Hyperon production from neutrino-nucleon reaction
Wu, Jia -Jun; Zou, Bing -Song
2015-04-10
The neutrino induced hyperon production processes ν¯ e/μ + p → e +/μ + + π + Λ/Σ may provide a unique clean place for studying low energy πΛ/Σ interaction and hyperon resonances below KN threshold. The production rates for some neutrino induced hyperon production processes are estimated with theoretical models. Lastly, suggestions are made for the study of hyperon production from neutrino–nucleon reaction at present and future neutrino facilities.
Axial mass in quasielastic antineutrino-nucleon scattering accompanied by strange-hyperon production
NASA Astrophysics Data System (ADS)
Kuzmin, K. S.; Naumov, V. A.
2009-09-01
Reactions of quasielastic Λ-, Σ--, and Σ0-hyperon production in antineutrino-nucleon interactions are studied. An axial-mass ( M A ) value that agrees with a fit to all accelerator data on exclusive and inclusive νN and νN reactions was extracted from a global statistical analysis of experimental data on differential and total cross sections for Δ Y = 0 and 1 quasielastic reactions of neutrino and antineutrino scattering on various nuclear targets.
Role of high-spin hyperon resonances in the reaction of $$\\gamma p \\to K^+ K^+ \\Xi^-$$
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Ka Shing Man, Yongseok Oh, K. Nakayama
The recent data taken by the CLAS Collaboration at the Thomas Jefferson National Accelerator Facility for the reaction ofmore » $$\\gamma p \\to K^+ K^+ \\Xi^-$$ are reanalyzed within a relativistic meson-exchange model of hadronic interactions. The present model is an extension of the one developed in an earlier work by Nakayama, Oh, and Haberzettl [Phys. Rev. C 74, 035205 (2006)]. In particular, the role of the spin-5/2 and -7/2 hyperon resonances, which were not included in the previous model, is investigated in the present study. It is shown that the contribution of the $$\\Sigma(2030)$$ hyperon having spin-7/2 and positive parity has a key role to bring the model predictions into a fair agreement with the measured data for the $$K^+\\Xi^-$$ invariant mass distribution.« less
Role of high-spin hyperon resonances in the reaction of {gamma}p{yields}K{sup +}K{sup +}{Xi}{sup -}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Man, J. Ka Shing; Oh, Yongseok; Excited Baryon Analysis Center, Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606
The recent data taken by the CLAS Collaboration at the Thomas Jefferson National Accelerator Facility for the reaction of {gamma}p{yields}K{sup +}K{sup +}{Xi}{sup -} are reanalyzed within a relativistic meson-exchange model of hadronic interactions. The present model is an extension of the one developed in an earlier work by Nakayama, Oh, and Haberzettl [Phys. Rev. C 74, 035205 (2006)]. In particular, the role of the spin-5/2 and -7/2 hyperon resonances, which were not included in the previous model, is investigated in the present study. It is shown that the contribution of the {Sigma}(2030) hyperon having spin-7/2 and positive parity has amore » key role to bring the model predictions into a fair agreement with the measured data for the K{sup +}{Xi}{sup -} invariant mass distribution.« less
Electroproduction of hyperons at low momentum transfer
NASA Astrophysics Data System (ADS)
Acha, Armando R.
A high resolution study of the H(e,e'K+)Λ,Sigma 0 reaction was performed at Hall A, TJNAF as part of the hypernuclear experiment E94-107. One important ingredient to the measurement of the hypernuclear cross section is the elementary cross section for production of hyperons, Λ and Sigma0. This reaction was studied using a hydrogen (i.e. a proton) target. Data were taken at very low Q2 (˜0.07 (GeV/c) 2) and W˜2.2 GeV. Kaons were detected along the direction of q, the momentum transferred by the incident electron (thetaCM˜6°). In addition, there are few data available regarding electroproduction of hyperons at low Q2 and thetaCM and the available theoretical models differ significantly in this kinematical region of W. The measurement of the elementary cross section was performed by scaling the Monte Carlo cross section (MCEEP) with the experimental-to-simulated yield ratio. The Monte Carlo cross section includes an experimental fit and extrapolation from the existing data for electroproduction of hyperons. Moreover, the estimated transverse component of the electroproduction cross section of H(e,e'K+)Λ was compared to the different predictions of the theoretical models and exisiting data curves for photoproductions of hyperons. None of the models fully describe the cross-section results over the entire angular range. Furthermore, measurements of the Sigma 0/Λ production ratio were performed at theta CM˜6°, where data are not available. Finally, data for the measurements of the differential cross sections and the Sigma 0/Λ production were binned in Q2, W and thetaCM to understand the dependence on these variables. These results are not only a fundamental contribution to the hypernuclear spectroscopy studies but also an important experimental measurement to constrain existing theoretical models for the elementary reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilieva, Yordanka; Cao, Tongtong; Zachariou, Nicholas
2016-06-01
Theoretical studies suggest that experimental observables for hyperon production reactions can place stringent constraints on the free parameters of hyperon-nucleon potentials, which are critical for the understanding of hypernuclear matter and neutron stars. Here we present preliminary experimental results for the polarization observables S, Py, Ox, Oz, Cx, and Cz for final-state interactions (FSI) in exclusive L photoproduction off the deuteron. The observables were obtained from data collected during the E06-103 (g13) experiment with the CEBAF Large Acceptance Spectrometer (CLAS) in Hall B at Jefferson Lab. The g13 experiment ran with unpolarized deuteron target and circularly- and linearly-polarized photon beamsmore » with energies between 0.5 GeV and 2.5 GeV and collected about 51010 events with multiple charged particles in the final state. To select the reaction of interest, the K+ and the L decay products, a proton and a negative pion, were detected in the CLAS. The missing-mass technique was used to identify exclusive hyperon photoproduction events. Final-state interaction events were selected by requesting that the reconstructed neutron has a momentum larger than 200 MeV/c. The large statistics of E06-103 provided statistically meaningful FSI event samples, which allow for the extraction of one- and two-fold differential single- and double-polarization observables. Here we present preliminary results for a set of six observables for photon energies between 0.9 GeV and 2.3 GeV and for several kinematic variables in the Ln center-of-mass frame. Our results are the very first estimates of polarization observables for FSI in hyperon photoproduction and will be used to constrain the free parameters of hyperon-nucleon potentials.« less
Extraction of Polarization Parameters in the p¯p → Ω¯Ω Reaction
NASA Astrophysics Data System (ADS)
Perotti, E.
2018-05-01
A method to extract the polarization of Ω hyperons produced via the strong interaction is presented. Assuming they are spin 3/2 particles, the corresponding spin density matrix can be written in terms of seven non-zero polarization parameters, all retrievable from the angular distribution of the decay products. Moreover by considering the full decay chain Ω → ΛK → pπK the magnitude of the asymmetry parameters β Ω and γ Ω can be obtained. This method, applied here to the specific Ω case, can be generalized to any weakly decaying hyperon and is perfectly suited for the PANDA experiment where hyperon-antihyperon pairs will be copiously produced in proton-antiproton collisions. The aim is to take a step forward towards the understanding of the mechanism that reigns strangeness production in these processes.
Baryons and baryon resonances in nuclear matter
NASA Astrophysics Data System (ADS)
Lenske, Horst; Dhar, Madhumita; Gaitanos, Theodoros; Cao, Xu
2018-01-01
Theoretical approaches to the production of hyperons and baryon resonances in elementary hadronic reactions and heavy ion collisions are reviewed. The focus is on the production and interactions of baryons in the lowest SU(3) flavor octet and states from the next higher SU(3) flavor decuplet. Approaches using the SU(3) formalism for interactions of mesons and baryons and effective field theory for hyperons are discussed. An overview of application to free space and in-medium baryon-baryon interactions is given and the relation to a density functional theory is indicated. The intimate connection between baryon resonances and strangeness production is shown first for reactions on the nucleon. Pion-induced hypernuclear reactions are shown to proceed essentially through the excitation of intermediate nucleon resonances. Transport theory in conjunction with a statistical fragmentation model is an appropriate description of hypernuclear production in antiproton and heavy ion induced fragmentation reactions. The excitation of subnuclear degrees of freedom in peripheral heavy ion collisions at relativistic energies is reviewed. The status of in-medium resonance physics is discussed.
Study of the Hyperon-Nucleon Interaction in Exclusive Λ Photoproduction off the Deuteron
NASA Astrophysics Data System (ADS)
Zachariou, Nicholas; CLAS Collaboration
2014-09-01
Understanding the nature of the nuclear force in terms of the fundamental degrees of freedom of the theory of strong interaction, Quantum Chromodynamics (QCD), is one of the primary goals of modern nuclear physics. While the nucleon-nucleon (NN) interaction has been studied for decades, a systematic description of the NN potential has been achieved only recently with the development of low-energy Effective Field Theories (EFT). To obtain a comprehensive understanding of the strong interaction, dynamics involving strange baryons must be studied. Currently, little is known about the properties of the hyperon-nucleon (YN) and the hyperon-hyperon (YY) interactions. In this talk I will describe our current research of the Λn interaction using the E06-103 experiment performed with the CLAS detector in Hall B at Jefferson Lab. The large kinematic coverage of the CLAS combined with the exceptionally high quality of the experimental data allows to identify and select final-state interaction events in the reaction γd -->K+ Λn and to establish their kinematical dependencies. The large set of observables we aim to obtain will provide tight constraints on modern YN potentials. I will present the current status of the project and will discuss future incentives. Understanding the nature of the nuclear force in terms of the fundamental degrees of freedom of the theory of strong interaction, Quantum Chromodynamics (QCD), is one of the primary goals of modern nuclear physics. While the nucleon-nucleon (NN) interaction has been studied for decades, a systematic description of the NN potential has been achieved only recently with the development of low-energy Effective Field Theories (EFT). To obtain a comprehensive understanding of the strong interaction, dynamics involving strange baryons must be studied. Currently, little is known about the properties of the hyperon-nucleon (YN) and the hyperon-hyperon (YY) interactions. In this talk I will describe our current research of the Λn interaction using the E06-103 experiment performed with the CLAS detector in Hall B at Jefferson Lab. The large kinematic coverage of the CLAS combined with the exceptionally high quality of the experimental data allows to identify and select final-state interaction events in the reaction γd -->K+ Λn and to establish their kinematical dependencies. The large set of observables we aim to obtain will provide tight constraints on modern YN potentials. I will present the current status of the project and will discuss future incentives. for the CLAS Collaboration.
Future Perspectives on Baryon Form Factor Measurements with BES III
NASA Astrophysics Data System (ADS)
Schönning, Karin; Li, Cui
2017-03-01
The electromagnetic structure of hadrons, parameterised in terms of electromagnetic form factors, EMFF's, provide a key to the strong interaction. Nucleon EMFF's have been studied rigorously for more than 60 years but the new techniques and larger data samples available at modern facilities have given rise to a renewed interest for the field. Recently, the access to hyperon structure by hyperon time-like EMFF provides an additional dimension. The BEijing Spectrometer (BES III) at the Beijing Electron Positron Collider (BEPC-II) in China is the only running experiment where time-like baryon EMFF's can be studied in the e+e- → BB̅ reaction. The BES III detector is an excellent tool for baryon form factor measurements thanks to its near 4π coverage, precise tracking, PID and calorimetry. All hyperons in the SU(3) spin 1/2 octet and spin 3/2 decuplet are energetically accessible within the BEPC-II energy range. Recent data on proton and Λ hyperon form factors will be presented. Furthermore, a world-leading data sample was collected in 2014-2015 for precision measurements of baryon form factors. In particular, the data will enable a measurement of the relative phase between the electric and the magnetic form factors for Λ and Λc+ and hyperons. The modulus of the phase can be extracted from the hyperon polarisation, which in turn is experimentally accessible via the weak, parity violating decay. Furthermore, from the spin correlation between the outgoing hyperon and antihyperon, the sign of the phase can be extracted. This means that the time-like form factors can be completely determined for the first time. The methods will be outlined and the prospects of the BES III form factor measurements will be given. We will also present a planned upgrade of the BES III detector which is expected to improve future form factor measurements.
Λ hyperon polarization in relativistic heavy ion collisions from a chiral kinetic approach
NASA Astrophysics Data System (ADS)
Sun, Yifeng; Ko, Che Ming
2017-08-01
Using a chiral kinetic approach based on initial conditions from a multiphase transport model, we study the spin polarizations of quarks and antiquarks in noncentral heavy ion collisions at the BNL Relativistic Heavy Ion Collider. Because of the nonvanishing vorticity field in these collisions, quarks and antiquarks are found to acquire appreciable spin polarizations in the direction perpendicular to the reaction plane. Converting quarks and antiquarks to hadrons via the coalescence model, we further calculate the spin polarizations of Λ and anti-Λ hyperons and find their values comparable to those measured in experiments by the STAR Collaboration.
Transverse polarization of Σ+(1189) in photoproduction on a hydrogen target in CLAS
NASA Astrophysics Data System (ADS)
Nepali, C. S.; Amaryan, M.; Adhikari, K. P.; Aghasyan, M.; Anefalos Pereira, S.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Crede, V.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Alaoui, A. El; Fassi, L. El; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Gabrielyan, M. Y.; Gevorgyan, N.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Kvaltine, N. D.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Torayev, B.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.
2013-04-01
Experimental results on the Σ+(1189) hyperon transverse polarization in photoproduction on a hydrogen target using the CLAS detector at Jefferson Laboratory are presented. The Σ+(1189) was reconstructed in the exclusive reaction γ+p→KS0+Σ+(1189) via the Σ+→pπ0 decay mode. The KS0 was reconstructed in the invariant mass of two oppositely charged pions with the π0 identified in the missing mass of the detected pπ+π- final state. Experimental data were collected in the photon energy range Eγ=1.0-3.5 GeV (s range 1.66-2.73 GeV). We observe a large negative polarization of up to 95%. As the mechanism of transverse polarization of hyperons produced in unpolarized photoproduction experiments is still not well understood, these results will help to distinguish between different theoretical models on hyperon production and provide valuable information for the searches of missing baryon resonances.
H-dibaryon search via Ξ- capture on the deuteron
NASA Astrophysics Data System (ADS)
Merrill, F.; Iijima, T.; Koran, P.; Barnes, P. D.; Bassalleck, B.; Berdoz, A. R.; Bürger, T.; Burger, M.; Chrien, R. E.; Davis, C. A.; Diebold, G. E.; En'yo, H.; Fischer, H.; Franklin, G. B.; Franz, J.; Gan, L.; Gill, D. R.; Imai, K.; Kondo, Y.; Landry, M.; Lee, L.; Lowe, J.; Magahiz, R.; Masaike, A.; McCrady, R.; Meyer, C. A.; Nelson, J. M.; Okada, K.; Page, S. A.; Paschke, K.; Pile, P. H.; Quinn, B. P.; Ramsay, W. D.; Rössle, E.; Rusek, A.; Sawafta, R.; Schmitt, H.; Schumacher, R. A.; Stearns, R. L.; Stotzer, R. W.; Sukaton, I. R.; Sum, V.; Sutter, R.; Szymanski, J. J.; Takeutchi, F.; van Oers, W. T.; Yamamoto, K.; Zeps, V. J.; Zybert, R.
2001-03-01
A search for the H dibaryon has been conducted at the Brookhaven National Laboratory AGS, using a 1.8 GeV/c K- beam. Ξ- hyperons were produced in a liquid-hydrogen target via the reaction K-+p-->K++Ξ-. The hyperons were slowed in degraders and those most likely to stop in an adjacent liquid-deuterium target were tagged by silicon detectors. Monoenergetic neutrons were sought as the signature for H formation in (Ξ-,d)atom-->H+n. The experiment was designed for optimal sensitivity to a loosely-bound H, complementing recent (K-,K+) measurements on nuclear targets. In addition, the experiment's sensitivity was independent of lifetime and of decay modes of the H. No statistically significant evidence for H formation was seen. Upper limits on the branching ratio for H formation in the above reaction have been set in a mass range extending from slightly above ΛΛ threshold to ~100 MeV of binding and are compared with a corresponding theoretical prediction.
NASA Astrophysics Data System (ADS)
McCracken, M. E.; Bellis, M.; Adhikari, K. P.; Adikaram, D.; Akbar, Z.; Pereira, S. Anefalos; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Dupre, R.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, E.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Garillon, B.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mayer, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Moody, C. I.; Moriya, K.; Camacho, C. Munoz; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Skorodumina, Iu.; Sokhan, D.; Sparveris, N.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration
2015-10-01
We present a search for ten baryon number violating decay modes of Λ hyperons using the CLAS detector at Jefferson Laboratory. Nine of these decay modes result in a single meson and single lepton in the final state (Λ →m ℓ) and conserve either the sum or the difference of baryon and lepton number (B ±L ). The tenth decay mode (Λ →p ¯ π+ ) represents a difference in baryon number of two units and no difference in lepton number. We observe no significant signal and set upper limits on the branching fractions of these reactions in the range (4 - 200 )×10-7 at the 90% confidence level.
Radiative decays of the Σ0(1385) and Λ(1520) hyperons
NASA Astrophysics Data System (ADS)
Taylor, S.; Mutchler, G. S.; Adams, G.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Batourine, V.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bonner, B. E.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Chen, S.; Cole, P. L.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; Sanctis, E. De; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Feldman, G.; Fersch, R. G.; Feuerbach, R. J.; Forest, T. A.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Golovatch, E.; Gordon, C. I.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Huertas, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ito, M. M.; Jenkins, D.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Koubarovski, V.; Kramer, L. H.; Kuhn, S. E.; Kuhn, J.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lee, T.; Li, Ji; Lima, A. C.; Livingston, K.; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McNabb, J. W.; Mecking, B. A.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. S.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Stepanyan, S. S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Suleiman, R.; Taiuti, M.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.
2005-05-01
The electromagnetic decays of the Σ0(1385) and Λ(1520) hyperons were studied in photon-induced reactions γp→K+Λ(1116)γ in the Large Acceptance Spectrometer detector at the Thomas Jefferson National Accelerator Facility. We report the first observation of the radiative decay of the Σ0(1385) and a measurement of the Λ(1520) radiative decay width. For the Σ0(1385)→Λ(1116)γ transition, we measured a partial width of 479±120(stat)+81-100(sys)keV, larger than all of the existing model predictions. For the Λ(1520)→Λ(1116)γ transition, we obtained a partial width of 167±43(stat)+26-12(sys)keV.
Single-spin asymmetries in the leptoproduction of transversely polarized Λ hyperons
Kanazawa, K.; Metz, A.; Pitonyak, D.; ...
2015-04-13
We analyze single-spin asymmetries (SSAs) in the leptoproduction of transversely polarized Λ hyperons within the collinear twist-3 formalism. We calculate both the distribution and fragmentation terms in two different gauges (lightcone and Feynman) and show that the results are identical. This is the first time that the fragmentation piece has been analyzed for transversely polarized hadron production within the collinear twist-3 framework. In lightcone gauge we use the same techniques that were employed in computing the analogous piece in p↑ p → π X, which has become an important part to that reaction. With this in mind, we also verifymore » the gauge invariance of the formulas for the transverse SSA in the leptoproduction of pions. (author)« less
Hyperon-Nucleon Interaction and Strangeness Production in PP Collisions
NASA Astrophysics Data System (ADS)
Haidenbauer, J.
2002-09-01
A new model for the hyperon-nucleon (ΛN, ΣN) interaction is presented. The model incorporates the standard one-boson exchange contributions of the lowest pseudoscalar and vector meson multiplets with coupling constants fixed by SU(6) symmetry relations. As the main feature of the new model, the exchange of two correlated pions or kaons, both in the scalar-isoscalar (σ) and vector-isovector (ρ) channels, is included. Furthermore, results of a model calculation for the reactions pp → NΛK and pp → NΣK near their thresholds are reported. Special attention is paid to the cross section ratio σ
Baryon interactions from lattice QCD with physical masses —S = -3 sector: Ξ∑ and Ξ∑-Λ∑—
NASA Astrophysics Data System (ADS)
Ishii, Noriyoshi; Aoki, Sinya; Doi, Takumi; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Miyamoto, Takaya; Nemura, Hidekatsu; Sasaki, Kenji
2018-03-01
Hyperon-nucleon and hyperon-hyperon interactions are important in studying the properties of hypernuclei in hypernuclear physics. However, unlike the nucleons which are quite stable, hyperons are unstable so that the direct scattering experiments are difficult, which leads to the large uncertainty in the phenomenological determination of hyperon potentials. In this talk, we use the gauge configurations generated at the (almost) physical point (mπ = 146 MeV) on a huge spatial volume (8:1fm)4 to present our latest result on the hyperon-hyperon potentials in S = -3 sector (Ξ∑ single channel and Ξ∑- ΞΛ; coupled channel) from the Nambu-Bethe-Salpeter wave functions based on the HAL QCD method with improved statistics.
The γp → K0Σ+ Photoproduction Reaction
NASA Astrophysics Data System (ADS)
Schmieden, Hartmut
2014-01-01
The photoproduction reaction γp → K0Σ+ was investigated with the CBELSA/TAPS experiment at the electron accelerator facility ELSA of the University of Bonn. A pronounced structure in the cross section was found at the K* threshold. There are indications that this may be associated with the formation of a K*-hyperon quasibound state below the K* threshold. The very first measurements of the photon beam asymmetry in the studied reaction channel are presented and their impact is discussed.
Induced Hyperon-Nucleon-Nucleon Interactions and the Hyperon Puzzle.
Wirth, Roland; Roth, Robert
2016-10-28
We present the first ab initio calculations for p-shell hypernuclei including hyperon-nucleon-nucleon (YNN) contributions induced by a similarity renormalization group transformation of the initial hyperon-nucleon interaction. The transformation including the YNN terms conserves the spectrum of the Hamiltonian while drastically improving model-space convergence of the importance-truncated no-core model, allowing a precise extraction of binding and excitation energies. Results using a hyperon-nucleon interaction at leading order in chiral effective field theory for lower- to mid-p-shell hypernuclei show a good reproduction of experimental excitation energies while hyperon separation energies are typically overestimated. The induced YNN contributions are strongly repulsive and we show that they are related to a decoupling of the Σ hyperons from the hypernuclear system, i.e., a suppression of the Λ-Σ conversion terms in the Hamiltonian. This is linked to the so-called hyperon puzzle in neutron-star physics and provides a basic mechanism for the explanation of strong ΛNN three-baryon forces.
Symmetric and anti-symmetric LS hyperon potentials from lattice QCD
NASA Astrophysics Data System (ADS)
Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji; Inoue, Takashi; HAL QCD Collaboration
2014-09-01
We present recent results of odd-parity hyperon-hyperon potentials from lattice QCD. By using HAL QCD method, we generate hyperon-hyperon potentials from Nambu-Bethe-Salpeter (NBS) wave functions generated by lattice QCD simulation in the flavor SU(3) limit. Potentials in the irreducible flavor SU(3) representations are combined to make a Lambda-N potential which has a strong symmetric LS potential and a weak anti-symmetric LS potential. We discuss a possible cancellation between symmetric and anti-symmetric LS (Lambda-N) potentials after the coupled Sigma-N sector is integrated out. We present recent results of odd-parity hyperon-hyperon potentials from lattice QCD. By using HAL QCD method, we generate hyperon-hyperon potentials from Nambu-Bethe-Salpeter (NBS) wave functions generated by lattice QCD simulation in the flavor SU(3) limit. Potentials in the irreducible flavor SU(3) representations are combined to make a Lambda-N potential which has a strong symmetric LS potential and a weak anti-symmetric LS potential. We discuss a possible cancellation between symmetric and anti-symmetric LS (Lambda-N) potentials after the coupled Sigma-N sector is integrated out. This work is supported by JSPS KAKENHI Grant Number 25400244.
McCracken, Michael E.
2015-10-09
We present a search for ten baryon-number violating decay modes of Λ hyperons using the CLAS detector at Jefferson Laboratory. Nine of these decay modes result in a single meson and single lepton in the final state (Λ → mΙ) and conserve either the sum or the difference of baryon and lepton number (Β ± L). The tenth decay mode (Λ → p¯π +) represents a difference in baryon number of two units and no difference in lepton number. Furthermore, we observe no significant signal and set upper limits on the branching fractions of these reactions in the range (4more » – 200) x 10 7 at the 90% confidence level.« less
Search for CP violation in hyperon decays
NASA Astrophysics Data System (ADS)
Zyla, Piotr; Chan, A.; Chen, Y. C.; Ho, C.; Teng, P. K.; Choong, W. S.; Gidal, G.; Fu, Y.; Gu, P.; Jones, T.; Luk, K. B.; Turko, B.; Zyla, P.; James, C.; Volk, J.; Felix, J.; Burnstein, R. A.; Chakrovorty, A.; Kaplan, D. M.; Lederman, L. M.; Luebke, W.; Rajaram, D.; Rubin, H. A.; Solomey, N.; Torun, Y.; White, C. G.; White, S. L.; Leros, N.; Perroud, J. P.; Gustafson, H. R.; Longo, M. J.; Lopez, F.; Park, H. K.; Clark, K.; Jenkins, M.; Dukes, E. C.; Durandet, C.; Holmstrom, T.; Huang, M.; Lu, L.; Nelson, K. S.
2003-02-01
Direct CP violation in nonleptonic hyperon decays can be established by comparing the decays of hyperons and anti-hyperons. For Ξ decay to Λπ followed by Λ to pπ, the proton distribution in the rest frame of Lambda is governed by the product of the decay parameters αΞαΛ. The asymmetry ΛΞΛ, proportional to the difference of αΞαΛ of the hyperon and anti-hyperon decays, vanishes if CP is conserved. We report on an analysis of a fraction of 1997 and 1999 data collected by the HyperCP (E871) collaboration during the fixed-target runs at Fermilab. The preliminary measurement of the assymmetry is AΞΛ = [-7±12(stat)±6.2(sys)] × 10 -4, an order of magnitude better than the present limit.
High-energy Physics with Hydrogen Bubble Chambers
DOE R&D Accomplishments Database
Alvarez, L. W.
1958-03-07
Recent experience with liquid hydrogen bubble chambers of 25 and 40 cm dia. in high-energy physics experiments is discussed. Experiments described are: interactions of K{sup -} mesons with protons, interactions of antiprotons with protons, catalysis of nuclear fusion reactions by muons, and production and decay of hyperons from negative pions. (W.D.M.)
Photoproduction of Λ and Σ0 hyperons off protons with linearly polarized photons at Eγ=1.5 -3.0 GeV
NASA Astrophysics Data System (ADS)
Shiu, S. H.; Kohri, H.; Chang, W. C.; Ahn, D. S.; Ahn, J. K.; Chen, J. Y.; Daté, S.; Ejiri, H.; Fujimura, H.; Fujiwara, M.; Fukui, S.; Gohn, W.; Hicks, K.; Hotta, T.; Hwang, S. H.; Imai, K.; Ishikawa, T.; Joo, K.; Kato, Y.; Kon, Y.; Lee, H. S.; Maeda, Y.; Mibe, T.; Miyabe, M.; Mizutani, K.; Morino, Y.; Muramatsu, N.; Nakano, T.; Nakatsugawa, Y.; Niiyama, M.; Noumi, H.; Ohashi, Y.; Ohta, T.; Oka, M.; Parker, J. D.; Rangacharyulu, C.; Ryu, S. Y.; Sawada, T.; Shimizu, H.; Sugaya, Y.; Sumihama, M.; Tsunemi, T.; Uchida, M.; Ungaro, M.; Yosoi, M.; LEPS Collaboration
2018-01-01
We report the measurement of the γ p →K+Λ and γ p →K+Σ0 reactions at SPring-8. The differential cross sections and photon-beam asymmetries are measured at forward K+ production angles using linearly polarized tagged-photon beams in the range of Eγ=1.5 -3.0 GeV. With increasing photon energy, the cross sections for both γ p →K+Λ and γ p →K+Σ0 reactions decrease slowly. Distinct narrow structures in the production cross section have not been found at Eγ=1.5 -3.0 GeV. The forward peaking in the angular distributions of cross sections, a characteristic feature of t -channel exchange, is observed for the production of Λ in the whole observed energy range. A lack of similar feature for Σ0 production reflects a less dominant role of t -channel contribution in this channel. The photon-beam asymmetries remain positive for both reactions, suggesting the dominance of K* exchange in the t channel. These asymmetries increase gradually with the photon energy, and have a maximum value of +0.6 for both reactions. Comparison with theoretical predictions based on the Regge trajectory in the t channel and the contributions of nucleon resonances indicates the major role of t -channel contributions as well as non-negligible effects of nucleon resonances in accounting for the reaction mechanism of hyperon photoproduction in this photon energy regime.
K-Long Facility for JLab and its Scientific Potential
Strakovsky, Igor I.
2016-11-29
Our main interest in creating a secondary high-quality KL-beam is to investigate hyperon spectroscopy through both formation and production processes. We propose to study two-body reactions induced by the KL-beam on the proton target. The experiment should measure both differential cross sections and self-analyzed polarizations of the produced Λ-, Σ-, and Ξ-hyperons using the GlueX detector at the Jefferson Lab Hall D. New data will greatly constrain partial-wave analysis and reduce modeldependent uncertainties in the extraction of strange resonance properties, providing a new benchmark for comparisons with QCD-inspired models and LQCD calculations. The measurements will span c.m. cos θ frommore » -0.95 to 0.95 in c.m. range above W = 1490 MeV and up to 4000 MeV.« less
Spectroscopic Study of L Hypernuclei with Electron Beams at Jefferson Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Satoshi; Gogami, Toshiyuki; Tang, Liguang
The missing mass spectroscopy of L hypernuclei with the (e, e'K^+) reaction was started from 2000 at Jefferson Lab. In this fifteen years, various hypernuclei (A = 7 - 52) including hyperon (L, S^0) productions have been studied with newly developed experimental techniques. The (e, e'K^+) reaction spectroscopy of L hypernuclei features its capability of absolute missing mass calibration and production of new species of hypernuclei which are the isospin partners of well studied hypernuclei by (K^-, pi-) and (pi^+, K^+) reactions. In this paper, we will review how we established the (e, e'K^+) spectroscopic study of hypernuclei.
DOE R&D Accomplishments Database
Lee, T. D.
1957-06-01
Experimental results on the non-conservation of parity and charge conservation in weak interactions are reviewed. The two-component theory of the neutrino is discussed. Lepton reactions are examined under the assumption of the law of conservation of leptons and that the neutrino is described by a two- component theory. From the results of this examination, the universal Fermi interactions are analyzed. Although reactions involving the neutrino can be described, the same is not true of reactions which do not involve the lepton, as the discussion of the decay of K mesons and hyperons shows. The question of the invariance of time reversal is next examined. (J.S.R.)
A Monte Carlo Study of Lambda Hyperon Polarization at BM@N
NASA Astrophysics Data System (ADS)
Suvarieva, D.; Gudima, K.; Zinchenko, A.
2018-03-01
Heavy strange objects (hyperons) can provide essential signatures of the excited and compressed baryonic matter. At NICA, it is planned to study hyperons both in the collider mode (MPD detector) and the fixed-target one (BM@N setup). Measurements of strange hyperon polarization can give additional information on the strong interaction mechanisms. In heavy-ion collisions, such measurements are even more valuable since the polarization is expected to be sensitive to characteristics of the QCD medium (vorticity, hydrodynamic helicity) and to QCD anomalous transport. In this analysis, the possibility to measure at BM@N the polarization of the lightest strange hyperon Λ is studied in Monte Carlo event samples of Au + Au collisions produced with the DCM-QGSM generator. It is shown that the detector will allow to measure polarization with a precision required to check the model predictions.
Test of SU(3) Symmetry in Hyperon Semileptonic Decays
NASA Astrophysics Data System (ADS)
Pham, T. N.
2015-01-01
Existing analyzes of baryon semileptonic decays indicate the presence of a small SU(3) symmetry breaking in hyperon semileptonic decays, but to provide evidence for SU(3) symmetry breaking, one would need a relation similar to the Gell-Mann-Okubo (GMO) baryon mass formula which is satisfied to a few percents, showing evidence for a small SU(3) symmetry breaking effect in the GMO mass formula. In this talk, I would like to present a similar GMO relation obtained in a recent work for hyperon semileptonic decay axial vector current matrix elements. Using these generalized GMO relations for the measured axial vector current to vector current form factor ratios, it is shown that SU(3) symmetry breaking in hyperon semileptonic decays is of 5-11% and confirms the validity of the Cabibbo model for hyperon semi-leptonic decays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogolyubskii-breve, M.Y.; Vinitskii-breve, A.A.; Ermolov, P.F.
1986-05-01
Inclusive and semi-inclusive ..lambda..-hyperon spectra in p-barp interactions at 32 GeV/c are presented. The processes whereby ..lambda.. hyperons are produced in various channels are analyzed by comparison with the predictions of the Lund model and with dual-topological-unitarization (DTU)-based models. The ..lambda..-hyperon characteristics differ from those predicted in the Lund model. The main cause of the differences is that multiple production of particles is represented in this model in terms of breaking of one string, thereby excluding correlation effects between the vertices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banik, Sarmistha; Hempel, Matthias; Bandyopadhyay, Debades
2014-10-01
We develop new hyperon equation of state (EoS) tables for core-collapse supernova simulations and neutron stars. These EoS tables are based on a density-dependent relativistic hadron field theory where baryon-baryon interaction is mediated by mesons, using the parameter set DD2 for nucleons. Furthermore, light and heavy nuclei along with interacting nucleons are treated in the nuclear statistical equilibrium model of Hempel and Schaffner-Bielich which includes excluded volume effects. Of all possible hyperons, we consider only the contribution of Λs. We have developed two variants of hyperonic EoS tables: in the npΛφ case the repulsive hyperon-hyperon interaction mediated by the strangemore » φ meson is taken into account, and in the npΛ case it is not. The EoS tables for the two cases encompass a wide range of densities (10{sup –12} to ∼1 fm{sup –3}), temperatures (0.1 to 158.48 MeV), and proton fractions (0.01 to 0.60). The effects of Λ hyperons on thermodynamic quantities such as free energy per baryon, pressure, or entropy per baryon are investigated and found to be significant at higher densities. The cold, β-equilibrated EoS (with the crust included self-consistently) results in a 2.1 M {sub ☉} maximum mass neutron star for the npΛφ case, whereas that for the npΛ case is 1.95 M {sub ☉}. The npΛφ EoS represents the first supernova EoS table involving hyperons that is directly compatible with the recently measured 2 M {sub ☉} neutron stars.« less
Ab initio description of p-shell hypernuclei.
Wirth, Roland; Gazda, Daniel; Navrátil, Petr; Calci, Angelo; Langhammer, Joachim; Roth, Robert
2014-11-07
We present the first ab initio calculations for p-shell single-Λ hypernuclei. For the solution of the many-baryon problem, we develop two variants of the no-core shell model with explicit Λ and Σ(+),Σ(0),Σ(-) hyperons including Λ-Σ conversion, optionally supplemented by a similarity renormalization group transformation to accelerate model-space convergence. In addition to state-of-the-art chiral two- and three-nucleon interactions, we use leading-order chiral hyperon-nucleon interactions and a recent meson-exchange hyperon-nucleon interaction. We validate the approach for s-shell hypernuclei and apply it to p-shell hypernuclei, in particular to (Λ)(7)Li, (Λ)(9)Be, and (Λ)(13)C. We show that the chiral hyperon-nucleon interactions provide ground-state and excitation energies that generally agree with experiment within the cutoff dependence. At the same time we demonstrate that hypernuclear spectroscopy provides tight constraints on the hyperon-nucleon interactions.
Kaon Condensation and Hyperon Mixture in Inhomogeneous Neutron Star Matter
NASA Astrophysics Data System (ADS)
Maruyama, Toshiki; Muto, Takumi; Tatsumi, Toshitaka
We explore the structure and properties of matter in neutron stars, particularly at the densities where kaons and/or hyperons begin to mix in nucleons. The kaon mixture is expected to bring about regular structures, some of which are called "pasta". It is interesting to know what happens to the kaonic pasta if hyperons begin to mix into nucleons.
Lattice quantum chromodynamical approach to nuclear physics
NASA Astrophysics Data System (ADS)
Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji; HAL QCD Collaboration
2012-09-01
We review recent progress in the HAL QCD method, which was recently proposed to investigate hadron interactions in lattice quantum chromodynamics (QCD). The strategy to extract the energy-independent non-local potential in lattice QCD is explained in detail. The method is applied to study nucleon-nucleon, nucleon-hyperon, hyperon-hyperon, and meson-baryon interactions. Several extensions of the method are also discussed.
Cooling of hypernuclear compact stars
NASA Astrophysics Data System (ADS)
Raduta, Adriana R.; Sedrakian, Armen; Weber, Fridolin
2018-04-01
We study the thermal evolution of hypernuclear compact stars constructed from covariant density functional theory of hypernuclear matter and parametrizations which produce sequences of stars containing two-solar-mass objects. For the input in the simulations, we solve the Bardeen-Cooper-Schrieffer gap equations in the hyperonic sector and obtain the gaps in the spectra of Λ, Ξ0, and Ξ- hyperons. For the models with masses M/M⊙ ≥ 1.5 the neutrino cooling is dominated by hyperonic direct Urca processes in general. In the low-mass stars the (Λp) plus leptons channel is the dominant direct Urca process, whereas for more massive stars the purely hyperonic channels (Σ-Λ) and (Ξ-Λ) are dominant. Hyperonic pairing strongly suppresses the processes on Ξ-s and to a lesser degree on Λs. We find that intermediate-mass 1.5 ≤ M/M⊙ ≤ 1.8 models have surface temperatures which lie within the range inferred from thermally emitting neutron stars, if the hyperonic pairing is taken into account. Most massive models with M/M⊙ ≃ 2 may cool very fast via the direct Urca process through the (Λp) channel because they develop inner cores where the S-wave pairing of Λs and proton is absent.
First measurement of beam-recoil observables Cx and Cz in hyperon photoproduction
NASA Astrophysics Data System (ADS)
Bradford, R. K.; Schumacher, R. A.; Adams, G.; Amaryan, M. J.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Beard, K.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Bonner, B. E.; Bouchigny, S.; Boiarinov, S.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Chen, S.; Cole, P. L.; Coleman, A.; Collins, P.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Crede, V.; Cummings, J. P.; Masi, R. De; Sanctis, E. De; Vita, R. De; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Dharmawardane, K. V.; Dickson, R.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Fassi, L. El; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Forest, T. A.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gonenc, A.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hafidi, K.; Hakobyan, H.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Huertas, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kalantarians, N.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S. V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lima, A. C. S.; Livingston, K.; Lu, H. Y.; Lukashin, K.; MacCormick, M.; Manak, J. J.; Marchand, C.; Markov, N.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Moriya, K.; Morrow, S. A.; Moteabbed, M.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Natasha, N.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Popa, I.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Quinn, B. P.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salamanca, J.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Shvedunov, N. V.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Sokhan, D.; Spraker, M.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Watts, D. P.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.
2007-03-01
Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions γ→+p→K++Λ→ and γ→+p→K++Σ→0. The data were obtained using the CEBAF Large Acceptance Spectrometer (CLAS) detector at the Jefferson Lab for center-of-mass energies W between 1.6 and 2.53 GeV, and for -0.85
Dynamics of Hyperon Production
NASA Astrophysics Data System (ADS)
Sibirtsev, A.
2007-11-01
The progress of strangeness physics at COSY in both experimental and theoretical aspects is reviewed. It is argued that the dynamics of hyperon production involves excitation of baryons and that it is feasible to study their properties such as mass and total width. It is shown that under certain kinematical cuts the resonance signal can be isolated from the effect due to the final state interaction. Recent puzzles concerning the Σ-hyperon production are discussed.
Hypernuclei Program at the CBM Experiment
NASA Astrophysics Data System (ADS)
Vassiliev, Iouri; Senger, Peter; Kisel, Ivan; Zyzak, Maksym
Main goal of the CBM experiment at FAIR is to study behaviour of nuclear matter at very high baryonic density in which the transition to a deconfined and chirally restored phase is expected to happen. Promising signatures of this new state are enhanced production of multi-strange particles, and production of hypernuclei and dibaryons. Theoretical models predict that single and double hypernuclei, and heavy multi-strange short-lived objects are produced via coalescence in heavy-ion collisions with the maximum yield in the region of SIS100 energies. Discovery and investigation of new hypernuclei and of hypermatter will shed light on hyperon-nucleon and hyperon-hyperon interactions. Results of feasibility studies of multi-strange hyperons and hypernuclei in the CBM experiment are discussed.
NASA Astrophysics Data System (ADS)
Yu, Zi; Xu, Yan; Zhang, Gui-Qing; Hu, Tao-Ping
2018-04-01
In the framework of the relativistic mean field theory including the hyperon-hyperon (YY) interactions, protoneutron stars with a weakly interacting light U boson are studied. The U-boson leads to the increase of the star maximum mass. The modification to the maximum mass by the U-boson with the strong YY interaction is larger than that with the weak YY interaction. The maximum mass of the protoneutron star is less sensitive to the U-boson than that of the neutron star. The inclusion of the U-boson narrows down the mass window for the hyperonized protoneutron stars. As g 2/μ 2 increases, the species of hyperons, which can appear in a stable protoneutron star decrease. The rotation frequency, the red shift, the momentum of inertia and the total neutrino fraction of PSR J1903-0327 are sensitive to the U-boson and change with g 2/μ 2 in an approximate linear trend. The possible way to constrain the coupling constants of the U-boson is discussed. Supported by Jiangsu Province Natural Science Foundation Youth Fund of China under Grant No. Bk20140982, National Natural Science Foundation of China under Grant No. 11447165, and Youth Innovation Promotion Association, Chinese Academy of Sciences under Grant No. 2016056, and the Development Project of Science and Technology of Jilin Province under Grant No. 20180520077JH
Anisotropic pressure and hyperons in neutron stars
NASA Astrophysics Data System (ADS)
Sulaksono, A.
2015-01-01
We study the effects of anisotropic pressure (AI-P) on properties of the neutron stars (NSs) with hyperons inside its core within the framework of extended relativistic mean field. It is found that the main effects of AI-P on NS matter is to increase the stiffness of the equation of state EOS, which compensates for the softening of the EOS due to the hyperons. The maximum mass and redshift predictions of anisotropic neutron star with hyperonic core are quite compatible with the result of recent observational constraints if we use the parameter of AI-P model h ≤ 0.8 [L. Herrera and W. Barreto, Phys. Rev. D 88 (2013) 084022.] and Λ ≤ -1.15 [D. D. Doneva and S. S. Yazadjiev, Phys. Rev. D 85 (2012) 124023.]. The radius of the corresponding NS at M = 1.4 M⊙ is more than 13 km, while the effect of AI-P on the minimum mass of NS is insignificant. Furthermore, due to the AI-P in the NS, the maximum mass limit of higher than 2.1 M⊙ cannot rule out the presence of hyperons in the NS core.
Strangeness S =-1 hyperon-nucleon interactions: Chiral effective field theory versus lattice QCD
NASA Astrophysics Data System (ADS)
Song, Jing; Li, Kai-Wen; Geng, Li-Sheng
2018-06-01
Hyperon-nucleon interactions serve as basic inputs to studies of hypernuclear physics and dense (neutron) stars. Unfortunately, a precise understanding of these important quantities has lagged far behind that of the nucleon-nucleon interaction due to lack of high-precision experimental data. Historically, hyperon-nucleon interactions are either formulated in quark models or meson exchange models. In recent years, lattice QCD simulations and chiral effective field theory approaches start to offer new insights from first principles. In the present work, we contrast the state-of-the-art lattice QCD simulations with the latest chiral hyperon-nucleon forces and show that the leading order relativistic chiral results can already describe the lattice QCD data reasonably well. Given the fact that the lattice QCD simulations are performed with pion masses ranging from the (almost) physical point to 700 MeV, such studies provide a useful check on both the chiral effective field theory approaches as well as lattice QCD simulations. Nevertheless more precise lattice QCD simulations are eagerly needed to refine our understanding of hyperon-nucleon interactions.
Lambda polarization feasibility study at BM@N
NASA Astrophysics Data System (ADS)
Suvarieva, Dilyna; Gudima, Konstantin; Zinchenko, Alexander
2017-03-01
Heavy strange objects (hyperons) could provide essential signatures of the excited and compressed baryonic matter. At NICA, it is planned to study hyperons both in the collider mode (MPD detector) and the fixed-target one (BM@N setup). Measurements of strange hyperons polarization could give additional information on the strong interaction mechanisms. In heavy-ion collisions, such measurements are even more valuable since the polarization is expected to be sensitive to characteristics of the QCD medium (vorticity, hydrodynamic helicity) and to QCD anomalous transport. In this analysis, the possibility to measure at BM@N the polarization of the lightest strange hyperon Λ is studied in Monte Carlo event samples produced with the DCM-QGSM generator. It is shown that the detector will allow to measure Λ polarization with a precision required to check the model predictions.
Hyperons in the nuclear pasta phase
NASA Astrophysics Data System (ADS)
Menezes, Débora P.; Providência, Constança
2017-10-01
We have investigated under which conditions hyperons (particularly Λ s and Σ-s ) can be found in the nuclear pasta phase. As the density and temperature are larger and the electron fraction is smaller, the probability is greater that these particles appear, but always in very small amounts. Λ hyperons only occur in gas and in smaller amounts than would occur if matter were homogeneous, never with abundancies above 10-5. The amount of Σ- in the gas is at least two orders of magnitude smaller and can be disregarded in practical calculations.
NASA Astrophysics Data System (ADS)
Niiyama, M.; Sumihama, M.; Nakano, T.; Adachi, I.; Aihara, H.; Al Said, S.; Asner, D. M.; Aulchenko, V.; Aushev, T.; Ayad, R.; Babu, V.; Badhrees, I.; Bakich, A. M.; Bansal, V.; Barberio, E.; Berger, M.; Bhardwaj, V.; Bhuyan, B.; Biswal, J.; Bobrov, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chang, M.-C.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Choi, Y.; Cinabro, D.; Dash, N.; Di Carlo, S.; Doležal, Z.; Drásal, Z.; Dutta, D.; Eidelman, S.; Farhat, H.; Fast, J. E.; Ferber, T.; Fulsom, B. G.; Gaur, V.; Gabyshev, N.; Garmash, A.; Gillard, R.; Goldenzweig, P.; Haba, J.; Hara, T.; Hayasaka, K.; Hayashii, H.; Iijima, T.; Inami, K.; Ishikawa, A.; Itoh, R.; Iwasaki, Y.; Jacobs, W. W.; Jaegle, I.; Jin, Y.; Joffe, D.; Joo, K. K.; Julius, T.; Karyan, G.; Kato, Y.; Katrenko, P.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, K. T.; Kim, M. J.; Kim, S. H.; Kim, Y. J.; Kinoshita, K.; Kodyš, P.; Kotchetkov, D.; Križan, P.; Krokovny, P.; Kulasiri, R.; Kuzmin, A.; Kwon, Y.-J.; Lange, J. S.; Lee, I. S.; Li, C. H.; Li, L.; Li, Y.; Li Gioi, L.; Libby, J.; Liventsev, D.; Luo, T.; Masuda, M.; Matsuda, T.; Matvienko, D.; Merola, M.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Moon, H. K.; Mori, T.; Mussa, R.; Nakano, E.; Nakao, M.; Nanut, T.; Nath, K. J.; Natkaniec, Z.; Nayak, M.; Nisar, N. K.; Nishida, S.; Ogawa, S.; Ono, H.; Pakhlov, P.; Pakhlova, G.; Pal, B.; Pardi, S.; Park, H.; Pedlar, T. K.; Piilonen, L. E.; Pulvermacher, C.; Ritter, M.; Sahoo, H.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sato, Y.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Seidl, R.; Seino, Y.; Senyo, K.; Sevior, M. E.; Shebalin, V.; Shen, C. P.; Shibata, T.-A.; Shiu, J.-G.; Shwartz, B.; Simon, F.; Sokolov, A.; Solovieva, E.; Starič, M.; Sumiyoshi, T.; Takizawa, M.; Tanida, K.; Tenchini, F.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Van Hulse, C.; Varner, G.; Vossen, A.; Wang, C. H.; Wang, M.-Z.; Wang, P.; Watanabe, Y.; Widmann, E.; Williams, K. M.; Won, E.; Yamashita, Y.; Ye, H.; Yuan, C. Z.; Yusa, Y.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.; Belle Collaboration
2018-04-01
We measure the inclusive production cross sections of hyperons and charmed baryons from e+e- annihilation using a 800 fb-1 data sample taken near the ϒ (4 S ) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. The feed-down contributions from heavy particles are subtracted using our data, and the direct production cross sections are presented for the first time. The production cross sections divided by the number of spin states for S =-1 hyperons follow an exponential function with a single slope parameter except for the Σ (1385 )+resonance. Suppression for Σ (1385 )+ and Ξ (1530 )0 hyperons is observed. Among the production cross sections of charmed baryons, a factor of 3 difference for Λc+ states over Σc states is observed. This observation suggests a diquark structure for these baryons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niiyama, M.; Sumihama, M.; Nakano, T.
Here, we measure the inclusive production cross sections of hyperons and charmed baryons from e +e - annihilation using a 800 fb -1 data sample taken near the Υ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e +e - collider. The feed-down contributions from heavy particles are subtracted using our data, and the direct production cross sections are presented for the first time. The production cross sections divided by the number of spin states for S = -1 hyperons follow an exponential function with a single slope parameter except for the Σ(1385) + resonance. Suppression for Σ(1385) + and Ξ(1530) 0 hyperons is observed. Among the production cross sections of charmed baryons, a factor of 3 difference for Λmore » $$+\\atop{c}$$ states over Σ c states is observed. This observation suggests a diquark structure for these baryons.« less
Niiyama, M.; Sumihama, M.; Nakano, T.; ...
2018-04-09
Here, we measure the inclusive production cross sections of hyperons and charmed baryons from e +e - annihilation using a 800 fb -1 data sample taken near the Υ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e +e - collider. The feed-down contributions from heavy particles are subtracted using our data, and the direct production cross sections are presented for the first time. The production cross sections divided by the number of spin states for S = -1 hyperons follow an exponential function with a single slope parameter except for the Σ(1385) + resonance. Suppression for Σ(1385) + and Ξ(1530) 0 hyperons is observed. Among the production cross sections of charmed baryons, a factor of 3 difference for Λmore » $$+\\atop{c}$$ states over Σ c states is observed. This observation suggests a diquark structure for these baryons.« less
Strangeness Physics at CLAS in the 6 GeV Era
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumacher, Reinhard A.
2016-04-01
A very brief overview is presented of varied strangeness-physics studies that have been conducted with the CLAS system in the era of 6 GeV beam at Jefferson Lab. A full bibliography of articles related to open strangeness production is given, together with some physics context for each work. One natural place where these studies could be continued, using a K L beam and the GlueX detector, is in the further investigation of the Λ(1405) baryon. The line shapes and cross sections of this state were found, using photoproduction at CLAS, to differ markedly in the three possible Σπ final states.more » The analogous strong-interaction reactions using a K L beam could further bring this phenomenon into focus. 1. The CLAS program ran from 1998 to 2012, during the time when the maximum Jefferson Lab beam energy was 6 GeV. An important thrust of this program was to investigate the spectrum of N * and Δ * (non-strange) baryon resonances using photo-and electro-production reactions. To this end, final states containing strange particles (K mesons and low-mass hyperons) played a significant role. The reason for this is partly due to favorable kinemat-ics. When the total invariant energy W (= √ s) of a baryonic system exceeds 1.6 GeV it becomes possible to create the lightest strangeness-containing final state, K + Λ. This is a two-body final state that is straightforward to reconstruct in the CLAS detector system [1], and theoretically it is easier to deal with two-body reaction amplitudes than with three-and higher-body reaction amplitudes. In the mass range W > 1.6 GeV the decay modes of excited nucleons tend to not to favor two-body π-nucleon final states but rather multi-pion states. As input to partial-wave decompositions and resonance-extraction models, therefore, the strangeness-containing final states of high-mass nucleon excitations have had importance. Excited baryons decay through all possible channels simultaneously, constrained by unitarity of course, and channel-coupling is crucial to determining the spectrum of excita-tions. Within this mix of amplitudes, however, the KY decay modes have proven useful. The end result has been, as summarized in the recent edition of the Review of Particle Properties [2], clearer definition of the spectrum of baryonic excitations, with definite contributions from the strangeness sector channels. To this end, strangeness photoproduction cross sections measurements at CLAS for the K + Λ, K + Σ 0 and K 0 Σ + channels on a proton target were published [3–6]. Cross sections are not enough, in general, to define the reaction mechanism, including the underlying N * excitation spectrum. Photoproduction of pseudo-scalar mesons is described by four complex amplitudes, leading to fifteen spin observables in addition to the cross section. Full knowledge of these spin observables would exhaust the information that can be gleaned experimentally about any given reaction channel. Here the hyperonic channels offer another advantage when compared with the non-strange reaction channels: the polarization of most hyperons can be measured directly through their parity-violating weak decay asymmetries. Unlike 163« less
Neutral strange particle production in antineutrino-neon charged current interactions
NASA Astrophysics Data System (ADS)
Willocq, S.; Marage, P.; Aderholz, M.; Allport, P.; Baton, J. P.; Berggren, M.; Clayton, E. F.; Cooper-Sarkar, A. M.; Erriquez, O.; Faulkner, P. J. W.; Guy, J.; Hulth, P. O.; Jones, G. T.; Mobayyen, M. M.; Morrison, D. R. O.; Neveu, M.; O'Neale, S.; Sacton, J.; Sansum, R. A.; Varvell, K.; Venus, W.; Wells, J.; Wittek, W.
1992-06-01
Neutral strange particle production inbar v Ne charged current interactions is studied using the bubble chamber BEBC, exposed to the CERN SPS antineutrino wide band beam. From a sample of 1191 neutral strange particles, the inclusive production rates are determined to be (15.7±0.8)% for K 0 mesons, (8.2±0.5)% for Λ, (0.4±0.2)% forbar Λ and (0.6±0.3)% for Σ0 hyperons. The inclusive production properties of K 0 mesons and Λ hyperons are investigated. The Λ hyperons are found to be polarized in the production plane.
Multi-strange baryon production in psbnd Pb collisions at √{sNN} = 5.02 TeV
NASA Astrophysics Data System (ADS)
Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Benacek, P.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Pereira da Costa, H.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; de Souza, R. D.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stefanek, G.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yasar, C.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration
2016-07-01
The multi-strange baryon yields in Pbsbnd Pb collisions have been shown to exhibit an enhancement relative to pp reactions. In this work, Ξ and Ω production rates have been measured with the ALICE experiment as a function of transverse momentum, pT, in psbnd Pb collisions at a centre-of-mass energy of √{sNN} = 5.02 TeV. The results cover the kinematic ranges 0.6 GeV / c
Multi-strange baryon production in p Pb collisions at s NN = 5.02 TeV
Adam, J.; Adamová, D.; Aggarwal, M. M.; ...
2016-05-12
The multi-strange baryon yields in PbPb collisions have been shown to exhibit an enhancement relative to pp reactions. In this work, Ξ and Ω production rates have been measured with the ALICE experiment as a function of transverse momentum, p T , in pPb collisions at a centre-of-mass energy of √s NN=5.02 TeV. The results cover the kinematic ranges 0.6 GeV/c < p T < 7.2 GeV/c and 0.8 GeV/c < p T < 5 GeV/c, for Ξ and Ω respectively, in the common rapidity interval -0.5 < y CMS < 0. Multi-strange baryons have been identified by reconstructing theirmore » weak decays into charged particles. The p T spectra are analysed as a function of event charged-particle multiplicity, which in pPb collisions ranges over one order of magnitude and lies between those observed in pp and PbPb collisions. The measured p T distributions are compared to the expectations from a Blast-Wave model. The parameters which describe the production of lighter hadron species also describe the hyperon spectra in high multiplicity pPb collisions. The yield of hyperons relative to charged pions is studied and compared with results from pp and PbPb collisions. A continuous increase in the yield ratios as a function of multiplicity is observed in pPb data, the values of which range from those measured in minimum bias pp to the ones in PbPb collisions. A statistical model qualitatively describes this multiplicity dependence using a canonical suppression mechanism, in which the small volume causes a relative reduction of hadron production dependent on the strangeness content of the hyperon.« less
Leading order relativistic hyperon-nucleon interactions in chiral effective field theory
NASA Astrophysics Data System (ADS)
Li, Kai-Wen; Ren, Xiu-Lei; Geng, Li-Sheng; Long, Bing-Wei
2018-01-01
We apply a recently proposed covariant power counting in nucleon-nucleon interactions to study strangeness S=-1 {{\\varLambda }}N-{{\\varSigma }}N interactions in chiral effective field theory. At leading order, Lorentz invariance introduces 12 low energy constants, in contrast to the heavy baryon approach, where only five appear. The Kadyshevsky equation is adopted to resum the potential in order to account for the non-perturbative nature of hyperon-nucleon interactions. A fit to the 36 hyperon-nucleon scattering data points yields {χ }2≃ 16, which is comparable with the sophisticated phenomenological models and the next-to-leading order heavy baryon approach. However, one cannot achieve a simultaneous description of the nucleon-nucleon phase shifts and strangeness S=-1 hyperon-nucleon scattering data at leading order. Supported by the National Natural Science Foundation of China (11375024, 11522539, 11375120), the China Postdoctoral Science Foundation (2016M600845, 2017T100008) and the Fundamental Research Funds for the Central Universities
Single Charged Particle Identification in Nuclear Emulsion Using Multiple Coulomb Scattering Method
NASA Astrophysics Data System (ADS)
Tint, Khin T.; Endo, Yoko; Hoshino, Kaoru; Ito, Hiroki; Itonaga, Kazunori; Kinbara, Shinji; Kobayashi, Hidetaka; Mishina, Akihiro; Soe, Myint K.; Yoshida, Junya; Nakazawa, Kazuma
Development of particle identification technique for single charged particles such as Ξ- hyperon, proton, K- and π- mesons is on-going by measuring multiple Coulomb scattering in nuclear emulsion. We generated several thousands of tracks of the single charged particles in nuclear emulsion stacks with GEANT 4 simulation and obtained second difference in constant Sagitta Method. We found that recognition of Ξ- hyperon from π- mesons is well satisfied, although that from K- and proton are a little difficult. On the other hand, the consistency of second difference of real Ξ- hyperon and pi meson tracks and simulation results were also confirmed.
Spectroscopy of Li Λ 9 by electroproduction
Urciuoli, G. M.; Cusanno, F.; Marrone, S.; ...
2015-03-01
Background: In the absence of accurate data on the free two-body hyperon-nucleon interaction, the spectra of hypernuclei can provide information on the details of the effective hyperon-nucleon interaction. Purpose: To obtain a high-resolution spectrum for the 9Be(e,e'K +) 9 ΛLi reaction. Method: Electroproduction of the hypernucleus 9 ΛLi has been studied for the first time with sub-MeV energy resolution in Hall A at Jefferson Lab on a 9Be target. In order to increase the counting rate and to provide unambiguous kaon identification, two superconducting septum magnets and a Ring Imaging CHerenkov detector (RICH) were added to the Hall A standardmore » equipment. Results: The cross section to low-lying states of 9 ΛLi is concentrated within 3 MeV of the ground state and can be fitted with four peaks. The positions of the doublets agree with theory while a disagreement could exist with respect to the relative strengths of the peaks in the doublets. A Λ separation energy, B Λ, of 8.36±0.08 (stat.) ±0.08 (syst.) MeV was measured, in agreement with an earlier experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leros, Nicolas
2001-06-01
The HyperCP(EB71) experiment, performed at the Fermi National Accelerator Laboratory in the United States, provides a primary search for direct OP violation in the decays ofmore » $$\\Xi^-/\\bar{\\Xi}^+$$ and $$\\Lambda/ \\bar{\\Lambda}$$ hyperons....« less
Double Collins effect in e+e-→Λ Λ ¯ X and e+e-→Λ π X processes in a diquark spectator model
NASA Astrophysics Data System (ADS)
Wang, Xiaoyu; Yang, Yongliang; Lu, Zhun
2018-06-01
We study the Collins function H1⊥ of the Λ hyperon, which describes the fragmentation of a transversely polarized quark into an unpolarized Λ hyperon. We calculate H1⊥ for light quarks of the Λ hyperon, in the diquark spectator model with a Gaussian form factor for the hyperon-quark-diquark vertex. The model calculation includes contributions from both the scalar diquark and vector diquark spectators. Using the model result, we estimate the azimuthal asymmetry A12, which appears in the ratio of unlike-sign events to like-sign events contributed by double Collins effects, in the processes e+e-→Λ Λ ¯X and e+e-→Λ π X . The QCD evolution effects for the half kT moment of the Collins function and the unpolarized fragmentation function D1(z ) are also included. The results show that the asymmetries are sizable and measurable at the kinematical configurations of Belle and BABAR experiments. We also find that the evolution effects play an important role in the phenomenological analysis.
Absorption of {Lambda}(1520) hyperons in photon-nucleus collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paryev, E. Ya.
2012-12-15
In the framework of the nuclear spectral function approach for incoherent primary photon-nucleon and secondary pion-nucleon production processes we study the inclusive {Lambda}(1520)-hyperon production in the interaction of 2-GeV photons with nuclei. In particular, the A and momentum dependences of the absolute and relative {Lambda}(1520)-hyperon yields are investigated in two scenarios for its in-medium width. Our model calculations show that the pion-nucleon production channel contributes appreciably to the {Lambda}(1520) creation at intermediate momenta both in light and heavy nuclei in the chosen kinematics and, hence, has to be taken into consideration on close examination of the dependences of the {Lambda}(1520)-hyperonmore » yields on the target mass number with the aim to get information on its width in the medium. They also demonstrate that the A and momentum dependences of the absolute and relative {Lambda}(1520)-hyperon production cross sections at incident energy of interest are markedly sensitive to the {Lambda}(1520) in-medium width, which means that these observables may be an important tool to determine the above width.« less
NASA Astrophysics Data System (ADS)
Kohno, M.
2018-03-01
Adopting hyperon-nucleon and hyperon-nucleon-nucleon interactions parametrized in chiral effective field theory, single-particle potentials of the Λ and Σ hyperons are evaluated in symmetric nuclear matter and in pure neutron matter within the framework of lowest-order Bruckner theory. The chiral NLO interaction bears strong Λ N -Σ N coupling. Although the Λ potential is repulsive if the coupling is switched off, the Λ N -Σ N correlation brings about the attraction consistent with empirical data. The Σ potential is repulsive, which is also consistent with empirical information. The interesting result is that the Λ potential becomes shallower beyond normal density. This provides the possibility of solving the hyperon puzzle without introducing ad hoc assumptions. The effects of the Λ N N -Λ N N and Λ N N -Σ N N three-baryon forces are considered. These three-baryon forces are first reduced to normal-ordered effective two-baryon interactions in nuclear matter and then incorporated in the G -matrix equation. The repulsion from the Λ N N -Λ N N interaction is of the order of 5 MeV at normal density and becomes larger with increasing density. The effects of the Λ N N -Σ N N coupling compensate the repulsion at normal density. The net effect of the three-baryon interactions on the Λ single-particle potential is repulsive at higher densities.
The role of the baryon junction in relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Vance, Stephen Earl
The non-perturbative nature of the conserved baryon number of nuclei is investigated by studying the role of the baryon junction in relativistic heavy-ion collisions. The junction, J, of a baryon originates in the Standard Model of Strong Interactions (QCD) and is the vertex which connects the color flux (Wilson) lines flowing from the three valence quarks. In high energy interactions, the baryon junction can play a dynamical role through the Regge exchange of junction states. We show that the junction exchange provides a natural mechanism for the transport of baryon number into the central rapidity region and has the remarkable ability to produce valence hyperons, including W- baryons. This mechanism is used to describe the observed baryon stopping and associated hyperon production in nucleus-nucleus collisions at the CERN SPS. We also show that junction - antijunction excitations or JJ loops provide a new mechanism for baryon pair production and lead to enhanced hyperon and antihyperon production. The combination of these two mechanisms is able to explain part of the anomalous hyperon production observed in Pb + Pb collisions at the SPS. Using the junction initial state dynamics, final state strangeness exchange interactions are shown to further enhance hyperon production and are proposed as an explanation of the remaining anomalous hyperon production. With larger phase space (higher energy) accessible at the newly constructed BNL RHIC facility, we propose that the observation of valence W- baryons in pp collisions will be a decisive observable to confirm the junction exchange picture of baryon number transport. In addition, we note that novel rapidity correlations between baryons and antibaryons of completely different quark flavors, like D++(uuu) and W+( ss s) , are predicted by the JJ loop mechanism. For numerical calculations of multiparticle observables associated with these junction mechanisms, we developed the HIJING/BB¯ nuclear event generator. HIJING/BB¯ was then coupled to the General Cascade Program (GCP) to study the role of the final state flavor changing interactions.
Processes of hypernuclei formation in relativistic ion collisions
NASA Astrophysics Data System (ADS)
Botvina, Alexander; Bleicher, Marcus
2018-02-01
The study of hypernuclei in relativistic ion collisions open new opportunities for nuclear and particle physics. The main processes leading to the production of hypernuclei in these reactions are the disintegration of large excited hyper-residues (target- and projectile-like), and the coalescence of hyperons with other baryons into light clusters. We use the transport, coalescence and statistical models to describe the whole reaction, and demonstrate the effectiveness of this approach: These reactions lead to the abundant production of multi-strange nuclei and new hypernuclear states. A broad distribution of predicted hypernuclei in masses and isospin allows for investigating properties of exotic hypernuclei, as well as the hypermatter both at high and low temperatures. There is a saturation of the hypernuclei production at high energies, therefore, the optimal way to pursue this experimental research is to use the accelerator facilities of intermediate energies, like FAIR (Darmstadt) and NICA (Dubna).
Experimental medium energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, P.D.
1991-01-01
This report discusses the following topics: Search for the H Dibaryon at the AGS; Hypernuclear Weak Decay Studies at the AGS; Relativistic Proton-Nucleus and Heavy Ion-Nucleus Collisions at the SPS; Hyperon-Antihyperon Production studies at LEAR; Hyperon Photoproduction at CEBAF; Double Lambda Hypernuclei; Weak Decay of Light Hypernuclei; and {pi}{sup 0}/{gamma}Detection with the CMU Scintillator Arrays.
CHARGED HEAVY MESONS (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leprince-Ringuet, L.
1960-03-01
The general properties of heavy mesons and hyperons are reviewed, and the results obtained with cosmic-ray studies at the Pic du Midi are reported. The investigations made with accelerators in the study of mesons are then described. The basic problems posed by heavy mesons and hyperons are reviewed with emphasis on the isotopic spin, strangeness, and parity. (tr-auth)
{sigma} Hyperons in the Nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bart, S.; Chrien, R. E.; Franklin, W. A.
