified from the marine bacterium Pseudoalteromonas sp. SANK 73390, which was uniquely encoded by two independent pathways for pseudomonic acid and pyrrothine in a novel plasmid. The aim of this review is to give an overview about the isolations, characterizations, synthesis, biosynthesis, bioactivities and mode of action of this unique family of dithiolopyrrolone natural products, focusing on the period from 1940s until now. PMID:24141227

  16. The chemistry of isoindole natural products

    PubMed Central

    Speck, Klaus

    2013-01-01

    Summary This review highlights the chemical and biological aspects of natural products containing an oxidized or reduced isoindole skeleton. This motif is found in its intact or modified form in indolocarbazoles, macrocyclic polyketides (cytochalasan alkaloids), the aporhoeadane alkaloids, meroterpenoids from Stachybotrys species and anthraquinone-type alkaloids. Concerning their biological activity, molecular structure and synthesis, we have limited this review to the most inspiring examples. Within different congeners, we have selected a few members and discussed the synthetic routes in more detail. The putative biosynthetic pathways of the presented isoindole alkaloids are described as well. PMID:24204418

  17. Anti-infective Natural Products from Cyanobacteria.

    PubMed

    Niedermeyer, Timo Horst Johannes

    2015-10-01

    Cyanobacteria are a promising yet underexplored source for novel natural products with potent biological activities. While predominantly cytotoxic compounds have been isolated from cyanobacteria in the past, there are also a significant number of compounds known that possess anti-infective activities. As the need for novel anti-infective lead compounds is high, this manuscript aims at giving a concise overview on the current knowledge about anti-infective secondary metabolites isolated from cyanobacteria. Antibacterial, antifungal, antiviral, antiprotozoal, and molluscicidal activities are discussed. Covering up to February 2015.

  18. Natural products from microbes associated with insects

    PubMed Central

    Guo, Huijuan; Rischer, Maja; Poulsen, Michael

    2016-01-01

    Summary Here we review discoveries of secondary metabolites from microbes associated with insects. We mainly focus on natural products, where the ecological role has been at least partially elucidated, and/or the pharmaceutical properties evaluated, and on compounds with unique structural features. We demonstrate that the exploration of specific microbial–host interactions, in combination with multidisciplinary dereplication processes, has emerged as a successful strategy to identify novel chemical entities and to shed light on the ecology and evolution of defensive associations. PMID:26977191

  19. Fungal natural products in research and development.

    PubMed

    Schueffler, Anja; Anke, Timm

    2014-10-01

    To date approximately 100 000 fungal species are known although far more than one million are expected. The variety of species and the diversity of their habitats, some of them less exploited, allow the conclusion that fungi continue to be a rich source of new metabolites. Besides the conventional fungal isolates, an increasing interest in endophytic and in marine-derived fungi has been noticed. In addition new screening strategies based on innovative chemical, biological, and genetic approaches have led to novel fungal metabolites in recent years. The present review focuses on new fungal natural products published from 2009 to 2013 highlighting the originality of the structures and their biological potential. Furthermore synthetic products based on fungal metabolites as well as new developments in the uses or the biological activity of known compounds or new derivatives are discussed.

  20. Multimodular biocatalysts for natural product assembly

    NASA Astrophysics Data System (ADS)

    Schwarzer, Dirk; Marahiel, Mohamed A.

    2001-03-01

    Nonribosomal peptides and polyketides represent a large class of natural products that show an extreme structural diversity and broad pharmacological relevance. They are synthesized from simple building blocks such as amino or carboxy acids and malonate derivatives on multimodular enzymes called nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), respectively. Although utilizing different substrates, NRPSs and PKSs show striking similarities in the modular architecture of their catalytic domains and product assembly-line mechanism. Among these compounds are well known antibiotics (penicillin, vancomycin and erythromycin) as well as potent immunosuppressive agents (cyclosporin, rapamycin and FK 506). This review focuses on the modular organization of NRPSs, PKSs and mixed NRPS/PKS systems and how modules and domains that build up the biosynthetic templates can be exploited for the rational design of recombinant enzymes capable of synthesizing novel compounds.

  1. Synthetic biology of fungal natural products

    PubMed Central

    Mattern, Derek J.; Valiante, Vito; Unkles, Shiela E.; Brakhage, Axel A.

    2015-01-01

    Synthetic biology is an ever-expanding field in science, also encompassing the research area of fungal natural product (NP) discovery and production. Until now, different aspects of synthetic biology have been covered in fungal NP studies from the manipulation of different regulatory elements and heterologous expression of biosynthetic pathways to the engineering of different multidomain biosynthetic enzymes such as polyketide synthases or non-ribosomal peptide synthetases. The following review will cover some of the exemplary studies of synthetic biology in filamentous fungi showing the capacity of these eukaryotes to be used as model organisms in the field. From the vast array of different NPs produced to the ease for genetic manipulation, filamentous fungi have proven to be an invaluable source for the further development of synthetic biology tools. PMID:26284053

  2. Plant cell culture strategies for the production of natural products

    PubMed Central

    Ochoa-Villarreal, Marisol; Howat, Susan; Hong, SunMi; Jang, Mi Ok; Jin, Young-Woo; Lee, Eun-Kyong; Loake, Gary J.

    2016-01-01

    Plants have evolved a vast chemical cornucopia to support their sessile lifestyles. Man has exploited this natural resource since Neolithic times and currently plant-derived chemicals are exploited for a myriad of applications. However, plant sources of most high-value natural products (NPs) are not domesticated and therefore their production cannot be undertaken on an agricultural scale. Further, these plant species are often slow growing, their populations limiting, the concentration of the target molecule highly variable and routinely present at extremely low concentrations. Plant cell and organ culture constitutes a sustainable, controllable and environmentally friendly tool for the industrial production of plant NPs. Further, advances in cell line selection, biotransformation, product secretion, cell permeabilisation, extraction and scale-up, among others, are driving increases in plant NP yields. However, there remain significant obstacles to the commercial synthesis of high-value chemicals from these sources. The relatively recent isolation, culturing and characterisation of cambial meristematic cells (CMCs), provides an emerging platform to circumvent many of these potential difficulties. [BMB Reports 2016; 49(3): 149-158] PMID:26698871

  3. Natural Products: Insights into Leishmaniasis Inflammatory Response

    PubMed Central

    Rodrigues, Igor A.; Mazotto, Ana Maria; Cardoso, Verônica; Alves, Renan L.; Amaral, Ana Claudia F.; Silva, Jefferson Rocha de Andrade; Pinheiro, Anderson S.; Vermelho, Alane B.

    2015-01-01

    Leishmaniasis is a vector-borne disease that affects several populations worldwide, against which there are no vaccines available and the chemotherapy is highly toxic. Depending on the species causing the infection, the disease is characterized by commitment of tissues, including the skin, mucous membranes, and internal organs. Despite the relevance of host inflammatory mediators on parasite burden control, Leishmania and host immune cells interaction may generate an exacerbated proinflammatory response that plays an important role in the development of leishmaniasis clinical manifestations. Plant-derived natural products have been recognized as bioactive agents with several properties, including anti-protozoal and anti-inflammatory activities. The present review focuses on the antileishmanial activity of plant-derived natural products that are able to modulate the inflammatory response in vitro and in vivo. The capability of crude extracts and some isolated substances in promoting an anti-inflammatory response during Leishmania infection may be used as part of an effective strategy to fight the disease. PMID:26538837

  4. Effect of Hypericum perforatum Extract in an Experimental Model of Binge Eating in Female Rats

    PubMed Central

    Micioni Di Bonaventura, Maria Vittoria; Vitale, Giovanni; Massi, Maurizio; Cifani, Carlo

    2012-01-01

    Purpose. The present study evaluated the effect of Hypericum perforatum dry extract in an experimental model of binge eating (BE). Methods. BE for highly palatable food (HPF) was evoked in female rats by three 8-day cycles of food restriction/re-feeding and acute stress on the test day (day 25). Stress was induced by preventing access to HPF for 15 min, while rats were able to see and smell it. Hypericum perforatum dry extract was given by gavage. Results. Only rats exposed to both food restrictions and stress exhibited BE. The doses of 250 and 500 mg/kg of Hypericum perforatum extract significantly reduced the BE episode, while 125 mg/kg was ineffective. The same doses did not affect HPF intake in the absence of BE. The dose of 250 mg/kg did not significantly modify stress-induced increase in serum corticosterone levels, suggesting that the effect on BE is not due to suppression of the stress response The combined administration of 125 mg/kg of Hypericum perforatum together with Salidroside, active principle of Rhodiola rosea, produced a synergic effect on BE. Conclusions. The present results indicate for the first time that Hypericum perforatum extracts may have therapeutic properties in bingeing-related eating disorders. PMID:22997570

  5. Role of flavonoids in controlling the phototoxicity of Hypericum perforatum extracts.

    PubMed

    Wilhelm, K P; Biel, S; Siegers, C P

    2001-07-01

    Hypericum perforatum extracts are used mainly as oral antidepressants. Depending on source the extracts contain various amounts of phenylpropanes, flavonol derivates, biflavones, proathocyanidines, xanthones, phloroglucinoles, some amino acids, naphtodianthrones (hypericines) and essential oil constituents. The therapeutic use of Hypericum perforatum extracts however is limited by their phototoxic potential. It was the aim of the present study to investigate the phototoxic potential of 3 Hypericum perforatum extracts from different sources as well as some of its main constituents. In order to systematically study the phototoxic potential we established a modified neutral red assay utilizing an immortalized human keratinocyte cell line (HaCaT cells) as substrate and UVA irradiation. This modified neutral red assay was found to be a simple and reliable method for detecting phototoxic effects of reference agents and plant extracts. The validity of this method was demonstrated with known phototoxic compounds like chloropromazine and psoralenes like 5-MOP. Hypericum perforatum extracts demonstrated cytotoxicity and photocytotoxicity in a dose and UVA-dose dependent manner. Hypericine itself also evoked severe phototoxic effects and was thus identified as the main phototoxic constituent. Among the tested flavonoids quercitrin was found to be cytotoxic, while rutin unexpectedly demonstrated phototoxicity whereas quercitrin was effective to control the phototoxic activity of Hypericum perforatum extracts.

  6. Natural product synthesis at the interface of chemistry and biology

    PubMed Central

    2014-01-01

    Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in drug discovery and chemical biology. With the introduction of novel, innovative concepts and strategies for synthetic efficiency, natural product synthesis in the 21st century is well poised to address the challenges and complexities faced by natural product chemistry and will remain essential to progress in biomedical sciences. PMID:25043880

  7. Antibacterial natural products in medicinal chemistry--exodus or revival?

    PubMed

    von Nussbaum, Franz; Brands, Michael; Hinzen, Berthold; Weigand, Stefan; Häbich, Dieter

    2006-08-01

    To create a drug, nature's blueprints often have to be improved through semisynthesis or total synthesis (chemical postevolution). Selected contributions from industrial and academic groups highlight the arduous but rewarding path from natural products to drugs. Principle modification types for natural products are discussed herein, such as decoration, substitution, and degradation. The biological, chemical, and socioeconomic environments of antibacterial research are dealt with in context. Natural products, many from soil organisms, have provided the majority of lead structures for marketed anti-infectives. Surprisingly, numerous "old" classes of antibacterial natural products have never been intensively explored by medicinal chemists. Nevertheless, research on antibacterial natural products is flagging. Apparently, the "old fashioned" natural products no longer fit into modern drug discovery. The handling of natural products is cumbersome, requiring nonstandardized workflows and extended timelines. Revisiting natural products with modern chemistry and target-finding tools from biology (reversed genomics) is one option for their revival.

  8. Natural product synthesis at the interface of chemistry and biology.

    PubMed

    Hong, Jiyong

    2014-08-11

    Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in drug discovery and chemical biology. With the introduction of novel, innovative concepts and strategies for synthetic efficiency, natural product synthesis in the 21st century is well poised to address the challenges and complexities faced by natural product chemistry and will remain essential to progress in biomedical sciences.

  9. Consumers of natural health products: natural-born pharmacovigilantes?

    PubMed Central

    2010-01-01

    Background Natural health products (NHPs), such as herbal medicines and vitamins, are widely available over-the-counter and are often purchased by consumers without advice from a healthcare provider. This study examined how consumers respond when they believe they have experienced NHP-related adverse drug reactions (ADRs) in order to determine how to improve current safety monitoring strategies. Methods Qualitative semi-structured interviews were conducted with twelve consumers who had experienced a self-identified NHP-related ADR. Key emergent themes were identified and coded using content analysis techniques. Results Consumers were generally not comfortable enough with their conventional health care providers to discuss their NHP-related ADRs. Consumers reported being more comfortable discussing NHP-related ADRs with personnel from health food stores, friends or family with whom they had developed trusted relationships. No one reported their suspected ADR to Health Canada and most did not know this was possible. Conclusion Consumers generally did not report their suspected NHP-related ADRs to healthcare providers or to Health Canada. Passive reporting systems for collecting information on NHP-related ADRs cannot be effective if consumers who experience NHP-related ADRs do not report their experiences. Healthcare providers, health food store personnel, manufacturers and other stakeholders also need to take responsibility for reporting ADRs in order to improve current pharmacovigilance of NHPs. PMID:20184759

  10. Elemental, nutritional, phytochemical and biological evaluation of Hypericum perforatum Linn.

    PubMed

    Dastagir, Ghulam; Ahmed, Rizwan; Shereen, Saima

    2016-03-01

    This study was carried out to study elemental, nutritional, phytochemical and biological evaluation of Hypericum perforatum collected from Swat in 2010. The elemental analysis showed that Ca was highest (5600 μg/g) in leaves and lowest (2500 μg/g) in flowers. The potassium was highest (840 μg/g) in fruit and lowest (80 μg/g) in leaves. Magnesium was highest (260 μg/g) in stem and lowest (200 μg/g) in flowers. Sodium was highest (4900 μg/g) in stem and lowest (4700 μg/g) in leaves and flowers. Copper was highest (26 μg/g) in stem and lowest (10 μg/g) in leaves. Iron was highest (5000 μg/g) in flowers lowest (1200 μg/g) in stem. Zinc was highest (80 μg/g) in flowers and lowest (46 μg/g) in stem. Nickle, cadmium and Cobalt were <5 μg/g for all plant parts. The nutritional analysis showed that the dry matter was in the range of (97.61%) in stem and (96.38%) in leaf, ash (5.43%) in flowers and (1.90%) in stem, crude protein (12.63%) in leaf and (6.15%) in stem, crude fibre (64.74%) in flowers and (13.0%) in leaf, ether extract (10.98%) in fruit and (1.88%) in stem and nitrogen free extract was (65.80%) in leaf and (10.98%) in flower, respectively. Hypericum perforatum did not show cytotoxic, insecticidal and antibacterial activity in vitro at different doses. The % activity was zero% in cytotoxic and insecticidal activities. However, H. perforatum plant parts revealed phytotoxic activity. The phytotoxic activity of leaf and fruit remained same (44.0%) at highest dose (500 μg/ml). The phytochemical screening showed the presence of mucilage, tannins, anthraquinones, saponins, fats and oils and proteins in all parts of the plant. Calcium oxalate was found in all parts except the fruit. Lignin and catechin was found in all parts except the leaf. Cutin was found only in stem and flower while chlorophyll was found only in stem and leaf. In various localities (Shartangaar, Panj Pali and Sharanko) of Swat fresh leaves were used while in Barani and Jaba fresh as

  11. Elemental, nutritional, phytochemical and biological evaluation of Hypericum perforatum Linn.

    PubMed

    Dastagir, Ghulam; Ahmed, Rizwan; Shereen, Saima

    2016-03-01

    This study was carried out to study elemental, nutritional, phytochemical and biological evaluation of Hypericum perforatum collected from Swat in 2010. The elemental analysis showed that Ca was highest (5600 μg/g) in leaves and lowest (2500 μg/g) in flowers. The potassium was highest (840 μg/g) in fruit and lowest (80 μg/g) in leaves. Magnesium was highest (260 μg/g) in stem and lowest (200 μg/g) in flowers. Sodium was highest (4900 μg/g) in stem and lowest (4700 μg/g) in leaves and flowers. Copper was highest (26 μg/g) in stem and lowest (10 μg/g) in leaves. Iron was highest (5000 μg/g) in flowers lowest (1200 μg/g) in stem. Zinc was highest (80 μg/g) in flowers and lowest (46 μg/g) in stem. Nickle, cadmium and Cobalt were <5 μg/g for all plant parts. The nutritional analysis showed that the dry matter was in the range of (97.61%) in stem and (96.38%) in leaf, ash (5.43%) in flowers and (1.90%) in stem, crude protein (12.63%) in leaf and (6.15%) in stem, crude fibre (64.74%) in flowers and (13.0%) in leaf, ether extract (10.98%) in fruit and (1.88%) in stem and nitrogen free extract was (65.80%) in leaf and (10.98%) in flower, respectively. Hypericum perforatum did not show cytotoxic, insecticidal and antibacterial activity in vitro at different doses. The % activity was zero% in cytotoxic and insecticidal activities. However, H. perforatum plant parts revealed phytotoxic activity. The phytotoxic activity of leaf and fruit remained same (44.0%) at highest dose (500 μg/ml). The phytochemical screening showed the presence of mucilage, tannins, anthraquinones, saponins, fats and oils and proteins in all parts of the plant. Calcium oxalate was found in all parts except the fruit. Lignin and catechin was found in all parts except the leaf. Cutin was found only in stem and flower while chlorophyll was found only in stem and leaf. In various localities (Shartangaar, Panj Pali and Sharanko) of Swat fresh leaves were used while in Barani and Jaba fresh as

  12. The automation of natural product structure elucidation.

    PubMed

    Steinbeck, C

    2001-05-01

    The last two or three years have seen exciting developments in the field of computer-assisted structure elucidation (CASE) with a number of programs becoming commercially or freely available. This was the conditio sine qua non for CASE to be widely applied in the daily work of bench chemists and spectroscopists. A number of promising applications have been published in the area of structure generators, deterministic and stochastic CASE tools and property predictions, including the automatic distinction between natural products and artificial compounds, as well as the determination of 3-D structure from a connection table based on IR spectroscopy. Advancements in coupling techniques between chromatographic and spectroscopic methods demonstrate progress towards a fully automated structure elucidation or identification process starting at the earliest steps of obtaining crude extracts.

  13. Spectroscopic Characterization of a Natural Product: Anethole

    NASA Astrophysics Data System (ADS)

    Barber, Victoria P.; Newby, Josh J.

    2013-06-01

    Anethole [(E)-1-methoxy-4-(1-propenyl)benzene] is a natural product molecule that is commonly recognized as the flavor component of anise, fennel, and licorice. Early jet-cooled spectroscopy of anethole showed the existence of two possible conformations, but did not address details of the vibronic structure. Here, we report the jet-cooled, laser-induced fluorescence and single vibronic level fluorescence spectra of anethole. Analysis of the spectra confirms the existence of two rotamers in the expansion that differ by the relative orientation of the methoxy and propenyl groups. The observed vibronic activity is similar to that of styrene and indicates planar symmetry of both rotamers. Vibrational assignments of anethole are assisted by density functional theory calculations and the results are compared with the analogous motions in styrene. V. H. Grassian, E. R. Bernstein, H. V. Secor and J. I. Seeman J. Phys. Chem. {93, 3470 (1989).

  14. Natural products: a safest approach for obesity.

    PubMed

    Vasudeva, Neeru; Yadav, Neerja; Sharma, Surendra Kumar

    2012-06-01

    Obesity is recognized as a social problem, associated with serious health risks and increased mortality. Numerous trials have been conducted to find and develop new anti-obesity drugs through herbal sources to minimize adverse reactions associated with the present anti-obesity drugs. The use of natural products as medicine has been documented for hundreds of years in various traditional systems of medicines throughout the world. This review focuses on the medicinal plants such as Achyranthus aspera, Camellia sinensis, Emblica officinalis, Garcinia cambogia, Terminalia arjuna, etc., being used traditionally in Ayurvedic, Unani, Siddha and Chinese, etc., systems of medicine. The review also highlights recent reported phytochemicals such as escins, perennisosides, dioscin, gracillin, etc., and the various extracts of the plants like Nelumbo nucifera, Panax japonicas, Cichorium intybus, Cyperus rotundus, Paeonia suffruticosa, etc., which have been successfully identified for the treatment of obesity. PMID:22821661

  15. Novel Chemical Space Exploration via Natural Products

    PubMed Central

    Rosén, Josefin; Gottfries, Johan; Muresan, Sorel; Backlund, Anders; Oprea, Tudor I.

    2009-01-01

    Natural products (NPs) are a rich source of novel compound classes and new drugs. In the present study we have used the chemical space navigation tool ChemGPS-NP to evaluate the chemical space occupancy by NPs and bioactive medicinal chemistry compounds from the database WOMBAT. The two sets differ notable in coverage of chemical space, and tangible lead-like NPs were found to cover regions of chemical space that lack representation in WOMBAT. Property based similarity calculations were performed to identify NP neighbours of approved drugs. Several of the NPs revealed by this method, were confirmed to exhibit the same activity as their drug neighbours. The identification of leads from a NP starting point may prove a useful strategy for drug discovery, in the search for novel leads with unique properties. PMID:19265440

  16. CO Methanation for Synthetic Natural Gas Production.

    PubMed

    Kambolis, Anastasios; Schildhauer, Tilman J; Kröcher, Oliver

    2015-01-01

    Energy from woody biomass could supplement renewable energy production towards the replacement of fossil fuels. A multi-stage process involving gasification of wood and then catalytic transformation of the producer gas to synthetic natural gas (SNG) represents progress in this direction. SNG can be transported and distributed through the existing pipeline grid, which is advantageous from an economical point of view. Therefore, CO methanation is attracting a great deal of attention and much research effort is focusing on the understanding of the process steps and its further development. This short review summarizes recent efforts at Paul Scherrer Institute on the understanding of the reaction mechanism, the catalyst deactivation, and the development of catalytic materials with benign properties for CO methanation. PMID:26598405

  17. Natural Products as a Foundation for Drug Discovery

    PubMed Central

    Beutler, John A.

    2009-01-01

    Natural products have contributed to the development of many drugs for diverse indications. While most U.S. pharmaceutical companies have reduced or eliminated their in-house natural product groups, new paradigms and new enterprises have evolved to carry on a role for natural products in the pharmaceutical industry. Many of the reasons for the decline in popularity of natural products are being addressed by the development of new techniques for screening and production. This overview aims to inform pharmacologists of current strategies and techniques that make natural products a viable strategic choice for inclusion in drug discovery programs. PMID:20161632

  18. Natural gas production from Arctic gas hydrates

    SciTech Connect

    Collett, T.S. )

    1993-01-01

    The natural gas hydrates of the Messoyakha field in the West Siberian basin of Russia and those of the Prudhoe Bay-Kuparuk River area on the North Slope of Alaska occur within a similar series of interbedded Cretaceous and Tertiary sandstone and siltstone reservoirs. Geochemical analyses of gaseous well-cuttings and production gases suggest that these two hydrate accumulations contain a mixture of thermogenic methane migrated from a deep source and shallow, microbial methane that was either directly converted to gas hydrate or was first concentrated in existing traps and later converted to gas hydrate. Studies of well logs and seismic data have documented a large free-gas accumulation trapped stratigraphically downdip of the gas hydrates in the Prudhoe Bay-Kuparuk River area. The presence of a gas-hydrate/free-gas contact in the Prudhoe Bay-Kuparuk River area is analogous to that in the Messoyakha gas-hydrate/free-gas accumulation, from which approximately 5.17x10[sup 9] cubic meters (183 billion cubic feet) of gas have been produced from the hydrates alone. The apparent geologic similarities between these two accumulations suggest that the gas-hydrated-depressurization production method used in the Messoyakha field may have direct application in northern Alaska. 30 refs., 15 figs., 3 tabs.

  19. Use of natural health products in children

    PubMed Central

    Pike, Andrea; Etchegary, Holly; Godwin, Marshall; McCrate, Farah; Crellin, John; Mathews, Maria; Law, Rebecca; Newhook, Leigh Anne; Kinden, Jody

    2013-01-01

    Abstract Objective To gain a more thorough understanding of why parents choose to give their children natural health products (NHPs), parents’ sources of information about NHPs, and the extent of disclosure and conversation with family doctors about the use of NHPs. Design Qualitative study. Setting Newfoundland and Labrador. Participants Parents of children who were using NHPs (N = 20). Methods Individual, semistructured interviews were carried out with parents to obtain a better understanding of the reasoning behind the use of NHPs. Key themes emerging from the qualitative data were identified according to a number of criteria, including relevance to the research objectives, frequency with which a theme was mentioned, relative importance of the themes based on the amount of text taken up to address an issue, and emphasis (eg, emphatic or emotional speech). Main findings The types of NHPs used by parents participating in this study varied, except for the use of multivitamins. In addition, use of the products themselves was variable and inconsistent. Parents reported few concerns about the use of NHPs. The most commonly reported source of information about NHPs was family and friends. Most participants had not spoken to their family doctors about the use of NHPs. Conclusion Participants considered NHPs to be “natural” and seemed to equate this assessment with safety. This might explain why these parents sought advice and information from family and friends rather than from their family doctors and often failed to disclose the use of NHPs to their children’s family doctors. PMID:23946044

  20. Chocolate: A Marvelous Natural Product of Chemistry

    NASA Astrophysics Data System (ADS)

    Tannenbaum, Ginger

    2004-08-01

    Chocolate is a natural product as ubiquitous as television. Of course, it is eaten, but it is also found in air fresheners, marking pens, flavoring in a multitude of products including soda pop, and as an aroma in "chocolate-dyed" T-shirts. However, most of us are completely unaware of the complex chemical reactions that take place to produce chocolate and the necessary technology that has evolved to produce chocolate and all its byproducts. Processing results in a mixture of many components, an interesting contrast to most of the simple, one-step reactions introduced at the high school level. This article is a survey of chocolate from tree to table. After a brief introduction to the history of chocolate and how and where it is grown, the manufacturing process is examined, and the chemistry is explored. A bit of the jargon used in the industry is mentioned. Cocoa butter is a significant ingredient in chocolate, and an investigation of it introduces triglycerides, fatty acids, polymorphic behavior, and molecular packing of the fats in chocolate and how they affect the tempering process. There is a brief discussion of chocolate's non-Newtonian behavior and the resulting challenges presented in the manufacturing process. See Featured Molecules Featured on the Cover

  1. Neuroprotective Activity of Hypericum perforatum and Its Major Components

    PubMed Central

    Oliveira, Ana I.; Pinho, Cláudia; Sarmento, Bruno; Dias, Alberto C. P.

    2016-01-01

    Hypericum perforatum is a perennial plant, with worldwide distribution, commonly known as St. John’s wort. It has been used for centuries in traditional medicine for the treatment of several disorders, such as minor burns, anxiety, and mild to moderate depression. In the past years, its antidepressant properties have been extensively studied. Despite that, other H. perforatum biological activities, as its neuroprotective properties have also been evaluated. The present review aims to provide a comprehensive summary of the main biologically active compounds of H. perforatum, as for its chemistry, pharmacological activities, drug interactions and adverse reactions and gather scattered information about its neuroprotective abilities. As for this, it has been demonstrated that H. perforatum extracts and several of its major molecular components have the ability to protect against toxic insults, either directly, through neuroprotective mechanisms, or indirectly, through is antioxidant properties. H. perforatum has therefore the potential to become an effective neuroprotective therapeutic agent, despite further studies that need to be carried out. PMID:27462333

  2. Neuroprotective Activity of Hypericum perforatum and Its Major Components.

    PubMed

    Oliveira, Ana I; Pinho, Cláudia; Sarmento, Bruno; Dias, Alberto C P

    2016-01-01

    Hypericum perforatum is a perennial plant, with worldwide distribution, commonly known as St. John's wort. It has been used for centuries in traditional medicine for the treatment of several disorders, such as minor burns, anxiety, and mild to moderate depression. In the past years, its antidepressant properties have been extensively studied. Despite that, other H. perforatum biological activities, as its neuroprotective properties have also been evaluated. The present review aims to provide a comprehensive summary of the main biologically active compounds of H. perforatum, as for its chemistry, pharmacological activities, drug interactions and adverse reactions and gather scattered information about its neuroprotective abilities. As for this, it has been demonstrated that H. perforatum extracts and several of its major molecular components have the ability to protect against toxic insults, either directly, through neuroprotective mechanisms, or indirectly, through is antioxidant properties. H. perforatum has therefore the potential to become an effective neuroprotective therapeutic agent, despite further studies that need to be carried out. PMID:27462333

  3. Chlorogenic acid participates in the regulation of shoot, root and root hair development in Hypericum perforatum.

    PubMed

    Franklin, G; Dias, A C P

    2011-08-01

    Chlorogenic acid (CGA), a product of the phenylpropanoid pathway, is one of the most widespread soluble phenolic compounds in the plant kingdom. Although CGA is known to have important roles in plant function, its relevance in plant de novo organogenesis is not yet understood. With a series of experiments, here we show that CGA has a potential role in shoot, root and root hair development. In the first phase of our investigation, we developed an efficient and novel thin cell layer (TCL) regeneration protocol for Hypericum perforatum which could bridge all the in vitro morphogenetic stages between single cell and complete plant. Tissues at different morphogenetic states were analysed for their phenolic profile which revealed that shoot differentiation from callus tissues of H. perforatum is accompanied by the onset of CGA production. Further, the relevance of CGA in de novo organogenesis was deciphered by culturing highly organogenic root explants on media augmented with various concentrations of CGA. Results of this experiment showed that CGA concentrations lower than 10.0 mg l⁻¹ did not affect shoot organogenesis, whereas, higher concentrations significantly reduced this process in a concentration-dependent manner. In spite of the differential concentration-dependent effects of CGA on shoot regeneration, supplementation of CGA did not have any effect on the production of lateral roots and root hairs. Interestingly, CGA showed a concentration-dependent positive correlation with lateral roots and root hairs production in the presence of α-naphthaleneacetic acid (NAA). When the culture medium was augmented with 2-aminoindane-2-phosphonic acid (AIP), an inhibitor of phenylalanine ammonia lyase (PAL), induction of shoots, lateral roots and root hairs from the explants was significantly affected. Addition of an optimum concentration of CGA in these cultures partially restored all these organogenic processes.

  4. Use of natural health products in children

    PubMed Central

    Godwin, Marshall; Crellin, John; Mathews, Maria; Chowdhury, Nurun L.; Newhook, Leigh Anne; Pike, Andrea; McCrate, Farah; Law, Rebecca

    2013-01-01

    Abstract Objective To determine how common it is for parents to give natural health products (NHPs) to their children, which NHPs are being used, why they are being used, and parents’ assessments of the benefits and side effects of NHPs. Design Survey. Setting Newfoundland and Labrador. Participants Parents waiting in their family doctors’ offices. Main outcome measures Parent and child demographic characteristics; pediatric chronic medical conditions affecting the children; prescribed medications, over-the-counter medications, and NHPs used by the children; why the medications and NHPs were being used, the dose, and parents’ assessments of the effectiveness and side effects; and where parents had heard about the NHPs, whether they had told their physicians that the children were taking the products, and where they had obtained the products. Results A total of 202 (53.4%) of the 378 eligible adults who were approached completed the survey. This represented 333 children. Mean (SD) age of the children was 5.1 (3.3) years. Overall, 28.7% of parents reported using nonvitamin NHPs for their children. A total of 137 children (41.1%) had taken NHPs (including vitamins); 61.1% of the NHPs being used were vitamins. The remainder fell under teas (primarily chamomile and green teas), echinacea, fish or omega-3 oils, and a large category of “other” products. These NHPs were most commonly used to improve general health, improve immunity, and prevent colds and infections. Approximately half of the parents (51.7%) believed their children had benefited from taking NHPs, and 4.4% believed their children had experienced adverse side effects. Slightly less than half of the parents (45.0%) had informed their physicians that their children were taking NHPs. Conclusion Overall, 45.5% of parents attending physicians’ offices reported using NHPs in their children. If vitamins are not included in the definition of NHPs, this rate drops to 28.7%. Parents most commonly use NHPs

  5. Water extracts of tree Hypericum sps. protect DNA from oxidative and alkylating damage and enhance DNA repair in colon cells.

    PubMed

    Ramos, Alice A; Marques, Filipe; Fernandes-Ferreira, Manuel; Pereira-Wilson, Cristina

    2013-01-01

    Diet may induce colon carcinogenesis through oxidative or alkylating DNA damage. However, diet may also contain anticarcinogenic compounds that contribute to cancer prevention. DNA damage prevention and/or induction of repair are two important mechanisms involved in cancer chemoprevention by dietary compounds. Hypericum sps. are widely used in traditional medicine to prepare infusions due to their beneficial digestive and neurologic effects. In this study, we investigated the potential of water extracts from three Hypericum sps. and some of their main phenolic compounds to prevent and repair oxidative and alkylating DNA damage in colon cells. The results showed that water extracts of Hypericum perforatum, Hypericum androsaemum, Hypericum undulatum, quercetin and rutin have protective effect against oxidative DNA damage in HT29 cells. Protective effect was also observed against alkylating DNA damage induced by methyl-methanesulfonate, except for H. androsaemum. With regard to alkylating damage repair H. perforatum, H. androsaemum and chlorogenic acid increased repair of alkylating DNA damage by base excision repair pathway. No effect was observed on nucleotide excision repair pathway. Antigenotoxic effects of Hypericum sps. may contribute to colon cancer prevention and the high amount of phenolic compounds present in Hypericum sps. play an important role in DNA protective effects.

  6. Natural products of relevance in the prevention and supportive treatment of depression.

    PubMed

    Muszyńska, Bożena; Łojewski, Maciej; Rojowski, Jacek; Opoka, Włodzimierz; Sułkowska-Ziaja, Katarzyna

    2015-01-01

    The use of herbs or their parts: leaves, roots, rhizomes, flowers, seeds, natural strains, as well as extracts or isolated metabolites is becoming more and more popular. Natural remedies not only act prophylactically, but also help to alleviate symptoms of many diseases and enhance the overall functioning of the internal organs. Many raw materials of natural origin plays a role in treatment of health problems, and also in case of serious diseases such as depression. Depression (affective disorder) now affects about 10% of the population, but in next few years due to the development of civilization and increasing pace of life, the probable number of people suffering from this disease can grow rapidly. Natural raw materials such as Bacopa monnieri, Crocus sativus, Eleutherococcus senticosus, Griffonia simplicifolia, Hypericum perforatum, Sceletium tortuosum, Piper methysticum, Rhodiola rosea, Aspalathus linearis, Camellia sinensis, Ficus carica, Lycium chinense, Cuminum cyminum, Panax Ginseng can effectively assist the prevention and treatment of depression. Daily diet may also have positive effect in prevention of this disease. It was found that 5-hydroxy-L-tryptophan, L-tryptophan (which are precursors of serotonin in the CNS), omega-3 fatty acids and anthranilic acid (vitamin L1) are able to improve mood. L-Tryptophan, 5-hydroxy-L-tryptophan are present in the largest quantities in the fruiting bodies of edible mushrooms. Omega-3 fatty acids are found in the flesh of fish, walnuts, soybeans, beans and chicken egg protein, while the anthranilic acid is commonly found in plants.

  7. Natural products of relevance in the prevention and supportive treatment of depression.

    PubMed

    Muszyńska, Bożena; Łojewski, Maciej; Rojowski, Jacek; Opoka, Włodzimierz; Sułkowska-Ziaja, Katarzyna

    2015-01-01

    The use of herbs or their parts: leaves, roots, rhizomes, flowers, seeds, natural strains, as well as extracts or isolated metabolites is becoming more and more popular. Natural remedies not only act prophylactically, but also help to alleviate symptoms of many diseases and enhance the overall functioning of the internal organs. Many raw materials of natural origin plays a role in treatment of health problems, and also in case of serious diseases such as depression. Depression (affective disorder) now affects about 10% of the population, but in next few years due to the development of civilization and increasing pace of life, the probable number of people suffering from this disease can grow rapidly. Natural raw materials such as Bacopa monnieri, Crocus sativus, Eleutherococcus senticosus, Griffonia simplicifolia, Hypericum perforatum, Sceletium tortuosum, Piper methysticum, Rhodiola rosea, Aspalathus linearis, Camellia sinensis, Ficus carica, Lycium chinense, Cuminum cyminum, Panax Ginseng can effectively assist the prevention and treatment of depression. Daily diet may also have positive effect in prevention of this disease. It was found that 5-hydroxy-L-tryptophan, L-tryptophan (which are precursors of serotonin in the CNS), omega-3 fatty acids and anthranilic acid (vitamin L1) are able to improve mood. L-Tryptophan, 5-hydroxy-L-tryptophan are present in the largest quantities in the fruiting bodies of edible mushrooms. Omega-3 fatty acids are found in the flesh of fish, walnuts, soybeans, beans and chicken egg protein, while the anthranilic acid is commonly found in plants. PMID:26276913

  8. A Historical Overview of Natural Products in Drug Discovery

    PubMed Central

    Dias, Daniel A.; Urban, Sylvia; Roessner, Ute

    2012-01-01

    Historically, natural products have been used since ancient times and in folklore for the treatment of many diseases and illnesses. Classical natural product chemistry methodologies enabled a vast array of bioactive secondary metabolites from terrestrial and marine sources to be discovered. Many of these natural products have gone on to become current drug candidates. This brief review aims to highlight historically significant bioactive marine and terrestrial natural products, their use in folklore and dereplication techniques to rapidly facilitate their discovery. Furthermore a discussion of how natural product chemistry has resulted in the identification of many drug candidates; the application of advanced hyphenated spectroscopic techniques to aid in their discovery, the future of natural product chemistry and finally adopting metabolomic profiling and dereplication approaches for the comprehensive study of natural product extracts will be discussed. PMID:24957513

  9. Structure and Function of Macroalgal Natural Products.

    PubMed

    Young, Ryan M; Schoenrock, Kathryn M; von Salm, Jacqueline L; Amsler, Charles D; Baker, Bill J

    2015-01-01

    Since the initial discovery of marine phyco-derived secondary metabolites in the 1950s there has been a rapid increase in the description of new algal natural products. These metabolites have multiple ecological roles as well as commercial value as potential drugs or lead compounds. With the emergence of resistance to our current arsenal of drugs as well as the development of new chemotherapies for currently untreatable diseases, new compounds must be sourced. As outlined in this chapter algae produce a diverse range of chemicals many of which have potential for the treatment of human afflictions.In this chapter we outline the classes of metabolites produced by this chemically rich group of organisms as well as their respective ecological roles in the environment. Algae are found in nearly every environment on earth, with many of these organisms possessing the ability to shape the ecosystem they inhabit. With current challenges to climate stability, understanding how these important organisms interact with their environment as well as one another might afford better insight into how they respond to a changing climate.

  10. The impact of enzyme engineering upon natural product glycodiversification

    PubMed Central

    Williams, Gavin J; Gantt, Richard W; Thorson, Jon S

    2015-01-01

    Glycodiversification of natural products is an effective strategy for small molecule drug development. Recently, improved methods for chemo-enzymatic synthesis of glycosyl donors has spurred the characterization of natural product glycosyltransferases (GTs), revealing that the substrate specificity of many naturally occurring GTs as too stringent for use in glycodiversification. Protein engineering of natural product GTs has emerged as an attractive approach to overcome this limitation. This review highlights recent progress in the engineering/evolution of enzymes relevant to natural product glycodiversification with a particular focus upon GTs. PMID:18678278

  11. Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria.

    PubMed

    Dittmann, Elke; Gugger, Muriel; Sivonen, Kaarina; Fewer, David P

    2015-10-01

    Cyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with intricate chemical structures and potent biological activities. The bulk of these natural products are known from just a handful of genera. Recent efforts have elucidated the mechanisms underpinning the biosynthesis of a diverse array of natural products from cyanobacteria. Many of the biosynthetic mechanisms are unique to cyanobacteria or rarely described from other organisms. Advances in genome sequence technology have precipitated a deluge of genome sequences for cyanobacteria. This makes it possible to link known natural products to biosynthetic gene clusters but also accelerates the discovery of new natural products through genome mining. These studies demonstrate that cyanobacteria encode a huge variety of cryptic gene clusters for the production of natural products, and the known chemical diversity is likely to be just a fraction of the true biosynthetic capabilities of this fascinating and ancient group of organisms.

  12. Bioactive xanthones from the roots of Hypericum perforatum (common St John's Wort)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In contemporary western alternative medicine, extracts of the inflorescences and upper stem leaves of Hypericum perforatum L. (common St. John’s Wort; Clusiaceae) are taken orally for the treatment of mild to moderate depression and applied topically to promote wound-healing. Numerous researchers h...

  13. Investigation of Hypericum perforatum extract on convulsion induced by picrotoxin in mice.

    PubMed

    Etemad, Leila; Heidari, Mahmoud Reza; Heidari, Mohammad; Moshiri, Mohammad; Behravan, Effat; Abbasifard, Mitra; Azimzadeh, Behzad Sarvar

    2011-04-01

    Therapeutic effect of Hypericum perforatum L. has been well known. The aim of this study is to investigate the anticonvulsant effects of Hypericum methanolic extract against seizure induced by picrotoxin in mice. The study were performed on four groups of animals. They received percolated extract of Hypericum perforatum at the doses of 25, 50, 100 & 200 mg/kg intra peritoneally. After 20 minutes animals received picrotoxin 10 mg/kg for induction of seizure. Latency of seizure, duration of seizure, death latency and percent of mortality were determined. The results indicated that latency of seizure increased in pretreated group with the dose of 50 mg/kg (p<0.01). The higher dose of extract 200 mg/kg significantly decrease duration of seizure and death latency. It maybe due to unknown ingredients in this plant or producing concentrations higher than the therapeutic level. The results showed that Hypericum perforatum L. at the dose of 50 mg/kg maybe have some beneficial effect in seizure induced by picrotoxin and this plant is suitable for continuing search in this field. PMID:21454176

  14. Explosive radiation in high Andean Hypericum-rates of diversification among New World lineages.

    PubMed

    Nürk, Nicolai M; Scheriau, Charlotte; Madriñán, Santiago

    2013-01-01

    The páramos, high-elevation Andean grasslands ranging from ca. 2800 m to the snow line, harbor one of the fastest evolving biomes worldwide since their appearance in the northern Andes 3-5 million years (Ma) ago. Hypericum (St. John's wort), with over 65% of its Neotropical species, has a center of diversity in these high Mountain ecosystems. Using nuclear rDNA internal transcribed spacer (ITS) sequences of a broad sample of New World Hypericum species we investigate phylogenetic patterns, estimate divergence times, and provide the first insights into diversification rates within the genus in the Neotropics. Two lineages appear to have independently dispersed into South America around 3.5 Ma ago, one of which has radiated in the páramos (Brathys). We find strong support for the polyphyly of section Trigynobrathys, several species of which group within Brathys, while others are found in temperate lowland South America (Trigynobrathys s.str.). All páramo species of Hypericum group in one clade. Within these páramo Hypericum species enormous phenotypic evolution has taken place (life forms from arborescent to prostrate shrubs) evidently in a short time frame. We hypothesize multiple mechanisms to be responsible for the low differentiation in the ITS region contrary to the high morphological diversity found in Hypericum in the páramos. Amongst these may be ongoing hybridization and incomplete lineage sorting, as well as the putative adaptive radiation, which can explain the contrast between phenotypic diversity and the close phylogenetic relationships. PMID:24062764

  15. Dearomatization Strategies in the Synthesis of Complex Natural Products

    PubMed Central

    Roche, Stéphane P.; Porco, John A.

    2014-01-01

    Evolution in the field of the total synthesis of natural products has led to exciting developments over the last decade. Numerous chemo-selective and enantioselective methodologies have emerged from total syntheses, resulting in efficient access to many important natural product targets. This Review highlights recent developments concerning dearomatization, a powerful strategy for the total synthesis of architecturally complex natural products wherein planar, aromatic scaffolds are converted to three-dimensional molecular architectures. PMID:21506209

  16. Marine Natural Products: A Way to New Drugs

    PubMed Central

    2009-01-01

    The investigation of marine natural products (low molecular weight bioregulators) is a rapidly developing scientific field at the intersection of biology and chemistry. Investigations aimed at detecting, identifying, and understanding the structure of marine natural products have led to the discovery of 20,000 new substances, including those characterized by an extremely high physiological activity. Some results and prospects of works aimed at creating new drugs on the basis of marine natural products are discussed herein. PMID:22649599

  17. Solid phase synthesis of complex natural products and libraries thereof.

    PubMed

    Nicolaou, K C; Pfefferkorn, J A

    2001-01-01

    Natural products have served as an important source of medicinal compounds and pharmaceutical leads over the last century. Within the last 10 years, significant interest has developed in applying combinatorial chemistry techniques to the study of natural products and their biological activities. In this review, we examine several representative efforts wherein natural product skeletons have been constructed or immobilized on solid support and subsequently derivatized, giving rise to analog libraries useful in understanding the structure-activity relationships of the parent natural product. Issues such as target selection, library design, linker development, automation, and library characterization are addressed. PMID:11774224

  18. Secondary metabolomics: natural products mass spectrometry goes global.

    PubMed

    Kersten, Roland D; Dorrestein, Pieter C

    2009-08-21

    A global LC-MS metabolite analysis of wild-type Pseudomonas auerigunosa and mutants targeting the natural product pyochelin revealed the production of previously unknown metabolites, the 2-alkyl-4,5-dihydrothiazole-4-carboxylates.

  19. Secondary metabolomics: natural products mass spectrometry goes global.

    PubMed

    Kersten, Roland D; Dorrestein, Pieter C

    2009-08-21

    A global LC-MS metabolite analysis of wild-type Pseudomonas auerigunosa and mutants targeting the natural product pyochelin revealed the production of previously unknown metabolites, the 2-alkyl-4,5-dihydrothiazole-4-carboxylates. PMID:19817465

  20. The use of an extract of Hypericum perforatum and Azadirachta indica in advanced diabetic foot: an unexpected outcome

    PubMed Central

    Iabichella, Maria Letizia

    2013-01-01

    This is the first case reporting the results of using an extract of Hypericum flowers (Hypericum perforatum) and neem oil (Azadirachta indica) in foot wounds with exposed bone in a patient with bilateral advanced diabetic ulcers. The effective use of this cheap treatment in patients with diabetic lesions on the feet, if confirmed in a wide controlled study, might allow the caregivers to take care of patients at home. PMID:23413284

  1. The use of an extract of Hypericum perforatum and Azadirachta indica in advanced diabetic foot: an unexpected outcome.

    PubMed

    Iabichella, Maria Letizia

    2013-01-01

    This is the first case reporting the results of using an extract of Hypericum flowers (Hypericum perforatum) and neem oil (Azadirachta indica) in foot wounds with exposed bone in a patient with bilateral advanced diabetic ulcers. The effective use of this cheap treatment in patients with diabetic lesions on the feet, if confirmed in a wide controlled study, might allow the caregivers to take care of patients at home. PMID:23413284

  2. Engineered Biosynthesis of Natural Products in Heterologous Hosts

    PubMed Central

    Luo, Yunzi; Li, Bing-Zhi; Liu, Duo; Zhang, Lu; Chen, Yan; Jia, Bin; Zeng, Bo-Xuan; Zhao, Huimin; Yuan, Ying-Jin

    2015-01-01

    Natural products produced by microorganisms and plants are a major resource of antibacterial and anticancer drugs as well as industrially useful compounds. However, the native producers often suffer from low productivity and titers. Here we summarize the recent applications of heterologous biosynthesis for the production of several important classes of natural products such as terpenoids, flavonoids, alkaloids, and polyketides. In addition, we will discuss the new tools and strategies at multi-scale levels including gene, pathway, genome and community levels for highly efficient heterologous biosynthesis of natural products. PMID:25960127

  3. New natural products as new leads for antibacterial drug discovery.

    PubMed

    Brown, Dean G; Lister, Troy; May-Dracka, Tricia L

    2014-01-15

    Natural products have been a rich source of antibacterial drugs for many decades, but investments in this area have declined over the past two decades. The purpose of this review article is to provide a recent survey of new natural product classes and the mechanisms by which they work. PMID:24388805

  4. High rate of methane leakage from natural gas production

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-10-01

    Natural gas production is growing as the United States seeks domestic sources of relatively clean energy. Natural gas combustion produces less carbon dioxide emissions than coal or oil for the amount of energy produced. However, one source of concern is that some natural gas leaks to the atmosphere from the extraction point, releasing methane, a potent greenhouse gas.

  5. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis

    PubMed Central

    Crane, Erika A.

