Genetics Home Reference: congenital hyperinsulinism
... Hospital: Hyperinsulinism Center GeneReview: Familial Hyperinsulinism MedlinePlus Encyclopedia: Neonatal Hypoglycemia The Children's Hospital of Philadelphia: Congenital Hyperinsulinism Center ...
Hyperinsulinism associated with gestational exposure to bupropion in a newborn infant.
Gisslen, Tate; Nathan, Brandon; Thompson, Theodore; Rao, Raghavendra
2011-01-01
This case report describes severe hyperinsulinism in a term newborn infant without typical perinatal risk factors for transient hyperinsulinism. The mother had received bupropion, an antidepressant and aid to smoking cessation, throughout pregnancy. The infant presented with profound hypoglycemia and seizures on the 3rd day of life. Laboratory investigation confirmed hyperinsulinism. Stable euglycemia could be achieved only after starting diazoxide. The infant was weaned from diazoxide by 10 weeks of age without recurrence of hypoglycemia, signifying the transient nature of hyperinsulinism. This is the first reported case of a potential association between maternal bupropion use during pregnancy and neonatal hyperinsulinism, and highlights the importance of close monitoring of similar infants.
Gibson, Christopher E; Boodhansingh, Kara E; Li, Changhong; Conlin, Laura; Chen, Pan; Becker, Susan A; Bhatti, Tricia; Bamba, Vaneeta; Adzick, N Scott; De Leon, Diva D; Ganguly, Arupa; Stanley, Charles A
2018-06-14
Previous case reports have suggested a possible association of congenital hyperinsulinism with Turner syndrome. We examined the clinical and molecular features in girls with both congenital hyperinsulinism and Turner syndrome seen at The Children's Hospital of Philadelphia (CHOP) between 1974 and 2017. Records of girls with hyperinsulinism and Turner syndrome were reviewed. Insulin secretion was studied in pancreatic islets and in mouse islets treated with an inhibitor of KDM6A, an X chromosome gene associated with hyperinsulinism in Kabuki syndrome. Hyperinsulinism was diagnosed in 12 girls with Turner syndrome. Six were diazoxide-unresponsive; 3 had pancreatectomies. The incidence of Turner syndrome among CHOP patients with hyperinsulinism (10 of 1,050 from 1997 to 2017) was 48 times more frequent than expected. The only consistent chromosomal anomaly in these girls was the presence of a 45,X cell line. Studies of isolated islets from 1 case showed abnormal elevated cytosolic calcium and heightened sensitivity to amino acid-stimulated insulin release; similar alterations were demonstrated in mouse islets treated with a KDM6A inhibitor. These results demonstrate a higher than expected frequency of Turner syndrome among children with hyperinsulinism. Our data suggest that haploinsufficiency for KDM6A due to mosaic X chromosome monosomy may be responsible for hyperinsulinism in Turner syndrome. © 2018 S. Karger AG, Basel.
Association between vitamin D status and hyperinsulinism.
McCormack, Catherine; Leemaqz, Shalem; Furness, Denise; Dekker, Gustaaf; Roberts, Claire
2018-06-08
Some studies have suggested that vitamin D deficiency is associated with an increased risk of first trimester miscarriages, others have suggested that it is associated with an increased risk of hyperinsulinism/insulin resistance and the development of gestational diabetes. Hyperinsulinism is also thought to increase miscarriages. We investigated the association between vitamin D levels and hyperinsulinism in a cohort of recurrent miscarriage patients. Patients undergoing miscarriage investigations had insulin and vitamin D levels tested. Vitamin D levels were classified as: sufficient (≥75 nmol/L), insufficient (50-74.9 nmol/L) or deficient (<50 nmol/L). Hyperinsulinism was assessed via a 75 g oral glucose tolerance test (OGTT) with insulin studies. One hundred and fifty-five patients underwent the testing. Hyperinsulinism was detected in 58.3% of the vitamin D deficient group, 38.7% of the insufficient group, and 33.3% of the sufficient group (chi-square p = .034). There were no significant associations between BMI and vitamin D levels, or BMI and hyperinsulinism. Caucasians comprised 82% of the clinic, and 67% of these women had vitamin D insufficiency/deficiency. Noncaucasians comprised 18% of the clinic but 89% of these patients had vitamin D insufficiency/deficiency. We found that insufficient or deficient vitamin D levels were significantly associated with hyperinsulinism in these patients. Vitamin D deficiency is also thought to contribute to an increased risk of adverse pregnancy outcomes including preeclampsia, preterm birth, small-for-gestational-age gestational diabetes mellitus, and miscarriages. Larger level one trials are needed to establish if increasing serum vitamin D levels prior to conception or in early pregnancy improves adverse pregnancy outcomes.
CONGENITAL HYPOGLYCEMIA DISORDERS: NEW ASPECTS OF ETIOLOGY, DIAGNOSIS, TREATMENT AND OUTCOMES
De Leon, Diva D.; Stanley, Charles A.
2017-01-01
Hypoglycemia continues to be an important cause of morbidity in neonates and children. Prompt diagnosis and management of the underlying hypoglycemia disorder is critical for preventing brain damage and improving outcomes. Congenital hyperinsulinism is the most common and severe cause of persistent hypoglycemia in neonates and children. Recent discoveries of the genetic causes of hyperinsulinism have improved our understanding of the pathophysiology, but its management is complex and requires the integration of clinical, biochemical, molecular and imaging findings to establish the appropriate treatment according to the subtype. Here we present a summary of a recent international symposium on congenital hypoglycemia disorders with emphasis on novel molecular mechanisms resulting in hyperinsulinism, genetic diagnosis, overall approach to management, novel therapies under development, and current outcomes. PMID:27753189
Chen, Pei-Chun; Olson, Erik M; Zhou, Qing; Kryukova, Yelena; Sampson, Heidi M; Thomas, David Y; Shyng, Show-Ling
2013-07-19
ATP-sensitive potassium (KATP) channels consisting of sulfonylurea receptor 1 (SUR1) and the potassium channel Kir6.2 play a key role in insulin secretion by coupling metabolic signals to β-cell membrane potential. Mutations in SUR1 and Kir6.2 that impair channel trafficking to the cell surface lead to loss of channel function and congenital hyperinsulinism. We report that carbamazepine, an anticonvulsant, corrects the trafficking defects of mutant KATP channels previously identified in congenital hyperinsulinism. Strikingly, of the 19 SUR1 mutations examined, only those located in the first transmembrane domain of SUR1 responded to the drug. We show that unlike that reported for several other protein misfolding diseases, carbamazepine did not correct KATP channel trafficking defects by activating autophagy; rather, it directly improved the biogenesis efficiency of mutant channels along the secretory pathway. In addition to its effect on channel trafficking, carbamazepine also inhibited KATP channel activity. Upon subsequent removal of carbamazepine, however, the function of rescued channels was recovered. Importantly, combination of the KATP channel opener diazoxide and carbamazepine led to enhanced mutant channel function without carbamazepine washout. The corrector effect of carbamazepine on mutant KATP channels was also demonstrated in rat and human β-cells with an accompanying increase in channel activity. Our findings identify carbamazepine as a novel small molecule corrector that may be used to restore KATP channel expression and function in a subset of congenital hyperinsulinism patients.
Pedersen, O
1992-05-11
Recent research has demonstrated that reduced insulin-stimulated glucose metabolism in skeletal muscle (insulin resistance) and hyperinsulinism are common features in widespread diseases such as essential hypertension, android obesity, non-insulin dependent diabetes mellitus, dyslipidemia (in the form of raised serum triglyceride and reduced serum high-density lipoprotein (HDL) cholesterol) and arteriosclerosis. Simultaneously, investigations in a comprehensive group of healthy middle-aged men have revealed insulin resistance in one fourth. On the basis of these observations, a working hypothesis is suggested which postulates that genetic abnormalities in one or more of the candidate genes in the modes of action of insulin occur in a great proportion of the population. These may result in insulin resistance (primary genetic insulin resistance). Primary insulin resistance may be potentiated by a series of circumstances such as ageing, high-fat diet, lack of physical activity, hormonal and metabolic abnormalities or drugs (secondary insulin resistance). As a consequence of the reduced effect of insulin on muscle tissue, compensatory hyperinsulinism develops. Depending on the remaining vulnerability of the individual the hyperinsulinism is presumed to result in development of one or more phenotypes. For example if the beta-cells of the pancreas are unable to secrete sufficient insulin to compensate the insulin resistance on account of genetic defects, glucose intolerance will develop. In a similar manner, hyperinsulinism in insulin-resistant individuals who are predisposed to essential hypertension is presumed to reveal genetic defects in the blood pressure regulating mechanisms and thus contribute to development of the disease.(ABSTRACT TRUNCATED AT 250 WORDS)
Update on Neonatal Hypoglycemia
Rozance, Paul J.
2014-01-01
Purpose of Review Neonatal hypoglycemia is one of the most common biochemical abnormalities encountered in the newborn. However, controversy remains surrounding its definition and management especially in asymptomatic patients. Recent Findings New information has been published that describes the incidence and timing of low glucose concentrations in the groups most at risk for asymptomatic neonatal hypoglycemia. Furthermore, one large prospective study failed to find an association between repetitive low glucose concentrations and poor neurodevelopmental outcomes in preterm infants. But hypoglycemia due to hyperinsulinism, especially genetic causes, continued to be associated with brain injury. New advances were made in the diagnosis and management of hyperinsulinism, including acquired hyperinsulinism in small for gestational age infants and others. Continuous glucose monitoring remains an attractive strategy for future research in this area. Summary The fundamental question of how best to manage asymptomatic newborns with low glucose concentrations remains unanswered. Balancing the risks of over treating newborns with low glucose concentrations who are undergoing a normal transition following birth against the risks of under treating those in whom low glucose concentrations are pathological, dangerous, and/or a harbinger of serious metabolic disease remains a challenge. PMID:24275620
Update on neonatal hypoglycemia.
Rozance, Paul J
2014-02-01
Neonatal hypoglycemia is one of the most common biochemical abnormalities encountered in the newborn. However, controversy remains surrounding its definition and management especially in asymptomatic patients. New information has been published that describes the incidence and timing of low glucose concentrations in the groups most at risk for asymptomatic neonatal hypoglycemia. Furthermore, one large prospective study failed to find an association between repetitive low glucose concentrations and poor neurodevelopmental outcomes in preterm infants. But hypoglycemia due to hyperinsulinism, especially genetic causes, continued to be associated with brain injury. New advances were made in the diagnosis and management of hyperinsulinism, including acquired hyperinsulinism in small for gestational age infants and others. Continuous glucose monitoring remains an attractive strategy for future research in this area. The fundamental question of how best to manage asymptomatic newborns with low glucose concentrations remains unanswered. Balancing the risks of overtreating newborns with low glucose concentrations who are undergoing a normal transition following birth against the risks of undertreating those in whom low glucose concentrations are pathological, dangerous, and/or a harbinger of serious metabolic disease remains a challenge.
Hyperinsulinism and polycystic ovary syndrome (PCOS): role of insulin clearance.
Amato, M C; Vesco, R; Vigneri, E; Ciresi, A; Giordano, C
2015-12-01
Insulin resistance and compensatory hyperinsulinism are the predominant metabolic defects in polycystic ovary syndrome (PCOS). However, hyperinsulinism, as well as being compensatory, can also express a condition of reduced insulin clearance. Our aim was to evaluate the differences in insulin action and metabolism between women with PCOS (with normal glucose tolerance) and age- and BMI-matched women with prediabetes (without hyperandrogenism and ovulatory disorders). 22 women with PCOS and 21 age/BMI-matched women with prediabetes were subjected to a Hyperinsulinemic-euglycemic clamp and an Oral Glucose tolerance Test (OGTT). Insulin sensitivity was assessed by the glucose infusion rate during clamp (M value); insulin secretion by Insulinogenic index, Oral Disposition Index (DIo) and AUC(2h-insulin) during OGTT; and insulin clearance by the metabolic clearance rate of insulin (MCRI) during clamp. Women with PCOS showed significantly higher levels of AUC(2h-insulin) (p < 0.011), Insulinogenic Index (p < 0.001), DIo (p = 0.002) and significantly lower levels of AUC(2h-glucos)e (p = 0.001). No difference was found between the two groups regarding insulin sensitivity (M value). Lower levels of MCRI were found in women with PCOS [420 (IQR 227-588) vs. 743 (IQR 597-888) ml m(-2) min(-1): p < 0.001]. Furthermore, in the PCOS group, a strong independent inverse correlation was only observed between MCRI and AUC(2h-insulin) (PCOS: β:-0.878; p < 0.001; Prediabetes: β:-0.501; p = 0.019). Our study suggests that in normoglycemic women with PCOS there is peripheral insulin sensitivity similar to that of women with prediabetes. What sets PCOS apart is the hyperinsulinism, today still simplistically defined "compensatory"; actually this is mainly related to decreased insulin clearance whose specific causes and dynamics have yet to be clarified.
Factitious hyperinsulinism leading to pancreatectomy: severe forms of Munchausen syndrome by proxy.
Giurgea, Irina; Ulinski, Tim; Touati, Guy; Sempoux, Christine; Mochel, Fanny; Brunelle, Francis; Saudubray, Jean-Marie; Fekete, Claire; de Lonlay, Pascale
2005-07-01
Clinical history and inappropriate insulin secretion during hypoglycemic episodes permit the diagnosis of hyperinsulinism. We report 2 cases of factitious hyperinsulinism leading to partial pancreatectomy. Case 1 was an 8-year-old girl who presented with severe hypoglycemia and elevated insulin and C-peptide levels. Catheterization of pancreatic veins was performed to localize the excess insulin secretion. Insulinoma was suspected, and partial pancreatectomy was performed. Ten days after surgery, severe hypoglycemia recurred with severely elevated plasma insulin levels (x100) but very low C-peptide plasma levels, suggesting factitious hyperinsulinemia. Hypoglycemic episodes before surgery were provoked by oral sulfonamides; postoperative episodes were caused by parenteral insulin. Falsified prescriptions for sulfonamides and insulin by the mother, a nurse, were found. Case 2 was a 6-month-old girl who presented with seizures and hypoglycemia but had a symptom-free interval of many months afterward. At 2 years of age, repeated hypoglycemic seizures and elevated insulin plasma levels suggested congenital hyperinsulinism. C-peptide plasma level, measured once, was normal, but blood sampling was performed 15 minutes after a hypoglycemic episode. Partial pancreatectomy was performed. Two weeks after surgery, hypoglycemic seizures recurred, and the patient was admitted for pancreatic vein catheterization. This investigation was performed during hypoglycemia and revealed high insulin levels and undetectable C-peptide levels, suggesting factitious hypoglycemia. Insulin/C-peptide ratio analysis is crucial to assess factitious hypoglycemia, although sulfonamide-induced hypoglycemia is not thereby detected. One percent (2 of 250) of all cases of hyperinsulinemic hypoglycemia in our unit have been identified as Munchausen syndrome by proxy. Atypical disease history should raise the question of factitious hypoglycemia.
Bartsch, Detlef K; Albers, Max; Knoop, Richard; Kann, Peter H; Fendrich, Volker; Waldmann, Jens
2013-01-01
To assess the characteristics and long-term outcome after surgery in patients with multiple endocrine neoplasia type 1 (MEN1)-associated insulinoma. Retrospective analysis of prospectively collected data of MEN1 patients with organic hyperinsulinism at a tertiary referral center. Thirteen (17%) of 74 patients with MEN1 had organic hyperinsulinism. The median age at diagnosis was 27 (range 9-48) years. In 7 patients insulinoma was the first manifestation of the syndrome. All patients had at least one pancreatic neuroendocrine neoplasm (pNEN) upon imaging, including CT, MRI or endoscopic ultrasonography. Seven patients had solitary lesions upon imaging, 4 patients had one dominant tumor with coexisting multiple small pNENs, and 2 patients had multiple lesions without dominance. Eight patients had limited resections (1 segmental resection, 7 enucleations), 4 subtotal distal pancreatectomies, and 1 patient a partial duodenopancreatectomy. There was no postoperative mortality. Six patients experienced complications, including pancreatic fistula in 5 patients. Pathological examination revealed median three (range 1-14) macro-pNENs sized between 6 and 40 mm, and a total of 14 potentially benign insulinomas were detected in the 13 patients. After median follow-up of 156 months, only 1 patient developed recurrent hyperinsulinism after initial enucleation. Twelve patients developed new pNENs in the pancreatic remnant and 4 patients underwent reoperations (3 for metastatic ZES, 1 for recurrent hyperinsulinism). One of 5 patients with an initial extended pancreatic resection developed insulin-dependent diabetes mellitus. Enucleation and limited resection provide long-term cure for MEN1 insulinoma in patients with solitary or dominant tumors. Subtotal distal pancreatectomy should thus be preserved for patients with multiple pNENs without dominance given the risk of exocrine and endocrine pancreas insufficiency in the mostly young patients. © 2013 S. Karger AG, Basel.
Bitner-Glindzicz, M; Lindley, K J; Rutland, P; Blaydon, D; Smith, V V; Milla, P J; Hussain, K; Furth-Lavi, J; Cosgrove, K E; Shepherd, R M; Barnes, P D; O'Brien, R E; Farndon, P A; Sowden, J; Liu, X Z; Scanlan, M J; Malcolm, S; Dunne, M J; Aynsley-Green, A; Glaser, B
2000-09-01
Usher syndrome type 1 describes the association of profound, congenital sensorineural deafness, vestibular hypofunction and childhood onset retinitis pigmentosa. It is an autosomal recessive condition and is subdivided on the basis of linkage analysis into types 1A through 1E. Usher type 1C maps to the region containing the genes ABCC8 and KCNJ11 (encoding components of ATP-sensitive K + (KATP) channels), which may be mutated in patients with hyperinsulinism. We identified three individuals from two consanguineous families with severe hyperinsulinism, profound congenital sensorineural deafness, enteropathy and renal tubular dysfunction. The molecular basis of the disorder is a homozygous 122-kb deletion of 11p14-15, which includes part of ABCC8 and overlaps with the locus for Usher syndrome type 1C and DFNB18. The centromeric boundary of this deletion includes part of a gene shown to be mutated in families with type 1C Usher syndrome, and is hence assigned the name USH1C. The pattern of expression of the USH1C protein is consistent with the clinical features exhibited by individuals with the contiguous gene deletion and with isolated Usher type 1C.
A Rare Reason of Hyperinsulinism: Munchausen Syndrome by Proxy.
Akın, Onur; Yeşilkaya, Ediz; Sari, Erkan; Akar, Çağdaş; Başbozkurt, Gökalp; Macit, Enis; Aydin, Ibrahim; Taşlipinar, Abdullah; Gül, Hüsamettin
2016-01-01
Hyperinsulinism, one of the most important causes of hypoglycaemia, can be congenital or acquired. Rarely, drug toxicity can be a reason for hyperinsulinism. In the context of Munchausen syndrome by proxy (MSP), toxicity usually occurs in children due to drug administration by a parent or caregiver. A 7-year-old girl was referred to our department due to a hyperglycaemic period and hypoglycaemic episodes. On admission, gliclazide was initiated due to her hyperglycaemia, which we attributed to maturity onset diabetes of the young. However, during follow-up, hypoglycaemic levels were detected. Despite cessation of gliclazide, hypoglycaemic seizures occurred. Even with the medications administered, hypoglycaemia could not be prevented. During follow-up, the mother's affect, characterized by anxiety and interest in her daughter's medical care, appeared discordant with the situation. Due to our suspicion of MSP, we discovered toxic levels of gliclazide in the blood and urine samples which had been sent to the toxicology laboratory to search for hypoglycaemic agents. The patient was isolated, and all medications were stopped. After isolation, her hypoglycaemia disappeared, and she became hyperglycaemic (250 mg/dl). Physicians should consider the possibility of MSP in hyperinsulinaemic patients with discordant laboratory results and clinical symptoms, even if the child's parents display great concern. © 2016 S. Karger AG, Basel.
Central Obesity and Disease Risk in Japanese Americans
2016-02-08
Cardiovascular Diseases; Heart Diseases; Atherosclerosis; Hypertension; Obesity; Diabetes Mellitus, Non-insulin Dependent; Hyperinsulinism; Insulin Resistance; Coronary Arteriosclerosis; Diabetes Mellitus; Metabolic Syndrome X
Congenital hyperinsulinism and Poland syndrome in association with 10p13-14 duplication.
Giri, Dinesh; Patil, Prashant; Hart, Rachel; Didi, Mohammed; Senniappan, Senthil
2017-01-01
Poland syndrome (PS) is a rare congenital condition, affecting 1 in 30 000 live births worldwide, characterised by a unilateral absence of the sternal head of the pectoralis major and ipsilateral symbrachydactyly occasionally associated with abnormalities of musculoskeletal structures. A baby girl, born at 40 weeks' gestation with birth weight of 3.33 kg (-0.55 SDS) had typical phenotypical features of PS. She had recurrent hypoglycaemic episodes early in life requiring high concentration of glucose and glucagon infusion. The diagnosis of congenital hyperinsulinism (CHI) was biochemically confirmed by inappropriately high plasma concentrations of insulin and C-peptide and low plasma free fatty acids and β-hydroxyl butyrate concentrations during hypoglycaemia. Sequencing of ABCC8 , KCNJ11 and HNF4A did not show any pathogenic mutation. Microarray analysis revealed a novel duplication in the short arm of chromosome 10 at 10p13-14 region. This is the first reported case of CHI in association with PS and 10p duplication. We hypothesise that the HK1 located on the chromosome 10 encoding hexokinase-1 is possibly linked to the pathophysiology of CHI. Congenital hyperinsulinism (CHI) is known to be associated with various syndromes.This is the first reported association of CHI and Poland syndrome (PS) with duplication in 10p13-14.A potential underlying genetic link between 10p13-14 duplication, PS and CHI is a possibility.
Seizures and epilepsy in hypoglycaemia caused by inborn errors of metabolism.
Gataullina, Svetlana; Delonlay, Pascale; Lemaire, Eric; Boddaert, Nathalie; Bulteau, Christine; Soufflet, Christine; Laín, Gemma Aznar; Nabbout, Rima; Chiron, Catherine; Dulac, Olivier
2015-02-01
The aim of the study was to characterize seizures and epilepsy related to hypoglycaemia. We analyzed the files of 170 consecutive patients referred for hypoglycaemia (onset 1h to 4y) caused by inborn errors of metabolism (glycogen storage disease type I, fatty acid β-oxidation disorders, and hyperinsulinism). Ninety patients (42 males and 48 females; 38 neonates and 52 infants/children) had brief hypoglycaemic seizures (68%) or status epilepticus (32%). Status epilepticus occurred earlier (mean 1.4d) than brief neonatal seizures (4.3d, p=0.02). Recurrent status epilepticus followed initial status epilepticus and was often triggered by fever. Epilepsy developed in 21 patients. In 18 patients, epilepsy followed hypoglycaemic status epilepticus and began with shorter delay when associated with grey matter lesions (1.9mo, standard error of the mean [SEM] 1mo) than with white matter damage (3.3y [SEM 1y], p=0.003). Three patients with hyperinsulinism developed idiopathic epilepsy following brief neonatal seizures. Brief neonatal hyperinsulinaemic hypoglycaemic seizures have characteristics of idiopathic neonatal seizures. Neonatal status epilepticus should be prevented by the systematic measurement of glucose blood level. Recurrent seizures never consist of status epilepticus when following brief initial seizures. Epilepsy is symptomatic of brain damage with shorter delay in the case of grey rather than white matter lesions, except in a few idiopathic cases in which epilepsy and hyperinsulinism may share a common genetic background. © 2014 Mac Keith Press.
Congenital hyperinsulinism and Poland syndrome in association with 10p13–14 duplication
Giri, Dinesh; Patil, Prashant; Hart, Rachel; Didi, Mohammed
2017-01-01
Summary Poland syndrome (PS) is a rare congenital condition, affecting 1 in 30 000 live births worldwide, characterised by a unilateral absence of the sternal head of the pectoralis major and ipsilateral symbrachydactyly occasionally associated with abnormalities of musculoskeletal structures. A baby girl, born at 40 weeks’ gestation with birth weight of 3.33 kg (−0.55 SDS) had typical phenotypical features of PS. She had recurrent hypoglycaemic episodes early in life requiring high concentration of glucose and glucagon infusion. The diagnosis of congenital hyperinsulinism (CHI) was biochemically confirmed by inappropriately high plasma concentrations of insulin and C-peptide and low plasma free fatty acids and β-hydroxyl butyrate concentrations during hypoglycaemia. Sequencing of ABCC8, KCNJ11 and HNF4A did not show any pathogenic mutation. Microarray analysis revealed a novel duplication in the short arm of chromosome 10 at 10p13–14 region. This is the first reported case of CHI in association with PS and 10p duplication. We hypothesise that the HK1 located on the chromosome 10 encoding hexokinase-1 is possibly linked to the pathophysiology of CHI. Learning points: Congenital hyperinsulinism (CHI) is known to be associated with various syndromes. This is the first reported association of CHI and Poland syndrome (PS) with duplication in 10p13–14. A potential underlying genetic link between 10p13–14 duplication, PS and CHI is a possibility. PMID:28458900
[Oral contraception and carbohydrate metabolism--the physiopathological explanation].