1999-12-20
A search for {sigma} hypernuclear states in p -shell hypernuclei has been performed with the Moby Dick spectrometer and the low energy separated beam (LESB-2) at the Brookhaven Alternating Gradient Synchrotron (BNL AGS). Unlike some previously published reports, no narrow states have been observed for targets of {sup 6}Li and {sup 9}Be in (K{sup -}, {pi}{sup {+-}}) reactions, either for bound state or continuum regions. Together with the previously reported J=0 , T=1/2 bound state in {sup 4}{sub {sigma}} He , these results demonstrate the crucial role of isospin in {sigma} hypernuclei. (c) 1999 The American Physical Society.
HyperCP: A high-rate spectrometer for the study of charged hyperon and kaon decays
NASA Astrophysics Data System (ADS)
Burnstein, R. A.; Chakravorty, A.; Chan, A.; Chen, Y. C.; Choong, W.-S.; Clark, K.; Dukes, E. C.; Durandet, C.; Felix, J.; Fuzesy, R.; Gidal, G.; Gu, P.; Gustafson, H. R.; Ho, C.; Holmstrom, T.; Huang, M.; James, C.; Jenkins, C. M.; Jones, T. D.; Kaplan, D. M.; Lederman, L. M.; Leros, N.; Longo, M. J.; Lopez, F.; Lu, L. C.; Luebke, W.; Luk, K.-B.; Nelson, K. S.; Park, H. K.; Perroud, J.-P.; Rajaram, D.; Rubin, H. A.; Teng, P. K.; Turko, B.; Volk, J.; White, C. G.; White, S. L.; Zyla, P.
2005-04-01
The HyperCP experiment (Fermilab E871) was designed to search for rare phenomena in the decays of charged strange particles, in particular CP violation in Ξ and Λ hyperon decays with a sensitivity of 10-4. Intense charged secondary beams were produced by 800 GeV/ c protons and momentum selected by a magnetic channel. Decay products were detected in a large-acceptance, high-rate magnetic spectrometer using multiwire proportional chambers, trigger hodoscopes, a hadronic calorimeter, and a muon-detection system. Nearly identical acceptances and efficiencies for hyperons and antihyperons decaying within an evacuated volume were achieved by reversing the polarities of the channel and spectrometer magnets. A high-rate data-acquisition system enabled 231 billion events to be recorded in 12 months of data-taking.
Production and sequential decay of charmed hyperons
NASA Astrophysics Data System (ADS)
Fäldt, Göran
2018-03-01
We investigate production and decay of the Λc+ hyperon. The production considered is through the e+e- annihilation channel, e+e-→Λc+Λ¯c - , with summation over the Λ¯c- antihyperon spin directions. It is in this situation that the Λc+ decay chain is identified. Two kinds of sequential decays are studied. The first one is the doubly weak decay B1→B2M2 , followed by B2→B3M3. The other one is the mixed weak-electromagnetic decay B1→B2M2, followed by B2→B3γ . In both schemes B denotes baryons and M mesons. We should also mention that the initial state of the Λc+ hyperon is polarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández-Ramírez, César; Danilkin, Igor V.; Mathieu, Vincent
It appears that there are two resonances withmore » $J^P= 1/2^-$ quantum numbers in the energy region near the $$\\Lambda(1405)$$ hyperon. The nature of these states is a topic of current debate. To provide further insight we use Regge phenomenology to access how these two resonances fit the established hyperon spectrum. We find that only one of these resonances is compatible with a three-quark state.« less
The Influence of Hyperons and Strong Magnetic Field in Neutron Star Properties
NASA Astrophysics Data System (ADS)
Lopes, L. L.; Menezes, D. P.
2012-12-01
Neutron stars are among of the most exotic objects in the universe and constitute a unique laboratory to study nuclear matter above the nuclear saturation density. In this work, we study the equation of state (EoS) of the nuclear matter within a relativistic model subject to a strong magnetic field. We then apply this EoS to study and describe some of the physical characteristics of neutron stars, especially the mass-radius relation and chemical compositions. To study the influence of the magnetic field and the hyperons in the stellar interior, we consider altogether four solutions: two different magnetic field to obtain a weak and a strong influence; and two configurations: a family of neutron stars formed only by protons, electrons, and neutrons and a family formed by protons, electrons, neutrons, muons, and hyperons. The limit and the validity of the results found are discussed with some care. In all cases, the particles that constitute the neutron star are in β equilibrium and zero total net charge. Our work indicates that the effect of a strong magnetic field has to be taken into account in the description of magnetars, mainly if we believe that there are hyperons in their interior, in which case the influence of the magnetic field can increase the mass by more than 10 %. We have also seen that although a magnetar can reach 2.48 M ⊙, a natural explanation of why we do not know pulsars with masses above 2.0 M ⊙ arises. We also discuss how the magnetic field affects the strangeness fraction in some standard neutron star masses, and to conclude our paper, we revisit the direct Urca process related to the cooling of the neutron stars and show how it is affected by the hyperons and the magnetic field.
Polarization of Λ hyperons produced inclusively in v p andbar v p charged current interactions
NASA Astrophysics Data System (ADS)
Jones, G. T.; Kennedy, B. W.; O'Neale, S. W.; Böckmann, K.; Gebel, W.; Geich-Gimbel, C.; Nellen, B.; Cooper-Sarkar, A. M.; Grant, A.; Klein, H.; Morrison, D. R. O.; Schmid, P.; Wachsmuth, H.; Barnham, K. W. J.; Clayton, E. F.; Miller, D. B.; Mobayyen, M. M.; Villalobos-Baillie, O.; Aderholz, M.; Deck, L.; Schmitz, N.; Settles, R.; Wernhard, K. L.; Wittek, W.; Corrigan, G.; Myatt, G.; Radojicic, D.; Saitta, B.; Wells, J.
1985-03-01
Lambda hyperons from v p andbar v p charged current interactions have been analysed for polarization. A significant polarization is observed for Λ particles in the quasi-elastic region for both types of interactions. Part of this polarization is due to the decay of highly polarized Σ(1385) resonances. The results are compared with simple predictions of the quark parton model.
Strangeness in nuclei and neutron stars: A challenging puzzle
Lonardoni, Diego; Lovato, Alessandro; Gandolfi, Stefano; ...
2016-03-25
The prediction of neutron stars properties is strictly connected to the employed nuclear interactions. The appearance of hyperons in the inner core of the star is strongly dependent on the details of the underlying hypernuclear force. Here, we summarize our recent quantum Monte Carlo results on the development of realistic two- and threebody hyperon-nucleon interactions based on the available experimental data for light- and medium-heavy hypernuclei.
Performance studies of the P barANDA planar GEM-tracking detector in physics simulations
NASA Astrophysics Data System (ADS)
Divani Veis, Nazila; Firoozabadi, Mohammad M.; Karabowicz, Radoslaw; Maas, Frank; Saito, Takehiko R.; Voss, Bernd; ̅PANDA Gem-Tracker Subgroup
2018-03-01
The P barANDA experiment will be installed at the future facility for antiproton and ion research (FAIR) in Darmstadt, Germany, to study events from the annihilation of protons and antiprotons. The P barANDA detectors can cover a wide physics program about baryon spectroscopy and nucleon structure as well as the study of hadrons and hypernuclear physics including the study of excited hyperon states. One very specific feature of most hyperon ground states is the long decay length of several centimeters in the forward direction. The central tracking detectors of the P barANDA setup are not sufficiently optimized for these long decay lengths. Therefore, using a set of the planar GEM-tracking detectors in the forward region of interest can improve the results in the hyperon physics-benchmark channel. The current conceptual designed P barANDA GEM-tracking stations contribute the measurement of the particles emitted in the polar angles between about 2 to 22 degrees. For this designed detector performance and acceptance, studies have been performed using one of the important hyperonic decay channel p bar p → Λ bar Λ → p bar pπ+π- in physics simulations. The simulations were carried out using the PandaRoot software packages based on the FairRoot framework.
Ξ-P Scattering and STOPPED-Ξ-12C Reaction
NASA Astrophysics Data System (ADS)
Ahn, J. K.; Aoki, S.; Chung, K. S.; Chung, M. S.; En'yo, H.; Fukuda, T.; Funahashi, H.; Goto, Y.; Higashi, A.; Ieiri, M.; Iijima, T.; Iinuma, M.; Imai, K.; Itow, Y.; Lee, J. M.; Makino, S.; Masaike, A.; Matsuda, Y.; Matsuyama, Y.; Mihara, S.; Nagoshi, C.; Nomura, I.; Park, I. S.; Saito, N.; Sekimoto, M.; Shin, Y. M.; Sim, K. S.; Susukita, R.; Takashima, R.; Takeutchi, F.; Tlustý, P.; Weibe, S.; Yokkaichi, S.; Yoshida, K.; Yoshida, M.; Yoshida, T.; Yamashita, S.
2000-09-01
We report upper limits on the cross sections for the Ξ-p elastic and conversion processes based on the observation of one Ξ-p elastic scattering events with an invisible Λ decay. The cross section for the Ξ-p elastic scattering is, for simplicity, assumming an isotropic angular distribution, found to be 40 mb at 90% confidence level, whereas that for the Ξ-p → ΛΛ reaction is 11 mb at 90% confidence level. While the results on the elastic cross section give no stringent constraint on theoretical estimates, the upper limit on the conversion process suggests that the estimate of the RGM-F model prediction could be ruled out. We also report some preliminary results on the obervation of the stopped-Ξ- hyperon-nucleus interaction with respect to hypernuclear production and existence of doubly-strange H-dibaryon.
Baryon spectroscopy with polarization observables from CLAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauch, Steffen
The spectrum of nucleon excitations is dominated by broad and overlapping resonances. Polarization observables in photoproduction reactions are key in the study of these excitations. They give indispensable constraints to partial-wave analyses and help clarify the spectrum. A series of polarized photoproduction experiments have been performed at the Thomas Jefferson National Accelerator Facility with the CEBAF Large Acceptance Spectrometer (CLAS). These measurements include data with linearly and circularly polarized tagged-photon beams, longitudinally and transversely polarized proton and deuterium targets, and recoil polarizations through the observation of the weak decay of hyperons. An overview of these studies and recent results willmore » be given.« less
Production of {Σ (1385)^{± }} and {Ξ (1530)0} in p-Pb collisions at {√{s_{NN}}= 5.02} TeV
NASA Astrophysics Data System (ADS)
Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.
2017-06-01
The transverse momentum distributions of the strange and double-strange hyperon resonances (Σ (1385)^{± }, Ξ (1530)0) produced in p-Pb collisions at √{s_{NN}}= 5.02 TeV were measured in the rapidity range -0.5< y_{CMS}<0 for event classes corresponding to different charged-particle multiplicity densities, < dN_{ch}/dη _{lab}\\rangle . The mean transverse momentum values are presented as a function of < dN_{ch}/dη _{lab}\\rangle , as well as a function of the particle masses and compared with previous results on hyperon production. The integrated yield ratios of excited to ground-state hyperons are constant as a function of < dN_{ch}/dη _{lab}\\rangle . The equivalent ratios to pions exhibit an increase with < dN_{ch}/dη _{lab}\\rangle , depending on their strangeness content.
Hyperon threshold and stellar radii
NASA Astrophysics Data System (ADS)
Lopes, Luiz; Menezes, Debora
2018-05-01
We study how the Λ hyperon threshold influences the radius of the canonical 1.4 Msolar neutron star in the light of the measurements found in the recent literature. We show that the onset of a new degree of freedom not only causes the well known reduction of the maximum mass, but also compacts the neutron stars with high central density. With the help of the strange mesons phi and σ*, we show that it is possible to simulate very compact neutron stars keeping realistic hyperon potentials, UΛ(n0)= ‑28 MeV and UΛΛ(n0/5) in agreement with recents measurements. In the end we generalize these results showing that the onset of a yet not known dark matter particle with mass of 1.04 GeV is able to produce simultaneously a 2 Msolar neutron star and a canonical one with a radius of only 11.62 km.
Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; ...
2017-06-13
The transverse momentum distributions of the strange and double-strange hyperon resonances (Σ(1385) ±, Ξ(1530) 0) produced in p–Pb collisions at √ sNN = 5.02 TeV were measured in the rapidity range –0.5 < y CMS < 0 for event classes corresponding to different charged-particle multiplicity densities, < dN ch/dη lab >. The mean transverse momentum values are presented as a function of < dN ch/dη lab >, as well as a function of the particle masses and compared with previous results on hyperon production. The integrated yield ratios of excited to ground-state hyperons are constant as a function of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.
The transverse momentum distributions of the strange and double-strange hyperon resonances (Σ(1385) ±, Ξ(1530) 0) produced in p–Pb collisions at √ sNN = 5.02 TeV were measured in the rapidity range –0.5 < y CMS < 0 for event classes corresponding to different charged-particle multiplicity densities, < dN ch/dη lab >. The mean transverse momentum values are presented as a function of < dN ch/dη lab >, as well as a function of the particle masses and compared with previous results on hyperon production. The integrated yield ratios of excited to ground-state hyperons are constant as a function of
NASA Astrophysics Data System (ADS)
Keller, D.; Hicks, K.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Bookwalter, C.; Boiarinov, S.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Graham, L.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Markov, N.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Anefalos Pereira, S.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Procureur, S.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tkachenko, S.; Vernarsky, B.; Vineyard, M. F.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Watts, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhao, B.; Zhao, Z. W.
2012-03-01
The CLAS detector was used to obtain the first ever measurement of the electromagnetic decay of the $\\Sigma^{*+}(1385)$ from the reaction $\\gamma p \\to K^0 \\Sigma^{*+}(1385)$. A real photon beam with a maximum energy of 3.8 GeV was incident on a liquid-hydrogen target, resulting in the photoproduction of the kaon and $\\Sigma^*$ hyperon. Kinematic fitting was used to separate the reaction channel from the background processes. The fitting algorithm exploited a new method to kinematically fit neutrons in the CLAS detector, leading to the partial width measurement of $250.0\\pm56.9(stat)^{+34.3}_{-41.2}(sys)$ keV. A U-spin symmetry test using the SU(3) flavor-multiplet representation yields predictions for the $\\Sigma^{*+}(1385)\\to\\Sigma^{+}\\gamma$ and $\\Sigma^{*0}(1385)\\to\\Lambda\\gamma$ partial widths that agree with the experimental measurements.
Branching Ratio of the Electromagnetic Decay of the Σ +(1385)
Keller, D.; Hicks, K.; Adhikari, K. P.; ...
2012-03-01
The CLAS detector was used to obtain the first ever measurement of the electromagnetic decay of the Σ* +(1385) from the reaction γp → K 0 Σ* +(1385). A real photon beam with a maximum energy of 3.8 GeV was incident on a liquid-hydrogen target, resulting in the photoproduction of the kaon and Σ* hyperon. Kinematic fitting was used to separate the reaction channel from the background processes. The fitting algorithm exploited a new method to kinematically fit neutrons in the CLAS detector, leading to the partial width measurement of 250.0 ± 56.9(stat) -41.2 +34.3(sys) keV. A U-spin symmetry testmore » using the SU(3) flavor-multiplet representation yields predictions for the Σ* +(1385) → Σ +γ and Σ* 0(1385) → Λγ partial widths that agree with the experimental measurements.« less
Branching Ratio of the Electromagnetic Decay of the Σ +(1385)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keller, D.; Hicks, K.; Adhikari, K. P.
The CLAS detector was used to obtain the first ever measurement of the electromagnetic decay of the Σ* +(1385) from the reaction γp → K 0 Σ* +(1385). A real photon beam with a maximum energy of 3.8 GeV was incident on a liquid-hydrogen target, resulting in the photoproduction of the kaon and Σ* hyperon. Kinematic fitting was used to separate the reaction channel from the background processes. The fitting algorithm exploited a new method to kinematically fit neutrons in the CLAS detector, leading to the partial width measurement of 250.0 ± 56.9(stat) -41.2 +34.3(sys) keV. A U-spin symmetry testmore » using the SU(3) flavor-multiplet representation yields predictions for the Σ* +(1385) → Σ +γ and Σ* 0(1385) → Λγ partial widths that agree with the experimental measurements.« less
Lattice QCD input for nuclear structure and reactions
NASA Astrophysics Data System (ADS)
Davoudi, Zohreh
2018-03-01
Explorations of the properties of light nuclear systems beyond their lowestlying spectra have begun with Lattice Quantum Chromodynamics. While progress has been made in the past year in pursuing calculations with physical quark masses, studies of the simplest nuclear matrix elements and nuclear reactions at heavier quark masses have been conducted, and several interesting results have been obtained. A community effort has been devoted to investigate the impact of such Quantum Chromodynamics input on the nuclear many-body calculations. Systems involving hyperons and their interactions have been the focus of intense investigations in the field, with new results and deeper insights emerging. While the validity of some of the previous multi-nucleon studies has been questioned during the past year, controversy remains as whether such concerns are relevant to a given result. In an effort to summarize the newest developments in the field, this talk will touch on most of these topics.
Role of strangeness to the neutron star mass and cooling
NASA Astrophysics Data System (ADS)
Lee, Chang-Hwan; Lim, Yeunhwan; Hyun, Chang Ho; Kwak, Kyujin
2018-01-01
Neutron star provides unique environments for the investigation of the physics of extreme dense matter beyond normal nuclear saturation density. In such high density environments, hadrons with strange quarks are expected to play very important role in stabilizing the system. Kaons and hyperons are the lowest mass states with strangeness among meson and bayron families, respectively. In this work, we investigate the role of kaons and hyperons to the neutron star mass, and discuss their role in the neutron star cooling.
Hyperon polarization in heavy-ion collisions and holographic gravitational anomaly
NASA Astrophysics Data System (ADS)
Baznat, Mircea; Gudima, Konstantin; Sorin, Alexander; Teryaev, Oleg
2018-04-01
We study the energy dependence of global polarization of Λ hyperons in peripheral Au-Au collisions. We combine the calculation of vorticity and strange chemical potential in the framework of the kinetic quark-gluon-string model with the anomalous mechanism related to the axial vortical effect. We pay special attention to the temperature-dependent contribution related to the holographic gravitational anomaly and find that the preliminary data from the BNL Relativistic Heavy Ion Collider are compatible with its suppression discovered earlier in lattice calculations.
Track following of Ξ-hyperons in nuclear emulsion for the E07 experiment
NASA Astrophysics Data System (ADS)
Mishina, Akihiro; Nakazawa, Kazuma; Hoshino, Kaoru; Itonaga, Kazunori; Yoshida, Junya; Than Tint, Khin; Kyaw Soe, Myint; Kinbara, Shinji; Itoh, Hiroki; Endo, Yoko; Kobayashi, Hidetaka; Umehara, Kaori; Yokoyama, Hiroyuki; Nakashima, Daisuke; J-PARC E07 Collaboration
2014-09-01
Events of Double- Λ and Twin Single- Λ Hypernuclei are very important to understand Λ- Λ and Ξ--N interaction. We planned the E07 experiment to find Nuclear mass dependences of them with ten times higher statistics than before. In the experiment, the number of Ξ- hyperon stopping at rest is about ten thousands which is ten times larger than before. Such number of tracks for Ξ- hyperon candidates should be followed in nuclear emulsion plate up to their stopping point. To complete its job within one year, it is necessary for development of automated track following system. The important points for track following is Track connection in plate by plate. To carry out these points, we innovated image processing methods. Especially, we applied pattern match of K- beams for 2nd point. Position accuracy of this method was 1.4 +/-0.8 μm . If we succeed this application in about one minute for a track in each plate, all track following can be finished in one year.
Hyperon stars in a modified quark meson coupling model
NASA Astrophysics Data System (ADS)
Mishra, R. N.; Sahoo, H. S.; Panda, P. K.; Barik, N.; Frederico, T.
2016-09-01
We determine the equation of state (EOS) of nuclear matter with the inclusion of hyperons in a self-consistent manner by using a modified quark meson coupling model where the confining interaction for quarks inside a baryon is represented by a phenomenological average potential in an equally mixed scalar-vector harmonic form. The hadron-hadron interaction in nuclear matter is then realized by introducing additional quark couplings to σ ,ω , and ρ mesons through mean-field approximations. The effect of a nonlinear ω -ρ term on the EOS is studied. The hyperon couplings are fixed from the optical potential values and the mass-radius curve is determined satisfying the maximum mass constraint of 2 M⊙ for neutron stars, as determined in recent measurements of the pulsar PSR J0348+0432. We also observe that there is no significant advantage of introducing the nonlinear ω -ρ term in the context of obtaining the star mass constraint in the present set of parametrizations.
Production of twin /Λ-hypernuclei from Ξ- hyperon capture at rest
NASA Astrophysics Data System (ADS)
Ichikawa, A.; Ahn, J. K.; Akikawa, H.; Aoki, S.; Arai, K.; Bahk, S. Y.; Baik, K. M.; Bassalleck, B.; Chung, J. H.; Chung, M. S.; Hoshino, K.; Ieiri, M.; Imai, K.; Iwata, Y. H.; Iwata, Y. S.; Kanda, H.; Kaneko, M.; Kawai, T.; Kim, C. O.; Kim, J. Y.; Kim, S. J.; Kim, S. H.; Kondo, Y.; Kouketsu, T.; Lee, Y. L.; McNabb, J. W. C.; Mitsuhara, M.; Nagase, Y.; Nagoshi, C.; Nakazawa, K.; Noumi, H.; Ogawa, S.; Okabe, H.; Oyama, K.; Park, H. M.; Park, I. G.; Parker, J.; Ra, Y. S.; Rhee, J. T.; Rusek, A.; Shibuya, H.; Sim, K. S.; Saha, P. K.; Seki, D.; Sekimoto, M.; Song, J. S.; Takahashi, H.; Takahashi, T.; Takeutchi, F.; Tanaka, H.; Tanida, K.; Tojo, J.; Torii, H.; Torikai, S.; Ushida, N.; Yamamoto, K.; Yasuda, N.; Yang, J. T.; Yoon, C. J.; Yoon, C. S.; Yosoi, M.; Yoshida, T.; Zhu, L.
2001-02-01
A hybrid emulsion experiment was carried out to study double-strangeness nuclei produced via Ξ- hyperon capture at rest with the expectation of ten times larger statistics than previous experiments. We have analyzed 5% of the total emulsion and found one ``twin-hypernuclei'' event involving the emission of two single-/Λ hypernuclei and a nuclear fragment from a Ξ- hyperon stopping point. The event is interpreted as the decay of a Ξ-+14N atomic system to 5
Medium effects and parity doubling of hyperons across the deconfinement phase transition
NASA Astrophysics Data System (ADS)
Aarts, Gert; Allton, Chris; Boni, Davide De; Hands, Simon; Jäger, Benjamin; Praki, Chrisanthi; Skullerud, Jon-Ivar
2018-03-01
We analyse the behaviour of hyperons with strangeness S = -1,-2,-3 in the hadronic and quark gluon plasma phases, with particular interest in parity doubling and its emergence as the temperature grows. This study uses our FASTSUM anisotropic Nf = 2+1 ensembles, with four temperatures below and four above the deconfinement transition temperature, Tc. The positive-parity groundstate masses are found to be largely temperature independent below Tc, whereas the negative-parity ones decrease considerably as the temperature increases. Close to the transition, the masses are almost degenerate, in line with the expectation from chiral symmetry restoration. This may be of interest for heavy-ion phenomenology. In particular we show an application of this effect to the Hadron Resonance Gas model. A clear signal of parity doubling is found above Tc in all hyperon channels, with the strength of the effect depending on the number of s-quarks in the baryons. Presented at 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain
Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahmad, S; Ahn, S U; Aiola, S; Akindinov, A; Alam, S N; Albuquerque, D S D; Aleksandrov, D; Alessandro, B; Alexandre, D; Alfaro Molina, R; Alici, A; Alkin, A; Alme, J; Alt, T; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; An, M; Andrei, C; Andrews, H A; Andronic, A; Anguelov, V; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Anwar, R; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Ball, M; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barioglio, L; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartke, J; Bartsch, E; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batista Camejo, A; Batyunya, B; Batzing, P C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bello Martinez, H; Bellwied, R; Beltran, L G E; Belyaev, V; Bencedi, G; Beole, S; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhati, A K; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biro, G; Biswas, R; Biswas, S; Blair, J T; Blau, D; Blume, C; Boca, G; Bock, F; Bogdanov, A; Boldizsár, L; Bombara, M; Bonomi, G; Bonora, M; Book, J; Borel, H; Borissov, A; Borri, M; Botta, E; Bourjau, C; Braun-Munzinger, P; Bregant, M; Broker, T A; Browning, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buhler, P; Buitron, S A I; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Cabala, J; Caffarri, D; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Capon, A A; Carena, F; Carena, W; Carnesecchi, F; Castillo Castellanos, J; Castro, A J; Casula, E A R; Ceballos Sanchez, C; Cerello, P; Chang, B; Chapeland, S; Chartier, M; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chauvin, A; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Cho, S; Chochula, P; Choi, K; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa Del Valle, Z; Connors, M E; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Costanza, S; Crkovská, J; Crochet, P; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danisch, M C; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Souza, R D; Degenhardt, H F; Deisting, A; Deloff, A; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Di Ruzza, B; Diaz Corchero, M A; Dietel, T; Dillenseger, P; Divià, R; Djuvsland, Ø; Dobrin, A; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Drozhzhova, T; Dubey, A K; Dubla, A; Ducroux, L; Duggal, A K; Dupieux, P; Ehlers, R J; Elia, D; Endress, E; Engel, H; Epple, E; Erazmus, B; Erhardt, F; Espagnon, B; Esumi, S; Eulisse, G; Eum, J; Evans, D; Evdokimov, S; Fabbietti, L; Fabris, D; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Francisco, A; Frankenfeld, U; Fronze, G G; Fuchs, U; Furget, C; Furs, A; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gajdosova, K; Gallio, M; Galvan, C D; Gangadharan, D R; Ganoti, P; Gao, C; Garabatos, C; Garcia-Solis, E; Garg, K; Garg, P; Gargiulo, C; Gasik, P; Gauger, E F; Gay Ducati, M B; Germain, M; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Goméz Coral, D M; Gomez Ramirez, A; Gonzalez, A S; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Graczykowski, L K; Graham, K L; Greiner, L; Grelli, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grion, N; Gronefeld, J M; Grosa, F; Grosse-Oetringhaus, J F; Grosso, R; Gruber, L; Grull, F R; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Guzman, I B; Haake, R; Hadjidakis, C; Hamagaki, H; Hamar, G; Hamon, J C; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Hellbär, E; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, F; Hess, B A; Hetland, K F; Hillemanns, H; Hippolyte, B; Hladky, J; Horak, D; Hosokawa, R; Hristov, P; Hughes, C; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Ilkaev, R; Inaba, M; Ippolitov, M; Irfan, M; Isakov, V; Islam, M S; Ivanov, M; Ivanov, V; Izucheev, V; Jacak, B; Jacazio, N; Jacobs, P M; Jadhav, M B; Jadlovska, S; Jadlovsky, J; Jahnke, C; Jakubowska, M J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jena, S; Jercic, M; Jimenez Bustamante, R T; Jones, P G; Jusko, A; Kalinak, P; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karayan, L; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Ketzer, B; Mohisin Khan, M; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Khatun, A; Khuntia, A; Kielbowicz, M M; Kileng, B; Kim, D W; Kim, D J; Kim, D; Kim, H; Kim, J S; Kim, J; Kim, M; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Kopcik, M; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Koyithatta Meethaleveedu, G; Králik, I; Kravčáková, A; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kundu, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lapidus, K; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lavicka, R; Lazaridis, L; Lea, R; Leardini, L; Lee, S; Lehas, F; Lehner, S; Lehrbach, J; Lemmon, R C; Lenti, V; Leogrande, E; León Monzón, I; Lévai, P; Li, S; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Litichevskyi, V; Ljunggren, H M; Llope, W J; Lodato, D F; Loenne, P I; Loginov, V; Loizides, C; Loncar, P; Lopez, X; López Torres, E; Lowe, A; Luettig, P; Lunardon, M; Luparello, G; Lupi, M; Lutz, T H; Maevskaya, A; Mager, M; Mahajan, S; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martinengo, P; Martinez, J A L; Martínez, M I; Martínez García, G; Martinez Pedreira, M; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Mastroserio, A; Mathis, A M; Matyja, A; Mayer, C; Mazer, J; Mazzilli, M; Mazzoni, M A; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Mercado Pérez, J; Meres, M; Mhlanga, S; Miake, Y; Mieskolainen, M M; Mihaylov, D; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, B; Montes, E; Moreira De Godoy, D A; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Münning, K; Munzer, R H; Murakami, H; Murray, S; Musa, L; Musinsky, J; Myers, C J; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Naru, M U; Natal da Luz, H; Nattrass, C; Navarro, S R; Nayak, K; Nayak, R; Nayak, T K; Nazarenko, S; Nedosekin, A; Negrao De Oliveira, R A; Nellen, L; Nesbo, S V; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Ohlson, A; Okubo, T; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Oravec, M; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Ozdemir, M; Pachmayer, Y; Pacik, V; Pagano, D; Pagano, P; Paić, G; Pal, S K; Palni, P; Pan, J; Pandey, A K; Panebianco, S; Papikyan, V; Pappalardo, G S; Pareek, P; Park, J; Park, W J; Parmar, S; Passfeld, A; Pathak, S P; Paticchio, V; Patra, R N; Paul, B; Pei, H; Peitzmann, T; Peng, X; Pereira, L G; Pereira Da Costa, H; Peresunko, D; Perez Lezama, E; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Pezzi, R P; Piano, S; Pikna, M; Pillot, P; Pimentel, L O D L; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Poppenborg, H; Porteboeuf-Houssais, S; Porter, J; Pospisil, J; Pozdniakov, V; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Puddu, G; Pujahari, P; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Rana, D B; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Ratza, V; Ravasenga, I; Read, K F; Redlich, K; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reolon, A R; Reshetin, A; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Rodríguez Cahuantzi, M; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Rokita, P S; Ronchetti, F; Ronflette, L; Rosnet, P; Rossi, A; Rotondi, A; Roukoutakis, F; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Rustamov, A; Ryabinkin, E; Ryabov, Y; Rybicki, A; Saarinen, S; Sadhu, S; Sadovsky, S; Šafařík, K; Saha, S K; Sahlmuller, B; Sahoo, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Sandoval, A; Sarkar, D; Sarkar, N; Sarma, P; Sas, M H P; Scapparone, E; Scarlassara, F; Scharenberg, R P; Scheid, H S; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schmidt, M O; Schmidt, M; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sett, P; Sevcenco, A; Shabanov, A; Shabetai, A; Shadura, O; Shahoyan, R; Shangaraev, A; Sharma, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Sheikh, A I; Shigaki, K; Shou, Q; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Song, J; Song, M; Soramel, F; Sorensen, S; Sozzi, F; Spiriti, E; Sputowska, I; Srivastava, B K; Stachel, J; Stan, I; Stankus, P; Stenlund, E; Stiller, J H; Stocco, D; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Sumowidagdo, S; Suzuki, K; Swain, S; Szabo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thakur, D; Thakur, S; Thomas, D; Tieulent, R; Tikhonov, A; Timmins, A R; Toia, A; Tripathy, S; Trogolo, S; Trombetta, G; Trubnikov, V; Trzaska, W H; Trzeciak, B A; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Umaka, E N; Uras, A; Usai, G L; Utrobicic, A; Vala, M; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vande Vyvre, P; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Vázquez Doce, O; Vechernin, V; Veen, A M; Velure, A; Vercellin, E; Vergara Limón, S; Vernet, R; Vértesi, R; Vickovic, L; Vigolo, S; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Villatoro Tello, A; Vinogradov, A; Vinogradov, L; Virgili, T; Vislavicius, V; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Voscek, D; Vranic, D; Vrláková, J; Wagner, B; Wagner, J; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilk, G; Wilkinson, J; Willems, G A; Williams, M C S; Windelband, B; Witt, W E; Yalcin, S; Yang, P; Yano, S; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yurchenko, V; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zaporozhets, S; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zimmermann, S; Zinovjev, G; Zmeskal, J
2017-01-01
The transverse momentum distributions of the strange and double-strange hyperon resonances ([Formula: see text], [Formula: see text]) produced in p-Pb collisions at [Formula: see text] TeV were measured in the rapidity range [Formula: see text] for event classes corresponding to different charged-particle multiplicity densities, [Formula: see text]d[Formula: see text]/d[Formula: see text]. The mean transverse momentum values are presented as a function of [Formula: see text]d[Formula: see text]/d[Formula: see text], as well as a function of the particle masses and compared with previous results on hyperon production. The integrated yield ratios of excited to ground-state hyperons are constant as a function of [Formula: see text]d[Formula: see text]/d[Formula: see text]. The equivalent ratios to pions exhibit an increase with [Formula: see text]d[Formula: see text]/d[Formula: see text], depending on their strangeness content.
Spectroscopic Research of Lambda Hypdernuclei at JLab Hall C
NASA Astrophysics Data System (ADS)
Gogami, T.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Baturin, P.; Badui, R.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chen, C.; Chiba, A.; Christy, E.; Dalton, M.; Danagoulian, S.; De Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fujii, Y.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed. V.; Jones, M.; Kanda, H.; Kaneta, M.; Kato, S.; Kawai, M.; Kawama, D.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Margaryan, A.; Markowitz, P.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman; Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Tang, L.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Wood, S. A.; Yamamoto, T.; Ya, L.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.
A Λ hyperon which has a strangeness can be bound in deep inside of a nucleus since a Λ does not suffer from the Pauli exclusion principle from nucleons. Thus, a Λ could be a useful tool to investigate inside of a nucleus. Since 2000, Λ hypernuclear spectroscopic experiments by the (e,e'k) reaction have been performed at the experimental hall C in Thomas Jefferson National Accelerator Facility (JLab Hall C). An experiment, JLab E05-115 was carried out to investigate Λ hypernuclei with a wide mass range (the mass number, A = 7, 9, 10, 12, 52). The latest analysis status of JLab E05-115 experiment is discussed in the present article.
Photoproduction of Λ and Σ 0 hyperons using linearly polarized photons
Paterson, C. A.; Ireland, D. G.; Livingston, K.; ...
2016-06-08
Measurements of polarization observables for the reactionsmore » $$\\vec{\\gamma} p \\rightarrow K^+ \\Lambda$$ and $$\\vec{\\gamma} p \\rightarrow K^+ \\Sigma^0$$ have been performed. This is part of a programme of measurements designed to study the spectrum of baryon resonances. The accurate measurement of several polarization observables provides tight constraints for phenomenological fits. Beam-recoil observables for the $$\\vec{\\gamma} p \\rightarrow K^+ \\Sigma^0$$ reaction have not been reported before now. Furthermore, the measurements were carried out using linearly polarized photon beams and the CLAS detector at the Thomas Jefferson National Accelerator Facility. The energy range of the results is 1.71GeV.« less
EQUATION OF STATE FOR NUCLEONIC AND HYPERONIC NEUTRON STARS WITH MASS AND RADIUS CONSTRAINTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolos, Laura; Centelles, Mario; Ramos, Angels
We obtain a new equation of state for the nucleonic and hyperonic inner core of neutron stars that fulfils the 2 M {sub ⊙} observations as well as the recent determinations of stellar radii below 13 km. The nucleonic equation of state is obtained from a new parameterization of the FSU2 relativistic mean-field functional that satisfies these latest astrophysical constraints and, at the same time, reproduces the properties of nuclear matter and finite nuclei while fulfilling the restrictions on high-density matter deduced from heavy-ion collisions. On the one hand, the equation of state of neutron star matter is softened aroundmore » saturation density, which increases the compactness of canonical neutron stars leading to stellar radii below 13 km. On the other hand, the equation of state is stiff enough at higher densities to fulfil the 2 M {sub ⊙} limit. By a slight modification of the parameterization, we also find that the constraints of 2 M {sub ⊙} neutron stars with radii around 13 km are satisfied when hyperons are considered. The inclusion of the high magnetic fields present in magnetars further stiffens the equation of state. Hyperonic magnetars with magnetic fields in the surface of ∼10{sup 15} G and with values of ∼10{sup 18} G in the interior can reach maximum masses of 2 M {sub ⊙} with radii in the 12–13 km range.« less
Hyperon and hyperon resonance properties from charm baryon decays at BABAR
NASA Astrophysics Data System (ADS)
Ziegler, Veronique
This thesis describes studies of hyperons and hyperon resonances produced in charm baryon decays at BABAR. Using two-body decays of the X0c and W0c , it is shown, for the first time, that the spin of the O - is 3/2. The O- analysis procedures are extended to three-body final states and properties of the xi(1690)0 are extracted from a detailed isobar model analysis of the L+c → ΛK¯0K + Dalitz plot. The mass and width values of the xi(1690) 0 are measured with much greater precision than attained previously. The hypothesis that the spin of the xi(1690) resonance is 1/2 yields an excellent description of the data, while spin values 3/2 and 5/2 are disfavored. The Λa0(980)+ decay mode of the L+c is observed for the first time. Similar techniques are then used to study xi(1530)0 production in L+c decay. The spin of the xi(1530) is established for the first time to be 3/2. The existence of an S-wave amplitude in the xi -pi+ system is shown, and its interference with the xi(1530) 0 amplitude provides the first clear demonstration of the Breit-Wigner phase motion expected for the xi(1530). The xi-pi + mass distribution in the vicinity of the xi(1690)0 exhibits interesting structure which may be interpreted as indicating that the xi(1690) has negative parity.
Benchmark results for few-body hypernuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruffino, Fabrizio Ferrari; Lonardoni, Diego; Barnea, Nir
2017-03-16
Here, the Non-Symmetrized Hyperspherical Harmonics method (NSHH) is introduced in the hypernuclear sector and benchmarked with three different ab-initio methods, namely the Auxiliary Field Diffusion Monte Carlo method, the Faddeev–Yakubovsky approach and the Gaussian Expansion Method. Binding energies and hyperon separation energies of three- to five-body hypernuclei are calculated by employing the two-body ΛN component of the phenomenological Bodmer–Usmani potential, and a hyperon-nucleon interaction simulating the scattering phase shifts given by NSC97f. The range of applicability of the NSHH method is briefly discussed.
Search for ΔS=2 Nonleptonic Hyperon Decays
NASA Astrophysics Data System (ADS)
White, C. G.; Burnstein, R. A.; Chakravorty, A.; Chan, A.; Chen, Y. C.; Choong, W. S.; Clark, K.; Dukes, E. C.; Durandet, C.; Felix, J.; Gidal, G.; Gu, P.; Gustafson, H. R.; Ho, C.; Holmstrom, T.; Huang, M.; James, C.; Jenkins, C. M.; Kaplan, D. M.; Lederman, L. M.; Leros, N.; Longo, M. J.; Lopez, F.; Lu, L. C.; Luebke, W.; Luk, K. B.; Nelson, K. S.; Park, H. K.; Perroud, J.-P.; Rajaram, D.; Rubin, H. A.; Teng, P. K.; Volk, J.; White, S. L.; Zyla, P.
2005-03-01
A sensitive search for the rare decays Ω-→Λπ- and Ξ0→pπ- has been performed using data from the 1997 run of the HyperCP (Fermilab E871) experiment. Limits on other such processes do not exclude the possibility of observable rates for |ΔS|=2 nonleptonic hyperon decays, provided the decays occur through parity-odd operators. We obtain the branching-fraction limits B(Ω-→Λπ-)<2.9×10-6 and B(Ξ0→pπ-)<8.2×10-6, both at 90% confidence level.
Spectroscopic Research of Lambda Hypdernuclei at JLab Hall C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogami, Toshiyuki; et. al.,
2014-03-01
A Lambda hyperon which has a strangeness can be bound in deep inside of a nucleus since a Λ does not suffer from the Pauli exclusion principle from nucleons. Thus, a Λ could be a useful tool to investigate inside of a nucleus. Since 2000, Lambda hypernuclear spectroscopic experiments by the (e,e'k) reaction have been performed at the experimental hall C in Thomas Jefferson National Accelerator Facility (JLab Hall C). An experiment, JLab E05-115 was carried out to investigate Lambda hypernuclei with a wide mass range (the mass number, A = 7, 9, 10, 12, 52). The latest analysis statusmore » of JLab E05-115 experiment is discussed in the present article.« less
Strangeness S =-1 hyperon-nucleon scattering in covariant chiral effective field theory
NASA Astrophysics Data System (ADS)
Li, Kai-Wen; Ren, Xiu-Lei; Geng, Li-Sheng; Long, Bingwei
2016-07-01
Motivated by the successes of covariant baryon chiral perturbation theory in one-baryon systems and in heavy-light systems, we study relevance of relativistic effects in hyperon-nucleon interactions with strangeness S =-1 . In this exploratory work, we follow the covariant framework developed by Epelbaum and Gegelia to calculate the Y N scattering amplitude at leading order. By fitting the five low-energy constants to the experimental data, we find that the cutoff dependence is mitigated, compared with the heavy-baryon approach. Nevertheless, the description of the experimental data remains quantitatively similar at leading order.
Branching ratio of the electromagnetic decay of the Σ+(1385)
NASA Astrophysics Data System (ADS)
Keller, D.; Hicks, K.; Adhikari, K. P.; Adikaram, D.; Amaryan, M. J.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Bookwalter, C.; Boiarinov, S.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; de Vita, R.; de Sanctis, E.; Djalali, C.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Graham, L.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Markov, N.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Anefalos Pereira, S.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Procureur, S.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tkachenko, S.; Vernarsky, B.; Vineyard, M. F.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Watts, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhao, B.; Zhao, Z. W.
2012-03-01
The CLAS detector was used to obtain the first ever measurement of the electromagnetic decay of the Σ*+(1385) from the reaction γp→K0Σ*+(1385). A real photon beam with a maximum energy of 3.8 GeV was incident on a liquid-hydrogen target, resulting in the photoproduction of the kaon and Σ* hyperon. Kinematic fitting was used to separate the reaction channel from the background processes. The fitting algorithm exploited a new method to kinematically fit neutrons in the CLAS detector, leading to the measured decay widths ratio Σ+(1385)→Σ+γ/Σ+(1385)→Σ+π0=11.95±2.21(stat)-1.21+0.53(sys)% and a deduced partial width of 250.0±56.9(stat)-41.2+34.3(sys)keV. A U-spin symmetry test using the SU(3) flavor-multiplet representation yields predictions for the Σ*+(1385)→Σ+γ and Σ*0(1385)→Λγ partial widths that agree with the experimental measurements.
Hypertriton and light nuclei production at Λ-production subthreshold energy in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Zhang, Song; Chen, Jin-Hui; Ma, Yu-Gang; Xu, Zhang-Bu; Cai, Xiang-Zhou; Ma, Guo-Liang; Zhong, Chen
2011-08-01
High-energy heavy-ion collisions produce abundant hyperons and nucleons. A dynamical coalescence model coupled with the ART model is employed to study the production probabilities of light clusters, deuteron (d), triton (t), helion (3He), and hypertriton (3ΛH) at subthreshold energy of Aproduction (≈ 1 GeV per nucleon). We study the dependence on the reaction system size of the coalescence penalty factor per additional nucleon and entropy per nucleon. The Strangeness Population Factor shows an extra suppression of hypertriton comparing to light clusters of the same mass number. This model predicts a hypertriton production cross-section of a few μb in 36Ar+36Ar, 40Ca+40Ca and 56Ni+56Ni in 1 A GeV reactions. The production rate is as high as a few hypertritons per million collisions, which shows that the fixed-target heavy-ion collisions at CSR (Lanzhou/China) at Λ subthreshold energy are suitable for breaking new ground in hypernuclear physics.
Neutron star matter equation of state: current status and challenges
NASA Astrophysics Data System (ADS)
Ohnishi, Akira
2014-09-01
Neutron star matter has a variety of constituents and structures depending on the density; neutron-rich nuclei surounded by electrons and drip neutrons in the crust, pasta nuclei at the bottom of inner crust, and uniform isospin-asymmetric nuclear matter in a superfluid state in the outer core. In the inner core, the neutron Fermi energy becomes so large that exotic constituents such as hyperons, mesons and quarks may emerge. Radioactive beam and hypernuclear experiments provide information on the symmetry energy and superfluidity in the crust and outer core and on the hyperon potentials in the inner core, respectively. Cold atom experiments are also helpful to understand pure neutron matter, which may be simulated by the unitary gas. An equation of state (EOS) constructed based on these laboratory experiments has to be verified by the astronomical observations such as the mass, radius, and oscillations of neutron stars. One of the key but missing ingredients is the three-baryon interactions such as the hyperon-hyperon-nucleon (YYN) interaction. YYN interaction is important in order to explain the recently discovered massive neutron stars consistently with laboratory experiments. We have recently found that the ΛΛ interaction extracted from the ΛΛ correlation at RHIC is somewhat stronger than that from double Λ hypernuclei. Since these two interactions corresponds to the vacuum and in-medium ΛΛ interactions, respectively, the difference may tell us a possible way to access the YYN interaction based on experimental data. In the presentation, after a review on the current status of neutron star matter EOS studies, we discuss the necessary tasks to pin down the EOS. We also present our recent study of ΛΛ interaction from correlation data at RHIC.
Kaon photoproduction at SAPHIR for photon energies up to 2.6 GeV
NASA Astrophysics Data System (ADS)
Glander, K.-H.; Saphir Collaboration
2005-05-01
The measurement of photoproduction reactions with open strangeness is one of the central issues of the physics program at SAPHIR. We report here on the analysis of the reactions γp→KΣ and γp→KΣ in the photon energy range between threshold and 2.6 GeV using data taken in the years 1997-1998. The measured cross sections suggest contributions from resonance production for both reactions. Coupled channel analysis of the two mentioned isospin channels together with the reaction γp→KΛ also measured by SAPHIR, should help to extract resonance informations in these reactions. Upcoming data from different experiments on the photoproduction of kaon-hyperon pairs on the neutron and electroproduction of strangeness, including cross sections and polarization observables, will even improve this situation. However, for an initial discussion of what one could learn from strangeness production in the future final data for the reaction γp→KΣ the preliminary SAPHIR results for the reaction γp→KΣ are compared here with an isobar model designed for the previous SAPHIR data. The latter had less energy and a smaller kaon production angle resolution than new SAPHIR data and delivered data for γp→KΛ and γp→KΣ only up to 2.0 GeV and for γp→KΣ up to 1.55 GeV. The new data show clearly that such a model must be refined to describe the new SAPHIR data, because these data are more sensitive to background and resonance contributions.
Exclusive photoproduction of the cascade (Ξ) hyperons
NASA Astrophysics Data System (ADS)
Price, J. W.; Nefkens, B. M.; Ducote, J. L.; Goetz, J. T.; Adams, G.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; Auger, T.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Cetina, C.; Chen, S.; Cole, P. L.; Coleman, A.; Connelly, J.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; Sanctis, E. De; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Eckhause, M.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Farhi, L.; Fatemi, R.; Feuerbach, R. J.; Forest, T. A.; Frolov, V.; Funsten, H.; Gaff, S. J.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Gordon, C. I.; Gothe, R.; Griffioen, K.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hancock, D.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D.; Ito, M. M.; Jenkins, D.; Joo, K.; Juengst, H. G.; Kelley, J. H.; Kellie, J.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuang, Y.; Kubarovsky, V.; Kuhn, S. E.; Kuhn, J.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Li, Ji; Livingston, K.; Lukashin, K.; Major, W.; Manak, J. J.; Marchand, C.; McAleer, S.; McNabb, J. W.; Mecking, B. A.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Mirazita, M.; Miskimen, R.; Morand, L.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Brien, J. T.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A.; Park, K.; Pasyuk, E.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Sabourov, K.; Salgado, C.; Santoro, J. P.; Sanzone-Arenhovel, M.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, T.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Stokes, B.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Williams, M.; Witkowski, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.
2005-05-01
We report on the first measurement of exclusive Ξ-(1321) hyperon photoproduction in γp→K+K+Ξ- for 3.2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaschke, David; Instytut Fizyki Teoretycznej, Uniwersytet Wroclawski, 50-204 Wroclaw; Alvarez-Castillo, David E.
2016-01-22
We aim at contributing to the resolution of three of the fundamental puzzles related to the still unsolved problem of the structure of the dense core of compact stars (CS): (i) the hyperon puzzle: how to reconcile pulsar masses of 2 M{sub ⊙} with the hyperon softening of the equation of state (EoS); (ii) the masquerade problem: modern EoS for cold, high density hadronic and quark matter are almost identical; and (iii) the reconfinement puzzle: what to do when after a deconfinement transition the hadronic EoS becomes favorable again? We show that taking into account the compositeness of baryons (bymore » excluded volume and/or quark Pauli blocking) on the hadronic side and confining and stiffening effects on the quark matter side results in an early phase transition to quark matter with sufficient stiffening at high densities which removes all three present-day puzzles of CS interiors. Moreover, in this new class of EoS for hybrid CS falls the interesting case of a strong first order phase transition which results in the observable high mass twin star phenomenon, an astrophysical observation of a critical endpoint in the QCD phase diagram.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maruyama, Tomoyuki; Kajino, Toshitaka; Yasutake, Nobutoshi
2012-11-12
We calculate neutrino scattering and absorption on the hot and dense neutron-star matter with hyperons under the strong magnetic field using a perturbative approach. We find that the absorption cross-sections show a remarkable angular dependence. Its strength is reduced in the direction parallel to the magnetic field and enhanced in the opposite direction. This asymmetric variation becomes maximally 2.2 % of entire neutrino momentum when the magnetic field is assumed as about 2 Multiplication-Sign 10{sup 17} G. Since the pulsar kick after the supernova explosion may have relationships to this asymmetry, detailed discussions about the pulsar kick and the asymmetrymore » are presented with the comparison to the observed kick velocities in a fully relativistic approach.« less
Hyperon photoproduction in the nucleon resonance region
NASA Astrophysics Data System (ADS)
McNabb, J. W.; Schumacher, R. A.; Todor, L.; Adams, G.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; Auger, T.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bonner, B. E.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Cetina, C.; Ciciani, L.; Cole, P. L.; Coleman, A.; Cords, A. D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; de Sanctis, E.; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Eckhause, M.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Funsten, H.; Gaff, S. J.; Gavalian, G.; Gilad, S.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Gordon, C. I.; Griffioen, K.; Guidal, M.; Guillo, M.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R.; Hardie, J.; Heddle, D.; Heimberg, P.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ilieva, Y.; Ito, M. M.; Jenkins, D.; Joo, K.; Kelley, J. H.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuang, Y.; Kuhn, S. E.; Lachniet, J.; Laget, J. M.; Lawrence, D.; Li, Ji; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McCarthy, J.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Morand, L.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Brien, J. T.; O'Rielly, G. V.; Osipenko, M.; Park, K.; Pasyuk, E.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Quinn, B. P.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Sabourov, K.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weisberg, A.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zhang, B.; Zhao, J.; Zhou, Z.
2004-04-01
High-statistics cross sections and recoil polarizations for the reactions γ+p→ K+ +Λ and γ+p→ K+ + Σ0 have been measured at CLAS for center-of-mass energies between 1.6 and 2.3 GeV . In the K+ Λ channel we confirm a resonance-like structure near W=1.9 GeV at backward kaon angles. Our data show more complex s - and u - channel behavior than previously seen, since structure is also present at forward angles, but not at central angles. The position and width change with angle, indicating that more than one resonance is playing a role. Large positive Λ polarization at backward angles, which is also energy dependent, is consistent with sizable s - or u -channel contributions. Presently available model calculations cannot explain these aspects of the data.
Nucleon Resonance Decay by the K0Σ+ Channel
NASA Astrophysics Data System (ADS)
Castelijns, R.; Bacelar, J.; Löhner, H.; Messchendorp, J. G. M.; Shende, S.
2006-06-01
At the tagged photon beam of the ELSA electron synchrotron at the University of Bonn in Germany the Crystal Barrel and TAPS photon spectrometers have been combined to provide a 4π detector for multi-neutral-particle final states from photonuclear reactions. In a series of experiments on single and multiple neutral meson emission we have concentrated on the hyperon production off the proton, and in particular on the K0Σ+ channel. High-quality excitation function, recoil polarizations, and angular distributions from the KΣ threshold up to 2.3 GeV c.m. energy were obtained. Particular care was taken to establish the cross section normalization. The experimental results are compared with predictions aof a recent coupled-channels calculation within the K-matrix formalism by A. Usov and O. Scholten1.
Strangeness in nuclei and neutron stars
NASA Astrophysics Data System (ADS)
Lonardoni, Diego
2017-01-01
The presence of exotic particles in the core of neutron stars (NS) has been questioned for a long time. At present, it is still an unsolved problem that drives intense research efforts, both theoretical and experimental. The appearance of strange baryons in the inner regions of a NS, where the density can exceed several times the nuclear saturation density, is likely to happen due to energetic considerations. The onset of strange degrees of freedom is considered as an effective mechanism to soften the equation of state (EoS). This softening affects the entire structure of the star, reducing the pressure and therefore the maximum mass that the star can stably support. The observation of two very massive NS with masses of the order of 2M⊙ seems instead to rule out soft EoS, apparently excluding the possibility of hyperon formation in the core of the star. This inconsistency, usually referred to as the hyperon puzzle, is based on what we currently know about the interaction between strange particles and normal nucleons. The combination of a poor knowledge of the hypernuclear interactions and the difficulty of obtaining clear astrophysical evidence of the presence of hyperons in NS makes the understanding of the behavior of strange degrees of freedom in NS an intriguing theoretical challenge. We give our contribution to the discussion by studying the general problem of the hyperon-nucleon interaction. We attack this issue by employing a quantum Monte Carlo (QMC) technique, that has proven to be successful in the description of strongly correlated Fermion systems, to the study of finite size nuclear systems including strange degrees of freedom, i.e. hypernuclei. We show that many-body hypernuclear forces are fundamental to properly reproduce the ground state physics of Λ hypernuclei from light- to medium-heavy. However, the poor abundance of experimental data on strange nuclei leaves room for a good deal of indetermination in the construction of hypernuclear potential models. This lack of accuracy leads to uncertainties in the prediction of NS properties. We apply the same QMC algorithm and the same hypernuclear interactions to the study an infinite system of neutrons and Λ particles, deriving NS observables. We show how the appearance of hyperons in the inner core of NS is strongly dependent on the details of the underlying many-body hypernuclear interactions, that at present cannot be accurately derived from the scarce hypernuclear experimental data. Our results suggest that more experimental and/or observational constraints are needed to pin down the essential features of the hypernuclear forces and thus to draw conclusions on the role played by hyperons in NS. This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under the award DE-SC0013617 titled ``FRIB Theory Center - A path for the science at FRIB'' and under the NUCLEI SciDAC-3 grant.
Direct Urca Processes Involving Proton 1 S 0 Superfluidity in Neutron Star Cooling
NASA Astrophysics Data System (ADS)
Xu, Yan; Yu, Zi; Zhang, Xiao-Jun; Fan, Cun-Bo; Liu, Guang-Zhou; Zhao, En-Guang; Huang, Xiu-Lin; Liu, Cheng-Zhi
2018-04-01
A detailed description of the baryon direct Urca processes A: n\\to p+e+{\\bar{ν }}e, B: Λ \\to p+e+{\\bar{ν }}e and C: {\\Xi }-\\to Λ +e+{\\bar{ν }}e related to the neutron star cooling is given in the relativistic mean field approximation. The contributions of the reactions B and C on the neutrino luminosity are calculated by means of the relativistic expressions of the neutrino energy losses. Our results show that the total neutrino luminosities of the reactions A, B and C within the mass range (1.603–2.067) M⊙ ((1.515–1.840) M⊙ for TM1 model) for GM1 model are larger than the corresponding values for neutron star without hyperons. Furthermore, although the neutrino emissivity of the reaction A is suppressed with the appearance of the proton 1 S 0 superfluid, the contribution of the reactions B and C can still quicken a massive neutron star cooling. In particular, the reaction C in PSR J1614-2230 and J0348+0432 is not suppressed by the proton 1 S 0 superfluid due to the higher threshold density of the reaction C, which will further speed up the two pulsars cooling. Supported by the National Natural Science Foundation of China under Grant Nos. 11447165, 11373047, 11404336 and U1731240, Youth Innovation Promotion Association, CAS under Grant No. 2016056, and the Development Project of Science and Technology of Jilin Province under Grant No. 20180520077JH
NASA Astrophysics Data System (ADS)
Kolomeitsev, E. E.; Toneev, V. D.; Voronyuk, V.
2018-06-01
We study the formation of fluid vorticity and the hyperon polarization in heavy-ion collisions at energies available at the JINR Nuclotron-based Ion Collider fAcility in the framework of the parton-hadron-string dynamic model, taking into account both hadronic and quark-gluonic (partonic) degrees of freedom. The vorticity properties in peripheral Au+Au collisions at √{sN N}=7.7 GeV are demonstrated and confronted with other models. The obtained result for the Λ polarization is in agreement with the experimental data by the STAR Collaboration, whereas the model is not able to explain the observed high values of the antihyperon Λ ¯ polarization.
Hypernuclei and the hyperon problem in neutron stars
Bedaque, Paulo F.; Steiner, Andrew W.
2015-08-17
The likely presence ofmore » $$\\Lambda$$ baryons in dense hadronic matter tends to soften the equation of state to an extend that the observed heaviest neutron stars are difficult to explain. Here we analyze this "hyperon problem" with a phenomenological approach. First, we review what can be learned about the interaction of $$\\Lambda$$ particle with dense matter from the observed hypernuclei and extend this phenomenological analysis to asymmetric matter. We add to this the current knowledge on non-strange dense matter, including its uncertainties, to conclude that the interaction between $$\\Lambda$$s and dense matter has to become repulsive at densities below three times the nuclear saturation density.« less
Measurement of an asymmetry parameter in the decay of the cascade-minus hyperon
NASA Astrophysics Data System (ADS)
Chakravorty, Alak
2000-10-01
Fermilab experiment E756 collected a large dataset of polarized Ξ -hyperon decays, produced by 800-GeV/c unpolarized protons on a beryllium target. Of principal interest was the decay process Ξ - --> Λ0π- --> pπ-π-. An analysis of the asymmetry parameters of this decay was carried out on a sample of 1.3 × 106 Ξ- decays. φ Ξ was measured to be -1.33° +/- 2.66° +/- 1.22°, where the first error is statistical and the second is systematic. This corresponds to a measurement of the asymmetry parameter βΞ = -0.021 +/- 0.042 +/- 0.019, which is consistent with current theoretical estimates.
Massive neutron star with strangeness in a relativistic mean-field model with a high-density cutoff
NASA Astrophysics Data System (ADS)
Zhang, Ying; Hu, Jinniu; Liu, Peng
2018-01-01
The properties of neutron stars with the strangeness degree of freedom are studied in the relativistic mean-field (RMF) model via including a logarithmic interaction as a function of the scalar meson field. This interaction, named the σ -cut potential, can largely reduce the attractive contributions of the scalar meson field at high density without any influence on the properties of nuclear structure around the normal saturation density. In this work, the TM1 parameter set is chosen as the RMF interaction, while the strengths of σ -cut potential are constrained by the properties of finite nuclei so that we can obtain a reasonable effective nucleon-nucleon interaction. The hyperons Λ ,Σ , and Ξ are considered in neutron stars within this framework, whose coupling constants with mesons are determined by the latest hyperon-nucleon and Λ -Λ potentials extracted from the available experimental data of hypernuclei. The maximum mass of neutron star can be larger than 2 M⊙ with these hyperons in the present framework. Furthermore, the nucleon mass at high density will be saturated due to this additional σ -cut potential, which is consistent with the conclusions obtained by other calculations such as Brueckner-Hartree-Fock theory and quark mean-field model.
Differential photoproduction cross sections of the Σ0(1385), Λ(1405), and Λ(1520)
NASA Astrophysics Data System (ADS)
Moriya, K.; Schumacher, R. A.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bellis, M.; Bennett, R. P.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Dey, B.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hakobyan, H.; Hanretty, C.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Lewis, S.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McCracken, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Nasseripour, R.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Taylor, S.; Tian, Y.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vineyard, M. F.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Williams, M.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.
2013-10-01
We report the exclusive photoproduction cross sections for the Σ0(1385), Λ(1405), and Λ(1520) in the reactions γ+p→K++Y* using the CLAS detector for energies from near the respective production thresholds up to a center-of-mass energy W of 2.85 GeV. The differential cross sections are integrated to give the total exclusive cross sections for each hyperon. Comparisons are made to current theoretical models based on the effective-Lagrangian approach and fit to previous data. The accuracy of these models is seen to vary widely. The cross sections for the Λ(1405) region are strikingly different for the Σ+π-, Σ0π0, and Σ-π+ decay channels, indicating the effect of isospin interference, especially at W values close to the threshold.
Differential Photoproduction Cross Sections of the Sigma0(1385), Lambda(1405), and Lambda(1520)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moriya, Kei; Schumacher, Reinhard A.
2013-10-01
We report the exclusive photoproduction cross sections for the Sigma(1385), Lambda(1405), and Lambda(1520) in the reactions gamma + p -> K+ + Y* using the CLAS detector for energies from near the respective production thresholds up to a center-of-mass energy W of 2.85 GeV. The differential cross sections are integrated to give the total exclusive cross sections for each hyperon. Comparisons are made to current theoretical models based on the effective Lagrangian approach and fitted to previous data. The accuracy of these models is seen to vary widely. The cross sections for the Lambda(1405) region are strikingly different for themore » Sigma+pi-, Sigma0 pi0, and Sigma- pi+ decay channels, indicating the effect of isospin interference, especially at W values close to the threshold.« less
Hot Strange Hadronic Matter in an Effective Model
NASA Astrophysics Data System (ADS)
Qian, Wei-Liang; Su, Ru-Keng; Song, Hong-Qiu
2003-10-01
An effective model used to describe the strange hadronic matter with nucleons, Λ-hyperons, and Ξ-hyperons is extended to finite temperature. The extended model is used to study the density, temperature, and strangeness fraction dependence of the effective masses of baryons in the matter. The thermodynamical quantities, such as free energy and pressure, as well as the equation of state of the matter, are given. The project supported in part by National Natural Science Foundation of China under Grant Nos. 10075071, 10047005, 19947001, 19975010, and 10235030, and the CAS Knowledge Innovation Project No. KJCX2-N11. Also supported by the State Key Basic Research Development Program under Grant No. G200077400 and the Exploration Project of Knowledge Innovation Program of the Chinese Academy of Sciences
Towards generating a new supernova equation of state: A systematic analysis of cold hybrid stars
NASA Astrophysics Data System (ADS)
Heinimann, Oliver; Hempel, Matthias; Thielemann, Friedrich-Karl
2016-11-01
The hadron-quark phase transition in core-collapse supernovae (CCSNe) has the potential to trigger explosions in otherwise nonexploding models. However, those hybrid supernova equations of state (EOS) shown to trigger an explosion do not support the observational 2 M⊙ neutron star maximum mass constraint. In this work, we analyze cold hybrid stars by the means of a systematic parameter scan for the phase transition properties, with the aim to develop a new hybrid supernova EOS. The hadronic phase is described with the state-of-the-art supernova EOS HS(DD2), and quark matter by an EOS with a constant speed of sound (CSS) of cQM2=1 /3 . We find promising cases which meet the 2 M⊙ criterion and are interesting for CCSN explosions. We show that the very simple CSS EOS is transferable into the well-known thermodynamic bag model, important for future application in CCSN simulations. In the second part, the occurrence of reconfinement and multiple phase transitions is discussed. In the last part, the influence of hyperons in our parameter scan is studied. Including hyperons no change in the general behavior is found, except for overall lower maximum masses. In both cases (with and without hyperons) we find that quark matter with cQM2=1 /3 can increase the maximum mass only if reconfinement is suppressed or if quark matter is absolutely stable.
Effects of a hyperonic many-body force on BΛ values of hypernuclei
NASA Astrophysics Data System (ADS)
Isaka, M.; Yamamoto, Y.; Rijken, Th. A.
2017-04-01
The stiff equation of state (EoS) giving the neutron-star mass of 2 M⊙ suggests the existence of strongly repulsive many-body effects (MBE) not only in nucleon channels but also in hyperonic ones. As a specific model for MBE, the repulsive multi-Pomeron exchange potential (MPP) is added to the two-body interaction together with the phenomenological three-body attraction. For various versions of the Nijmegen interaction models, the MBE parts are determined so as to reproduce the observed data of BΛ. The mass dependence of BΛ values is shown to be reproduced well by adding MBE to the strong MPP repulsion, assuring the stiff EoS of hyperon-mixed neutron-star matter, in which P -state components of the adopted interaction model lead to almost vanishing contributions. The nuclear matter Λ N G -matrix interactions are derived and used in Λ hypernuclei on the basis of the averaged-density approximation (ADA). The BΛ values of hypernuclei with 9 ≤A ≤59 are analyzed in the framework of antisymmetrized molecular dynamics with use of the two types of Λ N G -matrix interactions including strong and weak MPP repulsions. The calculated values of BΛ reproduce the experimental data well within a few hundred keV. The values of BΛ in p states also can be reproduced well, when the ADA is modified to be suitable also for weakly bound Λ states.
Observation of Global Hyperon Polarization in Ultrarelativistic Heavy-Ion Collisions
NASA Astrophysics Data System (ADS)
Upsal, Isaac; STAR Collaboration
2017-11-01
Collisions between heavy nuclei at ultra-relativistic energies form a color-deconfined state of matter known as the quark-gluon plasma. This state is well described by hydrodynamics, and non-central collisions are expected to produce a fluid characterized by strong vorticity in the presence of strong external magnetic fields. The STAR Collaboration at Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) has measured collisions between gold nuclei at center of mass energies √{sNN} = 7.7- 200 GeV. We report the first observation of globally polarized Λ and Λ bar hyperons, aligned with the angular momentum of the colliding system. These measurements provide important information on partonic spin-orbit coupling, the vorticity of the quark-gluon plasma, and the magnetic field generated in the collision.