    2016-01-01

    Abstract Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody–drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products. PMID:26833854

  6. Marinopyrroles: Unique Drug Discoveries Based on Marine Natural Products.

    PubMed

    Li, Rongshi

    2016-01-01

    Natural products provide a successful supply of new chemical entities (NCEs) for drug discovery to treat human diseases. Approximately half of the NCEs are based on natural products and their derivatives. Notably, marine natural products, a largely untapped resource, have contributed to drug discovery and development with eight drugs or cosmeceuticals approved by the U.S. Food and Drug Administration and European Medicines Agency, and ten candidates undergoing clinical trials. Collaborative efforts from drug developers, biologists, organic, medicinal, and natural product chemists have elevated drug discoveries to new levels. These efforts are expected to continue to improve the efficiency of natural product-based drugs. Marinopyrroles are examined here as a case study for potential anticancer and antibiotic agents.

  7. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis.

    PubMed

    Crane, Erika A; Gademann, Karl

    2016-03-14

    Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody-drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products.

  8. The Structural Biology of Enzymes Involved in Natural Product Glycosylation

    PubMed Central

    Singh, Shanteri; Phillips, George N.

    2012-01-01

    The glycosylation of microbial natural products often dramatically influences the biological and/or pharmacological activities of the parental metabolite. Over the past decade, crystal structures of several enzymes involved in the biosynthesis and attachment of novel sugars found appended to natural products have emerged. In many cases, these studies have paved the way to a better understanding of the corresponding enzyme mechanism of action and have served as a starting point for engineering variant enzymes to facilitate to production of differentially-glycosylated natural products. This review specifically summarizes the structural studies of bacterial enzymes involved in biosynthesis of novel sugar nucleotides. PMID:22688446

  9. Challenges and Triumphs to Genomics-Based Natural Product Discovery

    PubMed Central

    Jensen, Paul R.; Chavarria, Krystle L.; Fenical, William; Moore, Bradley S.; Ziemert, Nadine

    2013-01-01

    Genome sequencing is rapidly changing the field of natural products research by providing opportunities to assess the biosynthetic potential of strains prior to chemical analysis or biological testing. Ready access to sequence data is driving the development of new bioinformatic tools and methods to identify the products of silent or cryptic pathways. While genome mining has fast become a useful approach to natural product discovery, it has also become clear that identifying pathways of interest is much easier than finding the associated products. This has led to bottlenecks in the discovery process that must be overcome for the potential of genomics-based natural product discovery to be fully realized. In this perspective, we address some of these challenges in the context of our work with the marine actinomycete genus Salinispora, which is proving to be a useful model with which to apply genome mining as an approach to natural product discovery. PMID:24104399

  10. Spatial and Temporal Control of Fungal Natural Product Synthesis

    PubMed Central

    Lim, Fang Yun; Keller, Nancy P.

    2014-01-01

    Despite their oftentimes-elusive ecological role, fungal natural products have, for better or worse, impacted our daily lives tremendously owing to their diverse and potent bioactive properties. This Janus-faced nature of fungal natural products inevitably ushered in a field of research dedicated towards understanding the ecology, organisms, genes, enzymes, and biosynthetic pathways that give rise to this arsenal of diverse and complex chemistry. Ongoing research in fungal secondary metabolism has not only increased our appreciation for fungal natural products as an asset but also sheds light on the pivotal role that these once-regarded “metabolic wastes” play in fungal biology, defense, and stress response in addition to their potential contributions towards human mycoses. Full orchestration of secondary metabolism requires not only the seamless coordination between temporal and spatial control of SM-associated machineries (e.g. enzymes, cofactors, intermediates, and end-products) but also integration of these machineries into primary metabolic processes and established cellular mechanisms. An intriguing, but little known aspect of microbial natural product synthesis lies in the spatial organization of both pathway intermediates and enzymes responsible for the production of these compounds. In this highlight, we summarize some major breakthroughs in understanding the genes and regulation of fungal natural product synthesis and introduce the current state of knowledge on the spatial and temporal control of fungal natural product synthesis. PMID:25142354

  11. Using Video Production in Teaching Natural History.

    ERIC Educational Resources Information Center

    Fink, Linda S.

    1997-01-01

    Describes a course that uses video production projects to entice lower level students into independent field investigation, reinforce their scientific curiosity, and build their confidence in the value of their own observations. Discusses the rationale behind using video, the lab structure, the success of this approach, and logistics and…

  12. Fungi as a source of natural coumarins production.

    PubMed

    Costa, Tania Maria; Tavares, Lorena Benathar Ballod; de Oliveira, Débora

    2016-08-01

    Natural coumarins and derivatives are compounds that occur naturally in several organisms (plant, bacteria, and fungi) consisting of fused benzene and α-pyrone rings. These compounds show high technological potential applications in agrochemical, food, pharmaceuticals, and cosmetics industries. Therefore, the need for bulk production of coumarins and the advancement of the chemical and pharmaceutical industries led to the development of synthetic coumarin. However, biotransformation process, synthetic bioengineering, metabolic engineering, and bioinformatics have proven effective in the production of natural products. Today, these biological systems are recognized as green chemistry innovation and business strategy. This review article aims to report the potential of fungi for synthesis of coumarin. These microorganisms are described as a source of natural products capable of synthesizing many bioactive metabolites. The features, classification, properties, and industrial applications of natural coumarins as well as new molecules obtained by basidiomycetes and ascomycetes fungi are reported in order to explore a topic not yet discussed in the scientific literature. PMID:27364626

  13. Fungi as a source of natural coumarins production.

    PubMed

    Costa, Tania Maria; Tavares, Lorena Benathar Ballod; de Oliveira, Débora

    2016-08-01

    Natural coumarins and derivatives are compounds that occur naturally in several organisms (plant, bacteria, and fungi) consisting of fused benzene and α-pyrone rings. These compounds show high technological potential applications in agrochemical, food, pharmaceuticals, and cosmetics industries. Therefore, the need for bulk production of coumarins and the advancement of the chemical and pharmaceutical industries led to the development of synthetic coumarin. However, biotransformation process, synthetic bioengineering, metabolic engineering, and bioinformatics have proven effective in the production of natural products. Today, these biological systems are recognized as green chemistry innovation and business strategy. This review article aims to report the potential of fungi for synthesis of coumarin. These microorganisms are described as a source of natural products capable of synthesizing many bioactive metabolites. The features, classification, properties, and industrial applications of natural coumarins as well as new molecules obtained by basidiomycetes and ascomycetes fungi are reported in order to explore a topic not yet discussed in the scientific literature.

  14. Plant Natural Products Targeting Bacterial Virulence Factors.

    PubMed

    Silva, Laura Nunes; Zimmer, Karine Rigon; Macedo, Alexandre José; Trentin, Danielle Silva

    2016-08-24

    Decreased antimicrobial efficiency has become a global public health issue. The paucity of new antibacterial drugs is evident, and the arsenal against infectious diseases needs to be improved urgently. The selection of plants as a source of prototype compounds is appropriate, since plant species naturally produce a wide range of secondary metabolites that act as a chemical line of defense against microorganisms in the environment. Although traditional approaches to combat microbial infections remain effective, targeting microbial virulence rather than survival seems to be an exciting strategy, since the modulation of virulence factors might lead to a milder evolutionary pressure for the development of resistance. Additionally, anti-infective chemotherapies may be successfully achieved by combining antivirulence and conventional antimicrobials, extending the lifespan of these drugs. This review presents an updated discussion of natural compounds isolated from plants with chemically characterized structures and activity against the major bacterial virulence factors: quorum sensing, bacterial biofilms, bacterial motility, bacterial toxins, bacterial pigments, bacterial enzymes, and bacterial surfactants. Moreover, a critical analysis of the most promising virulence factors is presented, highlighting their potential as targets to attenuate bacterial virulence. The ongoing progress in the field of antivirulence therapy may therefore help to translate this promising concept into real intervention strategies in clinical areas. PMID:27437994

  15. Temporal dynamics of natural product biosynthesis in marine cyanobacteria.

    PubMed

    Esquenazi, Eduardo; Jones, Adam C; Byrum, Tara; Dorrestein, Pieter C; Gerwick, William H

    2011-03-29

    Sessile marine organisms are prolific sources of biologically active natural products. However, these compounds are often found in highly variable amounts, with the abiotic and biotic factors governing their production remaining poorly understood. We present an approach that permits monitoring of in vivo natural product production and turnover using mass spectrometry and stable isotope ((15)N) feeding with small cultures of various marine strains of the natural product-rich cyanobacterial genus Lyngbya. This temporal comparison of the amount of in vivo (15)N labeling of nitrogen-containing metabolites represents a direct way to discover and evaluate factors influencing natural product biosynthesis, as well as the timing of specific steps in metabolite assembly, and is a strong complement to more traditional in vitro studies. Relative quantification of (15)N labeling allowed the concurrent measurement of turnover rates of multiple natural products from small amounts of biomass. This technique also afforded the production of the neurotoxic jamaicamides to be more carefully studied, including an assessment of how jamaicamide turnover compares with filament growth rate and primary metabolism and provided new insights into the biosynthetic timing of jamaicamide A bromination. This approach should be valuable in determining how environmental factors affect secondary metabolite production, ultimately yielding insight into the energetic balance among growth, primary production, and secondary metabolism, and thus aid in the development of methods to improve compound yields for biomedical or biotechnological applications.

  16. Spillover of a biological control agent (Chrysolina quadrigemina) onto native St. Johnswort (Hypericum punctatum).

    PubMed

    Tingle, Jessica L; Cook-Patton, Susan C; Agrawal, Anurag A

    2016-01-01

    Biological control agents may have unintended effects on native biota, particularly species that are closely related to the target invader. Here, we explored how Chrysolina quadrigemina, a beetle introduced to control the invasive weed Hypericum perforatum, impacts native H. punctatum in Tompkins County, New York, USA. Using a suite of complementary field surveys and experimental manipulations, we examined beetle preference for native and exotic Hypericum species and whether beetle herbivory influences the spatial distribution of H. punctatum. We found that the introduced beetle readily consumes native H. punctatum in addition to its intended target, and that H. punctatum at our field sites generally occurs along forest edges despite higher performance of experimental plants in more open habitats. However, we found no evidence that the beetle limits H. punctatum to forest edge habitats. PMID:27069816

  17. Antidepressant-like activity of adhyperforin, a novel constituent of Hypericum perforatum L.

    PubMed Central

    Tian, Jingwei; Zhang, Fangxi; Cheng, Jucan; Guo, Shuren; Liu, Pinglan; Wang, Hongbo

    2014-01-01

    Adhyperforin is a novel constituent of Hypericum perforatum L., but its antidepressant-like activity remains unclear. To explore that, several well-validated animal models of depression as well as neurotransmitter reuptake and transporter binding assays were conducted. The results showed adhyperforin could reduce the immobility time of mice in the forced swimming test and tail suspension assay, antagonize the behaviors induced by reserpine, and have no effect on locomotor activity. Furthermore, following establishment of a chronic unpredictable mild stress model, adhyperforin increased the number of crossings and rearings in rats in the open field test and increased the sucrose consumption. Finally, adhyperforin inhibited uptake of serotonin, norepinephrine, and dopamine, and displayed robust binding affinities for the serotonin and norepinephrine transporters. Overall, the current study provides the first evidence that adhyperforin is a novel, active ingredient of Hypericum perforatum L. with robust antidepressant-like activity. PMID:25005489

  18. Spillover of a biological control agent (Chrysolina quadrigemina) onto native St. Johnswort (Hypericum punctatum)

    PubMed Central

    Cook-Patton, Susan C.; Agrawal, Anurag A.

    2016-01-01

    Biological control agents may have unintended effects on native biota, particularly species that are closely related to the target invader. Here, we explored how Chrysolina quadrigemina, a beetle introduced to control the invasive weed Hypericum perforatum, impacts native H. punctatum in Tompkins County, New York, USA. Using a suite of complementary field surveys and experimental manipulations, we examined beetle preference for native and exotic Hypericum species and whether beetle herbivory influences the spatial distribution of H. punctatum. We found that the introduced beetle readily consumes native H. punctatum in addition to its intended target, and that H. punctatum at our field sites generally occurs along forest edges despite higher performance of experimental plants in more open habitats. However, we found no evidence that the beetle limits H. punctatum to forest edge habitats. PMID:27069816

  19. Accessing the Hidden Majority of Marine Natural Products Through Metagenomics

    PubMed Central

    Donia, Mohamed S.; Ruffner, Duane E.; Cao, Sheng

    2012-01-01

    Tiny marine animals represent an untapped reservoir for undiscovered, bioactive natural products. However, their small size and extreme chemical variability preclude traditional chemical approaches to discovering new bioactive compounds. Here, we use a metagenomic method to directly discover and rapidly access cyanobactin class natural products from these variable samples, providing proof-of-concept for genome based discovery and supply of marine natural products. We also address practical optimization of complex, multistep ribosomal peptide pathways in heterologous hosts, which is still very challenging. The resulting methods and concepts will be applicable to ribosomal peptide and other biosynthetic pathways. PMID:21542088

  20. Genetic regulation and manipulation for natural product discovery.

    PubMed

    Chen, Jianwei; Wu, Qihao; Hawas, Usama W; Wang, Hong

    2016-04-01

    Natural products are an important source of modern medical development, e.g., antibiotics, anticancers, immune modulators, etc. and will continue to be a powerful driving force for the discovery of novel potential drugs. In the heterologous hosts, natural products are biosynthesized using dedicated metabolic networks. By gene engineering, pathway reconstructing, and enzyme engineering, metabolic networks can be modified to synthesize novel compounds containing enhanced structural feature or produce a large quantity of known valuable bioactive compounds. The review introduces some important technical platforms and relevant examples of genetic regulation and manipulation to improve natural product titers or drive novel secondary metabolite discoveries.

  1. Composition and Antimicrobial Activity of the Essential Oil and Extract of Hypericum elongatum

    NASA Astrophysics Data System (ADS)

    Ghasemi, Younes; Khalaj, Amir; Mohagheghzadeh, Abdolali; Khosravi, Ahmad Reza; Morowvat, Mohammad Hossein

    HOFARIGHUN, RAEE flower, thousand eyes wort are popular names for Hypericum sp in Persian language mostly called H. perforatum. It has been used as antispasmodic, diuretic, antimigraine, antiepileptic and cholagouge. Tisane of these plants in red wine was used as snake bite and burning remedy. The volatile constituents, obtained from air-dried aerial parts of fruiting Hypericum elongatum were analyzed by GC/MS method. Thirty four components of about 96.50% of total oil were identified. Pinene <α> (80.43%), Terpinene <γ> (4.23%) and Pinene <ß>(2.59%) were the principal components (87.16%). The essential oil and hydroalcoholic extract were evaluated for antibacterial, antifungal and anti-yeast activities by using disc diffusion method. Screening of the antimicrobials was investigated on Gram positive bacteria (Staphylococcus aureus PTCC 1112, Staphylococcus epidermidis PTCC 1114, Bacillus subtilis PTCC 1023, Enterococcus faecalis ATCC 8043), Gram negative bacteria (Escherichia coli PTCC 1338, Pseudomonas aeruginosa PTCC 1047, Salmonella typhi PTCC 1609), yeasts (Candida albicans ATCC 14053, Candida kefyr ATCC 3826) and fungi (Aspergillus niger PLM 1140, Aspergillus fumigatus PLM 712). The MIC of essential oil also was identified. Antimicrobial activity of essential oil against all of the microorganisms was observed, except Aspergillus niger and Aspergillus fumigatus. In spite of antimicrobial activity of hydroalcoholic extract against bacteria, there was no antimicrobial activity against fungi and yeasts. A survey of the literature revealed no reports dealing with chemical composition of essential oil and antimicrobial activity of Hypericum elongatum.

  2. Production of Substitute Natural Gas from Coal

    SciTech Connect

    Andrew Lucero

    2009-01-31

    The goal of this research program was to develop and demonstrate a novel gasification technology to produce substitute natural gas (SNG) from coal. The technology relies on a continuous sequential processing method that differs substantially from the historic methanation or hydro-gasification processing technologies. The thermo-chemistry relies on all the same reactions, but the processing sequences are different. The proposed concept is appropriate for western sub-bituminous coals, which tend to be composed of about half fixed carbon and about half volatile matter (dry ash-free basis). In the most general terms the process requires four steps (1) separating the fixed carbon from the volatile matter (pyrolysis); (2) converting the volatile fraction into syngas (reforming); (3) reacting the syngas with heated carbon to make methane-rich fuel gas (methanation and hydro-gasification); and (4) generating process heat by combusting residual char (combustion). A key feature of this technology is that no oxygen plant is needed for char combustion.

  3. Taxonomy, Physiology, and Natural Products of Actinobacteria.

    PubMed

    Barka, Essaid Ait; Vatsa, Parul; Sanchez, Lisa; Gaveau-Vaillant, Nathalie; Jacquard, Cedric; Klenk, Hans-Peter; Clément, Christophe; Ouhdouch, Yder; van Wezel, Gilles P

    2016-03-01

    Actinobacteria are Gram-positive bacteria with high G+C DNA content that constitute one of the largest bacterial phyla, and they are ubiquitously distributed in both aquatic and terrestrial ecosystems. Many Actinobacteria have a mycelial lifestyle and undergo complex morphological differentiation. They also have an extensive secondary metabolism and produce about two-thirds of all naturally derived antibiotics in current clinical use, as well as many anticancer, anthelmintic, and antifungal compounds. Consequently, these bacteria are of major importance for biotechnology, medicine, and agriculture. Actinobacteria play diverse roles in their associations with various higher organisms, since their members have adopted different lifestyles, and the phylum includes pathogens (notably, species of Corynebacterium, Mycobacterium, Nocardia, Propionibacterium, and Tropheryma), soil inhabitants (e.g., Micromonospora and Streptomyces species), plant commensals (e.g., Frankia spp.), and gastrointestinal commensals (Bifidobacterium spp.). Actinobacteria also play an important role as symbionts and as pathogens in plant-associated microbial communities. This review presents an update on the biology of this important bacterial phylum. PMID:26609051

  4. Natural and within-farmland biodiversity enhances crop productivity.

    PubMed

    Carvalheiro, Luísa Gigante; Veldtman, Ruan; Shenkute, Awraris Getachew; Tesfay, Gebreamlak Bezabih; Pirk, Christian Walter Werner; Donaldson, John Sydney; Nicolson, Susan Wendy

    2011-03-01

    Ongoing expansion of large-scale agriculture critically threatens natural habitats and the pollination services they offer. Creating patches with high plant diversity within farmland is commonly suggested as a measure to benefit pollinators. However, farmers rarely adopt such practice, instead removing naturally occurring plants (weeds). By combining pollinator exclusion experiments with analysis of honeybee behaviour and flower-visitation webs, we found that the presence of weeds allowed pollinators to persist within sunflower fields, maximizing the benefits of the remaining patches of natural habitat to productivity of this large-scale crop. Weed diversity increased flower visitor diversity, hence ameliorating the measured negative effects of isolation from natural habitat. Although honeybees were the most abundant visitors, diversity of flower visitors enhanced honeybee movement, being the main factor influencing productivity. Conservation of natural patches combined with promoting flowering plants within crops can maximize productivity and, therefore, reduce the need for cropland expansion, contributing towards sustainable agriculture.

  5. Reinvigorating natural product combinatorial biosynthesis with synthetic biology.

    PubMed

    Kim, Eunji; Moore, Bradley S; Yoon, Yeo Joon

    2015-09-01

    Natural products continue to play a pivotal role in drug-discovery efforts and in the understanding if human health. The ability to extend nature's chemistry through combinatorial biosynthesis--altering functional groups, regiochemistry and scaffold backbones through the manipulation of biosynthetic enzymes--offers unique opportunities to create natural product analogs. Incorporating emerging synthetic biology techniques has the potential to further accelerate the refinement of combinatorial biosynthesis as a robust platform for the diversification of natural chemical drug leads. Two decades after the field originated, we discuss the current limitations, the realities and the state of the art of combinatorial biosynthesis, including the engineering of substrate specificity of biosynthetic enzymes and the development of heterologous expression systems for biosynthetic pathways. We also propose a new perspective for the combinatorial biosynthesis of natural products that could reinvigorate drug discovery by using synthetic biology in combination with synthetic chemistry.

  6. Raman spectra of carotenoids in natural products.

    PubMed

    Withnall, Robert; Chowdhry, Babur Z; Silver, Jack; Edwards, Howell G M; de Oliveira, Luiz F C

    2003-08-01

    Resonance Raman spectra of naturally occurring carotenoids have been obtained from nautilus, periwinkle (Littorina littorea) and clam shells under 514.5 nm excitation and these spectra are compared with the resonance Raman spectra obtained in situ from tomatoes, carrots, red peppers and saffron. The tomatoes, carrots and red peppers gave rise to resonance Raman spectra exhibiting a nu1 band at ca. 1520 cm(-1), in keeping with its assignment to carotenoids with ca. nine conjugated carbon-carbon double bonds in their main chains, whereas the resonance Raman spectrum of saffron showed a nu1 band at 1537 cm(-1) which can be assigned to crocetin, having seven conjugated carbon-carbon double bonds. A correlation between nu1 wavenumber location and effective conjugated chain length has been used to interpret the data obtained from the shells, and the wavenumber position (1522 cm(-1)) of the nu1 band of the carotenoid in the orange clam shell suggests that it contains nine conjugated double bonds in the main chain. However, the black periwinkle and nautilus shells exhibit nu1 bands at 1504 and 1496 cm(-1), respectively. On the basis of the correlation between nu1 wavenumber location and effective conjugated chain length, this indicates that they contain carotenoids with longer conjugated chains, the former having ca. 11 double bonds and the latter ca. 13 or even more. Raman spectra of the nautilus, periwinkle and clam shells also exhibited a strong band at 1085 cm(-1) and a doublet with components at 701 and 705 cm(-1), which can be assigned to biogenic calcium carbonate in the aragonite crystallographic form. PMID:12909134

  7. Raman spectra of carotenoids in natural products

    NASA Astrophysics Data System (ADS)

    Withnall, Robert; Chowdhry, Babur Z.; Silver, Jack; Edwards, Howell G. M.; de Oliveira, Luiz F. C.

    2003-08-01

    Resonance Raman spectra of naturally occurring carotenoids have been obtained from nautilus, periwinkle ( Littorina littorea) and clam shells under 514.5 nm excitation and these spectra are compared with the resonance Raman spectra obtained in situ from tomatoes, carrots, red peppers and saffron. The tomatoes, carrots and red peppers gave rise to resonance Raman spectra exhibiting a ν1 band at ca. 1520 cm -1, in keeping with its assignment to carotenoids with ca. nine conjugated carboncarbon double bonds in their main chains, whereas the resonance Raman spectrum of saffron showed a ν1 band at 1537 cm -1 which can be assigned to crocetin, having seven conjugated carboncarbon double bonds. A correlation between ν1 wavenumber location and effective conjugated chain length has been used to interpret the data obtained from the shells, and the wavenumber position (1522 cm -1) of the ν1 band of the carotenoid in the orange clam shell suggests that it contains nine conjugated double bonds in the main chain. However, the black periwinkle and nautilus shells exhibit ν1 bands at 1504 and 1496 cm -1, respectively. On the basis of the correlation between ν1 wavenumber location and effective conjugated chain length, this indicates that they contain carotenoids with longer conjugated chains, the former having ca. 11 double bonds and the latter ca. 13 or even more. Raman spectra of the nautilus, periwinkle and clam shells also exhibited a strong band at 1085 cm -1 and a doublet with components at 701 and 705 cm -1, which can be assigned to biogenic calcium carbonate in the aragonite crystallographic form.

  8. Design and synthesis of analogues of natural products.

    PubMed

    Maier, Martin E

    2015-05-21

    In this article strategies for the design and synthesis of natural product analogues are summarized and illustrated with some selected examples. Proven strategies include diverted total synthesis (DTS), function-oriented synthesis (FOS), biology-oriented synthesis (BIOS), complexity to diversity (CtD), hybrid molecules, and biosynthesis inspired synthesis. The latter includes mutasynthesis, the synthesis of natural products encoded by silent genes, and propionate scanning. Most of the examples from our group fall in the quite general concept of DTS. Thus, in case an efficient strategy to a natural product is at hand, modifications are possible at almost any stage of a synthesis. However, even for compounds of moderate complexity, organic synthesis remains a bottle neck. Unless some method for predicting the biological activity of a designed molecule becomes available, the design and synthesis of natural product analogues will remain what it is now, namely it will largely rely on trial and error. PMID:25829247

  9. Mining the Metabiome: Identifying Novel Natural Products from Microbial Communities

    PubMed Central

    Milshteyn, Aleksandr; Schneider, Jessica S.; Brady, Sean F.

    2014-01-01

    Summary Microbial-derived natural products provide the foundation for most of the chemotherapeutic arsenal available to contemporary medicine. In the face of a dwindling pipeline of new lead structures identified by traditional culturing techniques and an increasing need for new therapeutics, surveys of microbial biosynthetic diversity across environmental metabiomes have revealed enormous reservoirs of as yet untapped natural products chemistry. In this review we touch on the historical context of microbial natural product discovery and discuss innovations and technological advances that are facilitating culture-dependent and culture-independent access to new chemistry from environmental microbiomes with the goal of re-invigorating the small molecule therapeutics discovery pipeline. We highlight the successful strategies that have emerged and some of the challenges that must be overcome to enable the development of high-throughput methods for natural product discovery from complex microbial communities. PMID:25237864

  10. Protein Engineering Towards Natural Product Synthesis and Diversification

    PubMed Central

    Zabala, Angelica O.; Cacho, Ralph A.; Tang, Yi

    2014-01-01

    A dazzling array of enzymes is used by nature in making structurally complex natural products. These enzymes constitute a molecular toolbox that may be used in the construction and fine-tuning of pharmaceutically active molecules. Aided by technological advancements in protein engineering, it is now possible to tailor the activities and specificities of these enzymes as biocatalysts in the production of both natural products and their unnatural derivatives. These efforts are crucial in drug discovery and development, where there is a continuous quest for more potent agents. Both rational and random evolution techniques have been utilized in engineering these enzymes. This review will highlight some examples from several large families of natural products. PMID:22006344

  11. Use of Brown Algae to Demonstrate Natural Products Techniques.

    ERIC Educational Resources Information Center

    Porter, Lee A.

    1985-01-01

    Background information is provided on the natural products found in marine organisms in general and the brown algae in particular. Also provided are the procedures needed to isolate D-mannitol (a primary metabolite) and cholesterol from brown algae. (JN)

  12. Total synthesis and biological activity of natural product Urukthapelstatin A.

    PubMed

    Lin, Chun-Chieh; Tantisantisom, Worawan; McAlpine, Shelli R

    2013-07-19

    Herein we report the first total synthesis of the natural product Urkuthaplestatin A (Ustat A) utilizing a convergent synthetic strategy. The characterization and biological activity match those of the previously published natural product. Interestingly, several intermediates, including the linear and serine cyclized precursors, show a 100-fold decrease in cytotoxicity, with IC50's in the low micromolar range. These data indicate that the rigidity and the consecutive aromatic heterocyclic system are responsible for the biological activity. PMID:23819711

  13. Marine natural products sourced from marine-derived Penicillium fungi.

    PubMed

    Ma, Hong-Guang; Liu, Qiang; Zhu, Guo-Liang; Liu, Hai-Shan; Zhu, Wei-Ming

    2016-01-01

    Marine micro-organisms have been proven to be a major source of marine natural products (MNPs) in recent years, in which filamentous fungi are a vital source of bioactive natural products for their large metagenomes and more complex genetic backgrounds. This review highlights the 390 new MNPs from marine-derived Penicillium fungi during 1991 to 2014. These new MNPs are categorized based on the environment sources of the fungal hosts and their bioactivities are summarized.

  14. Anti-Enterovirus 71 Agents of Natural Products.

    PubMed

    Wang, Liyan; Wang, Junfeng; Wang, Lishu; Ma, Shurong; Liu, Yonghong

    2015-01-01

    This review, with 42 references, presents the fascinating area of anti-enterovirus 71 natural products over the last three decades for the first time. It covers literature published from 2005-2015 and refers to compounds isolated from biogenic sources. In total, 58 naturally-occurring anti-EV71 compounds are recorded. PMID:26370955

  15. Syntheses of Cyclic Guanidine-Containing Natural Products

    PubMed Central

    Ma, Yuyong; De, Saptarshi; Chen, Chuo

    2014-01-01

    Naturally occurring guanidine derivatives frequently display medicinally useful properties. Among them, the higher order pyrrole-imidazole alkaloids, the dragmacidins, the crambescidins/batzelladines, and the saxitoxins/tetradotoxins have stimulated the development of many new synthetic methods over the past decades. We provide here an overview of the syntheses of these cyclic guanidine-containing natural products. PMID:25684829

  16. A comprehensive review of glycosylated bacterial natural products

    PubMed Central

    Elshahawi, Sherif I.; Shaaban, Khaled A.; Kharel, Madan K.

    2015-01-01

    A systematic analysis of all naturally-occurring glycosylated bacterial secondary metabolites reported in the scientific literature up through early 2013 is presented. This comprehensive analysis of 15 940 bacterial natural products revealed 3426 glycosides containing 344 distinct appended carbohydrates and highlights a range of unique opportunities for future biosynthetic study and glycodiversification efforts. PMID:25735878

  17. Anti-Enterovirus 71 Agents of Natural Products.

    PubMed

    Wang, Liyan; Wang, Junfeng; Wang, Lishu; Ma, Shurong; Liu, Yonghong

    2015-01-01

    This review, with 42 references, presents the fascinating area of anti-enterovirus 71 natural products over the last three decades for the first time. It covers literature published from 2005-2015 and refers to compounds isolated from biogenic sources. In total, 58 naturally-occurring anti-EV71 compounds are recorded.

  18. Natural Product Biosynthesis in Escherichia coli: Mentha Monoterpenoids.

    PubMed

    Toogood, H S; Tait, S; Jervis, A; Ní Cheallaigh, A; Humphreys, L; Takano, E; Gardiner, J M; Scrutton, N S

    2016-01-01

    The era of synthetic biology heralds in a new, more "green" approach to fine chemical and pharmaceutical drug production. It takes the knowledge of natural metabolic pathways and builds new routes to chemicals, enables nonnatural chemical production, and/or allows the rapid production of chemicals in alternative, highly performing organisms. This route is particularly useful in the production of monoterpenoids in microorganisms, which are naturally sourced from plant essential oils. Successful pathways are constructed by taking into consideration factors such as gene selection, regulatory elements, host selection and optimization, and metabolic considerations of the host organism. Seamless pathway construction techniques enable a "plug-and-play" switching of genes and regulatory parts to optimize the metabolic functioning in vivo. Ultimately, synthetic biology approaches to microbial monoterpenoid production may revolutionize "natural" compound formation. PMID:27417932

  19. Natural fiber production, harvesting, and preliminary processing: options and opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utilization of natural fibers and plant oils in bio-products introduces numerous logistical challenges not typically encountered with non-agricultural resources. Once it has been determined that a plant material is suitable for commercial development, the production, harvesting, and processing s...

  20. Natural Products Towards the Discovery of Potential Future Antithrombotic Drugs.

    PubMed

    Islam, Md Asiful; Alam, Fahmida; Khalil, Md Ibrahim; Sasongko, Teguh Haryo; Gan, Siew Hua

    2016-01-01

    Globally, thrombosis-associated disorders are one of the main contributors to fatalities. Besides genetic influences, there are some acquired and environmental risk factors dominating thrombotic diseases. Although standard regimens have been used for a long time, many side effects still occur which can be life threatening. Therefore, natural products are good alternatives. Although the quest for antithrombotic natural products came to light only since the end of last century, in the last two decades, a considerable number of natural products showing antithrombotic activities (antiplatelet, anticoagulant and fibrinolytic) with no or minimal side effects have been reported. In this review, several natural products used as antithrombotic agents including medicinal plants, vegetables, fruits, spices and edible mushrooms which have been discovered in the last 15 years and their target sites (thrombogenic components, factors and thrombotic pathways) are described. In addition, the side effects, limitations and interactions of standard regimens with natural products are also discussed. The active compounds could serve as potential sources for future research on antithrombotic drug development. As a future direction, more advanced researches (in quest of the target cofactor or component involved in antithrombotic pathways) are warranted for the development of potential natural antithrombotic medications (alone or combined with standard regimens) to ensure maximum safety and efficacy. PMID:26951101

  1. Plant-Derived Natural Products for Parkinson's Disease Therapy.

    PubMed

    Sengupta, T; Vinayagam, J; Singh, R; Jaisankar, P; Mohanakumar, K P

    2016-01-01

    Plant-derived natural products have made their own niche in the treatment of neurological diseases since time immemorial. Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, has no cure and the treatment available currently is symptomatic. This chapter thoughtfully and objectively assesses the scientific basis that supports the increasing use of these plant-derived natural products for the treatment of this chronic and progressive disorder. Proper considerations are made on the chemical nature, sources, preclinical tests and their validity, and mechanisms of behavioural or biochemical recovery observed following treatment with various plants derived natural products relevant to PD therapy. The scientific basis underlying the neuroprotective effect of 6 Ayurvedic herbs/formulations, 12 Chinese medicinal herbs/formulations, 33 other plants, and 5 plant-derived molecules have been judiciously examined emphasizing behavioral, cellular, or biochemical aspects of neuroprotection observed in the cellular or animal models of the disease. The molecular mechanisms triggered by these natural products to promote cell survivability and to reduce the risk of cellular degeneration have also been brought to light in this study. The study helped to reveal certain limitations in the scenario: lack of preclinical studies in all cases barring two; heavy dependence on in vitro test systems; singular animal or cellular model to establish any therapeutic potential of drugs. This strongly warrants further studies so as to reproduce and confirm these reported effects. However, the current literature offers scientific credence to traditionally used plant-derived natural products for the treatment of PD. PMID:27651267

  2. Natural product-based nanomedicine: recent advances and issues

    PubMed Central

    Watkins, Rebekah; Wu, Ling; Zhang, Chenming; Davis, Richey M; Xu, Bin

    2015-01-01

    Natural products have been used in medicine for many years. Many top-selling pharmaceuticals are natural compounds or their derivatives. These plant- or microorganism-derived compounds have shown potential as therapeutic agents against cancer, microbial infection, inflammation, and other disease conditions. However, their success in clinical trials has been less impressive, partly due to the compounds’ low bioavailability. The incorporation of nanoparticles into a delivery system for natural products would be a major advance in the efforts to increase their therapeutic effects. Recently, advances have been made showing that nanoparticles can significantly increase the bioavailability of natural products both in vitro and in vivo. Nanotechnology has demonstrated its capability to manipulate particles in order to target specific areas of the body and control the release of drugs. Although there are many benefits to applying nanotechnology for better delivery of natural products, it is not without issues. Drug targeting remains a challenge and potential nanoparticle toxicity needs to be further investigated, especially if these systems are to be used to treat chronic human diseases. This review aims to summarize recent progress in several key areas relevant to natural products in nanoparticle delivery systems for biomedical applications. PMID:26451111

  3. Reinvigorating natural product combinatorial biosynthesis with synthetic biology

    PubMed Central

    Kim, Eunji; Moore, Bradley S.; Yoon, Yeo Joon

    2016-01-01

    Natural products continue to play a pivotal role in drug discovery efforts and in understanding human health. The ability to extend nature’s chemistry through combinatorial biosynthesis – altering functional groups, regiochemistry, and scaffold backbones through manipulation of biosynthetic enzymes – offers unique opportunities to create natural product analogues. Incorporating emerging synthetic biology techniques has the potential to further accelerate the refinement of combinatorial biosynthesis as a robust platform for the diversification of natural chemical drug leads. Two decades after the field originated, we discuss the current limitations, realities, and the state of the art of combinatorial biosynthesis, including the engineering of substrate specificity of biosynthetic enzymes and the development heterologous expression systems for biosynthetic pathways. We also propose a new perspective for the combinatorial biosynthesis of natural products that could reinvigorate drug discovery by using synthetic biology in combination with synthetic chemistry. PMID:26284672

  4. Modes of reproduction in Australian populations of Hypericum perforatum L. (St. John's wort) revealed by DNA fingerprinting and cytological methods.

    PubMed

    Mayo, Gwenda M; Langridge, Peter

    2003-08-01

    Hypericum perforatum L. (St. John's wort) is widely used in homeopathic medicine, but has also become a serious weed in Australia and many other countries. Reproduction in H. perforatum was investigated using markers based on restriction fragment length polymorphism (RFLP) and amplified fragment length polymorphism (AFLP). Between two Australian populations, plants displayed 14 polymorphisms from a total of 22 scorable RFLP markers when genomic DNA was probed with M13 bacteriophage, but individuals within each population exhibited identical RFLP fingerprints. Ninety-four percent of the progeny of four crosses made between the two populations exhibited identical fingerprint and ploidy level to the maternal parent, and probably originated apomictically. Seven seedlings with recombinant RFLP or AFLP fingerprints were found from a total of 121 progeny. Both molecular marker techniques detected the same recombinants from a subset of screened progeny. Cytological analysis showed that the seven recombinants comprised three tetraploids (2n = 4x = 32), three hexaploids (2n = 6x = 48), and one aneuploid (2n - 1 = 31), which suggested that the level of normal reduced embryo sacs was only 2.5%. These results are discussed in relation to the management of invasive populations, and the implications for plant breeding and production of St. John's wort for medicinal purposes.

  5. Elemental fingerprinting of Hypericum perforatum (St John's Wort) herb and preparations using ICP-OES and chemometrics.

    PubMed

    Owen, Jade D; Kirton, Stewart B; Evans, Sara J; Stair, Jacqueline L

    2016-06-01

    St. John's wort (SJW) (Hypericum perforatum) is a herbal remedy commonly used to treat mild depression. The elemental profiles of 54 samples (i.e., dry herbs, tablets and capsules) were evaluated by monitoring 25 elements using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The major elemental constituents in the SJW samples were Ca (300-199,000μg/g), Mg (410-3,530μg/g), Al (4.4-900μg/g), Fe (1.154-760μg/g), Mn (2.4-261μg/g), Sr (0.88-83.6μg/g), and Zn (7-64μg/g). For the sixteen elements that could be reliably quantified, principal component analysis (PCA) was used to investigate underlying patterns in the data. PCA models identified 7 key elements (i.e., Ba, Ca, Cd, Mg, Mo, Ni and Y), which described 85% of the variance in the dataset in the first three principal components. The PCA approach resulted in a general delineation between the three different formulations and provides a basis for monitoring product quality in this manner.

  6. Elemental fingerprinting of Hypericum perforatum (St John's Wort) herb and preparations using ICP-OES and chemometrics.

    PubMed

    Owen, Jade D; Kirton, Stewart B; Evans, Sara J; Stair, Jacqueline L

    2016-06-01

    St. John's wort (SJW) (Hypericum perforatum) is a herbal remedy commonly used to treat mild depression. The elemental profiles of 54 samples (i.e., dry herbs, tablets and capsules) were evaluated by monitoring 25 elements using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The major elemental constituents in the SJW samples were Ca (300-199,000μg/g), Mg (410-3,530μg/g), Al (4.4-900μg/g), Fe (1.154-760μg/g), Mn (2.4-261μg/g), Sr (0.88-83.6μg/g), and Zn (7-64μg/g). For the sixteen elements that could be reliably quantified, principal component analysis (PCA) was used to investigate underlying patterns in the data. PCA models identified 7 key elements (i.e., Ba, Ca, Cd, Mg, Mo, Ni and Y), which described 85% of the variance in the dataset in the first three principal components. The PCA approach resulted in a general delineation between the three different formulations and provides a basis for monitoring product quality in this manner. PMID:26994552

  7. Hypericum perforatum Reduces Paracetamol-Induced Hepatotoxicity and Lethality in Mice by Modulating Inflammation and Oxidative Stress.

    PubMed

    Hohmann, Miriam S N; Cardoso, Renato D R; Fattori, Victor; Arakawa, Nilton S; Tomaz, José C; Lopes, Norberto P; Casagrande, Rubia; Verri, Waldiceu A

    2015-07-01

    Hypericum perforatum is a medicinal plant with anti-inflammatory and antioxidant properties, which is commercially available for therapeutic use in Brazil. Herein the effect of H. perforatum extract on paracetamol (acetaminophen)-induced hepatotoxicity, lethality, inflammation, and oxidative stress in male swiss mice were investigated. HPLC analysis demonstrated the presence of rutin, quercetin, hypericin, pseudohypericin, and hyperforin in H. perforatum extract. Paracetamol (0.15-3.0 g/kg, p.o.) induced dose-dependent mortality. The sub-maximal lethal dose of paracetamol (1.5 g/kg, p.o.) was chosen for the experiments in the study. H. perforatum (30-300 mg/kg, i.p.) dose-dependently reduced paracetamol-induced lethality. Paracetamol-induced increase in plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentrations, and hepatic myeloperoxidase activity, IL-1β, TNF-α, and IFN-γ concentrations as well as decreased reduced glutathione (GSH) concentrations and capacity to reduce 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate radical cation; ABTS˙(+) ) were inhibited by H. perforatum (300 mg/kg, i.p.) treatment. Therefore, H. perforatum protects mice against paracetamol-induced lethality and liver damage. This effect seems to be related to the reduction of paracetamol-induced cytokine production, neutrophil recruitment, and oxidative stress. PMID:25851311

  8. Chasing the treasures of the sea - bacterial marine natural products.

    PubMed

    Gulder, Tobias A M; Moore, Bradley S

    2009-06-01

    Bacterial marine natural products are an important source of novel lead structures for drug discovery. The cytotoxic properties of many of these secondary metabolites are of particular interest for the development of new anticancer agents. Tremendous advances in marine molecular biology, genome sequencing, and bioinformatics have paved the way to fully exploit the biomedical potential of marine bacterial products. In addition, unique biosynthetic enzymes discovered from bacteria from the sea have begun to emerge as powerful biocatalysts in medicinal chemistry and total synthesis. The increasingly interdisciplinary field of marine natural product chemistry thus strongly impacts future developments in medicine, chemistry, and biology.

  9. Does species diversity limit productivity in natural grassland communities?

    USGS Publications Warehouse

    Grace, J.B.; Anderson, T.M.; Smith, M.D.; Seabloom, E.; Andelman, S.J.; Meche, G.; Weiher, E.; Allain, L.K.; Jutila, H.; Sankaran, M.; Knops, J.; Ritchie, M.; Willig, M.R.

    2007-01-01

    Theoretical analyses and experimental studies of synthesized assemblages indicate that under particular circumstances species diversity can enhance community productivity through niche complementarity. It remains unclear whether this process has important effects in mature natural ecosystems where competitive feedbacks and complex environmental influences affect diversity-productivity relationships. In this study, we evaluated diversity-productivity relationships while statistically controlling for environmental influences in 12 natural grassland ecosystems. Because diversity-productivity relationships are conspicuously nonlinear, we developed a nonlinear structural equation modeling (SEM) methodology to separate the effects of diversity on productivity from the effects of productivity on diversity. Meta-analysis was used to summarize the SEM findings across studies. While competitive effects were readily detected, enhancement of production by diversity was not. These results suggest that the influence of small-scale diversity on productivity in mature natural systems is a weak force, both in absolute terms and relative to the effects of other controls on productivity. ?? 2007 Blackwell Publishing Ltd/CNRS.

  10. Computer-Aided Drug Design of Bioactive Natural Products.

    PubMed

    Prachayasittikul, Veda; Worachartcheewan, Apilak; Shoombuatong, Watshara; Songtawee, Napat; Simeon, Saw; Prachayasittikul, Virapong; Nantasenamat, Chanin

    2015-01-01

    Natural products have been an integral part of sustaining civilizations because of their medicinal properties. Past discoveries of bioactive natural products have relied on serendipity, and these compounds serve as inspiration for the generation of analogs with desired physicochemical properties. Bioactive natural products with therapeutic potential are abundantly available in nature and some of them are beyond exploration by conventional methods. The effectiveness of computational approaches as versatile tools for facilitating drug discovery and development has been recognized for decades, without exception, in the case of natural products. In the post-genomic era, scientists are bombarded with data produced by advanced technologies. Thus, rendering these data into knowledge that is interpretable and meaningful becomes an essential issue. In this regard, computational approaches utilize the existing data to generate knowledge that provides valuable understanding for addressing current problems and guiding the further research and development of new natural-derived drugs. Furthermore, several medicinal plants have been continuously used in many traditional medicine systems since antiquity throughout the world, and their mechanisms have not yet been elucidated. Therefore, the utilization of computational approaches and advanced synthetic techniques would yield great benefit to improving the world's health population and well-being. PMID:25961523

  11. Computer-Aided Drug Design of Bioactive Natural Products.

    PubMed

    Prachayasittikul, Veda; Worachartcheewan, Apilak; Shoombuatong, Watshara; Songtawee, Napat; Simeon, Saw; Prachayasittikul, Virapong; Nantasenamat, Chanin

    2015-01-01

    Natural products have been an integral part of sustaining civilizations because of their medicinal properties. Past discoveries of bioactive natural products have relied on serendipity, and these compounds serve as inspiration for the generation of analogs with desired physicochemical properties. Bioactive natural products with therapeutic potential are abundantly available in nature and some of them are beyond exploration by conventional methods. The effectiveness of computational approaches as versatile tools for facilitating drug discovery and development has been recognized for decades, without exception, in the case of natural products. In the post-genomic era, scientists are bombarded with data produced by advanced technologies. Thus, rendering these data into knowledge that is interpretable and meaningful becomes an essential issue. In this regard, computational approaches utilize the existing data to generate knowledge that provides valuable understanding for addressing current problems and guiding the further research and development of new natural-derived drugs. Furthermore, several medicinal plants have been continuously used in many traditional medicine systems since antiquity throughout the world, and their mechanisms have not yet been elucidated. Therefore, the utilization of computational approaches and advanced synthetic techniques would yield great benefit to improving the world's health population and well-being.

  12. Culture-independent discovery of natural products from soil metagenomes.

    PubMed

    Katz, Micah; Hover, Bradley M; Brady, Sean F

    2016-03-01

    Bacterial natural products have proven to be invaluable starting points in the development of many currently used therapeutic agents. Unfortunately, traditional culture-based methods for natural product discovery have been deemphasized by pharmaceutical companies due in large part to high rediscovery rates. Culture-independent, or "metagenomic," methods, which rely on the heterologous expression of DNA extracted directly from environmental samples (eDNA), have the potential to provide access to metabolites encoded by a large fraction of the earth's microbial biosynthetic diversity. As soil is both ubiquitous and rich in bacterial diversity, it is an appealing starting point for culture-independent natural product discovery efforts. This review provides an overview of the history of soil metagenome-driven natural product discovery studies and elaborates on the recent development of new tools for sequence-based, high-throughput profiling of environmental samples used in discovering novel natural product biosynthetic gene clusters. We conclude with several examples of these new tools being employed to facilitate the recovery of novel secondary metabolite encoding gene clusters from soil metagenomes and the subsequent heterologous expression of these clusters to produce bioactive small molecules.

  13. The Traditional Medicine and Modern Medicine from Natural Products.

    PubMed

    Yuan, Haidan; Ma, Qianqian; Ye, Li; Piao, Guangchun

    2016-04-29

    Natural products and traditional medicines are of great importance. Such forms of medicine as traditional Chinese medicine, Ayurveda, Kampo, traditional Korean medicine, and Unani have been practiced in some areas of the world and have blossomed into orderly-regulated systems of medicine. This study aims to review the literature on the relationship among natural products, traditional medicines, and modern medicine, and to explore the possible concepts and methodologies from natural products and traditional medicines to further develop drug discovery. The unique characteristics of theory, application, current role or status, and modern research of eight kinds of traditional medicine systems are summarized in this study. Although only a tiny fraction of the existing plant species have been scientifically researched for bioactivities since 1805, when the first pharmacologically-active compound morphine was isolated from opium, natural products and traditional medicines have already made fruitful contributions for modern medicine. When used to develop new drugs, natural products and traditional medicines have their incomparable advantages, such as abundant clinical experiences, and their unique diversity of chemical structures and biological activities.