Hilal, M
1985-12-01
On the basis of observation of the effects on glucose metabolism of estrogens and progestins administered alone or in combination, it is believed that deterioration of glucose tolerance in the 1st trimester of oral contraceptive (OC) use is due to the synthetic estrogen, while hyperinsulinism after the 6th month of use is due to the progestin component. Either the estrogen-induced deterioration of glucose tolerance or the progestin-induced insulin resistence may lead to poor glucose tolerance or diabetes in predisposed individuals. The early deterioration of glucose tolerance with synthetic estrogens is probably due to a direct action of estrogens on the pancreas, where specific estrogen receptors have been identified, but the regression of this effect has not been explained. The reduction of fasting glucose levels by synthetic estrogens is due to a reduction of glucogenolysis and of gluconeogenesis with an increase of hepatic gluconeogenesis. These 3 effects may be explained by the action of estrogens on insulin and glucagon: estrogens inhibit the secretion of glucagon induced by arginine, an effect not obtained by progestins. A daily injection of estradiol for 6 weeks in overiectomized rats results in a lowered level of insulin and glucagon with an elevated insulin/glucagon ratio in the portal vein; this results in a decline in gluconeogenesis with a particular decline in phospho-enol-pyruvate-carboxy-kinase activity. Progestins on the other hand augment insulin and glucagon secretion without modifying their ratio in the portal vein. Hyperinsulinism in the basal state and after stimulation is observed in women using combined OCs or progestins only, whether or not there is a deterioration of glucose tolerance. The effect appears after 3 months of use and continues as long as OCs are used. This hyperinsulinism is due to a hypersecretion and not to a diminution in degradation of insulin. The insulin/glucose ratio is elevated; the hypersecretion of insulin compensates for a lowered peripheral sensitivity to the hormone. Pill-induced insulin resistence is comparable to that of pregnancy. Although all progestins used in contraception induce insulin resistence with hyperinsulinism, the effect is more marked with 19 nortestosterone derivatives than with those of 17 alpha hydroxyprogesterone, because of the structural similarity of 19 norsteroids to anabolic androgens. 2 arguments suggest a potentialization of the effects of progestins by the estrogens in combined OCs: estrogens diminish the biliary flow and may therefore diminish progesterone secretion, and progestin catabolism is diminished by estrogens. Theories have been proposed to explain the diabetogenic effect of combined OCs through indirect mechanisms involving cortisol, growth hormone, or tryptophane metabolism.
Nesidioblastosis: a case study.
Starbuck, A L
1997-09-01
Hypoglycemia is a common problem among neonates. Transient in nature, it usually resolves with an increase in glucose intake. However, as clinicians, we must recognize that prolonged hypoglycemia may be caused by increased insulin production. Nesidioblastosis is one cause of persistent hyperinsulinism of the newborn. This case study reviews fetal physiology, neonatal presentation, and treatment.
Heterogeneity in Phenotype of Usher-Congenital Hyperinsulinism Syndrome
Al Mutair, Angham N.; Brusgaard, Klaus; Bin-Abbas, Bassam; Hussain, Khalid; Felimban, Naila; Al Shaikh, Adnan; Christesen, Henrik T.
2013-01-01
OBJECTIVE To evaluate the phenotype of 15 children with congenital hyperinsulinism (CHI) and profound hearing loss, known as Homozygous 11p15-p14 Deletion syndrome (MIM #606528). RESEARCH DESIGN AND METHODS Prospective clinical follow-up and genetic analysis by direct sequencing, multiplex ligation-dependent probe amplification, and microsatellite markers. RESULTS Genetic testing identified the previous described homozygous deletion in 11p15, USH1C:c.(90+592)_ABCC8:c.(2694–528)del. Fourteen patients had severe CHI demanding near-total pancreatectomy. In one patient with mild, transient neonatal hypoglycemia and nonautoimmune diabetes at age 11 years, no additional mutations were found in HNF1A, HNF4A, GCK, INS, and INSR. Retinitis pigmentosa was found in two patients aged 9 and 13 years. No patients had enteropathy or renal tubular defects. Neuromotor development ranged from normal to severe delay with epilepsy. CONCLUSIONS The phenotype of Homozygous 11p15-p14 Deletion syndrome, or Usher-CHI syndrome, includes any severity of neonatal-onset CHI and severe, sensorineural hearing loss. Retinitis pigmentosa and nonautoimmune diabetes may occur in adolescence. PMID:23150283
Al Mutair, Angham N; Brusgaard, Klaus; Bin-Abbas, Bassam; Hussain, Khalid; Felimban, Naila; Al Shaikh, Adnan; Christesen, Henrik T
2013-03-01
To evaluate the phenotype of 15 children with congenital hyperinsulinism (CHI) and profound hearing loss, known as Homozygous 11p15-p14 Deletion syndrome (MIM #606528). Prospective clinical follow-up and genetic analysis by direct sequencing, multiplex ligation-dependent probe amplification, and microsatellite markers. Genetic testing identified the previous described homozygous deletion in 11p15, USH1C:c.(90+592)_ABCC8:c.(2694-528)del. Fourteen patients had severe CHI demanding near-total pancreatectomy. In one patient with mild, transient neonatal hypoglycemia and nonautoimmune diabetes at age 11 years, no additional mutations were found in HNF1A, HNF4A, GCK, INS, and INSR. Retinitis pigmentosa was found in two patients aged 9 and 13 years. No patients had enteropathy or renal tubular defects. Neuromotor development ranged from normal to severe delay with epilepsy. The phenotype of Homozygous 11p15-p14 Deletion syndrome, or Usher-CHI syndrome, includes any severity of neonatal-onset CHI and severe, sensorineural hearing loss. Retinitis pigmentosa and nonautoimmune diabetes may occur in adolescence.
[Exaggerated somatomedin activity in the Beckwith-Wiedemann syndrome (author's transl)].
Schabel, F; Frisch, H
1979-01-01
Beckwith and Wiedemann described the syndrome of exomphalos, macroglossia and gigantism with hypoglycemia and visceral organ hyperplasias. In some cases of severe hypoglycemias hyperplasia of beta cells of the pancreas was found. Hyperinsulinism, which has to date rarely been investigated, reacts strongly to beta cell stimulation and can hardly be suppressed. The cause of gigantism and organ hyperplasias is still unknown. After a short description of a case of hypoglycemias in the first two weeks of life a long-term profile of the endocrinologic abnormalities and carbohydrate metabolism is given. Growth hormone response to insulin is normal, tolbutamide is followed by severe hypoglycemias without an increase in the immunoreactive insulin levels; the activity of somatomedin is excessively increased. The high activity of somatomedin explains the high potency of growth in the different tissues and the hypoglycemic reactions and it seems reasonable to assume that somatomedin could create nesidioblastosis of the pancreas with hyperinsulinism and severe hypoglycemias. It is likely that the Beckwith-Wiedemann syndrome and the Laron type familial dwarfism with high plasma growth hormone, absent activity of somatomedin, and disorders in carbohydrate metabolism represent complementary diseases.
Giri, Dinesh; Vignola, Maria Lillina; Gualtieri, Angelica; Scagliotti, Valeria; McNamara, Paul; Peak, Matthew; Didi, Mohammed; Gaston-Massuet, Carles; Senniappan, Senthil
2017-11-15
Congenital hypopituitarism (CH) is characterized by the deficiency of one or more pituitary hormones and can present alone or in association with complex disorders. Congenital hyperinsulinism (CHI) is a disorder of unregulated insulin secretion despite hypoglycaemia that can occur in isolation or as part of a wider syndrome. Molecular diagnosis is unknown in many cases of CH and CHI. The underlying genetic etiology causing the complex phenotype of CH and CHI is unknown. In this study, we identified a de novo heterozygous mutation in the developmental transcription factor, forkhead box A2, FOXA2 (c.505T>C, p.S169P) in a child with CHI and CH with craniofacial dysmorphic features, choroidal coloboma and endoderm-derived organ malformations in liver, lung and gastrointestinal tract by whole exome sequencing. The mutation is at a highly conserved residue within the DNA binding domain. We demonstrated strong expression of Foxa2 mRNA in the developing hypothalamus, pituitary, pancreas, lungs and oesophagus of mouse embryos using in situ hybridization. Expression profiling on human embryos by immunohistochemistry showed strong expression of hFOXA2 in the neural tube, third ventricle, diencephalon and pancreas. Transient transfection of HEK293T cells with Wt (Wild type) hFOXA2 or mutant hFOXA2 showed an impairment in transcriptional reporter activity by the mutant hFOXA2. Further analyses using western blot assays showed that the FOXA2 p.(S169P) variant is pathogenic resulting in lower expression levels when compared with Wt hFOXA2. Our results show, for the first time, the causative role of FOXA2 in a complex congenital syndrome with hypopituitarism, hyperinsulinism and endoderm-derived organ abnormalities. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hepatomegaly due to self-induced hyperinsulinism.
Asherov, J; Mimouni, M; Varsano, I; Lubin, E; Laron, Z
1979-01-01
Repeated hypoglycaemic attacks, associated with transient hepatomegaly, in a 12-year-old insulin-dependent diabetic girl continued despite reduction in dose and, later, complete discontinuance of insulin. The attacks ceased while she was in hospital, necessitating reinstitution of insulin. The hepatomegaly resolved when surreptitious additional insulin injections were discovered and stopped. Hepatomegaly in diabetics should arouse suspicion of overdosage with insulin. Images Figure PMID:444328
Hyperinsulin therapy for calcium channel antagonist poisoning: a seven-year retrospective study.
Espinoza, Tamara R; Bryant, Sean M; Aks, Steve E
2013-01-01
The use of hyperinsulin therapy (HIT) in severe calcium channel antagonist (CCA) poisoning has become a more common therapy within the last decade. The objective of this study is to report 7 years of experience recommending HIT. This was a retrospective chart review utilizing our regional poison center (RPC) data from January 1, 2002, through December 31, 2008. All cases of CCA poisoning receiving HIT were searched. Endpoints included the number of CCA cases utilizing HIT, insulin dose, time of initiation of HIT, patient outcome, adverse events, age, glucose concentration, and lowest systolic blood pressure recorded. Forty-six cases of CCA poisoning were managed with HIT over 7 years. All the patients received standard antidotal therapy (= intravenous fluids, calcium salts, glucagon, and pressors). HIT administration followed our RPC recommendation 23 times (50%), and no hypoglycemic events occurred. Means (age, highest glucose measured, and lowest systolic blood pressure measured) were 51 years, 282 mg/dL, and 74 mm Hg, respectively. Our RPC recommendations for HIT were followed 50% of the time over the last 7 years. In light of the lack of hypoglycemia associated with HIT in our study population, we recommend HIT as an early and safe antidote in significant CCA poisoning.
Aynsley-Green, A; Barnes, N D; Adrian, T E; Kingston, J; Boyes, S; Bloom, S R
1981-11-01
The hypoglycaemia of infantile hyperinsulinism is often exceedingly difficult to control. The use of somatostatin has been advocated recently in such infants because of its effect on inhibiting insulin release, but nothing is known of the wider effects of this potent hormone in the young child. Two infants presenting at 9 weeks and 5 days of age with severe hyperinsulinaemic hypoglycaemia were studied during an infusion of somatostatin. In both infants normoglycaemia was restored with suppression of insulin secretion. An increase in blood ketone bodies occurred, but no change was seen in blood pyruvate, lactate or alanine concentrations. The plasma concentrations of glucagon, cortisol, growth hormone, motilin, pancreatic polypeptide, gastric inhibitory of polypeptide, neurotensin, gastrin and vasoactive intestinal peptide decreased markedly during the somatostatin infusion. No consistent change occurred in plasma enteroglucagon or secretin values. We conclude that somatostatin effectively suppresses abnormal insulin secretion in infants, but it has profound effects on the release of nine other hormones. Further studies are needed to define the consequences of suppressing the release of these hormones before somatostatin can be used routinely in the management of infantile hyperinsulinism.
Approach to hypoglycemia in infants and children
2017-01-01
Hypoglycemia is a heterogeneous disorder with many different possible etiologies, including hyperinsulinism, glycogen storage disorders, fatty acid disorders, hormonal deficiencies, and metabolic defects, among others. This condition affects newborns to adolescents, with various approaches to diagnosis and management. This paper will review current literature on the history of hypoglycemia, current discussion on the definition of hypoglycemia, as well as etiologies, diagnosis, and management. PMID:29184821
Asymptomatic Congenital Intrahepatic Portosystemic Shunt.
Brown, Karen M; Hal, Hassan
2009-01-01
Congenital (spontaneous) intrahepatic portosystemic shunt is rare in the English literature. Most cases of portosystemic shunt occur after trauma, surgery, liver biopsy or as a result of chronic portal hypertension. Chronic shunting may result in encephalopathy, bleeding or hyperinsulinism. We report a case of an asymptomatic adult female with a presumed congenital intrahepatic portosystemic shunt and discuss the pertinent imaging findings and important key concepts related to this condition.
Deliberate sulphonylurea poisoning mimicking hyperinsulinaemia of infancy
Owen, L.; Ellis, M.; Shield, J.
2000-01-01
A 6 month old child presenting with seizures was found to be hypoglycaemic secondary to hyperinsulinism. A family history of type II diabetes prompted estimation of sulphonylurea in the baby's blood, which was found to be high. A multidisciplinary case conference concluded that the sulphonylurea ingestion was likely to be the result of Munchausen syndrome by proxy. When investigating hypoglycaemia of infancy this possibility should be considered. PMID:10799433
Yap, Kai Lee; Johnson, Amy E Knight; Fischer, David; Kandikatla, Priscilla; Deml, Jacea; Nelakuditi, Viswateja; Halbach, Sara; Jeha, George S; Burrage, Lindsay C; Bodamer, Olaf; Benavides, Valeria C; Lewis, Andrea M; Ellard, Sian; Shah, Pratik; Cody, Declan; Diaz, Alejandro; Devarajan, Aishwarya; Truong, Lisa; Greeley, Siri Atma W; De Leó-Crutchlow, Diva D; Edmondson, Andrew C; Das, Soma; Thornton, Paul; Waggoner, Darrel; Del Gaudio, Daniela
2018-06-15
Describe the clinical and molecular findings of patients with Kabuki syndrome (KS) who present with hypoglycemia due to congenital hyperinsulinism (HI), and assess the incidence of KS in patients with HI. We documented the clinical features and molecular diagnoses of 10 infants with persistent HI and KS via a combination of sequencing and copy-number profiling methodologies. Subsequently, we retrospectively evaluated 100 infants with HI lacking a genetic diagnosis, for causative variants in KS genes. Molecular diagnoses of KS were established by identification of pathogenic variants in KMT2D (n = 5) and KDM6A (n = 5). Among the 100 infants with HI of unknown genetic etiology, a KS diagnosis was uncovered in one patient. The incidence of HI among patients with KS may be higher than previously reported, and KS may account for as much as 1% of patients diagnosed with HI. As the recognition of dysmorphic features associated with KS is challenging in the neonatal period, we propose KS should be considered in the differential diagnosis of HI. Since HI in patients with KS is well managed medically, a timely recognition of hyperinsulinemic episodes will improve outcomes, and prevent aggravation of the preexisting mild to moderate intellectual disability in KS.
Sonmez, Fatma Mujgan; Uctepe, Eyyup; Gunduz, Mehmet; Gormez, Zeliha; Erpolat, Seval; Oznur, Murat; Sagiroglu, Mahmut Samil; Demirci, Huseyin; Gunduz, Esra
2016-01-01
Summary Coffin-Siris syndrome (CSS) (MIM 135900) is characterized by developmental delay, severe speech impairment, distinctive facial features, hypertrichosis, aplasia or hypoplasia of the distal phalanx or nail of the fifth digit and agenesis of the corpus callosum. Recently, it was shown that mutations in the ARID1B gene are the main cause of CSS, accounting for 76% of identified mutations. Here, we report a 15 year-old female patient who was admitted to our clinic with seizures, speech problems, dysmorphic features, bilaterally big, large thumb, café-au-lait (CAL) spots, obesity and hyperinsulinism. First, the patient was thought to have an association of neurofibromatosis and Rubinstein Taybi syndrome. Because of the large size of the NF1 gene for neurofibromatosis and CREBBP gene for Rubinstein Taybi syndrome, whole exome sequence analysis (WES) was conducted and a novel ARID1B mutation was identified. The proband WES test identified a novel heterozygous frameshift mutation c.3394_3395insTA in exon 13 of ARID1B (NM_017519.2) predicting a premature stop codon p.(Tyr1132Leufs*67). Sanger sequencing confirmed the heterozygous c.3394_3395insTA mutation in the proband and that it was not present in her parents indicating de novo mutation. Further investigation and new cases will help to understand this phenomenon better. PMID:27672547
Sonmez, Fatma Mujgan; Uctepe, Eyyup; Gunduz, Mehmet; Gormez, Zeliha; Erpolat, Seval; Oznur, Murat; Sagiroglu, Mahmut Samil; Demirci, Huseyin; Gunduz, Esra
2016-08-01
Coffin-Siris syndrome (CSS) (MIM 135900) is characterized by developmental delay, severe speech impairment, distinctive facial features, hypertrichosis, aplasia or hypoplasia of the distal phalanx or nail of the fifth digit and agenesis of the corpus callosum. Recently, it was shown that mutations in the ARID1B gene are the main cause of CSS, accounting for 76% of identified mutations. Here, we report a 15 year-old female patient who was admitted to our clinic with seizures, speech problems, dysmorphic features, bilaterally big, large thumb, café-au-lait (CAL) spots, obesity and hyperinsulinism. First, the patient was thought to have an association of neurofibromatosis and Rubinstein Taybi syndrome. Because of the large size of the NF1 gene for neurofibromatosis and CREBBP gene for Rubinstein Taybi syndrome, whole exome sequence analysis (WES) was conducted and a novel ARID1B mutation was identified. The proband WES test identified a novel heterozygous frameshift mutation c.3394_3395insTA in exon 13 of ARID1B (NM_017519.2) predicting a premature stop codon p.(Tyr1132Leufs*67). Sanger sequencing confirmed the heterozygous c.3394_3395insTA mutation in the proband and that it was not present in her parents indicating de novo mutation. Further investigation and new cases will help to understand this phenomenon better.
Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels
Martin, Gregory M.; Chen, Pei-Chun; Devaraneni, Prasanna; Shyng, Show-Ling
2013-01-01
ATP-sensitive potassium (KATP) channels link cell metabolism to membrane excitability and are involved in a wide range of physiological processes including hormone secretion, control of vascular tone, and protection of cardiac and neuronal cells against ischemic injuries. In pancreatic β-cells, KATP channels play a key role in glucose-stimulated insulin secretion, and gain or loss of channel function results in neonatal diabetes or congenital hyperinsulinism, respectively. The β-cell KATP channel is formed by co-assembly of four Kir6.2 inwardly rectifying potassium channel subunits encoded by KCNJ11 and four sulfonylurea receptor 1 subunits encoded by ABCC8. Many mutations in ABCC8 or KCNJ11 cause loss of channel function, thus, congenital hyperinsulinism by hampering channel biogenesis and hence trafficking to the cell surface. The trafficking defects caused by a subset of these mutations can be corrected by sulfonylureas, KATP channel antagonists that have long been used to treat type 2 diabetes. More recently, carbamazepine, an anticonvulsant that is thought to target primarily voltage-gated sodium channels has been shown to correct KATP channel trafficking defects. This article reviews studies to date aimed at understanding the mechanisms by which mutations impair channel biogenesis and trafficking and the mechanisms by which pharmacological ligands overcome channel trafficking defects. Insight into channel structure-function relationships and therapeutic implications from these studies are discussed. PMID:24399968
[Association between obesity and ovarian cancer].
Valladares, Macarena; Corsini, Gino; Romero, Carmen
2014-05-01
Obesity is a risk factor for cancer. Epidemiological evidences associate ovarian cancer with obesity. Epithelial ovarian cancer (EOC) is the most common type of ovarian cancer and accounts for a high rate of mortality. The association between ovarian cancer and obesity could be explained by molecular factors secreted by adipose tissue such as leptin. In EOC, leptin increases cell proliferation and inhibits apoptosis. Additionally, adipose tissue synthesizes endogenous estrogens, which increase cell proliferation of epithelial ovarian cells. Also, obesity associated hyperinsulinism could increase ovarian estrogen secretion.
Arya, Ved Bhushan; Senniappan, Senthil; Demirbilek, Huseyin; Alam, Syeda; Flanagan, Sarah E; Ellard, Sian; Hussain, Khalid
2014-01-01
Congenital hyperinsulinism (CHI), the commonest cause of persistent hypoglycaemia, has two main histological subtypes: diffuse and focal. Diffuse CHI, if medically unresponsive, is managed with near-total pancreatectomy. Post-pancreatectomy, in addition to persistent hypoglycaemia, there is a very high risk of diabetes mellitus and pancreatic exocrine insufficiency. International referral centre for the management of CHI. Medically unresponsive diffuse CHI patients managed with near-total pancreatectomy between 1994 and 2012. Near-total pancreatectomy. Persistent hypoglycaemia post near-total pancreatectomy, insulin-dependent diabetes mellitus, clinical and biochemical (faecal elastase 1) pancreatic exocrine insufficiency. Of more than 300 patients with CHI managed during this time period, 45 children had medically unresponsive diffuse disease and were managed with near-total pancreatectomy. After near-total pancreatectomy, 60% of children had persistent hypoglycaemia requiring medical interventions. The incidence of insulin dependent diabetes mellitus was 96% at 11 years after surgery. Thirty-two patients (72%) had biochemical evidence of severe pancreatic exocrine insufficiency (Faecal elastase 1<100 µg/g). Clinical exocrine insufficiency was observed in 22 (49%) patients. No statistically significant difference in weight and height standard deviation score (SDS) was found between untreated subclinical pancreatic exocrine insufficiency patients and treated clinical pancreatic exocrine insufficiency patients. The outcome of diffuse CHI patients after near-total pancreatectomy is very unsatisfactory. The incidence of persistent hypoglycaemia and insulin-dependent diabetes mellitus is very high. The presence of clinical rather than biochemical pancreatic exocrine insufficiency should inform decisions about pancreatic enzyme supplementation.
Helleskov, Annett; Melikyan, Maria; Globa, Evgenia; Shcherderkina, Inna; Poertner, Fani; Larsen, Anna-Maria; Filipsen, Karen; Brusgaard, Klaus; Christiansen, Charlotte Dahl; Hansen, Lars Kjaersgaard; Christesen, Henrik T
2017-01-01
Congenital hyperinsulinism (CHI) is a heterogeneous disease most frequently caused by KATP-channel (ABCC8 and KCNJ11) mutations, with neonatal or later onset, variable severity, and with focal or diffuse pancreatic involvement as the two major histological types. CHI confers a high risk of neurological impairment; however, sparsely studied in larger patient series. We assessed the neurodevelopmental outcome in children with CHI at follow-up in a mixed international cohort. In two hyperinsulinism expert centers, 75 CHI patients were included (Russian, n = 33, referred non-Scandinavian, treated in Denmark n = 27, Scandinavian, n = 15). Hospital files were reviewed. At follow-up, neurodevelopmental impairment and neurodevelopmental, cognitive and motor function scores were assessed. Median (range) age at follow-up was 3.7 years (3.3 months-18.2 years). Neurodevelopmental impairment was seen in 35 (47%). Impairment was associated with abnormal brain magnetic resonance imaging (MRI); odds ratio (OR) (95% CI) 15.0 (3.0-74.3), p = 0.001; lowest recorded blood glucose ≤1 mmol/L; OR 3.8 (1.3-11.3), p = 0.015, being non-Scandinavian patient, OR 3.8 (1.2-11.9), p = 0.023; and treatment delay from first symptom to expert center >5 days; OR 4.0 (1.0-16.6), trend p = 0.05. In multivariate analysis ( n = 31) for early predictors with exclusion of brain MRI, treatment delay from first symptom to expert center >5 days conferred a significantly increased risk of neurodevelopment impairment, adjusted OR (aOR) 15.6 (1.6-146.7), p = 0.016, while lowest blood glucose ≤1 mmol/L had a trend toward increased risk, aOR 3.5 (1.1-14.3), p = 0.058. No associations for early vs. late disease onset, K ATP -channel mutations, disease severity, focal vs. diffuse disease, or age at follow-up were seen in uni- or multivariate analysis. Not only very low blood glucose, but also insufficient treatment as expressed by delay until expert center hospitalization, increased the risk of neurodevelopmental impairment. This novel finding calls for improvements in spread of knowledge about CHI among health-care personnel and rapid contact with an expert CHI center on suspicion of CHI.
[Physiology and disease of the endocrine function of the pancreas (author's transl)].
Stubbe, P
1980-12-01
Qualitative and quantitative immunocytochemistry, electronmicroscopy and radio-immuno-assays led to the discovery of 5 pancreatic polypeptide hormones under physiological conditions. The active endocrine cells and the produced hormones are termed A, B, D, D1, and PP cell and glucagon, insulin, somatostatin, vasoactive intestinal polypeptide (VIP) and pancreatic polypeptide (PP) respectively. Beside the physiology of secretion and action a survey of pathological conditions in the paediatric age group is given. Insulin is the most important of pancreatic hormones in childhood. Therefore diagnosis and treatment of hyperinsulinism are described in extension.
Subclinical metabolic abnormalities associated with obesity in prepubertal Mexican schoolchildren.