Exclusive photoproduction of the cascade (Xi) hyperon
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Price; Bernard Nefkens; Justin Ducote
2004-09-01
We report on the first measurement of exclusive {Xi}{sup -}(1321) hyperon photoproduction in {gamma}p {yields} K{sup +}K{sup +}{Xi}{sup -} for 3.2 < E{sub {gamma}} < 3.9 GeV. The final state is identified by the missing mass in p({gamma}, K{sup +}K{sup +})X measured with the CLAS detector at Jefferson Laboratory. We have detected a significant number of the ground-state {Xi}{sup -}(132)1/2{sup +}, and have estimated the total cross section for its production. We have also observed the first excited state {Xi}{sup -}(1530)3/2{sup +}. Photoproduction provides a copious source of {Xi}'s. We discuss the possibilities of a search for the recently proposedmore » {Xi}{sub 5}{sup --} and {Xi}{sub 5}{sup +} pentaquarks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho De Gouvea, Andre Luiz
ln this thesis the polarization of themore » $$\\Xi^-$$ hyperon and the $$\\Xi^+$$ antihyperon produced in the Fermilab Experiment E791 was determined by the analysis of the weak decay $$\\Xi^- \\to \\Lambda^0 + \\pi^-$$. For $$\\Xi^-$$ produced in the interaction between a 500 GeV/c $$\\pi^-$$ beam and a unpolarized carbon (platinum) target in the region $$p_t$$ > 0.8 GeV/c and $$X_F$$ > 0, -10.9% ± 1.5% (-14.7% ± 3.1%) polarization was obtained perpendicular to the production plane and -5.92% ± 1.69% (-2.41%±3.53% $$\\approx O$$) polarization was measured for $$\\Xi^+$$. Evidence was also found for a polarized $$\\Omega^-$$ hyperon produced in the same experiment in the region $$X_F$$ >0, after analysis of the weak decay $$\\Omega^- \\to \\Lambda^0 + K^-$$.« less
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Debades; Bhat, Sajad A.; Char, Prasanta; Chatterjee, Debarati
2018-02-01
We investigate the impact of strange-matter equations of state involving Λ hyperons, Bose-Einstein condensate of K- mesons and first-order hadron-quark phase transition on moment of inertia, quadrupole moment and tidal deformability parameter of slowly rotating neutron stars. All these equations of state are compatible with the 2 M_{solar} constraint. The main findings of this investigation are the universality of the I- Q and I -Love number relations, which are preserved by the EoSs including Λ hyperons and antikaon condensates, but broken in the presence of a first-order hadron-quark phase transition. Furthermore, it is also noted that the quadrupole moment approaches the Kerr value of a black hole for maximum-mass neutron stars.
Differential cross sections for γ+p→K++Y for Λ and Σ0 hyperons
NASA Astrophysics Data System (ADS)
Bradford, R.; Schumacher, R. A.; McNabb, J. W. C.; Todor, L.; Adams, G.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Beard, K.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Bonner, B. E.; Bouchigny, S.; Boiarinov, S.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Chen, S.; Cole, P. L.; Coleman, A.; Coltharp, P.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; Devita, R.; Sanctis, E. De; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Forest, T. A.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gonenc, A.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Huertas, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S. V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lima, A. C. S.; Livingston, K.; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McKinnon, B.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Popa, I.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Quinn, B. P.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Suleiman, R.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Tkachenko, S.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.; Zhang, J.; Zhao, B.
2006-03-01
High-statistics cross sections for the reactions γ+p→K++Λ and γ+p→K++Σ0 have been measured using CLAS at Jefferson Lab for center-of-mass energies W between 1.6 and 2.53 GeV, and for -0.85
Experimental Summary: Step-by-Step Towards New Physics
NASA Astrophysics Data System (ADS)
Schwartz, A. J.
2016-11-01
We summarize some highlights from experimental results presented at the XIIth International Conference on Beauty, Charm, and Hyperons in Hadronic Interactions, held at George Mason University June 12-18, 2016.
Summary of the HypHI Phase 0 experiment and future plans with FRS at GSI (FAIR Phase 0)
NASA Astrophysics Data System (ADS)
Saito, T. R.; Rappold, C.; Bertini, O.; Bianchin, S.; Bozkurt, V.; Geissel, H.; Kavatsyuk, M.; Kim, E.; Ma, Y.; Maas, F.; Minami, S.; Nakajima, D.; Nociforo, C.; Özel-Tashenov, B.; Pochodzalla, J.; Scheidenberger, C.; Yoshida, K.
2016-10-01
Results of the HypHI Phase 0 experiment with the reaction of 6Li+12C at 2 A GeV are summarised. Invariant mass distributions as well as the lifetime measurements for 3ΛH and 4ΛH are discussed. The lifetime values for both the hypernuclei are respectively observed to be 183+42-32 ps and 140+48-33 ps, being significantly shorter than those of the Λ-hyperon. Statistical analyses of existing lifetime data for 3ΛH up to 2014 confirm a significantly short lifetime of 3ΛH, which is not explained by present models. Observed hypernuclear production cross section values for 3ΛH and 4ΛH are also summarised. In addition, observed signals for the final states of d +π- and t +π- are discussed. All the discussions on the results of the HypHI Phase 0 experiment in this article are based on [1-4]. We also present a new proposed experiment with the FRS (FRagment Separator) at GSI (FAIR Phase 0) to improve the precision of the hypernuclear spectroscopy with peripheral heavy ion induced reactions.
Mesonic Decay of Charm Hypernuclei Λc+
NASA Astrophysics Data System (ADS)
Ghosh, Sabyasachi; Fontoura, Carlos E.; Krein, Gastão
2016-03-01
Λc+ hypernuclei are expected to have binding energies and other properties similar to those of strange hypernuclei in view of the similarity between the quark structures of the strange and charmed hyperons, namely Λ(uds) and Λc+(udc). One striking difference however occurs in their mesonic decays, as there is almost no Pauli blocking in the nucleonic decay of a charm hypernucleus because the final-state nucleons leave the nucleus at high energies. The nuclear medium nevertheless affects the mesonic decays of charm hypernucleus because the nuclear mean fields modify the masses of the charm hyperon. In the present communication we present results of a first investigation of the effects of finite baryon density on different weak mesonic decay channels of the Λc+ baryon. We found a non-negligible reduction of the decay widths as compared to their vacuum values.
A key factor to the spin parameter of uniformly rotating compact stars: crust structure
NASA Astrophysics Data System (ADS)
Qi, Bin; Zhang, Nai-Bo; Sun, Bao-Yuan; Wang, Shou-Yu; Gao, Jian-Hua
2016-04-01
We study the dimensionless spin parameter j ≡ cJ/(GM2) of different kinds of uniformly rotating compact stars, including traditional neutron stars, hyperonic neutron stars and hybrid stars, based on relativistic mean field theory and the MIT bag model. It is found that jmax ˜ 0.7, which had been suggested in traditional neutron stars, is sustained for hyperonic neutron stars and hybrid stars with M > 0.5 M⊙. Not the interior but rather the crust structure of the stars is a key factor to determine jmax for three kinds of selected compact stars. Furthermore, a universal formula j = 0.63(f/fK) - 0.42(f/fK)2 + 0.48(f/fK)3 is suggested to determine the spin parameter at any rotational frequency f smaller than the Keplerian frequency fK.
Transverse polarization of Λ and Λ produced inclusively in eN scattering at HERMES
Grebenyuk, O.
2002-11-01
The transverse polarization of inclusively produced Λ and Λ -hyperons has been studied at HERMES using the 27.6 GeV positron beam of HERA and an internal gas target. From the data taken in the years 1996-2000, 386,000 Λ and 72,000 Λ events have been reconstructed, allowing the measurement of the Λ and Λ polarizations with high statistical accuracy. Averaged over the full kinematic range of the data, the transverse polarizations were measured to be P n Λ = 5.4 ± 0.5 (stat) ± 1.5 (syst) % and P n Λ = -4.0 ± 1.3 (stat) ± 1.2 (syst) %. Themore » dependence of the polarization on several transverse momentum PT and on the hyperons' light cone momentum fraction ζ has been investigated.« less
Production of Λ 0, Λ̄ 0, Ξ ±, and Ω ± hyperons in pp̄ collisions at √s=1.96 TeV
Aaltonen, T.; Álvarez González, B.; Amerio, S.; ...
2012-07-13
We report a set of measurements of inclusive invariant p T differential cross sections of Λ 0, Λ̄ 0, Ξ ±, and Ω ± hyperons reconstructed in the central region with pseudorapidity |η|<1 and p T up to 10 GeV/c. Events are collected with a minimum-bias trigger in pp̄ collisions at a center-of-mass energy of 1.96 TeV using the CDF II detector at the Tevatron Collider. As p T increases, the slopes of the differential cross sections of the three particles are similar, which could indicate a universality of the particle production in p T. The invariant differential cross sectionsmore » are also presented for different charged-particle multiplicity intervals.« less
Strangeness Production at COSY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinterberger, Frank; Machner, Hartmut; Siudak, Regina
2011-10-24
The paper gives an overview of strangeness-production experiments at the Cooler Synchrotron COSY. Results on kaon-pair and {phi} meson production in pp, pd and dd collisions, hyperon-production experiments and {Lambda}p final-state interaction studies are presented.
Coupled-channel model for K ¯ N scattering in the resonant region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández-Ramírez, Cesar; Danilkin, Igor V.; Manley, D. Mark
2016-02-18
Here, we present a unitary multichannel model formore » $$\\bar{K}$$N scattering in the resonance region that fulfills unitarity. It has the correct analytical properties for the amplitudes once they are extended to the complex-$s$ plane and the partial waves have the right threshold behavior. In order to determine the parameters of the model, we have fitted single-energy partial waves up to J = 7/2 and up to 2.15 GeV of energy in the center-of-mass reference frame obtaining the poles of the Λ* and Σ* resonances, which are compared to previous analyses. Furthermore, we provide the most comprehensive picture of the S = –1 hyperon spectrum to date. Here, important differences are found between the available analyses making the gathering of further experimental information on $$\\bar{K}$$N scattering mandatory to make progress in the assessment of the hyperon spectrum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohno, M.; Fujiwara, Y.
Localized single-particle potentials for all octet baryons, N, {lambda}, {sigma}, and {xi}, in finite nuclei, {sup 12}C, {sup 16}O, {sup 28}Si, {sup 40}Ca, {sup 56}Fe, and {sup 90}Zr, are calculated using the quark-model baryon-baryon interactions. G matrices evaluated in symmetric nuclear matter in the lowest order Brueckner theory (LOBT) are applied to finite nuclei in local density approximation. Nonlocal potentials are localized by a zero-momentum Wigner transformation. Empirical single-particle properties of the nucleon and the {lambda} hyperon in a nuclear medium have been known to be explained semiquantitatively in the LOBT framework. Attention is focused in the present consideration onmore » predictions for the {sigma} and {xi} hyperons. The unified description for the octet baryon-baryon interactions by the SU{sub 6} quark model enables us to obtain less ambiguous extrapolation to the S=-1 and S=-2 sectors based on the knowledge in the NN sector than other potential models. The {sigma} mean field is shown to be weakly attractive at the surface, but turns out to be repulsive inside, which is consistent with the experimental evidence. The {xi} hyperon s.p. potential is also attractive at the nuclear surface region, and inside it fluctuates around zero. Hence {xi} hypernuclear bound states are unlikely. We also evaluate energy shifts of the {sigma}{sup -} and {xi}{sup -} atomic levels in {sup 28}Si and {sup 56}Fe, using the calculated s.p. potentials.« less
Search for the Θ+ pentaquark in the reactions γp→K¯0K+n and γp→K¯0K0p
NASA Astrophysics Data System (ADS)
de Vita, R.; Battaglieri, M.; Kubarovsky, V.; Baltzell, N. A.; Bellis, M.; Goett, J.; Guo, L.; Mutchler, G. S.; Stoler, P.; Ungaro, M.; Weygand, D. P.; Amaryan, M. J.; Ambrozewicz, P.; Anghinolfi, M.; Asryan, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Batourine, V.; Bedlinskiy, I.; Benmouna, N.; Berman, B. L.; Biselli, A. S.; Boiarinov, S.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Chen, S.; Clinton, E.; Cole, P. L.; Collins, P.; Coltharp, P.; Crabb, D.; Crannell, H.; Crede, V.; Cummings, J. P.; Dale, D.; de Masi, R.; de Sanctis, E.; Degtyarenko, P. V.; Deur, A.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dugger, M.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Funsten, H.; Gabrielyan, M. Y.; Gan, L.; Garçon, M.; Gasparian, A.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glamazdin, O.; Goetz, J. T.; Golovach, E.; Gonenc, A.; Gordon, C. I. O.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Gyurjyan, V.; Hadjidakis, C.; Hafidi, K.; Hakobyan, H.; Hakobyan, R. S.; Hardie, J.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Kossov, M.; Kramer, L. H.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S. V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lee, T.; Li, Ji; Livingston, K.; Lu, H. Y.; MacCormick, M.; Markov, N.; McKinnon, B.; Mecking, B. A.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mochalov, V.; Mokeev, V.; Morand, L.; Morrow, S. A.; Moteabbed, M.; Nadel-Turonski, P.; Nakagawa, I.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shvedunov, N. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Teymurazyan, A.; Thoma, U.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Vineyard, M. F.; Vlassov, A. V.; Watts, D. P.; Weinstein, L. B.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z.
2006-08-01
The exclusive reactions γp→K¯0K+n and γp→K¯0K0p have been studied in the photon energy range 1.6 3.8 GeV, searching for evidence of the exotic baryon Θ+(1540) in the decays Θ+→nK+ and Θ+→pK0. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. The integrated luminosity was about 70pb-1. The reactions have been isolated by detecting the K+ and proton directly, the neutral kaon via its decay to KS→π+π- and the neutron or neutral kaon via the missing mass technique. The mass and width of known hyperons such as Σ+, Σ- and Λ(1116) were used as a check of the mass determination accuracy and experimental resolution. Approximately 100 000 Λ*(1520)’s and 150 000 ϕ’s were observed in the K¯0K+n and K¯0K0p final state, respectively. No evidence for the Θ+ pentaquark was found in the nK+ or pKS invariant mass spectra. Upper limits were set on the production cross section of the reaction γp→K¯0Θ+ as functions of center-of-mass angle, nK+ and pKS masses. Combining the results of the two reactions, the 95% C.L. upper limit on the total cross section for a resonance peaked at 1540 MeV was found to be 0.7 nb. Within most of the available theoretical models, this corresponds to an upper limit on the Θ+ width, ΓΘ+, ranging between 0.01 and 7 MeV.
Hypertriton production in relativistic heavy ion collisions
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Ko, Che Ming
2018-05-01
Based on the phase-space distributions of freeze-out nucleons and Λ hyperons from a blast-wave model, we study hypertriton production in the coalescence model. Including both the coalescence of Λ with proton and neutron as well as with deuteron, which is itself formed from the coalescence of proton and neutron, we study how the production of hypertriton is affected if nucleons and deuterons are allowed to stream freely after freeze-out. Using central Pb+Pb collisions at √{sNN } = 2.76 as an example, we find that this only reduces slightly the hypertriton yield, which has a value consistent with the experimental data, even if the volume of the system has expanded to a size similar to the freeze-out volume for a hyertriton if its dissociation cross section by pions in the system is given by its geometric size. Our results thus suggest that the hypertriton yield in relativistic heavy ion collisions is essentially determined at the time when nucleons and deuterons freeze out, although it still undergoes reactions with pions.
Progress of the equation of state table for supernova simulations and its influence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumiyoshi, Kohsuke
2012-11-12
We describe recent progress of the EOS tables for numerical simulations of core-collapse supernovae and related astrophysical phenomena. Based on the Shen EOS table, which has been widely used in supernova simulations, there is systematic progress by extending the degrees of freedom such as hyperons and quarks. These extended EOS tables have been used, for example, to study the neutrino bursts from the gravitational collapse of massive stars leading to the black hole formation. Observations of such neutrinos from galactic events in future will provide us with the information on the EOS. Recently, studies of the supernova EOS with themore » multi-composition of nuclei under the nuclear statistical equilibrium have been made beyond the single nucleus approximation as used in the Shen EOS. It has been found that light elements including deuterons are abundant in wide regions of the supernova cores. We discuss that neutrino-deuteron reactions may have a possible influence on the explosion mechanism through modifications of neutrino heating rates.« less
Studies of the QCD Phase Diagram with Heavy-Ion Collisions at J-PARC
NASA Astrophysics Data System (ADS)
Sako, Hiroyuki
To clarify phase structures in the QCD phase diagram is an ultimate goal of heavy-ion collision experiments. Studies of internal structures of neutron stars are also one of the most important topics of nuclear physics since the discovery of neutron stars with two-solar mass. For these physics goals, J-PARC heavy-ion project (J-PARC-HI) has been proposed, where extremely dense matter with 5-10 times the normal nuclear density will be created. Heavy-ion beams up to Uranium will be accelerated to 1-19 AGeV/c, with the designed world's highest beam rate of 1011 Hz. The acceleration of such high-rate beams can be realized by a new heavy-ion linac and a new booster ring, in addition to the existing 3-GeV and 50-GeV proton synchrotrons. To study the above physics goals, following physics observables will be measured in extremely high statistics expected in J-PARC-HI. To search for the critical point, high-order event-by-event fluctuations of conserved charges such as a net-baryon number, an electric charge number, and a strangeness number will be measured. To study the chiral symmetry restoration, dilepton spectra from light vector meson decays will be measured. Also, collective flows, particle correlations will be measured to study the equation of state and hyperon-hyperon and hyperon-nucleon interactions related to neutron stars. Strange quark matter (strangelet) and multi-strangeness hypernuclei will be searched for which may be related directly to the matter constituting the neutron star core. In this work, the physics goals, the experimental design, and expected physics results of J-PARC-HI will be discussed.
NASA Astrophysics Data System (ADS)
Mohanty, Bedangadas
2018-02-01
We present the measurements related to global polarization of Λ hyperons and spin alignment of K*0 vector mesons at mid-rapidity for Pb-Pb collisions at = 2.76 TeV using the ALICE detector at the LHC. The global polarization measurements are carried out with respect to the first order event plane while the spin alignment measurements are carried out with respect to the production plane. No global polarization signal for Λ is observed for 5-15% and 15-50% central Pb-Pb collisions. The spin density matrix element ρ00 is found to have values slightly below ⅓ at low transverse momentum (pT) for K*0 mesons, while it is consistent with ⅓ (no spin alignment) at higher pT. No spin alignment is observed for K*0 in pp collisions at √s = 13 TeV and for the spin zero hadron K0S in 20-40% Pb-Pb collisions at = 2.76 TeV.
Equation of state for neutron stars. Some recent developments
NASA Astrophysics Data System (ADS)
Haensel, P.; Fortin, M.
2017-12-01
Calculations using the chiral effective field theory (ChEFT) indicate that the four-body force contribution to the equation of state (EOS) of pure neutron matter (PNM) at the nuclear density n 0 is negligibly small. However, the overall uncertainty in the EOS of PNM at n 0 remains ∼ 20%. Relativistic mean field (RMF) calculations with in-medium scaling, and including hyperons and Δ resonances, can be made consistent with recent nuclear and astrophysical constraints. Dirac-Brueckner-Hartree-Fock calculations with some medium dependence of the nuclear interaction yield neutron star (NS) models with hyperonic cores consistent with 2 M⊙ stars and agreeing with the saturation parameters of nuclear matter. Many unified EOS for the NS crust and core were calculated, and are reviewed here. The effect of the finite size of baryons on the EOS, its treatment via the excluded-volume approximation, and its relevance for the hypothetical hybrid-star twins at ∼ 2 M⊙ are dicussed.
Effects of finite coverage on global polarization observables in heavy ion collisions
NASA Astrophysics Data System (ADS)
Lan, Shaowei; Lin, Zi-Wei; Shi, Shusu; Sun, Xu
2018-05-01
In non-central relativistic heavy ion collisions, the created matter possesses a large initial orbital angular momentum. Particles produced in the collisions could be polarized globally in the direction of the orbital angular momentum due to spin-orbit coupling. Recently, the STAR experiment has presented polarization signals for Λ hyperons and possible spin alignment signals for ϕ mesons. Here we discuss the effects of finite coverage on these observables. The results from a multi-phase transport and a toy model both indicate that a pseudorapidity coverage narrower than | η | < ∼ 1 will generate a larger value for the extracted ϕ-meson ρ00 parameter; thus a finite coverage can lead to an artificial deviation of ρ00 from 1/3. We also show that a finite η and pT coverage affect the extracted pH parameter for Λ hyperons when the real pH value is non-zero. Therefore proper corrections are necessary to reliably quantify the global polarization with experimental observables.
Production of neutral Sigma baryon in 91.2 GeV quark - anti-quark events at LEP
NASA Astrophysics Data System (ADS)
Legan, Christopher Kenneth
1997-09-01
This thesis presents a measurement of one of the three isospin states of the JP = [1/over 2]+ octet Σ baryons, the Σ0. In addition, the analysis yields the first differential cross-section measurement of the Σ0 hyperon in e+e/sp-/to q/bar q events. The unique particle identification capabilities of the DELPHI detector at LEP are used to obtain an increased efficiency by extending the standard Λ-finding algorithm. The average number of Σ0's produced per Z0 decay is calculated to beN(Σ0)/Zhad0=0.101/pm 0.008( stat)/pm 0.014(syst)/pm 0.007(extrap) eqno(0.1) The measurement is about 30% above the prediction of the scJETSET model, but nevertheless is compatible with scJETSET within 2 /sigma. Comparison with ARGUS results at /sqrt[s] = 10 GeV reveals similar levels of spin and strangeness suppression in hyperon production, within errors.
The electromagnetic Sigma-to-Lambda hyperon transition form factors at low energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granados, Carlos; Leupold, Stefan; Perotti, Elisabetta
Using dispersion theory the low-energy electromagnetic form factors for the transition of a Sigma to a Lambda hyperon are related to the pion vector form factor. The additionally required input, i.e. the two-pion-Sigma-Lambda amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the baryons from the octet and optionally from the decuplet. Pion rescattering is again taken into account by dispersion theory. It turns out that the inclusion of decuplet baryons is not an option but a necessity to obtain reasonable results. The electric transition form factor remains very small in the whole low-energy region. The magneticmore » transition form factor depends strongly on one not very well determined low-energy constant of the NLO Lagrangian. Furthermore, one obtains reasonable predictive power if this low-energy constant is determined from a measurement of the magnetic transition radius. Such a measurement can be performed at the future Facility for Antiproton and Ion Research (FAIR).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solano Salinas, Carlos Javier
Using data from fprmilab fixed-target experiment E791, we have measmed for the first time particle/antiparticle production asymmetries formore » $$\\Lambda^0 \\Xi^-$$ and $$\\Omega^-$$ hyperons in $$\\pi^-$$nucleon interactions at 500 GeV /c as joint functions of $$x_F$$ and $$p^2_{\\tau}$$ over the ranges $$-0.12 \\le x_F \\le 0.12$$ and $$0 \\le p^2_{\\tau} \\le 4 (GeV/c)^2$$. There is now direct evidence of a basic asymmetry, even at $$x_F$$ = 0.0, which may be due to associated production. In addition, there are leading-particle-type effects which are qualitativrly like what one would expect from rrcmnbination models or their alternatives. WP used the Dnal Parton Model (DPM) to cakulate the asymmetry for the $$\\Lambda^0$$ and compared with the Lund model (PYTHIA /JETSET) predictions and with om experimental results.« less
The electromagnetic Sigma-to-Lambda hyperon transition form factors at low energies
Granados, Carlos; Leupold, Stefan; Perotti, Elisabetta
2017-06-09
Using dispersion theory the low-energy electromagnetic form factors for the transition of a Sigma to a Lambda hyperon are related to the pion vector form factor. The additionally required input, i.e. the two-pion-Sigma-Lambda amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the baryons from the octet and optionally from the decuplet. Pion rescattering is again taken into account by dispersion theory. It turns out that the inclusion of decuplet baryons is not an option but a necessity to obtain reasonable results. The electric transition form factor remains very small in the whole low-energy region. The magneticmore » transition form factor depends strongly on one not very well determined low-energy constant of the NLO Lagrangian. Furthermore, one obtains reasonable predictive power if this low-energy constant is determined from a measurement of the magnetic transition radius. Such a measurement can be performed at the future Facility for Antiproton and Ion Research (FAIR).« less
Strange matter in compact stars
NASA Astrophysics Data System (ADS)
Klähn, Thomas; Blaschke, David B.
2018-02-01
We discuss possible scenarios for the existence of strange matter in compact stars. The appearance of hyperons leads to a hyperon puzzle in ab-initio approaches based on effective baryon-baryon potentials but is not a severe problem in relativistic mean field models. In general, the puzzle can be resolved in a natural way if hadronic matter gets stiffened at supersaturation densities, an effect based on the quark Pauli quenching between hadrons. We explain the conflict between the necessity to implement dynamical chiral symmetry breaking into a model description and the conditions for the appearance of absolutely stable strange quark matter that require both, approximately masslessness of quarks and a mechanism of confinement. The role of strangeness in compact stars (hadronic or quark matter realizations) remains unsettled. It is not excluded that strangeness plays no role in compact stars at all. To answer the question whether the case of absolutely stable strange quark matter can be excluded on theoretical grounds requires an understanding of dense matter that we have not yet reached.
NASA Astrophysics Data System (ADS)
Ikegami Andersson, W.; ̅PANDA Collaboration
2016-11-01
The future ̅PANDA detector at FAIR is a state-of-the-art internal target detector designed for strong interaction studies. By utilizing an antiproton beam, a rich and unique physics programme is planned. The ̅PANDA experiment, as well as feasibility studies for hyperon and charmonium physics, are discussed.
Light neutron-rich hypernuclei from the importance-truncated no-core shell model
NASA Astrophysics Data System (ADS)
Wirth, Roland; Roth, Robert
2018-04-01
We explore the systematics of ground-state and excitation energies in singly-strange hypernuclei throughout the helium and lithium isotopic chains - from He5Λ to He11Λ and from Li7Λ to Li12Λ - in the ab initio no-core shell model with importance truncation. All calculations are based on two- and three-baryon interaction from chiral effective field theory and we employ a similarity renormalization group transformation consistently up to the three-baryon level to improve the model-space convergence. While the absolute energies of hypernuclear states show a systematic variation with the regulator cutoff of the hyperon-nucleon interaction, the resulting neutron separation energies are very stable and in good agreement with available data for both nucleonic parents and their daughter hypernuclei. We provide predictions for the neutron separation energies and the spectra of neutron-rich hypernuclei that have not yet been observed experimentally. Furthermore, we find that the neutron drip lines in the helium and lithium isotopic chains are not changed by the addition of a hyperon.
Measurement of the H3Λ lifetime in Au+Au collisions at the BNL Relativistic Heavy Ion Collider
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adams, J. R.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Alford, J.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Barish, K.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bryslawskyj, J.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; Dedovich, T. G.; Deng, J.; Deppner, I. M.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fujita, J.; Fulek, L.; Gagliardi, C. A.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Herrmann, N.; Hirsch, A.; Horvat, S.; Huang, B.; Huang, T.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kapukchyan, D.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kim, C.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Krauth, L.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, W.; Li, Y.; Li, C.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, F.; Liu, P.; Liu, Y.; Liu, H.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Luo, S.; Ma, G. L.; Ma, L.; Ma, R.; Ma, Y. G.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Mayes, D.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nemes, D. B.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seto, R.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Shen, W. Q.; Shi, S. S.; Shi, Z.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stewart, D. J.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, G.; Xie, W.; Xu, Y. F.; Xu, J.; Xu, Q. H.; Xu, N.; Xu, Z.; Yang, S.; Yang, Y.; Yang, C.; Yang, Q.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, J.; Zhang, S.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, X. P.; Zhang, J. B.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration
2018-05-01
An improved measurement of the H3Λ lifetime is presented. In this paper, the mesonic decay modes H3Λ→3He + π- and H3Λ→d +p +π- are used to reconstruct the H3Λ from Au+Au collision data collected by the STAR collaboration at Relativistic Heavy Ion Collider (RHIC). A minimum χ2 estimation is used to determine the lifetime of τ = 142-21+24(stat .) ±29 (syst .) ps. This lifetime is about 50% shorter than the lifetime τ =263 ±2 ps of a free Λ , indicating strong hyperon-nucleon interaction in the hypernucleus system. The branching ratios of the mesonic decay channels are also determined to satisfy B.R . (3He+π-)/(B.R . (3He+π-)+B.R . (d +p +π-)) = 0.32 ±0.05 (stat .) ±0.08 (syst .) . Our ratio result favors the assignment J (H3Λ) =1/2 over J (H3Λ) =3/2 . These measurements will help to constrain models of hyperon-baryon interactions.
Global Λ hyperon polarization in nuclear collisions
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; de La Barca Sánchez, M. Calderón; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; de Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.
2017-08-01
The extreme energy densities generated by ultra-relativistic collisions between heavy atomic nuclei produce a state of matter that behaves surprisingly like a fluid, with exceptionally high temperature and low viscosity. Non-central collisions have angular momenta of the order of 1,000ћ, and the resulting fluid may have a strong vortical structure that must be understood to describe the fluid properly. The vortical structure is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have yet been found. Since vorticity represents a local rotational structure of the fluid, spin-orbit coupling can lead to preferential orientation of particle spins along the direction of rotation. Here we present measurements of an alignment between the global angular momentum of a non-central collision and the spin of emitted particles (in this case the collision occurs between gold nuclei and produces Λ baryons), revealing that the fluid produced in heavy ion collisions is the most vortical system so far observed. (At high energies, this fluid is a quark-gluon plasma.) We find that Λ and hyperons show a positive polarization of the order of a few per cent, consistent with some hydrodynamic predictions. (A hyperon is a particle composed of three quarks, at least one of which is a strange quark; the remainder are up and down quarks, found in protons and neutrons.) A previous measurement that reported a null result, that is, zero polarization, at higher collision energies is seen to be consistent with the trend of our observations, though with larger statistical uncertainties. These data provide experimental access to the vortical structure of the nearly ideal liquid created in a heavy ion collision and should prove valuable in the development of hydrodynamic models that quantitatively connect observations to the theory of the strong force.
Global Λ hyperon polarization in nuclear collisions
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...
2017-08-02
The extreme energy densities generated by ultra-relativistic collisions between heavy atomic nuclei produce a state of matter that behaves surprisingly like a fluid, with exceptionally high temperature and low viscosity. Non-central collisions have angular momenta of the order of 1,000ћ, and the resulting fluid may have a strong vortical structure that must be understood to describe the fluid properly. The vortical structure is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. But, no experimental indications of fluid vorticity in heavy ion collisionsmore » have yet been found. Since vorticity represents a local rotational structure of the fluid, spin–orbit coupling can lead to preferential orientation of particle spins along the direction of rotation. Here we present measurements of an alignment between the global angular momentum of a non-central collision and the spin of emitted particles (in this case the collision occurs between gold nuclei and produces Λ baryons), revealing that the fluid produced in heavy ion collisions is the most vortical system so far observed. (At high energies, this fluid is a quark–gluon plasma.) We find that Λ and hyperons show a positive polarization of the order of a few per cent, consistent with some hydrodynamic predictions. (A hyperon is a particle composed of three quarks, at least one of which is a strange quark; the remainder are up and down quarks, found in protons and neutrons.) A previous measurement that reported a null result, that is, zero polarization, at higher collision energies is seen to be consistent with the trend of our observations, though with larger statistical uncertainties. Furthermore, these data provide experimental access to the vortical structure of the nearly ideal liquid created in a heavy ion collision and should prove valuable in the development of hydrodynamic models that quantitatively connect observations to the theory of the strong force.« less
Global Λ hyperon polarization in nuclear collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.
The extreme energy densities generated by ultra-relativistic collisions between heavy atomic nuclei produce a state of matter that behaves surprisingly like a fluid, with exceptionally high temperature and low viscosity. Non-central collisions have angular momenta of the order of 1,000ћ, and the resulting fluid may have a strong vortical structure that must be understood to describe the fluid properly. The vortical structure is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. But, no experimental indications of fluid vorticity in heavy ion collisionsmore » have yet been found. Since vorticity represents a local rotational structure of the fluid, spin–orbit coupling can lead to preferential orientation of particle spins along the direction of rotation. Here we present measurements of an alignment between the global angular momentum of a non-central collision and the spin of emitted particles (in this case the collision occurs between gold nuclei and produces Λ baryons), revealing that the fluid produced in heavy ion collisions is the most vortical system so far observed. (At high energies, this fluid is a quark–gluon plasma.) We find that Λ and hyperons show a positive polarization of the order of a few per cent, consistent with some hydrodynamic predictions. (A hyperon is a particle composed of three quarks, at least one of which is a strange quark; the remainder are up and down quarks, found in protons and neutrons.) A previous measurement that reported a null result, that is, zero polarization, at higher collision energies is seen to be consistent with the trend of our observations, though with larger statistical uncertainties. Furthermore, these data provide experimental access to the vortical structure of the nearly ideal liquid created in a heavy ion collision and should prove valuable in the development of hydrodynamic models that quantitatively connect observations to the theory of the strong force.« less
Dense matter in strong gravitational field of neutron star
NASA Astrophysics Data System (ADS)
Bhat, Sajad A.; Bandyopadhyay, Debades
2018-02-01
Mass, radius and moment of inertia are direct probes of compositions and Equation of State (EoS) of dense matter in neutron star interior. These are computed for novel phases of dense matter involving hyperons and antikaon condensate and their observable consequences are discussed in this article. Furthermore, the relationship between moment of inertia and quadrupole moment is also explored.
Charge symmetry breaking in light Λ hypernuclei
NASA Astrophysics Data System (ADS)
Gal, Avraham; Gazda, Daniel
2018-02-01
Charge symmetry breaking (CSB) is particularly strong in the A = 4 mirror hypernuclei {}14\\text{H}-Λ 4\\text{He}. Recent four-body no-core shell model calculations that confront this CSB by introducing Λ-Σ0 mixing to leading-order chiral effective field theory hyperon-nucleon potentials are reviewed, and a shell-model approach to CSB in p-shell Λ hypernuclei is outlined.
Lattice Studies of Hyperon Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, David G.
2016-04-01
I describe recent progress at studying the spectrum of hadrons containing the strange quark through lattice QCD calculations. I emphasise in particular the richness of the spectrum revealed by lattice studies, with a spectrum of states at least as rich as that of the quark model. I conclude by prospects for future calculations, including in particular the determination of the decay amplitudes for the excited states.
Search for the lepton-number-violating decay Xi(-)-->pmu(-)mu(-).
Rajaram, D; Burnstein, R A; Chakravorty, A; Chan, A; Chen, Y C; Choong, W S; Clark, K; Dukes, E C; Durandet, C; Felix, J; Gidal, G; Gu, P; Gustafson, H R; Ho, C; Holmstrom, T; Huang, M; James, C; Jenkins, C M; Kaplan, D M; Lederman, L M; Leros, N; Longo, M J; Lopez, F; Lu, L C; Luebke, W; Luk, K B; Nelson, K S; Park, H K; Perroud, J-P; Rubin, H A; Teng, P K; Volk, J; White, C G; White, S L; Zyla, P
2005-05-13
A sensitive search for the lepton-number-violating decay Xi(-)-->pmu(-)mu(-) has been performed using a sample of approximately 10(9) Xi(-) hyperons produced in 800 GeV/c p-Cu collisions. We obtain B(Xi(-)-->pmu(-)mu(-))<4.0x10(-8) at 90% confidence, improving on the best previous limit by 4 orders of magnitude.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2015-02-10
We measure the transverse polarization of Λ and Λ¯ hyperons produced in proton-proton collisions at a center-of mass energy of 7 TeV is measured. The analysis uses 760 μb ₋1 of minimum bias data collected by the ATLAS detector at the LHC in the year 2010. The measured transverse polarization averaged over Feynman x F from 5 × 10 ₋5 to 0.01 and transverse momentum p T from 0.8 to 15 GeV is ₋0.010 ± 0.005(stat) ± 0.004(syst) for Λ and 0.002 ± 0.006(stat) ± 0.004(syst) for Λ¯ . It is also measured as a function of x F andmore » p T, but we observed no significant dependence on these variables. Prior to this measurement, the polarization was measured at fixed-target experiments with center-of-mass energies up to about 40 GeV. The ATLAS results are compatible with the extrapolation of a fit from previous measurements to the x F range covered by this measurement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thiessen, H.A.
1982-08-01
The present conception of LAMPF II is a high-intensity 16-GeV synchrotron injected by the LAMPF 800-MeV H/sup -/ beam. The proton beam will be used to make secondary beams of neutrinos, muons, pions, kaons, antiprotons, and hyperons more intense than those of any existing or proposed accelerator. For example, by taking maximum advantage of a thick target, modern beam optics, and the LAMPF II proton beam, it will be possible to make a negative muon beam with nearly 100% duty factor and nearly 100 times the flux of the existing Stopped Muon Channel (SMC). Because the unique features of themore » proposed machine are most applicable to beams of the same momentum as LAMPF (that is, < 2 GeV/c), it may be possible to use most of the experimental areas and some of the auxiliary equipment, including spectrometers, with the new accelerator. The complete facility will provide improved technology for many areas of physics already available at LAMPF and will allow expansion of medium-energy physics to include kaons, antiprotons, and hyperons. When LAMPF II comes on line in 1990 LAMPF will have been operational for 18 years and a major upgrade such as this proposal will be reasonable and prudent.« less
Search for the Lepton-Number-Violating Decay Ξ-→pμ-μ-
NASA Astrophysics Data System (ADS)
Rajaram, D.; Burnstein, R. A.; Chakravorty, A.; Chan, A.; Chen, Y. C.; Choong, W. S.; Clark, K.; Dukes, E. C.; Durandet, C.; Felix, J.; Gidal, G.; Gu, P.; Gustafson, H. R.; Ho, C.; Holmstrom, T.; Huang, M.; James, C.; Jenkins, C. M.; Kaplan, D. M.; Lederman, L. M.; Leros, N.; Longo, M. J.; Lopez, F.; Lu, L. C.; Luebke, W.; Luk, K. B.; Nelson, K. S.; Park, H. K.; Perroud, J.-P.; Rubin, H. A.; Teng, P. K.; Volk, J.; White, C. G.; White, S. L.; Zyla, P.
2005-05-01
A sensitive search for the lepton-number-violating decay Ξ-→pμ-μ- has been performed using a sample of ˜109 Ξ- hyperons produced in 800 GeV/c p-Cu collisions. We obtain B(Ξ-→pμ-μ-)<4.0×10-8 at 90% confidence, improving on the best previous limit by 4 orders of magnitude.
Hadron Physics with PANDA at FAIR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedner, Ulrich
2011-10-21
The recently established FAIR facility in Darmstadt has a broad program in the field of hadron and nuclear physics utilizing ion beams with unprecedented intensity and accuracy. The PANDA experiment, which is integrated in the HESR storage ring for antiprotons is at the center of the hadron physics program. It includes among others topics like hadron spectroscopy in the charmonium mass region and below, hyperon physics and electromagnetic processes.
NASA Astrophysics Data System (ADS)
Cheng, Hok-Chuen
This thesis summaries the measurements of correlations between Lambda 0Lambda0, Lambda0Lambda 0, and Lambda0Lambda 0 hyperon pairs produced inclusively at the LHC, which are useful for a better understanding of the quark-antiquark pair production and jet fragmentation and hadronization processes. The analysis is based on hyperon pairs selected using the muon and minimum bias data samples collected at the ATLAS experiment from proton-proton collisions at a center-of-mass energy of 7 TeV in 2010. Excess Lambda0Lambda 0 are observed near the production threshold and are identified to be originated from the parton system in the string model in the MC sample, decaying either directly or through heavy strange resonances such as Sigma0 and Sigma*(1385). Dynamical correlations have been explored through a correlation function defined as the ratio of two-particle to single-particle densities. Positive correlation is observed for Lambda0Lambda0 and anticorrelation is observed for Lambda0Lambda 0 and Lambda0Lambda 0 for Q in [0,2] GeV. The structure replicates similar correlations in pp, pp, and pppp events in PYTHIA generator as predicted by the Lund string fragmentation model. Parameters of the "popcorn" mechanism implemented in the PYTHIA generator are tuned and are found to have little impact on the structure observed. The spin composition of the sample is extracted using a data-driven reference sample built by event mixing. Appropriate corrections have been made to the kinematic distributions in the reference sample by kinematic weighting to make sure that the detector effects are well modeled. A modified Pearson's chi2 test statistics is calculated for the costheta* distribution to determine the best-fitted A-value for data. The results are consistent with zero for both like-type and unlike-type hyperon pairs in Q ∈ [0,10] GeV and Q ∈ [1,10] GeV respectively. The data statistics in the range of Q ∈ [0, 1] GeV is currently too low for the estimation of the emitter size for Fermi-Dirac correlation.
NASA Astrophysics Data System (ADS)
Bravar, Alessandro
The considerable polarization of hyperons produced at high x_ F has been known for a long time and has been interpreted in various theoretical models in terms of the constituents' spin. The spin dependence in inclusive Lambda and K _sp{s}{circ} production has been studied for the first time at high energy using the Fermilab 200 GeV/c polarized proton beam and a large forward spectrometer. The spin observables analyzing power A_ N, polarization P_0 and depolarization D _{NN} in inclusive Lambda production has been measured in the kinematic range of rm 0.2<=q x_ F<=q1.0 and rm 0.1<=q p_ T<=q1.5 GeV/c and the analyzing power for inclusive K_sp{s }{circ} in the kinematic range of rm0.1<=q x_ F<=q0.7 and rm0.1<=q p_ T<=q1.0 GeV/c. The results obtained in this work show that at these energies spin effects are substantial and that the current picture of spin effects in hadronic interactions is much more complex than naively thought. The data on the spin dependence of the Lambda inclusive production indicate a substantial negative asymmetry A_ N at large x _ F and moderate p_ T, the polarization results P_0 are in fair agreement with previous measurements, and the double spin parameter D_ {NN} increases with x_ F and p_ T to relatively large positive values. The trend of the Lambda A_ N, which shows a kinematical behavior similar to P_0 with same sign but smaller in magnitude, might be suggestive of a common interpretation. These results, however, are difficult to accommodate within the present quark fragmentation models for hyperon polarization, based on SU(6) wave functions where the produced strange quark carries all the spin information of the Lambda, unless spectator di-quarks in the recombination process play a more significant role than generally expected. These results can further test the current ideas on the underlying mechanisms for the hyperon polarization and meson production asymmetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedner, Ulrich
2011-10-24
The new FAIR facility in Darmstadt has a broad program in the field of hadron and nuclear physics utilizing ion beams with unprecedented intensity and accuracy. The hadron physics program centers around the the high-energy storage ring HESR for antiprotons and the PANDA experiment that is integrated in it. The physics program includes among others topics like hadron spectroscopy in the charmonium mass region and below, hyperon physics, electromagnetic processes and charm in nuclei.
A Fast Algorithm for Lattice Hyperonic Potentials
NASA Astrophysics Data System (ADS)
Nemura, Hidekatsu; Aoki, Sinya; Doi, Takumi; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya; Murano, Keiko; Sasaki, Kenji
We describe an efficient algorithm to compute a large number of baryon-baryon interactions from NN to ΞΞ by means of HAL QCD method, which lays the groundwork for the nearly physical point lattice QCD calculation with volume (96a)4 ≈ (8.2 fm)4. Preliminary results of ΛN potential calculated with quark masses corresponding to (mπ, mK) ≈ (146,525) MeV are presented.
NASA Astrophysics Data System (ADS)
Song, Jihye;
2017-04-01
In order to study the hot hadronic matter created in heavy-ion collisions, it is important to compare particle production in large systems to that in smaller systems, such as proton-proton (pp) and proton-lead (p-Pb) collisions. In particular, resonances with different lifetimes are good candidates to probe the interplay of particle re-scattering and regeneration in the hadronic phase. The yields of the strange and double-strange hyperon resonances Σ(1385)± and Ξ(1530)0 are measured in the rapidity range -0.5 < yCMS < 0 in p-Pb collisions at \\sqrt{{s}{{N}{{N}}}}={{5.02 TeV}} with the ALICE detector at the LHC. We report on the transverse momentum distributions and mean transverse momentum as a function of the charged-particle multiplicity. These results complement the information derived from the measurements of other resonances such as K*(892)0 and ˚(1020). The multiplicity dependence of the integrated yield ratios of excited hyperons to longer-lived particles is discussed and compared to model predictions from pQCD-inspired models such as PYTHIA8 as well as statistical hadronization models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Bingnan; Zhao Enguang; Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000
2011-07-15
The shapes of light normal nuclei and {Lambda} hypernuclei are investigated in the ({beta},{gamma}) deformation plane by using a newly developed constrained relativistic mean field (RMF) model. As examples, the results of some C, Mg, and Si nuclei are presented and discussed in details. We found that for normal nuclei the present RMF calculations and previous Skyrme-Hartree-Fock models predict similar trends of the shape evolution with the neutron number increasing. But some quantitative aspects from these two approaches, such as the depth of the minimum and the softness in the {gamma} direction, differ a lot for several nuclei. For {Lambda}more » hypernuclei, in most cases, the addition of a {Lambda} hyperon alters slightly the location of the ground state minimum toward the direction of smaller {beta} and softer {gamma} in the potential energy surface E{approx}({beta},{gamma}). There are three exceptions, namely, {sub {Lambda}}{sup 13}C, {sub {Lambda}}{sup 23}C, and {sub {Lambda}}{sup 31}Si in which the polarization effect of the additional {Lambda} is so strong that the shapes of these three hypernuclei are drastically different from their corresponding core nuclei.« less
{phi} meson production in pp annihilation at rest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srisuphaphon, S.; Yan, Y.; Thailand Center of Excellence in Physics, Ministry of Education, Bangkok
2011-10-01
Apparent channel-dependent violations of the Okubo-Zwieg-Iizuka (OZI) rule in nucleon-antinucleon annihilation reactions in the presence of an intrinsic strangeness component in the nucleon are discussed. Admixture of ss quark pairs in the nucleon wave function enables the direct coupling to the {phi}-meson in the annihilation channel without violating the OZI rule. Three forms are considered in this work for the strangeness content of the proton wave function, namely, the uud cluster with a ss sea-quark component, kaon-hyperon clusters based on a simple chiral quark model, and the pentaquark picture uudss. Nonrelativistic quark model calculations reveal that the strangeness magnetic momentmore » {mu}{sub s} and the strangeness contribution to the proton spin {sigma}{sub s} from the first two models are consistent with recent experimental data, where {mu}{sub s} and {sigma}{sub s} are negative. For the third model, the uuds subsystem with the configurations [31]{sub FS}[211]{sub F}[22]{sub S} and [31]{sub FS}[31]{sub F}[22]{sub S} leads to negative values of {mu}{sub s} and {sigma}{sub s}. With effective quark line diagrams incorporating the {sup 3}P{sub 0} model, we give estimates for the branching ratios of the annihilation reactions at rest pp{yields}{phi}X (X={pi}{sup 0}, {eta}, {rho}{sup 0}, {omega}). Results for the branching ratios of {phi}X production from atomic pp s-wave states are for the first and third model found to be strongly channel dependent, in good agreement with measured rates.« less
The isospin strange asymmetry from the chiral effective theory
NASA Astrophysics Data System (ADS)
Trevisan, Luis Augusto; Mirez, Carlos
2018-05-01
The proposal of the present work is to study the difference between the strange quark-antiquark amount in the proton and neutron. For this purpose, the possible nucleon-hyperon-kaon fluctuations are analyzed with the effective chiral theory. The small difference of particle masses is shown to be in the origin of this isospin asymmetry. The dependence of the results on the mass cutoff parameter and with the coupling constants is analyzed.
Electric and magnetic form factors of strange baryons
NASA Astrophysics Data System (ADS)
Van Cauteren, T.; Merten, D.; Corthals, T.; Janssen, S.; Metsch, B.; Petry, H.-R.; Ryckebusch, J.
. Predictions for the electromagnetic form factors of the Λ , Σ and Ξ hyperons are presented. The numerical calculations are performed within the framework of the fully relativistic constituent-quark model developed by the Bonn group. The computed magnetic moments compare favorably with the experimentally known values. Most magnetic form factors GM (Q2) can be parameterized in terms of a dipole with cutoff masses ranging from 0.79 to 1.14 GeV.
Probing the internal composition of neutron stars with gravitational waves
NASA Astrophysics Data System (ADS)
Chatziioannou, Katerina; Yagi, Kent; Klein, Antoine; Cornish, Neil; Yunes, Nicolás
2015-11-01
Gravitational waves from neutron star binary inspirals contain information about the as yet unknown equation of state of supranuclear matter. In the absence of definitive experimental evidence that determines the correct equation of state, a number of diverse models that give the pressure inside a neutron star as function of its density have been constructed by nuclear physicists. These models differ not only in the approximations and techniques they employ to solve the many-body Schrödinger equation, but also in the internal neutron star composition they assume. We study whether gravitational wave observations of neutron star binaries in quasicircular inspirals up to contact will allow us to distinguish between equations of state of differing internal composition, thereby providing important information about the properties and behavior of extremely high density matter. We carry out a Bayesian model selection analysis, and find that second generation gravitational wave detectors can heavily constrain equations of state that contain only quark matter, but hybrid stars containing both normal and quark matter are typically harder to distinguish from normal matter stars. A gravitational wave detection with a signal-to-noise ratio of 20 and masses around 1.4 M⊙ would provide indications of the existence or absence of strange quark stars, while a signal-to-noise ratio 30 detection could either detect or rule out strange quark stars with a 20 to 1 confidence. The presence of kaon condensates or hyperons in neutron star inner cores cannot be easily confirmed. For example, for the equations of state studied in this paper, even a gravitational wave signal with a signal-to-noise ratio as high as 60 would not allow us to claim a detection of kaon condensates or hyperons with confidence greater than 5 to 1. On the other hand, if kaon condensates and hyperons do not form in neutron stars, a gravitational wave signal with similar signal-to-noise ratio would be able to constrain their existence with an 11 to 1 confidence for high-mass systems. We, finally, find that combining multiple lower signal-to-noise ratio detections (stacking) must be handled with caution since it could fail in cases where the prior information dominates over new information from the data.
Doubly Strange Hypernuclei Physics with antiprotons at PANDA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szymanska, K.; Iazzi, F.
2010-04-26
The study of the double hypernuclei will be possible inside the future facility FAIR. A new technique for their production was recently proposed, based on high intensity antiproton beams in connection with a two-target set-up, for the future PANDA experiment at HESR. In particular, the production technique and optimized parameters for the primary target where the hyperon XI{sup -} is produced as well as the expected rates for the stoped XI{sup -} will be discussed.
The PANDA physics program: Strangeness and more
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iazzi, Felice, E-mail: felice.iazzi@polito.it; Politecnico di Torino, Turin; Collaboration: PANDA Collaboration
2016-06-21
The physics program of the PANDA experiment at FAIR is illustrated, with a particular attention to the planned activity in the field of the doubly strange systems. The investigation of these systems can help, among others, to shed light on the role of the hyperons in the composition of the neutron stars. The great advantages that can be reached in the field of the charmed systems and nucleon structure by using high quality and intense antiproton beams are also recalled.
Feasibility study of heavy-ion collision physics at NICA JINR
NASA Astrophysics Data System (ADS)
Kekelidze, V.; Kovalenko, A.; Lednicky, R.; Matveev, V.; Meshkov, I.; Sorin, A.; Trubnikov, G.
2017-11-01
The project NICA (Nuclotron-based Ion Collider fAcility) is aimed to study hot and baryon rich QCD matter in heavy ion collisions in the energy range up to √{sNN} = 11GeV. The heavy ion program includes a study of collective phenomena, dilepton, hyperon and hypernuclei production under extreme conditions of highest baryonic density. This program will be performed at a fixed target experiment BM@N and with MPD detector at the NICA collider.
Measurement of αΩ in Ω- → ΛΚ- Decays
NASA Astrophysics Data System (ADS)
Lu, Lan-Chun; Chan, A.; Chen, Y. C.; Ho, C.; Teng, P. K.; Choong, W. S.; Fu, Y.; Gidal, G.; Gu, P.; Jones, T.; Luk, K. B.; Turko, B.; Zyla, P.; James, C.; Volk, J.; Felix, J.; Burnstein, R. A.; Chakravorty, A.; Kaplan, D. M.; Lederman, L. M.; Luebke, W.; Rajaram, D.; Rubin, H. A.; Solomey, N.; Torun, Y.; White, C. G.; White, S. L.; Leros, N.; Perroud, J.-P.; Gustafson, H. R.; Longo, M. J.; Lopez, F.; Park, H. K.; Jenkins, M.; Clark, K.; Dukes, E. C.; Durandet, C.; Holmstrom, T.; Huang, M.; Lu, L. C.; Hypercp Collaboration
2003-07-01
The HyperCP experiment (E871) at Fermilab has collected the largest sample of hyperon decays in the world. With a data set of over a million Ω- → ΛΚ- decays we have measured the product of αΩαΛ from which we have extracted αΩ. This preliminary result indicates that αΩ is small, but non-zero. Prospects for a test of CP symmetry by comparing the α parameters in Ω- and Ω¯+ decays will be discussed.
ΛΛ correlation function in Au + Au collisions at √ sNN = 200 GeV
Adamczyk, L.
2015-01-12
In this study, we present ΛΛ correlation measurements in heavy-ion collisions for Au+Au collisions at √ sNN = 200 GeV using the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). The Lednický-Lyuboshitz analytical model has been used to fit the data to obtain a source size, a scattering length and an effective range. Implications of the measurement of the ΛΛ correlation function and interaction parameters for di-hyperon searches are discussed.
Vortical susceptibility of finite-density QCD matter
Aristova, A.; Frenklakh, D.; Gorsky, A.; ...
2016-10-07
Here, the susceptibility of finite-density QCD matter to vorticity is introduced, as an analog of magnetic susceptibility. It describes the spin polarization of quarks and antiquarks in finite-density QCD matter induced by rotation. We estimate this quantity in the chirally broken phase using the mixed gauge-gravity anomaly at finite baryon density. It is proposed that the vortical susceptibility of QCD matter is responsible for the polarization of Λ and Λ¯ hyperons observed recently in heavy ion collisions at RHIC by the STAR collaboration.
Evolution of proto-neutron stars with quarks.
Pons, J A; Steiner, A W; Prakash, M; Lattimer, J M
2001-06-04
Neutrino fluxes from proto-neutron stars with and without quarks are studied. Observable differences become apparent after 10-20 s of evolution. Sufficiently massive stars containing negatively charged, strongly interacting, particles collapse to black holes during the first minute of evolution. Since the neutrino flux vanishes when a black hole forms, this is the most obvious signal that quarks (or other types of strange matter) have appeared. The metastability time scales for stars with quarks are intermediate between those containing hyperons and kaon condensates.
Massive neutron stars and Λ-hypernuclei in relativistic mean field models
NASA Astrophysics Data System (ADS)
Sun, Ting-Ting; Xia, Cheng-Jun; Zhang, Shi-Sheng; Smith, M. S.
2018-02-01
Based on relativistic mean field (RMF) models, we study finite Λ-hypernuclei and massive neutron stars. The effective N-N interactions PK1 and TM1 are adopted, while the N-Λ interactions are constrained by reproducing the binding energy of Λ-hyperon at 1s orbit of {}{{Λ }}{}40{Ca}. It is found that the Λ-meson couplings follow a simple relation, indicating a fixed Λ potential well for symmetric nuclear matter at saturation densities, i.e., around {V}{{Λ }}=-29.786 {MeV}. With those interactions, a large mass range of Λ-hypernuclei can be described well. Furthermore, the masses of PSR J1614-2230 and PSR J0348+0432 can be attained adopting the Λ-meson couplings {g}{{σ }{{Λ }}}/{g}{{σ }N}≳ 0.73, {g}{{ω }{{Λ }}}/{g}{{ω }N}≳ 0.80 for PK1 and {g}{{σ }{{Λ }}}/{g}{{σ }N}≳ 0.81, {g}{{ω }{{Λ }}}/{g}{{ω }N}≳ 0.90 for TM1, respectively. This resolves the hyperon puzzle without introducing any additional degrees of freedom. Supported by National Natural Science Foundation of China (11525524, 11505157, 11375022, 11705163, 11621131001), National Key Basic Research Program of China (2013CB834400), the Physics Research and Development Program of Zhengzhou University (32410017) and the Office of Nuclear Physics in the U.S. Dept. of Energy. The computation for this work was supported by the HPC Cluster of SKLTP/ITP-CAS and the Supercomputing Center, CNIC, of the CAS
Decays of J/psi (3100) to baryon final states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eaton, M.W.
We present results for the decays of psi(3100) into baryon and hyperon final states. The sample studied here consists of 1.3 million produced psi decays. The decays into nonstrange baryons agree well with currently established results, but with better statistics. In addition, significant resonance formation in multibody final states is observed. The decay psi ..-->.. anti pp..gamma.., the first direct photon decay of the psi involving baryons in the final state, is presented and the theoretical implications of the decays are briefly explored. Several new decays of the psi involving strange baryons are explored, including the first observations of threemore » body final states involving hyperons. The I-spin symmetry of the strong decay psi ..-->.. baryons has clearly been observed. The reduced matrix elements for psi ..-->.. B anti B are presented for final states of different SU(3) content. The B/sub 8/ anti B/sub 8/ results are in excellent agreement with the psi being an SU(3) singlet as are the results for psi ..-->.. B/sub 10/ anti B/sub 10/. We present the first evidence for the SU(3) violating decays of the type psi ..-->.. B/sub 8/ anti B/sub 10/ + c.c.. Angular distributions for psi ..-->.. B/sub 8/ anti B/sub 8/ are presented and compared with theoretical predictions. Statistics are limited, but the data tends to prefer other than a 1 + Cos/sup 2/theta distribution.« less
PREFACE: XI Conference on Beauty, Charm, Hyperons in Hadronic Interactions BEACH
NASA Astrophysics Data System (ADS)
Bozzo, Marco
2014-11-01
This volume contains the invited and contributed papers presented at the 11th International Conference on Hyperons, Charm and Beauty Hadrons, currently known as the BEACH Conferences. The BEACH conferences cover a broad range of physics topics in the field of Hyperon and heavy-flavor physics. This conference continues the BEACH series, which began with a meeting in Strasbourg in 1995 and since then offers a biennial opportunity for both theorists and experimentalists from the high-energy physics community to discuss all aspects of flavour physics. The 11th Conference took place in the Lecture Theatre of the Physics West Building of the University of Birmingham (United Kingdom) from July 22nd to July 26th and was attended by 107 participants. All of the sessions were plenary sessions accommodating review talks and shorter contributions discussing both theory and recent experiments. At the end of the conference Valerie Gibson (Cavendish Laboratory, University of Cambridge, UK) and Sebastian Jaeger (School of Physics and Astronomy, University of Sussex, UK) summarized and put in context all the presentations of the conference giving two very interesting Summary talks. These Conference Proceedings are particularly interesting since, due to the long shutdown of the LHC in Geneva (CH), most of the data presented were from the entire data set available. This volume in fact offers an interesting panorama of the present situation and allows a comparison of the experimental data and the theory in a field that is always in continuous evolution. The conference was impeccably organized by the Local Organizing Committee chaired by Cristina Lazzeroni (Birmingham Univeristy, Birmingham, UK) that I want to thank particularly here. Many from the University Staff have contributed to the smooth running of the conference. We would like to thank the Local Scientific Secretariat for their invaluable help in making the conference a truly enjoyable and unforgettable event; a special thanks goes also to Maria Hobbs, our local secretary, who worked tirelessly in the organization of every detail. Finally we would like thank the European Organization for Nuclear Research, the European Research Council, the UK Science and Technology Facility Council, the UK Institute of Particle Physics Phenomenology and the University of Birmingham for their generous support. The next BEACH Conference will be held at George Mason University, George Mason University Fairfax, Virginia (USA) at the beginning of summer 2016 and I hope that we will all meet again there.
Decays Ξb→Λbπ and diquark correlations in hyperons
NASA Astrophysics Data System (ADS)
Li, Xin; Voloshin, M. B.
2014-08-01
The decays Ξb→Λbπ are strangeness changing weak transitions involving only the light diquark in the baryon. Thus these decays can test the properties of such diquarks, in particular the suggestions existing in the literature of enhanced correlations in JP=0+ light diquarks. We revisit the estimates of the rates of these decays and point out that with the enhanced correlation their branching fraction can reach a few percent and may become visible in the measurements of differences of the lifetimes of b baryons.
Prospects of detecting baryon and quark superfluidity from cooling neutron stars
Page; Prakash; Lattimer; Steiner
2000-09-04
Baryon and quark superfluidity in the cooling of neutron stars are investigated. Future observations will allow us to constrain combinations of the neutron or Lambda-hyperon pairing gaps and the star's mass. However, in a hybrid star with a mixed phase of hadrons and quarks, quark gaps larger than a few tenths of an MeV render quark matter virtually invisible for cooling. If the quark gap is smaller, quark superfluidity could be important, but its effects will be nearly impossible to distinguish from those of other baryonic constituents.
Measurement of exclusive baryon-antibaryon decays of {chi}{sub cJ} mesons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naik, P.; Rademacker, J.; Asner, D. M.
2008-08-01
Using a sample of 2.59x10{sup 7} {psi}(2S) decays collected by the CLEO-c detector, we present results of a study of {chi}{sub cJ} (J=0, 1, 2) decays into baryon-antibaryon final states. We present the world's most precise measurements of the {chi}{sub cJ}{yields}pp and {chi}{sub cJ}{yields}{lambda}{lambda} branching fractions, and the first measurements of {chi}{sub c0} decays to other hyperons. These results illuminate the decay mechanism of the {chi}{sub c} states.
The Influence of the Enhanced Vector Meson Sector on the Properties of the Matter of Neutron Stars
Bednarek, Ilona; Manka, Ryszard; Pienkos, Monika
2014-01-01
This paper gives an overview of the model of a neutron star with non-zero strangeness constructed within the framework of the nonlinear realization of the chiral symmetry. The emphasis is put on the physical properties of the matter of a neutron star as well as on its internal structure. The obtained solution is particularly aimed at the problem of the construction of a theoretical model of a neutron star matter with hyperons that will give high value of the maximum mass. PMID:25188304
Hyperon Mixing and Two Serious Problems in Neutron Stars
NASA Astrophysics Data System (ADS)
Takatsuka, Tatsuyuki; Nishizaki, Shigeru; Akaishi, Yoshinori
Two serious problems caused by a hyperon (Y)-mixing in neutron stars (NSs), (i) too-soft EOS incompatible with 2M ȯ -NS observations and (ii) too-rapid cooling inconsistent with surface temperature observations, are discussed. With a brief review as to the works to solve (i), it is stressed that the universal 3-body force U3B acting on all the baryon species is a promising candidate to solve (i). It is also stressed that in a framework to include explicitly quark degrees of freedom, a hadron-quark crossover transition can generate a stiff EOS fully compatible with massive stars and provides another promising solution. The EOS calculations are made by focusing an effective interaction approach with U3B(SJM) from a string-junction model (SJM), which shows that this SJM-EOS can sustain massive NSs with the mass M ≳ 2M ȯ . It is remarked that the NS-matter with this SJM-EOS serves as a solution for both (i) and (ii); by delaying the onset of Y-mixing and thereby avoiding too-rapid Y-cooling. Under the same SJM-EOS and including an enhancement of Λ Λ pairing attraction by a Pauli-blocking effects on Λ Λ - ΞN coupling, the occurrence of Λ superfluidity is examined and is found to be possible in a limited density region. The result would be useful for an issue in (ii), i.e., giving an explanation for a colder class NSs such as Vela and 3C58 requiring a rapid Y-cooling but with a moderate suppression by Y-superfluidity.
Subatomic fluid spintronics - Global hyperon polarization in heavy ion collisions measured by STAR
NASA Astrophysics Data System (ADS)
Lisa, Michael
2017-09-01
In 1915, Barnett et al. found that rotation of a metal cylinder can induce a magnetization in the object. This remains a rare example of a coupling between macroscopic mechanical rotation and quantum spin (though this was not the paradigm of the day). Just last year (2016), Takahashi et al. discovered the first polarization of electrons induced by mechanical vorticity induced by viscous effects in a fluid; they thus heralded the new field of ``fluid spintronics.'' In 2000, first collisions at Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC) led to the surprising discovery that the deconfined quark-gluon plasma (QGP) is best described as a ``nearly perfect fluid.'' These fluid properties remain the focus of intense study, and are providing insights into the Strong force in the non-perturbative regime. However, fundamental features of the fluid-including its vorticity-are largely unexplored. I will discuss recent measurements by the STAR Collaboration at RHIC, on the spin alignment, or polarization, of Lambda hyperons with the angular momentum of the collision. I will argue that a RHIC collision generates the subatomic analog of Takahashi's observation, the vorticity generated by initial viscous forces and maintained by subsequent low viscosity. These measurements allow an estimate of both the vorticity of the QGP and the magnetic field in which it evolves. Both of these quantities far surpass any known system in the universe. Furthermore, knowledge of both is crucial to recent studies that may reveal the onset of chiral symmetry restoration in QCD. Supported by the National Science Foundation.
NASA Astrophysics Data System (ADS)
Chen, Jinhui
2013-04-01
Collisions of heavy nuclei at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) briefly produce hot and dense matter that has been interpreted as a quark gluon plasma (QGP) . The energy density of the plasma is similar to that of the universe a few microseconds after the Big Bang. This plasma contains roughly equal numbers of quarks and antiquarks. As a result of the high energy density of the QGP phase, many strange-antistrange quark pairs are liberated from the quantum vacuum. The plasma cools and transitions into a hadron gas, producing nucleons, hyperons, mesons, and their antiparticles. The phi-mesons are ideal experimental probe to explore the QGP evolution dynamics. They are predicted to have relatively small hadronic interaction cross sections. Thus those phi-mesons carry the information directly from the hadronization stage with little or no distortion due to hadronic rescattering. In this talk, I will present the phi-meson production in Au+Au collisions at center-of-mass energy of 200GeV. Energy and system size dependence of the phi yields at mid-rapidity will be discussed. Centrality and transverse momentum dependence of the phi elliptic flow and nuclear modification factor will be presented. Properties of strange quarks in the bulk matter at hadron formation will be discussed. I will also present the details of the antihypertriton observation from the STAR experiment. Physics implication related to the QGP formation and hyperon-nucleon interaction from the data will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raduta, Ad. R.; Gulminelli, F.; Oertel, M.
2015-02-24
We discuss the thermodynamics of compressed baryonic matter with strangeness within non-relativistic mean-field models with effective interactions. The phase diagram of the full baryonic octet under strangeness equilibrium is built and discussed in connection with its relevance for core-collapse supernovae and neutron stars. A simplified framework corresponding to (n, p, Λ)(+e)-mixtures is employed in order to test the sensitivity of the existence of a phase transition on the (poorely constrained) interaction coupling constants and the compatibility between important hyperonic abundances and 2M{sub ⊙} neutron stars.
The influence of the enhanced vector meson sector on the properties of the matter of neutron stars.