  14. The Traditional Medicine and Modern Medicine from Natural Products.

    PubMed

    Yuan, Haidan; Ma, Qianqian; Ye, Li; Piao, Guangchun

    2016-01-01

    Natural products and traditional medicines are of great importance. Such forms of medicine as traditional Chinese medicine, Ayurveda, Kampo, traditional Korean medicine, and Unani have been practiced in some areas of the world and have blossomed into orderly-regulated systems of medicine. This study aims to review the literature on the relationship among natural products, traditional medicines, and modern medicine, and to explore the possible concepts and methodologies from natural products and traditional medicines to further develop drug discovery. The unique characteristics of theory, application, current role or status, and modern research of eight kinds of traditional medicine systems are summarized in this study. Although only a tiny fraction of the existing plant species have been scientifically researched for bioactivities since 1805, when the first pharmacologically-active compound morphine was isolated from opium, natural products and traditional medicines have already made fruitful contributions for modern medicine. When used to develop new drugs, natural products and traditional medicines have their incomparable advantages, such as abundant clinical experiences, and their unique diversity of chemical structures and biological activities. PMID:27136524

  15. Potential antimalarials from African natural products: A reviw

    PubMed Central

    Lawal, Bashir; Shittu, Oluwatosin Kudirat; Kabiru, Adamu Yusuf; Jigam, Ali Audu; Umar, Maimuna Bello; Berinyuy, Eustace Bonghan; Alozieuwa, Blessing Uchenna

    2015-01-01

    Malaria remains an overwhelming infectious disease with significant health challenges in African and other endemic countries globally. Resistance to antimalarial drugs has become one of the most momentous challenges to human health, and thus has necessitated the hunt for new and effective drugs. Consequently, few decades have witnessed a surfeit of research geared to validate the effectiveness of commonly used traditionally medicines against malaria fever. The present review work focuses on documenting natural products from African whose activity has been reported in vivo or in vitro against malaria parasite. Literature was collected using electronic search of published articles (Google Scholar, PubMed, Medline, Sciencedirect, and Science domain) that report on antiplasmodial activity of natural products from differernts Africa region. A total of 652 plant taxa from 146 families, 134 isolated antimalarial compounds from 39 plants species, 2 herbal formulations and 4 insect/products were found to be reported in literature from 1996 to 2015. Plants species from family Asteraceae (11.04%), Fababceae (8.128%), Euphorbiaceae (5.52%), Rubiaceas (5.52%), and Apocyanaceae (5.214%), have received more scientific validation than others. African natural products possess remarkable healing properties as revealed in the various citations as promising antimalarial agents. Some of these natural products from Africa demonstrate high, promising or low activities against Plasmodium parasite. This study also shows that natural products from Africa have a huge amount of novel antimalarial compounds that could serve as a leads for the development of new and effective antiplasmodial drugs. However, in a view of bridging the gap in knowledge, clinical validation of these natural products are of paramount importance. PMID:26649238

  16. Potential antimalarials from African natural products: A reviw.

    PubMed

    Lawal, Bashir; Shittu, Oluwatosin Kudirat; Kabiru, Adamu Yusuf; Jigam, Ali Audu; Umar, Maimuna Bello; Berinyuy, Eustace Bonghan; Alozieuwa, Blessing Uchenna

    2015-01-01

    Malaria remains an overwhelming infectious disease with significant health challenges in African and other endemic countries globally. Resistance to antimalarial drugs has become one of the most momentous challenges to human health, and thus has necessitated the hunt for new and effective drugs. Consequently, few decades have witnessed a surfeit of research geared to validate the effectiveness of commonly used traditionally medicines against malaria fever. The present review work focuses on documenting natural products from African whose activity has been reported in vivo or in vitro against malaria parasite. Literature was collected using electronic search of published articles (Google Scholar, PubMed, Medline, Sciencedirect, and Science domain) that report on antiplasmodial activity of natural products from differernts Africa region. A total of 652 plant taxa from 146 families, 134 isolated antimalarial compounds from 39 plants species, 2 herbal formulations and 4 insect/products were found to be reported in literature from 1996 to 2015. Plants species from family Asteraceae (11.04%), Fababceae (8.128%), Euphorbiaceae (5.52%), Rubiaceas (5.52%), and Apocyanaceae (5.214%), have received more scientific validation than others. African natural products possess remarkable healing properties as revealed in the various citations as promising antimalarial agents. Some of these natural products from Africa demonstrate high, promising or low activities against Plasmodium parasite. This study also shows that natural products from Africa have a huge amount of novel antimalarial compounds that could serve as a leads for the development of new and effective antiplasmodial drugs. However, in a view of bridging the gap in knowledge, clinical validation of these natural products are of paramount importance.

  17. Plant extracts as natural antioxidants in meat and meat products.

    PubMed

    Shah, Manzoor Ahmad; Bosco, Sowriappan John Don; Mir, Shabir Ahmad

    2014-09-01

    Antioxidants are used to minimize the oxidative changes in meat and meat products. Oxidative changes may have negative effects on the quality of meat and meat products, causing changes in their sensory and nutritional properties. Although synthetic antioxidants have already been used but in recent years, the demand for natural antioxidants has been increased mainly because of adverse effects of synthetic antioxidants. Thus most of the recent investigations have been directed towards the identification of natural antioxidants from various plant sources. Plant extracts have been prepared using different solvents and extraction methods. Grape seed, green tea, pine bark, rosemary, pomegranate, nettle and cinnamon have exhibited similar or better antioxidant properties compared to some synthetic ones. This review provides the recent information on plant extracts used as natural antioxidants in meat and meat products, specifically red meat.

  18. Plant extracts as natural antioxidants in meat and meat products.

    PubMed

    Shah, Manzoor Ahmad; Bosco, Sowriappan John Don; Mir, Shabir Ahmad

    2014-09-01

    Antioxidants are used to minimize the oxidative changes in meat and meat products. Oxidative changes may have negative effects on the quality of meat and meat products, causing changes in their sensory and nutritional properties. Although synthetic antioxidants have already been used but in recent years, the demand for natural antioxidants has been increased mainly because of adverse effects of synthetic antioxidants. Thus most of the recent investigations have been directed towards the identification of natural antioxidants from various plant sources. Plant extracts have been prepared using different solvents and extraction methods. Grape seed, green tea, pine bark, rosemary, pomegranate, nettle and cinnamon have exhibited similar or better antioxidant properties compared to some synthetic ones. This review provides the recent information on plant extracts used as natural antioxidants in meat and meat products, specifically red meat. PMID:24824531

  19. Dietary Natural Products for Prevention and Treatment of Liver Cancer.

    PubMed

    Zhou, Yue; Li, Ya; Zhou, Tong; Zheng, Jie; Li, Sha; Li, Hua-Bin

    2016-03-01

    Liver cancer is the most common malignancy of the digestive system with high death rate. Accumulating evidences suggests that many dietary natural products are potential sources for prevention and treatment of liver cancer, such as grapes, black currant, plum, pomegranate, cruciferous vegetables, French beans, tomatoes, asparagus, garlic, turmeric, ginger, soy, rice bran, and some edible macro-fungi. These dietary natural products and their active components could affect the development and progression of liver cancer in various ways, such as inhibiting tumor cell growth and metastasis, protecting against liver carcinogens, immunomodulating and enhancing effects of chemotherapeutic drugs. This review summarizes the potential prevention and treatment activities of dietary natural products and their major bioactive constituents on liver cancer, and discusses possible mechanisms of action. PMID:26978396

  20. In situ natural product discovery via an artificial marine sponge.

    PubMed

    La Clair, James J; Loveridge, Steven T; Tenney, Karen; O'Neil-Johnson, Mark; Chapman, Eli; Crews, Phillip

    2014-01-01

    There is continuing international interest in exploring and developing the therapeutic potential of marine-derived small molecules. Balancing the strategies for ocean based sampling of source organisms versus the potential to endanger fragile ecosystems poses a substantial challenge. In order to mitigate such environmental impacts, we have developed a deployable artificial sponge. This report provides details on its design followed by evidence that it faithfully recapitulates traditional natural product collection protocols. Retrieving this artificial sponge from a tropical ecosystem after deployment for 320 hours afforded three actin-targeting jasplakinolide depsipeptides that had been discovered two decades earlier using traditional sponge specimen collection and isolation procedures. The successful outcome achieved here could reinvigorate marine natural products research, by producing new environmentally innocuous sources of natural products and providing a means to probe the true biosynthetic origins of complex marine-derived scaffolds. PMID:25004127

  1. Anti-cancer natural products isolated from chinese medicinal herbs

    PubMed Central

    2011-01-01

    In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin), alkaloids (berberine), terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid), quinones (shikonin and emodin) and saponins (ginsenoside Rg3), which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed. PMID:21777476

  2. Genomic basis for natural product biosynthetic diversity in the actinomycetes†

    PubMed Central

    Nett, Markus; Ikeda, Haruo; Moore, Bradley S.

    2010-01-01

    The phylum Actinobacteria hosts diverse high G + C, Gram-positive bacteria that have evolved a complex chemical language of natural product chemistry to help navigate their fascinatingly varied lifestyles. To date, 71 Actinobacteria genomes have been completed and annotated, with the vast majority representing the Actinomycetales, which are the source of numerous antibiotics and other drugs from genera such as Streptomyces, Saccharopolyspora and Salinispora. These genomic analyses have illuminated the secondary metabolic proficiency of these microbes – underappreciated for years based on conventional isolation programs – and have helped set the foundation for a new natural product discovery paradigm based on genome mining. Trends in the secondary metabolomes of natural product-rich actinomycetes are highlighted in this review article, which contains 199 references. PMID:19844637

  3. In Situ Natural Product Discovery via an Artificial Marine Sponge

    PubMed Central

    La Clair, James J.; Loveridge, Steven T.; Tenney, Karen; O'Neil–Johnson, Mark; Chapman, Eli; Crews, Phillip

    2014-01-01

    There is continuing international interest in exploring and developing the therapeutic potential of marine–derived small molecules. Balancing the strategies for ocean based sampling of source organisms versus the potential to endanger fragile ecosystems poses a substantial challenge. In order to mitigate such environmental impacts, we have developed a deployable artificial sponge. This report provides details on its design followed by evidence that it faithfully recapitulates traditional natural product collection protocols. Retrieving this artificial sponge from a tropical ecosystem after deployment for 320 hours afforded three actin–targeting jasplakinolide depsipeptides that had been discovered two decades earlier using traditional sponge specimen collection and isolation procedures. The successful outcome achieved here could reinvigorate marine natural products research, by producing new environmentally innocuous sources of natural products and providing a means to probe the true biosynthetic origins of complex marine–derived scaffolds. PMID:25004127

  4. Dietary Natural Products for Prevention and Treatment of Liver Cancer

    PubMed Central

    Zhou, Yue; Li, Ya; Zhou, Tong; Zheng, Jie; Li, Sha; Li, Hua-Bin

    2016-01-01

    Liver cancer is the most common malignancy of the digestive system with high death rate. Accumulating evidences suggests that many dietary natural products are potential sources for prevention and treatment of liver cancer, such as grapes, black currant, plum, pomegranate, cruciferous vegetables, French beans, tomatoes, asparagus, garlic, turmeric, ginger, soy, rice bran, and some edible macro-fungi. These dietary natural products and their active components could affect the development and progression of liver cancer in various ways, such as inhibiting tumor cell growth and metastasis, protecting against liver carcinogens, immunomodulating and enhancing effects of chemotherapeutic drugs. This review summarizes the potential prevention and treatment activities of dietary natural products and their major bioactive constituents on liver cancer, and discusses possible mechanisms of action. PMID:26978396

  5. Recent advances in deep-sea natural products.

    PubMed

    Skropeta, Danielle; Wei, Liangqian

    2014-08-01

    Covering: 2009 to 2013. This review covers the 188 novel marine natural products described since 2008, from deep-water (50->5000 m) marine fauna including bryozoa, chordata, cnidaria, echinodermata, microorganisms, mollusca and porifera. The structures of the new compounds and details of the source organism, depth of collection and country of origin are presented, along with any relevant biological activities of the metabolites. Where reported, synthetic studies on the deep-sea natural products have also been included. Most strikingly, 75% of the compounds were reported to possess bioactivity, with almost half exhibiting low micromolar cytotoxicity towards a range of human cancer cell lines, along with a significant increase in the number of microbial deep-sea natural products reported.

  6. Recent advances in deep-sea natural products.

    PubMed

    Skropeta, Danielle; Wei, Liangqian

    2014-08-01

    Covering: 2009 to 2013. This review covers the 188 novel marine natural products described since 2008, from deep-water (50->5000 m) marine fauna including bryozoa, chordata, cnidaria, echinodermata, microorganisms, mollusca and porifera. The structures of the new compounds and details of the source organism, depth of collection and country of origin are presented, along with any relevant biological activities of the metabolites. Where reported, synthetic studies on the deep-sea natural products have also been included. Most strikingly, 75% of the compounds were reported to possess bioactivity, with almost half exhibiting low micromolar cytotoxicity towards a range of human cancer cell lines, along with a significant increase in the number of microbial deep-sea natural products reported. PMID:24871201

  7. Dietary Natural Products for Prevention and Treatment of Liver Cancer.

    PubMed

    Zhou, Yue; Li, Ya; Zhou, Tong; Zheng, Jie; Li, Sha; Li, Hua-Bin

    2016-03-01

    Liver cancer is the most common malignancy of the digestive system with high death rate. Accumulating evidences suggests that many dietary natural products are potential sources for prevention and treatment of liver cancer, such as grapes, black currant, plum, pomegranate, cruciferous vegetables, French beans, tomatoes, asparagus, garlic, turmeric, ginger, soy, rice bran, and some edible macro-fungi. These dietary natural products and their active components could affect the development and progression of liver cancer in various ways, such as inhibiting tumor cell growth and metastasis, protecting against liver carcinogens, immunomodulating and enhancing effects of chemotherapeutic drugs. This review summarizes the potential prevention and treatment activities of dietary natural products and their major bioactive constituents on liver cancer, and discusses possible mechanisms of action.

  8. Marine Natural Products as Models to Circumvent Multidrug Resistance.

    PubMed

    Long, Solida; Sousa, Emília; Kijjoa, Anake; Pinto, Madalena M M

    2016-01-01

    Multidrug resistance (MDR) to anticancer drugs is a serious health problem that in many cases leads to cancer treatment failure. The ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which leads to premature efflux of drugs from cancer cells, is often responsible for MDR. On the other hand, a strategy to search for modulators from natural products to overcome MDR had been in place during the last decades. However, Nature limits the amount of some natural products, which has led to the development of synthetic strategies to increase their availability. This review summarizes the research findings on marine natural products and derivatives, mainly alkaloids, polyoxygenated sterols, polyketides, terpenoids, diketopiperazines, and peptides, with P-gp inhibitory activity highlighting the established structure-activity relationships. The synthetic pathways for the total synthesis of the most promising members and analogs are also presented. It is expected that the data gathered during the last decades concerning their synthesis and MDR-inhibiting activities will help medicinal chemists develop potential drug candidates using marine natural products as models which can deliver new ABC transporter inhibitor scaffolds. PMID:27399665

  9. The impact of natural products upon modern drug discovery.

    PubMed

    Ganesan, A

    2008-06-01

    In the period 1970-2006, a total of 24 unique natural products were discovered that led to an approved drug. We analyze these successful leads in terms of drug-like properties, and show that they can be divided into two equal subsets. The first falls in the 'Lipinski universe' and complies with the Rule of Five. The second is a 'parallel universe' that violates the rules. Nevertheless, the latter compounds remain largely compliant in terms of logP and H-bond donors, highlighting the importance of these two metrics in predicting bioavailability. Natural products are often cited as an exception to Lipinski's rules. We believe this is because nature has learned to maintain low hydrophobicity and intermolecular H-bond donating potential when it needs to make biologically active compounds with high molecular weight and large numbers of rotatable bonds. In addition, natural products are more likely than purely synthetic compounds to resemble biosynthetic intermediates or endogenous metabolites, and hence take advantage of active transport mechanisms. Interestingly, the natural product leads in the Lipinski and parallel universe had an identical success rate (50%) in delivering an oral drug.

  10. NATURAL PRODUCTS: A CONTINUING SOURCE OF NOVEL DRUG LEADS

    PubMed Central

    Cragg, Gordon M.; Newman, David J.

    2013-01-01

    1. Background Nature has been a source of medicinal products for millennia, with many useful drugs developed from plant sources. Following discovery of the penicillins, drug discovery from microbial sources occurred and diving techniques in the 1970s opened the seas. Combinatorial chemistry (late 1980s), shifted the focus of drug discovery efforts from Nature to the laboratory bench. 2. Scope of Review This review traces natural products drug discovery, outlining important drugs from natural sources that revolutionized treatment of serious diseases. It is clear Nature will continue to be a major source of new structural leads, and effective drug development depends on multidisciplinary collaborations. 3. Major Conclusions The explosion of genetic information led not only to novel screens, but the genetic techniques permitted the implementation of combinatorial biosynthetic technology and genome mining. The knowledge gained has allowed unknown molecules to be identified. These novel bioactive structures can be optimized by using combinatorial chemistry generating new drug candidates for many diseases. 4 General Significance: The advent of genetic techniques that permitted the isolation / expression of biosynthetic cassettes from microbes may well be the new frontier for natural products lead discovery. It is now apparent that biodiversity may be much greater in those organisms. The numbers of potential species involved in the microbial world are many orders of magnitude greater than those of plants and multi-celled animals. Coupling these numbers to the number of currently unexpressed biosynthetic clusters now identified (>10 per species) the potential of microbial diversity remains essentially untapped. PMID:23428572

  11. Total synthesis and development of bioactive natural products

    PubMed Central

    TATSUTA, Kuniaki

    2008-01-01

    The first total synthesis and development of a variety of bioactive natural products have been accomplished by using carbohydrates as a chiral source. In addition, practically useful intermediates have been created, analogs of natural products have been prepared, their structure-activity relationships studied, and the large-scale preparations of medicinally useful compounds established. The key target molecules have been the “Big Four” antibiotics (macrolides, aminoglycosides, β-lactams and tetracyclines), pyranonaphthoquinone antibiotics, glycosidase inhibitors, and a side-chain of cephem antibiotics. PMID:18941289

  12. A natural product based DOS library of hybrid systems.

    PubMed

    Prabhu, Ganesh; Agarwal, Shalini; Sharma, Vijeta; Madurkar, Sanjay M; Munshi, Parthapratim; Singh, Shailja; Sen, Subhabrata

    2015-05-01

    Here we described a natural product inspired modular DOS strategy for the synthesis of a library of hybrid systems that are structurally and stereochemically disparate. The main scaffold is a pyrroloisoquinoline motif, that is synthesized from tandem Pictet-Spengler lactamization. The structural diversity is generated via "privileged scaffolds" that are attached at the appropriate site of the motif. Screening of the library compounds for their antiplasmodial activity against chloroquine sensitive 3D7 cells indicated few compounds with moderate activity (20-50 μM). A systematic comparison of structural intricacy between the library members and a natural product dataset obtained from ZINC(®) revealed comparable complexity. PMID:25794788

  13. Factors affecting polyphenol biosynthesis in wild and field grown St. John's Wort (Hypericum perforatum L. Hypericaceae/Guttiferae).

    PubMed

    Bruni, Renato; Sacchetti, Gianni

    2009-01-01

    The increasing diffusion of herbal products is posing new questions: why are products so often different in their composition and efficacy? Which approach is more suitable to increase the biochemical productivity of medicinal plants with large-scale, low-cost solutions? Can the phytochemical profile of a medicinal plant be modulated in order to increase the accumulation of its most valuable constituents? Will polyphenol-rich medicinal crops ever be traded as commodities? Providing a proactive answer to such questions is an extremely hard task, due to the large number of variables involved: intraspecific chemodiversity, plant breeding, ontogenetic stage, post-harvest handling, biotic and abiotic factors, to name but a few. An ideal path in this direction should include the definition of optimum pre-harvesting and post-harvesting conditions and the availability of specific Good Agricultural Practices centered on secondary metabolism enhancement. The first steps to be taken are undoubtedly the evaluation and the organization of scattered data regarding the diverse factors involved in the optimization of medicinal plant cultivation, in order to provide an interdisciplinary overview of main possibilities, weaknesses and drawbacks. This review is intended to be a synopsis of the knowledge on this regard focused on Hypericum perforatum L. (Hypericaceae/Guttiferae) secondary metabolites of phenolic origin, with the aim to provide a reference and suggest an evolution towards the maximization of St. John's Wort bioactive constituents. Factors considered emerged not only from in-field agronomic results, but also from physiological, genetical, biotic, abiotic and phytochemical data that could be scaled up to the application level. To increase quality for final beneficiaries, growers' profits and ultimately transform phenolic-rich medicinal crops into commodities, the emerging trend suggests an integrated and synergic approach. Agronomy and genetics will need to develop their

  14. Idaho Habitat and Natural Production Monitoring : Annual Report 1989.

    SciTech Connect

    Kiefer, Russell B.; Forster, Katharine A.

    1991-01-01

    Project 83-7 was established under the Northwest Power Planning Council's 1982 Fish and Wildlife Program to monitor natural production of anadromous fish, evaluate Bonneville Power Administration (BPA) habitat improvement projects, and develop a credit record for off-site mitigation projects in Idaho. Project 83-7 is divided into two subprojects: general and intensive monitoring. Primary objectives of the general monitoring subproject (Part 1) are to determine natural production increases due to habitat improvement projects in terms of parr production and to determine natural production status and trends in Idaho. The second objective is accomplished by combining parr density data from monitoring and evaluation of BPA habitat projects and from other Idaho Department of Fish and Game (IDFG) management and research activities. Primary objectives of the intensive monitoring subproject (Part 2) are to determine the number of returning chinook and steelhead adults necessary to achieve optimal smolt production and to develop mitigation accounting based on increases in smolt production. Two locations are being intensively studied to meet these objectives. Field work began in 1987 in the upper Salmon River and Crooked River (South Fork Clearwater River tributary). 22 refs., 10 figs., 17 tabs.

  15. Comparative Transcriptome Reconstruction of Four Hypericum Species Focused on Hypericin Biosynthesis.

    PubMed

    Soták, Miroslav; Czeranková, Odeta; Klein, Daniel; Jurčacková, Zuzana; Li, Ling; Čellárová, Eva

    2016-01-01

    Next generation sequencing technology rapidly developed research applications in the field of plant functional genomics. Several Hypericum spp. with an aim to generate and enhance gene annotations especially for genes coding the enzymes supposedly included in biosynthesis of valuable bioactive compounds were analyzed. The first de novo transcriptome profiling of Hypericum annulatum Moris, H. tomentosum L., H. kalmianum L., and H. androsaemum L. leaves cultivated in vitro was accomplished. All four species with only limited genomic information were selected on the basis of differences in ability to synthesize hypericins and presence of dark nodules accumulating these metabolites with purpose to enrich genomic background of Hypericum spp. H. annulatum was chosen because of high number of the dark nodules and high content of hypericin. H. tomentosum leaves are typical for the presence of only 1-2 dark nodules localized in the apical part. Both H. kalmianum and H. androsaemum lack hypericin and have no dark nodules. Four separated datasets of the pair-end reads were gathered and used for de novo assembly by Trinity program. Assembled transcriptomes were annotated to the public databases Swiss-Prot and non-redundant protein database (NCBI-nr). Gene ontology analysis was performed. Differences of expression levels in the marginal tissues with dark nodules and inner part of leaves lacking these nodules indicate a potential genetic background for hypericin formation as the presumed site of hypericin biosynthesis is in the cells adjacent to these structures. Altogether 165 contigs in H. annulatum and 100 contigs in H. tomentosum were detected as significantly differentially expressed (P < 0.05) and upregulated in the leaf rim tissues containing the dark nodules. The new sequences homologous to octaketide synthase and enzymes catalyzing phenolic oxidative coupling reactions indispensable for hypericin biosynthesis were discovered. The presented transcriptomic sequence data

  16. Comparative Transcriptome Reconstruction of Four Hypericum Species Focused on Hypericin Biosynthesis

    PubMed Central

    Soták, Miroslav; Czeranková, Odeta; Klein, Daniel; Jurčacková, Zuzana; Li, Ling; Čellárová, Eva

    2016-01-01

    Next generation sequencing technology rapidly developed research applications in the field of plant functional genomics. Several Hypericum spp. with an aim to generate and enhance gene annotations especially for genes coding the enzymes supposedly included in biosynthesis of valuable bioactive compounds were analyzed. The first de novo transcriptome profiling of Hypericum annulatum Moris, H. tomentosum L., H. kalmianum L., and H. androsaemum L. leaves cultivated in vitro was accomplished. All four species with only limited genomic information were selected on the basis of differences in ability to synthesize hypericins and presence of dark nodules accumulating these metabolites with purpose to enrich genomic background of Hypericum spp. H. annulatum was chosen because of high number of the dark nodules and high content of hypericin. H. tomentosum leaves are typical for the presence of only 1–2 dark nodules localized in the apical part. Both H. kalmianum and H. androsaemum lack hypericin and have no dark nodules. Four separated datasets of the pair-end reads were gathered and used for de novo assembly by Trinity program. Assembled transcriptomes were annotated to the public databases Swiss-Prot and non-redundant protein database (NCBI-nr). Gene ontology analysis was performed. Differences of expression levels in the marginal tissues with dark nodules and inner part of leaves lacking these nodules indicate a potential genetic background for hypericin formation as the presumed site of hypericin biosynthesis is in the cells adjacent to these structures. Altogether 165 contigs in H. annulatum and 100 contigs in H. tomentosum were detected as significantly differentially expressed (P < 0.05) and upregulated in the leaf rim tissues containing the dark nodules. The new sequences homologous to octaketide synthase and enzymes catalyzing phenolic oxidative coupling reactions indispensable for hypericin biosynthesis were discovered. The presented transcriptomic sequence data

  17. Production of hydrogen by thermocatalytic cracking of natural gas

    SciTech Connect

    Muradov, N.Z.

    1995-09-01

    It is universally accepted that in the next few decades hydrogen production will continue to rely on fossil fuels (primarily, natural gas). On the other hand, the conventional methods of hydrogen production from natural gas (for example, steam reforming) are complex multi-step processes. These processes also result in the emission of large quantities of CO{sub 2} into the atmosphere that produce adverse ecological effects. One alternative is the one-step thermocatalytic cracking (TCC) (or decomposition) of natural gas into hydrogen and carbon. Preliminary analysis indicates that the cost of hydrogen produced by thermal decomposition of natural gas is somewhat lower than the conventional processes after by-product carbon credit is taken. In the short term, this process can be used for on-site production of hydrogen-methane mixtures in gas-filling stations and for CO{sub x}-free production of hydrogen for fuel cell driven prime movers. The experimental data on the thermocatalytic cracking of methane over various catalysts and supports in a wide range of temperatures (500-900{degrees}C) are presented in this paper. Two types of reactors were designed and built at FSEC: continuous flow and pulse fix bed catalytic reactors. The temperature dependence of the hydrogen production yield using oxide type catalysts was studied. Alumina-supported Ni- and Fe-catalysts demonstrated relatively high efficiency in the methane cracking reaction at moderate temperatures (600-800{degrees}C). Kinetic curves of hydrogen production over metal and metal oxide catalysts at different temperatures are presented in the paper. Fe-catalyst demonstrated good stability (for several hours), whereas alumina-supported Pt-catalyst rapidly lost its catalytic activity.

  18. Mechanism Targeted Discovery of Antitumor Marine Natural Products

    PubMed Central

    Nagle, Dale G.; Zhou, Yu-Dong; Mora, Flor D.; Mohammed, Kaleem A.; Kim, Yong-Pil

    2010-01-01

    Antitumor drug discovery programs aim to identify chemical entities for use in the treatment of cancer. Many strategies have been used to achieve this objective. Natural products have always played a major role in anticancer medicine and the unique metabolites produced by marine organisms have increasingly become major players in antitumor drug discovery. Rapid advances have occurred in the understanding of tumor biology and molecular medicine. New insights into mechanisms responsible for neoplastic disease are significantly changing the general philosophical approach towards cancer treatment. Recently identified molecular targets have created exciting new means for disrupting tumor-specific cell signaling, cell division, energy metabolism, gene expression, drug resistance, and blood supply. Such tumor-specific treatments could someday decrease our reliance on traditional cytotoxicity-based chemotherapy and provide new less toxic treatment options with significantly fewer side effects. Novel molecular targets and state-of-the-art molecular mechanism-based screening methods have revitalized antitumor research and these changes are becoming an ever-increasing component of modern antitumor marine natural products research. This review describes marine natural products identified using tumor-specific mechanism-based assays for regulators of angiogenesis, apoptosis, cell cycle, macromolecule synthesis, mitochondrial respiration, mitosis, multidrug efflux, and signal transduction. Special emphasis is placed on natural products directly discovered using molecular mechanism-based screening. PMID:15279579

  19. Low Carbon Technology Options for the Natural Gas Electricity Production

    EPA Science Inventory

    The ultimate goal of this task is to perform environmental and economic analysis of natural gas based power production technologies (different routes) to investigate and evaluate strategies for reducing emissions from the power sector. It is a broad research area. Initially, the...

  20. Natural Products for the Treatment of Type 2 Diabetes Mellitus.

    PubMed

    Ríos, José Luis; Francini, Flavio; Schinella, Guillermo R

    2015-08-01

    Type 2 diabetes mellitus is a metabolic disease characterized by persistent hyperglycemia. High blood sugar can produce long-term complications such as cardiovascular and renal disorders, retinopathy, and poor blood flow. Its development can be prevented or delayed in people with impaired glucose tolerance by implementing lifestyle changes or the use of therapeutic agents. Some of these drugs have been obtained from plants or have a microbial origin, such as galegine isolated from Galega officinalis, which has a great similarity to the antidiabetic drug metformin. Picnogenol, acarbose, miglitol, and voglibose are other antidiabetic products of natural origin. This review compiles the principal articles on medicinal plants used for treating diabetes and its comorbidities, as well as mechanisms of natural products as antidiabetic agents. Inhibition of α-glucosidase and α-amylase, effects on glucose uptake and glucose transporters, modification of mechanisms mediated by the peroxisome proliferator-activated receptor, inhibition of protein tyrosine phosphatase 1B activity, modification of gene expression, and activities of hormones involved in glucose homeostasis such as adiponectin, resistin, and incretin, and reduction of oxidative stress are some of the mechanisms in which natural products are involved. We also review the most relevant clinical trials performed with medicinal plants and natural products such as aloe, banaba, bitter melon, caper, cinnamon, cocoa, coffee, fenugreek, garlic, guava, gymnema, nettle, sage, soybean, green and black tea, turmeric, walnut, and yerba mate. Compounds of high interest as potential antidiabetics are: fukugetin, palmatine, berberine, honokiol, amorfrutins, trigonelline, gymnemic acids, gurmarin, and phlorizin. PMID:26132858

  1. Current perspectives in drug discovery against tuberculosis from natural products.

    PubMed

    Nguta, Joseph Mwanzia; Appiah-Opong, Regina; Nyarko, Alexander K; Yeboah-Manu, Dorothy; Addo, Phyllis G A

    2015-09-01

    Currently, one third of the world's population is latently infected with Mycobacterium tuberculosis (MTB), while 8.9-9.9 million new and relapse cases of tuberculosis (TB) are reported yearly. The renewed research interests in natural products in the hope of discovering new and novel antitubercular leads have been driven partly by the increased incidence of multidrug-resistant strains of MTB and the adverse effects associated with the first- and second-line antitubercular drugs. Natural products have been, and will continue to be a rich source of new drugs against many diseases. The depth and breadth of therapeutic agents that have their origins in the secondary metabolites produced by living organisms cannot be compared with any other source of therapeutic agents. Discovery of new chemical molecules against active and latent TB from natural products requires an interdisciplinary approach, which is a major challenge facing scientists in this field. In order to overcome this challenge, cutting edge techniques in mycobacteriology and innovative natural product chemistry tools need to be developed and used in tandem. The present review provides a cross-linkage to the most recent literature in both fields and their potential to impact the early phase of drug discovery against TB if seamlessly combined. PMID:27649863

  2. The Utility of Metabolomics in Natural Product and Biomarker Characterization

    PubMed Central

    Cox, Daniel G.; Oh, Joonseok; Keasling, Adam; Colson, Kim

    2014-01-01

    Background Metabolomics is a well-established rapidly developing research field involving quantitative and qualitative metabolite assessment within biological systems. Recent improvements in metabolomics technologies reveal the unequivocal value of metabolomics tools in natural products discovery, gene-function analysis, systems biology and diagnostic platforms. Scope of review We review of some of the prominent metabolomics methodologies employed in data acquisition and analysis of natural products and disease-related biomarkers. Major conclusions This review demonstrates that metabolomics represents a highly adaptable technology with diverse applications ranging from environmental toxicology to disease diagnosis. Metabolomic analysis is shown to provide a unique snapshot of the functional genetic status of an organism by examining its biochemical profile, with relevance toward resolving phylogenetic associations involving horizontal gene transfer and distinguishing subgroups of genera possessing high genetic homology, as well as an increasing role in both elucidating biosynthetic transformations of natural products and detecting preclinical biomarkers of numerous disease states. General significance This review expands the interest in multiplatform combinatorial metabolomic analysis. The applications reviewed range from phylogenetic assignment, biosynthetic transformations of natural products, and the detection of preclinical biomarkers. PMID:25151044

  3. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM)

    PubMed Central

    Skinnider, Michael A.; Dejong, Chris A.; Rees, Philip N.; Johnston, Chad W.; Li, Haoxin; Webster, Andrew L. H.; Wyatt, Morgan A.; Magarvey, Nathan A.

    2015-01-01

    Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/. PMID:26442528

  4. Biological Activity of Recently Discovered Halogenated Marine Natural Products

    PubMed Central

    Gribble, Gordon W.

    2015-01-01

    This review presents the biological activity—antibacterial, antifungal, anti-parasitic, antiviral, antitumor, antiinflammatory, antioxidant, and enzymatic activity—of halogenated marine natural products discovered in the past five years. Newly discovered examples that do not report biological activity are not included. PMID:26133553

  5. Natural products with health benefits from marine biological resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ocean is the cradle of lives, which provides a diverse array of intriguing natural products that has captured scientists’ attention in the past few decades due to their significant and extremely potent biological activities. In addition to being rich sources for pharmaceutical drugs, marine nat...

  6. The Synthesis of Quinolone Natural Products from Pseudonocardia sp.

    PubMed Central

    Salvaggio, Flavia; Hodgkinson, James T.; Carro, Laura; Geddis, Stephen M.; Galloway, Warren R. J. D.; Welch, Martin

    2015-01-01

    Abstract The synthesis of four quinolone natural products from the actinomycete Pseudonocardia sp. is reported. The key step involved a sp2–sp3 Suzuki–Miyaura reaction between a common boronic ester lateral chain and various functionalised quinolone cores. The quinolones slowed growth of E. coli and S. aureus by inducing extended lag phases.

  7. Natural products from true mangrove flora: source, chemistry and bioactivities.

    PubMed

    Wu, Jun; Xiao, Qiang; Xu, Jing; Li, Min-Yi; Pan, Jian-Yu; Yang, Mei-hua

    2008-10-01

    The mangrove flora is a diverse group of salt-tolerant plants growing in tropical and subtropical intertidal estuarine zones. This review summarizes the source, chemistry and bioactivities of natural products from true mangrove species worldwide. It includes 349 metabolites and 150 references. The molecular phylogeny and chemotaxonomy of true mangrove plants is discussed.

  8. Natural product derived insecticides: discovery and development of spinetoram.

    PubMed

    Galm, Ute; Sparks, Thomas C

    2016-03-01

    This review highlights the importance of natural product research and industrial microbiology for product development in the agricultural industry, based on examples from Dow AgroSciences. It provides an overview of the discovery and development of spinetoram, a semisynthetic insecticide derived by a combination of a genetic block in a specific O-methylation of the rhamnose moiety of spinosad coupled with neural network-based QSAR and synthetic chemistry. It also emphasizes the key role that new technologies and multidisciplinary approaches play in the development of current spinetoram production strains.

  9. Natural product derived insecticides: discovery and development of spinetoram.

    PubMed

    Galm, Ute; Sparks, Thomas C

    2016-03-01

    This review highlights the importance of natural product research and industrial microbiology for product development in the agricultural industry, based on examples from Dow AgroSciences. It provides an overview of the discovery and development of spinetoram, a semisynthetic insecticide derived by a combination of a genetic block in a specific O-methylation of the rhamnose moiety of spinosad coupled with neural network-based QSAR and synthetic chemistry. It also emphasizes the key role that new technologies and multidisciplinary approaches play in the development of current spinetoram production strains. PMID:26582335

  10. Fishing for Nature's Hits: Establishment of the Zebrafish as a Model for Screening Antidiabetic Natural Products.

    PubMed

    Tabassum, Nadia; Tai, Hongmei; Jung, Da-Woon; Williams, Darren R

    2015-01-01

    Diabetes mellitus affects millions of people worldwide and significantly impacts their quality of life. Moreover, life threatening diseases, such as myocardial infarction, blindness, and renal disorders, increase the morbidity rate associated with diabetes. Various natural products from medicinal plants have shown potential as antidiabetes agents in cell-based screening systems. However, many of these potential "hits" fail in mammalian tests, due to issues such as poor pharmacokinetics and/or toxic side effects. To address this problem, the zebrafish (Danio rerio) model has been developed as a "bridge" to provide an experimentally convenient animal-based screening system to identify drug candidates that are active in vivo. In this review, we discuss the application of zebrafish to drug screening technologies for diabetes research. Specifically, the discovery of natural product-based antidiabetes compounds using zebrafish will be described. For example, it has recently been demonstrated that antidiabetic natural compounds can be identified in zebrafish using activity guided fractionation of crude plant extracts. Moreover, the development of fluorescent-tagged glucose bioprobes has allowed the screening of natural product-based modulators of glucose homeostasis in zebrafish. We hope that the discussion of these advances will illustrate the value and simplicity of establishing zebrafish-based assays for antidiabetic compounds in natural products-based laboratories.

  11. Fishing for Nature's Hits: Establishment of the Zebrafish as a Model for Screening Antidiabetic Natural Products

    PubMed Central

    Tabassum, Nadia; Tai, Hongmei; Jung, Da-Woon; Williams, Darren R.

    2015-01-01

    Diabetes mellitus affects millions of people worldwide and significantly impacts their quality of life. Moreover, life threatening diseases, such as myocardial infarction, blindness, and renal disorders, increase the morbidity rate associated with diabetes. Various natural products from medicinal plants have shown potential as antidiabetes agents in cell-based screening systems. However, many of these potential “hits” fail in mammalian tests, due to issues such as poor pharmacokinetics and/or toxic side effects. To address this problem, the zebrafish (Danio rerio) model has been developed as a “bridge” to provide an experimentally convenient animal-based screening system to identify drug candidates that are active in vivo. In this review, we discuss the application of zebrafish to drug screening technologies for diabetes research. Specifically, the discovery of natural product-based antidiabetes compounds using zebrafish will be described. For example, it has recently been demonstrated that antidiabetic natural compounds can be identified in zebrafish using activity guided fractionation of crude plant extracts. Moreover, the development of fluorescent-tagged glucose bioprobes has allowed the screening of natural product-based modulators of glucose homeostasis in zebrafish. We hope that the discussion of these advances will illustrate the value and simplicity of establishing zebrafish-based assays for antidiabetic compounds in natural products-based laboratories. PMID:26681965

  12. Dietary supplements and natural products in breast cancer trials.

    PubMed

    Kado, Karl; Forsyth, Andrew; Patel, Priyesh Ramesh; Schwartz, Janice Ann

    2012-01-01

    The association between breast cancer and modifiable health behaviors is well supported. At least one-half of all cancers are suggested to have a dietary component. It is not surprising therefore that many of the dietary agents and natural health products that have attracted the attentions of scientists and practitioners are now moving into clinical trials. In this report, we review 65 clinical intervention trials evaluating over 30 dietary supplements and natural health products for use in breast cancer. The products being tested in these trials fall broadly into the following categories: (i) vitamins, minerals, cofactors; (ii) herbal extracts; (iii) amino acids; (iv) fatty acids; (v) animal products; (vi) probiotics; (vii) phytochemicals; and (viii) combination formulations. Trial outcome measures include risk modification, efficacy testing (with dietary supplements alone or dietary supplement-anticancer drug combinations), toxicity reduction, biomarker identification, symptom management, and quality of life parameters. The wide range of interests in natural product testing at the clinical trial level supports the potential utility of these agents in the breast cancer prevention, treatment, and management regimens of the future.

  13. Natural Products as a Source for Antileishmanial and Antitrypanosomal Agents.

    PubMed

    Scotti, Marcus Tullius; Scotti, Luciana; Ishiki, Hamilton; Ribeiro, Frederico Fávaro; Cruz, Rayssa Marques Duarte da; Oliveira, Michelle Pedrosa de; Mendonça, Francisco Jaime Bezerra

    2016-01-01

    Natural products are compounds extracted from plants, marine organisms, fungi or bacteria. Many researches for new drugs are based on these natural molecules, mainly by beneficial effects on health, health, efficacy, and therapeutic safety. Leishmaniosis, Chagas disease and African sleeping sickness are neglected diseases caused by the Leishmania and Trypanosoma ssp. parasites. These infections mainly affect population of developing countries; they have different symptoms, and may often lead to death. The therapeutic drugs available to treat these diseases are either obsolete, toxic, or have questionable efficacy, possibly through encountering resistance. Discovery of new, safe, effective, and affordable molecules is urgently needed. Natural organisms, as marine metabolites, alkaloids, flavonoids, steroids, terpene and coumarins provide innumerable molecules with the potential to treat these diseases. This study examines studies of natural bioactive compounds as antileishmanial and antitrypanosomal agents. PMID:27682867

  14. Biosynthesis and Function of Polyacetylenes and Allied Natural Products

    PubMed Central

    Minto, Robert E.; Blacklock, Brenda J.

    2008-01-01

    Polyacetylenic natural products are a substantial class of often unstable compounds containing a unique carbon-carbon triple bond functionality, that are intriguing for their wide variety of biochemical and ecological functions, economic potential, and surprising mode of biosynthesis. Isotopic tracer experiments between 1960 and 1990 demonstrated that the majority of these compounds are derived from fatty acid and polyketide precursors. During the past decade, research into the metabolism of polyacetylenes has swiftly advanced, driven by the cloning of the first genes responsible for polyacetylene biosynthesis in plants, moss, fungi, and actinomycetes, and the initial characterization of the gene products. The current state of knowledge of the biochemistry and molecular genetics of polyacetylenic secondary metabolic pathways will be presented together with an up-to-date survey of new terrestrial and marine natural products, their known biological activities, and a discussion of their likely metabolic origins. PMID:18387369

  15. Manipulating Natural Product Biosynthetic Pathways via DNA Assembler

    PubMed Central

    Shao, Zengyi; Zhao, Huimin

    2014-01-01

    DNA assembler is an efficient synthetic biology method for constructing and manipulating biochemical pathways. The rapidly increasing number of sequenced genomes provides a rich source for discovery of gene clusters involved in synthesizing new natural products. However, both discovery and economical production are hampered by our limited knowledge in manipulating most organisms and the corresponding pathways. By taking advantage of yeast in vivo homologous recombination, DNA assembler synthesizes an entire expression vector containing the target biosynthetic pathway and the genetic elements needed for DNA maintenance and replication. Here we use the spectinabilin clusters originated from two hosts as examples to illustrate the guidelines of using DNA assembler for cluster characterization and silent cluster activation. Such strategies offer unprecedented versatility in cluster manipulation, bypass the traditional laborious strategies to elicit pathway expression, and provide a new platform for de novo cluster assembly and genome mining for discovering new natural products. PMID:24903884

  16. Synthetic biology tools for bioprospecting of natural products in eukaryotes.

    PubMed

    Unkles, Shiela E; Valiante, Vito; Mattern, Derek J; Brakhage, Axel A

    2014-04-24

    Filamentous fungi have the capacity to produce a battery of natural products of often unknown function, synthesized by complex metabolic pathways. Unfortunately, most of these pathways appear silent, many in intractable organisms, and their products consequently unidentified. One basic challenge is the difficulty of expressing a biosynthesis pathway for a complex natural product in a heterologous eukaryotic host. Here, we provide a proof-of concept solution to this challenge and describe how the entire penicillin biosynthesis pathway can be expressed in a heterologous host. The method takes advantage of a combination of improved yeast in vivo cloning technology, generation of polycistronic mRNA for the gene cluster under study, and an amenable and easily manipulated fungal host, i.e., Aspergillus nidulans. We achieve expression from a single promoter of the pathway genes to yield a large polycistronic mRNA by using viral 2A peptide sequences to direct successful cotranslational cleavage of pathway enzymes.

  17. Natural gas production from hydrate dissociation: An axisymmetric model

    SciTech Connect

    Ahmadi, G.; Ji, Chuang; Smith, D.H.

    2007-08-01

    This paper describes an axisymmetric model for natural gas production from the dissociation of methane hydrate in a confined reservoir by a depressurizing well. During the hydrate dissociation, heat and mass transfer in the reservoir are analyzed. The system of governing equations is solved by a finite difference scheme. For different well pressures and reservoir temperatures, distributions of temperature and pressure in the reservoir, as well as the natural gas production from the well are evaluated. The numerical results are compared with those obtained by a linearization method. It is shown that the gas production rate is a sensitive function of well pressure. The simulation results are compared with the linearization approach and the shortcomings of the earlier approach are discussed.

  18. Identification of Light-independent Inhibition of Human Immunodeficiency Virus-1 Infection through Bioguided Fractionation of Hypericum perforatum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Light-dependent activities against enveloped viruses in St. John's Wort (Hypericum perforatum) extracts have been extensively studied. In contrast, light-independent antiviral activity from this species has not. Here, we identify the light-independent inhibition of human immunodeficiency virus-1 (...

  19. Initial and bulk extraction of natural products isolation.

    PubMed

    Seidel, Véronique

    2012-01-01

    Currently, there is a growing interest in the study of natural products, especially as part of drug discovery programs. Secondary metabolites can be extracted from a variety of natural sources, including plants, microbes, marine animals, insects, and amphibians. This chapter focuses principally on laboratory-scale processes of initial and bulk extraction from plant and microbial sources. With regard to plant natural products, the steps required for the preparation of the material prior to extraction, including aspects concerning plant selection, collection, identification, drying, and grinding, are detailed. The various extraction methods available (maceration, ultrasound-assisted solvent extraction, percolation, Soxhlet extraction, pressurized solvent extraction, extraction under reflux, steam distillation, and acid/based extraction) are reviewed. Regarding microbial natural products, this chapter covers issues relating to the isolation and culture of microorganisms and presents the extraction methods available for the recovery of microbial metabolites. Methods of minimizing compound degradation, artifacts formation, extract contamination with external impurities, and enrichment of extracts with desired metabolites are also examined.