Romero, Juana B; Briones, Evangelina; Palacios, Gerardo C; Castelán, Kathia
2010-06-01
Childhood obesity has increased to epidemic levels and is considered a public health problem due to its association with a number of metabolic abnormalities, which are being detected at earlier stages of life. The objective was to evaluate the association between the presence of subclinical metabolic abnormalities (SMA) and obesity in a sample of pre-pubertal Mexican schoolchildren. Children of both sexes and 6 to 13 years old were questioned for signs of puberty, underwent anthropometric measurement and had their Body Mass Index (BMI) calculated. Two groups were formed: those with obesity (case group) and those with normal weight paired by age and chosen randomly (control group). Fasting insulin, glucose and cholesterol were measured. 92 children were included, 46 in each group, mean age 9.9 and 9.5 years old, respectively (p = 0.97). A higher frequency of hyperinsulinism was found in the case group: Fasting insulin > 15 mU/ml, 75% vs. 21% (case group vs. control group, respectively); fasting glucose to insulin ratio < 6, 72% vs. 24%; HOMA IR > 2.7, 83% vs. 14%; and decrease in QUICKI (< 0.3), 80% vs. 19% (p = 0.000). Hypercholesterolemia was 25% vs. 15% (p = 0.22), impaired fasting glucose 28% vs. 8% (p = 0.01), and family history of diabetes mellitus (DM) 35% vs. 9% (OR = 5.6; 95% CI = 1.5-22.2; p = 0.002). In this sample of Mexican schoolchildren, obesity was associated to a higher frequency of SMA, such as hyperinsulinism and impaired fasting glucose, and to a family history of DM.
Maiorana, Arianna; Manganozzi, Lucilla; Barbetti, Fabrizio; Bernabei, Silvia; Gallo, Giorgia; Cusmai, Raffaella; Caviglia, Stefania; Dionisi-Vici, Carlo
2015-09-24
Congenital hyperinsulinism (CHI) is the most frequent cause of hypoglycemia in children. In addition to increased peripheral glucose utilization, dysregulated insulin secretion induces profound hypoglycemia and neuroglycopenia by inhibiting glycogenolysis, gluconeogenesis and lipolysis. This results in the shortage of all cerebral energy substrates (glucose, lactate and ketones), and can lead to severe neurological sequelae. Patients with CHI unresponsive to medical treatment can be subjected to near-total pancreatectomy with increased risk of secondary diabetes. Ketogenic diet (KD), by reproducing a fasting-like condition in which body fuel mainly derives from beta-oxidation, is intended to provide alternative cerebral substrates such ketone bodies. We took advantage of known protective effect of KD on neuronal damage associated with GLUT1 deficiency, a disorder of impaired glucose transport across the blood-brain barrier, and administered KD in a patient with drug-unresponsive CHI, with the aim of providing to neurons an energy source alternative to glucose. A child with drug-resistant, long-standing CHI caused by a spontaneous GCK activating mutation (p.Val455Met) suffered from epilepsy and showed neurodevelopmental abnormalities. After attempting various therapeutic regimes without success, near-total pancreatectomy was suggested to parents, who asked for other options. Therefore, we proposed KD in combination with insulin-suppressing drugs. We administered KD for 2 years. Soon after the first six months, the patient was free of epileptic crises, presented normalization of EEG, and showed a marked recover in psychological development and quality of life. KD could represent an effective treatment to support brain function in selected cases of CHI.
[Sudden death from hypoglycemia].
Asmundo, A; Aragona, M; Gualniera, P; Aragona, F
1995-12-01
The sudden death by hypoglycemia is an aspect of the forensic pathology frequently neglected. Authors initially described the pathogenesis of different hypoglycemia forms, distinguishing the primary ones due to hyperinsulinism and the secondary ones due to functional insufficiency of other organs (hypophysis, thyroid, adrenal gland, liver); after that Authors described three cases of sudden death induced hypoglycemia by hyperinsulinism: two were unweaned with nesidioblastosis and one adolescent. In any form of hypoglycemia the central nervous system damage is present with evident neuronal degenerative-necrotic phenomena, widespread edema with microhemorrhage, swollen and dissociation of myelin sheath, glial cells hyperplasia. Death caused by primary hypoglycemia is histopathologically different from the secondary one because of the maintenance of hepatic glycogen content in the former, that increase in striated muscles, including the heart, in spite of the constant secretion of catecholamine from the adrenal medulla. Glycogen is depleted in secondary hypoglycemia. In the primary form, behind the adrenal medulla hyperfunction, the increased functional activity of the adrenal cortex is moderate, contrasting with the seriousness of the syndrome, due prevalently to inhibit the gluconeogenesis response conditioned by the persistence of stored glycogen in the liver, heart and striated muscles. The rare anoxic processes coming with resynthesis of hepatic glycogen have to be considered in the differential diagnosis. The primary hypoglycemic death, especially in unweaned, is frequently promoted by other processes inducing hypoxia (fetal asphyxia outcome, pneumonia, etc.) or worsening the hypoglycemia (hypothyroidism, etc.). The secondary hypoglycemias are characterized by the normality of exocrine pancreas and by organic alterations that cause glycogen depletion from the liver.
Hypoglycaemia related to inherited metabolic diseases in adults
2012-01-01
In non-diabetic adult patients, hypoglycaemia may be related to drugs, critical illness, cortisol or glucagon insufficiency, non-islet cell tumour, insulinoma, or it may be surreptitious. Nevertheless, some hypoglycaemic episodes remain unexplained, and inborn errors of metabolism (IEM) should be considered, particularly in cases of multisystemic involvement. In children, IEM are considered a differential diagnosis in cases of hypoglycaemia. In adulthood, IEM-related hypoglycaemia can persist in a previously diagnosed childhood disease. Hypoglycaemia may sometimes be a presenting sign of the IEM. Short stature, hepatomegaly, hypogonadism, dysmorphia or muscular symptoms are signs suggestive of IEM-related hypoglycaemia. In both adults and children, hypoglycaemia can be clinically classified according to its timing. Postprandial hypoglycaemia can be an indicator of either endogenous hyperinsulinism linked to non-insulinoma pancreatogenic hypoglycaemia syndrome (NIPHS, unknown incidence in adults) or very rarely, inherited fructose intolerance. Glucokinase-activating mutations (one family) are the only genetic disorder responsible for NIPH in adults that has been clearly identified so far. Exercise-induced hyperinsulinism is linked to an activating mutation of the monocarboxylate transporter 1 (one family). Fasting hypoglycaemia may be caused by IEM that were already diagnosed in childhood and persist into adulthood: glycogen storage disease (GSD) type I, III, 0, VI and IX; glucose transporter 2 deficiency; fatty acid oxidation; ketogenesis disorders; and gluconeogenesis disorders. Fasting hypoglycaemia in adulthood can also be a rare presenting sign of an IEM, especially in GSD type III, fatty acid oxidation [medium-chain acyl-CoA dehydrogenase (MCAD), ketogenesis disorders (3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) lyase deficiency, and gluconeogenesis disorders (fructose-1,6-biphosphatase deficiency)]. PMID:22587661
Johnson, S R; Leo, P J; McInerney-Leo, A M; Anderson, L K; Marshall, M; McGown, I; Newell, F; Brown, M A; Conwell, L S; Harris, M; Duncan, E L
2018-06-01
To assess the utility of whole-exome sequencing (WES) for mutation detection in maturity-onset diabetes of the young (MODY) and congenital hyperinsulinism (CHI). MODY and CHI are the two commonest monogenic disorders of glucose-regulated insulin secretion in childhood, with 13 causative genes known for MODY and 10 causative genes identified for CHI. The large number of potential genes makes comprehensive screening using traditional methods expensive and time-consuming. Ten subjects with MODY and five with CHI with known mutations underwent WES using two different exome capture kits (Nimblegen SeqCap EZ Human v3.0 Exome Enrichment Kit, Nextera Rapid Capture Exome Kit). Analysis was blinded to previously identified mutations, and included assessment for large deletions. The target capture of five exome capture technologies was also analyzed using sequencing data from >2800 unrelated samples. Four of five MODY mutations were identified using Nimblegen (including a large deletion in HNF1B). Although targeted, one mutation (in INS) had insufficient coverage for detection. Eleven of eleven mutations (six MODY, five CHI) were identified using Nextera Rapid (including the previously missed mutation). On reconciliation, all mutations concorded with previous data and no additional variants in MODY genes were detected. There were marked differences in the performance of the capture technologies. WES can be useful for screening for MODY/CHI mutations, detecting both point mutations and large deletions. However, capture technologies require careful selection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
[Double localization of pancreatic insulinoma. Diagnostic and therapeutic difficulties].
Ungureanu, C D; David, L; Braşoveanu, V; Herlea, V; Coculescu, M; Popescu, I
2005-01-01
Insulinomas are the most common cause of hypoglycemia resulting from endogenous hyperinsulinism. Because most of insulinomas are less than 2 cm in size and rarely they not may be visible by CT scan or transabdominal ultrasonography. Intraoperative ultrasonography may be a solution. Although as surgical method is preferred enucleation because operative time is shorter and easier and the low frequency postoperative complications, pancreaticoduodenectomy Whipple is indicated in selected cases. We report a case of double insulinoma located in the head of the pancreas in which the diagnosis and surgical treatment presented difficulties which determined a particular clinical evolution.
Christesen, Henrik T; Brusgaard, Klaus; Hussain, Khalid
2012-04-01
Hypoglycaemia-associated autonomic failure (HAAF) with impaired neurogenic and neuroglycopaenic responses occurs in adults following recent, repeated hypoglycaemia. We aimed to evaluate whether HAAF also occurs in patients with infant-onset congenital hyperinsulinism (CHI). A controlled fast was performed in (i) seven CHI infants with initial symptomatic hypoglycaemia and three recent episodes of spontaneous recurrent hypoglycaemia each lasting <5 min and in (ii) seven infants with idiopathic ketotic hypoglycaemia for control. At the time of hypoglycaemia (blood glucose <3 mmol/l or clinical signs), blood was drawn for serum insulin, cortisol, glucagon, adrenalin and nor-adrenalin. Signs of hypoglycaemia were documented. In CHI patients, the ABCC8 and KCNJ11 genes were analysed by denaturing high performance liquid chromatography (DHPLC) and/or direct bidirectional sequencing. Two CHI patients had a paternal ABCC8 mutation, five had no mutations. When repeated hypoglycaemia was provoked, all CHI patients exhibited a complete loss of clinical signs of hypoglycaemia, along with a global blunting of the counter-regulatory hormones cortisol, glucagon, growth hormone, adrenalin and nor-adrenalin responses (median values 256 nmol/l, 23 pmol/l, 5·6 mU/l, 390 pmol/l and 2·9 nmol/l, respectively), irrespective of mutational status. In the controls, hypoglycaemia was always clinically overt with normal counter-regulatory cortisol, glucagon, adrenalin and nor-adrenalin responses (530 nmol/l, 60, 920 pmol/l and 4·0 nmol/l, respectively). Recurrent hyperinsulinaemic hypoglycaemia even of short duration blunts the autonomic, neuroglycopaenic and glucose counter-regulatory hormonal responses in patients with infant-onset CHI resulting in clinically silent hypoglycaemia. Tight, or continuous, glucose monitoring is therefore recommended, especially in conservatively treated patients. © 2012 Blackwell Publishing Ltd.
Proverbio, Maria Carla; Mangano, Eleonora; Gessi, Alessandra; Bordoni, Roberta; Spinelli, Roberta; Asselta, Rosanna; Valin, Paola Sogno; Di Candia, Stefania; Zamproni, Ilaria; Diceglie, Cecilia; Mora, Stefano; Caruso-Nicoletti, Manuela; Salvatoni, Alessandro; De Bellis, Gianluca; Battaglia, Cristina
2013-01-01
Congenital hyperinsulinism of infancy (CHI) is a rare disorder characterized by severe hypoglycemia due to inappropriate insulin secretion. The genetic causes of CHI have been found in genes regulating insulin secretion from pancreatic β-cells; recessive inactivating mutations in the ABCC8 and KCNJ11 genes represent the most common events. Despite the advances in understanding the molecular pathogenesis of CHI, specific genetic determinants in about 50 % of the CHI patients remain unknown, suggesting additional locus heterogeneity. In order to search for novel loci contributing to the pathogenesis of CHI, we combined a family-based association study, using the transmission disequilibrium test on 17 CHI patients lacking mutations in ABCC8/KCNJ11, with a whole-exome sequencing analysis performed on 10 probands. This strategy allowed the identification of the potential causative mutations in genes implicated in the regulation of insulin secretion such as transmembrane proteins (CACNA1A, KCNH6, KCNJ10, NOTCH2, RYR3, SCN8A, TRPV3, TRPC5), cytosolic (ACACB, CAMK2D, CDKAL1, GNAS, NOS2, PDE4C, PIK3R3) and mitochondrial enzymes (PC, SLC24A6), and in four genes (CSMD1, SLC37A3, SULF1, TLL1) suggested by TDT family-based association study. Moreover, the exome-sequencing approach resulted to be an efficient diagnostic tool for CHI, allowing the identification of mutations in three causative CHI genes (ABCC8, GLUD1, and HNF1A) in four out of 10 patients. Overall, the present study should be considered as a starting point to design further investigations: our results might indeed contribute to meta-analysis studies, aimed at the identification/confirmation of novel causative or modifier genes. PMID:23869231
Sang, Yanmei; Xu, Zidi; Liu, Min; Yan, Jie; Wu, Yujun; Zhu, Cheng; Ni, Guichen
2014-01-01
We conducted a cohort study to elucidate the molecular spectrum of congenital hyperinsulinism (CHI) in Chinese pediatric patients. Thirty Chinese children with CHI were chosen as research subjects, 16 of whom were responsive to diazoxide and 13 of whom were not (1 patient was not given the drug for medical reasons). All exons of the adenosine triphosphate (ATP)-sensitive potassium channel (KATP channel) genes KCNJ11 and ABCC8, the hepatocyte nuclear factor 4 α (HNF4A) gene, and the Glucokinase (GCK) gene as well as exons 6 and 7 and 10-12 of the glutamate dehydrogenase 1 (GLUD1) gene were amplified from genomic DNA and directly sequenced. Mutations were identified in 14 of 30 patients (47%): 3 in GLUD1 (10%) and 11 in the KATP channel genes (37%). Six patients had paternally derived monoallelic KATP channel mutations predictive of the focal CHI form. We found a novel de novo ABCC8 mutation, p. C1000*, a novel paternally inherited ABCC8 mutation, D1505H, and a dominantly inherited ABCC8 mutation, R1217K. The GLUD1 activating mutation R269H was found in 2 patients: 1 de novo and the other paternally inherited. A de novo S445L mutation was found in 1 patient. No significant HNF4A or GCK mutations were found. CHI has complex genetic onset mechanisms. Paternally inherited monoallelic mutations of ABCC8 and KCNJ11 are likely the main causes of KATP-CHI in Chinese patients. Glutamate dehydrogenase-CHI is the second most common cause of CHI, while HNF4A and GCK are rare types of CHI in Chinese patients.
Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism
Kapoor, Ritika R; Flanagan, Sarah E; Arya, Ved Bhushan; Shield, Julian P; Ellard, Sian; Hussain, Khalid
2013-01-01
Background Congenital hyperinsulinism (CHI) is a clinically heterogeneous condition. Mutations in eight genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, HNF4A and HNF1A) are known to cause CHI. Aim To characterise the clinical and molecular aspects of a large cohort of patients with CHI. Methodology Three hundred patients were recruited and clinical information was collected before genotyping. ABCC8 and KCNJ11 genes were analysed in all patients. Mutations in GLUD1, HADH, GCK and HNF4A genes were sought in patients with diazoxide-responsive CHI with hyperammonaemia (GLUD1), raised 3-hydroxybutyrylcarnitine and/or consanguinity (HADH), positive family history (GCK) or when CHI was diagnosed within the first week of life (HNF4A). Results Mutations were identified in 136/300 patients (45.3%). Mutations in ABCC8/KCNJ11 were the commonest genetic cause identified (n=109, 36.3%). Among diazoxide-unresponsive patients (n=105), mutations in ABCC8/KCNJ11 were identified in 92 (87.6%) patients, of whom 63 patients had recessively inherited mutations while four patients had dominantly inherited mutations. A paternal mutation in the ABCC8/KCNJ11 genes was identified in 23 diazoxide-unresponsive patients, of whom six had diffuse disease. Among the diazoxide-responsive patients (n=183), mutations were identified in 41 patients (22.4%). These include mutations in ABCC8/KCNJ11 (n=15), HNF4A (n=7), GLUD1 (n=16) and HADH (n=3). Conclusions A genetic diagnosis was made for 45.3% of patients in this large series. Mutations in the ABCC8 gene were the commonest identifiable cause. The vast majority of patients with diazoxide-responsive CHI (77.6%) had no identifiable mutations, suggesting other genetic and/or environmental mechanisms. PMID:23345197
Dejoie, T; Ramos, E; Baron, S; Bach-Ngohou, K; Masson, D
2008-01-01
We report the case of a 2 year-old child presented to the emergency department following a seizure. The child was hypotonic and examination was unremarkable but laboratory tests confirmed a severe hypoglycaemia. The insulin level, inappropriately high for the glycemia and the peptide C undetectable suggested exogenous hyperinsulinism. We conclude that the hypoglycaemia was likely the result of Munchhausen syndrome by proxy. The specificity of two immunoassays used (Elecsys Roche and IRMA CisBio) for the synthetic analogues of insulin explains the discrepancy between the insulin levels obtained but was crucially useful to the approach of the cause of the hypoglycaemia.
Polycystic Ovary Syndrome in Adolescents.
Witchel, Selma Feldman; Roumimper, Hailey; Oberfield, Sharon
2016-06-01
Polycystic ovary syndrome (PCOS) is a familial heterogeneous disorder affecting 6% to 10% of reproductive-age women. The use of criteria developed for adult women is problematic for the adolescent girl because the clinical features associated with PCOS are normal pubertal events. The recent consensus statement on PCOS in adolescents stated that hyperandrogenism and oligomenorrhea need to persist for at least 2 years to consider the diagnosis of PCOS. Although insulin resistance, hyperinsulinism, and obesity are often associated with PCOS, these features are not considered valid diagnostic criteria. Recent genomewide association studies implicate genetic loci involved in the hypothalamic-pituitary-ovarian axis. Copyright © 2016 Elsevier Inc. All rights reserved.
Arya, Ved Bhushan; Senniappan, Senthil; Guemes, Maria; Hussain, Khalid
2014-01-01
Glucose is essential for cerebral metabolism. Unsurprisingly therefore, hypoglycemia may result in encephalopathy. Knowledge of the homeostatic mechanisms that maintain blood glucose concentrations within a tight range is the key for diagnosis and appropriate management of hypoglycemia. Neonatal hypoglycemia can be transient and is commonly observed in at-risk infants. A wide range of rare endocrine and metabolic disorders can present with neonatal hypoglycemia, of which congenital hyperinsulinism is responsible for the most severe form of hypoglycemia. Collection of appropriate blood samples for hormones and intermediary metabolites during an episode of hypoglycemia is critical for diagnosis and appropriate management. Prompt diagnosis with aggressive early intervention remains the mainstay of treatment to avert irreversible brain damage.
Bacon, S; Kyithar, M P; Condron, E M; Vizzard, N; Burke, M; Byrne, M M
2016-12-01
HNF4A is an established cause of maturity onset diabetes of the young (MODY). Congenital hyperinsulinism can also be associated with mutations in the HNF4A gene. A dual phenotype is observed in HNF4A-MODY with hyperinsulinaemic hypoglycaemia in the neonatal period progressing to diabetes in adulthood. The nature and timing of the transition remain poorly defined. We performed an observational study to establish changes in glycaemia and insulin secretion over a 6-year period. We investigated glycaemic variability and hypoglycaemia in HNF4A-MODY using a continuous glucose monitoring system (CGMS). An OGTT with measurement of glucose, insulin and C-peptide was performed in HNF4A participants with diabetes mellitus (DM) (n = 14), HNF4A-IGT (n = 7) and age- and BMI-matched MODY negative family members (n = 10). Serial assessment was performed in the HNF4A-IGT cohort. In a subset of HNF4A-MODY mutation carriers (n = 10), CGMS was applied over a 72-h period. There was no deterioration in glycaemic control in the HNF4A-IGT cohort. The fasting glucose-to-insulin ratio was significantly lower in the HNF4A-IGT cohort when compared to the normal control group (0.13 vs. 0.24, p = 0.03). CGMS profiling demonstrated prolonged periods of hypoglycaemia in the HNF4A-IGT group when compared to the HNF4A-DM group (432 vs. 138 min p = 0.04). In a young adult HNF4A-IGT cohort, we demonstrate preserved glucose, insulin and C-peptide secretory responses to oral glucose. Utilising CGMS, prolonged periods of hypoglycaemia are evident despite a median age of 21 years. We propose a prolonged hyperinsulinaemic phase into adulthood is responsible for the notable hypoglycaemic episodes.
Kovaleva, I G; Ostroumova, M N; Tsyrlina, E V; Bobrov, Iu F; Evtushenko, T V
1982-01-01
Total insulin-like activity (ILA) was evaluated by biological testing blood serum on the basis of stimulation of glycogen synthesis in rat diaphragm in vivo. Glucose loading was followed by an increase in ILA and radioimmune insulin (RII) levels both in patients with breast fibroadenomatosis and healthy controls. However, the patients revealed an increased RII response matched by absence of ILA response, while the basal ILA was three times that in healthy controls. An elevated basal level of ILA was also observed in patients with coronary atherosclerosis and mental depression. Enhanced hyperinsulinism due to RII complementary factors, capable of insulin-like activity, may prove to be a factor in specific age-associated pathology (cancer, atherosclerosis, mental depression).
Perspective on the Genetics and Diagnosis of Congenital Hyperinsulinism Disorders
2016-01-01
Context: Congenital hyperinsulinism (HI) is the most common cause of hypoglycemia in children. The risk of permanent brain injury in infants with HI continues to be as high as 25–50% due to delays in diagnosis and inadequate treatment. Congenital HI has been described since the birth of the JCEM under various terms, including “idiopathic hypoglycemia of infancy,” “leucine-sensitive hypoglycemia,” or “nesidioblastosis.” Evidence Acquisition: In the past 20 years, it has become apparent that HI is caused by genetic defects in the pathways that regulate pancreatic β-cell insulin secretion. Evidence Synthesis: There are now 11 genes associated with monogenic forms of HI (ABCC8, KCNJ11, GLUD1, GCK, HADH1, UCP2, MCT1, HNF4A, HNF1A, HK1, PGM1), as well as several syndromic genetic forms of HI (eg, Beckwith-Wiedemann, Kabuki, and Turner syndromes). HI is also the cause of hypoglycemia in transitional neonatal hypoglycemia and in persistent hypoglycemia in various groups of high-risk neonates (such as birth asphyxia, small for gestational age birthweight, infant of diabetic mother). Management of HI is one of the most difficult problems faced by pediatric endocrinologists and frequently requires difficult choices, such as near-total pancreatectomy and/or highly intensive care with continuous tube feedings. For 50 years, diazoxide, a KATP channel agonist, has been the primary drug for infants with HI; however, it is ineffective in most cases with mutations of ABCC8 or KCNJ11, which constitute the majority of infants with monogenic HI. Conclusions: Genetic mutation testing has become standard of care for infants with HI and has proven to be useful not only in projecting prognosis and family counseling, but also in diagnosing infants with surgically curable focal HI lesions. 18F-fluoro-L-dihydroxyphenylalanine (18F-DOPA) PET scans have been found to be highly accurate for localizing such focal lesions preoperatively. New drugs under investigation provide hope for improving the outcomes of children with HI. PMID:26908106
Congenital hyperinsulinism: current trends in diagnosis and therapy
2011-01-01
Congenital hyperinsulinism (HI) is an inappropriate insulin secretion by the pancreatic β-cells secondary to various genetic disorders. The incidence is estimated at 1/50, 000 live births, but it may be as high as 1/2, 500 in countries with substantial consanguinity. Recurrent episodes of hyperinsulinemic hypoglycemia may expose to high risk of brain damage. Hypoglycemias are diagnosed because of seizures, a faint, or any other neurological symptom, in the neonatal period or later, usually within the first two years of life. After the neonatal period, the patient can present the typical clinical features of a hypoglycemia: pallor, sweat and tachycardia. HI is a heterogeneous disorder with two main clinically indistinguishable histopathological lesions: diffuse and focal. Atypical lesions are under characterization. Recessive ABCC8 mutations (encoding SUR1, subunit of a potassium channel) and, more rarely, recessive KCNJ11 (encoding Kir6.2, subunit of the same potassium channel) mutations, are responsible for most severe diazoxide-unresponsive HI. Focal HI, also diazoxide-unresponsive, is due to the combination of a paternally-inherited ABCC8 or KCNJ11 mutation and a paternal isodisomy of the 11p15 region, which is specific to the islets cells within the focal lesion. Genetics and 18F-fluoro-L-DOPA positron emission tomography (PET) help to diagnose diffuse or focal forms of HI. Hypoglycemias must be rapidly and intensively treated to prevent severe and irreversible brain damage. This includes a glucose load and/or a glucagon injection, at the time of hypoglycemia, to correct it. Then a treatment to prevent the recurrence of hypoglycemia must be set, which may include frequent and glucose-enriched feeding, diazoxide and octreotide. When medical and dietary therapies are ineffective, or when a focal HI is suspected, surgical treatment is required. Focal HI may be definitively cured when the partial pancreatectomy removes the whole lesion. By contrast, the long-term outcome of diffuse HI after subtotal pancreatectomy is characterized by a high risk of diabetes, but the time of its onset is hardly predictable. PMID:21967988
Prevalence and underlying etiologies of neonatal hypoglycemia.