Bednarek, Ilona; Manka, Ryszard; Pienkos, Monika
2014-01-01
This paper gives an overview of the model of a neutron star with non-zero strangeness constructed within the framework of the nonlinear realization of the chiral SU(3)L x SU(3)R symmetry. The emphasis is put on the physical properties of the matter of a neutron star as well as on its internal structure. The obtained solution is particularly aimed at the problem of the construction of a theoretical model of a neutron star matter with hyperons that will give high value of the maximum mass.
BM@N and MPD experiments at NICA
NASA Astrophysics Data System (ADS)
Kekelidze, Vladimir; Kolesnikov, Vadim; Sorin, Alexander
2018-02-01
The project NICA (Nuclotron-based Ion Collider fAcility) aims to study hot and baryon rich QCD matter in heavy ion collisions in the energy range = 4 - 11 GeV. The rich heavy-ion physics program will be performed at two experiments, BM@N (Baryonic Matter at Nuclotron) at beams extracted from the Nuclotron, and at MPD (Multi-Purpose Detector) at the NICA collider. This program covers a variety of phenomena in strongly interacting matter of the highest baryonic density, which includes study of collective effects, production of hyperon and hypernuclei, in-medium modification of meson properties, and event-by-event fluctuations.
Workshop on Physics with Neutral Kaon Beam at JLab (KL2016) Mini-Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strakovsky, Igor I.; Amaryan, Moskov; Chudakov, Eugene A.
2016-05-01
The KL2016 Workshop is following the Letter of Intent LoI12-15-001 "Physics Opportunities with Secondary KL beam at JLab" submitted to PAC43 with the main focus on the physics of excited hyperons produced by the Kaon beam on unpolarized and polarized targets with GlueX setup in Hall D. Such studies will broaden a physics program of hadron spectroscopy extending it to the strange sector. The Workshop was organized to get a feedback from the community to strengthen physics motivation of the LoI and prepare a full proposal.
Three-body approach to the K-d scattering length in particle basis
NASA Astrophysics Data System (ADS)
Bahaoui, A.; Fayard, C.; Mizutani, T.; Saghai, B.
2002-11-01
We report on the first calculation of the scattering length AK-d based on a relativistic three-body approach where the K¯N coupled channel two-body input amplitudes have been obtained with the chiral SU(3) constraint, but with isospin symmetry breaking effects taken into account. Results are compared with a recent calculation applying a similar set of two-body amplitudes, based on the fixed center approximation, and for which we find significant deviations from the three-body results. Effects of the deuteron D-wave component, pion-nucleon, and hyperon-nucleon interactions are also evaluated.
Hartree-Fock studies of hypernuclear properties
NASA Astrophysics Data System (ADS)
Lanskoy, D. E.
1998-08-01
The Skyrme-Hartree-Fock approach is approved as a powerful tool to reproduce general properties of Λ hypernuclear spectra [1-4] and to relate hypernuclear observables to effective interaction features. In this contribution, we consider briefly some less common hypernuclear systems, which appear to be quite sensitive to details of the relevant interactions. Particularly, we address possible manifestations of the polarization of a hypernuclear core (i.e. core distortion due to hyperon addition), which is driven in terms of the Skyrme force mainly by counterbalance between the two-body ΛN force and the three-body ΛNN (or density-dependent ΛN) one.
Recent Results from Experiments at COSY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldenbaum, Frank
2010-08-05
In hadron physics, experiments using hadronic probes may shed light on open questions on the structure of hadrons, their interactions that are subject to the strong force and on the symmetries of nature. Therefore a major focus of the physics program studied at the COoler SYnchrotron COSY of the Forschungszentrum Juelich is the production of mesons and hyperons in hadron- hadron scattering with the aim to investigate relevant production processes, interactions of the participating particles as well as symmetries and symmetry breaking. The COoler SYnchrotron COSY at Juelich accelerates protons and deuterons with momenta up to 3.7 GeV/c covering hadronmore » physics in the light quark sector. The availability of the beam cooling systems allow precision measurements, using polarized proton and deuteron beams in combination with polarized Hydrogen or Deuterium targets. Due to the excellent experimental conditions at COSY single- and double-polarization measurements can be performed with high reaction rates. With the operation of the recently installed WASA-at-COSY apparatus, high-statistics studies aiming at rare decays of {eta} and {eta}{sup '} are effectively turning COSY into a meson factory. This contribution summarizes the ongoing physics program at the COSY facility, using the detector systems ANKE, WASA and COSY-TOF highlighting a few selective recent results and outlining future developments. The research at COSY also provides a step towards the realization of FAIR with studies on spin manipulation and polarization build-up of protons in polarized targets.« less
One-proton emission from the Li6Λ hypernucleus
NASA Astrophysics Data System (ADS)
Oishi, Tomohiro
2018-02-01
One-proton (1 p ) radioactive emission under the influence of the Λ0-hyperon inclusion is discussed. I investigate the hyper-1 p emitter, Li6Λ, with a time-dependent three-body model. Two-body interactions for α -proton and α -Λ0 subsystems are determined consistently to their resonant and bound energies, respectively. For a proton-Λ0 subsystem, a contact interaction, which can be linked to the vacuum-scattering length of the proton-Λ0 scattering, is employed. A noticeable sensitivity of the 1 p -emission observables to the scattering length of the proton-Λ0 interaction is shown. The Λ0-hyperon inclusion leads to a remarkable fall of the 1 p -resonance energy and width from the hyperonless α -proton resonance. For some empirical values of the proton-Λ0 scattering length, the 1 p -resonance width is suggested to be of the order of 0.1 -0.01 MeV. Thus, the 1 p emission from Li6Λ may occur in the time scale of 10-20-10-21 seconds, which is sufficiently shorter than the self-decay lifetime of Λ0,10-10 seconds. By taking the spin-dependence of the proton-Λ0 interaction into account, a remarkable split of the Jπ=1- and 2- 1 p -resonance states is predicted. It is also suggested that, if the spin-singlet proton-Λ0 interaction is sufficiently attractive, the 1 p emission from the 1- ground state is forbidden. From these results, I conclude that the 1 p emission can be a suitable phenomenon to investigate the basic properties of the hypernuclear interaction, for which a direct measurement is still difficult.
The nucleon as a test case to calculate vector-isovector form factors at low energies
NASA Astrophysics Data System (ADS)
Leupold, Stefan
2018-01-01
Extending a recent suggestion for hyperon form factors to the nucleon case, dispersion theory is used to relate the low-energy vector-isovector form factors of the nucleon to the pion vector form factor. The additionally required input, i.e. the pion-nucleon scattering amplitudes are determined from relativistic next-to-leading-order (NLO) baryon chiral perturbation theory including the nucleons and optionally the Delta baryons. Two methods to include pion rescattering are compared: a) solving the Muskhelishvili-Omnès (MO) equation and b) using an N/D approach. It turns out that the results differ strongly from each other. Furthermore the results are compared to a fully dispersive calculation of the (subthreshold) pion-nucleon amplitudes based on Roy-Steiner (RS) equations. In full agreement with the findings from the hyperon sector it turns out that the inclusion of Delta baryons is not an option but a necessity to obtain reasonable results. The magnetic isovector form factor depends strongly on a low-energy constant of the NLO Lagrangian. If it is adjusted such that the corresponding magnetic radius is reproduced, then the results for the corresponding pion-nucleon scattering amplitude (based on the MO equation) agree very well with the RS results. Also in the electric sector the Delta degrees of freedom are needed to obtain the correct order of magnitude for the isovector charge and the corresponding electric radius. Yet quantitative agreement is not achieved. If the subtraction constant that appears in the solution of the MO equation is not taken from nucleon+Delta chiral perturbation theory but adjusted such that the electric radius is reproduced, then one obtains also in this sector a pion-nucleon scattering amplitude that agrees well with the RS results.
Search for CP Violation in Charged-Ξ and Λ Hyperon Decays
NASA Astrophysics Data System (ADS)
Holmstrom, T.; Leros, N.; Burnstein, R. A.; Chakravorty, A.; Chan, A.; Chen, Y. C.; Choong, W. S.; Clark, K.; Dukes, E. C.; Durandet, C.; Felix, J.; Fu, Y.; Gidal, G.; Gu, P.; Gustafson, H. R.; Ho, C.; Huang, M.; James, C.; Jenkins, C. M.; Jones, T.; Kaplan, D. M.; Lederman, L. M.; Longo, M. J.; Lopez, F.; Lu, L. C.; Luebke, W.; Luk, K. B.; Nelson, K. S.; Park, H. K.; Perroud, J.-P.; Rajaram, D.; Rubin, H. A.; Teng, P. K.; Volk, J.; White, C. G.; White, S. L.; Zyla, P.
2004-12-01
We have compared the p and p¯ angular distributions in 117×106 Ξ-→Λπ-→pπ-π- and 41×106 Ξ¯+→Λ¯π+→p¯π+π+ decays using a subset of the data from the HyperCP experiment (E871) at Fermilab. We find no evidence of CP violation, with the direct-CP-violating parameter AΞΛ≡(αΞαΛ-α¯Ξα¯Λ)/(αΞαΛ+α¯Ξα¯Λ)=[0.0±5.1(stat)±4.4(syst)]×10-4.
Structures of rotating traditional neutron stars and hyperon stars in the relativistic σ -ω model
NASA Astrophysics Data System (ADS)
Wen, De-hua; Chen, Wei; Wang, Xian-ju; Ai, Bao-quan; Liu, Guo-tao; Dong, Dong-qiao; Liu, Liang-gang
The influence of rotation on the total masses and radii of neutron stars is calculated by Hartle's slow-rotation formalism, while the equation of state is considered in a relativistic σ -ω model. As the changes of the mass and radius of a real neutron star caused by rotation are very small in comparison with the total mass and radius, one can see that Hartle's approximate method is rational to deal with the rotating neutron stars. If three property values, mass, radius and period, are observed for the same neutron star, then the EOS of this neutron star could be decided entirely.
NASA Astrophysics Data System (ADS)
Coman, Marius
The kaon electroproduction reaction H(e, e 'K+)Λ was studied as a function of the four momentum transfer, Q2, for different values of the virtual photon polarization parameter. Electrons and kaons were detected in coincidence in two High Resolution Spectrometers (HRS) at Jefferson Lab. Data were taken at electron beam energies ranging from 3.4006 to 5.7544 GeV. The kaons were identified using combined time of flight information and two Aerogel Cerenkov detectors used for particle identification. For different values of Q2 ranging from 1.90 to 2.35 GeV/c2 the center of mass cross sections for the Λ hyperon were determined for 20 kinematics and the longitudinal, sigma L, and transverse, sigmaT, terms were separated using the Rosenbluth separation technique. Comparisons between available models and data have been studied. The comparison supports the t-channel dominance behavior for kaon electroproduction. All models seem to underpredict the transverse cross section. An estimate of the kaon form factor has been explored by determining the sensitivity of the separated cross sections to variations of the kaon EM form factor. From comparison between models and data we can conclude that interpreting the data using the Regge model is quite sensitive to a particular choice for the EM form factors. The data from the E98-108 experiment extends the range of the available kaon electroproduction cross section data to an unexplored region of Q2 where no separations have ever been performed.
Octet baryons in large magnetic fields
NASA Astrophysics Data System (ADS)
Deshmukh, Amol; Tiburzi, Brian C.
2018-01-01
Magnetic properties of octet baryons are investigated within the framework of chiral perturbation theory. Utilizing a power counting for large magnetic fields, the Landau levels of charged mesons are treated exactly giving rise to baryon energies that depend nonanalytically on the strength of the magnetic field. In the small-field limit, baryon magnetic moments and polarizabilities emerge from the calculated energies. We argue that the magnetic polarizabilities of hyperons provide a testing ground for potentially large contributions from decuplet pole diagrams. In external magnetic fields, such contributions manifest themselves through decuplet-octet mixing, for which possible results are compared in a few scenarios. These scenarios can be tested with lattice QCD calculations of the octet baryon energies in magnetic fields.
Equations of state for neutron stars and core-collapse supernovae
NASA Astrophysics Data System (ADS)
Oertel, Micaela; Providência, Constança
2018-04-01
Modelling compact stars is a complex task which depends on many ingredients, among others the properties of dense matter. In this contribution models for the equation of state (EoS) of dense matter will be discussed, relevant for the description of core-collapse supernovae, compact stars and compact star mergers. Such EoS models have to cover large ranges in baryon number density, temperature and isospin asymmetry. The characteristics of matter change dramatically within these ranges, from a mixture of nucleons, nuclei, and electrons to uniform, strongly interacting matter containing nucleons, and possibly other particles such as hyperons or quarks. Some implications for compact star astrophysics will be highlighted, too.
Vorticity in heavy-ion collisions at the JINR Nuclotron-based Ion Collider fAcility
NASA Astrophysics Data System (ADS)
Ivanov, Yu. B.; Soldatov, A. A.
2017-05-01
Vorticity of matter generated in noncentral heavy-ion collisions at energies of the Nuclotron-based Ion Collider fAcility (NICA) at the Joint Institute for Nuclear Research (JINR) in Dubna is studied. Simulations are performed within the model of the three-fluid dynamics (3FD) which reproduces the major part of bulk observables at these energies. Comparison with earlier calculations is done. The qualitative pattern of the vorticity evolution is analyzed. It is demonstrated that the vorticity is mainly located at the border between participants and spectators. In particular, this implies that the relative Λ -hyperon polarization should be stronger at rapidities of the fragmentation regions than that in the midrapidity region.
Xi0 and anti-Xi0 Polarization Measurements at 800-GeV/c
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abouzaid, E.; Alavi-Harati, A.; Alexopoulos, T.
The polarization of {Xi}{sup 0} and {bar {Xi}}{sup 0} hyperons produced by 800 GeV/c protons on a BeO target at a fixed targeting angle of 4.8 mrad is measured by the KTeV experiment at Fermilab. The result of 9.7% for {Xi}{sup 0} polarization shows no significant energy dependence when compared to a result obtained at 400 GeV/c production energy and at twice the targeting angle. The polarization of the {Xi}{sup 0} is measured for the first time and found to be consistent with zero. They also examine the dependence of polarization on production p{sub t}.
NASA Astrophysics Data System (ADS)
Mei, H.; Hagino, K.; Yao, J. M.; Motoba, T.
2015-06-01
We present a detailed formalism of the microscopic particle-rotor model for hypernuclear low-lying states based on a covariant density functional theory. In this method, the hypernuclear states are constructed by coupling a hyperon to low-lying states of the core nucleus, which are described by the generator coordinate method (GCM) with the particle number and angular momentum projections. We apply this method to study in detail the low-lying spectrum of C13
Scaling properties of hyperon production in Au+Au collisions at square root [sNN]=200 GeV.
Adams, J; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Bezverkhny, B I; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, C O; Blyth, S-L; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Choi, H A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; de Moura, M M; Dedovich, T G; DePhillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Guertin, S M; Guimaraes, K S F F; Guo, Y; Gupta, N; Gutierrez, T D; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lapointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; Levine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Poljak, N; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ray, R L; Razin, S V; Reinnarth, J; Relyea, D; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Sumbera, M; Sun, Z; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X
2007-02-09
We present the scaling properties of Lambda, Xi, and Omega in midrapidity Au+Au collisions at the Brookhaven National Laboratory Relativistic Heavy Ion Collider at sqrt[s_{NN}]=200 GeV. The yield of multistrange baryons per participant nucleon increases from peripheral to central collisions more rapidly than that of Lambda, indicating an increase of the strange-quark density of the matter produced. The strange phase-space occupancy factor gamma_{s} approaches unity for the most central collisions. Moreover, the nuclear modification factors of p, Lambda, and Xi are consistent with each other for 2
Lattimer, J M; Prakash, M
2004-04-23
Neutron stars are some of the densest manifestations of massive objects in the universe. They are ideal astrophysical laboratories for testing theories of dense matter physics and provide connections among nuclear physics, particle physics, and astrophysics. Neutron stars may exhibit conditions and phenomena not observed elsewhere, such as hyperon-dominated matter, deconfined quark matter, superfluidity and superconductivity with critical temperatures near 10(10) kelvin, opaqueness to neutrinos, and magnetic fields in excess of 10(13) Gauss. Here, we describe the formation, structure, internal composition, and evolution of neutron stars. Observations that include studies of pulsars in binary systems, thermal emission from isolated neutron stars, glitches from pulsars, and quasi-periodic oscillations from accreting neutron stars provide information about neutron star masses, radii, temperatures, ages, and internal compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seixas de Rezende, Fabio Antonio; /Rio de Janeiro, CBPF
A direct measurement of the mass number (A) dependence of the production of the hyperon {Xi}*{sup 0} and its opposite {bar {Xi}}*{sup 0} in {pi}{sup -}, K{sup -} beam-nucleon interactions at 250 GeV/c is reported. The data derive from the experiment E769 at Fermilab. The results were obtained for different targets: Be, Al, Cu and W. It was observed the data are found to be well described by the parametrization {sigma}{sub A} = {sigma}{sub 0}A{sup {alpha}}, {alpha} being calculated for different beams. The results obtained are compared with those results of E769 experiment. The results shown here are preliminary.
Microscopic particle-rotor model for the low-lying spectrum of Λ hypernuclei
NASA Astrophysics Data System (ADS)
Mei, H.; Hagino, K.; Yao, J. M.; Motoba, T.
2014-12-01
We propose a novel method for low-lying states of hypernuclei based on the particle-rotor model, in which hypernuclear states are constructed by coupling the hyperon to low-lying states of the core nucleus. In contrast to the conventional particle-rotor model, we employ a microscopic approach for the core states; that is, the generator coordinate method (GCM) with the particle number and angular momentum projections. We apply this microscopic particle-rotor model to Λ9Be as an example employing a point-coupling version of the relativistic mean-field Lagrangian. A reasonable agreement with the experimental data for the low-spin spectrum is achieved using the Λ N coupling strengths determined to reproduce the binding energy of the Λ particle.
High resolution infrared spectroscopy: Some new approaches and applications to planetary atmospheres
NASA Technical Reports Server (NTRS)
Mumma, M. J.
1978-01-01
The principles of spectral line formation and of techniques for retrieval of atmospheric temperature and constituent profiles are discussed. Applications to the atmospheres of Earth, Mars, Venus, and Jupiter are illustrated by results obtained with Fourier transform and infrared heterodyne spectrometers at resolving powers (lambda/delta hyperon lambda of approximately 10,000 and approximately 10 to the seventh power), respectively, showing the high complementarity of spectroscopy at these two widely different resolving powers. The principles of heterodyne spectroscopy are presented and its applications to atmospheric probing and to laboratory spectroscopy are discussed. Direct absorption spectroscopy with tuneable semiconductor lasers is discussed in terms of precision frequency-and line strength-measurements, showing substantial advances in laboratory infrared spectroscopy.
Local and global Λ polarization in a vortical fluid
Li, Hui; Petersen, Hannah; Pang, Long -Gang; ...
2017-09-25
We compute the fermion spin distribution in the vortical fluid created in off-central high energy heavy-ion collisions. We employ the event-by-event (3+1)D viscous hydrodynamic model. The spin polarization density is proportional to the local fluid vorticity in quantum kinetic theory. As a result of strong collectivity, the spatial distribution of the local vorticity on the freeze-out hyper-surface strongly correlates to the rapidity and azimuthal angle distribution of fermion spins. We investigate the sensitivity of the local polarization to the initial fluid velocity in the hydrodynamic model and compute the global polarization of Λ hyperons by the AMPT model. The energymore » dependence of the global polarization agrees with the STAR data.« less
Local and global Λ polarization in a vortical fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui; Petersen, Hannah; Pang, Long -Gang
We compute the fermion spin distribution in the vortical fluid created in off-central high energy heavy-ion collisions. We employ the event-by-event (3+1)D viscous hydrodynamic model. The spin polarization density is proportional to the local fluid vorticity in quantum kinetic theory. As a result of strong collectivity, the spatial distribution of the local vorticity on the freeze-out hyper-surface strongly correlates to the rapidity and azimuthal angle distribution of fermion spins. We investigate the sensitivity of the local polarization to the initial fluid velocity in the hydrodynamic model and compute the global polarization of Λ hyperons by the AMPT model. The energymore » dependence of the global polarization agrees with the STAR data.« less
NASA Technical Reports Server (NTRS)
Gross, K. P.; Mckenzie, R. L.
1982-01-01
A predominantly single-mode pulsed dye laser system giving a well characterized spatial and temporal output suitable for absolute two-photon absorptivity measurements was used to study the NO gamma(0,0) S11 + R21 (J double prime = 7-1/2) transition. Using a calibrated induced-fluorescence technique, an absorptivity parameter of 2.8 + or - 1.4 x 10 to the minus 51st power cm to the 6th power was obtained. Relative strengths of other rotational transitions in the gamma(0,0) band were also measured and shown to compare well with predicted values in all cases except the O12 (J double prime = 10-1/2) transition.
Vorticity and Λ polarization in baryon rich matter
NASA Astrophysics Data System (ADS)
Baznat, Mircea; Gudima, Konstantin; Prokhorov, George; Sorin, Alexander; Teryaev, Oleg; Zakharov, Valentin
2018-02-01
The polarization of Λ hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies in baryon-rich matter. The polarization of
Observation of an antimatter hypernucleus.
Abelev, B I; Aggarwal, M M; Ahammed, Z; Alakhverdyants, A V; Alekseev, I; Anderson, B D; Arkhipkin, D; Averichev, G S; Balewski, J; Barnby, L S; Baumgart, S; Beavis, D R; Bellwied, R; Betancourt, M J; Betts, R R; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bonner, B E; Bouchet, J; Braidot, E; Brandin, A V; Bridgeman, A; Bruna, E; Bueltmann, S; Bunzarov, I; Burton, T P; Cai, X Z; Caines, H; Calderon, M; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, P; Clarke, R F; Codrington, M J M; Corliss, R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; DePhillips, M; Derevschikov, A A; Derradi de Souza, R; Didenko, L; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Dunlop, J C; Dutta Mazumdar, M R; Efimov, L G; Elhalhuli, E; Elnimr, M; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Evdokimov, O; Fachini, P; Fatemi, R; Fedorisin, J; Fersch, R G; Filip, P; Finch, E; Fine, V; Fisyak, Y; Gagliardi, C A; Gangadharan, D R; Ganti, M S; Garcia-Solis, E J; Geromitsos, A; Geurts, F; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Gupta, A; Gupta, N; Guryn, W; Haag, B; Hamed, A; Han, L-X; Harris, J W; Hays-Wehle, J P; Heinz, M; Heppelmann, S; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, B; Huang, H Z; Humanic, T J; Huo, L; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jena, C; Jin, F; Jones, C L; Jones, P G; Joseph, J; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Kauder, K; Keane, D; Kechechyan, A; Kettler, D; Kikola, D P; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kollegger, T; Konzer, J; Kopytine, M; Koralt, I; Koroleva, L; Korsch, W; Kotchenda, L; Kouchpil, V; Kravtsov, P; Krueger, K; Krus, M; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; LaPointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lee, J H; Leight, W; Levine, M J; Li, C; Li, L; Li, N; Li, W; Li, X; Li, Y; Li, Z; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Luo, X; Ma, G L; Ma, Y G; Mahapatra, D P; Majka, R; Mal, O I; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Masui, H; Matis, H S; Matulenko, Yu A; McDonald, D; McShane, T S; Meschanin, A; Milner, R; Minaev, N G; Mioduszewski, S; Mischke, A; Mitrovski, M K; Mohanty, B; Mondal, M M; Morozov, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Page, B S; Pal, S K; Pandit, Y; Panebratsev, Y; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Pile, P; Planinic, M; Ploskon, M A; Pluta, J; Plyku, D; Poljak, N; Poskanzer, A M; Potukuchi, B V K S; Powell, C B; Prindle, D; Pruneau, C; Pruthi, N K; Pujahari, P R; Putschke, J; Qiu, H; Raniwala, R; Raniwala, S; Ray, R L; Redwine, R; Reed, R; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Sahoo, R; Sakai, S; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sangaline, E; Schambach, J; Scharenberg, R P; Schmitz, N; Schuster, T R; Seele, J; Seger, J; Selyuzhenkov, I; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, T D S; Staszak, D; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarini, L H; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tlusty, D; Tokarev, M; Trainor, T A; Tram, V N; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van Leeuwen, M; van Nieuwenhuizen, G; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Videbaek, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Walker, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, Q; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wingfield, E; Wissink, S W; Witt, R; Wu, Y; Xie, W; Xu, H; Xu, N; Xu, Q H; Xu, W; Xu, Y; Xu, Z; Xue, L; Yang, Y; Yepes, P; Yip, K; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, J; Zhang, S; Zhang, W M; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, J; Zhong, C; Zhou, J; Zhou, W; Zhu, X; Zhu, Y H; Zoulkarneev, R; Zoulkarneeva, Y
2010-04-02
Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons--comprising an antiproton, an antineutron, and an antilambda hyperon--produced by colliding gold nuclei at high energy. Our analysis yields 70 +/- 17 antihypertritons ((Lambda)(3)-H) and 157 +/- 30 hypertritons (Lambda3H). The measured yields of Lambda3H ((Lambda)(3)-H) and 3He (3He) are similar, suggesting an equilibrium in coordinate and momentum space populations of up, down, and strange quarks and antiquarks, unlike the pattern observed at lower collision energies. The production and properties of antinuclei, and of nuclei containing strange quarks, have implications spanning nuclear and particle physics, astrophysics, and cosmology.
Polarization in heavy-ion collisions: magnetic field and vorticity
NASA Astrophysics Data System (ADS)
Baznat, M.; Gudima, K.; Prokhorov, G.; Sorin, A.; Teryaev, O.; Zakharov, V.
2017-12-01
The polarization of hyperons due to axial chiral vortical effect is discussed. The effect is proportional to (strange) chemical potential and is pronounced at lower energies, contrary to that of magnetic field. The polarization of antihyperons has the same sign and larger magnitude. The emergence of vortical structures is observed in kinetic QGSM models. The hydrodynamical helicity separation receives the contribution of longitudinal velocity and vorticity implying the quadrupole structure of the latter. The transition from the quark vortical effects to baryons in confined phase may be achieved by exploring the axial charge. At the hadronic level the polarization corresponds to the cores of quantized vortices in pionic superfluid. The chiral vortical effects may be also studied in the frmework of Wigner function establishing the relation to the thermodynamical approach to polarization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swallow, E.C.
This paper discusses developments in light collection which had their origin in efforts to construct high performance gas Cerenkov detectors for precision studies of hyperon beta decays at the ZGS. The resulting devices, know generally as {open_quotes}compound parabolic concentrators,{close_quotes} have found applications ranging from nuclear and particle physics experiments to solar energy concentration, instrument illumination, and understanding the optics of visual receptors. Interest in these devices and the ideas underlying them stimulated the development of a substantial new subfield of physics: nonimaging optics. This progression provides an excellent example of some ways in which unanticipated - and often unanticipatable -more » applied science and {open_quotes}practical{close_quotes} devices naturally emerge from first-rate basic science. The characteristics of this process suggest that the term {open_quotes}spinoff{close_quotes} commonly used to denote it is misleading and in need of replacement.« less
NASA Astrophysics Data System (ADS)
Piscicchia, K.; Curceanu, C.; Cargnelli, M.; Del Grande, R.; Fabbietti, L.; Marton, J.; Scordo, A.; Sirghi, D.; Tucakovic, I.; Vazquez Doce, O.; Wycech, S.; Zmeskal, J.; Mandaglio, G.; Martini, M.; Moskal, P.
2018-01-01
The AMADEUS collaboration aims to provide unique quality results from K- hadronic interactions in light nuclear targets, in order to solve fundamental open questions in the non-perturbative strangeness QCD sector, like the controversial nature of the Λ(1405) state, the yield of hyperon formation below threshold, the yield and shape of multi-nucleon K- absorption, processes which are intimately connected to the possible existence of exotic antikaon multi-nucleon clusters and to the role of strangeness in neutron stars. AMADEUS takes advantage of the DAΦNE collider, which provides a unique source of monochromatic low-momentum kaons and exploits the KLOE detector as an active target, in order to obtain excellent acceptance and resolution data for K- nuclear capture on H, 4He, 9Be and 12C, both at-rest and in-flight.
A review of the Fermilab fixed-target program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rameika, R.
1994-12-01
All eyes are now on the Fermilab collider program as the intense search for the top quark continues. Nevertheless, Fermilab`s long tradition of operating a strong, diverse physics program depends not only on collider physics but also on effective use of the facilities the Laboratory was founded on, the fixed-target beamlines. In this talk the author presents highlights of the Fermilab fixed-target program from its (not too distant) past, (soon to be) present, and (hopefully, not too distant) future program. The author concentrates on those experiments which are unique to the fixed-target program, in particular hadron structure measurements which usemore » the varied beams and targets available in this mode and the physics results from kaon, hyperon and high statistics charm experiments which are not easily accessible in high p{sub T} hadron collider detectors.« less
Polarization observables in few nucleon systems with CLAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zachariou, Nicholas
The CEBAF Large Acceptance Spectrometer (CLAS), housed in Hall-B at the Thomas Jefferson National Accelerator Facility provides us with the experimental tools to study strongly-interacting matter and its dynamics in the transition from hadronic to partonic degrees of freedom in nuclear interactions. In this paper we discuss the progress made in understanding the relevant degrees of freedom using polarisation observables of deuteron photodisintegration in the few-GeV photon-energy region. We also address progress made in studying the interaction between Hyperons and Nucleons via polarisation observables, utilising high-statistics experiments that provided us with the large data samples needed to study final-state interactions,more » as well as perform detailed studies on initial-state effects. The polarisation observables presented here provide us with unique experimental tools to study the underlying dynamics of both initial and final-state interactions, as well as the information needed to disentangle signal from background contributions.« less
Σ--antihyperon correlations in Z0 decay and investigation of the baryon production mechanism
NASA Astrophysics Data System (ADS)
Abbiendi, G.; Ainsley, C.; Åkesson, P. F.; Alexander, G.; Anagnostou, G.; Anderson, K. J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R. J.; Batley, R. J.; Bechtle, P.; Behnke, T.; Bell, K. W.; Bell, P. J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, R. M.; Burckhart, H. J.; Campana, S.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, M.; de Roeck, A.; de Wolf, E. A.; Desch, K.; Dienes, B.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I. P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, J. W.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, M.; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwé, M.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G. G.; Harel, A.; Hauschild, M.; Hawkes, C. M.; Hawkings, R.; Herten, G.; Heuer, R. D.; Hill, J. C.; Horváth, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T. R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R. K.; Kellogg, R. G.; Kennedy, B. W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Krämer, T.; Krasznahorkay, A.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Lafferty, G. D.; Landsman, H.; Lanske, D.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S. L.; Loebinger, F. K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A. J.; Mashimo, T.; Mättig, P.; McKenna, J.; McPherson, R. A.; Meijers, F.; Menges, W.; Merritt, F. S.; Mes, H.; Meyer, N.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D. J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H. A.; O'Neale, S. W.; Oh, A.; Oreglia, M. J.; Orito, S.; Pahl, C.; Pásztor, G.; Pater, J. R.; Pilcher, J. E.; Pinfold, J.; Plane, D. E.; Pooth, O.; Przybycień, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J. M.; Rossi, A. M.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E. K. G.; Schaile, A. D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schörner-Sadenius, T.; Schröder, M.; Schumacher, M.; Seuster, R.; Shears, T. G.; Shen, B. C.; Sherwood, P.; Skuja, A.; Smith, A. M.; Sobie, R.; Söldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, D.; Ströhmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M. A.; Torrence, E.; Toya, D.; Trigger, I.; Trócsányi, Z.; Tsur, E.; Turner-Watson, M. F.; Ueda, I.; Ujvári, B.; Vollmer, C. F.; Vannerem, P.; Vértesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C. P.; Ward, D. R.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Wells, P. S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G. W.; Wilson, J. A.; Wolf, G.; Wyatt, T. R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, L.
2009-12-01
Data collected around sqrt{s}=91 GeV by the OPAL experiment at the LEP e+e- collider are used to study the mechanism of baryon formation. As the signature, the fraction of Σ- hyperons whose baryon number is compensated by the production of a overline{Σ-},overline{Λ} or overline{Ξ-} antihyperon is determined. The method relies entirely on quantum number correlations of the baryons, and not rapidity correlations, making it more model independent than previous studies. Within the context of the JETSET implementation of the string hadronization model, the diquark baryon production model without the popcorn mechanism is strongly disfavored with a significance of 3.8 standard deviations including systematic uncertainties. It is shown that previous studies of the popcorn mechanism with Λ overline{Λ} and p\\uppi overline{p} correlations are not conclusive, if parameter uncertainties are considered.
Polarization observables in few nucleon systems with CLAS
Zachariou, Nicholas
2017-12-01
The CEBAF Large Acceptance Spectrometer (CLAS), housed in Hall-B at the Thomas Jefferson National Accelerator Facility provides us with the experimental tools to study strongly-interacting matter and its dynamics in the transition from hadronic to partonic degrees of freedom in nuclear interactions. In this paper we discuss the progress made in understanding the relevant degrees of freedom using polarisation observables of deuteron photodisintegration in the few-GeV photon-energy region. We also address progress made in studying the interaction between Hyperons and Nucleons via polarisation observables, utilising high-statistics experiments that provided us with the large data samples needed to study final-state interactions,more » as well as perform detailed studies on initial-state effects. The polarisation observables presented here provide us with unique experimental tools to study the underlying dynamics of both initial and final-state interactions, as well as the information needed to disentangle signal from background contributions.« less
The Asymmetry Parameter and Branching Ratio of Sigma Plus Radiative Decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foucher, Maurice Emile
1992-05-01
We have measured the asymmetry parameter and branching ratio of themore » $$\\Sigma^+$$ radiative decay. This high statistics experiment (FNAL 761) was performed in the Proton Center charged hyperon beam at Fermi National Accelerator Laboratory in Batavia, Illinois. We find for the asymmetry parameter -0.720 $$\\pm$$ 0.086 $$\\pm$$ 0.045 where the first error is statistical and the second is systematic. This result is based on a sample of 34754 $$\\pm$$ 212 events. We find a preliminary value for the branching ratio $$Br ( \\Sigma^+ \\to p\\gamma )$$ $$/ Br ( \\Sigma^+ \\to p \\pi^0 )$$ = (2.14 $$\\pm$$ 0.07 $$\\pm$$ 0.11) x $$10^{-3}$$ where the first error is statistical and the second is systematic. This result is based on a sample of 31040 $$\\pm$$ 650 events. Both results are in agreement with previous low statistics measurements.« less
Study of the rare hyperon decay Ω→Ξππ
NASA Astrophysics Data System (ADS)
Kamaev, O.; Solomey, N.; Burnstein, R. A.; Chakravorty, A.; Chen, Y. C.; Choong, W. S.; Clark, K.; Dukes, E. C.; Durandet, C.; Felix, J.; Fu, Y.; Gidal, G.; Gustafson, H. R.; Holmstrom, T.; Huang, M.; James, C.; Jenkins, C. M.; Jones, T. D.; Kaplan, D. M.; Longo, M. J.; Lu, L. C.; Luebke, W.; Luk, K. B.; Nelson, K. S.; Park, H. K.; Perroud, J.-P.; Rajaram, D.; Rubin, H. A.; Volk, J.; White, C. G.; White, S. L.; Zyla, P.; HyperCP Collaboration
2010-10-01
We report a new measurement of the decay Ω→Ξππ with 76 events and a first observation of the decay Ω→Ξππ with 24 events, yielding a combined branching ratio (3.74-0.56+0.67)×10. This represents a factor 25 increase in statistics over the best previous measurement. No evidence is seen for CP violation, with B(Ω→Ξππ)=4.04-0.71+0.83×10 and B(Ω→Ξππ)=3.15-0.89+1.12×10. Contrary to theoretical expectation, we see little evidence for the decays Ω→Ξ1530∗0π and Ω→Ξbar1530∗0π and place a 90% C.L. upper limit on the combined branching ratio B(Ω(Ω)→Ξ1530∗0(Ξbar1530∗0)π)<7.0×10.
Photo- and electroproduction of K+Λ with a unitarity-restored isobar model
NASA Astrophysics Data System (ADS)
Skoupil, D.; Bydžovský, P.
2018-02-01
Exploiting the isobar model, kaon photo- and electroproduction on the proton in the resonance region comes under scrutiny. An upgrade of our previous model, comprising higher-spin nucleon and hyperon exchanges in the consistent formalism, was accomplished by implementing energy-dependent widths of nucleon resonances, which leads to a different choice of hadron form factor with much softer values of cutoff parameter for the resonant part. For a reliable description of electroproduction, the necessity of including longitudinal couplings of nucleon resonances to virtual photons was revealed. We present a new model whose free parameters were adjusted to photo- and electroproduction data and which provides a reliable overall description of experimental data in all kinematic regions. The majority of nucleon resonances chosen in this analysis coincide with those selected in our previous analysis and also in the Bayesian analysis with the Regge-plus-resonance model as the states contributing to this process with the highest probability.
Study of Lambda polarization at RHIC BES and LHC energies
NASA Astrophysics Data System (ADS)
Karpenko, Iurii; Becattini, Francesco
2018-02-01
In hydrodynamic approach to relativistic heavy ion collisions, hadrons with nonzero spin, produced out of the hydrodynamic medium, can acquire polarization via spin-vorticity thermodynamic coupling mechanism. The hydrodynamical quantity steering the polarization is the thermal vorticity, that is minus the antisymmetric part of the gradient of four-temperature field. Based on this mechanism there have been several calculations in hydrodynamic and non-hydrodynamic models for non-central heavy ion collisions in the RHIC Beam Energy Scan energy range, showing that the amount of polarization of produced Λ hyperons ranges from few percents to few permille, and decreases with collision energy. We report on an extension of our existing calculation of global Λ polarization in UrQMD+vHLLE model to full RHIC and LHC energies, and discuss the component of polarization along the beam direction, which is the dominant one at high energies.
Electric dipole moment of the deuteron in the standard model with NN - ΛN - ΣN coupling
NASA Astrophysics Data System (ADS)
Yamanaka, Nodoka
2017-07-01
We calculate the electric dipole moment (EDM) of the deuteron in the standard model with | ΔS | = 1 interactions by taking into account the NN - ΛN - ΣN channel coupling, which is an important nuclear level systematics. The two-body problem is solved with the Gaussian Expansion Method using the realistic Argonne v18 nuclear force and the YN potential which can reproduce the binding energies of Λ3H, Λ3He, and Λ4He. The | ΔS | = 1 interbaryon potential is modeled by the one-meson exchange process. It is found that the deuteron EDM is modified by less than 10%, and the main contribution to this deviation is due to the polarization of the hyperon-nucleon channels. The effect of the YN interaction is small, and treating ΛN and ΣN channels as free is a good approximation for the EDM of the deuteron.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicola, Marcello Santo
Using data from Fermilab xed-target experiment E769, we have measured particleantiparticle production asymmetries for Λ 0 hyperons in π ± - nucleon interactions, K ± - nucleon interactions and p - nucleon interactions at 250 GeV/c. The asymmetries are measured as functions of Feynman-x (x f ) and p T 2 over the ranges 0 ≤ p T 2 ≤ 4(GeV/c) 2 and -0.12 ≤ x F ≤ 0.12 (for positive beam) and 0 ≤ p T 2 ≤ 10(GeV/c) 2 and -0.16 ≤ x F ≤ 0:.0 for the negative beam. We find substantial asymmetries, even at x Fmore » = 0. We also observe leading-particle-type asymmetries which qualitatively agree with theoretical predictions.« less
Cracking on anisotropic neutron stars
NASA Astrophysics Data System (ADS)
Setiawan, A. M.; Sulaksono, A.
2017-07-01
We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.
Lifetime of heavy hypernuclei and its implications on the weak ΛN interaction
NASA Astrophysics Data System (ADS)
Cassing, W.; Jarczyk, L.; Kamys, B.; Kulessa, P.; Ohm, H.; Pysz, K.; Rudy, Z.; Schult, O. W. B.; Ströher, H.
The lifetime of the Λ-hyperon in heavy hypernuclei measured in proton-Au, -Bi and -U collisions by the COSY-13 Collaboration at COSY-Jülich has been analyzed to yield τΛ = (145+/-11) ps. This value for τΛ is compatible with the lifetime extracted from antiproton annihilation on Bi and U targets, albeit much more accurate. Theoretical models based on the meson exchange picture and assuming the validity of the phenomenological ΔI = 1/2 rule predict the lifetime of heavy hypernuclei to be significantly larger (2-3 standard deviations). Such large differences indicate that at least one of the assumptions in these models is not fulfilled. A much better reproduction of the lifetimes of heavy hypernuclei is achieved in the phase space model, if the ΔI = 1/2 rule is discarded in the nonmesonic Λ decay.
NASA Astrophysics Data System (ADS)
Hiesmayr, Beatrix C.
2015-07-01
About 50 years ago John St. Bell published his famous Bell theorem that initiated a new field in physics. This contribution discusses how discrete symmetries relate to the big open questions of quantum mechanics, in particular: (i) how correlations stronger than those predicted by theories sharing randomness (Bell's theorem) relate to the violation of the CP symmetry and the P symmetry; and its relation to the security of quantum cryptography, (ii) how the measurement problem (“why do we observe no tables in superposition?”) can be polled in weakly decaying systems, (iii) how strongly and weakly interacting quantum systems are affected by Newton's self gravitation. These presented preliminary results show that the meson-antimeson systems and the hyperon- antihyperon systems are a unique laboratory to tackle deep fundamental questions and to contribute to the understand what impact the violation of discrete symmetries has.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torok, Aaron
The {pi}{sup +}{Sigma}{sup +} and {pi}{sup +}{Xi}{sup 0} scattering lengths were calculated in mixed-action Lattice QCD with domain-wall valence quarks on the asqtad-improved coarse MILC configurations at four light-quark masses, and at two light-quark masses on the fine MILC configurations. Heavy Baryon Chiral Perturbation Theory with two and three flavors of light quarks was used to perform the chiral extrapolations. To NNLO in the three-flavor chiral expansion, the kaon-baryon processes that were investigated show no signs of convergence. Using the two-flavor chiral expansion for extrapolation, the pion-hyperon scattering lengths are found to be a{sub {pi}}{sup +}{sub {Sigma}}{sup +} = -0.197{+-}0.017more » fm, and a{sub {pi}}{sup +}{sub {Xi}}{sup 0} = -0.098{+-}0.017 fm, where the comprehensive error includes statistical and systematic uncertainties.« less
High energy physics in cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Lawrence W.
2013-02-07
In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic raymore » program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.« less
First Results from BM@N Technical Run with Deuteron Beam
NASA Astrophysics Data System (ADS)
Baranov, D.; Kapishin, M.; Kulish, E.; Maksymchuk, A.; Mamontova, T.; Pokatashkin, G.; Rufanov, I.; Vasendina, V.; Zinchenko, A.
2018-03-01
BM@N (Baryonic Matter at Nuclotron) is the first experiment to be realized at the accelerator complex of NICA-Nuclotron at JINR (Dubna). The aim of the experiment is to study interactions of relativistic heavy ion beams with a kinetic energy from 1 to 4.5 AGeV with fixed targets. The BM@N set-up at the starting phase of the experiment is introduced. First results of the analysis of minimum bias experimental data collected in the technical run in interactions of the deuteron beam of 4 AGeV with different targets are presented. The spacial, momentum and primary vertex resolution of the GEM tracker are studied. The signal of Lambda-hyperon is reconstructed in the proton-pion invariant mass spectrum. The data results are described by Monte Carlo simulations. The investigation has been performed at the Laboratory of High Energy Physics, JINR.
Cosmic ray antiprotons at high energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Martin Wolfgang, E-mail: martin.winkler@su.se
2017-02-01
Cosmic ray antiprotons provide a powerful tool to probe dark matter annihilations in our galaxy. The sensitivity of this important channel is, however, diluted by sizable uncertainties in the secondary antiproton background. In this work, we improve the calculation of secondary antiproton production with a particular focus on the high energy regime. We employ the most recent collider data and identify a substantial increase of antiproton cross sections with energy. This increase is driven by the violation of Feynman scaling as well as by an enhanced strange hyperon production. The updated antiproton production cross sections are made publicly available formore » independent use in cosmic ray studies. In addition, we provide the correlation matrix of cross section uncertainties for the AMS-02 experiment. At high energies, the new cross sections improve the compatibility of the AMS-02 data with a pure secondary origin of antiprotons in cosmic rays.« less
The Compressed Baryonic Matter Experiment at FAIR
NASA Astrophysics Data System (ADS)
Senger, Peter
Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At top RHIC and LHC energies, the QCD phase diagram is studied at very high temperatures and very low net-baryon densities. These conditions presumably existed in the early universe about a microsecond after the big bang. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure such as a critical point, a first order phase transition between hadronic and partonic matter, or new phases like quarkyonic matter. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. The Compressed Baryonic Matter (CBM) experiment will be one of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt. The goal of the CBM research program is to explore the QCD phase diagram in the region of high baryon densities using high-energy nucleus-nucleus collisions. This includes the study of the equation-of-state of nuclear matter at neutron star core densities, and the search for the deconfinement and chiral phase transitions. The CBM detector is designed to measure rare diagnostic probes such as multi-strange hyperons, charmed particles and vector mesons decaying into lepton pairs with unprecedented precision and statistics. Most of these particles will be studied for the first time in the FAIR energy range. In order to achieve the required precision, the measurements will be performed at very high reaction rates of 100 kHz to 10 MHz. This requires very fast and radiation-hard detectors, and a novel data read-out and analysis concept based on free streaming front-end electronics and a high-performance computing cluster for online event selection. The layout, the physics performance, and the status of the proposed CBM experimental facility will be discussed.
Neutron stars in the braneworld within the Eddington-inspired Born-Infeld gravity
NASA Astrophysics Data System (ADS)
Prasetyo, I.; Husin, I.; Qauli, A. I.; Ramadhan, H. S.; Sulaksono, A.
2018-01-01
We propose the disappearance of "the hyperon puzzle" in neutron star (NS) by invoking two new-physics prescriptions: modified gravity theory and braneworld scenario. By assuming that NS lives on a 3-brane within a 5d empty AdS bulk, gravitationally governed by Eddington-inspired Born-Infeld (EiBI) theory, the field equations can be effectively cast into the usual Einstein's with "apparent" anisotropic energy-momentum tensor. Solving the corresponding brane-TOV equations numerically, we study its mass-radius relation. It is known that the appearance of finite brane tension λ reduces the compactness of the star. The compatibility of the braneworld results with observational constraints of NS mass and radius can be restored in our model by varying the EiBI's coupling constant, κ. We found that within the astrophysically-accepted range of parameters (0<κ<6×106m2 and λgg1 MeV4) the NS can have mass ~2.1 Msolar and radius ~10 km.
Energetic Level Scheme of the Stable S=-2 Dihyperon
NASA Astrophysics Data System (ADS)
Aslanyan, P. Z.; Shahbazian, B. A.
2001-11-01
The quark and soliton Skyrme-type models predict the two different sets of S=-2 stable dibaryon states. The lowest state of the quark model set is an I=0, Jπ = 0+, M
Photoproduction of the Cascade Baryons at GlueX
NASA Astrophysics Data System (ADS)
Ernst, Ashley; GlueX Collaboration
2017-09-01
Multi-strange baryons play an important role in understanding the strong interaction and despite their importance, little is known about such hyperons. Almost all knowledge of the Cascades today stems from Kaon-nucleon interactions in bubble chamber experiments performed in the 1960s and 1970s, of which only the octet and decuplet ground states, Ξ (1320) and Ξ (1530) respectively, are well established. This research uses the GlueX experiment at Jefferson Laboratory to map out the spectrum of doubly-strange Cascade resonances, as well as to measure the spin-parity for each of the detected resonances. The first physics run for GlueX has recently been completed and a clear signature of the Ξ (1320) is observed. The systematics of the Cascade spectrum will be presented motivated by prior discoveries in the N* program. This work was supported by the U.S. Department of Energy Grant DE-FG02-92ER40735 and National Science Foundation Grant 1449440.
Hypernuclear physics studies of the PANDA experiment at FAIR
NASA Astrophysics Data System (ADS)
Sanchez Lorente, Alicia
2014-09-01
Hypernuclear research will be one of the main topics addressed by the PANDA experiment at the planned Facility for Antiproton and Ion Research FAIR at Darmstadt (Germany). http://www. gsi.de, http://www.gsi.de/fair/. Thanks to the use of stored overline {p} beams, copious production of double Λ hypernuclei is expected at the PANDA experiment, which will enable high precision γ spectroscopy of such nuclei for the first time, and consequently a unique chance to explore the hyperon-hyperon interaction. In particular, ambiguities of past experiments in determining the strength of the ΛΛ interaction will be avoided thanks to the excellent energy precision of a few keV (FWHM) achieved by germanium detectors. Such a resolution capability is particularly needed to resolve the small energy spacing of the order of (10-100) keV, which is characteristic from the spin doublet in hypernuclei the so -called "hypernuclear fine structure". In comparison to previous experiments, PANDA will benefit from a novel technique to assign the various observable γ-transitions in a unique way to specific double hypernuclei by exploring various light targets. Nevertheless, the ability to carry out unique assignments requires a devoted hypernuclear detector setup. This consists of a primary nuclear target for the production of {Ξ }-+overline {Ξ } pairs, a secondary active target for the hypernuclei formation and the identification of associated decay products and a germanium array detector to perform γ spectroscopy. Moreover, one of the most challenging issues of this project is the fact that all detector systems need to operate in the presence of a high magnetic field and a large hadronic background. Accordingly, the need of an innovative detector concept will require dramatic improvements to fulfil these conditions and that will likely lead to a new generation of detectors. In the present talk details concerning the current status of the activities related to the detector developments for this challenging programme will be given. Among these improvements is the new concept for a cooling system for the germanium detector based on a electro-mechanical device. In the present work, the cooling efficiency of such devices has been successfully tested, showing their capability to reach liquid nitrogen temperatures and therefore the possibility to use them as a good alternative to the standard liquid nitrogen dewars. Furthermore, since the momentum resolution of low momentum particles is crucial for the unique identification of hypernuclei, an analysis procedure for improving the momentum resolution in few layer silicon based trackers is presented.
Hypernuclear physics studies of the P̅ANDA experiment at FAIR
NASA Astrophysics Data System (ADS)
Sanchez Lorente, Alicia
2015-05-01
Hypernuclear research will be one of the main topics addressed by the PANDA experiment at the planned Facility for Antiproton and Ion Research FAIR at Darmstadt (Germany). [1, 2] Thanks to the use of stored p̅ beams, copious production of double Λ hypernuclei is expected at the PANDA experiment, which will enable high precision γ spectroscopy of such nuclei for the first time, and consequently a unique chance to explore the hyperon-hyperon interaction. In particular, ambiguities of past experiments in determining the strength of the ΛΛ interaction will be avoided thanks to the excellent energy precision of a few keV (FWHM) achieved by germanium detectors. Such a resolution capability is particularly needed to resolve the small energy spacing of the order of (10-100) keV, which is characteristic from the spin doublet in hypernuclei the so -called "hypernuclear fine structure". In comparison to previous experiments, PANDA will benefit from a novel technique to assign the various observable γ-transitions in a unique way to specific double hypernuclei by exploring various light targets. Nevertheless, the ability to carry out unique assignments requires a devoted hypernuclear detector setup. This consists of a primary nuclear target for the production of Ξ- + overline Xi pairs, a secondary active target for the hypernuclei formation and the identification of associated decay products and a germanium array detector to perform γ spectroscopy. Moreover, one of the most challenging issues of this project is the fact that all detector systems need to operate in the presence of a high magnetic field and a large hadronic background. Accordingly, the need of an innovative detector concept will require dramatic improvements to fulfil these conditions and that will likely lead to a new generation of detectors. In the present work details concerning the current status of the activities related to the detector developments for this challenging programme will be given. Among these improvements is the new concept for a cooling system for the germanium detector based on a electro-mechanical device. In the present work, the cooling efficiency of such devices has been successfully tested, showing their capability to reach liquid nitrogen temperatures and therefore the possibility to use them as a good alternative to the standard liquid nitrogen dewars. Furthermore, since the momentum resolution of low momentum particles is crucial for the unique identification of hypernuclei, an analysis procedure for improving the momentum resolution in few layer silicon based trackers is presented.
The Measurement of Strong-Interaction Effects in High-Z Sigma Hyperonic Atoms.
NASA Astrophysics Data System (ADS)
Phillips, William Clarke
Strong-interaction effects have been observed in the X-ray spectra of atoms formed with Sigma ^- in lead and tungsten. In the experiment, performed at the Alternating Gradient Synchrotron of Brookhaven National Laboratory, negative kaons were brought to rest in a novel laminar target consisting of thin sheets of high-Z material in a liquid hydrogen bath. The geometry of the target was designed to optimize the production of high-Z Sigma^- atoms and the detection of their subsequent de-excitation X rays. A method of identifying the energetic pi^+ from the production reaction K^-+ p toSigma^- +pi^+ resulted in a factor of 15 improvement in the signal-to -noise ratio of the Sigma^- atom X-rays over that of previous experiments. The X-ray spectra were recorded by three high-resolution intrinsic Ge detectors and analyzed for shifts, broadenings, and yield reductions of the final X-ray transitions before absorption of the Sigma^- into the nucleus. A lineshape function which reflected the non-Gaussian response of the X-ray spectroscopy system was developed for this analysis. The results are(UNFORMATTED TABLE OR EQUATION FOLLOWS)eqalign {Sigma^- - W (10to9): varepsilon = 650 +/- 30 eV,&quadGamma = 380 +/- 70 eV,quad %Y = .98 +/- .04cr Sigma^- - Pb (10to9): varepsilon = 510 +/- 50 eV,&quadGamma = 290 +/- 140 eV, quad %Y = .53 +/- .04cr} (TABLE/EQUATION ENDS)where varepsilon = E_{rm meds} - E_{rm calc }, Gamma is the Lorentzian FWHM, and %Y is the ratio (measured yield)/(yield calculated with no strong interaction). Optical model calculations with a = (0.928 + i0.022) fm are able to reproduce all observed effects in the Sigma^--W spectra. Such calculations with a = (0.247 + i0.039) fm reproduce the observed shift and width of the (10to9) transition in Sigma^--Pb, but fail to reproduce the observed yield reduction. It is doubtful if the current status of the theory of Sigma ^--N interactions can explain this discrepancy.
Cooling of Compact Stars with Nucleon Superfluidity and Quark Superconductivity
NASA Astrophysics Data System (ADS)
Noda, Tsuneo; Hashimoto, Masa-aki; Yasutake, Nobutoshi; Maruyama, Toshiki; Tatsumi, Toshitaka
We show a cooling scenario of compact stars to satisfy recent observations of compact stars. The central density of compact stars can exceed the nuclear density, and it is considered that many hadronic phases appear at such a density. It is discussed that neutron superfluidity (1S0 for lower density, and 3P2 for higher density) and proton superfluidity/superconductivity (1S0) appears in all compact stars. And some "Exotic" states are considered to appear in compact stars, such as meson condensation, hyperon mixing, deconfinement of quarks and quark colour superconductivity. These exotic states appear at the density region above the threshold densities of each state. We demonstrate the thermal evolution of isolated compact stars, adopting the effects of nucleon superfluidity and quark colour superconductivity. We assume large gap energy (Δ > 10 MeV) for colour superconducting quark phase, and include the effects of nucleon superfluidity with parametrised models. We simulate the cooling history of compact stars, and shows that the heavier star does not always cool faster than lighter one, which is determined by the parameters of neutron 3P2 superfluidity.
NASA Astrophysics Data System (ADS)
Topor Pop, V.; Gyulassy, M.; Barrette, J.; Gale, C.
2011-10-01
With the HIJING/B¯B v2.0 heavy ion event generator, we explore the phenomenological consequences of several high parton density dynamical effects predicted in central Pb+Pb collisions at the Large Hadron Collider (LHC) energies. These include (1) jet quenching due to parton energy loss (dE/dx), (2) strangeness and hyperon enhancement due to strong longitudinal color field (SCF), and (3) enhancement of baryon-to-meson ratios due to baryon-antibaryon junction (J¯J) loops and SCF effects. The saturation/minijet cutoff scale p0(s,A) and effective string tension κ(s,A) are constrained by our previous analysis of LHC p+p data and recent data on the charged multiplicity for Pb+Pb collisions reported by the ALICE collaboration. We predict the hadron flavor dependence (mesons and baryons) of the nuclear modification factor RAA(pT) and emphasize the possibility that the baryon anomaly could persist at the LHC up to pT˜10 GeV, well beyond the range observed in central Au+Au collisions at RHIC energies.
NASA Astrophysics Data System (ADS)
Asratyan, A. E.; Dolgolenko, A. G.; Kubantsev, M. A.
2005-05-01
Three baryon resonances with masses of 1532.2±1.3, 1577.7±1.9, and 1658.6±4.4MeV are observed in invariant mass of the KS0p system formed in neutrino and antineutrino collisions with deuterons and neon nuclei. Observed widths of the 1532-MeV and 1578-MeV resonances are consistent with being entirely due to apparatus smearing, and their intrinsic widths are restricted to Γ<12 and 23 MeV, respectively. For the 1659-MeV resonance, the data suggest a nonvanishing intrinsic width of Γ˜20MeV. Significance levels of the three signals are near 7.1 σ, 5.0 σ, and 4.5 σ, respectively. The Σ hypothesis for either of these three resonances is disfavored by the data on associated Λ hyperons and on formation of the Λ π system. These resonant states are tentatively interpreted as the recently discovered pentaquark baryon Θ(1530) and its spin/isospin partners. The analysis is based on neutrino data collected by past bubble-chamber experiments.
NASA Astrophysics Data System (ADS)
Fatima, A.; Sajjad Athar, M.; Singh, S. K.
2018-06-01
In this work, we have studied the total scattering cross section (σ, differential scattering cross section ( dσ/d Q2) as well as the longitudinal ( P_L(Ee,Q2)), perpendicular ( PP(Ee,Q2)), and transverse ( PT(Ee,Q2)) components of the polarization of the final hadron ( n, Λ and Σ0) produced in the electron proton scattering induced by the weak charged current. We have not assumed T-invariance which allows the transverse component of the hadron polarization perpendicular to the production plane to be non-zero. The numerical results are presented for all the above observables and their dependence on the axial vector form factor and the weak electric form factor are discussed. The present study enables the determination of the axial vector nucleon-hyperon transition form factors at high Q2 in the strangeness sector which can provide a test of the symmetries of the weak hadronic currents like T-invariance and SU(3) symmetry while assuming the hypothesis of conserved vector current and partial conservation of axial vector current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-06-02
Experimental research covered includes involvement in SLAC and Fermilab accelerator experiments and construction of the ''Muon String'' of the DUMAND project. Activities also included planning of future experiments at the SLC and Tevatron. Experiments addressed the search for the free quark, gluon radiation, reduced upper limits for the mass of neutrinos. The theoretical program includes exact calculation of flavor changing processes within the standard model, constraints on the weak coupling of heavy quarks, neutrino oscillation, the role of DEMONS in superconductivity, extended electroweak models, gauge models, the origin of electron/muon asymmetry in the beam dump, SU(5) and departures in unification.more » QCD and vector dominance predictions were reconciled in the electromagnetic decays of neutral pions and eta mesons, and it was proposed that the electron plus jet events seen by UAl along with their W events are to interpreted as the production and decay of top. The possibility of observable particle-antiparticle rate differences in hyperon decays as a test of CP-invariance was proposed. (LEW)« less
Constraint on energy-momentum squared gravity from neutron stars and its cosmological implications
NASA Astrophysics Data System (ADS)
Akarsu, Özgür; Barrow, John D.; ćıkıntoǧlu, Sercan; Ekşi, K. Yavuz; Katırcı, Nihan
2018-06-01
Deviations from the predictions of general relativity due to energy-momentum squared gravity (EMSG) are expected to become pronounced in the high density cores of neutron stars. We derive the hydrostatic equilibrium equations in EMSG and solve them numerically to obtain the neutron star mass-radius relations for four different realistic equations of state. We use the existing observational measurements of the masses and radii of neutron stars to constrain the free parameter, α , that characterizes the coupling between matter and spacetime in EMSG. We show that -10-38 cm3/erg <α <+10-37 cm3/erg . Under this constraint, we discuss what contributions EMSG can provide to the physics of neutron stars, in particular, their relevance to the so called hyperon puzzle in neutron stars. We also discuss how EMSG alters the dynamics of the early universe from the predictions of the standard cosmological model. We show that EMSG leaves the standard cosmology safely unaltered back to t ˜10-4 seconds at which the energy density of the universe is ˜1034 erg cm-3 .
Baryon interactions from lattice QCD with physical masses — strangeness S = -1 sector —
NASA Astrophysics Data System (ADS)
Nemura, Hidekatsu; Aoki, Sinya; Doi, Takumi; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Miyamoto, Takaya; Sasaki, Kenji
2018-03-01
We present our recent results of baryon interactions with strangeness S = -1 based on Nambu-Bethe-Salpeter (NBS) correlation functions calculated fromlattice QCD with almost physical quark masses corresponding to (mk,mk) ≈ (146, 525) MeV and large volume (La)4 ≈ (96a)4 ≈ (8.1 fm)4. In order to perform a comprehensive study of baryon interactions, a large number of NBS correlation functions from NN to ΞΞ are calculated simultaneously by using large scale computer resources. In this contribution, we focus on the strangeness S = -1 channels of the hyperon interactions by means of HAL QCD method. Four sets of three potentials (the 3S1 - 3 D1 central, 3S1 - 3 D1 tensor, and the 1S0 central potentials) are presented for the ∑N - ∑N (the isospin I = 3/2) diagonal, the ∧N - ∧N diagonal, the ∧N → ∑N transition, and the ∑N - ∑N (I = 1/2) diagonal interactions. Scattering phase shifts for ∑N (I = 3/2) system are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lattimer, James M.
Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts canmore » set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.« less
Photoproduction of Multiply-Strange Hyperons at CLAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, John
The activities of the California State University, Dominguez Hills (CSUDH) Hadronic Structure Laboratory, undertaken with the support of the U.S. Department of Energy's Office of Science under grant DE-FG02-07ER41525, are described. This grant was originally awarded in 2007, and then renewed in 2009 and 2012, before it expired in 2015. The work was performed primarily at the home institution on the CSUDH campus in Carson, CA. A significant portion of the work was carried out at the Thomas Jefferson National Accelerator Facility (JLab) in Newport News, VA. The work covered in this award involves the study of the structure ofmore » the proton, which is done indirectly by looking at the Ξ particle. This is a particle with a spin and spatial structure similar to that of the proton, but with a different quark structure. Their properties are expected to be related due to SU(3) F symmetry. Additional work performed under this grant involved the construction of the High Threshold Cherenkov Counter, which was done by CSUDH undergraduate students in collaboration with JLab staff scientists.« less
NASA Astrophysics Data System (ADS)
Lattimer, James M.
2015-02-01
Neutron stars contain the densest form of matter in the present universe. General relativity and causality set important constraints to their compactness. In addition, analytic GR solutions are useful in understanding the relationships that exist among the maximum mass, radii, moments of inertia, and tidal Love numbers of neutron stars, all of which are accessible to observation. Some of these relations are independent of the underlying dense matter equation of state, while others are very sensitive to the equation of state. Recent observations of neutron stars from pulsar timing, quiescent X-ray emission from binaries, and Type I X-ray bursts can set important constraints on the structure of neutron stars and the underlying equation of state. In addition, measurements of thermal radiation from neutron stars has uncovered the possible existence of neutron and proton superfluidity/superconductivity in the core of a neutron star, as well as offering powerful evidence that typical neutron stars have significant crusts. These observations impose constraints on the existence of strange quark matter stars, and limit the possibility that abundant deconfined quark matter or hyperons exist in the cores of neutron stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Andlau, C.; Armenteros, R.; Astier, A.
1957-11-01
A study of 161 V/sup 0/-decays observed in the momentum chamber of the Ecole Polytechnique at the Pic du Midi has been made. These events correspond to a strict choice based on the measurability of the momenta of both secondaries (better than 10%). The main results are: No direct evidence for anomalous neutral hyperon decays. Upper limits (6 to 8%) can be placed on the existence of various hypothetical modes. The Q-values for the LAMBDA /sup 0/-decay: Q LAMBDA /sup 0/ = (37.9 plus or minus 0.4) Mev. The direct identification of the pi natare of both secondaries of themore » THETA /sup 0/-decay-mode. The Qvalue for THETA /sup0/-decay: Q/sub TT/sup 0/ = (217 plus or minus 4) Mev. A direct proof of the non identity of the particles responsible for the THETA /sup 0/ decay and the anomalous nu /sup 0/-decays based on the significant difference between the number of slow and fast events of each category. (auth)« less
Transverse Densities of Octet Baryons from Chiral Effective Field Theory
Alarcón, Jose Manuel; Hiller Blin, Astrid N.; Weiss, Christian
2017-03-24
Transverse densities describe the distribution of charge and current at fixed light-front time and provide a frame-independent spatial representation of hadrons as relativistic systems. In this paper, we calculate the transverse densities of the octet baryons at peripheral distances b=O(M π -1) in an approach that combines chiral effective field theory (χχEFT) and dispersion analysis. The densities are represented as dispersive integrals of the imaginary parts of the baryon electromagnetic form factors in the timelike region (spectral functions). The spectral functions on the two-pion cut at t>4Mmore » $$2\\atop{π}$$ are computed using relativistic χEFT with octet and decuplet baryons in the extended on-mass-shell renormalization scheme. The calculations are extended into the ρ-meson mass region using a dispersive method that incorporates the timelike pion form-factor data. The approach allows us to construct densities at distances b>1 fm with controlled uncertainties. Finally, our results provide insight into the peripheral structure of nucleons and hyperons and can be compared with empirical densities and lattice-QCD calculations.« less
Electrically charged: An effective mechanism for soft EOS supporting massive neutron star
NASA Astrophysics Data System (ADS)
Jing, ZhenZhen; Wen, DeHua; Zhang, XiangDong
2015-10-01
The massive neutron star discoverer announced that strange particles, such as hyperons should be ruled out in the neutron star core as the soft Equation of State (EOS) can-not support a massive neutron star. However, many of the nuclear theories and laboratory experiments support that at high density the strange particles will appear and the corresponding EOS of super-dense matters will become soft. This situation promotes a challenge between the astro-observation and nuclear physics. In this work, we introduce an effective mechanism to answer this challenge, that is, if a neutron star is electrically charged, a soft EOS will be equivalently stiffened and thus can support a massive neutron star. By employing a representative soft EOS, it is found that in order to obtain an evident effect on the EOS and thus increasing the maximum stellar mass by the electrostatic field, the total net charge should be in an order of 1020 C. Moreover, by comparing the results of two kind of charge distributions, it is found that even for different distributions, a similar total charge: ~ 2.3 × 1020 C is needed to support a ~ 2.0 M ⊙ neutron star.