  20. Polar Constituents and Biological Activity of the Berry-Like Fruits from Hypericum androsaemum L.

    PubMed Central

    Caprioli, Giovanni; Alunno, Alessia; Beghelli, Daniela; Bianco, Armandodoriano; Bramucci, Massimo; Frezza, Claudio; Iannarelli, Romilde; Papa, Fabrizio; Quassinti, Luana; Sagratini, Gianni; Tirillini, Bruno; Venditti, Alessandro; Vittori, Sauro; Maggi, Filippo

    2016-01-01

    Hypericum androsaemum, also known as Tutsan, is a small evergreen shrub common in the Mediterranean basin where it is traditionally used as diuretic and hepatoprotective herbal drug. This plant possesses the peculiarity to produce fleshy and berry-like fruits that ripen from red to shiny black. In the present work, the chemical constituents of methanolic extracts and infusions of red and black fruits were analyzed by HPLC, and correlated with their antioxidant properties which were evaluated by the DPPH, β-Carotene/linoleic acid, and hypochlorous acid tests. In addition, the red pigment of the fruit was isolated by column chromatography and structurally elucidated by NMR. Results showed that H. androsaemum fruits contain high amounts of shikimic and chlorogenic acids, while their color was given by a tetraoxygenated-type xanthone, reported for the first time in Hypericum species. The red berries infusion gave the highest content of total phenolic compounds, DPPH, and hypochlorous acid scavenging activity, and β-carotene bleaching. Cytotoxicity of the berries extracts on three human tumor cell lines (malignant melanoma, breast adenocarcinoma, and colon carcinoma) was evaluated by MTT assay, and relevant inhibition on colon carcinoma cells (IC50 value of 8.4 μg/mL) was found. Finally, the effects of red berries extract on the immune system were evaluated by peripheral blood mononuclear cell (PBMC) proliferation assay that revealed a strong stimulation on lymphocytes at low doses (0.4–6 μg/mL). PMID:26973675

  1. Inhibitory effect of the herbal antidepressant St. John's wort (Hypericum perforatum) on rat gastric motility.

    PubMed

    Capasso, Raffaele; Borrelli, Francesca; Aviello, Gabriella; Capasso, Francesco; Izzo, Angelo A

    2008-02-01

    St. John's wort (Hypericum perforatum) is a highly popular and effective herbal antidepressant that clinically interacts with a number of conventional drugs. Because alterations in gastric emptying can cause pharmacokinetic interactions, in the present study we evaluated the effect of a standardized extract prepared from the flowering tops of Hypericum perforatum (SJW extract) on rat gastric motility. Orally administered SJW extract delayed gastric emptying in vivo. In vitro studies showed that SJW extract was significantly more active in inhibiting acetylcholine (or prostaglandin E2)-induced contractions than electrical field stimulation (EFS)-induced contractions. The effect of SJW extract on EFS-induced contractions was unaffected by drugs that inhibit intrinsic inhibitory nerves or by tachykinin antagonists, but it was reduced by the 5-hydroxytryptamine antagonist methysergide. The inhibitory effect of SJW extract on acetylcholine-induced contractions was reduced by the sarcoplasmic reticulum Ca2+-ATPase inhibitor cyclopiazonic acid, but not by the L-type Ca2+ channel blocker nifedipine or by methysergide. Among the chemical constituents of SJW extract tested, hyperforin and, to a lesser extent, the flavonoids kaempferol and quercitrin, inhibited acetylcholine-induced contractions. It is concluded that SJW has a direct inhibitory effect on smooth muscle and could also possibly modulate gastric neurotransmission. If extended to humans, the inhibitory effect of SJW extract on gastric emptying in vivo could contribute, at least in part, to the clinical pharmacokinetic interactions between conventional medicines and this herbal antidepressant. PMID:18172613

  2. Marine natural products: a new wave of drugs?

    PubMed Central

    Montaser, Rana; Luesch, Hendrik

    2011-01-01

    The largely unexplored marine world that presumably harbors the most biodiversity may be the vastest resource to discover novel ‘validated’ structures with novel modes of action that cover biologically relevant chemical space. Several challenges, including the supply problem and target identification, need to be met for successful drug development of these often complex molecules; however, approaches are available to overcome the hurdles. Advances in technologies such as sampling strategies, nanoscale NMR for structure determination, total chemical synthesis, fermentation and biotechnology are all crucial to the success of marine natural products as drug leads. We illustrate the high degree of innovation in the field of marine natural products, which in our view will lead to a new wave of drugs that flow into the market and pharmacies in the future. PMID:21882941

  3. Natural Product Compounds with Aromatase Inhibitory Activity: An Update

    PubMed Central

    Balunas, Marcy J.; Kinghorn, A. Douglas

    2010-01-01

    Several synthetic aromatase inhibitors are currently in clinical use for the treatment of postmenopausal women with hormone-receptor positive breast cancer. However, these treatments may lead to untoward side effects and so a search for new aromatase inhibitors continues, especially those for which the activity is promoter-specific, targeting the breast-specific promoters I.3 and II. Recently, numerous natural product compounds have been found to inhibit aromatase in non-cellular, cellular, and in vivo studies. These investigations, covering the last two years, as well as additional studies that have focused on the evaluation of natural product compounds as promoter-specific aromatase inhibitors or as aromatase inducers, are described in this review. PMID:20635310

  4. Molecular Recognition of Natural Products by Resorc[4]arene Receptors.

    PubMed

    D'Acquarica, Ilaria; Ghirga, Francesca; Quaglio, Deborah; Cerreto, Antonella; Ingallina, Cinzia; Tafi, Andrea; Botta, Bruno

    2016-01-01

    This review is aimed at providing an overview of the up-to-now published literature on resorc[4]arene macrocycles exploited as artificial receptors for the molecular recognition of some classes of natural products. A concise illustration of the main synthetic strategies developed to afford the resorc[4]arene scaffold is followed by a report on the principles of the gas-phase investigation of recognition phenomena by mass spectrometry (MS). Emphasis is placed on gas-phase studies of diastereoisomeric complexes generated inside a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer by resorc[4]arene receptors towards a series of natural products, namely amino acids, amphetamine, ethanolamine neurotransmitters, dipeptides, vinca alkaloids and nucleosides. The literature outcomes discussed here, taken largely from our own revisited work, have been completed by references to other studies, in order to draw a broader picture of this rapidly evolving field of research. PMID:26654589

  5. The C7N aminocyclitol family of natural products.

    PubMed

    Mahmud, Taifo

    2003-02-01

    This review covers microbial secondary metabolites classified in the family of C7N aminocyclitols, a relatively new class of natural products that is increasingly gaining recognition due to their significant biomedical and agricultural uses. Their discovery and structure determinations, their biosynthetic origin, biological properties, chemical synthesis, as well as their further development for pharmaceutical uses are described. The literature from 1970 to July 2002 is reviewed, with 269 references cited.

  6. Xylochemistry--Making Natural Products Entirely from Wood.

    PubMed

    Stubba, Daniel; Lahm, Günther; Geffe, Mario; Runyon, Jason W; Arduengo, Anthony J; Opatz, Till

    2015-11-16

    The first total synthesis of the dimeric berberine alkaloid ilicifoline (ilicifoline B) is reported. Its carbon skeleton is constructed from ferulic acid, veratrole, and methanol. The synthesis reported herein employs starting materials solely derived from wood. The natural product is thus constructed entirely from renewable resources. The same strategy is applied to a formal total synthesis of morphinan alkaloids. The use of wood-derived building blocks (xylochemicals) instead of the conventional petrochemicals represents a sustainable alternative to classical synthetic approaches.

  7. An Update on Natural Products with Carbonic Anhydrase Inhibitory Activity.

    PubMed

    Karioti, Anastasia; Carta, Fabrizio; Supuran, Claudiu T

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological processes. They represent a typical example of enzyme convergent evolution, as six genetically unrelated families of such enzymes were described so far. It is more than 70 years that synthetic compounds, mainly sulfonamides, have been used in clinical practice as diuretics and systemic acting antiglaucoma drugs. Recent studies using natural product libraries and isolated constituents from natural sources (such as fungi and plants) have disclosed novel chemotypes possessing carbonic anhydrase inhibition activities. These natural sources offer new opportunities in the search for new and more effective carbonic anhydrase inhibitors, and may serve as new leads for the design and development of future drugs. This review will discuss the most recent advances in the search of naturally occurring products and their synthetic derivatives that inhibit the CAs and their mechanisms of action at molecular level. Plant extracts are not considered in the present review. PMID:26654592

  8. Interactions between Natural Health Products and Oral Anticoagulants: Spontaneous Reports in the Italian Surveillance System of Natural Health Products

    PubMed Central

    Paoletti, Angelica; Gallo, Eugenia; Benemei, Silvia; Vietri, Michele; Lapi, Francesco; Volpi, Roberta; Menniti-Ippolito, Francesca; Gori, Luigi; Mugelli, Alessandro; Firenzuoli, Fabio; Vannacci, Alfredo

    2011-01-01

    Introduction. The safety of vitamin K antagonists (VKA) use can be compromised by many popular herbal supplements taken by individuals. The literature reports that 30% of warfarin-treated patients self-medicates with herbs. Possible interactions represent an health risk. We aimed to identify all herbs-oral anticoagulants interactions collected in the Italian database of suspected adverse reactions to “natural health” products. Methods. The Italian database of spontaneous reports of suspected adverse reactions to natural products was analyzed to address herb-VKAs interactions. Results. From 2002 to 2009, we identified 12 reports with 7 cases of INR reduction in patients treated with warfarin (n = 3) and acenocoumarol (n = 4), and 5 cases of INR increase (all warfarin associated). It was reported 8 different herbal products as possibly interacting. Discussion. Our study confirms the risk of interactions, highlighting the difficulty to characterize them and their mechanisms and, finally, prevent their onset. The reported data underline the urgent need of healthcare providers being aware of the possible interaction between natural products and VKA, also because of the critical clinical conditions affecting patients. This is the first step to have the best approach to understand possible INR alterations linked to herb-VKA interaction and to rightly educate patients in treatment with VKA. PMID:21274401

  9. Automated genome mining of ribosomal peptide natural products

    SciTech Connect

    Mohimani, Hosein; Kersten, Roland; Liu, Wei; Wang, Mingxun; Purvine, Samuel O.; Wu, Si; Brewer, Heather M.; Pasa-Tolic, Ljiljana; Bandeira, Nuno; Moore, Bradley S.; Pevzner, Pavel A.; Dorrestein, Pieter C.

    2014-07-31

    Ribosomally synthesized and posttranslationally modified peptides (RiPPs), especially from microbial sources, are a large group of bioactive natural products that are a promising source of new (bio)chemistry and bioactivity (1). In light of exponentially increasing microbial genome databases and improved mass spectrometry (MS)-based metabolomic platforms, there is a need for computational tools that connect natural product genotypes predicted from microbial genome sequences with their corresponding chemotypes from metabolomic datasets. Here, we introduce RiPPquest, a tandem mass spectrometry database search tool for identification of microbial RiPPs and apply it for lanthipeptide discovery. RiPPquest uses genomics to limit search space to the vicinity of RiPP biosynthetic genes and proteomics to analyze extensive peptide modifications and compute p-values of peptide-spectrum matches (PSMs). We highlight RiPPquest by connection of multiple RiPPs from extracts of Streptomyces to their gene clusters and by the discovery of a new class III lanthipeptide, informatipeptin, from Streptomyces viridochromogenes DSM 40736 as the first natural product to be identified in an automated fashion by genome mining. The presented tool is available at cy-clo.ucsd.edu.

  10. Mining and engineering natural-product biosynthetic pathways.

    PubMed

    Wilkinson, Barrie; Micklefield, Jason

    2007-07-01

    Natural products continue to fulfill an important role in the development of therapeutic agents. In addition, with the advent of chemical genetics and high-throughput screening platforms, these molecules have become increasingly valuable as tools for interrogating fundamental aspects of biological systems. To access the vast portion of natural-product structural diversity that remains unexploited for these and other applications, genome mining and microbial metagenomic approaches are proving particularly powerful. When these are coupled with recombineering and related genetic tools, large biosynthetic gene clusters that remain intractable or cryptic in the native host can be more efficiently cloned and expressed in a suitable heterologous system. For lead optimization and the further structural diversification of natural-product libraries, combinatorial biosynthetic engineering has also become indispensable. However, our ability to rationally redesign biosynthetic pathways is often limited by our lack of understanding of the structure, dynamics and interplay between the many enzymes involved in complex biosynthetic pathways. Despite this, recent structures of fatty acid synthases should allow a more accurate prediction of the likely architecture of related polyketide synthase and nonribosomal peptide synthetase multienzymes. PMID:17576425

  11. Antimycobacterial natural products--an opportunity for the Colombian biodiversity.

    PubMed

    Bueno, Juan; Coy, Ericsson David; Stashenko, Elena

    2011-12-01

    It is estimated that one-third part of the world population is infected with the tubercle bacillus. While only a small percentage of infected individuals will develop clinical tuberculosis, each year there are approximately eight million new cases and two million deaths. Mycobacterium tuberculosis is thus responsible for more human mortality than any other single microbial species. The goals of tuberculosis control are focused to cure active disease, prevent relapse, reduce transmission and avert the emergence of drug-resistance. For over 50 years, natural products have served us well on combating infectious bacteria and fungi. During the 20th century, microbial and plant secondary metabolites have helped to double our life span, reduced pain and suffering, and revolutionized medicine. Colombia is a megadiverse country with enormous potential to offer leads for new antimycobacterial drugs. The principal aim of this article is to show a state of the art on antimycobacterial natural products research in Colombia compared to the rest of the world, in order to develop programs for bioprospecting with a view to determining the biological activity for pharmaceutical and industrial application of natural products in our country.

  12. Natural products and colon cancer: current status and future prospects

    PubMed Central

    Rajamanickam, Subapriya; Agarwal, Rajesh

    2008-01-01

    Carcinogenesis is a multistage process consisting of initiation, promotion and progression phases. Thus, the multistage sequence of events has many phases for prevention and intervention. Chemoprevention, a novel approach for controlling cancer, involves the use of specific natural products or synthetic chemical agents to reverse, suppress or prevent premalignancy before the development of invasive cancer. Several natural products, such as, grains, nuts, cereals, spices, fruits, vegetables, beverages, medicinal plants and herbs and their various phytochemical constituents including, phenolics, flavonoids, carotenoids, alkaloids, nitrogen containing as well as organosulfur compounds confer protective effects against wide range of cancers including colon cancer. Since diet has an important role in the etiology of colon cancer, dietary chemoprevention received attention for colon cancer prevention. However, identification of an agent with chemopreventive potential requires in vitro studies, efficacy and toxicity studies in animal models before embarking on human clinical trials. A brief introduction about colon cancer and the role of some recent natural products in colon cancer chemoprevention with respect to multiple molecular mechanisms in various in vitro, in vivo and clinical studies are described in this review. PMID:19884979

  13. Natural Products as a Source for Novel Antibiotics.

    PubMed

    Moloney, Mark G

    2016-08-01

    Natural products have historically been of crucial importance in the identification and development of antibacterial agents. Interest in these systems has waned in recent years, but the rapid emergence of resistant bacterial strains has forced their re-evaluation as a route to identify novel chemical skeletons with antibacterial activity for elaboration in drug development. This overview examines the current situation, highlights new natural product systems which have been found, together with re-examination of some old ones, and new technologies for their identification. While natural products certainly have the potential to re-emerge as a key start-point in antibacterial drug discovery, reports of new or reinvestigated structures need to be supported with sufficient quality chemical (solubility, stability), biochemical (including toxicity in particular, along with target information) and microbiological [minimum inhibitory concentration (MIC) and resistance frequency] validation data to assist in the identification of promising hit structures and to avoid wasted effort from trawling over already cultivated territory. This is particularly important in a resource-limited research environment. PMID:27267698

  14. Natural gas production problems : solutions, methodologies, and modeling.

    SciTech Connect

    Rautman, Christopher Arthur; Herrin, James M.; Cooper, Scott Patrick; Basinski, Paul M.; Olsson, William Arthur; Arnold, Bill Walter; Broadhead, Ronald F.; Knight, Connie D.; Keefe, Russell G.; McKinney, Curt; Holm, Gus; Holland, John F.; Larson, Rich; Engler, Thomas W.; Lorenz, John Clay

    2004-10-01

    Natural gas is a clean fuel that will be the most important domestic energy resource for the first half the 21st centtuy. Ensuring a stable supply is essential for our national energy security. The research we have undertaken will maximize the extractable volume of gas while minimizing the environmental impact of surface disturbances associated with drilling and production. This report describes a methodology for comprehensive evaluation and modeling of the total gas system within a basin focusing on problematic horizontal fluid flow variability. This has been accomplished through extensive use of geophysical, core (rock sample) and outcrop data to interpret and predict directional flow and production trends. Side benefits include reduced environmental impact of drilling due to reduced number of required wells for resource extraction. These results have been accomplished through a cooperative and integrated systems approach involving industry, government, academia and a multi-organizational team within Sandia National Laboratories. Industry has provided essential in-kind support to this project in the forms of extensive core data, production data, maps, seismic data, production analyses, engineering studies, plus equipment and staff for obtaining geophysical data. This approach provides innovative ideas and technologies to bring new resources to market and to reduce the overall environmental impact of drilling. More importantly, the products of this research are not be location specific but can be extended to other areas of gas production throughout the Rocky Mountain area. Thus this project is designed to solve problems associated with natural gas production at developing sites, or at old sites under redevelopment.

  15. [Production of plant-derived natural products in yeast cells - A review].

    PubMed

    Wang, Dong; Dai, Zhubo; Zhang, Xueli

    2016-03-01

    Plant-derived natural products (PNPs) have been widely used in pharmaceutical and nutritional fields. So far, the main method to produce PNPs is extracting them from their original plants, however, there remains lots of problems. With the concept of synthetic biology, construction of yeast cell factories for production of PNPs provides an alternative way. In this review, we will focus on PNPs' market and application, research progress for production of artemisinin, research progress for production of terpenes, alkaloids and polyunsaturated fatty acid (PUFAs) and recent technology development to give a brief introduction of construction of yeast cells for production of PNPs.

  16. 25 years of natural product R&D with New South Wales agriculture.

    PubMed

    Southwell, Ian A

    2005-01-01

    Following recent NSW Government restructuring, the Department of Agriculture now exists in a composite form along with Forestry, Fisheries and Minerals in the new NSW Department of Primary Industries. This paper outlines some of the highlights of secondary metabolite R&D accomplished in the 25 years since the essential oil research unit was transferred from the Museum of Applied Arts & Sciences, Sydney to NSW Agriculture's Wollongbar Agricultural Institute on the NSW north coast. The essential oil survey was continued, typing the Australian flora as a suitable source of isolates such as myrtenal (Astartea), myrtenol (Agonis), methyl chavicol(Ochrosperma), alpha-phellandren-8-ol (Prostanthera), methyl myrtenate (Darwinia), methyl geranate (Darwinia), kessane (Acacia), cis-dihydroagarofuran (Prosthanthera), protoanemonin (Clematis), isoamyl isovalerate (Micromyrtus), methyl cinnamate (Eucalyptus) and bornyl acetate (Boronia). Many of these components are used, or have potential use in the fragrance, flavour, medicinal plant or insect attraction fields. Two weeds toxic to livestock in the Central West of the State are also harvested commercially as medicinal plants. Measurement of hypericin concentrations in the various plant parts of St John's Wort (Hypericum perforatum) over two seasons has shown that the weed can be effectively managed by grazing sheep during the winter months when toxin levels are low. Syntheses of beta-carbolines tribulusterine and perlolyrine have shown that the former alkaloid was misidentified in the literature and hence not the toxic principle responsible for Tribulus staggers in sheep. Poor quality (high 1,8-cineole - low terpinen-4-ol) oil bearing tea tree (Melaleuca alternifolia) plantations have been established to the detriment of many a tea tree farmer. Analytical methods developed to check leaf quality at an early age indicated precursor sabinene constituents that convert to the active terpinen-4-ol both as the leaf matures or as the

  17. Enhancement of dimethylsulfide production by anoxic stress in natural seawater

    NASA Astrophysics Data System (ADS)

    Omori, Yuko; Tanimoto, Hiroshi; Inomata, Satoshi; Wada, Shigeki; Thume, Kathleen; Pohnert, Georg

    2015-05-01

    Dimethylsulfide (DMS) is produced by phytoplankton in the ocean and plays an important role in biogeochemical cycles and climate system of the Earth. Previous field studies reported a possible relationship between DMS enhancement and anoxic condition, although the governing processes are still to be identified. Here we show the first direct evidence for the enhancement of DMS production by natural planktonic assemblages caused by anoxic stress. Under the anoxic condition, DMS production was considerably enhanced and DMS bacterial consumption was inhibited, resulting in an eightfold higher rate of gross DMS production than that under the oxic condition. Our results demonstrated that anoxic stress is one of important "environmental factors" in the marine DMS dynamics, suggesting the possible global importance due to ubiquity of anoxic conditions in the coastal oceans. This process would become more important in the future due to expansion of coastal hypoxic and anoxic zones by global warming.

  18. Polyphenols-rich natural products for treatment of diabetes.

    PubMed

    Dragan, S; Andrica, F; Serban, Maria-Corina; Timar, R

    2015-01-01

    Currently, experimental and clinical evidences showed that polyphenols-rich natural products, like nutraceuticals and food supplements, may offer unique treatment modalities in type 2 diabetes mellitus (DM), due to their biological properties. Natural products modulate the carbohydrate metabolism by various mechanisms, such as restoring beta-cells integrity and physiology, enhancing insulin releasing activity, and the glucose using. Sea buckthorn berries, red grapes, bilberries, chokeberries and popular drinks like cocoa, coffee and green tea are all rich in polyphenols and may decrease the insulin response, offer in g a natural alternative of treatment in diabetes. Therefore, researches are now focused on potential efficacies of different types of polyphenols, including flavonoids, phenolic acids, lignans, anthocyans and stilbenes. Animal and human studies showed that polyphenols modulate carbohydrate and lipid metabolism, decrease glycemia and insulin resistance, increase lipid metabolism and optimize oxidative stress and inflammatory processes. It is important to understand the proper dose and duration of supplementation with polyphenols-rich extracts in order to guide effective therapeutic interventions in diabetic patients.

  19. Overcome Cancer Cell Drug Resistance Using Natural Products

    PubMed Central

    Wang, Pu; Yang, Hua Li; Yang, Ying Juan; Wang, Lan; Lee, Shao Chin

    2015-01-01

    Chemotherapy is one of the major treatment methods for cancer. However, failure in chemotherapy is not uncommon, mainly due to dose-limiting toxicity associated with drug resistance. Management of drug resistance is important towards successful chemotherapy. There are many reports in the Chinese literature that natural products can overcome cancer cell drug resistance, which deserve sharing with scientific and industrial communities. We summarized the reports into four categories: (1) in vitro studies using cell line models; (2) serum pharmacology; (3) in vivo studies using animal models; and (4) clinical studies. Fourteen single compounds were reported to have antidrug resistance activity for the first time. In vitro, compounds were able to overcome drug resistance at nontoxic or subtoxic concentrations, in a dose-dependent manner, by inhibiting drug transporters, cell detoxification capacity, or cell apoptosis sensitivity. Studies in vivo showed that single compounds, herbal extract, and formulas had potent antidrug resistance activities. Importantly, many single compounds, herbal extracts, and formulas have been used clinically to treat various diseases including cancer. The review provides comprehensive data on use of natural compounds to overcome cancer cell drug resistance in China, which may facilitate the therapeutic development of natural products for clinical management of cancer drug resistance. PMID:26421052

  20. Natural products as potential cancer therapy enhancers: A preclinical update

    PubMed Central

    Agbarya, Abed; Ruimi, Nili; Epelbaum, Ron; Ben-Arye, Eran

    2014-01-01

    Cancer is a multifactorial disease that arises as a consequence of alterations in many physiological processes. Recently, hallmarks of cancer were suggested that include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis, along with two emerging hallmarks including reprogramming energy metabolism and escaping immune destruction. Treating multifactorial diseases, such as cancer with agents targeting a single target, might provide partial treatment and, in many cases, disappointing cure rates. Epidemiological studies have consistently shown that the regular consumption of fruits and vegetables is strongly associated with a reduced risk of developing chronic diseases, such as cardiovascular diseases and cancer. Since ancient times, plants, herbs, and other natural products have been used as healing agents. Moreover, the majority of the medicinal substances available today have their origin in natural compounds. Traditionally, pharmaceuticals are used to cure diseases, and nutrition and herbs are used to prevent disease and to provide an optimal balance of macro- and micro-nutrients needed for good health. We explored the combination of natural products, dietary nutrition, and cancer chemotherapeutics for improving the efficacy of cancer chemotherapeutics and negating side effects. PMID:26770737

  1. Production of hydrogen by thermocatalytic cracking of natural gas

    SciTech Connect

    Muradov, N.

    1996-10-01

    The conventional methods of hydrogen production from natural gas (for example, steam reforming and partial oxidation) are complex, multi-step processes that produce large quantities of CO{sub 2}. The main goal of this project is to develop a technologically simple process for hydrogen production from natural gas (NG) and other hydrocarbon fuels via single-step decomposition of hydrocarbons. This approach eliminates or significantly reduces CO{sub 2} emission. Carbon is a valuable by-product of this process, whereas conventional methods of hydrogen production from NG produce no useful by-products. This approach is based on the use of special catalysts that reduce the maximum temperature of the process from 1400-1500{degrees}C (thermal non-catalytic decomposition of methane) to 500-900{degrees}C. Transition metal based catalysts and various forms of carbon are among the candidate catalysts for the process. This approach can advantageously be used for the development of compact NG reformers for on-site production of hydrogen-methane blends at refueling stations and, also, for the production of hydrogen-rich gas for fuel cell applications. The author extended the search for active methane decomposition catalysts to various modifications of Ni-, Fe-, Mo- and Co-based catalysts. Variation in the operational parameters makes it possible to produce H{sub 2}-CH{sub 4} blends with a wide range of hydrogen concentrations that vary from 15 to 98% by volume. The author found that Ni-based catalysts are more effective at temperatures below 750{degrees}C, whereas Fe-based catalysts are effective at temperatures above 800{degrees}C for the production of hydrogen with purity of 95% v. or higher. The catalytic pyrolysis of liquid hydrocarbons (pentane, gasoline) over Fe-based catalyst was conducted. The author observed the production of a hydrogen-rich gas (hydrogen concentration up to 97% by volume) at a rate of approximately 1L/min.mL of hydrocarbon fuel.

  2. Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources.

    PubMed

    Ni, Jun; Tao, Fei; Du, Huaiqing; Xu, Ping

    2015-09-02

    Plant secondary metabolites have been attracting people's attention for centuries, due to their potentials; however, their production is still difficult and costly. The rich diversity of microbes and microbial genome sequence data provide unprecedented gene resources that enable to develop efficient artificial pathways in microorganisms. Here, by mimicking a natural pathway of plants using microbial genes, a new metabolic route was developed in E. coli for the synthesis of vanillin, the most widely used flavoring agent. A series of factors were systematically investigated for raising production, including efficiency and suitability of genes, gene dosage, and culture media. The metabolically engineered strain produced 97.2 mg/L vanillin from l-tyrosine, 19.3 mg/L from glucose, 13.3 mg/L from xylose and 24.7 mg/L from glycerol. These results show that the metabolic route enables production of natural vanillin from low-cost substrates, suggesting that it is a good strategy to mimick natural pathways for artificial pathway design.

  3. Mimicking a natural pathway for de novo biosynthesis: natural vanillin production from accessible carbon sources

    PubMed Central

    Ni, Jun; Tao, Fei; Du, Huaiqing; Xu, Ping

    2015-01-01

    Plant secondary metabolites have been attracting people’s attention for centuries, due to their potentials; however, their production is still difficult and costly. The rich diversity of microbes and microbial genome sequence data provide unprecedented gene resources that enable to develop efficient artificial pathways in microorganisms. Here, by mimicking a natural pathway of plants using microbial genes, a new metabolic route was developed in E. coli for the synthesis of vanillin, the most widely used flavoring agent. A series of factors were systematically investigated for raising production, including efficiency and suitability of genes, gene dosage, and culture media. The metabolically engineered strain produced 97.2 mg/L vanillin from l-tyrosine, 19.3 mg/L from glucose, 13.3 mg/L from xylose and 24.7 mg/L from glycerol. These results show that the metabolic route enables production of natural vanillin from low-cost substrates, suggesting that it is a good strategy to mimick natural pathways for artificial pathway design. PMID:26329726

  4. Natural Products from Marine Fungi—Still an Underrepresented Resource

    PubMed Central

    Imhoff, Johannes F.

    2016-01-01

    Marine fungi represent a huge potential for new natural products and an increased number of new metabolites have become known over the past years, while much of the hidden potential still needs to be uncovered. Representative examples of biodiversity studies of marine fungi and of natural products from a diverse selection of marine fungi from the author’s lab are highlighting important aspects of this research. If one considers the huge phylogenetic diversity of marine fungi and their almost ubiquitous distribution, and realizes that most of the published work on secondary metabolites of marine fungi has focused on just a few genera, strictly speaking Penicillium, Aspergillus and maybe also Fusarium and Cladosporium, the diversity of marine fungi is not adequately represented in investigations on their secondary metabolites and the less studied species deserve special attention. In addition to results on recently discovered new secondary metabolites of Penicillium species, the diversity of fungi in selected marine habitats is highlighted and examples of groups of secondary metabolites produced by representatives of a variety of different genera and their bioactivities are presented. Special focus is given to the production of groups of derivatives of metabolites by the fungi and to significant differences in biological activities due to small structural changes. PMID:26784209

  5. Water Resources and Natural Gas Production from the Marcellus Shale

    USGS Publications Warehouse

    Soeder, Daniel J.; Kappel, William M.

    2009-01-01

    The Marcellus Shale is a sedimentary rock formation deposited over 350 million years ago in a shallow inland sea located in the eastern United States where the present-day Appalachian Mountains now stand (de Witt and others, 1993). This shale contains significant quantities of natural gas. New developments in drilling technology, along with higher wellhead prices, have made the Marcellus Shale an important natural gas resource. The Marcellus Shale extends from southern New York across Pennsylvania, and into western Maryland, West Virginia, and eastern Ohio (fig. 1). The production of commercial quantities of gas from this shale requires large volumes of water to drill and hydraulically fracture the rock. This water must be recovered from the well and disposed of before the gas can flow. Concerns about the availability of water supplies needed for gas production, and questions about wastewater disposal have been raised by water-resource agencies and citizens throughout the Marcellus Shale gas development region. This Fact Sheet explains the basics of Marcellus Shale gas production, with the intent of helping the reader better understand the framework of the water-resource questions and concerns.

  6. Marine Natural Product Inhibitors of Neutrophil-Associated Inflammation.

    PubMed

    Chen, Chun-Yu; Tsai, Yung-Fong; Chang, Wen-Yi; Yang, Shun-Chin; Hwang, Tsong-Long

    2016-01-01

    Neutrophils are widely recognized to play an important role in acute inflammatory responses, and recent evidence has expanded their role to modulating chronic inflammatory and autoimmune diseases. Reactive oxygen species (ROS) and microbicidal compounds released from neutrophils that are recruited to the site of inflammation contribute to the pathogenesis of multiple inflammation-associated diseases such as chronic obstructive pulmonary disease, atherosclerosis, and hepatitis. Marine organisms are a valuable source of bioactive compounds with potential for industrial and pharmaceutical application. Marine natural products that inhibit neutrophil activation could be used as drugs for the treatment of inflammatory diseases. Numerous studies investigating marine natural products have reported novel anti-inflammatory agents. Nevertheless, the detailed mechanisms underlying their actions, which could facilitate our understanding of the molecular events occurring in neutrophils, have not been reported in most of the associated research studies. Therefore, in this review, we will present marine products that inhibit neutrophil-associated inflammation. Furthermore, we will be limiting the detailed discussion to agents with well-investigated molecular targets. PMID:27472345

  7. Marine Natural Product Inhibitors of Neutrophil-Associated Inflammation

    PubMed Central

    Chen, Chun-Yu; Tsai, Yung-Fong; Chang, Wen-Yi; Yang, Shun-Chin; Hwang, Tsong-Long

    2016-01-01

    Neutrophils are widely recognized to play an important role in acute inflammatory responses, and recent evidence has expanded their role to modulating chronic inflammatory and autoimmune diseases. Reactive oxygen species (ROS) and microbicidal compounds released from neutrophils that are recruited to the site of inflammation contribute to the pathogenesis of multiple inflammation-associated diseases such as chronic obstructive pulmonary disease, atherosclerosis, and hepatitis. Marine organisms are a valuable source of bioactive compounds with potential for industrial and pharmaceutical application. Marine natural products that inhibit neutrophil activation could be used as drugs for the treatment of inflammatory diseases. Numerous studies investigating marine natural products have reported novel anti-inflammatory agents. Nevertheless, the detailed mechanisms underlying their actions, which could facilitate our understanding of the molecular events occurring in neutrophils, have not been reported in most of the associated research studies. Therefore, in this review, we will present marine products that inhibit neutrophil-associated inflammation. Furthermore, we will be limiting the detailed discussion to agents with well-investigated molecular targets. PMID:27472345

  8. Natural Products from Marine Fungi--Still an Underrepresented Resource.

    PubMed

    Imhoff, Johannes F

    2016-01-16

    Marine fungi represent a huge potential for new natural products and an increased number of new metabolites have become known over the past years, while much of the hidden potential still needs to be uncovered. Representative examples of biodiversity studies of marine fungi and of natural products from a diverse selection of marine fungi from the author's lab are highlighting important aspects of this research. If one considers the huge phylogenetic diversity of marine fungi and their almost ubiquitous distribution, and realizes that most of the published work on secondary metabolites of marine fungi has focused on just a few genera, strictly speaking Penicillium, Aspergillus and maybe also Fusarium and Cladosporium, the diversity of marine fungi is not adequately represented in investigations on their secondary metabolites and the less studied species deserve special attention. In addition to results on recently discovered new secondary metabolites of Penicillium species, the diversity of fungi in selected marine habitats is highlighted and examples of groups of secondary metabolites produced by representatives of a variety of different genera and their bioactivities are presented. Special focus is given to the production of groups of derivatives of metabolites by the fungi and to significant differences in biological activities due to small structural changes.

  9. Natural Product Research in the Australian Marine Invertebrate Dicathais orbita

    PubMed Central

    Benkendorff, Kirsten

    2013-01-01

    The predatory marine gastropod Dicathais orbita has been the subject of a significant amount of biological and chemical research over the past five decades. Natural products research on D. orbita includes the isolation and identification of brominated indoles and choline esters as precursors of Tyrian purple, as well as the synthesis of structural analogues, bioactivity testing, biodistributional and biosynthetic studies. Here I also report on how well these compounds conform to Lipinski’s rule of five for druglikeness and their predicted receptor binding and enzyme inhibitor activity. The composition of mycosporine-like amino acids, fatty acids and sterols has also been described in the egg masses of D. orbita. The combination of bioactive compounds produced by D. orbita is of interest for further studies in chemical ecology, as well as for future nutraceutical development. Biological insights into the life history of this species, as well as ongoing research on the gene expression, microbial symbionts and biosynthetic capabilities, should facilitate sustainable production of the bioactive compounds. Knowledge of the phylogeny of D. orbita provides an excellent platform for novel research into the evolution of brominated secondary metabolites in marine molluscs. The range of polarities in the brominated indoles produced by D. orbita has also provided an effective model system used to develop a new method for biodistributional studies. The well characterized suite of chemical reactions that generate Tyrian purple, coupled with an in depth knowledge of the ecology, anatomy and genetics of D. orbita provide a good foundation for ongoing natural products research. PMID:23612370

  10. Productivity of wet soils: Biomass of cultivated and natural vegetation

    SciTech Connect

    Johnston, C.A.

    1988-12-01

    Wet soils, soils which have agronomic limitations because of excess water, comprise 105 million acres of non-federal land in the conterminous United States. Wet soils which support hydrophytic plants are ''wetlands'', and are some of the most productive natural ecosystems in the world. When both above- and belowground productivity are considered, cattail (Typha latifolia) is the most productive temperate wetland species (26.4 Mg/ha/year). Both cattail and reed (Phragmites australis) have aboveground productivities of about 13 Mg/ha/year. Although average aboveground yields of reed canarygrass (Phalaris arundinacea) are lower (9.5 Mg/ha/year), techniques for its establishment and cultivation are well-developed. Other herbaceous wetland species which show promise as biomass crops include sedge (Carex spp.), river bulrush (Scirpus fluviatilis) and prairie cordgrass (Spartina pectinata). About 40% of wet soils in the conterminous US are currently cultivated, and they produce one-quarter of the major US crops. Most of this land is artificially drained for crops such as corn, soybeans, and vegetables. US wetlands are drained for agriculture at the rate of 223,000 ha/yr. Paddies flooded with water are used to grow rice, cranberries, and wild rice. Forage and live sphagnum moss are products of undrained wetlands. A number of federal and state regulations apply to the draining or irrigation of wetlands, but most do not seriously restrict their use for agriculture. 320 refs., 36 tabs.

  11. Marine Natural Products with P-Glycoprotein Inhibitor Properties

    PubMed Central

    Lopez, Dioxelis; Martinez-Luis, Sergio

    2014-01-01

    P-glycoprotein (P-gp) is a protein belonging to the ATP-binding cassette (ABC) transporters superfamily that has clinical relevance due to its role in drug metabolism and multi-drug resistance (MDR) in several human pathogens and diseases. P-gp is a major cause of drug resistance in cancer, parasitic diseases, epilepsy and other disorders. This review article aims to summarize the research findings on the marine natural products with P-glycoprotein inhibitor properties. Natural compounds that modulate P-gp offer great possibilities for semi-synthetic modification to create new drugs and are valuable research tools to understand the function of complex ABC transporters. PMID:24451193

  12. Evaluation of the cytotoxic effect and antibacterial, antifungal, and antiviral activities of Hypericum triquetrifolium Turra essential oils from Tunisia

    PubMed Central

    2013-01-01

    Background A number of bio-active secondary metabolites have been identified and reported for several Hypericum species. Many studies have reported the potential use of the plant extracts against several pathogens. However, Hypericum triquetrifolium is one of the least studied species for its antimicrobial activity. The aim of the present study was to evaluate the cytotoxic effect of the essential oils of Hypericum triquetrifolium as well as their antimicrobial potential against coxsakievirus B3 and a range of bacterial and fungal strains. Methods The essential oils of Hypericum triquetrifolium harvested from five different Tunisian localities (Fondouk DJedid, Bou Arada, Bahra, Fernana and Dhrea Ben Jouder) were evaluated for their antimicrobial activities by micro-broth dilution methods against bacterial and fungal strains. In addition, the cytotoxic effect and the antiviral activity of these oils were carried out using Vero cell lines and coxsakievirus B3. Results The results showed a good antibacterial activities against a wide range of bacterial strains, MIC values ranging between 0.39-12.50 mg/ml and MBC values between 1.56-25.0 mg/ml. In addition, the essential oils showed promising antifungal activity with MIC values ranging between 0.39 μg/mL and 12.50 μg/mL; MFC values ranged between 3.12 μg/mL and 25.00 μg/mL; a significant anticandidal activity was noted (MIC values comprised between 0.39 μg/mL and 12.50 μg/mL). Although their low cytotoxic effect (CC50 ranged between 0.58 mg/mL and 12.00 mg/mL), the essential oils did not show antiviral activity against coxsakievirus B3. Conclusion The essential oils obtained from Hypericum triquetrifolium can be used as antimicrobial agents and could be safe at non cytotoxic doses. As shown for the tested essential oils, comparative analysis need to be undertaken to better characterize also the antimicrobial activities of Hypericum triquetrifolium extracts with different solvents as well as their

  13. [The interactions between natural products and OATP1B1].

    PubMed

    Shi, Mei-zhi; Liu, Yu; Bian, Jia-lin; Jin, Meng; Gui, Chun-shan

    2015-07-01

    Organic anion transporting polypeptide 1B1 (OATP1B1) is an important liver-specific uptake transporter, which mediates transport of numerous endogenous substances and drugs from blood into hepatocytes. To identify and investigate potential modulators of OATP1B1 from natural products, the effect of 21 frequently used natural compounds and extracts on OATP1B1-mediated fluorescein methotrexate transport was studied by using Chinese hamster ovary cells stably expressing OATP1B1 (CHO-OATP1B1) in 96-well plates. This method could be used for the screening of large compound libraries. Our studies showed that some flavonoids (e.g., quercetin, quercitrin, rutin, chrysanthemum flavonoids and mulberrin) and triterpenoids (e.g., glycyrrhetinic acid and glycyrrhizic acid) were inhibitors of OATP1B1 with IC50 values less than 16 µmol · L(-1). The IC50 value of glycyrrhetinic acid on OATP1B1 was comparable to its blood concentration in clinics, indicating an OATPlB1-mediated drug-drug interaction could occur. Structure-activity relationship analysis showed that flavonoids had much higher inhibitory activity than their glycosides. Furthermore, the type and length of saccharides had a significant effect on their activity. In addition, we used OATP1B1 substrates fluvastatin and rosuvastatin as probe drugs to investigate the substrate-dependent effect of several natural compounds on the function of OATP1B1 in vitro. Our results demonstrated that the effect of these natural products on the function of OATPlB1 was substrate-dependent. In summary, this study would be conducive to predicting and avoiding potential OATP1B1-mediated drug-drug and drug-food interactions and thus provide the experimental basis and guidance for rational drug use. PMID:26552146

  14. Ecological and Pharmacological Activities of Antarctic Marine Natural Products.

    PubMed

    Avila, Conxita

    2016-06-01

    Antarctic benthic communities are regulated by abundant interactions of different types among organisms, such as predation, competition, etc. Predators are usually sea stars, with omnivorous habits, as well as other invertebrates. Against this strong predation pressure, many organisms have developed all sorts of defensive strategies, including chemical defenses. Natural products are thus quite common in Antarctic organisms with an important ecological and pharmacological potential. In this paper, the chemical defenses of the Antarctic organisms studied during the ECOQUIM and ACTIQUIM projects, as well as their pharmacological potential, are reviewed. For the ecological defenses, predation against the sea star Odontaster validus is analyzed and evaluated along depth gradients as well as considering the lifestyle of the organisms. For the pharmacological activity, the anticancer, anti-inflammatory, and antibacterial activities tested are evaluated here. Very often, only crude extracts or fractions have been tested so far, and therefore, the natural products responsible for such activities remain yet to be identified. Even if the sampling efforts are not uniform along depth, most ecologically active organisms are found between 200 and 500 m depth. Also, from the samples studied, about four times more sessile organisms possess chemical defenses against the sea star than the vagile ones; these represent 50 % of sessile organisms and 35 % of the vagile ones, out of the total tested, being active. Pharmacological activity has not been tested uniformly in all groups, but the results show that relevant activity is found in different phyla, especially in Porifera, Cnidaria, Bryozoa, and Tunicata, but also in others. No relationship between depth and pharmacological activity can be established with the samples tested so far. More studies are needed in order to better understand the ecological relationships among Antarctic invertebrates mediated by natural products and

  15. Ecological and Pharmacological Activities of Antarctic Marine Natural Products.

    PubMed

    Avila, Conxita

    2016-06-01

    Antarctic benthic communities are regulated by abundant interactions of different types among organisms, such as predation, competition, etc. Predators are usually sea stars, with omnivorous habits, as well as other invertebrates. Against this strong predation pressure, many organisms have developed all sorts of defensive strategies, including chemical defenses. Natural products are thus quite common in Antarctic organisms with an important ecological and pharmacological potential. In this paper, the chemical defenses of the Antarctic organisms studied during the ECOQUIM and ACTIQUIM projects, as well as their pharmacological potential, are reviewed. For the ecological defenses, predation against the sea star Odontaster validus is analyzed and evaluated along depth gradients as well as considering the lifestyle of the organisms. For the pharmacological activity, the anticancer, anti-inflammatory, and antibacterial activities tested are evaluated here. Very often, only crude extracts or fractions have been tested so far, and therefore, the natural products responsible for such activities remain yet to be identified. Even if the sampling efforts are not uniform along depth, most ecologically active organisms are found between 200 and 500 m depth. Also, from the samples studied, about four times more sessile organisms possess chemical defenses against the sea star than the vagile ones; these represent 50 % of sessile organisms and 35 % of the vagile ones, out of the total tested, being active. Pharmacological activity has not been tested uniformly in all groups, but the results show that relevant activity is found in different phyla, especially in Porifera, Cnidaria, Bryozoa, and Tunicata, but also in others. No relationship between depth and pharmacological activity can be established with the samples tested so far. More studies are needed in order to better understand the ecological relationships among Antarctic invertebrates mediated by natural products and

  16. Green Extraction of Natural Products: Concept and Principles

    PubMed Central

    Chemat, Farid; Vian, Maryline Abert; Cravotto, Giancarlo

    2012-01-01

    The design of green and sustainable extraction methods of natural products is currently a hot research topic in the multidisciplinary area of applied chemistry, biology and technology. Herein we aimed to introduce the six principles of green-extraction, describing a multifaceted strategy to apply this concept at research and industrial level. The mainstay of this working protocol are new and innovative technologies, process intensification, agro-solvents and energy saving. The concept, principles and examples of green extraction here discussed, offer an updated glimpse of the huge technological effort that is being made and the diverse applications that are being developed. PMID:22942724

  17. 30 CFR 260.116 - How do I measure natural gas production on my eligible lease?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do I measure natural gas production on my... do I measure natural gas production on my eligible lease? You must measure natural gas production on... natural gas, measured according to part 250, subpart L of this title, equals one barrel of oil...

  18. Competitive product inhibition of aromatase by natural estrogens.

    PubMed

    Shimizu, Y; Yarborough, C; Osawa, Y

    1993-03-01

    In order to better understand the function of aromatase, we carried out kinetic analyses to assess the ability of natural estrogens, estrone (E1), estradiol (E2), 16 alpha-OHE1, and estriol (E3), to inhibit aromatization. Human placental microsomes (50 micrograms protein) were incubated for 5 min at 37 degrees C with [1 beta-3H]testosterone (1.24 x 10(3) dpm 3H/ng, 35-150 nM) or [1 beta-3H,4-14C]androstenedione (3.05 x 10(3) dpm 3H/ng, 3H/14C = 19.3, 7-65 nM) as substrate in the presence of NADPH, with and without natural estrogens as putative inhibitors. Aromatase activity was assessed by tritium released to water from the 1 beta-position of the substrates. Natural estrogens showed competitive product inhibition against androgen aromatization. The Ki of E1, E2, 16 alpha-OHE1, and E3 for testosterone aromatization was 1.5, 2.2, 95, and 162 microM, respectively, where the Km of aromatase was 61.8 +/- 2.0 nM (n = 5) for testosterone. The Ki of E1, E2, 16 alpha-OHE1, and E3 for androstenedione aromatization was 10.6, 5.5, 252, and 1182 microM, respectively, where the Km of aromatase was 35.4 +/- 4.1 nM (n = 4) for androstenedione. These results show that estrogen inhibit the process of androgen aromatization and indicate that natural estrogens regulate their own synthesis by the product inhibition mechanism in vivo. Since natural estrogen binds to the active site of human placental aromatase P-450 complex as competitive inhibitors, natural estrogens might be further metabolized by aromatase. This suggests that human placental estrogen 2-hydroxylase activity is catalyzed by the active site of aromatase cytochrome P-450 and also agrees with the fact that the level of catecholestrogens in maternal plasma increases during pregnancy. The relative affinities and concentration of androgens and estrogens would control estrogen and catecholestrogen biosynthesis by aromatase.

  19. Amended safety assessment of Hypericum perforatum-derived ingredients as used in cosmetics.

    PubMed

    Becker, Lillian C; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2014-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) has issued an amended safety assessment of 7 Hypericum perforatum-derived ingredients as used in cosmetics. A common name for this plant is St John wort. These ingredients function in cosmetics as skin-conditioning agents-miscellaneous and antimicrobial agents. The Panel reviewed relevant animal and human data related to the H perforatum-derived ingredients. Because formulators may use more than 1 botanical ingredient in a formulation, caution was urged to avoid levels of toxicological concern for constituent chemicals and impurities. The Panel concluded that H perforatum-derived ingredients were safe as cosmetic ingredients in the practices of use and concentration as described in this safety assessment.

  20. Anti-microbial screening of endophytic fungi from Hypericum perforatum Linn.

    PubMed

    Zhang, Huawei; Ying, Chen; Tang, Yifei

    2014-09-01

    Anti-microbial properties of 21 endophytic fungal strains from Hypericum perforatum Linn. were evaluated against three human pathogens, Staphyloccocus aureus, Escherichia coli and Rhodotorula glutinis, and two phytopathogens, Rhizoctonia cerealis and Pyricularia grisea. The results indicated that the ethyl acetate extracts of endophytic fermentation broth had stronger anti-microbial activities than their fermentation broth. And the inhibitory effect of the endophytic extracts on human pathogens was better than those on phytopathogens. Among these endophytic fungi, strains GYLQ-10, GYLQ-24 and GYLQ-22 respectively showed the strongest activities against S. aureu, E. coli, R. glutinis. GYLQ-14 and GYLQ-22 exhibited the most pronounced effect on P. Grisea while both GYLQ-06 and GYLQ-08 had the strongest anti-microbial activities against R. cerealis. Till now, this study is the first report on the isolation of endophytic fungi from H. perforatum Linn. and their anti-microbial evaluation.

  1. Hypericum brasiliense plant extract neutralizes some biological effects of Bothrops jararaca snake venom.

    PubMed

    Assafim, Mariane; de Coriolano, Eduardo Coriolano; Benedito, Sérgio Eufrázio; Fernandes, Caio Pinho; Lobo, Jonathas Felipe Revoredo; Sanchez, Eladio Florez; Rocha, Leandro Machado; Fuly, André Lopes

    2011-01-01

    Alternative treatments for snake bite are currently being extensively studied, and plant metabolites are considered good candidates for such purpose. Here, the ability of a crude ethanolic extract of Hypericum brasiliense plant in neutralizing Bothrops jararaca snake venom was investigated by in vitro (coagulation, hemolysis or proteolysis) and in vivo (hemorrhage, lethality and edema) biological assays. We describe for the first time the ability of H. brasiliense extracts to inhibit some pharmacological effects of a Brazilian snake venom. Inhibitory assays were performed by incubating B. jararaca venom with H. brasiliense extracts for 30min at room temperature before the assays were performed. The results showed that H. brasiliense extracts impaired lethality, edema, hemorrhage, hemolysis, proteolysis as well as fibrinogen or plasma clotting induced by B. jararaca venom. This indicates that H. brasiliense extracts can provide promising agents to treat B. jararaca envenomation.

  2. Anti-inflammatory and gastroprotective properties of Hypericum richeri oil extracts.

    PubMed

    Zdunić, Gordana; Godevac, Dejan; Milenković, Marina; Savikin, Katarina; Menković, Nebojsa; Petrović, Silvana

    2010-08-01

    Oil extracts of flowering tops of Hypericum richeri Vill. prepared in three different ways were evaluated for chemical composition, and anti-inflammatory and gastroprotective activities. An HPLC method was developed for determination of two dominant flavonoids, quercetin and I3,II8-biapigenin. The carrageenan-induced rat paw edema test was used for screening the anti-inflammatory activity, while indomethacin-induced rat gastric mucosa damage test was used for evaluation of gastroprotective activity. The oil extract prepared by maceration with 96% ethanol, followed by extraction with sunflower oil by heating on a water bath, exhibited the highest anti-inflammatory (38.4%) and gastroprotective activities (gastric damage score of 0.9). The same oil extract had the highest content of quercetin (49 microg/mL) and I3,II8-biapigenin (60 microg/mL). These results approve the usage of oil extracts of H. richeri as an anti-inflammatory and gastroprotective agent.

