Sample records for hyperpolarized 13c spectroscopy

  1. Single voxel localization for dynamic hyperpolarized 13C MR spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Albert P.; Cunningham, Charles H.

    2015-09-01

    The PRESS technique has been widely used to achieve voxel localization for in vivo1H MRS acquisitions. However, for dynamic hyperpolarized 13C MRS experiments, the transition bands of the refocusing pulses may saturate the pre-polarized substrate spins flowing into the voxel. This limitation may be overcome by designing refocusing pulses that do not perturb the resonance of the hyperpolarized substrate, but selectively refocuses the spins of the metabolic products. In this study, a PRESS pulse sequence incorporating spectral-spatial refocusing pulses that have a stop band ('notch') at the substrate resonance is tested in vivo using hyperpolarized [1-13C]pyruvate. Higher metabolite SNR was observed in experiments using the spectral-spatial refocusing pulses as compared to conventional refocusing pulses.

  2. Separation of extra- and intracellular metabolites using hyperpolarized 13C diffusion weighted MR

    NASA Astrophysics Data System (ADS)

    Koelsch, Bertram L.; Sriram, Renuka; Keshari, Kayvan R.; Leon Swisher, Christine; Van Criekinge, Mark; Sukumar, Subramaniam; Vigneron, Daniel B.; Wang, Zhen J.; Larson, Peder E. Z.; Kurhanewicz, John

    2016-09-01

    This work demonstrates the separation of extra- and intracellular components of glycolytic metabolites with diffusion weighted hyperpolarized 13C magnetic resonance spectroscopy. Using b-values of up to 15,000 s mm-2, a multi-exponential signal response was measured for hyperpolarized [1-13C] pyruvate and lactate. By fitting the fast and slow asymptotes of these curves, their extra- and intracellular weighted diffusion coefficients were determined in cells perfused in a MR compatible bioreactor. In addition to measuring intracellular weighted diffusion, extra- and intracellular weighted hyperpolarized 13C metabolites pools are assessed in real-time, including their modulation with inhibition of monocarboxylate transporters. These studies demonstrate the ability to simultaneously assess membrane transport in addition to enzymatic activity with the use of diffusion weighted hyperpolarized 13C MR. This technique could be an indispensible tool to evaluate the impact of microenvironment on the presence, aggressiveness and metastatic potential of a variety of cancers.

  3. Separation of extra- and intracellular metabolites using hyperpolarized 13C diffusion weighted MR✩

    PubMed Central

    Koelsch, Bertram L.; Sriram, Renuka; Keshari, Kayvan R.; Swisher, Christine Leon; Van Criekinge, Mark; Sukumar, Subramaniam; Vigneron, Daniel B.; Wang, Zhen J.; Larson, Peder E.Z.; Kurhanewicz, John

    2017-01-01

    This work demonstrates the separation of extra- and intracellular components of glycolytic metabolites with diffusion weighted hyperpolarized 13C magnetic resonance spectroscopy. Using b-values of up to 15,000 s mm−2, a multi-exponential signal response was measured for hyperpolarized [1-13C] pyruvate and lactate. By fitting the fast and slow asymptotes of these curves, their extra- and intracellular weighted diffusion coefficients were determined in cells perfused in a MR compatible bioreactor. In addition to measuring intracellular weighted diffusion, extra- and intracellular weighted hyperpolarized 13C metabolites pools are assessed in real-time, including their modulation with inhibition of monocarboxylate transporters. These studies demonstrate the ability to simultaneously assess membrane transport in addition to enzymatic activity with the use of diffusion weighted hyperpolarized 13C MR. This technique could be an indispensible tool to evaluate the impact of microenvironment on the presence, aggressiveness and metastatic potential of a variety of cancers. PMID:27434780

  4. Towards hyperpolarized 13C-succinate imaging of brain cancer

    PubMed Central

    Bhattacharya, Pratip; Chekmenev, Eduard Y.; Perman, William H.; Harris, Kent C.; Lin, Alexander P.; Norton, Valerie A.; Tan, Chou T.; Ross, Brian D.; Weitekamp, Daniel P.

    2009-01-01

    We describe a novel 13C enriched precursor molecule, sodium 1-13C acetylenedicarboxylate, which after hydrogenation by PASADE-NA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment) under controlled experimental conditions, becomes hyperpolarized 13C sodium succinate. Fast in vivo 3D FIESTA MR imaging demonstrated that, following carotid arterial injection, the hyperpolarized 13C-succinate appeared in the head and cerebral circulation of normal and tumor-bearing rats. At this time, no in vivo hyperpolarized signal has been localized to normal brain or brain tumor. On the other hand, ex vivo samples of brain harvested from rats bearing a 9L brain tumor, 1 h or more following in vivo carotid injection of hyperpolarized 13C sodium succinate, contained significant concentrations of the injected substrate, 13C sodium succinate, together with 13C maleate and succinate metabolites 1-13C-glutamate, 5-13C-glutamate, 1-13C-glutamine and 5-13C-glutamine. The 13C substrates and products were below the limits of NMR detection in ex vivo samples of normal brain consistent with an intact blood–brain barrier. These ex vivo results indicate that hyperpolarized 13C sodium succinate may become a useful tool for rapid in vivo identification of brain tumors, providing novel biomarkers in 13C MR spectral-spatial images. PMID:17303454

  5. Towards hyperpolarized 13C-succinate imaging of brain cancer

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pratip; Chekmenev, Eduard Y.; Perman, William H.; Harris, Kent C.; Lin, Alexander P.; Norton, Valerie A.; Tan, Chou T.; Ross, Brian D.; Weitekamp, Daniel P.

    2007-05-01

    We describe a novel 13C enriched precursor molecule, sodium 1- 13C acetylenedicarboxylate, which after hydrogenation by PASADENA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment) under controlled experimental conditions, becomes hyperpolarized 13C sodium succinate. Fast in vivo 3D FIESTA MR imaging demonstrated that, following carotid arterial injection, the hyperpolarized 13C-succinate appeared in the head and cerebral circulation of normal and tumor-bearing rats. At this time, no in vivo hyperpolarized signal has been localized to normal brain or brain tumor. On the other hand, ex vivo samples of brain harvested from rats bearing a 9L brain tumor, 1 h or more following in vivo carotid injection of hyperpolarized 13C sodium succinate, contained significant concentrations of the injected substrate, 13C sodium succinate, together with 13C maleate and succinate metabolites 1- 13C-glutamate, 5- 13C-glutamate, 1- 13C-glutamine and 5- 13C-glutamine. The 13C substrates and products were below the limits of NMR detection in ex vivo samples of normal brain consistent with an intact blood-brain barrier. These ex vivo results indicate that hyperpolarized 13C sodium succinate may become a useful tool for rapid in vivo identification of brain tumors, providing novel biomarkers in 13C MR spectral-spatial images.

  6. Rapid in vivo apparent diffusion coefficient mapping of hyperpolarized (13) C metabolites.

    PubMed

    Koelsch, Bertram L; Reed, Galen D; Keshari, Kayvan R; Chaumeil, Myriam M; Bok, Robert; Ronen, Sabrina M; Vigneron, Daniel B; Kurhanewicz, John; Larson, Peder E Z

    2015-09-01

    Hyperpolarized (13) C magnetic resonance allows for the study of real-time metabolism in vivo, including significant hyperpolarized (13) C lactate production in many tumors. Other studies have shown that aggressive and highly metastatic tumors rapidly transport lactate out of cells. Thus, the ability to not only measure the production of hyperpolarized (13) C lactate but also understand its compartmentalization using diffusion-weighted MR will provide unique information for improved tumor characterization. We used a bipolar, pulsed-gradient, double spin echo imaging sequence to rapidly generate diffusion-weighted images of hyperpolarized (13) C metabolites. Our methodology included a simultaneously acquired B1 map to improve apparent diffusion coefficient (ADC) accuracy and a diffusion-compensated variable flip angle scheme to improve ADC precision. We validated this sequence and methodology in hyperpolarized (13) C phantoms. Next, we generated ADC maps of several hyperpolarized (13) C metabolites in a normal rat, rat brain tumor, and prostate cancer mouse model using both preclinical and clinical trial-ready hardware. ADC maps of hyperpolarized (13) C metabolites provide information about the localization of these molecules in the tissue microenvironment. The methodology presented here allows for further studies to investigate ADC changes due to disease state that may provide unique information about cancer aggressiveness and metastatic potential. © 2014 Wiley Periodicals, Inc.

  7. Carbonic Anhydrase Activity Monitored In Vivo by Hyperpolarized 13C-Magnetic Resonance Spectroscopy Demonstrates Its Importance for pH Regulation in Tumors.

    PubMed

    Gallagher, Ferdia A; Sladen, Helen; Kettunen, Mikko I; Serrao, Eva M; Rodrigues, Tiago B; Wright, Alan; Gill, Andrew B; McGuire, Sarah; Booth, Thomas C; Boren, Joan; McIntyre, Alan; Miller, Jodi L; Lee, Shen-Han; Honess, Davina; Day, Sam E; Hu, De-En; Howat, William J; Harris, Adrian L; Brindle, Kevin M

    2015-10-01

    Carbonic anhydrase buffers tissue pH by catalyzing the rapid interconversion of carbon dioxide (CO2) and bicarbonate (HCO3 (-)). We assessed the functional activity of CAIX in two colorectal tumor models, expressing different levels of the enzyme, by measuring the rate of exchange of hyperpolarized (13)C label between bicarbonate (H(13)CO3(-)) and carbon dioxide ((13)CO2), following injection of hyperpolarized H(13)CO3(-), using (13)C-magnetic resonance spectroscopy ((13)C-MRS) magnetization transfer measurements. (31)P-MRS measurements of the chemical shift of the pH probe, 3-aminopropylphosphonate, and (13)C-MRS measurements of the H(13)CO3(-)/(13)CO2 peak intensity ratio showed that CAIX overexpression lowered extracellular pH in these tumors. However, the (13)C measurements overestimated pH due to incomplete equilibration of the hyperpolarized (13)C label between the H(13)CO3(-) and (13)CO2 pools. Paradoxically, tumors overexpressing CAIX showed lower enzyme activity using magnetization transfer measurements, which can be explained by the more acidic extracellular pH in these tumors and the decreased activity of the enzyme at low pH. This explanation was confirmed by administration of bicarbonate in the drinking water, which elevated tumor extracellular pH and restored enzyme activity to control levels. These results suggest that CAIX expression is increased in hypoxia to compensate for the decrease in its activity produced by a low extracellular pH and supports the hypothesis that a major function of CAIX is to lower the extracellular pH. ©2015 American Association for Cancer Research.

  8. Metabolic biomarkers for non-alcoholic fatty liver disease induced by high-fat diet: In vivo magnetic resonance spectroscopy of hyperpolarized [1-{sup 13}C] pyruvate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Chung-Man; Oh, Chang-Hyun; Ahn, Kyu-Youn

    Hyperpolarized {sup 13}C magnetic resonance spectroscopy (MRS) to assess hepatic metabolism in non-alcoholic fatty liver disease (NAFLD) has not been reported. This study searched for cellular metabolism-based biomarkers for NAFLD induced by a high-fat diet (HFD) in rats. Also, correlations of the biomarkers with enzyme levels and histopathology were identified during a 6-week follow-up. Six rats were fed a control diet (CD) and seven rats were fed the HFD for 6 weeks. Hyperpolarized {sup 13}C dynamic MRS was performed on rat liver following an injection of hyperpolarized [1-{sup 13}C] pyruvate. Compared with CD-fed rats, HFD-fed rats showed significant increases inmore » the levels of serum alanine aminotransferase and low-density lipoprotein cholesterol at weeks 4 and 6 of follow-up. After the 6-week HFD, the ratios of [1-{sup 13}C] alanine/pyruvate and [1-{sup 13}C] lactate/pyruvate were significantly increased, as were the levels of alanine aminotransferase and lactate dehydrogenase, which are potentially associated with hepatosteatosis. The results implicate [1-{sup 13}C] alanine and [1-{sup 13}C] lactate as potentially useful noninvasive biomarkers of hepatosteatosis occurring in NAFLD. - Highlights: • Hyperpolarized {sup 13}C-alanine and lactate are noninvasive biomarkers on hepatosteatosis. • During the course of HFD feeding, {sup 13}C-alanine and lactate were increased in HFD-rats. • Hyperpolarized {sup 13}C dynamic MRS will be helpful to monitor the progression of NAFLD.« less

  9. Intensity correction for multichannel hyperpolarized 13C imaging of the heart.

    PubMed

    Dominguez-Viqueira, William; Geraghty, Benjamin J; Lau, Justin Y C; Robb, Fraser J; Chen, Albert P; Cunningham, Charles H

    2016-02-01

    Develop and test an analytic correction method to correct the signal intensity variation caused by the inhomogeneous reception profile of an eight-channel phased array for hyperpolarized (13) C imaging. Fiducial markers visible in anatomical images were attached to the individual coils to provide three dimensional localization of the receive hardware with respect to the image frame of reference. The coil locations and dimensions were used to numerically model the reception profile using the Biot-Savart Law. The accuracy of the coil sensitivity estimation was validated with images derived from a homogenous (13) C phantom. Numerical coil sensitivity estimates were used to perform intensity correction of in vivo hyperpolarized (13) C cardiac images in pigs. In comparison to the conventional sum-of-squares reconstruction, improved signal uniformity was observed in the corrected images. The analytical intensity correction scheme was shown to improve the uniformity of multichannel image reconstruction in hyperpolarized [1-(13) C]pyruvate and (13) C-bicarbonate cardiac MRI. The method is independent of the pulse sequence used for (13) C data acquisition, simple to implement and does not require additional scan time, making it an attractive technique for multichannel hyperpolarized (13) C MRI. © 2015 Wiley Periodicals, Inc.

  10. In vivo and in vitro liver cancer metabolism observed with hyperpolarized [5-13C]glutamine

    NASA Astrophysics Data System (ADS)

    Cabella, C.; Karlsson, M.; Canapè, C.; Catanzaro, G.; Colombo Serra, S.; Miragoli, L.; Poggi, L.; Uggeri, F.; Venturi, L.; Jensen, P. R.; Lerche, M. H.; Tedoldi, F.

    2013-07-01

    Glutamine metabolism is, with its many links to oncogene expression, considered a crucial step in cancer metabolism and it is thereby a key target for alteration in cancer development. In particular, strong correlations have been reported between oncogene expression and expression and activity of the enzyme glutaminase. This mitochondrial enzyme, which is responsible for the deamidation of glutamine to form glutamate, is overexpressed in many tumour tissues. In animal models, glutaminase expression is correlated with tumour growth rate and it is readily possible to limit tumour growth by suppression of glutaminase activity. In principle, hyperpolarized 13C MR spectroscopy can provide insight to glutamine metabolism and should hence be a valuable tool to study changes in glutaminase activity as tumours progress. However, no such successful in vivo studies have been reported, even though several good biological models have been tested. This may, at least partly, be due to problems in preparing glutamine for hyperpolarization. This paper reports a new and improved preparation of hyperpolarized [5-13C]glutamine, which provides a highly sensitive 13C MR marker. With this preparation of hyperpolarized [5-13C]glutamine, glutaminase activity in vivo in a rat liver tumour was investigated. Moreover, this marker was also used to measure response to drug treatment in vitro in cancer cells. These examples of [5-13C]glutamine used in tumour models warrant the new preparation to allow metabolic studies with this conditionally essential amino acid.

  11. Novel Imaging Contrast Methods for Hyperpolarized 13 C Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Reed, Galen Durant

    Magnetic resonance imaging using hyperpolarized 13C-labeled small molecules has emerged as an extremely powerful tool for the in vivo monitoring of perfusion and metabolism. This work presents methods for improved imaging, parameter mapping, and image contrast generation for in vivo hyperpolarized 13C MRI. Angiography using hyperpolarized urea was greatly improved with a highly T2-weighted acquisition in combination with 15N labeling of the urea amide groups. This is due to the fact that the T2 of [13C]urea is strongly limited by the scalar coupling to the neighboring quadrupolar 14N. The long in vivo T2 values of [13C, 15N2]urea were utilized for sub-millimeter projection angiography using a contrast agent that could be safely injected in concentrations of 10-100 mM while still tolerated in patients with renal insufficiency. This study also presented the first method for in vivo T2 mapping of hyperpolarized 13C compounds. The in vivo T2 of urea was short in the blood and long within the kidneys. This persistent signal component was isolated to the renal filtrate, thus enabling for the first time direct detection of an imaging contrast agent undergoing glomerular filtration. While highly T2-weighted acquisitions select for molecules with short rotational correlation times, high diffusion weighting selects for those with the long translational correlation times. A specialized spin-echo EPI sequence was developed in order to generate highly diffusion-weighted hyperpolarized 13C images on a clinical MRI system operating within clinical peak- RF and gradient amplitude constraints. Low power adiabatic spin echo pulses were developed in order to generate a sufficiently large refocused bandwidth while maintaining low nominal power. This diffusion weighted acquisition gave enhanced tumor contrast-to-noise ratio when imaging [1-13C]lactate after infusion of [1-13C]pyruvate. Finally, the first in-man hyperpolarized 13C MRI clinical trial is discussed.

  12. Concentric Rings K-Space Trajectory for Hyperpolarized 13C MR Spectroscopic Imaging

    PubMed Central

    Jiang, Wenwen; Lustig, Michael; Larson, Peder E.Z.

    2014-01-01

    Purpose To develop a robust and rapid imaging technique for hyperpolarized 13C MR Spectroscopic Imaging (MRSI) and investigate its performance. Methods A concentric rings readout trajectory with constant angular velocity is proposed for hyperpolarized 13C spectroscopic imaging and its properties are analyzed. Quantitative analyses of design tradeoffs are presented for several imaging scenarios. The first application of concentric rings on 13C phantoms and in vivo animal hyperpolarized 13C MRSI studies were performed to demonstrate the feasibility of the proposed method. Finally, a parallel imaging accelerated concentric rings study is presented. Results The concentric rings MRSI trajectory has the advantages of acquisition timesaving compared to echo-planar spectroscopic imaging (EPSI). It provides sufficient spectral bandwidth with relatively high SNR efficiency compared to EPSI and spiral techniques. Phantom and in vivo animal studies showed good image quality with half the scan time and reduced pulsatile flow artifacts compared to EPSI. Parallel imaging accelerated concentric rings showed advantages over Cartesian sampling in g-factor simulations and demonstrated aliasing-free image quality in a hyperpolarized 13C in vivo study. Conclusion The concentric rings trajectory is a robust and rapid imaging technique that fits very well with the speed, bandwidth, and resolution requirements of hyperpolarized 13C MRSI. PMID:25533653

  13. Metabolic Imaging of Patients with Prostate Cancer Using Hyperpolarized [1-13C]Pyruvate

    PubMed Central

    Nelson, Sarah J.; Kurhanewicz, John; Vigneron, Daniel B.; Larson, Peder E. Z.; Harzstark, Andrea L.; Ferrone, Marcus; van Criekinge, Mark; Chang, Jose W.; Bok, Robert; Park, Ilwoo; Reed, Galen; Carvajal, Lucas; Small, Eric J.; Munster, Pamela; Weinberg, Vivian K.; Ardenkjaer-Larsen, Jan Henrik; Chen, Albert P.; Hurd, Ralph E.; Odegardstuen, Liv-Ingrid; Robb, Fraser J.; Tropp, James; Murray, Jonathan A.

    2014-01-01

    This first-in-man imaging study evaluated the safety and feasibility of hyperpolarized [1-13C]pyruvate as an agent for noninvasively characterizing alterations in tumor metabolism for patients with prostate cancer. Imaging living systems with hyperpolarized agents can result in more than 10,000-fold enhancement in signal relative to conventional magnetic resonance (MR) imaging. When combined with the rapid acquisition of in vivo 13C MR data, it is possible to evaluate the distribution of agents such as [1-13C]pyruvate and its metabolic products lactate, alanine, and bicarbonate in a matter of seconds. Preclinical studies in cancer models have detected elevated levels of hyperpolarized [1-13C]lactate in tumor, with the ratio of [1-13C]lactate/[1-13C]pyruvate being increased in high-grade tumors and decreased after successful treatment. Translation of this technology into humans was achieved by modifying the instrument that generates the hyperpolarized agent, constructing specialized radio frequency coils to detect 13C nuclei, and developing new pulse sequences to efficiently capture the signal. The study population comprised patients with biopsy-proven prostate cancer, with 31 subjects being injected with hyperpolarized [1-13C]pyruvate. The median time to deliver the agent was 66 s, and uptake was observed about 20 s after injection. No dose-limiting toxicities were observed, and the highest dose (0.43 ml/kg of 230 mM agent) gave the best signal-to-noise ratio for hyperpolarized [1-13C]pyruvate. The results were extremely promising in not only confirming the safety of the agent but also showing elevated [1-13C]lactate/[1-13C]pyruvate in regions of biopsy-proven cancer. These findings will be valuable for noninvasive cancer diagnosis and treatment monitoring in future clinical trials. PMID:23946197

  14. Assessing Oxidative Stress in Tumors by Measuring the Rate of Hyperpolarized [1-13C]Dehydroascorbic Acid Reduction Using 13C Magnetic Resonance Spectroscopy*

    PubMed Central

    Timm, Kerstin N.; Hu, De-En; Williams, Michael; Wright, Alan J.; Kettunen, Mikko I.; Kennedy, Brett W. C.; Larkin, Timothy J.; Dzien, Piotr; Marco-Rius, Irene; Bohndiek, Sarah E.; Brindle, Kevin M.

    2017-01-01

    Rapid cancer cell proliferation promotes the production of reducing equivalents, which counteract the effects of relatively high levels of reactive oxygen species. Reactive oxygen species levels increase in response to chemotherapy and cell death, whereas an increase in antioxidant capacity can confer resistance to chemotherapy and is associated with an aggressive tumor phenotype. The pentose phosphate pathway is a major site of NADPH production in the cell, which is used to maintain the main intracellular antioxidant, glutathione, in its reduced state. Previous studies have shown that the rate of hyperpolarized [1-13C]dehydroascorbic acid (DHA) reduction, which can be measured in vivo using non-invasive 13C magnetic resonance spectroscopic imaging, is increased in tumors and that this is correlated with the levels of reduced glutathione. We show here that the rate of hyperpolarized [1-13C]DHA reduction is increased in tumors that have been oxidatively prestressed by depleting the glutathione pool by buthionine sulfoximine treatment. This increase was associated with a corresponding increase in pentose phosphate pathway flux, assessed using 13C-labeled glucose, and an increase in glutaredoxin activity, which catalyzes the glutathione-dependent reduction of DHA. These results show that the rate of DHA reduction depends not only on the level of reduced glutathione, but also on the rate of NADPH production, contradicting the conclusions of some previous studies. Hyperpolarized [1-13C]DHA can be used, therefore, to assess the capacity of tumor cells to resist oxidative stress in vivo. However, DHA administration resulted in transient respiratory arrest and cardiac depression, which may prevent translation to the clinic. PMID:27994059

  15. Transport and imaging of brute-force 13C hyperpolarization

    NASA Astrophysics Data System (ADS)

    Hirsch, Matthew L.; Smith, Bryce A.; Mattingly, Mark; Goloshevsky, Artem G.; Rosay, Melanie; Kempf, James G.

    2015-12-01

    We demonstrate transport of hyperpolarized frozen 1-13C pyruvic acid from its site of production to a nearby facility, where a time series of 13C images was acquired from the aqueous dissolution product. Transportability is tied to the hyperpolarization (HP) method we employ, which omits radical electron species used in other approaches that would otherwise relax away the HP before reaching the imaging center. In particular, we attained 13C HP by 'brute-force', i.e., using only low temperature and high-field (e.g., T < ∼2 K and B ∼ 14 T) to pre-polarize protons to a large Boltzmann value (∼0.4% 1H polarization). After polarizing the neat, frozen sample, ejection quickly (<1 s) passed it through a low field (B < 100 G) to establish the 1H pre-polarization spin temperature on 13C via the process known as low-field thermal mixing (yielding ∼0.1% 13C polarization). By avoiding polarization agents (a.k.a. relaxation agents) that are needed to hyperpolarize by the competing method of dissolution dynamic nuclear polarization (d-DNP), the 13C relaxation time was sufficient to transport the sample for ∼10 min before finally dissolving in warm water and obtaining a 13C image of the hyperpolarized, dilute, aqueous product (∼0.01% 13C polarization, a >100-fold gain over thermal signals in the 1 T scanner). An annealing step, prior to polarizing the sample, was also key for increasing T1 ∼ 30-fold during transport. In that time, HP was maintained using only modest cryogenics and field (T ∼ 60 K and B = 1.3 T), for T1(13C) near 5 min. Much greater time and distance (with much smaller losses) may be covered using more-complete annealing and only slight improvements on transport conditions (e.g., yielding T1 ∼ 5 h at 30 K, 2 T), whereas even intercity transfer is possible (T1 > 20 h) at reasonable conditions of 6 K and 2 T. Finally, it is possible to increase the overall enhancement near d-DNP levels (i.e., 102-fold more) by polarizing below 100 mK, where

  16. Determining In Vivo Regulation of Cardiac Pyruvate Dehydrogenase Based on Label Flux from Hyperpolarized [1-13C]Pyruvate

    PubMed Central

    Heather, Lisa C.; Griffin, Julian L.; Clarke, Kieran; Radda, George K.; Tyler, Damian J.

    2015-01-01

    Background Pyruvate dehydrogenase (PDH) is a key regulator of cardiac substrate selection and is regulated by both pyruvate dehydrogenase kinase (PDK)-mediated phosphorylation and feedback inhibition. The extent to which chronic upregulation of PDK protein levels, acutely increased PDK activity and acute feedback inhibition limit PDH flux remains unclear because existing in vitro assessment methods inherently disrupt the enzyme complex. We have previously demonstrated that hyperpolarized 13C-labelled metabolic tracers with magnetic resonance spectroscopy (MRS) can monitor flux through PDH in vivo. The aim of this study was to determine the relative contributions of acute and chronic changes in PDK and PDH activities to in vivo myocardial PDH flux. Methodology/Principal Findings We examined both fed and fasted rats with either hyperpolarized [1-13C]pyruvate alone or hyperpolarized [1-13C]pyruvate co-infused with malate (to modulate mitochondrial NADH/NAD+ and acetyl-CoA/CoA ratios, which alter both PDH activity and flux). To confirm the metabolic fate of infused malate, we performed in vitro 1H NMR spectroscopy on cardiac tissue extracts. We observed that in fed rats, where PDH activity was high, the presence of malate increased PDH flux by 27%, whereas in the fasted state, malate infusion had no effect on PDH flux. Conclusions/Significance These observations suggest that pyruvate oxidation is limited by feedback inhibition from acetyl-CoA only when PDH activity is high. Therefore, in the case of PDH, and potentially other enzymes, hyperpolarized 13C MR can be used to non-invasively assess enzymatic regulation. PMID:21387444

  17. 3D hyperpolarized C-13 EPI with calibrationless parallel imaging

    NASA Astrophysics Data System (ADS)

    Gordon, Jeremy W.; Hansen, Rie B.; Shin, Peter J.; Feng, Yesu; Vigneron, Daniel B.; Larson, Peder E. Z.

    2018-04-01

    With the translation of metabolic MRI with hyperpolarized 13C agents into the clinic, imaging approaches will require large volumetric FOVs to support clinical applications. Parallel imaging techniques will be crucial to increasing volumetric scan coverage while minimizing RF requirements and temporal resolution. Calibrationless parallel imaging approaches are well-suited for this application because they eliminate the need to acquire coil profile maps or auto-calibration data. In this work, we explored the utility of a calibrationless parallel imaging method (SAKE) and corresponding sampling strategies to accelerate and undersample hyperpolarized 13C data using 3D blipped EPI acquisitions and multichannel receive coils, and demonstrated its application in a human study of [1-13C]pyruvate metabolism.

  18. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.

  19. SABRE hyperpolarization enables high-sensitivity 1H and 13C benchtop NMR spectroscopy.

    PubMed

    Richardson, Peter M; Parrott, Andrew J; Semenova, Olga; Nordon, Alison; Duckett, Simon B; Halse, Meghan E

    2018-06-19

    Benchtop NMR spectrometers operating with low magnetic fields of 1-2 T at sub-ppm resolution show great promise as analytical platforms that can be used outside the traditional laboratory environment for industrial process monitoring. One current limitation that reduces the uptake of benchtop NMR is associated with the detection fields' reduced sensitivity. Here we demonstrate how para-hydrogen (p-H2) based signal amplification by reversible exchange (SABRE), a simple to achieve hyperpolarization technique, enhances agent detectability within the environment of a benchtop (1 T) NMR spectrometer so that informative 1H and 13C NMR spectra can be readily recorded for low-concentration analytes. SABRE-derived 1H NMR signal enhancements of up to 17 000-fold, corresponding to 1H polarization levels of P = 5.9%, were achieved for 26 mM pyridine in d4-methanol in a matter of seconds. Comparable enhancement levels can be achieved in both deuterated and protio solvents but now the SABRE-enhanced analyte signals dominate due to the comparatively weak thermally-polarized solvent response. The SABRE approach also enables the acquisition of 13C NMR spectra of analytes at natural isotopic abundance in a single scan as evidenced by hyperpolarized 13C NMR spectra of tens of millimolar concentrations of 4-methylpyridine. Now the associated signal enhancement factors are up to 45 500 fold (P = 4.0%) and achieved in just 15 s. Integration of an automated SABRE polarization system with the benchtop NMR spectrometer framework produces renewable and reproducible NMR signal enhancements that can be exploited for the collection of multi-dimensional NMR spectra, exemplified here by a SABRE-enhanced 2D COSY NMR spectrum.

  20. Volumetric spiral chemical shift imaging of hyperpolarized [2-(13) c]pyruvate in a rat c6 glioma model.

    PubMed

    Park, Jae Mo; Josan, Sonal; Jang, Taichang; Merchant, Milton; Watkins, Ron; Hurd, Ralph E; Recht, Lawrence D; Mayer, Dirk; Spielman, Daniel M

    2016-03-01

    MRS of hyperpolarized [2-(13)C]pyruvate can be used to assess multiple metabolic pathways within mitochondria as the (13)C label is not lost with the conversion of pyruvate to acetyl-CoA. This study presents the first MR spectroscopic imaging of hyperpolarized [2-(13)C]pyruvate in glioma-bearing brain. Spiral chemical shift imaging with spectrally undersampling scheme (1042 Hz) and a hard-pulse excitation was exploited to simultaneously image [2-(13)C]pyruvate, [2-(13)C]lactate, and [5-(13)C]glutamate, the metabolites known to be produced in brain after an injection of hyperpolarized [2-(13)C]pyruvate, without chemical shift displacement artifacts. A separate undersampling scheme (890 Hz) was also used to image [1-(13)C]acetyl-carnitine. Healthy and C6 glioma-implanted rat brains were imaged at baseline and after dichloroacetate administration, a drug that modulates pyruvate dehydrogenase kinase activity. The baseline metabolite maps showed higher lactate and lower glutamate in tumor as compared to normal-appearing brain. Dichloroacetate led to an increase in glutamate in both tumor and normal-appearing brain. Dichloroacetate-induced %-decrease of lactate/glutamate was comparable to the lactate/bicarbonate decrease from hyperpolarized [1-(13)C]pyruvate studies. Acetyl-carnitine was observed in the muscle/fat tissue surrounding the brain. Robust volumetric imaging with hyperpolarized [2-(13)C]pyruvate and downstream products was performed in glioma-bearing rat brains, demonstrating changes in mitochondrial metabolism with dichloroacetate. © 2015 Wiley Periodicals, Inc.

  1. Compressed Sensing for Resolution Enhancement of Hyperpolarized 13C Flyback 3D-MRSI

    PubMed Central

    Hu, Simon; Lustig, Michael; Chen, Albert P.; Crane, Jason; Kerr, Adam; Kelley, Douglas A.C.; Hurd, Ralph; Kurhanewicz, John; Nelson, Sarah J.; Pauly, John M.; Vigneron, Daniel B.

    2008-01-01

    High polarization of nuclear spins in liquid state through dynamic nuclear polarization has enabled the direct monitoring of 13C metabolites in vivo at very high signal to noise, allowing for rapid assessment of tissue metabolism. The abundant SNR afforded by this hyperpolarization technique makes high resolution 13C 3D-MRSI feasible. However, the number of phase encodes that can be fit into the short acquisition time for hyperpolarized imaging limits spatial coverage and resolution. To take advantage of the high SNR available from hyperpolarization, we have applied compressed sensing to achieve a factor of 2 enhancement in spatial resolution without increasing acquisition time or decreasing coverage. In this paper, the design and testing of compressed sensing suited for a flyback 13C 3D-MRSI sequence are presented. The key to this design was the undersampling of spectral k-space using a novel blipped scheme, thus taking advantage of the considerable sparsity in typical hyperpolarized 13C spectra. Phantom tests validated the accuracy of the compressed sensing approach and initial mouse experiments demonstrated in vivo feasibility. PMID:18367420

  2. Parameterization of hyperpolarized (13)C-bicarbonate-dissolution dynamic nuclear polarization.

    PubMed

    Scholz, David Johannes; Otto, Angela M; Hintermair, Josef; Schilling, Franz; Frank, Annette; Köllisch, Ulrich; Janich, Martin A; Schulte, Rolf F; Schwaiger, Markus; Haase, Axel; Menzel, Marion I

    2015-12-01

    (13)C metabolic MRI using hyperpolarized (13)C-bicarbonate enables preclinical detection of pH. To improve signal-to-noise ratio, experimental procedures were refined, and the influence of pH, buffer capacity, temperature, and field strength were investigated. Bicarbonate preparation was investigated. Bicarbonate was prepared and applied in spectroscopy at 1, 3, 14 T using pure dissolution, culture medium, and MCF-7 cell spheroids. Healthy rats were imaged by spectral-spatial spiral acquisition for spatial and temporal bicarbonate distribution, pH mapping, and signal decay analysis. An optimized preparation technique for maximum solubility of 6 mol/L and polarization levels of 19-21% is presented; T1 and SNR dependency on field strength, buffer capacity, and pH was investigated. pH mapping in vivo is demonstrated. An optimized bicarbonate preparation and experimental procedure provided improved T1 and SNR values, allowing in vitro and in vivo applications.

  3. Studies to enhance the hyperpolarization level in PHIP-SAH-produced C13-pyruvate

    NASA Astrophysics Data System (ADS)

    Cavallari, Eleonora; Carrera, Carla; Aime, Silvio; Reineri, Francesca

    2018-04-01

    The use of [1-13C]pyruvate, hyperpolarized by dissolution-Dynamic Nuclear Polarization (d-DNP), in in vivo metabolic studies has developed quickly, thanks to the imaging probe's diagnostic relevance. Nevertheless, the cost of a d-DNP polarizer is quite high and the speed of hyperpolarization process is relatively slow, meaning that its use is limited to few research laboratories. ParaHydrogen Induced Polarization Side Arm Hydrogenation (PHIP-SAH) (Reineri et al., 2015) is a cost effective and easy-to-handle method that produces 13C-MR hyperpolarization in [1-13C]pyruvate and other metabolites. This work aims to identify the main determinants of the hyperpolarization levels observed in C13-pyruvate using this method. By dissecting the various steps of the PHIP-SAH procedure, it has been possible to assess the role of several experimental parameters whose optimization must be pursued if this method is to be made suitable for future translational steps. The search for possible solutions has led to improvements in the polarization of sodium [1-13C]pyruvate from 2% to 5%. Moreover, these results suggest that observed polarization levels could be increased considerably by an automatized procedure which would reduce the time required for the work-up passages that are currently carried out manually. The results reported herein mean that the attainment of polarization levels suitable for the metabolic imaging applications of these hyperpolarized substrates show significant promise.

  4. Probing cardiac metabolism by hyperpolarized 13C MR using an exclusively endogenous substrate mixture and photo-induced non-persistent radicals

    PubMed Central

    Bastiaansen, Jessica A. M.; Yoshihara, Hikari A. I.; Capozzi, Andrea; Schwitter, Juerg; Gruetter, Rolf; Merritt, Matthew E.; Comment, Arnaud

    2018-01-01

    Purpose To probe the cardiac metabolism of carbohydrates and short chain fatty acids simultaneously in vivo following the injection of a hyperpolarized 13C-labeled substrate mixture prepared using photo-induced non-persistent radicals. Methods Droplets of mixed [1-13C]pyruvic and [1-13C]butyric acids were frozen into glassy beads in liquid nitrogen. Ethanol addition was investigated as a means to increase the polarization level. The beads were irradiated with ultraviolet (UV) light and the radical concentration was measured by ESR spectroscopy. Following dynamic nuclear polarization (DNP) in a 7T polarizer, the beads were dissolved, and the radical-free hyperpolarized solution was rapidly transferred into an injection pump located inside a 9.4T scanner. The hyperpolarized solution was injected in healthy rats to measure cardiac metabolism in vivo. Results UV-irradiation created non-persistent radicals in a mixture containing 13C-labeled pyruvic and butyric acids and enabled the hyperpolarization of both substrates by DNP. Ethanol addition increased the radical concentration from 16 to 26 mM. Liquid-state 13C polarization was 3% inside the pump at the time of injection, and increased to 5% by addition of ethanol to the substrate mixture prior to UV irradiation. In the rat heart, the in vivo13C signals from lactate, alanine, bicarbonate and acetylcarnitine were detected following the metabolism of the injected substrate mixture. Conclusion Co-polarization of two 13C-labeled substrates and the detection of their myocardial metabolism in vivo was achieved without using persistent radicals. The absence of radicals in the solution containing the hyperpolarized 13C-substrates may simplify the translation to clinical use because no filtration is required prior to injection. PMID:29411415

  5. Hyperpolarized 13C MR Markers of Renal Tumor Aggressiveness

    DTIC Science & Technology

    2014-10-01

    as a biomarker of tumor aggressiveness in a MR compatible 3D cell and tissue culture bioreactor ” to be presented at the ISMRM Workshop on Magnetic... Cell Carcinoma, Hyperpolarized 13C MR, Sub-renal capsule, patient derived tissue slice cultures , bioreactor 3. OVERALL PROJECT SUMMARY: Aim...grade from high grade RCCs using human TSCs cultured in a bioreactor . Aim 2:Identify HP 13C metabolic markers that discriminate low grade from

  6. Multiband Spectral-Spatial RF Excitation for Hyperpolarized [2-13C]Dihydroxyacetone 13C-MR Metabolism Studies

    PubMed Central

    Marco-Rius, Irene; Cao, Peng; von Morze, Cornelius; Merrit, Matthew; Moreno, Karlos X; Chang, Gene-Yuan; Ohliger, Michael A.; Pearce, David; Kurhanewicz, John; Larson, Peder E. Z.; Vigneron, Daniel B.

    2016-01-01

    Purpose To develop a specialized multislice, single-acquisition approach to detect the metabolites of hyperpolarized [2-13C]dihydroxyacetone (DHAc) to probe gluconeogenesis in vivo, which have a broad 144 ppm spectral range (~4.6 KHz at 3T). A novel multiband RF excitation pulse was designed for independent flip angle control over 5-6 spectral-spatial (SPSP) excitation bands, each corrected for chemical shift misregistration effects. Methods Specialized multi-band SPSP RF pulses were designed, tested and applied to investigate hyperpolarized [2-13C]DHAc metabolism in kidney and liver of fasted rats with dynamic 13C-MRS and an optimal flip angle scheme. For comparison, experiments were also performed with narrow-band slice-selective RF pulses and a sequential change of the frequency offset to cover the five frequency bands of interest. Results The SPSP pulses provided a controllable spectral profile free of baseline distortion with improved signal to noise of the metabolite peaks, allowing for quantification of the metabolic products. We observed organ-specific differences in DHAc metabolism. There was 2-5 times more [2-13C]phosphoenolpyruvate and about 19 times more [2-13C]glycerol 3-phosphate in the liver than in the kidney. Conclusion A multiband SPSP RF pulse covering a spectral range over 144 ppm enabled in vivo characterization of HP [2-13C]dihydroxyacetone metabolism in rat liver and kidney. PMID:27017966

  7. Hyperpolarized 13C NMR lifetimes in the liquid-state: relating structures and T1 relaxation times

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Hashami, Zohreh; Fidelino, Leila; Kovacs, Zoltan; Lumata, Lloyd

    Among the various attempts to solve the insensitivity problem in nuclear magnetic resonance (NMR), the physics-based technique dissolution dynamic nuclear polarization (DNP) is probably the most successful method of hyperpolarization or amplifying NMR signals. Using this technique, liquid-state NMR signal enhancements of several thousand-fold are expected for low-gamma nuclei such as carbon-13. The lifetimes of these hyperpolarized 13C NMR signals are directly related to their 13C spin-lattice relaxation times T1. Depending upon the 13C isotopic location, the lifetimes of hyperpolarized 13C compounds can range from a few seconds to minutes. In this study, we have investigated the hyperpolarized 13C NMR lifetimes of several 13C compounds with various chemical structures from glucose, acetate, citric acid, naphthalene to tetramethylallene and their deuterated analogs at 9.4 T and 25 deg C. Our results show that the 13C T1s of these compounds can range from a few seconds to more than 60 s at this field. Correlations between the chemical structures and T1 relaxation times will be discussed and corresponding implications of these results on 13C DNP experiments will be revealed. US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  8. High-throughput hyperpolarized 13C metabolic investigations using a multi-channel acquisition system

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyuk; Ramirez, Marc S.; Walker, Christopher M.; Chen, Yunyun; Yi, Stacey; Sandulache, Vlad C.; Lai, Stephen Y.; Bankson, James A.

    2015-11-01

    Magnetic resonance imaging and spectroscopy of hyperpolarized (HP) compounds such as [1-13C]-pyruvate have shown tremendous potential for offering new insight into disease and response to therapy. New applications of this technology in clinical research and care will require extensive validation in cells and animal models, a process that may be limited by the high cost and modest throughput associated with dynamic nuclear polarization. Relatively wide spectral separation between [1-13C]-pyruvate and its chemical endpoints in vivo are conducive to simultaneous multi-sample measurements, even in the presence of a suboptimal global shim. Multi-channel acquisitions could conserve costs and accelerate experiments by allowing acquisition from multiple independent samples following a single dissolution. Unfortunately, many existing preclinical MRI systems are equipped with only a single channel for broadband acquisitions. In this work, we examine the feasibility of this concept using a broadband multi-channel digital receiver extension and detector arrays that allow concurrent measurement of dynamic spectroscopic data from ex vivo enzyme phantoms, in vitro anaplastic thyroid carcinoma cells, and in vivo in tumor-bearing mice. Throughput and the cost of consumables were improved by up to a factor of four. These preliminary results demonstrate the potential for efficient multi-sample studies employing hyperpolarized agents.

  9. Quantified pH imaging with hyperpolarized (13) C-bicarbonate.

    PubMed

    Scholz, David Johannes; Janich, Martin A; Köllisch, Ulrich; Schulte, Rolf F; Ardenkjaer-Larsen, Jan H; Frank, Annette; Haase, Axel; Schwaiger, Markus; Menzel, Marion I

    2015-06-01

    Because pH plays a crucial role in several diseases, it is desirable to measure pH in vivo noninvasively and in a spatially localized manner. Spatial maps of pH were quantified in vitro, with a focus on method-based errors, and applied in vivo. In vitro and in vivo (13) C mapping were performed for various flip angles for bicarbonate (BiC) and CO2 with spectral-spatial excitation and spiral readout in healthy Lewis rats in five slices. Acute subcutaneous sterile inflammation was induced with Concanavalin A in the right leg of Buffalo rats. pH and proton images were measured 2 h after induction. After optimizing the signal to noise ratio of the hyperpolarized (13) C-bicarbonate, error estimation of the spectral-spatial excited spectrum reveals that the method covers the biologically relevant pH range of 6 to 8 with low pH error (< 0.2). Quantification of pH maps shows negligible impact of the residual bicarbonate signal. pH maps reflect the induction of acute metabolic alkalosis. Inflamed, infected regions exhibit lower pH. Hyperpolarized (13) C-bicarbonate pH mapping was shown to be sensitive in the biologically relevant pH range. The mapping of pH was applied to healthy in vivo organs and interpreted within inflammation and acute metabolic alkalosis models. © 2014 Wiley Periodicals, Inc.