Najati, N; Saboktakin, L
2010-08-01
This study aims at determining the prevalence of neonatal hypoglycemia and its underlying causes. In this prospective study 14168 newborns delivered in Tabriz Alzahra Hospital during 2 years were evaluated in regard to blood glucose level at first 24 h of life. Glucose oxidase method with 4-aminophenazone with a Greiner G-300 was the used method for determining the blood glucose level. Cases with blood glucose < 50 mg dL(-1) were considered as hypoglycemic newborns. Underlying causes of this condition, as well as the short-term mortality rate were determined. Prevalence of neonatal hypoglycemia was 0.4% (52 newborns). Underlying causes of hypoglycemia were prematurity (61.5%), diabetic mother (13.6%), septicemia (9.6%), perinatal asphyxia (9.6%), stress (3.8%) and neonatal hyperinsulinism (1.9%). The mortality rate was 53.8%, with prematurity as the leading cause of death.
Ambler, Geoffrey
2002-09-01
The predominant influences on fetal growth are maternal and placental factors. Post-natal growth is regulated by a complex interaction between genetic, environmental and hormonal influences. The role of the growth hormone insulin-like growth factor (GH-IGF) system is explored, including the emerging role of IGF-2 in fetal growth. Increasing understanding of the genetics of overgrowth and short stature syndromes is contributing greatly to basic understanding of growth regulation. A range of prenatal overgrowth syndromes is discussed, including those associated with neonatal hyperinsulinism and hypoglycaemia.Post-natal overgrowth may be caused by a diverse range of normal variant conditions, endocrine disorders, chromosomal abnormalities and other genetic syndromes. An approach to diagnosis is presented and major conditions discussed in detail. Sex-steroid therapy for height limitation continues to be a controversial area with uncertainty about height prediction, benefits achieved and possible long-term side-effects.
Berardinelli–Seip syndrome: highlight of treatment challenge
Ferraria, Nélia; Pedrosa, Cristina; Amaral, Daniela; Lopes, Lurdes
2013-01-01
Berardinelli–Seip congenital lipodystrophy (BSCL) syndrome is a rare autosomal-recessive disease characterised by lipoatrophy and associated with deregulations of glycidic and lipid metabolism. We report three BSCL cases with its typical clinical picture and complications. Clinically, they all show marked atrophy of adipose tissue, acromegaly, acanthosis nigricans and tall stature. Two cases present attention deficit hyperactivity and developmental learning disorders; another patient has hypertrophic myocardiopathy and polycystic ovary syndrome. In all the cases AGPAT2 was the identified mutation. All the cases present hypertriglyceridemia. One case has developed hyperinsulinism controlled with metformin and another case already has type 2 diabetes with a difficult clinical control. There is no curative treatment and the current treatment options are based only on symptomatic control of the complications. Recently, published studies showed that leptin-replacement therapy appears a promising tool in the metabolic correction of BSCL complications, highlighting the importance of further investigations in BSCL treatment. PMID:23362058
PCOS in adolescence and type 2 diabetes.
Carreau, Anne-Marie; Baillargeon, Jean-Patrice
2015-01-01
Polycystic ovary syndrome is a frequent disorder in women of reproductive age that consists of a heterogeneous combination of hyperandrogenism, chronic anovulation, and polycystic ovaries. Hyperandrogenism and anovulation are clearly linked to insulin resistance and compensatory hyperinsulinism, with an ovarian androgenic hyperresponsiveness to circulating insulin. Evidence is increasing that suggests that lipotoxicity, which is a key mechanism in the development of insulin resistance and type 2 diabetes, could also explain the androgen overproduction. During adolescence, diagnosis of polycystic ovarian syndrome (PCOS) may be difficult but is of importance because PCOS increases future risk of type 2 diabetes and metabolic complications. Metabolic perturbations begin early in adolescence and also exist in adolescent relatives of women with PCOS, even before clinical signs of PCOS. Screening for impaired glucose tolerance or type 2 diabetes is also important in this population, and treatment should focus on PCOS clinical manifestations as well as long-term metabolic risk.
De Leon, Diva D; Stanley, Charles A
2017-02-01
Hypoglycemia continues to be an important cause of morbidity in neonates and children. Prompt diagnosis and management of the underlying hypoglycemia disorder is critical for preventing brain damage and improving outcomes. Congenital hyperinsulinism (HI) is the most common and severe cause of persistent hypoglycemia in neonates and children. Recent discoveries of the genetic causes of HI have improved our understanding of the pathophysiology, but its management is complex and requires the integration of clinical, biochemical, molecular, and imaging findings to establish the appropriate treatment according to the subtype. Here we present a summary of a recent international symposium on congenital hypoglycemia disorders with emphasis on novel molecular mechanisms resulting in HI, genetic diagnosis, overall approach to management, novel therapies under development, and current outcomes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
[Hepatomegaly due to glycogen storage disease and type 1 diabetes mellitus].
Flotats Bastardas, M; Miserachs Barba, M; Ricart Cumeras, A; Clemente León, M; Gussinyer Canadell, M; Yeste Fernández, D; Albisu Aparicio, María A; Carrascosa Lezcano, A
2007-08-01
Patients with type 1 diabetes and poor metabolic control can develop hepatomegaly due to intrahepatic glycogen deposition. If these patients also have elevated liver enzymes, dyslipidemia, cushingoid features and delayed growth or sexual maturation, Mauriac syndrome can be diagnosed. This disorder is common and reversible with optimization of insulin therapy. We report three adolescents with type 1 diabetes and a long-standing history of poor glycemic control, who developed hepatomegaly, elevated liver enzymes and dyslipidemia with preserved liver function. One of these patients also had delayed growth and another had hypogonadotropic hypogonadism. Liver ultrasound showed changes suggestive of glycogenosis. In all three patients, optimization of insulin therapy achieved good glycemic control and reversed the manifestations within 2 weeks. The etiology of Mauriac syndrome is controversial since both prolonged hyperglycemia and hyperinsulinization produce glycogen accumulation in the liver. Hypercortisolism (due to ketosis or hypoglycemia) contributes to glycogen storage and also causes growth and sexual maturation delay.
The treatment of hyperinsulinemic hypoglycaemia in adults: an update.
Davi, M V; Pia, A; Guarnotta, V; Pizza, G; Colao, A; Faggiano, A
2017-01-01
Treatment of hyperinsulinemic hypoglycaemia (HH) is challenging due to the rarity of this condition and the difficulty of differential diagnosis. The aim of this article is to give an overview of the recent literature on the management of adult HH. A search for reviews, original articles, original case reports between 1995 and 2016 in PubMed using the following keywords: hyperinsulinemic hypoglycaemia, insulinoma, nesidioblastosis, gastric bypass, autoimmune hypoglycaemia, hyperinsulinism, treatment was performed. One hundred and forty articles were selected and analysed focusing on the most recent treatments of HH. New approaches to treatment of HH are available including mini-invasive surgical techniques and alternative local-regional ablative therapy for benign insulinoma and everolimus for malignant insulinoma. A correct differential diagnosis is of paramount importance to avoid unnecessary surgical operations and to implement the appropriate treatment mainly in the uncommon forms of HH, such as nesidioblastosis and autoimmune hypoglycaemia.
Christiansen, Charlotte Dahl; Petersen, Henrik; Nielsen, Anne Lerberg; Detlefsen, Sönke; Brusgaard, Klaus; Rasmussen, Lars; Melikyan, Maria; Ekström, Klas; Globa, Evgenia; Rasmussen, Annett Helleskov; Hovendal, Claus; Christesen, Henrik Thybo
2018-02-01
Focal congenital hyperinsulinism (CHI) is curable by surgery, which is why identification of the focal lesion is crucial. We aimed to determine the use of 18F-fluoro-dihydroxyphenylalanine (18F-DOPA) PET/CT vs. 68Ga-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic-acid-1-Nal3-octreotide (68Ga-DOTANOC) PET/CT as diagnostic tools in focal CHI. PET/CT scans of children with CHI admitted to Odense University Hospital between August 2005 and June 2016 were retrospectively evaluated visually and by their maximal standardized uptake values (SUV max ) by two independent examiners, blinded for clinical, surgical and pathological data. Pancreatic histology was used as the gold standard. For patients without surgery, the genetic profile served as the gold standard. Fifty-five CHI patients were examined by PET/CT (18F-DOPA n = 53, 68Ga-DOTANOC n = 18). Surgery was performed in 34 patients, no surgery in 21 patients. Fifty-one patients had a classifiable outcome, either by histology (n = 33, 22 focal lesions, 11 non-focal) or by genetics (n = 18, all non-focal). The predictive performance of 18F-DOPA PET/CT to identify focal CHI was identical by visual- and cut-off-based evaluation: sensitivity (95% CI) of 1 (0.85-1); specificity of 0.96 (0.82-0.99). The optimal 18F-DOPA PET SUV max ratio cut-off was 1.44 and the optimal 68Ga-DOTANOC PET SUV max cut-off was 6.77 g/ml. The area under the receiver operating curve was 0.98 (0.93-1) for 18F-DOPA PET vs. 0.71 (0.43-0.95) for 68Ga-DOTANOC PET (p < 0.03). In patients subjected to surgery, localization of the focal lesion was correct in 91%, and 100%, by 18F-DOPA PET/CT and 68Ga-DOTANOC PET/CT, respectively. 18F-DOPA PET/CT was excellent in predicting focal CHI and superior compared to 68Ga-DOTANOC PET/CT. Further use of 68GA-DOTANOC PET/CT in predicting focal CHI is discouraged.
Ozon, A; Demirbilek, H; Ertugrul, A; Unal, S; Gumruk, F; Kandemir, N
2010-07-01
The etiology of hyperinsulinemic hypoglycemia in adolescents is similar to that of adults. Patients resistant to medical treatment may undergo pancreatectomy. Diazoxide is the mainstay of medical treatment. Rarely bone marrow suppression is reported due to diazoxide. An adolescent with severe hyperinsulinemic hypoglycemia was referred for pancreatectomy after she was treated with high doses of diazoxide, octreotide and glucose. She developed anemia and febrile neutropenia in the course of diazoxide treatment that resolved with cessation of medication. The cause of the hyperinsulinemia proved to be classical Munchausen by proxy. This is the first report of bone marrow suppression involving erythroid series by diazoxide. Follow-up of blood count may be considered in patients on high dosages since anemia may be dose dependent. Munchausen by proxy poses a serious threat to children with significant morbidity and mortality. Awareness and a high index of suspicion in clinical settings with unusual causes are the mainstay for the diagnosis.
Pharmacotherapy for hyperglycemia in pregnancy - Do oral agents have a place?
Corcoy, Rosa; Balsells, Montserrat; García-Patterson, Apolonia; Shmueli, Anat; Hadar, Eran
2018-04-19
Diabetes is a frequent condition in pregnancy and achieving adequate glycemic control is of paramount importance. Insulin treatment is the gold standard, oral agents are more attractive, but their safety and efficiency should be a prerequisite for their use. We have more information regarding treatment of women with gestational diabetes mellitus where glyburide can induce a picture of fetal hyperinsulinism (higher birthweight and more neonatal hypoglycemia) whereas metformin requires supplemental insulin in a larger proportion of women but achieves satisfactory perinatal outcomes with the exception of preterm birth. Information in patients with Type 2 Diabetes Mellitus is much more limited but also favors metformin. Combinations provide additional possibilities. However, as to long-term outcomes, we have no information on the impact of exposure to glyburide and it is still unclear if in utero exposure to metformin will have any effect on the offspring and the direction of this effect. Women prefer oral agents, indicating the need of additional studies. Copyright © 2018 Elsevier B.V. All rights reserved.
Mechanism of hyperinsulinemia after reticuloendothelial system phagocytosis.
Filkins, J P; Yelich, M R
1982-02-01
Endocytic loading of the reticuloendothelial system (RES) results in acute hyperinsulinemia and functional hyperinsulinism. Colloidal carbon blockade of the RES in rats resulted in elevations of both portal vein and systemic serum immunoreactive insulin and increases in the hepatic portal vein insulin glucose ratios. Two mechanisms for the hyperinsulinemia were evaluated: 1) decreased removal of insulin by the postendocytic liver and 2) increased secretion of insulin by the isolated perfused pancreas. Colloidal carbon blockade did not alter removal of 125I-insulin as evaluated in the isolated perfused rat liver. Pancreases from postendocytic donor rats when perfused according to the technique of Grodsky manifested enhanced insulin secretion. Macrophage culture-conditioned media enhanced glucose-mediated insulin secretion both as assayed in vivo and in the isolated perfused rat pancreas. The data suggest that postendocytic activated macrophages secrete a monokine that alters insulin release and thus produces the hyperinsulinemia of RES blockade. The acronym MIRA for macrophage insulin-releasing activity is proposed for the monokine.
Ellorhaoui, M; Schultze, W
1977-01-15
On the basis of a survey is attempted to describe mode of development, symptomatology, individual forms and the different possibilities of therapy of the spontaneous hypoglycaemias. A particularly broad range was devoted to the cerebral sequelae, since in these cases--according to our experience--on account of simulation of neurologico-psychiatric symptoms at the soonest wrong diagnoses are to be expected. Furthermore, it is attempted to classify the hypoglycemias according to their development, in which cases their incompleteness was evident from the very beginning. The individual forms of appearance are treated according their to significance. Out of the inducible hypoglycaemias a particular attention is devoted to the forms caused by insulin and oral antidiabetics, since these most frequently participate in the development. Finally the author inquires into diagnostic measures for recognition of special forms of hypoglycaemia. In this place the diagnostics of hyperinsulinism conditioned by adenomatosis or tumours of other kinds is of particular importance. Finally conservative and operative possibilities of the therapy of these tumours are discussed,whereby the only recently tested treatment with streptotocin is mentioned.
Hypoglycaemia and hypoxic-ischaemic encephalopathy.
Boardman, James P; Hawdon, Jane M
2015-04-01
The transition from fetal to neonatal life requires metabolic adaptation to ensure that energy supply to vital organs and systems is maintained after separation from the placental circulation. Under normal conditions, this is achieved through the mobilization and use of alternative cerebral fuels (fatty acids, ketone bodies, and lactate) when blood glucose concentration falls. Severe hypoxia-ischaemia is associated with impaired metabolic adaptation, and animal and human data suggest that levels of hypoglycaemia that are tolerated under normal conditions can be harmful in association with hypoxia-ischaemia. The optimal target blood glucose level for ensuring adequate energy provision in hypoxic-ischaemic encephalopathy (HIE) remains unknown. However, recent data support guidance to maintain a blood glucose concentration of 2.5 mmol/L or more in neonates with signs of acute neurological dysfunction, which includes those with HIE, and this is higher than the accepted threshold of 2 mmol/L in infants without signs of neurological dysfunction or hyperinsulinism. © The Authors. Journal compilation © 2015 Mac Keith Press.
Chong, Jin Ho; Chandran, Suresh; Agarwal, Prathibha; Rajadurai, Victor Samuel
2013-12-18
Hyperinsulinaemic hypoglycaemia in small-for-gestational age infants usually presents in the first two postnatal days. We present a preterm, small-for-gestational age infant who had hyperinsulinaemic hypoglycaemia on day 13 of life. A female twin infant weighing 1390 g was born at 32(+6) weeks of gestation. Her glycaemic profile was normal till day 13 of life, after which she was noted to be lethargic and hypoglycaemic and had hyperinsulinism, hypoketonaemia and hypofattyacidaemia, requiring high glucose infusion rate to maintain normoglycaemia, while negative for septic markers and metabolic screen. Initially, there was no response to diazoxide and the genetic studies for ABCC8 and KCNJ11 gene mutations were negative. Delayed response to diazoxide was followed by complete resolution of hypoglycaemia in 5 months. This case highlights the importance of glucose monitoring in small-for-date infants for hypoglycaemia till they achieve full feeds and gain weight. Early recognition and appropriate management of hypoglycaemia in this group of infants have important implications for neurodevelopmental outcome.
Recognition, assessment and management of hypoglycaemia in childhood.
Ghosh, Arunabha; Banerjee, Indraneel; Morris, Andrew A M
2016-06-01
Hypoglycaemia is frequent in children and prompt management is required to prevent brain injury. In this article we will consider hypoglycaemia in children after the neonatal period. The most common causes are diabetes mellitus and idiopathic ketotic hypoglycaemia (IKH) but a number of endocrine disorders and inborn errors of metabolism (IEMs) need to be excluded. Elucidation of the diagnosis relies primarily on investigations during a hypoglycaemic episode but may also involve biochemical tests between episodes, dynamic endocrine tests and molecular genetics. Specific treatment such as cortisol replacement and pancreatic surgery may be required for endocrine causes of hypoglycaemia, such as adrenal insufficiency and congenital hyperinsulinism. In contrast, in IKH and most IEMs, hypoglycaemia is prevented by limiting the duration of fasting and maintaining a high glucose intake during illnesses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
[The metabolic effects of contraception with oestrogen-progestogen products (author's transl)].
Heim, J
1979-01-01
A synthesis has been attempted to explain the metabolic action of oestrogen-progestogens: and their action on carbohydrates, triglycerides, cholesterol, lipoproteins and coagulation has been reviewed. Carbohydrate tolerance can evolve in different ways, depending on the case. On the one hand hyperglycaemia, which is provoked by taking carbohydrates by mouth in a primitively pathological way, can be improved while on the other hand there can be diminution in carbohydrate tolerance in other cases. Two factors, however, remain constant, hyperinsulinism and resistance to insulin. There is no way of predicting how carbohydrate tolerance will behave. That is why pills that contain oestrogens and progestogens, even if they are "mini-dose" pills, are contra-indicated for women who have pancreatic diabetes. Pills with a high oestrogen content raise the triglycerides, while those which have a higher progestogen content tend to raise the blood cholesterol levels. High-density lipoprotein tends to be raised with an oestrogenic milieu and lowered with progestogens or with pills that have a strong progestogen content.
[Sex hormones and the metabolism of carbohydrates].
Boukhris, R
1987-12-01
Sex hormones play an important role in the control of glucose metabolism and insulin. Decreased glucose tolerance observed at the end of pregnancy in most cases remains within normal limits. Pregnancy has an important effect on the islets of Langerhans and on the growth of beta cellules. At the end of pregnancy, assimilation of glucose and triglycerides by maternal tissues is slowed and transfer to the fetus is favored. Hyperinsulinism persists but insulin resistance at the level of maternal tissue becomes very strong and the number of receptors declines. This late pregnancy insulin resistance has not been satisfactorily explained. The declining number of receptors may be a mechanism, or the "antiinsulin" pregnancy hormones which includes estrogens and progesterone may play a major role. Although other mechanisms have been proposed to explain the antiinsulin effect, the role of sex hormones and especially of progesterone (and synthetic progestins used in contraception) appears crucial. The presence of estrogen and progesterone receptors in the beta cellules of the islets of Langerhans suggests a direct effect of these hormones on the cellules. Estrogens however work by other mechanisms than insulin secretion. Experimental evidence indicates that during pregnancy, progesterone increases insulin release while human placental lactogen stimulates hyperplasia of the islets. The progestins derived from progesterone used in contraception have a parallel action. A slight elevation of blood sugar and insulinemia have been observed in oral contraceptive (OC) users. Only 3-5% of OC users develop true hyperglycemia. The changes are usually transitory and disappear on termination of OC use except in the small number of women predisposed to diabetes. The decreased glucose tolerance of OC users differs from true diabetes. Combined OCs favor vascular accidents and myocardial infarct in insulin-dependent diabetics. The mechanisms involved include deteriorating control of diabetes; effects on the serum lipids, coagulation factors, and blood pressure; and direct effects of estrogen on the vascular wall. Venous but not arterial vascular accidents decline with lower estrogen doses. Progestins probably play a more significant role from estrogens in decreasing glucose tolerance. Pregnanes, progestins derived from progesterone, do not appear to affect glucose tolerance. Among testosterone derivatives, the entrances decrease glucose tolerance slightly and the gonanes more strongly, also causing hyperinsulinism. But the new triphasic OCs with low levonorgestrel doses cause no significant changes in glucose tolerance even in women with histories of gestational diabetes. Long-acting progestin implants, vaginal rings, and injectables appear thus far to have minimal or no effects on glucose tolerance.
IGF-1 and insulin as growth hormones.
Laron, Zvi
2004-01-01
IGF-1 generated in the liver is the anabolic effector and linear growth promoting hormone of the pituitary growth hormone (GH). This is evidenced by dwarfism in states of congenital IGF-1 deficiency, Igf1 gene mutation/deletions or knockouts, and in Laron syndrome (LS), due to GH receptor gene mutations/deletions or IGF-1 receptor blocking. In a positive way, daily IGF-1 administration to stunted patients with LS or hGH gene deletion accelerates linear growth velocity. IGF-1 acts on the proliferative cells of the epiphyseal cartilage. IGF-1 also induces organ and tissue growth; its absence causing organomicria. Insulin shares a common ancestry with IGF-1 and with 45% amino acid homology, as well as very close relationships in the structure of its receptors and post-receptor cascade, also acts as a growth hormone. It has protein anabolic activity and stimulates IGF-1 synthesis. Pancreas agenesis causes short babies, and obese children with hyperinsulinism, with or without pituitary GH, have an accelerated growth rate and skeletal maturation; so do babies with macrosomia. Whether the insulin growth effect is direct, or mediated by IGF-1 or leptin is controversial.
Straussman, Sharon; Levitsky, Lynne L
2010-02-01
Hypoglycemia in the newborn may be associated with both acute decompensation and long-term neuronal loss. Studies of the cause of hypoglycemic brain damage and the relationship of hypoglycemia to disorders associated with hyperinsulinism have aided in our understanding of this common clinical finding. A recent consensus workshop concluded that there has been little progress toward a precise numerical definition of neonatal hypoglycemia. Nonetheless, newer brain imaging modalities have provided insight into the relationship between neuronal energy deficiency and central nervous system damage. Laboratory studies have begun to reveal the mechanism of hypoglycemic damage. In addition, there is new information about hyperinsulinemic hypoglycemia of genetic, environmental, and iatrogenic origin. The quantitative definition of hypoglycemia in the newborn remains elusive because it is a surrogate marker for central nervous system energy deficiency. Nonetheless, the recognition that hyperinsulinemic hypoglycemia, which produces profound central nervous system energy deficiency, is most likely to lead to long-term central nervous system damage, has altered management of children with hypoglycemia. In addition, imaging studies on neonates and laboratory evaluation in animal models have provided insight into the mechanism of neuronal damage.
Narayan, Srinivas B.; Master, Stephen R.; Sireci, Anthony N.; Bierl, Charlene; Stanley, Paige E.; Li, Changhong; Stanley, Charles A.; Bennett, Michael J.
2012-01-01
Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) and glutamate dehydrogenase (GDH) explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of forming functional, multi-pathway complexes. In this work, we provide evidence of SCHAD's involvement in additional interactions forming tissue-specific metabolic super complexes involving both membrane-associated and matrix-dwelling enzymes and spanning multiple metabolic pathways. As an example, in murine liver, we find SCHAD interaction with aspartate transaminase (AST) and GDH from amino acid metabolic pathways, carbamoyl phosphate synthase I (CPS-1) from ureagenesis, other fatty acid oxidation and ketogenesis enzymes and fructose-bisphosphate aldolase, an extra-mitochondrial enzyme of the glycolytic pathway. Most of the interactions appear to be independent of SCHAD's role in the penultimate step of fatty acid oxidation suggesting an organizational, structural or non-enzymatic role for the SCHAD protein. PMID:22496890
Robust regulation of hepatic pericentral amination by glutamate dehydrogenase kinetics.
Bera, Soumen; Lamba, Sanjay; Rashid, Mubasher; Sharma, Anuj K; Medvinsky, Alexander B; Acquisti, Claudia; Chakraborty, Amit; Li, Bai-Lian
2016-11-07
Impaired glutamate dehydrogenase (GDH) sensitivity to its inhibitors causes excessive insulin secretion by pancreatic beta-cells and defective ammonia metabolism in the liver. These symptoms are commonly associated with hyperinsulinism/hyperammonemia syndrome (HI/HA), which causes recurrent hypoglycaemia in early infancy. Hepatic localization of GDH amination and deamination activities linked with the urea cycle is known to be involved in ammonia metabolism and detoxification. Although deamination activities of hepatic GDH in the periportal zones of liver lobules and its connection to the urea cycle have been exhaustively investigated, physiological roles of GDH amination activity observed at pericentral zones have often been overlooked. Using kinetic modelling approaches, here we report a new role for hepatic GDH amination kinetics in maintaining ammonia homeostasis under an excess intrahepatocyte input of ammonium. We have shown that α-ketoglutarate substrate inhibition kinetics of GDH, which include both random and obligatory ordered association/dissociation reactions, robustly control the ratio between glutamate and ammonium under a wide range of intracellular substrate variation. Dysregulation of this activity under pericentral nitrogen insufficiency contributes to the breaking down of ammonia homeostasis and thereby can significantly affect HI/HA syndrome.