In-medium pseudoscalar D/B mesons and charmonium decay width
NASA Astrophysics Data System (ADS)
Chhabra, Rahul; Kumar, Arvind
2017-05-01
Using QCD sum rules and the chiral SU(3) model, we investigate the effect of temperature, density, strangeness fraction and isospin asymmetric parameter on the shift in masses and decay constants of the pseudoscalar D and B meson in the hadronic medium, which consist of nucleons and hyperons. The in-medium properties of D and B mesons within the QCD sum rule approach depend upon the quark and gluon condensates. In the chiral SU(3) model, quark and gluon condensates are introduced through the explicit symmetry breaking term and the trace anomaly property of the QCD, respectively and are written in terms of the scalar fields σ, ζ, δ and χ. Hence, through medium modification of σ, ζ, δ and χ fields, we obtain the medium-modified masses and decay constants of D and B mesons. As an application, using {}3P0 model, we calculate the in-medium decay width of the higher charmonium states ψ(3686), ψ(3770) and χ(3556) to the D\\bar{D} pairs, considering the in-medium mass of D mesons. These results may be important to understand the possible outcomes of the high-energy physics experiments, e.g., CBM and PANDA at GSI, Germany.
Spectrum and Structure of Excited Baryons with CLAS
NASA Astrophysics Data System (ADS)
Burkert, Volker D.
2017-01-01
In this contribution I discuss recent results in light quark baryon spectroscopy involving CLAS data and higher level analysis results from the partial wave analysis by the Bonn-Gatchina group. New baryon states were discovered largely based on the open strangeness production channels γp → K+Λ and γp → K+Σ0. The data illustrate the great potential of the kaon-hyperon channel in the discovery of higher mass baryon resonances in s-channel production. Other channels with discovery potential, such as γp → pω and γp → ϕp are also discussed. In the second part I will demonstrate on data the sensitivity of meson electroproduction to expose the active degrees of freedom underlying resonance transitions as a function of the probed distance scale. For several of the prominent excited states in the lower mass range the short distance behavior is described by a core of three dressed-quarks with running quark mass, and meson-baryon contributions make up significant parts of the excitation strength at large distances. Finally, I give an outlook of baryon resonance physics at the 12 GeV CEBAF electron accelerator. Talk presented at the CRC-16 Symposium, Bonn University, June 6-9, 2016.
NASA Astrophysics Data System (ADS)
Martin, Jeffery W.
2002-04-01
Recent calculations of parity-violating (PV) electroproduction asymmetries for the NarrowΔ transition and for quasi-elastic electron scattering on the deuteron have led theorists to consider the photoproduction limit of these processes. In the case of the NarrowΔ transition, it has been proposed that the PV π^± photoproduction asymmetry A_γ^± might be of order 10-6, from a model based on hyperon weak radiative decays. An accurate measurement of A_γ^± would tightly constrain that model, at the same time reducing the dominant theoretical uncertainty in calculations of the PV NarrowΔ asymmetry at non-zero Q^2. Estimates for the G^0 experiment at Jefferson Lab for a measurement of A_γ^± will be presented. A measurement of π^- production from deuterium should yield a 47% measurement of A_γ^±, assuming the best theory estimate for A_γ^±. This measurement would be parasitic to a low-energy run that is already planned. Improvements to this accuracy would require tuning the spectrometer for maximum acceptance of pions and/or luminosity upgrades for photoproduction. Possibilities for such improvements will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyuboshitz, V. L.; Lyuboshitz, V. V., E-mail: Valery.Lyuboshitz@jinr.r
2010-05-15
Spin correlations for the {Lambda}{Lambda} and {Lambda}{Lambda}-bar pairs, generated in relativistic heavy-ion collisions, and related angular correlations at the joint registration of hadronic decays of two hyperons, in which space parity is not conserved, are analyzed. The correlation tensor components can be derived from the double angular distribution of products of two decays by the method of 'moments'. The properties of the 'trace' of the correlation tensor (a sum of three diagonal components), determining the relative fractions of the triplet states and singlet state of respective pairs, are discussed. Spin correlations for two identical particles ({Lambda}{Lambda}) and two nonidentical particlesmore » ({Lambda}{Lambda}-bar) are considered from the viewpoint of the conventional model of one-particle sources. In the framework of this model, correlations vanish at sufficiently large relative momenta. However, under these conditions, in the case of two nonidentical particles ({Lambda}{Lambda}-bar) a noticeable role is played by two-particle annihilation (two-quark, two-gluon) sources, which lead to the difference of the correlation tensor from zero. In particular, such a situation may arise when the system passes through the 'mixed phase.'« less
Semileptonic decays of charmed and beauty baryons with heavy sterile neutrinos in the final state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramazanov, Sabir; Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect 7a, Moscow 117312
We obtain tree-level estimates of various differential branching ratios of heavy baryon decays with massive sterile neutrinos {nu}{sub x} in the final state. Generally, charmed baryons are found to be less promising than charmed mesons, in contrast to b hadrons. In the latter case, branching ratios of beauty mesons and baryons into sterile neutrinos are of the same order. As a consequence, at high energies beauty baryons give contribution to sterile neutrino production comparable to the contribution of beauty mesons (up to about 15%). Experimental limits on active-to-sterile mixing are quite strong for neutrinos lighter than D mesons but formore » heavier neutrinos they are weaker. As an example, for neutrino masses in the range 2 GeV < or approx. m{sub {nu}{sub x}} < or approx. 2.5 GeV, current data imply that the bounds on {lambda}{sub b}-hyperon branching ratios into sterile neutrinos are Br({lambda}{sub b}{yields}{lambda}{sub c}+e{sup -}+{nu}{sub x}) < or approx. 1.3x10{sup -5}-1.7x10{sup -6} and Br({lambda}{sub b}{yields}{lambda}{sub c}+{mu}{sup -}+{nu}{sub x}) < or approx. 3.9x10{sup -7}-1.4x10{sup -7}.« less
Study of the Rare Hyperon Decay $${\\boldmath \\Omega^\\mp \\to \\Xi^\\mp \\: \\pi^+\\pi^-}$$
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamaev, O.; Solomey, N.; Burnstein, R.A.
The authors report a new measurement of the decay {Omega}{sup -} {yields} {Xi}{sup -} {pi}{sup +}{pi}{sup -} with 76 events and a first observation of the decay {bar {Omega}}{sup +} {yields} {bar {Xi}}{sup +} {pi}{sup +}{pi}{sup -} with 24 events, yielding a combined branching ratio (3.74{sub -0.56}{sup +0.67}) x 10{sup -4}. This represents a factor 25 increase in statistics over the best previous measurement. No evidence is seen for CP violation, with {Beta}({Omega}{sup -} {yields} {Xi}{sup -} {pi}{sup +}{pi}{sup -}) = 4.04{sub -0.71}{sup +0.83} x 10{sup -4} and {Beta}({bar {Omega}}{sup +} {yields} {bar {Xi}}{sup +} {pi}{sup +}{pi}{sup -}) = 3.15{submore » -0.89}{sup +1.12} x 10{sup -4}. Contrary to theoretical expectation, they see little evidence for the decays {Omega}{sup -} {yields} {Xi}*{sub 1530}{sup 0} {pi}{sup -} and {bar {Omega}}{sup +} {yields} {bar {Xi}}*{sub 1530}{sup 0} {pi}{sup +} and place a 90% C.L. upper limit on the combined branching ratio {Beta}({Omega}{sup -}({bar {Omega}}{sup +}) {yields} {Xi}*{sub 1530}{sup 0} ({bar {Xi}}*{sub 1530}{sup 0}){pi}{sup {-+}}) < 7.0 x 10{sup -5}.« less
Excited Nucleons and Hadron Structure - Proceedings of the Nstar 2000 Conference
NASA Astrophysics Data System (ADS)
Burkert, V. D.; Elouadrhiri, L.; Kelly, J. J.; Minehart, R. C.
The Table of Contents for the book is as follows: * Probing the Structure of Nucleons in the Resonance Region * Pion Photoproduction Results from MAMI * Pion Production and Compton Scattering at LEGS * Electroproduction Multipoles from ELSA * Baryon Resonance Production at Jefferson Lab at High Q2 * A Dynamical Model for the Resonant Multipoles and the Δ Structure * Relations between N and Δ Electromagnetic Form Factors * Measurement of the Recoil Polarization in the [p(ěc e ,{e^prime}ěc p ){π ^0}] Reaction at the Energy of the Δ(1232) Resonance * Electroproduction Results from CLAS * S11 (1535) Resonance Production at Jefferson Lab at High Q2 * η and η' Electro- and Photoproduction with the CEBAF Large Acceptance Spectrometer * η Production in Hadronic Interactions * Electromagnetic Production of η and η' Mesons * The Crystal Barrel Experiment at ELSA * Measurement of π-p → Neutrals Using the Crystal Ball * π+π0 and η Photoproduction at GRAAL * Partial Wave Analysis of Pion Photoproduction with Constraints from Fixed-t Dispersion Relations * N* Resonances in e+e- Collisions at BEPC * What is the Structure of the Roper Resonance? * Hybrid Baryon Signatures * Mixing Angles Determination via the Process γp → ηp * SU(6) Breaking Effects in the Nucleon Elastic Electromagnetic Form Factors * The Hypercentral Constituent Quark Model * Baryon Resonance Decays Within Constituent Quark Models * Pion Production Model - Connection between Dynamics and Quark Models * N* Investigation via Two Pion Electroproduction with the CLAS Detector at Jefferson Laboratory * Isobar Model for Studies of N* Excitation in Charged Double Pion Production by Real and Virtual Photons * Double Pion Photoproduction in the Second Resonance Region * CLAS Electroproduction of ω(783) Mesons * Electromagnetic Production of Vector Mesons at Low Energies * Polarized Target Developments for GRAAL and Prospects * Analytic Structure of a Multichannel Model * Missing Nucleon Resonances in Kaon Production with Pions and Photons * Hyperon Electroproduction with CLAS * From Bjorken to Drell-Hearn-Gerasimov Sum Rules * GDH Measurements at Mainz * Double Polarization Measurements in Inclusive Inelastic e - p Scattering * Measurement of Inclusive Spin Asymmetries and Sum Rules on 3He and the Neutron * Polarization and Out-of-Plane Responses in Pion and ETA Electroproduction * Polarization Observables in π+ Electroproduction with CLAS * Pion Electroproduction on the Nucleon and the Generalized GDH Sum Rule * Virtual Compton Scattering in the Resonance Region * What We Know about the Theoretical Foundation of Duality in Electron Scattering * Hadron Structure in Lattice QCD: Exploring the Gluon Wave Functional * N* Spectrum in Lattice QCD * Baryon Spectrum in the Large Nc Limit * Deeply Virtual Photon and Meson Electroproduction * Why N*'s are Important * Participant List
Medium effects in λK+ pair production by 2.83 GeV protons on nuclei
NASA Astrophysics Data System (ADS)
Paryev, E. Ya.; Hartmann, M.; Kiselev, Yu. T.
2017-12-01
We study ΛK+ pair production in the interaction of protons of 2.83 GeV kinetic energy with C, Cu, Ag, and Au target nuclei in the framework of the nuclear spectral function approach for incoherent primary proton-nucleon and secondary pion-nucleon production processes, and processes associated with the creation of intermediate Σ0K+ pairs. The approach accounts for the initial proton and final Λ hyperon absorption, final K+ meson distortion in nuclei, target nucleon binding, and Fermi motion, as well as nuclear mean-field potential effects on these processes. We calculate the Λ momentum dependence of the absolute ΛK+ yield from the target nuclei considered, in the kinematical conditions of the ANKE experiment, performed at COSY, within the different scenarios for the Λ-nucleus effective scalar potential. We show that the above observable is appreciably sensitive to this potential in the low-momentum region. Therefore, direct comparison of the results of our calculations with the data from the ANKE-at-COSY experiment can help to determine the above potential at finite momenta. We also demonstrate that the two-step pion-nucleon production channels dominate in the low-momentum ΛK+ production in the chosen kinematics and, therefore, they have to be taken into account in the analysis of these data. Supported by the Ministry of Education and Science of the Russian Federation
Multistrange Meson-Baryon Dynamics and Resonance Generation
NASA Astrophysics Data System (ADS)
Khemchandani, K. P.; Martínez Torres, A.; Hosaka, A.; Nagahiro, H.; Navarra, F. S.; Nielsen, M.
2018-05-01
In this talk I review our recent studies on meson-baryon systems with strangeness - 1 and - 2. The motivation of our works is to find resonances generated as a consequence of coupled channel meson-baryon interactions. The coupled channels are all meson-baryon systems formed by combining a pseudoscalar or a vector meson with an octet baryon such that the system has the strange quantum number equal to - 1 or - 2. The lowest order meson-baryon interaction amplitudes are obtained from Lagrangians based on the chiral and the hidden local symmetries related to the vector mesons working as the gauge bosons. These lowest order amplitudes are used as an input to solve the Bethe-Salpeter equation and a search for poles is made in the resulting amplitudes, in the complex plane. In case of systems with strangeness - 1, we find evidence for the existence of some hyperons such as: Λ(2000), Σ(1750), Σ(1940), Σ(2000). More recently, in the study of strangeness - 2 systems we have found two narrow resonances which can be related to Ξ (1690) and Ξ(2120). In this latter work, we have obtained the lowest order amplitudes relativistically as well as in the nonrelativistic approximation to solve the scattering equations. We find that the existence of the poles in the complex plane does not get affected by the computation of the scattering equation with the lowest order amplitudes obtained in the nonrelativistic approximation.
Gronau, Michael; Rosner, Jonathan L.
2016-04-11
Using a successful framework for describing S-wave hadronic decays of light hyperons induced by a subprocess s -> u((u) over bard), we presented recently a model-independent calculation of the amplitude and branching ratio for Xi(-)(b) -> Lambda(b)pi(-) in agreement with a LHCb measurement. The same quark process contributes to Xi(0)(c) -> Lambda(c)pi(-), while a second term from the subprocess cs -> cd has been related by Voloshin to differences among total decay rates of charmed baryons. We calculate this term and find it to have a magnitude approximately equal to the s -> u((u) over bard) term. We argue formore » a negligible relative phase between these two contributions, potentially due to final state interactions. However, we do not know whether they interfere destructively or constructively. For constructive interference one predicts B(Xi(0)(c) -> Lambda(c)pi(-)) = (1.94 +/- 0.70) x 10(-3) and B(Xi(+)(c) -> Lambda(c)pi(0)) = (3.86 +/- 1.35) x 10(-3). For destructive interference, the respective branching fractions are expected to be less than about 10(-4) and 2 x 10(-4). (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samios, Nicholas
2009-05-06
The 450th Brookhaven Lecture, to be held today, Wednesday, May 6, will be given by BNL Distinguished Senior Physicist Nicholas Samios, director of the RIKEN BNL Research Center and former Lab Director. Samios will discuss "Personal Reflections on the Interaction of Science and Government and Possible Lessons for the Present Crisis" at 4 p.m. in Berkner Hall. As many members of his prospective audience know, Samios's distinguished achievements in science and administration qualify him more than most to take on this topic. Having received his B.A. and Ph.D. degrees in physics from Columbia University in 1953 and 1957, respectively, hemore » joined the Lab in 1959. In addition to his work in experimental physics, he served as Physics Department Chair from 1975 to 81 and Deputy Director for High-Energy & Nuclear Physics from 1981 to 82. As a researcher, Samios made many of the particle discoveries that have helped define and lead to the acceptance of the "Standard Model" of particle physics, the accepted theory that explains known particle interactions. In particular, he is noted for the discovery of the phi meson and the omega minus hyperon, crucial elements delineating the symmetry of hadrons, which ultimately led to the quark model of elementary particles, a pillar of the Standard Model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gronau, Michael; Rosner, Jonathan L.
Using a successful framework for describing S-wave hadronic decays of light hyperons induced by a subprocess s -> u((u) over bard), we presented recently a model-independent calculation of the amplitude and branching ratio for Xi(-)(b) -> Lambda(b)pi(-) in agreement with a LHCb measurement. The same quark process contributes to Xi(0)(c) -> Lambda(c)pi(-), while a second term from the subprocess cs -> cd has been related by Voloshin to differences among total decay rates of charmed baryons. We calculate this term and find it to have a magnitude approximately equal to the s -> u((u) over bard) term. We argue formore » a negligible relative phase between these two contributions, potentially due to final state interactions. However, we do not know whether they interfere destructively or constructively. For constructive interference one predicts B(Xi(0)(c) -> Lambda(c)pi(-)) = (1.94 +/- 0.70) x 10(-3) and B(Xi(+)(c) -> Lambda(c)pi(0)) = (3.86 +/- 1.35) x 10(-3). For destructive interference, the respective branching fractions are expected to be less than about 10(-4) and 2 x 10(-4). (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP(3).« less
The Compressed Baryonic Matter experiment at FAIR
NASA Astrophysics Data System (ADS)
Höhne, Claudia
2018-02-01
The CBM experiment will investigate highly compressed baryonic matter created in A+A collisions at the new FAIR research center. With a beam energy range up to 11 AGeV for the heaviest nuclei at the SIS 100 accelerator, CBM will investigate the QCD phase diagram in the intermediate range, i.e. at moderate temperatures but high net-baryon densities. This intermediate range of the QCD phase diagram is of particular interest, because a first order phase transition ending in a critical point and possibly new highdensity phases of strongly interacting matter are expected. In this range of the QCD phase diagram only exploratory measurements have been performed so far. CBM, as a next generation, high-luminosity experiment, will substantially improve our knowledge of matter created in this region of the QCD phase diagram and characterize its properties by measuring rare probes such as multi-strange hyperons, dileptons or charm, but also with event-by-event fluctuations of conserved quantities, and collective flow of identified particles. The experimental preparations with special focus on hadronic observables and strangeness is presented in terms of detector development, feasibility studies and fast track reconstruction. Preparations are progressing well such that CBM will be ready with FAIR start. As quite some detectors are ready before, they will be used as upgrades or extensions of already running experiments allowing for a rich physics program prior to FAIR start.
Androic, D.; Armstrong, D. S.; Bailey, S. L.; ...
2012-03-20
The parity-violating (PV) asymmetry of inclusive π - production in electron scattering from a liquid deuterium target was measured at backward angles. The measurement was conducted as a part of the G0 experiment, at a beam energy of 360 MeV. The physics process dominating pion production for these kinematics is quasi-free photoproduction off the neutron via the Δ 0 resonance. In the context of heavy-baryon chiral perturbation theory (HBχPT), this asymmetry is related to a low energy constant d Δ - that characterizes the parity-violating γNΔ coupling. Zhu et al. calculated d Δ - in a model benchmarked by themore » large asymmetries seen in hyperon weak radiative decays, and predicted potentially large asymmetries for this process, ranging from A γ - = -5.2 to +5.2 ppm. The measurement performed in this work leads to A γ - = -0.36 ± 1.06 ± 0.37 ± 0.03 ppm (where sources of statistical, systematic and theoretical uncertainties are included), which would disfavor enchancements considered by Zhu et al. proportional to V ud/V us. The measurement is part of a program of inelastic scattering measurements that were conducted by the G0 experiment, seeking to determine the N-Δ axial transition form-factors using PV electron scattering.« less
Scalar pseudo-Nambu-Goldstone boson in nuclei and dense nuclear matter
NASA Astrophysics Data System (ADS)
Lee, Hyun Kyu; Paeng, Won-Gi; Rho, Mannque
2015-12-01
The notion that the scalar listed as f0(500 ) in the particle data booklet is a pseudo-Nambu-Goldstone (NG) boson of spontaneously broken scale symmetry, explicitly broken by a small departure from an infrared fixed point, is explored in nuclear dynamics. This notion—which puts the scalar (which we shall identify as the "dilaton") on the same footing as the pseudoscalar pseudo-NG bosons, i.e., octet π , while providing a simple explanation for the Δ I =1 /2 rule for kaon decay—generalizes the standard chiral perturbation theory (χ PT ) to "scale chiral perturbation theory," denoted χPT σ , with one infrared mass scale for both symmetries, with the σ figuring as a chiral singlet NG mode in the nonstrange sector. Applied to nuclear dynamics, it is seen to provide answers to various hitherto unclarified nuclear phenomena, such as the success of one-boson-exchange potentials, the large cancellation of a strongly attractive scalar potential by a strongly repulsive vector potential in relativistic mean-field theory of nuclear systems and in-medium QCD sum rules, the interplay of the dilaton and the vector meson ω in dense Skyrmion matter, the Bogomol'nyi-Prasad-Sommerfeld Skyrmion structure of nuclei accounting for small binding energies of medium-heavy nuclei, and the suppression of hyperon degrees of freedom in compact-star matter.
Baryon-Baryon Interactions ---Nijmegen Extended-Soft-Core Models---
NASA Astrophysics Data System (ADS)
Rijken, T. A.; Nagels, M. M.; Yamamoto, Y.
We review the Nijmegen extended-soft-core (ESC) models for the baryon-baryon (BB) interactions of the SU(3) flavor-octet of baryons (N, Lambda, Sigma, and Xi). The interactions are basically studied from the meson-exchange point of view, in the spirit of the Yukawa-approach to the nuclear force problem [H. Yukawa, ``On the interaction of Elementary Particles I'', Proceedings of the Physico-Mathematical Society of Japan 17 (1935), 48], using generalized soft-core Yukawa-functions. These interactions are supplemented with (i) multiple-gluon-exchange, and (ii) structural effects due to the quark-core of the baryons. We present in some detail the most recent extended-soft-core model, henceforth referred to as ESC08, which is the most complete, sophisticated, and successful interaction-model. Furthermore, we discuss briefly its predecessor the ESC04-model [Th. A. Rijken and Y. Yamamoto, Phys. Rev. C 73 (2006), 044007; Th. A. Rijken and Y. Yamamoto, Ph ys. Rev. C 73 (2006), 044008; Th. A. Rijken and Y. Yamamoto, nucl-th/0608074]. For the soft-core one-boson-exchange (OBE) models we refer to the literature [Th. A. Rijken, in Proceedings of the International Conference on Few-Body Problems in Nuclear and Particle Physics, Quebec, 1974, ed. R. J. Slobodrian, B. Cuec and R. Ramavataram (Presses Universitè Laval, Quebec, 1975), p. 136; Th. A. Rijken, Ph. D. thesis, University of Nijmegen, 1975; M. M. Nagels, Th. A. Rijken and J. J. de Swart, Phys. Rev. D 17 (1978), 768; P. M. M. Maessen, Th. A. Rijken and J. J. de Swart, Phys. Rev. C 40 (1989), 2226; Th. A. Rijken, V. G. J. Stoks and Y. Yamamoto, Phys. Rev. C 59 (1999), 21; V. G. J. Stoks and Th. A. Rijken, Phys. Rev. C 59 (1999), 3009]. All ingredients of these latter models are also part of ESC08, and so a description of ESC08 comprises all models so far in principle. The extended-soft-core (ESC) interactions consist of local- and non-local-potentials due to (i) one-boson-exchanges (OBE), which are the members of nonets of pseudo-scalar-, vector-, scalar-, and axial-mesons, (ii) diffractive (i.e. multiple-gluon) exchanges, (iii) two pseudo-scalar exchange (PS-PS), and (iv) meson-pair-exchange (MPE). The OBE- and pair-vertices are regulated by gaussian form factors producing potentials with a soft behavior near the origin. The assignment of the cutoff masses for the BBM-vertices is dependent on the SU(3)-classification of the exchanged mesons for OBE, and a similar scheme for MPE. The ESC-models ESC04 and ESC08 describe the nucleon-nucleon (NN), hyperon-nucleon (YN), and hyperon-hyperon (YY) interactions in a unified way using broken SU(3)-symmetry. Novel ingredients in the OBE-sector in the ESC-models are the inclusion of (i) the axial-vector meson potentials, (ii) a zero in the scalar- and axial-vector meson form factors. These innovations made it possible for the first time to keep the meson coupling parameters of the model qualitatively in accordance with the predictions of the (3P_0) quark-antiquark creation (QPC) model. This is also the case for the F/(F+D)-ratios. Furthermore, the introduction of the zero helped to avoid the occurrence of unwanted bound states in Lambda N. Broken SU(3)-symmetry serves to connect the NN and the YN channels, which leaves after fitting NN only a few free parameters for the determination of the YN-interactions. In particular, the meson-baryon coupling constants are calculated via SU(3) using the coupling constants of the NN oplus YN-analysis as input. In ESC04 medium strong flavor-symmetry-breaking (FSB) of the coupling constants was investigated, using the (3}P_{0) -model with a Gell-Mann-Okubo hypercharge breaking for the BBM-coupling. In ESC08 the couplings are kept SU(3)-symmetric. The charge-symmetry-breaking (CSB) in the Lambda p and Lambda n channels, which is an SU(2) isospin breaking, is included in the OBE-, TME-, and MPE-potentials. In ESC04 and ESC08 simultaneous fits to the NN- and the YN- scattering data have been achieved, using different options for the ESC-model. In particularly in ESC08 with single-sets of parameters excellent fits were obtained for the NN- and YN-data. For example, in the case of ESC08a'' we have: (i) For the selected 4233 NN-data with energies 0 ≤ T_{lab} ≤ 350 MeV, excellent results were obtained having chi(2/N_{data}) = 1.094. (ii) For the usual set of 35 YN-data and 3 Sigma(+p) cross-sections from a recent KEK-experiment E289 [H. Kanda et al., AIP Conf. Proc. 842 (2006), 501; H. Kanda, Measurement of the cross sections of Sigma(=p) elastic scattering, Ph. D. thesis, Department of Physics, Faculty of Science, Kyoto University, March 2007] the fit has chi(2}/YN_{data) ≈ 0.83. (iii) For YY there is a weak LambdaLambda-interaction, which successfully matches with t he Nagara-event [H. Takahashi et al., Phys. Rev. Lett. 87 (2001), 212502]. (iv) The nuclear Sigma and Xi well-dephts satisfy U_Sigma > 0 and U_Xi < 0. The predictions for the S = -2 (LambdaLambda, Xi N, LambdaSigma, SigmaSigma)-channels are the occurrences of an S = -2 bound states in the Xi N((3S_1-^3D_1,) I = 0,1)-channels.
NASA Astrophysics Data System (ADS)
Deprospo, D.; Kalelkar, M.; Aderholz, M.; Akbari, H.; Allport, P. P.; Ammosov, V. V.; Andryakov, A.; Asratyan, A.; Badyal, S. K.; Ballagh, H. C.; Baton, J.-P.; Barth, M.; Bingham, H. H.; Brucker, E. B.; Burnstein, R. A.; Cence, R. J.; Chatterjee, T. K.; Clayton, E. F.; Corrigan, G.; Coutures, C.; Devanand; de Wolf, E.; Ermolov, P.; Erofeeva, I.; Faulkner, P. J.; Foeth, H.; Fretter, W. B.; Gapienko, G.; Gupta, V. K.; Hanlon, J.; Harigel, G.; Harris, F. A.; Ivanilov, A.; Jabiol, M.; Jacques, P.; Jain, V.; Jones, G. T.; Jones, M. D.; Kafka, T.; Kaftanov, V.; Kasper, P.; Kobrin, V.; Kohli, J. M.; Koller, E. L.; Korablev, V.; Kubantsev, M.; Lauko, M.; Lukina, O.; Lys, J. E.; Lyutov, S.; Marage, P.; Milburn, R. H.; Mittra, I. S.; Mobayyen, M. M.; Moreels, J.; Morrison, D. R.; Moskalev, V.; Murzin, V.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Neveu, M.; Passmore, D.; Peters, M. W.; Peterson, V. Z.; Plano, R.; Rao, N. K.; Rubin, H. A.; Ryasakov, S.; Sacton, J.; Sambyal, S. S.; Schmitz, N.; Schneps, J.; Singh, J. B.; Singh, S.; Sivoklokov, S.; Smart, W.; Smirnova, L.; Stamer, P.; Varvell, K. E.; Verluyten, L.; Wachsmuth, H.; Wainstein, S.; Willocq, S.; Yost, G. P.
1994-12-01
A study has been made of neutral strange particle production in νμNe and ν¯μNe charged-current interactions at a higher energy than any previous study. The experiment was done at the Fermilab Tevatron using the 15-ft. bubble chamber, and the data sample consists of 814(154) observed neutral strange particles from 6263(1115) ν(ν¯) charged-current events. For the ν beam (average event energy
Measurements of Strangeness Production on Au+Au collisions at 62 GeV
NASA Astrophysics Data System (ADS)
Guimaraes, K. S. F. F.; Munhoz, M. G.; Takahashi, J.; Moura, M. M.; Suaide, A. A. P.; Cosentino, M.
2005-10-01
The STAR (Solenoidal Tracker at RHIC) experiment is a large acceptance collider detector that measures primarily hadronic observables to search for signatures of the quark-gluon plasma phase transition and study strongly interacting matter at high energy density. Operational since June 2000, the new heavy ion collider RHIC has already provided Au+Au collisions at σNN = 62, 130 and 200 GeV as well as p+p and d+Au collisions at 200 GeV. The various collision energies and systems allow the systematic study of particle production in heavy ion collisions. In particular, the production of strange (anti-)particles is one of the major topics of STAR. This detector allows the measurement of a variety of particle species at mid-rapidity, like neutral kaons; Λ, Ξ, and Ω. hyperons; and their anti-particles that are reconstructed via their decay topology. The strangeness measurements should provide important information on various phenomenological aspects of ultra-relativistic heavy ion collisions. The goal of this work is to perform the measurement of neutral kaons on Au+Au collisions at 62 GeV. This measurement will bring important information about strangeness production in the energy range between the top RHIC energy and the top SPS energy, where important questions regarding particle production are still open. In this poster, preliminary results of the analysis will be presented, mainly the evaluation of the topological cuts necessary for the neutral kaon reconstruction and the corrections that are necessary to obtain the transverse momentum spectra.
Pre-equilibrium dynamics and heavy-ion observables
NASA Astrophysics Data System (ADS)
Heinz, Ulrich; Liu, Jia
2016-12-01
To bracket the importance of the pre-equilibrium stage on relativistic heavy-ion collision observables, we compare simulations where it is modeled by either free-streaming partons or fluid dynamics. These cases implement the assumptions of extremely weak vs. extremely strong coupling in the initial collision stage. Accounting for flow generated in the pre-equilibrium stage, we study the sensitivity of radial, elliptic and triangular flow on the switching time when the hydrodynamic description becomes valid. Using the hybrid code iEBE-VISHNU [C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz, Comput. Phys. Commun. 199 (2016) 61] we perform a multi-parameter search, constrained by particle ratios, integrated elliptic and triangular charged hadron flow, the mean transverse momenta of pions, kaons and protons, and the second moment < pT2 > of the proton transverse momentum spectrum, to identify optimized values for the switching time τs from pre-equilibrium to hydrodynamics, the specific shear viscosity η / s, the normalization factor of the temperature-dependent specific bulk viscosity (ζ / s) (T), and the switching temperature Tsw from viscous hydrodynamics to the hadron cascade UrQMD. With the optimized parameters, we predict and compare with experiment the pT-distributions of π, K, p, Λ, Ξ and Ω yields and their elliptic flow coefficients, focusing specifically on the mass-ordering of the elliptic flow for protons and Lambda hyperons which is incorrectly described by VISHNU without pre-equilibrium flow.
The influence of antikaon condensations on nucleon 1S0 superfluidity in neutron star matter
NASA Astrophysics Data System (ADS)
Xu, Yan; Huang, Xiu Lin; Zhang, Xiao Jun; Yu, Zi; Fan, Cun Bo; Ding, Wen Bo; Liu, Cheng Zhi
2018-03-01
The properties of neutron and proton 1S0 superfluidity are studied within the relativistic mean field and the Bardeen-Cooper-Schrieffer theories by taking the effects of K- and \\bar{K}0 condensations into account in neutron star matter without the hyperon degrees of freedom. It is found that antikaon condensations change the Fermi momenta, the effective masses and the single particle energies of nucleons in neutron star matter. These changes lead to a strong suppression of the neutron 1S0 superfluidity and an obvious enhancement of the proton 1S0 superfluidity in neutron star matter, respectively. In particular, the neutron and proton 1S0 pairing gaps are gradually shrinking with the optical potential of antikaons from -80 to -130 MeV. And antikaon condensations have little influence on the neutron 1S0 superfluid range, however, they have been markedly downsized the proton 1S0 superfluid range as the deepening of the optical potential of antikaons in neutron star matter. We also found that the nucleon 1S0 superfluidity and K- condensations within the scope of above optical potential of antikaons can occur in the core of PSR J1614-2230 and PSR J0348+0432 at the same time. Whereas \\bar{K}0 condensations only occur in the two pulsars when the range of optical potential of antikaons is from -100 to -130 MeV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
GYULASSY,M.; KHARZEEV,D.; XU,N.
2002-03-28
One of the striking observations at RHIC is the large valence baryon rapidity density observed at mid rapidity in central Au+Au at 130 A GeV. There are about twice as many valence protons at mid-rapidity than predicted based on extrapolation from p+p collisions. Even more striking PHENIX observed that the high pt spectrum is dominated by baryons and anti-baryons. The STAR measured event anisotropy parameter v2 for lambdas are as high as charged particles at pt {approx} 2.5 GeV/c. These are completely unexpected based on conventional pQCD parton fragmentation phenomenology. One exciting possibility is that these observables reveal the topologicalmore » gluon field origin of baryon number transport referred to as baryon junctions. Another is that hydrodynamics may apply up to high pt in A+A. There is no consensus on what are the correct mechanisms for producing baryons and hyperons at high pt and large rapidity shifts and the new RHIC data provide a strong motivation to hold a meeting focusing on this class of observables. The possible role of junctions in forming CP violating domain walls and novel nuclear bucky-ball configurations would also be discussed. In this workshop, we focused on all measured baryon distributions at RHIC energies and related theoretical considerations. To facilitate the discussions, results of heavy ion collisions at lower beam energies, results from p+A /p+p/e+e collisions were included. Some suggestions for future measurements have been made at the workshop.« less
The realistic models of relativistic stars in f (R) = R + αR 2 gravity
NASA Astrophysics Data System (ADS)
Astashenok, Artyom V.; Odintsov, Sergei D.; de la Cruz-Dombriz, Álvaro
2017-10-01
In the context of f(R)=R+α R2 gravity, we study the existence of neutron and quark stars for various α with no intermediate approximation in the system of equations. Analysis shows that for positive α the scalar curvature does not drop to zero at the star surface (as in general relativity) but exponentially decreases with distance. Also the stellar mass bounded by star surface decreases when the value α increases. Nonetheless distant observers would observe a gravitational mass due to appearance of a so-called gravitational sphere around the star. The non-zero curvature contribution to the gravitational mass eventually is shown to compensate the stellar mass decrease for growing α’s. We perform our analysis for several equations of state including purely hadronic configurations as well as hyperons and quark stars. In all cases, we assess that the relation between the parameter α and the gravitational mass weakly depends upon the chosen equation of state. Another interesting feature is the increase of the star radius in comparison with general relativity for stars with masses close to maximal, whereas for intermediate masses 1.4 -1.6 M_⊙ the radius of star depends upon α very weakly. Also the decrease in the mass bounded by star surface may cause the surface redshift to decrease in R 2-gravity when compared to Einsteinian predictions. This effect is shown to hardly depend upon the observed gravitational mass. Finally, for negative values of α our analysis shows that outside the star the scalar curvature has damped oscillations but the contribution of the gravitational sphere into the gravitational mass increases indefinitely with radial distance putting into question the very existence of such relativistic stars.
Vöhringer-Martinez, Esteban; Toro-Labbé, Alejandro
2012-07-12
Studying chemical reactions involves the knowledge of the reaction mechanism. Despite activation barriers describing the kinetics or reaction energies reflecting thermodynamic aspects, identifying the underlying physics and chemistry along the reaction path contributes essentially to the overall understanding of reaction mechanisms, especially for catalysis. In the past years the reaction force has evolved as a valuable tool to discern between structural changes and electrons' rearrangement in chemical reactions. It provides a framework to analyze chemical reactions and additionally a rational partition of activation and reaction energies. Here, we propose to separate these energies further in atomic contributions, which will shed new insights in the underlying reaction mechanism. As first case studies we analyze two intramolecular proton transfer reactions. Despite the atom based separation of activation barriers and reaction energies, we also assign the participation of each atom in structural changes or electrons' rearrangement along the intrinsic reaction coordinate. These participations allow us to identify the role of each atom in the two reactions and therfore the underlying chemistry. The knowledge of the reaction chemistry immediately leads us to suggest replacements with other atom types that would facilitate certain processes in the reaction. The characterization of the contribution of each atom to the reaction energetics, additionally, identifies the reactive center of a molecular system that unites the main atoms contributing to the potential energy change along the reaction path.
Silicon-based sleeve devices for chemical reactions
Northrup, M. Allen; Mariella, Jr., Raymond P.; Carrano, Anthony V.; Balch, Joseph W.
1996-01-01
A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.
Silicon-based sleeve devices for chemical reactions
Northrup, M.A.; Mariella, R.P. Jr.; Carrano, A.V.; Balch, J.W.
1996-12-31
A silicon-based sleeve type chemical reaction chamber is described that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis. 32 figs.
Ninomiya, Kazuaki; Takamatsu, Hiromi; Onishi, Ayaka; Takahashi, Kenji; Shimizu, Nobuaki
2013-07-01
The present study demonstrated that the combined use of the sonocatalytic reaction (using ultrasound and titanium dioxide) and the Fenton reaction exhibited synergistically enhanced hydroxyl (OH) radical generation. Dihydroxybenzoic acid (DHBA) concentration as index of OH radical generation was 13 and 115 μM at 10 min in the sonocatalytic reaction and Fenton reaction, respectively. On the other hand, the DHBA concentration was 378 μM at 10 min in the sonocatalytic-Fenton reaction. The sonocatalytic-Fenton reaction was used for degradation of lignin. The lignin degradation ratio was 1.8%, 49.9%, and 60.0% at 180 min in the sonocatalytic reaction, Fenton reaction, and sonocatalytic-Fenton reaction, respectively. Moreover, the sonocatalytic-Fenton reaction was applied to pretreatment of lignocellulosic biomass to enhance subsequent enzymatic saccharification. The cellulose saccharification ratio was 11%, 14%, 16% and 25% at 360 min of pretreatment by control reaction, the sonocatalytic reaction, Fenton reaction, and sonocatalytic-Fenton reaction, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Karabiyikoglu, Sedef; Boon, Byron A; Merlic, Craig A
2017-08-04
The Pauson-Khand reaction is a powerful tool for the synthesis of cyclopentenones through the efficient [2 + 2 + 1] cycloaddition of dicobalt alkyne complexes with alkenes. While intermolecular and intramolecular variants are widely known, transannular versions of this reaction are unknown and the basis of this study. Macrocyclic enyne and dienyne complexes were readily synthesized by palladium(II)-catalyzed oxidative macrocyclizations of bis(vinyl boronate esters) or ring-closing metathesis reactions followed by complexation with dicobalt octacarbonyl. Several reaction modalities of these macrocyclic complexes were uncovered. In addition to the first successful transannular Pauson-Khand reactions, other intermolecular and transannular cycloaddition reactions included intermolecular Pauson-Khand reactions, transannular [4 + 2] cycloaddition reactions, intermolecular [2 + 2 + 2] cycloaddition reactions, and intermolecular [2 + 2 + 1 + 1] cycloaddition reactions. The structural and reaction requirements for each process are presented.
Reactivity index based on orbital energies.
Tsuneda, Takao; Singh, Raman K
2014-05-30
This study shows that the chemical reactivities depend on the orbital energy gaps contributing to the reactions. In the process where a reaction only makes progress through charge transfer with the minimal structural transformation of the reactant, the orbital energy gap gradient (OEGG) between the electron-donating and electron-accepting orbitals is proven to be very low. Using this relation, a normalized reaction diagram is constructed by plotting the normalized orbital energy gap with respect to the normalized intrinsic reaction coordinate. Application of this reaction diagram to 43 fundamental reactions showed that the majority of the forward reactions provide small OEGGs in the initial stages, and therefore, the initial processes of the forward reactions are supposed to proceed only through charge transfer. Conversely, more than 60% of the backward reactions are found to give large OEGGs implying very slow reactions associated with considerable structural transformations. Focusing on the anti-activation-energy reactions, in which the forward reactions have higher barriers than those of the backward ones, most of these reactions are shown to give large OEGGs for the backward reactions. It is also found that the reactions providing large OEGGs in the forward directions inconsistent with the reaction rate constants are classified into SN 2, symmetric, and methyl radical reactions. Interestingly, several large-OEGG reactions are experimentally established to get around the optimum pathways. This indicates that the reactions can take significantly different pathways from the optimum ones provided no charge transfer proceeds spontaneously without the structural transformations of the reactants. Copyright © 2014 Wiley Periodicals, Inc.
Microfabricated sleeve devices for chemical reactions
Northrup, M. Allen
2003-01-01
A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and non-silicon based materials to provide the thermal properties desired. For example, the chamber may combine a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.
Substrate-Directed Catalytic Selective Chemical Reactions.
Sawano, Takahiro; Yamamoto, Hisashi
2018-05-04
The development of highly efficient reactions at only the desired position is one of the most important subjects in organic chemistry. Most of the reactions in current organic chemistry are reagent- or catalyst-controlled reactions, and the regio- and stereoselectivity of the reactions are determined by the inherent nature of the reagent or catalyst. In sharp contrast, substrate-directed reaction determines the selectivity of the reactions by the functional group on the substrate and can strictly distinguish sterically and electronically similar multiple reaction sites in the substrate. In this Perspective, three topics of substrate-directed reaction are mainly reviewed: (1) directing group-assisted epoxidation of alkenes, (2) ring-opening reactions of epoxides by various nucleophiles, and (3) catalytic peptide synthesis. Our newly developed synthetic methods with new ligands including hydroxamic acid derived ligands realized not only highly efficient reactions but also pinpointed reactions at the expected position, demonstrating the substrate-directed reaction as a powerful method to achieve the desired regio- and stereoselective functionalization of molecules from different viewpoints of reagent- or catalyst-controlled reactions.
Solute transport with multiple equilibrium-controlled or kinetically controlled chemical reactions
Friedly, John C.; Rubin, Jacob
1992-01-01
A new approach is applied to the problem of modeling solute transport accompanied by many chemical reactions. The approach, based on concepts of the concentration space and its stoichiometric subspaces, uses elements of the subspaces as primary dependent variables. It is shown that the resulting model equations are compact in form, isolate the chemical reaction expressions from flow expressions, and can be used for either equilibrium or kinetically controlled reactions. The implications of the results on numerical algorithms for solving the equations are discussed. The application of the theory is illustrated throughout with examples involving a simple but broadly representative set of reactions previously considered in the literature. Numerical results are presented for four interconnected reactions: a homogeneous complexation reaction, two sorption reactions, and a dissolution/precipitation reaction. Three cases are considered: (1) four kinetically controlled reactions, (2) four equilibrium-controlled reactions, and (3) a system with two kinetically controlled reactions and two equilibrium-controlled reactions.
NASA Technical Reports Server (NTRS)
Liechty, Derek S.; Lewis, Mark J.
2010-01-01
Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction rate information) are extended to include reactions involving charged particles and electronic energy levels. The proposed extensions include ionization reactions, exothermic associative ionization reactions, endothermic and exothermic charge exchange reactions, and other exchange reactions involving ionized species. The extensions are shown to agree favorably with the measured Arrhenius rates for near-equilibrium conditions.
Saadah, Nicholas H; van der Bom, Johanna G; Wiersum-Osselton, Johanna C; Richardson, Clive; Middelburg, Rutger A; Politis, Constantina; Renaudier, Philippe; Robillard, Pierre; Schipperus, Martin R
2018-03-01
Plasma transfusions may result in transfusion reactions. We used the International Surveillance of Transfusion-Associated Reactions and Events (ISTARE) database, containing yearly reported national annual aggregate data on transfusion reactions from participating countries, to investigate risks of plasma transfusion reactions and compare transfusion reaction risks for different plasma types. We calculated risks for plasma transfusion reactions and compared transfusion reaction risks between plasma types using random effects regression on repeated measures. The ISTARE database contains data from 23 countries, reporting units issued and/or transfused and transfusion reactions observed for some portion of 7 years (2006-2012). Interquartile ranges (IQRs) of plasma transfusion reaction risks were: allergic reactions (5·6-72·2 reactions/10 5 units transfused); febrile non-haemolytic transfusion reactions (0-9·1); transfusion-associated circulatory overload (0-1·9); transfusion related acute lung injury (TRALI) (0-1·2); and hypotensive reactions (0-0·6). Apheresis plasma was associated with more allergic reactions [odds ratio (OR) = 1·29 (95% confidence interval: 1·19-1·40)] and hypotensive reactions [OR = 2·17 (1·38-3·41)] than whole blood-derived plasma. Pathogen-inactivated plasma was associated with fewer transfusion reactions than untreated plasma. © 2018 John Wiley & Sons Ltd.
Iterated reaction graphs: simulating complex Maillard reaction pathways.
Patel, S; Rabone, J; Russell, S; Tissen, J; Klaffke, W
2001-01-01
This study investigates a new method of simulating a complex chemical system including feedback loops and parallel reactions. The practical purpose of this approach is to model the actual reactions that take place in the Maillard process, a set of food browning reactions, in sufficient detail to be able to predict the volatile composition of the Maillard products. The developed framework, called iterated reaction graphs, consists of two main elements: a soup of molecules and a reaction base of Maillard reactions. An iterative process loops through the reaction base, taking reactants from and feeding products back to the soup. This produces a reaction graph, with molecules as nodes and reactions as arcs. The iterated reaction graph is updated and validated by comparing output with the main products found by classical gas-chromatographic/mass spectrometric analysis. To ensure a realistic output and convergence to desired volatiles only, the approach contains a number of novel elements: rate kinetics are treated as reaction probabilities; only a subset of the true chemistry is modeled; and the reactions are blocked into groups.
Northrup, M. Allen
2003-08-05
A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and non-silicon based materials to provide the thermal properties desired. For example, the chamber may combine a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.
[Hypersensitivity reaction to radio contrast media: diagnosis, prevention and treatment].
Mahlab-Guri, Keren; Herskovitz, Pearl; Sthoeger, Zev
2012-07-01
More than 70 million radiographic examinations with radio contrast media are performed worldwide each year. The incidence of adverse reactions to radio contrast media is 5-13%. Adverse reactions include hypersensitivity reactions, chemotoxic reactions and renal toxicity. Hypersensitivity reactions to radio contrast media range from mild pruritus to life-threatening emergency. The differential diagnosis between hypersensitivity reaction to radio contrast media and chemotoxic reaction is challenging. The incidence of chemotoxic reactions is mainly affected by the chemical structure of the radio contrast media and the rate of infusion. The incidence of hypersensitivity radio contrast media reaction is affected by age and by the presence of asthma and other atopic diseases. The diagnosis of hypersensitivity reaction to radio contrast media is based on clinical manifestations. The additional value of laboratory tests is limited and questionable. In case of hypersensitivity radio contrast reaction, the infusion should be stopped immediately, airways should be protected and fluids, oxygen and drugs should be given. Prophylactic treatment before its administration may prevent hypersensitivity reactions to radio contrast media.
Kayala, Matthew A; Baldi, Pierre
2012-10-22
Proposing reasonable mechanisms and predicting the course of chemical reactions is important to the practice of organic chemistry. Approaches to reaction prediction have historically used obfuscating representations and manually encoded patterns or rules. Here we present ReactionPredictor, a machine learning approach to reaction prediction that models elementary, mechanistic reactions as interactions between approximate molecular orbitals (MOs). A training data set of productive reactions known to occur at reasonable rates and yields and verified by inclusion in the literature or textbooks is derived from an existing rule-based system and expanded upon with manual curation from graduate level textbooks. Using this training data set of complex polar, hypervalent, radical, and pericyclic reactions, a two-stage machine learning prediction framework is trained and validated. In the first stage, filtering models trained at the level of individual MOs are used to reduce the space of possible reactions to consider. In the second stage, ranking models over the filtered space of possible reactions are used to order the reactions such that the productive reactions are the top ranked. The resulting model, ReactionPredictor, perfectly ranks polar reactions 78.1% of the time and recovers all productive reactions 95.7% of the time when allowing for small numbers of errors. Pericyclic and radical reactions are perfectly ranked 85.8% and 77.0% of the time, respectively, rising to >93% recovery for both reaction types with a small number of allowed errors. Decisions about which of the polar, pericyclic, or radical reaction type ranking models to use can be made with >99% accuracy. Finally, for multistep reaction pathways, we implement the first mechanistic pathway predictor using constrained tree-search to discover a set of reasonable mechanistic steps from given reactants to given products. Webserver implementations of both the single step and pathway versions of ReactionPredictor are available via the chemoinformatics portal http://cdb.ics.uci.edu/.
NASA Astrophysics Data System (ADS)
Pal, Krishnendu; Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam
2015-09-01
We have introduced an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the propensities of the individual elementary reactions and the corresponding reverse reactions. The method is a microscopic formulation of the dissipation function in terms of the relative entropy or Kullback-Leibler distance which is based on the analogy of phase space trajectory with the path of elementary reactions in a network of chemical process. We have introduced here a fluctuation theorem valid for each opposite pair of elementary reactions which is useful in determining the contribution of each sub-reaction on the nonequilibrium thermodynamics of overall reaction. The methodology is applied to an oligomeric enzyme kinetics at a chemiostatic condition that leads the reaction to a nonequilibrium steady state for which we have estimated how each step of the reaction is energy driven or entropy driven to contribute to the overall reaction.
NASA Astrophysics Data System (ADS)
Csörgő, Tamás Hegyi, Sándor Kittel, Wolfram
The Table of Contents for the book is as follows: * Preface * QCD IN MULTIPARTICLE PRODUCTION * QCD and multiparticle production - The status of the perturbative cascade * Test of QCD predictions for multiparticle production at LEP * Multijet final states in e+e- annihilation * Tests of QCD in two photon physics at LEP * Interplay between perturbative and non-perturbative QCD in three-jet events * QCD and hadronic final states at the LHC * Transverse energy and minijets in high energy collisions * Multiparticle production at RHIC and LHC: A classical point of view * High energy interaction with the nucleus in the perturbative QCD with Nc → ∞ * DIFFRACTIVE PRODUCTION AND SMALL-x * Introduction to low-x physics and diffraction * Low-x physics at HERA * Diffractive structure functions at the Tevatron * What is the experimental evidence for the BFKL Pomeron? * Self-organized criticality in gluon systems and its consequences * Scale anomaly and dipole scattering in QCD * Pomeron and AdS/CFT correspondence for QCD * INTERPLAY BETWEEN SOFT AND HARD PHENOMENA * Inclusive jet cross sections and BFKL dynamics searches in dijet cross sections * Soft and hard interactions in p bar{p} Collisions at √ s = 1800 and 630 GeV * Recent results on particle production from OPAL * New results on αs and optimized scales * Preliminary results of the standard model Higgs boson search at LEP 2 in 2000 * Ways to go between hard and soft QCD * Alternative scenarios for fragmentation of a gluonic Lund String * A simultaneous measurement of the QCD colour charges and the strong coupling from LEP multijet data * Branching processes and Koenigs function * Soft and hard QCD dynamics in J/ψ hadroproduction * HADRONIC FINAL STATES IN 1+1, 1+h AND h+h REACTIONS * Universality in hadron production in electron-positron, lepton-hadron and hadron-hadron reactions * Search for gluonic mesons in gluon jets * Vector-to-pseudoscalar and meson-to-baryon ratios in hadronic Z decays at LEP * Polarization and spin alignment in multihadronic Z0 decays * Jet physics at HERA * Final state studies at HERA * A gauge-invariant subtraction technique for non-inclusive observables in QCD * Baryon transport in dual models and the possibility of a backward peak in diffraction * ASTROPARTICLE PHYSICS * Cosmic rays in the energy range of the knee - Recent results from KASCADE * Imaging atmospheric Čerenkov telescopes: Techniques and results * Extensive air shower simulations with CORSIKA and the influence of high-energy hadronic interaction models * Future directions in astroparticle physics and the AUGER experiment * p+A COLLISIONS * pp and pA collisions at CERN SPS * Charmonium attenuation and the quark-gluon plasma * Gluon depletion and J/ψ suppression in pA collisions * CORRELATIONS AND FLUCTUATIONS - EXPERIMENT * Experimental correlation analysis: Foundations and practice * Intermittency and correlations at LEP and at HERA * Moments of the charged-particle multiplicity distribution in Z decays at LEP * On the scale of visible jets in high energy electron-positron collisions * HBT in relativistic heavy ion collisions * Comparison of the pion emission function in hadron-hadron and heavy ion collisions * Multiparticle correlations at LEP1 * Inter-W Bose-Einstein correlations ellipse ... or not? * Colour reconnection at LEP2 * CORRELATIONS AND FLUCTUATIONS - THEORY * Correlations and fluctuations - introduction * Coherence and incoherence in Bose-Einstein correlations * Bose-Einstein correlations in cascade processes and non-extensive statistics * A systematic approach to anomalous phenomena at high energies * Reconstruction of hadronization stage in Pb+Pb collisions at 158A GeV/c * Status of ring-like correlations and wavelets * Fluctuation probes of quark deconfinement * PQCD structure and hadronization in jets and heavy-ion collisions * Net-baryon fluctuations at the QCD critical point * Fractional Fokker-Planck equation in time variable and oscillation of cumulant moments * QCD and multiplicity scaling * RELATIVISTIC HEAVY ION COLLISIONS - EXPERIMENT * Introduction to multiparticle dynamics at RHIC * First results from the STAR experiment at RHIC * Preliminary results from the PHENIX experiment at RHIC * Forward energy and multiplicity in Au-Au reactions at √ {s_{nn} } = 130{text{GeV}} * Results from the PHOBOS experiment on Au+Au collisions at RHIC * Strangeness production in Pb-Pb collisions at the CERN SPS: Results from the WA97 experiment * Direct photon production in 158A GeV 208Pb+208Pb collisions * Search for critical phenomena in Pb+Pb collisions * Recent NA49 results on Pb+Pb collisions at CERN SPS * J/ψ suppression in Pb+Pb collisions at CERN SPS * RELATIVISTIC HEAVY ION COLLISIONS - THEORY * Hyperon ratios at RHIC and the coalescence predictions at mid-rapidity * Dynamics of nuclear collisions and the dependence of the onset of anomalous J/ψ suppression on nucleon numbers of colliding nuclei * Multi-boson effects in Bose-Einstein interferometry * The source of the "third flow component" * Collective flow and multiparticle azimuthal correlations * Microscopic strangeness enhancement mechanisms at the SPS * Jet quenching at finite opacity and its application at RHIC energy * Particle rapidity density and collective phenomena in heavy ion collisions * Elliptic flow from an on-shell parton cascade * Dilepton production in ultrarelativistic heavy ion collisions * Coulomb and core/halo corrections to Bose-Einstein n-particle correlations * CP VIOLATION IN MULTIPARTICLE DYNAMICS * New results from NA48 experiment on neutral kaon rare decays * Measurement of direct CP violation by the NA48 experiment at CERN * Aspects of parity, CP, and time reversal violation in hot QCD * Decay of parity odd bubbles * Parity and time reversal studies at RHIC * Constraining CP-violating TGCS and measuring W-polarization at OPAL * Buckyballs of QCD: Gluon junction networks * List of participants
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Jie; Shang, Cheng; Liu, Zhi-Pan
2017-10-01
Heterogeneous catalytic reactions on surface and interfaces are renowned for ample intermediate adsorbates and complex reaction networks. The common practice to reveal the reaction mechanism is via theoretical computation, which locates all likely transition states based on the pre-guessed reaction mechanism. Here we develop a new theoretical method, namely, stochastic surface walking (SSW)-Cat method, to resolve the lowest energy reaction pathway of heterogeneous catalytic reactions, which combines our recently developed SSW global structure optimization and SSW reaction sampling. The SSW-Cat is automated and massively parallel, taking a rough reaction pattern as input to guide reaction search. We present the detailed algorithm, discuss the key features, and demonstrate the efficiency in a model catalytic reaction, water-gas shift reaction on Cu(111) (CO + H2O → CO2 + H2). The SSW-Cat simulation shows that water dissociation is the rate-determining step and formic acid (HCOOH) is the kinetically favorable product, instead of the observed final products, CO2 and H2. It implies that CO2 and H2 are secondary products from further decomposition of HCOOH at high temperatures. Being a general purpose tool for reaction prediction, the SSW-Cat may be utilized for rational catalyst design via large-scale computations.
Ryu, JiHyeon; Lee, HeeYoung; Suh, JinUk; Yang, MyungSuk; Kang, WonKu; Kim, EunYoung
2015-01-01
We analyzed differences between spontaneously reported drug-induced (not including contrast media) and contrast media-induced adverse reactions. Adverse drug reactions reported by an in-hospital pharmacovigilance center (St. Mary's teaching hospital, Daejeon, Korea) from 2010-2012 were classified as drug-induced or contrast media-induced. Clinical patterns, frequency, causality, severity, Schumock and Thornton's preventability, and type A/B reactions were recorded. The trends among causality tools measuring drug and contrast-induced adverse reactions were analyzed. Of 1,335 reports, 636 drug-induced and contrast media-induced adverse reactions were identified. The prevalence of spontaneously reported adverse drug reaction-related admissions revealed a suspected adverse drug reaction-reporting rate of 20.9/100,000 (inpatient, 0.021%) and 3.9/100,000 (outpatients, 0.004%). The most common adverse drug reaction-associated drug classes included nervous system agents and anti-infectives. Dermatological and gastrointestinal adverse drug reactions were most frequently and similarly reported between drug and contrast media-induced adverse reactions. Compared to contrast media-induced adverse reactions, drug-induced adverse reactions were milder, more likely to be preventable (9.8% vs. 1.1%, p < 0.001), and more likely to be type A reactions (73.5% vs. 18.8%, p < 0.001). Females were over-represented among drug-induced adverse reactions (68.1%, p < 0.001) but not among contrast media-induced adverse reactions (56.6%, p = 0.066). Causality patterns differed between the two adverse reaction classes. The World Health Organization-Uppsala Monitoring Centre causality evaluation and Naranjo algorithm results significantly differed from those of the Korean algorithm version II (p < 0.001). We found differences in sex, preventability, severity, and type A/B reactions between spontaneously reported drug and contrast media-induced adverse reactions. The World Health Organization-Uppsala Monitoring Centre and Naranjo algorithm causality evaluation afforded similar results.
Suh, JinUk; Yang, MyungSuk; Kang, WonKu; Kim, EunYoung
2015-01-01
Objective We analyzed differences between spontaneously reported drug-induced (not including contrast media) and contrast media-induced adverse reactions. Methods Adverse drug reactions reported by an in-hospital pharmacovigilance center (St. Mary’s teaching hospital, Daejeon, Korea) from 2010–2012 were classified as drug-induced or contrast media-induced. Clinical patterns, frequency, causality, severity, Schumock and Thornton’s preventability, and type A/B reactions were recorded. The trends among causality tools measuring drug and contrast-induced adverse reactions were analyzed. Results Of 1,335 reports, 636 drug-induced and contrast media-induced adverse reactions were identified. The prevalence of spontaneously reported adverse drug reaction-related admissions revealed a suspected adverse drug reaction-reporting rate of 20.9/100,000 (inpatient, 0.021%) and 3.9/100,000 (outpatients, 0.004%). The most common adverse drug reaction-associated drug classes included nervous system agents and anti-infectives. Dermatological and gastrointestinal adverse drug reactions were most frequently and similarly reported between drug and contrast media-induced adverse reactions. Compared to contrast media-induced adverse reactions, drug-induced adverse reactions were milder, more likely to be preventable (9.8% vs. 1.1%, p < 0.001), and more likely to be type A reactions (73.5% vs. 18.8%, p < 0.001). Females were over-represented among drug-induced adverse reactions (68.1%, p < 0.001) but not among contrast media-induced adverse reactions (56.6%, p = 0.066). Causality patterns differed between the two adverse reaction classes. The World Health Organization–Uppsala Monitoring Centre causality evaluation and Naranjo algorithm results significantly differed from those of the Korean algorithm version II (p < 0.001). Conclusions We found differences in sex, preventability, severity, and type A/B reactions between spontaneously reported drug and contrast media-induced adverse reactions. The World Health Organization–Uppsala Monitoring Centre and Naranjo algorithm causality evaluation afforded similar results. PMID:26544039
Contact reactions to fragrances.
Katsarou, A; Armenaka, M; Kalogeromitros, D; Koufou, V; Georgala, S
1999-05-01
The most common reaction to fragrances is contact dermatitis, a delayed hypersensitivity reaction; however, other reactions include immediate contact reactions (contact urticaria) and photo-allergic reactions. Fragrance mix (FM) and balsam of Peru (BP) are used to screen for fragrance allergy. To study the different types of allergic skin reactions to fragrance compounds. Delayed hypersensitivity reactions to FM and BP were studied in 4,975 patients with suspected contact dermatitis by routine patch testing interpreted at 48 and 96 hours. In 664 of the patients, patch tests were read at 30 minutes to evaluate for immediate (wheal-and-flare) contact reactions and again at 48 and 96 hours. Photopatch tests to FM were performed in 111 patients with suspected photo-allergic dermatitis. Delayed contact reactions to FM occurred in 6.6% of females and 5.4% of males and to BP in 3.9% of females and 4.1% of males. Analysis of data over time (12 study years) showed an increased trend for reactions to fragrances, particularly in males. Sensitivity to other contact allergens (polysensitivity) was found in 62% of patients and polysensitivity presented more often with generalized contact dermatitis. The most sensitizing components of the fragrance mix that were tested in 38 patients were cinnamic alcohol, oak moss, and cinnamic aldehyde. There were 112 immediate patch test reactions to FM and 113 to BP in 664 patients. Immediate contact reactions were followed by delayed contact reactions in 13.4% of patients for FM and 8.8% for BP, representing a significant increase in the frequency of delayed contact reactions. Patients with immediate contact reactions to fragrances did not have a higher incidence of atopy (25.9%). No cases of positive photopatch test reactions to FM were seen. Fragrances commonly cause both delayed and immediate patch test reactions and patients with immediate contact reactions have an increase in delayed contact reactions to the same allergen.
Kinetic phase evolution of spinel cobalt oxide during lithiation
Li, Jing; He, Kai; Meng, Qingping; ...
2016-09-15
Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less
Kinetic phase evolution of spinel cobalt oxide during lithiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jing; He, Kai; Meng, Qingping
Spinel cobalt oxide has been proposed to undergo a multiple-step reaction during the electrochemical lithiation process. Understanding the kinetics of the lithiation process in this compound is crucial to optimize its performance and cyclability. In this work, we have utilized a low-angle annular dark-field scanning transmission electron microscopy method to visualize the dynamic reaction process in real time and study the reaction kinetics at different rates. We show that the particles undergo a two-step reaction at the single-particle level, which includes an initial intercalation reaction followed by a conversion reaction. At low rates, the conversion reaction starts after the intercalationmore » reaction has fully finished, consistent with the prediction of density functional theoretical calculations. At high rates, the intercalation reaction is overwhelmed by the subsequently nucleated conversion reaction, and the reaction speeds of both the intercalation and conversion reactions are increased. Phase-field simulations show the crucial role of surface diffusion rates of lithium ions in controlling this process. Furthermore, this work provides microscopic insights into the reaction dynamics in non-equilibrium conditions and highlights the effect of lithium diffusion rates on the overall reaction homogeneity as well as the performance.« less
Optimizing Chemical Reactions with Deep Reinforcement Learning.
Zhou, Zhenpeng; Li, Xiaocheng; Zare, Richard N
2017-12-27
Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% fewer steps on both simulations and real reactions. Furthermore, we introduced an efficient exploration strategy by drawing the reaction conditions from certain probability distributions, which resulted in an improvement on regret from 0.062 to 0.039 compared with a deterministic policy. Combining the efficient exploration policy with accelerated microdroplet reactions, optimal reaction conditions were determined in 30 min for the four reactions considered, and a better understanding of the factors that control microdroplet reactions was reached. Moreover, our model showed a better performance after training on reactions with similar or even dissimilar underlying mechanisms, which demonstrates its learning ability.
A comparative study of visual reaction time in table tennis players and healthy controls.
Bhabhor, Mahesh K; Vidja, Kalpesh; Bhanderi, Priti; Dodhia, Shital; Kathrotia, Rajesh; Joshi, Varsha
2013-01-01
Visual reaction time is time required to response to visual stimuli. The present study was conducted to measure visual reaction time in 209 subjects, 50 table tennis (TT) players and 159 healthy controls. The visual reaction time was measured by the direct RT computerized software in healthy controls and table tennis players. Simple visual reaction time was measured. During the reaction time testing, visual stimuli were given for eighteen times and average reaction time was taken as the final reaction time. The study shows that table tennis players had faster reaction time than healthy controls. On multivariate analysis, it was found that TT players had 74.121 sec (95% CI 98.8 and 49.4 sec) faster reaction time compared to non-TT players of same age and BMI. Also playing TT has a profound influence on visual reaction time than BMI. Our study concluded that persons involved in sports are having good reaction time as compared to controls. These results support the view that playing of table tennis is beneficial to eye-hand reaction time, improve the concentration and alertness.
Assignment of EC Numbers to Enzymatic Reactions with Reaction Difference Fingerprints
Hu, Qian-Nan; Zhu, Hui; Li, Xiaobing; Zhang, Manman; Deng, Zhe; Yang, Xiaoyan; Deng, Zixin
2012-01-01
The EC numbers represent enzymes and enzyme genes (genomic information), but they are also utilized as identifiers of enzymatic reactions (chemical information). In the present work (ECAssigner), our newly proposed reaction difference fingerprints (RDF) are applied to assign EC numbers to enzymatic reactions. The fingerprints of reactant molecules minus the fingerprints of product molecules will generate reaction difference fingerprints, which are then used to calculate reaction Euclidean distance, a reaction similarity measurement, of two reactions. The EC number of the most similar training reaction will be assigned to an input reaction. For 5120 balanced enzymatic reactions, the RDF with a fingerprint length at 3 obtained at the sub-subclass, subclass, and main class level with cross-validation accuracies of 83.1%, 86.7%, and 92.6% respectively. Compared with three published methods, ECAssigner is the first fully automatic server for EC number assignment. The EC assignment system (ECAssigner) is freely available via: http://cadd.whu.edu.cn/ecassigner/. PMID:23285222
Explore the reaction mechanism of the Maillard reaction: a density functional theory study.