  10. Thermal annihilation of photo-induced radicals following dynamic nuclear polarization to produce transportable frozen hyperpolarized 13C-substrates

    PubMed Central

    Capozzi, Andrea; Cheng, Tian; Boero, Giovanni; Roussel, Christophe; Comment, Arnaud

    2017-01-01

    Hyperpolarization via dynamic nuclear polarization (DNP) is pivotal for boosting magnetic resonance imaging (MRI) sensitivity and dissolution DNP can be used to perform in vivo real-time 13C MRI. The type of applications is however limited by the relatively fast decay time of the hyperpolarized spin state together with the constraint of having to polarize the 13C spins in a dedicated apparatus nearby but separated from the MRI magnet. We herein demonstrate that by polarizing 13C with photo-induced radicals, which can be subsequently annihilated using a thermalization process that maintains the sample temperature below its melting point, hyperpolarized 13C-substrates can be extracted from the DNP apparatus in the solid form, while maintaining the enhanced 13C polarization. The melting procedure necessary to transform the frozen solid into an injectable solution containing the hyperpolarized 13C-substrates can therefore be performed ex situ, up to several hours after extraction and storage of the polarized solid. PMID:28569840

  11. Fast Dynamic 3D MRSI with Compressed Sensing and Multiband Excitation Pulses for Hyperpolarized 13C Studies

    PubMed Central

    Larson, Peder E. Z.; Hu, Simon; Lustig, Michael; Kerr, Adam B.; Nelson, Sarah J.; Kurhanewicz, John; Pauly, John M.; Vigneron, Daniel B.

    2010-01-01

    Hyperpolarized 13C MRSI can detect not only the uptake of the pre-polarized molecule but also its metabolic products in vivo, thus providing a powerful new method to study cellular metabolism. Imaging the dynamic perfusion and conversion of these metabolites provides additional tissue information but requires methods for efficient hyperpolarization usage and rapid acquisitions. In this work, we have developed a time-resolved 3D MRSI method for acquiring hyperpolarized 13C data by combining compressed sensing methods for acceleration and multiband excitation pulses to efficiently use the magnetization. This method achieved a 2 sec temporal resolution with full volumetric coverage of a mouse, and metabolites were observed for up to 60 sec following injection of hyperpolarized [1-13C]-pyruvate. The compressed sensing acquisition used random phase encode gradient blips to create a novel random undersampling pattern tailored to dynamic MRSI with sampling incoherency in four (time, frequency and two spatial) dimensions. The reconstruction was also tailored to dynamic MRSI by applying a temporal wavelet sparsifying transform in order to exploit the inherent temporal sparsity. Customized multiband excitation pulses were designed with a lower flip angle for the [1-13C]-pyruvate substrate given its higher concentration than its metabolic products ([1-13C]-lactate and [1-13C]-alanine), thus using less hyperpolarization per excitation. This approach has enabled the monitoring of perfusion and uptake of the pyruvate, and the conversion dynamics to lactate and alanine throughout a volume with high spatial and temporal resolution. PMID:20939089

  12. Hyperpolarized 13C pyruvate mouse brain metabolism with absorptive-mode EPSI at 1 T

    NASA Astrophysics Data System (ADS)

    Miloushev, Vesselin Z.; Di Gialleonardo, Valentina; Salamanca-Cardona, Lucia; Correa, Fabian; Granlund, Kristin L.; Keshari, Kayvan R.

    2017-02-01

    The expected signal in echo-planar spectroscopic imaging experiments was explicitly modeled jointly in spatial and spectral dimensions. Using this as a basis, absorptive-mode type detection can be achieved by appropriate choice of spectral delays and post-processing techniques. We discuss the effects of gradient imperfections and demonstrate the implementation of this sequence at low field (1.05 T), with application to hyperpolarized [1-13C] pyruvate imaging of the mouse brain. The sequence achieves sufficient signal-to-noise to monitor the conversion of hyperpolarized [1-13C] pyruvate to lactate in the mouse brain. Hyperpolarized pyruvate imaging of mouse brain metabolism using an absorptive-mode EPSI sequence can be applied to more sophisticated murine disease and treatment models. The simple modifications presented in this work, which permit absorptive-mode detection, are directly translatable to human clinical imaging and generate improved absorptive-mode spectra without the need for refocusing pulses.

  13. Optically induced cross relaxation via nitrogen-related defects for bulk diamond 13C hyperpolarization

    NASA Astrophysics Data System (ADS)

    Wunderlich, Ralf; Kohlrautz, Jonas; Abel, Bernd; Haase, Jürgen; Meijer, Jan

    2017-12-01

    In this Rapid Communication we utilize nuclear magnetic resonance to investigate the hyperpolarization effect of negatively charged nitrogen vacancy (NV) centers on bulk 13C nuclei in a diamond single crystal. We were able to identify several polarization peaks of a different sign at different magnetic fields in a region of some tens of Gauss centered around 50 mT . The bulk 13C hyperpolarization in the investigated field range is usually attributed to the excited state level anticrossing of the NV center. However, we found that this bulk hyperpolarization is caused by optically induced cross relaxation and that it takes place in the NV center ground state. The four-spin coupling between the polarized NV electron spin, the electron spin of a substitutional nitrogen impurity (P1), as well as its 14N nuclei and the 13C nuclear spin have to be considered. We introduce a simple theoretical model which completely fits with the experimental data and which clearly shows that the P1 centers are involved in the polarization process. We expect that the current work has a significant impact on future NV-based polarization applications.

  14. In vivo assessment of intracellular redox state in rat liver using hyperpolarized [1-13 C]Alanine.

    PubMed

    Park, Jae Mo; Khemtong, Chalermchai; Liu, Shie-Chau; Hurd, Ralph E; Spielman, Daniel M

    2017-05-01

    The intracellular lactate to pyruvate concentration ratio is a commonly used tissue assay biomarker of redox, being proportional to free cytosolic [NADH]/[NAD + ]. In this study, we assessed the use of hyperpolarized [1- 13 C]alanine and the subsequent detection of the intracellular products of [1- 13 C]pyruvate and [1- 13 C]lactate as a useful substrate for assessing redox levels in the liver in vivo. Animal experiments were conducted to measure in vivo metabolism at baseline and after ethanol infusion. A solution of 80-mM hyperpolarized [1- 13 C]alanine was injected intravenously at baseline (n = 8) and 45 min after ethanol infusion (n = 4), immediately followed by the dynamic acquisition of 13 C MRS spectra. In vivo rat liver spectra showed peaks from [1- 13 C] alanine and the products of [1- 13 C]lactate, [1- 13 C]pyruvate, and 13 C-bicarbonate. A significantly increased 13 C-lactate/ 13 C-pyruvate ratio was observed after ethanol infusion (8.46 ± 0.58 at baseline versus 13.58 ± 0.69 after ethanol infusion; P < 0.001) consistent with the increased NADH produced by liver metabolism of ethanol to acetaldehyde and then acetate. A decrease in 13 C-bicarbonate production was also noted, potentially reflecting ethanol-induced mitochondrial redox changes. A method to measure in vivo tissue redox using hyperpolarized [1- 13 C]alanine is presented, with the validity of the proposed 13 C-pyruvate/ 13 C-lactate metric tested using an ethanol challenge to alter liver redox state. Magn Reson Med 77:1741-1748, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Hyperpolarized 13C metabolic imaging using dissolution dynamic nuclear polarization.

    PubMed

    Hurd, Ralph E; Yen, Yi-Fen; Chen, Albert; Ardenkjaer-Larsen, Jan Henrik

    2012-12-01

    This article describes the basic physics of dissolution dynamic nuclear polarization (dissolution-DNP), and the impact of the resulting highly nonequilibrium spin states, on the physics of magnetic resonance imaging (MRI) detection. The hardware requirements for clinical translation of this technology are also presented. For studies that allow the use of externally administered agents, hyperpolarization offers a way to overcome normal magnetic resonance sensitivity limitations, at least for a brief T(1)-dependent observation window. A 10,000-100,000-fold signal-to-noise advantage provides an avenue for real-time measurement of perfusion, metabolite transport, exchange, and metabolism. The principles behind these measurements, as well as the choice of agent, and progress toward the application of hyperpolarized (13)C metabolic imaging in oncology, cardiology, and neurology are reviewed. Copyright © 2012 Wiley Periodicals, Inc.

  16. Monitoring tumor response of prostate cancer to radiation therapy by multi-parametric 1H and hyperpolarized 13C magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Vickie Yi

    Radiation therapy is one of the most common curative therapies for patients with localized prostate cancer, but despite excellent success rates, a significant number of patients suffer post- treatment cancer recurrence. The accurate characterization of early tumor response remains a major challenge for the clinical management of these patients. Multi-parametric MRI/1H MR spectroscopy imaging (MRSI) has been shown to increase the diagnostic performance in evaluating the effectiveness of radiation therapy. 1H MRSI can detect altered metabolic profiles in cancerous tissue. In this project, the concentrations of prostate metabolites from snap-frozen biopsies of recurrent cancer after failed radiation therapy were correlated with histopathological findings to identify quantitative biomarkers that predict for residual aggressive versus indolent cancer. The total choline to creatine ratio was significantly higher in recurrent aggressive versus indolent cancer, suggesting that use of a higher threshold tCho/Cr ratio in future in vivo 1H MRSI studies could improve the selection and therapeutic planning for patients after failed radiation therapy. Varying radiation doses may cause a diverse effect on prostate cancer micro-environment and metabolism, which could hold the key to improving treatment protocols for individual patients. The recent development and clinical translation of hyperpolarized 13C MRI have provided the ability to monitor both changes in the tumor micro-environment and its metabolism using a multi-probe approach, [1-13C]pyruvate and 13C urea, combined with 1H Multi-parametric MRI. In this thesis, hyperpolarized 13C MRI, 1H dynamic contrast enhancement, and diffusion weighted imaging were used to identify early radiation dose response in a transgenic prostate cancer model. Hyperpolarized pyruvate to lactate metabolism significantly decreased in a dose dependent fashion by 1 day after radiation therapy, prior to any changes observed using 1H DCE and diffusion

  17. In vivo single-shot 13C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding

    NASA Astrophysics Data System (ADS)

    Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio

    2014-03-01

    Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model.

  18. In vivo single-shot 13C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding

    PubMed Central

    Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio

    2016-01-01

    Hyperpolarized metabolic imaging is a growing field that has provided a tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model. PMID:24486720

  19. Imaging of pH in vivo using hyperpolarized 13C-labelled zymonic acid

    PubMed Central

    Düwel, Stephan; Hundshammer, Christian; Gersch, Malte; Feuerecker, Benedikt; Steiger, Katja; Buck, Achim; Walch, Axel; Haase, Axel; Glaser, Steffen J.; Schwaiger, Markus; Schilling, Franz

    2017-01-01

    Natural pH regulatory mechanisms can be overruled during several pathologies such as cancer, inflammation and ischaemia, leading to local pH changes in the human body. Here we demonstrate that 13C-labelled zymonic acid (ZA) can be used as hyperpolarized magnetic resonance pH imaging sensor. ZA is synthesized from [1-13C]pyruvic acid and its 13C resonance frequencies shift up to 3.0 p.p.m. per pH unit in the physiological pH range. The long lifetime of the hyperpolarized signal enhancement enables monitoring of pH, independent of concentration, temperature, ionic strength and protein concentration. We show in vivo pH maps within rat kidneys and subcutaneously inoculated tumours derived from a mammary adenocarcinoma cell line and characterize ZA as non-toxic compound predominantly present in the extracellular space. We suggest that ZA represents a reliable and non-invasive extracellular imaging sensor to localize and quantify pH, with the potential to improve understanding, diagnosis and therapy of diseases characterized by aberrant acid-base balance. PMID:28492229

  20. Diabetes induced renal urea transport alterations assessed with 3D hyperpolarized 13 C,15 N-Urea.

    PubMed

    Bertelsen, Lotte B; Nielsen, Per M; Qi, Haiyun; Nørlinger, Thomas S; Zhang, Xiaolu; Stødkilde-Jørgensen, Hans; Laustsen, Christoffer

    2017-04-01

    In the current study, we investigated hyperpolarized urea as a possible imaging biomarker of the renal function by means of the intrarenal osmolality gradient. Hyperpolarized three-dimensional balanced steady state 13 C MRI experiments alongside kidney function parameters and quantitative polymerase chain reaction measurements was performed on two groups of rats, a streptozotocin type 1 diabetic group and a healthy control group. A significant decline in intrarenal steepness of the urea gradient was found after 4 weeks of untreated insulinopenic diabetes in agreement with an increased urea transport transcription. MRI and hyperpolarized [ 13 C, 15 N]urea can monitor the changes in the corticomedullary urea concentration gradients in diabetic and healthy control rats. Magn Reson Med 77:1650-1655, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  1. A comparison of quantitative methods for clinical imaging with hyperpolarized (13)C-pyruvate.

    PubMed

    Daniels, Charlie J; McLean, Mary A; Schulte, Rolf F; Robb, Fraser J; Gill, Andrew B; McGlashan, Nicholas; Graves, Martin J; Schwaiger, Markus; Lomas, David J; Brindle, Kevin M; Gallagher, Ferdia A

    2016-04-01

    Dissolution dynamic nuclear polarization (DNP) enables the metabolism of hyperpolarized (13)C-labelled molecules, such as the conversion of [1-(13)C]pyruvate to [1-(13)C]lactate, to be dynamically and non-invasively imaged in tissue. Imaging of this exchange reaction in animal models has been shown to detect early treatment response and correlate with tumour grade. The first human DNP study has recently been completed, and, for widespread clinical translation, simple and reliable methods are necessary to accurately probe the reaction in patients. However, there is currently no consensus on the most appropriate method to quantify this exchange reaction. In this study, an in vitro system was used to compare several kinetic models, as well as simple model-free methods. Experiments were performed using a clinical hyperpolarizer, a human 3 T MR system, and spectroscopic imaging sequences. The quantitative methods were compared in vivo by using subcutaneous breast tumours in rats to examine the effect of pyruvate inflow. The two-way kinetic model was the most accurate method for characterizing the exchange reaction in vitro, and the incorporation of a Heaviside step inflow profile was best able to describe the in vivo data. The lactate time-to-peak and the lactate-to-pyruvate area under the curve ratio were simple model-free approaches that accurately represented the full reaction, with the time-to-peak method performing indistinguishably from the best kinetic model. Finally, extracting data from a single pixel was a robust and reliable surrogate of the whole region of interest. This work has identified appropriate quantitative methods for future work in the analysis of human hyperpolarized (13)C data. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  2. Hyperpolarized 13 C,15 N2 -Urea MRI for assessment of the urea gradient in the porcine kidney.

    PubMed

    Hansen, Esben S S; Stewart, Neil J; Wild, Jim M; Stødkilde-Jørgensen, Hans; Laustsen, Christoffer

    2016-12-01

    A decline in cortico-medullary osmolality gradient of the kidney may serve as an early indicator of pathological disruption of the tubular reabsorption process. The purpose of this study was to investigate the feasibility of hyperpolarized 13 C, 15 N 2 -urea MRI as a biomarker of renal function in healthy porcine kidneys resembling the human physiology. Five healthy female Danish domestic pigs (weight 30 kg) were scanned at 3 Tesla (T) using a 13 C 3D balanced steady-state MR pulse sequence following injection of hyperpolarized 13 C, 15 N 2 -urea via a femoral vein catheter. Images were acquired at different time points after urea injection, and following treatment with furosemide. A gradient in cortico-medullary urea was observed with an intramedullary accumulation 75 s after injection of hyperpolarized 13 C, 15 N 2 -urea, whereas images acquired at earlier time points postinjection were dominated by cortical perfusion. Furosemide treatment resulted in an increased urea accumulation in the cortical space, leading to a reduction of the medullary-to-cortical signal ratio of 49%. This study demonstrates that hyperpolarized 13 C, 15 N 2 -urea MRI is capable of identifying the intrarenal accumulation of urea and can differentiate acute renal functional states in multipapillary kidneys, highlighting the potential for human translation. Magn Reson Med 76:1895-1899, 2016. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Ex vivo hyperpolarized MR spectroscopy on isolated renal tubular cells: A novel technique for cell energy phenotyping.

    PubMed

    Juul, Troels; Palm, Fredrik; Nielsen, Per Mose; Bertelsen, Lotte Bonde; Laustsen, Christoffer

    2017-08-01

    It has been demonstrated that hyperpolarized 13 C MR is a useful tool to study cultured cells. However, cells in culture can alter phenotype, which raises concerns regarding the in vivo significance of such findings. Here we investigate if metabolic phenotyping using hyperpolarized 13 C MR is suitable for cells isolated from kidney tissue, without prior cell culture. Isolation of tubular cells from freshly excised kidney tissue and treatment with either ouabain or antimycin A was investigated with hyperpolarized MR spectroscopy on a 9.4 Tesla preclinical imaging system. Isolation of tubular cells from less than 2 g of kidney tissue generally resulted in more than 10 million live tubular cells. This amount of cells was enough to yield robust signals from the conversion of 13 C-pyruvate to lactate, bicarbonate and alanine, demonstrating that metabolic flux by means of both anaerobic and aerobic pathways can be quantified using this technique. Ex vivo metabolic phenotyping using hyperpolarized 13 C MR in a preclinical system is a useful technique to study energy metabolism in freshly isolated renal tubular cells. This technique has the potential to advance our understanding of both normal cell physiology as well as pathological processes contributing to kidney disease. Magn Reson Med 78:457-461, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Probing alanine transaminase catalysis with hyperpolarized 13CD3-pyruvate

    NASA Astrophysics Data System (ADS)

    Barb, A. W.; Hekmatyar, S. K.; Glushka, J. N.; Prestegard, J. H.

    2013-03-01

    Hyperpolarized metabolites offer a tremendous sensitivity advantage (>104 fold) when measuring flux and enzyme activity in living tissues by magnetic resonance methods. These sensitivity gains can also be applied to mechanistic studies that impose time and metabolite concentration limitations. Here we explore the use of hyperpolarization by dissolution dynamic nuclear polarization (DNP) in mechanistic studies of alanine transaminase (ALT), a well-established biomarker of liver disease and cancer that converts pyruvate to alanine using glutamate as a nitrogen donor. A specific deuterated, 13C-enriched analog of pyruvic acid, 13C3D3-pyruvic acid, is demonstrated to have advantages in terms of detection by both direct 13C observation and indirect observation through methyl protons introduced by ALT-catalyzed H-D exchange. Exchange on injecting hyperpolarized 13C3D3-pyruvate into ALT dissolved in buffered 1H2O, combined with an experimental approach to measure proton incorporation, provided information on mechanistic details of transaminase action on a 1.5 s timescale. ALT introduced, on average, 0.8 new protons into the methyl group of the alanine produced, indicating the presence of an off-pathway enamine intermediate. The opportunities for exploiting mechanism-dependent molecular signatures as well as indirect detection of hyperpolarized 13C3-pyruvate and products in imaging applications are discussed.

  5. 1H-NMR and Hyperpolarized 13C-NMR Assays of Pyruvate-Lactate Exhange: a comparative study

    PubMed Central

    Orton, Matthew R.; Tardif, Nicolas; Parkes, Harold G.; Robinson, Simon P.; Leach, Martin O.; Chung, Yuen-Li; Eykyn, Thomas R.

    2015-01-01

    Pyruvate-lactate exchange is mediated by the enzyme lactate dehydrogenase (LDH) and is central to the altered energy metabolism in cancer cells. Measurement of exchange kinetics using hyperpolarized 13C NMR has provided a biomarker of response to novel therapeutics. In this study we investigated an alternative in vitro 1H assay, using [3-13C]pyruvate, and compared the measured kinetics with a hyperpolarized 13C-NMR assay, using [1-13C]pyruvate, under the same conditions in human colorectal carcinoma SW1222 cells. The apparent forward reaction rate constants (kPL) derived from the two assays showed no significant difference, and both assays had similar reproducibility (kPL = 0.506 ± 0.054 and kPL = 0.441 ± 0.090 nmol/s/106 cells, (mean ± standard deviation, n = 3); 1H, 13C assays respectively). The apparent backward reaction rate constant (kLP) could only be measured with good reproducibility using the 1H-NMR assay (kLP = 0.376 ± 0.091 nmol/s/106 cells, (mean ± standard deviation, n = 3)). The 1H-NMR assay has adequate sensitivity to measure real-time pyruvate-lactate exchange kinetics in vitro, offering a complementary and accessible assay of apparent LDH activity. PMID:23712817

  6. Quantification of in vivo metabolic kinetics of hyperpolarized pyruvate in rat kidneys using dynamic 13C MRSI.

    PubMed

    Xu, Tao; Mayer, Dirk; Gu, Meng; Yen, Yi-Fen; Josan, Sonal; Tropp, James; Pfefferbaum, Adolf; Hurd, Ralph; Spielman, Daniel

    2011-10-01

    With signal-to-noise ratio enhancements on the order of 10,000-fold, hyperpolarized MRSI of metabolically active substrates allows the study of both the injected substrate and downstream metabolic products in vivo. Although hyperpolarized [1-(13)C]pyruvate, in particular, has been used to demonstrate metabolic activities in various animal models, robust quantification and metabolic modeling remain important areas of investigation. Enzyme saturation effects are routinely seen with commonly used doses of hyperpolarized [1-(13)C]pyruvate; however, most metrics proposed to date, including metabolite ratios, time-to-peak of metabolic products and single exchange rate constants, fail to capture these saturation effects. In addition, the widely used small-flip-angle excitation approach does not correctly model the inflow of fresh downstream metabolites generated proximal to the target slice, which is often a significant factor in vivo. In this work, we developed an efficient quantification framework employing a spiral-based dynamic spectroscopic imaging approach. The approach overcomes the aforementioned limitations and demonstrates that the in vivo (13)C labeling of lactate and alanine after a bolus injection of [1-(13)C]pyruvate is well approximated by saturatable kinetics, which can be mathematically modeled using a Michaelis-Menten-like formulation, with the resulting estimated apparent maximal reaction velocity V(max) and apparent Michaelis constant K(M) being unbiased with respect to critical experimental parameters, including the substrate dose, bolus shape and duration. Although the proposed saturatable model has a similar mathematical formulation to the original Michaelis-Menten kinetics, it is conceptually different. In this study, we focus on the (13)C labeling of lactate and alanine and do not differentiate the labeling mechanism (net flux or isotopic exchange) or the respective contribution of various factors (organ perfusion rate, substrate transport

  7. Modeling non‐linear kinetics of hyperpolarized [1‐13C] pyruvate in the crystalloid‐perfused rat heart

    PubMed Central

    Mariotti, E.; Orton, M. R.; Eerbeek, O.; Ashruf, J. F.; Zuurbier, C. J.; Southworth, R.

    2016-01-01

    Hyperpolarized 13C MR measurements have the potential to display non‐linear kinetics. We have developed an approach to describe possible non‐first‐order kinetics of hyperpolarized [1‐13C] pyruvate employing a system of differential equations that agrees with the principle of conservation of mass of the hyperpolarized signal. Simultaneous fitting to a second‐order model for conversion of [1‐13C] pyruvate to bicarbonate, lactate and alanine was well described in the isolated rat heart perfused with Krebs buffer containing glucose as sole energy substrate, or glucose supplemented with pyruvate. Second‐order modeling yielded significantly improved fits of pyruvate–bicarbonate kinetics compared with the more traditionally used first‐order model and suggested time‐dependent decreases in pyruvate–bicarbonate flux. Second‐order modeling gave time‐dependent changes in forward and reverse reaction kinetics of pyruvate–lactate exchange and pyruvate–alanine exchange in both groups of hearts during the infusion of pyruvate; however, the fits were not significantly improved with respect to a traditional first‐order model. The mechanism giving rise to second‐order pyruvate dehydrogenase (PDH) kinetics was explored experimentally using surface fluorescence measurements of nicotinamide adenine dinucleotide reduced form (NADH) performed under the same conditions, demonstrating a significant increase of NADH during pyruvate infusion. This suggests a simultaneous depletion of available mitochondrial NAD+ (the cofactor for PDH), consistent with the non‐linear nature of the kinetics. NADH levels returned to baseline following cessation of the pyruvate infusion, suggesting this to be a transient effect. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd. PMID:26777799

  8. Hyperpolarized [U-(2) H, U-(13) C]Glucose reports on glycolytic and pentose phosphate pathway activity in EL4 tumors and glycolytic activity in yeast cells.

    PubMed

    Timm, Kerstin N; Hartl, Johannes; Keller, Markus A; Hu, De-En; Kettunen, Mikko I; Rodrigues, Tiago B; Ralser, Markus; Brindle, Kevin M

    2015-12-01

    A resonance at ∼181 ppm in the (13) C spectra of tumors injected with hyperpolarized [U-(2) H, U-(13) C]glucose was assigned to 6-phosphogluconate (6PG), as in previous studies in yeast, whereas in breast cancer cells in vitro this resonance was assigned to 3-phosphoglycerate (3PG). These peak assignments were investigated here using measurements of 6PG and 3PG (13) C-labeling using liquid chromatography tandem mass spectrometry (LC-MS/MS) METHODS: Tumor-bearing mice were injected with (13) C6 glucose and the (13) C-labeled and total 6PG and 3PG concentrations measured. (13) C MR spectra of glucose-6-phosphate dehydrogenase deficient (zwf1Δ) and wild-type yeast were acquired following addition of hyperpolarized [U-(2) H, U-(13) C]glucose and again (13) C-labeled and total 6PG and 3PG were measured by LC-MS/MS RESULTS: Tumor (13) C-6PG was more abundant than (13) C-2PG/3PG and the resonance at ∼181 ppm matched more closely that of 6PG. (13) C MR spectra of wild-type and zwf1Δ yeast cells showed a resonance at ∼181 ppm after labeling with hyperpolarized [U-(2) H, U-(13) C]glucose, however, there was no 6PG in zwf1Δ cells. In the wild-type cells 3PG was approximately four-fold more abundant than 6PG CONCLUSION: The resonance at ∼181 ppm in (13) C MR spectra following injection of hyperpolarized [U-(2) H, U-(13) C]glucose originates predominantly from 6PG in EL4 tumors and 3PG in yeast cells. © 2014 Wiley Periodicals, Inc.

  9. Dynamic metabolic imaging of hyperpolarized [2-(13) C]pyruvate using spiral chemical shift imaging with alternating spectral band excitation.

    PubMed

    Josan, Sonal; Hurd, Ralph; Park, Jae Mo; Yen, Yi-Fen; Watkins, Ron; Pfefferbaum, Adolf; Spielman, Daniel; Mayer, Dirk

    2014-06-01

    In contrast to [1-(13) C]pyruvate, hyperpolarized [2-(13) C]pyruvate permits the ability to follow the (13) C label beyond flux through pyruvate dehydrogenase complex and investigate the incorporation of acetyl-coenzyme A into different metabolic pathways. However, chemical shift imaging (CSI) with [2-(13) C]pyruvate is challenging owing to the large spectral dispersion of the resonances, which also leads to severe chemical shift displacement artifacts for slice-selective acquisitions. This study introduces a sequence for three-dimensional CSI of [2-(13) C]pyruvate using spectrally selective excitation of limited frequency bands containing a subset of metabolites. Dynamic CSI data were acquired alternately from multiple frequency bands in phantoms for sequence testing and in vivo in rat heart. Phantom experiments verified the radiofrequency pulse design and demonstrated that the signal behavior of each group of resonances was unaffected by excitation of the other frequency bands. Dynamic three-dimensional (13) C CSI data demonstrated the sequence capability to image pyruvate, lactate, acetylcarnitine, glutamate, and acetoacetate, enabling the analysis of organ-specific spectra and metabolite time courses. The presented method allows CSI of widely separated resonances without chemical shift displacement artifact, acquiring multiple frequency bands alternately to obtain dynamic time-course information. This approach enables robust imaging of downstream metabolic products of acetyl-coenzyme A with hyperpolarized [2-(13) C]pyruvate. Copyright © 2013 Wiley Periodicals, Inc.

  10. Biomolecular imaging of 13C-butyrate with dissolution-DNP: Polarization enhancement and formulation for in vivo studies

    NASA Astrophysics Data System (ADS)

    Flori, Alessandra; Giovannetti, Giulio; Santarelli, Maria Filomena; Aquaro, Giovanni Donato; De Marchi, Daniele; Burchielli, Silvia; Frijia, Francesca; Positano, Vincenzo; Landini, Luigi; Menichetti, Luca

    2018-06-01

    Magnetic Resonance Spectroscopy of hyperpolarized isotopically enriched molecules facilitates the non-invasive real-time investigation of in vivo tissue metabolism in the time-frame of a few minutes; this opens up a new avenue in the development of biomolecular probes. Dissolution Dynamic Nuclear Polarization is a hyperpolarization technique yielding a more than four orders of magnitude increase in the 13C polarization for in vivo Magnetic Resonance Spectroscopy studies. As reported in several studies, the dissolution Dynamic Nuclear Polarization polarization performance relies on the chemico-physical properties of the sample. In this study, we describe and quantify the effects of the different sample components on the dissolution Dynamic Nuclear Polarization performance of [1-13C]butyrate. In particular, we focus on the polarization enhancement provided by the incremental addition of the glassy agent dimethyl sulfoxide and gadolinium chelate to the formulation. Finally, preliminary results obtained after injection in healthy rats are also reported, showing the feasibility of an in vivo Magnetic Resonance Spectroscopy study with hyperpolarized [1-13C]butyrate using a 3T clinical set-up.

  11. Improved tolerance to off-resonance in spectral-spatial EPI of hyperpolarized [1-13 C]pyruvate and metabolites.

    PubMed

    Lau, Justin Y C; Geraghty, Benjamin J; Chen, Albert P; Cunningham, Charles H

    2018-09-01

    For 13 C echo-planar imaging (EPI) with spectral-spatial excitation, main field inhomogeneity can result in reduced flip angle and spatial artifacts. A hybrid time-resolved pulse sequence, multi-echo spectral-spatial EPI, is proposed combining broader spectral-spatial passbands for greater off-resonance tolerance with a multi-echo acquisition to separate signals from potentially co-excited resonances. The performance of the imaging sequence and the reconstruction pipeline were evaluated for 1 H imaging using a series of increasingly dilute 1,4-dioxane solutions and for 13 C imaging using an ethylene glycol phantom. Hyperpolarized [1- 13 C]pyruvate was administered to two healthy rats. Multi-echo data of the rat kidneys were acquired to test realistic cases of off-resonance. Analysis of separated images of water and 1,4-dioxane following multi-echo signal decomposition showed water-to-dioxane 1 H signal ratios that were in agreement with the independent measurements by 1 H spectroscopy for all four concentrations of 1,4-dioxane. The 13 C signal ratio of two co-excited resonances of ethylene glycol was accurately recovered after correction for the spectral profile of the redesigned spectral-spatial pulse. In vivo, successful separation of lactate and pyruvate-hydrate signals was achieved for all except the early time points during which signal variations exceeded the temporal resolution of the multi-echo acquisition. Improved tolerance to off-resonance in the new 13 C data acquisition pipeline was demonstrated in vitro and in vivo. Magn Reson Med 80:925-934, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  12. Real-Time in Vivo Detection of H2O2 Using Hyperpolarized 13C-Thiourea.

    PubMed

    Wibowo, Arif; Park, Jae Mo; Liu, Shie-Chau; Khosla, Chaitan; Spielman, Daniel M

    2017-07-21

    Reactive oxygen species (ROS) are essential cellular metabolites widely implicated in many diseases including cancer, inflammation, and cardiovascular and neurodegenerative disorders. Yet, ROS signaling remains poorly understood, and their measurements are a challenge due to high reactivity and instability. Here, we report the development of 13 C-thiourea as a probe to detect and measure H 2 O 2 dynamics with high sensitivity and spatiotemporal resolution using hyperpolarized 13 C magnetic resonance spectroscopic imaging. In particular, we show 13 C-thiourea to be highly polarizable and to possess a long spin-lattice relaxation time (T 1 ), which enables real-time monitoring of ROS-mediated transformation. We also demonstrate that 13 C-thiourea reacts readily with H 2 O 2 to give chemically distinguishable products in vitro and validate their detection in vivo in a mouse liver. This study suggests that 13 C-thiourea is a promising agent for noninvasive detection of H 2 O 2 in vivo. More broadly, our findings outline a viable clinical application for H 2 O 2 detection in patients with a range of diseases.

  13. Hyperpolarized Magnetic Resonance: A Novel Technique for the In Vivo Assessment of Cardiovascular Disease

    PubMed Central

    Schroeder, Marie A.; Clarke, Kieran; Neubauer, Stefan; Tyler, Damian J.

    2011-01-01

    Non-invasive imaging plays a central role in cardiovascular disease for determining diagnosis, prognosis, and optimizing patient management. Recent experimental studies have demonstrated that monitoring hyperpolarized 13C-labelled tracers with magnetic resonance imaging and spectroscopy (MRI and MRS) offers a new way to investigate the normal and diseased heart, and that the technology may be useful in patients with heart disease. In this review, we show how hyperpolarized 13C-labelled tracers are generated and have been applied experimentally, and outline the methodological advances currently underway to enable translation of hyperpolarized 13C MRI and MRS into the clinic. Using hyperpolarized 13C-labelled metabolites and metabolic MRI and MRS could help assessment of many human cardiovascular diseases, including coronary artery disease, heart failure and metabolic cardiomyopathies. We discuss the clinical areas in which the technology may, in the future, aid in the diagnosis and management of patients with cardiovascular diseases, including dynamic investigations of in vivo metabolism, coronary angiography and quantitative perfusion imaging. It is possible that, in the future, hyperpolarized magnetic resonance will play a major role in clinical cardiology. PMID:21969318

  14. Evaluation of Heterogeneous Metabolic Profile in an Orthotopic Human Glioblastoma Xenograft Model Using Compressed Sensing Hyperpolarized 3D 13C Magnetic Resonance Spectroscopic Imaging

    PubMed Central

    Park, Ilwoo; Hu, Simon; Bok, Robert; Ozawa, Tomoko; Ito, Motokazu; Mukherjee, Joydeep; Phillips, Joanna J.; James, C. David; Pieper, Russell O.; Ronen, Sabrina M.; Vigneron, Daniel B.; Nelson, Sarah J.

    2013-01-01

    High resolution compressed sensing hyperpolarized 13C magnetic resonance spectroscopic imaging was applied in orthotopic human glioblastoma xenografts for quantitative assessment of spatial variations in 13C metabolic profiles and comparison with histopathology. A new compressed sensing sampling design with a factor of 3.72 acceleration was implemented to enable a factor of 4 increase in spatial resolution. Compressed sensing 3D 13C magnetic resonance spectroscopic imaging data were acquired from a phantom and 10 tumor-bearing rats following injection of hyperpolarized [1-13C]-pyruvate using a 3T scanner. The 13C metabolic profiles were compared with hematoxylin and eosin staining and carbonic anhydrase 9 staining. The high-resolution compressed sensing 13C magnetic resonance spectroscopic imaging data enabled the differentiation of distinct 13C metabolite patterns within abnormal tissues with high specificity in similar scan times compared to the fully sampled method. The results from pathology confirmed the different characteristics of 13C metabolic profiles between viable, non-necrotic, nonhypoxic tumor, and necrotic, hypoxic tissue. PMID:22851374

  15. Evaluation of heterogeneous metabolic profile in an orthotopic human glioblastoma xenograft model using compressed sensing hyperpolarized 3D 13C magnetic resonance spectroscopic imaging.

    PubMed

    Park, Ilwoo; Hu, Simon; Bok, Robert; Ozawa, Tomoko; Ito, Motokazu; Mukherjee, Joydeep; Phillips, Joanna J; James, C David; Pieper, Russell O; Ronen, Sabrina M; Vigneron, Daniel B; Nelson, Sarah J

    2013-07-01

    High resolution compressed sensing hyperpolarized (13)C magnetic resonance spectroscopic imaging was applied in orthotopic human glioblastoma xenografts for quantitative assessment of spatial variations in (13)C metabolic profiles and comparison with histopathology. A new compressed sensing sampling design with a factor of 3.72 acceleration was implemented to enable a factor of 4 increase in spatial resolution. Compressed sensing 3D (13)C magnetic resonance spectroscopic imaging data were acquired from a phantom and 10 tumor-bearing rats following injection of hyperpolarized [1-(13)C]-pyruvate using a 3T scanner. The (13)C metabolic profiles were compared with hematoxylin and eosin staining and carbonic anhydrase 9 staining. The high-resolution compressed sensing (13)C magnetic resonance spectroscopic imaging data enabled the differentiation of distinct (13)C metabolite patterns within abnormal tissues with high specificity in similar scan times compared to the fully sampled method. The results from pathology confirmed the different characteristics of (13)C metabolic profiles between viable, non-necrotic, nonhypoxic tumor, and necrotic, hypoxic tissue. Copyright © 2012 Wiley Periodicals, Inc.

  16. Hyperpolarized 13C lactate-to-bicarbonate ratio as a biomarker for monitoring acute response of anti-VEGF treatment

    PubMed Central

    Park, Jae Mo; Spielman, Daniel M.; Josan, Sonal; Jang, Taichang; Merchant, Milton; Hurd, Ralph E.; Mayer, Dirk; Recht, Lawrence D.

    2016-01-01

    Hyperpolarized [1-13C]pyruvate MRS provides a unique imaging opportunity to study reaction kinetics and enzyme activities of in vivo metabolism both because of its favorable imaging characteristics as well as its critical position in the cellular metabolic pathway where it can either be reduced to lactate (reflecting glycolysis) or converted to acetyl-CoA and bicarbonate (reflecting oxidative phosphorylation). Cancer tissue metabolism is altered in such a way as to result in a relative preponderance of glycolysis as compared to oxidative phosphorylation (i.e., Warburg effect). While there is a strong theoretical basis for presuming that readjusting the metabolic balance towards normal could alter tumor growth, a robust noninvasive in vivo tool with which to measure the balance between these two metabolic processes has yet to be developed. Until recently, hyperpolarized 13C-pyruvate imaging studies have focused solely on [1-13C]lactate production because of its strong signal. However, without a concomitant measure of pyruvate entry into the mitochondria, the lactate signal provides no information on the balance between the glycolytic and oxidative metabolic pathways. Consistent measurement of 13C-bicarbonate in cancer tissue, which does provide such information, has proven difficult, however. In this study, we report reliable measurement of 13C-bicarbonate production both in healthy brain and a highly glycolytic experimental glioblastoma model using an optimized 13C MRS imaging protocol. With the capacity to obtain signal in all tumors, we also confirm for the first time that the ratio of 13C-lactate-to-bicarbonate provides a more robust metric than does 13C-lactate for assessing the metabolic effects of an anti-angiogenic therapy. Our data suggest a potential application of this ratio as an early biomarker to assess therapeutic effectiveness. Furthermore, although further study is needed, the results suggest that anti-angiogenic treatment results in a rapid

  17. Technique development of 3D dynamic CS-EPSI for hyperpolarized 13 C pyruvate MR molecular imaging of human prostate cancer.

    PubMed

    Chen, Hsin-Yu; Larson, Peder E Z; Gordon, Jeremy W; Bok, Robert A; Ferrone, Marcus; van Criekinge, Mark; Carvajal, Lucas; Cao, Peng; Pauly, John M; Kerr, Adam B; Park, Ilwoo; Slater, James B; Nelson, Sarah J; Munster, Pamela N; Aggarwal, Rahul; Kurhanewicz, John; Vigneron, Daniel B

    2018-03-25

    The purpose of this study was to develop a new 3D dynamic carbon-13 compressed sensing echoplanar spectroscopic imaging (EPSI) MR sequence and test it in phantoms, animal models, and then in prostate cancer patients to image the metabolic conversion of hyperpolarized [1- 13 C]pyruvate to [1- 13 C]lactate with whole gland coverage at high spatial and temporal resolution. A 3D dynamic compressed sensing (CS)-EPSI sequence with spectral-spatial excitation was designed to meet the required spatial coverage, time and spatial resolution, and RF limitations of the 3T MR scanner for its clinical translation for prostate cancer patient imaging. After phantom testing, animal studies were performed in rats and transgenic mice with prostate cancers. For patient studies, a GE SPINlab polarizer (GE Healthcare, Waukesha, WI) was used to produce hyperpolarized sterile GMP [1- 13 C]pyruvate. 3D dynamic 13 C CS-EPSI data were acquired starting 5 s after injection throughout the gland with a spatial resolution of 0.5 cm 3 , 18 time frames, 2-s temporal resolution, and 36 s total acquisition time. Through preclinical testing, the 3D CS-EPSI sequence developed in this project was shown to provide the desired spectral, temporal, and spatial 5D HP 13 C MR data. In human studies, the 3D dynamic HP CS-EPSI approach provided first-ever simultaneously volumetric and dynamic images of the LDH-catalyzed conversion of [1- 13 C]pyruvate to [1- 13 C]lactate in a biopsy-proven prostate cancer patient with full gland coverage. The results demonstrate the feasibility to characterize prostate cancer metabolism in animals, and now patients using this new 3D dynamic HP MR technique to measure k PL , the kinetic rate constant of [1- 13 C]pyruvate to [1- 13 C]lactate conversion. © 2018 International Society for Magnetic Resonance in Medicine.

  18. Para-hydrogenated glucose derivatives as potential 13C-hyperpolarized probes for magnetic resonance imaging.

    PubMed

    Reineri, Francesca; Santelia, Daniela; Viale, Alessandra; Cerutti, Erika; Poggi, Luisa; Tichy, Tomas; Premkumar, Samuel S D; Gobetto, Roberto; Aime, Silvio

    2010-05-26

    A set of molecules in which a glucose moiety is bound to a hydrogenable synthon has been synthesized and evaluated for hydrogenation reactions and for the corresponding para-hydrogen-induced polarization (PHIP) effects, in order to select suitable candidates for an in vivo magnetic resonance imaging (MRI) method for the assessment of glucose cellular uptake. It has been found that amidic derivatives do not yield any polarization enhancement, probably due to singlet-triplet state mixing along the reaction pathway. In contrast, ester derivatives are hydrogenated in high yield and afford enhanced (1)H and (13)C NMR spectra after para-hydrogenation. The obtained PHIP patterns are discussed and explained on the basis of the calculated spin level populations in the para-hydrogenated products. These molecules may find interesting applications in (13)C MRI as hyperpolarized probes for assessing the activity of glucose transporters in cells.

  19. Directly detected 55Mn MRI: Application to phantoms for human hyperpolarized 13C MRI development

    PubMed Central

    von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D.; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B.

    2014-01-01

    In this work we demonstrate for the first time directly detected manganese-55 (55Mn) MRI using a clinical 3T MRI scanner designed for human hyperpolarized 13C clinical studies with no additional hardware modifications. Due to the similar frequency of the 55Mn and 13C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective “13C” MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, 55Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical 13C phantom MRI, at greatly reduced cost as compared with large 13C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d= 8 cm) containing concentrated aqueous sodium permanganate (2.7M) was scanned rapidly by 55Mn MRI in a human head coil tuned for 13C, using a balanced SSFP acquisition. The requisite penetration of RF magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for 55Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image SNR of ~60 at 0.5cm3 spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP 13C coils and methods designed for human studies. PMID:25179135

  20. Hyperpolarized ketone body metabolism in the rat heart.

    PubMed

    Miller, Jack J; Ball, Daniel R; Lau, Angus Z; Tyler, Damian J

    2018-06-01

    The aim of this work was to investigate the use of 13 C-labelled acetoacetate and β-hydroxybutyrate as novel hyperpolarized substrates in the study of cardiac metabolism. [1- 13 C]Acetoacetate was synthesized by catalysed hydrolysis, and both it and [1- 13 C]β-hydroxybutyrate were hyperpolarized by dissolution dynamic nuclear polarization (DNP). Their metabolism was studied in isolated, perfused rat hearts. Hyperpolarized [1- 13 C]acetoacetate metabolism was also studied in the in vivo rat heart in the fed and fasted states. Hyperpolarization of [1- 13 C]acetoacetate and [1- 13 C]β-hydroxybutyrate provided liquid state polarizations of 8 ± 2% and 3 ± 1%, respectively. The hyperpolarized T 1 values for the two substrates were 28 ± 3 s (acetoacetate) and 20 ± 1 s (β-hydroxybutyrate). Multiple downstream metabolites were observed within the perfused heart, including acetylcarnitine, citrate and glutamate. In the in vivo heart, an increase in acetylcarnitine production from acetoacetate was observed in the fed state, as well as a potential reduction in glutamate. In this work, methods for the generation of hyperpolarized [1- 13 C]acetoacetate and [1- 13 C]β-hydroxybutyrate were investigated, and their metabolism was assessed in both isolated, perfused rat hearts and in the in vivo rat heart. These preliminary investigations show that DNP can be used as an effective in vivo probe of ketone body metabolism in the heart. © 2018 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  1. Model free approach to kinetic analysis of real-time hyperpolarized 13C magnetic resonance spectroscopy data.