Vickers, M H; Reddy, S; Ikenasio, B A; Breier, B H
2001-08-01
Obesity and its related disorders are the most prevalent health problems in the Western world. Using the paradigm of fetal programming we developed a rodent model which displays the phenotype of obesity and metabolic disorders commonly observed in human populations. We apply maternal undernutrition throughout gestation, generating a nutrient-deprived intrauterine environment to induce fetal programming. Maternal undernutrition results in fetal growth retardation and in significantly decreased body weight at birth. Programmed offspring develop hyperphagia, obesity, hypertension, hyperleptinemia and hyperinsulinism during adult life and postnatal hypercaloric nutrition amplifies the metabolic abnormalities induced by fetal programming. The adipoinsular axis has been proposed as a primary candidate for linking the status of body fat mass to the function of the pancreatic beta-cells. We therefore investigated the relationship between circulating plasma concentrations of leptin and insulin and immunoreactivity in the endocrine pancreas for leptin and leptin receptor (OB-R) in genetically normal rats that were programmed to become obese during adult life. Virgin Wistar rats were time mated and randomly assigned to receive food either available ad libitum (AD group) or at 30% of the ad libitum available intake (UN group). Offspring from UN mothers were significantly smaller at birth than AD offspring (AD 6.13+/-0.04 g, UN 4.02+/-0.03 g, P<0.001). At weaning, offspring were assigned to one of two diets (a standard control diet or a hypercaloric diet consisting of 30% fat) for the remainder of the study. At the time of death (125 days of age), UN offspring had elevated (P<0.005) fasting plasma insulin (AD control 1.417+/-0.15 ng/ml, UN control 2.493+/-0.33 ng/ml, AD hypercaloric 1.70+/-0.17 ng/ml, UN hypercaloric 2.608+/-0.41 ng/ml) and leptin (AD control 8.8+/-1.6 ng/ml, UN control 14.32+/-1.9 ng/ml, AD hypercaloric 15.11+/-1.8 ng/ml, UN hypercaloric 30.18+/-5.3 ng/ml) concentrations, which were further increased (P<0.05) by postnatal hypercaloric nutrition. The elevated plasma insulin and leptin concentrations were paralleled by increased immunolabeling for leptin in the peripheral cells of the pancreatic islets. Dual immunofluorescence histochemistry for somatostatin and leptin revealed that leptin was co-localized in the pancreatic delta-cells. OB-R immunoreactivity was evenly distributed throughout the pancreatic islets and was not changed by programming nor hypercaloric nutrition. Our data suggest that reduced substrate supply during fetal development can trigger permanent dysregulation of the adipoinsular feedback system leading to hyperleptinemia, hyperinsulinism and compensatory leptin production by pancreatic delta-cells in a further attempt to reduce insulin hypersecretion in the progression to adipogenic diabetes.
Stable Liquid Glucagon: Beyond Emergency Hypoglycemia Rescue.
Wilson, Leah M; Castle, Jessica R
2018-02-01
Glycemic control is the mainstay of preventing diabetes complications at the expense of increased risk of hypoglycemia. Severe hypoglycemia negatively impacts the quality of life of patients with type 1 diabetes and can lead to morbidity and mortality. Currently available glucagon emergency kits are effective at treating hypoglycemia when correctly used, however use is complicated especially by untrained persons. Better formulations and devices for glucagon treatment of hypoglycemia are needed, specifically stable liquid glucagon. Out of the scope of this review, other potential uses of stable liquid glucagon include congenital hyperinsulinism, post-bariatric surgery hypoglycemia, and insulinoma induced hypoglycemia. In the 35 years since Food and Drug Administration (FDA) approval of the first liquid stable human recombinant insulin, we continue to wait for the glucagon counterpart. For mild hypoglycemia, a commercially available liquid stable glucagon would enable more widespread implementation of mini-dose glucagon use as well as glucagon in dual hormone closed-loop systems. This review focuses on the current and upcoming pharmaceutical uses of glucagon in the treatment of type 1 diabetes with an outlook on stable liquid glucagon preparations that will hopefully be available for use in patients in the near future.
Insulin secretion at high altitude in man
NASA Astrophysics Data System (ADS)
Sawhney, R. C.; Malhotra, A. S.; Singh, T.; Rai, R. M.; Sinha, K. C.
1986-09-01
The effect of hypoxia on circulatory levels of insulin, its response to oral glucose administration (100 g) and changes in circadian rhythms of glucose as well as insulin were evaluated in euglycemic males at sea level (SL, 220 m) during their stay at high altitude (3500 m, SJ) and in high altitude natives (HAN). Basal glucose levels were not altered at high altitude but the rise in glucose (δ glucose) after glucose load was significantly higher in SJ and HAN (p<0.01) as compared to SL values. An increase (p<0.01) both in basal as well as glucose induced rise in insulin secretion (δ insulin) was observed at HA. The rise in insulin in SJ was significantly higher (p<0.01) than in HAN. This elevation in glucose and insulin levels was also evident at different times of the day. The circadian rhythmicity of glucose as well as insulin was altered by the altitude stress. The findings of the study show a rise in insulin level at HA but the hyperglycemia in the face of hyper-insulinism require the presumption of a simultaneous and dispropotionate rise of insulin antagonistic hormones upsetting the effect of insulin on glucose metabolism.
Neonatal Hypoglycemia: A Continuing Debate in Definition and Management.
Stomnaroska-Damcevski, Orhideja; Petkovska, Elizabeta; Jancevska, Snezana; Danilovski, Dragan
2015-01-01
Neonatal hypoglycemia (NH) is one of the most common abnormalities encountered in the newborn. Maintaining glucose homeostasis is one of the important physiological events during fetal-to-neonatal transition. Transient low blood glucose concentrations are frequently encountered in the majority of healthy newborns and are the reflections of normal metabolic adaptation processes. Nevertheless, there is a great concern that prolonged or recurrent low blood glucose levels may result in long-term neurological and developmental consequences. Strikingly, it was demonstrated that the incidence and timing of low glucose concentrations in the groups most at risk for asymptomatic neonatal hypoglycemia, did not find association between repetitive low glucose concentrations and poor neurodevelopmental outcomes. On the contrary, NH due to hyperinsulinism is strongly associated with brain injury. Fundamental issue of great professional controversy is concerning the best manner to manage asymptomatic newborns NH. Both, overtreating NH and undertreating NH are poles with significant potential disadvantages. Therefore, NH is one of the most important issues in the day-to-day practice. This article appraises the critical questions of definition (widely accepted blood glucose concentration: < 2.6 mmol/l or 47 mg/dl), follow-up ad management of NH.
Ebselen Reversibly Inhibits Human Glutamate Dehydrogenase at the Catalytic Site.
Jin, Yanhong; Li, Di; Lu, Shiying; Zhao, Han; Chen, Zhao; Hou, Wei; Ruan, Benfang Helen
Human glutamate dehydrogenase (GDH) plays an important role in neurological diseases, tumor metabolism, and hyperinsulinism-hyperammonemia syndrome (HHS). However, there are very few inhibitors known for human GDH. Recently, Ebselen was reported to crosslink with Escherichia coli GDH at the active site cysteine residue (Cys321), but the sequence alignment showed that the corresponding residue is Ala329 in human GDH. To investigate whether Ebselen could be an inhibitor for human GDH, we cloned and expressed an N-terminal His-tagged human GDH in E. coli. The recombinant human GDH enzyme showed expected properties such as adenosine diphosphate activation and nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate dual recognition. Further, we developed a 2-(3-(2-methoxy-4-nitrophenyl)-2-(4-nitrophenyl)-2H-tetrazol-3-ium-5-yl) benzenesulfonate sodium salt (EZMTT)-based assay for human GDH, which was highly sensitive and is suitable for high-throughput screening for potent GDH inhibitors. In addition, ForteBio binding assays demonstrated that Ebselen is a reversible active site inhibitor for human GDH. Since Ebselen is a multifunctional organoselenium compound in Phase III clinical trials for inflammation, an Ebselen-based GDH inhibitor might be valuable for future drug discovery for HHS patients.
[Diabetes mellitus and breast cancer. A retrospective follow-up study].
Unterburger, P; Sinop, A; Noder, W; Berger, M R; Fink, M; Edler, L; Schmähl, D; Ehrhart, H
1990-02-01
The influence of diabetes mellitus on the course of breast cancer was investigated retrospectively in 752 patients. Possible unfavourable prognostic factors like overweight, lipid disorders, age and menopausal status were considered as confounders in a Cochran-Mantel-Haensel analysis. There was no difference in primary tumor status and lymph node involvement between patients with diabetes mellitus and nondiabetic patients. Diabetic patients had more often overweight, lipid disorders and were older than nondiabetic patients. Metastatic disease was highly significant correlated with primary tumor status (p less than 10(-6)) lymph node involvement (p less than 10(-10)) and diabetes mellitus (p less than 10(-5)). Overweight, lipid disorders, age and menopausal status were not correlated with metastatic disease. A possible explanation of the correlation between diabetes mellitus and metastatic disease could be hyperinsulinism in type IIB diabetes. A type IIB diabetes in most of the patients included in this study is very plausible because of the correlation between overweight, lipid disorders, old age and diabetes mellitus. This type of diabetes is characterised by a relative resistence to insulin in the target tissues and a prolonged and exceeding insulin secretion. Experimental data demonstrate that insulin stimulates the growth of breast cancer cell in vivo and in vitro.
Indirect calorimetry in obese female subjects: Factors influencing the resting metabolic rate.
Hagedorn, Theresa; Poggiogalle, Eleonora; Savina, Claudia; Coletti, Cecilia; Paolini, Maddalena; Scavone, Luciano; Neri, Barbara; Donini, Lorenzo Maria
2012-06-20
To evaluate selected factors influencing resting energy expenditure (REE) in obese female subjects. Seventy seven 61 obese Caucasian women [mean age of 52.93 ± 13.45 years, and mean body mass index (BMI) of 41.78 ± 11.54 kg/m(2)] were enrolled; measurements of resting metabolic rate (RMR) by a ventilated, open-circuit system, indirect calorimeter were performed after an overnight fast. Body composition as well as medications, physical parameters, blood samples, disease pattern, and smoking were considered. RMR was significantly associated with body weight (r = 0.732, P < 0.001), body height (r = 0.401, P = 0.008), BMI (r = 0.504, P < 0.001), waist circumference (r = 0.602, P < 0.001), mid-upper arm circumference (r = 0.417, P = 0.006), mid-upper arm muscle circumference (r = 0.344, P = 0.028), total body water (r = 0.339, P = 0.035), body temperature (r = 0.409, P = 0.007), smoking (P = 0.031), serum T4 levels (r = 0.331, P = 0.036), obstructive sleep apnoea syndrome (OSAS; P = 0.023), impaired glucose tolerance (IGT; P = 0.017) and impaired glycaemic status, including hyperinsulinism, IGT and diabetes mellitus (P = 0.003). Future research should be prompted to optimize the procedure of indirect calorimetry to achieve clinical benefits in obese subjects.
Raizen, David M; Brooks-Kayal, Amy; Steinkrauss, Linda; Tennekoon, Gihan I; Stanley, Charles A; Kelly, Andrea
2005-03-01
To describe seizure phenotypes associated with the hyperinsulinism/hyperammonemia syndrome (HI/HA), which is caused by gain of function mutations in the enzyme glutamate dehydrogenase (GDH). A retrospective review of records of 14 patients with HI/HA. Nine patients had seizures as the first symptom of HI/HA, and six had seizures in the absence of hypoglycemia. No electroencephalogram (EEG) background abnormalities were identified. In four patients, EEG recordings during seizures in the setting of normal blood glucose contained generalized epileptiform discharges. EEGs of three of these patients showed 0.5- to 2-second generalized irregular spike-and-wave discharge at 3 to 6 Hz corresponding to eye blinks, eye rolling, or staring. The EEG of the fourth patient consisted of 20 seconds of generalized regular spike-and-wave discharge at 3 Hz in the clinical context of staring and unresponsiveness. In two patients, seizure control worsened with carbamezapine or oxcarbezapine treatment. In patients with HI/HA, generalized seizures are common and can occur in the absence of hypoglycemia. The drugs carbamazepine and oxcarbazepine should be used with caution for treatment. Pathogenesis of epilepsy in these patients may be related to effects of GDH mutations in the brain, perhaps in combination with effects of recurrent hypoglycemia and chronic hyperammonemia.
The Diagnosis and Management of Hyperinsulinaemic Hypoglycaemia.
Roženková, Klára; Güemes, Maria; Shah, Pratik; Hussain, Khalid
2015-06-01
Insulin secretion from pancreatic β-cells is tightly regulated to keep fasting blood glucose concentrations within the normal range (3.5-5.5 mmol/L). Hyperinsulinaemic hypoglycaemia (HH) is a heterozygous condition in which insulin secretion becomes unregulated and its production persists despite low blood glucose levels. It is the most common cause of severe and persistent hypoglycaemia in neonates and children. The most severe and permanent forms are due to congenital hyperinsulinism (CHI). Recent advances in genetics have linked CHI to mutations in 9 genes that play a key role in regulating insulin secretion (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A and HNF1A). Histologically, CHI can be divided into 3 types; diffuse, focal and atypical. Given the biochemical nature of HH (non-ketotic), a delay in the diagnosis and management can result in irreversible brain damage. Therefore, it is essential to diagnose and treat HH promptly. Advances in molecular genetics, imaging methods (18F-DOPA PET-CT), medical therapy and surgical approach (laparoscopic surgery) have completely changed the management and improved the outcome of these children. This review provides an overview of the genetic and molecular mechanisms leading to development of HH in children. The article summarizes the current diagnostic methods and management strategies for the different types of CHI.
White, Mary; Zacharin, Margaret R; Werther, George A; Cameron, Fergus J
2016-02-01
Massive insulin overdose may be associated with unpredictable and prolonged hypoglycemia. Concerns surrounding the potential provocation of insulin release from beta cells have previously prevented the use of intravenous glucagon as an adjunct to infusion of dextrose in this situation. We describe the case of a 15-yr-old boy with type 1 diabetes mellitus (T1DM) who presented with profound hypoglycemia following an overdose of an unknown quantity of premixed insulin. Owing to an increasing dextrose requirement and a dependence on hourly intramuscular glucagon injections, a continuous intravenous infusion of glucagon was commenced which successfully avoided the requirement for central venous access or concentrated dextrose infusion. Nausea was managed with anti-emetics. Intramuscular and subcutaneous glucagon is effective in the management of refractory and severe hypoglycemia in youth with both T1DM and hyperinsulinism. Concerns regarding the precipitation of rebound hypoglycemia with the use of intravenous glucagon do not relate to those with T1DM. This treatment option may be a useful adjunct in the management of insulin overdose in youth with T1DM and may avoid the requirement for invasive central venous access placement. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Indirect calorimetry in obese female subjects: Factors influencing the resting metabolic rate
Hagedorn, Theresa; Poggiogalle, Eleonora; Savina, Claudia; Coletti, Cecilia; Paolini, Maddalena; Scavone, Luciano; Neri, Barbara; Donini, Lorenzo Maria
2012-01-01
AIM: To evaluate selected factors influencing resting energy expenditure (REE) in obese female subjects. METHODS: Seventy seven 61 obese Caucasian women [mean age of 52.93 ± 13.45 years, and mean body mass index (BMI) of 41.78 ± 11.54 kg/m2] were enrolled; measurements of resting metabolic rate (RMR) by a ventilated, open-circuit system, indirect calorimeter were performed after an overnight fast. Body composition as well as medications, physical parameters, blood samples, disease pattern, and smoking were considered. RESULTS: RMR was significantly associated with body weight (r = 0.732, P < 0.001), body height (r = 0.401, P = 0.008), BMI (r = 0.504, P < 0.001), waist circumference (r = 0.602, P < 0.001), mid-upper arm circumference (r = 0.417, P = 0.006), mid-upper arm muscle circumference (r = 0.344, P = 0.028), total body water (r = 0.339, P = 0.035), body temperature (r = 0.409, P = 0.007), smoking (P = 0.031), serum T4 levels (r = 0.331, P = 0.036), obstructive sleep apnoea syndrome (OSAS; P = 0.023), impaired glucose tolerance (IGT; P = 0.017) and impaired glycaemic status, including hyperinsulinism, IGT and diabetes mellitus (P = 0.003). CONCLUSION: Future research should be prompted to optimize the procedure of indirect calorimetry to achieve clinical benefits in obese subjects. PMID:24520534
The Measurement of Ammonia in Human Breath and its Potential in Clinical Diagnostics.
Brannelly, N T; Hamilton-Shield, J P; Killard, A J
2016-11-01
Ammonia is an important component of metabolism and is involved in many physiological processes. During normal physiology, levels of blood ammonia are between 11 and 50 µM. Elevated blood ammonia levels are associated with a variety of pathological conditions such as liver and kidney dysfunction, Reye's syndrome and a variety of inborn errors of metabolism including urea cycle disorders (UCD), organic acidaemias and hyperinsulinism/hyperammonaemia syndrome in which ammonia may reach levels in excess of 1 mM. It is highly neurotoxic and so effective measurement is critical for assessing and monitoring disease severity and treatment. Ammonia is also a potential biomarker in exercise physiology and studies of drug metabolism. Current ammonia testing is based on blood sampling, which is inconvenient and can be subject to significant analytical errors due to the quality of the sample draw, its handling and preparation for analysis. Blood ammonia is in gaseous equilibrium with the lungs. Recent research has demonstrated the potential use of breath ammonia as a non-invasive means of measuring systemic ammonia. This requires measurement of ammonia in real breath samples with associated temperature, humidity and gas characteristics at concentrations between 50 and several thousand parts per billion. This review explores the diagnostic applications of ammonia measurement and the impact that the move from blood to breath analysis could have on how these processes and diseases are studied and managed.
Limesand, Sean W; Rozance, Paul J
2017-08-01
Placental insufficiency and intrauterine growth restriction (IUGR) of the fetus affects approximately 8% of all pregnancies and is associated with short- and long-term disturbances in metabolism. In pregnant sheep, experimental models with a small, defective placenta that restricts delivery of nutrients and oxygen to the fetus result in IUGR. Low blood oxygen concentrations increase fetal plasma catecholamine concentrations, which lower fetal insulin concentrations. All of these observations in sheep models with placental insufficiency are consistent with cases of human IUGR. We propose that sustained high catecholamine concentrations observed in the IUGR fetus produce developmental adaptations in pancreatic β-cells that impair fetal insulin secretion. Experimental evidence supporting this hypothesis shows that chronic elevation in circulating catecholamines in IUGR fetuses persistently inhibits insulin concentrations and secretion. Elevated catecholamines also allow for maintenance of a normal fetal basal metabolic rate despite low fetal insulin and glucose concentrations while suppressing fetal growth. Importantly, a compensatory augmentation in insulin secretion occurs following inhibition or cessation of catecholamine signalling in IUGR fetuses. This finding has been replicated in normally grown sheep fetuses following a 7-day noradrenaline (norepinephrine) infusion. Together, these programmed effects will potentially create an imbalance between insulin secretion and insulin-stimulated glucose utilization in the neonate which probably explains the transient hyperinsulinism and hypoglycaemia in some IUGR infants. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Cardiovascular disease risk in young Indian women with polycystic ovary syndrome.
Guleria, A K; Syal, S K; Kapoor, A; Kumar, S; Tiwari, P; Dabadghao, P
2014-01-01
Polycystic ovary syndrome (PCOS) is associated with significant risk factors for cardiovascular disease (CVD) like insulin resistance, hyperinsulinism, hypertension and dyslipidemia. We studied CVD risk in young women (18-35 years age) with PCOS using carotid intima media thickness (CIMT) and brachial artery flow mediated dilation (FMD) which are markers of subclinical atherosclerosis. Fifty women with PCOS (age: 24.3 ± 4 years; body mass index [BMI]: 24.6 ± 4 kg/m(2)) were compared with 50 age and BMI matched healthy controls (age: 24.6 ± 5 years; BMI: 23.9 ± 4 kg/m(2)). CIMT was significantly higher (0.55 ± 0.09 mm versus 0.40 ± 0.1 mm, p value <0.0001) and FMD was significantly lower (9.39 ± 4.36% versus 13.89 ± 4.77%, p value <0.0001) in cases as compared to controls. These differences in CIMT and FMD remained significant when subgroup were analyzed, obese PCOS versus obese controls and non obese PCOS versus non-obese controls. In stepwise linear regression PCOS was associated with CIMT and FMD independent of age, BMI and blood pressure. Young women with PCOS irrespective of their BMI have evidence for increased CVD risk as shown by increased CIMT and a lower FMD.
Simon, Dominique; Lucidarme, Nadine; Prieur, Anne-Marie; Ruiz, Jean Charles; Czernichow, Paul
2003-11-01
Decreased growth velocity and abnormal body composition including severe osteoporosis are common in glucocorticoid-treated patients with juvenile idiopathic arthritis (JIA). We evaluated the effects of recombinant human growth hormone (GH) given for 3 years on growth velocity, height standard deviation score (SDS), and body composition, together with potential adverse effects on glucose tolerance. Thirteen patients received GH (0.46 mg/kg/week) for 3 years. Body composition was assessed by dual-energy x-ray absorptiometry and glucose tolerance by annual oral glucose tolerance tests. Median growth velocity increased from 2.1 to 6.0 cm/year (p = 0.002) in the first year and remained higher than baseline in the second year of treatment. Height SDS did not change significantly (-4.6 SDS at baseline vs -4.3 SDS at study completion), but the growth response varied markedly across patients. Compared with baseline, lean mass increased by 33%, fat mass remained stable, and lumbar bone mineral density increased by 36.6%. Transient glucose intolerance developed in 6 patients, but glycosylated hemoglobin concentrations did not change significantly and diabetes mellitus did not occur. Treatment with GH restored linear growth without inducing catch-up growth, significantly improved body composition, and prevented further bone loss. Prolonged followup is needed to assess the benefits of GH and longterm consequences of hyperinsulinism.
The Diagnosis and Management of Hyperinsulinaemic Hypoglycaemia
Roženková, Klára; Güemes, Maria; Shah, Pratik; Hussain, Khalid
2015-01-01
Insulin secretion from pancreatic β-cells is tightly regulated to keep fasting blood glucose concentrations within the normal range (3.5-5.5 mmol/L). Hyperinsulinaemic hypoglycaemia (HH) is a heterozygous condition in which insulin secretion becomes unregulated and its production persists despite low blood glucose levels. It is the most common cause of severe and persistent hypoglycaemia in neonates and children. The most severe and permanent forms are due to congenital hyperinsulinism (CHI). Recent advances in genetics have linked CHI to mutations in 9 genes that play a key role in regulating insulin secretion (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, UCP2, HNF4A and HNF1A). Histologically, CHI can be divided into 3 types; diffuse, focal and atypical. Given the biochemical nature of HH (non-ketotic), a delay in the diagnosis and management can result in irreversible brain damage. Therefore, it is essential to diagnose and treat HH promptly. Advances in molecular genetics, imaging methods (18F-DOPA PET-CT), medical therapy and surgical approach (laparoscopic surgery) have completely changed the management and improved the outcome of these children. This review provides an overview of the genetic and molecular mechanisms leading to development of HH in children. The article summarizes the current diagnostic methods and management strategies for the different types of CHI. PMID:26316429
Presence of diabetes risk factors in a large U.S. eighth-grade cohort.
Baranowski, T; Cooper, D M; Harrell, J; Hirst, K; Kaufman, F R; Goran, M; Resnicow, K
2006-02-01
The study was conducted in 12 middle schools to determine the prevalence of diabetes, pre-diabetes, and diabetes risk factors in eighth-grade students who were predominantly minority and evaluate the feasibility of collecting physical and laboratory data in schools. Anthropometric measurements and fasting and 2-h post-glucose load blood draws were obtained from approximately 1,740 eighth-grade students. Mean recruitment rate was 50% per school, 49% had BMI > or = 85th percentile, 40.5% had fasting glucose > or = 100 mg/dl, 0.4% had fasting glucose > or = 126 mg/dl, and 2.0% had 2-h glucose > or = 140 mg/dl and 0.1% > or = 200 mg/dl. Mean fasting insulin value was 30.1 microU/ml, 36.2% had fasting insulin > or = 30 microU/ml, and 2-h mean insulin was 102.1 microU/ml. Fasting and 2-h glucose and insulin values increased across BMI percentiles, and fasting glucose was highest in Hispanic and Native American students. There was a high prevalence of risk factors for diabetes, including impaired fasting glucose (> or =100 mg/dl), hyperinsulinism suggestive of insulin resistance (fasting insulin > or = 30 microU/ml), and BMI > or = 85th percentile. These data suggest that middle schools are appropriate targets for population-based efforts to decrease overweight and diabetes risk.
Familial juvenile autoimmune hypothyroidism, pituitary enlargement, obesity, and insulin resistance.
Reutrakul, Sirimon; Hathout, Eba H; Janner, Donald; Hara, Manami; Donfack, Joseph; Bass, Joseph; Refetoff, Samuel
2004-04-01
The proband, a 9-year-old Hispanic female, presented with hair loss, strabismus, and weight gain. On magnetic resonance imaging (MRI) she was found to have severe primary hypothyroidism and a large pituitary mass. In addition, acanthosis nigricans, obesity, and hyperinsulinism were observed. Findings were similar in three of four siblings. Thyroid peroxidase antibodies were detected in the father and three of four siblings. Although all family members were obese, and hyperinsulinemia with high proinsulin and C-peptide was found in all except one sibling, only the mother and one child had overt type 2 diabetes mellitus. Because of the unusual association of autoimmune thyroid disease, insulin resistance and obesity rather than insulin deficiency, we searched for possible genetic abnormalities. The HLA haplotypes did not cosegregate with autoimmune thyroid disease or insulin resistance. Mutational analysis of known obesity genes was done. Leptin was not deficient, and sequencing of the proband's DNA showed no mutations in the perixisome proliferator activated receptor (PPAR)-gamma, PPAR-gamma(2), PPAR-alpha or melanocortin 4 receptor genes. Maternally inherited diabetes and deafness was ruled out since no mutations were found in mitochondria DNA. Insulin receptor antibodies were not detected. In conclusion, the remarkably high incidence of childhood autoimmune hypothyroidism, pituitary enlargement, insulin resistance and obesity in this family is not linked to known HLA types or known gene defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ming; Smith, Christopher J.; Walker, Matthew T.
Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate using NAD(P){sup +} as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently discovered hyperinsulinism/hyperammonemia disorder showed that the loss of allosteric inhibition of GDH by GTP causes excessive secretion of insulin. Subsequent studies demonstrated that wild-type and hyperinsulinemia/hyperammonemia forms of GDH are inhibited by the green tea polyphenols, epigallocatechin gallate and epicatechin gallate. This was followed by high throughput studies that identified more stable inhibitors, including hexachlorophene, GW5074, and bithionol. Shownmore » here are the structures of GDH complexed with these three compounds. Hexachlorophene forms a ring around the internal cavity in GDH through aromatic stacking interactions between the drug and GDH as well as between the drug molecules themselves. In contrast, GW5074 and bithionol both bind as pairs of stacked compounds at hexameric 2-fold axes between the dimers of subunits. The internal core of GDH contracts when the catalytic cleft closes during enzymatic turnover. None of the drugs cause conformational changes in the contact residues, but all bind to key interfaces involved in this contraction process. Therefore, it seems likely that the drugs inhibit enzymatic turnover by inhibiting this transition. Indeed, this expansion/contraction process may play a major role in the inter-subunit communication and allosteric regulation observed in GDH.« less
Lormeau, B; Aurousseau, M H; Valensi, P; Paries, J; Attali, J R
1997-09-01
A defect in the fibrinolytic system results from an increase in type 1 plasminogen activator inhibitor (PAI-1) in diabetes. It can be considered an independent risk factor for the development of cardiovascular disease. In obese and type II diabetic patients, plasma PAI-1 level correlates with fasting insulinemia. However, during the euglycemic clamp, acute hyperinsulinemia does not increase PAI-1 production. The present study was undertaken to investigate the effect of optimized glycemic control by continuous subcutaneous insulin infusion (CSII) on the hypofibrinolytic state for 14 days in 16 type II diabetic patients with poor metabolic control despite maximal oral antidiabetic treatment. Plasma PAI-1 activity levels decreased from 13.38 +/- 2.85 IU/mL to 6.77 +/- 1.81 IU/mL (P = .002) during CSII, along with a concurrent improvement in insulin sensitivity (index obtained by basal glycemia-nadir glycemia/basal glycemia) during the insulin sensitivity test (0.121 +/- 0.03 v 0.057 +/- 0.02, P = .02). These results suggest that insulin resistance rather than hyperinsulinism may be involved in the hypofibrinolytic state in type II diabetic patients. The positive correlation between the changes in triglycerides and in PAI-1 activity (r = .589, P = .026) strongly suggests a role for triglycerides in the impairment of fibrinolysis, which could be a link between insulin resistance and hypofibrinolysis.
Meintjes, Marguerite; Endozo, Raymond; Dickson, John; Erlandsson, Kjel; Hussain, Khalid; Townsend, Caroline; Menezes, Leon; Bomanji, Jamshed
2013-06-01
Congenital hyperinsulinism (CHI) is the most common cause of persistent hypoglycaemia in infants and children. Histologically, there are two subgroups, diffuse and focal. The aim of this study was to evaluate the accuracy of (18)F-fluoro-L-dihydroxyphenylalanine ((18)F-DOPA) PET/computed tomography (CT) and contrast-enhanced CT in distinguishing between focal and diffuse lesions in infants with CHI who are unresponsive to medical therapy. In addition, this paper describes the detailed protocol used for imaging and analysis of (18)F-DOPA PET/CT images in our clinical practice. Twenty-two (18)F-DOPA PET/CT and contrast-enhanced CT imaging studies were carried out on 18 consecutive patients (nine boys and nine girls) with CHI (median age, 2 years and 1 month; range, 1-84 months) who had positive dominant ABCC8 mutation genetic results or negative ABCC8/t results but did not respond to first-line medical therapy with high-dose diazoxide. (18)F-DOPA was produced by the cyclotron unit of Woolfson Molecular Imaging Centre, Manchester, and transported to our centre in central London after synthesis and implementation of quality control measures. (18)F-DOPA was administered intravenously at a dose of 4 MBq/kg, and iodine contrast medium was injected intravenously at a dose of 1.5 ml/kg. Single bed position PET/CT images of the pancreas were acquired under light sedation with oral chloral hydrate. Four PET dynamic data acquisition scans were taken 20, 40, 50 and 60 min after injection for a duration of 10 min each. The results were assessed by visual interpretation and quantitative measurements of standardized uptake values (SUVs) in the head, body, and tail of the pancreas. Of the 18 patients, 13 showed diffuse and five showed focal (18)F-DOPA PET pancreatic uptake. Three regions of interest were drawn over the head, body and tail of the pancreas to calculate the SUV(max). Using the formula - highest SUV(max)/next highest SUV(max) - a ratio was calculated. Five patients had an accumulation of F-DOPA in the pancreas and an SUV ratio greater than 1.5, indicating focal disease with an SUV(max) more than 50% higher than that of the unaffected areas of the pancreas. The remaining 13 patients had diffuse accumulation of (18)F-DOPA in the pancreas (SUV ratio<1.3). Using this ratio, a focal lesion can be distinguished from diffuse uptake and normal pancreatic uptake. The sizes of these regions of interest varied according to the age of the child. All patients diagnosed with focal lesions underwent surgery and were cured eventually. Lesions were accurately localized by PET/CT and confirmed by histological results after surgery. Three of these patients had to undergo second (18)F-DOPA scans and second surgeries after unsuccessful excision during their first surgery. Three patients with diffuse disease underwent a partial pancreatectomy, and histological results confirmed diffuse disease. One patient was cured and two remain on high-dose diazoxide therapy because of persistent hypoglycaemia. (18)F-DOPA PET/CT offers excellent differentiation of focal from diffuse CHI, and the contrast-enhanced CT technique permits precise preoperative localization of the lesion and anatomical landmarks.
Hypopituitarism in a patient with Beckwith-Wiedemann syndrome due to hypomethylation of KvDMR1.
Baiocchi, Michela; Yousuf, Fatimah Sireen; Hussain, Khalid
2014-04-01
Beckwith-Wiedemann syndrome (BWS) is caused by dysregulation of imprinted genes on chromosome 11.p15.5. The syndrome includes overgrowth, macroglossia, organomegaly, abdominal wall defects, hypoglycemia, and long-term malignancy risk. No patient who has BWS has been reported with hypopituitarism. We describe a patient who presented at birth with macrosomia, macroglossia, respiratory distress, jaundice, and hypoglycemia, and who was followed for 4.5 years. Genetic test for BWS was performed, which detected loss of maternal methylation on region KvDMR1 (11p15.5). The hypoglycemia was attributable to hyperinsulinism and was treated with diazoxide and chlorothiazide. She responded well, but the hypoglycemia returned after reducing the diazoxide. It was possible to stop the diazoxide after 2.5 years. On routine follow-up she was noted to be developing short stature. Baseline pituitary and growth hormone (GH) stimulation tests detected GH deficiency and secondary hypothyroidism. A brain MRI showed a small anterior pituitary gland. Thereafter, thyroxine and replacement therapy with GH were started, which resulted in a remarkable improvement in growth velocity. This is the first patient to be reported as having hypopituitarism and BWS. It is unclear if the BWS and the hypopituitarism are somehow connected; however, further investigations are necessary. Hypopituitarism explains the protracted hypoglycemia and the short stature. In our patient, GH therapy seems to be safe, but strict follow-up is required given the increased cancer risk related to BWS.
Body fat distribution, serum glucose, lipid and insulin response to meals in Alström syndrome.
Paisey, R B; Hodge, D; Williams, K
2008-06-01
Alström syndrome is an autosomal recessive condition characterized by obesity, insulin resistance and hypertriglyceridaemia. Responses to fat and carbohydrate ingestion are important in planning dietetic advice and may help to explain the mechanism of metabolic disorder in the syndrome. After a 12-h fast, five Alström subjects received a 3.1 MJ (742 kcal), 75.8% fat breakfast on day 1, and a 3.3 MJ (794 kcal), 77.5% carbohydrate breakfast on day 2. Serum glucose, triglyceride and insulin levels were measured at baseline, and 2 and 3.5 h post-meal. Abdominal computerized tomography in three subjects and magnetic resonance imaging in one demonstrated distribution of abdominal fat. Body fat was distributed subcutaneously, as well as viscerally. There were no changes in serum glucose, insulin or triglycerides after the high fat meal. Triglycerides remained stable after the high carbohydrate meal but glucose and log insulin levels increased [8.4 +/- 4.1 to 13.4 +/- 6.9 mmol L(-1) (P < 0.05) and 2.6 +/- 0.27 to 3.15 +/- 0.42 pmol L(-1) (P < 0.05), respectively]. Dietetic advice in Alström syndrome must include calorie restriction to reduce obesity, which is predominantly subcutaneous. This study has shown that low carbohydrate advice may prove more effective than fat restriction in control of hyperglycaemia and hyperinsulinism. A single high energy meal does not exacerbate hypertriglyceridaemia.
Ebselen: Mechanisms of Glutamate Dehydrogenase and Glutaminase Enzyme Inhibition.
Yu, Yan; Jin, Yanhong; Zhou, Jie; Ruan, Haoqiang; Zhao, Han; Lu, Shiying; Zhang, Yue; Li, Di; Ji, Xiaoyun; Ruan, Benfang Helen
2017-12-15
Ebselen modulates target proteins through redox reactions with selenocysteine/cysteine residues, or through binding to the zinc finger domains. However, a recent contradiction in ebselen inhibition of kidney type glutaminase (KGA) stimulated our interest in investigating its inhibition mechanism with glutamate dehydrogenase (GDH), KGA, thioredoxin reductase (TrxR), and glutathione S-transferase. Fluorescein- or biotin-labeled ebselen derivatives were synthesized for mechanistic analyses. Biomolecular interaction analyses showed that only GDH, KGA, and TrxR proteins can bind to the ebselen derivative, and the binding to GDH and KGA could be competed off by glutamine or glutamate. From the gel shift assays, the fluorescein-labeled ebselen derivative could co-migrate with hexameric GDH and monomeric/dimeric TrxR in a dose-dependent manner; it also co-migrated with KGA but disrupted the tetrameric form of the KGA enzyme at a high compound concentration. Further proteomic analysis demonstrated that the ebselen derivative could cross-link with proteins through a specific cysteine at the active site of GDH and TrxR proteins, but for KGA protein, the binding site is at the N-terminal appendix domain outside of the catalytic domain, which might explain why ebselen is not a potent KGA enzyme inhibitor in functional assays. In conclusion, ebselen could inhibit enzyme activity by binding to the catalytic domain or disruption of the protein complex. In addition, ebselen is a relatively potent selective GDH inhibitor that might provide potential therapeutic opportunities for hyperinsulinism-hyperammonemia syndrome patients who have the mutational loss of GTP inhibition.
Type 2 diabetes mellitus as a disorder of galanin resistance.
Fang, Penghua; Shi, Mingyi; Zhu, Yan; Bo, Ping; Zhang, Zhenwen
2016-01-01
The increasing prevalence of type 2 diabetes mellitus with its high morbidity and mortality becomes an important health problem. The multifactorial etiology of type 2 diabetes mellitus is relative to many gene and molecule alterations, and increased insulin resistance. Besides these, however, there are still other predisposing and risk factors accounting for type 2 diabetes mellitus not to be identified and recognized. Emerging evidence indicated that defects in galanin function played a crucial role in development of type 2 diabetes mellitus. Galanin homeostasis is tightly relative to insulin resistance and is regulated by blood glucose. Hyperglycemia, hyperinsulinism, enhanced plasma galanin levels and decreased galanin receptor activities are some of the characters of type 2 diabetes mellitus. The discrepancy between high insulin level and low glucose handling is named as insulin resistance. Similarly, the discrepancy between high galanin level and low glucose handling may be denominated as galanin resistance too. In this review, the characteristic milestones of type 2 diabetes mellitus were condensed as two analogical conceptual models, obesity-hyper-insulin-insulin resistance-type 2 diabetes mellitus and obesity-hyper-galanin-galanin resistance-type 2 diabetes mellitus. Both galanin resistance and insulin resistance are correlative with each other. Conceptualizing the etiology of type 2 diabetes mellitus as a disorder of galanin resistance may inspire a new concept to deepen our knowledge about pathogenesis of type 2 diabetes mellitus, eventually leading to novel preventive and therapeutic interventions for type 2 diabetes mellitus. Copyright © 2015 Elsevier Inc. All rights reserved.
Azzopardi, Peter; Brown, Alex D; Zimmet, Paul; Fahy, Rose E; Dent, Glynis A; Kelly, Martin J; Kranzusch, Kira; Maple-Brown, Louise J; Nossar, Victor; Silink, Martin; Sinha, Ashim K; Stone, Monique L; Wren, Sarah J
2012-07-02
The burden of type 2 diabetes mellitus (T2DM) among Indigenous children and adolescents is much greater than in non-Indigenous young people and appears to be rising, although data on epidemiology and complications are limited. Young Indigenous people living in remote areas appear to be at excess risk of T2DM. Most young Indigenous people with T2DM are asymptomatic at diagnosis and typically have a family history of T2DM, are overweight or obese and may have signs of hyperinsulinism such as acanthosis nigricans. Onset is usually during early adolescence. Barriers to addressing T2DM in young Indigenous people living in rural and remote settings relate to health service access, demographics, socioeconomic factors, cultural factors, and limited resources at individual and health service levels. We recommend screening for T2DM for any Aboriginal or Torres Strait Islander person aged > 10 years (or past the onset of puberty) who is overweight or obese, has a positive family history of diabetes, has signs of insulin resistance, has dyslipidaemia, has received psychotropic therapy, or has been exposed to diabetes in utero. Individualised management plans should include identification of risk factors, complications, behavioural factors and treatment targets, and should take into account psychosocial factors which may influence health care interaction, treatment success and clinical outcomes. Preventive strategies, including lifestyle modification, need to play a dominant role in tackling T2DM in young Indigenous people.
Vieira, Teresa C; Bergamin, Carla S; Gurgel, Lucimary C; Moisés, Regina S
2010-11-01
Congenital hyperinsulinism of infancy (CHI) is the most common cause of hypoglycemia in newborns and infants. Several molecular mechanisms are involved in the development of CHI, but the most common genetic defects are inactivating mutations of the ABCC8 or KCNJ11 genes. The classical treatment for CHI has been pancreatectomy that eventually leads to diabetes. More recently, conservative treatment has been attempted in some cases, with encouraging results. Whether or not the patients with heterozygous ABCC8 mutations submitted to conservative treatment may spontaneously develop type 2 diabetes in the long run, is a controversial issue. Here, we report a family carrying the dominant heterozygous germ line E1506K mutation in ABCC8 associated with persistent hypoglycemia in the newborn period and diabetes in adulthood. The mutation occurred as a de novo germ line mutation in the mother of the index patient. Her hypoglycemic symptoms as a child occurred after the fourth year of life and were very mild, but she developed glucose metabolism impairment in adulthood. On the other hand, in her daughter, the clinical manifestations of the disease occurred in the neonatal period and were more severe, leading to episodes of tonic-clonic seizures that were well controlled with octreotide or diazoxide. Our data corroborate the hypothesis that the dominant E1506K ABCC8 mutation, responsible for CHI, predisposes to the development of glucose intolerance and diabetes later in life. © 2009 John Wiley & Sons A/S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Changhong; Li, Ming; Chen, Pan
Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and, in animals, is extensively regulated by a number of metabolites. Gain of function mutations in GDH that abrogate GTP inhibition cause the hyperinsulinism/hyperammonemia syndrome (HHS), resulting in increased pancreatic {beta}-cell responsiveness to leucine and susceptibility to hypoglycemia following high protein meals. We have previously shown that two of the polyphenols from green tea (epigallocatechin gallate (EGCG) and epicatechin gallate (ECG)) inhibit GDH in vitro and that EGCG blocks GDH-mediated insulin secretion in wild type rat islets. Using structural and site-directed mutagenesis studies, we demonstrate that ECG binds to the samemore » site as the allosteric regulator, ADP. Perifusion assays using pancreatic islets from transgenic mice expressing a human HHS form of GDH demonstrate that the hyperresponse to glutamine caused by dysregulated GDH is blocked by the addition of EGCG. As observed in HHS patients, these transgenic mice are hypersensitive to amino acid feeding, and this is abrogated by oral administration of EGCG prior to challenge. Finally, the low basal blood glucose level in the HHS mouse model is improved upon chronic administration of EGCG. These results suggest that this common natural product or some derivative thereof may prove useful in controlling this genetic disorder. Of broader clinical implication is that other groups have shown that restriction of glutamine catabolism via these GDH inhibitors can be useful in treating various tumors. This HHS transgenic mouse model offers a highly useful means to test these agents in vivo.« less
Controversies in gestational diabetes.
Nolan, Christopher J
2011-02-01
Gestational diabetes mellitus (GDM) and controversy are old friends. However, several major studies in the field have clarified some of the main issues. There is now no doubt that hyperglycaemia, at levels less than those that occur in overt diabetes, is associated with adverse pregnancy outcomes, such as large-for-gestational age infants, neonatal hyperinsulinism, neonatal hypoglycaemia and pre-eclampsia. We also have evidence now that a standard approach to GDM with diagnosis at 24-28 weeks, dietary advice, self-monitoring of blood glucose and insulin therapy as needed reduces these adverse perinatal outcomes. Unknown, however, is if this same approach is effective at reducing long-term risks of metabolic syndrome, type 2 diabetes and cardiovascular disease in both the mothers and babies. For example, could our management strategies miss critical time points of fuel-mediated injury to the foetus important for the baby's long-term metabolic health? The implications of a recent international consensus statement on new diagnostic criteria for GDM are discussed, as well as issues relating to the timing of diagnosis. The potential place for a risk calculator for adverse outcomes in GDM pregnancy that takes into account glycaemic and non-glycaemic risk factors is considered. Such a tool could help stratify GDM women to different levels of care. Ongoing issues relating to maternal glycaemic and foetal growth targets, and the use of oral hypoglycaemic agents in GDM are discussed. To resolve some of the remaining controversies, further carefully designed randomised controlled trials in GDM with long-term follow-up of both mothers and babies are necessary. Copyright © 2010 Elsevier Ltd. All rights reserved.
Association of exercise-induced hyperinsulinaemic hypoglycaemia with MCT1-expressing insulinoma.
Marquard, J; Welters, A; Buschmann, T; Barthlen, W; Vogelgesang, S; Klee, D; Krausch, M; Raffel, A; Otter, S; Piemonti, L; Mayatepek, E; Otonkoski, T; Lammert, E; Meissner, T
2013-01-01
Exercise-induced hyperinsulinism (EIHI) is a hypoglycaemic disorder characterised by inappropriate insulin secretion following anaerobic exercise or pyruvate load. Activating promoter mutations in the MCT1 gene (also known as SCLA16A1), coding for monocarboxylate transporter 1 (MCT1), were shown to associate with EIHI. Recently, transgenic Mct1 expression in pancreatic beta cells was shown to introduce EIHI symptoms in mice. To date, MCT1 has not been demonstrated in insulin-producing cells from an EIHI patient. In vivo insulin secretion was studied during an exercise test before and after the resection of an insulinoma. The presence of MCT1 was analysed using immunohistochemistry followed by laser scanning microscopy, western blot analysis and real-time RT-PCR of MCT1. The presence of MCT1 protein was analysed in four additional insulinoma patients. Clinical testing revealed massive insulin secretion induced by anaerobic exercise preoperatively, but not postoperatively. MCT1 protein was not detected in the patient's normal islets. In contrast, immunoreactivity was clearly observed in the insulinoma tissue. Western blot analysis and real-time RT-PCR showed a four- to fivefold increase in MCT1 in the insulinoma tissue of the EIHI patient compared with human pancreatic islets. MCT1 protein was detected in three of four additional insulinomas. We show for the first time that an MCT1-expressing insulinoma was associated with EIHI and that MCT1 might be present in most insulinomas. Our data suggest that MCT1 expression in human insulin-producing cells can lead to EIHI and warrant further studies on the role of MCT1 in human insulinoma patients.
Uncoupling of Secretion From Growth in Some Hormone Secretory Tissues
2014-01-01
Context: Most syndromes with benign primary excess of a hormone show positive coupling of hormone secretion to size or proliferation in the affected hormone secretory tissue. Syndromes that lack this coupling seem rare and have not been examined for unifying features among each other. Evidence Acquisition: Selected clinical and basic features were analyzed from original reports and reviews. We examined indices of excess secretion of a hormone and indices of size of secretory tissue within the following three syndromes, each suggestive of uncoupling between these two indices: familial hypocalciuric hypercalcemia, congenital diazoxide-resistant hyperinsulinism, and congenital primary hyperaldosteronism type III (with G151E mutation of the KCNJ5 gene). Evidence Synthesis: Some unifying features among the three syndromes were different from features present among common tumors secreting the same hormone. The unifying and distinguishing features included: 1) expression of hormone excess as early as the first days of life; 2) normal size of tissue that oversecretes a hormone; 3) diffuse histologic expression in the hormonal tissue; 4) resistance to treatment by subtotal ablation of the hormone-secreting tissue; 5) causation by a germline mutation; 6) low potential of the same mutation to cause a tumor by somatic mutation; and 7) expression of the mutated molecule in a pathway between sensing of a serum metabolite and secretion of hormone regulating that metabolite. Conclusion: Some shared clinical and basic features of uncoupling of secretion from size in a hormonal tissue characterize three uncommon states of hormone excess. These features differ importantly from features of common hormonal neoplasm of that tissue. PMID:25004249
Martin, Gregory M.; Rex, Emily A.; Devaraneni, Prasanna; Denton, Jerod S.; Boodhansingh, Kara E.; DeLeon, Diva D.; Stanley, Charles A.; Shyng, Show-Ling
2016-01-01
ATP-sensitive potassium (KATP) channels play a key role in mediating glucose-stimulated insulin secretion by coupling metabolic signals to β-cell membrane potential. Loss of KATP channel function due to mutations in ABCC8 or KCNJ11, genes encoding the sulfonylurea receptor 1 (SUR1) or the inwardly rectifying potassium channel Kir6.2, respectively, results in congenital hyperinsulinism. Many SUR1 mutations prevent trafficking of channel proteins from the endoplasmic reticulum to the cell surface. Channel inhibitors, including sulfonylureas and carbamazepine, have been shown to correct channel trafficking defects. In the present study, we identified 13 novel SUR1 mutations that cause channel trafficking defects, the majority of which are amenable to pharmacological rescue by glibenclamide and carbamazepine. By contrast, none of the mutant channels were rescued by KATP channel openers. Cross-linking experiments showed that KATP channel inhibitors promoted interactions between the N terminus of Kir6.2 and SUR1, whereas channel openers did not, suggesting the inhibitors enhance intersubunit interactions to overcome channel biogenesis and trafficking defects. Functional studies of rescued mutant channels indicate that most mutants rescued to the cell surface exhibited WT-like sensitivity to ATP, MgADP, and diazoxide. In intact cells, recovery of channel function upon trafficking rescue by reversible sulfonylureas or carbamazepine was facilitated by the KATP channel opener diazoxide. Our study expands the list of KATP channel trafficking mutations whose function can be recovered by pharmacological ligands and provides further insight into the structural mechanism by which channel inhibitors correct channel biogenesis and trafficking defects. PMID:27573238
Jagadeb, Manaswini; Konkimalla, V Badireenath; Das, Rohit Pritam
2014-01-01
Among all serious diseases globally, diabetes (type 1 and type 2) still poses a major challenge to the world population. Several target proteins have been identified, and the etiology causing diabetes has been reasonably well studied. But, there is still a gap in deciding on the choice of a drug, especially when the target is mutated. Mutations in the KCNJ11 gene, encoding the kir6.2 channel, are reported to be associated with congenital hyperinsulinism, having a major impact in causing type 1 diabetes, and due to the lack of its 3D structure, an attempt has been made to predict the structure of kir6.2, applying fold recognition methods. The current work is intended to investigate the affinity of four phytochemicals namely, curcumin (Curcuma longa), genistein (Genista tinctoria), piperine (Piper nigrum), and pterostilbene (Vitis vinifera) in a normal as well as in a mutant kir6.2 model by adopting a molecular docking methodology. The phytochemicals were docked in both wild and mutated kir6.2 models in two rounds: blind docking followed by ATP-binding pocket-specific docking. From the binding pockets, the common interacting amino acid residues participating strongly within the binding pocket were identified and compared. From the study, we conclude that these phytochemicals have strong affinity in both the normal and mutant kir6.2 model. This work would be helpful for further study of the phytochemicals above for the treatment of type 1 diabetes by targeting the kir6.2 channel. PMID:25705171
Al-Zubeidi, Hiba; Gottschalk, Michael E; Newfield, Ron S
2014-01-01
Hyperinsulinism associated with Beckwith-Wiedemann syndrome (BWS) can occur in about 50% of cases, causing hypoglycemia of variable severity. Parenteral use of octreotide may be indicated if unresponsive to diazoxide. There is limited data on use of octreotide in BWS. Chart review describing 2 cases with BWS and hypoglycemia treated with long acting Octreotide as a monthly injection. We describe two unrelated females born large for gestational age found to have clinical features consistent with BWS, who developed severe hypoglycemia. Genetic diagnosis of BWS was confirmed. The first patient was born at 37 weeks and developed hypoglycemia shortly after birth. She was initially started on diazoxide but developed pulmonary congestion and was therefore switched to depot octreotide (LAR). She maintained euglycemia with LAR. In the second patient (born at 26-4/7 weeks), onset of hypoglycemia was delayed till 11 weeks of age due to hydrocortisone (indicated hemodynamically) and continuous feeding, and was partially responsive to diazoxide. She was switched to octreotide 4 times daily, treated till at age 18 months. Despite frequent feeds, she required treatment again between ages 4-6.5 years, initially with diazoxide but due to severe hypertrichosis she was switched to LAR with an excellent response. Both patients treated with LAR for over two years achieved euglycemia above 70 mg/dl and had normal height gain, without side effects. Successful treatment of hypoglycemia can be achieved and maintained with LAR in infants and children with BWS who are either resistant or cannot tolerate diazoxide.