Ren, Ge-Rui; Zhao, Li-Jiang; Sun, Qiang; Xie, Hu-Jun; Lei, Qun-Fang; Fang, Wen-Jun
2015-05-01
The mechanism of Maillard reaction has been investigated by means of density functional theory calculations in the gaseous phase and aqueous solution. The Maillard reaction is a cascade of consecutive and parallel reaction. In the present model system study, glucose and glycine were taken as the initial reactants. On the basis of previous experimental results, the mechanisms of Maillard reaction have been proposed, and the possibility for the formation of different compounds have been evaluated through calculating the relative energy changes for different steps of reaction under different pH conditions. Our calculations reveal that the TS3 in Amadori rearrangement reaction is the rate-determining step of Maillard reaction with the activation barriers of about 66.7 and 68.8 kcal mol(-1) in the gaseous phase and aqueous solution, respectively. The calculation results are in good agreement with previous studies and could provide insights into the reaction mechanism of Maillard reaction, since experimental evaluation of the role of intermediates in the Maillard reaction is quite complicated.
Surface-Activated Coupling Reactions Confined on a Surface.
Dong, Lei; Liu, Pei Nian; Lin, Nian
2015-10-20
Chemical reactions may take place in a pure phase of gas or liquid or at the interface of two phases (gas-solid or liquid-solid). Recently, the emerging field of "surface-confined coupling reactions" has attracted intensive attention. In this process, reactants, intermediates, and products of a coupling reaction are adsorbed on a solid-vacuum or a solid-liquid interface. The solid surface restricts all reaction steps on the interface, in other words, the reaction takes place within a lower-dimensional, for example, two-dimensional, space. Surface atoms that are fixed in the surface and adatoms that move on the surface often activate the surface-confined coupling reactions. The synergy of surface morphology and activity allow some reactions that are inefficient or prohibited in the gas or liquid phase to proceed efficiently when the reactions are confined on a surface. Over the past decade, dozens of well-known "textbook" coupling reactions have been shown to proceed as surface-confined coupling reactions. In most cases, the surface-confined coupling reactions were discovered by trial and error, and the reaction pathways are largely unknown. It is thus highly desirable to unravel the mechanisms, mechanisms of surface activation in particular, of the surface-confined coupling reactions. Because the reactions take place on surfaces, advanced surface science techniques can be applied to study the surface-confined coupling reactions. Among them, scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) are the two most extensively used experimental tools. The former resolves submolecular structures of individual reactants, intermediates, and products in real space, while the latter monitors the chemical states during the reactions in real time. Combination of the two methods provides unprecedented spatial and temporal information on the reaction pathways. The experimental findings are complemented by theoretical modeling. In particular, density-functional theory (DFT) transition-state calculations have been used to shed light on reaction mechanisms and to unravel the trends of different surface materials. In this Account, we discuss recent progress made in two widely studied surface-confined coupling reactions, aryl-aryl (Ullmann-type) coupling and alkyne-alkyne (Glaser-type) coupling, and focus on surface activation effects. Combined experimental and theoretical studies on the same reactions taking place on different metal surfaces have clearly demonstrated that different surfaces not only reduce the reaction barrier differently and render different reaction pathways but also control the morphology of the reaction products and, to some degree, select the reaction products. We end the Account with a list of questions to be addressed in the future. Satisfactorily answering these questions may lead to using the surface-confined coupling reactions to synthesize predefined products with high yield.
The Simplest Chronoscope V: A Theory of Dual Primary and Secondary Reaction Time Systems.
Montare, Alberto
2016-12-01
Extending work by Montare, visual simple reaction time, choice reaction time, discriminative reaction time, and overall reaction time scores obtained from college students by the simplest chronoscope (a falling meterstick) method were significantly faster as well as significantly less variable than scores of the same individuals from electromechanical reaction timers (machine method). Results supported the existence of dual reaction time systems: an ancient primary reaction time system theoretically activating the V5 parietal area of the dorsal visual stream that evolved to process significantly faster sensory-motor reactions to sudden stimulations arising from environmental objects in motion, and a secondary reaction time system theoretically activating the V4 temporal area of the ventral visual stream that subsequently evolved to process significantly slower sensory-perceptual-motor reactions to sudden stimulations arising from motionless colored objects. © The Author(s) 2016.
Optimizing Chemical Reactions with Deep Reinforcement Learning
2017-01-01
Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% fewer steps on both simulations and real reactions. Furthermore, we introduced an efficient exploration strategy by drawing the reaction conditions from certain probability distributions, which resulted in an improvement on regret from 0.062 to 0.039 compared with a deterministic policy. Combining the efficient exploration policy with accelerated microdroplet reactions, optimal reaction conditions were determined in 30 min for the four reactions considered, and a better understanding of the factors that control microdroplet reactions was reached. Moreover, our model showed a better performance after training on reactions with similar or even dissimilar underlying mechanisms, which demonstrates its learning ability. PMID:29296675
Melhado, Asa D.; Amarante, Giovanni W.; Wang, Z. Jane; Luparia, Marco; Toste, F. Dean
2011-01-01
Azlactones participate in stereoselective reactions with electron-deficient alkenes and N-sulfonyl aldimines to give products of 1,3-dipolar cycloaddition and Mannich addition reactions respectively. Both of these reactions proceed with good to excellent diastereo- and enantioselectivity using a single class of gold-catalysts, namely C2-symmetric bis(phosphinegold(I) carboxylate)complexes. The development of the azlactone Mannich reaction to provide fully protected anti-α,β-diamino acid derivatives is described. 1,3-Dipolar cycloaddition reactions of several acyclic 1,2-disubstituted alkenes, and the chemistry of the resultant cycloadducts, are examined to probe the stereochemical course of this reaction. Reaction kinetics and tandem MS studies of both the cycloaddition and Mannich reactions are reported. These studies support a mechanism in which the gold complexes catalyze addition reactions through nucleophile activation rather than the more typical activation of the electrophilic reaction component. PMID:21341677
Allergic reactions to iodinated contrast media: premedication considerations for patients at risk.
Schopp, Jennifer G; Iyer, Ramesh S; Wang, Carolyn L; Petscavage, Jonelle M; Paladin, Angelisa M; Bush, William H; Dighe, Manjiri K
2013-08-01
The objectives of this article are to review allergy-type reactions to iodinated contrast media and the protocols utilized to prevent or reduce the occurrence of these adverse reactions in high-risk patients. We will begin by discussing the types or classifications of the adverse reactions to iodinated contrast media. We will then discuss reaction mechanisms, identify the patients at highest risk for adverse reactions, and clarify common misperceptions about the risk. Finally, we will discuss the actions of the medications used to help reduce or prevent allergy-type reactions to iodinated contrast media, the protocols used to help reduce or prevent contrast reactions in high-risk patients, and the potential side effects of these medications. We will also discuss the high-risk patient who has received premedication due to a prior index reaction and discuss the risk of having a subsequent reaction, termed "breakthrough reaction." Identifying patient at high risk for an "allergy-type" reaction to contrast media is an essential task of the radiologist. Prevention of or reduction of the risk of an adverse reaction is critical to patient safety. If an examination can be performed without contrast in a patient at high risk for an allergy-type reaction, it may be appropriate to avoid contrast. However, there are situations where contrast media is necessary, and the radiologist plays a vital role in preventing or mitigating an allergy-type reaction.
Li, Yongfang; Wang, Dunyou
2018-05-07
Recent studies have improved our understanding of the mechanism and dynamics of the bimolecular nucleophilic substitution (S N 2) reaction at the carbon center. Nonetheless, the S N 2 reaction at the nitrogen center has received scarce attention and is less understood. Herein, we propose a new reaction mechanism for the S N 2 reaction at the nitrogen center in the F - + NH 2 Cl reaction using ab initio molecular dynamics calculations. The newly proposed mechanism involves the rotation of NHCl with one proton of NH 2 Cl abstracted by the nucleophile, followed by the classical backside-attack process. The double-inversion mechanism revealed recently for the S N 2 reaction at the carbon center is also observed for the title reaction at the nitrogen center. In contrast to the F - + CH 3 Cl reaction with a proton abstraction-induced first inversion transition state, the F - + NH 2 Cl reaction is a hydrogen bond-induced inversion. This newly proposed reaction mechanism opens a reaction channel to avoid the proton abstraction mechanism at low collision energy. The double-inversion mechanism of the title reaction with a negative first-inversion transition relative to the energy of the reactants is expected to have larger contribution to the reaction rate than the F - + CH 3 Cl reaction with a positive first-inversion transition state.
Tondon, Rashmi; Pandey, Prashant; Chaudhary, Rajendra
2008-10-01
It is well known that young age, low weight, and first time donation status increase the probability of having a reaction but the effect of these 'risk' factors on the grade of reaction has not been well studied. To evaluate the prevalence of these factors in blood donation setup, to identify 'at risk' donors with age less than 30 years and weight less than 60 kg and to assess whether there is any contributory role of these risk factors in predicting the grade of reaction. A retrospective analysis of 30370 donations was done during 15 month study period. Donor reaction rate of 1.6% was observed in this study of which 7% experienced reaction of moderate and severe grade. Reaction rate among male and female donors were 1.5% and 3.7% respectively. Female gender was found to be an independent predictor for donor reaction even after nullifying the effect of the blood volume drawn. Incidence of vasovagal reaction in 'at risk' donors was 2.0% in contrast to 0.96% in 'general' donor population. Age had a significant affect on reaction rate (p = .035) and all grades of reaction decreased with the age of the donor. Age was found to be a significant predictor of the grade of reaction (p = .008). The effect of weight on the reaction rate as well as on the grade was found to be insignificant (1.5% in 'at risk' donors vs. 1.6% in 'general' donors with p > 0.05). 1. Age is a significant factor that can predict the rate as well as the grade of reaction; 2. Weight does not predict the grade of reaction, 3. Gender is an independent predictor of donor reaction, with females having 2.5 fold higher chances of reaction. These factors are important for blood collection staff to recognize such 'at risk' donors, and to give more attention to them to reduce donor reaction.
Anomalous dielectric relaxation with linear reaction dynamics in space-dependent force fields.
Hong, Tao; Tang, Zhengming; Zhu, Huacheng
2016-12-28
The anomalous dielectric relaxation of disordered reaction with linear reaction dynamics is studied via the continuous time random walk model in the presence of space-dependent electric field. Two kinds of modified reaction-subdiffusion equations are derived for different linear reaction processes by the master equation, including the instantaneous annihilation reaction and the noninstantaneous annihilation reaction. If a constant proportion of walkers is added or removed instantaneously at the end of each step, there will be a modified reaction-subdiffusion equation with a fractional order temporal derivative operating on both the standard diffusion term and a linear reaction kinetics term. If the walkers are added or removed at a constant per capita rate during the waiting time between steps, there will be a standard linear reaction kinetics term but a fractional order temporal derivative operating on an anomalous diffusion term. The dielectric polarization is analyzed based on the Legendre polynomials and the dielectric properties of both reactions can be expressed by the effective rotational diffusion function and component concentration function, which is similar to the standard reaction-diffusion process. The results show that the effective permittivity can be used to describe the dielectric properties in these reactions if the chemical reaction time is much longer than the relaxation time.
NASA Astrophysics Data System (ADS)
Du, Ruiling; Wu, Keng; Zhang, Jiazhi; Zhao, Yong
Reaction kinetics of metallurgical physical chemistry which was successfully applied in metallurgy (as ferrous metallurgy, non-ferrous metallurgy) became an important theoretical foundation for subject system of traditional metallurgy. Not only the research methods were very perfect, but also the independent structures and systems of it had been formed. One of the important tasks of metallurgical reaction engineering was the simulation of metallurgical process. And then, the mechanism of reaction process and the conversion time points of different control links should be obtained accurately. Therefore, the research methods and results of reaction kinetics in metallurgical physical chemistry were not very suitable for metallurgical reaction engineering. In order to provide the definite conditions of transmission, reaction kinetics parameters and the conversion time points of different control links for solving the transmission and reaction equations in metallurgical reaction engineering, a new method for researching kinetics mechanisms in metallurgical reaction engineering was proposed, which was named stepwise attempt method. Then the comparison of results between the two methods and the further development of stepwise attempt method were discussed in this paper. As a new research method for reaction kinetics in metallurgical reaction engineering, stepwise attempt method could not only satisfy the development of metallurgical reaction engineering, but also provide necessary guarantees for establishing its independent subject system.
Miyaguchi, Kazuyoshi; Demura, Shinich; Sugiura, Hiroki; Uchiyama, Masanobu; Noda, Masahiro
2013-10-01
This study examines the development of various reaction movements in preschool children and the relationship between reaction times and favorite play activities. The subjects were 167 healthy preschool children aged 4-6 (96 boys and 71 girls). This study focused on the reaction times of the upper limbs (reaction 1: release; reaction 2: press) and the whole body (reaction 3: forward jump). The activities frequently played in preschools are largely divided into dynamic play activities (tag, soccer, gymnastics set, dodge ball, and jump rope) and static play activities (drawing, playing house, reading, playing with sand, and building blocks). The subjects chose 3 of 10 cards picturing their favorite play activities, depicting 10 different activities. All intraclass correlation coefficients of measured reaction times were high (0.73-0.79). In addition, each reaction time shortened with age. Reaction 1 showed a significant and low correlation with reaction 3 (r = 0.37). The effect size of the whole body reaction time was the largest. Whole body reaction movement, which is largely affected by the exercise output function, develops remarkably in childhood. Children who liked "tag" were faster in all reaction times. The children who chose "soccer" were faster in reactions 2 and 3. In contrast, children who liked "playing house" tended to have slower reaction times. Dynamic activities, such as tag and soccer, promote development of reaction speed and agility in movements involving the whole body. Preschool teachers and physical educators should re-examine the effect of tag and use it periodically as one of the exercise programs to avoid unexpected falls and injuries in everyday life.
Reaction Event Counting Statistics of Biopolymer Reaction Systems with Dynamic Heterogeneity.
Lim, Yu Rim; Park, Seong Jun; Park, Bo Jung; Cao, Jianshu; Silbey, Robert J; Sung, Jaeyoung
2012-04-10
We investigate the reaction event counting statistics (RECS) of an elementary biopolymer reaction in which the rate coefficient is dependent on states of the biopolymer and the surrounding environment and discover a universal kinetic phase transition in the RECS of the reaction system with dynamic heterogeneity. From an exact analysis for a general model of elementary biopolymer reactions, we find that the variance in the number of reaction events is dependent on the square of the mean number of the reaction events when the size of measurement time is small on the relaxation time scale of rate coefficient fluctuations, which does not conform to renewal statistics. On the other hand, when the size of the measurement time interval is much greater than the relaxation time of rate coefficient fluctuations, the variance becomes linearly proportional to the mean reaction number in accordance with renewal statistics. Gillespie's stochastic simulation method is generalized for the reaction system with a rate coefficient fluctuation. The simulation results confirm the correctness of the analytic results for the time dependent mean and variance of the reaction event number distribution. On the basis of the obtained results, we propose a method of quantitative analysis for the reaction event counting statistics of reaction systems with rate coefficient fluctuations, which enables one to extract information about the magnitude and the relaxation times of the fluctuating reaction rate coefficient, without a bias that can be introduced by assuming a particular kinetic model of conformational dynamics and the conformation dependent reactivity. An exact relationship is established between a higher moment of the reaction event number distribution and the multitime correlation of the reaction rate for the reaction system with a nonequilibrium initial state distribution as well as for the system with the equilibrium initial state distribution.
Lee, Suh-Young; Yang, Min Suk; Choi, Young-Hoon; Park, Chang Min; Park, Heung-Woo; Cho, Sang Heon; Kang, Hye-Ryun
2017-03-01
Although the severity of hypersensitivity reactions to iodinated contrast media varies, it is well correlated with the severity of recurrent reactions; however, prophylaxis protocols are not severity-stratified. To assess the outcomes of tailored prophylaxis according to the severity of hypersensitivity reactions to iodinated contrast media. Our premedication protocols were stratified based on the severity of previous reactions: (1) 4 mg of chlorpheniramine for mild reactions, (2) adding 40 mg of methylprednisolone for moderate reactions, and (3) adding multiple doses of 40 mg of methylprednisolone for severe index reactions. Cases of reexposure in patients with a history of hypersensitivity reactions were routinely monitored and mandatorily recorded. Among a total of 850 patients who underwent enhanced computed tomography after severity-tailored prophylaxis, breakthrough reactions occurred in 17.1%, but most breakthrough reactions (89.0%) were mild and did not require medical treatment. Additional corticosteroid use did not reduce the breakthrough reaction rate in cases with a mild index reaction (16.8% vs 17.2%, P = .70). However, underpremedication with a single dose of corticosteroid revealed significantly higher rates of breakthrough reaction than did double doses of corticosteroid in cases with a severe index reaction (55.6% vs 17.4%, P = .02). Changing the iodinated contrast media resulted in an additional reduction of the breakthrough reaction rate overall (14.9% vs 32.1%, P = .001). In a total severity-based stratified prophylaxis regimens and changing iodinated contrast media can be considered in patients with a history of previous hypersensitivity reaction to iodinated contrast media to reduce the risk of breakthrough reactions. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Hydrogen production from carbonaceous material
Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.
2004-09-14
Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.
Accelerating rejection-based simulation of biochemical reactions with bounded acceptance probability
NASA Astrophysics Data System (ADS)
Thanh, Vo Hong; Priami, Corrado; Zunino, Roberto
2016-06-01
Stochastic simulation of large biochemical reaction networks is often computationally expensive due to the disparate reaction rates and high variability of population of chemical species. An approach to accelerate the simulation is to allow multiple reaction firings before performing update by assuming that reaction propensities are changing of a negligible amount during a time interval. Species with small population in the firings of fast reactions significantly affect both performance and accuracy of this simulation approach. It is even worse when these small population species are involved in a large number of reactions. We present in this paper a new approximate algorithm to cope with this problem. It is based on bounding the acceptance probability of a reaction selected by the exact rejection-based simulation algorithm, which employs propensity bounds of reactions and the rejection-based mechanism to select next reaction firings. The reaction is ensured to be selected to fire with an acceptance rate greater than a predefined probability in which the selection becomes exact if the probability is set to one. Our new algorithm improves the computational cost for selecting the next reaction firing and reduces the updating the propensities of reactions.
Accelerating rejection-based simulation of biochemical reactions with bounded acceptance probability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thanh, Vo Hong, E-mail: vo@cosbi.eu; Priami, Corrado, E-mail: priami@cosbi.eu; Department of Mathematics, University of Trento, Trento
Stochastic simulation of large biochemical reaction networks is often computationally expensive due to the disparate reaction rates and high variability of population of chemical species. An approach to accelerate the simulation is to allow multiple reaction firings before performing update by assuming that reaction propensities are changing of a negligible amount during a time interval. Species with small population in the firings of fast reactions significantly affect both performance and accuracy of this simulation approach. It is even worse when these small population species are involved in a large number of reactions. We present in this paper a new approximatemore » algorithm to cope with this problem. It is based on bounding the acceptance probability of a reaction selected by the exact rejection-based simulation algorithm, which employs propensity bounds of reactions and the rejection-based mechanism to select next reaction firings. The reaction is ensured to be selected to fire with an acceptance rate greater than a predefined probability in which the selection becomes exact if the probability is set to one. Our new algorithm improves the computational cost for selecting the next reaction firing and reduces the updating the propensities of reactions.« less
Hu, Qian-Nan; Deng, Zhe; Hu, Huanan; Cao, Dong-Sheng; Liang, Yi-Zeng
2011-09-01
Biochemical reactions play a key role to help sustain life and allow cells to grow. RxnFinder was developed to search biochemical reactions from KEGG reaction database using three search criteria: molecular structures, molecular fragments and reaction similarity. RxnFinder is helpful to get reference reactions for biosynthesis and xenobiotics metabolism. RxnFinder is freely available via: http://sdd.whu.edu.cn/rxnfinder. qnhu@whu.edu.cn.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1-piperazineethanamine and sulfur dioxide; fatty acids, tall-oil reaction products with sulfur...)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1...
Code of Federal Regulations, 2010 CFR
2010-07-01
...-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1-piperazineethanamine and sulfur dioxide; fatty acids, tall-oil reaction products with sulfur...)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1...
Code of Federal Regulations, 2013 CFR
2013-07-01
...-hydroxyethyl)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1-piperazineethanamine and sulfur dioxide; fatty acids, tall-oil reaction products with sulfur...)amino]ethyl], reaction products with sulfur dioxide; fatty acids, tall-oil, reaction products with 1...
Cai, Yong-Feng; Li, Li; Luo, Meng-Xian; Yang, Ke-Fang; Lai, Guo-Qiao; Jiang, Jian-Xiong; Xu, Li-Wen
2011-05-01
A detailed experimental investigation of an aza-Michael reaction of aniline and chalcone is presented. A series of Cinchona alkaloid-derived organocatalysts with different functional groups were prepared and used in the aza-Michael and retro-aza-Michael reaction. There was an interesting finding that a complete reversal of stereoselectivity when a benzoyl group was introduced to the cinchonine and cinchonidine. The chirality amplification vs. time proceeds in the quinine-derived organocatalyst containing silicon-based bulky group, QN-TBS, -catalyzed aza-Michael reaction under solvent-free conditions. In addition, we have demonstrated for the first time that racemization was occurred in suitable solvents under mild conditions due to retro-aza-Michael reaction of the Michael adduct of aniline with chalcone. These indicate the equilibrium of retro-aza-Michael reaction and aza-Michael reaction produce the happening of chirality amplification in aza-Michael reaction and racemization via retro-aza-Michael reaction under different conditions, which would be beneficial to the development of novel chiral catalysts for the aza-Michael reactions. Copyright © 2011 Wiley-Liss, Inc.
Takasu, K
2001-12-01
Intramolecular cascade reaction has received much attention as a powerful methodology to construct a polycyclic framework in organic synthesis. We have been developing "boomerang-type cascade reaction" to construct a variety of polycyclic skeletons efficiently. In the above reactions, a nucleophilic function of substrates changes the character into an electrophile after the initial reaction, and the electrophilic group acts as a nucleophile in the second reaction. That is, the reaction center stepwise moves from one functional group back to the same one via other functional groups. The stream of the electron concerning the cascade reaction is like a locus of boomerang. We show here three different boomerang-type reactions via ionic species or free radicals. 1) Diastereoselective Michael-aldol reaction based on the chiral auxiliary method and enantioselective Michael-aldol reaction by the use of external chiral sources. 2) Short and efficient total syntheses of longifolane sesquiterpenes utilizing intramolecular double Michael addition as a key step. 3) Development of boomerang-type radical cascade reaction of halopolyenes to construct terpenoid skeletons and its regioselectivity.
Modelling Chemical Reasoning to Predict and Invent Reactions.
Segler, Marwin H S; Waller, Mark P
2017-05-02
The ability to reason beyond established knowledge allows organic chemists to solve synthetic problems and invent novel transformations. Herein, we propose a model that mimics chemical reasoning, and formalises reaction prediction as finding missing links in a knowledge graph. We have constructed a knowledge graph containing 14.4 million molecules and 8.2 million binary reactions, which represents the bulk of all chemical reactions ever published in the scientific literature. Our model outperforms a rule-based expert system in the reaction prediction task for 180 000 randomly selected binary reactions. The data-driven model generalises even beyond known reaction types, and is thus capable of effectively (re-)discovering novel transformations (even including transition metal-catalysed reactions). Our model enables computers to infer hypotheses about reactivity and reactions by only considering the intrinsic local structure of the graph and because each single reaction prediction is typically achieved in a sub-second time frame, the model can be used as a high-throughput generator of reaction hypotheses for reaction discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
AMINO ACIDS , CHEMICAL REACTIONS), (*PEPTIDES, CHEMICAL REACTIONS), (*FORMALDEHYDE, CHEMICAL REACTIONS), (*ULTRAVIOLET SPECTROSCOPY, PROTEINS), ABSORPTION SPECTRA, CHEMICAL BONDS, AMIDES, CHEMICAL EQUILIBRIUM, REACTION KINETICS
Microfabricated electrochemiluminescence cell for chemical reaction detection
Northrup, M. Allen; Hsueh, Yun-Tai; Smith, Rosemary L.
2003-01-01
A detector cell for a silicon-based or non-silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The detector cell is an electrochemiluminescence cell constructed of layers of silicon with a cover layer of glass, with spaced electrodes located intermediate various layers forming the cell. The cell includes a cavity formed therein and fluid inlets for directing reaction fluid therein. The reaction chamber and detector cell may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The ECL cell may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.
Sakaguchi, M; Nakayama, T; Inouye, S
1996-12-01
Anaphylaxis to measles-mumps-rubella vaccines has been reported. We have suspected that most such reactions are caused by gelatin contained in the vaccines. To confirm the relation between systemic allergic reactions to vaccines and the presence of anti-gelatin IgE, we measured anti-gelatin IgE in children who demonstrated allergy to gelatin-containing vaccines. Furthermore, to clarify the relation between allergic reactions to gelatin in vaccines and foods, we surveyed the occurrence of allergic reactions to gelatin-containing foods in the same children. Serum samples were taken from 26 children who had systemic immediate-type reactions, including anaphylactic shock, to vaccines and the same number of children without allergic reactions. Specific IgE to gelatin in these samples was measured. We then surveyed whether these children had allergic reactions to gelatin-containing foods before and after vaccination. Twenty-four of the 26 children with allergic reactions to vaccines had anti-gelatin IgE ranging from 1.2 to 250 Ua/ml. Seven had allergic reactions on ingestion of gelatin-containing foods. Of these, two had reactions before vaccination, and five had reactions after vaccination. All the control children without allergic reactions to vaccines had no anti-gelatin IgE. We reconfirmed a strong relationship between systemic immediate-type allergic reactions, including anaphylaxis, to vaccines and the presence of specific IgE to gelatin. Moreover, some of the children also had allergic reactions to food gelatin before or after vaccination.
NASA Astrophysics Data System (ADS)
Liu, Zhi-Pan; Hu, P.; Lee, Ming-Hsien
2003-09-01
Hydrogenation reaction, as one of the simplest association reactions on surfaces, is of great importance both scientifically and technologically. They are essential steps in many industrial processes in heterogeneous catalysis, such as ammonia synthesis (N2+3H2→2NH3). Many issues in hydrogenation reactions remain largely elusive. In this work, the NHx (x=0,1,2) hydrogenation reactions (N+H→NH, NH+H→NH2 and NH2+H→NH3) on Rh(111) are used as a model system to study the hydrogenation reactions on metal surfaces in general using density-functional theory. In addition, C and O hydrogenation (C+H→CH and O+H→OH) and several oxygenation reactions, i.e., C+O, N+O, O+O reactions, are also calculated in order to provide a further understanding of the barrier of association reactions. The reaction pathways and the barriers of all these reactions are determined and reported. For the C, N, NH, and O hydrogenation reactions, it is found that there is a linear relationship between the barrier and the valency of R (R=C, N, NH, and O). Detailed analyses are carried out to rationalize the barriers of the reactions, which shows that: (i) The interaction energy between two reactants in the transition state plays an important role in determining the trend in the barriers; (ii) there are two major components in the interaction energy: The bonding competition and the direct Pauli repulsion; and (iii) the Pauli repulsion effect is responsible for the linear valency-barrier trend in the C, N, NH, and O hydrogenation reactions. For the NH2+H reaction, which is different from other hydrogenation reactions studied, the energy cost of the NH2 activation from the IS to the TS is the main part of the barrier. The potential energy surface of the NH2 on metal surfaces is thus crucial to the barrier of NH2+H reaction. Three important factors that can affect the barrier of association reactions are generalized: (i) The bonding competition effect; (ii) the local charge densities of the reactants along the reaction direction; and (iii) the potential energy surface of the reactants on the surface. The lowest energy pathway for a surface association reaction should correspond to the one with the best compromise of these three factors.
Halvorsen, R; Eggesb M; Botten, G
1995-12-10
Adverse reactions to food occur in about 1-2% of the population, but are reported more frequently by patients. Most reactions to food are not caused by allergy. IgE-mediated food reactions are well known and of major clinical significance owing to their potentially dangerous, even life-threatening character. Adverse reactions to food can also be caused by immunological mechanisms other than IgE-mediated reactions such as, enzyme deficiencies, active pharmacological substances in food and psychological mechanisms. Double-blind provocation is the only way to diagnose a positive reaction to a food item with some certainty. Regretably no objective measures for food reactions exist.
Extent of reaction in open systems with multiple heterogeneous reactions
Friedly, John C.
1991-01-01
The familiar batch concept of extent of reaction is reexamined for systems of reactions occurring in open systems. Because species concentrations change as a result of transport processes as well as reactions in open systems, the extent of reaction has been less useful in practice in these applications. It is shown that by defining the extent of the equivalent batch reaction and a second contribution to the extent of reaction due to the transport processes, it is possible to treat the description of the dynamics of flow through porous media accompanied by many chemical reactions in a uniform, concise manner. This approach tends to isolate the reaction terms among themselves and away from the model partial differential equations, thereby enabling treatment of large problems involving both equilibrium and kinetically controlled reactions. Implications on the number of coupled partial differential equations necessary to be solved and on numerical algorithms for solving such problems are discussed. Examples provided illustrate the theory applied to solute transport in groundwater flow.
Efficient Constant-Time Complexity Algorithm for Stochastic Simulation of Large Reaction Networks.
Thanh, Vo Hong; Zunino, Roberto; Priami, Corrado
2017-01-01
Exact stochastic simulation is an indispensable tool for a quantitative study of biochemical reaction networks. The simulation realizes the time evolution of the model by randomly choosing a reaction to fire and update the system state according to a probability that is proportional to the reaction propensity. Two computationally expensive tasks in simulating large biochemical networks are the selection of next reaction firings and the update of reaction propensities due to state changes. We present in this work a new exact algorithm to optimize both of these simulation bottlenecks. Our algorithm employs the composition-rejection on the propensity bounds of reactions to select the next reaction firing. The selection of next reaction firings is independent of the number reactions while the update of propensities is skipped and performed only when necessary. It therefore provides a favorable scaling for the computational complexity in simulating large reaction networks. We benchmark our new algorithm with the state of the art algorithms available in literature to demonstrate its applicability and efficiency.
Oxygen reduction on a Pt(111) catalyst in HT-PEM fuel cells by density functional theory
NASA Astrophysics Data System (ADS)
Sun, Hong; Li, Jie; Almheiri, Saif; Xiao, Jianyu
2017-08-01
The oxygen reduction reaction plays an important role in the performance of high-temperature proton exchange membrane (HT-PEM) fuel cells. In this study, a molecular dynamics model, which is based on the density functional theory and couples the system's energy, the exchange-correlation energy functional, the charge density distribution function, and the simplified Kohn-Sham equation, was developed to simulate the oxygen reduction reaction on a Pt(111) surface. Additionally, an electrochemical reaction system on the basis of a four-electron reaction mechanism was also developed for this simulation. The reaction path of the oxygen reduction reaction, the product structure of each reaction step and the system's energy were simulated. It is found that the first step reaction of the first hydrogen ion with the oxygen molecule is the controlling step of the overall reaction. Increasing the operating temperature speeds up the first step reaction rate and slightly decreases its reaction energy barrier. Our results provide insight into the working principles of HT-PEM fuel cells.
Ramsey, Edward D; Li, Ben; Guo, Wei; Liu, Jing Y
2015-04-03
An interface has been developed that connects a supercritical fluid reaction (SFR) vessel directly on-line to a liquid chromatograph. The combined SFR-LC system has enabled the progress of the esterification reaction between phenol and benzoyl chloride to synthesize phenyl benzoate in supercritical fluid carbon dioxide solution to be dynamically monitored. This was achieved by the periodic SFR-LC analysis of samples directly withdrawn from the esterification reaction mixture. Using the series of SFR-LC analysis results obtained for individual esterification reactions, the reaction progress profile for each esterification reaction was obtained by expressing the measured yield of phenyl benzoate as a function of reaction time. With reaction temperature fixed at 75°C, four sets (n=3) of SFR-LC reaction progress profiles were obtained at four different SFR pressures ranging from 13.79 to 27.58 MPa. The maximum SFR yield obtained for phenyl benzoate using a standard set of reactant concentrations was 85.2% (R.S.D. 4.2%) when the reaction was performed at 13.79 MPa for 90 min. In comparison, a phenyl benzoate yield of less than 0.3% was obtained using the same standard reactant concentrations after 90 min reaction time at 75°C using either: heptane, ethyl acetate or acetonitrile as conventional organic reaction solvents. Copyright © 2015 Elsevier B.V. All rights reserved.
Compact reaction cell for homogenizing and down-blending highly enriched uranium metal
McLean, W. II; Miller, P.E.; Horton, J.A.
1995-05-02
The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gases into the reaction chamber, the upper port allowing for the exit of gases from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gases into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell. 4 figs.
Compact reaction cell for homogenizing and down-blanding highly enriched uranium metal
McLean, II, William; Miller, Philip E.; Horton, James A.
1995-01-01
The invention is a specialized reaction cell for converting uranium metal to uranium oxide. In a preferred form, the reaction cell comprises a reaction chamber with increasing diameter along its length (e.g. a cylindrical chamber having a diameter of about 2 inches in a lower portion and having a diameter of from about 4 to about 12 inches in an upper portion). Such dimensions are important to achieve the necessary conversion while at the same time affording criticality control and transportability of the cell and product. The reaction chamber further comprises an upper port and a lower port, the lower port allowing for the entry of reactant gasses into the reaction chamber, the upper port allowing for the exit of gasses from the reaction chamber. A diffuser plate is attached to the lower port of the reaction chamber and serves to shape the flow of gas into the reaction chamber. The reaction cell further comprises means for introducing gasses into the reaction chamber and a heating means capable of heating the contents of the reaction chamber. The present invention also relates to a method for converting uranium metal to uranium oxide in the reaction cell of the present invention. The invention is useful for down-blending highly enriched uranium metal by the simultaneous conversion of highly enriched uranium metal and natural or depleted uranium metal to uranium oxide within the reaction cell.
SSER: Species specific essential reactions database.
Labena, Abraham A; Ye, Yuan-Nong; Dong, Chuan; Zhang, Fa-Z; Guo, Feng-Biao
2017-04-19
Essential reactions are vital components of cellular networks. They are the foundations of synthetic biology and are potential candidate targets for antimetabolic drug design. Especially if a single reaction is catalyzed by multiple enzymes, then inhibiting the reaction would be a better option than targeting the enzymes or the corresponding enzyme-encoding gene. The existing databases such as BRENDA, BiGG, KEGG, Bio-models, Biosilico, and many others offer useful and comprehensive information on biochemical reactions. But none of these databases especially focus on essential reactions. Therefore, building a centralized repository for this class of reactions would be of great value. Here, we present a species-specific essential reactions database (SSER). The current version comprises essential biochemical and transport reactions of twenty-six organisms which are identified via flux balance analysis (FBA) combined with manual curation on experimentally validated metabolic network models. Quantitative data on the number of essential reactions, number of the essential reactions associated with their respective enzyme-encoding genes and shared essential reactions across organisms are the main contents of the database. SSER would be a prime source to obtain essential reactions data and related gene and metabolite information and it can significantly facilitate the metabolic network models reconstruction and analysis, and drug target discovery studies. Users can browse, search, compare and download the essential reactions of organisms of their interest through the website http://cefg.uestc.edu.cn/sser .
Berti, A; Della-Torre, E; Yacoub, Mr; Tombetti, E; Canti, V; Sabbadini, M G; Colombo, G
2016-07-01
The term "breakthrough reactions" designates repeated hypersensitivity reactions to iodinated contrast media (ICM) despite premedication with glucocorticoids and antihistamines. We aimed to retrospectively evaluate the rate of positive skin test (STs) in our cohort of patients with previous breakthrough reactions to different ICMs. A series of 35 patients, who experienced at least one breakthrough reaction to ICM and who underwent STs within 6 months from the reaction were studied, and results were compared to a control group of patients with a first hypersensitivity reaction occurred without premedication. Skin prick tests (SPT), intradermal tests (IDT) and patch tests (PT) at different dilutions, with a set of three to four ICM were performed. Of the 35 patients with prior breakthrough reactions, 57% had an immediate reaction (IR) and 43% had a non-immediate reaction (NIR). Patients who experienced the first hypersensitivity IR or NIR, later had one or more breakthrough IR or NIR, respectively. Overall, 29% (10/35) of patients with prior breakthrough reactions resulted positive to STs compared to 57% (16/28) of the control group (p < 0.05). No significant difference in allergy history, age, sex, other clinical / demographic features nor chronic use of ACE-inhibitor, beta-blockers or NSAIDs was observed. This preliminary finding suggests that patients with prior breakthrough reactions have significantly lower immunologically proven ICM reactions (positive STs) if compared to non-breakthrough patients. According to that, a considerable number of breakthrough reactions seems to be non-allergic hypersensitivity reactions or reactions which could be mostly prevented by a proper, well-timed skin testing. Larger prospective studies are needed to confirm these results, with a more careful analysis of patients' risk factors, a laboratory assessment that includes an in vitro allergy diagnostics, and hopefully a drug provocation test for selected cases.
Method for the enzymatic production of hydrogen
Woodward, Jonathan; Mattingly, Susan M.
1999-01-01
The present invention is an enzymatic method for producing hydrogen comprising the steps of: a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch. The reaction mixture further comprises an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and c) detecting the hydrogen produced from the reaction mixture.
Method for the enzymatic production of hydrogen
Woodward, J.; Mattingly, S.M.
1999-08-24
The present invention is an enzymatic method for producing hydrogen comprising the steps of: (a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch; the reaction mixture also comprising an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; (b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and (c) detecting the hydrogen produced from the reaction mixture. 8 figs.
ReactionMap: an efficient atom-mapping algorithm for chemical reactions.
Fooshee, David; Andronico, Alessio; Baldi, Pierre
2013-11-25
Large databases of chemical reactions provide new data-mining opportunities and challenges. Key challenges result from the imperfect quality of the data and the fact that many of these reactions are not properly balanced or atom-mapped. Here, we describe ReactionMap, an efficient atom-mapping algorithm. Our approach uses a combination of maximum common chemical subgraph search and minimization of an assignment cost function derived empirically from training data. We use a set of over 259,000 balanced atom-mapped reactions from the SPRESI commercial database to train the system, and we validate it on random sets of 1000 and 17,996 reactions sampled from this pool. These large test sets represent a broad range of chemical reaction types, and ReactionMap correctly maps about 99% of the atoms and about 96% of the reactions, with a mean time per mapping of 2 s. Most correctly mapped reactions are mapped with high confidence. Mapping accuracy compares favorably with ChemAxon's AutoMapper, versions 5 and 6.1, and the DREAM Web tool. These approaches correctly map 60.7%, 86.5%, and 90.3% of the reactions, respectively, on the same data set. A ReactionMap server is available on the ChemDB Web portal at http://cdb.ics.uci.edu .
Cutaneous reactions to proton pump inhibitors: a case-control study.
Chularojanamontri, Leena; Jiamton, Sukhum; Manapajon, Araya; Suvanasuthi, Saroj; Kulthanan, Kanokvalai; Dhana, Naruemon; Jongjarearnprasert, Kowit
2012-10-01
Even though proton pump inhibitors (PPIs) are commonly used in clinical practice, a limited number of studies are available about cutaneous adverse reactions from PPIs, and most of these are case reports. To demonstrate the pattern of cutaneous reactions related to PPI usage and to evaluate the risk of developing PPI drug eruptions among adult patients. We reviewed the spontaneous reports of any adverse events associated with PPI use, as reported from January 2005 through May 2010 to the Adverse Drug Reaction Center at Siriraj Hospital in Thailand. Each control was sampled from 15 patients who had consecutive hospital numbers from each study case. The prevalence of cutaneous reactions to PPIs varied, ranging from three to 20 per 100,000 of the treated population. Sixty-four patients with a history of reaction to PPIs, and 65 controls were enrolled. Most cutaneous reactions were attributed to omeprazole (n=50; 78.1%), and the most frequently observed cutaneous reaction was maculopapular rash (43.8%). None of the patients experienced a cross-reaction between individual PPIs. Cutaneous adverse reactions to PPIs range from minor drug rashes to a severe, life-threatening reaction. Individuals with a history of adverse drug reaction have an increased risk of cutaneous reaction to PPIs.
Process and apparatus for obtaining silicon from fluosilicic acid
Sancier, Kenneth M.
1985-07-16
Process for producing low cost, high purity solar grade Si wherein a reduction reaction, preferably the reduction of SiF.sub.4, by an alkali metal (liquid Na preferred) is carried out essentialy continuously by injecting of reactants in substantially stoichiometric proportions into a reaction chamber having a controlled temperature thereby to form a mist or dispersion of reactants. The reactants being supplied at such a rate and temperature that the reaction takes place far enough away from the entry region to avoid plugging of reactants at the entry region, the reaction is completed and whereby essentially all reaction product solidifies and forms a free flowing powder before reaction product hits a reaction chamber wall. Thus, the reaction product does not adhere to the reaction chamber wall or pick up impurities therefrom. Separation of reaction products is easily carried out by either a leach or melt separation process.
Adverse reactions and other factors that impact subsequent blood donation visits.
Custer, Brian; Rios, Jorge A; Schlumpf, Karen; Kakaiya, Ram M; Gottschall, Jerome L; Wright, David J
2012-01-01
The importance of adverse reactions in terms of donor safety recently has received significant attention, but their role in subsequent donation behavior has not been thoroughly investigated. Six REDS-II blood centers provided data for this analysis. Summary minor and major adverse reaction categories were created. The influence of adverse reactions on donation was examined in two ways: Kaplan-Meier curves were generated to determine the cumulative pattern of first return, and adjusted odds ratios (AORs) for demographic and other factors positively and negatively associated with return were estimated using multivariable logistic regression. Donors who had major reactions had longer times to return than donors with minor or no reactions. The AOR of returning for donors with major reactions was 0.32 (95% confidence interval [CI], 0.28-0.37) and with minor reactions 0.59 (95% CI, 0.56-0.62) when compared to donors who did not have reactions. Conversely, the most important factors positively associated with return were the number of donations in the previous year and increasing age. Subsequent return, whether a major, minor, or no reaction occurred, varied by blood center. Factors that are associated with the risk of having adverse reactions were not substantial influences on the return after adverse reactions. Having an adverse reaction leads to significantly lower odds of subsequent donation irrespective of previous donation history. Factors that have been associated with a greater risk of adverse reactions were not important positive or negative predictors of return after a reaction. © 2011 American Association of Blood Banks.
Aligning Metabolic Pathways Exploiting Binary Relation of Reactions.
Huang, Yiran; Zhong, Cheng; Lin, Hai Xiang; Huang, Jing
2016-01-01
Metabolic pathway alignment has been widely used to find one-to-one and/or one-to-many reaction mappings to identify the alternative pathways that have similar functions through different sets of reactions, which has important applications in reconstructing phylogeny and understanding metabolic functions. The existing alignment methods exhaustively search reaction sets, which may become infeasible for large pathways. To address this problem, we present an effective alignment method for accurately extracting reaction mappings between two metabolic pathways. We show that connected relation between reactions can be formalized as binary relation of reactions in metabolic pathways, and the multiplications of zero-one matrices for binary relations of reactions can be accomplished in finite steps. By utilizing the multiplications of zero-one matrices for binary relation of reactions, we efficiently obtain reaction sets in a small number of steps without exhaustive search, and accurately uncover biologically relevant reaction mappings. Furthermore, we introduce a measure of topological similarity of nodes (reactions) by comparing the structural similarity of the k-neighborhood subgraphs of the nodes in aligning metabolic pathways. We employ this similarity metric to improve the accuracy of the alignments. The experimental results on the KEGG database show that when compared with other state-of-the-art methods, in most cases, our method obtains better performance in the node correctness and edge correctness, and the number of the edges of the largest common connected subgraph for one-to-one reaction mappings, and the number of correct one-to-many reaction mappings. Our method is scalable in finding more reaction mappings with better biological relevance in large metabolic pathways.
Fujiwara, Naoto; Tateishi, Ryosuke; Akahane, Masaaki; Taguri, Masataka; Minami, Tatsuya; Mikami, Shintaro; Sato, Masaya; Uchino, Koji; Uchino, Kouji; Enooku, Kenichiro; Kondo, Yuji; Asaoka, Yoshinari; Yamashiki, Noriyo; Goto, Tadashi; Shiina, Shuichiro; Yoshida, Haruhiko; Ohtomo, Kuni; Koike, Kazuhiko
2013-01-01
To elucidate whether repeated exposures to iodinated contrast media increase the risk of adverse reaction. We retrospectively reviewed 1,861 patients with hepatocellular carcinoma who visited authors' institution, a tertiary referral center, between 2004 and 2008. We analyzed cumulative probability of adverse reactions and risk factors. We categorized all symptoms into hypersensitivity reactions, physiologic reactions, and other reactions, according to the American College of Radiology guidelines, and evaluated each category as an event. We estimated the association between hazard for adverse reactions and the number of cumulative exposures to contrast media. We also evaluated subsequent contrast media injections and adverse reactions. There were 23,684 contrast media injections in 1,729 patients. One hundred and thirty-two patients were excluded because they were given no contrast media during the study period. Adverse reactions occurred in 196 (0.83%) patients. The cumulative incidence at 10(th), 20(th), and 30(th) examination was 7.9%, 15.2%, and 24.1%, respectively. Presence of renal impairment was found to be one of risk factors for adverse reactions. The estimated hazard of overall adverse reaction gradually decreased until around 10(th) exposure and rose with subsequent exposures. The estimated hazard of hypersensitivity showed V-shaped change with cumulative number of exposures. The estimated hazard of physiologic reaction had a tendency toward decreasing and that of other reaction had a tendency toward increasing. Second adverse reaction was more severe than the initial in only one among 130 patients receiving subsequent injections. Repeated exposures to iodinated contrast media increase the risk of adverse reaction.
ERIC Educational Resources Information Center
Nyasulu, Frazier; McMills, Lauren; Barlag, Rebecca
2013-01-01
A laboratory to determine the equilibrium constants of weak acid negative weak base reactions is described. The equilibrium constants of component reactions when multiplied together equal the numerical value of the equilibrium constant of the summative reaction. The component reactions are weak acid ionization reactions, weak base hydrolysis…
On understanding nuclear reaction network flows with branchings on directed graphs
NASA Astrophysics Data System (ADS)
Meyer, Bradley S.
2018-04-01
Nuclear reaction network flow diagrams are useful for understanding which reactions are governing the abundance changes at a particular time during nucleosynthesis. This is especially true when the flows are largely unidirectional, such as during the s-process of nucleosynthesis. In explosive nucleosynthesis, when reaction flows are large, and when forward reactions are nearly balanced by their reverses, reaction flows no longer give a clear picture of the abundance evolution in the network. This paper presents a way of understanding network evolution in terms of sums of branchings on a directed graph, which extends the concept of reaction flows to allow for multiple reaction pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manthe, Uwe, E-mail: uwe.manthe@uni-bielefeld.de; Ellerbrock, Roman, E-mail: roman.ellerbrock@uni-bielefeld.de
2016-05-28
A new approach for the quantum-state resolved analysis of polyatomic reactions is introduced. Based on the singular value decomposition of the S-matrix, energy-dependent natural reaction channels and natural reaction probabilities are defined. It is shown that the natural reaction probabilities are equal to the eigenvalues of the reaction probability operator [U. Manthe and W. H. Miller, J. Chem. Phys. 99, 3411 (1993)]. Consequently, the natural reaction channels can be interpreted as uniquely defined pathways through the transition state of the reaction. The analysis can efficiently be combined with reactive scattering calculations based on the propagation of thermal flux eigenstates. Inmore » contrast to a decomposition based straightforwardly on thermal flux eigenstates, it does not depend on the choice of the dividing surface separating reactants from products. The new approach is illustrated studying a prototypical example, the H + CH{sub 4} → H{sub 2} + CH{sub 3} reaction. The natural reaction probabilities and the contributions of the different vibrational states of the methyl product to the natural reaction channels are calculated and discussed. The relation between the thermal flux eigenstates and the natural reaction channels is studied in detail.« less
Granata, Vincenza; Cascella, Marco; Fusco, Roberta; dell'Aprovitola, Nicoletta; Catalano, Orlando; Filice, Salvatore; Schiavone, Vincenzo; Izzo, Francesco; Cuomo, Arturo; Petrillo, Antonella
2016-01-01
Background and Purpose. Contrast media (CM) for magnetic resonance imaging (MRI) may determine the development of acute adverse reactions. Objective was to retrospectively assess the frequency and severity of adverse reactions associated with gadolinium-based contrast agents (GBCAs) injection in patients who underwent MRI. Material and Methods. At our center 10608 MRI examinations with CM were performed using five different GBCAs: Gd-BOPTA (MultiHance), Gd-DTPA (Magnevist), Gd-EOBDTPA (Primovist), Gd-DOTA (Dotarem), and Gd-BTDO3A (Gadovist). Results. 32 acute adverse reactions occurred, accounting for 0.3% of all administration. Twelve reactions were associated with Gd-DOTA injection (0.11%), 9 with Gd-BOPTA injection (0.08%), 6 with Gd-BTDO3A (0.056%), 3 with Gd-EOB-DTPA (0.028%), and 2 with Gd-DTPA (0.018%). Twenty-four reactions (75.0%) were mild, four (12.5%) moderate, and four (12.5%) severe. The most severe reactions were seen associated with use of Gd-BOPTA, with 3 severe reactions in 32 total reactions. Conclusion. Acute adverse reactions are generally rare with the overall adverse reaction rate of 0.3%. The most common adverse reactions were not severe, consisting in skin rash and hives.
NASA Astrophysics Data System (ADS)
Ancipink, Windy; McCoy, John; Clarkson, Caitlyn; Kropka, Jamie; Celina, Mathias; Giron, Nicholas; Hailesilassie, Lebelo; Fredj, Narjes
The curing of a diglycidyl ether of bisphenol-A (DGEBA) epoxy with diethanolamine (DEA) involves a well understood fast amine-epoxide reaction followed by a more complicated slower hydroxyl-epoxide reaction. The time scale of these two reactions are well separated and can be studied independently from one another. The initial amine-epoxide reaction results in a tertiary amine adduct which is a product of the direct reaction of a secondary amine from the DEA reacting with a single DGEBA epoxide. The second hydroxyl-epoxide reaction results in a highly crosslinked glassy epoxy resin. The deviation in the mechanisms between high and low temperatures are discerned through the use of differential scanning calorimetry (DSC), infrared spectroscopy (IR), and isothermal microcalorimetry (IMC) data. Observations of reaction rates at temperatures ranging from 30° C to 110° C have led to the determination that the hydroxyl-epoxide reaction is temperature sensitive. The hydroxyl-epoxide reaction occurs through two different mechanisms: at low temperatures, the reaction is catalyzed by the tertiary amine adduct; at higher temperatures, the reaction does not appear to be catalyzed. Sandia National Laboratories, Albuquerque, NM.
Typewriting rate as a function of reaction time.
Hayes, V; Wilson, G D; Schafer, R L
1977-12-01
This study was designed to determine the relationship between reaction time and typewriting rate. Subjects were 24 typists ranging in age from 19 to 39 yr. Reaction times (.001 sec) to a light were recorded for each finger and to each alphabetic character and three punctuation marks. Analysis of variance yielded significant differences in reaction time among subjects and fingers. Correlation between typewriting rate and average reaction time to the alphabetic characters and three punctuation marks was --.75. Correlation between typewriting rate and the difference between the reaction time of the hands was --.42. Factors influencing typewriting rate may include reaction time of the fingers, difference between the reaction time of the hands, and reaction time to individual keys on the typewriter. Implications exist for instructional methodology and further research.
A dual-process model of reactions to perceived stigma.
Pryor, John B; Reeder, Glenn D; Yeadon, Christopher; Hesson-McLnnis, Matthew
2004-10-01
The authors propose a theoretical model of individual psychological reactions to perceived stigma. This model suggests that 2 psychological systems may be involved in reactions to stigma across a variety of social contexts. One system is primarily reflexive, or associative, whereas the other is rule based, or reflective. This model assumes a temporal pattern of reactions to the stigmatized, such that initial reactions are governed by the reflexive system, whereas subsequent reactions or "adjustments" are governed by the rule-based system. Support for this model was found in 2 studies. Both studies examined participants' moment-by-moment approach-avoidance reactions to the stigmatized. The 1st involved participants' reactions to persons with HIV/AIDS, and the 2nd, participants' reactions to 15 different stigmatizing conditions. (c) 2004 APA, all rights reserved
Lipase-catalyzed transesterification of soybean oil and phytosterol in supercritical CO2.
Hu, Lizhi; Llibin, Sun; Li, Jun; Qi, Liangjun; Zhang, Xu; Yu, Dianyu; Walid, Elfalleh; Jiang, Lianzhou
2015-12-01
The transesterification of phytosterol and soybean oil was performed using Novozym 435 in supercritical carbon dioxide (SC-CO2). The transesterification reaction was conducted in soybean oil containing 5-25% phytosterol at 55-95 °C and free-water solvent. The effects of temperature, reaction time, phytosterol concentration, lipase dosage and reaction pressure on the conversion rate of transesterification were investigated. The optimal reaction conditions were the reaction temperature (85 °C), reaction time (1 h), phytosterol concentration (5%), reaction pressure (8 Mpa) and lipase dosage (1%). The highest conversion rate of 92% could be achieved under the optimum conditions. Compared with the method of lipase-catalyzed transesterification of phytosterol and soybean oil at normal pressure, the transesterification in SC-CO2 reduced significantly the reaction temperature and reaction time.
Understanding pretest and posttest reactions to cognitive ability and personality tests.
Chan, D; Schmitt, N; Sacco, J M; DeShon, R P
1998-06-01
To understand the nature of test reactions and their relationship to test performance, the relationships among belief in tests, pretest reactions, test performance, and posttest reactions were modeled for cognitive ability and personality tests. Results from structural equation models that were fitted to responses from 197 undergraduate examinees supported the hypothesized relationships. On the cognitive ability test, pretest reactions affected test performance and mediated the relationship between belief in tests and test performance. Test performance affected posttest reactions even after taking into account the effect of pretest reactions. On the personality test, belief in tests affected pretest and posttest reactions, but the three variables were unrelated to test performance (Conscientiousness scores). Conceptual, methodological, and practical implications of the findings are discussed in the context of research on test reactions and test performance.
Reaction Decoder Tool (RDT): extracting features from chemical reactions.
Rahman, Syed Asad; Torrance, Gilliean; Baldacci, Lorenzo; Martínez Cuesta, Sergio; Fenninger, Franz; Gopal, Nimish; Choudhary, Saket; May, John W; Holliday, Gemma L; Steinbeck, Christoph; Thornton, Janet M
2016-07-01
Extracting chemical features like Atom-Atom Mapping (AAM), Bond Changes (BCs) and Reaction Centres from biochemical reactions helps us understand the chemical composition of enzymatic reactions. Reaction Decoder is a robust command line tool, which performs this task with high accuracy. It supports standard chemical input/output exchange formats i.e. RXN/SMILES, computes AAM, highlights BCs and creates images of the mapped reaction. This aids in the analysis of metabolic pathways and the ability to perform comparative studies of chemical reactions based on these features. This software is implemented in Java, supported on Windows, Linux and Mac OSX, and freely available at https://github.com/asad/ReactionDecoder : asad@ebi.ac.uk or s9asad@gmail.com. © The Author 2016. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Kojima, H.; Yamada, A.; Okazaki, S.
2015-05-01
The intramolecular proton transfer reaction of malonaldehyde in neon solvent has been investigated by mixed quantum-classical molecular dynamics (QCMD) calculations and fully classical molecular dynamics (FCMD) calculations. Comparing these calculated results with those for malonaldehyde in water reported in Part I [A. Yamada, H. Kojima, and S. Okazaki, J. Chem. Phys. 141, 084509 (2014)], the solvent dependence of the reaction rate, the reaction mechanism involved, and the quantum effect therein have been investigated. With FCMD, the reaction rate in weakly interacting neon is lower than that in strongly interacting water. However, with QCMD, the order of the reaction rates is reversed. To investigate the mechanisms in detail, the reactions were categorized into three mechanisms: tunneling, thermal activation, and barrier vanishing. Then, the quantum and solvent effects were analyzed from the viewpoint of the reaction mechanism focusing on the shape of potential energy curve and its fluctuations. The higher reaction rate that was found for neon in QCMD compared with that found for water solvent arises from the tunneling reactions because of the nearly symmetric double-well shape of the potential curve in neon. The thermal activation and barrier vanishing reactions were also accelerated by the zero-point energy. The number of reactions based on these two mechanisms in water was greater than that in neon in both QCMD and FCMD because these reactions are dominated by the strength of solute-solvent interactions.
Organic syntheses employing supercritical carbon dioxide as a reaction solvent
NASA Technical Reports Server (NTRS)
Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)
1991-01-01
Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.
Organic syntheses employing supercritical carbon dioxide as a reaction solvent
NASA Technical Reports Server (NTRS)
Barstow, Leon E. (Inventor); Ward, Glen D. (Inventor); Bier, Milan (Inventor)
1993-01-01
Chemical reactions are readily carried out using supercritical carbon dioxide as the reaction medium. Supercritical carbon dioxide is of special value as a reaction medium in reactions for synthesizing polypeptides, for sequencing polypeptides, or for amino acid analysis.
Direct Monte Carlo simulation of chemical reaction systems: Simple bimolecular reactions
NASA Astrophysics Data System (ADS)
Piersall, Shannon D.; Anderson, James B.
1991-07-01
In applications to several simple reaction systems we have explored a ``direct simulation'' method for predicting and understanding the behavior of gas phase chemical reaction systems. This Monte Carlo method, originated by Bird, has been found remarkably successful in treating a number of difficult problems in rarefied dynamics. Extension to chemical reactions offers a powerful tool for treating reaction systems with nonthermal distributions, with coupled gas-dynamic and reaction effects, with emission and adsorption of radiation, and with many other effects difficult to treat in any other way. The usual differential equations of chemical kinetics are eliminated. For a bimolecular reaction of the type A+B→C+D with a rate sufficiently low to allow a continued thermal equilibrium of reactants we find that direct simulation reproduces the expected second order kinetics. Simulations for a range of temperatures yield the activation energies expected for the reaction models specified. For faster reactions under conditions leading to a depletion of energetic reactant species, the expected slowing of reaction rates and departures from equilibrium distributions are observed. The minimum sample sizes required for adequate simulations are as low as 1000 molecules for these cases. The calculations are found to be simple and straightforward for the homogeneous systems considered. Although computation requirements may be excessively high for very slow reactions, they are reasonably low for fast reactions, for which nonequilibrium effects are most important.
[Food allergy or food intolerance?].
Maître, S; Maniu, C-M; Buss, G; Maillard, M H; Spertini, F; Ribi, C
2014-04-16
Adverse food reactions can be classified into two main categories depending on wether an immune mechanism is involved or not. The first category includes immune mediated reactions like IgE mediated food allergy, eosinophilic oesophagitis, food protein-induced enterocolitis syndrome and celiac disease. The second category implies non-immune mediated adverse food reactions, also called food intolerances. Intoxications, pharmacologic reactions, metabolic reactions, physiologic, psychologic or reactions with an unknown mechanism belong to this category. We present a classification of adverse food reactions based on the pathophysiologic mechanism that can be useful for both diagnostic approach and management.
Yao, Qian; Cao, Xiao-Mei; Zong, Wen-Gang; Sun, Xiao-Hui; Li, Ze-Rong; Li, Xiang-Yuan
2018-05-31
The isodesmic reaction method is applied to calculate the potential energy surface (PES) along the reaction coordinates and the rate constants of the barrierless reactions for unimolecular dissociation reactions of alkanes to form two alkyl radicals and their reverse recombination reactions. The reaction class is divided into 10 subclasses depending upon the type of carbon atoms in the reaction centers. A correction scheme based on isodesmic reaction theory is proposed to correct the PESs at UB3LYP/6-31+G(d,p) level. To validate the accuracy of this scheme, a comparison of the PESs at B3LYP level and the corrected PESs with the PESs at CASPT2/aug-cc-pVTZ level is performed for 13 representative reactions, and it is found that the deviations of the PESs at B3LYP level are up to 35.18 kcal/mol and are reduced to within 2 kcal/mol after correction, indicating that the PESs for barrierless reactions in a subclass can be calculated meaningfully accurately at a low level of ab initio method using our correction scheme. High-pressure limit rate constants and pressure dependent rate constants of these reactions are calculated based on their corrected PESs and the results show the pressure dependence of the rate constants cannot be ignored, especially at high temperatures. Furthermore, the impact of molecular size on the pressure-dependent rate constants of decomposition reactions of alkanes and their reverse reactions has been studied. The present work provides an effective method to generate meaningfully accurate PESs for large molecular system.
Fujiwara, Naoto; Tateishi, Ryosuke; Akahane, Masaaki; Taguri, Masataka; Minami, Tatsuya; Mikami, Shintaro; Sato, Masaya; Uchino, Kouji; Enooku, Kenichiro; Kondo, Yuji; Asaoka, Yoshinari; Yamashiki, Noriyo; Goto, Tadashi; Shiina, Shuichiro; Yoshida, Haruhiko; Ohtomo, Kuni; Koike, Kazuhiko
2013-01-01
Background To elucidate whether repeated exposures to iodinated contrast media increase the risk of adverse reaction. Materials and Methods We retrospectively reviewed 1,861 patients with hepatocellular carcinoma who visited authors’ institution, a tertiary referral center, between 2004 and 2008. We analyzed cumulative probability of adverse reactions and risk factors. We categorized all symptoms into hypersensitivity reactions, physiologic reactions, and other reactions, according to the American College of Radiology guidelines, and evaluated each category as an event. We estimated the association between hazard for adverse reactions and the number of cumulative exposures to contrast media. We also evaluated subsequent contrast media injections and adverse reactions. Results There were 23,684 contrast media injections in 1,729 patients. One hundred and thirty-two patients were excluded because they were given no contrast media during the study period. Adverse reactions occurred in 196 (0.83%) patients. The cumulative incidence at 10th, 20th, and 30th examination was 7.9%, 15.2%, and 24.1%, respectively. Presence of renal impairment was found to be one of risk factors for adverse reactions. The estimated hazard of overall adverse reaction gradually decreased until around 10th exposure and rose with subsequent exposures. The estimated hazard of hypersensitivity showed V-shaped change with cumulative number of exposures. The estimated hazard of physiologic reaction had a tendency toward decreasing and that of other reaction had a tendency toward increasing. Second adverse reaction was more severe than the initial in only one among 130 patients receiving subsequent injections. Conclusion Repeated exposures to iodinated contrast media increase the risk of adverse reaction. PMID:24098420
Simple model of inhibition of chain-branching combustion processes
NASA Astrophysics Data System (ADS)
Babushok, Valeri I.; Gubernov, Vladimir V.; Minaev, Sergei S.; Miroshnichenko, Taisia P.
2017-11-01
A simple kinetic model has been suggested to describe the inhibition and extinction of flame propagation in reaction systems with chain-branching reactions typical for hydrocarbon systems. The model is based on the generalised model of the combustion process with chain-branching reaction combined with the one-stage reaction describing the thermal mode of flame propagation with the addition of inhibition reaction steps. Inhibitor addition suppresses the radical overshoot in flame and leads to the change of reaction mode from the chain-branching reaction to a thermal mode of flame propagation. With the increase of inhibitor the transition of chain-branching mode of reaction to the reaction with straight-chains (non-branching chain reaction) is observed. The inhibition part of the model includes a block of three reactions to describe the influence of the inhibitor. The heat losses are incorporated into the model via Newton cooling. The flame extinction is the result of the decreased heat release of inhibited reaction processes and the suppression of radical overshoot with the further decrease of the reaction rate due to the temperature decrease and mixture dilution. A comparison of the results of modelling laminar premixed methane/air flames inhibited by potassium bicarbonate (gas phase model, detailed kinetic model) with the results obtained using the suggested simple model is presented. The calculations with the detailed kinetic model demonstrate the following modes of combustion process: (1) flame propagation with chain-branching reaction (with radical overshoot, inhibitor addition decreases the radical overshoot down to the equilibrium level); (2) saturation of chemical influence of inhibitor, and (3) transition to thermal mode of flame propagation (non-branching chain mode of reaction). The suggested simple kinetic model qualitatively reproduces the modes of flame propagation with the addition of the inhibitor observed using detailed kinetic models.
An Iodine Fluorescence Quenching Clock Reaction
NASA Astrophysics Data System (ADS)
Weinberg, Richard B.
2007-05-01
A fluorescent clock reaction is described that is based on the principles of the Landolt iodine reaction but uses the potent fluorescence quenching properties of triiodide to abruptly extinguish the ultraviolet fluorescence of optical brighteners present in liquid laundry detergents. The reaction uses easily obtained household products. One variation illustrates the sequential steps and mechanisms of the reaction; other variations maximize the dramatic impact of the demonstration; and a variation that uses liquid detergent in the Briggs Rauscher reaction yields a striking oscillating luminescence. The iodine fluorescence quenching clock reaction can be used in the classroom to explore not only the principles of redox chemistry and reaction kinetics, but also the photophysics of fluorescent pH probes and optical quenching.
Reactivity of bromoalkanes in reactions of coordinated molecular decay
NASA Astrophysics Data System (ADS)
Pokidova, T. S.; Denisov, E. T.
2016-09-01
The results from experiments on reactions of the coordinated molecular decay of RBr bromoalkanes on olefin and HBr are analyzed using the model of intersecting parabolas (MIP). Kinetic parameters within the MIP are calculated from the experimental data, enabling calculation of the activation energies ( E) and rate constants ( k) of such reactions, based on the enthalphy of the reaction and the MIP algorithms. The factors affecting the E of the RBr decay reaction are established: the enthalphy of the reaction, triplet repulsion, the energy of radical R• stabilization, the presence of a π bond adjacent to the reaction center, and the dipole-dipole interaction of polar groups. The energy spectrum of the partial energies of activation is constructed for the reaction of coordinated molecular decay of RBr, and the E and k of inverse addition reactions are evaluated.
Defect reaction network in Si-doped InAs. Numerical predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Peter A.
This Report characterizes the defects in the def ect reaction network in silicon - doped, n - type InAs predicted with first principles density functional theory. The reaction network is deduced by following exothermic defect reactions starting with the initially mobile interstitial defects reacting with common displacement damage defects in Si - doped InAs , until culminating in immobile reaction p roducts. The defect reactions and reaction energies are tabulated, along with the properties of all the silicon - related defects in the reaction network. This Report serves to extend the results for the properties of intrinsic defects in bulkmore » InAs as colla ted in SAND 2013 - 2477 : Simple intrinsic defects in InAs : Numerical predictions to include Si - containing simple defects likely to be present in a radiation - induced defect reaction sequence . This page intentionally left blank« less
77 FR 21676 - Silicic Acid, Sodium Salt etc.; Tolerance Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-11
... Silicic acid, sodium salt, reaction products with chlorotrimethylsilane and iso-propyl alcohol, reaction..., reaction products with chlorotrimethylsilane and iso-propyl alcohol, reaction with poly(oxypropylene)-poly... from the requirement of a tolerance for residues of Silicic acid, sodium salt, reaction products with...