    PubMed

    Hill, Deborah K; Orton, Matthew R; Mariotti, Erika; Boult, Jessica K R; Panek, Rafal; Jafar, Maysam; Parkes, Harold G; Jamin, Yann; Miniotis, Maria Falck; Al-Saffar, Nada M S; Beloueche-Babari, Mounia; Robinson, Simon P; Leach, Martin O; Chung, Yuen-Li; Eykyn, Thomas R

    2013-01-01

    Real-time detection of the rates of metabolic flux, or exchange rates of endogenous enzymatic reactions, is now feasible in biological systems using Dynamic Nuclear Polarization Magnetic Resonance. Derivation of reaction rate kinetics from this technique typically requires multi-compartmental modeling of dynamic data, and results are therefore model-dependent and prone to misinterpretation. We present a model-free formulism based on the ratio of total areas under the curve (AUC) of the injected and product metabolite, for example pyruvate and lactate. A theoretical framework to support this novel analysis approach is described, and demonstrates that the AUC ratio is proportional to the forward rate constant k. We show that the model-free approach strongly correlates with k for whole cell in vitro experiments across a range of cancer cell lines, and detects response in cells treated with the pan-class I PI3K inhibitor GDC-0941 with comparable or greater sensitivity. The same result is seen in vivo with tumor xenograft-bearing mice, in control tumors and following drug treatment with dichloroacetate. An important finding is that the area under the curve is independent of both the input function and of any other metabolic pathways arising from the injected metabolite. This model-free approach provides a robust and clinically relevant alternative to kinetic model-based rate measurements in the clinical translation of hyperpolarized (13)C metabolic imaging in humans, where measurement of the input function can be problematic.

  2. Model Free Approach to Kinetic Analysis of Real-Time Hyperpolarized 13C Magnetic Resonance Spectroscopy Data

    PubMed Central

    Mariotti, Erika; Boult, Jessica K. R.; Panek, Rafal; Jafar, Maysam; Parkes, Harold G.; Jamin, Yann; Miniotis, Maria Falck; Al-Saffar, Nada M. S.; Beloueche-Babari, Mounia; Robinson, Simon P.; Leach, Martin O.; Chung, Yuen-Li; Eykyn, Thomas R.

    2013-01-01

    Real-time detection of the rates of metabolic flux, or exchange rates of endogenous enzymatic reactions, is now feasible in biological systems using Dynamic Nuclear Polarization Magnetic Resonance. Derivation of reaction rate kinetics from this technique typically requires multi-compartmental modeling of dynamic data, and results are therefore model-dependent and prone to misinterpretation. We present a model-free formulism based on the ratio of total areas under the curve (AUC) of the injected and product metabolite, for example pyruvate and lactate. A theoretical framework to support this novel analysis approach is described, and demonstrates that the AUC ratio is proportional to the forward rate constant k. We show that the model-free approach strongly correlates with k for whole cell in vitro experiments across a range of cancer cell lines, and detects response in cells treated with the pan-class I PI3K inhibitor GDC-0941 with comparable or greater sensitivity. The same result is seen in vivo with tumor xenograft-bearing mice, in control tumors and following drug treatment with dichloroacetate. An important finding is that the area under the curve is independent of both the input function and of any other metabolic pathways arising from the injected metabolite. This model-free approach provides a robust and clinically relevant alternative to kinetic model-based rate measurements in the clinical translation of hyperpolarized 13C metabolic imaging in humans, where measurement of the input function can be problematic. PMID:24023724

  3. High Resolution 13C MRI With Hyperpolarized Urea: In Vivo T2 Mapping and 15N Labeling Effects

    PubMed Central

    Reed, Galen D.; von Morze, Cornelius; Bok, Robert; Koelsch, Bertram L.; Van Criekinge, Mark; Smith, Kenneth J.; Shang, Hong; Larson, Peder E. Z.; Kurhanewicz, John; Vigneron, Daniel B.

    2014-01-01

    13C steady state free precession (SSFP) magnetic resonance imaging and effective spin-spin relaxation time (T2) mapping were performed using hyperpolarized [13C] urea and [13C, 15N2] urea injected intravenously in rats. 15N labeling gave large T2 increases both in solution and in vivo due to the elimination of a strong scalar relaxation pathway. The T2 increase was pronounced in the kidney, with [13C, 15N2] urea giving T2 values of 6.3±1.3 s in the cortex and medulla, and 11±2 s in the renal pelvis. The measured T2 in the aorta was 1.3±0.3 s. [13C] urea showed shortened T2 values in the kidney of 0.23±0.03 s compared to 0.28±0.03 s measured in the aorta. The enhanced T2 of [13C, 15N2] urea was utilized to generate large signal enhancement by SSFP acquisitions with flip angles approaching the fully refocused regime. Projection images at 0.94 mm in-plane resolution were acquired with both urea isotopes, with [13C, 15N2] urea giving a greater than four-fold increase in signal-to-noise ratio [13C] over urea. PMID:24235273

  4. Low-field thermal mixing in [1-(13)C] pyruvic acid for brute-force hyperpolarization.

    PubMed

    Peat, David T; Hirsch, Matthew L; Gadian, David G; Horsewill, Anthony J; Owers-Bradley, John R; Kempf, James G

    2016-07-28

    We detail the process of low-field thermal mixing (LFTM) between (1)H and (13)C nuclei in neat [1-(13)C] pyruvic acid at cryogenic temperatures (4-15 K). Using fast-field-cycling NMR, (1)H nuclei in the molecule were polarized at modest high field (2 T) and then equilibrated with (13)C nuclei by fast cycling (∼300-400 ms) to a low field (0-300 G) that activates thermal mixing. The (13)C NMR spectrum was recorded after fast cycling back to 2 T. The (13)C signal derives from (1)H polarization via LFTM, in which the polarized ('cold') proton bath contacts the unpolarised ('hot') (13)C bath at a field so low that Zeeman and dipolar interactions are similar-sized and fluctuations in the latter drive (1)H-(13)C equilibration. By varying mixing time (tmix) and field (Bmix), we determined field-dependent rates of polarization transfer (1/τ) and decay (1/T1m) during mixing. This defines conditions for effective mixing, as utilized in 'brute-force' hyperpolarization of low-γ nuclei like (13)C using Boltzmann polarization from nearby protons. For neat pyruvic acid, near-optimum mixing occurs for tmix∼ 100-300 ms and Bmix∼ 30-60 G. Three forms of frozen neat pyruvic acid were tested: two glassy samples, (one well-deoxygenated, the other O2-exposed) and one sample pre-treated by annealing (also well-deoxygenated). Both annealing and the presence of O2 are known to dramatically alter high-field longitudinal relaxation (T1) of (1)H and (13)C (up to 10(2)-10(3)-fold effects). Here, we found smaller, but still critical factors of ∼(2-5)× on both τ and T1m. Annealed, well-deoxygenated samples exhibit the longest time constants, e.g., τ∼ 30-70 ms and T1m∼ 1-20 s, each growing vs. Bmix. Mixing 'turns off' for Bmix > ∼100 G. That T1m≫τ is consistent with earlier success with polarization transfer from (1)H to (13)C by LFTM.

  5. Using a local low rank plus sparse reconstruction to accelerate dynamic hyperpolarized 13C imaging using the bSSFP sequence

    NASA Astrophysics Data System (ADS)

    Milshteyn, Eugene; von Morze, Cornelius; Reed, Galen D.; Shang, Hong; Shin, Peter J.; Larson, Peder E. Z.; Vigneron, Daniel B.

    2018-05-01

    Acceleration of dynamic 2D (T2 Mapping) and 3D hyperpolarized 13C MRI acquisitions using the balanced steady-state free precession sequence was achieved with a specialized reconstruction method, based on the combination of low rank plus sparse and local low rank reconstructions. Methods were validated using both retrospectively and prospectively undersampled in vivo data from normal rats and tumor-bearing mice. Four-fold acceleration of 1-2 mm isotropic 3D dynamic acquisitions with 2-5 s temporal resolution and two-fold acceleration of 0.25-1 mm2 2D dynamic acquisitions was achieved. This enabled visualization of the biodistribution of [2-13C]pyruvate, [1-13C]lactate, [13C, 15N2]urea, and HP001 within heart, kidneys, vasculature, and tumor, as well as calculation of high resolution T2 maps.

  6. Hyperpolarized nanodiamond with long spin-relaxation times

    NASA Astrophysics Data System (ADS)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.

    2015-10-01

    The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically <60 s for 13C liquid-state compounds, which limit the time that the signal remains boosted. Here we demonstrate that 1.1% natural abundance 13C spins in synthetic nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.

  7. Evaluation of high intensity focused ultrasound ablation of prostate tumor with hyperpolarized 13C imaging biomarkers

    NASA Astrophysics Data System (ADS)

    Lee, Jessie E.; Diederich, Chris J.; Salgaonkar, Vasant A.; Bok, Robert; Taylor, Andrew G.; Kurhanewicz, John

    2015-03-01

    Real-time hyperpolarized (HP) 13C MR can be utilized during high-intensity focal ultrasound (HIFU) therapy to improve treatment delivery strategies, provide treatment verification, and thus reduce the need for more radical therapies for lowand intermediate-risk prostate cancers. The goal is to develop imaging biomarkers specific to thermal therapies of prostate cancer using HIFU, and to predict the success of thermal coagulation and identify tissues potentially sensitized to adjuvant treatment by sub-ablative hyperthermic heat doses. Mice with solid prostate tumors received HIFU treatment (5.6 MHz, 160W/cm2, 60 s), and the MR imaging follow-ups were performed on a wide-bore 14T microimaging system. 13C-labeled pyruvate and urea were used to monitor tumor metabolism and perfusion accordingly. After treatment, the ablated tumor tissue had a loss in metabolism and perfusion. In the regions receiving sub-ablative heat dose, a timedependent change in metabolism and perfusion was observed. The untreated regions behaved as a normal untreated TRAMP prostate tumor would. This promising preliminary study shows the potential of using 13C MR imaging as biomarkers of HIFU/thermal therapies.

  8. Using a local low rank plus sparse reconstruction to accelerate dynamic hyperpolarized 13C imaging using the bSSFP sequence.

    PubMed

    Milshteyn, Eugene; von Morze, Cornelius; Reed, Galen D; Shang, Hong; Shin, Peter J; Larson, Peder E Z; Vigneron, Daniel B

    2018-05-01

    Acceleration of dynamic 2D (T 2 Mapping) and 3D hyperpolarized 13 C MRI acquisitions using the balanced steady-state free precession sequence was achieved with a specialized reconstruction method, based on the combination of low rank plus sparse and local low rank reconstructions. Methods were validated using both retrospectively and prospectively undersampled in vivo data from normal rats and tumor-bearing mice. Four-fold acceleration of 1-2 mm isotropic 3D dynamic acquisitions with 2-5 s temporal resolution and two-fold acceleration of 0.25-1 mm 2 2D dynamic acquisitions was achieved. This enabled visualization of the biodistribution of [2- 13 C]pyruvate, [1- 13 C]lactate, [ 13 C,  15 N 2 ]urea, and HP001 within heart, kidneys, vasculature, and tumor, as well as calculation of high resolution T 2 maps. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH

    PubMed Central

    2016-01-01

    NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% 15N-polarization (Theis, T.; et al. J. Am. Chem. Soc.2015, 137, 1404). Hyperpolarization on 15N (and heteronuclei in general) may be advantageous because of the long-lived nature of the hyperpolarization on 15N relative to the short-lived hyperpolarization of protons conventionally hyperpolarized by SABRE, in addition to wider chemical shift dispersion and absence of background signal. Here we show that these unprecedented polarization levels enable 15N magnetic resonance imaging. We also present a theoretical model for the hyperpolarization transfer to heteronuclei, and detail key parameters that should be optimized for efficient 15N-hyperpolarization. The effects of parahydrogen pressure, flow rate, sample temperature, catalyst-to-substrate ratio, relaxation time (T1), and reversible oxygen quenching are studied on a test system of 15N-pyridine in methanol-d4. Moreover, we demonstrate the first proof-of-principle 13C-hyperpolarization using this method. This simple hyperpolarization scheme only requires access to parahydrogen and a magnetic shield, and it provides large enough signal gains to enable one of the first 15N images (2 × 2 mm2 resolution). Importantly, this method enables hyperpolarization of molecular sites with NMR T1 relaxation times suitable for biomedical imaging and spectroscopy. PMID:25960823

  10. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH.

    PubMed

    Truong, Milton L; Theis, Thomas; Coffey, Aaron M; Shchepin, Roman V; Waddell, Kevin W; Shi, Fan; Goodson, Boyd M; Warren, Warren S; Chekmenev, Eduard Y

    2015-04-23

    NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% 15 N-polarization (Theis, T.; et al. J. Am. Chem. Soc. 2015 , 137 , 1404). Hyperpolarization on 15 N (and heteronuclei in general) may be advantageous because of the long-lived nature of the hyperpolarization on 15 N relative to the short-lived hyperpolarization of protons conventionally hyperpolarized by SABRE, in addition to wider chemical shift dispersion and absence of background signal. Here we show that these unprecedented polarization levels enable 15 N magnetic resonance imaging. We also present a theoretical model for the hyperpolarization transfer to heteronuclei, and detail key parameters that should be optimized for efficient 15 N-hyperpolarization. The effects of parahydrogen pressure, flow rate, sample temperature, catalyst-to-substrate ratio, relaxation time ( T 1 ), and reversible oxygen quenching are studied on a test system of 15 N-pyridine in methanol- d 4 . Moreover, we demonstrate the first proof-of-principle 13 C-hyperpolarization using this method. This simple hyperpolarization scheme only requires access to parahydrogen and a magnetic shield, and it provides large enough signal gains to enable one of the first 15 N images (2 × 2 mm 2 resolution). Importantly, this method enables hyperpolarization of molecular sites with NMR T 1 relaxation times suitable for biomedical imaging and spectroscopy.

  11. 3D Compressed Sensing for Highly Accelerated Hyperpolarized 13C MRSI With In Vivo Applications to Transgenic Mouse Models of Cancer

    PubMed Central

    Hu, Simon; Lustig, Michael; Balakrishnan, Asha; Larson, Peder E. Z.; Bok, Robert; Kurhanewicz, John; Nelson, Sarah J.; Goga, Andrei; Pauly, John M.; Vigneron, Daniel B.

    2010-01-01

    High polarization of nuclear spins in liquid state through hyperpolarized technology utilizing dynamic nuclear polarization has enabled the direct monitoring of 13C metabolites in vivo at a high signal-to-noise ratio. Acquisition time limitations due to T1 decay of the hyperpolarized signal require accelerated imaging methods, such as compressed sensing, for optimal speed and spatial coverage. In this paper, the design and testing of a new echo-planar 13C three-dimensional magnetic resonance spectroscopic imaging (MRSI) compressed sensing sequence is presented. The sequence provides up to a factor of 7.53 in acceleration with minimal reconstruction artifacts. The key to the design is employing x and y gradient blips during a fly-back readout to pseudorandomly undersample kf-kx-ky space. The design was validated in simulations and phantom experiments where the limits of undersampling and the effects of noise on the compressed sensing nonlinear reconstruction were tested. Finally, this new pulse sequence was applied in vivo in preclinical studies involving transgenic prostate cancer and transgenic liver cancer murine models to obtain much higher spatial and temporal resolution than possible with conventional echo-planar spectroscopic imaging methods. PMID:20017160

  12. Application of Double Spin-Echo Spiral Chemical Shift Imaging to Rapid Metabolic Mapping of Hyperpolarized [1-13C]-Pyruvate

    PubMed Central

    Josan, Sonal; Yen, Yi-Fen; Hurd, Ralph; Pfefferbaum, Adolf; Spielman, Daniel; Mayer, Dirk

    2011-01-01

    Undersampled spiral CSI (spCSI) using a free induction decay (FID) acquisition allows sub-second metabolic imaging of hyperpolarized 13C. Phase correction of the FID acquisition can be difficult, especially with contributions from aliased out-of-phase peaks. This work extends the spCSI sequence by incorporating double spin-echo radiofrequency (RF) pulses to eliminate the need for phase correction and obtain high quality spectra in magnitude mode. The sequence also provides an added benefit of attenuating signal from flowing spins, which can otherwise contaminate signal in the organ of interest. The refocusing pulses can potentially lead to a loss of hyperpolarized magnetization in dynamic imaging due to flow of spins through the fringe field of the RF coil, where the refocusing pulses fail to provide complete refocusing. Care must be taken for dynamic imaging to ensure that the spins remain within the B1-homogeneous sensitive volume of the RF coil. PMID:21316280

  13. SU-E-QI-11: Measurement of Renal Pyruvate-To-Lactate Exchange with Hyperpolarized 13C MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamson, E; Johnson, K; Fain, S

    Purpose: Previous work [1] modeling the metabolic flux between hyperpolarized [1-13C]pyruvate and [1-13C]lactate in magnetic resonance spectroscopic imaging (MRSI) experiments failed to account for vascular signal artifacts. Here, we investigate a method to minimize the vascular signal and its impact on the fidelity of metabolic modeling. Methods: MRSI was simulated for renal metabolism in MATLAB both with and without bipolar gradients. The resulting data were fit to a two-site exchange model [1], and the effects of vascular partial volume artifacts on kinetic modeling were assessed. Bipolar gradients were then incorporated into a gradient echo sequence to validate the simulations experimentally.more » The degree of diffusion weighting (b = 32 s/mm{sup 2}) was determined empirically from 1H imaging of murine renal vascular signal. The method was then tested in vivo using MRSI with bipolar gradients following injection of hyperpolarized [1-{sup 13}C]pyruvate (∼80 mM at 20% polarization). Results: In simulations, vascular signal contaminated the renal metabolic signal at resolutions as high as 2 × 2 mm{sup 2} due to partial volume effects. The apparent exchange rate from pyruvate to lactate (k{sub p}) was underestimated in the presence of these artifacts due to contaminating pyruvate signal. Incorporation of bipolar gradients suppressed vascular signal and improved the accuracy of kp estimation. Experimentally, the in vivo results supported the ability of bipolar gradients to suppress vascular signal. The in vivo exchange rate increased, as predicted in simulations, from k{sub p} = 0.012 s-{sup 1} to k{sub p} = 0.020-{sup 1} after vascular signal suppression. Conclusion: We have demonstrated the limited accuracy of the two-site exchange model in the presence of vascular partial volume artifacts. The addition of bipolar gradients suppressed vascular signal and improved model accuracy in simulations. Bipolar gradients largely affected kp estimation in vivo

  14. Utilization of SABRE-derived hyperpolarization to detect low-concentration analytes via 1D and 2D NMR methods.

    PubMed

    Lloyd, Lyrelle S; Adams, Ralph W; Bernstein, Michael; Coombes, Steven; Duckett, Simon B; Green, Gary G R; Lewis, Richard J; Mewis, Ryan E; Sleigh, Christopher J

    2012-08-08

    The characterization of materials by the inherently insensitive method of NMR spectroscopy plays a vital role in chemistry. Increasingly, hyperpolarization is being used to address the sensitivity limitation. Here, by reference to quinoline, we illustrate that the SABRE hyperpolarization technique, which uses para-hydrogen as the source of polarization, enables the rapid completion of a range of NMR measurements. These include the collection of (13)C, (13)C{(1)H}, and NOE data in addition to more complex 2D COSY, ultrafast 2D COSY and 2D HMBC spectra. The observations are made possible by the use of a flow probe and external sample preparation cell to re-hyperpolarize the substrate between transients, allowing repeat measurements to be made within seconds. The potential benefit of the combination of SABRE and 2D NMR methods for rapid characterization of low-concentration analytes is therefore established.

  15. Production and NMR signal optimization of hyperpolarized 13C-labeled amino acids

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Ferguson, Sarah; Kiswandhi, Andhika; Lumata, Lloyd

    Amino acids are targeted nutrients for consumption by cancers to sustain their rapid growth and proliferation. 13C-enriched amino acids are important metabolic tracers for cancer diagnostics using nuclear magnetic resonance (NMR) spectroscopy. Despite this diagnostic potential, 13C NMR of amino acids however is hampered by the inherently low NMR sensitivity of the 13C nuclei. In this work, we have employed a physics technique known as dynamic nuclear polarization (DNP) to enhance the NMR signals of 13C-enriched amino acids. DNP works by transferring the high polarization of electrons to the nuclear spins via microwave irradiation at low temperature and high magnetic field. Using a fast dissolution method in which the frozen polarized samples are dissolved rapidly with superheated water, injectable solutions of 13C-amino acids with highly enhanced NMR signals (by at least 5,000-fold) were produced at room temperature. Factors that affect the NMR signal enhancement levels such as the choice of free radical polarizing agents and sample preparation will be discussed along with the thermal mixing physics model of DNP. The authors would like to acknowledge the support by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  16. Strategies for Rapid in vivo 1H and hyperpolarized 13C MR Spectroscopic Imaging

    PubMed Central

    Nelson, Sarah J.; Ozhinsky, Eugene; Li, Yan; Park, Il woo; Crane, Jason

    2013-01-01

    In vivo MRSI is an important imaging modality that has been shown in numerous research studies to give biologically relevant information for assessing the underlying mechanisms of disease and for monitoring response to therapy. The increasing availability of high field scanners and multichannel radiofrequency coils has provided the opportunity to acquire in vivo data with significant improvements in sensitivity and signal to noise ratio. These capabilities may be used to shorten acquisition time and provide increase coverage. The ability to acquire rapid, volumetric MRSI data is critical for examining heterogeneity in metabolic profiles and for relating serial changes in metabolism within the same individual during the course of the disease. In this review we discuss the implementation of strategies that use alternative k-space sampling trajectories and parallel imaging methods in order to speed up data acquisition. The impact of such methods is demonstrated using three recent examples of how these methods have been applied. These are to the acquisition of robust 3D 1H MRSI data within 5 –10 minutes at a field strength of 3T, to obtaining higher sensitivity for 1H MRSI at 7T and to using ultrafast volumetric and dynamic 13C MRSI for monitoring the changes in signals that occur following the injection of hyperpolarized 13C agents. PMID:23453759

  17. Reduced Warburg Effect in Cancer Cells Undergoing Autophagy: Steady- State 1H-MRS and Real-Time Hyperpolarized 13C-MRS Studies

    PubMed Central

    Wong Te Fong, Anne-Christine; Hill, Deborah K.; Orton, Matthew R.; Parkes, Harry G.; Koh, Dow-Mu; Robinson, Simon P.; Leach, Martin O.; Eykyn, Thomas R.; Chung, Yuen-Li

    2014-01-01

    Autophagy is a highly regulated, energy dependent cellular process where proteins, organelles and cytoplasm are sequestered in autophagosomes and digested to sustain cellular homeostasis. We hypothesized that during autophagy induced in cancer cells by i) starvation through serum and amino acid deprivation or ii) treatment with PI-103, a class I PI3K/mTOR inhibitor, glycolytic metabolism would be affected, reducing flux to lactate, and that this effect may be reversible. We probed metabolism during autophagy in colorectal HT29 and HCT116 Bax knock-out cells using hyperpolarized 13C-magnetic resonance spectroscopy (MRS) and steady-state 1H-MRS. 24 hr PI103-treatment or starvation caused significant reduction in the apparent forward rate constant (kPL) for pyruvate to lactate exchange compared with controls in HT29 (100 μM PI-103: 82%, p = 0.05) and HCT116 Bax-ko cells (10 μM PI-103: 53%, p = 0.05; 20 μM PI-103: 42%, p<0.0001; starvation: 52%, p<0.001), associated with reduced lactate excretion and intracellular lactate in all cases, and unchanged lactate dehydrogenase (LDH) activity and increased NAD+/NADH ratio following PI103 treatment or decreased LDH activity and unchanged NAD+/NADH ratio following starvation. After 48 hr recovery from PI103 treatment, kPL remained below control levels in HT29 cells (74%, p = 0.02), and increased above treated values, but remained below 24 hr vehicle-treated control levels in HCT116 Bax-ko cells (65%, p = 0.004) both were accompanied by sustained reduction in lactate excretion, recovery of NAD+/NADH ratio and intracellular lactate. Following recovery from starvation, kPL was significantly higher than 24 hr vehicle-treated controls (140%, p = 0.05), associated with increased LDH activity and total cellular NAD(H). Changes in kPL and cellular and excreted lactate provided measureable indicators of the major metabolic processes accompanying starvation- and drug-induced autophagy. The changes are reversible

  18. Comparison of soil organic carbon speciation using C NEXAFS and CPMAS 13C NMR spectroscopy.

    PubMed

    Prietzel, Jörg; Müller, Svenja; Kögel-Knabner, Ingrid; Thieme, Jürgen; Jaye, Cherno; Fischer, Daniel

    2018-07-01

    We compared synchrotron-based C near-edge X-ray absorption fine structure (NEXAFS) and CPMAS 13 C nuclear magnetic resonance (NMR) spectroscopy with respect to their precision and accuracy to quantify different organic carbon (OC) species in defined mixtures of soil organic matter source compounds. We also used both methods to quantify different OC species in organic surface horizons of a Histic Leptosol as well as in mineral topsoil and subsoil horizons of two soils with different parent material, stage of pedogenesis, and OC content (Cambisol: 15-30 OC mgg -1 , Podzol: 0.9-7 OC mgg -1 ). CPMAS 13 C NMR spectroscopy was more accurate and precise (mean recovery of different C functional groups 96-103%) than C NEXAFS spectroscopy (mean recovery 92-113%). For organic surface and topsoil samples, NMR spectroscopy consistently yielded larger O-alkyl C percentages and smaller alkyl C percentages than C NEXAFS spectroscopy. For the Cambisol subsoil samples both methods performed well and showed similar C speciation results. NEXAFS spectroscopy yielded excellent spectra with a high signal-to-noise ratio also for OC-poor Podzol subsoil samples, whereas this was not the case for CPMAS 13 C NMR spectroscopy even after sample treatment with HF. Our results confirm the analytical power of CPMAS 13 C NMR spectroscopy for a reliable quantitative OC speciation in soils with >10mgOCg -1 . Moreover, they highlight the potential of synchrotron-based C NEXAFS spectroscopy as fast, non-invasive method to semi-quantify different C functional groups in soils with low C content (0.9-10mgg -1 ). Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Hyperpolarized carbon-13 magnetic resonance spectroscopic imaging: a clinical tool for studying tumour metabolism.

    PubMed

    Zaccagna, Fulvio; Grist, James T; Deen, Surrin S; Woitek, Ramona; Lechermann, Laura Mt; McLean, Mary A; Basu, Bristi; Gallagher, Ferdia A

    2018-05-01

    Glucose metabolism in tumours is reprogrammed away from oxidative metabolism, even in the presence of oxygen. Non-invasive imaging techniques can probe these alterations in cancer metabolism providing tools to detect tumours and their response to therapy. Although Positron Emission Tomography with ( 18 F)2-fluoro-2-deoxy-D-glucose ( 18 F-FDG PET) is an established clinical tool to probe cancer metabolism, it has poor spatial resolution and soft tissue contrast, utilizes ionizing radiation and only probes glucose uptake and phosphorylation and not further downstream metabolism. Magnetic Resonance Spectroscopy (MRS) has the capability to non-invasively detect and distinguish molecules within tissue but has low sensitivity and can only detect selected nuclei. Dynamic Nuclear Polarization (DNP) is a technique which greatly increases the signal-to-noise ratio (SNR) achieved with MR by significantly increasing nuclear spin polarization and this method has now been translated into human imaging. This review provides a brief overview of this process, also termed Hyperpolarized Carbon-13 Magnetic Resonance Spectroscopic Imaging (HP 13 C-MRSI), its applications in preclinical imaging, an outline of the current human trials that are ongoing, as well as future potential applications in oncology.

  20. In Situ and Ex Situ Low-Field NMR Spectroscopy and MRI Endowed by SABRE Hyperpolarization**

    PubMed Central

    Barskiy, Danila A.; Kovtunov, Kirill V.; Koptyug, Igor V.; He, Ping; Groome, Kirsten A.; Best, Quinn A.; Shi, Fan; Goodson, Boyd M.; Shchepin, Roman V.; Truong, Milton L.; Coffey, Aaron M.; Waddell, Kevin W.; Chekmenev, Eduard Y.

    2015-01-01

    By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 105-fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high-resolution low-field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real-time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low-field (milli-Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen-enhanced NMR and MRI, which are free from the limitations of high-field magnetic resonance (including susceptibility-induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields. PMID:25367202

  1. Mapping of intracellular pH in the in vivo rodent heart using hyperpolarized [1-13C]pyruvate.

    PubMed

    Lau, Angus Z; Miller, Jack J; Tyler, Damian J

    2017-05-01

    To demonstrate the feasibility of mapping intracellular pH within the in vivo rodent heart. Alterations in cardiac acid-base balance can lead to acute contractile depression and alterations in Ca 2+ signaling. The transient reduction in adenosine triphosphate (ATP) consumption and cardiac contractility may be initially beneficial; however, sustained pH changes can be maladaptive, leading to myocardial damage and electrical arrhythmias. Spectrally selective radiofrequency (RF) pulses were used to excite the HCO3- and CO 2 resonances individually while preserving signal from the injected hyperpolarized [1- 13 C]pyruvate. The large flip angle pulses were placed within a three-dimensional (3D) imaging acquisition, which exploited CA-mediated label exchange between HCO3- and CO 2 . Images at 4.5 × 4.5 × 5 mm 3 resolution were obtained in the in vivo rodent heart. The technique was evaluated in healthy rodents scanned at baseline and during high cardiac workload induced by dobutamine infusion. The intracellular pH was measured to be 7.15 ± 0.04 at baseline, and decreased to 6.90 ± 0.06 following 15 min of continuous β-adrenergic stimulation. Volumetric maps of intracellular pH can be obtained following an injection of hyperpolarized [1- 13 C]pyruvate. The new method is anticipated to enable assessment of stress-inducible ischemia and potential ventricular arrythmogenic substrates within the ischemic heart. Magn Reson Med 77:1810-1817, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  2. In situ and ex situ low-field NMR spectroscopy and MRI endowed by SABRE hyperpolarization.

    PubMed

    Barskiy, Danila A; Kovtunov, Kirill V; Koptyug, Igor V; He, Ping; Groome, Kirsten A; Best, Quinn A; Shi, Fan; Goodson, Boyd M; Shchepin, Roman V; Truong, Milton L; Coffey, Aaron M; Waddell, Kevin W; Chekmenev, Eduard Y

    2014-12-15

    By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 10(5)-fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high-resolution low-field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real-time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low-field (milli-Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen-enhanced NMR and MRI, which are free from the limitations of high-field magnetic resonance (including susceptibility-induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sensitivity enhancement for detection of hyperpolarized 13 C MRI probes with 1 H spin coupling introduced by enzymatic transformation in vivo.

    PubMed

    von Morze, Cornelius; Tropp, James; Chen, Albert P; Marco-Rius, Irene; Van Criekinge, Mark; Skloss, Timothy W; Mammoli, Daniele; Kurhanewicz, John; Vigneron, Daniel B; Ohliger, Michael A; Merritt, Matthew E

    2018-07-01

    Although 1 H spin coupling is generally avoided in probes for hyperpolarized (HP) 13 C MRI, enzymatic transformations of biological interest can introduce large 13 C- 1 H couplings in vivo. The purpose of this study was to develop and investigate the application of 1 H decoupling for enhancing the sensitivity for detection of affected HP 13 C metabolic products. A standalone 1 H decoupler system and custom concentric 13 C/ 1 H paddle coil setup were integrated with a clinical 3T MRI scanner for in vivo 13 C MR studies using HP [2- 13 C]dihydroxyacetone, a novel sensor of hepatic energy status. Major 13 C- 1 H coupling J CH  = ∼150 Hz) is introduced after adenosine triphosphate-dependent enzymatic transformation of HP [2- 13 C]dihydroxyacetone to [2- 13 C]glycerol-3-phosphate in vivo. Application of WALTZ-16 1 H decoupling for elimination of large 13 C- 1 H couplings was first tested in thermally polarized glycerol phantoms and then for in vivo HP MR studies in three rats, scanned both with and without decoupling. As configured, 1 H-decoupled 13 C MR of thermally polarized glycerol and the HP metabolic product [2- 13 C]glycerol-3-phosphate was achieved at forward power of approximately 15 W. High-quality 3-s dynamic in vivo HP 13 C MR scans were acquired with decoupling duty cycle of 5%. Application of 1 H decoupling resulted in sensitivity enhancement of 1.7-fold for detection of metabolic conversion of [2- 13 C]dihydroxyacetone to HP [2- 13 C]glycerol-3-phosphate in vivo. Application of 1 H decoupling provides significant sensitivity enhancement for detection of HP 13 C metabolic products with large 1 H spin couplings, and is therefore expected to be useful for preclinical and potentially clinical HP 13 C MR studies. Magn Reson Med 80:36-41, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  4. Promising application of dynamic nuclear polarization for in vivo (13)C MR imaging.

    PubMed

    Yen, Yi-Fen; Nagasawa, Kiyoshi; Nakada, Tsutomu

    2011-01-01

    Use of hyperpolarized (13)C in magnetic resonance (MR) imaging is a new technique that enhances signal tens of thousands-fold. Recent in vivo animal studies of metabolic imaging that used hyperpolarized (13)C demonstrated its potential in many applications for disease indication, metabolic profiling, and treatment monitoring. We review the basic physics for dynamic nuclear polarization (DNP) and in vivo studies reported in prostate cancer research, hepatocellular carcinoma research, diabetes and cardiac applications, brain metabolism, and treatment response as well as investigations of various DNP (13)C substrates.

  5. Selective detection of hyperpolarized NMR signals derived from para-hydrogen using the Only Para-hydrogen SpectroscopY (OPSY) approach.

    PubMed

    Aguilar, Juan A; Adams, Ralph W; Duckett, Simon B; Green, Gary G R; Kandiah, Rathika

    2011-01-01

    A new family of NMR pulse sequences is reported for the recording of para-hydrogen enhanced NMR spectra. This Only Para-hydrogen SpectroscopY (OPSY) approach uses coherence selection to separate hyperpolarized signals from those of fully relaxed and thermally equilibrated protons. Sequence design, performance, practical aspects and applicability to other hyperpolarization techniques are discussed. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Room-temperature in situ nuclear spin hyperpolarization from optically pumped nitrogen vacancy centres in diamond

    DOE PAGES

    King, Jonathan P.; Jeong, Keunhong; Vassiliou, Christophoros C.; ...

    2015-12-07

    Low detection sensitivity stemming from the weak polarization of nuclear spins is a primary limitation of magnetic resonance spectroscopy and imaging. Methods have been developed to enhance nuclear spin polarization but they typically require high magnetic fields, cryogenic temperatures or sample transfer between magnets. Here we report bulk, room-temperature hyperpolarization of 13C nuclear spins observed via high-field magnetic resonance. The technique harnesses the high optically induced spin polarization of diamond nitrogen vacancy centres at room temperature in combination with dynamic nuclear polarization. We observe bulk nuclear spin polarization of 6%, an enhancement of ~170,000 over thermal equilibrium. The signal ofmore » the hyperpolarized spins was detected in situ with a standard nuclear magnetic resonance probe without the need for sample shuttling or precise crystal orientation. In conclusion, hyperpolarization via optical pumping/dynamic nuclear polarization should function at arbitrary magnetic fields enabling orders of magnitude sensitivity enhancement for nuclear magnetic resonance of solids and liquids under ambient conditions.« less

  7. Efficient Synthesis of Molecular Precursors for Para-Hydrogen-Induced Polarization of Ethyl Acetate-1-(13) C and Beyond.

    PubMed

    Shchepin, Roman V; Barskiy, Danila A; Coffey, Aaron M; Manzanera Esteve, Isaac V; Chekmenev, Eduard Y

    2016-05-10

    A scalable and versatile methodology for production of vinylated carboxylic compounds with (13) C isotopic label in C1 position is described. It allowed synthesis of vinyl acetate-1-(13) C, which is a precursor for preparation of (13) C hyperpolarized ethyl acetate-1-(13) C, which provides a convenient vehicle for potential in vivo delivery of hyperpolarized acetate to probe metabolism in living organisms. Kinetics of vinyl acetate molecular hydrogenation and polarization transfer from para-hydrogen to (13) C via magnetic field cycling were investigated. Nascent proton nuclear spin polarization (%PH ) of ca. 3.3 % and carbon-13 polarization (%P13C ) of ca. 1.8 % were achieved in ethyl acetate utilizing 50 % para-hydrogen corresponding to ca. 50 % polarization transfer efficiency. The use of nearly 100% para-hydrogen and the improvements of %PH of para-hydrogen-nascent protons may enable production of (13) C hyperpolarized contrast agents with %P13C of 20-50 % in seconds using this chemistry. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Impaired in vivo mitochondrial Krebs cycle activity after myocardial infarction assessed using hyperpolarized magnetic resonance spectroscopy.

    PubMed

    Dodd, Michael S; Atherton, Helen J; Carr, Carolyn A; Stuckey, Daniel J; West, James A; Griffin, Julian L; Radda, George K; Clarke, Kieran; Heather, Lisa C; Tyler, Damian J

    2014-11-01

    Myocardial infarction (MI) is one of the leading causes of heart failure. An increasing body of evidence links alterations in cardiac metabolism and mitochondrial function with the progression of heart disease. The aim of this work was to, therefore, follow the in vivo mitochondrial metabolic alterations caused by MI, thereby allowing a greater understanding of the interplay between metabolic and functional abnormalities. Using hyperpolarized carbon-13 ((13)C)-magnetic resonance spectroscopy, in vivo alterations in mitochondrial metabolism were assessed for 22 weeks after surgically induced MI with reperfusion in female Wister rats. One week after MI, there were no detectable alterations in in vivo cardiac mitochondrial metabolism over the range of ejection fractions observed (from 28% to 84%). At 6 weeks after MI, in vivo mitochondrial Krebs cycle activity was impaired, with decreased (13)C-label flux into citrate, glutamate, and acetylcarnitine, which correlated with the degree of cardiac dysfunction. These changes were independent of alterations in pyruvate dehydrogenase flux. By 22 weeks, alterations were also seen in pyruvate dehydrogenase flux, which decreased at lower ejection fractions. These results were confirmed using in vitro analysis of enzyme activities and metabolomic profiles of key intermediates. The in vivo decrease in Krebs cycle activity in the 6-week post-MI heart may represent an early maladaptive phase in the metabolic alterations after MI in which reductions in Krebs cycle activity precede a reduction in pyruvate dehydrogenase flux. Changes in mitochondrial metabolism in heart disease are progressive and proportional to the degree of cardiac impairment. © 2014 American Heart Association, Inc.

  9. Impaired In Vivo Mitochondrial Krebs Cycle Activity After Myocardial Infarction Assessed Using Hyperpolarized Magnetic Resonance Spectroscopy

    PubMed Central

    Carr, Carolyn A.; Stuckey, Daniel J.; West, James A.; Griffin, Julian L.; Radda, George K.; Clarke, Kieran; Heather, Lisa C.; Tyler, Damian J.

    2015-01-01

    Background Myocardial infarction (MI) is one of the leading causes of heart failure. An increasing body of evidence links alterations in cardiac metabolism and mitochondrial function with the progression of heart disease. The aim of this work was to, therefore, follow the in vivo mitochondrial metabolic alterations caused by MI, thereby allowing a greater understanding of the interplay between metabolic and functional abnormalities. Methods and Results Using hyperpolarized carbon-13 (13C)-magnetic resonance spectroscopy, in vivo alterations in mitochondrial metabolism were assessed for 22 weeks after surgically induced MI with reperfusion in female Wister rats. One week after MI, there were no detectable alterations in in vivo cardiac mitochondrial metabolism over the range of ejection fractions observed (from 28% to 84%). At 6 weeks after MI, in vivo mitochondrial Krebs cycle activity was impaired, with decreased 13C-label flux into citrate, glutamate, and acetylcarnitine, which correlated with the degree of cardiac dysfunction. These changes were independent of alterations in pyruvate dehydrogenase flux. By 22 weeks, alterations were also seen in pyruvate dehydrogenase flux, which decreased at lower ejection fractions. These results were confirmed using in vitro analysis of enzyme activities and metabolomic profiles of key intermediates. Conclusions The in vivo decrease in Krebs cycle activity in the 6-week post-MI heart may represent an early maladaptive phase in the metabolic alterations after MI in which reductions in Krebs cycle activity precede a reduction in pyruvate dehydrogenase flux. Changes in mitochondrial metabolism in heart disease are progressive and proportional to the degree of cardiac impairment. PMID:25201905

  10. Rapid Catalyst Capture Enables Metal-Free para-Hydrogen-Based Hyperpolarized Contrast Agents.

    PubMed

    Barskiy, Danila A; Ke, Lucia A; Li, Xingyang; Stevenson, Vincent; Widarman, Nevin; Zhang, Hao; Truxal, Ashley; Pines, Alexander

    2018-05-10

    Hyperpolarization techniques based on the use of para-hydrogen provide orders of magnitude signal enhancement for magnetic resonance spectroscopy and imaging. The main drawback limiting widespread applicability of para-hydrogen-based techniques in biomedicine is the presence of organometallic compounds (the polarization transfer catalysts) in solution with hyperpolarized contrast agents. These catalysts are typically complexes of platinum-group metals, and their administration in vivo should be avoided. Herein, we show how extraction of a hyperpolarized compound from an organic phase to an aqueous phase combined with a rapid (less than 10 s) Ir-based catalyst capture by metal scavenging agents can produce pure para-hydrogen-based hyperpolarized contrast agents, as demonstrated by high-resolution nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The presented methodology enables fast and efficient means of producing pure hyperpolarized aqueous solutions for biomedical and other uses.

  11. Optimal variable flip angle schemes for dynamic acquisition of exchanging hyperpolarized substrates

    NASA Astrophysics Data System (ADS)

    Xing, Yan; Reed, Galen D.; Pauly, John M.; Kerr, Adam B.; Larson, Peder E. Z.

    2013-09-01

    In metabolic MRI with hyperpolarized contrast agents, the signal levels vary over time due to T1 decay, T2 decay following RF excitations, and metabolic conversion. Efficient usage of the nonrenewable hyperpolarized magnetization requires specialized RF pulse schemes. In this work, we introduce two novel variable flip angle schemes for dynamic hyperpolarized MRI in which the flip angle is varied between excitations and between metabolites. These were optimized to distribute the magnetization relatively evenly throughout the acquisition by accounting for T1 decay, prior RF excitations, and metabolic conversion. Simulation results are presented to confirm the flip angle designs and evaluate the variability of signal dynamics across typical ranges of T1 and metabolic conversion. They were implemented using multiband spectral-spatial RF pulses to independently modulate the flip angle at various chemical shift frequencies. With these schemes we observed increased SNR of [1-13C]lactate generated from [1-13C]pyruvate, particularly at later time points. This will allow for improved characterization of tissue perfusion and metabolic profiles in dynamic hyperpolarized MRI.

  12. Assessing inflammatory liver injury in an acute CCl4 model using dynamic 3D metabolic imaging of hyperpolarized [1-(13)C]pyruvate.