  3. Fourier transform infrared imaging analysis in discrimination studies of St. John's wort (Hypericum perforatum).

    PubMed

    Huck-Pezzei, V A; Pallua, J D; Pezzei, C; Bittner, L K; Schönbichler, S A; Abel, G; Popp, M; Bonn, G K; Huck, C W

    2012-10-01

    In the present study, Fourier transform infrared (FTIR) imaging and data analysis methods were combined to study morphological and molecular patterns of St. John's wort (Hypericum perforatum) in detail. For interpretation, FTIR imaging results were correlated with histological information gained from light microscopy (LM). Additionally, we tested several evaluation processes and optimized the methodology for use of complex FTIR microscopic images to monitor molecular patterns. It is demonstrated that the combination of the used spectroscopic method with LM enables a more distinct picture, concerning morphology and distribution of active ingredients, to be gained. We were able to obtain high-quality FTIR microscopic imaging results and to distinguish different tissue types with their chemical ingredients.

  4. Phloroglucinol and Terpenoid Derivatives from Hypericum cistifolium and H. galioides (Hypericaceae)

    PubMed Central

    Crockett, Sara L.; Kunert, Olaf; Pferschy-Wenzig, Eva-Maria; Jacob, Melissa; Schuehly, Wolfgang; Bauer, Rudolf

    2016-01-01

    A new simple phloroglucinol derivative characterized as 1-(6-hydroxy-2,4-dimethoxyphenyl)-2-methyl-1-propanone (1) was isolated from Hypericum cistifolium (Hypericaceae) as a major constituent of the non-polar plant extract. Minor amounts of this new compound, in addition to two known structurally related phloroglucinol derivatives (2 and 3), and two new terpenoid derivatives characterized, respectively, as 2-benzoyl-3,3-dimethyl-4R,6S-bis-(3-methylbut-2-enyl)-cyclohexanone (4a) and 2-benzoyl-3,3-dimethyl-4S,6R-bis-(3-methylbut-2-enyl)-cyclohexanone (4b), were isolated from a related species, H. galioides Lam. The chemical structures were established using 2D-NMR spectroscopy and mass spectrometry. These compounds were evaluated in vitro for antimicrobial activity against a panel of pathogenic microorganisms and anti-inflammatory activity through inhibition of COX-1, COX-2, and 5-LOX catalyzed LTB4 formation. PMID:27458464

  5. Phloroglucinol and Terpenoid Derivatives from Hypericum cistifolium and H. galioides (Hypericaceae).

    PubMed

    Crockett, Sara L; Kunert, Olaf; Pferschy-Wenzig, Eva-Maria; Jacob, Melissa; Schuehly, Wolfgang; Bauer, Rudolf

    2016-01-01

    A new simple phloroglucinol derivative characterized as 1-(6-hydroxy-2,4-dimethoxyphenyl)-2-methyl-1-propanone (1) was isolated from Hypericum cistifolium (Hypericaceae) as a major constituent of the non-polar plant extract. Minor amounts of this new compound, in addition to two known structurally related phloroglucinol derivatives (2 and 3), and two new terpenoid derivatives characterized, respectively, as 2-benzoyl-3,3-dimethyl-4R,6S-bis-(3-methylbut-2-enyl)-cyclohexanone (4a) and 2-benzoyl-3,3-dimethyl-4S,6R-bis-(3-methylbut-2-enyl)-cyclohexanone (4b), were isolated from a related species, H. galioides Lam. The chemical structures were established using 2D-NMR spectroscopy and mass spectrometry. These compounds were evaluated in vitro for antimicrobial activity against a panel of pathogenic microorganisms and anti-inflammatory activity through inhibition of COX-1, COX-2, and 5-LOX catalyzed LTB4 formation. PMID:27458464

  6. 1,9-seco-Bicyclic Polyprenylated Acylphloroglucinols from Hypericum uralum.

    PubMed

    Zhang, Jing-Jing; Yang, Xing-Wei; Liu, Xia; Ma, Jun-Zeng; Liao, Yang; Xu, Gang

    2015-12-24

    Hyperuralones C-H (1-6), six new 1,9-seco-bicyclic polyprenylated acylphloroglucinols (1,9-seco-BPAPs) derived from the normal polyprenylated acylphloroglucinols with a bicyclo[3.3.1]nonane-2,4,9-trione core, together with six known analogues, were isolated from the aerial parts of Hypericum uralum. The structures of 1-6 were elucidated on the basis of the interpretation of NMR and MS spectroscopic data. The structure of attenuatumione B, a known compound isolated from H. attenuatum, was revised to that of a 1,9-seco-BPAP by NMR spectroscopic analysis and previous biomimetic synthesis methods. The inhibitory activities of these isolates on acetylcholinesterase were tested, and compounds 1 and 2 exhibited moderate activities with IC50 values of 9.6 and 7.1 μM, respectively. PMID:26583263

  7. In Vitro Antiophidian Mechanisms of Hypericum brasiliense Choisy Standardized Extract: Quercetin-Dependent Neuroprotection

    PubMed Central

    Lucho, Ana Paula de Bairros; Vinadé, Lúcia; Seibert França, Hildegardo; Marangoni, Sérgio; Rodrigues-Simioni, Léa

    2013-01-01

    The neuroprotection induced by Hypericum brasiliense Choisy extract (HBE) and its main active polyphenol compound quercetin, against Crotalus durissus terrificus (Cdt) venom and crotoxin and crotamine, was enquired at both central and peripheral mammal nervous system. Cdt venom (10 μg/mL) or crotoxin (1 μg/mL) incubated at mouse phrenic nerve-diaphragm preparation (PND) induced an irreversible and complete neuromuscular blockade, respectively. Crotamine (1 μg/mL) only induced an increase of muscle strength at PND preparations. At mouse brain slices, Cdt venom (1, 5, and 10 μg/mL) decreased cell viability. HBE (100 μg/mL) inhibited significantly the facilitatory action of crotamine (1 μg/mL) and was partially active against the neuromuscular blockade of crotoxin (1 μg/mL) (data not shown). Quercetin (10 μg/mL) mimicked the neuromuscular protection of HBE (100 μg/mL), by inhibiting almost completely the neurotoxic effect induced by crotoxin (1 μg/mL) and crotamine (1 μg/mL). HBE (100 μg/mL) and quercetin (10 μg/mL) also increased cell viability in mice brain slices. Quercetin (10 μg/mL) was more effective than HBE (100 μg/mL) in counteracting the cell lysis induced by Cdt venom (1 and 10 μg/mL, resp.). These results and a further phytochemical and toxicological investigations could open new perspectives towards therapeutic use of Hypericum brasiliense standardized extract and quercetin, especially to counteract the neurotoxic effect induced by snake neurotoxic venoms. PMID:24490174

  8. US production of natural gas from tight reservoirs

    SciTech Connect

    Not Available

    1993-10-18

    For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission`s (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ``legally tight`` reservoirs. Additional production from ``geologically tight`` reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA`s tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government`s regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs.

  9. St John's wort (Hypericum perforatum): drug interactions and clinical outcomes

    PubMed Central

    Henderson, L; Yue, Q Y; Bergquist, C; Gerden, B; Arlett, P

    2002-01-01

    Aims The aim of this work is to identify the medicines which interact with the herbal remedy St John's wort (SJW), and the mechanisms responsible. Methods A systematic review of all the available evidence, including worldwide published literature and spontaneous case reports provided by healthcare professionals and regulatory authorities within Europe has been undertaken. Results A number of clinically significant interactions have been identified with prescribed medicines including warfarin, phenprocoumon, cyclosporin, HIV protease inhibitors, theophylline, digoxin and oral contraceptives resulting in a decrease in concentration or effect of the medicines. These interactions are probably due to the induction of cytochrome P450 isoenzymes CYP3A4, CYP2C9, CYP1A2 and the transport protein P-glycoprotein by constituent(s) in SJW. The degree of induction is unpredictable due to factors such as the variable quality and quantity of constituent(s) in SJW preparations. In addition, possible pharmacodynamic interactions with selective serotonin re-uptake inhibitors and serotonin (5-HT1d) receptor-agonists such as triptans used to treat migraine were identified. These interactions are associated with an increased risk of adverse reactions. Conclusions In Sweden and the UK the potential risks to patients were judged to be significant and therefore information about the interactions was provided to health care professionals and patients. The product information of the licensed medicines involved has been amended to reflect these newly identified interactions and SJW preparations have been voluntarily labelled with appropriate warnings. PMID:12392581

  10. Total Synthesis of Natural Products Using Hypervalent Iodine Reagents

    NASA Astrophysics Data System (ADS)

    Maertens, Gaetan; L'homme, Chloe; Canesi, Sylvain

    2014-12-01

    We present a review of natural product syntheses accomplished in our laboratory during the last five years. Each synthetic route features a phenol dearomatization promoted by an environmentally benign hypervalent iodine reagent. The dearomatizations demonstrate the “aromatic ring umpolung” concept, and involve stereoselective remodeling of the inert unsaturations of a phenol into a highly functionalized key intermediate that may contain a quaternary carbon center and a prochiral dienone system. Several new oxidative strategies were employed, including transpositions (1,3-alkyl shift and Prins-pinacol), a polycyclization, an ipso rearrangement, and direct nucleophilic additions at the phenol para position. Several alkaloids, heterocyclic compounds, and a polycyclic core have been achieved, including sceletenone (a serotonin reuptake inhibitor), acetylaspidoalbidine (an antitumor agent), fortucine (antiviral and antitumor), erysotramidine (curare-like effect), platensimycin (an antibiotic), and the main core of a kaurane diterpene (immunosuppressive agent and stimulator of apoptosis). These concise and in some cases enantioselective syntheses effectively demonstrate the importance of hypervalent iodine reagents in the total synthesis of bioactive natural products.

  11. Prospect for natural bitumen production development in Republic of Tatarstan

    SciTech Connect

    Rakutin, Yu.; Muslimov, R.; Volkov, Yu.

    1995-12-31

    The Republic of Tatarstan possesses large volumes of natural bitumen and extremely viscous heavy oil reserves. However to date processing oils of this kind is not economically viable but in the future heavy oils can become an alternative to conventional crude oil. The authors have developed a feasibility study of the prospects for the small bitumen-producing complexes construction for bitumen production and in-place bitumen processing in a simple scheme. The bitumen-producing complex will provide in situ recovery of bitumen with the surface cluster spacing of wells, transportation of bitumen produced to the central terminal, field primary bitumen processing by combining the functions of desalting, dewatering, and deasphalting of extracted bitumen. The field processing facilities, steam generators, compressors and so on will be housed in the central terminal. The central terminal will handle up to three fields which are 2-3 km distance from each other and from the central terminal. The objective of the field processing is to reduce sulphur and metal contents and remove water and salts from the bitumen. Thanks to bitumen-producing complex creating and providing high bitumen quality the economical efficiency of the natural bitumen production will be improved and enable environmental disturbance to be minimized.

  12. Natural Vitamin D Content in Animal Products1

    PubMed Central

    Schmid, Alexandra; Walther, Barbara

    2013-01-01

    Humans derive most vitamin D from the action of sunlight in their skin. However, in view of the current Western lifestyle with most daily activities taking place indoors, sun exposure is often not sufficient for adequate vitamin D production. For this reason, dietary intake is also of great importance. Animal foodstuffs (e.g., fish, meat, offal, egg, dairy) are the main sources for naturally occurring cholecalciferol (vitamin D-3). This paper therefore aims to provide an up-to-date overview of vitamin D-3 content in various animal foods. The focus lies on the natural vitamin D-3 content because there are many countries in which foods are not regularly fortified with vitamin D. The published data show that the highest values of vitamin D are found in fish and especially in fish liver, but offal also provides considerable amounts of vitamin D. The content in muscle meat is generally much lower. Vitamin D concentrations in egg yolks range between the values for meat and offal. If milk and dairy products are not fortified, they are normally low in vitamin D, with the exception of butter because of its high fat content. However, as recommendations for vitamin D intake have recently been increased considerably, it is difficult to cover the requirements solely by foodstuffs. PMID:23858093

  13. Natural Products as Promising Therapeutics for Treatment of Influenza Disease.

    PubMed

    Sencanski, Milan; Radosevic, Draginja; Perovic, Vladimir; Gemovic, Branislava; Stanojevic, Maja; Veljkovic, Nevena; Glisic, Sanja

    2015-01-01

    The influenza virus represents a permanent global health threat because it circulates not only within but also between numerous host populations, thereby frequently causing unexpected outbreaks in animals and humans with a generally unpredictable course of disease and epidemiology. Conventional influenza therapy is directed against the viral neuraminidase protein, which promotes virus release from infected cells, and the viral ion channel M2, which facilitates viral uncoating. However, these drugs, albeit effective, have a major drawback: their targets are of a highly variable sequence. As a consequence, the virus can readily acquire resistance by mutating the drug targets. Indeed, most seasonal A/H1N1 viruses and the 2009 H1N1 virus are resistant to M2 inhibitors, and a significant proportion of the seasonal A/H1N1 viruses are resistant to the neuraminidase inhibitor oseltamivir. Development of new effective drugs for treatment of disease during the regular influenza seasons and the possible influenza pandemic represents an important goal. The results presented here point out natural products as a promising source of low toxic and widely accessible drug candidates for treatment of the influenza disease. Natural products combined with new therapeutic targets and drug repurposing techniques, which accelerate development of new drugs, serve as an important platform for development of new influenza therapeutics.

  14. Total synthesis of natural products using hypervalent iodine reagents

    PubMed Central

    Maertens, Gaëtan; L'Homme, Chloé; Canesi, Sylvain

    2014-01-01

    We present a review of natural product syntheses accomplished in our laboratory during the last 5 years. Each synthetic route features a phenol dearomatization promoted by an environmentally benign hypervalent iodine reagent. The dearomatizations demonstrate the “aromatic ring umpolung” concept, and involve stereoselective remodeling of the inert unsaturations of a phenol into a highly functionalized key intermediate that may contain a quaternary carbon center and a prochiral dienone system. Several new oxidative strategies were employed, including transpositions (1,3-alkyl shift and Prins-pinacol), a polycyclization, an ipso rearrangement, and direct nucleophilic additions at the phenol para position. Several alkaloids, heterocyclic compounds, and a polycyclic core have been achieved, including sceletenone (a serotonin reuptake inhibitor), acetylaspidoalbidine (an antitumor agent), fortucine (antiviral and antitumor), erysotramidine (curare-like effect), platensimycin (an antibiotic), and the main core of a kaurane diterpene (immunosuppressive agent and stimulator of apoptosis). These concise and in some cases enantioselective syntheses effectively demonstrate the importance of hypervalent iodine reagents in the total synthesis of bioactive natural products. PMID:25601909

  15. Systems Biology Approaches to Understand Natural Products Biosynthesis

    PubMed Central

    Licona-Cassani, Cuauhtemoc; Cruz-Morales, Pablo; Manteca, Angel; Barona-Gomez, Francisco; Nielsen, Lars K.; Marcellin, Esteban

    2015-01-01

    Actinomycetes populate soils and aquatic sediments that impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams, and terpenes are well-known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regulation of cellular metabolism in actinomycetes and to the sparse knowledge of their physiology. The past decade, however, has seen the development of omics technologies that have significantly contributed to our better understanding of their biology. Key observations have contributed toward a shift in the exploitation of actinomycete’s biology, such as using their full genomic potential, activating entire pathways through key metabolic elicitors and pathway engineering to improve biosynthesis. Here, we review recent efforts devoted to achieving enhanced discovery, activation, and manipulation of natural product biosynthetic pathways in model actinomycetes using genome-scale biological datasets. PMID:26697425

  16. Systems Biology Approaches to Understand Natural Products Biosynthesis.

    PubMed

    Licona-Cassani, Cuauhtemoc; Cruz-Morales, Pablo; Manteca, Angel; Barona-Gomez, Francisco; Nielsen, Lars K; Marcellin, Esteban

    2015-01-01

    Actinomycetes populate soils and aquatic sediments that impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams, and terpenes are well-known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regulation of cellular metabolism in actinomycetes and to the sparse knowledge of their physiology. The past decade, however, has seen the development of omics technologies that have significantly contributed to our better understanding of their biology. Key observations have contributed toward a shift in the exploitation of actinomycete's biology, such as using their full genomic potential, activating entire pathways through key metabolic elicitors and pathway engineering to improve biosynthesis. Here, we review recent efforts devoted to achieving enhanced discovery, activation, and manipulation of natural product biosynthetic pathways in model actinomycetes using genome-scale biological datasets. PMID:26697425

  17. Diverse Natural Products from Dichlorocyclobutanones: An Evolutionary Tale.

    PubMed

    Deprés, Jean-Pierre; Delair, Philippe; Poisson, Jean-François; Kanazawa, Alice; Greene, Andrew E

    2016-02-16

    11-Nor PGE2 was prepared in our laboratory several years ago and used to obtain the corresponding ring-expanded γ-butyrolactam, γ-butyrolactone, and cyclopentanone derivatives. The conversion of a cyclobutanone into a cyclopentanone had relatively little precedent and merited further study. It was soon found that the presence of a single chlorine adjacent to the carbonyl not only greatly accelerated the reaction with ethereal diazomethane, but also substantially enhanced its regioselectivity; not surprisingly, a second chlorine further increased both. The confluence of this finding and the discovery by Krepski and Hassner that the presence of phosphorus oxychloride significantly improved the Zn-mediated dehalogenation procedure for the preparation of α,α-dichlorocyclobutanones from olefins provided the starting point for decades' worth of exciting adventures in natural product synthesis. A wide variety of naturally occurring 5-membered carbocycles (e.g., hirsutanes, cuparenones, bakkanes, guaianolides, azulenes) could thus be prepared by using dichloroketene-olefin cycloaddition, followed by regioselective one-carbon ring expansion with diazomethane. Importantly, it was also found that natural γ-butyrolactones (e.g., β-oxygenated γ-butyrolactones, lactone fatty acids) could be secured through regioselective Baeyer-Villiger oxidation of cycloadducts with m-CPBA and that naturally occurring γ-butyrolactam derivatives (e.g., amino acids, pyrrolidines, pyrrolizidines, indolizidines) could be efficiently obtained by regioselective Beckmann ring expansion of the adducts with O-(mesitylenesulfonyl)hydroxylamine (Tamura's reagent). These 5-membered carbocycles, γ-butyrolactones, and γ-butyrolactam derivatives were generally secured in enantiopure form through the use of either intrinsically chiral olefins or olefins bearing Stericol, a highly effective chiral auxiliary developed specifically for this "three-atom olefin annelation" approach. In addition

  18. Lichen Symbiosis: Nature's High Yielding Machines for Induced Hydrogen Production

    PubMed Central

    Papazi, Aikaterini; Kastanaki, Elizabeth; Pirintsos, Stergios; Kotzabasis, Kiriakos

    2015-01-01

    Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont’s and photobiont’s consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont’s hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications. PMID:25826211

  19. Lichen symbiosis: nature's high yielding machines for induced hydrogen production.

    PubMed

    Papazi, Aikaterini; Kastanaki, Elizabeth; Pirintsos, Stergios; Kotzabasis, Kiriakos

    2015-01-01

    Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont's and photobiont's consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont's hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications.

  20. Lichen symbiosis: nature's high yielding machines for induced hydrogen production.

    PubMed

    Papazi, Aikaterini; Kastanaki, Elizabeth; Pirintsos, Stergios; Kotzabasis, Kiriakos

    2015-01-01

    Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont's and photobiont's consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont's hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications. PMID:25826211

  1. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages

    PubMed Central

    Belkheir, Asma K.; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents. PMID:27446151

  2. Benzophenone Synthase and Chalcone Synthase Accumulate in the Mesophyll of Hypericum perforatum Leaves at Different Developmental Stages.

    PubMed

    Belkheir, Asma K; Gaid, Mariam; Liu, Benye; Hänsch, Robert; Beerhues, Ludger

    2016-01-01

    The active medicinal constituents in Hypericum perforatum, used to treat depression and skin irritation, include flavonoids and xanthones. The carbon skeletons of these compounds are formed by chalcone synthase (CHS) and benzophenone synthase (BPS), respectively. Polyclonal antisera were raised against the polyketide synthases from Hypericum androsaemum and their IgG fractions were isolated. Immunoblotting and immunotitration were used to test the IgGs for crossreactivity and monospecificity in H. perforatum leaf protein extract. Immunofluorescence localization revealed that both CHS and BPS are located in the mesophyll. The maximum fluorescence levels were observed in approx. 0.5 and 1 cm long leaves, respectively. The fluorescence intensity observed for CHS significantly exceeded that for BPS. Using histochemical staining, flavonoids were detected in the mesophyll, indicating that the sites of biosynthesis and accumulation coincide. Our results help understand the biosynthesis and underlying regulation of active H. perforatum constituents. PMID:27446151

  3. ACTIVITY OF NATURAL PRODUCTS AGAINST SOME PHYTOPATHOGENIC FUNGI.

    PubMed

    La Torre, A; Caradonia, F; Gianferro, M; Molinu, M G; Battaglia, V

    2014-01-01

    The requirement of environmental protection and food safety is perceived with always major interest by public opinion and it is consistent with European Union legislation on the sustainable use of pesticides (Directive 2009/128/EC). This directive requires member states to promote low pesticide-input, giving priority to non-chemical methods and low risk plant protection products. In order to contribute to the achievement of these objectives antifungal activity of natural substances, characterized by a good toxicological and ecotoxicological profile, was tested. Essential oil of Melaleuca alternifolia, essential oil of Syzygium aromaticum and extract from Mimosa tenuiflora were tested against Alternaria alternata, Botrytis cinerea and Fusarium oxysporum f. sp. lycopersici (races 1 and 2). In vitro tests involved determination of radial growth of the colonies of fungi in the presence of varying concentrations of tested products in agar media and determination of germination percentage in the presence of tested product at various concentrations. The products based on essential oil of M. alternifolia were also tested in vivo on tomato fruits wounded and artificially inoculated with A. alternata or with B. cinerea. The in vitro tests showed the antifungal activity of both essential oils instead the extract from M. tenuiflora exhibited poor antifungal activity and only against A. alternata and B. cinerea. The results on tomato fruits showed inhibition of grey mould and black mould by essential oil of M. alternifolia. The antifungal activity increased with increasing concentrations. In conclusion, the obtained results in the present study showed promising prospects for the utilisation of investigated products to reduce the using of antifungal chemicals and to achieve a more sustainable use of pesticides. PMID:26080478

  4. Bayesian inference of phylogeny, morphology and range evolution reveals a complex evolutionary history in St. John's wort (Hypericum).

    PubMed

    Meseguer, Andrea Sánchez; Aldasoro, Juan Jose; Sanmartín, Isabel

    2013-05-01

    The genus Hypericum L. ("St. John's wort", Hypericaceae) comprises nearly 500 species of shrubs, trees and herbs distributed mainly in temperate regions of the Northern Hemisphere, but also in high-altitude tropical and subtropical areas. Until now, molecular phylogenetic hypotheses on infra-generic relationships have been based solely on the nuclear marker ITS. Here, we used a full Bayesian approach to simultaneously reconstruct phylogenetic relationships, divergence times, and patterns of morphological and range evolution in Hypericum, using nuclear (ITS) and plastid DNA sequences (psbA-trnH, trnS-trnG, trnL-trnF) of 186 species representing 33 of the 36 described morphological sections. Consistent with other studies, we found that corrections of the branch length prior helped recover more realistic branch lengths in by-gene partitioned Bayesian analyses, but the effect was also seen within single genes if the overall mutation rate differed considerably among sites or regions. Our study confirms that Hypericum is not monophyletic with the genus Triadenum embedded within, and rejects the traditional infrageneric classification, with many sections being para- or polyphyletic. The small Western Palearctic sections Elodes and Adenotrias are the sister-group of a geographic dichotomy between a mainly New World clade and a large Old World clade. Bayesian reconstruction of morphological character states and range evolution show a complex pattern of morphological plasticity and inter-continental movement within the genus. The ancestors of Hypericum were probably tropical shrubs that migrated from Africa to the Palearctic in the Early Tertiary, concurrent with the expansion of tropical climates in northern latitudes. Global climate cooling from the Mid Tertiary onwards might have promoted adaptation to temperate conditions in some lineages, such as the development of the herbaceous habit or unspecialized corollas.

  5. Air quality concerns of unconventional oil and natural gas production.

    PubMed

    Field, R A; Soltis, J; Murphy, S

    2014-05-01

    Increased use of hydraulic fracturing ("fracking") in unconventional oil and natural gas (O & NG) development from coal, sandstone, and shale deposits in the United States (US) has created environmental concerns over water and air quality impacts. In this perspective we focus on how the production of unconventional O & NG affects air quality. We pay particular attention to shale gas as this type of development has transformed natural gas production in the US and is set to become important in the rest of the world. A variety of potential emission sources can be spread over tens of thousands of acres of a production area and this complicates assessment of local and regional air quality impacts. We outline upstream activities including drilling, completion and production. After contrasting the context for development activities in the US and Europe we explore the use of inventories for determining air emissions. Location and scale of analysis is important, as O & NG production emissions in some US basins account for nearly 100% of the pollution burden, whereas in other basins these activities make up less than 10% of total air emissions. While emission inventories are beneficial to quantifying air emissions from a particular source category, they do have limitations when determining air quality impacts from a large area. Air monitoring is essential, not only to validate inventories, but also to measure impacts. We describe the use of measurements, including ground-based mobile monitoring, network stations, airborne, and satellite platforms for measuring air quality impacts. We identify nitrogen oxides, volatile organic compounds (VOC), ozone, hazardous air pollutants (HAP), and methane as pollutants of concern related to O & NG activities. These pollutants can contribute to air quality concerns and they may be regulated in ambient air, due to human health or climate forcing concerns. Close to well pads, emissions are concentrated and exposure to a wide range of

  6. Air quality concerns of unconventional oil and natural gas production.

    PubMed

    Field, R A; Soltis, J; Murphy, S

    2014-05-01

    Increased use of hydraulic fracturing ("fracking") in unconventional oil and natural gas (O & NG) development from coal, sandstone, and shale deposits in the United States (US) has created environmental concerns over water and air quality impacts. In this perspective we focus on how the production of unconventional O & NG affects air quality. We pay particular attention to shale gas as this type of development has transformed natural gas production in the US and is set to become important in the rest of the world. A variety of potential emission sources can be spread over tens of thousands of acres of a production area and this complicates assessment of local and regional air quality impacts. We outline upstream activities including drilling, completion and production. After contrasting the context for development activities in the US and Europe we explore the use of inventories for determining air emissions. Location and scale of analysis is important, as O & NG production emissions in some US basins account for nearly 100% of the pollution burden, whereas in other basins these activities make up less than 10% of total air emissions. While emission inventories are beneficial to quantifying air emissions from a particular source category, they do have limitations when determining air quality impacts from a large area. Air monitoring is essential, not only to validate inventories, but also to measure impacts. We describe the use of measurements, including ground-based mobile monitoring, network stations, airborne, and satellite platforms for measuring air quality impacts. We identify nitrogen oxides, volatile organic compounds (VOC), ozone, hazardous air pollutants (HAP), and methane as pollutants of concern related to O & NG activities. These pollutants can contribute to air quality concerns and they may be regulated in ambient air, due to human health or climate forcing concerns. Close to well pads, emissions are concentrated and exposure to a wide range of

  7. Cholesterol overload impairing cerebellar function: the promise of natural products.

    PubMed

    El-Sayyad, Hassan I H

    2015-05-01

    The cerebellum is the part of the brain most involved in controlling motor and cognitive function. The surface becomes convoluted, forming folia that have a characteristic internal structure of three layers including molecular, Purkinje cell, and granular layer. This complex neural network gives rise to a massive signal-processing capability. Cholesterol is a major constituent, derived by de novo synthesis and the blood-brain barrier. Cholesterol is tightly regulated between neurons and glia-that is, astrocytes, microglia, and oligodendrocytes-and is essential for normal brain development. The axon is wrapped by myelin (cholesterol, phospholipids, and glycosphingolipids) and made up of membranes of oligodendrocytes, separated by periodic gaps in the myelin sheath, called nodes of Ranvier. Hypercholesterolemia is associated with increased oxidative stress and the development of neurotoxicity and Alzheimer's disease. Treatment with natural products has been found to support improved brain function and reduce low-density-lipoprotein cholesterol level. Fish oil is one such product; among the many plant products are: Morus alba leaves, fruit, and bark; pomegranate fruit and peel; Barley β - glucans; date palm; and Allium sativum. The therapeutic potential was discussed in relation with the antilipidemic drugs, statins (HMG-CoA reductase inhibitors).

  8. Occurrence of aflatoxin B1 in natural products.

    PubMed

    Prado, Guilherme; Altoé, Aline F; Gomes, Tatiana C B; Leal, Alexandre S; Morais, Vanessa A D; Oliveira, Marize S; Ferreira, Marli B; Gomes, Mateus B; Paschoal, Fabiano N; von S Souza, Rafael; Silva, Daniela A; Cruz Madeira, Jovita E G

    2012-10-01

    The media claims for the consumption of natural resource-based food have gradually increased in both developing and developed countries. The interest in the safety of these products is partially due to the possible presence of toxigenic fungi acting as mycotoxin producers, such as aflatoxins produced during the secondary metabolism of Aspergillus flavus, A. parasiticus and A. nomius. Aflatoxins, mainly aflatoxin B1, are directly associated with liver cancer in human beings. This paper is aimed at evaluating the presence of aflatoxin B1 in a few vegetable drugs, dried plant extracts and industrialized products traded in 2010 in the city of Belo Horizonte, State of Minas Gerais, Brazil. The method used for the quantification of aflatoxin B1 was based on extraction through acetone:water (85:15), immunoaffinity column purification followed by separation and detection in high efficiency liquid chromatography. Under the conditions of analysis, the Limits of Detection and Quantification were 0.6 µg kg(-1) and 1.0 µg kg(-1) respectively. The complete sets of analyses were carried out in duplicate. Aflatoxin B1 was noticed in a single sample (< 1.0 µg kg(-1)). The results revealed low aflatoxin B1 contamination in the products under analysis. However, it is required to establish a broad monitoring program in order to obtain additional data and check up on the actual extension of contamination. PMID:24031973

  9. Occurrence of aflatoxin B1 in natural products

    PubMed Central

    Prado, Guilherme; Altoé, Aline F.; Gomes, Tatiana C. B.; Leal, Alexandre S.; Morais, Vanessa A. D.; Oliveira, Marize S.; Ferreira, Marli B.; Gomes, Mateus B.; Paschoal, Fabiano N.; von S. Souza, Rafael; Silva, Daniela A.; Cruz Madeira, Jovita E. G.

    2012-01-01

    The media claims for the consumption of natural resource-based food have gradually increased in both developing and developed countries. The interest in the safety of these products is partially due to the possible presence of toxigenic fungi acting as mycotoxin producers, such as aflatoxins produced during the secondary metabolism of Aspergillus flavus, A. parasiticus and A. nomius. Aflatoxins, mainly aflatoxin B1, are directly associated with liver cancer in human beings. This paper is aimed at evaluating the presence of aflatoxin B1 in a few vegetable drugs, dried plant extracts and industrialized products traded in 2010 in the city of Belo Horizonte, State of Minas Gerais, Brazil. The method used for the quantification of aflatoxin B1 was based on extraction through acetone:water (85:15), immunoaffinity column purification followed by separation and detection in high efficiency liquid chromatography. Under the conditions of analysis, the Limits of Detection and Quantification were 0.6 µg kg-1 and 1.0 µg kg-1 respectively. The complete sets of analyses were carried out in duplicate. Aflatoxin B1 was noticed in a single sample (< 1.0 µg kg-1). The results revealed low aflatoxin B1 contamination in the products under analysis. However, it is required to establish a broad monitoring program in order to obtain additional data and check up on the actual extension of contamination. PMID:24031973

  10. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity.

    PubMed

    Hollands, Andrew; Corriden, Ross; Gysler, Gabriela; Dahesh, Samira; Olson, Joshua; Raza Ali, Syed; Kunkel, Maya T; Lin, Ann E; Forli, Stefano; Newton, Alexandra C; Kumar, Geetha B; Nair, Bipin G; Perry, J Jefferson P; Nizet, Victor

    2016-07-01

    Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils. We find that anacardic acid stimulates the production of reactive oxygen species and neutrophil extracellular traps, two mechanisms utilized by neutrophils to kill invading bacteria. Molecular modeling and pharmacological inhibitor studies suggest anacardic acid stimulation of neutrophils occurs in a PI3K-dependent manner through activation of surface-expressed G protein-coupled sphingosine-1-phosphate receptors. Neutrophil extracellular traps produced in response to anacardic acid are bactericidal and complement select direct antimicrobial activities of the compound. PMID:27226531

  11. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity.

    PubMed

    Hollands, Andrew; Corriden, Ross; Gysler, Gabriela; Dahesh, Samira; Olson, Joshua; Raza Ali, Syed; Kunkel, Maya T; Lin, Ann E; Forli, Stefano; Newton, Alexandra C; Kumar, Geetha B; Nair, Bipin G; Perry, J Jefferson P; Nizet, Victor

    2016-07-01

    Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils. We find that anacardic acid stimulates the production of reactive oxygen species and neutrophil extracellular traps, two mechanisms utilized by neutrophils to kill invading bacteria. Molecular modeling and pharmacological inhibitor studies suggest anacardic acid stimulation of neutrophils occurs in a PI3K-dependent manner through activation of surface-expressed G protein-coupled sphingosine-1-phosphate receptors. Neutrophil extracellular traps produced in response to anacardic acid are bactericidal and complement select direct antimicrobial activities of the compound.

  12. Evaluation of the cytotoxic activity of Hypericum spp. on human glioblastoma A1235 and breast cancer MDA MB-231 cells.

    PubMed

    Madunić, Josip; Matulić, Maja; Friščić, Maja; Pilepić, Kroata Hazler

    2016-11-01

    Cytotoxic activity of 16 Hypericum ethanolic extracts was evaluated by MTT assay on two human cancer cell lines: glioblastoma A1235 and breast cancer MDA MB-231. Morphology and the type of induced cell death were determined using light and fluorescence microscopy. The majority of Hypericum extracts had no significant cytotoxic effect on MDA MB-231 cells. Eight extracts exhibited mild cytotoxic effect on A1235 cells after 24 h incubation, ranging from 8.0% (H. patulum) to 21.7% (H. oblongifolium). After 72 h of treatment, the strongest inhibition of A1235 viability was observed for extracts of H. androsaemum (26.4-43.9%), H. balearicum (25.8-36.3%), H. delphicum (14.8-27.4%) and H. densiflorum (11.2-24.1%). Micro-scopic examination of cells showed apoptosis as the dominant type of cell death. Due to observed high viability of treated cells, we propose that cytotoxic effects of Hypericum extracts could be related to alternations/interruptions in the cell cycle.

  13. Natural Product-Derived Drugs for the Treatment of Inflammatory Bowel Diseases

    PubMed Central

    2014-01-01

    Natural products have been used as drugs for millennia, and the therapeutic potential of natural products has been studied for more than a century. Since the mid-1880s, approximately 60% of drugs have originated from natural products. Recently, the importance of using natural products has increased, as has interest in discovering efficient new drugs. Natural drugs are desirable for the treatment of inflammatory bowel diseases, such as ulcerative colitis and Crohn's disease. This review discusses the discovery and development of drugs derived from natural products for the treatment of inflammatory bowel diseases. PMID:25349576

  14. Conformation-Activity Relationships of Polyketide Natural Products

    PubMed Central

    Larsen, Erik M.; Wilson, Matthew R.; Taylor, Richard E.

    2015-01-01

    Polyketides represent an important class of secondary metabolites that interact with biological targets connected to a variety of disease-associated pathways. Remarkably, nature’s assembly lines, polyketide synthases, manufacture these privileged structures through a combinatorial mixture of just a few structural units. This review highlights the role of these structural elements in shaping a polyketide’s conformational preferences, the use of computer-based molecular modeling and solution NMR studies in the identification of low-energy conformers, and the importance of conformational analogues in probing the bound conformation. In particular, this review covers several examples wherein conformational analysis complements classic structure-activity relationships in the design of biologically active natural product analogues. PMID:25974024

  15. Structure Determination of Natural Products by Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Du.

    High-field NMR experiments were used to determine the full structures of six new natural products extracted from plants. These are: four saponins (PT-2, P1, P2 and P3) from the plant Alphitonia zizyphoides found in Samoa; one sesquiterpene (DF-4) from Douglas fir and one diterpene derivative (E-2) from a Chinese medicinal herb. By concerted use of various 1D and 2D NMR techniques, the structures of the above compounds were established and complete resonance assignments were achieved. The 2D INADEQUATE technique coupled with a computerized spectral analysis was extensively used. When carried out on concentrations as low as 60 mg of sample, this technique provided absolute confirmation of the assignments for 35 of the possible 53 C-C bonds for PT-2. On 30 mg of sample of E-21, it revealed 22 of 28 possible C-C bonds.

  16. Structure Determination of Natural Products by Mass Spectrometry.

    PubMed

    Biemann, Klaus

    2015-01-01

    I review laboratory research on the development of mass spectrometric methodology for the determination of the structure of natural products of biological and medical interest, which I conducted from 1958 to the end of the twentieth century. The methodology was developed by converting small peptides to their corresponding polyamino alcohols to make them amenable to mass spectrometry, thereby making it applicable to whole proteins. The structures of alkaloids were determined by analyzing the fragmentation of a known alkaloid and then using the results to deduce the structures of related compounds. Heparin-like structures were investigated by determining their molecular weights from the mass of protonated molecular ions of complexes with highly basic, synthetic peptides. Mass spectrometry was also employed in the analysis of lunar material returned by the Apollo missions. A miniaturized gas chromatograph mass spectrometer was sent to Mars on board of the two Viking 1976 spacecrafts. PMID:26161970

  17. Marine Natural Products from New Caledonia--A Review.

    PubMed

    Motuhi, Sofia-Eléna; Mehiri, Mohamed; Payri, Claude Elisabeth; La Barre, Stéphane; Bach, Stéphane

    2016-03-01

    Marine micro- and macroorganisms are well known to produce metabolites with high biotechnological potential. Nearly 40 years of systematic prospecting all around the New Caledonia archipelago and several successive research programs have uncovered new chemical leads from benthic and planktonic organisms. After species identification, biological and/or pharmaceutical analyses are performed on marine organisms to assess their bioactivities. A total of 3582 genera, 1107 families and 9372 species have been surveyed and more than 350 novel molecular structures have been identified. Along with their bioactivities that hold promise for therapeutic applications, most of these molecules are also potentially useful for cosmetics and food biotechnology. This review highlights the tremendous marine diversity in New Caledonia, and offers an outline of the vast possibilities for natural products, especially in the interest of pursuing collaborative fundamental research programs and developing local biotechnology programs. PMID:26999165

  18. Natural Product Discovery through Improved Functional Metagenomics in Streptomyces.

    PubMed

    Iqbal, Hala A; Low-Beinart, Lila; Obiajulu, Joseph U; Brady, Sean F

    2016-08-01

    Because the majority of environmental bacteria are not easily culturable, access to many bacterially encoded secondary metabolites will be dependent on the development of improved functional metagenomic screening methods. In this study, we examined a collection of diverse Streptomyces species for the best innate ability to heterologously express biosynthetic gene clusters. We then optimized methods for constructing high quality metagenomic cosmid libraries in the best Streptomyces host. An initial screen of a 1.5 million-membered metagenomic library constructed in Streptomyces albus, the species that exhibited the highest propensity for heterologous expression of gene clusters, led to the identification of the novel natural product metatricycloene (1). Metatricycloene is a tricyclic polyene encoded by a reductive, iterative polyketide-like gene cluster. Related gene clusters found in sequenced genomes appear to encode a largely unexplored collection of structurally diverse, polyene-based metabolites. PMID:27447056

  19. 2-Nitroethenylbenzenes as natural products in millipede defense secretions.

    PubMed

    Kuwahara, Yasumasa; Omura, Hisashi; Tanabe, Tsutomu

    2002-07-01

    The white millipede Eucondylodesmus elegans Miyosi (Polydesmida: Doratodesmidae) secretes odoriferous droplets from the glands on both lateral surfaces of its body segments. The secretion was shown to be composed of a mixture of (1E)- and (1Z)-2-nitroethenylbenzenes (2-3 microg per millipede), identified by GC/MS analyses and synthesis. This is the first identification of these compounds as natural products. A granulated sugar block baited with the synthetic compound (more than 0.71 microg) demonstrated repellent activity against foraging wild ants, indicating that the compound functioned as a defense substance against potential predators. alpha,beta,2,3,4,5,6-d7-(1E)-2-Nitroethenylbenzene was detected by GC/MS analysis in the millipede secretion after feeding with alpha,beta,beta,2,3,4,5,6-d8-L-phenylalanine, indicating that L-phenylalanine is the precursor of these compounds.

  20. Can Invalid Bioactives Undermine Natural Product-Based Drug Discovery?

    PubMed Central

    2015-01-01

    High-throughput biology has contributed a wealth of data on chemicals, including natural products (NPs). Recently, attention was drawn to certain, predominantly synthetic, compounds that are responsible for disproportionate percentages of hits but are false actives. Spurious bioassay interference led to their designation as pan-assay interference compounds (PAINS). NPs lack comparable scrutiny, which this study aims to rectify. Systematic mining of 80+ years of the phytochemistry and biology literature, using the NAPRALERT database, revealed that only 39 compounds represent the NPs most reported by occurrence, activity, and distinct activity. Over 50% are not explained by phenomena known for synthetic libraries, and all had manifold ascribed bioactivities, designating them as invalid metabolic panaceas (IMPs). Cumulative distributions of ∼200,000 NPs uncovered that NP research follows power-law characteristics typical for behavioral phenomena. Projection into occurrence–bioactivity–effort space produces the hyperbolic black hole of NPs, where IMPs populate the high-effort base. PMID:26505758

  1. Structure Determination of Natural Products by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Biemann, Klaus

    2015-07-01

    I review laboratory research on the development of mass spectrometric methodology for the determination of the structure of natural products of biological and medical interest, which I conducted from 1958 to the end of the twentieth century. The methodology was developed by converting small peptides to their corresponding polyamino alcohols to make them amenable to mass spectrometry, thereby making it applicable to whole proteins. The structures of alkaloids were determined by analyzing the fragmentation of a known alkaloid and then using the results to deduce the structures of related compounds. Heparin-like structures were investigated by determining their molecular weights from the mass of protonated molecular ions of complexes with highly basic, synthetic peptides. Mass spectrometry was also employed in the analysis of lunar material returned by the Apollo missions. A miniaturized gas chromatograph mass spectrometer was sent to Mars on board of the two Viking 1976 spacecrafts.

  2. Can Invalid Bioactives Undermine Natural Product-Based Drug Discovery?

    PubMed

    Bisson, Jonathan; McAlpine, James B; Friesen, J Brent; Chen, Shao-Nong; Graham, James; Pauli, Guido F

    2016-03-10

    High-throughput biology has contributed a wealth of data on chemicals, including natural products (NPs). Recently, attention was drawn to certain, predominantly synthetic, compounds that are responsible for disproportionate percentages of hits but are false actives. Spurious bioassay interference led to their designation as pan-assay interference compounds (PAINS). NPs lack comparable scrutiny, which this study aims to rectify. Systematic mining of 80+ years of the phytochemistry and biology literature, using the NAPRALERT database, revealed that only 39 compounds represent the NPs most reported by occurrence, activity, and distinct activity. Over 50% are not explained by phenomena known for synthetic libraries, and all had manifold ascribed bioactivities, designating them as invalid metabolic panaceas (IMPs). Cumulative distributions of ∼200,000 NPs uncovered that NP research follows power-law characteristics typical for behavioral phenomena. Projection into occurrence-bioactivity-effort space produces the hyperbolic black hole of NPs, where IMPs populate the high-effort base. PMID:26505758

  3. Deoxygedunin, a natural product with potent neurotrophic activity in mice.

    PubMed

    Jang, Sung-Wuk; Liu, Xia; Chan, Chi Bun; France, Stefan A; Sayeed, Iqbal; Tang, Wenxue; Lin, Xi; Xiao, Ge; Andero, Raul; Chang, Qiang; Ressler, Kerry J; Ye, Keqiang

    2010-01-01

    Gedunin, a family of natural products from the Indian neem tree, possess a variety of biological activities. Here we report the discovery of deoxygedunin, which activates the mouse TrkB receptor and its downstream signaling cascades. Deoxygedunin is orally available and activates TrkB in mouse brain in a BDNF-independent way. Strikingly, it prevents the degeneration of vestibular ganglion in BDNF -/- pups. Moreover, deoxygedunin robustly protects rat neurons from cell death in a TrkB-dependent manner. Further, administration of deoxygedunin into mice displays potent neuroprotective, anti-depressant and learning enhancement effects, all of which are mediated by the TrkB receptor. Hence, deoxygedunin imitates BDNF's biological activities through activating TrkB, providing a powerful therapeutic tool for treatment of various neurological diseases. PMID:20644624

  4. Marine Natural Products from New Caledonia—A Review

    PubMed Central

    Motuhi, Sofia-Eléna; Mehiri, Mohamed; Payri, Claude Elisabeth; La Barre, Stéphane; Bach, Stéphane

    2016-01-01

    Marine micro- and macroorganisms are well known to produce metabolites with high biotechnological potential. Nearly 40 years of systematic prospecting all around the New Caledonia archipelago and several successive research programs have uncovered new chemical leads from benthic and planktonic organisms. After species identification, biological and/or pharmaceutical analyses are performed on marine organisms to assess their bioactivities. A total of 3582 genera, 1107 families and 9372 species have been surveyed and more than 350 novel molecular structures have been identified. Along with their bioactivities that hold promise for therapeutic applications, most of these molecules are also potentially useful for cosmetics and food biotechnology. This review highlights the tremendous marine diversity in New Caledonia, and offers an outline of the vast possibilities for natural products, especially in the interest of pursuing collaborative fundamental research programs and developing local biotechnology programs. PMID:26999165

  5. 2-Nitroethenylbenzenes as natural products in millipede defense secretions

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yasumasa; Ômura, Hisashi; Tanabe, Tsutomu

    2002-05-01

    The white millipede Eucondylodesmus elegans Miyosi (Polydesmida: Doratodesmidae) secretes odoriferous droplets from the glands on both lateral surfaces of its body segments. The secretion was shown to be composed of a mixture of (1E)- and (1Z)-2-nitroethenylbenzenes (2-3 µg per millipede), identified by GC/MS analyses and synthesis. This is the first identification of these compounds as natural products. A granulated sugar block baited with the synthetic compound (more than 0.71 µg) demonstrated repellent activity against foraging wild ants, indicating that the compound functioned as a defense substance against potential predators. α,β,2,3,4,5,6-d7-(1E)-2-Nitroethenylbenzene was detected by GC/MS analysis in the millipede secretion after feeding with α,β,β,2,3,4,5,6-d8-L-phenylalanine, indicating that L-phenylalanine is the precursor of these compounds.

  6. Natural products in medicine: transformational outcome of synthetic chemistry.

    PubMed

    Szychowski, Janek; Truchon, Jean-François; Bennani, Youssef L

    2014-11-26

    This review brings to the forefront key synthetic modifications on natural products (NPs) that have yielded successful drugs. The emphasis is placed on the power of targeted chemical transformations in enhancing the therapeutic value of NPs through optimization of pharmacokinetics, stability, potency, and/or selectivity. Multiple classes of NPs such as macrolides, opioids, steroids, and β-lactams used to treat a variety of conditions such as cancers, infections, inflammation are exemplified. Molecular modeling or X-ray structures of NP/protein complexes supporting the observed boost in therapeutic value of the modified NPs are also discussed. Significant advancement in synthetic chemistry, in structure determination, and in the understanding of factors controlling pharmacokinetics can now better position drug discovery teams to undertake NPs as valuable leads. We hope that the beneficial NPs synthetic modifications outlined here will reignite medicinal chemists' interest in NPs and their derivatives.

  7. Hypericum perforatum Attenuates Spinal Cord Injury-Induced Oxidative Stress and Apoptosis in the Dorsal Root Ganglion of Rats: Involvement of TRPM2 and TRPV1 Channels.