Experimental Demonstrations in Teaching Chemical Reactions.
ERIC Educational Resources Information Center
Hugerat, Muhamad; Basheer, Sobhi
2001-01-01
Presents demonstrations of chemical reactions by employing different features of various compounds that can be altered after a chemical change occurs. Experimental activities include para- and dia-magnetism in chemical reactions, aluminum reaction with base, reaction of acid with carbonates, use of electrochemical cells for demonstrating chemical…
Inorganic Reaction Mechanisms. Part I
ERIC Educational Resources Information Center
Cooke, D. O.
1976-01-01
Provides a collection of data on the mechanistic aspects of inorganic chemical reactions. Wherever possible includes procedures for classroom demonstration or student project work. The material covered includes gas phase reactions, reactions in solution, mechanisms of electron transfer, the reaction between iron III and iodine, and hydrolysis. (GS)
No evidence of reaction time slowing in autism spectrum disorder.
Ferraro, F Richard
2016-01-01
A total of 32 studies comprising 238 simple reaction time and choice reaction time conditions were examined in individuals with autism spectrum disorder (n = 964) and controls (n = 1032). A Brinley plot/multiple regression analysis was performed on mean reaction times, regressing autism spectrum disorder performance onto the control performance as a way to examine any generalized simple reaction time/choice reaction time slowing exhibited by the autism spectrum disorder group. The resulting regression equation was Y (autism spectrum disorder) = 0.99 × (control) + 87.93, which accounted for 92.3% of the variance. These results suggest that there are little if any simple reaction time/choice reaction time slowing in this sample of individual with autism spectrum disorder, in comparison with controls. While many cognitive and information processing domains are compromised in autism spectrum disorder, it appears that simple reaction time/choice reaction time remain relatively unaffected in autism spectrum disorder. © The Author(s) 2014.
Atherton–Todd reaction: mechanism, scope and applications
Le Corre, Stéphanie S; Berchel, Mathieu; Couthon-Gourvès, Hélène; Haelters, Jean-Pierre
2014-01-01
Summary Initially, the Atherton–Todd (AT) reaction was applied for the synthesis of phosphoramidates by reacting dialkyl phosphite with a primary amine in the presence of carbon tetrachloride. These reaction conditions were subsequently modified with the aim to optimize them and the reaction was extended to different nucleophiles. The mechanism of this reaction led to controversial reports over the past years and is adequately discussed. We also present the scope of the AT reaction. Finally, we investigate the AT reaction by means of exemplary applications, which mainly concern three topics. First, we discuss the activation of a phenol group as a phosphate which allows for subsequent transformations such as cross coupling and reduction. Next, we examine the AT reaction applied to produce fire retardant compounds. In the last section, we investigate the use of the AT reaction for the production of compounds employed for biological applications. The selected examples to illustrate the applications of the Atherton–Todd reaction mainly cover the past 15 years. PMID:24991268
Sleeve reaction chamber system
Northrup, M Allen [Berkeley, CA; Beeman, Barton V [San Mateo, CA; Benett, William J [Livermore, CA; Hadley, Dean R [Manteca, CA; Landre, Phoebe [Livermore, CA; Lehew, Stacy L [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA
2009-08-25
A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.
Novel duplex vapor-electrochemical method for silicon solar cells
NASA Technical Reports Server (NTRS)
Nanis, L.; Sanjurjo, A.; Westphal, S.
1979-01-01
Optimization studies were carried out for the SiF4-Na reaction with solid Na feed. The goals of the study were the consistent production of high purity reaction products and the gathering of relevant information needed to scale-up the reactor. Parameters studied include: (1) effect of surface to volume ratio of Na slices on the extent of reaction; (2) effect of Na surface oxidation on the extent of reaction; (3) effect of external heating on the extent of SiF4-Na reaction; (4) effect of Na slice addition rate on extent of the reaction; and (5) SiF4-Na reaction - high pressure experiments. An investigation was also made of the possible role played by NaF as a fluxing agent during the separation of silicon by melting of the reaction product (Si + NaF) mixture. Since silicon can be produced by the thermite reaction between Na2SiF6 and Na, studies were initiated to gather information on parameters which control the efficiency of the thermite reaction.
Optical reaction cell and light source for ›18F! fluoride radiotracer synthesis
Ferrieri, Richard A.; Schlyer, David; Becker, Richard J.
1998-09-15
Apparatus for performing organic synthetic reactions, particularly no-carrier-added nucleophilic radiofluorination reactions for PET radiotracer production. The apparatus includes an optical reaction cell and a source of broadband infrared radiant energy, which permits direct coupling of the emitted radiant energy with the reaction medium to heat the reaction medium. Preferably, the apparatus includes means for focusing the emitted radiant energy into the reaction cell, and the reaction cell itself is preferably configured to reflect transmitted radiant energy back into the reaction medium to further improve the efficiency of the apparatus. The apparatus is well suited to the production of high-yield syntheses of 2-›.sup.18 F!fluoro-2-deoxy-D-glucose. Also provided is a method for performing organic synthetic reactions, including the manufacture of ›.sup.18 F!-labeled compounds useful as PET radiotracers, and particularly for the preparation of 2-›.sup.18 F!fluoro-2-deoxy-D-glucose in higher yields than previously possible.
Optical reaction cell and light source for [18F] fluoride radiotracer synthesis
Ferrieri, R.A.; Schlyer, D.; Becker, R.J.
1998-09-15
An apparatus is disclosed for performing organic synthetic reactions, particularly no-carrier-added nucleophilic radiofluorination reactions for PET radiotracer production. The apparatus includes an optical reaction cell and a source of broadband infrared radiant energy, which permits direct coupling of the emitted radiant energy with the reaction medium to heat the reaction medium. Preferably, the apparatus includes means for focusing the emitted radiant energy into the reaction cell, and the reaction cell itself is preferably configured to reflect transmitted radiant energy back into the reaction medium to further improve the efficiency of the apparatus. The apparatus is well suited to the production of high-yield syntheses of 2-[{sup 18}F]fluoro-2-deoxy-Dglucose. Also provided is a method for performing organic synthetic reactions, including the manufacture of [{sup 18}F]-labeled compounds useful as PET radiotracers, and particularly for the preparation of 2-[{sup 18}F]fluoro-2-deoxy-D-glucose in higher yields than previously possible. 4 figs.
Anaphylactoid reactions to the nonvascular administration of water-soluble iodinated contrast media.
Davis, Peter L
2015-06-01
Anaphylactoidlike reactions occur during the nonvascular administration of iodinated contrast media. Many of these reactions have been severe. These reactions have occurred with many procedures, including gastrointestinal imaging, cystography, sialography, and hysterosalpingography. This article reviews reports of these reactions. It also reviews what the literature recommends concerning how to deal with individuals undergoing these procedures who are at a higher risk for anaphylactoidlike reactions.
Application of Ionic Liquids in Pot-in-Pot Reactions.
Çınar, Simge; Schulz, Michael D; Oyola-Reynoso, Stephanie; Bwambok, David K; Gathiaka, Symon M; Thuo, Martin
2016-02-26
Pot-in-pot reactions are designed such that two reaction media (solvents, catalysts and reagents) are isolated from each other by a polymeric membrane similar to matryoshka dolls (Russian nesting dolls). The first reaction is allowed to progress to completion before triggering the second reaction in which all necessary solvents, reactants, or catalysts are placed except for the starting reagent for the target reaction. With the appropriate trigger, in most cases unidirectional flux, the product of the first reaction is introduced to the second medium allowing a second transformation in the same glass reaction pot--albeit separated by a polymeric membrane. The basis of these reaction systems is the controlled selective flux of one reagent over the other components of the first reaction while maintaining steady-state catalyst concentration in the first "pot". The use of ionic liquids as tools to control chemical potential across the polymeric membranes making the first pot is discussed based on standard diffusion models--Fickian and Payne's models. Besides chemical potential, use of ionic liquids as delivery agent for a small amount of a solvent that slightly swells the polymeric membrane, hence increasing flux, is highlighted. This review highlights the critical role ionic liquids play in site-isolation of multiple catalyzed reactions in a standard pot-in-pot reaction.
Kinetics of First-Row Transition Metal Cations (V+, Fe+, Co+) with OCS at Thermal Energies.
Sweeny, Brendan C; Ard, Shaun G; Shuman, Nicholas S; Viggiano, Albert A
2018-05-03
The temperature-dependent kinetics for reactions of V + , Fe + , and Co + with OCS are measured using a selected ion flow tube apparatus heated to 300-600 K. All three reactions proceed solely by C-S activation at thermal energies, resulting in metal sulfide cation formation. Previously calculated reaction pathways were employed to inform statistical modeling of these reactions for comparison to the data. As surmised previously, all three reactions at thermal energies require spin crossing, with the Fe + reaction crossing once circumventing a prohibitive transition state, before crossing again to form ground state products. The Fe + and Co + reaction efficiencies increase with energy. For the Co + reaction, and to a lesser extent the Fe + reaction, the apparent activation energies are less than the reaction endothermicities, possibly indicating increasing diabatic behavior of the spin crossings with energy. The V + reaction was well modeled assuming an entirely adiabatic spin crossing, such that the resultant avoided crossing behaves similarly to a tight transition state. The subsequent reaction of VS + with OCS producing VS 2 + is also investigated; the rate-limiting transition state energy derived from statistical modeling is poorly reproduced by quantum calculations using a variety of methods, highlighting the large (1-2 eV) uncertainty in calculated energetics of transition-metal containing species.
Driving Ability of HMX based Aluminized Explosive Affected by the Reaction Degree of Aluminum Powder
NASA Astrophysics Data System (ADS)
Duan, Yingliang
2017-06-01
Due to the time scale of aluminum reaction, the detonation process of the aluminized explosive becomes very complex, and there is less agreement on the reaction mechanism of aluminum powder. If the reaction of aluminum occurs in the reaction zone, the energy released will further strengthen the work ability of detonation wave. So it is very important for characterizing the detonation parameters and detonation driving ability to accurately understand the role of aluminum powder in the reaction zone. In this paper, detonation driving process of HMX based aluminized explosive was studied by cylinder test, obtaining the expansion track of cylinder wall. In order to further research the reaction degree (λ) of aluminum in the reaction zone, the thermodynamic program VHL was used to calculate the detonation process at different reaction degrees, obtaining the parameters of detonation products thermodynamic state. Using the dynamic software LS-DYNA and the JWL equation of state by fitting the pressure and relative volume relationship, the cylinder test was simulated. Compared with the experimental results, when the reaction degree is 20%, the driving ability is found to be in agreement with measured ones. It is concluded that the driving ability of HMX based aluminized explosive can be more accurately characterized by considering the reaction degree of aluminum powder in the reaction zone.
Hypersensitive Reaction to Tattoos: A Growing Menace in Rural India
Shashikumar, B M; Harish, M R; Shwetha, B; Kavya, M; Deepadarshan, K; Phani, H N
2017-01-01
Background: Increased enthusiasm toward newer fashion trends among rural India along with the lack of government regulation has led to increased tattoo reactions. Objective: The objective of this study is to describe various clinical manifestations of hypersensitive reactions to tattoo ink reported at a tertiary care hospital in Mandya district. Materials and Methods: An observational study was carried out over a period of 1 year from June 2014 to May 2015 at Mandya Institute of Medical Sciences, Mandya. All the patients reporting with allergic reaction due to tattooing were included in the present study after obtaining informed consent. Transient acute inflammatory reaction, infections, and skin diseases localized on tattooed area were excluded from this study. A detailed history regarding the onset, duration and color used for tattooing were collected. Cutaneous examination and biopsy was to done to know the type of reaction. Results: Fifty cutaneous allergic reactions were diagnosed among 39 patients. Mean age of subjects was 22 years and mean duration before the appearance of lesion was 7 months. Common colors associated with reactions were red (53.9%), black (33.3%), green (5.1%), and multicolor (7.7%). Itching was the predominant symptom. Skin lesions mainly consisted of lichenoid papules and plaques, eczematous lesions, and verrucous lesions. Lichenoid histopathology reaction was the most common tissue allergic reaction. Conclusion: Increasing popularity of tattooing among young people has predisposed to parallel increase in adverse reactions. Red pigment is most common cause of allergic reaction in the present study, and lichenoid reaction is the most common reaction. PMID:28584372
Allergic-like reactions to asparaginase: Atypical allergies without asparaginase inactivation.
Kloos, Robin Q H; Pieters, Rob; Escherich, Gabriele; van der Sluis, Inge M
2016-11-01
Asparaginase is an important component of pediatric acute lymphoblastic leukemia (ALL) therapy. Unfortunately, this treatment is hampered by hypersensitivity reactions. In general, allergies - regardless of severity - cause complete inactivation of the drug. However, we report atypical allergic reactions without inactivation of asparaginase, here called allergic-like reactions. Patients with an allergic-like reaction, who were treated according to the Dutch Childhood Oncology Group ALL-11 or the CoALL 08-09 protocol, were described. The reactions were identified by continual measurement of asparaginase activity levels. Characteristics, including timing of occurrence, symptoms, grade, and the presence of antiasparaginase antibodies, were compared to those of real allergies. Fourteen allergic-like reactions occurred in nine patients. Five reactions were to PEGasparaginase and nine to Erwinia asparaginase. Allergic-like reactions occurred relatively late after the start of infusion compared to real allergies. Antibodies were absent in all but one patient with an allergic-like reaction, while they were detected in all patients with a real allergy. Symptoms and grade did not differ between the groups. Asparaginase was continued with the same formulation in six patients of whom four finished treatment with adequate activity levels. In conclusion, allergic-like reactions occur relatively late after the start of infusion and without antibodies. Despite these clinical differences, allergic-like reactions can only be distinguished from real allergies by continually measuring asparaginase activity levels. If clinically tolerated, formulations should not be switched in case of allergic-like reactions. Moreover, failure to recognize these reactions may lead to a less favorable prognosis if asparaginase therapy is terminated unnecessarily. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, H.; Yamada, A.; Okazaki, S., E-mail: okazaki@apchem.nagoya-u.ac.jp
2015-05-07
The intramolecular proton transfer reaction of malonaldehyde in neon solvent has been investigated by mixed quantum–classical molecular dynamics (QCMD) calculations and fully classical molecular dynamics (FCMD) calculations. Comparing these calculated results with those for malonaldehyde in water reported in Part I [A. Yamada, H. Kojima, and S. Okazaki, J. Chem. Phys. 141, 084509 (2014)], the solvent dependence of the reaction rate, the reaction mechanism involved, and the quantum effect therein have been investigated. With FCMD, the reaction rate in weakly interacting neon is lower than that in strongly interacting water. However, with QCMD, the order of the reaction rates ismore » reversed. To investigate the mechanisms in detail, the reactions were categorized into three mechanisms: tunneling, thermal activation, and barrier vanishing. Then, the quantum and solvent effects were analyzed from the viewpoint of the reaction mechanism focusing on the shape of potential energy curve and its fluctuations. The higher reaction rate that was found for neon in QCMD compared with that found for water solvent arises from the tunneling reactions because of the nearly symmetric double-well shape of the potential curve in neon. The thermal activation and barrier vanishing reactions were also accelerated by the zero-point energy. The number of reactions based on these two mechanisms in water was greater than that in neon in both QCMD and FCMD because these reactions are dominated by the strength of solute–solvent interactions.« less
Reaction front dynamics under shear flow for arbitrary Damköhler numbers
NASA Astrophysics Data System (ADS)
Bandopadhyay, Aditya; Méheust, Yves; Le Borgne, Tanguy
2016-04-01
Reaction fronts where two reactive fluids displace one another play an important role in a range of applications, including contaminant plume transport and reaction, soil and aquifer remediation, CO2 sequestration, geothermal dipoles and the development of hotspots of reaction in mixing zones. The background flow induces enhanced mixing, and therefore reaction, through interfacial shear. Hence the coupling of fluid flow with chemical reactions is pivotal in understanding and quantifying effective reaction kinetics in reaction fronts. While this problem has been addressed in the limit of fast reactions (e.g. de Simoni 2005, Le Borgne 2014), in natural systems reactions can span a large range of Damköhler numbers since their characteristic reaction times vary over a large range of typical values. Here the coupling of shear flow and reversible chemical reactions is studied for a reaction front with initially separated reactants at arbitrary Damköhler numbers. Approximate analytical expressions for the global production rate are derived based on a reactive lamella approach. We observe three distinct regimes, each of them characterized by different scalings of the global production rate and width of the reactive zone. We describe the dependency of these scalings and the associated characteristic transition times as a function of Damköhler and Péclet numbers. These results are validated against 2D numerical simulations. The study is expected to shed light on the inherently complex cases of reactive mixing with varying reaction rates under the influence of an imposed flow. de Simoni et al. (2005) Water Resour. Res., 41, W11410 Le Borgne et al. (2014) GRL, 41(22), 7898
An efficient graph theory based method to identify every minimal reaction set in a metabolic network
2014-01-01
Background Development of cells with minimal metabolic functionality is gaining importance due to their efficiency in producing chemicals and fuels. Existing computational methods to identify minimal reaction sets in metabolic networks are computationally expensive. Further, they identify only one of the several possible minimal reaction sets. Results In this paper, we propose an efficient graph theory based recursive optimization approach to identify all minimal reaction sets. Graph theoretical insights offer systematic methods to not only reduce the number of variables in math programming and increase its computational efficiency, but also provide efficient ways to find multiple optimal solutions. The efficacy of the proposed approach is demonstrated using case studies from Escherichia coli and Saccharomyces cerevisiae. In case study 1, the proposed method identified three minimal reaction sets each containing 38 reactions in Escherichia coli central metabolic network with 77 reactions. Analysis of these three minimal reaction sets revealed that one of them is more suitable for developing minimal metabolism cell compared to other two due to practically achievable internal flux distribution. In case study 2, the proposed method identified 256 minimal reaction sets from the Saccharomyces cerevisiae genome scale metabolic network with 620 reactions. The proposed method required only 4.5 hours to identify all the 256 minimal reaction sets and has shown a significant reduction (approximately 80%) in the solution time when compared to the existing methods for finding minimal reaction set. Conclusions Identification of all minimal reactions sets in metabolic networks is essential since different minimal reaction sets have different properties that effect the bioprocess development. The proposed method correctly identified all minimal reaction sets in a both the case studies. The proposed method is computationally efficient compared to other methods for finding minimal reaction sets and useful to employ with genome-scale metabolic networks. PMID:24594118
Normobaric hypoxia overnight impairs cognitive reaction time.
Pramsohler, Stephan; Wimmer, Stefan; Kopp, Martin; Gatterer, Hannes; Faulhaber, Martin; Burtscher, Martin; Netzer, Nikolaus Cristoph
2017-05-15
Impaired reaction time in patients suffering from hypoxia during sleep, caused by sleep breathing disorders, is a well-described phenomenon. High altitude sleep is known to induce periodic breathing with central apneas and oxygen desaturations, even in perfectly healthy subjects. However, deficits in reaction time in mountaineers or workers after just some nights of hypoxia exposure are not sufficiently explored. Therefore, we aimed to investigate the impact of sleep in a normobaric hypoxic environment on reaction time divided by its cognitive and motoric components. Eleven healthy non acclimatized students (5f, 6m, 21 ± 2.1 years) slept one night at a simulated altitude of 3500 m in a normobaric hypoxic room, followed by a night with polysomnography at simulated 5500 m. Preexisting sleep disorders were excluded via BERLIN questionnaire. All subjects performed a choice reaction test (SCHUHFRIED RT, S3) at 450 m and directly after the nights at simulated 3500 and 5500 m. We found a significant increase of cognitive reaction time with higher altitude (p = 0.026). No changes were detected in movement time (p = n.s.). Reaction time, the combined parameter of cognitive- and motoric reaction time, didn't change either (p = n.s.). Lower SpO 2 surprisingly correlated significantly with shorter cognitive reaction time (r = 0.78, p = 0.004). Sleep stage distribution and arousals at 5500 m didn't correlate with reaction time, cognitive reaction time or movement time. Sleep in hypoxia does not seem to affect reaction time to simple tasks. The component of cognitive reaction time is increasingly delayed whereas motoric reaction time seems not to be affected. Low SpO 2 and arousals are not related to increased cognitive reaction time therefore the causality remains unclear. The fact of increased cognitive reaction time after sleep in hypoxia, considering high altitude workers and mountaineering operations with overnight stays, should be further investigated.
Medication Desensitization: Characterization of Outcomes and Risk Factors for Reactions.
Murray, Taryn S; Rice, Todd W; Wheeler, Arthur P; Phillips, Elizabeth J; Dworski, Ryszard T; Stollings, Joanna L
2016-03-01
Although its mechanisms are poorly understood, desensitization has been used to induce a temporary state of immune unresponsiveness in patients who have IgE-, non-IgE-, or pharmacologically mediated reactions when a drug has no alternatives. The purpose of this study was to characterize the outcomes and identify risk factors for reactions during drug desensitization. A retrospective review of electronic medical records of adult patients undergoing drug desensitization from January 1, 2011, to December 31, 2013, was conducted in 2 intensive care units at a tertiary medical center. We used multivariate analysis to determine if specified risk factors were associated with reacting during the desensitization. Reactions were classified according to the pretest probability prior to desensitization, and then, reactions during desensitization were classified based on the occurrence of cutaneous reactions as follows: successful with no reaction, mild reaction, moderate reaction, or failed. Failure could result from any systemic allergic or cutaneous reaction resulting in procedure termination. The desensitizations were also assessed to determine if the patient required de-escalation secondary to a reaction. A total of 88 desensitizations were performed in 69 patients. Desensitization was completed with no cutaneous reaction in 85% of patients. No baseline characteristic, medication class (P = 0.46), or indication for desensitization (P = 0.59) was associated with having a reaction. Reported histories of urticaria (P < 0.0001) and labored breathing (P = 0.003) during prior exposure were significant in identifying patients who might have a reaction during desensitization. However, neither history of urticaria nor labored breathing was independently associated with having a reaction in multivariate analysis (OR = 0.979, 95% CI = 0.325-2.952, P = 0.970, and OR = 1.626, 95% CI = 0.536-4.931, P = 0.739, respectively). Drug desensitization is safe for patients who have no alternative for therapy. Reported allergy histories of urticaria and labored breathing are both associated with having a reaction during the desensitization process. © The Author(s) 2016.
ERIC Educational Resources Information Center
Schmitz, Guy
2005-01-01
The definition of reaction rate is derived and demonstrations are made for the care to be taken while using the term. Reaction rate can be in terms of a reaction property, the extent of reaction and thus it is possible to give a definition applicable in open and closed systems.
21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.
Code of Federal Regulations, 2011 CFR
2011-04-01
... chemical reactions, other than addition reactions, occur when they are mixed. (2) Polymers identified in...; provided that no chemical reactions, other than addition reactions, occur when they are combined. Such... weight-percent of polymer units derived from butadiene-styrene copolymers. (c) No chemical reactions...
21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.
Code of Federal Regulations, 2010 CFR
2010-04-01
... chemical reactions, other than addition reactions, occur when they are mixed. (2) Polymers identified in...; provided that no chemical reactions, other than addition reactions, occur when they are combined. Such... weight-percent of polymer units derived from butadiene-styrene copolymers. (c) No chemical reactions...
21 CFR 606.170 - Adverse reaction file.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Adverse reaction file. 606.170 Section 606.170... Adverse reaction file. (a) Records shall be maintained of any reports of complaints of adverse reactions... thorough investigation of each reported adverse reaction shall be made. A written report of the...
21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.
Code of Federal Regulations, 2012 CFR
2012-04-01
... chemical reactions, other than addition reactions, occur when they are mixed. (2) Polymers identified in...; provided that no chemical reactions, other than addition reactions, occur when they are combined. Such..., other than addition reactions, occur among the vinyl chloride polymers and the modifying polymers...
21 CFR 178.3790 - Polymer modifiers in semirigid and rigid vinyl chloride plastics.
Code of Federal Regulations, 2013 CFR
2013-04-01
... chemical reactions, other than addition reactions, occur when they are mixed. (2) Polymers identified in...; provided that no chemical reactions, other than addition reactions, occur when they are combined. Such..., other than addition reactions, occur among the vinyl chloride polymers and the modifying polymers...
Understanding countertransference reactions in working with adolescent perpetrators of sexual abuse.
Mintzer, M B
1996-01-01
Recognizing countertransference reactions in working with adolescent perpetrators of sexual abuse is essential in order to provide optimal treatment. The author examines the broad societal reaction to these patients' acts as well as individual therapists' personal reactions to the material and transferences presented by the teenagers. Therapists' awareness of their reactions can help them understand the internal world of the patient and avoid destructive acting out of countertransference reactions.
2016-03-24
thickened preheat (TP) regime that is bounded by the Klimov-Williams limit, (b) the broken reaction layers (BR) boundary and the partially-distributed...b) the broken reaction layers (BR) boundary that is bounded by Norbert Peters predicted limit, and the partially-distributed reactions (PDR...Nomenclature BR = broken reaction layer boundary DR = distributed reaction zone boundary Ka = Karlovitz number of Peters (Eq. 1) equal to (δF,L
Well sealing via thermite reactions
Lowry, William Edward; Dunn, Sandra Dalvit
2016-11-15
A platform is formed in a well below a target plug zone by lowering a thermite reaction charge into the well and igniting it, whereby the products of the reaction are allowed to cool and expand to form a platform or support in the well. A main thermite reaction charge is placed above the platform and ignited to form a main sealing plug for the well. In some embodiments an upper plug is formed by igniting an upper thermite reaction charge above the main thermite reaction charge. The upper plug confines the products of ignition of the main thermite reaction charge.
Understanding chemical binding using the Berlin function and the reaction force
NASA Astrophysics Data System (ADS)
Chakraborty, Debajit; Cárdenas, Carlos; Echegaray, Eleonora; Toro-Labbe, Alejandro; Ayers, Paul W.
2012-06-01
We use the derivative of the electron density with respect to the reaction coordinate, interpreted through the Berlin binding function, to identify portions of the reaction path where chemical bonds are breaking and forming. The results agree with the conventional description for SN2 reactions, but they are much more general and can be used to elucidate other types of reactions also. Our analysis offers support for, and detailed information about, the use of the reaction force profile to separate the reaction coordinates into intervals, each with characteristic extents of geometry change and electronic rearrangement.
Microfluidic study of fast gas-liquid reactions.
Li, Wei; Liu, Kun; Simms, Ryan; Greener, Jesse; Jagadeesan, Dinesh; Pinto, Sascha; Günther, Axel; Kumacheva, Eugenia
2012-02-15
We present a new concept for studies of the kinetics of fast gas-liquid reactions. The strategy relies on the microfluidic generation of highly monodisperse gas bubbles in the liquid reaction medium and subsequent analysis of time-dependent changes in bubble dimensions. Using reactions of CO(2) with secondary amines as an exemplary system, we demonstrate that the method enables rapid determination of reaction rate constant and conversion, and comparison of various binding agents. The proposed approach addresses two challenges in studies of gas-liquid reactions: a mass-transfer limitation and a poorly defined gas-liquid interface. The proposed strategy offers new possibilities in studies of the fundamental aspects of rapid multiphase reactions, and can be combined with throughput optimization of reaction conditions.
[Hypersensitivity to mosquito bite manifested as Skeeter síndrome].
Pérez-Vanzzini, Rafael; González-Díaz, Sandra Nora; Arias-Cruz, Alfredo; Palma-Gómez, Samuel; Yong-Rodríguez, Adrián; Gutiérrez-Mujica, José Julio; García-Calderín, Diego; Ibarra, Jesús Arturo
2015-01-01
The reactions to mosquito bites are immunological reactions with involvement of IgE, IgG and T cells mediated hypersensitivity. These reactions are common and range from small local reactions, large local reactions to systemic allergic reactions. Skeeter syndrome is defined as a large local induced inflammatory reaction to mosquito bite and sometimes accompanied by systemic symptoms such as fever and vomiting. Diagnosis is based on clinical history and physical examination, supported by the identification of specific IgE by skin testing. Treatment includes prevention, antihistamines and steroids in some cases. Specific immunotherapy still requires further study. This paper reports two cases of patients with hypersensitivity reactions to mosquito bites, which were evaluated in our center presenting positive skin tests.
The Electronic Flux in Chemical Reactions. Insights on the Mechanism of the Maillard Reaction
NASA Astrophysics Data System (ADS)
Flores, Patricio; Gutiérrez-Oliva, Soledad; Herrera, Bárbara; Silva, Eduardo; Toro-Labbé, Alejandro
2007-11-01
The electronic transfer that occurs during a chemical process is analysed in term of a new concept, the electronic flux, that allows characterizing the regions along the reaction coordinate where electron transfer is actually taking place. The electron flux is quantified through the variation of the electronic chemical potential with respect to the reaction coordinate and is used, together with the reaction force, to shed light on reaction mechanism of the Schiff base formation in the Maillard reaction. By partitioning the reaction coordinate in regions in which different process might be taking place, electronic reordering associated to polarization and transfer has been identified and found to be localized at specific transition state regions where most bond forming and breaking occur.
NASA Astrophysics Data System (ADS)
Minyaev, Ruslan M.; Quapp, Wolfgang; Schmidt, Benjamin; Getmanskii, Ilya V.; Koval, Vitaliy V.
2013-11-01
Quantum chemical (CCSD(full)/6-311++G(3df,3pd), CCSD(T)(full)/6-311++G(3df,3pd)) and density function theory (B3LYP/6-311++G(3df,3pd)) calculations were performed for the SN2 nucleophile substitution reactions CH4 + H- → CH4 + H- and CH4 + F- → CH3F + H-. The calculated gradient reaction pathways for both reactions have an unusual behavior. An unusual stationary point of index 2 lies on the gradient reaction path. Using Newton trajectories for the reaction path, we can detect VRI point at which the reaction path branches.
NASA Astrophysics Data System (ADS)
Tyurin, D. V.; Zaitseva, S. V.; Kudrik, E. V.
2018-05-01
It is found for the first time that μ-carbido-dimeric iron(IV) octapropylporphyrazinate displays catalytic activity in the oxidation reaction of natural flavonol morin with tert-butyl hydroperoxide, with the catalyst being stable under conditions of the reaction. The kinetics of this reaction are studied. It is shown the reaction proceeds via tentative formation of a complex between the catalyst and the oxidant, followed by O‒O bond homolytic cleavage. The kinetics of the reaction is described in the coordinates of the Michaelis-Menten equation. A linear dependence of the apparent reaction rate constant on the concentration of the catalyst is observed, testifying to its participation in the limiting reaction step. The equilibrium constants and rates of interaction are found. A mechanism is proposed for the reaction on the basis of the experimental data.
Thermodynamics of Bioreactions.
Held, Christoph; Sadowski, Gabriele
2016-06-07
Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.
Theoretical survey of the reaction between osmium and acetaldehyde
NASA Astrophysics Data System (ADS)
Dai, Guo-Liang; Wang, Chuan-Feng
2012-05-01
The mechanism of the reaction of osmium atom with acetaldehyde has been investigated with a DFT approach. All the stationary points are determined at the UB3LYP/ sdd/6-311++G** level of the theory. Both ground and excited state potential energy surfaces are investigated in detail. The present results show that the title reaction start with the formation of a CH3CHO-metal complex followed by C-C, aldehyde C-H, C-O, and methyl C-H activation. These reactions can lead to four different products (HOsCH3 + CO, OsCO + CH4, OsCOCH3 + H, and OsO + C2H4). The minimum energy reaction path is found to involve the spin inversion in the initial reaction step. This potential energy curve-crossing dramatically affects reaction exothermic. The present results may be helpful in understanding the mechanism of the title reaction and further experimental investigation of the reaction.
The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review
Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang
2013-01-01
Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697
Suzuki, Kimichi; Morokuma, Keiji; Maeda, Satoshi
2017-10-05
We propose a multistructural microiteration (MSM) method for geometry optimization and reaction path calculation in large systems. MSM is a simple extension of the geometrical microiteration technique. In conventional microiteration, the structure of the non-reaction-center (surrounding) part is optimized by fixing atoms in the reaction-center part before displacements of the reaction-center atoms. In this method, the surrounding part is described as the weighted sum of multiple surrounding structures that are independently optimized. Then, geometric displacements of the reaction-center atoms are performed in the mean field generated by the weighted sum of the surrounding parts. MSM was combined with the QM/MM-ONIOM method and applied to chemical reactions in aqueous solution or enzyme. In all three cases, MSM gave lower reaction energy profiles than the QM/MM-ONIOM-microiteration method over the entire reaction paths with comparable computational costs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Wickham, Stephanie; Regan, Nicholas; West, Matthew B; Kumar, Vidya Prasanna; Thai, Justin; Li, Pui Kai; Cook, Paul F; Hanigan, Marie H
2012-08-01
A novel class of inhibitors of the enzyme γ-glutamyl transpeptidase (GGT) were evaluated. The analog OU749 was shown previously to be an uncompetitive inhibitor of the GGT transpeptidation reaction. The data in this study show that it is an equally potent uncompetitive inhibitor of the hydrolysis reaction, the primary reaction catalyzed by GGT in vivo. A series of structural analogs of OU749 were evaluated. For many of the analogs, the potency of the inhibition differed between the hydrolysis and transpeptidation reactions, providing insight into the malleability of the active site of the enzyme. Analogs with electron withdrawing groups on the benzosulfonamide ring, accelerated the hydrolysis reaction, but inhibited the transpeptidation reaction by competing with a dipeptide acceptor. Several of the OU749 analogs inhibited the transpeptidation reaction by slow onset kinetics, similar to acivicin. Further development of inhibitors of the GGT hydrolysis reaction is necessary to provide new therapeutic compounds.
NASA Astrophysics Data System (ADS)
Nguyen, John D.; D'Amato, Erica M.; Narayanam, Jagan M. R.; Stephenson, Corey R. J.
2012-10-01
Radical reactions are a powerful class of chemical transformations. However, the formation of radical species to initiate these reactions has often required the use of stoichiometric amounts of toxic reagents, such as tributyltin hydride. Recently, the use of visible-light-mediated photoredox catalysis to generate radical species has become popular, but the scope of these radical precursors has been limited. Here, we describe the identification of reaction conditions under which photocatalysts such as fac-Ir(ppy)3 can be utilized to form radicals from unactivated alkyl, alkenyl and aryl iodides. The generated radicals undergo reduction via hydrogen atom abstraction or reductive cyclization. The reaction protocol utilizes only inexpensive reagents, occurs under mild reaction conditions, and shows exceptional functional group tolerance. Reaction efficiency is maintained upon scale-up and decreased catalyst loading, and the reaction time can be significantly shortened when the reaction is performed in a flow reactor.
Photoreactor with self-contained photocatalyst recapture
Gering, Kevin L.
2004-12-07
A system for the continuous use and recapture of a catalyst in liquid, comprising: a generally vertical reactor having a reaction zone with generally downwardly flowing liquid, and a catalyst recovery chamber adjacent the reaction zone containing a catalyst consisting of buoyant particles. The liquid in the reaction zone flows downward at a rate which exceeds the speed of upward buoyant migration of catalyst particles in the liquid, whereby catalyst particles introduced into the liquid in the reaction zone are drawn downward with the liquid. A slow flow velocity flotation chamber disposed below the reaction zone is configured to recapture the catalyst particles and allow them to float back into the catalyst recovery chamber for recycling into the reaction zone, rather than being swept downstream. A novel 3-dimensionally adjustable solar reflector directs light into the reaction zone to induce desired photocatalytic reactions within the liquid in the reaction zone.
Flash chemistry: flow microreactor synthesis based on high-resolution reaction time control.
Yoshida, Jun-ichi
2010-10-01
This article addresses a fascinating aspect of flash chemistry, high-resolution reaction-time control by virtue of a flow microreactor system, and its applications. The length of time that the solution remains inside the reactor is called the residence time. The residence time between the addition of a reagent and that of a quenching agent or the next reagent in a flow microreactor is the reaction time, and the reaction time can be greatly reduced by adjusting the length of a reaction channel in a flow microreactor. This feature is quite effective for conducting reactions involving short-lived reactive intermediates. A reactive species can be generated and transferred to another location to be used in the next reaction before it decomposes by adjusting the residence time in the millisecond to second timescale. The principle of such high-resolution reaction-time control, which can be achieved only by flow microreactors, and its applications to synthetic reactions including Swern-Moffatt-type oxidation, as well as the generation and reactions of aryllithium compounds bearing electrophilic substituents, such as alkoxycarbonyl groups, are presented. Integration of such reactions using integrated flow microreactor systems is also demonstrated. © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.
Chemical Reactions in Supercritical Carbon Dioxide
NASA Astrophysics Data System (ADS)
Wai, Chien M.; Hunt, Fred; Ji, Min; Chen, Xiaoyuan
1998-12-01
Utilizing supercritical fluids as environmentally benign solvents for chemical synthesis is one of the new approaches in the "greening" of chemistry. Carbon dioxide is the most widely used gas for supercritical fluid studies because of its moderate critical constants, nontoxic nature, and availability in pure form. One unique property of supercritical carbon dioxide (sc-CO2) is its high solubility for fluorinated compounds. Thus sc-CO2 can be used to replace Freons that are conventionally used as solvents for synthesis of perfluoro-polymers. Another property of sc-CO2 is its miscibility with gases such as H2. Heterogeneous reactions involving these gases may become homogeneous reactions in sc-CO2. Reactions in sc-CO2 may offer several advantages including controlling phase behavior and products, increasing speed of reactions, and obtaining specific reaction channels. This paper describes the following nine types of chemical reactions reported in the literature utilizing sc-CO2 as a solvent to illustrate the unique properties of the supercritical fluid reaction systems: (i) hydrogenation and hydroformylation, (ii) synthesis of organometallic compounds, (iii) metal chelation and extraction, (iv) preparation of inorganic nanoparticles, (v) stereo-selectivity of lipase-catalyzed reactions, (vi) asymmetric catalytic hydrogenation, (vii) polymerization, (viii) Diels-Alder reaction, and (ix) free radical reactions.
Reactions of water and C1 molecules on carbide and metal-modified carbide surfaces
Wan, Weiming; Tackett, Brian M.; Chen, Jingguang G.
2017-02-23
The formation of carbides can significantly modify the physical and chemical properties of the parent metals. In the current review, we summarize the general trends in the reactions of water and C1 molecules over transition metal carbide (TMC) and metal-modified TMC surfaces and thin films. Although the primary focus of the current review is on the theoretical and experimental studies of reactions of C1 molecules (CO, CO 2, CH 3OH, etc.), the reactions of water will also be reviewed because water plays an important role in many of the C1 transformation reactions. This review is organized by discussing separately thermalmore » reactions and electrochemical reactions, which provides insights into the application of TMCs in heterogeneous catalysis and electrocatalysis, respectively. In thermal reactions, we discuss the thermal decomposition of water and methanol, as well as the reactions of CO and CO 2 over TMC surfaces. In electrochemical reactions, we summarize recent studies in the hydrogen evolution reaction, electrooxidation of methanol and CO, and electroreduction of CO 2. Lastly, future research opportunities and challenges associated with using TMCs as catalysts and electrocatalysts are also discussed.« less
Kumagai, T; Yamanaka, T; Wataya, Y; Umetsu, A; Kawamura, N; Ikeda, K; Furukawa, H; Kimura, K; Chiba, S; Saito, S; Sugawara, N; Kurimoto, F; Sakaguchi, M; Inouye, S
1997-07-01
This study was designed to investigate the development of both cellular and humoral immune responses to gelatin in patients with vaccine-related immediate and nonimmediate reactions. Our purpose was to define the nature of the responses in the different clinical states. Six patients with immediate reactions and 21 patients with nonimmediate reactions after inoculation of various live vaccines were studied. Measurement of gelatin-specific IgE was performed in all subjects. Gelatin-specific T-cell responses detected by an in vitro lymphocyte proliferation assay and by an assay for IL-2 responsiveness were investigated to compare the immune response in patients with the two types of reaction. All six patients with immediate reactions had IgE responses to gelatin, whereas none of the 21 patients with nonimmediate reactions had any anti-gelatin IgE. All of the six patients with immediate reactions and 17 of the 21 patients with nonimmediate reactions exhibited positive T-lymphocyte responses specific to gelatin. Immediate and nonimmediate reactions are caused by different types of allergy to gelatin, and cell-mediated immunity to gelatin may play an important role in the pathogenesis of nonimmediate reactions.
Otero, Toribio F
2017-01-18
In this perspective the empirical kinetics of conducting polymers exchanging anions and solvent during electrochemical reactions to get dense reactive gels is reviewed. The reaction drives conformational movements of the chains (molecular motors), exchange of ions and solvent with the electrolyte and structural (relaxation, swelling, shrinking and compaction) gel changes. Reaction-driven structural changes are identified and quantified from electrochemical responses. The empirical reaction activation energy (E a ), the reaction coefficient (k) and the reaction orders (α and β) change as a function of the conformational energy variation during the reaction. This conformational energy becomes an empirical magnitude. E a , k, α and β include and provide quantitative conformational and structural information. The chemical kinetics becomes structural chemical kinetics (SCK) for reactions driving conformational movements of the reactants. The electrochemically stimulated conformational relaxation model describes empirical results and some results from the literature for biochemical reactions. In parallel the development of an emerging technological world of soft, wet, multifunctional and biomimetic tools and anthropomorphic robots driven by reactions of the constitutive material, as in biological organs, can be now envisaged being theoretically supported by the kinetic model.
Xu, Lingshun; Wu, Zongfang; Jin, Yuekang; Ma, Yunsheng; Huang, Weixin
2013-08-07
We have employed XPS and TDS to study the adsorption and surface reactions of H2O, CO and HCOOH on an FeO(111)/Pt(111) inverse model catalyst. The FeO(111)-Pt(111) interface of the FeO(111)/Pt(111) inverse model catalyst exposes coordination-unsaturated Fe(II) cations (Fe(II)CUS) and the Fe(II)CUS cations are capable of modifying the reactivity of neighbouring Pt sites. Water facilely dissociates on the Fe(II)CUS cations at the FeO(111)-Pt(111) interface to form hydroxyls that react to form both water and H2 upon heating. Hydroxyls on the Fe(II)CUS cations can react with CO(a) on the neighbouring Pt(111) sites to produce CO2 at low temperatures. Hydroxyls act as the co-catalyst in the CO oxidation by hydroxyls to CO2 (PROX reaction), while they act as one of the reactants in the CO oxidation by hydroxyls to CO2 and H2 (WGS reaction), and the recombinative reaction of hydroxyls to produce H2 is the rate-limiting step in the WGS reaction. A comparison of reaction behaviors between the interfacial CO(a) + OH reaction and the formate decomposition reaction suggest that formate is the likely surface intermediate of the CO(a) + OH reaction. These results provide some solid experimental evidence for the associative reaction mechanism of WGS and PROX reactions catalyzed by Pt/oxide catalysts.
Hypersensitivity reactions in patients receiving hemodialysis.
Butani, Lavjay; Calogiuri, Gianfranco
2017-06-01
To describe hypersensitivity reactions in patients receiving maintenance hemodialysis. PubMed search of articles published during the past 30 years with an emphasis on publications in the past decade. Case reports and review articles describing hypersensitivity reactions in the context of hemodialysis. Pharmacologic agents are the most common identifiable cause of hypersensitivity reactions in patients receiving hemodialysis. These include iron, erythropoietin, and heparin, which can cause anaphylactic or pseudoallergic reactions, and topical antibiotics and anesthetics, which lead to delayed-type hypersensitivity reactions. Many hypersensitivity reactions are triggered by complement activation and increased bradykinin resulting from contact system activation, especially in the context of angiotensin-converting enzyme inhibitor use. Several alternative pharmacologic preparations and dialyzer membranes are available, such that once an etiology for the reaction is established, recurrences can be prevented without affecting the quality of care provided to patients. Although hypersensitivity reactions are uncommon in patients receiving hemodialysis, they can be life-threatening. Moreover, considering the large prevalence of the end-stage renal disease population, the implications of such reactions are enormous. Most reactions are pseudoallergic and not mediated by immunoglobulin E. The multiplicity of potential exposures and the complexity of the environment to which patients on dialysis are exposed make it challenging to identify the precise cause of these reactions. Great diligence is needed to investigate hypersensitivity reactions to avoid recurrence in this high-risk population. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
[Delayed adverse reactions to blood donation: From haemovigilance data to specific studies].
Py, J-Y; Durieux, S; Barnoux, M; Sapey, T
2016-11-01
Delayed adverse reactions to blood donation occur after the donor left donation site. Their intrinsic gravity and possible complications can be increased by the fact the donor is alone. This can also increase bad memories, leading to a donation giving up. Blood transfusion centre is only aware in case of donor feedback, hence an event underrating. We choose to compare our data upon delayed adverse donor reactions with those we could find in past studies. A first data level comes from French haemovigilance data while serious adverse reactions declaration is mandatory. But a second level can be reached using blood transfusion centre computerized data because all the donation reactions are saved whatever the gravity is. In both cases, delayed reactions are only those reported by donors. We try to make an exhaustive search of specific studies upon the real delayed reactions incidence so as to compare with our data. There were 1957 serious adverse reactions declared in our regional haemovigilance database between 2011 and 2015: 49 % occurring during donation, 40 % after it but before donor departure, and 11 % delayed events. There were 16,050 adverse reactions recorded during the first trimester of 2016 in mainland France, with 2.7 % delayed ones. Proportion of delayed events rises when gravity rises, until 27.6 % for the most serious ones. It varies between 2.2 % and 2.7 % for vasovagal reactions, haematomas, and other local reactions, and reaches 16.2 % for other general reactions. Data found in other studies with a spontaneous donor notification are of the same kind. But four studies soliciting specifically donor notification give a dramatically higher delayed reactions incidence, with an understatement greater than three out of four. Moreover, these studies found a majority of delayed reactions, which are not included in haemovigilance like fatigue or bruising. Occurrence of a delayed donor reaction is clearly underrated in standard haemovigilance. It remains to be seen whether it have the same impact on donor return as immediate reactions. Considering that delayed reactions are much larger, it might be interesting to take them into account in the evaluation of strategies dedicated to lower immediate reactions. Copyright © 2016. Published by Elsevier SAS.
Outbreak of Adverse Reactions Associated with Contaminated Heparin
Blossom, David B.; Kallen, Alexander J.; Patel, Priti R.; Elward, Alexis; Robinson, Luke; Gao, Ganpan; Langer, Robert; Perkins, Kiran M.; Jaeger, Jennifer L.; Kurkjian, Katie M.; Jones, Marilyn; Schillie, Sarah F.; Shehab, Nadine; Ketterer, Daniel; Venkataraman, Ganesh; Kishimoto, Takashi Kei; Shriver, Zachary; McMahon, Ann W.; Austen, K. Frank; Kozlowski, Steven; Srinivasan, Arjun; Turabelidze, George; Gould, Carolyn V.; Arduino, Matthew J.; Sasisekharan, Ram
2013-01-01
BACKGROUND In January 2008, the Centers for Disease Control and Prevention began a nationwide investigation of severe adverse reactions that were first detected in a single hemodialysis facility. Preliminary findings suggested that heparin was a possible cause of the reactions. METHODS Information on clinical manifestations and on exposure was collected for patients who had signs and symptoms that were consistent with an allergic-type reaction after November 1, 2007. Twenty-one dialysis facilities that reported reactions and 23 facilities that reported no reactions were included in a case–control study to identify facility-level risk factors. Unopened heparin vials from facilities that reported reactions were tested for contaminants. RESULTS A total of 152 adverse reactions associated with heparin were identified in 113 patients from 13 states from November 19, 2007, through January 31, 2008. The use of heparin manufactured by Baxter Healthcare was the factor most strongly associated with reactions (present in 100.0% of case facilities vs. 4.3% of control facilities, P<0.001). Vials of heparin manufactured by Baxter from facilities that reported reactions contained a contaminant identified as oversulfated chondroitin sulfate (OSCS). Adverse reactions to the OSCS-contaminated heparin were often characterized by hypotension, nausea, and shortness of breath occurring within 30 minutes after administration. Of 130 reactions for which information on the heparin lot was available, 128 (98.5%) occurred in a facility that had OSCS-contaminated heparin on the premises. Of 54 reactions for which the lot number of administered heparin was known, 52 (96.3%) occurred after the administration of OSCS-contaminated heparin. CONCLUSIONS Heparin contaminated with OSCS was epidemiologically linked to adverse reactions in this nationwide outbreak. The reported clinical features of many of the cases further support the conclusion that contamination of heparin with OSCS was the cause of the outbreak. PMID:19052120
Effects of reaction-kinetic parameters on modeling reaction pathways in GaN MOVPE growth
NASA Astrophysics Data System (ADS)
Zhang, Hong; Zuo, Ran; Zhang, Guoyi
2017-11-01
In the modeling of the reaction-transport process in GaN MOVPE growth, the selections of kinetic parameters (activation energy Ea and pre-exponential factor A) for gas reactions are quite uncertain, which cause uncertainties in both gas reaction path and growth rate. In this study, numerical modeling of the reaction-transport process for GaN MOVPE growth in a vertical rotating disk reactor is conducted with varying kinetic parameters for main reaction paths. By comparisons of the molar concentrations of major Ga-containing species and the growth rates, the effects of kinetic parameters on gas reaction paths are determined. The results show that, depending on the values of the kinetic parameters, the gas reaction path may be dominated either by adduct/amide formation path, or by TMG pyrolysis path, or by both. Although the reaction path varies with different kinetic parameters, the predicted growth rates change only slightly because the total transport rate of Ga-containing species to the substrate changes slightly with reaction paths. This explains why previous authors using different chemical models predicted growth rates close to the experiment values. By varying the pre-exponential factor for the amide trimerization, it is found that the more trimers are formed, the lower the growth rates are than the experimental value, which indicates that trimers are poor growth precursors, because of thermal diffusion effect caused by high temperature gradient. The effective order for the contribution of major species to growth rate is found as: pyrolysis species > amides > trimers. The study also shows that radical reactions have little effect on gas reaction path because of the generation and depletion of H radicals in the chain reactions when NH2 is considered as the end species.
[Adverse reaction caused by rabies vaccine in China: a Meta-analysis].
Zhang, X R; Wu, Z G; Zhang, W S
2017-06-10
Objective: To conduct a Meta-analysis on the rate of adverse reaction related to rabies vaccine, so as to provide reference for rabies vaccine immunization in China. Methods: We electronically searched databases including CNKI, VIP information resource integration service platform, WanFang Data, CBM, PubMed and The Cochrane Library, to collect studies on Chinese people who had received full rabies vaccination and recording all the adverse reactions, from January 2000 to July 2016. Inclusion and exclusion criteria were strictly followed. Meta-analysis for the adverse reaction rate was performed using the R software. Results: A total of 29 related papers had met the inclusion criteria, with no publication bias noticed. A total number of 11 020 cases had adverse reactions, among all the 94 222 respondents, with an incidence of adverse reactions as 1.04 % -47.78 % . The overall incidence rate of adverse reaction was 9.82 % (95 %CI : 7.58 % -12.72 % ). A combined local adverse reaction rate appeared as 12.05 % (95 % CI : 9.26 % -15.69 % ). The systemic adverse reaction rate was 9.06 % (95 %CI : 7.07 % -11.61 % ). The overall adverse reaction rate on aqueous vaccine was 32.39 % (95 %CI : 21.88 % -47.94 % ). Combined adverse reaction rate of freeze dried vaccine appeared as 8.65 % (95 %CI : 4.54 % -16.51 % ). Significant differences were seen between both groups ( P <0.05). Conclusions: The local adverse reaction rate caused by rabies vaccination was higher than the systemic adverse reaction rate. The adverse reaction rate of aqueous rabies vaccine was higher than that of freeze dried rabies vaccine. Our results suggested that the aqueous vaccine should gradually be eliminated.
Trimolecular reactions of uranium hexafluoride with water.
Lind, Maria C; Garrison, Stephen L; Becnel, James M
2010-04-08
The hydrolysis reaction of uranium hexafluoride (UF(6)) is a key step in the synthesis of uranium dioxide (UO(2)) powder for nuclear fuels. Mechanisms for the hydrolysis reactions are studied here with density functional theory and the Stuttgart small-core scalar relativistic pseudopotential and associated basis set for uranium. The reaction of a single UF(6) molecule with a water molecule in the gas phase has been previously predicted to proceed over a relatively sizable barrier of 78.2 kJ x mol(-1), indicating this reaction is only feasible at elevated temperatures. Given the observed formation of a second morphology for the UO(2) product coupled with the observations of rapid, spontaneous hydrolysis at ambient conditions, an alternate reaction pathway must exist. In the present work, two trimolecular hydrolysis mechanisms are studied with density functional theory: (1) the reaction between two UF(6) molecules and one water molecule, and (2) the reaction of two water molecules with a single UF(6) molecule. The predicted reaction of two UF(6) molecules with one water molecule displays an interesting "fluorine-shuttle" mechanism, a significant energy barrier of 69.0 kJ x mol(-1) to the formation of UF(5)OH, and an enthalpy of reaction (DeltaH(298)) of +17.9 kJ x mol(-1). The reaction of a single UF(6) molecule with two water molecules displays a "proton-shuttle" mechanism, and is more favorable, having a slightly lower computed energy barrier of 58.9 kJ x mol(-1) and an exothermic enthalpy of reaction (DeltaH(298)) of -13.9 kJ x mol(-1). The exothermic nature of the overall UF(6) + 2H(2)O trimolecular reaction and the lowering of the barrier height with respect to the bimolecular reaction are encouraging.
The incidence and features of systemic reactions to skin prick tests.
Sellaturay, Priya; Nasser, Shuaib; Ewan, Pamela
2015-09-01
Skin prick testing (SPT) has been regarded as a safe procedure with few systemic reactions. To evaluate the rate of systemic reactions and their associations after SPT in the largest population to date. In this study reactions were recorded prospectively in a specialist UK allergy clinic for 6 years (2007-2013). An estimated 31,000 patients underwent SPT. Twenty-four patients (age range 7 months to 56 years, mean 23.5 years, 17 female patients, 12 with asthma) had systemic reactions. The rate of systemic reactions to SPT was 0.077%. The likely allergens causing the reaction were foods (18; peanut, 7; walnut, 1; Brazil nut, 2; pistachio, 1; lupin, 1; cow's milk, 2; shrimp, 1; spinach, 1; legume, 1; soy, 1), aeroallergens (4; rabbit, 1; rat, 1; ragwort, 1; grass pollen, 1), wasp venom (1), and Tazocin (1). The causative SPT wheal was larger than 8 mm in 75%. The reaction to Tazocin was severe, with anaphylaxis occurring minutes after SPT. Reactions were treated immediately in the clinic and did not require further medical care. In this largest single-center study, the rate of systemic reactions after SPT was 77 per 100,000 patients. It is the first study to identify foods as a common and important cause (75%), with nuts posing the highest risk. This study reports the first systemic reaction to venom SPT and the first anaphylactic reaction after drug SPT. There was an association with a history of severe reactions and large skin test reaction. There are risks, albeit small, when undertaking SPT. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Thomas, Bjorn R; White, Ian R; McFadden, John P; Banerjee, Piu
2014-08-01
Hair dye exposure is the most common cause of sensitization to p-phenylenediamine (PPD). Cross-reactions with structurally related allergens occur. It is suggested that a stronger patch test reaction (3+ rather than 1+) to PPD (usually tested as 1% petrolatum) is associated with an increased propensity for cross-reactions. In this article we will demonstrate this association. Of 230 patients with allergic reactions to PPD on patch testing identified during 2007-2012 from clinical records, notes for 221 were available for review. Data were collected regarding age, sex, and grade of reaction [International Contact Dermatitis Research Group (ICDRG) criteria] to PPD. Cross-reactions with the following allergens, found in our baseline series, were recorded: Disperse Yellow 3, N-isopropyl-N'-phenyl-p-phenylenediamine (IPPD), and caine mix. Having excluded 23 doubtful reactions, the reactions from 198 patients were further considered. Of the patients, 75.3% (n = 149) were female, and the mean age was 48.6 years (12-82 years). Of the patients allergic to PPD, 16.6% (n = 33) showed cross-reactions with one or more related allergens. Cross-reactions were seen in 16% with a grade of 1+, 14.5% with a grade of 2+, 28.6% with a grade of 3+ when PPD was tested 1% pet., and 50.0% when PPD was tested at 0.1-0.001%, arbitrarily considered to be 4+ (p = 0.02; Cramér's V = 0.23). An increasing likelihood of reactions to Disperse Yellow 3, IPPD or caine mix was seen with increasing strength of patch test reaction to PPD. The clinical relevance of these cross-reactions is unclear. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Self-reported allergic reactions to peanut on commercial airliners.
Sicherer, S H; Furlong, T J; DeSimone, J; Sampson, H A
1999-07-01
Allergic reactions to food occurring on commercial airlines have not been systematically characterized. We sought to describe the clinical characteristics of allergic reactions to peanuts on airplanes. Participants in the National Registry of Peanut and Tree Nut Allergy who indicated an allergic reaction while on a commercial airliner were interviewed by telephone. Sixty-two of 3704 National Registry of Peanut and Tree Nut Allergy participants indicated a reaction on an airplane; 42 of 48 patients or parental surrogates contacted confirmed the reaction began on the airplane (median age of affected subject, 2 years; range, 6 months to 50 years). Of these, 35 reacted to peanuts (4 were uncertain of exposure) and 7 to tree nuts, although 3 of these 7 reacted to substances that may have also contained peanut. Exposures occurred by ingestion (20 subjects), skin contact (8 subjects), and inhalation (14 subjects). Reactions generally occurred within 10 minutes of exposure (32 of 42 subjects), and reaction severity correlated with exposure route (ingestion > inhalation > skin). The causal food was generally served by the airline (37 of 42 subjects). Medications were given in flight to 19 patients (epinephrine to 5) and to an additional 14 at landing/gate return (including epinephrine to 1 and intravenous medication to 2), totaling 79% treated. Flight crews were notified in 33% of reactions. During inhalation reactions as a result of peanut allergy, greater than 25 passengers were estimated to be eating peanuts at the time of the reaction. Initial symptoms generally involved the upper airway, with progression to the skin or further lower respiratory reactions (no gastrointestinal symptoms). Allergic reactions to peanuts and tree nuts caused by accidental ingestion, skin contact, or inhalation occur during commercial flights, but airline personnel are usually not notified. Reactions can be severe, requiring medications, including epinephrine.
Thermodynamics of Enzyme-Catalyzed Reactions Database
National Institute of Standards and Technology Data Gateway
SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access) The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.
Hotha, Srinivas; Tripathi, Ashish
2005-01-01
Diversity oriented synthesis of tricyclic compounds was achieved using a combination of the Ferrier reaction and the Pauson-Khand reaction. Ferrier reaction was effected using NbCl5, and the Pauson-Khand reaction was carried out using Co2(CO)8, acetonitrile-dimethoxyethane. Michael additions using various alkyl, aryl, and heterocyclic thiols were also performed successfully. The Ferrier, Pauson-Khand, and Michael addition reactions were found to be highly diastereoselective.
Reaction time and anticipatory skill of athletes in open and closed skill-dominated sport.
Nuri, Leila; Shadmehr, Azadeh; Ghotbi, Nastaran; Attarbashi Moghadam, Behrouz
2013-01-01
In sports, reaction time and anticipatory skill are critical aspects of perceptual abilities. To date, no study has compared reaction time and anticipatory skill of athletes from open and closed skill-dominated sport. Accordingly, the present study investigated whether a difference exists in sensory-cognitive skills between these two different sport domains. Eleven volleyball players and 11 sprinters participated in this experiment. Reaction time and anticipatory skill of both groups were recorded by a custom-made software called SART (speed anticipation and reaction time test). This software consists of six sensory-cognitive tests that evaluate visual choice reaction time, visual complex choice reaction time, auditory choice reaction time, auditory complex choice reaction time, and anticipatory skill of the high speed and low speed of the ball. For each variable, an independent t-test was performed. Results suggested that sprinters were better in both auditory reaction times (P<0.001 for both tests) and volleyball players were better in both anticipatory skill tests (P = 0.007 and P = 0.04 for anticipatory skill of the high speed and low speed of the ball, respectively). However, no significant differences were found in both visual choice reaction time tests (P > 0.05 for both visual reaction time tests). It is concluded that athletes have greater sensory-cognitive skills related to their specific sport domain either open or closed.
Walking delays anticipatory postural adjustments but not reaction times in a choice reaction task.
Haridas, C; Gordon, I T; Misiaszek, J E
2005-06-01
During standing, anticipatory postural adjustments (APAs) and focal movements are delayed while performing a choice reaction task, compared with a simple reaction task. We hypothesized that APAs and focal movements of a choice reaction task would be similarly delayed during walking. Furthermore, reaction times are delayed during walking compared with standing. We further hypothesized that APAs and focal movements would be delayed during walking, compared with standing, for both simple and choice reaction tasks. Subjects either walked or stood on a treadmill while holding on to stable handles. They were asked to push or pull on the handles in response to a visual cue. Muscle activity was recorded from muscles of the leg (APA) and arm (RT). Our results were in agreement with previous work showing APA onset was delayed in the choice reaction task compared with the simple reaction task. In addition, the interval between the onset of APA and focal movement activity increased with choice reaction tasks. The task of walking did not delay the onset of focal movement for either the simple or choice reaction tasks. Walking did delay the onset of the APA, but only during choice reaction tasks. The results suggest the added demand of walking does not significantly modify the control of focal arm movements. However, additional attentional demands while walking may compromise anticipatory postural control.
Chemical reactions studied at ultra-low temperature in liquid helium clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huisken, Friedrich; Krasnokutski, Serge A.
Low-temperature reaction rates are important ingredients for astrophysical reaction networks modeling the formation of interstellar matter in molecular clouds. Unfortunately, such data is difficult to obtain by experimental means. In an attempt to study low-temperature reactions of astrophysical interest, we have investigated relevant reactions at ultralow temperature in liquid helium droplets. Being prepared by supersonic expansion of helium gas at high pressure through a nozzle into a vacuum, large helium clusters in the form of liquid droplets constitute nano-sized reaction vessels for the study of chemical reactions at ultra-low temperature. If the normal isotope {sup 4}He is used, the heliummore » droplets are superfluid and characterized by a constant temperature of 0.37 K. Here we present results obtained for Mg, Al, and Si reacting with O{sub 2}. Mass spectrometry was employed to characterize the reaction products. As it may be difficult to distinguish between reactions occurring in the helium droplets before they are ionized and ion-molecule reactions taking place after the ionization, additional techniques were applied to ensure that the reactions actually occurred in the helium droplets. This information was provided by measuring the chemiluminescence light emitted by the products, the evaporation of helium atoms by the release of the reaction heat, or by laser-spectroscopic identification of the reactants and products.« less
[Differentiation of nonspecific serological reactions in brucellosis].
Khristoforov, L
1979-01-01
Differentiation of non-specific agglutination was performed by the complement binding reaction, Coombs' reaction, Hajdu reaction, the surface fixation and agglutination reaction and the reaction of complement binding with heterologic antigens. For that purpose the following were used: 1) Serums--antiglobulin against cattle globulin, 5720 serum of various animals which had manifested non-specific agglutination with brucella antigen and brucella serums of experimentally infected sheep, of naturally infected swine and of cattle--received from abroad. 2) Antigens--of Br. abortus 99, of bacteria heterologic to brucellae: Proteus vulgaris, Listeria monocytogenes, Staphylococcus albus, Escherichia coli, Streptococcus pyogenes, S. abortus ovis, for O and OH agglutination, water extraction antigens--for complement binding and concentrated suspensions of all bacteria used in brucellose and non-brucellose serum absorption. Highest number of non-specific reactions were observed in cattle serums and lowest--in goat serums. Titers with heterologic antigens were higher than these with brucella antigens. Often the serum having non-specific agglutiantion reacted not only with one, but with more heterologic antigens. Non-specific complement binding reactions were not produced in complete antibodies with the brucella antigen. Heterologic brucella antigens were exhausted more fully than heterologic complement binding antibodies. In their effectiveness (differentiation of non-specific agglutination with brucella antigen in cattle serum) the serological reactions studied rank as follows: complement binding reaction, slow agglutination with serums absorbed by heterologic antigens, surface fixation reaction, Coombs' reaction, and Hadju agglutination.
Minimum reaction network necessary to describe Ar/CF4 plasma etch
NASA Astrophysics Data System (ADS)
Helpert, Sofia; Chopra, Meghali; Bonnecaze, Roger T.
2018-03-01
Predicting the etch and deposition profiles created using plasma processes is challenging due to the complexity of plasma discharges and plasma-surface interactions. Volume-averaged global models allow for efficient prediction of important processing parameters and provide a means to quickly determine the effect of a variety of process inputs on the plasma discharge. However, global models are limited based on simplifying assumptions to describe the chemical reaction network. Here a database of 128 reactions is compiled and their corresponding rate constants collected from 24 sources for an Ar/CF4 plasma using the platform RODEo (Recipe Optimization for Deposition and Etching). Six different reaction sets were tested which employed anywhere from 12 to all 128 reactions to evaluate the impact of the reaction database on particle species densities and electron temperature. Because many the reactions used in our database had conflicting rate constants as reported in literature, we also present a method to deal with those uncertainties when constructing the model which includes weighting each reaction rate and filtering outliers. By analyzing the link between a reaction's rate constant and its impact on the predicted plasma densities and electron temperatures, we determine the conditions at which a reaction is deemed necessary to the plasma model. The results of this study provide a foundation for determining which minimal set of reactions must be included in the reaction set of the plasma model.
Aromatic Substitution Reactions: When You've Said Ortho, Meta, and Para, You Haven't Said It All.
ERIC Educational Resources Information Center
Traynham, James G.
1983-01-01
Recent investigations show that the ipso position competes effectively with unsubstituted positions in many aromatic substitution reactions, regardless of charge type of reaction. Selected examples available for nucleophilic, electrophilic, and free radical reactions are reviewed to suggest the range of ipso reactions. (JN)
Procedures for Decomposing a Redox Reaction into Half-Reaction
ERIC Educational Resources Information Center
Fishtik, Ilie; Berka, Ladislav H.