    PubMed

    Josan, Sonal; Billingsley, Kelvin; Orduna, Juan; Park, Jae Mo; Luong, Richard; Yu, Liqing; Hurd, Ralph; Pfefferbaum, Adolf; Spielman, Daniel; Mayer, Dirk

    2015-12-01

    To facilitate diagnosis and staging of liver disease, sensitive and non-invasive methods for the measurement of liver metabolism are needed. This study used hyperpolarized (13)C-pyruvate to assess metabolic parameters in a CCl4 model of liver damage in rats. Dynamic 3D (13)C chemical shift imaging data from a volume covering kidney and liver were acquired from 8 control and 10 CCl4-treated rats. At 12 time points at 5 s temporal resolution, we quantified the signal intensities and established time courses for pyruvate, alanine, and lactate. These measurements were compared with standard liver histology and an alanine transaminase (ALT) enzyme assay using liver tissue from the same animals. All CCl4-treated but none of the control animals showed histological liver damage and elevated ALT enzyme levels. In agreement with these results, metabolic imaging revealed an increased alanine/pyruvate ratio in liver of CCl4-treated rats, which is indicative of elevated ALT activity. Similarly, lactate/pyruvate ratios were higher in CCl4-treated compared with control animals, demonstrating the presence of inflammation. No significant differences in metabolite ratios were observed in kidney or vasculature. Thus this work shows that metabolic imaging using (13)C-pyruvate can be a successful tool to non-invasively assess liver damage in vivo. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Multi-channel metabolic imaging, with SENSE reconstruction, of hyperpolarized [1- 13C] pyruvate in a live rat at 3.0 tesla on a clinical MR scanner

    NASA Astrophysics Data System (ADS)

    Tropp, James; Lupo, Janine M.; Chen, Albert; Calderon, Paul; McCune, Don; Grafendorfer, Thomas; Ozturk-Isik, Esin; Larson, Peder E. Z.; Hu, Simon; Yen, Yi-Fen; Robb, Fraser; Bok, Robert; Schulte, Rolf; Xu, Duan; Hurd, Ralph; Vigneron, Daniel; Nelson, Sarah

    2011-01-01

    We report metabolic images of 13C, following injection of a bolus of hyperpolarized [1-13C] pyruvate in a live rat. The data were acquired on a clinical scanner, using custom coils for volume transmission and array reception. Proton blocking of all carbon resonators enabled proton anatomic imaging with the system body coil, to allow for registration of anatomic and metabolic images, for which good correlation was achieved, with some anatomic features (kidney and heart) clearly visible in a carbon image, without reference to the corresponding proton image. Parallel imaging with sensitivity encoding was used to increase the spatial resolution in the SI direction of the rat. The signal to noise ratio in was in some instances unexpectedly high in the parallel images; variability of the polarization among different trials, plus partial volume effects, are noted as a possible cause of this.

  14. Hyperpolarization without persistent radicals for in vivo real-time metabolic imaging

    PubMed Central

    Eichhorn, Tim R.; Takado, Yuhei; Salameh, Najat; Capozzi, Andrea; Cheng, Tian; Hyacinthe, Jean-Noël; Mishkovsky, Mor; Roussel, Christophe; Comment, Arnaud

    2013-01-01

    Hyperpolarized substrates prepared via dissolution dynamic nuclear polarization have been proposed as magnetic resonance imaging (MRI) agents for cancer or cardiac failure diagnosis and therapy monitoring through the detection of metabolic impairments in vivo. The use of potentially toxic persistent radicals to hyperpolarize substrates was hitherto required. We demonstrate that by shining UV light for an hour on a frozen pure endogenous substance, namely the glucose metabolic product pyruvic acid, it is possible to generate a concentration of photo-induced radicals that is large enough to highly enhance the 13C polarization of the substance via dynamic nuclear polarization. These radicals recombine upon dissolution and a solution composed of purely endogenous products is obtained for performing in vivo metabolic hyperpolarized 13C MRI with high spatial resolution. Our method opens the way to safe and straightforward preclinical and clinical applications of hyperpolarized MRI because the filtering procedure mandatory for clinical applications and the associated pharmacological tests necessary to prevent contamination are eliminated, concurrently allowing a decrease in the delay between preparation and injection of the imaging agents for improved in vivo sensitivity. PMID:24145405

  15. Hyperpolarized 131Xe NMR spectroscopy

    PubMed Central

    Stupic, Karl F.; Cleveland, Zackary I.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2011-01-01

    Hyperpolarized (hp) 131Xe with up to 2.2% spin polarization (i.e., 5000-fold signal enhancement at 9.4 T) was obtained after separation from the rubidium vapor of the spin-exchange optical pumping (SEOP) process. The SEOP was applied for several minutes in a stopped-flow mode, and the fast, quadrupolar-driven T1 relaxation of this spin I = 3/2 noble gas isotope required a rapid subsequent rubidium removal and swift transfer into the high magnetic field region for NMR detection. Because of the xenon density dependent 131Xe quadrupolar relaxation in the gas phase, the SEOP polarization build-up exhibits an even more pronounced dependence on xenon partial pressure than that observed in 129Xe SEOP. 131Xe is the only stable noble gas isotope with a positive gyromagnetic ratio and shows therefore a different relative phase between hp signal and thermal signal compared to all other noble gases. The gas phase 131Xe NMR spectrum displays a surface and magnetic field dependent quadrupolar splitting that was found to have additional gas pressure and gas composition dependence. The splitting was reduced by the presence of water vapor that presumably influences xenon-surface interactions. The hp 131Xe spectrum shows differential line broadening, suggesting the presence of strong adsorption sites. Beyond hp 131Xe NMR spectroscopy studies, a general equation for the high temperature, thermal spin polarization, P, for spin I⩾1/2 nuclei is presented. PMID:21051249

  16. Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS

    NASA Astrophysics Data System (ADS)

    Vinding, Mads S.; Laustsen, Christoffer; Maximov, Ivan I.; Søgaard, Lise Vejby; Ardenkjær-Larsen, Jan H.; Nielsen, Niels Chr.

    2013-02-01

    Aimed at 13C metabolic magnetic resonance imaging (MRI) and spectroscopy (MRS) applications, we demonstrate that dynamic nuclear polarization (DNP) may be combined with optimal control 2D spatial selection to simultaneously obtain high sensitivity and well-defined spatial restriction. This is achieved through the development of spatial-selective single-shot spiral-readout MRI and MRS experiments combined with dynamic nuclear polarization hyperpolarized [1-13C]pyruvate on a 4.7 T pre-clinical MR scanner. The method stands out from related techniques by facilitating anatomic shaped region-of-interest (ROI) single metabolite signals available for higher image resolution or single-peak spectra. The 2D spatial-selective rf pulses were designed using a novel Krotov-based optimal control approach capable of iteratively fast providing successful pulse sequences in the absence of qualified initial guesses. The technique may be important for early detection of abnormal metabolism, monitoring disease progression, and drug research.

  17. Cancer in the crosshairs: targeting cancer metabolism with hyperpolarized carbon-13 MRI technology.

    PubMed

    von Morze, Cornelius; Merritt, Matthew E

    2018-06-05

    Magnetic resonance (MR)-based hyperpolarized (HP) 13 C metabolic imaging is under active pursuit as a new clinical diagnostic method for cancer detection, grading, and monitoring of therapeutic response. Following the tremendous success of metabolic imaging by positron emission tomography, which already plays major roles in clinical oncology, the added value of HP 13 C MRI is emerging. Aberrant glycolysis and central carbon metabolism is a hallmark of many forms of cancer. The chemical transformations associated with these pathways produce metabolites ranging in general from three to six carbons, and are dependent on the redox state and energy charge of the tissue. The significant changes in chemistry associated with flux through these pathways imply that HP imaging can take advantage of the underlying chemical shift information encoded into an MR experiment to produce images of the injected substrate as well as its metabolites. However, imaging of HP metabolites poses unique constraints on pulse sequence design related to detection of X-nuclei, decay of the HP magnetization due to T 1 , and the consumption of HP signal by the inspection pulses. Advancements in the field continue to depend critically on customization of MRI systems and pulse sequences for optimized detection of HP 13 C signals, focused largely on extracting the maximum amount of information during the short lifetime of the HP magnetization. From a clinical perspective, the success of HP 13 C MRI of cancer will largely depend upon the utility of HP pyruvate for the detection of lactate pools associated with the Warburg effect, though several other agents are also under investigation, with novel agents continually being formulated. In this review, the salient aspects of HP 13 C imaging will be highlighted, with an emphasis on both technological challenges and the biochemical aspects of HP experimental design. Copyright © 2018 John Wiley & Sons, Ltd.

  18. A catalyzing phantom for reproducible dynamic conversion of hyperpolarized [1-¹³C]-pyruvate.

    PubMed

    Walker, Christopher M; Lee, Jaehyuk; Ramirez, Marc S; Schellingerhout, Dawid; Millward, Steven; Bankson, James A

    2013-01-01

    In vivo real time spectroscopic imaging of hyperpolarized ¹³C labeled metabolites shows substantial promise for the assessment of physiological processes that were previously inaccessible. However, reliable and reproducible methods of measurement are necessary to maximize the effectiveness of imaging biomarkers that may one day guide personalized care for diseases such as cancer. Animal models of human disease serve as poor reference standards due to the complexity, heterogeneity, and transient nature of advancing disease. In this study, we describe the reproducible conversion of hyperpolarized [1-¹³C]-pyruvate to [1-¹³C]-lactate using a novel synthetic enzyme phantom system. The rate of reaction can be controlled and tuned to mimic normal or pathologic conditions of varying degree. Variations observed in the use of this phantom compare favorably against within-group variations observed in recent animal studies. This novel phantom system provides crucial capabilities as a reference standard for the optimization, comparison, and certification of quantitative imaging strategies for hyperpolarized tracers.

  19. Increasing Pyruvate Dehydrogenase Flux as a Treatment for Diabetic Cardiomyopathy: A Combined 13C Hyperpolarized Magnetic Resonance and Echocardiography Study.

    PubMed

    Le Page, Lydia M; Rider, Oliver J; Lewis, Andrew J; Ball, Vicky; Clarke, Kieran; Johansson, Edvin; Carr, Carolyn A; Heather, Lisa C; Tyler, Damian J

    2015-08-01

    Although diabetic cardiomyopathy is widely recognized, there are no specific treatments available. Altered myocardial substrate selection has emerged as a candidate mechanism behind the development of cardiac dysfunction in diabetes. As pyruvate dehydrogenase (PDH) activity appears central to the balance of substrate use, we aimed to investigate the relationship between PDH flux and myocardial function in a rodent model of type 2 diabetes and to explore whether or not increasing PDH flux, with dichloroacetate, would restore the balance of substrate use and improve cardiac function. All animals underwent in vivo hyperpolarized [1-(13)C]pyruvate magnetic resonance spectroscopy and echocardiography to assess cardiac PDH flux and function, respectively. Diabetic animals showed significantly higher blood glucose levels (10.8 ± 0.7 vs. 8.4 ± 0.5 mmol/L), lower PDH flux (0.005 ± 0.001 vs. 0.017 ± 0.002 s(-1)), and significantly impaired diastolic function (transmitral early diastolic peak velocity/early diastolic myocardial velocity ratio [E/E'] 12.2 ± 0.8 vs. 20 ± 2), which are in keeping with early diabetic cardiomyopathy. Twenty-eight days of treatment with dichloroacetate restored PDH flux to normal levels (0.018 ± 0.002 s(-1)), reversed diastolic dysfunction (E/E' 14 ± 1), and normalized blood glucose levels (7.5 ± 0.7 mmol/L). The treatment of diabetes with dichloroacetate therefore restored the balance of myocardial substrate selection, reversed diastolic dysfunction, and normalized blood glucose levels. This suggests that PDH modulation could be a novel therapy for the treatment and/or prevention of diabetic cardiomyopathy. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Role of pyruvate dehydrogenase inhibition in the development of hypertrophy in the hyperthyroid rat heart: a combined magnetic resonance imaging and hyperpolarized magnetic resonance spectroscopy study.

    PubMed

    Atherton, Helen J; Dodd, Michael S; Heather, Lisa C; Schroeder, Marie A; Griffin, Julian L; Radda, George K; Clarke, Kieran; Tyler, Damian J

    2011-06-07

    Hyperthyroidism increases heart rate, contractility, cardiac output, and metabolic rate. It is also accompanied by alterations in the regulation of cardiac substrate use. Specifically, hyperthyroidism increases the ex vivo activity of pyruvate dehydrogenase kinase, thereby inhibiting glucose oxidation via pyruvate dehydrogenase. Cardiac hypertrophy is another effect of hyperthyroidism, with an increase in the abundance of mitochondria. Although the hypertrophy is initially beneficial, it can eventually lead to heart failure. The aim of this study was to use hyperpolarized magnetic resonance spectroscopy to investigate the rate and regulation of in vivo pyruvate dehydrogenase flux in the hyperthyroid heart and to establish whether modulation of flux through pyruvate dehydrogenase would alter cardiac hypertrophy. Hyperthyroidism was induced in 18 male Wistar rats with 7 daily intraperitoneal injections of freshly prepared triiodothyronine (0.2 mg x kg(-1) x d(-1)). In vivo pyruvate dehydrogenase flux, assessed with hyperpolarized magnetic resonance spectroscopy, was reduced by 59% in hyperthyroid animals (0.0022 ± 0.0002 versus 0.0055 ± 0.0005 second(-1); P=0.0003), and this reduction was completely reversed by both short- and long-term delivery of dichloroacetic acid, a pyruvate dehydrogenase kinase inhibitor. Hyperpolarized [2-(13)C]pyruvate was also used to evaluate Krebs cycle metabolism and demonstrated a unique marker of anaplerosis, the level of which was significantly increased in the hyperthyroid heart. Cine magnetic resonance imaging showed that long-term dichloroacetic acid treatment significantly reduced the hypertrophy observed in hyperthyroid animals (100 ± 20 versus 200 ± 30 mg; P=0.04) despite no change in the increase observed in cardiac output. This work has demonstrated that inhibition of glucose oxidation in the hyperthyroid heart in vivo is mediated by pyruvate dehydrogenase kinase. Relieving this inhibition can increase the metabolic

  1. Direct monitoring by carbon-13 nuclear magnetic resonance spectroscopy of the metabolism and metabolic rate of 13C-labeled compounds in vivo.

    PubMed

    Iida, K; Hidoh, O; Fukami, J; Kajiwara, M

    1991-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy has been used to observe the transformations of [1-13C]-D-glucose to [1,1'-13C2]-D-trehalose, and [3-13C]-L-alanine to [2-13C]-L-glutamic acid in the living body of Gryllodes sigillatus. [3-13C]-D-Alanine was not metabolized. The metabolic rate of [1-13C]-D-glucose was found to be altered by prior injection of boric acid.

  2. A method for simultaneous echo planar imaging of hyperpolarized 13C pyruvate and 13C lactate

    NASA Astrophysics Data System (ADS)

    Reed, Galen D.; Larson, Peder E. Z.; von Morze, Cornelius; Bok, Robert; Lustig, Michael; Kerr, Adam B.; Pauly, John M.; Kurhanewicz, John; Vigneron, Daniel B.

    2012-04-01

    A rapid echo planar imaging sequence for dynamic imaging of [1-13C] lactate and [1-13C] pyruvate simultaneously was developed. Frequency-based separation of these metabolites was achieved by spatial shifting in the phase-encoded direction with the appropriate choice of echo spacing. Suppression of the pyruvate-hydrate and alanine resonances is achieved through an optimized spectral-spatial RF waveform. Signal sampling efficiency as a function of pyruvate and lactate excitation angle was simulated using two site exchange models. Dynamic imaging is demonstrated in a transgenic mouse model, and phantom validations of the RF pulse frequency selectivity were performed.

  3. Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules.

    PubMed

    Hundshammer, Christian; Düwel, Stephan; Ruseckas, David; Topping, Geoffrey; Dzien, Piotr; Müller, Christoph; Feuerecker, Benedikt; Hövener, Jan B; Haase, Axel; Schwaiger, Markus; Glaser, Steffen J; Schilling, Franz

    2018-02-15

    pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP) magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (p K a ). Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the p K a of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1- 13 C]serine amide and [1- 13 C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei ( 13 C, 15 N, 31 P) with high sensitivity up to 4.8 ppm/pH and we show that 13 C spins can be hyperpolarized with dissolution dynamic polarization (DNP). Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.

  4. Using parahydrogen to hyperpolarize amines, amides, carboxylic acids, alcohols, phosphates, and carbonates

    PubMed Central

    Iali, Wissam; Rayner, Peter J.; Duckett, Simon B.

    2018-01-01

    Hyperpolarization turns weak nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) responses into strong signals, so normally impractical measurements are possible. We use parahydrogen to rapidly hyperpolarize appropriate 1H, 13C, 15N, and 31P responses of analytes (such as NH3) and important amines (such as phenylethylamine), amides (such as acetamide, urea, and methacrylamide), alcohols spanning methanol through octanol and glucose, the sodium salts of carboxylic acids (such as acetic acid and pyruvic acid), sodium phosphate, disodium adenosine 5′-triphosphate, and sodium hydrogen carbonate. The associated signal gains are used to demonstrate that it is possible to collect informative single-shot NMR spectra of these analytes in seconds at the micromole level in a 9.4-T observation field. To achieve these wide-ranging signal gains, we first use the signal amplification by reversible exchange (SABRE) process to hyperpolarize an amine or ammonia and then use their exchangeable NH protons to relay polarization into the analyte without changing its identity. We found that the 1H signal gains reach as high as 650-fold per proton, whereas for 13C, the corresponding signal gains achieved in a 1H-13C refocused insensitive nuclei enhanced by polarization transfer (INEPT) experiment exceed 570-fold and those in a direct-detected 13C measurement exceed 400-fold. Thirty-one examples are described to demonstrate the applicability of this technique. PMID:29326984

  5. Hyperpolarized functional magnetic resonance of murine skeletal muscle enabled by multiple tracer-paradigm synchronizations.

    PubMed

    Leftin, Avigdor; Roussel, Tangi; Frydman, Lucio

    2014-01-01

    Measuring metabolism's time- and space-dependent responses upon stimulation lies at the core of functional magnetic resonance imaging. While focusing on water's sole resonance, further insight could arise from monitoring the temporal responses arising from the metabolites themselves, in what is known as functional magnetic resonance spectroscopy. Performing these measurements in real time, however, is severely challenged by the short functional timescales and low concentrations of natural metabolites. Dissolution dynamic nuclear polarization is an emerging technique that can potentially alleviate this, as it provides a massive sensitivity enhancement allowing one to probe low-concentration tracers and products in a single-scan. Still, conventional implementations of this hyperpolarization approach are not immediately amenable to the repeated acquisitions needed in real-time functional settings. This work proposes a strategy for functional magnetic resonance of hyperpolarized metabolites that bypasses this limitation, and enables the observation of real-time metabolic changes through the synchronization of stimuli-triggered, multiple-bolus injections of the metabolic tracer 13C1-pyruvate. This new approach is demonstrated with paradigms tailored to reveal in vivo thresholds of murine hind-limb skeletal muscle activation, involving the conversion of 13C1-pyruvate to 13C1-lactate and 13C1-alanine. These functional hind-limb studies revealed that graded skeletal muscle stimulation causes commensurate increases in glycolytic metabolism in a frequency- and amplitude-dependent fashion, that can be monitored on the seconds/minutes timescale using dissolution dynamic nuclear polarization. Spectroscopic imaging further allowed the in vivo visualization of uptake, transformation and distribution of the tracer and products, in fast-twitch glycolytic and in slow-twitch oxidative muscle fiber groups. While these studies open vistas in time and sensitivity for metabolic

  6. MRI using hyperpolarized noble gases.

    PubMed

    Kauczor, H; Surkau, R; Roberts, T

    1998-01-01

    The aim of this study was to review the physical basis of MRI using hyperpolarized noble gases as well as the present status of preclinical and clinical applications. Non-radioactive noble gases with a nuclear spin 1/2 (He-3, Xe-129) can be hyperpolarized by optical pumping. Polarization is transferred from circularly polarized laser light to the noble-gas atoms via alkali-metal vapors (spin exchange) or metastable atoms (metastability exchange). Hyperpolarization results in a non-equilibrium polarization five orders of magnitude higher than the Boltzmann equilibrium compensating for the several 1000 times lower density of noble gases as compared with liquid state hydrogen concentrations in tissue and allows for short imaging times. Hyperpolarization can be stored sufficiently long (3 h to 6 days) to allow for transport and application. Magnetic resonance systems require a broadband radio-frequency system - which is generally available for MR spectroscopy - and dedicated coils. The hyperpolarized gases are administered as inhalative "contrast agents" allowing for imaging of the airways and airspaces. Besides the known anesthetic effect of xenon, no adverse effects are observed in volunteers or patients. Pulse sequences are optimized to effectively use the non-renewable hyperpolarization before it decays or is destroyed, using fast low-flip-angles strategies to allow for dynamic/breath-hold imaging of highly diffusible (He) or soluble (Xe) gases with in vivo T1-times well below 1 min. Since helium is not absorbed in considerable amounts, its application is restricted to the lung. Xe-129 is also under investigation for imaging of white matter disease and functional studies of cerebral perfusion. Magnetic resonance imaging using hyperpolarized gases is emerging as a technical challenge and opportunity for the MR community. Preliminary experience suggests potential for functional imaging of pulmonary ventilation and cerebral perfusion.

  7. Sensitivity enhancement in whole-body natural abundance 13C spectroscopy using 13C/1H double-resonance techniques at 4 tesla.

    PubMed

    Bomsdorf, H; Röschmann, P; Wieland, J

    1991-11-01

    In vivo 13C spectroscopy experiments were performed using a whole-body MR system at a static field of 4 T. The main goal of the investigations was to evaluate the sensitivity increase achievable by means of 13C/1H double-resonance techniques at 4 T. Spectra from subcutaneous fat as well as muscle glycogen from the lower leg were acquired using frequency selective proton decoupling and the polarization transfer method SINEPT. With respect to measurements on subcutaneous fat, polarization transfer turned out to be more efficient than selective decoupling. About a fourfold enhancement in spectral peak intensity for the C = C line doublet of the unsaturated fatty acid chain was obtained. Combining polarization transfer with decoupling yielded a factor of 6 in signal amplitude. In contrast to that, the signal enhancement observed in measurements on the glycogen C-1 resonance was only around twofold. The lower efficiency is explained by fast T2 relaxation of the proton transition. A T2 value of about 3 ms was derived from the experimental data. Acquisition times as low as 3 min were realized for normal level glycogen in human calf muscle, enabling a time resolution adequate for dynamic studies on muscle glycogen depletion. Aspects of RF power absorption in tissue and the generally higher efficiency make polarization transfer methods preferable to selective decoupling in whole-body 13C spectroscopy at 4 T.

  8. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups.

    PubMed

    Chiavazza, Enrico; Kubala, Eugen; Gringeri, Concetta V; Düwel, Stephan; Durst, Markus; Schulte, Rolf F; Menzel, Marion I

    2013-02-01

    Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., (79)Br-(13)C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-(13)C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T(1) shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar (14)N adjacent to the (13)C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the (13)C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a (15)N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. High-Precision Measurement of 13C/12C Isotopic Ratio Using Gas Chromatography-Combustion-Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Saad, N.; Kuramoto, D. S.; Haase, C.; Crosson, E.; Tan, S.; Zare, R. N.

    2009-12-01

    Light stable isotope analysis, and in particular, compound specific isotopic analysis (CSIA), is a valuable tool to elucidate pathways and provide a better insight into biological, ecological, and geological systems. We present here the results of compound-specific isotopic carbon analysis of short chain hydrocarbons using the world’s first combination of gas chromatography, combustion interface, and cavity ring-down spectroscopy (GC-C-CRDS). Cavity ring-down spectroscopy (CRDS) is a highly sensitive optical spectroscopy, one application of which is to measure the stable isotopic ratios in small molecules. Because it uses a highly reflective optical cavity with many kilometers effective path length, CRDS provides some of the most sensitive and precise optical absorption measurements. Most optical spectroscopy isotopic analysis measures the quantities of each isotopologue independently using their distinct ro-vibrational spectra. The most common isotopes measured with optical spectroscopy are 13C and 12C in carbon dioxide. However, the isotopes of hydrogen, oxygen, and sulfur have also been measured. Unlike isotope ratio mass spectrometry (IRMS), optical spectroscopy can distinguish among isobars, which have essentially identical m/z ratios. The combination of chemical separation, chemical conversion, and CRDS makes a nearly universal tool for isotopic analysis of mixtures. In addition, CRDS can tolerate a variety of compounds mixed with the target. For example, CRDS can measure carbon dioxide and its isotopic 13C/12C ratio in the presence of oxygen. Using the novel GC-C-CRDS system, we injected a 75-microliter mixture of approximately equal quantities of methane, ethane, and propane into a gas chromatograph using helium as carrier gas. The methane, ethane, and propane were separated in time by 100 to 200 seconds after the chromatograph. Oxygen gas was added, and the hydrocarbons were combusted in a catalytic combustor with platinum and nickel, held at 1150oC. The

  10. In Vivo3D Localized 13C Spectroscopy Using Modified INEPT and DEPT

    NASA Astrophysics Data System (ADS)

    Watanabe, H.; Ishihara, Y.; Okamoto, K.; Oshio, K.; Kanamatsu, T.; Tsukada, Y.

    1998-10-01

    The 3D localized13C spectroscopy methods LINEPT and LODEPT, which are modifications of INEPT and DEPT, are proposed. As long as a13C inversion pulse (180-degree pulse) is applied at 1/(4J) before the proton echo time in LINEPT and a13C excitation pulse (90-degree pulse) is applied at 1/(2J) before the proton echo time in LODEPT, the proton echo time can be set to any value longer than 1/(2J) in LINEPT and longer than 1/Jin LODEPT. As a result, the proton and the13C pulses can be applied separately and these proton pulses can be made slice-selective pulses. These localization features of LINEPT and LODEPT were evaluated using a phantom consisting of a cylinder filled with ethanol placed inside another cylinder filled with oil, and localized ethanol spectra could be obtained.In vivo3D localized13C spectra from the brain of a monkey could be obtained using decoupled LINEPT, and glutamate C-4 appeared directly after the administration of glucose C-1, followed by the appearance of glutamate C-2, C-3 and glutamine C-2, C-3, C-4.

  11. Hyperpolarized 13C MR Markers of Renal Tumor Aggressiveness

    DTIC Science & Technology

    2013-10-01

    slice cultures , bioreactor 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...tumors from RCCs, and low grade from high grade RCCs using human TSCs cultured in a bioreactor . Aim 2:Identify HP 13C metabolic markers that...and cells over 48 hours using fluorescent dyes incubated with TSCs 1 Aim 1: Ex vivo bioreactor experiments We first acquired phosphorous-31 (31P

  12. Strategies for the Hyperpolarization of Acetonitrile and Related Ligands by SABRE

    PubMed Central

    2014-01-01

    We report on a strategy for using SABRE (signal amplification by reversible exchange) for polarizing 1H and 13C nuclei of weakly interacting ligands which possess biologically relevant and nonaromatic motifs. We first demonstrate this via the polarization of acetonitrile, using Ir(IMes)(COD)Cl as the catalyst precursor, and confirm that the route to hyperpolarization transfer is via the J-coupling network. We extend this work to the polarization of propionitrile, benzylnitrile, benzonitrile, and trans-3-hexenedinitrile in order to assess its generality. In the 1H NMR spectrum, the signal for acetonitrile is enhanced 8-fold over its thermal counterpart when [Ir(H)2(IMes)(MeCN)3]+ is the catalyst. Upon addition of pyridine or pyridine-d5, the active catalyst changes to [Ir(H)2(IMes)(py)2(MeCN)]+ and the resulting acetonitrile 1H signal enhancement increases to 20- and 60-fold, respectively. In 13C NMR studies, polarization transfers optimally to the quaternary 13C nucleus of MeCN while the methyl 13C is hardly polarized. Transfer to 13C is shown to occur first via the 1H–1H coupling between the hydrides and the methyl protons and then via either the 2J or 1J couplings to the respective 13Cs, of which the 2J route is more efficient. These experimental results are rationalized through a theoretical treatment which shows excellent agreement with experiment. In the case of MeCN, longitudinal two-spin orders between pairs of 1H nuclei in the three-spin methyl group are created. Two-spin order states, between the 1H and 13C nuclei, are also created, and their existence is confirmed for Me13CN in both the 1H and 13C NMR spectra using the Only Parahydrogen Spectroscopy protocol. PMID:25539423

  13. Strategies for the hyperpolarization of acetonitrile and related ligands by SABRE.

    PubMed

    Mewis, Ryan E; Green, Richard A; Cockett, Martin C R; Cowley, Michael J; Duckett, Simon B; Green, Gary G R; John, Richard O; Rayner, Peter J; Williamson, David C

    2015-01-29

    We report on a strategy for using SABRE (signal amplification by reversible exchange) for polarizing (1)H and (13)C nuclei of weakly interacting ligands which possess biologically relevant and nonaromatic motifs. We first demonstrate this via the polarization of acetonitrile, using Ir(IMes)(COD)Cl as the catalyst precursor, and confirm that the route to hyperpolarization transfer is via the J-coupling network. We extend this work to the polarization of propionitrile, benzylnitrile, benzonitrile, and trans-3-hexenedinitrile in order to assess its generality. In the (1)H NMR spectrum, the signal for acetonitrile is enhanced 8-fold over its thermal counterpart when [Ir(H)2(IMes)(MeCN)3](+) is the catalyst. Upon addition of pyridine or pyridine-d5, the active catalyst changes to [Ir(H)2(IMes)(py)2(MeCN)](+) and the resulting acetonitrile (1)H signal enhancement increases to 20- and 60-fold, respectively. In (13)C NMR studies, polarization transfers optimally to the quaternary (13)C nucleus of MeCN while the methyl (13)C is hardly polarized. Transfer to (13)C is shown to occur first via the (1)H-(1)H coupling between the hydrides and the methyl protons and then via either the (2)J or (1)J couplings to the respective (13)Cs, of which the (2)J route is more efficient. These experimental results are rationalized through a theoretical treatment which shows excellent agreement with experiment. In the case of MeCN, longitudinal two-spin orders between pairs of (1)H nuclei in the three-spin methyl group are created. Two-spin order states, between the (1)H and (13)C nuclei, are also created, and their existence is confirmed for Me(13)CN in both the (1)H and (13)C NMR spectra using the Only Parahydrogen Spectroscopy protocol.

  14. Kinetic analysis of hyperpolarized data with minimum a priori knowledge: Hybrid maximum entropy and nonlinear least squares method (MEM/NLS).

    PubMed

    Mariotti, Erika; Veronese, Mattia; Dunn, Joel T; Southworth, Richard; Eykyn, Thomas R

    2015-06-01

    To assess the feasibility of using a hybrid Maximum-Entropy/Nonlinear Least Squares (MEM/NLS) method for analyzing the kinetics of hyperpolarized dynamic data with minimum a priori knowledge. A continuous distribution of rates obtained through the Laplace inversion of the data is used as a constraint on the NLS fitting to derive a discrete spectrum of rates. Performance of the MEM/NLS algorithm was assessed through Monte Carlo simulations and validated by fitting the longitudinal relaxation time curves of hyperpolarized [1-(13) C] pyruvate acquired at 9.4 Tesla and at three different flip angles. The method was further used to assess the kinetics of hyperpolarized pyruvate-lactate exchange acquired in vitro in whole blood and to re-analyze the previously published in vitro reaction of hyperpolarized (15) N choline with choline kinase. The MEM/NLS method was found to be adequate for the kinetic characterization of hyperpolarized in vitro time-series. Additional insights were obtained from experimental data in blood as well as from previously published (15) N choline experimental data. The proposed method informs on the compartmental model that best approximate the biological system observed using hyperpolarized (13) C MR especially when the metabolic pathway assessed is complex or a new hyperpolarized probe is used. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc.

  15. Methylation patterns of aquatic humic substances determined by 13C NMR spectroscopy

    USGS Publications Warehouse

    Thorn, K.A.; Steelink, C.; Wershaw, R. L.

    1987-01-01

    13C NMR spectroscopy is used to examine the hydroxyl group functionality of a series of humic and fulvic acids from different aquatic environments. Samples first are methylated with 13C-labeled diazomethane. The NMR spectra of the diazomethylated samples allow one to distinguish between methyl esters of carboxylic acids, methyl ethers of phenolic hydroxyls, and methyl ethers of phenolic hydroxyls adjacent to two substituents. Samples are then permethylated with 13C-labeled methyl iodide/NaH. 13C NMR spectra of permethylated samples show that a significant fraction of the hydroxyl groups is not methylated with diazomethane alone. In these spectra methyl ethers of carbohydrate and aliphatic hydroxyls overlap with methyl ethers of phenolic hydroxyls. Side reactions of the methyltion procedure including carbon methylation in the CH3I/NaH procedure, are also examined. Humic and fulvic acids from bog, swamp, groundwater, and lake waters showssome differences in their distribution of hydroxyl groups, mainly in the concentrations of phenolic hydroxyls, which may be attributed to their different biogeochemical origins. ?? 1987.

  16. Enhancement of NMR and MRI in the presence of hyperpolarized noble gases

    DOEpatents

    Pines, Alexander; Budinger, Thomas; Navon, Gil; Song, Yi-Qiao; Appelt, Stephan; Bifone, Angelo; Taylor, Rebecca; Goodson, Boyd; Seydoux, Roberto; Room, Toomas; Pietrass, Tanja

    2004-11-16

    The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.

  17. Online Compound-Specific δ13C and δD Determinations Using Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Saad, N.; Hoffnagle, J.

    2012-04-01

    A unique laser spectroscopic approach for making online high-precision compound-specific isotope analysis (CSIA) of both δ13C and δD of the CO2 and H2O organic combustion products is described. The system consists of a gas chromatograph (GC) for the separation of an organic mixture coupled to a novel micro-fabricated microreactor (MFMR) for the complete combustion of each organic compound into CO2 and H2O and the precise measurements of δ13C in the CO2 gas and δ2H in the H2O vapor from the well established infrared spectrum of both gases, using an isotopic CO2 Cavity Ring-Down Spectroscopy (CRDS) analyzer and an isotopic H2O vapor CRDS analyzer, respectively. Light hydrocarbons are used as our test compounds in this study. The analyses of CH4, C2H6 and C3H8 for δ13C and δ2H values resulted in precisions of SD(δ13C)<1‰ and SD(δ2H)<2‰, respectively. These results were further compared to the gold standard method using Dual Inlet IRMS (DI-IRMS) and showed excellent agreements in isotopic measurements. The preliminary results presented here pave the way for a single CRDS analyzer-based system that simultaneously measures δ13C and δD, is field-deployable, less costly and necessitates less operator expertise than IRMS-based systems.

  18. Light-induced yellowing of selectively 13C-enriched dehydrogenation polymers (DHPs). Part 1, Side-chain 13C-enriched DHP ([alpha], [beta], and [gamma]-13C)

    Treesearch

    Jim Parkas; Magnus Paulsson; Terashima Noritsugu; Ulla Westermark; Sally Ralph

    2004-01-01

    Light-induced yellowing has been studied using side-chain ([alpha], [beta], and [gamma]) 13C-enriched DHP (dehydrogenation polymer) and quantitative solution state 13C NMR spectroscopy. The DHP was formed from 13C-enriched coniferin using an enzymatic system consisting of [beta]-glucosidase, glucose oxidase, and peroxidase in a pH 6 buffer solution. The DHP was applied...

  19. A rapid method for direct detection of metabolic conversion and magnetization exchange with application to hyperpolarized substrates

    NASA Astrophysics Data System (ADS)

    Larson, Peder E. Z.; Kerr, Adam B.; Leon Swisher, Christine; Pauly, John M.; Vigneron, Daniel B.

    2012-12-01

    In this work, we present a new MR spectroscopy approach for directly observing nuclear spins that undergo exchange, metabolic conversion, or, generally, any frequency shift during a mixing time. Unlike conventional approaches to observe these processes, such as exchange spectroscopy (EXSY), this rapid approach requires only a single encoding step and thus is readily applicable to hyperpolarized MR in which the magnetization is not replenished after T1 decay and RF excitations. This method is based on stimulated-echoes and uses phase-sensitive detection in conjunction with precisely chosen echo times in order to separate spins generated during the mixing time from those present prior to mixing. We are calling the method Metabolic Activity Decomposition Stimulated-echo Acquisition Mode or MAD-STEAM. We have validated this approach as well as applied it in vivo to normal mice and a transgenic prostate cancer mouse model for observing pyruvate-lactate conversion, which has been shown to be elevated in numerous tumor types. In this application, it provides an improved measure of cellular metabolism by separating [1-13C]-lactate produced in tissue by metabolic conversion from [1-13C]-lactate that has flowed into the tissue or is in the blood. Generally, MAD-STEAM can be applied to any system in which spins undergo a frequency shift.

  20. Hyperpolarized xenon magnetic resonance of the lung and the brain

    NASA Astrophysics Data System (ADS)

    Venkatesh, Arvind Krishnamachari

    2001-04-01

    Hyperpolarized noble gas Magnetic Resonance Imaging (MRI) is a new diagnostic modality that has been used successfully for lung imaging. Xenon is soluble in blood and inhaled xenon is transported to the brain via circulating blood. Xenon also accumulates in the lipid rich white matter of the brain. Hyperpolarized xenon can hence be used as a tissue- sensitive probe of brain function. The goals of this study were to identify the NMR resonances of xenon in the rat brain and evaluate the role of hyperpolarized xenon for brain MRI. We have developed systems to produce sufficient volumes of hyperpolarized xenon for in vivo brain experiments. The specialized instrumentation developed include an apparatus for optical pump-cell manufacture and high purity gas manifolds for filling cells. A hyperpolarized gas delivery system was designed to ventilate small animals with hyperpolarized xenon for transport to the brain. The T1 of xenon dissolved in blood indicates that the lifetime of xenon in the blood is sufficient for significant magnetization to be transferred to distal tissues. A variety of carrier agents for intravenous delivery of hyperpolarized xenon were tested for transport to distal tissues. Using our new gas delivery system, high SNR 129Xe images of rat lungs were obtained. Spectroscopy with hyperpolarized xenon indicated that xenon was transported from the lungs to the blood and tissues with intact magnetization. After preliminary studies that indicated the feasibility for in vivo rat brain studies, experiments were performed with adult rats and young rats with different stages of white matter development. Both in vivo and in vitro experiments showed the prominence of one peak from xenon in the rat brain, which was assigned to brain lipids. Cerebral brain perfusion was calculated from the wash-out of the hyperpolarized xenon signal in the brain. An increase in brain perfusion during maturation was observed. These experiments showed that hyperpolarized xenon MRI

  1. Mechanism studies of the conversion of 13C-labeled n-butane on zeolite H-ZSM-5 by using 13C magic angle spinning NMR spectroscopy and GC-MS analysis.

    PubMed

    Luzgin, Mikhail V; Stepanov, Alexander G; Arzumanov, Sergei S; Rogov, Vladimir A; Parmon, Valentin N; Wang, Wei; Hunger, Michael; Freude, Dieter

    2005-12-23

    By using 13C MAS NMR spectroscopy (MAS = magic angle spinning), the conversion of selectively 13C-labeled n-butane on zeolite H-ZSM-5 at 430-470 K has been demonstrated to proceed through two pathways: 1) scrambling of the selective 13C-label in the n-butane molecule, and 2) oligomerization-cracking and conjunct polymerization. The latter processes (2) produce isobutane and propane simultaneously with alkyl-substituted cyclopentenyl cations and condensed aromatic compounds. In situ 13C MAS NMR and complementary ex situ GC-MS data provided evidence for a monomolecular mechanism of the 13C-label scrambling, whereas both isobutane and propane are formed through intermolecular pathways. According to 13C MAS NMR kinetic measurements, both pathways proceed with nearly the same activation energies (E(a) = 75 kJ mol(-1) for the scrambling and 71 kJ mol(-1) for isobutane and propane formation). This can be rationalized by considering the intermolecular hydride transfer between a primarily initiated carbenium ion and n-butane as being the rate-determining stage of the n-butane conversion on zeolite H-ZSM-5.

  2. A rapid method for direct detection of metabolic conversion and magnetization exchange with application to hyperpolarized substrates.

    PubMed

    Larson, Peder E Z; Kerr, Adam B; Swisher, Christine Leon; Pauly, John M; Vigneron, Daniel B

    2012-12-01

    In this work, we present a new MR spectroscopy approach for directly observing nuclear spins that undergo exchange, metabolic conversion, or, generally, any frequency shift during a mixing time. Unlike conventional approaches to observe these processes, such as exchange spectroscopy (EXSY), this rapid approach requires only a single encoding step and thus is readily applicable to hyperpolarized MR in which the magnetization is not replenished after T(1) decay and RF excitations. This method is based on stimulated-echoes and uses phase-sensitive detection in conjunction with precisely chosen echo times in order to separate spins generated during the mixing time from those present prior to mixing. We are calling the method Metabolic Activity Decomposition Stimulated-echo Acquisition Mode or MAD-STEAM. We have validated this approach as well as applied it in vivo to normal mice and a transgenic prostate cancer mouse model for observing pyruvate-lactate conversion, which has been shown to be elevated in numerous tumor types. In this application, it provides an improved measure of cellular metabolism by separating [1-(13)C]-lactate produced in tissue by metabolic conversion from [1-(13)C]-lactate that has flowed into the tissue or is in the blood. Generally, MAD-STEAM can be applied to any system in which spins undergo a frequency shift. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Apparatus for preparing a solution of a hyperpolarized noble gas for NMR and MRI analysis

    DOEpatents

    Pines, Alexander [Berkeley, CA; Budinger, Thomas [Berkeley, CA; Navon, Gil [Ramat Gan, IL; Song, Yi-Qiao [Berkeley, CA; Appelt, Stephan [Waiblingen, DE; Bifone, Angelo [Rome, IT; Taylor, Rebecca [Berkeley, CA; Goodson, Boyd [Berkeley, CA; Seydoux, Roberto [Berkeley, CA; Room, Toomas [Albany, CA; Pietrass, Tanja [Socorro, NM

    2008-06-10

    The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.

  4. Para-hydrogen perspectives in hyperpolarized NMR.

    PubMed

    Glöggler, Stefan; Colell, Johannes; Appelt, Stephan

    2013-10-01

    The first instance of para-hydrogen induced polarization (PHIP) in an NMR experiment was serendipitously observed in the 1980s while investigating a hydrogenation reaction (Seldler et al., 1983; Bowers and Weitekamp, 1986, 1987; Eisenschmid et al., 1987) [1-4]. Remarkably a theoretical investigation of the applicability of para-hydrogen as a hyperpolarization agent was being performed in the 1980's thereby quickly providing a theoretical basis for the PHIP-effect (Bowers and Weitekamp, 1986) [2]. The discovery of signal amplification by a non-hydrogenating interaction with para-hydrogen has recently extended the interest to exploit the PHIP effect, as it enables investigation of compounds without structural alteration while retaining the advantages of spectroscopy with hyperpolarized compounds [5]. In this article we will place more emphasis of the future applications of the method while only briefly discussing the efforts that have been made in the understanding of the phenomenon and the development of the method so far. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Selective spectroscopic imaging of hyperpolarized pyruvate and its metabolites using a single-echo variable phase advance method in balanced SSFP

    PubMed Central

    Varma, Gopal; Wang, Xiaoen; Vinogradov, Elena; Bhatt, Rupal S.; Sukhatme, Vikas; Seth, Pankaj; Lenkinski, Robert E.; Alsop, David C.; Grant, Aaron K.

    2015-01-01

    Purpose In balanced steady state free precession (bSSFP), the signal intensity has a well-known dependence on the off-resonance frequency, or, equivalently, the phase advance between successive radiofrequency (RF) pulses. The signal profile can be used to resolve the contributions from the spectrally separated metabolites. This work describes a method based on use of a variable RF phase advance to acquire spatial and spectral data in a time-efficient manner for hyperpolarized 13C MRI. Theory and Methods The technique relies on the frequency response from a bSSFP acquisition to acquire relatively rapid, high-resolution images that may be reconstructed to separate contributions from different metabolites. The ability to produce images from spectrally separated metabolites was demonstrated in-vitro, as well as in-vivo following administration of hyperpolarized 1-13C pyruvate in mice with xenograft tumors. Results In-vivo images of pyruvate, alanine, pyruvate hydrate and lactate were reconstructed from 4 images acquired in 2 seconds with an in-plane resolution of 1.25 × 1.25mm2 and 5mm slice thickness. Conclusions The phase advance method allowed acquisition of spectroscopically selective images with high spatial and temporal resolution. This method provides an alternative approach to hyperpolarized 13C spectroscopic MRI that can be combined with other techniques such as multi-echo or fluctuating equilibrium bSSFP. PMID:26507361

  6. Construction and 13C NMR signal-amplification efficiency of a dynamic nuclear polarizer at 6.4 T and 1.4 K

    NASA Astrophysics Data System (ADS)

    Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher; Ferguson, Sarah; Taylor, David; McDonald, George; Lumata, Lloyd

    Dissolution dynamic nuclear polarization (DNP) is a rapidly emerging technique in biomedical and metabolic imaging since it amplifies the liquid-state nuclear magnetic resonance (NMR) and imaging (MRI) signals by >10,000-fold. Originally used in nuclear scattering experiments, DNP works by creating a non-Boltzmann nuclear spin distribution by transferring the high electron (γ = 28,000 MHz/T) thermal polarization to the nuclear spins via microwave irradiation of the sample at high magnetic field and low temperature. A dissolution device is used to rapidly dissolve the frozen sample and consequently produces an injectable ``hyperpolarized'' liquid at physiologically-tolerable temperature. Here we report the construction and performance evaluation of a dissolution DNP hyperpolarizer at 6.4 T and 1.4 K using a continuous-flow cryostat. The solid and liquid-state 13C NMR signal enhancement levels of 13C acetate samples doped with trityl OX063 and 4-oxo-TEMPO free radicals will be discussed and compared with the results from the 3.35 T commercial hyperpolarizer. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.