    PubMed

    Özdemir, Ümit Sinan; Nazıroğlu, Mustafa; Şenol, Nilgün; Ghazizadeh, Vahid

    2016-08-01

    Oxidative stress and cytosolic Ca(2+) overload have important roles on apoptosis in dorsal root ganglion (DRG) neurons after spinal cord injury (SCI). Hypericum perforatum (HP) has an antioxidant property in the DRGs due to its ability to modulate NADPH oxidase and protein kinase C pathways. We aimed to investigate the protective property of HP on oxidative stress, apoptosis, and Ca(2+) entry through transient receptor potential melastatin 2 (TRPM2) and transient receptor potential vanilloid 1 (TRPV1) channels in SCI-induced DRG neurons of rats. Rats were divided into four groups as control, HP, SCI, and SCI + HP. The HP groups received 30 mg/kg HP for three concessive days after SCI induction. The SCI-induced TRPM2 and TRPV1 currents and cytosolic free Ca(2+) concentration were reduced by HP. The SCI-induced decrease in glutathione peroxidase and cell viability values were ameliorated by HP treatment, and the SCI-induced increase in apoptosis, caspase 3, caspase 9, cytosolic reactive oxygen species (ROS) production, and mitochondrial membrane depolarization values in DRG of SCI group were overcome by HP treatment. In conclusion, we observed a protective role of HP on SCI-induced oxidative stress, apoptosis, and Ca(2+) entry through TRPM2 and TRPV1 in the DRG neurons. Our findings may be relevant to the etiology and treatment of SCI by HP. Graphical Abstract Possible molecular pathways of involvement of Hypericum perforatum (HP) on apoptosis, oxidative stress, and calcium accumulation through TRPM2 and TRPV1 channels in DRG neurons of SCI-induced rats. The TRPM2 channel is activated by ADP-ribose and oxidative stress through activation of ADP-ribose pyrophosphate although it was inhibited by N-(p-amylcinnamoyl) anthranilic acid (ACA) and 2-aminoethyl diphenylborinate (2APB). The TRPV1 channel is activated by oxidative stress and capsaicin and it is blocked by capsazepine. Injury in the DRG can result in augmented ROS release, leading to Ca(2+) uptake through

  8. Temperature effects on fish production across a natural thermal gradient.

    PubMed

    O'Gorman, Eoin J; Ólafsson, Ólafur P; Demars, Benoît O L; Friberg, Nikolai; Guðbergsson, Guðni; Hannesdóttir, Elísabet R; Jackson, Michelle C; Johansson, Liselotte S; McLaughlin, Órla B; Ólafsson, Jón S; Woodward, Guy; Gíslason, Gísli M

    2016-09-01

    Global warming is widely predicted to reduce the biomass production of top predators, or even result in species loss. Several exceptions to this expectation have been identified, however, and it is vital that we understand the underlying mechanisms if we are to improve our ability to predict future trends. Here, we used a natural warming experiment in Iceland and quantitative theoretical predictions to investigate the success of brown trout as top predators across a stream temperature gradient (4-25 °C). Brown trout are at the northern limit of their geographic distribution in this system, with ambient stream temperatures below their optimum for maximal growth, and above it in the warmest streams. A five-month mark-recapture study revealed that population abundance, biomass, growth rate, and production of trout all increased with stream temperature. We identified two mechanisms that contributed to these responses: (1) trout became more selective in their diet as stream temperature increased, feeding higher in the food web and increasing in trophic position; and (2) trophic transfer through the food web was more efficient in the warmer streams. We found little evidence to support a third potential mechanism: that external subsidies would play a more important role in the diet of trout with increasing stream temperature. Resource availability was also amplified through the trophic levels with warming, as predicted by metabolic theory in nutrient-replete systems. These results highlight circumstances in which top predators can thrive in warmer environments and contribute to our knowledge of warming impacts on natural communities and ecosystem functioning. PMID:26936833

  9. New natural product carbonic anhydrase inhibitors incorporating phenol moieties.

    PubMed

    Karioti, Anastasia; Ceruso, Mariangela; Carta, Fabrizio; Bilia, Anna-Rita; Supuran, Claudiu T

    2015-11-15

    Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the fundamental reaction of CO2 hydration in all living organisms, being actively involved in the regulation of a plethora of patho/physiological conditions. They represent a typical example of enzyme convergent evolution, as six genetically unrelated families of such enzymes were described so far. The need to find selective CA inhibitors (CAIs) triggered the investigation of natural product libraries, which proved to be a valid source of agents with such an activity, as demonstrated for the phenols, polyamines and coumarins. Herein we report an in vitro inhibition study of human (h) CA isoforms hCAs I, II, IV, VII and XII with a panel of natural polyphenols including flavones, flavonols, flavanones, flavanols, isoflavones and depsides, some of which extracted from Quercus ilex and Salvia miltiorrhiza. Several of the investigated derivatives showed interesting inhibition activity and selectivities for inhibiting some important isoforms over the off-target ones hCA I and II.

  10. Role of Antioxidants and Natural Products in Inflammation

    PubMed Central

    Fard, Masoumeh Tangestani; Tan, Woan Sean; Gothai, Sivapragasam; Kumar, S. Suresh

    2016-01-01

    Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases. In addition, we have discussed the role of free radicals-induced tissue damage, antioxidant defence, and molecular mechanisms in chronic inflammatory diseases/disorders. The systematic knowledge regarding the role of inflammation and its associated adverse effects can provide a clear understanding in the development of innovative therapeutic targets from natural sources that are intended for suppression of various chronic inflammations associated diseases. PMID:27803762

  11. [Residual chemicals in natural rubber products for food contact use].

    PubMed

    Kawamura, Y; Nakajima, A; Yamada, T

    2001-06-01

    The residues of additives and other chemicals were investigated by GC/MS in natural rubber products for food contact, which included nipples, packing, gloves and a net for ham. The packings and gloves contained 980-6,570 micrograms/g of vulcanization accelerators, such as zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate (EZ), zinc di-n-buthyldithiocarbamate (BZ) and 2-mercaptobenzothiazole. Some samples contained BHT, Irganox 1076 and Yoshinox 2246R as antioxidants; dibutyl phthalate and di(2-ethylhexyl) phthalate as plasticizers; and palmitic acid, stearic acid, palmitamide, stearamide and hydrocarbons as lubricants. Two unknown peaks were identified as stigmasterol and beta-sitosterol, and others were estimated to be fucosterol, oryzanol and alpha-sitosterol. These sterols are widely distributed in plants, so their origin was presumed to be the rubber plants. The sterols were detected at a level of 340-2,940 micrograms/g in all natural rubber samples. A migration test was carried out for some samples. No chemicals were released into water, 4% acetic acid or 20% ethanol at 60 degrees C for 30 min, though BHT, Yoshinox 2246R, EZ, BZ and sterols were released into n-heptane at 25 degrees C for 60 min. PMID:11577390

  12. Recent advances in the elucidation of enzymatic function in natural product biosynthesis.

    PubMed

    Tan, Gao-Yi; Deng, Zixin; Liu, Tiangang

    2015-01-01

    With the successful production of artemisinic acid in yeast, the promising potential of synthetic biology for natural product biosynthesis is now being realized. The recent total biosynthesis of opioids in microbes is considered to be another landmark in this field. The importance and significance of enzymes in natural product biosynthetic pathways have been re-emphasized by these advancements. Therefore, the characterization and elucidation of enzymatic function in natural product biosynthesis are undoubtedly fundamental for the development of new drugs and the heterologous biosynthesis of active natural products. Here, discoveries regarding enzymatic function in natural product biosynthesis over the past year are briefly reviewed.

  13. Recent advances in the elucidation of enzymatic function in natural product biosynthesis

    PubMed Central

    Tan, Gao-Yi; Deng, Zixin; Liu, Tiangang

    2016-01-01

    With the successful production of artemisinic acid in yeast, the promising potential of synthetic biology for natural product biosynthesis is now being realized. The recent total biosynthesis of opioids in microbes is considered to be another landmark in this field. The importance and significance of enzymes in natural product biosynthetic pathways have been re-emphasized by these advancements. Therefore, the characterization and elucidation of enzymatic function in natural product biosynthesis are undoubtedly fundamental for the development of new drugs and the heterologous biosynthesis of active natural products. Here, discoveries regarding enzymatic function in natural product biosynthesis over the past year are briefly reviewed. PMID:26989472

  14. 30 CFR 560.116 - How do I measure natural gas production on my eligible lease?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... feet of natural gas, measured according to 30 CFR part 250, subpart L, equals one barrel of oil... 30 Mineral Resources 2 2012-07-01 2012-07-01 false How do I measure natural gas production on my... § 560.116 How do I measure natural gas production on my eligible lease? You must measure natural...

  15. 30 CFR 560.116 - How do I measure natural gas production on my eligible lease?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... feet of natural gas, measured according to 30 CFR part 250, subpart L, equals one barrel of oil... 30 Mineral Resources 2 2013-07-01 2013-07-01 false How do I measure natural gas production on my... § 560.116 How do I measure natural gas production on my eligible lease? You must measure natural...

  16. 30 CFR 560.116 - How do I measure natural gas production on my eligible lease?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... feet of natural gas, measured according to 30 CFR part 250, subpart L, equals one barrel of oil... 30 Mineral Resources 2 2014-07-01 2014-07-01 false How do I measure natural gas production on my... § 560.116 How do I measure natural gas production on my eligible lease? You must measure natural...

  17. Small molecule inhibition of microbial natural product biosynthesis – An emerging antibiotic strategy

    PubMed Central

    Cisar, Justin S.; Tan, Derek S.

    2008-01-01

    A variety of natural products modulate critical biological processes in the microorganisms that produce them. Thus, inhibition of the corresponding natural product biosynthesis pathways represents a promising avenue to develop novel antibiotics. In this tutorial review, we describe several recent examples of designed small molecule inhibitors of microbial natural product biosynthesis and their use in evaluating this emerging antibiotic strategy. PMID:18568158

  18. 30 CFR 260.116 - How do I measure natural gas production on my eligible lease?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How do I measure natural gas production on my... Bidding Systems Eligible Leases § 260.116 How do I measure natural gas production on my eligible lease? You must measure natural gas production on your eligible lease subject to the royalty...

  19. The value of nature's natural product library for the discovery of New Chemical Entities: the discovery of ingenol mebutate.

    PubMed

    Ogbourne, Steven M; Parsons, Peter G

    2014-10-01

    In recent decades, 'Big Pharma' has invested billions of dollars into ingenious and innovative strategies designed to develop drugs using high throughput screening of small molecule libraries generated on the laboratory bench. Within the same time frame, screening of natural products by pharmaceutical companies has suffered an equally significant reduction. This is despite the fact that the complexity, functional diversity and druggability of nature's natural product library are considered by many to be superior to any library any team of scientists can prepare. It is therefore no coincidence that the number of New Chemical Entities reaching the market has also suffered a substantial decrease, leading to a productivity crisis within the pharmaceutical sector. In fact, the current dearth of New Chemical Entities reaching the market in recent decades might be a direct consequence of the strategic decision to move away from screening of natural products. Nearly 700 novel drugs derived from natural product New Chemical Entities were approved between 1981 and 2010; more than 60% of all approved drugs over the same time. In this review, we use the example of ingenol mebutate, a natural product identified from Euphorbia peplus and later approved as a therapy for actinic keratosis, as why nature's natural product library remains the most valuable library for discovery of New Chemical Entities and of novel drug candidates. PMID:25016953

  20. The value of nature's natural product library for the discovery of New Chemical Entities: the discovery of ingenol mebutate.

    PubMed

    Ogbourne, Steven M; Parsons, Peter G

    2014-10-01

    In recent decades, 'Big Pharma' has invested billions of dollars into ingenious and innovative strategies designed to develop drugs using high throughput screening of small molecule libraries generated on the laboratory bench. Within the same time frame, screening of natural products by pharmaceutical companies has suffered an equally significant reduction. This is despite the fact that the complexity, functional diversity and druggability of nature's natural product library are considered by many to be superior to any library any team of scientists can prepare. It is therefore no coincidence that the number of New Chemical Entities reaching the market has also suffered a substantial decrease, leading to a productivity crisis within the pharmaceutical sector. In fact, the current dearth of New Chemical Entities reaching the market in recent decades might be a direct consequence of the strategic decision to move away from screening of natural products. Nearly 700 novel drugs derived from natural product New Chemical Entities were approved between 1981 and 2010; more than 60% of all approved drugs over the same time. In this review, we use the example of ingenol mebutate, a natural product identified from Euphorbia peplus and later approved as a therapy for actinic keratosis, as why nature's natural product library remains the most valuable library for discovery of New Chemical Entities and of novel drug candidates.

  1. Multifunctional organoboron compounds for scalable natural product synthesis

    PubMed Central

    Meng, Fanke; McGrath, Kevin P.; Hoveyda, Amir H.

    2014-01-01

    Efficient catalytic reactions that generate C–C bonds enantioselectively and those that produce trisubstituted alkenes diastereoselectively are central to research in chemistry. Transformations that accomplish these two tasks simultaneously in a single operation are prized, particularly if the catalysts, substrates and reagents are easily accessed at low cost and reaction conditions are mild. Here, we report a facile multicomponent catalytic process that begins with a chemo-, site- and diastereoselective copper–boron addition to a mon-substituted allene; the resulting boron-substituted organocopper intermediates then participate in a chemo-, site- and enantioselective allylic substitution. Products, which contain a stereogenic carbon center, a mono-substituted alkene and an easily modifiable Z-trisubstituted alkenylboron group, are obtained in up to 89% yield, with >98% branch- and stereoselectivity and >99:1 enantiomeric ratio. The copper-based catalyst is derived from a robust heterocyclic salt that can be prepared in multi-gram quantities from inexpensive starting materials and without costly purification procedures. Utility of the approach is showcased through enantioselective synthesis of gram quantities of natural products rottnestol (member of an antibiotic family) and herboxidiene/GEX1A (anti-tumor). PMID:25230659

  2. Multifunctional organoboron compounds for scalable natural product synthesis

    NASA Astrophysics Data System (ADS)

    Meng, Fanke; McGrath, Kevin P.; Hoveyda, Amir H.

    2014-09-01

    Efficient catalytic reactions that can generate C-C bonds enantioselectively, and ones that can produce trisubstituted alkenes diastereoselectively, are central to research in organic chemistry. Transformations that accomplish these two tasks simultaneously are in high demand, particularly if the catalysts, substrates and reagents are inexpensive and if the reaction conditions are mild. Here we report a facile multicomponent catalytic process that begins with a chemoselective, site-selective and diastereoselective copper-boron addition to a monosubstituted allene; the resulting boron-substituted organocopper intermediates then participate in a similarly selective allylic substitution. The products, which contain a stereogenic carbon centre, a monosubstituted alkene and an easily functionalizable Z-trisubstituted alkenylboron group, are obtained in up to 89 per cent yield, with more than 98 per cent branch-selectivity and stereoselectivity and an enantiomeric ratio greater than 99:1. The copper-based catalyst is derived from a robust heterocyclic salt that can be prepared in multigram quantities from inexpensive starting materials and without costly purification procedures. The utility of the approach is demonstrated through enantioselective synthesis of gram quantities of two natural products, namely rottnestol and herboxidiene (also known as GEX1A).

  3. Multifunctional organoboron compounds for scalable natural product synthesis.

    PubMed

    Meng, Fanke; McGrath, Kevin P; Hoveyda, Amir H

    2014-09-18

    Efficient catalytic reactions that can generate C-C bonds enantioselectively, and ones that can produce trisubstituted alkenes diastereoselectively, are central to research in organic chemistry. Transformations that accomplish these two tasks simultaneously are in high demand, particularly if the catalysts, substrates and reagents are inexpensive and if the reaction conditions are mild. Here we report a facile multicomponent catalytic process that begins with a chemoselective, site-selective and diastereoselective copper-boron addition to a monosubstituted allene; the resulting boron-substituted organocopper intermediates then participate in a similarly selective allylic substitution. The products, which contain a stereogenic carbon centre, a monosubstituted alkene and an easily functionalizable Z-trisubstituted alkenylboron group, are obtained in up to 89 per cent yield, with more than 98 per cent branch-selectivity and stereoselectivity and an enantiomeric ratio greater than 99:1. The copper-based catalyst is derived from a robust heterocyclic salt that can be prepared in multigram quantities from inexpensive starting materials and without costly purification procedures. The utility of the approach is demonstrated through enantioselective synthesis of gram quantities of two natural products, namely rottnestol and herboxidiene (also known as GEX1A). PMID:25230659

  4. Toxic Element Contamination of Natural Health Products and Pharmaceutical Preparations

    PubMed Central

    Genuis, Stephen J.; Schwalfenberg, Gerry; Siy, Anna-Kristen J.; Rodushkin, Ilya

    2012-01-01

    Background Concern has recently emerged regarding the safety of natural health products (NHPs)–therapies that are increasingly recommended by various health providers, including conventional physicians. Recognizing that most individuals in the Western world now consume vitamins and many take herbal agents, this study endeavored to determine levels of toxic element contamination within a range of NHPs. Methods Toxic element testing was performed on 121 NHPs (including Ayurvedic, traditional Chinese, and various marine-source products) as well as 49 routinely prescribed pharmaceutical preparations. Testing was also performed on several batches of one prenatal supplement, with multiple samples tested within each batch. Results were compared to existing toxicant regulatory limits. Results Toxic element contamination was found in many supplements and pharmaceuticals; levels exceeding established limits were only found in a small percentage of the NHPs tested and none of the drugs tested. Some NHPs demonstrated contamination levels above preferred daily endpoints for mercury, cadmium, lead, arsenic or aluminum. NHPs manufactured in China generally had higher levels of mercury and aluminum. Conclusions Exposure to toxic elements is occurring regularly as a result of some contaminated NHPs. Best practices for quality control–developed and implemented by the NHP industry with government oversight–is recommended to guard the safety of unsuspecting consumers. PMID:23185404

  5. Cameroonian Medicinal Plants: Pharmacology and Derived Natural Products

    PubMed Central

    Kuete, Victor; Efferth, Thomas

    2010-01-01

    Many developing countries including Cameroon have mortality patterns that reflect high levels of infectious diseases and the risk of death during pregnancy and childbirth, in addition to cancers, cardiovascular diseases and chronic respiratory diseases that account for most deaths in the developed world. Several medicinal plants are used traditionally for their treatment. In this review, plants used in Cameroonian traditional medicine with evidence for the activities of their crude extracts and/or derived products have been discussed. A considerable number of plant extracts and isolated compounds possess significant antimicrobial, anti-parasitic including antimalarial, anti-proliferative, anti-inflammatory, anti-diabetes, and antioxidant effects. Most of the biologically active compounds belong to terpenoids, phenolics, and alkaloids. Terpenoids from Cameroonian plants showed best activities as anti-parasitic, but rather poor antimicrobial effects. The best antimicrobial, anti-proliferative, and antioxidant compounds were phenolics. In conclusion, many medicinal plants traditionally used in Cameroon to treat various ailments displayed good activities in vitro. This explains the endeavor of Cameroonian research institutes in drug discovery from indigenous medicinal plants. However, much work is still to be done to standardize methodologies and to study the mechanisms of action of isolated natural products. PMID:21833168

  6. Chemically engineered extracts as an alternative source of bioactive natural product-like compounds.

    PubMed

    López, Silvia N; Ramallo, I Ayelen; Sierra, Manuel Gonzalez; Zacchino, Susana A; Furlan, Ricardo L E

    2007-01-01

    The access to libraries of molecules with interesting biomolecular properties is a limiting step in the drug discovery process. By virtue of a long molecular evolution process, natural products are recognized as biologically validated starting points in structural space for library development. We introduce here a strategy to generate natural product-like libraries. A semisynthetic mixture of compounds was produced by diversification of a natural product extract through the chemical transformation of common chemical functionalities in natural products into chemical functionalities rarely found in nature. The resulting mixture showed antifungal activity against Candida albicans, whereas the starting extract did not show such activity. Bioguided fractionation led to the isolation of a previously undescribed active semisynthetic pyrazole. The result illustrates how biological activity can be generated by designed chemical diversification of a natural product mixture, and represents the proof of principle of an alternative strategy for producing natural product-like libraries from natural products libraries.

  7. Reference Genes Selection and Normalization of Oxidative Stress Responsive Genes upon Different Temperature Stress Conditions in Hypericum perforatum L

    PubMed Central

    Velada, Isabel; Ragonezi, Carla; Arnholdt-Schmitt, Birgit; Cardoso, Hélia

    2014-01-01

    Reverse transcription-quantitative real-time PCR (RT-qPCR) is a widely used technique for gene expression analysis. The reliability of this method depends largely on the suitable selection of stable reference genes for accurate data normalization. Hypericum perforatum L. (St. John's wort) is a field growing plant that is frequently exposed to a variety of adverse environmental stresses that can negatively affect its productivity. This widely known medicinal plant with broad pharmacological properties (anti-depressant, anti-tumor, anti-inflammatory, antiviral, antioxidant, anti-cancer, and antibacterial) has been overlooked with respect to the identification of reference genes suitable for RT-qPCR data normalization. In this study, 11 candidate reference genes were analyzed in H. perforatum plants subjected to cold and heat stresses. The expression stability of these genes was assessed using GeNorm, NormFinder and BestKeeper algorithms. The results revealed that the ranking of stability among the three algorithms showed only minor differences within each treatment. The best-ranked reference genes differed between cold- and heat-treated samples; nevertheless, TUB was the most stable gene in both experimental conditions. GSA and GAPDH were found to be reliable reference genes in cold-treated samples, while GAPDH showed low expression stability in heat-treated samples. 26SrRNA and H2A had the highest stabilities in the heat assay, whereas H2A was less stable in the cold assay. Finally, AOX1, AOX2, CAT1 and CHS genes, associated with plant stress responses and oxidative stress, were used as target genes to validate the reliability of identified reference genes. These target genes showed differential expression profiles over time in treated samples. This study not only is the first systematic analysis for the selection of suitable reference genes for RT-qPCR studies in H. perforatum subjected to temperature stress conditions, but may also provide valuable information

  8. Isolation and Quantification of Oligomeric and Polymeric Procyanidins in the Aerial Parts of St. John's Wort (Hypericum perforatum).

    PubMed

    Hellenbrand, Nils; Lechtenberg, Matthias; Petereit, Frank; Sendker, Jandirk; Hensel, Andreas

    2015-08-01

    Proanthocyanidins (condensed tannins) constitute a class of oligomeric and polymeric polyphenols with flavan-3-ols as monomeric building blocks. Despite the high impact of proanthocyanidins, these polyphenols are mostly quantified by colorimetric methods or by chromatographic determination of the flavan-3-ols as cleavage products or low molecular oligomers as lead compounds. For St. John's wort (Hyperici herba) from Hypericum perforatum, a protocol for preparative isolation of oligomeric and polymeric proanthocyanidins from an acetone-water extract by chromatography on Sephadex®LH20 in combination with preparative high-performance liquid chromatography on the diol stationary phase was developed, yielding procyanidin reference clusters with a defined degree of polymerization from 3 to 10. Identity and purity of these clusters was proven by high-performance liquid chromatography (RP18 and diol phase) and mass spectrometry. For identification and quantification of proanthocyanidin clusters from St. John's wort, an ICH-Q2 (International harmonized guideline for analytical validation) validated high-performance liquid chromatography method with fluorimetric detection was developed using an acetone-water extract of the herbal material, purified by solid-phase extraction for the removal of naphthodianthrones. The method enabled the quantification of procyanidin clusters with a degree of polymerization from 2 to 10. Analysis of nine batches of Hyperici herba from different sources indicated a high variability of proanthocyanidin content in the range from 8 to 37 mg/g. In all of the batches investigated, the trimer cluster DP3 was the dominant proanthocyanidin (about 40 %), followed by DP 4 (about 15 %) and DP5 (about 12 %). Monitoring of procyanidin distribution during seasonal growth of fresh plants of H. perforatum indicated the highest proanthocyanidin content in young plants (about 50 mg/g) and a time-dependent decrease during the growing season to about 16

  9. Podoverine A--a novel microtubule destabilizing natural product from the Podophyllum species.

    PubMed

    Tran, Tuyen Thi Ngoc; Gerding-Reimers, Claas; Schölermann, Beate; Stanitzki, Bettina; Henkel, Thomas; Waldmann, Herbert; Ziegler, Slava

    2014-09-15

    Natural products represent compound classes with high chemical and structural diversity and various biological activities. Libraries based on natural products are valuable starting point in the search for novel biologically active substances. Here we report on the identification of the natural product podoverine A from the plant Podophyllum versipelle Hance as a novel tubulin-acting agent. A natural product compound collection was subjected to a high-content screen that monitors changes in cytoskeleton and DNA and podoverine A was identified as inhibitor of mitosis. This natural product causes mitotic arrest and inhibits microtubule polymerization in vitro and in cells by targeting the vinca binding site on tubulin.

  10. [Allergic reaction to products made of natural rubber].

    PubMed

    Antczak, M; Kuna, P; Cieślewicz, G

    In the previous few years, there has been a startling escalation in intraoperative and radiologic anaphylactic episodes, some of them lethal, that have been assigned to rubber exposure. Immediate hypersensitivity reactions to natural rubber pose a significant risk to patient with spina bifida and urogenital abnormalities, health care workers, and rubber industry workers. It has been estimated that 2% to 10% of physicians and nursing personnel are latex allergic. The clinical syndromes associated with reactions to latex may be divided into three broad categories a) contact dermatitis--limited to skin directly in contact with latex, b) contact urticaria syndrome a broad spectrum of contact reactions including not only immediate wheal and flare reactions, but also dyshidrotic vesiculation, and accelerated contact reactions including erythema, burning or pruritus occurring within 10-30 minutes after contact, c) systemic allergic reactions-including generalized urticaria or pruritus, rhinoconjunctivitis or asthma, as well as the multiple presentations of anaphylaxis. Contact dermatitis reactions are thought to be a T-cell mediated type IV reaction, systemic reactions to latex appear to be an IgE-mediated phenomenon. Contact urticaria syndrome seems to be a heterogeneous group of reactions. Diagnosis of latex allergy is made on clinical grounds, however, history alone is insufficient to recognize all patients at risk, and conscientious testing materials are not yet available. Prick tests utilizing extracts from latex gloves or from raw latex preparation can be used but the specificity of this test remains unknown. Skin prick testing must be considered experimental and should be only done by experienced physician. Serologic testing for latex allergy remains a safe alternative, although the sensitivity and specificity of this procedure is still undefined. Prophylactic regimes to avoid rubber exposure and decrease the antigen content of natural rubber products by the rubber

  11. Effects of bioenergy production on European nature conservation options

    NASA Astrophysics Data System (ADS)

    Schleupner, C.; Schneider, U. A.

    2009-04-01

    To increase security of energy supply and reduce greenhouse gas (GHG) emissions the European Commission set out a long-term strategy for renewable energy in the European Union (EU). Bioenergy from forestry and agriculture plays a key role for both. Since the last decade a significant increase of biomass energy plantations has been observed in Europe. Concurrently, the EU agreed to halt the loss of biodiversity within its member states. One measure is the Natura2000 network of important nature sites that actually covers about 20% of the EU land surface. However, to fulfil the biodiversity target more nature conservation and restoration sites need to be designated. There are arising concerns that an increased cultivation of bioenergy crops will decrease the land available for nature reserves and for "traditional" agriculture and forestry. In the following the economic and ecological impacts of structural land use changes are demonstrated by two examples. First, a case study of land use changes on the Eiderstedt peninsula in Schleswig-Holstein/Germany evaluates the impacts of grassland conversion into bioenergy plantations under consideration of selected meadow birds. Scenarios indicate not only a quantitative loss of habitats but also a reduction of habitat quality. The second study assesses the role of bioenergy production in light of possible negative impacts on potential wetland conservation sites in Europe. By coupling the spatial wetland distribution model "SWEDI" (cf. SCHLEUPNER 2007) to the European Forest and Agricultural Sector Optimization Model (EUFASOM; cf. SCHNEIDER ET AL. 2008) economic and environmental aspects of land use are evaluated simultaneously. This way the costs and benefits of the appropriate measures and its consequences for agriculture and forestry are investigated. One aim is to find the socially optimal balance between alternative wetland uses by integrating biological benefits - in this case wetlands - and economic opportunities - here

  12. Value-Added Products from Remote Natural Gas

    SciTech Connect

    Lyle A. Johnson

    2002-03-15

    In Wyoming and throughout the United States, there are natural gas fields that are not producing because of their remoteness from gas pipelines. Some of these fields are ideal candidates for a cogeneration scheme where components suitable for chemical feedstock or direct use, such as propane and butane, are separated. Resulting low- to medium-Btu gas is fired in a gas turbine system to provide power for the separation plant. Excess power is sold to the utility, making the integrated plant a true cogeneration facility. This project seeks to identify the appropriate technologies for various subsystems of an integrated plant to recover value-added products from wet gas and/or retrograde condensate reservoirs. Various vendors and equipment manufacturers will be contacted and a data base consisting of feedstock constraints and output specifications for various subsystems and components will be developed. Based on vendor specifications, gas reservoirs suited for value-added product recovery will be identified. A candidate reservoir will then be selected, and an optimum plant layout will be developed. A facility will then be constructed and operated. The project consists of eight subtasks: Compilation of Reservoir Data; Review of Treatment and Conditioning Technologies; Review of Product Recovery and Separation Technologies; Development of Power Generation System; Integrated Plant Design for Candidate Field; System Fabrication; System Operation and Monitoring; and Economic Evaluation and Reporting. The first five tasks have been completed and the sixth is nearly complete. Systems Operations and Monitoring will start next year. The Economic Evaluation and Reporting task will be a continuous effort for the entire project. The reservoir selected for the initial demonstration of the process is the Burnt Wagon Field, Natrona County, Wyoming. The field is in a remote location with no electric power to the area and no gas transmission line. The design for the gas processing

  13. Hypericum species in the Páramos of Central and South America: a special focus upon H. irazuense Kuntze ex N. Robson

    PubMed Central

    Crockett, Sara; Eberhardt, Marianne; Kunert, Olaf; Schühly, Wolfgang

    2010-01-01

    Knowledge about members of the flowering plant family Clusiaceae occurring in the tropical mountain regions of the world is limited, in part due to endemism and restricted distributions. High altitude vegetation habitats (Páramos) in Central and South America are home to numerous native Hypericum species. Information related to the phytochemistry of páramo Hypericum, as well as ecological factors with the potential to influence chemical defenses in these plants, is briefly reviewed. Results of the phytochemical analysis of Hypericum irazuense, a species collected in the páramo of the Cordillera de Talamanca in Costa Rica, are presented. Lastly, guidelines for the viable and sustainable collections of plant material, to facilitate future investigations of these interesting plants, are given. PMID:21151765

  14. Natural Product Screening Reveals Naphthoquinone Complex I Bypass Factors.

    PubMed

    Vafai, Scott B; Mevers, Emily; Higgins, Kathleen W; Fomina, Yevgenia; Zhang, Jianming; Mandinova, Anna; Newman, David; Shaw, Stanley Y; Clardy, Jon; Mootha, Vamsi K

    2016-01-01

    Deficiency of mitochondrial complex I is encountered in both rare and common diseases, but we have limited therapeutic options to treat this lesion to the oxidative phosphorylation system (OXPHOS). Idebenone and menadione are redox-active molecules capable of rescuing OXPHOS activity by engaging complex I-independent pathways of entry, often referred to as "complex I bypass." In the present study, we created a cellular model of complex I deficiency by using CRISPR genome editing to knock out Ndufa9 in mouse myoblasts, and utilized this cell line to develop a high-throughput screening platform for novel complex I bypass factors. We screened a library of ~40,000 natural product extracts and performed bioassay-guided fractionation on a subset of the top scoring hits. We isolated four plant-derived 1,4-naphthoquinone complex I bypass factors with structural similarity to menadione: chimaphilin and 3-chloro-chimaphilin from Chimaphila umbellata and dehydro-α-lapachone and dehydroiso-α-lapachone from Stereospermum euphoroides. We also tested a small number of structurally related naphthoquinones from commercial sources and identified two additional compounds with complex I bypass activity: 2-methoxy-1,4-naphthoquinone and 2-methoxy-3-methyl-1,4,-naphthoquinone. The six novel complex I bypass factors reported here expand this class of molecules and will be useful as tool compounds for investigating complex I disease biology. PMID:27622560

  15. Natural products and the search for novel vaccine adjuvants.

    PubMed

    Rey-Ladino, Jose; Ross, Allen G; Cripps, Allan W; McManus, Donald P; Quinn, Ronald

    2011-09-01

    Vaccines that protect against intracellular infections such as malaria, Leishmania and Chlamydia require strong cellular responses based on CD4(+) T cells and CD8(+) T cells in addition to antibodies. Such cell-mediated responses can be potentiated with adjuvants. However, very few adjuvants have been licensed for use in humans; thus there is an urgent need for the discovery of new non-toxic adjuvants in order to produce more efficacious vaccines. Until recently, the mechanisms of how adjuvants worked remained largely unknown, but, it is becoming clearer that many function via host germline-encoded pattern recognition receptors (PRRs) expressed by most immune and non-immune cells. Most PRRs sense infection and transmit a series of signals that ultimately lead to the development of immunity. PRR mediated signalling can be harnessed to search for new vaccine adjuvants. Dendritic cells (DCs) express many PRRs and are remarkably effective at directing T cell immunity. Natural products (NPs) have been the basis of many drugs and are a rich source of immune activators and/or regulators of the immune response. Here we review PRRs in the context of NPs and propose the use of DCs as biological probes to help identify novel immune type molecules and adjuvants within collections of NPs.

  16. New Positioning Products and Pilot Service for Natural Hazard Monitorin

    NASA Astrophysics Data System (ADS)

    Bar-Sever, Y. E.; Miller, K. J.; Miller, M. A.; Khachikyan, R.; Meyer, R. F.; Vallisneri, M.; Liu, Z.; Song, Y. T.

    2015-12-01

    We describe a new pilot service from JPL's Global Differential GPS (GDGPS) System that provides positioning solutions for hundreds of GNSS tracking sites, from both global and regional networks, aiming to monitor ground motion in the immediate aftermath of earthquakes. The new service provides site position time series solutions at 1 Hz, based on GNSS tracking data. Recognizing the tradeoff between latency and accuracy, the solutions are provided at multiple latencies, ranging from one second to one hour. Individual site solution accuracy strongly depends on the local tracking data. The median site position accuracies ranges from ~one cm 1DRMs for the to most latent solution to ~five cm 1DRMS for the one-second solutions. We discuss the tradeoff between accuracy and latency and explain the choice of product latencies in terms of this trade and in terms of the benefits to agencies responsible for issuing alarms and managing natural disasters. We describe and demonstrate a simple user algorithm to seamlessly merge the disparate latent solutions into a single, optimal record of site motion. The positioning service is integrated with automated earthquake notices from the USGS to support calculations of co-seismic displacements. Finally we describe the current scope of the pilot project, its innovative user-interface, and our ultimate plans to serve all real-time GNSS sites.

  17. Natural Product Screening Reveals Naphthoquinone Complex I Bypass Factors

    PubMed Central

    Mevers, Emily; Higgins, Kathleen W.; Fomina, Yevgenia; Zhang, Jianming; Mandinova, Anna; Newman, David; Shaw, Stanley Y.; Clardy, Jon; Mootha, Vamsi K.

    2016-01-01

    Deficiency of mitochondrial complex I is encountered in both rare and common diseases, but we have limited therapeutic options to treat this lesion to the oxidative phosphorylation system (OXPHOS). Idebenone and menadione are redox-active molecules capable of rescuing OXPHOS activity by engaging complex I-independent pathways of entry, often referred to as “complex I bypass.” In the present study, we created a cellular model of complex I deficiency by using CRISPR genome editing to knock out Ndufa9 in mouse myoblasts, and utilized this cell line to develop a high-throughput screening platform for novel complex I bypass factors. We screened a library of ~40,000 natural product extracts and performed bioassay-guided fractionation on a subset of the top scoring hits. We isolated four plant-derived 1,4-naphthoquinone complex I bypass factors with structural similarity to menadione: chimaphilin and 3-chloro-chimaphilin from Chimaphila umbellata and dehydro-α-lapachone and dehydroiso-α-lapachone from Stereospermum euphoroides. We also tested a small number of structurally related naphthoquinones from commercial sources and identified two additional compounds with complex I bypass activity: 2-methoxy-1,4-naphthoquinone and 2-methoxy-3-methyl-1,4,-naphthoquinone. The six novel complex I bypass factors reported here expand this class of molecules and will be useful as tool compounds for investigating complex I disease biology. PMID:27622560

  18. MCS-18, a novel natural plant product prevents autoimmune diabetes.

    PubMed

    Seifarth, Christian; Littmann, Leonie; Resheq, Yazid; Rössner, Susanne; Goldwich, Andreas; Pangratz, Nadine; Kerek, Franz; Steinkasserer, Alexander; Zinser, Elisabeth

    2011-09-30

    There is still a vital need for new therapies in order to prevent or treat type I diabetes. In this respect, we report that MCS-18 a novel natural product isolated from the plant Helleborus purpurascens (i.e. Christmas rose) is able to increase diabetes free survival using the NOD-mouse model, which is accompanied with a diminished IFN-γ secretion of splenocytes. In the animal group which has been treated with MCS-18 during week 8 and week 12 of age 70% of the animals showed a diabetes free survival at week 30, whereas in contrast in the untreated animals less than 10% were free of diabetes. MCS-18 treatment significantly reduced islet T-cell infiltrates as well as the rate of T-cell proliferation. Periinsular infiltrates in the MCS-18 treated animals showed a significantly enhanced number of Foxp3(+) CD25(+) T cells, indicating the increased presence of regulatory T cells. These studies show that MCS-18 exerts an efficient immunosuppressive activity with remarkable potential for the therapy of diseases characterized by pathological over-activation of the immune system.

  19. Natural products as a resource for biologically active compounds

    SciTech Connect

    Hanke, F.J.

    1986-01-01

    The goal of this study was to investigate various sources of biologically active natural products in an effort to identify the active pesticidal compounds involved. The study is divided into several parts. Chapter 1 contains a discussion of several new compounds from plant and animal sources. Chapter 2 introduces a new NMR technique. In section 2.1 a new technique for better utilizing the lanthanide relaxation agent Gd(fod)/sub 3/ is presented which allows the predictable removal of resonances without line broadening. Section 2.2 discusses a variation of this technique for use in an aqueous solvent by applying this technique towards identifying the binding sites of metals of biological interest. Section 2.3 presents an unambiguous /sup 13/C NMR assignment of melibiose. Chapter 3 deals with work relating to the molting hormone of most arthropods, 20-hydroxyecdysone. Section 3.1 discusses the use of two-dimensional NMR (2D NMR) to assign the /sup 1/H NMR spectrum of this biologically important compound. Section 3.2 presents a new application for Droplet countercurrent chromatography (DCCC). Chapter 4 presents a basic improvement to the commercial DCCC instrument that is currently being applied to future commercial instruments. Chapter 5 discusses a curious observation of the effects that two previously known compounds, nagilactone C and (-)-epicatechin, have on lettuce and rice and suggest a possible new role for the ubiquitous flavanol (-)-epicatechin in plants.

  20. Natural products for chronic cough: Text mining the East Asian historical literature for future therapeutics.

    PubMed

    Shergis, Johannah Linda; Wu, Lei; May, Brian H; Zhang, Anthony Lin; Guo, Xinfeng; Lu, Chuanjian; Xue, Charlie Changli

    2015-08-01

    Chronic cough is a significant health burden. Patients experience variable benefits from over the counter and prescribed products, but there is an unmet need to provide more effective treatments. Natural products have been used to treat cough and some plant compounds such as pseudoephedrine from ephedra and codeine from opium poppy have been developed into drugs. Text mining historical literature may offer new insight for future therapeutic development. We identified natural products used in the East Asian historical literature to treat chronic cough. Evaluation of the historical literature revealed 331 natural products used to treat chronic cough. Products included plants, minerals and animal substances. These natural products were found in 75 different books published between AD 363 and 1911. Of the 331 products, the 10 most frequently and continually used products were examined, taking into consideration findings from contemporary experimental studies. The natural products identified are promising and offer new directions in therapeutic development for treating chronic cough.

  1. Natural products for chronic cough: Text mining the East Asian historical literature for future therapeutics.

    PubMed

    Shergis, Johannah Linda; Wu, Lei; May, Brian H; Zhang, Anthony Lin; Guo, Xinfeng; Lu, Chuanjian; Xue, Charlie Changli

    2015-08-01

    Chronic cough is a significant health burden. Patients experience variable benefits from over the counter and prescribed products, but there is an unmet need to provide more effective treatments. Natural products have been used to treat cough and some plant compounds such as pseudoephedrine from ephedra and codeine from opium poppy have been developed into drugs. Text mining historical literature may offer new insight for future therapeutic development. We identified natural products used in the East Asian historical literature to treat chronic cough. Evaluation of the historical literature revealed 331 natural products used to treat chronic cough. Products included plants, minerals and animal substances. These natural products were found in 75 different books published between AD 363 and 1911. Of the 331 products, the 10 most frequently and continually used products were examined, taking into consideration findings from contemporary experimental studies. The natural products identified are promising and offer new directions in therapeutic development for treating chronic cough. PMID:25901012

  2. Discovery of novel drug targets and their functions using phenotypic screening of natural products.

    PubMed

    Chang, Junghwa; Kwon, Ho Jeong

    2016-03-01

    Natural products are valuable resources that provide a variety of bioactive compounds and natural pharmacophores in modern drug discovery. Discovery of biologically active natural products and unraveling their target proteins to understand their mode of action have always been critical hurdles for their development into clinical drugs. For effective discovery and development of bioactive natural products into novel therapeutic drugs, comprehensive screening and identification of target proteins are indispensable. In this review, a systematic approach to understanding the mode of action of natural products isolated using phenotypic screening involving chemical proteomics-based target identification is introduced. This review highlights three natural products recently discovered via phenotypic screening, namely glucopiericidin A, ecumicin, and terpestacin, as representative case studies to revisit the pivotal role of natural products as powerful tools in discovering the novel functions and druggability of targets in biological systems and pathological diseases of interest.

  3. The Natural Product Phyllanthusmin C Enhances IFN-γ Production by Human Natural Killer Cells through Upregulation of TLR-Mediated NF-κB Signaling

    PubMed Central

    Deng, Youcai; Chu, Jianhong; Ren, Yulin; Fan, Zhijin; Ji, Xiaotian; Mundy, Bethany; Yuan, Shunzong; Hughes, Tiffany; Zhang, Jianying; Cheema, Baljash; Camardo, Andrew T.; Xia, Yong; Wu, Lai-Chu; Wang, Li-Shu; He, Xiaoming; Kinghorn, A. Douglas; Li, Xiaohui; Caligiuri, Michael A; Yu, Jianhua

    2014-01-01

    Natural products are a major source for cancer drug development. NK cells are a critical component of innate immunity with the capacity to destroy cancer cells, cancer initiating cells, and clear viral infections. However, few reports describe a natural product that selectively stimulates NK cell IFN-γ production and unravel a mechanism of action. In this study, through screening, we found that a natural product, phyllanthusmin C (PL-C), alone enhanced IFN-γ production by human NK cells. PL-C also synergized with IL-12, even at the low cytokine concentration of 0.1 mg/ml, and stimulated IFN-γ production in both human CD56bright and CD56dim NK cell subsets. Mechanistically, TLR1 and/or TLR6 mediated PL-C’s activation of the NF-κB p65 subunit that in turn bound to the proximal promoter of IFNG and subsequently resulted in increased IFN-γ production in NK cells. However, IL-12/IL-15 receptors and their related STAT signaling pathways were not significantly modulated by PL-C. PL-C induced little or no T cell IFN-γ production or NK cell cytotoxicity. Collectively, we identify a natural product with the capacity to selectively activate human NK cell IFN-γ. Given the role of IFN-γ in immune surveillance, additional studies to understand the role of this natural product in prevention of cancer or infection in select populations are warranted. PMID:25122922

  4. Hypericum perforatum extract in burning mouth syndrome: a randomized placebo-controlled study.

    PubMed

    Sardella, Andrea; Lodi, Giovanni; Demarosi, Federica; Tarozzi, Marco; Canegallo, Lorenza; Carrassi, Antonio

    2008-08-01

    Burning mouth syndrome (BMS) or stomatodynia is characterized by a spontaneous burning pain in the oral mucosa without known cause or recognized treatment. This double-blind, randomized, placebo-controlled, single-center study evaluated the effects of systemic Hypericum perforatum extract in patients with BMS. Forty-three patients participated, of whom 39 (35 women, four men, aged 64.9 +/- 4.7 years) completed the study. The patients took indistinguishable 300-mg capsules containing either H. perforatum extract (hypericin 0.31% and hyperforin 3.0%) or placebo three times a day for 12 weeks. The intensity of burning pain was evaluated using a 10-cm visual analog scale (VAS) before the first dose and at visits after 4, 8, and 12 weeks. Furthermore, we also recorded the number of oral mucosa sites with reported burning symptoms and the self-reported descriptions of the patient's condition before and after the treatment. Pain, measured using the VAS, was similar at the beginning of the study and even though a slightly better performance in the test group, the difference was not statistically significant (P = 0.2216). The results failed to demonstrate that 300 mg of H. perforatum extract taken three times a day for 12 weeks improved the pain of BMS patients, although the general reduction in the number of sites with reported burning sensation, a less accurate and objective score, was significant.

  5. Hyperisampsins H-M, Cytotoxic Polycyclic Polyprenylated Acylphloroglucinols from Hypericum sampsonii

    NASA Astrophysics Data System (ADS)

    Zhu, Hucheng; Chen, Chunmei; Tong, Qingyi; Chen, Xintao; Yang, Jing; Liu, Junjun; Sun, Bin; Wang, Jianping; Yao, Guangmin; Luo, Zengwei; Xue, Yongbo; Zhang, Yonghui

    2015-10-01

    Six new polycyclic polyprenylated acylphloroglucinols (PPAPs), named hyperisampsins H-M (1-6), were isolated from the aerial parts of Hypericum sampsonii, together with five known analogs (7-11). The structures of 1-6 were established by extensive spectroscopic analyses, including HRESIMS and NMR. In addition, the absolute configurations of these new compounds were determined by electronic circular dichroism (ECD) calculations. Compounds 1 and 2 represent the first examples of PPAPs possessing a unique γ-lactone ring at C-23, while 3-6 differed from normal PPAPs with an unprecedented 1,2-dioxane ring. Compounds 1-7 were evaluated for their cytotoxic activities against a panel of human cancer cell lines in vitro, of which 3, 4, and 6 exhibited significant cytotoxic activities with IC50 values ranging from 0.56 to 3.00 μM. Moreover, compound 3 induces leukemia cell apoptotic death, evidenced by activation of caspase-3, degradation of PARP, up-regulation of Bax, and down-regulation of Bcl-2 and Bcl-xl.

  6. Pleomorphic hepatocellular carcinoma following consumption of hypericum perforatum in alcoholic cirrhosis

    PubMed Central

    Lampri, Evangeli S; Ioachim, Elli; Harissis, Haralampos; Balasi, Eufemia; Mitselou, Antigoni; Malamou-Mitsi, Vasiliki

    2014-01-01

    Hepatocellular carcinoma (HCC) often develops in patients with underlying liver disease, yet HCC with syncytial giant cells (SGCs) is extremely rare. Herein, we report a 55-year-old man with a 6-year history of alcoholic cirrhosis who during his regular checkup presented with marked elevation of alpha-fetoprotein. Clinical examination and imaging analyses revealed a tumor-like lesion in segment 4 of the liver, which was removed by limited wedge resection. Histological analysis by hematoxylin and eosin staining indicated pleomorphic and atypical nodules, with some SGCs, embedded within the boundaries of the neoplastic lesion. The adjacent liver parenchyma showed microvesicular steatosis, pericellular fibrosis, and moderate hemosiderin accumulation (grade 2, as determined by Prussian blue iron stain) in hepatocytes and Kupffer cells but no copper accumulation (as determined by orcein stain). Immunohistochemical analysis showed hepatocyte antigen-positive staining for the neoplastic cells and SGCs. The diagnosis was made for cirrhosis-related HCC with SGCs. The previous reports of pleomorphic HCC have featured osteoclast-like (i.e., mesenchymal type) giant cells, making this case of epithelial type giant cells very rare. The patient’s 6-month history of hypericum perforatum/St John’s wort self-medication may have prompted the cirrhosis or HCC progression or the unusual SGC manifestation. PMID:24587684

  7. Chemical composition and possible in vitro antigermination activity of three Hypericum essential oils.

    PubMed

    Marandino, Aurelio; De Martino, Laura; Mancini, Emilia; Milella, Luigi; De Feo, Vincenzo

    2011-11-01

    The essential oils of Hypericum perforatum, H. perfoliatum and H. hircinum, growing in Southern Italy, were analyzed by GC and GC/MS. In the three oils, 111 compounds in all were identified: 53 for the oil of H. hircinum (93.7% of the total oil), 55 for H. perforatum (96.5% of the total oil) and 63 for H. perfoliatum (98.7% of the total oil). The major fraction of the essential oils of H. perforatum and H. hircinum was represented by sesquiterpene hydrocarbons, while the monoterpene alpha-pinene, and the phenol thymol were the most abundant compounds in the essential oil of H. perfoliatum. The oils were evaluated for their potential in vitro phytotoxic activity against germination and early radicle elongation of Raphanus sativus and Lepidium sativum. The germination of this latter was significantly inhibited by the essential oil of H. hircinum, at the highest doses tested, whereas radicle elongation of garden cress was significantly inhibited by the essential oils of H. perfoliatum and H. hircinum. The radicle elongation of radish was inhibited by the essential oil of H. hircinum to a major extent and by H. perforatum and perfoliatum in a minor measure.