Vedovato, Natascia; Cliff, Edward; Proks, Peter; Poovazhagi, Varadarajan; Flanagan, Sarah E; Ellard, Sian; Hattersley, Andrew T; Ashcroft, Frances M
2016-07-01
The pancreatic ATP-sensitive potassium (KATP) channel plays a pivotal role in linking beta cell metabolism to insulin secretion. Mutations in KATP channel genes can result in hypo- or hypersecretion of insulin, as in neonatal diabetes mellitus and congenital hyperinsulinism, respectively. To date, all patients affected by neonatal diabetes due to a mutation in the pore-forming subunit of the channel (Kir6.2, KCNJ11) are heterozygous for the mutation. Here, we report the first clinical case of neonatal diabetes caused by a homozygous KCNJ11 mutation. A male patient was diagnosed with diabetes shortly after birth. At 5 months of age, genetic testing revealed he carried a homozygous KCNJ11 mutation, G324R, (Kir6.2-G324R) and he was successfully transferred to sulfonylurea therapy (0.2 mg kg(-1) day(-1)). Neither heterozygous parent was affected. Functional properties of wild-type, heterozygous and homozygous mutant KATP channels were examined after heterologous expression in Xenopus oocytes. Functional studies indicated that the Kir6.2-G324R mutation reduces the channel ATP sensitivity but that the difference in ATP inhibition between homozygous and heterozygous channels is remarkably small. Nevertheless, the homozygous patient developed neonatal diabetes, whereas the heterozygous parents were, and remain, unaffected. Kir6.2-G324R channels were fully shut by the sulfonylurea tolbutamide, which explains why the patient's diabetes was well controlled by sulfonylurea therapy. The data demonstrate that tiny changes in KATP channel activity can alter beta cell electrical activity and insulin secretion sufficiently to cause diabetes. They also aid our understanding of how the Kir6.2-E23K variant predisposes to type 2 diabetes.
The prevalence of Vitamin D deficiency is higher in adult survivors of childhood cancer.
Neville, Kristen A; Walker, Jan L; Cohn, Richard J; Cowell, Christopher T; White, Christopher P
2015-05-01
It is unclear whether the rate of vitamin D deficiency in paediatric cancer survivors is higher than in the background population, and whether this is of pathological significance. 25OHD was measured in a previously studied group of 208 survivors (n = 108 paediatric 5-17 years, n = 99 adults 18-39 years) and compared with paediatric (5-17 years; n = 132) and adult controls (25-35 years; n = 1393 from the AusDiab cohort) adjusted for age and gender. Relationships with treatment factors (irradiation, bone marrow transplantation and intensity of treatment) along with overweight/obesity (defined by BMI), abdominal adiposity (waist:height ratio >0·5) and hyperinsulinism or abnormal glucose tolerance (HI/aGT) were sought. 25OHD concentrations were similar in paediatric survivors compared with controls (64·3 ± 21·6 nmol/l vs 66·3 ± 22·8 nmol/l), with no effect of age or gender. Adjusted for gender, rates of 25OHD deficiency (<50 nmol/l) were higher in adult survivors compared with AusDiab controls (42·4% vs 20·8%; P < 0·001). Apart from time since diagnosis (P = 0·03), no relationship with treatment factors was detected. In multivariate regression analysis, abdominal adiposity (P = 0·001), but not overweight/obesity by BMI status nor HI/aGT, was associated with significantly lower 25OHD concentrations. Adult survivors are at increased risk of abnormalities in vitamin D compared to the background population, probably reflecting longer time since diagnosis. Like others, we have not identified any contributory treatment-related factors. Vitamin D deficiency does not appear to be associated with the development of abnormal glucose tolerance in this population. © 2015 John Wiley & Sons Ltd.
Caldwell, A S L; Middleton, L J; Jimenez, M; Desai, R; McMahon, A C; Allan, C M; Handelsman, D J; Walters, K A
2014-08-01
Polycystic ovary syndrome (PCOS) affects 5-10% of women of reproductive age, causing a range of reproductive, metabolic and endocrine defects including anovulation, infertility, hyperandrogenism, obesity, hyperinsulinism, and an increased risk of type 2 diabetes and cardiovascular disease. Hyperandrogenism is the most consistent feature of PCOS, but its etiology remains unknown, and ethical and logistic constraints limit definitive experimentation in humans to determine mechanisms involved. In this study, we provide the first comprehensive characterization of reproductive, endocrine, and metabolic PCOS traits in 4 distinct murine models of hyperandrogenism, comprising prenatal dihydrotestosterone (DHT, potent nonaromatizable androgen) treatment during days 16-18 of gestation, or long-term treatment (90 days from 21 days of age) with DHT, dehydroepiandrosterone (DHEA), or letrozole (aromatase inhibitor). Prenatal DHT-treated mature mice exhibited irregular estrous cycles, oligo-ovulation, reduced preantral follicle health, hepatic steatosis, and adipocyte hypertrophy, but lacked overall changes in body-fat composition. Long-term DHT treatment induced polycystic ovaries displaying unhealthy antral follicles (degenerate oocyte and/or > 10% pyknotic granulosa cells), as well as anovulation and acyclicity in mature (16-week-old) females. Long-term DHT also increased body and fat pad weights and induced adipocyte hypertrophy and hypercholesterolemia. Long-term letrozole-treated mice exhibited absent or irregular cycles, oligo-ovulation, polycystic ovaries containing hemorrhagic cysts atypical of PCOS, and displayed no metabolic features of PCOS. Long-term dehydroepiandrosterone treatment produced no PCOS features in mature mice. Our findings reveal that long-term DHT treatment replicated a breadth of ovarian, endocrine, and metabolic features of human PCOS and provides the best mouse model for experimental studies of PCOS pathogenesis.
GLADIATOR: a global approach for elucidating disease modules.
Silberberg, Yael; Kupiec, Martin; Sharan, Roded
2017-05-26
Understanding the genetic basis of disease is an important challenge in biology and medicine. The observation that disease-related proteins often interact with one another has motivated numerous network-based approaches for deciphering disease mechanisms. In particular, protein-protein interaction networks were successfully used to illuminate disease modules, i.e., interacting proteins working in concert to drive a disease. The identification of these modules can further our understanding of disease mechanisms. We devised a global method for the prediction of multiple disease modules simultaneously named GLADIATOR (GLobal Approach for DIsease AssociaTed mOdule Reconstruction). GLADIATOR relies on a gold-standard disease phenotypic similarity to obtain a pan-disease view of the underlying modules. To traverse the search space of potential disease modules, we applied a simulated annealing algorithm aimed at maximizing the correlation between module similarity and the gold-standard phenotypic similarity. Importantly, this optimization is employed over hundreds of diseases simultaneously. GLADIATOR's predicted modules highly agree with current knowledge about disease-related proteins. Furthermore, the modules exhibit high coherence with respect to functional annotations and are highly enriched with known curated pathways, outperforming previous methods. Examination of the predicted proteins shared by similar diseases demonstrates the diverse role of these proteins in mediating related processes across similar diseases. Last, we provide a detailed analysis of the suggested molecular mechanism predicted by GLADIATOR for hyperinsulinism, suggesting novel proteins involved in its pathology. GLADIATOR predicts disease modules by integrating knowledge of disease-related proteins and phenotypes across multiple diseases. The predicted modules are functionally coherent and are more in line with current biological knowledge compared to modules obtained using previous disease-centric methods. The source code for GLADIATOR can be downloaded from http://www.cs.tau.ac.il/~roded/GLADIATOR.zip .
Zhang, Yi; Zhu, Cuiling; Wen, Xin; Wang, Xingchun; Li, Liang; Rampersad, Sharvan; Lu, Liesheng; Zhou, Donglei; Qian, Chunhua; Cui, Ran; Zhang, Manna; Yang, Peng; Qu, Shen; Bu, Le
2017-11-07
Acanthosis nigricans (AN) has a close relationship with obesity. It is believed that obesity and AN have the common pathophysiological basis such as hyperinsulinism. This study is aimed to observe the effect of laparoscopic sleeve gastrectomy (LSG) on body composition and insulin resistance in Chinese obese patients with acanthosis nigricans. A total of 37 obese patients who underwent LSG in our hospital were selected for analysis. They were divided into simple obesity (OB n = 14) and obesity with acanthosis nigricans (AN n = 23) group respectively. Body composition was measured by dual-energy X-ray absorptiometry (DEXA). Anthropometric measurements and glucolipid metabolism before and 3 months post LSG were collected for analysis. Patients with AN got noticeable improvement in skin condition and their AN score was significantly decreased (3.52 ± 0.79 vs. 1.48 ± 0.73, P < 0.001).Alleviated insulin resistance and more trunk fat loss than limbs' were observed in both groups (P value < 0.01). In AN group, preoperative android fat mass (FM) was positively correlated with fasting insulin and natural logarithm of HOMA-IR (LNIR) (r = 0.622, 0.608, respectively; all P < 0.01). Besides, changes in android FM and visceral adipose tissue (VAT) also showed significantly positive correlation with changes in LNIR (r = 0.588, r = 0.598, respectively; all P < 0.01). LSG had a positive impact on body composition and skin condition in Chinese obese patients with AN. Loss of android FM and VAT might result in the alleviation of insulin resistance in AN patients. Android fat distribution seems to be a potential indicator of postoperative metabolic benefits for obese patients with AN.
Martin, Gregory M; Rex, Emily A; Devaraneni, Prasanna; Denton, Jerod S; Boodhansingh, Kara E; DeLeon, Diva D; Stanley, Charles A; Shyng, Show-Ling
2016-10-14
ATP-sensitive potassium (K ATP ) channels play a key role in mediating glucose-stimulated insulin secretion by coupling metabolic signals to β-cell membrane potential. Loss of K ATP channel function due to mutations in ABCC8 or KCNJ11, genes encoding the sulfonylurea receptor 1 (SUR1) or the inwardly rectifying potassium channel Kir6.2, respectively, results in congenital hyperinsulinism. Many SUR1 mutations prevent trafficking of channel proteins from the endoplasmic reticulum to the cell surface. Channel inhibitors, including sulfonylureas and carbamazepine, have been shown to correct channel trafficking defects. In the present study, we identified 13 novel SUR1 mutations that cause channel trafficking defects, the majority of which are amenable to pharmacological rescue by glibenclamide and carbamazepine. By contrast, none of the mutant channels were rescued by K ATP channel openers. Cross-linking experiments showed that K ATP channel inhibitors promoted interactions between the N terminus of Kir6.2 and SUR1, whereas channel openers did not, suggesting the inhibitors enhance intersubunit interactions to overcome channel biogenesis and trafficking defects. Functional studies of rescued mutant channels indicate that most mutants rescued to the cell surface exhibited WT-like sensitivity to ATP, MgADP, and diazoxide. In intact cells, recovery of channel function upon trafficking rescue by reversible sulfonylureas or carbamazepine was facilitated by the K ATP channel opener diazoxide. Our study expands the list of K ATP channel trafficking mutations whose function can be recovered by pharmacological ligands and provides further insight into the structural mechanism by which channel inhibitors correct channel biogenesis and trafficking defects. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
[Hyperuricaemia and metabolic syndrome in obese children and adolescents].
Castillo-Durán, Carlos; Sepúlveda A, Cecilia; Espinoza G, Aníbal; Rebollo G, María Jesús; Le Roy O, Catalina
2016-01-01
Hyperuricaemia has been suggested as an additional metabolic factor in adult obese patients, but it has not been sufficiently studied in paediatric. To assess the relationship between serum uric acid levels (SUAL) with the level of general and visceral obesity, and other biochemical parameters in children and adolescents of Santiago, Chile. A cross sectional study was conducted on 770 children and adolescents (ages: 6-15 y.) from a public school in Santiago, Chile, of whom 227 (29%) were obese (BMI>2 SD, WHO growth standards). Ninety subjects were randomly selected and 77 with no other chronic disease (41 males) accepted to participate. Data was collected on weight, stature, abdominal circumference (AC), visceral adiposity using ultrasound, and other biochemical measurements including fasting glucose, insulin, serum lipids, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and SUAL. The mean SUAL was 0.200±0.065 mmol/L, and was increased in children with hyperinsulinism (adjusted by age: 0.221±0.075 vs. 0.183±0.054 mmol/L; P<.01), with no significant differences according to HOMA. Differences were also found between children with ALT>or<26 U/mL: 0.238±0.070 vs. 0.178±0.054 mmol/L, P<.001. The logistic regression showed the increased SUAL was only associated with increased ALT. No significant differences were found in general or visceral adiposity measurements or fatty liver. Children and adolescents from Santiago, Chile have higher uric acid serum uric acid levels as well as an association with increased ALT and insulin. It is demonstrated in this study that uric acid should be measured in obese children and adolescents, and in their follow up. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.
Heterozygous ABCC8 mutations are a cause of MODY.
Bowman, P; Flanagan, S E; Edghill, E L; Damhuis, A; Shepherd, M H; Paisey, R; Hattersley, A T; Ellard, S
2012-01-01
The ABCC8 gene encodes the sulfonylurea receptor 1 (SUR1) subunit of the pancreatic beta cell ATP-sensitive potassium (K(ATP)) channel. Inactivating mutations cause congenital hyperinsulinism (CHI) and activating mutations cause transient neonatal diabetes (TNDM) or permanent neonatal diabetes (PNDM) that can usually be treated with sulfonylureas. Sulfonylurea sensitivity is also a feature of HNF1A and HNF4A MODY, but patients referred for genetic testing with clinical features of these types of diabetes do not always have mutations in the HNF1A/4A genes. Our aim was to establish whether mutations in the ABCC8 gene cause MODY that is responsive to sulfonylurea therapy. We sequenced the ABCC8 gene in 85 patients with a BMI <30 kg/m², no family history of neonatal diabetes and who were deemed sensitive to sulfonylureas by the referring clinician or were sulfonylurea-treated. All had tested negative for mutations in the HNF1A and HNF4A genes. ABCC8 mutations were found in seven of the 85 (8%) probands. Four patients were heterozygous for previously reported mutations and four novel mutations, E100K, G214R, Q485R and N1245D, were identified. Only four probands fulfilled MODY criteria, with two diagnosed after 25 years and one patient, who had no family history of diabetes, as a result of a proven de novo mutation. ABCC8 mutations can cause MODY in patients whose clinical features are similar to those with HNF1A/4A MODY. Therefore, sequencing of ABCC8 in addition to the known MODY genes should be considered if such features are present, to facilitate optimal clinical management of these patients.
[Insulinoma of the pancreas: analysis of a clinical series of 30 cases].
Andronesi, D; Andronesi, A; Tonea, A; Andrei, S; Herlea, V; Lupescu, I; Ionescu-Târgovişte, C; Coculescu, M; Fica, S; Ionescu, M; Gheorghe, C; Popescu, I
2009-01-01
Insulinoma is the most frequent neuroendocrine pancreatic tumor and is the main cause for hypoglicemia due to endogenous hyperinsulinism. We performed an analysis of a clinical series in order to study the clinical and biological spectrum of presentation, the preoperatory imagistic diagnosis and results of the surgical approach. Between 1986-2009, 30 patients with symptoms suggesting an insulinoma were hospitalized in our department. Preoperatory localization of insulinomas was possible in 16 patients. The most sensitive imagistic methods were ecoendoscopy and magnetic resonance. Intraoperatory ultrasound was performed in 16 patients and its sensitivity in detection of insulinomas was 93%; the combination between intraoperative ultrasound and manual exploration of pancreas by the surgeon reached a 100% sensitivity. Before the intraoperatory ultrasound was used the tumor excision was predominantly done by extensive pancreatic resection, while after this was available in our centre more conservative (enucleo-resection) procedures were chosen. In 1 patient the resection was done by laparoscopy, and in 1 patient by robotic surgery. The dimensions of the tumor were less than 2 cm in most of the patients; 2 had nesidioblastosis and 2 had multiple insulinomas; all 28 patients proved to have benign insulinomas at histological specimens. Following surgery, the symptoms disappear in all patients. The most common complication following extensive pancreatic resections was acute pancreatitis, while after enucleation pancreatic fistula occurred more frequently. Due to small dimensions, the preoperative diagnosis of insulinomas is usually difficult, ecoendoscopy being the most sensitive method. Intraoperative ultrasound is essential for insulinoma localization and for chosing the optimal type of excision. Enucleation is the resection method to be chosen whenever this it is technical possible. In benign insulinomas the prognosis is excellent, surgical resection being curative in all cases.
Ehrmann, David A.
2016-01-01
Polycystic ovary syndrome (PCOS) was hypothesized to result from functional ovarian hyperandrogenism (FOH) due to dysregulation of androgen secretion in 1989–1995. Subsequent studies have supported and amplified this hypothesis. When defined as otherwise unexplained hyperandrogenic oligoanovulation, two-thirds of PCOS cases have functionally typical FOH, characterized by 17-hydroxyprogesterone hyperresponsiveness to gonadotropin stimulation. Two-thirds of the remaining PCOS have FOH detectable by testosterone elevation after suppression of adrenal androgen production. About 3% of PCOS have a related isolated functional adrenal hyperandrogenism. The remaining PCOS cases are mild and lack evidence of steroid secretory abnormalities; most of these are obese, which we postulate to account for their atypical PCOS. Approximately half of normal women with polycystic ovarian morphology (PCOM) have subclinical FOH-related steroidogenic defects. Theca cells from polycystic ovaries of classic PCOS patients in long-term culture have an intrinsic steroidogenic dysregulation that can account for the steroidogenic abnormalities typical of FOH. These cells overexpress most steroidogenic enzymes, particularly cytochrome P450c17. Overexpression of a protein identified by genome-wide association screening, differentially expressed in normal and neoplastic development 1A.V2, in normal theca cells has reproduced this PCOS phenotype in vitro. A metabolic syndrome of obesity-related and/or intrinsic insulin resistance occurs in about half of PCOS patients, and the compensatory hyperinsulinism has tissue-selective effects, which include aggravation of hyperandrogenism. PCOS seems to arise as a complex trait that results from the interaction of diverse genetic and environmental factors. Heritable factors include PCOM, hyperandrogenemia, insulin resistance, and insulin secretory defects. Environmental factors include prenatal androgen exposure and poor fetal growth, whereas acquired obesity is a major postnatal factor. The variety of pathways involved and lack of a common thread attests to the multifactorial nature and heterogeneity of the syndrome. Further research into the fundamental basis of the disorder will be necessary to optimally correct androgen levels, ovulation, and metabolic homeostasis. PMID:27459230
Reyss, A C; Merlen, E; Demerle, C; Dewailly, D
2003-12-01
Polycystic ovary syndrome (PCOS) and hypothalamic amenorrhea (HA) are the most frequent causes of endocrine infertility, but their association is an uncommon occurrence. We report the case of a 28-year old woman suffering from infertility and amenorrhea. Her weight was normal (BMI = 19) and she had no hirsutism. She self-reported food restriction and a 10 kg weight loss 5 years ago, concomitant with the onset of amenorrhea. At the initial evaluation, the patient was considered as having HA due to food restriction. At ultrasonography, ovaries were small and multifollicular (right and left area: 2.2 and 2.5 cm(2), respectively; number of cysts 2-9 mm in diameter: 15 and 12, respectively), and no stromal hypertrophy was noted. She has been treated for 1 month by intravenous pulsatile GnRH administration. Although the doses were increased from 5 to 15 microg/pulse every 90 min, no E2 response and no follicular development were observed. Hormonal re-evaluation revealed normal levels of serum LH, FSH and androgens, and a normal LH/FSH ratio. However, a typical aspect of PCO was found at ultrasound (right and left area: 6.5 and 5.5 cm(2), respectively, and more than 15 small cysts arranged peripherally around an increased central stroma in each ovary). The treatment has been then switched to hMG, using the low dose step-up regimen and starting with 75 U/day. In the absence of response after 2 weeks, the dose was increased to 112.5 U/day and a multifollicular reaction occurred, leading to cancellation. In conclusion, we hypothesize that this patient had a "hidden" PCOS when she was hypogonadotrophic and that it developed very rapidly after restitution of a normal gonadotropin level under exogenous GnRH. This occurred despite a low insulin level, showing that hyperinsulinism is not a prerequisite for the development of PCOS in every case.
Rosenfield, Robert L; Ehrmann, David A
2016-10-01
Polycystic ovary syndrome (PCOS) was hypothesized to result from functional ovarian hyperandrogenism (FOH) due to dysregulation of androgen secretion in 1989-1995. Subsequent studies have supported and amplified this hypothesis. When defined as otherwise unexplained hyperandrogenic oligoanovulation, two-thirds of PCOS cases have functionally typical FOH, characterized by 17-hydroxyprogesterone hyperresponsiveness to gonadotropin stimulation. Two-thirds of the remaining PCOS have FOH detectable by testosterone elevation after suppression of adrenal androgen production. About 3% of PCOS have a related isolated functional adrenal hyperandrogenism. The remaining PCOS cases are mild and lack evidence of steroid secretory abnormalities; most of these are obese, which we postulate to account for their atypical PCOS. Approximately half of normal women with polycystic ovarian morphology (PCOM) have subclinical FOH-related steroidogenic defects. Theca cells from polycystic ovaries of classic PCOS patients in long-term culture have an intrinsic steroidogenic dysregulation that can account for the steroidogenic abnormalities typical of FOH. These cells overexpress most steroidogenic enzymes, particularly cytochrome P450c17. Overexpression of a protein identified by genome-wide association screening, differentially expressed in normal and neoplastic development 1A.V2, in normal theca cells has reproduced this PCOS phenotype in vitro. A metabolic syndrome of obesity-related and/or intrinsic insulin resistance occurs in about half of PCOS patients, and the compensatory hyperinsulinism has tissue-selective effects, which include aggravation of hyperandrogenism. PCOS seems to arise as a complex trait that results from the interaction of diverse genetic and environmental factors. Heritable factors include PCOM, hyperandrogenemia, insulin resistance, and insulin secretory defects. Environmental factors include prenatal androgen exposure and poor fetal growth, whereas acquired obesity is a major postnatal factor. The variety of pathways involved and lack of a common thread attests to the multifactorial nature and heterogeneity of the syndrome. Further research into the fundamental basis of the disorder will be necessary to optimally correct androgen levels, ovulation, and metabolic homeostasis.
Yuan, L; Lin, H; Jiang, K J; Jiao, H C; Song, Z G
2008-07-01
1. Two experiments were conducted to investigate the effects of exogenous corticosterone administration (30 mg/kg diet) and dietary energy level on feed or energy intake and fat deposition in broiler chickens of 1 and 4 weeks of age. 2. Corticosterone treatment significantly suppressed body weight (BW) gain and reduced feed and caloric efficiencies. The retarded growth may conceal the stimulatory effect of corticosterone on feed consumption or metabolisable energy (ME) intake. A high-energy diet may increase energy intake and partially alleviate the suppressing effect of corticosterone on growth of broilers. 3. Corticosterone administration promoted the conservation of energy stores as fat at both abdominal and subcutaneous sites and this process occurred regardless of dietary energy level in ad libitum feeding status. A high-energy diet increased fat accumulation and showed no significant interaction with corticosterone treatment. 4. The suppressed development of breast and thigh muscles by corticosterone treatment was observed only in 1-week-old chickens fed on the low-energy diet. In contrast, the yield of breast muscle but not thigh muscle was significantly decreased by corticosterone in 4-week-old chickens, suggesting that the tissue specificity to corticosterone challenge is age dependent. 5. Plasma concentrations of glucose, insulin, triglyceride, non-esterified fatty acids (NEFA) and very low density lipoprotein were increased by corticosterone treatment regardless of diet treatment. A high-energy diet increased plasma levels of NEFA and resulted in hyperinsulinism in 4-week-old chickens but not in 1-week-old chickens. 6. Lipoprotein lipase (LPL) activities in adipose tissues may have been up-regulated by corticosterone treatment and showed tissue specificity. The increased LPL activities at ad libitum feeding status were not necessarily linked with the increased fat accumulation in corticosterone challenged chickens. 7. Corticosterone resulted in augmented energy consumption and altered energy redistribution toward lipid deposition. The induced insulin resistance and enhanced hepatic de novo lipogenesis by corticosterone are likely to be responsible for the increased fat deposition.
Endometria from Obese PCOS Women with Hyperinsulinemia Exhibit Altered Adiponectin Signaling.