  7. Spectroscopy of 13C above the α threshold with α +9Be reactions at low energies

    NASA Astrophysics Data System (ADS)

    Lombardo, I.; Dell'Aquila, D.; Spadaccini, G.; Verde, G.; Vigilante, M.

    2018-03-01

    In this work we reinvestigate the spectroscopy of 13C at excitation energies larger than the α emission threshold (Ex>10.648 MeV ) by means of a comprehensive R -matrix fit of experimental data concerning α +9Be collisions at low energies. Owing to the analysis of many reaction channels in a broad energy range, we improved the current knowledge on the level scheme of 13C, by contributing to remove uncertain Jπ assignments for several states. Some tentative speculations on the existence of molecular bands associated to cluster structures in this nucleus are also discussed.

  8. Direct hyperpolarization of micro- and nanodiamonds for bioimaging applications - Considerations on particle size, functionalization and polarization loss

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Grzegorz; Jähnig, Fabian; Steinhauser, Jonas; Wespi, Patrick; Ernst, Matthias; Kozerke, Sebastian

    2018-01-01

    Due to the inherently long relaxation time of 13C spins in diamond, the nuclear polarization enhancement obtained with dynamic nuclear polarization can be preserved for a time on the order of about one hour, opening up an opportunity to use diamonds as a new class of long-lived contrast agents. The present communication explores the feasibility of using 13C spins in directly hyperpolarized diamonds for MR imaging including considerations for potential in vivo applications.

  9. Irreversible Catalyst Activation Enables Hyperpolarization and Water Solubility for NMR Signal Amplification by Reversible Exchange

    DTIC Science & Technology

    2016-09-12

    Phys. Rev. Lett. 1986 , 57, 2645−2648. (8) Goldman, M.; Johannesson, H. Conversion of a Proton Pair Para Order into C-13 Polarization by Rf...A.; Harris, K.; Batchelder, L. S.; Bhattacharya, P.; Ross , B. D.; Weitekamp, D. P. PASADENA Hyperpolarization of Succinic Acid for MRI and NMR...Bhattacharya, P.; Chekmenev, E. Y.; Perman, W. H.; Harris, K. C.; Lin, A. P.; Norton, V. A.; Tan, C. T.; Ross , B. D.; Weitekamp, D. P. Towards

  10. Direct hyperpolarization of micro- and nanodiamonds for bioimaging applications - Considerations on particle size, functionalization and polarization loss.

    PubMed

    Kwiatkowski, Grzegorz; Jähnig, Fabian; Steinhauser, Jonas; Wespi, Patrick; Ernst, Matthias; Kozerke, Sebastian

    2018-01-01

    Due to the inherently long relaxation time of 13 C spins in diamond, the nuclear polarization enhancement obtained with dynamic nuclear polarization can be preserved for a time on the order of about one hour, opening up an opportunity to use diamonds as a new class of long-lived contrast agents. The present communication explores the feasibility of using 13 C spins in directly hyperpolarized diamonds for MR imaging including considerations for potential in vivo applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Measurement of xenon diffusing capacity in the rat lung by hyperpolarized 129Xe MRI and dynamic spectroscopy in a single breath-hold.

    PubMed

    Abdeen, Nishard; Cross, Albert; Cron, Gregory; White, Steven; Rand, Thomas; Miller, David; Santyr, Giles

    2006-08-01

    We used the dual capability of hyperpolarized 129Xe for spectroscopy and imaging to develop new measures of xenon diffusing capacity in the rat lung that (analogously to the diffusing capacity of carbon monoxide or DLCO) are calculated as a product of total lung volume and gas transfer rate constants divided by the pressure gradient. Under conditions of known constant pressure breath-hold, the volume is measured by hyperpolarized 129Xe MRI, and the transfer rate is measured by dynamic spectroscopy. The new quantities (xenon diffusing capacity in lung parenchyma (DLXeLP)), xenon diffusing capacity in RBCs (DLXeRBC), and total lung xenon diffusing capacity (DLXe)) were measured in six normal rats and six rats with lung inflammation induced by instillation of fungal spores of Stachybotrys chartarum. DLXeLP, DLXeRBC, and DLXe were 56 +/- 10 ml/min/mmHg, 64 +/- 35 ml/min/mmHg, and 29 +/- 9 ml/min/mmHg, respectively, for normal rats, and 27 +/- 9 ml/min/mmHg, 42 +/- 27 ml/min/mmHg, and 16 +/- 7 ml/min/mmHg, respectively, for diseased rats. Lung volumes and gas transfer times for LP (TtrLP) were 16 +/- 2 ml and 22 +/- 3 ms, respectively, for normal rats and 12 +/- 2 ml and 35 +/- 8 ms, respectively, for diseased rats. Xenon diffusing capacities may be useful for measuring changes in gas exchange associated with inflammation and other lung diseases. Copyright 2006 Wiley-Liss, Inc.

  12. High-resolution detection of 13C multiplets from the conscious mouse brain by ex vivo NMR spectroscopy

    PubMed Central

    Marin-Valencia, Isaac; Good, Levi B.; Ma, Qian; Jeffrey, F. Mark; Malloy, Craig R.; Pascual, Juan M.

    2011-01-01

    Glucose readily supplies the brain with the majority of carbon needed to sustain neurotransmitter production and utilization., The rate of brain glucose metabolism can be computed using 13C nuclear magnetic resonance (NMR) spectroscopy by detecting changes in 13C contents of products generated by cerebral metabolism. As previously observed, scalar coupling between adjacent 13C carbons (multiplets) can provide additional information to 13C contents for the computation of metabolic rates. Most NMR studies have been conducted in large animals (often under anesthesia) because the mass of the target organ is a limiting factor for NMR. Yet, despite the challengingly small size of the mouse brain, NMR studies are highly desirable because the mouse constitutes a common animal model for human neurological disorders. We have developed a method for the ex vivo resolution of NMR multiplets arising from the brain of an awake mouse after the infusion of [1,6-13C2]glucose. NMR spectra obtained by this method display favorable signal-to-noise ratios. With this protocol, the 13C multiplets of glutamate, glutamine, GABA and aspartate achieved steady state after 150 min. The method enables the accurate resolution of multiplets over time in the awake mouse brain. We anticipate that this method can be broadly applicable to compute brain fluxes in normal and transgenic mouse models of neurological disorders. PMID:21946227

  13. EPR oxygen imaging and hyperpolarized 13C MRI of pyruvate metabolism as noninvasive biomarkers of tumor treatment response to a glycolysis inhibitor 3-bromopyruvate.

    PubMed

    Matsumoto, Shingo; Saito, Keita; Yasui, Hironobu; Morris, H Douglas; Munasinghe, Jeeva P; Lizak, Martin; Merkle, Hellmut; Ardenkjaer-Larsen, Jan Henrik; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Koretsky, Alan P; Mitchell, James B; Krishna, Murali C

    2013-05-01

    The hypoxic nature of tumors results in treatment resistance and poor prognosis. To spare limited oxygen for more crucial pathways, hypoxic cancerous cells suppress mitochondrial oxidative phosphorylation and promote glycolysis for energy production. Thereby, inhibition of glycolysis has the potential to overcome treatment resistance of hypoxic tumors. Here, EPR imaging was used to evaluate oxygen dependent efficacy on hypoxia-sensitive drug. The small molecule 3-bromopyruvate blocks glycolysis pathway by inhibiting hypoxia inducible enzymes and enhanced cytotoxicity of 3-bromopyruvate under hypoxic conditions has been reported in vitro. However, the efficacy of 3-bromopyruvate was substantially attenuated in hypoxic tumor regions (pO2<10 mmHg) in vivo using squamous cell carcinoma (SCCVII)-bearing mouse model. Metabolic MRI studies using hyperpolarized 13C-labeled pyruvate showed that monocarboxylate transporter-1 is the major transporter for pyruvate and the analog 3-bromopyruvate in SCCVII tumor. The discrepant results between in vitro and in vivo data were attributed to biphasic oxygen dependent expression of monocarboxylate transporter-1 in vivo. Expression of monocarboxylate transporter-1 was enhanced in moderately hypoxic (8-15 mmHg) tumor regions but down regulated in severely hypoxic (<5 mmHg) tumor regions. These results emphasize the importance of noninvasive imaging biomarkers to confirm the action of hypoxia-activated drugs. Copyright © 2012 Wiley Periodicals, Inc.

  14. Proton-decoupled, Overhauser-enhanced, spatially localized carbon-13 spectroscopy in humans.

    PubMed

    Bottomley, P A; Hardy, C J; Roemer, P B; Mueller, O M

    1989-12-01

    Spatially localized, natural abundance, carbon (13C) NMR spectroscopy has been combined with proton (1H) decoupling and nuclear Overhauser enhancement to improve 13C sensitivity up to five-fold in the human leg, liver, and heart. Broadhand-decoupled 13C spectra were acquired in 1 s to 17 min with a conventional 1.5-T imaging/spectroscopy system, an auxiliary 1H decoupler, an air-cooled dual-coil coplanar surface probe, and both depth-resolved surface coil spectroscopy (DRESS) and one-dimensional phase-encoding gradient NMR pulse sequences. The surface coil probe comprised circular and figure-eight-shaped coils to eliminate problems with mutual coupling of coils at high decoupling power levels applied during 13C reception. Peak decoupler RF power deposition in tissue was computed numerically from electromagnetic theory assuming a semi-infinite plane of uniform biological conductor. Peak values at the surface were calculated at 4 to 6 W/kg in any gram of tissue for each watt of decoupler power input excluding all coil and cable losses, warning of potential local RF heating problems in these and related experiments. The average power deposition was about 9 mW/kg per watt input, which should present no systemic hazard. At 3 W input, human 13C spectra were decoupled to a depth of about 5 cm while some Overhauser enhancement was sustained up to about 3 cm depth, without ill effect. The observation of glycogen in localized natural abundance 13C spectra of heart and muscle suggests that metabolites in the citric acid cycle should be observable noninvasively using 13C-labeled substrates.

  15. Spectral editing for in vivo 13C magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiang, Yun; Shen, Jun

    2012-01-01

    In vivo detection of carboxylic/amide carbons is a promising technique for studying cerebral metabolism and neurotransmission due to the very low RF power required for proton decoupling. In the carboxylic/amide region, however, there is severe spectral overlap between acetate C1 and glutamate C5, complicating studies that use acetate as an astroglia-specific substrate. There are no known in vivo MRS techniques that can spectrally resolve acetate C1 and glutamate C5 singlets. In this study, we propose to spectrally separate acetate C1 and glutamate C5 by a two-step J-editing technique after introducing homonuclear 13C- 13C scalar coupling between carboxylic/amide carbons and aliphatic carbons. By infusing [1,2- 13C 2]acetate instead of [1- 13C]acetate the acetate doublet can be spectrally edited because of the large separation between acetate C2 and glutamate C4 in the aliphatic region. This technique can be applied to studying acetate transport and metabolism in brain in the carboxylic/amide region without spectral interference.

  16. Design of a 15N Molecular Unit to Achieve Long Retention of Hyperpolarized Spin State

    NASA Astrophysics Data System (ADS)

    Nonaka, Hiroshi; Hirano, Masashi; Imakura, Yuki; Takakusagi, Yoichi; Ichikawa, Kazuhiro; Sando, Shinsuke

    2017-01-01

    Nuclear hyperpolarization is a phenomenon that can be used to improve the sensitivity of magnetic resonance molecular sensors. However, such sensors typically suffer from short hyperpolarization lifetime. Herein we report that [15N, D14]trimethylphenylammonium (TMPA) has a remarkably long spin-lattice relaxation time (1128 s, 14.1 T, 30 °C, D2O) on its 15N nuclei and achieves a long retention of the hyperpolarized state. [15N, D14]TMPA-based hyperpolarized sensor for carboxylesterase allowed the highly sensitive analysis of enzymatic reaction by 15N NMR for over 40 min in phophate-buffered saline (H2O, pH 7.4, 37 °C).

  17. Thz Spectroscopy of Acetaldehyde and Search of 13C Species in Orion

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Ilyushin, V. V.; Tercero, B.; Cernicharo, J.; Guillemin, J.-C.

    2012-06-01

    Acetaldehyde (CH_3CHO) is one of the high priority complex organic molecules for the astrophysical community. There is a lack of data concerning the 13C species since the measurements are limited to 40 GHz up to date. This molecule displays a large amplitude motion: the hindered rotation of the methyl group with respect to the rest of the molecule. The analysis is performed with RAM36 code which used the Rho Axis Method. Last year we presented the analysis of the millimeterwave spectra of the 13CH_3CHO species. We extended the analysis to the THz range of the vibrational ground state for both species. We are also analyzing the first torsional state (≈140 cm-1) for two reasons: first, this permits to remove correlation between parameters. Second, this state contribute to the partition function even at ISM temperature (100--150 K) since there is an influence on the column density determined in case of detection. The searches of these isotopomers are in progress in ORION. This work was supported by the CNES and the Action sur Projets de l'INSU, PCMI. This work was also done under the ANR-08-BLAN-0054. Kilb, R.W.; Lin, C.C.; and Wilson, E.B. J. Chem. Phys. 26, (1957) 1695 Ilyushin, V.V. et al J. Mol. Spectrosc. 259, (2010) 26 Margules, L. et al. FA07, 66th International Symposium on Molecular Spectroscopy (2011)

  18. Detection of intracellular lactate with localized diffusion { 1H- 13C}-spectroscopy in rat glioma in vivo

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Josef; Lin, Joseph C.; DelaBarre, Lance; Ugurbil, Kamil; Garwood, Michael

    2005-11-01

    The aim of this study was to compare the diffusion characteristic of lactate and alanine in a brain tumor model to that of normal brain metabolites known to be mainly intracellular such as N-acetylaspartate or creatine. The diffusion of 13C-labeled metabolites was measured in vivo with localized NMR spectroscopy at 9.4 T (400 MHz) using a previously described localization and editing pulse sequence known as ACED-STEAM ('adiabatic carbon editing and decoupling'). 13C-labeled glucose was administered and the apparent diffusion coefficients of the glycolytic products, { 1H- 13C}-lactate and { 1H- 13C}-alanine, were determined in rat intracerebral 9L glioma. To obtain insights into { 1H- 13C}-lactate compartmentation (intra- versus extracellular), the pulse sequence used very large diffusion weighting (50 ms/μm 2). Multi-exponential diffusion attenuation of the lactate metabolite signals was observed. The persistence of a lactate signal at very large diffusion weighting provided direct experimental evidence of significant intracellular lactate concentration. To investigate the spatial distribution of lactate and other metabolites, 1H spectroscopic images were also acquired. Lactate and choline-containing compounds were consistently elevated in tumor tissue, but not in necrotic regions and surrounding normal-appearing brain. Overall, these findings suggest that lactate is mainly associated with tumor tissue and that within the time-frame of these experiments at least some of the glycolytic product ([ 13C] lactate) originates from an intracellular compartment.

  19. Membrane hyperpolarization during human sperm capacitation

    PubMed Central

    López-González, I.; Torres-Rodríguez, P.; Sánchez-Carranza, O.; Solís-López, A.; Santi, C.M.; Darszon, A.; Treviño, C.L.

    2014-01-01

    Sperm capacitation is a complex and indispensable physiological process that spermatozoa must undergo in order to acquire fertilization capability. Spermatozoa from several mammalian species, including mice, exhibit a capacitation-associated plasma membrane hyperpolarization, which is necessary for the acrosome reaction to occur. Despite its importance, this hyperpolarization event has not been adequately examined in human sperm. In this report we used flow cytometry to show that a subpopulation of human sperm indeed undergo a plasma membrane hyperpolarization upon in vitro capacitation. This hyperpolarization correlated with two other well-characterized capacitation parameters, namely an increase in intracellular pH and Ca2+ concentration, measured also by flow cytometry. We found that sperm membrane hyperpolarization was completely abolished in the presence of a high external K+ concentration (60 mM), indicating the participation of K+ channels. In order to identify, which of the potential K+ channels were involved in this hyperpolarization, we used different K+ channel inhibitors including charybdotoxin, slotoxin and iberiotoxin (which target Slo1) and clofilium (a more specific blocker for Slo3). All these K+ channel antagonists inhibited membrane hyperpolarization to a similar extent, suggesting that both members of the Slo family may potentially participate. Two very recent papers recorded K+ currents in human sperm electrophysiologically, with some contradictory results. In the present work, we show through immunoblotting that Slo3 channels are present in the human sperm membrane. In addition, we found that human Slo3 channels expressed in CHO cells were sensitive to clofilium (50 μM). Considered altogether, our data indicate that Slo1 and Slo3 could share the preponderant role in the capacitation-associated hyperpolarization of human sperm in contrast to what has been previously reported for mouse sperm, where Slo3 channels are the main contributors to the

  20. A continuous-flow, high-throughput, high-pressure parahydrogen converter for hyperpolarization in a clinical setting.

    PubMed

    Hövener, Jan-Bernd; Bär, Sébastien; Leupold, Jochen; Jenne, Klaus; Leibfritz, Dieter; Hennig, Jürgen; Duckett, Simon B; von Elverfeldt, Dominik

    2013-02-01

    Pure parahydrogen (pH(2) ) is the prerequisite for optimal pH(2) -based hyperpolarization experiments, promising approaches to access the hidden orders of magnitude of MR signals. pH(2) production on-site in medical research centers is vital for the proliferation of these technologies in the life sciences. However, previously suggested designs do not meet our requirements for safety or production performance (flow rate, pressure or enrichment). In this article, we present the safety concept, design and installation of a pH(2) converter, operated in a clinical setting. The apparatus produces a continuous flow of four standard liters per minute of ≈98% enriched pH(2) at a pressure maximum of 50 bar. The entire production cycle, including cleaning and cooling to 25 K, takes less than 5 h, only ≈45 min of which are required for actual pH(2) conversion. A fast and simple quantification procedure is described. The lifetimes of pH(2) in a glass vial and aluminum storage cylinder are measured to be T(1C) (glass vial) =822 ± 29 min and T(1C) (Al cylinder) =129 ± 36 days, thus providing sufficiently long storage intervals and allowing the application of pH(2) on demand. A dependence of line width on pH(2) enrichment is observed. As examples, (1) H hyperpolarization of pyridine and (13) C hyperpolarization of hydroxyethylpropionate are presented. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Analysis of Cancer Metabolism by Imaging Hyperpolarized Nuclei: Prospects for Translation to Clinical Research

    PubMed Central

    Kurhanewicz, John; Vigneron, Daniel B; Brindle, Kevin; Chekmenev, Eduard Y; Comment, Arnaud; Cunningham, Charles H; DeBerardinis, Ralph J; Green, Gary G; Leach, Martin O; Rajan, Sunder S; Rizi, Rahim R; Ross, Brian D; Warren, Warren S; Malloy, Craig R

    2011-01-01

    A major challenge in cancer biology is to monitor and understand cancer metabolism in vivo with the goal of improved diagnosis and perhaps therapy. Because of the complexity of biochemical pathways, tracer methods are required for detecting specific enzyme-catalyzed reactions. Stable isotopes such as 13C or 15N with detection by nuclear magnetic resonance provide the necessary information about tissue biochemistry, but the crucial metabolites are present in low concentration and therefore are beyond the detection threshold of traditional magnetic resonance methods. A solution is to improve sensitivity by a factor of 10,000 or more by temporarily redistributing the populations of nuclear spins in a magnetic field, a process termed hyperpolarization. Although this effect is short-lived, hyperpolarized molecules can be generated in an aqueous solution and infused in vivo where metabolism generates products that can be imaged. This discovery lifts the primary constraint on magnetic resonance imaging for monitoring metabolism—poor sensitivity—while preserving the advantage of biochemical information. The purpose of this report was to briefly summarize the known abnormalities in cancer metabolism, the value and limitations of current imaging methods for metabolism, and the principles of hyperpolarization. Recent preclinical applications are described. Hyperpolarization technology is still in its infancy, and current polarizer equipment and methods are suboptimal. Nevertheless, there are no fundamental barriers to rapid translation of this exciting technology to clinical research and perhaps clinical care. PMID:21403835

  2. Infrared laser spectroscopy of the linear C13 carbon cluster

    NASA Technical Reports Server (NTRS)

    Giesen, T. F.; Van Orden, A.; Hwang, H. J.; Fellers, R. S.; Provencal, R. A.; Saykally, R. J.

    1994-01-01

    The infrared absorption spectrum of a linear, 13-atom carbon cluster (C13) has been observed by using a supersonic cluster beam-diode laser spectrometer. Seventy-six rovibrational transitions were measured near 1809 wave numbers and assigned to an antisymmetric stretching fundamental in the 1 sigma g+ ground state of C13. This definitive structural characterization of a carbon cluster in the intermediate size range between C10 and C20 is in apparent conflict with theoretical calculations, which predict that clusters of this size should exist as planar monocyclic rings.

  3. [1-13C]Glucose entry in neuronal and astrocytic intermediary metabolism of aged rats. A study of the effects of nicergoline treatment by 13C NMR spectroscopy.

    PubMed

    Miccheli, Alfredo; Puccetti, Caterina; Capuani, Giorgio; Di Cocco, Maria Enrica; Giardino, Luciana; Calzà, Laura; Battaglia, Angelo; Battistin, Leontino; Conti, Filippo

    2003-03-14

    Age-related changes in glucose utilization through the TCA cycle were studied using [1-13C]glucose and 13C, 1H NMR spectroscopy on rat brain extracts. Significant increases in lactate levels, as well as in creatine/phosphocreatine ratios (Cr/PCr), and a decrease in N-acetyl-aspartate (NAA) and aspartate levels were observed in aged rat brains as compared to adult animals following glucose administration. The total amount of 13C from [1-13C]glucose incorporated in glutamate, glutamine, aspartate and GABA was significantly decreased in control aged rat brains as compared to adult brains. The results showed a decrease in oxidative glucose utilization of control aged rat brains. The long-term nicergoline treatment increased NAA and glutamate levels, and decreased the lactate levels as well as the Cr/PCr ratios in aged rat brains as compared to adult rats. The total amount of 13C incorporated in glutamate, glutamine, aspartate, NAA and GABA was increased by nicergoline treatment, showing an improvement in oxidative glucose metabolism in aged brains. A significant increase in pyruvate carboxylase/pyruvate dehydrogenase activity (PC/PDH) in the synthesis of glutamate in nicergoline-treated aged rats is consistent with an increase in the transport of glutamine from glia to neurons for conversion into glutamate. In adult rat brains, no effect of nicergoline on glutamate PC/PDH activity was observed, although an increase in PC/PDH activity in glutamine was, suggesting that nicergoline affects the glutamate/glutamine cycle between neurons and glia in different ways depending on the age of animals. These results provide new insights into the effects of nicergoline on the CNS.

  4. EPR oxygen imaging and hyperpolarized 13C MRI of pyruvate metabolism as non-invasive biomarkers of tumor treatment response to a glycolysis inhibitor 3-bromopyruvate

    PubMed Central

    Matsumoto, Shingo; Saito, Keita; Yasui, Hironobu; Morris, H. Douglas; Munasinghe, Jeeva P.; Lizak, Martin; Merkle, Hellmut; Ardenkjaer-Larsen, Jan Henrik; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Koretsky, Alan P.; Mitchell, James B.; Krishna, Murali C.

    2012-01-01

    The hypoxic nature of tumors results in treatment resistance and poor prognosis. To spare limited oxygen for more crucial pathways, hypoxic cancerous cells suppress mitochondrial oxidative phosphorylation, and promote glycolysis for energy production. Thereby, inhibition of glycolysis has the potential to overcome treatment resistance of hypoxic tumors. Here, EPR imaging was used to evaluate oxygen dependent efficacy on hypoxia-sensitive drug. The small molecule 3-bromopyruvate (3-BP) blocks glycolysis pathway by inhibiting hypoxia inducible enzymes, and enhanced cytotoxicity of 3-BP under hypoxic conditions has been reported in vitro. However, the efficacy of 3-BP was substantially attenuated in hypoxic tumor regions (pO2 < 10 mmHg) in vivo using squamous cell carcinoma (SCCVII)-bearing mouse model. Metabolic MRI studies using hyperpolarized 13C-labeled pyruvate showed that monocarboxylate transporter-1 (MCT1) is the major transporter for pyruvate and the analog 3-BP in SCCVII tumor. The discrepant results between in vitro and in vivo data were attributed to biphasic oxygen dependent expression of MCT1 in vivo. Expression of MCT1 was enhanced in moderately hypoxic (8–15 mmHg) tumor regions, but down regulated in severely hypoxic (< 5 mmHg) tumor regions. These results emphasize the importance of non-invasive imaging biomarkers to confirm the action of hypoxia-activated drugs. PMID:22692861

  5. Liquid-state carbon-13 hyperpolarization generated in an MRI system for fast imaging

    PubMed Central

    Schmidt, A. B.; Berner, S.; Schimpf, W.; Müller, C.; Lickert, T.; Schwaderlapp, N.; Knecht, S.; Skinner, J. G.; Dost, A.; Rovedo, P.; Hennig, J.; von Elverfeldt, D.; Hövener, J. -B.

    2017-01-01

    Hyperpolarized (HP) tracers dramatically increase the sensitivity of magnetic resonance imaging (MRI) to monitor metabolism non-invasively and in vivo. Their production, however, requires an extra polarizing device (polarizer) whose complexity, operation and cost can exceed that of an MRI system itself. Furthermore, the lifetime of HP tracers is short and some of the enhancement is lost during transfer to the application site. Here, we present the production of HP tracers in water without an external polarizer: by Synthesis Amid the Magnet Bore, A Dramatically Enhanced Nuclear Alignment (SAMBADENA) is achieved within seconds, corresponding to a hyperpolarization of ∼20%. As transfer of the tracer is no longer required, SAMBADENA may permit a higher polarization at the time of detection at a fraction of the cost and complexity of external polarizers. This development is particularly promising in light of the recently extended portfolio of biomedically relevant para-hydrogen-tracers and may lead to new diagnostic applications. PMID:28262691

  6. How to design 13C para-hydrogen-induced polarization experiments for MRI applications.

    PubMed

    Reineri, Francesca; Viale, Alessandra; Dastrù, Walter; Gobetto, Roberto; Aime, Silvio

    2011-01-01

    The application of hyperpolarization techniques for MRI purposes is gathering increasing attention, especially for nuclei such as (13)C or (129)Xe. Among the different proposed methods, ParaHydrogen Induced Polarization requires relatively cheap equipment. The setup of an MRI experiment by means of parahydrogen requires the application of skills and methodologies that derive from different fields of knowledge. The basic theory and a practical insight of this method are presented here. Parahydrogenation of alkynes, having a labelled (13)CO group adjacent to the triple bond, catalyzed by Rh(I) complexes containing a chelating phosphine, represents the best choice for producing and maintaining high heteronuclear polarization effect. In order to transform anti-phase into in-phase (net) (13)C polarization for MRI application it is necessary to set up the described magnetic field cycle procedure. In vitro and in vivo images have been acquired using fast imaging sequences (RARE and trueFISP). Copyright © 2010 John Wiley & Sons, Ltd.

  7. 13C NMR study of the generation of C2- and C3-deuterated lactic acid by tumoral pancreatic islet cells exposed to D-[1-13C]-, D-[2-13C]- and D-[6-13C]-glucose in 2H2O.

    PubMed

    Willem, R; Biesemans, M; Kayser, F; Malaisse, W J

    1994-03-01

    Tumoral pancreatic islet cells of the RIN5mF line were incubated for 120 min in media prepared in 2H2O and containing D-[1-13C]glucose, D-[2-13C]glucose, and D-[6-13C]glucose. The generation of C2- and C3-deuterated lactic acid was assessed by 13C NMR. The interpretation of experimental results suggests that a) the efficiency of deuteration on the C1 of D-fructose 6-phosphate does not exceed about 47% and 4% in the phosphoglucoisomerase and phosphomannoisomerase reactions, respectively; b) approximately 38% of the molecules of D-glyceraldehyde 3-phosphate generated from D-glucose escape deuteration in the sequence of reactions catalyzed by triose phosphate isomerase and aldolase; and c) about 41% of the molecules of pyruvate generated by glycolysis are immediately converted to lactate, the remaining 59% of pyruvate molecules undergoing first a single or double back-and-forth interconversion with L-alanine. It is proposed that this methodological approach, based on high resolution 13C NMR spectroscopy, may provide novel information on the regulation of back-and-forth interconversion of glycolytic intermediates in intact cells as modulated, for instance, by enzyme-to-enzyme tunneling.

  8. Heteronuclear Cross Polarization for Enhanced Sensitivity of in Vivo13C MR Spectroscopy on a Clinical 1.5 T MR System

    NASA Astrophysics Data System (ADS)

    van den Bergh, Adrianus J.; van den Boogert, Hendrikus J.; Heerschap, Arend

    1998-11-01

    The potential of heteronuclear {1H-13C} cross polarization was studied for optimization of the signal-to-noise ratio inin vivo13C MR spectroscopy at the clinical field strength of 1.5 T. Experiments on the human calf showed a significant chemical-shift selective signal enhancement on triglyceride signals of 3.9 by heteronuclear cross polarization, compared to a standard pulse-acquire sequence. Studies on a neonatal piglet brain showed an enhancement by cross polarization of 2.2 for the detection of13C-1-glucose. This enhancement allowed a fourfold improvement in time resolution in dynamic13C MR of13C-1-glucose inflow in piglet brain. Phantom experiments demonstrated the efficiency of this technique for interleaved detection of two spectral regions. Tests with a volume coil showed the feasibility of signal enhancement by cross polarization over a large volume of interest.

  9. Biosynthesis of pyrroloquinoline quinone. 1. Identification of biosynthetic precursors using /sup 13/C labeling and NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houck, D.R.; Hanners, J.L.; Unkefer, C.J.

    The biosynthesis of pyrroloquinoline quinone (PQQ) in the methylotropic bacterium methylobacterium AM1 has been investigated using /sup 13/C-labelling of the products and NMR spectroscopy. The data indicated that the quinoline portion of PQQ is formed by a novel condensation of N-1, C-2, -3, and -4 of glutamate with a symmetrical six-carbon ring derived from the shikimate pathway. It is postulated that tyrosine is the shikimate-derived percursor, since pyrrole could be formed by the internal cyclization of the amino acid backbone. 18 references, 2 figures, 2 tables.

  10. Using solid 13C NMR coupled with solution 31P NMR spectroscopy to investigate molecular species and lability of organic carbon and phosphorus from aquatic plants in Tai Lake, China

    USDA-ARS?s Scientific Manuscript database

    Aquatic plants are involved in the storage and release capacity for organic matter and nutrients. In this study, solid 13C and solution 31P nuclear magnetic resonance (NMR) spectroscopy were used to characterize the biomass samples of six aquatic plants. Solid 13C NMR spectroscopy revealed the domin...

  11. High-resolution solid-state 13C NMR spectroscopy of the paramagnetic metal-organic frameworks, STAM-1 and HKUST-1.

    PubMed

    Dawson, Daniel M; Jamieson, Lauren E; Mohideen, M Infas H; McKinlay, Alistair C; Smellie, Iain A; Cadou, Romain; Keddie, Neil S; Morris, Russell E; Ashbrook, Sharon E

    2013-01-21

    Solid-state (13)C magic-angle spinning (MAS) NMR spectroscopy is used to investigate the structure of the Cu(II)-based metal-organic frameworks (MOFs), HKUST-1 and STAM-1, and the structural changes occurring within these MOFs upon activation (dehydration). NMR spectroscopy is an attractive technique for the investigation of these materials, owing to its high sensitivity to local structure, without any requirement for longer-range order. However, interactions between nuclei and unpaired electrons in paramagnetic systems (e.g., Cu(II)-based MOFs) pose a considerable challenge, not only for spectral acquisition, but also in the assignment and interpretation of the spectral resonances. Here, we exploit the rapid T(1) relaxation of these materials to obtain (13)C NMR spectra using a spin-echo pulse sequence at natural abundance levels, and employ frequency-stepped acquisition to ensure uniform excitation of resonances over a wide frequency range. We then utilise selective (13)C isotopic labelling of the organic linker molecules to enable an unambiguous assignment of NMR spectra of both MOFs for the first time. We show that the monomethylated linker can be recovered from STAM-1 intact, demonstrating not only the interesting use of this MOF as a protecting group, but also the ability (for both STAM-1 and HKUST-1) to recover isotopically-enriched linkers, thereby reducing significantly the overall cost of the approach.

  12. Polymeric proanthocyanidins 13C NMR studies of procyanidins

    Treesearch

    Lawrence J. Porter; Roger H. Newman; Lai Yeap Foo; Herbert Wong; Richard W. Hemingway

    1982-01-01

    Proanthocyanidin polymers have been shown to consist entirely of flavan-3-ol units by a combination of techniques including 13C n.m.r. spectroscopy. The 13C n.m.r. spectra of the polymers and related molecules are now considered in more detail. Prior to this study UC n.m.r. data has been published of procyanidins and...

  13. Cannabinoid CB1 receptor and endothelium-dependent hyperpolarization in guinea-pig carotid, rat mesenteric and porcine coronary arteries

    PubMed Central

    Chataigneau, T; Félétou, M; Thollon, C; Villeneuve, N; Vilaine, J- P; Duhault, J; Vanhoutte, P M

    1998-01-01

    The purpose of these experiments was to determine whether or not the endothelium-dependent hyperpolarizations of the vascular smooth muscle cells (observed in the presence of inhibitors of nitric oxide synthase and cyclo-oxygenase) can be attributed to the production of an endogenous cannabinoid.Membrane potential was recorded in the guinea-pig carotid, rat mesenteric and porcine coronary arteries by intracellular microelectrodes.In the rat mesenteric artery, the cannabinoid receptor antagonist, SR 141716 (1 μM), did not modify either the resting membrane potential of smooth muscle cells or the endothelium-dependent hyperpolarization induced by acetylcholine (1 μM) (17.3±1.8 mV, n=4 and 17.8±2.6 mV, n=4, in control and presence of SR 141716, respectively). Anandamide (30 μM) induced a hyperpolarization of the smooth muscle cells (12.6±1.4 mV, n=13 and 2.0±3.0 mV, n=6 in vessels with and without endothelium, respectively) which could not be repeated in the same tissue, whereas acetylcholine was still able to hyperpolarize the preparation. The hyperpolarization induced by anandamide was not significantly influenced by SR 141716 (1 μM). HU-210 (30 μM), a synthetic CB1 receptor agonist, and palmitoylethanolamide (30 μM), a CB2 receptor agonist, did not influence the membrane potential of the vascular smooth muscle cells.In the rat mesenteric artery, the endothelium-dependent hyperpolarization induced by acetylcholine (1 μM) (19.0±1.7 mV, n=6) was not altered by glibenclamide (1 μM; 17.7±2.3 mV, n=3). However, the combination of charybdotoxin (0.1 μM) plus apamin (0.5 μM) abolished the acetylcholine-induced hyperpolarization and under these conditions, acetylcholine evoked a depolarization (7.7±2.7 mV, n=3). The hyperpolarization induced by anandamide (30 μM) (12.6±1.4 mV, n=13) was significantly inhibited by glibenclamide (4.0±0.4 mV, n=4) but not significantly affected by the combination of

  14. (13)C MR spectroscopy study of lactate as substrate for rat brain.

    PubMed

    Qu, H; Håberg, A; Haraldseth, O; Unsgård, G; Sonnewald, U

    2000-01-01

    In order to address the question whether lactate in blood can serve as a precursor for cerebral metabolites, fully awake rats were injected intravenously with [U-(13)C]lactate or [U-(13)C]glucose followed 15 min later by decapitation. Incorporation of label from [U-(13)C]glucose was seen mainly in glutamate, GABA, glutamine, aspartate, alanine and lactate. More label was found in glutamate than glutamine, underscoring the predominantly neuronal metabolism of pyruvate from [U-(13)C]glucose. It was estimated that the neuronal metabolism of acetyl CoA from glucose accounts for at least 66% and the glial for no more than 34% of the total glucose consumption. When [U-(13)C]lactate was the precursor, label incorporation was similar to that observed from [U-(13)C]glucose, but much reduced. Plasma analysis revealed the presence of approximately equal amounts of [1,2,3-(13)C]- and [1,2-(13)C]glucose, showing gluconeogenesis from [U-(13)C]lactate. It was thus possible that the labeling seen in the cerebral amino acids originated from labeled glucose, not [U-(13)C]lactate. However, the presence of significantly more label in [U-(13)C]- than in [2,3-(13)C]alanine demonstrated that [U-(13)C]lactate did indeed cross the blood-brain barrier, and was metabolized further in the brain. Furthermore, contributions from pyruvate carboxylase (glial enzyme) were detectable in glutamine, glutamate and GABA, and were comparatively more pronounced in the glucose group. This indicated that relatively more pyruvate from lactate than glucose was metabolized in neurons. Surprisingly, the same amount of lactate was synthesized via the tricarboxylic acid cycle in both groups, indicating transfer of neurotransmitters from the neuronal to the astrocytic compartment, as previous studies have shown that this lactate is synthesized primarily in astrocytes. Taking into consideration that astrocytes take up glutamate more avidly than GABA, it is conceivable that neuronal lactate metabolism was more

  15. Measuring 13 C-enriched CO2 in air with a cavity ring-down spectroscopy gas analyser: Evaluation and calibration.

    PubMed

    Dickinson, Dane; Bodé, Samuel; Boeckx, Pascal

    2017-11-30

    Cavity ring-down spectroscopy (CRDS) is becoming increasingly popular for δ 13 C-CO 2 analysis of air. However, little is known about the effect of high 13 C abundances on the performance of CRDS. Overlap between 12 CO 2 and 13 CO 2 spectral lines may adversely affect isotopic-CO 2 CRDS measurements of 13 C-enriched samples. Resolving this issue is important so that CRDS analysers can be used in CO 2 flux studies involving 13 C-labelled tracers. We tested a Picarro G2131-i CRDS isotopic-CO 2 gas analyser with specialty gravimetric standards of widely varying 13 C abundance (from natural to 20.1 atom%) and CO 2 mole fraction (xCO 2 : <0.1 to 2116 ppm) in synthetic air. The presence of spectroscopic interference between 12 CO 2 and 13 CO 2 bands was assessed by analysing errors in measurements of the standards. A multi-component calibration strategy was adopted, incorporating isotope ratio and mole fraction data to ensure accuracy and consistency in corrected values of δ 13 C-CO 2 , x 12 CO 2 , and x 13 CO 2 . CRDS measurements of x 13 CO 2 were found to be accurate throughout the tested range (<0.005 to 100 ppm). On the other hand, spectral cross-talk in x 12 CO 2 measurements of standards containing elevated levels of 13 CO 2 led to inaccuracy in x 12 CO 2 , total-xCO 2 (x 12 CO 2  + x 13 CO 2 ), and δ 13 C-CO 2 data. An empirical relationship for x 12 CO 2 measurements that incorporated the 13 C/ 12 C isotope ratio (i.e. 13 CO 2 / 12 CO 2 , RCO2) as a secondary (non-linear) variable was found to compensate for the perturbations, and enabled accurate instrument calibration for all CO 2 compositions covered by our standard gases. 13 C-enrichement in CO 2 leads to minor errors in CRDS measurements of x 12 CO 2 . We propose an empirical correction for measurements of 13 C-enriched CO 2 in air by CRDS instruments such as the Picarro G2131-i. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Expression of a functional hyperpolarization-activated current (Ih) in the mouse nucleus reticularis thalami.

    PubMed

    Rateau, Y; Ropert, N

    2006-05-01

    The GABAergic neurons of the nucleus reticularis thalami (nRT) express the type 2 hyperpolarization-activated cAMP-sensitive (HCN2) subunit mRNA, but surprisingly, they were reported to lack the hyperpolarization-activated (Ih) current carried by this subunit. Using the voltage-clamp recordings in the thalamocortical slice preparation of the newborn and juvenile mice (P6-P23), we demonstrate that, in the presence of 1 mM barium (Ba2+), the nRT neurons express a slow hyperpolarization-activated inward current, suggesting that the Ih is present but masked in control conditions by K+ leak currents. We investigate the identity of the hyperpolarization-activated current in the nRT by studying its physiological and pharmacological profile in presence of Ba2+. We show that it has voltage- and time-dependent properties typical of the Ih, that it is blocked by cesium and ZD7288, two blockers of the Ih, and that it is carried both by the K+ and Na+ ions. We could also alter the gating characteristics of the hyperpolarization-activated current in the nRT by adding a nonhydrolysable analogue of cAMP to the pipette solution. Finally, using the current-clamp recording, we showed that blocking the hyperpolarization-activated current induced an hyperpolarization correlated with an increase of the R(in) of the nRT neurons. In conclusion, our results demonstrate that the nRT neurons express the Ih with slow kinetics similar to those described for the homomeric HCN2 channels, and we show that the Ih of the nRT contributes to the excitability of the nRT neurons in normal conditions.

  17. Extending the Scope of 19F Hyperpolarization through Signal Amplification by Reversible Exchange in MRI and NMR Spectroscopy

    PubMed Central

    Olaru, Alexandra M.; Robertson, Thomas B. R.; Lewis, Jennifer S.; Antony, Alex; Iali, Wissam

    2017-01-01

    Abstract Fluorinated ligands have a variety of uses in chemistry and industry, but it is their medical applications as 18F‐labelled positron emission tomography (PET) tracers where they are most visible. In this work, we illustrate the potential of using 19F‐containing ligands as future magnetic resonance imaging (MRI) contrast agents and as probes in magnetic resonance spectroscopy studies by significantly increasing their magnetic resonance detectability through the signal amplification by reversible exchange (SABRE) hyperpolarization method. We achieve 19F SABRE polarization in a wide range of molecules, including those essential to medication, and analyze how their steric bulk, the substrate loading, polarization transfer field, pH, and rate of ligand exchange impact the efficiency of SABRE. We conclude by presenting 19F MRI results in phantoms, which demonstrate that many of these agents show great promise as future 19F MRI contrast agents for diagnostic investigations. PMID:29318102

  18. Hyperpolarization of Frozen Hydrocarbon Gases by Dynamic Nuclear Polarization at 1.2 K.

    PubMed

    Vuichoud, Basile; Canet, Estel; Milani, Jonas; Bornet, Aurélien; Baudouin, David; Veyre, Laurent; Gajan, David; Emsley, Lyndon; Lesage, Anne; Copéret, Christophe; Thieuleux, Chloé; Bodenhausen, Geoffrey; Koptyug, Igor; Jannin, Sami

    2016-08-18

    We report a simple and general method for the hyperpolarization of condensed gases by dynamic nuclear polarization (DNP). The gases are adsorbed in the pores of structured mesoporous silica matrices known as HYPSOs (HYper Polarizing SOlids) that have paramagnetic polarizing agents covalently bound to the surface of the mesopores. DNP is performed at low temperatures and moderate magnetic fields (T = 1.2 K and B0 = 6.7 T). Frequency-modulated microwave irradiation is applied close to the electron spin resonance frequency (f = 188.3 GHz), and the electron spin polarization of the polarizing agents of HYPSO is transferred to the nuclear spins of the frozen gas. A proton polarization as high as P((1)H) = 70% can be obtained, which can be subsequently transferred to (13)C in natural abundance by cross-polarization, yielding up to P((13)C) = 27% for ethylene.