2005-01-01
A simple algorithm for a complete enumeration of the possible ways a redox reaction (RR) might be uniquely decomposed into half-reactions (HRs) using the response reactions (RERs) formalism is presented. A complete enumeration of the possible ways a RR may be decomposed into HRs is equivalent to a complete enumeration of stoichiometrically…
21 CFR 606.170 - Adverse reaction file.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Adverse reaction file. 606.170 Section 606.170 Food... reaction file. (a) Records shall be maintained of any reports of complaints of adverse reactions regarding... investigation of each reported adverse reaction shall be made. A written report of the investigation of adverse...
An Experiment to Illustrate the Hazards of Exothermic Reaction Scale-Up
ERIC Educational Resources Information Center
Clark, William; Lei, Melinda; Kirichenko, Erika; Dickerson, Kellie; Prytko, Robert
2017-01-01
Exothermic reactions can present safety hazards and there is a recognized need for reaction safety education at the undergraduate level. We present an experiment that illustrates the pitfall of direct scale-up of an exothermic reaction that can lead to thermal runaway. The iodide-catalyzed hydrogen peroxide decomposition reaction yields…
Applications of microwave-accelerated organic synthesis
NASA Astrophysics Data System (ADS)
Majetich, George; Hicks, Rodgers
1995-04-01
A comparison of microwave vs conventional heating is presented for a variety of Diels-Alder reactions, ortho-Claisen rearrangements, ene reactions, alkyl bromide preparations, Finkelstein reactions, oxidations, esterifications, hydrolyses, Williamson ether syntheses and other common organic transformations. In general, microwave-promoted reactions proceed with significant decreases in reaction times and in comparable chemical yield.
Titrimetric study of the reaction of chloramine-T with ammonia.
Jennings, V J; Dodson, A
1975-09-01
A titrimetric study of the reaction between chloramine-T (CAT) and ammonia is described. The effects of the presence of bromide, the ratio of CAT to ammonia concentrations, the time for reaction and the pH of the reaction media are all significant in the quantitativeness of the reaction that occurs.
ERIC Educational Resources Information Center
Mendes, Desiree E.; Schoffstall, Allen M.
2011-01-01
This undergraduate organic laboratory experiment consists of three different reactions occurring in the same flask: a cycloaddition reaction, preceded by decarboxylation and nucleophilic substitution reactions. The decarboxylation and cycloaddition reactions occur using identical Cu(I) catalyst and conditions. Orange, lemon, and other citrus fruit…
Fluorescence Correlation Spectroscopy and Nonlinear Stochastic Reaction-Diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del Razo, Mauricio; Pan, Wenxiao; Qian, Hong
2014-05-30
The currently existing theory of fluorescence correlation spectroscopy (FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered in single-cell biochemistry, it is expected that FCS time correlation functions of a reaction-diffusion system can deviate from the classic results of Elson and Magde [Biopolymers (1974) 13:1-27]. We first discuss this nonlinear effect for reaction systems without diffusion. For nonlinear stochastic reaction-diffusion systems there are no closedmore » solutions; therefore, stochastic Monte-Carlo simulations are carried out. We show that the deviation is small for a simple bimolecular reaction; the most significant deviations occur when the number of molecules is small and of the same order. Extending Delbrück-Gillespie’s theory for stochastic nonlinear reactions with rapidly stirring to reaction-diffusion systems provides a mesoscopic model for chemical and biochemical reactions at nanometric and mesoscopic level such as a single biological cell.« less
A comparative study on visual choice reaction time for different colors in females.
Balakrishnan, Grrishma; Uppinakudru, Gurunandan; Girwar Singh, Gaur; Bangera, Shobith; Dutt Raghavendra, Aswini; Thangavel, Dinesh
2014-01-01
Reaction time is one of the important methods to study a person's central information processing speed and coordinated peripheral movement response. Visual choice reaction time is a type of reaction time and is very important for drivers, pilots, security guards, and so forth. Previous studies were mainly on simple reaction time and there are very few studies on visual choice reaction time. The aim of our study was to compare the visual choice reaction time for red, green, and yellow colors of 60 healthy undergraduate female volunteers. After giving adequate practice, visual choice reaction time was recorded for red, green, and yellow colors using reaction time machine (RTM 608, Medicaid, Chandigarh). Repeated measures of ANOVA and Bonferroni multiple comparison were used for analysis and P < 0.05 was considered statistically significant. The results showed that both red and green had significantly less choice visual choice reaction (P values <0.0001 and 0.0002) when compared with yellow. This could be because individual color mental processing time for yellow color is more than red and green.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, Zeb C.; Takahashi, Kaito; Skodje, Rex T.
2012-04-28
The possibility of water catalysis in the vibrational overtone-induced dehydration reaction of methanediol is investigated using ab initio dynamical simulations of small methanediol-water clusters. Quantum chemistry calculations employing clusters with one or two water molecules reveal that the barrier to dehydration is lowered by over 20 kcal/mol because of hydrogen-bonding at the transition state. Nevertheless, the simulations of the reaction dynamics following OH-stretch excitation show little catalytic effect of water and, in some cases, even show an anticatalytic effect. The quantum yield for the dehydration reaction exhibits a delayed threshold effect where reaction does not occur until the photon energymore » is far above the barrier energy. Unlike thermally induced reactions, it is argued that competition between reaction and the irreversible dissipation of photon energy may be expected to raise the dynamical threshold for the reaction above the transition state energy. It is concluded that quantum chemistry calculations showing barrier lowering are not sufficient to infer water catalysis in photochemical reactions, which instead require dynamical modeling.« less
NASA Astrophysics Data System (ADS)
Nadeem, M. A.; Waterhouse, G. I. N.; Idriss, H.
2016-08-01
The reactions of ethanol have been studied on bare and Au supported TiO2 polymorphs (anatase and rutile) in order to understand the effect of Au loading and prior O2 treatment on the reaction selectivity and conversion using temperature programmed desorption (TPD). Although O2 treatment has negligible effect on the reaction selectivity of ethanol on TiO2 alone it considerably affects the reaction on Au/TiO2. Au/TiO2 had three main effects on the reaction when compared to TiO2 alone. First, it switches the reaction selectivity of the dehydration (to ethylene) in favor of dehydrogenation (to acetaldehyde) on both polymorphs. Second, it decreases the desorption temperature of the main reaction products. Third, it increases secondary reaction products (mainly C4 (crotonaldehyde, butene, furan) reaching ca. 78% of the overall carbon selectivity for the 8 wt.% Au/TiO2 anatase. These effects are more pronounced on the anatase phase when compared to that on the rutile phase. Reasons for these are discussed.
An Unusual Salt Effect in an Interfacial Nucleophilic Substitution Reaction.
Li, Shuheng; Mrksich, Milan
2018-06-12
This paper reports a kinetic characterization of the interfacial reaction of N-methylpyrrolidine with a self-assembled monolayer presenting an iodoalkyl group. SAMDI (self-assembled monolayers for matrix-assisted laser desorption/ionization) mass spectrometry was used to determine the extent of reaction for monolayers that were treated with a range of concentrations of the nucleophile for a range of times. These data revealed a second-order rate constant for the reaction that was approximately 100-fold greater than that for the analogous solution-phase reaction. However, addition of sodium iodide to the reaction mixture resulted in a 7-fold decrease in the reaction rate. Addition of bromide and chloride salts also gave slower rate constants for the reaction, but only at 100- and 1000-fold higher concentrations than was observed with iodide, respectively. The corresponding solution-phase reactions, by contrast, had rate constants that were unaffected by the concentration of halide salts. This work provides a well-characterized example illustrating the extent to which the kinetics and properties of an interfacial reaction can depart substantially from their better-understood solution-phase counterparts.
Studies in organic and physical photochemistry - an interdisciplinary approach.
Oelgemöller, Michael; Hoffmann, Norbert
2016-08-21
Traditionally, organic photochemistry when applied to synthesis strongly interacts with physical chemistry. The aim of this review is to illustrate this very fruitful interdisciplinary approach and cooperation. A profound understanding of the photochemical reactivity and reaction mechanisms is particularly helpful for optimization and application of these reactions. Some typical reactions and particular aspects are reported such as the Norrish-Type II reaction and the Yang cyclization and related transformations, the [2 + 2] photocycloadditions, particularly the Paternò-Büchi reaction, photochemical electron transfer induced transformations, different kinds of catalytic reactions such as photoredox catalysis for organic synthesis and photooxygenation are discussed. Particular aspects such as the structure and reactivity of aryl cations, photochemical reactions in the crystalline state, chiral memory, different mechanisms of hydrogen transfer in photochemical reactions or fundamental aspects of stereoselectivity are discussed. Photochemical reactions are also investigated in the context of chemical engineering. Particularly, continuous flow reactors are of interest. Novel reactor systems are developed and modeling of photochemical transformations and different reactors play a key role in such studies. This research domain builds a bridge between fundamental studies of organic photochemical reactions and their industrial application.
Reaction chemistry in rechargeable Li-O2 batteries.
Lim, Hee-Dae; Lee, Byungju; Bae, Youngjoon; Park, Hyeokjun; Ko, Youngmin; Kim, Haegyeom; Kim, Jinsoo; Kang, Kisuk
2017-05-22
The seemingly simple reaction of Li-O 2 batteries involving lithium and oxygen makes this chemistry attractive for high-energy-density storage systems; however, achieving this reaction in practical rechargeable Li-O 2 batteries has proven difficult. The reaction paths leading to the final Li 2 O 2 discharge products can be greatly affected by the operating conditions or environment, which often results in major side reactions. Recent research findings have begun to reveal how the reaction paths may be affected by the surrounding conditions and to uncover the factors contributing to the difficulty in achieving the reactions of lithium and oxygen. This progress report describes the current state of understanding of the electrode reaction mechanisms in Li-O 2 batteries; the factors that affect reaction pathways; and the effect of cell components such as solvents, salts, additives, and catalysts on the discharge product and its decomposition during charging. This comprehensive review of the recent progress in understanding the reaction chemistry of the Li-O 2 system will serve as guidelines for future research and aid in the development of reliable high-energy-density rechargeable Li-O 2 batteries.
Stutterheim, Sarah E; Brands, Ronald; Baas, Ineke; Lechner, Lilian; Kok, Gerjo; Bos, Arjan E R
We explored workplace experiences of 10 health care providers with HIV in the Netherlands. We used semi-structured interviews to discuss motivations for disclosure and concealment, reactions to disclosures, the impact of reactions, and coping with negative reactions. Reasons for disclosure were wanting to share the secret, expecting positive responses, observing positive reactions to others, wanting to prevent negative reactions, and being advised to disclose. Reasons for concealment included fearing negative reactions, observing negative reactions, previous negative experiences, having been advised to conceal, and considering disclosure unnecessary. Positive reactions included seeing HIV as a nonissue; showing interest, support, and empathy; and maintaining confidentiality. Negative reactions included management wanting to inform employees, work restrictions, hiring difficulties, gossip, and hurtful comments, resulting in participants being upset, taken aback, angry, depressed, or feeling resignation. Participants coped by providing information, standing above the experience, attributing reactions to ignorance, seeking social support, or leaving their jobs. Copyright © 2017 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Weiming; Tackett, Brian M.; Chen, Jingguang G.
The formation of carbides can significantly modify the physical and chemical properties of the parent metals. In the current review, we summarize the general trends in the reactions of water and C1 molecules over transition metal carbide (TMC) and metal-modified TMC surfaces and thin films. Although the primary focus of the current review is on the theoretical and experimental studies of reactions of C1 molecules (CO, CO 2, CH 3OH, etc.), the reactions of water will also be reviewed because water plays an important role in many of the C1 transformation reactions. This review is organized by discussing separately thermalmore » reactions and electrochemical reactions, which provides insights into the application of TMCs in heterogeneous catalysis and electrocatalysis, respectively. In thermal reactions, we discuss the thermal decomposition of water and methanol, as well as the reactions of CO and CO 2 over TMC surfaces. In electrochemical reactions, we summarize recent studies in the hydrogen evolution reaction, electrooxidation of methanol and CO, and electroreduction of CO 2. Lastly, future research opportunities and challenges associated with using TMCs as catalysts and electrocatalysts are also discussed.« less
Matrix isolation as a tool for studying interstellar chemical reactions
NASA Technical Reports Server (NTRS)
Ball, David W.; Ortman, Bryan J.; Hauge, Robert H.; Margrave, John L.
1989-01-01
Since the identification of the OH radical as an interstellar species, over 50 molecular species were identified as interstellar denizens. While identification of new species appears straightforward, an explanation for their mechanisms of formation is not. Most astronomers concede that large bodies like interstellar dust grains are necessary for adsorption of molecules and their energies of reactions, but many of the mechanistic steps are unknown and speculative. It is proposed that data from matrix isolation experiments involving the reactions of refractory materials (especially C, Si, and Fe atoms and clusters) with small molecules (mainly H2, H2O, CO, CO2) are particularly applicable to explaining mechanistic details of likely interstellar chemical reactions. In many cases, matrix isolation techniques are the sole method of studying such reactions; also in many cases, complexations and bond rearrangements yield molecules never before observed. The study of these reactions thus provides a logical basis for the mechanisms of interstellar reactions. A list of reactions is presented that would simulate interstellar chemical reactions. These reactions were studied using FTIR-matrix isolation techniques.
Structure-reactivity modeling using mixture-based representation of chemical reactions.
Polishchuk, Pavel; Madzhidov, Timur; Gimadiev, Timur; Bodrov, Andrey; Nugmanov, Ramil; Varnek, Alexandre
2017-09-01
We describe a novel approach of reaction representation as a combination of two mixtures: a mixture of reactants and a mixture of products. In turn, each mixture can be encoded using an earlier reported approach involving simplex descriptors (SiRMS). The feature vector representing these two mixtures results from either concatenated product and reactant descriptors or the difference between descriptors of products and reactants. This reaction representation doesn't need an explicit labeling of a reaction center. The rigorous "product-out" cross-validation (CV) strategy has been suggested. Unlike the naïve "reaction-out" CV approach based on a random selection of items, the proposed one provides with more realistic estimation of prediction accuracy for reactions resulting in novel products. The new methodology has been applied to model rate constants of E2 reactions. It has been demonstrated that the use of the fragment control domain applicability approach significantly increases prediction accuracy of the models. The models obtained with new "mixture" approach performed better than those required either explicit (Condensed Graph of Reaction) or implicit (reaction fingerprints) reaction center labeling.
Azofra, Luis Miguel; Alkorta, Ibon; Toro-Labbé, Alejandro; Elguero, José
2013-09-07
The mechanism of the S(N)2 model glycosylation reaction between ethanol, 1,2-ethanediol and methoxymethanol has been studied theoretically at the B3LYP/6-311+G(d,p) computational level. Three different types of reactions have been explored: (i) the exchange of hydroxyl groups between these model systems; (ii) the basic catalysis reactions by combination of the substrates as glycosyl donors (neutral species) and acceptors (enolate species); and (iii) the effect on the reaction profile of an explicit H2O molecule in the reactions considered in (ii). The reaction force, the electronic chemical potential and the reaction electronic flux have been characterized for the reaction path in each case. Energy calculations show that methoxymethanol is the worst glycosyl donor model among the ones studied here, while 1,2-ethanediol is the best, having the lowest activation barrier of 74.7 kJ mol(-1) for the reaction between this one and the ethanolate as the glycosyl acceptor model. In general, the presence of direct interactions between the atoms involved in the penta-coordinated TS increases the activation energies of the processes.
Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives
NASA Astrophysics Data System (ADS)
Wescott, Bradley
2007-06-01
The pseudo-reaction zone model was proposed to improve engineering scale simulations when using Detonation Shock Dynamics with high explosives that have a slow reaction component. In this work an extension of the pseudo-reaction zone model is developed for non-ideal explosives that propagate well below their steady-planar Chapman-Jouguet velocity. A programmed burn method utilizing Detonation Shock Dynamics and a detonation velocity dependent pseudo-reaction rate has been developed for non-ideal explosives and applied to the explosive mixture of ammonium nitrate and fuel oil (ANFO). The pseudo-reaction rate is calibrated to the experimentally obtained normal detonation velocity---shock curvature relation. The generalized pseudo-reaction zone model proposed here predicts the cylinder expansion to within 1% by accounting for the slow reaction in ANFO.
Ion-Molecule Reaction Dynamics
NASA Astrophysics Data System (ADS)
Meyer, Jennifer; Wester, Roland
2017-05-01
We review the recent advances in the investigation of the dynamics of ion-molecule reactions. During the past decade, the combination of single-collision experiments in crossed ion and neutral beams with the velocity map ion imaging detection technique has enabled a wealth of studies on ion-molecule reactions. These methods, in combination with chemical dynamics simulations, have uncovered new and unexpected reaction mechanisms, such as the roundabout mechanism and the subtle influence of the leaving group in anion-molecule nucleophilic substitution reactions. For this important class of reactions, as well as for many fundamental cation-molecule reactions, the information obtained with crossed-beam imaging is discussed. The first steps toward understanding micro-solvation of ion-molecule reaction dynamics are presented. We conclude with the presentation of several interesting directions for future research.
A multi-purpose reaction cell for the investigation of reactions under solvothermal conditions
NASA Astrophysics Data System (ADS)
Heidenreich, N.; Rütt, U.; Köppen, M.; Inge, A. Ken; Beier, S.; Dippel, A.-C.; Suren, R.; Stock, N.
2017-10-01
A new versatile and easy-to-use remote-controlled reactor setup aimed at the analysis of chemical reactions under solvothermal conditions has been constructed. The reactor includes a heating system that can precisely control the temperature inside the reaction vessels in a range between ambient temperature and 180 °C. As reaction vessels, two sizes of commercially available borosilicate vessels (Vmax = 5 and 11 ml) can be used. The setup furthermore includes the option of stirring and injecting of up to two liquid additives or one solid during the reaction to initiate very fast reactions, quench reactions, or alter chemical parameters. In addition to a detailed description of the general setup and its functionality, three examples of studies conducted using this setup are presented.
Computed potential energy surfaces for chemical reactions
NASA Technical Reports Server (NTRS)
Walch, Stephen P.
1994-01-01
Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).
A Networks Approach to Modeling Enzymatic Reactions.
Imhof, P
2016-01-01
Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes. © 2016 Elsevier Inc. All rights reserved.
Microwave-Assisted Rapid Enzymatic Synthesis of Nucleic Acids.
Hari Das, Rakha; Ahirwar, Rajesh; Kumar, Saroj; Nahar, Pradip
2016-07-02
Herein we report microwave-induced enhancement of the reactions catalyzed by Escherichia coli DNA polymerase I and avian myeloblastosis virus-reverse transcriptase. The reactions induced by microwaves result in a highly selective synthesis of nucleic acids in 10-50 seconds. In contrast, same reactions failed to give desired reaction products when carried out in the same time periods, but without microwave irradiation. Each of the reactions was carried out for different duration of microwave exposure time to find the optimum reaction time. The products produced by the respective enzyme upon microwave irradiation of the reaction mixtures were identical to that produced by the conventional procedures. As the microwave-assisted reactions are rapid, microwave could be a useful alternative to the conventional and time consuming procedures of enzymatic synthesis of nucleic acids.
Babu, Suresh P.; Bair, Wilford G.
1992-01-01
A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.
Dong, Cheng-Guo; Yeung, Pik; Hu, Qiao-Sheng
2007-01-18
Two types of domino reactions from the same internal alkynes and hindered Grignard reagents based on carbopalladation, Pd-catalyzed cross-coupling reaction, and a C-H activation strategy are described. The realization of these domino reactions relied on the control of the use of the ligand and the reaction temperature. Our study provides efficient access to useful polysubstituted indenes and cis-substituted stilbenes and may offer a new means of development of tandem/domino reactions in a more efficient way. [reaction: see text].
NASA Astrophysics Data System (ADS)
Kurade, S. S.; Ramteke, A. A.
2018-05-01
In this work, we have investigated the rate of reaction by using ionic strength at different temperatures. The main goal of this experiment is to determine the relation between ionic strength with reaction rate, reaction time and rate constant with temperature. It is observed that the addition of positive salt indicate the increasing ionic strength with increase in run time at various temperatures. Thus the temperature affects the speed of reaction and mechanism by which chemical reaction occurs and time variable plays vital role in the progress of reaction at different temperatures.
High temperature chemical kinetic study of the H2-CO-CO2-NO reaction system
NASA Technical Reports Server (NTRS)
Jachimowski, C. J.
1975-01-01
An experimental study of the kinetics of the H2-CO-CO2-NO reaction system was made behind incident shock waves at temperatures of 2460 and 2950 K. The overall rate of the reaction was measured by monitoring radiation from the CO + O yields CO2 + h upoilon reaction. Correlation of these data with a detailed reaction mechanism showed that the high-temperature rate of the reaction N + OH yields NO + H can be described by the low-temperature (320 K) rate coefficient. Catalytic dissociation of molecular hydrogen was an important reaction under the tests conditions.
Nadeem, M A; Idriss, H
2018-05-17
Photo-thermal catalytic reactions of ethanol over Ag/TiO2 were conducted in order to probe into the role of plasmonic resonance response in the reaction kinetics. In the 300-500 K temperature domain the increase in reaction rate is found to be mainly due to changes in the activation energy while above this temperature range the increase was due to the pre-exponential factor. These results might be linked to the role of plasmonic Ag particles in polarising the reaction intermediates and therefore increasing the reaction products at temperatures up to about 500 K.
Multichannel quench-flow microreactor chip for parallel reaction monitoring.
Bula, Wojciech P; Verboom, Willem; Reinhoudt, David N; Gardeniers, Han J G E
2007-12-01
This paper describes a multichannel silicon-glass microreactor which has been utilized to investigate the kinetics of a Knoevenagel condensation reaction under different reaction conditions. The reaction is performed on the chip in four parallel channels under identical conditions but with different residence times. A special topology of the reaction coils overcomes the common problem arising from the difference in pressure drop of parallel channels having different length. The parallelization of reaction coils combined with chemical quenching at specific locations results in a considerable reduction in experimental effort and cost. The system was tested and showed good reproducibility in flow properties and reaction kinetic data generation.
Stereospecific nickel-catalyzed cross-coupling reactions of benzylic ethers and esters.
Tollefson, Emily J; Hanna, Luke E; Jarvo, Elizabeth R
2015-08-18
This Account presents the development of a suite of stereospecific alkyl-alkyl cross-coupling reactions employing nickel catalysts. Our reactions complement related nickel-catalyzed stereoconvergent cross-coupling reactions from a stereochemical and mechanistic perspective. Most reactions of alkyl electrophiles with low-valent nickel complexes proceed through alkyl radicals and thus are stereoablative; the correct enantioselective catalyst can favor the formation of one enantiomer. Our reactions, in contrast, are stereospecific. Enantioenriched ethers and esters are cleanly converted to cross-coupled products with high stereochemical fidelity. While mechanistic details are still to be refined, our results are consistent with a polar, two-electron oxidative addition that avoids the formation of radical intermediates. This reactivity is unusual for a first-row transition metal. The cross-coupling reactions engage a range of benzylic ethers and esters, including methyl ethers, tetrahydropyrans, tetrahydrofurans, esters, and lactones. Coordination of the arene substituent to the nickel catalyst accelerates the reactions. Arenes with low aromatic stabilization energies, such as naphthalene, benzothiophene, and furan, serve as the best ligands and provide the highest reactivity. Traceless directing groups that accelerate reactions of sluggish substrates are described, providing partial compensation for arene coordination. Kumada, Negishi, and Suzuki reactions provide incorporation of a broad range of transmetalating agents. In Kumada coupling reactions, a full complement of Grigard reagents, including methyl, n-alkyl, and aryl Grignard reagents, are employed. In reactions employing methylmagnesium iodide, ligation of the nickel catalyst by rac-BINAP or DPEphos provides the highest yield and stereospecificity. For all other Grignard reagents, Ni(dppe)Cl2 has emerged as the best catalyst. Negishi cross-coupling reactions employing dimethylzinc are reported as a strategy to increase the functional group tolerance of the reaction. We also describe Suzuki reactions using arylboronic esters. These reactions provided the first example in the series of a switch in stereochemical outcome. The reactions maintain stereospecificity, but reactions employing different achiral ligands provide opposite enantiomers of the product. Use of an N-heterocyclic carbene ligand, SIMes, provides inversion, consistent with our prior work in Kumada and Negishi coupling reactions. Use of the electron-rich phosphine PCy3, however, provides retention with stereospecificity, signaling a change in the mechanistic details. Potential applications of the reported cross-coupling reactions include the synthesis of medicinal agents containing the 2-arylalkane and 1,1-diarylalkane moieties, which are pharmacophores in medicinal chemistry. These moieties are found in compounds with activity against a broad range of indications, including cancer, heart disease, diabetes, osteoporosis, smallpox, tuberculosis, and insomnia. We highlight representative examples of bioactive compounds that we have prepared with high enantioselectivity employing our methods, as well as the discovery of a new anti-cancer agent.
Dynamical resonances in the fluorine atom reaction with the hydrogen molecule.
Yang, Xueming; Zhang, Dong H
2008-08-01
[Reaction: see text]. The concept of transition state has played a crucial role in the field of chemical kinetics and reaction dynamics. Resonances in the transition state region are important in many chemical reactions at reaction energies near the thresholds. Detecting and characterizing isolated reaction resonances, however, have been a major challenge in both experiment and theory. In this Account, we review the most recent developments in the study of reaction resonances in the benchmark F + H 2 --> HF + H reaction. Crossed molecular beam scattering experiments on the F + H 2 reaction have been carried out recently using the high-resolution, highly sensitive H-atom Rydberg tagging technique with HF rovibrational states almost fully resolved. Pronounced forward scattering for the HF (nu' = 2) product has been observed at the collision energy of 0.52 kcal/mol in the F + H 2 (j = 0) reaction. Quantum dynamical calculations based on two new potential energy surfaces, the Xu-Xie-Zhang (XXZ) surface and the Fu-Xu-Zhang (FXZ) surface, show that the observed forward scattering of HF (nu' = 2) in the F + H 2 reaction is caused by two Feshbach resonances (the ground resonance and first excited resonance). More interestingly, the pronounced forward scattering of HF (nu' = 2) at 0.52 kcal/mol is enhanced considerably by the constructive interference between the two resonances. In order to probe the resonance potential more accurately, the isotope substituted F + HD --> HF + D reaction has been studied using the D-atom Rydberg tagging technique. A remarkable and fast changing dynamical picture has been mapped out in the collision energy range of 0.3-1.2 kcal/mol for this reaction. Quantum dynamical calculations based on the XXZ surface suggest that the ground resonance on this potential is too high in comparison with the experimental results of the F + HD reaction. However, quantum scattering calculations on the FXZ surface can reproduce nearly quantitatively the resonance picture of the F + HD reaction observed in the experiment. It is clear that the dynamics of the F + HD reaction below the threshold was dominated by the ground resonance state. Furthermore, the forward scattering HF (nu' = 3) channel from the F + H 2 ( j = 0) reaction was investigated and was attributed mainly to a slow-down mechanism over the centrifugal exit barrier, with small contributions from a shape resonance mechanism in a narrow collision energy range. A striking effect of the reagent rotational excitation on resonance was also observed in F + H 2 ( j = 1), in comparison with F + H 2 ( j = 0). From these concerted experimental and theoretical studies, a clear physical picture of the reaction resonances in this benchmark reaction has emerged, providing a textbook example of dynamical resonances in elementary chemical reactions.
Sakaguchi, M; Miyazawa, H; Inouye, S
2000-03-01
We recently found that four children who experienced systemic immediate-type reactions to varicella vaccine with gelatin had anti-gelatin IgE. We also found systemic non-immediate-type allergic reactions, which mainly consist of systemic cutaneous signs, appearing several hours or more after the vaccination. To investigate the relationship between immune responses to gelatin and non-immediate-type reactions to gelatin-containing varicella vaccines, we measured anti-gelatin IgE and IgG in the sera of the children with these allergic reactions. Serum samples were taken from 21 children who showed non-immediate-type reactions to varicella vaccines. As a positive control, serum samples were taken from 33 children who showed immediate-type reactions to varicella vaccine and had anti-gelatin IgE. As a negative control, serum samples were taken from 50 children who showed no reaction to the vaccine. We then examined anti-gelatin IgE and IgG in sera of the children. Of 21 children with non-immediate-type reactions, two (10%) had anti-gelatin IgE and six (29%) had anti-gelatin IgG. In the positive control group, all 33 children with immediate-type reactions had anti-gelatin IgG as well as IgE. In the negative control group, all 50 children who showed no allergic reaction to varicella vaccines had neither anti-gelatin IgE nor IgG. These results suggest that the possibility exists that some non-immediate-type reactions to varicella vaccine are caused by immune reactions to gelatin.
Role of breakup and direct processes in deuteron-induced reactions at low energies
NASA Astrophysics Data System (ADS)
Avrigeanu, M.; Avrigeanu, V.
2015-08-01
Background: Recent studies of deuteron-induced reactions around the Coulomb barrier B pointed out that numerical calculations for deuteron-induced reactions are beyond current capabilities. The statistical model of nuclear reactions was used in this respect since the compound-nucleus (CN) mechanism was considered to be responsible for most of the total-reaction cross section σR in this energy range. However, specific noncompound processes such as the breakup (BU) and direct reactions (DR) should be also considered for the deuteron-induced reactions, making them different from reactions with other incident particles. Purpose: The unitary and consistent BU and DR consideration in deuteron-induced reactions is proved to yield results at variance with the assumption of negligible noncompound components. Method: The CN fractions of σR obtained by analysis of measured neutron angular distributions in deuteron-induced reactions on 27Al, 56Fe, 63,63Cu, and 89Y target nuclei, around B , are compared with the results of an unitary analysis of every reaction mechanism. The latter values have been supported by the previously established agreement with all available deuteron data for 27Al 54,56,-58,natCu, 63,65,natCu and 93Nb. Results: There is a significant difference between the larger CN contributions obtained from measured neutron angular distributions and calculated results of an unitary analysis of every deuteron-interaction mechanism. The decrease of the latter values is mainly due to the BU component. Conclusions: The above-mentioned differences underline the key role of the breakup and direct reactions that should be considered explicitly in the case of deuteron-induced reactions.
Quantum Chemical Investigation on Photochemical Reactions of Nonanoic Acids at Air-Water Interface.
Xiao, Pin; Wang, Qian; Fang, Wei-Hai; Cui, Ganglong
2017-06-08
Photoinduced chemical reactions of organic compounds at the marine boundary layer have recently attracted significant experimental attention because this kind of photoreactions has been proposed to have substantial impact on local new particle formation and their photoproducts could be a source of secondary organic aerosols. In this work, we have employed first-principles density functional theory method combined with cluster models to systematically explore photochemical reaction pathways of nonanoic acids (NAs) to form volatile saturated and unsaturated C 9 and C 8 aldehydes at air-water interfaces. On the basis of the results, we have found that the formation of C 9 aldehydes is not initiated by intermolecular Norrish type II reaction between two NAs but by intramolecular T 1 C-O bond fission of NA generating acyl and hydroxyl radicals. Subsequently, saturated C 9 aldehydes are formed through hydrogenation reaction of acyl radical by another intact NA. Following two dehydrogenation reactions, unsaturated C 9 aldehydes are generated. In parallel, the pathway to C 8 aldehydes is initiated by T 1 C-C bond fission of NA, which generates octyl and carboxyl radicals; then, an octanol is formed through recombination reaction of octyl with hydroxyl radical. In the following, two dehydrogenation reactions result into an enol intermediate from which saturated C 8 aldehydes are produced via NA-assisted intermolecular hydrogen transfer. Finally, two dehydrogenation reactions generate unsaturated C 8 aldehydes. In these reactions, water and NA molecules are found to play important roles. They significantly reduce relevant reaction barriers. Our work has also explored oxygenation reactions of NA with molecular oxygen and radical-radical dimerization reactions.
Paulus, Andrea; Wentura, Dirk
2016-02-01
Studies examining approach and avoidance reactions to emotional expressions have yielded conflicting results. For example, expressions of anger have been reported to elicit approach reactions in some studies but avoidance reactions in others. Nonetheless, the results were often explained by the same general underlying process, namely the influence that the social message signaled by the expression has on motivational responses. It is therefore unclear which reaction is triggered by which emotional expression, and which underlying process is responsible for these reactions. In order to address this issue, we examined the role of a potential moderator on approach and avoidance reactions to emotional expressions, namely the contrast emotion used in the task. We believe that different approach and avoidance reactions occur depending on the congruency or incongruency of the evaluation of the 2 emotions presented in the task. The results from a series of experiments supported these assumptions: Negative emotional expressions (anger, fear, sadness) elicited avoidance reactions if contrasted with expressions of happiness. However, if contrasted with a different negative emotional expression, anger and sadness triggered approach reactions and fear activated avoidance reactions. Importantly, these results also emerged if the emotional expression was not task-relevant. We propose that approach and avoidance reactions to emotional expressions are triggered by their evaluation if the 2 emotions presented in a task differ in evaluative connotation. If they have the same evaluative connotation, however, reactions are determined by their social message. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
New Developments in the Field of Reaction Technology: The Multiparallel Reactor HPMR 50-96
Allwardt, Arne; Wendler, Christian; Thurow, Kerstin
2005-01-01
Catalytic high-pressure reactions play an important role in classic bulk chemistry. The optimization of common reactions, the search for new and more effective catalysts, and the increasing use of catalytic pressure reactions in the field of drug development call for high-parallel reaction systems. A crucial task of current developments, apart from the parameters of pressure, temperature, and number of reaction chambers, is, in this respect, the systems' integration into complex laboratory automation environments. PMID:18924722
Online monitoring of a photocatalytic reaction by real-time high resolution FlowNMR spectroscopy.
Hall, Andrew M R; Broomfield-Tagg, Rachael; Camilleri, Matthew; Carbery, David R; Codina, Anna; Whittaker, David T E; Coombes, Steven; Lowe, John P; Hintermair, Ulrich
2017-12-19
We demonstrate how FlowNMR spectroscopy can readily be applied to investigate photochemical reactions that require sustained input of light and air to yield mechanistic insight under realistic conditions. The Eosin Y mediated photo-oxidation of N-allylbenzylamine is shown to produce imines as primary reaction products from which undesired aldehydes form after longer reaction times. Facile variation of reaction conditions during the reaction in flow allows for probe experiments that give information about the mode of action of the photocatalyst.
Zou, Tingting; Liu, Jianbin; Song, Huanlu; Liu, Ye
2018-06-01
Knowledge of the role of peptides in the Maillard reaction is rather limited. In this study, peptide Maillard reaction model systems were established. Volatile and nonvolatile MRPs (Maillard reaction products) were investigated by GC-O-MS and LC-MS. Carbohydrate module labeling (CAMOLA) experiments were performed to elucidate the carbon skeleton of these compounds. Results showed that the peptide reaction system generated more pyrazines than the free amino acid group. Several new Amadori-type conjugates were identified as novel Maillard reaction products that could greatly influence the formation of pyrazines. Our work suggested anew mechanism involving these Amadori-type conjugates and subsequent investigation revealed that the conjugates could be important intermediate products in the reaction between dicarbonyl and dipeptide. Our findings demonstrate anew pyrazine generation mechanism in the dipeptide Maillard reaction. We found that a dipeptide Maillard reaction system generated more pyrazines than a reaction system composed of free amino acids. New cross-linked peptide-sugar compounds were identified and found to impact the formation of pyrazines. The results of this study may help in the preparation of thermal reaction flavors using enzymatically hydrolyzed vegetable/animal proteins, which contain a considerable amount of peptides, as one of the major reactants. © 2018 Institute of Food Technologists®.
Crawford, Elizabeth A; Esen, Cemal; Volmer, Dietrich A
2016-09-06
Direct in-droplet (in stillo) microreaction monitoring using acoustically levitated micro droplets has been achieved by combining acoustic (ultrasonic) levitation for the first time with real time ambient tandem mass spectrometry (MS/MS). The acoustic levitation and inherent mixing of microliter volumes of reactants (3 μL droplets), yielding total reaction volumes of 6 μL, supported monitoring the acid-catalyzed degradation reaction of erythromycin A. This reaction was chosen to demonstrate the proof-of-principle of directly monitoring in stillo microreactions via hyphenated acoustic levitation and ambient ionization mass spectrometry. The microreactions took place completely in stillo over 30, 60, and 120 s within the containerless stable central pressure node of an acoustic levitator, thus readily promoting reaction miniaturization. For the evaluation of the miniaturized in stillo reactions, the degradation reactions were also carried out in vials (in vitro) with a total reaction volume of 400 μL. The reacted in vitro mixtures (6 μL total) were similarly introduced into the acoustic levitator prior to ambient ionization MS/MS analysis. The in stillo miniaturized reactions provided immediate real-time snap-shots of the degradation process for more accurate reaction monitoring and used a fraction of the reactants, while the larger scale in vitro reactions only yielded general reaction information.
Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B
2007-06-16
This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.
Ten-year review reveals changing trends and severity of allergic reactions to nuts and other foods.
Johnson, Jennifer; Malinovschi, Andrei; Alving, Kjell; Lidholm, Jonas; Borres, Magnus P; Nordvall, Lennart
2014-08-01
Over the past few decades, the incidence of food allergies has risen and Sweden has increased its import of peanuts and exotic nuts, such as cashew nuts, which may cause severe allergic reactions. This study aimed to retrospectively investigate paediatric emergency visits due to food reactions over a 10-year period, focusing on reactions to peanuts and tree nuts. Emergency visits to Uppsala University Children's Hospital, Sweden, between September 2001 and December 2010, were reviewed, and cases containing diagnostic codes for anaphylaxis, allergic reactions or allergy and hypersensitivity not caused by drugs or biological substances were retrieved. We analysed 703 emergency visits made by 578 individuals with food allergies. Peanuts and tree nuts accounted for 50% of the food allergies and were more frequently associated with adrenaline treatment and hospitalisation than other foods. Cashew nut reactions increased over the study period, and together with peanuts, they were responsible for more anaphylactic reactions than hazelnuts. Peanut and tree nut reactions were more likely to result in adrenaline treatment and hospitalisation than other food reactions. Peanut and cashew nut reactions were more likely to cause anaphylaxis than hazelnuts. Cashew nut reactions increased during the study period. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Taniguchi, K; Fujisawa, T; Ihara, T; Kamiya, H
1998-12-01
Many cases of anaphylactic or nonanaphylactic reactions have been reported to measles-mumps-rubella vaccine or its component vaccines that contain gelatin as a stabilizer. Increased levels of specific IgE antibodies to gelatin have been reported in children with anaphylactic reactions. However, IgE is not increased in cases of nonanaphylactic reaction, and the mechanisms of the reaction are still controversial. The study was aimed to elucidate the relationship between nonanaphylactic reaction and gelatin. We investigated in vitro induction of activated memory helper T cells (CD4(+ )CD25(+ )CD45RO+ cells) in response to gelatin in children with nonanaphylactic reactions to vaccines containing gelatin. In patients with delayed-type sensitivity to gelatin confirmed with a positive skin test response, CD4(+ )CD25(+ )CD45RO+ cells were significantly more strongly induced in culture containing gelatin than in control cultures. However, there was no significant difference between cultures with gelatin and those with control solvent in patients without reactions after vaccination. Of 76 patients with nonanaphylactic reactions after immunization with vaccine containing gelatin, 61 had an increased lymphocyte stimulation index to gelatin versus control children. These results suggest the possibility that nonanaphylactic reactions to gelatin-containing vaccine in Japan might be mediated by delayed hypersensitivity reactions against gelatin.
NASA Astrophysics Data System (ADS)
Qiao, Yan; Chen, Xinhuan; Wei, Donghui; Chang, Junbiao
2016-12-01
Hydroacylation reactions and aza-benzoin reactions have attracted considerable attention from experimental chemists. Recently, Wang et al. reported an interesting reaction of N-heterocyclic carbene (NHC)-catalyzed addition of aldehyde to enamide, in which both hydroacylation and aza-benzoin reactions may be involved. Thus, understanding the competing relationship between them is of great interest. Now, density functional theory (DFT) investigation was performed to elucidate this issue. Our results reveal that enamide can tautomerize to its imine isomer with the assistance of HCO3-. The addition of NHC to aldehydes formed Breslow intermediate, which can go through cross-coupling with enamide via hydroacylation reaction or its imine isomer via aza-benzoin reaction. The aza-benzoin reaction requires relatively lower free energy barrier than the hydroacylation reaction. The more polar characteristic of C=N group in the imine isomers, and the more advantageous stereoelectronic effect in the carbon-carbon bond forming transition states in aza-benzoin pathway were identified to determine that the imine isomer can react with the Breslow intermediate more easily. Furthermore, the origin of enantioselectivities for the reaction was explored and reasonably explained by structural analyses on key transition states. The work should provide valuable insights for rational design of switchable NHC-catalyzed hydroacylation and aza-benzoin reactions with high stereoselectivity.
Hansen, I; Hörmann, K; Stuck, B A; Schneider-Gêne, S; Mösges, R; Klimek, L
2003-08-01
Specific immunotherapy (SIT) represents the only specific treatment that can be offered to allergic patients apart from allergen avoidance. SIT has been widely used in pollen allergic rhinitis. Clinical efficacy has been demonstrated in several controlled clinical trials and depends on the specific allergen the individual patient is sensitive to, the quality and total amount of allergen applied, and the SIT schedule. In classic SIT, gradually increasing dosages of the allergen extract are injected subcutaneously. Several dosage schedules for subcutaneous SIT can be applied. In Cluster-SIT, 2 - 3 injections per day of treatment are given once a week during induction treatment. In this study, we investigated 64 patients (33 female, 31 male) from 18 to 54 years (26.9 +/- 5.1 years) in terms of side-effects of Cluster-SIT during induction treatment. The total amount of enlarged local reactions (> grade 1) was n = 77 or 15.2 % of all injections. Of these, 68 (88 %) were classified as immediate reactions, 8 (11 %) were late phase reactions and 1 (1 %) was immediate as well as late phase reaction. Of all enlarged local reactions, 48 (62 %) were grade 1 reactions, 13 (17 %) were grade 2 reactions, 13 (17 %) were grade 3 reactions and 1 (1 %) was a grade 4 reaction. The total amount of systemic reactions was n = 22 or 4.3 % of all injections. Of these, 19 (86 %) were classified as immediate reactions, 3 (14 %) were delayed reactions. Of all systemic reactions, 18 (82 %) were grade 1 reactions and 4 (18 %) grade 2 reactions. Grade 3 or grade 4 reactions did not occur. There were no differences in gender or age regarding the occurrence of side effects (all p > 0.05). Frequency and severity of adverse side effects in Cluster-SIT correspond to those in other dosage schedules. On behalf of security aspects, Cluster-SIT could become an interesting alternative dosage schedule for dose increase during SIT. Furthermore, in Cluster-SIT with allergoids, induction treatment can be carried out in two treatment days of approximately 2.5 hours each.
Reaction Extrema: Extent of Reaction in General Chemistry
ERIC Educational Resources Information Center
Vandezande, Jonathon E.; Vander Griend, Douglas A.; DeKock, Roger L.
2013-01-01
Nearly 100 years ago de Donder introduced the term "extent of reaction", ?. We build on that work by defining the concept of reagent extrema for an arbitrary chemical reaction, aA + bB [reversible reaction] yY + zZ. The central equation is ?^[subscript i] = -n[subscript i,0]/?[subscript i]. The symbol ?^[subscript i] represents the…
Investigating Students' Reasoning about Acid-Base Reactions
ERIC Educational Resources Information Center
Cooper, Melanie M.; Kouyoumdjian, Hovig; Underwood, Sonia M.
2016-01-01
Acid-base chemistry is central to a wide range of reactions. If students are able to understand how and why acid-base reactions occur, it should provide a basis for reasoning about a host of other reactions. Here, we report the development of a method to characterize student reasoning about acid-base reactions based on their description of…
Computational Chemistry in the Undergraduate Laboratory: A Mechanistic Study of the Wittig Reaction
ERIC Educational Resources Information Center
Albrecht, Birgit
2014-01-01
The Wittig reaction is one of the most useful reactions in organic chemistry. Despite its prominence early in the organic chemistry curriculum, the exact mechanism of this reaction is still under debate, and this controversy is often neglected in the classroom. Introducing a simple computational study of the Wittig reaction illustrates the…
Model Experiment of Thermal Runaway Reactions Using the Aluminum-Hydrochloric Acid Reaction
ERIC Educational Resources Information Center
Kitabayashi, Suguru; Nakano, Masayoshi; Nishikawa, Kazuyuki; Koga, Nobuyoshi
2016-01-01
A laboratory exercise for the education of students about thermal runaway reactions based on the reaction between aluminum and hydrochloric acid as a model reaction is proposed. In the introductory part of the exercise, the induction period and subsequent thermal runaway behavior are evaluated via a simple observation of hydrogen gas evolution and…
ERIC Educational Resources Information Center
Long, Robert D.
2012-01-01
In this experiment, students individually conduct one of several variations of an E2 dehydrohalogenation reaction on a cyclohexyl halide substrate for 30 min, which is sufficient only for a partial reaction to occur. The variations examine reaction conditions including different leaving groups, decreased reaction temperature, or reduced base…
A Green Multicomponent Reaction for the Organic Chemistry Laboratory: The Aqueous Passerini Reaction
ERIC Educational Resources Information Center
Hooper, Matthew M.; DeBoef, Brenton
2009-01-01
Water is the ideal green solvent for organic reactions. However, most organic molecules are insoluble in it. Herein, we report a laboratory module that takes advantage of this property. The Passerini reaction, a three-component coupling involving an isocyanide, aldehyde, and carboxylic acid, typically requires [similar to] 24 h reaction times in…
Modulating the DNA polymerase β reaction equilibrium to dissect the reverse reaction
Shock, David D.; Freudenthal, Bret D.; Beard, William A.; Wilson, Samuel H.
2017-01-01
DNA polymerases catalyze efficient and high fidelity DNA synthesis. While this reaction favors nucleotide incorporation, polymerases also catalyze a reverse reaction, pyrophosphorolysis, removing the DNA primer terminus and generating deoxynucleoside triphosphates. Since pyrophosphorolysis can influence polymerase fidelity and sensitivity to chain-terminating nucleosides, we analyzed pyrophosphorolysis with human DNA polymerase β and found the reaction to be inefficient. The lack of a thio-elemental effect indicated that it was limited by a non-chemical step. Utilizing a pyrophosphate analog, where the bridging oxygen is replaced with an imido-group (PNP), increased the rate of the reverse reaction and displayed a large thio-elemental effect indicating that chemistry was now rate determining. Time-lapse crystallography with PNP captured structures consistent with a chemical equilibrium that favored the reverse reaction. These results highlight the importance of the bridging atom between the β- and γ-phosphates of the incoming nucleotide in reaction chemistry, enzyme conformational changes, and overall reaction equilibrium. PMID:28759020
Sarina, Sarina; Jaatinen, Esa; Xiao, Qi; Huang, Yi Ming; Christopher, Philip; Zhao, Jin Cai; Zhu, Huai Yong
2017-06-01
By investigating the action spectra (the relationship between the irradiation wavelength and apparent quantum efficiency of reactions under constant irradiance) of a number of reactions catalyzed by nanoparticles including plasmonic metals, nonplasmonic metals, and their alloys at near-ambient temperatures, we found that a photon energy threshold exists in each photocatalytic reaction; only photons with sufficient energy (e.g., higher than the energy level of the lowest unoccupied molecular orbitals) can initiate the reactions. This energy alignment (and the photon energy threshold) is determined by various factors, including the wavelength and intensity of irradiation, molecule structure, reaction temperature, and so forth. Hence, distinct action spectra were observed in the same type of reaction catalyzed by the same catalyst due to a different substituent group, a slightly changed reaction temperature. These results indicate that photon-electron excitations, instead of the photothermal effect, play a dominant role in direct photocatalysis of metal nanoparticles for many reactions.
NASA Astrophysics Data System (ADS)
Morelli, Marco J.; Allen, Rosalind J.; Tǎnase-Nicola, Sorin; ten Wolde, Pieter Rein
2008-01-01
In many stochastic simulations of biochemical reaction networks, it is desirable to "coarse grain" the reaction set, removing fast reactions while retaining the correct system dynamics. Various coarse-graining methods have been proposed, but it remains unclear which methods are reliable and which reactions can safely be eliminated. We address these issues for a model gene regulatory network that is particularly sensitive to dynamical fluctuations: a bistable genetic switch. We remove protein-DNA and/or protein-protein association-dissociation reactions from the reaction set using various coarse-graining strategies. We determine the effects on the steady-state probability distribution function and on the rate of fluctuation-driven switch flipping transitions. We find that protein-protein interactions may be safely eliminated from the reaction set, but protein-DNA interactions may not. We also find that it is important to use the chemical master equation rather than macroscopic rate equations to compute effective propensity functions for the coarse-grained reactions.
Method for continuously recovering metals using a dual zone chemical reactor
Bronson, Mark C.
1995-01-01
A dual zone chemical reactor continuously processes metal-containing materials while regenerating and circulating a liquid carrier. The starting materials are fed into a first reaction zone of a vessel containing a molten salt carrier. The starting materials react to form a metal product and a by-product that dissolves in the molten salt that flows to a second reaction zone in the reaction vessel. The second reaction zone is partitioned from, but in fluid communication with, the first reaction zone. The liquid carrier continuously circulates along a pathway between the first reaction zone and the second reaction zone. A reactive gas is introduced into the second reaction zone to react with the reaction by-product to generate the molten salt. The metal product, the gaseous waste products, and the excess liquid carrier are removed without interrupting the operation of the reactor. The design of the dual zone reactor can be adapted to combine a plurality of liquid carrier regeneration zones in a multiple dual zone chemical reactor for production scale processing.
Liu, Yunyun; Wan, Jie-Ping
2012-06-01
Active methylene compounds are a major class of reaction partners for C-C bond formation with sp(2) C-X (X = halide) fragments. As one of the most-classical versions of the Ullmann-type coupling reaction, activated-methylene-based C-C coupling reactions have been efficiently employed in a large number of syntheses. Although this type of reaction has long relied on noble-metal catalysis, the renaissance of copper catalysis at the end of last century has led to dramatic developments in Ullmann C-C coupling reactions. Owing to its low cost, abundance, as well as excellent catalytic activity, the exceptional atom economy of copper catalysis is gaining widespread attention in various organic synthesis. This review summarizes the advances in copper-catalyzed intermolecular and intramolecular C-C coupling reactions that use activated methylene species as well as in tandem reactions that are initiated by this transformation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yao, Jianzhuang; Yuan, Yaxia; Zheng, Fang; Zhan, Chang-Guo
2016-02-01
Extensive computational modeling and simulations have been carried out, in the present study, to uncover the fundamental reaction pathway for butyrylcholinesterase (BChE)-catalyzed hydrolysis of ghrelin, demonstrating that the acylation process of BChE-catalyzed hydrolysis of ghrelin follows an unprecedented single-step reaction pathway and the single-step acylation process is rate-determining. The free energy barrier (18.8 kcal/mol) calculated for the rate-determining step is reasonably close to the experimentally-derived free energy barrier (~19.4 kcal/mol), suggesting that the obtained mechanistic insights are reasonable. The single-step reaction pathway for the acylation is remarkably different from the well-known two-step acylation reaction pathway for numerous ester hydrolysis reactions catalyzed by a serine esterase. This is the first time demonstrating that a single-step reaction pathway is possible for an ester hydrolysis reaction catalyzed by a serine esterase and, therefore, one no longer can simply assume that the acylation process must follow the well-known two-step reaction pathway.
Laird, Robert D; Zeringue, Megan M; Lambert, Emily S
2018-02-01
This study focused on adolescents' negative reactions to parental monitoring to determine whether parents should avoid excessive monitoring because adolescents find monitoring behaviors to be over-controlling and privacy invasive. Adolescents (n = 242, M age = 15.4 years; 51% female) reported monitoring, negative reactions, warmth, antisocial behavior, depressive symptoms, and disclosure. Adolescents additionally reported antisocial behavior, depressive symptoms, and disclosure one to two years later. In cross-sectional analyses, less monitoring but more negative reactions were linked with less disclosure, suggesting that negative reactions can undermine parents' ability to obtain information. Although monitoring behaviors were not related to depressive symptoms, more negative reactions were linked with more depressive symptoms, suggesting that negative reactions also may increase depressive symptoms as a side effect of monitoring behavior. Negative reactions were not linked to antisocial behavior. There were no longitudinal links between negative reactions and changes in disclosure, antisocial behavior, or depressive symptoms. Copyright © 2017. Published by Elsevier Ltd.
Encapsulated nano-heat-sinks for thermal management of heterogeneous chemical reactions.
Zhang, Minghui; Hong, Yan; Ding, Shujiang; Hu, Jianjun; Fan, Yunxiao; Voevodin, Andrey A; Su, Ming
2010-12-01
This paper describes a new way to control temperatures of heterogeneous exothermic reactions such as heterogeneous catalytic reaction and polymerization by using encapsulated nanoparticles of phase change materials as thermally functional additives. Silica-encapsulated indium nanoparticles and silica encapsulated paraffin nanoparticles are used to absorb heat released in catalytic reaction and to mitigate gel effect of polymerization, respectively. The local hot spots that are induced by non-homogenous catalyst packing, reactant concentration fluctuation, and abrupt change of polymerization rate lead to solid to liquid phase change of nanoparticle cores so as to avoid thermal runaway by converting energies from exothermic reactions to latent heat of fusion. By quenching local hot spots at initial stage, reaction rates do not rise significantly because the thermal energy produced in reaction is isothermally removed. Nanoparticles of phase change materials will open a new dimension for thermal management of exothermic reactions to quench local hot spots, prevent thermal runaway of reaction, and change product distribution.
Exit channel dynamics in a micro-hydrated SN2 reaction of the hydroxyl anion.
Otto, R; Brox, J; Trippel, S; Stei, M; Best, T; Wester, R
2013-08-29
We report on the reaction dynamics of the monosolvated SN2 reaction of cold OH(-)(H2O) with CH3I that have been studied using crossed beam ion imaging. Two SN2 reaction channels are possible for this reaction: Formation of unsolvated I(-) and of solvated I(-)(H2O) products. We find a strong preference for the formation of unsolvated I(-) reaction products with respect to the energetically favored reaction toward solvated I(-)(H2O). Angle differential cross section measurements reveal similar velocity and angular distributions for all solvated and parts of the unsolvated reaction products. We furthermore find that the contribution of these two products to the total product flux can be described by the same collision energy dependence. We interpret our findings in terms of a joint reaction mechanism in which a CH3OH(H2O)···I(-) complex is formed that decays into either solvated or unsolvated products. Quantum chemical calculation are used to support this assumption.
Continuous Flow Chemistry: Reaction of Diphenyldiazomethane with p-Nitrobenzoic Acid.
Aw, Alex; Fritz, Marshall; Napoline, Jonathan W; Pollet, Pamela; Liotta, Charles L
2017-11-15
Continuous flow technology has been identified as instrumental for its environmental and economic advantages leveraging superior mixing, heat transfer and cost savings through the "scaling out" strategy as opposed to the traditional "scaling up". Herein, we report the reaction of diphenyldiazomethane with p-nitrobenzoic acid in both batch and flow modes. To effectively transfer the reaction from batch to flow mode, it is essential to first conduct the reaction in batch. As a consequence, the reaction of diphenyldiazomethane was first studied in batch as a function of temperature, reaction time, and concentration to obtain kinetic information and process parameters. The glass flow reactor set-up is described and combines two types of reaction modules with "mixing" and "linear" microstructures. Finally, the reaction of diphenyldiazomethane with p-nitrobenzoic acid was successfully conducted in the flow reactor, with up to 95% conversion of the diphenyldiazomethane in 11 min. This proof of concept reaction aims to provide insight for scientists to consider flow technology's competitiveness, sustainability, and versatility in their research.
Brown, Kenneth G
2005-09-01
Although D. L. Kirkpatrick (1959, 1996) popularized the concept of trainee reactions over 40 years ago, few studies have critically examined trainees' reactions to learning events. In this article, research on mood and emotion is used to develop a theoretical framework for research on trainee reactions. Two studies examine the factor structure of reactions and their nomological network. In Study 1, 178 undergraduate and 101 graduate students listened to a computer-delivered multimedia lecture. Results suggest that (a) reactions can be conceptualized as hierarchical, with overall satisfaction explaining associations among distinct reaction facets (enjoyment, relevance, and technology satisfaction), and (b) reactions are predicted by trainee characteristics. In Study 2, 97 undergraduates experienced the same lecture in 1 of 3 randomly assigned delivery technologies. Reactions were influenced by technology and were related to learning process (engagement) and outcomes (intentions regarding delivery technology, content, and learning). Both studies support the theoretical framework proposed. Copyright 2005 APA, all rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasarabadi, Shanavaz
2011-01-11
A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reactionmore » chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.« less
Accelerated isothermal nucleic acid amplification in betaine-free reaction.
Ma, Cuiping; Wang, Yifan; Zhang, Pansong; Shi, Chao
2017-08-01
Betaine was used as a common additive to isothermal nucleic acid amplification reactions because of lowering the melting temperature (Tm) of DNA. Herein, we reported a novel finding that betaine was inhibiting the reaction efficiency of isothermal amplification reactions. In this work, we have verified this finding by classical loop-mediated isothermal amplification that the addition of 0.8 M betaine inhibited the efficiency of reaction dropping to approximately 1%. Additionally, we clarified the mechanism of betaine hindering isothermal amplification reactions with a molecular barrier to lower associate rate constant K1 for intermolecular hybridization. This finding would be very significant for studies on the interaction between small molecule substance and DNA, and the development of point-of-care testing because of simplifying reaction system and increasing reaction efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.
Yoshimura, Takayoshi; Taketsugu, Tetsuya; Sawamura, Masaya
2017-01-01
We explored the reaction mechanism of the cationic rhodium(i)–BINAP complex catalysed isomerisation of allylic amines using the artificial force induced reaction method with the global reaction route mapping strategy, which enabled us to search for various reaction paths without assumption of transition states. The entire reaction network was reproduced in the form of a graph, and reasonable paths were selected from the complicated network using Prim’s algorithm. As a result, a new dissociative reaction mechanism was proposed. Our comprehensive reaction path search provided rationales for the E/Z and S/R selectivities of the stereoselective reaction. PMID:28970877
Method of densifying an article formed of reaction bonded silicon nitride
NASA Technical Reports Server (NTRS)
Mangels, John A. (Inventor)
1982-01-01
A method of densifying an article formed of reaction bonded silicon nitride is disclosed. The reaction bonded silicon nitride article is packed in a packing mixture consisting of silicon nitride powder and a densification aid. The reaction bonded silicon nitride article and packing powder are sujected to a positive, low pressure nitrogen gas treatment while being heated to a treatment temperature and for a treatment time to cause any open porosity originally found in the reaction bonded silicon nitride article to be substantially closed. Thereafter, the reaction bonded silicon nitride article and packing powder are subjected to a positive high pressure nitrogen gas treatment while being heated to a treatment temperature and for a treatment time to cause a sintering of the reaction bonded silicon nitride article whereby the strength of the reaction bonded silicon nitride article is increased.
Test analysis and research on static choice reaction ability of commercial vehicle drivers
NASA Astrophysics Data System (ADS)
Zhang, Lingchao; Wei, Lang; Qiao, Jie; Tian, Shun; Wang, Shengchang
2017-03-01
Drivers' choice reaction ability has a certain relation with safe driving. It has important significance to research its influence on traffic safety. Firstly, the paper uses a choice reaction detector developed by research group to detect drivers' choice reaction ability of commercial vehicles, and gets 2641 effective samples. Then by using mathematical statistics method, the paper founds that average reaction time from accident group has no difference with non-accident group, and then introduces a variance rate of reaction time as a new index to replace it. The result shows that the test index choice reaction errors and variance rate of reaction time have positive correlations with accidents. Finally, according to testing results of the detector, the paper formulates a detection threshold with four levels for helping transportation companies to assess commercial vehicles drivers.
NASA Astrophysics Data System (ADS)
Franczuk, Barbara; Danikiewicz, Witold
2018-03-01
Ion-molecule reactions of Me2S2 with a wide range of aliphatic carbanions differing by structure and proton affinity values have been studied in the gas phase using mass spectrometry techniques and DFT calculations. The analysis of the spectra shows a variety of product ions formed via different reaction mechanisms, depending on the structure and proton affinity of the carbanion. Product ions of thiophilic reaction ( m/z 47), SN2 ( m/z 79), and E2 elimination - addition sequence of reactions ( m/z 93) can be observed. Primary products of thiophilic reaction can undergo subsequent SN2 and proton transfer reactions. Gibbs free energy profiles calculated for experimentally observed reactions using PBE0/6-311+G(2d,p) method show good agreement with experimental results. [Figure not available: see fulltext.
Automatized Assessment of Protective Group Reactivity: A Step Toward Big Reaction Data Analysis.
Lin, Arkadii I; Madzhidov, Timur I; Klimchuk, Olga; Nugmanov, Ramil I; Antipin, Igor S; Varnek, Alexandre
2016-11-28
We report a new method to assess protective groups (PGs) reactivity as a function of reaction conditions (catalyst, solvent) using raw reaction data. It is based on an intuitive similarity principle for chemical reactions: similar reactions proceed under similar conditions. Technically, reaction similarity can be assessed using the Condensed Graph of Reaction (CGR) approach representing an ensemble of reactants and products as a single molecular graph, i.e., as a pseudomolecule for which molecular descriptors or fingerprints can be calculated. CGR-based in-house tools were used to process data for 142,111 catalytic hydrogenation reactions extracted from the Reaxys database. Our results reveal some contradictions with famous Greene's Reactivity Charts based on manual expert analysis. Models developed in this study show high accuracy (ca. 90%) for predicting optimal experimental conditions of protective group deprotection.
Catalytic combustion of hydrogen-air mixtures in stagnation flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikeda, H.; Libby, P.A.; Williams, F.A.
1993-04-01
The interaction between heterogeneous and homogeneous reactions arising when a mixture of hydrogen and air impinges on a platinum plate at elevated temperature is studied. A reasonably complete description of the kinetic mechanism for homogeneous reactions is employed along with a simplified model for heterogeneous reactions. Four regimes are identified depending on the temperature of the plate, on the rate of strain imposed on the flow adjacent to the plate and on the composition and temperature of the reactant stream: (1) surface reaction alone; (2) surface reaction inhibiting homogeneous reaction; (3) homogeneous reaction inhibiting surface reaction; and (4) homogeneous reactionmore » alone. These regimes are related to those found earlier for other chemical systems and form the basis of future experimental investigation of the chemical system considered in the present study.« less
Allergic reactions to peanuts, tree nuts, and seeds aboard commercial airliners.
Comstock, Sarah S; DeMera, Rich; Vega, Laura C; Boren, Eric J; Deane, Sean; Haapanen, Lori A D; Teuber, Suzanne S
2008-07-01
Minimal data exist on the prevalence and characteristics of in-flight reactions to foods. To characterize reactions to foods experienced by passengers aboard commercial airplanes and to examine information about flying with a food allergy available from airlines. Telephone questionnaires were administered to individuals in a peanut, tree nut, and seed allergy database who self-reported reactions aboard aircraft. Airlines were contacted to obtain information on food allergy policies. Forty-one of 471 individuals reported allergic reactions to food while on airplanes, including 4 reporting more than 1 reaction. Peanuts accounted for most of the reactions. Twenty-one individuals (51%) treated their reactions during flight. Only 12 individuals (29%) reported the reaction to a flight attendant. Six individuals went to an emergency department after landing, including 1 after a flight diversion. Airline personnel were notified of only 3 of these severe reactions. Comparison of information given to 3 different investigators by airline customer service representatives showed that inconsistencies regarding important information occurred, such as whether the airline regularly serves peanuts. In this group of mainly adults with severe nut/seed allergy, approximately 9% reported experiencing an allergic reaction to food while on board an airplane. Some reactions were serious and potentially life-threatening. Individuals commonly did not inform airline personnel about their experiences. In addition, the quality of information about flying with food allergies available from customer service departments is highly variable and, in some cases, incomplete or inaccurate.
Lian, Yulong; Liu, Jiwen; Zhang, Chen; Yuan, Fang
2010-09-01
To use primary and middle schools teacher as samples to preliminarily build the mental work stress effect evaluation system, providing the methological platform for the research on the stress effect mechanism and mental workers interference measures. 851 teachers in primary and middle schools were selected with randomly stratified cluster methods. Use ISTA 6.0 and Life Events Evaluation Table to measure the stress factors, and use Work Tension Reaction Questionnaire, Symptom Self-Evaluation Table Questionnaire, and General Happiness Sensing Table to measure psychological stress reaction, blood sugar and blood fat, blood cortical, ACTH, nerve behavior function, for measuring physiological stress reaction. The Comprehensive Working Ability Index Table to measure working ability. And then use the mathematical model to build the mental workers stress effect evaluation system. And apply the simple random sampling method to select 400 environmental protection workers to perform cross effect validation. The model fits relatively well (RMSEA = 0.100, GFI = 0.93, NNFI = 1.00, CFI = 1.00) and conforms with the theory, reflecting the loads of the indice, such as, working stress reaction, psychological stress reaction, physiological stress reaction and working ability, are relatively high. At the same time, the stress reaction of those 4 dimensions can fit the 2-grade factor (stress effect) very well. The physiological stress reaction is negatively correlated (P < 0.05) with the working stress reaction, psychological stress reaction, working ability decrease, while is positively correlated (P < 0.05) with the working stress, psychological stress reaction, physiological stress reaction and working ability decrease. The social support is the protection factor for working stress, psychological stress reaction, physiological stress reaction and working ability decrease (gamma(s) are -0.55, -0.77, 0.73, -0.79, respectively, P < 0.05). While working stress factors, social life stress factors and dangerous individual characters are the risk factors (P < 0.05) for working stress, psychological stress reaction, physiological stress reaction increase and the working ability decrease. The utilization of the environment protection workers further validates this model. It conforms with the theory to evaluate the mental workers stress effects from the 4 dimensions, working stress, psychological stress reaction, physiological stress reaction, and working ability. And these 4 dimensions influence each other, and also are mutually different. The working and social life stress factors influence the stress effects with certain degrees. This evaluation model can tentatively be the methodological basis for the mental workers occupational stress evaluation.
NASA Technical Reports Server (NTRS)
Bittker, D. A.; Scullin, V. J.
1972-01-01
A general chemical kinetics program is described for complex, homogeneous ideal-gas reactions in any chemical system. Its main features are flexibility and convenience in treating many different reaction conditions. The program solves numerically the differential equations describing complex reaction in either a static system or one-dimensional inviscid flow. Applications include ignition and combustion, shock wave reactions, and general reactions in a flowing or static system. An implicit numerical solution method is used which works efficiently for the extreme conditions of a very slow or a very fast reaction. The theory is described, and the computer program and users' manual are included.