  8. Reconstruction of reproductive diversity in Hypericum perforatum L. opens novel strategies to manage apomixis.

    PubMed

    Matzk, F; Meister, A; Brutovská, R; Schubert, I

    2001-05-01

    The mode of reproduction was characterized for 113 accessions of the tetraploid facultative apomictic species Hypericum perforatum using bulked or single mature seeds in the flow cytometric seed screen (FCSS). This screen discriminates several processes of sexual or asexual reproduction based on DNA contents of embryo and endosperm nuclei. Seed formation in H. perforatum proved to be highly polymorphic. Eleven different routes of reproduction were determined. For the first time, individual seeds were identified that originated from two embryo sacs: the endosperm from an aposporous and the embryo from the legitimate meiotic embryo sac. Moreover, diploid plants were discovered, which apparently reproduce by a hitherto unknown route of seed formation, that is chromosome doubling within aposporous initial cells followed by double fertilization. Although most plants were tetraploid and facultative sexual/apomictic, diploid obligate sexuals and tetraploid obligate apomicts could be selected. Additionally, genotypes were detected which at a high frequency produced embryos either from reduced parthenogenetic or unreduced fertilized egg cells. The endosperm developed most frequently after fertilization of the central cell in aposporous embryo sacs (pseudogamy) but in few cases also autonomously. The genetic control of apomixis appears to be complex in H. perforatum. Basic material was developed for breeding H. perforatum, and strategies are suggested for elucidation of inheritance as well as evolution of apomixis and for molecular approaches of apomixis engineering. PMID:11439116

  9. Hypericum perforatum as a cognitive enhancer in rodents: A meta-analysis

    PubMed Central

    Ben-Eliezer, Daniel; Yechiam, Eldad

    2016-01-01

    Considered an antidepressant and anti-anxiety agent, Hypericum perforatum affects multiple neurotransmitters in a non-competitive synergistic manner, and may have nootropic potential. We quantitatively reviewed the pre-clinical literature to examine if there is a cognitive-enhancing effect of H. perforatum in healthy rodents. Additionally, within these studies, we compared the effects observed in intact rodents versus those whose performance has been impaired, mostly through stress manipulations. The meta-analysis incorporated studies that examined the effect of H. perforatum versus placebo on memory indices of task performance. All analyses were based on weighting different studies according to their inverse variance. Thirteen independent studies (published 2000–2014) involving 20 experimental comparisons met our inclusion criteria. The results showed a large positive effect of H. perforatum on cognitive performance for intact, healthy rodents (d = 1.11), though a larger effect emerged for stress-impaired rodents (d = 3.10 for restraint stress). The positive effect on intact rodents was observed in tasks assessing reference memory as well as working memory, and was not moderated by the type of memory or motivation (appetitive versus aversive). Thus, while primarily considered as a medication for depression, H. perforatum shows considerable nootropic potential in rodents. PMID:27762349

  10. Ethanol Extracts of Achillea millefolium and Hypericum perforatum Low Anti-Toxoplasma Activity

    PubMed Central

    Nozari, Shagayegh; Adine, Mohtaram; Javadi, Farzaneh; Shahnazi, Mojtaba; Azadmehr, Abbas; Nassiri-Asl, Marjan; Jahanihashemi, Hasan; Saraei, Mehrzad

    2016-01-01

    Objectives: This study was performed to determine the lethal and the inhibitory effects of ethanol extracts of Achillea millefolium (A. millefolium) and Hypericum perforatum (H. perforatum) on Toxoplasma gondii (T. gondii) RH strain tachyzoites in vitro. Methods: The tachyzoites were treated with concentrations of 10, 50, and 100 mg/mL of A. millefolium and H. perforatum extracts within 10, 30, and 45 minutes in the wells. The mortality rates of tachyzoites treated with extracts were determined by using alkaline methylene blue staining. Also, the tachyzoites in cell cultures were treated with concentrations of 50, 100, and 200 mg/mL of these extracts. The cell viability, inhibition concentration (IC50), and selectivity were determined from MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. Results: In the cell-free in vitro study, all of tachyzoites were killed at concentrations of 100 mg/mL of both extracts while at concentration 10 mg/mL, the mortality was 4.53% − 5.31%. In the cell culture study, the values of the effective concentration (EC50) were 215 and 153 μg/mL and the selectivities were 0.73 and 0.69 for the A. millefolium and the H. perforatum extracts, respectively. Conclusion: We conclude that neither extracts has any significant effect on the tachyzoites of T. gondii in cell cultures. PMID:27280052

  11. Isolation and purification of series bioactive components from Hypericum perforatum L. by counter-current chromatography.

    PubMed

    Cao, Xueli; Wang, Qiaoe; Li, Yan; Bai, Ge; Ren, Hong; Xu, Chunming; Ito, Yoichiro

    2011-03-01

    Counter-current chromatography (CCC) combined with pre-separation by ultrasonic solvent extraction was successively used for the separation of series bioactive compounds from the crude extract of Hypericum perforatum L. The petroleum ether extract was separated by the solvent system of n-heptane-methanol-acetonitrile (1.5:0.5:0.5, v/v) and n-heptane-methanol (1.5:1, v/v) in gradient elution, yielding a phloroglucinol compound, hyperforin with HPLC purity over 98%. The ethyl acetate extract was separated by using the solvent system composed of hexane-ethyl acetate-methanol-water (1:1:1:1 and 1:3:1:3, v/v) in gradient through both reverse phase and normal phase elution mode, yielding a naphthodianthrone compound, hypericin with HPLC purity about 95%. The n-butanol extract was separated with the solvent system composed of n-butanol-ethyl acetate-water (1:4:5 and 1.5:3.5:5, v/v) in elution and back-extrusion mode, yielding two of flavones, rutin and hyperoside, with HPLC purity over 95%. HPLC-MS, reference sample and UV spectrum were selectively used in separation to search for target compounds from HPLC-DAD profiles of different sub-extracts. The structures of isolated compounds were further identified by ESI-MS, ¹HNMR and ¹³CNMR.

  12. Hyperisampsins H–M, Cytotoxic Polycyclic Polyprenylated Acylphloroglucinols from Hypericum sampsonii

    PubMed Central

    Zhu, Hucheng; Chen, Chunmei; Tong, Qingyi; Chen, Xintao; Yang, Jing; Liu, Junjun; Sun, Bin; Wang, Jianping; Yao, Guangmin; Luo, Zengwei; Xue, Yongbo; Zhang, Yonghui

    2015-01-01

    Six new polycyclic polyprenylated acylphloroglucinols (PPAPs), named hyperisampsins H–M (1–6), were isolated from the aerial parts of Hypericum sampsonii, together with five known analogs (7–11). The structures of 1–6 were established by extensive spectroscopic analyses, including HRESIMS and NMR. In addition, the absolute configurations of these new compounds were determined by electronic circular dichroism (ECD) calculations. Compounds 1 and 2 represent the first examples of PPAPs possessing a unique γ-lactone ring at C-23, while 3–6 differed from normal PPAPs with an unprecedented 1,2-dioxane ring. Compounds 1–7 were evaluated for their cytotoxic activities against a panel of human cancer cell lines in vitro, of which 3, 4, and 6 exhibited significant cytotoxic activities with IC50 values ranging from 0.56 to 3.00 μM. Moreover, compound 3 induces leukemia cell apoptotic death, evidenced by activation of caspase-3, degradation of PARP, up-regulation of Bax, and down-regulation of Bcl-2 and Bcl-xl. PMID:26440674

  13. Essential oil composition of Hypericum triquetrifolium Turra growing wild in Iran

    PubMed Central

    Sajjadi, S.E.; Mehregan, I.; Taheri, M.

    2015-01-01

    The chemical composition of the volatile oil from aerial parts of Hypericum triquetrifolium Turra was studied by GC-MS. Fifty components (97.1% of the total composition) were detected in the volatile oil. Germacrene-D (21.7%), β-caryophyllene (18.3%), δ-cadinene (6.4%), trans-β-farnesene (4.3%), α-humulene (3.8%), β-selinene (3.7%), γ-cadinene (3.3%) and trans-phytol (3.2%) were found to be the major constituents of the oil. The oil of H. triquetrifolium consisted of five monoterpene hydrocarbons (3.4%), two oxygenated monoterpenes (0.4%), twenty-two sesquiterpene hydrocarbons (77.1%), eight oxygenated sesquiterpenes (7.9%) and one oxygenated diterpene (3.2%). Twelve nonterpenic compounds were also consisted 5.1% of the oil. In conclusion, the oil of H. triquetrifolium was characterized by a high content of sesquiterpenes (85.0%), whereas monoterpenes contained only 3.8% of the essential oil. PMID:26430462

  14. Integrative nanomedicine: treating cancer with nanoscale natural products.

    PubMed

    Bell, Iris R; Sarter, Barbara; Koithan, Mary; Banerji, Prasanta; Banerji, Pratip; Jain, Shamini; Ives, John

    2014-01-01

    Finding safer and more effective treatments for specific cancers remains a significant challenge for integrative clinicians and researchers worldwide. One emerging strategy is the use of nanostructured forms of drugs, vaccines, traditional animal venoms, herbs, and nutraceutical agents in cancer treatment. The recent discovery of nanoparticles in traditional homeopathic medicines adds another point of convergence between modern nanomedicine and alternative interventional strategies. A way in which homeopathic remedies could initiate anticancer effects includes cell-to-cell signaling actions of both exogenous and endogenous (exosome) nanoparticles. The result can be a cascade of modulatory biological events with antiproliferative and pro-apoptotic effects. The Banerji Protocols reflect a multigenerational clinical system developed by homeopathic physicians in India who have treated thousands of patients with cancer. A number of homeopathic remedy sources from the Banerji Protocols (eg, Calcarea phosphorica; Carcinosin-tumor-derived breast cancer tissue prepared homeopathically) overlap those already under study in nonhomeopathic nanoparticle and nanovesicle tumor exosome cancer vaccine research. Past research on antineoplastic effects of nano forms of botanical extracts such as Phytolacca, Gelsemium, Hydrastis, Thuja, and Ruta as well as on homeopathic remedy potencies made from the same types of source materials suggests other important overlaps. The replicated finding of silica, silicon, and nano-silica release from agitation of liquids in glassware adds a proven nonspecific activator and amplifier of immunological effects. Taken together, the nanoparticulate research data and the Banerji Protocols for homeopathic remedies in cancer suggest a way forward for generating advances in cancer treatment with natural product-derived nanomedicines.

  15. Natural Oil Production from Microorganisms: Bioprocess and Microbe Engineering for Total Carbon Utilization in Biofuel Production

    SciTech Connect

    2010-07-15

    Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied from novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.

  16. Cheminformatic comparison of approved drugs from natural product versus synthetic origins.

    PubMed

    Stratton, Christopher F; Newman, David J; Tan, Derek S

    2015-11-01

    Despite the recent decline of natural product discovery programs in the pharmaceutical industry, approximately half of all new drug approvals still trace their structural origins to a natural product. Herein, we use principal component analysis to compare the structural and physicochemical features of drugs from natural product-based versus completely synthetic origins that were approved between 1981 and 2010. Drugs based on natural product structures display greater chemical diversity and occupy larger regions of chemical space than drugs from completely synthetic origins. Notably, synthetic drugs based on natural product pharmacophores also exhibit lower hydrophobicity and greater stereochemical content than drugs from completely synthetic origins. These results illustrate that structural features found in natural products can be successfully incorporated into synthetic drugs, thereby increasing the chemical diversity available for small-molecule drug discovery.

  17. [Hypericin and hyperforin: bioactive components of St. John's Wort (Hypericum perforatum). Their isolation, analysis and study of physiological effect].

    PubMed

    Vacek, J; Klejdus, B; Kubán, V

    2007-04-01

    St. John's Wort (Hypericum perforatum L.) is commonly accepted as a medicinal plant. The data on the physiological activities of the individual substances that are produced in different organs of H. perforatum are well known at present. The highest attention is focused on the characterization and phytochemical properties of hypericin and hyperforin. These organic compounds are used as antidepressant, anticarcinogenic (photodynamic), antimicrobial and virostatic agents. The review paper surveys the present knowledge of chemical and analytical methods for their identification and quantification, physiological activity, and pharmacological and biomedical applications of hypericin and hyperforin. PMID:17619301

  18. Animal-derived natural products review: focus on novel modifications and applications.

    PubMed

    Fan, Qianqian; Ma, Jianzhong; Xu, Qunna; Zhang, Jing; Simion, Demetra; Carmen, Gaidău; Guo, Congsheng

    2015-04-01

    Bio-based natural products have attracted exploding interests, while the environmental pollutions caused by the synthetic polymers are deteriorating dramatically. In this review, we provide a comprehensive overview of the modification of animal-derived natural products with an emphasis on casein, chitosan and collagen. Furthermore, their novel applications in controlled drug delivery system, leather finishing, and pollutant adsorption are also demonstrated. Accordingly, some perspectives in the future development of animal-derived natural products are further proposed.

  19. [Glycosyl isomerization based on the biosynthesis of natural-product sugar from microorganism].

    PubMed

    Sun, Wan; Li, Hai-Feng; Chen, Jing; Wang, Guo-Jun; Yang, Zhao-Yong

    2013-02-01

    Glycosylation, one of the most common and important reactions in biological systems, results in diverse functions and is often found in biologically active small-molecule natural products produced by microorganisms. Furthermore, sugar moieties are generally critical for their activities. Alternating the sugar structures thus provides the potentials for enhancing the biological activities of natural products, which evokes researchers to study the sugar biosynthetic machinery and its application in the modification of sugar moieties with an aim of generating unnaturally glycosylated natural product drugs with better activities. This review will briefly outline current studies on sugar biosynthesis and glycosyltransferase, with a few selected experiments designed to alter natural-product sugar structures.

  20. Advances in identification and validation of protein targets of natural products without chemical modification.

    PubMed

    Chang, J; Kim, Y; Kwon, H J

    2016-05-01

    Covering: up to February 2016Identification of the target proteins of natural products is pivotal to understanding the mechanisms of action to develop natural products for use as molecular probes and potential therapeutic drugs. Affinity chromatography of immobilized natural products has been conventionally used to identify target proteins, and has yielded good results. However, this method has limitations, in that labeling or tagging for immobilization and affinity purification often result in reduced or altered activity of the natural product. New strategies have recently been developed and applied to identify the target proteins of natural products and synthetic small molecules without chemical modification of the natural product. These direct and indirect methods for target identification of label-free natural products include drug affinity responsive target stability (DARTS), stability of proteins from rates of oxidation (SPROX), cellular thermal shift assay (CETSA), thermal proteome profiling (TPP), and bioinformatics-based analysis of connectivity. This review focuses on and reports case studies of the latest advances in target protein identification methods for label-free natural products. The integration of newly developed technologies will provide new insights and highlight the value of natural products for use as biological probes and new drug candidates.

  1. Advances in identification and validation of protein targets of natural products without chemical modification.

    PubMed

    Chang, J; Kim, Y; Kwon, H J

    2016-05-01

    Covering: up to February 2016Identification of the target proteins of natural products is pivotal to understanding the mechanisms of action to develop natural products for use as molecular probes and potential therapeutic drugs. Affinity chromatography of immobilized natural products has been conventionally used to identify target proteins, and has yielded good results. However, this method has limitations, in that labeling or tagging for immobilization and affinity purification often result in reduced or altered activity of the natural product. New strategies have recently been developed and applied to identify the target proteins of natural products and synthetic small molecules without chemical modification of the natural product. These direct and indirect methods for target identification of label-free natural products include drug affinity responsive target stability (DARTS), stability of proteins from rates of oxidation (SPROX), cellular thermal shift assay (CETSA), thermal proteome profiling (TPP), and bioinformatics-based analysis of connectivity. This review focuses on and reports case studies of the latest advances in target protein identification methods for label-free natural products. The integration of newly developed technologies will provide new insights and highlight the value of natural products for use as biological probes and new drug candidates. PMID:26964663

  2. Environmental solutions for the sustainable production of bioactive natural products from the marine sponge Crambe crambe.

    PubMed

    Pérez-López, Paula; Ternon, Eva; González-García, Sara; Genta-Jouve, Grégory; Feijoo, Gumersindo; Thomas, Olivier P; Moreira, Ma Teresa

    2014-03-15

    Crambe crambe is a Mediterranean marine sponge known to produce original natural substances belonging to two families of guanidine alkaloids, namely crambescins and crambescidins, which exhibit cytotoxic and antiviral activities. These compounds are therefore considered as potential anticancer drugs. The present study focuses on the environmental assessment of a novel in vivo process for the production of pure crambescin and crambescidin using sponge specimens cultured in aquarium. The assessment was performed following the ISO 14040 standard and extended from the production of the different mass and energy flows to the system to the growth of the sponge in indoor aquarium and further periodic extraction and purification of the bioactive compounds. According to the results, the two stages that have a remarkable contribution to all impact categories are the purification of the bioactive molecules followed by the maintenance of the sponge culture in the aquarium. Among the involved activities, the production of the chemicals (particularly methanol) together with the electricity requirements (especially due to the aquarium lighting) are responsible for up to 90% of the impact in most of the assessed categories. However, the contributions of other stages to the environmental burdens, such as the collection of sponges, considerably depend on the assumptions made during the inventory stage. The simulation of alternative scenarios has led to propose improvement alternatives that may allow significant reductions ranging from 20% to 70%, mainly thanks to the reduction of electricity requirements as well as the partial reuse of methanol.

  3. Pharmacognosy: Science of natural products in drug discovery.

    PubMed

    Orhan, Ilkay Erdogan

    2014-01-01

    Pharmacognosy deals with the natural drugs obtained from organisms such as most plants, microbes, and animals. Up to date, many important drugs including morphine, atropine, galanthamine, etc. have originated from natural sources which continue to be good model molecules in drug discovery. Traditional medicine is also a part of pharmacognosy and most of the third world countries still depend on the use of herbal medicines. Consequently, pharmacognosy always keeps its popularity in pharmaceutical sciences and plays a critical role in drug discovery.

  4. Lessons learned from the transformation of natural product discovery to a genome-driven endeavor

    PubMed Central

    Deane, Caitlin D.; Mitchell, Douglas A.

    2013-01-01

    Natural product discovery is currently undergoing a transformation from a phenotype-driven field to a genotype-driven one. The increasing availability of genome sequences, coupled with improved techniques for identifying biosynthetic gene clusters, has revealed that secondary metabolomes are strikingly vaster than previously thought. New approaches to correlate biosynthetic gene clusters with the compounds they produce have facilitated the production and isolation of a rapidly growing collection of what we refer to as “reverse-discovered” natural products, in analogy to reverse genetics. In this review, we present an extensive list of reverse-discovered natural products and discuss seven important lessons for natural product discovery by genome-guided methods: structure prediction, accurate annotation, continued study of model organisms, avoiding genome size bias, genetic manipulation, heterologous expression, and potential engineering of natural product analogs. PMID:24142337

  5. Herbal drug quality and phytochemical composition of Hypericum perforatum L. affected by ash yellows phytoplasma infection.

    PubMed

    Bruni, Renato; Pellati, Federica; Bellardi, Maria Grazia; Benvenuti, Stefania; Paltrinieri, Samanta; Bertaccini, Assunta; Bianchi, Alberto

    2005-02-23

    Qualitative/quantitative phytochemical variations were observed in dried flowering tops of cultivated Hypericum perforatum L. cv. Zorzi infected by phytoplasmas of the "ash yellows" class, identified by direct and nested polymerase chain reaction (PCR); this is the first report of ribosomial group 16SrVII phytoplasmas in St. John's Wort. Methanolic extracts of healthy and infected plants were separated by reversed phase high-performance liquid chromatography to quantify naphthodianthrones and flavonoids, while essential oils were analyzed by means of gas chromatography (GC)-GC/MS. The affected plants exhibited decreased amounts of rutin (1.96 +/- 0.23 vs 4.96 +/- 0.02 mg/g), hyperoside (2.38 +/- 0.21 vs 3.04 +/- 0.05 mg/g), isoquercitrin (1.47 +/- 0.04 vs 3.50 +/- 0.08 mg/g), amentoflavone (0.12 +/- 0.01 vs 0.39 +/- 0.02 mg/g), and pseudohypericin (1.41 +/- 0.23 vs 2.29 +/- 0.07 mg/g), whereas the chlorogenic acid content was doubled (1.56 +/- 0.11 vs 0.77 +/- 0.02 mg/g). Hypericin, quercitrin, and quercetin contents were not severely affected. The essential oil yield was drastically reduced in infected material (0.11 vs 0.75% in healthy material) and revealed an increased abundance of sesquiterpenes (beta-caryophyllene, delta-elemene, and germacrene D, in particular) and a matching decrease in monoterpene hydrocarbons and aliphatics. The consequences that the phytopathological condition of cultivated H. perforatum plants has on the commercial quality, market value, and therapeutic efficacy are outlined. PMID:15713006

  6. Molecular Cloning and Expression Analysis of hyp-1 Type PR-10 Family Genes in Hypericum perforatum

    PubMed Central

    Karppinen, Katja; Derzsó, Emese; Jaakola, Laura; Hohtola, Anja

    2016-01-01

    Hypericum perforatum L. is an important medicinal plant for the treatment of depression. The plant contains bioactive hypericins that accumulate in dark glands present especially in reproductive parts of the plant. In this study, pathogenesis-related class 10 (PR-10) family genes were identified in H. perforatum, including three previously unidentified members with sequence homology to hyp-1, a phenolic coupling protein that has earlier been suggested to participate in biosynthesis and binding/transportation of hypericin. The PR-10 genes showed constitutive but variable expression patterns in different H. perforatum tissues. They were all expressed at relatively high levels in leaves, variably in roots and low levels in stem and reproductive parts of the plant with no specific association with dark glands. The gene expression was up-regulated in leaves after salicylic acid, abscisic acid and wounding treatments but with variable levels. To study exact location of the gene expression, in situ hybridization of hyp-1 transcripts was performed and the accumulation of the Hyp-1 protein was examined in various tissues. The presence of Hyp-1 protein in H. perforatum tissues mostly paralleled with the mRNA levels. In situ RNA hybridization localized the hyp-1 transcripts predominantly in vascular tissues in root and stem, while in leaf the mRNA levels were high also in mesophyll cells in addition to vasculature. Our results indicate that the studied PR-10 genes are likely to contribute to the defense responses in H. perforatum. Furthermore, despite the location of the hyp-1 transcripts in vasculature, no support for the transportation of the Hyp-1 protein to dark glands was found in the current study. The present results together with earlier data question the role of the hyp-1 as a key gene responsible for the hypericin biosynthesis in dark glands of H. perforatum. PMID:27148343

  7. Molecular Cloning and Expression Analysis of hyp-1 Type PR-10 Family Genes in Hypericum perforatum.

    PubMed

    Karppinen, Katja; Derzsó, Emese; Jaakola, Laura; Hohtola, Anja

    2016-01-01

    Hypericum perforatum L. is an important medicinal plant for the treatment of depression. The plant contains bioactive hypericins that accumulate in dark glands present especially in reproductive parts of the plant. In this study, pathogenesis-related class 10 (PR-10) family genes were identified in H. perforatum, including three previously unidentified members with sequence homology to hyp-1, a phenolic coupling protein that has earlier been suggested to participate in biosynthesis and binding/transportation of hypericin. The PR-10 genes showed constitutive but variable expression patterns in different H. perforatum tissues. They were all expressed at relatively high levels in leaves, variably in roots and low levels in stem and reproductive parts of the plant with no specific association with dark glands. The gene expression was up-regulated in leaves after salicylic acid, abscisic acid and wounding treatments but with variable levels. To study exact location of the gene expression, in situ hybridization of hyp-1 transcripts was performed and the accumulation of the Hyp-1 protein was examined in various tissues. The presence of Hyp-1 protein in H. perforatum tissues mostly paralleled with the mRNA levels. In situ RNA hybridization localized the hyp-1 transcripts predominantly in vascular tissues in root and stem, while in leaf the mRNA levels were high also in mesophyll cells in addition to vasculature. Our results indicate that the studied PR-10 genes are likely to contribute to the defense responses in H. perforatum. Furthermore, despite the location of the hyp-1 transcripts in vasculature, no support for the transportation of the Hyp-1 protein to dark glands was found in the current study. The present results together with earlier data question the role of the hyp-1 as a key gene responsible for the hypericin biosynthesis in dark glands of H. perforatum. PMID:27148343

  8. Pharmacological screening of Hypericum androsaemum extracts for antioxidant, anti-lipid peroxidation, antiglycation and cytotoxicity activity.

    PubMed

    Saddiqe, Zeb; Maimoona, Alya; Abbas, Ghulam; Naeem, Ismat; Shahzad, Muhammad

    2016-03-01

    Oxidative stress and glycation processes have a combined effect on diabetes related complications. Crude plant extracts and plant derived compounds possessing both antiglycation and antioxidant activities have a high therapeutic potential for treating these complications. Antioxidant, antiglycation, anti-lipid per oxidation and cytotoxic activities of crude methanol extract and solvent fractions of Hypericum androsaemum L. (Hypericaceae) were evaluated and correlated with total content of phenolics and flavonoids. Significant radical scavenging activity was observed for the methanol extract against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical used as a basis for antioxidant activity with IC50 value of 92.70±2.85 μg mL(-1) (96.20±2.34% inhibition at 500 μg mL(-1)). In case of anion scavenging activity the results were not very significant (33.20±1.22% inhibition at 500 μg mL(-1)). Anti-lipid per oxidation activity was highest for n-hexane fraction (67.83±1.33% inhibition at 500 μg mL(-1)) while the ethyl acetate fraction had the highest antiglycation activity (62.77±2.54% inhibition at 500 μg mL(-1)). Statistically significant correlation was determined for antioxidant and antiglycation activity and phenolic and flavonoid contents. In cytotoxicity assay all the extracts had IC50 values >30 μg mL(-1) as compared to the standard cycloheximide (IC50 value 0.084±0.1 μg mL(-1)). The polar extracts of H. androsaemum can be a good source of non-toxic compounds with antioxidant, anti-lipid per oxidation and antiglycation activities.

  9. Natural gas supply product and services guide. 1996-1997 edition

    SciTech Connect

    1996-12-31

    This is the Gas Research Institute`s Natural Gas Supply Product and Services Guide for 1996-97. It presents gas exploration, production and processing products developed for Gas Research Institute (GRI) by its contractors, to help reduce production costs and increase recoverable reserves.

  10. Differences in Median Ultraviolet Light Transmissions of Serial Homeopathic Dilutions of Copper Sulfate, Hypericum perforatum, and Sulfur.

    PubMed

    Klein, Sabine D; Sandig, Annegret; Baumgartner, Stephan; Wolf, Ursula

    2013-01-01

    Homeopathic remedies are produced by potentising, that is, the serial logarithmic dilution and succussion of a mother tincture. Techniques like ultraviolet spectroscopy, nuclear magnetic resonance, calorimetry, or thermoluminescence have been used to investigate their physical properties. In this study, homeopathic centesimal (c) potencies (6c to 30c) of copper sulfate, Hypericum perforatum, and sulfur as well as succussed water controls were prepared. Samples of these preparations were exposed to external physical factors like heat, pressure, ultraviolet radiation, or electromagnetic fields to mimic possible everyday storage conditions. The median transmissions from 190 nm to 340 nm and 220 nm to 340 nm were determined by ultraviolet light spectroscopy on five measurement days distributed over several months. Transmissions of controls and potencies of sulfur differed significantly on two of five measurement days and after exposure to physical factors. Transmissions of potencies exposed to ultraviolet light and unexposed potencies of copper sulfate and Hypericum perforatum differed significantly. Potency levels 6c to 30c were also compared, and wavelike patterns of higher and lower transmissions were found. The Kruskal-Wallis test yielded significant differences for the potency levels of all three substances. Aiming at understanding the physical properties of homeopathic preparations, this study confirmed and expanded the findings of previous studies.

  11. Differences in Median Ultraviolet Light Transmissions of Serial Homeopathic Dilutions of Copper Sulfate, Hypericum perforatum, and Sulfur

    PubMed Central

    Klein, Sabine D.; Sandig, Annegret; Baumgartner, Stephan; Wolf, Ursula

    2013-01-01

    Homeopathic remedies are produced by potentising, that is, the serial logarithmic dilution and succussion of a mother tincture. Techniques like ultraviolet spectroscopy, nuclear magnetic resonance, calorimetry, or thermoluminescence have been used to investigate their physical properties. In this study, homeopathic centesimal (c) potencies (6c to 30c) of copper sulfate, Hypericum perforatum, and sulfur as well as succussed water controls were prepared. Samples of these preparations were exposed to external physical factors like heat, pressure, ultraviolet radiation, or electromagnetic fields to mimic possible everyday storage conditions. The median transmissions from 190 nm to 340 nm and 220 nm to 340 nm were determined by ultraviolet light spectroscopy on five measurement days distributed over several months. Transmissions of controls and potencies of sulfur differed significantly on two of five measurement days and after exposure to physical factors. Transmissions of potencies exposed to ultraviolet light and unexposed potencies of copper sulfate and Hypericum perforatum differed significantly. Potency levels 6c to 30c were also compared, and wavelike patterns of higher and lower transmissions were found. The Kruskal-Wallis test yielded significant differences for the potency levels of all three substances. Aiming at understanding the physical properties of homeopathic preparations, this study confirmed and expanded the findings of previous studies. PMID:23401712

  12. Variation in the composition of the essential oils, phenolic compounds and mineral elements of Hypericum perforatum L. growing in Estonia.

    PubMed

    Helmja, Kati; Vaher, Merike; Püssa, Tõnu; Orav, Anne; Viitak, Anu; Levandi, Tuuli; Kaljurand, Mihkel

    2011-03-01

    A comprehensive investigation of the chemical composition of the aerial parts of Hypericum perforatum L. collected in three habitations in Estonia was carried out. An analysis by gas chromatography-mass spectrometry and gas chromatography-flame ionisation detection established the main components of the essential oils. The phenolic compounds both in ethanol and water extracts of the plant were analysed using liquid chromatography-mass spectrometry (LC-MS) and capillary zone electrophoresis. In addition to the earlier published polyphenols, several new phenolic acids and flavonoids, such as quercetin hexoside malonates and an A-type catechin-epicatechin trimer were identified in this Hypericum for the first time. The contents of the pharmaceutically important antidepressants hyperforin and hypericin were also estimated by LC-MS and compared with the data in the literature. The composition of the mineral elements was determined by atomic absorption spectroscopy. The results of the study demonstrate a rather high variability in the content of different substance groups in H. perforatum L. and, hence, the need for a survey of the raw material in the course of selection of raw materials for pharmaceutical preparations.

  13. Biosynthesis of natural products in plants by fungal endophytes with an emphasis on swainsonine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant natural products are frequently used as chemotaxonomic markers which are indicative of select members of a family, genus, and/or species. However, the erratic occurrence of some natural products raises questions about their biosynthetic origin and significance as chemotaxonomic markers. Rece...

  14. Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although natural products have been a particularly rich source of human medicines, the rate at which new molecules are being discovered is declining precipitously. Based on the large number of natural product biosynthetic genes in microbial genomes, many have suggested “genome mining” as an approach...

  15. A sea of biosynthesis: marine natural products meet the molecular age†

    PubMed Central

    Lane, Amy L.; Moore, Bradley S.

    2011-01-01

    The years 2000 through mid-2010 marked a transformational period in understanding of the biosynthesis of marine natural products. During this decade the field emerged from one largely dominated by chemical approaches to understanding biosynthetic pathways to one incorporating the full force of modern molecular biology and bioinformatics. Fusion of chemical and biological approaches yielded great advances in understanding the genetic and enzymatic basis for marine natural product biosynthesis. Progress was particularly pronounced for marine microbes, especially actinomycetes and cyanobacteria. During this single decade, both the first complete marine microbial natural product biosynthetic gene cluster sequence was released as well as the first entire genome sequence for a secondary metabolite-rich marine microbe. The decade also saw tremendous progress in recognizing the key role of marine microbial symbionts of invertebrates in natural product biosynthesis. Application of genetic and enzymatic knowledge led to genetic engineering of novel “unnatural” natural products during this time, as well as opportunities for discovery of novel natural products through genome mining. The current review highlights selected seminal studies from 2000 through to June 2010 that illustrate breakthroughs in understanding of marine natural product biosynthesis at the genetic, enzymatic, and small-molecule natural product levels. A total of 154 references are cited. PMID:21170424

  16. 2013-2014 Production of guayule natural rubber in Arizona, U.S.A.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural rubber is a unique biopolymer whose physical properties cannot be replicated in synthetic alternatives; therefore, it is required for production of tires (passenger, truck, and aircraft) and thousands of consumer and medical products. While demand for natural rubber is expected to increase ...

  17. Survey of marine natural product structure revisions: a synergy of spectroscopy and chemical synthesis.

    PubMed

    Suyama, Takashi L; Gerwick, William H; McPhail, Kerry L

    2011-11-15

    The structural assignment of new natural product molecules supports research in a multitude of disciplines that may lead to new therapeutic agents and or new understanding of disease biology. However, reports of numerous structural revisions, even of recently elucidated natural products, inspired the present survey of techniques used in structural misassignments and subsequent revisions in the context of constitutional or configurational errors. Given the comparatively recent development of marine natural products chemistry, coincident with modern spectroscopy, it is of interest to consider the relative roles of spectroscopy and chemical synthesis in the structure elucidation and revision of those marine natural products that were initially misassigned. Thus, a tabulated review of all marine natural product structural revisions from 2005 to 2010 is organized according to structural motif revised. Misassignments of constitution are more frequent than perhaps anticipated by reliance on HMBC and other advanced NMR experiments, especially when considering the full complement of all natural products. However, these techniques also feature prominently in structural revisions, specifically of marine natural products. Nevertheless, as is the case for revision of relative and absolute configuration, total synthesis is a proven partner for marine, as well as terrestrial, natural products structure elucidation. It also becomes apparent that considerable 'detective work' remains in structure elucidation, in spite of the spectacular advances in spectroscopic techniques.

  18. Molecular scaffold analysis of natural products databases in the public domain.

    PubMed

    Yongye, Austin B; Waddell, Jacob; Medina-Franco, José L

    2012-11-01

    Natural products represent important sources of bioactive compounds in drug discovery efforts. In this work, we compiled five natural products databases available in the public domain and performed a comprehensive chemoinformatic analysis focused on the content and diversity of the scaffolds with an overview of the diversity based on molecular fingerprints. The natural products databases were compared with each other and with a set of molecules obtained from in-house combinatorial libraries, and with a general screening commercial library. It was found that publicly available natural products databases have different scaffold diversity. In contrast to the common concept that larger libraries have the largest scaffold diversity, the largest natural products collection analyzed in this work was not the most diverse. The general screening library showed, overall, the highest scaffold diversity. However, considering the most frequent scaffolds, the general reference library was the least diverse. In general, natural products databases in the public domain showed low molecule overlap. In addition to benzene and acyclic compounds, flavones, coumarins, and flavanones were identified as the most frequent molecular scaffolds across the different natural products collections. The results of this work have direct implications in the computational and experimental screening of natural product databases for drug discovery.

  19. Prediction of cancer cell sensitivity to natural products based on genomic and chemical properties.

    PubMed

    Yue, Zhenyu; Zhang, Wenna; Lu, Yongming; Yang, Qiaoyue; Ding, Qiuying; Xia, Junfeng; Chen, Yan

    2015-01-01

    Natural products play a significant role in cancer chemotherapy. They are likely to provide many lead structures, which can be used as templates for the construction of novel drugs with enhanced antitumor activity. Traditional research approaches studied structure-activity relationship of natural products and obtained key structural properties, such as chemical bond or group, with the purpose of ascertaining their effect on a single cell line or a single tissue type. Here, for the first time, we develop a machine learning method to comprehensively predict natural products responses against a panel of cancer cell lines based on both the gene expression and the chemical properties of natural products. The results on two datasets, training set and independent test set, show that this proposed method yields significantly better prediction accuracy. In addition, we also demonstrate the predictive power of our proposed method by modeling the cancer cell sensitivity to two natural products, Curcumin and Resveratrol, which indicate that our method can effectively predict the response of cancer cell lines to these two natural products. Taken together, the method will facilitate the identification of natural products as cancer therapies and the development of precision medicine by linking the features of patient genomes to natural product sensitivity.

  20. Exploring application of cardanol from natural resource: Chemistry and products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cardanol (cashew nut shell liquid, CNSL) is a renewable raw material derived from a byproduct of the cashew nut processing industry. First, two natural plasticizers derived from cardanol, cardanol acetate (CA) and epoxidated cardanol acetate (ECA), have been synthesized and characterized by 1HNMR an...

  1. Antibiotic production by soil bacteria: diversity, activity and natural functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The living components of soils, the micro- and macrobiota, play an essential role in several life support functions as they enable soils to recycle nutrients, inactive contaminants, suppress plant pathogens and serve as a suitable substrate for plant growth. Beneficial bacteria occur naturally in s...

  2. Beware When Buying "All Natural" Erectile Dysfunction Products

    MedlinePlus

    ... in Health Fraud For Consumers For Educators Warning Letters - Health Fraud Public Notifications and Safety Alerts - Health ... Products Advisory Committees Regulatory Information Safety Emergency Preparedness International Programs News & Events Training & Continuing Education Inspections & Compliance ...

  3. Defining "natural product" between public health and business, 17th to 21st centuries.

    PubMed

    Stanziani, Alessandro

    2008-07-01

    The historical definition of a natural product stands at the crossroads of business, health, and the symbolic order of things. Until the end of the 19th century, "natural product" was a synonym of perishable. The emergency of organic chemistry made perishability be replaced with "toxicity". Nowadays, genetics is provoking a radical change in the notion and practises of "natural product". However, these concerns are never entirely opposed to "naturality" as a synonym for sacred and symbolic order. Traceability is largely based upon kosher practices and the association between organic and good for health is hardly based upon sound scientific arguments.

  4. An NMR method towards the routine chiral determination of natural products.

    PubMed

    Jaki, Birgit; Franzblau, Scott; Pauli, Guido F

    2004-01-01

    State-of-the-art structure elucidation and dereplication of natural products is incomplete without the determination of enantiomeric purity, especially when compounds are to be biologically evaluated. An NMR procedure is presented in order to distinguish and determine enantiomers in natural product samples. The method is also of value in the structure elucidation process by providing information, which is otherwise of a non-routine nature. Using enantiomeric 1-acetoxychavicol acetates and carvones as model compounds, this study presents a chiral NMR procedure that allows distinction and determination of chiral antipodes of natural products in a routine set-up.

  5. Abiotic Nitrous Oxide Production in Natural and Artificial Seawater

    NASA Astrophysics Data System (ADS)

    Ochoa, H.; Stanton, C. L.; Cavazos, A. R.; Ostrom, N. E.; Glass, J. B.

    2014-12-01

    The ocean contributes approximately one third of global sources of nitrous oxide (N2O) to the atmosphere. While nitrification is thought to be the dominant pathway for marine N2O production, mechanisms remain unresolved. Previous studies have carried the implicit assumption that marine N2O originates directly from enzymatic sources. However, abiotic production of N2O is possible via chemical reactions between nitrogenous intermediates and redox active trace metals in seawater. In this study, we investigated N2O production and isotopic composition in treatments with and without added hydroxylamine (NH2OH) and nitric oxide (NO), intermediates in microbial oxidation of ammonia to nitrite, and Fe(III). Addition of substrates to sterile artificial seawater was compared with filtered and unfiltered seawater from Sapelo Island, coastal Georgia, USA. N2O production was observed immediately after addition of Fe(III) in the presence of NH2OH at pH 8 in sterile artificial seawater. Highest N2O production was observed in the presence of Fe(III), NO, and NH2OH. The isotopomer site preference of abiotically produced N2O was consistent with previous studies (31 ± 2 ‰). Higher abiotic N2O production was observed in sterile artificial seawater (salinity: 35 ppt) than filtered Sapelo Island seawater (salinity: 25 ppt) whereas diluted sterile artificial seawater (18 ppt) showed lowest N2O production, suggesting that higher salinity promotes enhanced abiotic N2O production. Addition of Fe(III) to unfiltered Sapelo Island seawater stimulated N2O production. The presence of ammonia-oxidizing archaea (AOA), which lack known N2O producing enzymes, in Sapelo Island seawater was confirmed by successful amplification of the archaeal amoA gene, whereas ammonia-oxidizing bacteria (AOB), which contain N2O-producing enzymes were undetected. Given the few Fe-containing proteins present in AOA, it is likely that Fe(III) addition promoted N2O production via an abiotic vs. enzymatic N2O mechanism

  6. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    PubMed

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-01

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.

  7. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.

    PubMed

    M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy

    2015-07-01

    Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process. PMID:26010031

  8. Marine natural product drug discovery: Leads for treatment of inflammation, cancer, infections, and neurological disorders.

    PubMed

    Villa, Francisco A; Gerwick, Lena

    2010-06-01

    Natural products, secondary metabolites, isolated from plants, animals and microbes are important sources for bioactive molecules that in many cases have been developed into treatments for diseases. This review will focus on describing the potential for finding new treatments from marine natural products for inflammation, cancer, infections, and neurological disorders. Historically terrestrial natural products have been studied to a greater extent and such classic drugs as aspirin, vincristine and many of the antibiotics are derived from terrestrial natural products. The need for new therapeutics in the four areas mentioned is dire. Within the last 30 years marine natural products, with their unique structures and high level of halogenation, have shown many promising activities against the inflammatory response, cancer, infections and neurological disorders. The review will outline examples of such compounds and activities.

  9. A mass spectrometry-guided genome mining approach for natural product peptidogenomics.

    PubMed

    Kersten, Roland D; Yang, Yu-Liang; Xu, Yuquan; Cimermancic, Peter; Nam, Sang-Jip; Fenical, William; Fischbach, Michael A; Moore, Bradley S; Dorrestein, Pieter C

    2011-10-09

    Peptide natural products show broad biological properties and are commonly produced by orthogonal ribosomal and nonribosomal pathways in prokaryotes and eukaryotes. To harvest this large and diverse resource of bioactive molecules, we introduce here natural product peptidogenomics (NPP), a new MS-guided genome-mining method that connects the chemotypes of peptide natural products to their biosynthetic gene clusters by iteratively matching de novo tandem MS (MS(n)) structures to genomics-based structures following biosynthetic logic. In this study, we show that NPP enabled the rapid characterization of over ten chemically diverse ribosomal and nonribosomal peptide natural products of previously unidentified composition from Streptomycete bacteria as a proof of concept to begin automating the genome-mining process. We show the identification of lantipeptides, lasso peptides, linardins, formylated peptides and lipopeptides, many of which are from well-characterized model Streptomycetes, highlighting the power of NPP in the discovery of new peptide natural products from even intensely studied organisms.

  10. Marine natural product drug discovery: Leads for treatment of inflammation, cancer, infections, and neurological disorders.

    PubMed

    Villa, Francisco A; Gerwick, Lena

    2010-06-01

    Natural products, secondary metabolites, isolated from plants, animals and microbes are important sources for bioactive molecules that in many cases have been developed into treatments for diseases. This review will focus on describing the potential for finding new treatments from marine natural products for inflammation, cancer, infections, and neurological disorders. Historically terrestrial natural products have been studied to a greater extent and such classic drugs as aspirin, vincristine and many of the antibiotics are derived from terrestrial natural products. The need for new therapeutics in the four areas mentioned is dire. Within the last 30 years marine natural products, with their unique structures and high level of halogenation, have shown many promising activities against the inflammatory response, cancer, infections and neurological disorders. The review will outline examples of such compounds and activities. PMID:20441539

  11. Natural products as an inspiration in the diversity-oriented synthesis of bioactive compound libraries

    PubMed Central

    Cordier, Christopher; Morton, Daniel; Murrison, Sarah; O'Leary-Steele, Catherine

    2008-01-01

    The purpose of diversity-oriented synthesis is to drive the discovery of small molecules with previously unknown biological functions. Natural products necessarily populate biologically relevant chemical space, since they bind both their biosynthetic enzymes and their target macromolecules. Natural product families are, therefore, libraries of pre-validated, functionally diverse structures in which individual compounds selectively modulate unrelated macromolecular targets. This review describes examples of diversity-oriented syntheses which have, to some extent, been inspired by the structures of natural products. Particular emphasis is placed on innovations that allow the synthesis of compound libraries that, like natural products, are skeletally diverse. Mimicking the broad structural features of natural products may allow the discovery of compounds that modulate the functions of macromolecules for which ligands are not known. The ability of innovations in diversity-oriented synthesis to deliver such compounds is critically assessed. PMID:18663392

  12. Do Anti-Bredt Natural Products Exist? Olefin Strain Energy as a Predictor of Isolability.

    PubMed

    Krenske, Elizabeth H; Williams, Craig M

    2015-09-01

    Bredt's rule holds a special place in the realm of physical organic chemistry, but its application to natural products chemistry—the field in which the rule was originally formulated—is not well defined. Herein, the use of olefin strain (OS) energy as a readily calculated predictor of the stability of natural products containing a bridgehead alkene is introduced. Schleyer first used OS energies to classify parent bridgehead alkenes into "isolable", "observable", and "unstable" classes. OS calculations on natural products, using contemporary forcefield methods, unequivocally predict all structurally verified bridgehead alkene natural products to be "isolable". Thus, when one assigns the structure of a putative bridgehead alkene natural product, an OS in the "observable" or "unstable" ranges is a red flag for error.

  13. "Common synthetic scaffolds" in the synthesis of structurally diverse natural products.

    PubMed

    Anagnostaki, Elissavet E; Zografos, Alexandros L

    2012-09-01

    Selected natural products have long been considered as desirable targets for total synthesis due to their unique biological properties and their challenging structural complexity. Laboratory synthesis of natural compounds usually relies on target-oriented synthesis, involving the production, isolation and purification of successive intermediates, requiring multiple steps to arrive to the final product. A far more economical approach using common synthetic scaffolds that can be readily transformed through biomimetic-like pathways to a range of structurally diverse natural products has been evolved in the last decade, leading synthesis to new directions. This tutorial review critically presents the hallmarks in this field.

  14. Natural products; pharmacological importance of family Cucurbitaceae: a brief review.

    PubMed

    Shah, Syed Shoaib Ahmad; Hussain, M Ijaz; Aslam, M Kashif; Rivera, Gildardo

    2014-01-01

    Compounds derived from nature have played a major role in drug discovery. They became the basis for the development of new pharmaceuticals. In this scope, family Cucurbitaceae is a prominent source of secondary metabolites, mainly triterpenoids. In this paper, we provide a brief review of cucurbitane metabolites that exhibit an extensive range of biological actions specifically antidiabetic, anti-inflammatory, cytotoxic, hepatoprotective, and antiparasitic effects.

  15. Natural Product Shows Effectiveness in Combating Colorectal Cancer | Poster

    Cancer.gov

    An herbal extract used for centuries to prevent heart disease has now been shown to be effective against colorectal cancer when tested in laboratory cell cultures. Scientists from NCI at Frederick found that the natural extract cryptotanshinone (CPT) stops the uncontrolled cell growth characteristic of cancer by interfering with a protein that has been implicated in several cancers, including those of the colon and rectum. The results appear in the journal Molecular and Cellular Biochemistry.