  19. Silicon Nanoparticles as Hyperpolarized Magnetic Resonance Imaging Agents

    PubMed Central

    Aptekar, Jacob W.; Cassidy, Maja C.; Johnson, Alexander C.; Barton, Robert A.; Lee, Menyoung; Ogier, Alexander C.; Vo, Chinh; Anahtar, Melis N.; Ren, Yin; Bhatia, Sangeeta N.; Ramanathan, Chandrasekhar; Cory, David G.; Hill, Alison L.; Mair, Ross W.; Rosen, Matthew S.; Walsworth, Ronald L.

    2014-01-01

    Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in-vivo applications of pre-hyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a variety of Si nanoparticles are found to be remarkably long, ranging from many minutes to hours at room temperature, allowing hyperpolarized nanoparticles to be transported, administered, and imaged on practical time scales. Additionally, we demonstrate that Si nanoparticles can be surface functionalized using techniques common to other biologically targeted nanoparticle systems. These results suggest that Si nanoparticles can be used as a targetable, hyperpolarized magnetic resonance imaging agent with a large range of potential applications. PMID:19950973

  20. Compositional differences among Chinese soy sauce types studied by (13)C NMR spectroscopy coupled with multivariate statistical analysis.

    PubMed

    Kamal, Ghulam Mustafa; Wang, Xiaohua; Bin Yuan; Wang, Jie; Sun, Peng; Zhang, Xu; Liu, Maili

    2016-09-01

    Soy sauce a well known seasoning all over the world, especially in Asia, is available in global market in a wide range of types based on its purpose and the processing methods. Its composition varies with respect to the fermentation processes and addition of additives, preservatives and flavor enhancers. A comprehensive (1)H NMR based study regarding the metabonomic variations of soy sauce to differentiate among different types of soy sauce available on the global market has been limited due to the complexity of the mixture. In present study, (13)C NMR spectroscopy coupled with multivariate statistical data analysis like principle component analysis (PCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) was applied to investigate metabonomic variations among different types of soy sauce, namely super light, super dark, red cooking and mushroom soy sauce. The main additives in soy sauce like glutamate, sucrose and glucose were easily distinguished and quantified using (13)C NMR spectroscopy which were otherwise difficult to be assigned and quantified due to serious signal overlaps in (1)H NMR spectra. The significantly higher concentration of sucrose in dark, red cooking and mushroom flavored soy sauce can directly be linked to the addition of caramel in soy sauce. Similarly, significantly higher level of glutamate in super light as compared to super dark and mushroom flavored soy sauce may come from the addition of monosodium glutamate. The study highlights the potentiality of (13)C NMR based metabonomics coupled with multivariate statistical data analysis in differentiating between the types of soy sauce on the basis of level of additives, raw materials and fermentation procedures. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Hyperpolarized NMR: d-DNP, PHIP, and SABRE.

    PubMed

    Kovtunov, Kirill Viktorovich; Pokochueva, Ekaterina; Salnikov, Oleg; Cousin, Samuel; Kurzbach, Dennis; Vuichoud, Basile; Jannin, Sami; Chekmenev, Eduard; Goodson, Boyd; Barskiy, Danila; Koptyug, Igor

    2018-05-23

    NMR signals intensities can be enhanced by several orders of magnitude via utilization of techniques for hyperpolarization of different molecules, and it allows one to overcome the main sensitivity challenge of modern NMR/MRI techniques. Hyperpolarized fluids can be successfully used in different applications of material science and biomedicine. This focus review covers the fundamentals of the preparation of hyperpolarized liquids and gases via dissolution dynamic nuclear polarization (d-DNP) and parahydrogen-based techniques such as signal amplification by reversible exchange (SABRE) and parahydrogen-induced polarization (PHIP) in both heterogeneous and homogeneous processes. The different novel aspects of hyperpolarized fluids formation and utilization along with the possibility of NMR signal enhancement observation are described. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An optimized microfabricated platform for the optical generation and detection of hyperpolarized 129Xe

    PubMed Central

    Kennedy, Daniel J.; Seltzer, Scott J.; Jiménez-Martínez, Ricardo; Ring, Hattie L.; Malecek, Nicolas S.; Knappe, Svenja; Donley, Elizabeth A.; Kitching, John; Bajaj, Vikram S.; Pines, Alexander

    2017-01-01

    Low thermal-equilibrium nuclear spin polarizations and the need for sophisticated instrumentation render conventional nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) incompatible with small-scale microfluidic devices. Hyperpolarized 129Xe gas has found use in the study of many materials but has required very large and expensive instrumentation. Recently a microfabricated device with modest instrumentation demonstrated all-optical hyperpolarization and detection of 129Xe gas. This device was limited by 129Xe polarizations less than 1%, 129Xe NMR signals smaller than 20 nT, and transport of hyperpolarized 129Xe over millimeter lengths. Higher polarizations, versatile detection schemes, and flow of 129Xe over larger distances are desirable for wider applications. Here we demonstrate an ultra-sensitive microfabricated platform that achieves 129Xe polarizations reaching 7%, NMR signals exceeding 1 μT, lifetimes up to 6 s, and simultaneous two-mode detection, consisting of a high-sensitivity in situ channel with signal-to-noise of 105 and a lower-sensitivity ex situ detection channel which may be useful in a wider variety of conditions. 129Xe is hyperpolarized and detected in locations more than 1 cm apart. Our versatile device is an optimal platform for microfluidic magnetic resonance in particular, but equally attractive for wider nuclear spin applications benefitting from ultra-sensitive detection, long coherences, and simple instrumentation. PMID:28266629

  3. An optimized microfabricated platform for the optical generation and detection of hyperpolarized 129Xe

    DOE PAGES

    Kennedy, Daniel J.; Seltzer, Scott J.; Jiménez-Martínez, Ricardo; ...

    2017-03-07

    Low thermal-equilibrium nuclear spin polarizations and the need for sophisticated instrumentation render conventional nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) incompatible with small-scale microfluidic devices. Hyperpolarized 129Xe gas has found use in the study of many materials but has required very large and expensive instrumentation. Recently a microfabricated device with modest instrumentation demonstrated all-optical hyperpolarization and detection of 129Xe gas. This device was limited by 129Xe polarizations less than 1%, 129Xe NMR signals smaller than 20 nT, and transport of hyperpolarized 129Xe over millimeter lengths. Higher polarizations, versatile detection schemes, and flow of 129Xe over larger distances are desirablemore » for wider applications. Here we demonstrate an ultra-sensitive microfabricated platform that achieves 129Xe polarizations reaching 7%, NMR signals exceeding 1 μT, lifetimes up to 6 s, and simultaneous two-mode detection, consisting of a high-sensitivity in situ channel with signal-to-noise of 10 5 and a lower-sensitivity ex situ detection channel which may be useful in a wider variety of conditions. 129Xe is hyperpolarized and detected in locations more than 1 cm apart. Our versatile device is an optimal platform for microfluidic magnetic resonance in particular, but equally attractive for wider nuclear spin applications benefitting from ultra-sensitive detection, long coherences, and simple instrumentation.« less

  4. NMR Hyperpolarization Techniques for Biomedicine

    PubMed Central

    Nikolaou, Panayiotis; Goodson, Boyd M.

    2015-01-01

    Recent developments in NMR hyperpolarization have enabled a wide array of new in vivo molecular imaging modalities—ranging from functional imaging of the lungs to metabolic imaging of cancer. This Concept article explores selected advances in methods for the preparation and use of hyperpolarized contrast agents, many of which are already at or near the phase of their clinical validation in patients. PMID:25470566

  5. High Field In Vivo 13C Magnetic Resonance Spectroscopy of Brain by Random Radiofrequency Heteronuclear Decoupling and Data Sampling

    NASA Astrophysics Data System (ADS)

    Li, Ningzhi; Li, Shizhe; Shen, Jun

    2017-06-01

    In vivo 13C magnetic resonance spectroscopy (MRS) is a unique and effective tool for studying dynamic human brain metabolism and the cycling of neurotransmitters. One of the major technical challenges for in vivo 13C-MRS is the high radio frequency (RF) power necessary for heteronuclear decoupling. In the common practice of in vivo 13C-MRS, alkanyl carbons are detected in the spectra range of 10-65ppm. The amplitude of decoupling pulses has to be significantly greater than the large one-bond 1H-13C scalar coupling (1JCH=125-145 Hz). Two main proton decoupling methods have been developed: broadband stochastic decoupling and coherent composite or adiabatic pulse decoupling (e.g., WALTZ); the latter is widely used because of its efficiency and superb performance under inhomogeneous B1 field. Because the RF power required for proton decoupling increases quadratically with field strength, in vivo 13C-MRS using coherent decoupling is often limited to low magnetic fields (<= 4 Tesla (T)) to keep the local and averaged specific absorption rate (SAR) under the safety guidelines established by the International Electrotechnical Commission (IEC) and the US Food and Drug Administration (FDA). Alternately, carboxylic/amide carbons are coupled to protons via weak long-range 1H-13C scalar couplings, which can be decoupled using low RF power broadband stochastic decoupling. Recently, the carboxylic/amide 13C-MRS technique using low power random RF heteronuclear decoupling was safely applied to human brain studies at 7T. Here, we review the two major decoupling methods and the carboxylic/amide 13C-MRS with low power decoupling strategy. Further decreases in RF power deposition by frequency-domain windowing and time-domain random under-sampling are also discussed. Low RF power decoupling opens the possibility of performing in vivo 13C experiments of human brain at very high magnetic fields (such as 11.7T), where signal-to-noise ratio as well as spatial and temporal spectral

  6. Hyperpolarized 129Xe MRI of the Human Lung

    PubMed Central

    Mugler, John P.; Altes, Talissa A.

    2012-01-01

    By permitting direct visualization of the airspaces of the lung, MR imaging using hyperpolarized gases provides unique strategies for evaluating pulmonary structure and function. Although the vast majority of research in humans has been performed using hyperpolarized 3He, recent contraction in the supply of 3He and consequent increases in price have turned attention to the alternative agent, hyperpolarized 129Xe. Compared to 3He, 129Xe yields reduced signal due to its smaller magnetic moment. Nonetheless, taking advantage of advances in gas-polarization technology, recent studies in humans using techniques for measuring ventilation, diffusion, and partial pressure of oxygen have demonstrated results for hyperpolarized 129Xe comparable to those previously demonstrated using hyperpolarized 3He. In addition, xenon has the advantage of readily dissolving in lung tissue and blood following inhalation, which makes hyperpolarized 129Xe particularly attractive for exploring certain characteristics of lung function, such as gas exchange and uptake, which cannot be accessed using 3He. Preliminary results from methods for imaging 129Xe dissolved in the human lung suggest that these approaches will provide new opportunities for quantifying relationships among gas delivery, exchange, and transport, and thus show substantial potential to broaden our understanding of lung disease. Finally, recent changes in the commercial landscape of the hyperpolarized-gas field now make it possible for this innovative technology to move beyond the research lab. PMID:23355432

  7. NMR hyperpolarization techniques for biomedicine.

    PubMed

    Nikolaou, Panayiotis; Goodson, Boyd M; Chekmenev, Eduard Y

    2015-02-16

    Recent developments in NMR hyperpolarization have enabled a wide array of new in vivo molecular imaging modalities, ranging from functional imaging of the lungs to metabolic imaging of cancer. This Concept article explores selected advances in methods for the preparation and use of hyperpolarized contrast agents, many of which are already at or near the phase of their clinical validation in patients. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Irreversible Catalyst Activation Enables Hyperpolarization and Water Solubility for NMR Signal Amplification by Reversible Exchange

    PubMed Central

    2015-01-01

    Activation of a catalyst [IrCl(COD)(IMes)] (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene; COD = cyclooctadiene)] for signal amplification by reversible exchange (SABRE) was monitored by in situ hyperpolarized proton NMR at 9.4 T. During the catalyst-activation process, the COD moiety undergoes hydrogenation that leads to its complete removal from the Ir complex. A transient hydride intermediate of the catalyst is observed via its hyperpolarized signatures, which could not be detected using conventional nonhyperpolarized solution NMR. SABRE enhancement of the pyridine substrate can be fully rendered only after removal of the COD moiety; failure to properly activate the catalyst in the presence of sufficient substrate can lead to irreversible deactivation consistent with oligomerization of the catalyst molecules. Following catalyst activation, results from selective RF-saturation studies support the hypothesis that substrate polarization at high field arises from nuclear cross-relaxation with hyperpolarized 1H spins of the hydride/orthohydrogen spin bath. Importantly, the chemical changes that accompanied the catalyst’s full activation were also found to endow the catalyst with water solubility, here used to demonstrate SABRE hyperpolarization of nicotinamide in water without the need for any organic cosolvent—paving the way to various biomedical applications of SABRE hyperpolarization methods. PMID:25372972

  9. Assessment of Lung Function in Asthma and COPD using Hyperpolarized 129Xe Chemical Shift Saturation Recovery Spectroscopy and Dissolved-Phase MR Imaging

    PubMed Central

    Qing, Kun; Mugler, John P.; Altes, Talissa A.; Jiang, Yun; Mata, Jaime F.; Miller, G. Wilson; Ruset, Iulian C.; Hersman, F. William; Ruppert, Kai

    2014-01-01

    Magnetic-resonance spectroscopy and imaging using hyperpolarized xenon-129 show great potential for evaluation of the most important function of the human lung -- gas exchange. In particular, Chemical Shift Saturation Recovery (CSSR) xenon-129 spectroscopy provides important physiological information for the lung as a whole by characterizing the dynamic process of gas exchange, while dissolved-phase xenon-129 imaging captures the time-averaged regional distribution of gas uptake by lung tissue and blood. Herein, we present recent advances in assessing lung function using CSSR spectroscopy and dissolved-phase imaging in a total of 45 subjects (23 healthy, 13 chronic obstructive pulmonary disease (COPD) and 9 asthma). From CSSR acquisitions, the COPD subjects showed red blood cell to tissue/plasma (RBC-to-TP) ratios below the average for the healthy subjects (p<0.001), but significantly higher septal wall thicknesses, as compared with the healthy subjects (p<0.005); the RBC-to-TP ratios for the asthmatics fell outside 2 standard deviations (either higher or lower) from the mean of the healthy subjects although there was no statistically significant difference for the average ratio of the study group as a whole. Similarly, from the 3D DP imaging acquisitions, we found all the ratios (TP-to-GP, RBC-to-GP, RBC-to-TP) measured in the COPD subjects were lower than those from the healthy subjects (p<0.05 for all ratios), while these ratios in the asthmatics differed considerably between subjects. Despite having been performed at different lung inflation levels, the RBC-to-TP ratios measured by CSSR and 3D DP imaging were fairly consistent with each other, with a mean difference of 0.037 (ratios from 3D DP imaging larger). In ten subjects the RBC-to-GP ratios obtained from the 3D DP imaging acquisitions were also highly correlated with their DLCO/Va ratios measured by pulmonary function testing (R=0.91). PMID:25146558

  10. Light-induced yellowing of selectively 13C-enriched dehydrogenation polymers (DHPs). Part 2, NMR assignments and photoyellowing of aromatic ring 1-, 3-, 4-, and 5-13C DHPs

    Treesearch

    Jim Parkas; Magnus Paulsson; Terashima Noritsugu; Ulla Westermark; Sally Ralph

    2004-01-01

    Light-induced yellowing of lignocellulosicmaterials has been studied using 13C-enriched DHP (dehydrogenation polymer), selectively 13C-enriched at positions 1, 3, 4, and 5 in the aromatic ring, and quantitative solution state 13C NMR spectroscopy. The NMR study confirmed the results of previous studies using side-chain labeled DHP, mainly that coniferyl alcohol end...

  11. Carbon in olivine single crystals analyzed by the 12C(d, p) 13C method and by photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Oberheuser, Gert; Kathrein, Hendrik; Demortier, Guy; Gonska, Horst; Freund, Friedemann

    1983-06-01

    Carbon subsurface concentration profiles in olivine single crystals from San Carlos, Arizona, and the Sergebet Island. Red Sea, containing total carbon between 60-180 wt.-ppm, were analyzed by means of the 12C(d. p) 13C nuclear reaction and by x-ray induced photoelectron spectroscopy (XPS) in combination with acid etching and with Ar + ion sputtering respectively, between 200-930 K. The (d, p) analysis reveals equilibrium subsurface C profiles extending 1-2 μm or more into the bulk. Their steepness is a function of temperature. Typical mean C concentrations at 300 K in the resolvable layers, 0-0.6, 0.6-1.2, and 1.2-1.8 μm. are 1.8, and 0.6 wt.-%, corresponding to enrichment factors over the mean bulk C concentration of the order of 100, 40 and 30 respectively. In the topmost atomic layers analyzed by XPS the carbon is enriched by a factor of the order of 1000, decreasing with increasing temperature. The results suggest that the carbon is in a truly dissolved state and highly mobile, subject to a reversible subsurface segregation. Most probably local lattice strain associated with the solute C species provide the driving force for this diffusional process. The C diffusion coefficient was determined from the (d, p) data below 300 K: D= 10 -13 exp(-7.8/RT) [m 2· sec -1; KJ · mole -1] and from XPS data between 450-925 K: D = 10 -14 exp(-6/RT) [m 2 · sec -1; KJ · mole -1] The estimated error of the preexponential factors is ± one order of magnitude, that of the activation energies ±3.5 and ±2 KJ mole -1 respectively.

  12. Laser Spectroscopy Monitoring of 13C18O16O and 12C17O16O of Atmospheric Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Shorter, J. H.; Nelson, D. D.; Ono, S.; McManus, J. B.; Zahniser, M. S.

    2017-12-01

    One of the main challenges to making accurate predictions of future changes in CO2 concentration is the capability to determine what fraction of human produced CO2 remains in the atmosphere. We present our progress in the application of Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS) to the measurement of the primary clumped (13C18O16O) as well as 17O (12C17O16O) isotopologues of atmospheric CO2, as a tracer of its sources and sinks. We expect unique isotopologue signals in CO2 from high-temperature combustion sources, plants, soils, and air-sea exchange processes. High sampling frequency (a few minutes for each sample vs. reference cycle) achieved by a TILDAS instrument is expected to enable us to document local heterogeneous sources and temporal variations. The TILDAS is equipped with a newly developed 400-meter absorption cell. We designed a dual pressure measurement technique in which the clumped isotopologue, 13C18O16O, and 13C16O16O are first measured at 30 torr cell pressure. This is followed by measurement of 12C17O16O, 12C18O16O and 12C16O16O at lower ( 5 torr) cell pressure. Isotopologue ratios are compared between reference and sample gases. Preliminary tests demonstrated a precision approaching 0.03 ‰ for the ratio 13C18O16O/13C16O16O and 0.08‰ for Δ13C18O16O value (1σ repeatability for 4 min sample vs. reference cycle). Sample size for a single analysis is approximately 100 mL of air (1.6μmol of CO2). Given the previously observed range of variations for Δ13C18O16O and Δ17O values as large as 0.6 to 0.3 ‰, respectively, TILDAS offers a novel approach for real time monitoring of atmospheric CO2 isotopologues. It was found that achieving better than 0.1‰ requires careful matching of CO2 mixing ratios between reference and sample air. A primary cause of pressure and mixing ratio dependence is inaccurate baseline fitting (analogous to abundance sensitivity or pressure baseline for IRMS). Given that mixing ratios of atmospheric

  13. Nuclear spin imaging with hyperpolarized nuclei created by brute force method

    NASA Astrophysics Data System (ADS)

    Tanaka, Masayoshi; Kunimatsu, Takayuki; Fujiwara, Mamoru; Kohri, Hideki; Ohta, Takeshi; Utsuro, Masahiko; Yosoi, Masaru; Ono, Satoshi; Fukuda, Kohji; Takamatsu, Kunihiko; Ueda, Kunihiro; Didelez, Jean-P.; Prossati, Giorgio; de Waard, Arlette

    2011-05-01

    We have been developing a polarized HD target for particle physics at the SPring-8 under the leadership of the RCNP, Osaka University for the past 5 years. Nuclear polarizaton is created by means of the brute force method which uses a high magnetic field (~17 T) and a low temperature (~ 10 mK). As one of the promising applications of the brute force method to life sciences we started a new project, "NSI" (Nuclear Spin Imaging), where hyperpolarized nuclei are used for the MRI (Magnetic Resonance Imaging). The candidate nuclei with spin ½hslash are 3He, 13C, 15N, 19F, 29Si, and 31P, which are important elements for the composition of the biomolecules. Since the NMR signals from these isotopes are enhanced by orders of magnitudes, the spacial resolution in the imaging would be much more improved compared to the practical MRI used so far. Another advantage of hyperpolarized MRI is that the MRI is basically free from the radiation, while the problems of radiation exposure caused by the X-ray CT or PET (Positron Emission Tomography) cannot be neglected. In fact, the risk of cancer for Japanese due to the radiation exposure through these diagnoses is exceptionally high among the advanced countries. As the first step of the NSI project, we are developing a system to produce hyperpolarized 3He gas for the diagnosis of serious lung diseases, for example, COPD (Chronic Obstructive Pulmonary Disease). The system employs the same 3He/4He dilution refrigerator and superconducting solenoidal coil as those used for the polarized HD target with some modification allowing the 3He Pomeranchuk cooling and the following rapid melting of the polarized solid 3He to avoid the depolarization. In this report, the present and future steps of our project will be outlined with some latest experimental results.

  14. LIGHT-SABRE enables efficient in-magnet catalytic hyperpolarization

    NASA Astrophysics Data System (ADS)

    Theis, Thomas; Truong, Milton; Coffey, Aaron M.; Chekmenev, Eduard Y.; Warren, Warren S.

    2014-11-01

    Nuclear spin hyperpolarization overcomes the sensitivity limitations of traditional NMR and MRI, but the most general method demonstrated to date (dynamic nuclear polarization) has significant limitations in scalability, cost, and complex apparatus design. As an alternative, signal amplification by reversible exchange (SABRE) of parahydrogen on transition metal catalysts can hyperpolarize a variety of substrates, but to date this scheme has required transfer of the sample to low magnetic field or very strong RF irradiation. Here we demonstrate "Low-Irradiation Generation of High Tesla-SABRE" (LIGHT-SABRE) which works with simple pulse sequences and low power deposition; it should be usable at any magnetic field and for hyperpolarization of many different nuclei. This approach could drastically reduce the cost and complexity of producing hyperpolarized molecules.

  15. Frequency correction method for improved spatial correlation of hyperpolarized 13C metabolites and anatomy.

    PubMed

    Cunningham, Charles H; Dominguez Viqueira, William; Hurd, Ralph E; Chen, Albert P

    2014-02-01

    Blip-reversed echo-planar imaging (EPI) is investigated as a method for measuring and correcting the spatial shifts that occur due to bulk frequency offsets in (13)C metabolic imaging in vivo. By reversing the k-space trajectory for every other time point, the direction of the spatial shift for a given frequency is reversed. Here, mutual information is used to find the 'best' alignment between images and thereby measure the frequency offset. Time-resolved 3D images of pyruvate/lactate/urea were acquired with 5 s temporal resolution over a 1 min duration in rats (N = 6). For each rat, a second injection was performed with the demodulation frequency purposely mis-set by +35 Hz, to test the correction for erroneous shifts in the images. Overall, the shift induced by the 35 Hz frequency offset was 5.9 ± 0.6 mm (mean ± standard deviation). This agrees well with the expected 5.7 mm shift based on the 2.02 ms delay between k-space lines (giving 30.9 Hz per pixel). The 0.6 mm standard deviation in the correction corresponds to a frequency-detection accuracy of 4 Hz. A method was presented for ensuring the spatial registration between (13)C metabolic images and conventional anatomical images when long echo-planar readouts are used. The frequency correction method was shown to have an accuracy of 4 Hz. Summing the spatially corrected frames gave a signal-to-noise ratio (SNR) improvement factor of 2 or greater, compared with the highest single frame. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Mouse Sperm Membrane Potential Hyperpolarization Is Necessary and Sufficient to Prepare Sperm for the Acrosome Reaction*

    PubMed Central

    De La Vega-Beltran, Jose Luis; Sánchez-Cárdenas, Claudia; Krapf, Darío; Hernandez-González, Enrique O.; Wertheimer, Eva; Treviño, Claudia L.; Visconti, Pablo E.; Darszon, Alberto

    2012-01-01

    Mammalian sperm are unable to fertilize the egg immediately after ejaculation; they acquire this capacity during migration in the female reproductive tract. This maturational process is called capacitation and in mouse sperm it involves a plasma membrane reorganization, extensive changes in the state of protein phosphorylation, increases in intracellular pH (pHi) and Ca2+ ([Ca2+]i), and the appearance of hyperactivated motility. In addition, mouse sperm capacitation is associated with the hyperpolarization of the cell membrane potential. However, the functional role of this process is not known. In this work, to dissect the role of this membrane potential change, hyperpolarization was induced in noncapacitated sperm using either the ENaC inhibitor amiloride, the CFTR agonist genistein or the K+ ionophore valinomycin. In this experimental setting, other capacitation-associated processes such as activation of a cAMP-dependent pathway and the consequent increase in protein tyrosine phosphorylation were not observed. However, hyperpolarization was sufficient to prepare sperm for the acrosome reaction induced either by depolarization with high K+ or by addition of solubilized zona pellucida (sZP). Moreover, K+ and sZP were also able to increase [Ca2+]i in non-capacitated sperm treated with these hyperpolarizing agents but not in untreated cells. On the other hand, in conditions that support capacitation-associated processes blocking hyperpolarization by adding valinomycin and increasing K+ concentrations inhibited the agonist-induced acrosome reaction as well as the increase in [Ca2+]i. Altogether, these results suggest that sperm hyperpolarization by itself is key to enabling mice sperm to undergo the acrosome reaction. PMID:23095755

  17. Hyperpolarized (129)Xe T (1) in oxygenated and deoxygenated blood

    NASA Technical Reports Server (NTRS)

    Albert, M. S.; Balamore, D.; Kacher, D. F.; Venkatesh, A. K.; Jolesz, F. A.

    2000-01-01

    The viability of the new technique of hyperpolarized (129)Xe MRI (HypX-MRI) for imaging organs other than the lungs depends on whether the spin-lattice relaxation time, T(1), of (129)Xe is sufficiently long in the blood. In previous experiments by the authors, the T(1) was found to be strongly dependent upon the oxygenation of the blood, with T(1) increasing from about 3 s in deoxygenated samples to about 10 s in oxygenated samples. Contrarily, Tseng et al. (J. Magn. Reson. 1997; 126: 79-86) reported extremely long T(1) values deduced from an indirect experiment in which hyperpolarized (129)Xe was used to create a 'blood-foam'. They found that oxygenation decreased T(1). Pivotal to their experiment is the continual and rapid exchange of hyperpolarized (129)Xe between the gas phase (within blood-foam bubbles) and the dissolved phase (in the skin of the bubbles); this necessitated a complicated analysis to extract the T(1) of (129)Xe in blood. In the present study, the experimental design minimizes gas exchange after the initial bolus of hyperpolarized (129)Xe has been bubbled through the sample. This study confirms that oxygenation increases the T(1) of (129)Xe in blood, from about 4 s in freshly drawn venous blood, to about 13 s in blood oxygenated to arterial levels, and also shifts the red blood cell resonance to higher frequency. Copyright 2000 John Wiley & Sons, Ltd. Abbreviations used BOLD blood oxygen level dependent NOE nuclear overhouses effect PO(2) oxygen partial pressure RBC red blood cells RF radio frequency SNR signal-to-noise ratio.

  18. Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Two types of swine manure chars, hydrothermally-produced hydrochar and slow-pyrolysis pyrochar, and their raw swine manure solid were characterized using advanced 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. Compared with the parent raw swine manure, both hydrochars and pyrochar di...

  19. DOSY Analysis of Micromolar Analytes: Resolving Dilute Mixtures by SABRE Hyperpolarization.

    PubMed

    Reile, Indrek; Aspers, Ruud L E G; Tyburn, Jean-Max; Kempf, James G; Feiters, Martin C; Rutjes, Floris P J T; Tessari, Marco

    2017-07-24

    DOSY is an NMR spectroscopy technique that resolves resonances according to the analytes' diffusion coefficients. It has found use in correlating NMR signals and estimating the number of components in mixtures. Applications of DOSY in dilute mixtures are, however, held back by excessively long measurement times. We demonstrate herein, how the enhanced NMR sensitivity provided by SABRE hyperpolarization allows DOSY analysis of low-micromolar mixtures, thus reducing the concentration requirements by at least 100-fold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. LIGHT-SABRE enables efficient in-magnet catalytic hyperpolarization.

    PubMed

    Theis, Thomas; Truong, Milton; Coffey, Aaron M; Chekmenev, Eduard Y; Warren, Warren S

    2014-11-01

    Nuclear spin hyperpolarization overcomes the sensitivity limitations of traditional NMR and MRI, but the most general method demonstrated to date (dynamic nuclear polarization) has significant limitations in scalability, cost, and complex apparatus design. As an alternative, signal amplification by reversible exchange (SABRE) of parahydrogen on transition metal catalysts can hyperpolarize a variety of substrates, but to date this scheme has required transfer of the sample to low magnetic field or very strong RF irradiation. Here we demonstrate "Low-Irradiation Generation of High Tesla-SABRE" (LIGHT-SABRE) which works with simple pulse sequences and low power deposition; it should be usable at any magnetic field and for hyperpolarization of many different nuclei. This approach could drastically reduce the cost and complexity of producing hyperpolarized molecules. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Silicon nanoparticles as hyperpolarized magnetic resonance imaging agents.

    PubMed

    Aptekar, Jacob W; Cassidy, Maja C; Johnson, Alexander C; Barton, Robert A; Lee, Menyoung; Ogier, Alexander C; Vo, Chinh; Anahtar, Melis N; Ren, Yin; Bhatia, Sangeeta N; Ramanathan, Chandrasekhar; Cory, David G; Hill, Alison L; Mair, Ross W; Rosen, Matthew S; Walsworth, Ronald L; Marcus, Charles M

    2009-12-22

    Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in vivo applications of prehyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a variety of Si nanoparticles are found to be remarkably long, ranging from many minutes to hours at room temperature, allowing hyperpolarized nanoparticles to be transported, administered, and imaged on practical time scales. Additionally, we demonstrate that Si nanoparticles can be surface functionalized using techniques common to other biologically targeted nanoparticle systems. These results suggest that Si nanoparticles can be used as a targetable, hyperpolarized magnetic resonance imaging agent with a large range of potential applications.

  2. Do twisted laser beams evoke nuclear hyperpolarization?

    PubMed

    Schmidt, A B; Andrews, D L; Rohrbach, A; Gohn-Kreuz, C; Shatokhin, V N; Kiselev, V G; Hennig, J; von Elverfeldt, D; Hövener, J-B

    2016-07-01

    The hyperpolarization of nuclear spins promises great advances in chemical analysis and medical diagnosis by substantially increasing the sensitivity of nuclear magnetic resonance (NMR). Current methods to produce a hyperpolarized sample, however, are arduous, time-consuming or costly and require elaborate equipment. Recently, a much simpler approach was introduced that holds the potential, if harnessed appropriately, to revolutionize the production of hyperpolarized spins. It was reported that high levels of hyperpolarization in nuclear spins can be created by irradiation with a laser beam carrying orbital angular momentum (twisted light). Aside from these initial reports however, no further experimental verification has been presented. In addition, this effect has so far evaded a critical theoretical examination. In this contribution, we present the first independent attempt to reproduce the effect. We exposed a sample of immersion oil or a fluorocarbon liquid that was placed within a low-field NMR spectrometer to Laguerre-Gaussian and Bessel laser beams at a wavelength of 514.5nm and various topological charges. We acquired (1)H and (19)F NMR free induction decay data, either during or alternating with the irradiation that was parallel to B0. We observed an irregular increase in NMR signal in experiments where the sample was exposed to beams with higher values of the topological charge. However, at no time did the effect reach statistical significance of 95%. Given the measured sensitivity of our setup, we estimate that a possible effect did not exceed a hyperpolarization (at 5mT) of 0.14-6%, depending on the assumed hyperpolarized volume. It should be noted though, that there were some differences between our setup and the previous implementation of the experiment, which may have inhibited the full incidence of this effect. To approach a theoretical description of this effect, we considered the interaction of an electron with a plane wave, which is known to be

  3. Evolution of organic matter during composting of different organic wastes assessed by CPMAS {sup 13}C NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caricasole, P.; Provenzano, M.R., E-mail: Provenza@agr.uniba.it; Hatcher, P.G.

    2011-03-15

    In this paper, the evolution of organic matter (OM) during composting of different mixtures of various organic wastes was assessed by means of chemical analyses and CPMAS {sup 13}C NMR spectroscopy measured during composting. The trends of temperatures and C/N ratios supported the correct evolution of the processes. The CPMAS {sup 13}C NMR spectra of all composting substrates indicated a reduction in carbohydrates and an increase in aromatic, phenolic, carboxylic and carbonylic C which suggested a preference by microorganisms for easily degradable C molecules. The presence of hardly degradable pine needles in one of the substrates accounted for the lowestmore » increase in alkyl C and the lowest reduction in carbohydrates and carboxyl C as opposite to another substrate characterized by the presence of a highly degradable material such as spent yeast from beer production, which showed the highest increase of the alkyl C/O-alkyl C ratio. The highest increase of COOH deriving by the oxidative degradation of cellulose was shown by a substrate composed by about 50% of plant residues. The smallest increases in alkyl C/O-alkyl C ratio and in polysaccharides were associated to the degradation of proteins and lipids which are major components of sewage sludge. Results obtained were related to the different composition of fresh organic substrates and provided evidence of different OM evolution patterns as a function of the initial substrate composition.« less

  4. Mis-estimation and bias of hyperpolarized apparent diffusion coefficient measurements due to slice profile effects.

    PubMed

    Gordon, Jeremy W; Milshteyn, Eugene; Marco-Rius, Irene; Ohliger, Michael; Vigneron, Daniel B; Larson, Peder E Z

    2017-09-01

    The purpose of this work was to explore the impact of slice profile effects on apparent diffusion coefficient (ADC) mapping of hyperpolarized (HP) substrates. Slice profile effects were simulated using a Gaussian radiofrequency (RF) pulse with a variety of flip angle schedules and b-value ordering schemes. A long T 1 water phantom was used to validate the simulation results, and ADC mapping of HP [ 13 C, 15 N 2 ]urea was performed on the murine liver to assess these effects in vivo. Slice profile effects result in excess signal after repeated RF pulses, causing bias in HP measurements. The largest error occurs for metabolites with small ADCs, resulting in up to 10-fold overestimation for metabolites that are in more-restricted environments. A mixed b-value scheme substantially reduces this bias, whereas scaling the slice-select gradient can mitigate it completely. In vivo, the liver ADC of hyperpolarized [ 13 C, 15 N 2 ]urea is nearly 70% lower (0.99 ± 0.22 vs 1.69 ± 0.21 × 10 -3 mm 2 /s) when slice-select gradient scaling is used. Slice profile effects can lead to bias in HP ADC measurements. A mixed b-value ordering scheme can reduce this bias compared to sequential b-value ordering. Slice-select gradient scaling can also correct for this deviation, minimizing bias and providing more-precise ADC measurements of HP substrates. Magn Reson Med 78:1087-1092, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  5. 13C MRS of Human Brain at 7 Tesla Using [2-13C]Glucose Infusion and Low Power Broadband Stochastic Proton Decoupling

    PubMed Central

    Li, Shizhe; An, Li; Yu, Shao; Araneta, Maria Ferraris; Johnson, Christopher S.; Wang, Shumin; Shen, Jun

    2015-01-01

    Purpose 13C magnetic resonance spectroscopy (MRS) of human brain at 7 Tesla (T) may pose patient safety issues due to high RF power deposition for proton decoupling. The purpose of present work is to study the feasibility of in vivo 13C MRS of human brain at 7 T using broadband low RF power proton decoupling. Methods Carboxylic/amide 13C MRS of human brain by broadband stochastic proton decoupling was demonstrated on a 7 T scanner. RF safety was evaluated using the finite-difference time-domain method. 13C signal enhancement by nuclear Overhauser effect (NOE) and proton decoupling was evaluated in both phantoms and in vivo. Results At 7 T, the peak amplitude of carboxylic/amide 13C signals was increased by a factor of greater than 4 due to the combined effects of NOE and proton decoupling. The 7 T 13C MRS technique used decoupling power and average transmit power of less than 35 W and 3.6 W, respectively. Conclusion In vivo 13C MRS studies of human brain can be performed at 7 T well below the RF safety threshold by detecting carboxylic/amide carbons with broadband stochastic proton decoupling. PMID:25917936

  6. The Role of PDH Inhibition in the Development of Hypertrophy in the Hyperthyroid Rat Heart: A Combined MRI and Hyperpolarized MRS Study

    PubMed Central

    Atherton, Helen J.; Dodd, Michael S.; Heather, Lisa C.; Schroeder, Marie A.; Griffin, Julian L.; Radda, George K.; Clarke, Kieran; Tyler, Damian J.

    2015-01-01

    Background Hyperthyroidism increases heart rate, contractility and cardiac output, as well as metabolic rate. It is also accompanied by alterations in the regulation of cardiac substrate utilisation. Specifically, hyperthyroidism increases the ex vivo activity of pyruvate dehydrogenase kinase (PDK), thereby inhibiting glucose oxidation via pyruvate dehydrogenase (PDH). Cardiac hypertrophy is another effect of hyperthyroidism, with an increase in the abundance of mitochondria. Although the hypertrophy is initially beneficial, it can eventually lead to heart failure. The aim of this study was to use hyperpolarized magnetic resonance spectroscopy (MRS) to investigate the rate and regulation of in vivo pyruvate dehydrogenase (PDH) flux in the hyperthyroid heart, and to establish whether modulation of flux through PDH would alter cardiac hypertrophy. Methods & Results Hyperthyroidism was induced in 18 male Wistar rats with 7 daily intraperitoneal injections of freshly prepared triiodothyronine (T3; 0.2 mg/kg/day). In vivo PDH flux, assessed using hyperpolarized MRS, was reduced by 59% in hyperthyroid animals (0.0022 ± 0.0002 s−1 vs 0.0055 ± 0.0005 s−1, P = 0.0003) and this reduction was completely reversed by both acute and chronic delivery of the PDK inhibitor, dichloroacetic acid (DCA). Hyperpolarized [2-13C]pyruvate was also used to evaluate Krebs cycle metabolism and demonstrated a unique marker of anaplerosis, the level of which was significantly increased in the hyperthyroid heart. Cine MRI showed that chronic DCA treatment significantly reduced the hypertrophy observed in hyperthyroid animals (100 ± 20 mg vs 200 ± 30 mg; P = 0.04) despite no change to the increase observed in cardiac output. Conclusions This work has demonstrated that inhibition of glucose oxidation in the hyperthyroid heart in vivo is PDK mediated. Relieving this inhibition can increase the metabolic flexibility of the hyperthyroid heart and reduce the level of hypertrophy that develops

  7. Use of Isotope Ratio Determination (13C/12C) to Assess the Production Method of Sparkling Wine.

    PubMed

    Rossier, Joël S; Maury, Valérie; Gaillard, Laetitia; Pfammatter, Elmar

    2016-01-01

    The production of a sparkling wine can be performed with different methods taking from a few weeks to several years, which often justifies a difference in added value for the consumer. This paper presents the use of isotope ratio δ(13)C measurements combined with physico-chemical analyses for the determination of mislabelling of sparkling wines produced by 'ancestral', 'traditional', 'closed tank' or 'gasification' methods. This work shows that the isotope composition of CO(2) compared with that of the corresponding dried residue of wine (DRW) can assess whether carbonate CO(2) in a sparkling wine originates from alcohol fermentation or from artificial gas addition. Isotopic ratios expressed as δ(13)C(CO2) and δ(13)C(DRW) measurements have been obtained for each wine by gasbench isotopic ratio mass spectroscopy and cavity ring down infrared spectroscopy, respectively. When the difference between δ(13)C(CO2) and δ(13)C(DRW) is negative, the presence of artificial CO(2) can be undoubtedly inferred, which would exclude the production methods 'ancestral' or 'traditional' for instance. Other parameters such as alcohol content, sugar and acid distributions are also important to complete the analytical panel to aid fraud tracking.

  8. Selective 13C labeling of nucleotides for large RNA NMR spectroscopy using an E. coli strain disabled in the TCA cycle

    PubMed Central

    Thakur, Chandar S.; Sama, Jacob N.; Jackson, Melantha E.; Chen, Bin

    2010-01-01

    Escherichia coli (E. coli) is an ideal organism to tailor-make labeled nucleotides for biophysical studies of RNA. Recently, we showed that adding labeled formate enhanced the isotopic enrichment at protonated carbon sites in nucleotides. In this paper, we show that growth of a mutant E. coli strain DL323 (lacking succinate and malate dehydrogenases) on 13C-2-glycerol and 13C-1,3-glycerol enables selective labeling at many useful sites for RNA NMR spectroscopy. For DL323 E. coli grown in 13C-2-glycerol without labeled formate, all the ribose carbon atoms are labeled except the C3′ and C5′ carbon positions. Consequently the C1′, C2′ and C4′ positions remain singlet. In addition, only the pyrimidine base C6 atoms are substantially labeled to ~96% whereas the C2 and C8 atoms of purine are labeled to ~5%. Supplementing the growth media with 13C-formate increases the labeling at C8 to ~88%, but not C2. Not unexpectedly, addition of exogenous formate is unnecessary for attaining the high enrichment levels of ~88% for the C2 and C8 purine positions in a 13C-1,3-glycerol based growth. Furthermore, the ribose ring is labeled in all but the C4′ carbon position, such that the C2′ and C3′ positions suffer from multiplet splitting but the C5′ position remains singlet and the C1′ position shows a small amount of residual C1′–C2′ coupling. As expected, all the protonated base atoms, except C6, are labeled to ~90%. In addition, labeling with 13C-1,3-glycerol affords an isolated methylene ribose with high enrichment at the C5′ position (~90%) that makes it particularly attractive for NMR applications involving CH2-TROSY modules without the need for decoupling the C4′ carbon. To simulate the tumbling of large RNA molecules, perdeuterated glycerol was added to a mixture of the four nucleotides, and the methylene TROSY experiment recorded at various temperatures. Even under conditions of slow tumbling, all the expected carbon correlations were observed

  9. [2,4-(13)C]β-hydroxybutyrate metabolism in astrocytes and C6 glioblastoma cells.

    PubMed

    Eloqayli, Haytham; Melø, Torun M; Haukvik, Anne; Sonnewald, Ursula

    2011-08-01

    This study was undertaken to determine if the ketogenic diet could be useful for glioblastoma patients. The hypothesis tested was whether glioblastoma cells can metabolize ketone bodies. Cerebellar astrocytes and C6 glioblastoma cells were incubated in glutamine and serum free medium containing [2,4-(13)C]β-hydroxybutyrate (BHB) with and without glucose. Furthermore, C6 cells were incubated with [1-(13)C]glucose in the presence and absence of BHB. Cell extracts were analyzed by mass spectrometry and media by (1)H magnetic resonance spectroscopy and HPLC. Using [2,4-(13)C]BHB and [1-(13)C]glucose it could be shown that C6 cells, in analogy to astrocytes, had efficient mitochondrial activity, evidenced by (13)C labeling of glutamate, glutamine and aspartate. However, in the presence of glucose, astrocytes were able to produce and release glutamine, whereas this was not accomplished by the C6 cells, suggesting lack of anaplerosis in the latter. We hypothesize that glioblastoma cells kill neurons by not supplying the necessary glutamine, and by releasing glutamate.

  10. MO-DE-206-03: Quantifying Metabolism with Hyperpolarized MR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bankson, J.