García, V; Oróstica, L; Poblete, C; Rosas, C; Astorga, I; Romero, C; Vega, M
2015-11-01
Hyperandrogenemia, hyperinsulinemia, and obesity affect 60-70% of patients with Polycystic Ovarian Syndrome (PCOS), who exhibit an altered endometrial insulin signaling. The aim of the study was to evaluate whether hyperandrogenism, hyperinsulinism, and obesity present in PCOS patients impair the endometrial adiponectin signaling pathway. The ex vivo study was conducted on 27 samples from lean (n=9), obese (n=9), and obese-PCOS (n=9) patients. The in vitro assays were performed in immortalized human endometrial stromal cells stimulated with testosterone, insulin, or testosterone plus insulin. Serum steroid-hormones, adiponectin, glucose, and insulin; body mass index, free androgen index, ISI-Composite, and HOMA were evaluated in the 3 groups. Ex vivo and in vitro gene expression and protein content of adiponectin, AdipoR1, AdipoR2, and APPL1 were determined. Adiponectin serum levels were decreased in obese-PCOS patients compared to lean (78%) and obese (54%) controls (p<0.05). AdipoR1 protein and gene expression were increased in obese group vs. obese-PCOS and lean groups (2-fold, p<0.05). In turn, AdipoR2 protein and mRNA content was similar between the 3 groups. APPL1 protein levels were reduced in endometria from both obese groups, compared to lean group (6-fold, p<0.05). Testosterone plus insulin stimulation of T-HESC and St-T1b leads to a reduction of adiponectin, AdipoR1, AdipoR2, and APPL1 protein content in both endometrial cell lines (p<0.05), whereas, in the presence of testosterone or insulin alone, protein levels were similar to basal. Therefore, endometrial adiponectin-signaling pathway is impaired in hyperandrogenemic and hyperinsulinemic obese-PCOS patients, corroborated in the in vitro model, which could affect endometrial function and potentially the implantation process. © Georg Thieme Verlag KG Stuttgart · New York.
Tham, Elaine; Liu, Jianhua; Innis, Sheila; Thompson, David; Gaylinn, Bruce D; Bogarin, Roberto; Haim, Alon; Thorner, Michael O; Chanoine, Jean-Pierre
2009-05-01
Acylated (octanoylated) ghrelin stimulates food intake and growth hormone secretion and is deacylated into desacyl ghrelin by butyrylcholinesterase. Acylated and desacyl ghrelin both promote adipogenesis. Ghrelin concentrations decrease with hyperglycemia and hyperinsulinism. We hypothesized that 1) acylated ghrelin increases during pregnancy, contributing positively to energy balance, but is lower in women with gestational diabetes and 2) butyrylcholinesterase activity is inversely correlated with acylated ghrelin concentrations. In a first group of subjects, using two-site sandwich ghrelin assays that specifically detect full-length forms, we investigated women with and without gestational diabetes (n = 14/group) during pregnancy and after delivery. We examined whether changes in ghrelin during a test meal were correlated with changes in pituitary growth hormone [assessed through calculation of the area under the curve (AUC) during the test meal]. In postpartum subjects, the percent of total ghrelin that is acylated was four to five times higher than previously observed using single antibody assays. During pregnancy, acylated ghrelin concentrations (mean +/- SE) were lower compared with the postpartum period throughout the meal (AUC 1.2 +/- 0.2 vs. 10.2 +/- 1.9 ng.ml(-1).90 min(-1), P < 0.001). In the postpartum, acylated ghrelin and growth hormone were positively correlated (r = 0.50, P = 0.007). Desacyl (but not acylated) ghrelin was increased in subjects with gestational diabetes during and after pregnancy (AUC 15.4 +/- 1.9 vs. 8.6 +/- 1.2 ng.ml(-1).90 min(-1), P = 0.005). In a second group of subjects (n = 13), acylated ghrelin was similarly suppressed during pregnancy. Circulating octanoate concentrations (3.1 +/- 0.5 vs. 4.5 +/- 0.6 microg/ml, P = 0.029) and cholinesterase activity (705 +/- 33 vs. 1,013 +/- 56 U/ml, P < 0.001) were lower during pregnancy compared with the postpartum period. In conclusion, acylated ghrelin markedly decreases during pregnancy, likely because of a decrease in the acylation process. Desacyl ghrelin increases in gestational diabetes, possibly reflecting resistance to the inhibitory effect of insulin on ghrelin secretion.
Tham, Elaine; Liu, Jianhua; Innis, Sheila; Thompson, David; Gaylinn, Bruce D.; Bogarin, Roberto; Haim, Alon; Thorner, Michael O.; Chanoine, Jean-Pierre
2009-01-01
Acylated (octanoylated) ghrelin stimulates food intake and growth hormone secretion and is deacylated into desacyl ghrelin by butyrylcholinesterase. Acylated and desacyl ghrelin both promote adipogenesis. Ghrelin concentrations decrease with hyperglycemia and hyperinsulinism. We hypothesized that 1) acylated ghrelin increases during pregnancy, contributing positively to energy balance, but is lower in women with gestational diabetes and 2) butyrylcholinesterase activity is inversely correlated with acylated ghrelin concentrations. In a first group of subjects, using two-site sandwich ghrelin assays that specifically detect full-length forms, we investigated women with and without gestational diabetes (n = 14/group) during pregnancy and after delivery. We examined whether changes in ghrelin during a test meal were correlated with changes in pituitary growth hormone [assessed through calculation of the area under the curve (AUC) during the test meal]. In postpartum subjects, the percent of total ghrelin that is acylated was four to five times higher than previously observed using single antibody assays. During pregnancy, acylated ghrelin concentrations (mean ± SE) were lower compared with the postpartum period throughout the meal (AUC 1.2 ± 0.2 vs. 10.2 ± 1.9 ng·ml−1·90 min−1, P < 0.001). In the postpartum, acylated ghrelin and growth hormone were positively correlated (r = 0.50, P = 0.007). Desacyl (but not acylated) ghrelin was increased in subjects with gestational diabetes during and after pregnancy (AUC 15.4 ± 1.9 vs. 8.6 ± 1.2 ng·ml−1·90 min−1, P = 0.005). In a second group of subjects (n = 13), acylated ghrelin was similarly suppressed during pregnancy. Circulating octanoate concentrations (3.1 ± 0.5 vs. 4.5 ± 0.6 μg/ml, P = 0.029) and cholinesterase activity (705 ± 33 vs. 1,013 ± 56 U/ml, P < 0.001) were lower during pregnancy compared with the postpartum period. In conclusion, acylated ghrelin markedly decreases during pregnancy, likely because of a decrease in the acylation process. Desacyl ghrelin increases in gestational diabetes, possibly reflecting resistance to the inhibitory effect of insulin on ghrelin secretion. PMID:19240252
[Multidisciplinary approach to surgical disorders of the pancreas in children].
Šnajdauf, J; Rygl, M; Petrů, O; Frýbová, B; Náhlovský, J; Mixa, V; Keil, R; Bronský, J; Kynčl, M; Kodet, R
2018-01-01
Surgical diseases of the pancreas in children are not common and may be associated with significant morbidity and potential mortality. A multidisciplinary approach is essential for correct diagnosis, surgical strategy and postoperative as well as follow-up care. Retrospective analysis of patients operated on due to a pathological lesion of the pancreas focused on diagnostics, operating procedures, postoperative complications, and long-term results. Between 1991 and 2016, eighty-nine children were treated in our department for a pathologic lesion of the pancreas. 39 of them were boys and 50 were girls. Mean age of the patients was 9.3 years (1 month-18.4 years). Patients were followed from the operation to the age of 19, after which they were referred for follow-up to adult specialists. The indications for surgery were trauma in 34 children, solid pseudopapillary tumor in 23 children, biopsy in 10, hyperinsulinism in 8, chronic pancreatitis in 4, pancreatic cyst in 3, insulinoma in 3, carcinoma in 2, and serous cystadenoma and pancreas divisum in one patient. The most frequent procedures performed on the pancreas were distal pancreatectomy in 35 cases, the duodenum-preserving pancreatic head resection in 23 cases, pseudocystogastroanastomosis in 11 cases, 9095% pancreatic resection in 5 cases, Whipple operation in two cases, Puestow procedure in one case, tumor enucleation in one case, and tumor biopsy for cancer in one case. In 5 patients after major pancreatic injury, ERCP and papillotomy with insertion of a stent into the pancreatic duct was performed. 3 patients died, one after a polytrauma with severe pancreatic injury and two patients with pancreatic cancer. Pancreatic surgery in children is not a common operation, and individual as well as institutional experience remains limited. After more than 20 years of experience with pancreatic surgery, we believe that close cooperation with surgeons, pediatric gastroenterologists, radiologists, anesthesiologists, intensivist, pathologists and ERCP specialists is necessary for successful diagnosis and treatment of pancreatic disease in children.Key words: pancreas pancreatic surgery in children duodenum preserving head resection of the pancreas.
Stagi, Stefano; Lapi, Elisabetta; Seminara, Salvatore; Pelosi, Paola; Del Greco, Paolo; Capirchio, Laura; Strano, Massimo; Giglio, Sabrina; Chiarelli, Francesco; de Martino, Maurizio
2015-02-15
Treatments for childhood obesity are critically needed because of the risk of developing co-morbidities, although the interventions are frequently time-consuming, frustrating, difficult, and expensive. We conducted a longitudinal, randomised, clinical study, based on a per protocol analysis, on 133 obese children and adolescents (n = 69 males and 64 females; median age, 11.3 years) with family history of obesity and type 2 diabetes mellitus (T2DM). The patients were divided into three arms: Arm A (n = 53 patients), Arm B (n = 45 patients), and Arm C (n = 35 patients) patients were treated with a low-glycaemic-index (LGI) diet and Policaptil Gel Retard, only a LGI diet, or only an energy-restricted diet (ERD), respectively. The homeostasis model assessment of insulin resistance (HOMA-IR) and the Matsuda, insulinogenic and disposition indexes were calculated at T0 and after 1 year (T1). At T1, the BMI-SD scores were significantly reduced from 2.32 to 1.80 (p < 0.0001) in Arm A and from 2.23 to 1.99 (p < 0.05) in Arm B. Acanthosis nigricans was significantly reduced in Arm A (13.2% to 5.6%; p < 0.05), and glycosylated-haemoglobin levels were significantly reduced in Arms A (p < 0.005). The percentage of glucose-metabolism abnormalities was reduced, although not significantly. However, the HOMA-IR index was significantly reduced in Arms A (p < 0.0001) and B (p < 0.05), with Arm A showing a significant reduction in the insulinogenic index (p < 0.05). Finally, the disposition index was significantly improved in Arms A (p < 0.0001) and B (p < 0.05). A LGI diet, particularly associated with the use of Policaptil Gel Retard, may reduce weight gain and ameliorate the metabolic syndrome and insulin-resistance parameters in obese children and adolescents with family history of obesity and T2DM.
The Physiopathological Role of the Exchangers Belonging to the SLC37 Family
NASA Astrophysics Data System (ADS)
Cappello, Anna Rita; Curcio, Rosita; Lappano, Rosamaria; Maggiolini, Marcello; Dolce, Vincenza
2018-04-01
The human SLC37 gene family includes four proteins SLC37A1-4, localized in the endoplasmic reticulum (ER) membrane. They have been grouped into the SLC37 family due to their sequence homology to the bacterial organophosphate/phosphate (Pi) antiporter. SLC37A1-3 are the less characterized isoforms. SLC37A1 and SLC37A2 are Pi-linked glucose-6-phosphate (G6P) antiporters, catalyzing both homologous (Pi/Pi) and heterologous (G6P/Pi) exchanges, whereas SLC37A3 transport properties remain to be clarified. Furthermore, SLC37A1 is highly homologous to the bacterial glycerol 3-phosphate permeases, so it is supposed to transport also glycerol-3-phosphate. The physiological role of SLC37A1-3 is yet to be further investigated. SLC37A1 seems to be required for lipid biosynthesis in cancer cell lines, SLC37A2 has been proposed as a vitamin D and a phospho-progesterone receptor target gene, while mutations in the SLC37A3 gene appear to be associated with congenital hyperinsulinism of infancy. SLC37A4, also known as glucose-6-phosphate translocase (G6PT), transports G6P from the cytoplasm into the ER lumen, working in complex with either glucose-6-phosphatase-α (G6Pase-α) or G6Pase-β to hydrolyze intraluminal G6P to Pi and glucose. G6PT and G6Pase-β are ubiquitously expressed, whereas G6Pase-α is specifically expressed in the liver, kidney and intestine. G6PT/G6Pase-α complex activity regulates fasting blood glucose levels, whereas G6PT/G6Pase-β is required for neutrophil functions. G6PT deficiency is responsible for glycogen storage disease type Ib (GSD-Ib), an autosomal recessive disorder associated with both defective metabolic and myeloid phenotypes. Several kinds of mutations have been identified in the SLC37A4 gene, affecting G6PT function. An increased autoimmunity risk for GSD-Ib patients has also been reported, moreover, SLC37A4 seems to be involved in autophagy.
Visavachaipan, Nipapat; Aledo, Alexander; Franklin, Bonita H; Brar, Preneet C
2013-01-01
Acute lymphoblastic leukemia (ALL) maintenance therapy (MT) has been occasionally associated with symptomatic hypoglycemia (SH), attributed to purine analog (mercaptopurine [6-MP]). This hypoglycemia has been hypothesized to affect substrate utilization of gluconeogenic precursor alanine in the liver. An overweight 5-year-old boy with ALL was evaluated for SH (lethargy and vomiting) that occurred 8-10 h after fasting while receiving daily 6-MP. Hypoglycemic episodes (>20 episodes per month) occurred predominantly around midmorning but not during the 5-day dexamethasone pulse. The adrenocorticotropic hormone test yielded a normal cortisol response, which ruled out pituitary adrenal suppression. A 12-h overnight fasting glucose was 49 mg/dL, with suppressed insulin response <2 IU/mL, low C-peptide of 0.5 ng/mL, high insulin-like growth factor-binding protein >160 ng/mL, high free fatty acid of 2.64 mmol/L, and negative glucagon stimulation test (change in blood glucose [BG] <5 mg/dL). These results ruled out hyperinsulinism. The patient was placed on cornstarch therapy 5 h prior to dosing with 6-MP. This treatment reduced the SH events to fewer than two episodes per month. To study the efficacy of cornstarch, the patient was fitted with the iPro™ professional continuous glucose monitoring system (CGMS) (Medtronic MiniMed, Northridge, CA) with a preset low alarm at 70 mg/dL, which was worn for a period of 5 days while the patient was on cornstarch. With 1,000 sensor reading the BG range was 65-158 mg/dL, and the percentage mean absolute difference between sensor and finger-stick BG readings (the parent monitored his BG four times a day) was 9.4%. There were no hypoglycemic episodes detected by the CGMS while the patient was on cornstarch. After the cessation of chemotherapy, a 15-h fasting study was performed, and the CGMS was placed. Results showed resolution of hypoglycemia. The CGMS helped us devise an effective management plan for our patient. CGMS proved useful as an adjunct to characterize the pattern of hypoglycemia and to validate the benefit of cornstarch in hypoglycemia associated with 6-MP treatment of ALL.
Stagi, Stefano; Ricci, Franco; Bianconi, Martina; Sammarco, Maria Amina; Municchi, Giovanna; Toni, Sonia; Lenzi, Lorenzo; Verrotti, Alberto; de Martino, Maurizio
2017-01-01
Background: Pharmacological treatment of obesity and glucose-insulin metabolism disorders in children may be more difficult than in adults. Thus, we evaluate the effects of metformin in comparison with metformin plus a polysaccharide complex (Policaptil Gel Retard®, PGR) on body weight and metabolic parameters in obese children and adolescents with metabolic syndrome (MetS). Patients and methods: We retrospectively collected 129 children and adolescents (67 girls, 62 boys; median age 12.6 years) treated for a minimum of two years with metformin and low glycemic index (LGI) diet. Of these, 71 patients were treated with metformin plus PGR after at least 12 months of metformin alone. To minimize the confounding effect of the LGI on auxological and metabolic parameters, the patients were compared with age-, sex-, and BMI-matched control group with obesity and MetS (51 subjects; 24 males, 27 females) treated only with a LGI diet. Assessments included lipids, glucose and insulin (fasting and after oral glucose tolerance test) concentrations. The Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), Matsuda, insulinogenic and disposition indices were calculated. Results: Metformin treatment led to a significant reduction in BMI SDS (p < 0.0001), with a significant difference in ΔBMI SDS between patients and controls (p < 0.0001). Moreover, metformin treated patients showed a reduction in HOMA-IR (p < 0.0001), HbA1c levels (p < 0.0001) and a significant increase in Matsuda index (p < 0.0001) in respect to the reduction discovered in controls (p < 0.05). Moreover, in contrast to the group treated with metformin alone and controls, patients treated with metformin plus PGR showed a further reduction in BMI SDS (p < 0.0001), HOMA-IR (p < 0.0001), HbA1c (p < 0.0001), total, HDL and LDL cholesterol (p < 0.0001), as well as an increase in Matsuda (p < 0.0001), disposition (p < 0.005) and insulinogenic (respectively, p < 0.05 and p < 0.0001) indices. Conclusions: Metformin appears to show short-term efficacy in reducing BMI, adiposity and glucose and insulin parameters in obese children and adolescents with MetS. However, PGR added to metformin may be useful to potentiate weight loss and to improve glucose-insulin metabolism and adiposity parameters in these patients. PMID:28531113
Dervisoglu, Pinar; Kosecik, Mustafa; Kumbasar, Serkan
2018-04-01
We examined the foetal cardiac structural and functional characteristics in diabetic pregnancies versus non-diabetic, healthy pregnancies. Between August 2015 and April 2016, 32 pregnant women with pregestational diabetes, 36 pregnant women with gestational diabetes, and 42 healthy pregnant women were scheduled to have foetal echocardiograms to assess cardiac structure and function. In the diabetic groups, the foetal interventricular septum (IVS) thickness was significantly greater than in non-diabetics (p < .05) but none had an IVS >2 SD from normal. The peak velocity of tricuspid E, and the E/A ratio were significantly lower in the diabetic groups (p < .05). Tricuspid valve E a values and the E a /A a ratio were lower in the diabetic group than in the control group (p < .05) but there was no significant difference between the pre-GDM and GDM groups (p > .05). Interventricular septal hypertrophy is the most common structural abnormality in diabetic pregnancies. These changes do not pose a risk to the foetal unless they cause functional impairment. Thus, we believe that it is important for diabetic pregnant women to be monitored for foetal cardiac diastolic dysfunction. Impact statement What is already known on this subject? Pregestational insulin-dependent diabetes mellitus is a relatively common condition in pregnancy, affecting up to 0.5% of the pregnant population. Foetuses of diabetic mothers are at an increased risk of perinatal morbidity and death. Gestational diabetes mellitus is under-recognised and affects up to 4% of pregnancies. Although diabetes mellitus is known to increase the risk of cardiovascular defects and structural changes (myocardial hypertrophy and diastolic dysfunction) due to foetal hyperglycaemia and hyperinsulinism, similar data in women with gestational diabetes is scarce. Moreover, the effect of maternal hyperglycaemia on foetal cardiac structure and function is unclear because of discordant results from previous studies. What do the results of this study add? In this study, we have used foetal echocardiography, two-dimensional US, pulsed wave Doppler and TDI to characterise the foetal cardiac structure and function in normal pregnancies as well as in the pregnancies complicated by GDM, and pregestational DM. Interventricular septum thickness is increased in women with pregestational diabetes mellitus and impaired diastolic function. The dominant right ventricle of the foetal circulation was affected earlier than the left ventricle. What are the implications of these findings for clinical practice and/or further research? Large population-based studies are required to establish the absolute risk of congenital heart defects in patients with pregestational diabetes and pregestational diabetes in the utility of routine screening.
[Combined estrogen-progestagen contraception and glucid and water-sodium metabolism].
Belaisch, J; Hommais-loufrani, B
1988-02-01
Although combined oral contraceptives (OCs) do not create a true cardiovascular risk, they may increase the impact of existing vascular risk factors. Pill use disturbs metabolism of lipids and carbohydrates as well as the balance of water and sodium. New combinations with lower doses of steroids have significantly reduced these risks, and the development of new and less androgenic progestins for low dose pills is expected to reduce them further. The diabetogenic effect of OCs has been noted since 1963. Among normal women, the observed modifications in carbohydrate metabolism are minor and temporary, with increases in levels of blood sugar maximal at the beginning of use and normalizing after 12 months. Among women with family histories of diabetes or who have had gestational diabetes, use of combined OCs can entail irreversible deterioration of glucose tolerance or diabetes. The number of women with poor glucose tolerance increases with the duration of pill use. Reversibility of the condition decreases with duration of use. The proportion of women with poor glucose tolerance who develop diabetes is higher than among normal subjects. Women with poor glucose tolerance must be considered at risk of diabetes. Ethinyl estradiol is responsible for the early modification of glucose tolerance, which regresses after about 6 months of use. Hyperinsulinemia is caused by the direct stimulation of progestins on insulin secretion by the pancreas as well as by the development of peripheral resistence to glucose utilization resulting from a decrease of insulin receptors. The effect on insulin resistence is among the most androgenic progestins. Chronic hyperinsulinism represents a classic risk factor for atherosclerosis because of the effects on the arterial wall: proliferation of smooth muscle fibers, inhibition of lipolysis, and development of lesions of the intima analogous to those of atheroma. Estrogen is primarily responsible for the increased blood pressure of pill users, but the development of hypertension is also correlated with the progestin content. Progestins have an antidiuretic effect which contributes to increases in blood pressure when added to the estrogen stimulation of the renin-aldosterone-angiotensin system. Gestodene, a new progestin in the gonane series, is the most powerful synthetic progesterone yet known. Its uniqueness derives from the dissociation between its very powerful antigonadotropic activity even at small doses and its androgenic effects which only appear at considerably higher doses. Most of the metabolic effects of progestins are linked to their degree of androgenicity. Different studies of gestodene tolerance in a triphasic formulation have concluded that it is innocuous. The use of gestodene in a low-dose triphasic formulation may result in a combined OC that does not increase the individual atheromatous risk of the user.
Luque-Ramírez, Manuel; Nattero-Chávez, Lía; Ortiz Flores, Andrés E; Escobar-Morreale, Héctor F
2017-12-27
Androgen excess is a key pathogenetic mechanism in polycystic ovary syndrome (PCOS), although hyperinsulinism also contributes to androgen secretion. Therapeutic approaches for adult patients not seeking fertility include combined oral contraceptives (COC), antiandrogens (AA) and/or insulin sensitizers, although these practices are supported by limited high-quality evidence. We aimed to assess the efficacy and safety of these common treatments for PCOS by conducting a meta-analysis of RCTs with the following review questions: Which is the more appropriate therapeutic approach for hyperandrogenic symptoms, hyperandrogenemia, and ovulatory dysfunction in adult women with PCOS not seeking fertility; What is the impact on classic cardiometabolic risk factors of the more common treatments used in those women; Does the combination of the antiandrogenic therapy plus metformin have any impact on efficacy or cardiometabolic profile? We searched PubMed and EMBASE for articles published up to 16 September 2017. After deleting duplicates, the abstracts of 1522 articles were analysed. We subsequently excluded 1446 articles leaving 76 studies for full-text assessment of eligibility. Of them, 43 articles were excluded. Hence, 33 studies and 1521 women were included in the quantitative synthesis and in the meta-analyses. Meta-analyses calculated mean differences (MD), standardized mean differences (SMD), odds ratio (OR) and 95% CIs. Heterogeneity and inconsistency across studies was assessed by χ2 test and Higgins's I2 statistics. Quality and risk of bias of individual studies were assessed according to the Cochrane Handbook for Systematic Reviews of Interventions 5.1.0. We then used the approach recommended by the Grading of Recommendations, Assessments, Development, and Evaluation (GRADE) group to indicate the global quality of evidence for a selection of primary outcomes. Regarding efficacy, the MD in hirsutism score between COC and/or AA and metformin were not significant. The exclusion of one single study including most women with severe hirsutism yielded a significant effect in favour of COC and/or AA. When only those studies including an AA were compared with metformin, there were significant differences favouring antiandrogenic therapy. The combination of COC and/or AA with metformin was similar to COC and/or AA therapy alone in the whole group of patients. Post-intervention OR for the presence of regular menses favoured COC therapy. In terms of cardiometabolic impact, the MD in BMI were in favour of metformin. The negative effect of COC therapy on BMI was blunted by its combination with metformin. The MD in homoeostasis model assessment of insulin resistance (HOMA-IR) were also in favour of metformin therapy compared to COC and/or AA. The combination of COC and/or AA and metformin decreased MD in HOMA with respect to antiandrogenic therapy alone. There were no significant post-intervention SMD in circulating glucose levels between COC and/or AA and metformin. However, adding metformin to COC and/or AA yielded a beneficial effect on fasting glucose levels. Post-intervention OR for abnormal glucose tolerance showed no significant differences between COC and/or AA and metformin, although after excluding studies including an AA as a comparator (without COC) a significant effect in favour of metformin therapy was observed. There were no significant differences among therapies in lipid profile, blood pressure or prevalence of hypertension. The global quality of evidence was very low when addressing the impact of the treatments explored on prevalence of hypertension and lipid profiles, low in the case of hirsutism, BMI and blood pressure values, and high for endometrial protection and glucose tolerance. These data provide further scientific evidence for the choice of treatment of women with PCOS. COC and AA are more effective than metformin for hyperandrogenic symptoms and endometrial protection. Their combination with metformin adds a positive effect on BMI and glucose tolerance. CRD42016053457. © The Author(s) 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com