  16. Metabolic Profile and Root Development of Hypericum perforatum L. In vitro Roots under Stress Conditions Due to Chitosan Treatment and Culture Time

    PubMed Central

    Brasili, Elisa; Miccheli, Alfredo; Marini, Federico; Praticò, Giulia; Sciubba, Fabio; Di Cocco, Maria E.; Cechinel, Valdir Filho; Tocci, Noemi; Valletta, Alessio; Pasqua, Gabriella

    2016-01-01

    The responses of Hypericum perforatum root cultures to chitosan elicitation had been investigated through 1H-NMR-based metabolomics associated with morpho-anatomical analyses. The root metabolome was influenced by two factors, i.e., time of culture (associated with biomass growth and related “overcrowding stress”) and chitosan elicitation. ANOVA simultaneous component analysis (ASCA) modeling showed that these factors act independently. In response to the increase of biomass density over time, a decrease in the synthesis of isoleucine, valine, pyruvate, methylamine, etanolamine, trigonelline, glutamine and fatty acids, and an increase in the synthesis of phenolic compounds, such as xanthones, epicatechin, gallic, and shikimic acid were observed. Among the xanthones, brasilixanthone B has been identified for the first time in chitosan-elicited root cultures of H. perforatum. Chitosan treatment associated to a slowdown of root biomass growth caused an increase in DMAPP and a decrease in stigmasterol, shikimic acid, and tryptophan levels. The histological analysis of chitosan-treated roots revealed a marked swelling of the root apex, mainly due to the hypertrophy of the first two sub-epidermal cell layers. In addition, periclinal divisions in hypertrophic cortical cells, resulting in an increase of cortical layers, were frequently observed. Most of the metabolic variations as well as the morpho-anatomical alterations occurred within 72 h from the elicitation, suggesting an early response of H. perforatum roots to chitosan elicitation. The obtained results improve the knowledge of the root responses to biotic stress and provide useful information to optimize the biotechnological production of plant compounds of industrial interest. PMID:27148330

  17. Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes

    PubMed Central

    2013-01-01

    Background Actinomycetes are a diverse group of medically, industrially and ecologically important bacteria, studied as much for the diseases they cause as for the cures they hold. The genomes of actinomycetes revealed that these bacteria have a large number of natural product gene clusters, although many of these are difficult to tie to products in the laboratory. Large scale comparisons of these clusters are difficult to perform due to the presence of highly similar repeated domains in the most common biosynthetic machinery: polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). Results We have used comparative genomics to provide an overview of the genomic features of a set of 102 closed genomes from this important group of bacteria with a focus on natural product biosynthetic genes. We have focused on well-represented genera and determine the occurrence of gene cluster families therein. Conservation of natural product gene clusters within Mycobacterium, Streptomyces and Frankia suggest crucial roles for natural products in the biology of each genus. The abundance of natural product classes is also found to vary greatly between genera, revealing underlying patterns that are not yet understood. Conclusions A large-scale analysis of natural product gene clusters presents a useful foundation for hypothesis formulation that is currently underutilized in the field. Such studies will be increasingly necessary to study the diversity and ecology of natural products as the number of genome sequences available continues to grow. PMID:24020438

  18. Enantiodivergent Combination of Natural Product Scaffolds Enabled by Catalytic Enantioselective Cycloaddition.

    PubMed

    Xu, Hao; Golz, Christopher; Strohmann, Carsten; Antonchick, Andrey P; Waldmann, Herbert

    2016-06-27

    An efficient strategy has been established for the enantiodivergent synthesis of natural product inspired compounds embodying both tropane and pyrrolidine natural product fragments. This strategy includes the enantioselective kinetic resolution of racemic tropanes by means of a copper(I)-catalyzed [3+2] cycloaddition and allows the preparation of two enantiopure products in a one-pot reaction in high yield and with high diastereo- and enantioselectivity by using one chiral catalyst. PMID:27193834

  19. Education, Productivity and Inequality: The East African Natural Experiment.

    ERIC Educational Resources Information Center

    Knight, John B.; Sabot, Richard H.

    The relationship between resources devoted to education and the economy of developing nations is explored. The research seeks to understand if and how investment in education translates into increased economic growth and labor productivity. Additionally, the function of education in reducing various dimensions of economic inequality is examined.…

  20. METHANOL PRODUCTION FROM BIOMASS AND NATURAL GAS AS TRANSPORTATION FUEL

    EPA Science Inventory

    Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (i) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the U.S., (ii) minimizes em...

  1. Human contact imagined during the production process increases food naturalness perceptions.

    PubMed

    Abouab, Nathalie; Gomez, Pierrick

    2015-08-01

    It is well established that food processing and naturalness are not good friends, but is food processing always detrimental to naturalness? Building on the contagion principle, this research examines how production mode (handmade vs. machine-made) influences naturalness perceptions. In a pilot study (n = 69) and an experiment (n = 133), we found that compared with both a baseline condition and a condition in which the mode of production process was portrayed as machine-made, a handmade production mode increases naturalness ratings of a grape juice. A mediation analysis demonstrates that these effects result from higher perceived human contact suggesting that the production process may preserve food naturalness when humanized. PMID:25862979

  2. Human contact imagined during the production process increases food naturalness perceptions.

    PubMed

    Abouab, Nathalie; Gomez, Pierrick

    2015-08-01

    It is well established that food processing and naturalness are not good friends, but is food processing always detrimental to naturalness? Building on the contagion principle, this research examines how production mode (handmade vs. machine-made) influences naturalness perceptions. In a pilot study (n = 69) and an experiment (n = 133), we found that compared with both a baseline condition and a condition in which the mode of production process was portrayed as machine-made, a handmade production mode increases naturalness ratings of a grape juice. A mediation analysis demonstrates that these effects result from higher perceived human contact suggesting that the production process may preserve food naturalness when humanized.

  3. Atmospheric emissions and air quality impacts from natural gas production and use.

    PubMed

    Allen, David T

    2014-01-01

    The US Energy Information Administration projects that hydraulic fracturing of shale formations will become a dominant source of domestic natural gas supply over the next several decades, transforming the energy landscape in the United States. However, the environmental impacts associated with fracking for shale gas have made it controversial. This review examines emissions and impacts of air pollutants associated with shale gas production and use. Emissions and impacts of greenhouse gases, photochemically active air pollutants, and toxic air pollutants are described. In addition to the direct atmospheric impacts of expanded natural gas production, indirect effects are also described. Widespread availability of shale gas can drive down natural gas prices, which, in turn, can impact the use patterns for natural gas. Natural gas production and use in electricity generation are used as a case study for examining these indirect consequences of expanded natural gas availability.

  4. Atmospheric emissions and air quality impacts from natural gas production and use.

    PubMed

    Allen, David T

    2014-01-01

    The US Energy Information Administration projects that hydraulic fracturing of shale formations will become a dominant source of domestic natural gas supply over the next several decades, transforming the energy landscape in the United States. However, the environmental impacts associated with fracking for shale gas have made it controversial. This review examines emissions and impacts of air pollutants associated with shale gas production and use. Emissions and impacts of greenhouse gases, photochemically active air pollutants, and toxic air pollutants are described. In addition to the direct atmospheric impacts of expanded natural gas production, indirect effects are also described. Widespread availability of shale gas can drive down natural gas prices, which, in turn, can impact the use patterns for natural gas. Natural gas production and use in electricity generation are used as a case study for examining these indirect consequences of expanded natural gas availability. PMID:24498952

  5. Production of Renewable Natural Gas from Waste Biomass

    NASA Astrophysics Data System (ADS)

    Kumar, Sachin; Suresh, S.; Arisutha, S.

    2013-03-01

    Biomass energy is expected to make a major contribution to the replacement of fossil fuels. Methane produced from biomass is referred to as bio-methane, green gas, bio-substitute natural gas or renewable natural gas (RNG) when it is used as a transport fuel. Research on upgrading of the cleaned producer gas to RNG is still ongoing. The present study deals with the conversion of woody biomass into fuels, RNG using gasifier. The various effects of parameters like temperature, pressure, and tar formation on conversion were also studied. The complete carbon conversion was observed at 480 °C and tar yield was significantly less. When biomass was gasified with and without catalyst at about 28 s residence time, ~75 % (w/w) and 88 % (w/w) carbon conversion for without and with catalyst was observed. The interest in RNG is growing; several initiatives to demonstrate the thermal-chemical conversion of biomass into methane and/or RNG are under development.

  6. Thiazole/oxazole-modified microcins: complex natural products from ribosomal templates

    PubMed Central

    Melby, Joel O.; Nard, Nathan J.; Mitchell, Douglas A.

    2014-01-01

    With billions of years of evolution under its belt, Nature has been expanding and optimizing its biosynthetic capabilities. Chemically complex secondary metabolites continue to challenge and inspire today’s most talented synthetic chemists. A brief glance at these natural products, especially the substantial structural variation within a class of compounds, clearly demonstrates that Nature has long played the role of medicinal chemist. The recent explosion in genome sequencing has expanded our appreciation of natural product space and the vastness of uncharted territory that remains. One small corner of natural product chemical space is occupied by the recently dubbed thiazole/oxazole-modified microcins (TOMMs), which are ribosomally produced peptides with posttranslationally installed heterocycles derived from cysteine, serine and threonine residues. As with other classes of natural products, the genetic capacity to synthesize TOMMs has been widely disseminated among bacteria. Over the evolutionary timescale, Nature has tested countless random mutations and selected for gain of function in TOMM biosynthetic gene clusters, yielding several privileged molecular scaffolds. Today, this burgeoning class of natural products encompasses a structurally and functionally diverse set of molecules (i.e. microcin B17, cyanobactins, and thiopeptides). TOMMs presumably provide their producers with an ecological advantage. This advantage can include chemical weapons wielded in the battle for nutrients, disease-promoting virulence factors, or compounds presumably beneficial for symbiosis. Despite this plethora of functions, many TOMMs await experimental interrogation. This review will focus on the biosynthesis and natural combinatorial diversity of the TOMM family. PMID:21429787

  7. Natural production of organic bromine compounds in Berlin Lakes.

    PubMed

    Hütteroth, Alexandra; Putschew, Anke; Jekel, Martin

    2007-05-15

    Berlin surface waters are characterized by elevated concentrations of organic bound bromine (up to 35 microg/L) in late summer. Organic bromine compounds in lakes are of significant importance because human life is closely connected to fresh water. Apart from recreational use, fresh water is frequently used for the production of drinking water, e.g., after bank filtration. Therefore the source, particularly the mechanism responsible for the formation is studied. Field studies indicate that the organic bromine compounds, measured as adsorbable organic bromine (AOBr), are autochthonous. Staggered maxima concentrations of chlorophyll-a, DOC and AOBr indicate that phototrophic organisms might contribute to the AOBr after death. The involvement of phototrophic organisms was established in the laboratory using surface water and/or cultures of organisms. Light and the presence of phototrophic organisms are essential for an AOBr production. Phototrophic organisms incorporate bromide, which is released randomly and after cell death. A part of the incorporated bromide is used for the formation of organic bromine compounds in the cell. After death of the organisms the brominated compounds and the incorporated bromide are released into the water phase, and an extracellular AOBr production can lead to a further formation of AOBr, most probably due to the parallel release of haloperoxidases.

  8. Web search and data mining of natural products and their bioactivities in PubChem

    PubMed Central

    Ming, Hao; Tiejun, Cheng; Yanli, Wang; Stephen, Bryant H.

    2013-01-01

    Natural products, as major resources for drug discovery historically, are gaining more attentions recently due to the advancement in genomic sequencing and other technologies, which makes them attractive and amenable to drug candidate screening. Collecting and mining the bioactivity information of natural products are extremely important for accelerating drug development process by reducing cost. Lately, a number of publicly accessible databases have been established to facilitate the access to the chemical biology data for small molecules including natural products. Thus, it is imperative for scientists in related fields to exploit these resources in order to expedite their researches on natural products as drug leads/candidates for disease treatment. PubChem, as a public database, contains large amounts of natural products associated with bioactivity data. In this review, we introduce the information system provided at PubChem, and systematically describe the applications for a set of PubChem web services for rapid data retrieval, analysis, and downloading of natural products. We hope this work can serve as a starting point for the researchers to perform data mining on natural products using PubChem. PMID:24363665

  9. Natural products from cyanobacteria: Exploiting a new source for drug discovery.

    PubMed

    Sielaff, Heike; Christiansen, Guntram; Schwecke, Torsten

    2006-02-01

    In the 1990s, the pharmaceutical industry shifted its focus to a combinatorial chemistry approach to fill drug-discovery pipelines; however, more recently there has been renewed interest in natural products as sources of lead compounds. Cyanobacteria are prolific producers of natural products displaying enormous chemical diversity, yet, until recently, exploitation of the genera was hampered by a number of issues related to their handling. With most of these problems now resolved, cyanobacteria have the potential to expand the variety of natural products obtained from microorganisms. The relative disregard in the past of cyanobacteria compared with other microbial sources of natural products, as well as the huge chemical diversity and biological activities of their products, recommend them as an attractive source of novel drugs for use in diverse therapeutic areas.

  10. "Pruning of biomolecules and natural products (PBNP)": an innovative paradigm in drug discovery.

    PubMed

    Bathula, Surendar Reddy; Akondi, Srirama Murthy; Mainkar, Prathama S; Chandrasekhar, Srivari

    2015-06-21

    The source or inspiration of many marketed drugs can be traced back to natural product research. However, the chemical structure of natural products covers a wide spectrum from very simple to complex. With more complex structures it is often desirable to simplify the molecule whilst retaining the desired biological activity. This approach seeks to identify the structural unit or pharmacophore responsible for the desired activity. Such pharmacophores have been the start point for a wide range of lead generation and optimisation programmes using techniques such as Biology Oriented Synthesis, Diversity Oriented Synthesis, Diverted Total Synthesis, and Fragment Based Drug Discovery. This review discusses the literature precedence of simplification strategies in four areas of natural product research: proteins, polysaccharides, nucleic acids, and compounds isolated from natural product extracts, and their impact on identifying therapeutic products. PMID:25966676

  11. St John's Wort (Hypericum perforatum L.) Photomedicine: Hypericin-Photodynamic Therapy Induces Metastatic Melanoma Cell Death

    PubMed Central

    Kleemann, Britta; Loos, Benjamin; Scriba, Thomas J.; Lang, Dirk; Davids, Lester M.

    2014-01-01

    Hypericin, an extract from St John's Wort (Hypericum perforatum L.), is a promising photosensitizer in the context of clinical photodynamic therapy due to its excellent photosensitizing properties and tumoritropic characteristics. Hypericin-PDT induced cytotoxicity elicits tumor cell death by various mechanisms including apoptosis, necrosis and autophagy-related cell death. However, limited reports on the efficacy of this photomedicine for the treatment of melanoma have been published. Melanoma is a highly aggressive tumor due to its metastasizing potential and resistance to conventional cancer therapies. The aim of this study was to investigate the response mechanisms of melanoma cells to hypericin-PDT in an in vitro tissue culture model. Hypericin was taken up by all melanoma cells and partially co-localized to the endoplasmic reticulum, mitochondria, lysosomes and melanosomes, but not the nucleus. Light activation of hypericin induced a rapid, extensive modification of the tubular mitochondrial network into a beaded appearance, loss of structural details of the endoplasmic reticulum and concomitant loss of hypericin co-localization. Surprisingly the opposite was found for lysosomal-related organelles, suggesting that the melanoma cells may be using these intracellular organelles for hypericin-PDT resistance. In line with this speculation we found an increase in cellular granularity, suggesting an increase in pigmentation levels in response to hypericin-PDT. Pigmentation in melanoma is related to a melanocyte-specific organelle, the melanosome, which has recently been implicated in drug trapping, chemotherapy and hypericin-PDT resistance. However, hypericin-PDT was effective in killing both unpigmented (A375 and 501mel) and pigmented (UCT Mel-1) melanoma cells by specific mechanisms involving the externalization of phosphatidylserines, cell shrinkage and loss of cell membrane integrity. In addition, this treatment resulted in extrinsic (A375) and intrinsic (UCT

  12. St John's Wort (Hypericum perforatum L.) photomedicine: hypericin-photodynamic therapy induces metastatic melanoma cell death.

    PubMed

    Kleemann, Britta; Loos, Benjamin; Scriba, Thomas J; Lang, Dirk; Davids, Lester M

    2014-01-01

    Hypericin, an extract from St John's Wort (Hypericum perforatum L.), is a promising photosensitizer in the context of clinical photodynamic therapy due to its excellent photosensitizing properties and tumoritropic characteristics. Hypericin-PDT induced cytotoxicity elicits tumor cell death by various mechanisms including apoptosis, necrosis and autophagy-related cell death. However, limited reports on the efficacy of this photomedicine for the treatment of melanoma have been published. Melanoma is a highly aggressive tumor due to its metastasizing potential and resistance to conventional cancer therapies. The aim of this study was to investigate the response mechanisms of melanoma cells to hypericin-PDT in an in vitro tissue culture model. Hypericin was taken up by all melanoma cells and partially co-localized to the endoplasmic reticulum, mitochondria, lysosomes and melanosomes, but not the nucleus. Light activation of hypericin induced a rapid, extensive modification of the tubular mitochondrial network into a beaded appearance, loss of structural details of the endoplasmic reticulum and concomitant loss of hypericin co-localization. Surprisingly the opposite was found for lysosomal-related organelles, suggesting that the melanoma cells may be using these intracellular organelles for hypericin-PDT resistance. In line with this speculation we found an increase in cellular granularity, suggesting an increase in pigmentation levels in response to hypericin-PDT. Pigmentation in melanoma is related to a melanocyte-specific organelle, the melanosome, which has recently been implicated in drug trapping, chemotherapy and hypericin-PDT resistance. However, hypericin-PDT was effective in killing both unpigmented (A375 and 501mel) and pigmented (UCT Mel-1) melanoma cells by specific mechanisms involving the externalization of phosphatidylserines, cell shrinkage and loss of cell membrane integrity. In addition, this treatment resulted in extrinsic (A375) and intrinsic (UCT

  13. Natural Products as a Source for Treating Neglected Parasitic Diseases

    PubMed Central

    Ndjonka, Dieudonné; Rapado, Ludmila Nakamura; Silber, Ariel M.; Liebau, Eva; Wrenger, Carsten

    2013-01-01

    Infectious diseases caused by parasites are a major threat for the entire mankind, especially in the tropics. More than 1 billion people world-wide are directly exposed to tropical parasites such as the causative agents of trypanosomiasis, leishmaniasis, schistosomiasis, lymphatic filariasis and onchocerciasis, which represent a major health problem, particularly in impecunious areas. Unlike most antibiotics, there is no “general” antiparasitic drug available. Here, the selection of antiparasitic drugs varies between different organisms. Some of the currently available drugs are chemically de novo synthesized, however, the majority of drugs are derived from natural sources such as plants which have subsequently been chemically modified to warrant higher potency against these human pathogens. In this review article we will provide an overview of the current status of plant derived pharmaceuticals and their chemical modifications to target parasite-specific peculiarities in order to interfere with their proliferation in the human host. PMID:23389040

  14. Muscle stiffness measured under conditions simulating natural sound production.

    PubMed

    Dobrunz, L E; Pelletier, D G; McMahon, T A

    1990-08-01

    Isolated whole frog gastrocnemius muscles were electrically stimulated to peak twitch tension while held isometrically in a bath at 4 degrees C. A quartz hydrophone detected vibrations of the muscle by measuring the pressure fluctuations caused by muscle movement. A small steel collar was slipped over the belly of the muscle. Transient forces including plucks and steady sinusoidal driving were applied to the collar by causing currents to flow in a coil held near the collar. The instantaneous resonant frequencies measured by the pluck and driving techniques were the same at various times during a twitch contraction cycle. The strain produced by the plucking technique in the outermost fibers was less than 1.6 x 10(-4%), a strain three orders of magnitude less than that required to drop the tension to zero in quick-length-change experiments. Because the pressure transients recorded by the hydrophone during plucks and naturally occurring sounds were of comparable amplitude, strains in the muscle due to naturally occurring sound must also be of the order 10(-3%). A simple model assuming that the muscle is an elastic bar under tension was used to calculate the instantaneous elastic modulus E as a function of time during a twitch, given the tension and resonant frequency. The result for Emax, the peak value of E during a twitch, was typically 2.8 x 10(6) N/m2. The methods used here for measuring muscle stiffness are unusual in that the apparatus used for measuring stiffness is separate from the apparatus controlling and measuring force and length. PMID:2207252

  15. Global warming, population growth, and natural resources for food production.

    PubMed

    Pimentel, D

    1991-01-01

    Destruction of forests and the considerable burning of fossil fuels is directly causing the level of carbon dioxide and other greenhouse gases including methane, carbon monoxide, and nitrous oxide in the atmosphere to rise. Population growth in the US and the world indirectly contributes to this global warming. This has led the majority of scientists interested in weather and climate to predict that the planet's temperature will increase from 1.5 to 4.5 degrees Celsius by 2050. These forecasted climactic changes will most likely strongly affect crop production. Specifically these scientists expect the potential changes in temperature, moisture, carbon dioxide, and pests to decrease food production in North America. The degree of changes hinges on each crop and its environmental needs. If farmers begin using improved agricultural technology, the fall in crop yields can be somewhat counterbalanced. Even without global warming, however, agriculture in North America must embrace sensible ecological resource management practices such as conserving soil, water, energy, and biological resources. These sustainable agricultural practices would serve agriculture, farmers, the environment, and society. Agriculturalists, farmers, and society are already interested in sustainable agriculture. Still scientists must conduct more research on the multiple effects of potential global climate change on many different crops under various environmental conditions and on new technologies that farmers might use in agricultural production. We must cut down our consumption of fossil fuel, reduce deforestation, erase poverty, and protect our soil, water, and biological resources. The most important action we need to take, however, is to check population growth. PMID:12344889

  16. Integrating fossils, phylogenies, and niche models into biogeography to reveal ancient evolutionary history: the case of Hypericum (hypericaceae).

    PubMed

    Meseguer, Andrea S; Lobo, Jorge M; Ree, Richard; Beerling, David J; Sanmartín, Isabel

    2015-03-01

    In disciplines such as macroevolution that are not amenable to experimentation, scientists usually rely on current observations to test hypotheses about historical events, assuming that "the present is the key to the past." Biogeographers, for example, used this assumption to reconstruct ancestral ranges from the distribution of extant species. Yet, under scenarios of high extinction rates, the biodiversity we observe today might not be representative of the historical diversity and this could result in incorrect biogeographic reconstructions. Here, we introduce a new approach to incorporate into biogeographic inference the temporal, spatial, and environmental information provided by the fossil record, as a direct evidence of the extinct biodiversity fraction. First, inferences of ancestral ranges for those nodes in the phylogeny calibrated with the fossil record are constrained to include the geographic distribution of the fossil. Second, we use fossil distribution and past climate data to reconstruct the climatic preferences and potential distribution of ancestral lineages over time, and use this information to build a biogeographic model that takes into account "ecological connectivity" through time. To show the power of this approach, we reconstruct the biogeographic history of the large angiosperm genus Hypericum, which has a fossil record extending back to the Early Cenozoic. Unlike previous reconstructions based on extant species distributions, our results reveal that Hypericum stem lineages were already distributed in the Holarctic before diversification of its crown-group, and that the geographic distribution of the genus has been relatively stable throughout the climatic oscillations of the Cenozoic. Geographical movement was mediated by the existence of climatic corridors, like Beringia, whereas the equatorial tropical belt acted as a climatic barrier, preventing Hypericum lineages to reach the southern temperate regions. Our study shows that an

  17. Integrating Fossils, Phylogenies, and Niche Models into Biogeography to Reveal Ancient Evolutionary History: The Case of Hypericum (Hypericaceae)

    PubMed Central

    Meseguer, Andrea S.; Lobo, Jorge M.; Ree, Richard; Beerling, David J.; Sanmartín, Isabel

    2015-01-01

    In disciplines such as macroevolution that are not amenable to experimentation, scientists usually rely on current observations to test hypotheses about historical events, assuming that “the present is the key to the past.” Biogeographers, for example, used this assumption to reconstruct ancestral ranges from the distribution of extant species. Yet, under scenarios of high extinction rates, the biodiversity we observe today might not be representative of the historical diversity and this could result in incorrect biogeographic reconstructions. Here, we introduce a new approach to incorporate into biogeographic inference the temporal, spatial, and environmental information provided by the fossil record, as a direct evidence of the extinct biodiversity fraction. First, inferences of ancestral ranges for those nodes in the phylogeny calibrated with the fossil record are constrained to include the geographic distribution of the fossil. Second, we use fossil distribution and past climate data to reconstruct the climatic preferences and potential distribution of ancestral lineages over time, and use this information to build a biogeographic model that takes into account “ecological connectivity” through time. To show the power of this approach, we reconstruct the biogeographic history of the large angiosperm genus Hypericum, which has a fossil record extending back to the Early Cenozoic. Unlike previous reconstructions based on extant species distributions, our results reveal that Hypericum stem lineages were already distributed in the Holarctic before diversification of its crown-group, and that the geographic distribution of the genus has been relatively stable throughout the climatic oscillations of the Cenozoic. Geographical movement was mediated by the existence of climatic corridors, like Beringia, whereas the equatorial tropical belt acted as a climatic barrier, preventing Hypericum lineages to reach the southern temperate regions. Our study shows that an

  18. Direct capture and heterologous expression of Salinispora natural product genes for the biosynthesis of enterocin.

    PubMed

    Bonet, Bailey; Teufel, Robin; Crüsemann, Max; Ziemert, Nadine; Moore, Bradley S

    2015-03-27

    Heterologous expression of secondary metabolic pathways is a promising approach for the discovery and characterization of bioactive natural products. Herein we report the first heterologous expression of a natural product from the model marine actinomycete genus Salinispora. Using the recently developed method of yeast-mediated transformation-associated recombination for natural product gene clusters, we captured a type II polyketide synthase pathway from Salinispora pacifica with high homology to the enterocin pathway from Streptomyces maritimus and successfully produced enterocin in two different Streptomyces host strains. This result paves the way for the systematic interrogation of Salinispora's promising secondary metabolome.

  19. Synthetic Strategies toward Natural Products Containing Contiguous Stereogenic Quaternary Carbon Atoms.

    PubMed

    Büschleb, Martin; Dorich, Stéphane; Hanessian, Stephen; Tao, Daniel; Schenthal, Kyle B; Overman, Larry E

    2016-03-18

    Strategies for the total synthesis of complex natural products that contain two or more contiguous stereogenic quaternary carbon atoms in their intricate structures are reviewed with 12 representative examples. Emphasis has been put on methods to create quaternary carbon stereocenters, including syntheses of the same natural product by different groups, thereby showcasing the diversity of thought and individual creativity. A compendium of selected natural products containing two or more contiguous stereogenic quaternary carbon atoms and key reactions in their total or partial syntheses is provided in the Supporting Information.

  20. Direct Capture and Heterologous Expression of Salinispora Natural Product Genes for the Biosynthesis of Enterocin

    PubMed Central

    2015-01-01

    Heterologous expression of secondary metabolic pathways is a promising approach for the discovery and characterization of bioactive natural products. Herein we report the first heterologous expression of a natural product from the model marine actinomycete genus Salinispora. Using the recently developed method of yeast-mediated transformation-associated recombination for natural product gene clusters, we captured a type II polyketide synthase pathway from Salinispora pacifica with high homology to the enterocin pathway from Streptomyces maritimus and successfully produced enterocin in two different Streptomyces host strains. This result paves the way for the systematic interrogation of Salinispora’s promising secondary metabolome. PMID:25382643

  1. Natural gas supply product and services guide, 1995-1996 edition

    SciTech Connect

    1995-10-01

    The guide presents available natural gas exploration, production, and processing products developed for Gas Research Institute by its contractors to help reduce production costs and increase recoverable reserves. The described products include software, databases, reports, process hardware, maps and atlases, manuals, services, and portfolios of various product types. They cover the following areas of supply research: environment/safety, gas processing, geology/geophysics, formation evaluation, reservoir engineering, production engineering, drilling engineering, and technology transfer. The guide includes an alphabetical index and reader service cards for requesting additional information or ordering the products.

  2. Application of phase-trafficking methods to natural products research.

    PubMed

    Araya, Juan J; Montenegro, Gloria; Mitscher, Lester A; Timmermann, Barbara N

    2010-09-24

    A novel simultaneous phase-trafficking approach using spatially separated solid-supported reagents for rapid separation of neutral, basic, and acidic compounds from organic plant extracts with minimum labor is reported. Acidic and basic ion-exchange resins were physically separated into individual sacks ("tea bags") for trapping basic and acidic compounds, respectively, leaving behind in solution neutral components of the natural mixtures. Trapped compounds were then recovered from solid phase by appropriate suspension in acidic or basic solutions. The feasibility of the proposed separation protocol was demonstrated and optimized with an "artificial mixture" of model compounds. In addition, the utility of this methodology was illustrated with the successful separation of the alkaloid skytanthine from Skytanthus acutus Meyen and the main catechins and caffeine from Camellia sinensis L. (Kuntze). This novel approach offers multiple advantages over traditional extraction methods, as it is not labor intensive, makes use of only small quantities of solvents, produces fractions in adequate quantities for biological assays, and can be easily adapted to field conditions for bioprospecting activities.

  3. Genomics and natural products: role of bioinformatics and recent patents.

    PubMed

    Preuss, Charles; Das, Malay K; Pathak, Yashwant V

    2014-01-01

    The post genomic era has promised major breakthroughs in personalized medicine which will improve a patient's health by selecting treatments including diet based on the patient's unique DNA sequence. The post genomic era is allowing scientists and clinicians to examine an individuals' DNA and then recommend the best diet in order to remain healthy and attenuate disease processes which the individual might be predisposed to because of their genetic make-up, e.g., cardiovascular disease. Nutrigenomics and nutrigenetics are related terms to pharmacogenomics and pharmacogenetics with an emphasis on diet or nutrition. There has been an increasing interest in consumers on natural medicines or Nutraceuticals in order to remain healthy. The post genomic era will allow a patient to visit their physician who will screen the patients DNA on a silicon chip. This will indicate which of the patient's genes have polymorphisms, e.g., a single nucleotide polymorphism (SNP) that might lead the patient to be more susceptible to certain diseases and then the physician could prescribe the appropriate dietary supplements to prevent or diminish these potential diseases. Several recently published patents are discussed in the article covering recent developments in the field. PMID:25185982

  4. Mapping Microbial Response Metabolomes for Induced Natural Product Discovery.

    PubMed

    Derewacz, Dagmara K; Covington, Brett C; McLean, John A; Bachmann, Brian O

    2015-09-18

    Intergeneric microbial interactions may originate a significant fraction of secondary metabolic gene regulation in nature. Herein, we expose a genomically characterized Nocardiopsis strain, with untapped polyketide biosynthetic potential, to intergeneric interactions via coculture with low inoculum exposure to Escherichia, Bacillus, Tsukamurella, and Rhodococcus. The challenge-induced responses of extracted metabolites were characterized via multivariate statistical and self-organizing map (SOM) analyses, revealing the magnitude and selectivity engendered by the limiting case of low inoculum exposure. The collected inventory of cocultures revealed substantial metabolomic expansion in comparison to monocultures with nearly 14% of metabolomic features in cocultures undetectable in monoculture conditions and many features unique to coculture genera. One set of SOM-identified responding features was isolated, structurally characterized by multidimensional NMR, and revealed to comprise previously unreported polyketides containing an unusual pyrrolidinol substructure and moderate and selective cytotoxicity. Designated ciromicin A and B, they are detected across mixed cultures with intergeneric preferences under coculture conditions. The structural novelty of ciromicin A is highlighted by its ability to undergo a diastereoselective photochemical 12-π electron rearrangement to ciromicin B at visible wavelengths. This study shows how organizing trends in metabolomic responses under coculture conditions can be harnessed to characterize multipartite cultures and identify previously silent secondary metabolism. PMID:26039241

  5. Genomics and natural products: role of bioinformatics and recent patents.

    PubMed

    Preuss, Charles; Das, Malay K; Pathak, Yashwant V

    2014-01-01

    The post genomic era has promised major breakthroughs in personalized medicine which will improve a patient's health by selecting treatments including diet based on the patient's unique DNA sequence. The post genomic era is allowing scientists and clinicians to examine an individuals' DNA and then recommend the best diet in order to remain healthy and attenuate disease processes which the individual might be predisposed to because of their genetic make-up, e.g., cardiovascular disease. Nutrigenomics and nutrigenetics are related terms to pharmacogenomics and pharmacogenetics with an emphasis on diet or nutrition. There has been an increasing interest in consumers on natural medicines or Nutraceuticals in order to remain healthy. The post genomic era will allow a patient to visit their physician who will screen the patients DNA on a silicon chip. This will indicate which of the patient's genes have polymorphisms, e.g., a single nucleotide polymorphism (SNP) that might lead the patient to be more susceptible to certain diseases and then the physician could prescribe the appropriate dietary supplements to prevent or diminish these potential diseases. Several recently published patents are discussed in the article covering recent developments in the field.

  6. The natural product berberine is a human prolyl oligopeptidase inhibitor.

    PubMed

    Tarrago, Teresa; Kichik, Nessim; Seguí, Josep; Giralt, Ernest

    2007-03-01

    Prolyl oligopeptidase is a cytosolic serine peptidase that hydrolyzes proline-containing peptides at the carboxy terminus. This peptidase has been associated with schizophrenia, bipolar affective disorder, and related neuropsychiatric disorders, and therefore may have important clinical implications. Among the strategies used to find novel prolyl oligopeptidase inhibitors, traditional Chinese medicinal plants provide a rich source of unexplored compounds. We used (19)F NMR spectroscopy to search for new prolyl oligopeptidase inhibitors in a library of traditional Chinese medicine plant extracts. Several extracts were identified as powerful inhibitors of this peptidase. The alkaloid berberine was the prolyl oligopeptidase inhibitory molecule isolated from Rhizoma coptidis extract. Berberine inhibited prolyl oligopeptidase in a dose-dependent manner. As berberine is a natural compound that has been safely administered to humans, it opens up new perspectives for the treatment of neuropsychiatric diseases. The results described herein suggest that the initiation of clinical trials in patients with schizophrenia, bipolar affective disorder, or related diseases in which cognitive capabilities are affected should be undertaken with either the extract or pure BBR.

  7. Spatial delineation of natural fractures and relation to gas production

    SciTech Connect

    Caramanica, F.P.; Hill, D.G.

    1994-12-31

    In a Gas Research Institute sponsored study, enhanced formation image analysis was performed on twelve wells in the Antrim Shale, Michigan Basin. The analysis revealed that the abundance of open and partially open fractures as well as their degree of interconnection are controlling factors in gas production. Borehole maps show the interconnection with reference to the borehole. A fracture factor (Z{sub f}) was derived and plotted against gas flow rates for nine wells. Six wells treated with a single stage stimulation show a linear relationship between (Z{sub f}) and Q. Two were stimulated with a two-stage treatment and produced more gas than single-stage wells with comparable values of Z{sub f}. The methods of fracture analysis derived for the Antrim Shale should have immediate practical application to other unconventional and tight reservoir rocks.

  8. Natural Product Nitric Oxide Chemistry: New Activity of Old Medicines

    PubMed Central

    Jiang, Hong; Torregrossa, Ashley C.; Parthasarathy, Deepa K.; Bryan, Nathan S.

    2012-01-01

    The use of complementary and alternative medicine (CAM) as a therapy and preventative care measure for cardiovascular diseases (CVD) may prove to be beneficial when used in conjunction with or in place of conventional medicine. However, the lack of understanding of a mechanism of action of many CAMs limits their use and acceptance in western medicine. We have recently recognized and characterized specific nitric oxide (NO) activity of select alternative and herbal medicines that may account for many of their reported health benefits. The ability of certain CAM to restore NO homeostasis both through enhancing endothelial production of NO and by providing a system for reducing nitrate and nitrite to NO as a compensatory pathway for repleting NO bioavailability may prove to be a safe and cost-effective strategy for combating CVD. We will review the current state of science behind NO activity of herbal medicines and their effects on CVD. PMID:22548122

  9. Thiol Probes To Detect Electrophilic Natural Products Based on Their Mechanism of Action.

    PubMed

    Castro-Falcón, Gabriel; Hahn, Dongyup; Reimer, Daniela; Hughes, Chambers C

    2016-08-19

    New methods are urgently needed to find novel natural products as structural leads for the development of new drugs against emerging diseases such as cancer and multiresistant bacterial infections. Here we introduce a reactivity-guided drug discovery approach for electrophilic natural products, a therapeutically relevant class of natural products that covalently modify their cellular targets, in crude extracts. Using carefully designed halogenated aromatic reagents, the process furnishes derivatives that are UV-active and highly conspicuous via mass spectrometry by virtue of an isotopically unique bromine or chlorine tag. In addition to the identification of high-value metabolites, the process facilitates the difficult task of structure elucidation by providing derivatives that are primed for X-ray crystallographic analysis. We show that a cysteine probe efficiently and chemoselectively labels enone-, β-lactam-, and β-lactone-based electrophilic natural products (parthenolide, andrographolide, wortmannin, penicillin G, salinosporamide), while a thiophenol probe preferentially labels epoxide-based electrophilic natural products (triptolide, epoxomicin, eponemycin, cyclomarin, salinamide). Using the optimized method, we were able to detect and isolate the epoxide-bearing natural product tirandalydigin from Salinispora and thereby link an orphan gene cluster to its gene product.

  10. Does natural selection organize ecosystems for the maintenance of high productivity and diversity?

    PubMed

    Leigh, Egbert Giles; Vermeij, Geerat Jacobus

    2002-05-29

    Three types of evidence suggest that natural ecosystems are organized for high productivity and diversity: (i) changes not previously experienced by a natural ecosystem, such as novel human disturbances, tend to diminish its productivity and/or diversity, just as 'random' changes in a machine designed for a function usually impair its execution of that function; (ii) humans strive to recreate properties of natural ecosystems to enhance productivity of artificial ones, as farmers try to recreate properties of natural soils in their fields; and (iii) productivity and diversity have increased during the Earth's history as a whole, and after every major biotic crisis. Natural selection results in ecosystems organized to maintain high productivity of organic matter and diversity of species, just as competition among individuals in Adam Smith's ideal economy favours high production of wealth and diversity of occupations. In nature, poorly exploited energy attracts more efficient users. This circumstance favours the opening of new ways of life and more efficient recycling of resources, and eliminates most productivity-reducing 'ecological monopolies'. Ecological dominants tend to be replaced by successors with higher metabolism, which respond to more stimuli and engage in more varied interactions. Finally, increasingly efficient predators and herbivores favour faster turnover of resources. PMID:12079531

  11. Thiol Probes To Detect Electrophilic Natural Products Based on Their Mechanism of Action.

    PubMed

    Castro-Falcón, Gabriel; Hahn, Dongyup; Reimer, Daniela; Hughes, Chambers C

    2016-08-19

    New methods are urgently needed to find novel natural products as structural leads for the development of new drugs against emerging diseases such as cancer and multiresistant bacterial infections. Here we introduce a reactivity-guided drug discovery approach for electrophilic natural products, a therapeutically relevant class of natural products that covalently modify their cellular targets, in crude extracts. Using carefully designed halogenated aromatic reagents, the process furnishes derivatives that are UV-active and highly conspicuous via mass spectrometry by virtue of an isotopically unique bromine or chlorine tag. In addition to the identification of high-value metabolites, the process facilitates the difficult task of structure elucidation by providing derivatives that are primed for X-ray crystallographic analysis. We show that a cysteine probe efficiently and chemoselectively labels enone-, β-lactam-, and β-lactone-based electrophilic natural products (parthenolide, andrographolide, wortmannin, penicillin G, salinosporamide), while a thiophenol probe preferentially labels epoxide-based electrophilic natural products (triptolide, epoxomicin, eponemycin, cyclomarin, salinamide). Using the optimized method, we were able to detect and isolate the epoxide-bearing natural product tirandalydigin from Salinispora and thereby link an orphan gene cluster to its gene product. PMID:27294329

  12. Does natural selection organize ecosystems for the maintenance of high productivity and diversity?

    PubMed Central

    Leigh, Egbert Giles; Vermeij, Geerat Jacobus

    2002-01-01

    Three types of evidence suggest that natural ecosystems are organized for high productivity and diversity: (i) changes not previously experienced by a natural ecosystem, such as novel human disturbances, tend to diminish its productivity and/or diversity, just as 'random' changes in a machine designed for a function usually impair its execution of that function; (ii) humans strive to recreate properties of natural ecosystems to enhance productivity of artificial ones, as farmers try to recreate properties of natural soils in their fields; and (iii) productivity and diversity have increased during the Earth's history as a whole, and after every major biotic crisis. Natural selection results in ecosystems organized to maintain high productivity of organic matter and diversity of species, just as competition among individuals in Adam Smith's ideal economy favours high production of wealth and diversity of occupations. In nature, poorly exploited energy attracts more efficient users. This circumstance favours the opening of new ways of life and more efficient recycling of resources, and eliminates most productivity-reducing 'ecological monopolies'. Ecological dominants tend to be replaced by successors with higher metabolism, which respond to more stimuli and engage in more varied interactions. Finally, increasingly efficient predators and herbivores favour faster turnover of resources. PMID:12079531

  13. Discovery of New Compounds Active against Plasmodium falciparum by High Throughput Screening of Microbial Natural Products

    PubMed Central

    Pérez-Moreno, Guiomar; Cantizani, Juan; Sánchez-Carrasco, Paula; Ruiz-Pérez, Luis Miguel; Martín, Jesús; el Aouad, Noureddine; Pérez-Victoria, Ignacio; Tormo, José Rubén; González-Menendez, Víctor; González, Ignacio; de Pedro, Nuria; Reyes, Fernando; Genilloud, Olga; Vicente, Francisca; González-Pacanowska, Dolores

    2016-01-01

    Due to the low structural diversity within the set of antimalarial drugs currently available in the clinic and the increasing number of cases of resistance, there is an urgent need to find new compounds with novel modes of action to treat the disease. Microbial natural products are characterized by their large diversity provided in terms of the chemical complexity of the compounds and the novelty of structures. Microbial natural products extracts have been underexplored in the search for new antiparasitic drugs and even more so in the discovery of new antimalarials. Our objective was to find new druggable natural products with antimalarial properties from the MEDINA natural products collection, one of the largest natural product libraries harboring more than 130,000 microbial extracts. In this work, we describe the optimization process and the results of a phenotypic high throughput screen (HTS) based on measurements of Plasmodium lactate dehydrogenase. A subset of more than 20,000 extracts from the MEDINA microbial products collection has been explored, leading to the discovery of 3 new compounds with antimalarial activity. In addition, we report on the novel antiplasmodial activity of 4 previously described natural products. PMID:26735308

  14. Importance of microbial natural products and the need to revitalize their discovery.

    PubMed

    Demain, Arnold L

    2014-02-01

    Microbes are the leading producers of useful natural products. Natural products from microbes and plants make excellent drugs. Significant portions of the microbial genomes are devoted to production of these useful secondary metabolites. A single microbe can make a number of secondary metabolites, as high as 50 compounds. The most useful products include antibiotics, anticancer agents, immunosuppressants, but products for many other applications, e.g., antivirals, anthelmintics, enzyme inhibitors, nutraceuticals, polymers, surfactants, bioherbicides, and vaccines have been commercialized. Unfortunately, due to the decrease in natural product discovery efforts, drug discovery has decreased in the past 20 years. The reasons include excessive costs for clinical trials, too short a window before the products become generics, difficulty in discovery of antibiotics against resistant organisms, and short treatment times by patients for products such as antibiotics. Despite these difficulties, technology to discover new drugs has advanced, e.g., combinatorial chemistry of natural product scaffolds, discoveries in biodiversity, genome mining, and systems biology. Of great help would be government extension of the time before products become generic. PMID:23990168

  15. Integrative Nanomedicine: Treating Cancer With Nanoscale Natural Products

    PubMed Central

    Sarter, Barbara; Koithan, Mary; Banerji, Prasanta; Banerji, Pratip; Jain, Shamini; Ives, John

    2014-01-01

    Finding safer and more effective treatments for specific cancers remains a significant challenge for integrative clinicians and researchers worldwide. One emerging strategy is the use of nanostructured forms of drugs, vaccines, traditional animal venoms, herbs, and nutraceutical agents in cancer treatment. The recent discovery of nanoparticles in traditional homeopathic medicines adds another point of convergence between modern nanomedicine and alternative interventional strategies. A way in which homeopathic remedies could initiate anticancer effects includes cell-to-cell signaling actions of both exogenous and endogenous (exosome) nanoparticles. The result can be a cascade of modulatory biological events with antiproliferative and pro-apoptotic effects. The Banerji Protocols reflect a multigenerational clinical system developed by homeopathic physicians in India who have treated thousands of patients with cancer. A number of homeopathic remedy sources from the Banerji Protocols (eg, Calcarea phosphorica; Carcinosin—tumor-derived breast cancer tissue prepared homeopathically) overlap those already under study in nonhomeopathic nanoparticle and nanovesicle tumor exosome cancer vaccine research. Past research on antineoplastic effects of nano forms of botanical extracts such as Phytolacca, Gelsemium, Hydrastis, Thuja, and Ruta as well as on homeopathic remedy potencies made from the same types of source materials suggests other important overlaps. The replicated finding of silica, silicon, and nano-silica release from agitation of liquids in glassware adds a proven nonspecific activator and amplifier of immunological effects. Taken together, the nanoparticulate research data and the Banerji Protocols for homeopathic remedies in cancer suggest a way forward for generating advances in cancer treatment with natural product–derived nanomedicines. PMID:24753994

  16. Larvicidal activity of a botanical natural product, AkseBio2, against Culex pipiens.

    PubMed

    Cetin, H; Erler, F; Yanikoglu, A

    2004-12-01

    A botanical natural product, AkseBio2, was evaluated for its larvicidal effect against Culex pipiens under laboratory conditions. The product exhibited strong larvicidal activity and caused >90% mortalities in both the young (first-second) and the older (third-fourth) larval stages of the species at 24 h at the doses of 25 and 50 ppm. However, it was determined that the young larval stages were more susceptible to the product in comparison with the older larval stages. The results suggest that the product is promising as a larvicide against C. pipiens and could be useful in the search of new larvicidal natural compounds.

  17. Expanding Canadian natural gas production will strengthen growth of LP-gas industry

    SciTech Connect

    Hawkins, D.J. )

    1994-01-01

    In 1992, over 86% of Canadian propane and 70% of Canadian butane production originated in gas plants. Propane and butane production not recovered at gas plants is recovered in other processing facilities, primarily refineries and heavy oil upgraders. As a result, supplies of both products are largely tied to natural gas production, and the outlook for natural gas therefore provides the basis for any discussion on the outlook for gas processing and NGL industry infrastructure. The paper discusses gas processing, economies of scale, NGL supply, expected declines, industry structure and infrastructure, the two major centers of the Canadian NGL industry, new shippers, and required pipeline expansion.

  18. Engineering a Carbohydrate-processing Transglycosidase into Glycosyltransferase for Natural Product Glycodiversification

    PubMed Central

    Liang, Chaoning; Zhang, Yi; Jia, Yan; Wenzhao Wang; Li, Youhai; Lu, Shikun; Jin, Jian-Ming; Tang, Shuang-Yan

    2016-01-01

    Glycodiversification broadens the scope of natural product-derived drug discovery. The acceptor substrate promiscuity of glucosyltransferase-D (GTF-D), a carbohydrate-processing enzyme from Streptococcus mutans, was expanded by protein engineering. Mutants in a site-saturation mutagenesis library were screened on the fluorescent substrate 4-methylumbelliferone to identify derivatives with improved transglycosylation efficiency. In comparison to the wild-type GTF-D enzyme, mutant M4 exhibited increased transglycosylation capabilities on flavonoid substrates including catechin, genistein, daidzein and silybin, using the glucosyl donor sucrose. This study demonstrated the feasibility of developing natural product glycosyltransferases by engineering transglycosidases that use donor substrates cheaper than NDP-sugars, and gave rise to a series of α-glucosylated natural products that are novel to the natural product reservoir. The solubility of the α-glucoside of genistein and the anti-oxidant capability of the α-glucoside of catechin were also studied. PMID:26869143

  19. Natural products and supplements for geriatric depression and cognitive disorders: an evaluation of the research.

    PubMed

    Varteresian, Taya; Lavretsky, Helen

    2014-08-01

    Numerous geriatric patients are using Complementary and Alternative Medicine (CAM) for late-life mood and cognitive disorders. Natural products and supplements are a common CAM intervention which have risks and benefits of which patients should be appropriately advised. The data for omega-3 fatty acids, ginkgo biloba, SAMe, St John's wort, B vitamins and vitamin D, huperzine, caprylidene, and coconut oil will be evaluated. Since the evidence basis for natural products and supplements is limited, especially for the geriatric population, studies involving the general adult population are included to infer effects in the aging population. Despite the data available, more rigorous studies with larger sample sizes over longer periods of time are still needed. Regardless of a physician's preference to recommend various natural supplements and products, a physician could protect their patients by having an understanding of the side effects and indications for various natural products.

  20. Anti-Biofilm Performance of Three Natural Products against Initial Bacterial Attachment

    PubMed Central

    Salta, Maria; Wharton, Julian A.; Dennington, Simon P.; Stoodley, Paul; Stokes, Keith R.

    2013-01-01

    Marine bacteria contribute significantly towards the fouling consortium, both directly (modern foul release coatings fail to prevent “slime” attachment) and indirectly (biofilms often excrete chemical cues that attract macrofouling settlement). This study assessed the natural product anti-biofilm performance of an extract of the seaweed, Chondrus crispus, and two isolated compounds from terrestrial sources, (+)-usnic acid and juglone, against two marine biofilm forming bacteria, Cobetia marina and Marinobacter hydrocarbonoclasticus. Bioassays were developed using quantitative imaging and fluorescent labelling to test the natural products over a range of concentrations against initial bacterial attachment. All natural products affected bacterial attachment; however, juglone demonstrated the best anti-biofilm performance against both bacterial species at a concentration range between 5–20 ppm. In addition, for the first time, a dose-dependent inhibition (hormetic) response was observed for natural products against marine biofilm forming bacteria. PMID:24192819