    In this symposium jointly sponsored by the World Molecular Imaging Society (WMIS) and the AAPM, luminary speakers on imaging metabolism will discuss three impactful topics. The first presentation on Cellular Metabolism of FDG will be given by Guillem Pratx (Stanford). This presentation will detail new work on looking at how the most common molecular imaging agent, fluoro-deoxy-glucose is metabolized at a cellular level. This will be followed by a talk on an improved approach to whole-body PET imaging by Simon Cherry (UC Davis). Simon’s work on a new whole-body PET imaging system promises to have dramatic improvement in our abilitymore » to detect and characterize cancer using PET. Finally, Jim Bankson (MD Anderson) will discuss extremely sophisticated approaches to quantifying hyperpolarized-13-C pyruvate metabolism using MR imaging. This technology promises to compliment the exquisite sensitivity of PET with an ability to measure not just uptake, but tumor metabolism. Learning Objectives: Understand the metabolism of FDG at a cellular level. Appreciate the engineering related to a novel new high-sensitivity whole-body PET imaging system. Understand the process of hyperpolarization, how pyruvate relates to metabolism and how advanced modeling can be used to better quantify this data. G. Pratx, Funding: 5R01CA186275, 1R21CA193001, and Damon Runyon Cancer Foundation. S. Cherry, National Institutes of Health; University of California, Davis; Siemens Medical SolutionsJ. Bankson, GE Healthcare; NCI P30-CA016672; CPRIT PR140021-P5.« less

  11. Joint Spatial-Spectral Reconstruction and k-t Spirals for Accelerated 2D Spatial/1D Spectral Imaging of 13C Dynamics

    PubMed Central

    Gordon, Jeremy W.; Niles, David J.; Fain, Sean B.; Johnson, Kevin M.

    2014-01-01

    Purpose To develop a novel imaging technique to reduce the number of excitations and required scan time for hyperpolarized 13C imaging. Methods A least-squares based optimization and reconstruction is developed to simultaneously solve for both spatial and spectral encoding. By jointly solving both domains, spectral imaging can potentially be performed with a spatially oversampled single echo spiral acquisition. Digital simulations, phantom experiments, and initial in vivo hyperpolarized [1-13C]pyruvate experiments were performed to assess the performance of the algorithm as compared to a multi-echo approach. Results Simulations and phantom data indicate that accurate single echo imaging is possible when coupled with oversampling factors greater than six (corresponding to a worst case of pyruvate to metabolite ratio < 9%), even in situations of substantial T2* decay and B0 heterogeneity. With lower oversampling rates, two echoes are required for similar accuracy. These results were confirmed with in vivo data experiments, showing accurate single echo spectral imaging with an oversampling factor of 7 and two echo imaging with an oversampling factor of 4. Conclusion The proposed k-t approach increases data acquisition efficiency by reducing the number of echoes required to generate spectroscopic images, thereby allowing accelerated acquisition speed, preserved polarization, and/or improved temporal or spatial resolution. Magn Reson Med PMID:23716402

  12. (13)C MRS of human brain at 7 Tesla using [2-(13)C]glucose infusion and low power broadband stochastic proton decoupling.

    PubMed

    Li, Shizhe; An, Li; Yu, Shao; Ferraris Araneta, Maria; Johnson, Christopher S; Wang, Shumin; Shen, Jun

    2016-03-01

    Carbon-13 ((13)C) MR spectroscopy (MRS) of the human brain at 7 Tesla (T) may pose patient safety issues due to high radiofrequency (RF) power deposition for proton decoupling. The purpose of present work is to study the feasibility of in vivo (13)C MRS of human brain at 7 T using broadband low RF power proton decoupling. Carboxylic/amide (13)C MRS of human brain by broadband stochastic proton decoupling was demonstrated on a 7 T scanner. RF safety was evaluated using the finite-difference time-domain method. (13)C signal enhancement by nuclear Overhauser effect (NOE) and proton decoupling was evaluated in both phantoms and in vivo. At 7 T, the peak amplitude of carboxylic/amide (13)C signals was increased by a factor of greater than 4 due to the combined effects of NOE and proton decoupling. The 7 T (13)C MRS technique used decoupling power and average transmit power of less than 35 watts (W) and 3.6 W, respectively. In vivo (13)C MRS studies of human brain can be performed at 7 T, well below the RF safety threshold, by detecting carboxylic/amide carbons with broadband stochastic proton decoupling. © 2015 Wiley Periodicals, Inc.

  13. Reaction monitoring using hyperpolarized NMR with scaling of heteronuclear couplings by optimal tracking

    NASA Astrophysics Data System (ADS)

    Zhang, Guannan; Schilling, Franz; Glaser, Steffen J.; Hilty, Christian

    2016-11-01

    Off-resonance decoupling using the method of Scaling of Heteronuclear Couplings by Optimal Tracking (SHOT) enables determination of heteronuclear correlations of chemical shifts in single scan NMR spectra. Through modulation of J-coupling evolution by shaped radio frequency pulses, off resonance decoupling using SHOT pulses causes a user-defined dependence of the observed J-splitting, such as the splitting of 13C peaks, on the chemical shift offset of coupled nuclei, such as 1H. Because a decoupling experiment requires only a single scan, this method is suitable for characterizing on-going chemical reactions using hyperpolarization by dissolution dynamic nuclear polarization (D-DNP). We demonstrate the calculation of [13C, 1H] chemical shift correlations of the carbanionic active sites from hyperpolarized styrene polymerized using sodium naphthalene as an initiator. While off resonance decoupling by SHOT pulses does not enhance the resolution in the same way as a 2D NMR spectrum would, the ability to obtain the correlations in single scans makes this method ideal for determination of chemical shifts in on-going reactions on the second time scale. In addition, we present a novel SHOT pulse that allows to scale J-splittings 50% larger than the respective J-coupling constant. This feature can be used to enhance the resolution of the indirectly detected chemical shift and reduce peak overlap, as demonstrated in a model reaction between p-anisaldehyde and isobutylamine. For both pulses, the accuracy is evaluated under changing signal-to-noise ratios (SNR) of the peaks from reactants and reaction products, with an overall standard deviation of chemical shift differences compared to reference spectra of 0.02 ppm when measured on a 400 MHz NMR spectrometer. Notably, the appearance of decoupling side-bands, which scale with peak intensity, appears to be of secondary importance.

  14. Reaction monitoring using hyperpolarized NMR with scaling of heteronuclear couplings by optimal tracking.

    PubMed

    Zhang, Guannan; Schilling, Franz; Glaser, Steffen J; Hilty, Christian

    2016-11-01

    Off-resonance decoupling using the method of Scaling of Heteronuclear Couplings by Optimal Tracking (SHOT) enables determination of heteronuclear correlations of chemical shifts in single scan NMR spectra. Through modulation of J-coupling evolution by shaped radio frequency pulses, off resonance decoupling using SHOT pulses causes a user-defined dependence of the observed J-splitting, such as the splitting of 13 C peaks, on the chemical shift offset of coupled nuclei, such as 1 H. Because a decoupling experiment requires only a single scan, this method is suitable for characterizing on-going chemical reactions using hyperpolarization by dissolution dynamic nuclear polarization (D-DNP). We demonstrate the calculation of [ 13 C, 1 H] chemical shift correlations of the carbanionic active sites from hyperpolarized styrene polymerized using sodium naphthalene as an initiator. While off resonance decoupling by SHOT pulses does not enhance the resolution in the same way as a 2D NMR spectrum would, the ability to obtain the correlations in single scans makes this method ideal for determination of chemical shifts in on-going reactions on the second time scale. In addition, we present a novel SHOT pulse that allows to scale J-splittings 50% larger than the respective J-coupling constant. This feature can be used to enhance the resolution of the indirectly detected chemical shift and reduce peak overlap, as demonstrated in a model reaction between p-anisaldehyde and isobutylamine. For both pulses, the accuracy is evaluated under changing signal-to-noise ratios (SNR) of the peaks from reactants and reaction products, with an overall standard deviation of chemical shift differences compared to reference spectra of 0.02ppm when measured on a 400MHz NMR spectrometer. Notably, the appearance of decoupling side-bands, which scale with peak intensity, appears to be of secondary importance. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Determination of the structural changes by Raman and {sup 13}C CP/MAS NMR spectroscopy on native corn starch with plasticizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozar, O.; Filip, C.; Tripon, C.

    The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and {sup 13}C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.

  16. Hyperpolarized xenon-129 production and applications

    NASA Astrophysics Data System (ADS)

    Ruset, Iulian C.

    Hyperpolarized 3He and 129Xe were initially developed and used in the nuclear physics community. Lately they are primarily used in Medical Resonance Imaging (MRI). Although first MRI polarized gas images were acquired using 129Xe, the research community has focused mostly on 3He, due to the well-known polarizing methods and higher polarization numbers achieved. The main purpose of this thesis is to present a novel design of a large-scale SEOP polarizer for producing large quantities of highly polarized 129Xe. High Rb-Xe spin-exchange rates through long-lived van de Waals molecules at low total pressure, implemented in a novel counterflow polarizer design, resulted in xenon polarization as high as 50% for 1.2 liters/hour, with a maximum of 64% for 0.3 l/h. We characterized and improved the polarization process by finding the optimum operating parameters of the polarizer. Two new methods to efficiently use high-power diode lasers are described: a new optical arrangement for a better beam shaping of fiber coupled lasers and the first external-cavity spectrum narrowing of a stack of laser diode arrays. A new accumulation technique for the hyperpolarized xenon was developed and full recovery of polarization after a freeze-thaw cycle was demonstrated for the first time. Two approaches for xenon delivery, frozen and gas states, were developed. Hyperpolarized xenon transportation to Brigham and Women's Hospital was successfully accomplished for collaborative research. First MRI images using hyperpolarized xenon acquired at BWH are presented. Final chapter is focused on describing a low field human MRI scanner using hyperpolarized 3He. We built a human scale imager with open access for orientational studies of the lung functionality. Horizontal and vertical human lung images were acquired as a first stage of this project.

  17. Characterization of isolated 1-aza-adamantan-4-one (C9H13NO) from microwave, millimeter-wave and infrared spectroscopy supported by electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Pirali, O.; Goubet, M.; Boudon, V.; D'Accolti, L.; Fusco, C.; Annese, C.

    2017-08-01

    We have synthesized 1-aza-adamantan-4-one (C9H13NO) starting from commercial 1,4-cyclohexanedionemonoethylene acetal and tosylmethylisocianide, following a procedure already described in the literature. The high degree of sample purity was demonstrated by gas chromatography and mass spectrometric measurements and its structure evidenced by 1H and 13C NMR spectroscopy. Among numerous interests in physical chemistry, this target molecule is of high relevance for mechanistic evaluation and the synthesis of novel pharmaceutical compounds. We present a thorough spectroscopic study of this molecule by gas phase vibrational and rotational spectroscopy. Accurate vibrational frequencies have been determined from infrared and far-infrared spectra. The pure rotational spectrum of the molecule has been recorded both by cavity-based Fourier transform microwave spectroscopy in the 2-20 GHz region by supersonically expanding the vapor pressure of the warm sample and by room-temperature absorption spectroscopy in the 140-220 GHz range. Accurate sets of rotational and centrifugal distortion parameters of 1-aza-adamantan-4-one in its ground state and in five vibrationally excited states have been derived from these measurements and compared to accurate quantum chemical calculations. The hyperfine parameters have been discussed in terms of molecular structure around the nitrogen quadrupole nucleus.

  18. Two-dimensional NMR spectroscopy of 13C methanol at less than 5 μT

    NASA Astrophysics Data System (ADS)

    Shim, Jeong Hyun; Lee, Seong-Joo; Hwang, Seong-min; Yu, Kwon-Kyu; Kim, Kiwoong

    2014-09-01

    Two-dimensional (2D) spectroscopy is one of the most significant applications of nuclear magnetic resonance (NMR). Here, we demonstrate that the 2D NMR can be performed even at a low magnetic field of less than 5 μT, which is ten times less than the Earth’s magnetic field. The pulses used in the experiment were composed of circularly polarized fields for coherent as well as wideband excitations. Since the excitation band covers the entire spectral range, the simplest two-pulse sequence delivered the full 2D spectrum. At 5 μT, methanol with 13C enriched up to 99% belongs to a strongly coupled regime, and thus its 2D spectrum exhibits complicated spectral correlations, which can be exploited as a fingerprint in chemical analysis. In addition, we show that, with compressive sensing, the acquisition of the 2D spectrum can be accelerated to take only 45% of the overall duration.

  19. Analysis and theoretical modeling of 18O enriched carbon dioxide spectrum by CRDS near 1.35 μm: (II) 16O13C18O, 16O13C17O, 12C18O2, 17O12C18O, 12C17O2, 13C18O2 and 17O13C18O

    NASA Astrophysics Data System (ADS)

    Karlovets, E. V.; Campargue, A.; Kassi, S.; Tashkun, S. A.; Perevalov, V. I.

    2017-04-01

    This contribution is the second part of the analysis of the room temperature absorption spectrum of 18O enriched carbon dioxide by very high sensitivity Cavity Ring Down spectroscopy between 6977 and 7918 cm-1 (1.43-1.26 μm). Overall, more than 8600 lines belonging to 166 bands of eleven carbon dioxide isotopologues were rovibrationnally assigned. In a first part (Kassi et al. J Quant Spectrosc Radiat Transfer 187 (2017) 414-425, http://dx.doi.org/10.1016/j.jqsrt.2016.09.002), the results relative to mono-substituted isotopologues, 16O12C18O, 16O12C17O, 12C16O2 and 13C16O2, were presented. This second contribution is devoted to the multiply-substituted isotopologues or clumped isotopologues of particular importance in geochemistry: 16O13C18O, 16O13C17O, 12C18O2, 17O12C18O, 12C17O2, 13C18O2 and 17O13C18O. On the basis of the predictions of effective Hamiltonian models, a total of 3195 transitions belonging to 73 bands were rovibrationnally assigned for these seven species. Among the 73 observed bands, 55 are newly reported. All the identified bands correspond to ΔP=10 and 11 series of transitions, where P= 2V1+V2+3V3 is the polyad number (Vi are vibrational quantum numbers). The accurate spectroscopic parameters of 70 bands have been determined from the standard band-by-band analysis. Global fits of the measured line intensities of the ΔP=10 series of transitions of 17O12C18O and 16O13C18O and of the ΔP=11 series of transitions of 12C18O2, 17O12C18O, 16O13C18O and 13C18O2 were performed to determine the corresponding sets of the effective dipole moment parameters.

  20. Evaluation of hyperpolarized [1-¹³C]-pyruvate by magnetic resonance to detect ionizing radiation effects in real time.

    PubMed

    Sandulache, Vlad C; Chen, Yunyun; Lee, Jaehyuk; Rubinstein, Ashley; Ramirez, Marc S; Skinner, Heath D; Walker, Christopher M; Williams, Michelle D; Tailor, Ramesh; Court, Laurence E; Bankson, James A; Lai, Stephen Y

    2014-01-01

    Ionizing radiation (IR) cytotoxicity is primarily mediated through reactive oxygen species (ROS). Since tumor cells neutralize ROS by utilizing reducing equivalents, we hypothesized that measurements of reducing potential using real-time hyperpolarized (HP) magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) can serve as a surrogate marker of IR induced ROS. This hypothesis was tested in a pre-clinical model of anaplastic thyroid carcinoma (ATC), an aggressive head and neck malignancy. Human ATC cell lines were utilized to test IR effects on ROS and reducing potential in vitro and [1-¹³C] pyruvate HP-MRS/MRSI imaging of ATC orthotopic xenografts was used to study in vivo effects of IR. IR increased ATC intra-cellular ROS levels resulting in a corresponding decrease in reducing equivalent levels. Exogenous manipulation of cellular ROS and reducing equivalent levels altered ATC radiosensitivity in a predictable manner. Irradiation of ATC xenografts resulted in an acute drop in reducing potential measured using HP-MRS, reflecting the shunting of reducing equivalents towards ROS neutralization. Residual tumor tissue post irradiation demonstrated heterogeneous viability. We have adapted HP-MRS/MRSI to non-invasively measure IR mediated changes in tumor reducing potential in real time. Continued development of this technology could facilitate the development of an adaptive clinical algorithm based on real-time adjustments in IR dose and dose mapping.

  1. Nondisruptive Dissolution of Hyperpolarized 129 Xe into Viscous Aqueous and Organic Liquid Crystalline Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truxal, Ashley E.; Slack, Clancy C.; Gomes, Muller D.

    2016-03-08

    Studies of hyperpolarized xenon-129 in media such as liquid crystals and cell suspensions are in demand for applications ranging from biomedical imaging to materials engineering but have been hindered by the inability to bubble Xe through the desired media as a result of viscosity or perturbations caused by bubbles. This research reports on a device that can be reliably used to dissolve hp- 129 Xe into viscous aqueous and organic samples without bubbling. This method is robust, requires small sample volumes ( < 60 μL), is compatible with existing NMR hardware, and is made from readily available materials. Experiments showmore » that Xe can be introduced into viscous and aligned media without disrupting molecular order. We detected dissolved xenon in an aqueous liquid crystal that is disrupted by the shear forces of bubbling, and we observed liquid-crystal phase transitions in (MBBA). This tool allows an entirely new class of samples to be investigated by hyperpolarized-gas NMR spectroscopy. Blending into the crowd: A new device that facilitates the direct dissolution of hyperpolarized 129 Xe into viscous liquid-crystalline media is presented. 129 Xe and 2 H NMR spectra show the nondisruptive dissolution of xenon, the presence of ordered phases, and, in the case of the thermotropic liquid crystal N-(4-methoxybenzylidene)-4-butylaniline, a nematic-isotropic phase transition.« less

  2. Bonded Cumomer Analysis of Human Melanoma Metabolism Monitored by 13C NMR Spectroscopy of Perfused Tumor Cells*

    PubMed Central

    Shestov, Alexander A.; Mancuso, Anthony; Lee, Seung-Cheol; Guo, Lili; Nelson, David S.; Roman, Jeffrey C.; Henry, Pierre-Gilles; Leeper, Dennis B.; Blair, Ian A.; Glickson, Jerry D.

    2016-01-01

    A network model for the determination of tumor metabolic fluxes from 13C NMR kinetic isotopomer data has been developed and validated with perfused human DB-1 melanoma cells carrying the BRAF V600E mutation, which promotes oxidative metabolism. The model generated in the bonded cumomer formalism describes key pathways of tumor intermediary metabolism and yields dynamic curves for positional isotopic enrichment and spin-spin multiplets. Cells attached to microcarrier beads were perfused with 26 mm [1,6-13C2]glucose under normoxic conditions at 37 °C and monitored by 13C NMR spectroscopy. Excellent agreement between model-predicted and experimentally measured values of the rates of oxygen and glucose consumption, lactate production, and glutamate pool size validated the model. ATP production by glycolytic and oxidative metabolism were compared under hyperglycemic normoxic conditions; 51% of the energy came from oxidative phosphorylation and 49% came from glycolysis. Even though the rate of glutamine uptake was ∼50% of the tricarboxylic acid cycle flux, the rate of ATP production from glutamine was essentially zero (no glutaminolysis). De novo fatty acid production was ∼6% of the tricarboxylic acid cycle flux. The oxidative pentose phosphate pathway flux was 3.6% of glycolysis, and three non-oxidative pentose phosphate pathway exchange fluxes were calculated. Mass spectrometry was then used to compare fluxes through various pathways under hyperglycemic (26 mm) and euglycemic (5 mm) conditions. Under euglycemic conditions glutamine uptake doubled, but ATP production from glutamine did not significantly change. A new parameter measuring the Warburg effect (the ratio of lactate production flux to pyruvate influx through the mitochondrial pyruvate carrier) was calculated to be 21, close to upper limit of oxidative metabolism. PMID:26703469

  3. Thz Spectroscopy of 13C Isotopic Species of a "weed": Acetaldehyde

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.

    2011-06-01

    Our studies of the isotopic species of 13C and D isotopologues of methyl formate (HCOOCH_3), have allowed the detection of more than 600 lines in Orion. This confirms that many observed U-lines are coming from isotopic species of one of the most abundant molecules in space. Since its first detection in 1976 in SgrB2 and in Orion A, acetaldehyde (CH_3CHO) was detected in many other numerous objects. If its deuterated species (CD_3CHO and CH_3CDO) have been previously studied in the millimeterwave range, the data concerning the 13C species are limited to few lines measured in 1957 up to 40 GHz. In this context we decided to study the 13C species of acetaldehyde. Acetaldehyde molecule displays a large amplitude motion: the hindered rotation of the methyl group with respect to the rest of the molecule. The analysis is performed with the Rho Axis Method. Recent versions of the codes include high orders term in order to reproduce the observed frequencies for large quantum numbers values as J-values as high as 70a,b,. Measurements and analysis of the rotational spectra of 13C isotopic species are in progress in Lille with a solid-state submillimetre-wave spectrometer (50-950 GHz), the first results will be presented. This work is supported by the contract ANR-08-BLAN-0054 and by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS). Carvajal, M.; Margulès, L.; Tercero, B.; et al.A&A 500, (2009) 1109 Margulès, L.; Huet, T. R.; Demaison J.; et al.,ApJ 714, (2010) 1120. Ikeda, M.; Ohishi, M.; Nummelin, A.; et al., ApJ, 560, (2001) 792 Kleiner, I.; Lopez, J.-C.; Blanco, S.; et al.J. Mol. Spectrosc. 197, (1999) 275 Elkeurti M.; Coudert, L. H.; Medvedev, I. R.; et al.J. Mol. Spectrosc. 263, (2010) 145 Kilb, R.W.; Lin, C.C.; and Wilson, E.B.J. Chem. Phys. 26, (1957) 1695 Kleiner, I. J. Mol. Spectrosc. 260, (2010) 1 Ilyushin, V.V.; Kryvda, A; and Alekseev, E;J. Mol. Spectrosc. 255, (2009) 32

  4. Discovering [superscript 13]C NMR, [superscript 1]H NMR, and IR Spectroscopy in the General Chemistry Laboratory through a Sequence of Guided-Inquiry Exercises

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Justice, David; Brauer, Shari; Landis, Amanda

    2012-01-01

    This sequence of three guided-inquiry labs is designed for a second-semester general chemistry course and challenges students to discover basic theoretical principles associated with [superscript 13]C NMR, [superscript 1]H NMR, and IR spectroscopy. Students learn to identify and explain basic concepts of magnetic resonance and vibrational…

  5. Optoacoustic 13C-breath test analyzer

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Helmrich, Günther; Wolff, Marcus

    2010-02-01

    The composition and concentration of exhaled volatile gases reflects the physical ability of a patient. Therefore, a breath analysis allows to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that employs a compact and simple set-up based on photoacoustic spectroscopy. It consists of two identical photoacoustic cells containing two breath samples, one taken before and one after capturing an isotope-marked substrate, where the most common isotope 12C is replaced to a large extent by 13C. The analyzer measures simultaneously the relative CO2 isotopologue concentrations in both samples by exciting the molecules on specially selected absorption lines with a semiconductor laser operating at a wavelength of 2.744 μm. For a reliable diagnosis changes of the 13CO2 concentration of 1% in the exhaled breath have to be detected at a concentration level of this isotope in the breath of about 500 ppm.

  6. A double-quadrature radiofrequency coil design for proton-decoupled carbon-13 magnetic resonance spectroscopy in humans at 7T.

    PubMed

    Serés Roig, Eulalia; Magill, Arthur W; Donati, Guillaume; Meyerspeer, Martin; Xin, Lijing; Ipek, Ozlem; Gruetter, Rolf

    2015-02-01

    Carbon-13 magnetic resonance spectroscopy ((13) C-MRS) is challenging because of the inherent low sensitivity of (13) C detection and the need for radiofrequency transmission at the (1) H frequency while receiving the (13) C signal, the latter requiring electrical decoupling of the (13) C and (1) H radiofrequency channels. In this study, we added traps to the (13) C coil to construct a quadrature-(13) C/quadrature-(1) H surface coil, with sufficient isolation between channels to allow simultaneous operation at both frequencies without compromise in coil performance. Isolation between channels was evaluated on the bench by measuring all coupling parameters. The quadrature mode of the quadrature-(13) C coil was assessed using in vitro (23) Na gradient echo images. The signal-to-noise ratio (SNR) was measured on the glycogen and glucose resonances by (13) C-MRS in vitro, compared with that obtained with a linear-(13) C/quadrature-(1) H coil, and validated by (13) C-MRS in vivo in the human calf at 7T. Isolation between channels was better than -30 dB. The (23) Na gradient echo images indicate a region where the field is strongly circularly polarized. The quadrature coil provided an SNR enhancement over a linear coil of 1.4, in vitro and in vivo. It is feasible to construct a double-quadrature (13) C-(1) H surface coil for proton decoupled sensitivity enhanced (13) C-NMR spectroscopy in humans at 7T. © 2014 Wiley Periodicals, Inc.

  7. Using 13C-labeled benzene and Raman gas spectroscopy to investigate respiration and biodegradation kinetics following soil contamination

    NASA Astrophysics Data System (ADS)

    Jochum, Tobias; Popp, Juergen; Frosch, Torsten

    2016-04-01

    Soil and groundwater contamination with benzene can cause serious environmental damages. However, many soil microorganisms are capable to adapt and known to strongly control the fate of organic contamination. Cavity enhanced Raman gas spectroscopy (CERS) was applied to investigate the short-term response of indigenous soil bacteria to a sudden surface contamination with benzene regarding the temporal variations of gas products and their exchange rates with the adjacent atmosphere. 13C-labeled benzene was spiked on a silty-loamy soil column (sampled from Hainich National Park, Germany) in order to track and separate the changes in heterotrophic soil respiration - involving 12CO2 and O2 - from the microbial process of benzene degradation, which ultimately forms 13CO2.1 The respiratory quotient (RQ) of 0.98 decreased significantly after the spiking and increased again within 33 hours to a value of 0.72. This coincided with maximum 13CO2 concentration rates (0.63 μ mol m-2 s-1), indicating highest benzene degradation at 33 hours after the spiking event. The diffusion of benzene in the headspace and the biodegradation into 13CO2 were simultaneously monitored and 12 days after the benzene spiking no measurable degradation was detected anymore.1 The RQ finally returned to a value of 0.96 demonstrating the reestablished aerobic respiration. In summary, this study shows the potential of combining Raman gas spectroscopy and stable isotopes to follow soil microbial biodegradation dynamics while simultaneously monitoring the underlying respiration behavior. Support by the Collaborative Research Center 1076 Aqua Diva is kindly acknowledged. We thank Beate Michalzik for soil analysis and discussion. 1. T. Jochum, B. Michalzik, A. Bachmann, J. Popp and T. Frosch, Analyst, 2015, 140, 3143-3149.

  8. Hyperpolarized Gas MRI: Technique and Applications

    PubMed Central

    McAdams, Holman P.; Kaushik, S. Sivaram; Driehuys, Bastiaan

    2015-01-01

    Synopsis Functional imaging today offers a rich world of information that is more sensitive to changes in lung structure and function than traditionally obtained pulmonary function tests. Hyperpolarized helium (3He) and xenon (129Xe) MR imaging of the lungs provided new sensitive contrast mechanisms to probe changes in pulmonary ventilation, microstructure and gas exchange. With the recent scarcity in the supply of 3He the field of hyperpolarized gas imaging shifted to the use of cheaper and naturally available 129Xe. Xenon is well tolerated and recent technical advances have ensured that the 129Xe image quality is on par with that of 3He. The added advantage of 129Xe is its solubility in pulmonary tissue, which allows exploring specific lung function characteristics involved in gas exchange and alveolar oxygenation. With a plethora of contrast mechanisms, hyperpolarized gases and 129Xe in particular, stands to be an excellent probe of pulmonary structure and function, and provide sensitive and non-invasive biomarkers for a wide variety of pulmonary diseases. PMID:25952516

  9. 13C NMR spectroscopy of the insoluble carbon of carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.; Pizzarello, S.; Frye, J. S.

    1987-01-01

    13C NMR spectra have been obtained of the insoluble carbon residues resulting from HF-digestion of three carbonaceous chondrites, Orgueil (C1), Murchison (CM2), and Allende (CV3). Spectra obtained using the cross polarization magic-angle spinning technique show two major features attributable respectively to carbon in aliphatic/olefinic structures. The spectrum obtained from the Allende sample was weak, presumably as a consequence of its low hydrogen content. Single pulse excitation spectra, which do not depend on 1H-13C polarization transfer for signal enhancement were also obtained. These spectra, which may be more representative of the total carbon in the meteorite samples, indicate a greater content of carbon in aromatic/olefinic structures. These results suggest that extensive polycyclic aromatic sheets are important structural features of the insoluble carbon of all three meteorites. The Orgueil and Murchison materials contain additional hydrogenated aromatic/olefinic and aliphatic groups.

  10. Multi-Spectroscopic Analysis of Seed Quality and 13C-Stable-Iotopologue Monitoring in Initial Growth Metabolism of Jatropha curcas L.

    PubMed Central

    Komatsu, Takanori; Ohishi, Risa; Shino, Amiu; Akashi, Kinya; Kikuchi, Jun

    2014-01-01

    In the present study, we applied nuclear magnetic resonance (NMR), as well as near-infrared (NIR) spectroscopy, to Jatropha curcas to fulfill two objectives: (1) to qualitatively examine the seeds stored at different conditions, and (2) to monitor the metabolism of J. curcas during its initial growth stage under stable-isotope-labeling condition (until 15 days after seeding). NIR spectra could non-invasively distinguish differences in storage conditions. NMR metabolic analysis of water-soluble metabolites identified sucrose and raffinose family oligosaccharides as positive markers and gluconic acid as a negative marker of seed germination. Isotopic labeling patteren of metabolites in germinated seedlings cultured in agar-plate containg 13C-glucose and 15N-nitrate was analyzed by zero-quantum-filtered-total correlation spectroscopy (ZQF-TOCSY) and 13C-detected 1H-13C heteronuclear correlation spectroscopy (HETCOR). 13C-detected HETOCR with 13C-optimized cryogenic probe provided high-resolution 13C-NMR spectra of each metabolite in molecular crowd. The 13C-13C/12C bondmer estimated from 1H-13C HETCOR spectra indicated that glutamine and arginine were the major organic compounds for nitrogen and carbon transfer from roots to leaves. PMID:25401292

  11. Lung Morphometry with Hyperpolarized 129Xe: Theoretical Background

    PubMed Central

    Sukstanskii, A.L.; Yablonskiy, D.A.

    2011-01-01

    The 3He lung morphometry technique, based on MRI measurements of hyperpolarized 3He gas diffusion in lung airspaces, provides unique information on the lung microstructure at the alveolar level. In vivo 3D tomographic images of standard morphological parameters (airspace chord length, lung parenchyma surface-to-volume ratio, number of alveoli per unit volume) can be generated from a rather short (several seconds) MRI scan. The technique is based on a theory of gas diffusion in lung acinar airways and experimental measurements of diffusion attenuated MRI signal. The present work aims at developing the theoretical background of a similar technique based on hyperpolarized 129Xe gas. As the diffusion coefficient and gyromagnetic ratio of 129Xe gas are substantially different from those of 3He gas, the specific details of the theory and experimental measurements with 129Xe should be amended. We establish phenomenological relationships between acinar airway geometrical parameters and the diffusion attenuated MR signal for human and small animal lungs, both normal lungs and lungs with mild emphysema. Optimal diffusion times are shown to be about 5 ms for human and 1.3 ms for small animals. The expected uncertainties in measuring main morphometrical parameters of the lungs are estimated in the framework of Bayesian probability theory. PMID:21713985

  12. Analysis of cocondensation of melamine and urea through carbon 13 enriched formaldehyde with C-13 nuclear magnetic resonance spectroscopy

    Treesearch

    Bunichiro Tomita; Chung-Yun Hse

    1995-01-01

    The urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins, and melamine-ureaformaldehyde (MUF) cocondensed resins were synthesized using the labeling method with 13C enriched formaldehyde under neutral conditions and their 13C-NMR (nuclear magnetic resonance) spectra were analyzed. The remarkable down-field...

  13. Dynamics of group II chaperonin and prefoldin probed by 13C NMR spectroscopy.

    PubMed

    Kurimoto, Eiji; Nishi, Yohei; Yamaguchi, Yoshiki; Zako, Tamotsu; Iizuka, Ryo; Ide, Naoki; Yohda, Masafumi; Kato, Koichi

    2008-03-01

    Group II chaperonin (CPN) cooperates with prefoldin (PFD), which forms a jellyfish-shaped heterohexameric complex with a molecular mass of 87 kDa. PFD captures an unfolded protein with the tentacles and transfers it to the cavity of CPN. Although X-ray crystal structures of CPN and PFD have been reported, no structural information has been so far available for the terminal regions of the PFD tentacles nor for the C-terminal segments of CPNs, which were regarded to be functionally significant in the previous studies. Here we report 13C NMR analyses on archaeal PFD, CPN, and their complex, focusing on those structurally uncharacterized regions. The PFD and CPN complexes selectively labeled with 13C at methionyl carbonyl carbons were separately and jointly subjected to NMR measurements. 13C NMR spectral data demonstrated that the N-terminal segment of the alpha and beta subunits of PFD as well as the C-terminal segments of the CPN hexadecamer retain significant degrees of freedom in internal motion even in the complex with a molecular mass of 1.1 MDa. 2007 Wiley-Liss, Inc.

  14. Metabolism of Primed, Constant Infusions of [1,2-13C2] Glycine and [1-13C1] Phenylalanine to Urinary Oxalate

    PubMed Central

    Knight, John; Assimos, Dean G.; Callahan, Michael F.; Holmes, Ross P.

    2010-01-01

    Objective Experiments in humans and rodents using oral doses of glycine and phenylalanine have suggested that the metabolism of these amino acids contributes to urinary oxalate excretion. To better define this contribution we have examined the primed, constant infusion of [1-13C1] phenylalanine and [1,2-13C2] glycine in the post-absorptive state in healthy adults. Materials/Methods Subjects were infused for 5 hours, collected hourly urines and had blood drawn every 30 minutes. Ion chromatography/mass spectrometry was used to measure [13C] enrichment in urinary oxalate, glycolate and hippurate, and the enrichment of 13C-amino acids in plasma samples was measured by gas chromatography/mass spectrometry. Results Following infusion with either 6 µmoles/kg/hr [1-13C1] phenylalanine or 6 µmoles/kg/hr [1,2-13C2] glycine, no isotopic glycolate or oxalate was detected in urine. Based on the limits of detection of our ion chromatography/mass spectroscopy method, these data indicate that < 0.7% of the urinary oxalate could be derived from phenylalanine catabolism and < 5% from glycine catabolism. Infusions with high levels of [1,2-13C2] glycine, 60 µmoles/kg/hr, increased mean plasma glycine by 29% and the whole body flux of glycine by 72%. Under these conditions glycine contributed 16.0 ± 1.6% and 16.6 ± 3.2% to urinary oxalate and glycolate excretion, respectively. Experiments using cultured hepatoma cells demonstrated that only at supra-physiological levels (>1mM) did glycine and phenylalanine metabolism increase oxalate synthesis. Conclusions These data suggest glycine and phenylalanine metabolism make only minor contributions to oxalate synthesis and urinary oxalate excretion. PMID:21036374

  15. The BRAF inhibitor vemurafenib activates mitochondrial metabolism and inhibits hyperpolarized pyruvate-lactate exchange in BRAF mutant human melanoma cells

    PubMed Central

    Delgado-Goni, Teresa; Falck Miniotis, Maria; Wantuch, Slawomir; Parkes, Harold G.; Marais, Richard; Workman, Paul; Leach, Martin O.; Beloueche-Babari, Mounia

    2016-01-01

    Understanding the impact of BRAF signaling inhibition in human melanoma on key disease mechanisms is important for developing biomarkers of therapeutic response and combination strategies to improve long term disease control. This work investigates the downstream metabolic consequences of BRAF inhibition with vemurafenib, the molecular and biochemical processes that underpin them, their significance for antineoplastic activity and potential as non-invasive imaging response biomarkers.1H NMR spectroscopy showed that vemurafenib decreases the glycolytic activity of BRAF mutant (WM266.4 and SKMEL28) but not BRAFWT (CHL-1 and D04) human melanoma cells. In WM266.4 cells, this was associated with increased acetate, glycine and myo-inositol levels and decreased fatty acyl signals, while the bioenergetic status was maintained. 13C NMR metabolic flux analysis of treated WM266.4 cells revealed inhibition of de novo lactate synthesis and glucose utilization, associated with increased oxidative and anaplerotic pyruvate carboxylase mitochondrial metabolism and decreased lipid synthesis. This metabolic shift was associated with depletion of HKII, acyl-CoA dehydrogenase 9, 3-phosphoglycerate dehydrogenase and monocarboxylate transporter (MCT) 1 and 4 in BRAF mutant but not BRAFWT cells and, interestingly, decreased BRAF mutant cell dependency on glucose and glutamine for growth. Further, the reduction in MCT1 expression observed led to inhibition of hyperpolarized 13C-pyruvate-lactate exchange, a parameter that is translatable to in vivo imaging studies, in live WM266.4 cells. In conclusion, our data provide new insights into the molecular and metabolic consequences of BRAF inhibition in BRAF-driven human melanoma cells that may have potential for combinatorial therapeutic targeting as well as non-invasive imaging of response. PMID:27765851

  16. Hyperpolarized (3)He magnetic resonance imaging: comparison with four-dimensional x-ray computed tomography imaging in lung cancer.

    PubMed

    Mathew, Lindsay; Wheatley, Andrew; Castillo, Richard; Castillo, Edward; Rodrigues, George; Guerrero, Thomas; Parraga, Grace

    2012-12-01

    Pulmonary functional imaging using four-dimensional x-ray computed tomographic (4DCT) imaging and hyperpolarized (3)He magnetic resonance imaging (MRI) provides regional lung function estimates in patients with lung cancer in whom pulmonary function measurements are typically dominated by tumor burden. The aim of this study was to evaluate the quantitative spatial relationship between 4DCT and hyperpolarized (3)He MRI ventilation maps. Eleven patients with lung cancer provided written informed consent to 4DCT imaging and MRI performed within 11 ± 14 days. Hyperpolarized (3)He MRI was acquired in breath-hold after inhalation from functional residual capacity of 1 L hyperpolarized (3)He, whereas 4DCT imaging was acquired over a single tidal breath of room air. For hyperpolarized (3)He MRI, the percentage ventilated volume was generated using semiautomated segmentation; for 4DCT imaging, pulmonary function maps were generated using the correspondence between identical tissue elements at inspiratory and expiratory phases to generate percentage ventilated volume. After accounting for differences in image acquisition lung volumes ((3)He MRI: 1.9 ± 0.5 L ipsilateral, 2.3 ± 0.7 L contralateral; 4DCT imaging: 1.2 ± 0.3 L ipsilateral, 1.3 ± 0.4 L contralateral), there was no significant difference in percentage ventilated volume between hyperpolarized (3)He MRI (72 ± 11% ipsilateral, 79 ± 12% contralateral) and 4DCT imaging (74 ± 3% ipsilateral, 75 ± 4% contralateral). Spatial correspondence between 4DCT and (3)He MRI ventilation was evaluated using the Dice similarity coefficient index (ipsilateral, 86 ± 12%; contralateral, 88 ± 12%). Despite rather large differences in image acquisition breathing maneuvers, good spatial and significant quantitative agreement was observed for ventilation maps on hyperpolarized (3)He MRI and 4DCT imaging, suggesting that pulmonary regions with good lung function are similar between modalities in this small group of patients with

  17. Matrix Isolation Spectroscopy and Photochemistry of Triplet 1,3-DIMETHYLPROPYNYLIDENE (MeC3Me)

    NASA Astrophysics Data System (ADS)

    Knezz, Stephanie N.; Waltz, Terese A.; Haenni, Benjamin C.; Burrmann, Nicola J.; McMahon, Robert J.

    2015-06-01

    Acetylenic carbenes and conjugated carbon chain molecules of the HCnH family are relevant to the study of combustion and chemistry in the interstellar medium (ISM). Propynylidene (HC3H) has been thoroughly studied and its structure and photochemistry determined. Here, we produce triplet diradical 1,3-dimethylpropynylidene (MeC3Me) photochemically from a precursor diazo compound in a cryogenic matrix (N2 or Ar) at 10 K, and spectroscopic analysis is carried out. The infrared, electronic absorption, and electron paramagnetic resonance spectra were examined in light of the parent (HC3H) system to ascertain the effect of alkyl substituents on delocalized carbon chains of this type. Computational analysis, EPR, and infrared analysis indicate a triplet ground state with a quasilinear structure. Infrared experiments reveal photochemical reaction to penten-3-yne upon UV irradiation. Further experimental and computational results pertaining to the structure and photochemistry will be presented. Seburg, R. A.; Patterson, E. V.; McMahon, R. J., Structure of Triplet Propynylidene (HCCCH) as Probed by IR, UV/vis, and EPR Spectroscopy of Isotopomers. Journal of the American Chemical Society 2009, 131 (26), 9442-9455.

  18. Exploiting Uniformly 13C-Labeled Carbohydrates for Probing Carbohydrate-Protein Interactions by NMR Spectroscopy.

    PubMed

    Nestor, Gustav; Anderson, Taigh; Oscarson, Stefan; Gronenborn, Angela M

    2017-05-03

    NMR of a uniformly 13 C-labeled carbohydrate was used to elucidate the atomic details of a sugar-protein complex. The structure of the 13 C-labeled Manα(1-2)Manα(1-2)ManαOMe trisaccharide ligand, when bound to cyanovirin-N (CV-N), was characterized and revealed that in the complex the glycosidic linkage torsion angles between the two reducing-end mannoses are different from the free trisaccharide. Distances within the carbohydrate were employed for conformational analysis, and NOE-based distance mapping between sugar and protein revealed that Manα(1-2)Manα(1-2)ManαOMe is bound more intimately with its two reducing-end mannoses into the domain A binding site of CV-N than with the nonreducing end unit. Taking advantage of the 13 C spectral dispersion of 13 C-labeled carbohydrates in isotope-filtered experiments is a versatile means for a simultaneous mapping of the binding interactions on both, the carbohydrate and the protein.

  19. Simultaneous two-voxel localized 1H-observed 13C-edited spectroscopy for in vivo MRS on rat brain at 9.4 T: Application to the investigation of excitotoxic lesions

    NASA Astrophysics Data System (ADS)

    Doan, Bich-Thuy; Autret, Gwennhael; Mispelter, Joël; Méric, Philippe; Même, William; Montécot-Dubourg, Céline; Corrèze, Jean-Loup; Szeremeta, Frédéric; Gillet, Brigitte; Beloeil, Jean-Claude

    2009-05-01

    13C spectroscopy combined with the injection of 13C-labeled substrates is a powerful method for the study of brain metabolism in vivo. Since highly localized measurements are required in a heterogeneous organ such as the brain, it is of interest to augment the sensitivity of 13C spectroscopy by proton acquisition. Furthermore, as focal cerebral lesions are often encountered in animal models of disorders in which the two brain hemispheres are compared, we wished to develop a bi-voxel localized sequence for the simultaneous bilateral investigation of rat brain metabolism, with no need for external additional references. Two sequences were developed at 9.4 T: a bi-voxel 1H-( 13C) STEAM-POCE (Proton Observed Carbon Edited) sequence and a bi-voxel 1H-( 13C) PRESS-POCE adiabatically decoupled sequence with Hadamard encoding. Hadamard encoding allows both voxels to be recorded simultaneously, with the same acquisition time as that required for a single voxel. The method was validated in a biological investigation into the neuronal damage and the effect on the Tri Carboxylic Acid cycle in localized excitotoxic lesions. Following an excitotoxic quinolinate-induced localized lesion in the rat cortex and the infusion of U- 13C glucose, two 1H-( 13C) spectra of distinct (4 × 4 × 4 mm 3) voxels, one centred on the injured hemisphere and the other on the contralateral hemisphere, were recorded simultaneously. Two 1H bi-voxel spectra were also recorded and showed a significant decrease in N-acetyl aspartate, and an accumulation of lactate in the ipsilateral hemisphere. The 1H-( 13C) spectra could be recorded dynamically as a function of time, and showed a fall in the glutamate/glutamine ratio and the presence of a stable glutamine pool, with a permanent increase of lactate in the ipsilateral hemisphere. This bi-voxel 1H-( 13C) method can be used to investigate simultaneously both brain hemispheres, and to perform dynamic studies. We report here the neuronal damage and the

  20. Line strength measurements and relative isotopic ratio 13C/12C measurements in carbon dioxide using cavity ring down spectroscopy

    NASA Astrophysics Data System (ADS)

    Kiseleva, M.; Mandon, J.; Persijn, S.; Harren, F. J. M.

    2018-01-01

    Accurate intensity measurements were performed for several lines of the two main isotopologues of carbon dioxide, using cavity ring down spectroscopy. Absorption spectra of the R52e line at 6112.8902 cm-1 (30014←00001 band) of 12CO2 and the P6e line at 6114.8580 cm-1 (30013←00001 band) of 13CO2 were recorded at pressures between 15 and 50 mbar at 298 K. Line shape analysis shows that Galatry profile, taking into account Dicke narrowing of spectral lines, better describes the measured spectra at all pressures than the Voigt profile. The values of Dicke narrowing parameter for both lines were found to be significantly smaller than those predicted based on the mass diffusion constant. The values of the line strength for R52e line of 12CO2 and P6e line of 13CO2 were determined with an uncertainty of 0.5%. These values were found to be in good agreement with the corresponding data available in literature, in particular with the most recent ab initio calculations. The results of relative isotopic ratio 13CO2/12CO2 measurements are also presented in pure carbon dioxide samples and in 400 μmol/mol carbon dioxide in air samples, using cavity ring down spectroscopy.

  1. Generalizing, Extending, and Maximizing Nitrogen-15 Hyperpolarization Induced by Parahydrogen in Reversible Exchange

    PubMed Central

    2017-01-01

    Signal Amplification by Reversible Exchange (SABRE) is a fast and convenient NMR hyperpolarization method that uses cheap and readily available para-hydrogen as a hyperpolarization source. SABRE can hyperpolarize protons and heteronuclei. Here we focus on the heteronuclear variant introduced as SABRE-SHEATH (SABRE in SHield Enables Alignment Transfer to Heteronuclei) and nitrogen-15 targets in particular. We show that 15N-SABRE works more efficiently and on a wider range of substrates than 1H-SABRE, greatly generalizing the SABRE approach. In addition, we show that nitrogen-15 offers significantly extended T1 times of up to 12 minutes. Long T1 times enable higher hyperpolarization levels but also hold the promise of hyperpolarized molecular imaging for several tens of minutes. Detailed characterization and optimization are presented, leading to nitrogen-15 polarization levels in excess of 10% on several compounds. PMID:28392884

  2. 13C NMR spectroscopy characterization of particle-size fractionated soil organic carbon in subalpine forest and grassland ecosystems.

    PubMed

    Shiau, Yo-Jin; Chen, Jenn-Shing; Chung, Tay-Lung; Tian, Guanglong; Chiu, Chih-Yu

    2017-12-01

    Soil organic carbon (SOC) and carbon (C) functional groups in different particle-size fractions are important indicators of microbial activity and soil decomposition stages under wildfire disturbances. This research investigated a natural Tsuga forest and a nearby fire-induced grassland along a sampling transect in Central Taiwan with the aim to better understand the effect of forest wildfires on the change of SOC in different soil particle scales. Soil samples were separated into six particle sizes and SOC was characterized by solid-state 13 C nuclear magnetic resonance spectroscopy in each fraction. The SOC content was higher in forest than grassland soil in the particle-size fraction samples. The O-alkyl-C content (carbohydrate-derived structures) was higher in the grassland than the forest soils, but the alkyl-C content (recalcitrant substances) was higher in forest than grassland soils, for a higher humification degree (alkyl-C/O-alkyl-C ratio) in forest soils for all the soil particle-size fractions. High humification degree was found in forest soils. The similar aromaticity between forest and grassland soils might be attributed to the fire-induced aromatic-C content in the grassland that offsets the original difference between the forest and grassland. High alkyl-C content and humification degree and low C/N ratios in the fine particle-size fractions implied that undecomposed recalcitrant substances tended to accumulate in the fine fractions of soils.

  3. Signal-to-noise ratio comparison of encoding methods for hyperpolarized noble gas MRI

    NASA Technical Reports Server (NTRS)

    Zhao, L.; Venkatesh, A. K.; Albert, M. S.; Panych, L. P.

    2001-01-01

    Some non-Fourier encoding methods such as wavelet and direct encoding use spatially localized bases. The spatial localization feature of these methods enables optimized encoding for improved spatial and temporal resolution during dynamically adaptive MR imaging. These spatially localized bases, however, have inherently reduced image signal-to-noise ratio compared with Fourier or Hadamad encoding for proton imaging. Hyperpolarized noble gases, on the other hand, have quite different MR properties compared to proton, primarily the nonrenewability of the signal. It could be expected, therefore, that the characteristics of image SNR with respect to encoding method will also be very different from hyperpolarized noble gas MRI compared to proton MRI. In this article, hyperpolarized noble gas image SNRs of different encoding methods are compared theoretically using a matrix description of the encoding process. It is shown that image SNR for hyperpolarized noble gas imaging is maximized for any orthonormal encoding method. Methods are then proposed for designing RF pulses to achieve normalized encoding profiles using Fourier, Hadamard, wavelet, and direct encoding methods for hyperpolarized noble gases. Theoretical results are confirmed with hyperpolarized noble gas MRI experiments. Copyright 2001 Academic Press.

  4. Blockade of hyperpolarizing currents produces a dose-dependent effect on heart rate.

    PubMed

    Ziyatdinova, N I; Giniatullin, R A; Svyatova, N V; Zefirov, T L

    2001-03-01

    Intravenous injection of ZD 7288, a new specific hyperpolarizing current blocker, dose-dependently reduces heart rate in adult rats. The autonomic nervous system modulates changes in heart rate caused by hyperpolarizing currents.

  5. Trace level detection of compounds related to the chemical weapons convention by 1H-detected 13C NMR spectroscopy executed with a sensitivity-enhanced, cryogenic probehead.

    PubMed

    Cullinan, David B; Hondrogiannis, George; Henderson, Terry J

    2008-04-15

    Two-dimensional 1H-13C HSQC (heteronuclear single quantum correlation) and fast-HMQC (heteronuclear multiple quantum correlation) pulse sequences were implemented using a sensitivity-enhanced, cryogenic probehead for detecting compounds relevant to the Chemical Weapons Convention present in complex mixtures. The resulting methods demonstrated exceptional sensitivity for detecting the analytes at trace level concentrations. 1H-13C correlations of target analytes at < or = 25 microg/mL were easily detected in a sample where the 1H solvent signal was approximately 58,000-fold more intense than the analyte 1H signals. The problem of overlapping signals typically observed in conventional 1H spectroscopy was essentially eliminated, while 1H and 13C chemical shift information could be derived quickly and simultaneously from the resulting spectra. The fast-HMQC pulse sequences generated magnitude mode spectra suitable for detailed analysis in approximately 4.5 h and can be used in experiments to efficiently screen a large number of samples. The HSQC pulse sequences, on the other hand, required roughly twice the data acquisition time to produce suitable spectra. These spectra, however, were phase-sensitive, contained considerably more resolution in both dimensions, and proved to be superior for detecting analyte 1H-13C correlations. Furthermore, a HSQC spectrum collected with a multiplicity-edited pulse sequence provided additional structural information valuable for identifying target analytes. The HSQC pulse sequences are ideal for collecting high-quality data sets with overnight acquisitions and logically follow the use of fast-HMQC pulse sequences to rapidly screen samples for potential target analytes. Use of the pulse sequences considerably improves the performance of NMR spectroscopy as a complimentary technique for the screening, identification, and validation of chemical warfare agents and other small-molecule analytes present in complex mixtures and environmental

  6. Magnetic resonance imaging with hyperpolarized agents: methods and applications

    NASA Astrophysics Data System (ADS)

    Adamson, Erin B.; Ludwig, Kai D.; Mummy, David G.; Fain, Sean B.

    2017-07-01

    In the past decade, hyperpolarized (HP) contrast agents have been under active development for MRI applications to address the twin challenges of functional and quantitative imaging. Both HP helium (3He) and xenon (129Xe) gases have reached the stage where they are under study in clinical research. HP 129Xe, in particular, is poised for larger scale clinical research to investigate asthma, chronic obstructive pulmonary disease, and fibrotic lung diseases. With advances in polarizer technology and unique capabilities for imaging of 129Xe gas exchange into lung tissue and blood, HP 129Xe MRI is attracting new attention. In parallel, HP 13C and 15N MRI methods have steadily advanced in a wide range of pre-clinical research applications for imaging metabolism in various cancers and cardiac disease. The HP [1-13C] pyruvate MRI technique, in particular, has undergone phase I trials in prostate cancer and is poised for investigational new drug trials at multiple institutions in cancer and cardiac applications. This review treats the methodology behind both HP gases and HP 13C and 15N liquid state agents. Gas and liquid phase HP agents share similar technologies for achieving non-equilibrium polarization outside the field of the MRI scanner, strategies for image data acquisition, and translational challenges in moving from pre-clinical to clinical research. To cover the wide array of methods and applications, this review is organized by numerical section into (1) a brief introduction, (2) the physical and biological properties of the most common polarized agents with a brief summary of applications and methods of polarization, (3) methods for image acquisition and reconstruction specific to improving data acquisition efficiency for HP MRI, (4) the main physical properties that enable unique measures of physiology or metabolic pathways, followed by a more detailed review of the literature describing the use of HP agents to study: (5) metabolic pathways in cancer and cardiac

  7. Anomalous 13C isotope abundances in C3S and C4H observed toward the cold interstellar cloud, Taurus Molecular Cloud-1.

    PubMed

    Sakai, Nami; Takano, Shuro; Sakai, Takeshi; Shiba, Shoichi; Sumiyoshi, Yoshihiro; Endo, Yasuki; Yamamoto, Satoshi

    2013-10-03

    We have studied the abundances of the (13)C isotopic species of C3S and C4H in the cold molecular cloud, Taurus Molecular Cloud-1 (Cyanopolyyne Peak), by radioastronomical observations of their rotational emission lines. The CCCS/(13)CCCS and CCCS/C(13)CCS ratios are determined to be >206 and 48 ± 15, respectively. The CC(13)CS line is identified with the aid of laboratory microwave spectroscopy, and the range of the CCCS/CC(13)CS ratio is found to be from 30 to 206. The abundances of at least two (13)C isotopic species of C3S are thus found to be different. Similarly, it is found that the abundances of the four (13)C isotopic species of C4H are not equivalent. The CCCCH/(13)CCCCH, CCCCH/C(13)CCCH, CCCCH/CC(13)CCH, and CCCCH/CCC(13)CH ratios are evaluated to be 141 ± 44, 97 ± 27, 82 ± 15, and 118 ± 23, respectively. Here the errors denote 3 times the standard deviation. These results will constrain the formation pathways of C3S and C4H, if the nonequivalence is caused during the formation processes of these molecules. The exchange reactions after the formation of these two molecules may also contribute to the nonequivalence. In addition, we have confirmed that the (12)C/(13)C ratio of some species are significantly higher than the interstellar elemental (12)C/(13)C ratio of 60-70. The observations of the (13)C isotopic species provide us with rich information on chemical processes in cold interstellar clouds.

  8. Detection of C-13O radio emission from C-13-rich carbon stars

    NASA Technical Reports Server (NTRS)

    Jura, M.; Kahane, C.; Omont, A.

    1988-01-01

    A high ratio of C-13O radio emission in the J = 1-0 rotational line has been detected from three mass-losing carbon stars which optical data indicate have high C-13/C12 ratios. Since chemical fractionation, isotope-dependent photodissociation and opacity in the rotational and vibrational lines may not raise significantly the C-13O ratio above the actual C-13/C-12 ratio in these circumstellar envelopes, the relative abundance of C-13 in these stars might be even greater by perhaps a factor of two than previously believed. About 15 percent of all luminous carbon stars are C-13-rich, and these stars may play a significant role in the enhancement in the C-13/C12 ratio that has occurred during the past 4.6 billion years since the formation of the sun.

  9. Origin of 5-hydroxytryptamine-induced hyperpolarization of the rat superior cervical ganglion and vagus nerve.

    PubMed Central

    Ireland, S. J.

    1987-01-01

    1 5-Hydroxytryptamine (5-HT)-induced membrane potential changes were recorded extracellularly from rat superior cervical ganglia (SCG) and cervical vagus nerves in vitro. 2 On the SCG, low concentrations of 5-HT (1 X 10(-8)-3 X 10(-7) M) induced concentration-related hyperpolarization responses. Higher concentrations of 5-HT (1 X 10(-6) 1 X 10(-4) M) induced complex responses which typically consisted of an initial hyperpolarization, followed by a depolarization and subsequent after-hyperpolarization. The depolarization, but not the initial hyperpolarization, was blocked by metoclopramide (3 X 10(-5) M), quipazine (1 X 10(-6) M) or MDL 72222 (1 X 10(-5) M). 3 5-HT-induced hyperpolarization of the SCG was potentiated when the amount of calcium chloride added to the superfusion medium was reduced from 2.5 to 0.15 mmol l-1. Hyperpolarization responses recorded from SCG preparations superfused with this low-calcium medium were unaffected by the substitution of lithium chloride for sodium chloride and were potentiated by the omission of potassium ions. Ouabain (1 X 10(-3) M) abolished both the hyperpolarization and the depolarization induced by 5-HT. 4 On the vagus nerve, 5-HT (1 X 10(-7) - 3 X 10(-5)M) did not induce initial hyperpolarization in either normal or low-calcium Krebs-Henseleit medium. However, in the latter solution only, depolarization responses induced by 5-HT at concentrations of 1 X 10(-6)M or greater were followed by hyperpolarization. Both the depolarization and the post-5-HT hyperpolarization were blocked by metoclopramide (3 X 10(-5)M) but were unaffected by spiperone (1 X 10(-7)M). 5 On the vagus nerve, post-5-HT hyperpolarization responses were selectively and reversibly inhibited by ouabain, and by superfusion with Krebs-Henseleit medium that was either potassium-free or contained lithium chloride in place of sodium chloride. 7 These results demonstrate the generation in the rat SCG of a 5-HT-induced hyperpolarization response that is not

  10. [2,4-13C2]-β-Hydroxybutyrate Metabolism in Human Brain

    PubMed Central

    Pan, Jullie W.; de Graaf, Robin A.; Petersen, Kitt F.; Shulman, Gerald I.; Hetherington, Hoby P.; Rothman, Douglas L.

    2010-01-01

    Summary Infusions of [2,4-13C2]-β-hydroxybutyrate and 1H–13C polarization transfer spectroscopy were used in normal human subjects to detect the entry and metabolism of β-hydroxybutyrate in the brain. During the 2-hour infusion study, 13C label was detectable in the β-hydroxybutyrate resonance positions and in the amino acid pools of glutamate, glutamine, and aspartate. With a plasma concentration of 2.25 ± 0.24 mmol/L (four volunteers), the apparent tissue β-hydroxybutyrate concentration reached 0.18 ± 0.06 mmol/L during the last 20 minutes of the study. The relative fractional enrichment of 13C-4-glutamate labeling was 6.78 ± 1.71%, whereas 13C-4-glutamine was 5.68 ± 1.84%. Steady-state modeling of the 13C label distribution in glutamate and glutamine suggests that, under these conditions, the consumption of the β-hydroxybutyrate is predominantly neuronal, used at a rate of 0.032 ± 0.009 mmol · kg−1 · min−1, and accounts for 6.4 ± 1.6% of total acetyl coenzyme A oxidation. These results are consistent with minimal accumulation of cerebral ketones with rapid utilization, implying blood–brain barrier control of ketone oxidation in the nonfasted adult human brain. PMID:12142574

  11. Level anti-crossings are a key factor for understanding para-hydrogen-induced hyperpolarization in SABRE experiments.

    PubMed

    Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Ivanov, Konstantin L; Kaptein, Robert

    2013-10-07

    Various hyperpolarization methods are able to enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) by several orders of magnitude. Among these methods are para-hydrogen-induced polarization (PHIP) and signal amplification by reversible exchange (SABRE), which exploit the strong nuclear alignment of para-hydrogen. Several SABRE experiments have been reported but, so far, it has not been possible to account for the experimentally observed sign and magnetic-field dependence of substrate polarization. Herein, we present an analysis based on level anti-crossings (LACs), which provides a complete understanding of the SABRE effect. The field-dependence of both net and anti-phase polarization is measured for several ligands, which can be reproduced by the theory. The similar SABRE field-dependence for different ligands is also explained. In general, the LAC concept allows complex spin dynamics to be unraveled, and is crucial for optimizing the performance of novel hyperpolarization methods in NMR and MRI techniques. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Isotopically Enriched C-13 Diamond Anvil as a Stress Sensor in High Pressure Experiments

    NASA Astrophysics Data System (ADS)

    Vohra, Yogesh; Qiu, Wei; Kondratyev, Andreiy; Velisavljevic, Nenad; Baker, Paul

    2004-03-01

    The conventional high pressure diamond anvils were modified by growing an isotopically pure C-13 diamond layer by microwave plasma chemical vapor deposition using methane/hydrogen/oxygen chemistry. The isotopically pure C-13 nature of the culet of the diamond anvil was confirmed by the Raman spectroscopy measurements. This isotopically engineered diamond anvil was used against a natural abundance diamond anvil for high pressure experiments in a diamond anvil cell. Spatial resolved Raman spectroscopy was used to measure the stress induced shift in the C-13 layer as well as the undelying C-12 layer to ultra high pressures. The observed shift and splitiing of the diamond first order Raman spectrum was correlated with the stress distribution in the diamond anvil cell. The experimental results will be compared with the finite element modeling results using NIKE-2D software in order to create a mathematical relationship between sets of the following parameters: vertical (z axis) distance; horizontal (r axis) distance; max shear stress, and pressure. The isotopically enriched diamond anvils offer unique opportunities to measure stress distribution in the diamond anvil cell devices.

  13. Methyl fluoride-13C in nematic liquid crystals: Anisotropy of the indirect 13C-19F spin-spin coupling and of the 1H, 13C, and 19F chemical shieldings

    NASA Astrophysics Data System (ADS)

    Jokisaari, J.; Hiltunen, Y.; Lounila, J.

    1986-09-01

    The anisotropy of the indirect 13C-19F spin-spin coupling tensor of methyl fluoride-13C in the liquid crystals ZLI 1167, EBBA, their mixtures, phase IV, and phase 1221 was studied by applying 1H and 19F NMR spectroscopy. The relative anisotropy ΔJCF/JCF gets values between -4.3 (in ZLI 1167) and +30.7 (in EBBA) when determined in the conventional way from the experimental dipolar coupling constants taking into account only harmonic vibrational corrections. The inclusion of the deformational corrections in both the direct and indirect C-F coupling tensors leads to a constant, solvent independent relative anisotropy of -2.5±0.2. This result is also obtained when a mixture of the liquid crystals ZLI 1167 and EBBA is used which mixture gives an undistorted geometry for methyl fluoride. The chemical shielding anisotropies ΔσH, ΔσC, and ΔσF for methyl fluoride were determined by applying the method of mixing two thermotropic nematogens (ZLI 1167 and EBBA) with opposite anisotropies of diamagnetic susceptibility. The results ΔσH =+5.2±0.2 ppm, ΔσC =+87±4 ppm, and ΔσF =-90±4 ppm are in fair agreement with theoretical calculations.

  14. Preparation of 13C/15N-labeled oligomers using the polymerase chain reaction

    DOEpatents

    Chen, Xian; Gupta, Goutam; Bradbury, E. Morton

    2001-01-01

    Preparation of .sup.13 C/.sup.15 N-labeled DNA oligomers using the polymerase chain reaction (PCR). A PCR based method for uniform (.sup.13 C/.sup.15 N)-labeling of DNA duplexes is described. Multiple copies of a blunt-ended duplex are cloned into a plasmid, each copy containing the sequence of interest and restriction Hinc II sequences at both the 5' and 3' ends. PCR using bi-directional primers and uniformly .sup.13 C/.sup.15 N-labeled dNTP precursors generates labeled DNA duplexes containing multiple copies of the sequence of interest. Twenty-four cycles of PCR, followed by restriction and purification, gave the uniformly .sup.13 C/.sup.15 N-labeled duplex sequence with a 30% yield. Such labeled duplexes find significant applications in multinuclear magnetic resonance spectroscopy.

  15. Noninvasive in Vivo MRI Assessment of Prostate Cancer Using Hyperpolarized 15N Choline

    DTIC Science & Technology

    2017-01-01

    for hyperpolarized 15N NMR and MRI, and (iii) to evaluate the efficacy of using hyperpolarized 15N choline as in vivo biomarker for prostate cancer...accomplished. GOAL 3. to evaluate the efficacy of using hyperpolarized 15N choline as in vivo biomarker for prostate cancer. For this Goal, the...science and technology? We currently have no metric to evaluate that the results of this project has any significant impact on public awareness or

  16. Comparison of 13C Nuclear Magnetic Resonance and Fourier Transform Infrared spectroscopy for estimating humification and aromatization of soil organic matter

    NASA Astrophysics Data System (ADS)

    Rogers, K.; Cooper, W. T.; Hodgkins, S. B.; Verbeke, B. A.; Chanton, J.

    2017-12-01

    Solid state direct polarization 13C NMR spectroscopy (DP-NMR) is generally considered the most quantitatively reliable method for soil organic matter (SOM) characterization, including determination of the relative abundances of carbon functional groups. These functional abundances can then be used to calculate important soil parameters such as degree of humification and extent of aromaticity that reveal differences in reactivity or compositional changes along gradients (e.g. thaw chronosequence in permafrost). Unfortunately, the 13C NMR DP-NMR experiment is time-consuming, with a single sample often requiring over 24 hours of instrument time. Alternatively, solid state cross polarization 13C NMR (CP-NMR) can circumvent this problem, reducing analyses times to 4-6 hours but with some loss of quantitative reliability. Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR-FTIR) is a quick and relatively inexpensive method for characterizing solid materials, and has been suggested as an alternative to NMR for analysis of soil organic matter and determination of humification (HI) and aromatization (AI) indices. However, the quantitative reliability of ATR-FTIR for SOM analyses has never been verified, nor have any ATR-FTIR data been compared to similar measurements by NMR. In this work we focused on FTIR vibrational bands that correspond to the three functional groups used to calculate HI and AI values: carbohydrates (1030 cm-1), aromatics (1510, 1630 cm-1), and aliphatics (2850, 2920 cm-1). Data from ATR-FTIR measurements were compared to analogous quantitation by DP- and CP-NMR using peat samples from Sweden, Minnesota, and North Carolina. DP- and CP-NMR correlate very strongly, although the correlations are not always 1:1. Direct comparison of relative abundances of the three functional groups determined by NMR and ATR-FTIR yielded satisfactory results for carbohydrates (r2= 0.78) and aliphatics (r2=0.58), but less so for aromatics (r2= 0

  17. Muscle contraction during hyperpolarizing currents in the crab.

    PubMed

    Uchitel, O D; García, H

    1974-01-01

    Isolated muscle fibers from the motor legs of the crab Trichodactilus dilocarcinus were submitted to strong hyperpolarizing currents of varied intensities which produced tension during the current pulse. Threshold for tension was obtained with intensities of about 0.2 x 10(-5) A, changing E(m) to ca. -150 mV (starting from a resting potential ofca. -80 mV). At the closure of the anodic square pulse, a second phase of tension usually appeared superimposed upon the one obtained during hyperpolarization. The first phase of tension increased with the increase of Ca(++) concentration in the bath. Sr(++) produced the same type of mechanical output as Ca(++). When added to the normal Ca(++) concentration, Ba(++) and Mn(++) in low concentrations (up to 21.5 mM) also increased the tension of this phase, but at higher concentrations they blocked both phases while Mg(++) did not alter the tension. Of all the divalent cations employed, only Sr(++) is capable of developing tension as a substitute for Ca(++) in the external media. Procaine administered in a dosage (5 x 10(-3) W/V)which would suppress the contracture due to caffeine (10 mM), did not modify the tension developed during the hyperpolarization. The preceding data indicate that the Ca(++) required for tension during hyperpolarization comes from sites which would differ from those usually postulated for tension due to depolarization in the muscle fibers of other crustaceans (American crayfish). Furthermore, the external source of Ca(++) appears to be one mainly implicated in the induction of tension due to inward current pulses.

  18. System for δ13C-CO2 and xCO2 analysis of discrete gas samples by cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Dickinson, Dane; Bodé, Samuel; Boeckx, Pascal

    2017-11-01

    A method was devised for analysing small discrete gas samples (50 mL syringe) by cavity ring-down spectroscopy (CRDS). Measurements were accomplished by inletting 50 mL syringed samples into an isotopic-CO2 CRDS analyser (Picarro G2131-i) between baseline readings of a reference air standard, which produced sharp peaks in the CRDS data feed. A custom software script was developed to manage the measurement process and aggregate sample data in real time. The method was successfully tested with CO2 mole fractions (xCO2) ranging from < 0.1 to > 20 000 ppm and δ13C-CO2 values from -100 up to +30 000 ‰ in comparison to VPDB (Vienna Pee Dee Belemnite). Throughput was typically 10 samples h-1, with 13 h-1 possible under ideal conditions. The measurement failure rate in routine use was ca. 1 %. Calibration to correct for memory effects was performed with gravimetric gas standards ranging from 0.05 to 2109 ppm xCO2 and δ13C-CO2 levels varying from -27.3 to +21 740 ‰. Repeatability tests demonstrated that method precision for 50 mL samples was ca. 0.05 % in xCO2 and 0.15 ‰ in δ13C-CO2 for CO2 compositions from 300 to 2000 ppm with natural abundance 13C. Long-term method consistency was tested over a 9-month period, with results showing no systematic measurement drift over time. Standardised analysis of discrete gas samples expands the scope of application for isotopic-CO2 CRDS and enhances its potential for replacing conventional isotope ratio measurement techniques. Our method involves minimal set-up costs and can be readily implemented in Picarro G2131-i and G2201-i analysers or tailored for use with other CRDS instruments and trace gases.

  19. In vivo 13C MRS in the mouse brain at 14.1 Tesla and metabolic flux quantification under infusion of [1,6-13C2]glucose.

    PubMed

    Lai, Marta; Lanz, Bernard; Poitry-Yamate, Carole; Romero, Jackeline F; Berset, Corina M; Cudalbu, Cristina; Gruetter, Rolf

    2017-01-01

    In vivo 13 C magnetic resonance spectroscopy (MRS) enables the investigation of cerebral metabolic compartmentation while, e.g. infusing 13 C-labeled glucose. Metabolic flux analysis of 13 C turnover previously yielded quantitative information of glutamate and glutamine metabolism in humans and rats, while the application to in vivo mouse brain remains exceedingly challenging. In the present study, 13 C direct detection at 14.1 T provided highly resolved in vivo spectra of the mouse brain while infusing [1,6- 13 C 2 ]glucose for up to 5 h. 13 C incorporation to glutamate and glutamine C4, C3, and C2 and aspartate C3 were detected dynamically and fitted to a two-compartment model: flux estimation of neuron-glial metabolism included tricarboxylic acid cycle (TCA) flux in astrocytes (V g  = 0.16 ± 0.03 µmol/g/min) and neurons (V TCA n  = 0.56 ± 0.03 µmol/g/min), pyruvate carboxylase activity (V PC  = 0.041 ± 0.003 µmol/g/min) and neurotransmission rate (V NT  = 0.084 ± 0.008 µmol/g/min), resulting in a cerebral metabolic rate of glucose (CMR glc ) of 0.38 ± 0.02 µmol/g/min, in excellent agreement with that determined with concomitant 18 F-fluorodeoxyglucose positron emission tomography ( 18 FDG PET).We conclude that modeling of neuron-glial metabolism in vivo is accessible in the mouse brain from 13 C direct detection with an unprecedented spatial resolution under [1,6- 13 C 2 ]glucose infusion.

  20. Nuclear spin hyperpolarization of the solvent using signal amplification by reversible exchange (SABRE).

    PubMed

    Moreno, Karlos X; Nasr, Khaled; Milne, Mark; Sherry, A Dean; Goux, Warren J

    2015-08-01

    Here we report the polarization of the solvent OH protons by SABRE using standard iridium-based catalysts under slightly acidic conditions. Solvent polarization was observed in the presence of a variety of structurally similar N-donor substrates while no solvent enhancement was observed in the absence of substrate or para-hydrogen (p-H2). Solvent polarization was sensitive to the polarizing field and catalyst:substrate ratio in a manner similar to that of substrate protons. SABRE experiments with pyridine-d5 suggest a mechanism where hyperpolarization is transferred from the free substrate to the solvent by chemical exchange while measured hyperpolarization decay times suggest a complimentary mechanism which occurs by direct coordination of the solvent to the catalytic complex. We found the solvent hyperpolarization to decay nearly 3 times more slowly than its characteristic spin-lattice relaxation time suggesting that the hyperpolarized state of the solvent may be sufficiently long lived (∼20s) to hyperpolarize biomolecules having exchangeable protons. This route may offer future opportunities for SABRE to impact metabolic imaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Nuclear spin hyperpolarization of the solvent using signal amplification by reversible exchange (SABRE)

    NASA Astrophysics Data System (ADS)

    Moreno, Karlos X.; Nasr, Khaled; Milne, Mark; Sherry, A. Dean; Goux, Warren J.

    2015-08-01

    Here we report the polarization of the solvent OH protons by SABRE using standard iridium-based catalysts under slightly acidic conditions. Solvent polarization was observed in the presence of a variety of structurally similar N-donor substrates while no solvent enhancement was observed in the absence of substrate or para-hydrogen (p-H2). Solvent polarization was sensitive to the polarizing field and catalyst:substrate ratio in a manner similar to that of substrate protons. SABRE experiments with pyridine-d5 suggest a mechanism where hyperpolarization is transferred from the free substrate to the solvent by chemical exchange while measured hyperpolarization decay times suggest a complimentary mechanism which occurs by direct coordination of the solvent to the catalytic complex. We found the solvent hyperpolarization to decay nearly 3 times more slowly than its characteristic spin-lattice relaxation time suggesting that the hyperpolarized state of the solvent may be sufficiently long lived (∼20 s) to hyperpolarize biomolecules having exchangeable protons. This route may offer future opportunities for SABRE to impact metabolic imaging.

  2. Structural Identification of 19 Purified Isomers of the OPV Acceptor Material bisPCBM by 13C NMR and UV-Vis Absorption Spectroscopy and High-Performance Liquid Chromatography.

    PubMed

    Liu, Tong; Abrahams, Isaac; Dennis, T John S

    2018-04-26

    The molecular structures of 19 purified isomers of bis-phenyl-C 62 -butyric acid methyl ester were identified by a combination of 13 C NMR and UV-vis absorption spectroscopies and high-performance liquid chromatography (HPLC) retention time analysis. All 19 isomers are dicyclopropafullerenes (none are homofullerenes). There were seven isomers with C 1 molecular point-group symmetry, four with C s , six with C 2 , one with C 2 v , and one with C 2 h symmetry. The C 2 h , C 2 v , and all five nonequatorial C 1 isomers were unambiguously assigned to their respective HPLC fractions. For the other 12 isomers, the 13 C NMR and UV-vis spectra placed them in six groups of two same-symmetry isomers. On the basis of the widely spaced HPLC retention times of the two isomers within each of these six groups, and the empirical inverse correlation between retention time and addend spacing, each isomer was assigned to its corresponding HPLC fraction. In addition, the missing trans-1 isomer was found, purified, and characterized.

  3. Stabilization of polar soils organic matter: insights from 13-C NMR and ESR spectroscopy

    NASA Astrophysics Data System (ADS)

    Abakumov, Evgeny

    2017-04-01

    Polar soils play a key role in the global carbon balance, as they contain maximum stocks of soil organic matter (SOM) within the whole pedosphere. Low temperature and severe conditions provides the accumulation of large amounts of organic matter in permafrost soils over thousands of years. The quality and composition of organic matter of polar soils is underestimated. In order to better understand the implication of permafrost SOM to greenhouse gas emissions, an accurate knowledge of its spatial distribution, both in terms of quantity and quality (i.e. biodegradability, chemical composition and humification degree) is needed. The chemical composition of SOM determines its decomposability and, therefore, it determines the rate at which carbon may be transferred from soils to the atmosphere under warming conditions. Biodegradability of SOM has been related to humification degree, as more advanced stages in the humification process imply a depletion of the labile molecules, as well as an increase in the bulk aromaticity, which provides a higher stability of the SOM. Soils from Antarctic and different sectors of Arctic biome were investigated by 13-C NMR and electron spin resonance spectroscopy. It was shown, that the characteristic feature of polar soils humic acids is the dominance of aliphatic compounds on the aromatic one. This is related to the humification precursors component composition, namely to dominance of the remnants of lower plants, especially in Antarctic and low period of biological activity, which regulates the humification rate. Humic acids of Antarctic and various Arctic soils show the portion of aromatic components not more than 30 %. ESR spectroscopy shown that the concentration of free radicals is proportional to the humic acids stabilization degree. Less humified organic materials show the highest portion of free radical content, while the most developed soils and buried organic layers show decreased contents of free radicals. The database on

  4. Effects of pulmonary inhalation on hyperpolarized krypton-83 magnetic resonance T1 relaxation

    NASA Astrophysics Data System (ADS)

    Stupic, K. F.; Elkins, N. D.; Pavlovskaya, G. E.; Repine, J. E.; Meersmann, T.

    2011-07-01

    The 83Kr magnetic resonance (MR) relaxation time T1 of krypton gas in contact with model surfaces was previously found to be highly sensitive to surface composition, surface-to-volume ratio, and surface temperature. The work presented here explored aspects of pulmonary 83Kr T1 relaxation measurements in excised lungs from healthy rats using hyperpolarized (hp) 83Kr with approximately 4.4% spin polarization. MR spectroscopy without spatial resolution was applied to the ex vivo lungs that actively inhale hp 83Kr through a custom designed ventilation system. Various inhalation schemes were devised to study the influence of anatomical dead space upon the measured 83Kr T1 relaxation times. The longitudinal 83Kr relaxation times in the distal airways and the respiratory zones were independent of the lung inhalation volume, with T1 = 1.3 s and T1 = 1.0 s, depending only on the applied inhalation scheme. The obtained data were highly reproducible between different specimens. Further, the 83Kr T1 relaxation times in excised lungs were unaffected by the presence of up to 40% oxygen in the hp gas mixture. The results support the possible importance of 83Kr as a biomarker for evaluating lung function.

  5. Hydrogen bonds determine the signal arrangement in 13C NMR spectra of nicotinate

    NASA Astrophysics Data System (ADS)

    Gamov, G. A.; Kuranova, N. N.; Pogonin, A. E.; Aleksandriiskii, V. V.; Sharnin, V. A.

    2018-02-01

    Present work reports on studies of sodium nicotinate solutions in water and aqueous ethanol by means of 1H, 13C, 15N NMR spectroscopy. The H(2) nucleus was observed to be the least shielded among pyridine ring protons whilst C(6) signal placed in the lowest field in relation to the other pyridine carbons. The hydrogen bonds formation between nicotinate and water molecules was shown to be probable reason of signal arrangement in 13C NMR spectra of nicotinate. The heteronitrogen of nicotinate is less prone to the hydrogen bonding with water molecules than that of nicotinamide. The data on the change in the Gibbs energy of the nicotinate transfer and the results of the 13C NMR experiment are compared.

  6. Metabolism of [U-13C]glucose in Human Brain Tumors In Vivo

    PubMed Central

    Maher, Elizabeth A.; Marin-Valencia, Isaac; Bachoo, Robert M.; Mashimo, Tomoyuki; Raisanen, Jack; Hatanpaa, Kimmo J.; Jindal, Ashish; Jeffrey, F. Mark; Choi, Changho; Madden, Christopher; Mathews, Dana; Pascual, Juan M.; Mickey, Bruce E.; Malloy, Craig R.; DeBerardinis, Ralph J.

    2012-01-01

    Glioblastomas (GBMs) and brain metastases demonstrate avid uptake of 18fluoro-2-deoxyglucose (FDG) by positron emission tomography (PET) and display perturbations of intracellular metabolite pools by 1H magnetic resonance spectroscopy (MRS). These observations suggest that metabolic reprogramming contributes to brain tumor growth in vivo. The Warburg effect, excess metabolism of glucose to lactate in the presence of oxygen, is a hallmark of cancer cells in culture. FDG-positive tumors are assumed to metabolize glucose in a similar manner, with high rates of lactate formation compared to mitochondrial glucose oxidation, but few studies have specifically examined the metabolic fates of glucose in vivo. In particular, the capacity of human brain malignancies to oxidize glucose in the tricarboxylic acid cycle is unknown. Here we studied the metabolism of human brain tumors in situ. [U-13C]glucose was infused during surgical resection, and tumor samples were subsequently subjected to 13C NMR spectroscopy. Analysis of tumor metabolites revealed lactate production, as expected. We also determined that pyruvate dehydrogenase, turnover of the TCA cycle, anaplerosis and de novo glutamine and glycine synthesis contributed significantly to the ultimate disposition of glucose carbon. Surprisingly, less than 50% of the acetyl-CoA pool was derived from blood-borne glucose, suggesting that additional substrates contribute to tumor bioenergetics. This study illustrates a convenient approach that capitalizes on the high information content of 13C NMR spectroscopy and enables the analysis of intermediary metabolism in diverse malignancies growing in their native microenvironment. PMID:22419606

  7. Global ocean climatology of the 13C Suess effect and preindustrial δ13C

    NASA Astrophysics Data System (ADS)

    Eide, Marie; Olsen, Are; Ninnemann, Ulysses; Eldevik, Tor; Johannessen, Truls

    2017-04-01

    We present the first observationally based estimate of the full global ocean 13C Suess effect since preindustrial times. This was constructed by using Olsen and Ninnemann's [2010] back-calculation method to calculate the 13C Suess effect with data from 29 cruises spanning the world ocean. We find a strong 13C Suess effect in the upper 1000 m of all basins, with strongest decrease in the Subtropical Gyres of the Northern Hemisphere, where δ13C has decreased by more than 0.8‰ since the industrial revolution. At greater depths, a significant 13C Suess effect can only be detected in the northern parts of the North Atlantic Ocean. The magnitude of the 13C Suess effect is correlated with the concentration of anthropogenic carbon, but their relationship varying strongly between water masses, reflecting the degree to which source waters are equilibrated with the atmospheric 13C Suess effect before sinking. From the 13C Suess effect estimates, we have estimated the preindustrial δ13C13CPI) along the 29 sections. Further, we developed regional multilinear regression equations, which were applied on the World Ocean Atlas data to construct the δ13CPI climatology, which reveals the natural δ13C distribution in the global ocean. Compared to the modern distribution, the preindustrial δ13C spans a larger range of values, and we find that in some regions in the high northern latitudes, the gradient in modern ocean δ13C is completely reversed compared to the preindustrial. Maximum δ13CPI, of up to 1.8‰, are found in the subtropical gyres of all basins, in the upper and intermediate waters of the North Atlantic, as well as in mode waters with a Southern Ocean origin. Particularly strong gradients occur at intermediate depths, revealing a strong potential for using δ13C as a tracer for changes in water mass geometry at these levels. Further, we identify a much tighter relationship between δ13C and Apparent Oxygen Utilization (AOU) than between δ13C and phosphate that

  8. Acid-base equilibrium in aqueous solutions of 1,3-dimethylbarbituric acid as studied by 13C NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gryff-Keller, A.; Kraska-Dziadecka, A.

    2011-12-01

    13C NMR spectra of 1,3-dimethylbarbituric acid in aqueous solutions of various acidities and for various solute concentrations have been recorded and interpreted. The spectra recorded at pH = 2 and below contain the signals of the neutral solute molecule exclusively, while the ones recorded at pH = 7 and above only the signals of the appropriate anion, which has been confirmed by theoretical GIAO-DFT calculations. The signals in the spectra recorded for solutions of pH < 7 show dynamic broadenings. The lineshape analysis of these signals has provided information on the kinetics of the processes running in the dynamic acid-base equilibrium. The kinetic data determined this way have been used to clarify the mechanisms of these processes. The numerical analysis has shown that under the investigated conditions deprotonation of the neutral solute molecules undergoes not only via a simple transfer of the C-H proton to water molecules but also through a process with participation of the barbiturate anions. Moreover, the importance of tautomerism, or association, or both these phenomena for the kinetics of the acid-base transformations in the investigated system has been shown. Qualitatively similar changes of 13C NMR spectra with the solution pH variation have been observed for the parent barbituric acid.

  9. Determination of 13C/12C Isotope Ratio in Alcohols of Different Origin by 1н Nuclei NMR-Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dzhimak, S. S.; Basov, A. A.; Buzko, V. Yu.; Kopytov, G. F.; Kashaev, D. V.; Shashkov, D. I.; Shlapakov, M. S.; Baryshev, M. G.

    2017-02-01

    A new express method of indirect assessment of 13C/12C isotope ratio on 1H nuclei is developed to verify the authenticity of ethanol origin in alcohol-water-based fluids and assess the facts of various alcoholic beverages falsification. It is established that in water-based alcohol-containing systems, side satellites for the signals of ethanol methyl and methylene protons in the NMR spectra on 1H nuclei, correspond to the protons associated with 13C nuclei. There is a direct correlation between the intensities of the signals of ethanol methyl and methylene protons' 1H- NMR and their side satellites, therefore, the data obtained can be used to assess 13C/12C isotope ratio in water-based alcohol-containing systems. The analysis of integrated intensities of main and satellite signals of methyl and methylene protons of ethanol obtained by NMR on 1H nuclei makes it possible to differentiate between ethanol of synthetic and natural origin. Furthermore, the method proposed made it possible to differentiate between wheat and corn ethanol.

  10. Muscle Contraction during Hyperpolarizing Currents in the Crab

    PubMed Central

    Uchitel, O. D.; García, H.

    1974-01-01

    Isolated muscle fibers from the motor legs of the crab Trichodactilus dilocarcinus were submitted to strong hyperpolarizing currents of varied intensities which produced tension during the current pulse. Threshold for tension was obtained with intensities of about 0.2 x 10–5 A, changing Em to ca. –150 mV (starting from a resting potential ofca. –80 mV). At the closure of the anodic square pulse, a second phase of tension usually appeared superimposed upon the one obtained during hyperpolarization. The first phase of tension increased with the increase of Ca++ concentration in the bath. Sr++ produced the same type of mechanical output as Ca++. When added to the normal Ca++ concentration, Ba++ and Mn++ in low concentrations (up to 21.5 mM) also increased the tension of this phase, but at higher concentrations they blocked both phases while Mg++ did not alter the tension. Of all the divalent cations employed, only Sr++ is capable of developing tension as a substitute for Ca++ in the external media. Procaine administered in a dosage (5 x 10–3 W/V)which would suppress the contracture due to caffeine (10 mM), did not modify the tension developed during the hyperpolarization. The preceding data indicate that the Ca++ required for tension during hyperpolarization comes from sites which would differ from those usually postulated for tension due to depolarization in the muscle fibers of other crustaceans (American crayfish). Furthermore, the external source of Ca++ appears to be one mainly implicated in the induction of tension due to inward current pulses. PMID:4810206

  11. XeNA: an automated 'open-source' (129)Xe hyperpolarizer for clinical use.

    PubMed

    Nikolaou, Panayiotis; Coffey, Aaron M; Walkup, Laura L; Gust, Brogan M; Whiting, Nicholas; Newton, Hayley; Muradyan, Iga; Dabaghyan, Mikayel; Ranta, Kaili; Moroz, Gregory D; Rosen, Matthew S; Patz, Samuel; Barlow, Michael J; Chekmenev, Eduard Y; Goodson, Boyd M

    2014-06-01

    Here we provide a full report on the construction, components, and capabilities of our consortium's "open-source" large-scale (~1L/h) (129)Xe hyperpolarizer for clinical, pre-clinical, and materials NMR/MRI (Nikolaou et al., Proc. Natl. Acad. Sci. USA, 110, 14150 (2013)). The 'hyperpolarizer' is automated and built mostly of off-the-shelf components; moreover, it is designed to be cost-effective and installed in both research laboratories and clinical settings with materials costing less than $125,000. The device runs in the xenon-rich regime (up to 1800Torr Xe in 0.5L) in either stopped-flow or single-batch mode-making cryo-collection of the hyperpolarized gas unnecessary for many applications. In-cell (129)Xe nuclear spin polarization values of ~30%-90% have been measured for Xe loadings of ~300-1600Torr. Typical (129)Xe polarization build-up and T1 relaxation time constants were ~8.5min and ~1.9h respectively under our spin-exchange optical pumping conditions; such ratios, combined with near-unity Rb electron spin polarizations enabled by the high resonant laser power (up to ~200W), permit such high PXe values to be achieved despite the high in-cell Xe densities. Importantly, most of the polarization is maintained during efficient HP gas transfer to other containers, and ultra-long (129)Xe relaxation times (up to nearly 6h) were observed in Tedlar bags following transport to a clinical 3T scanner for MR spectroscopy and imaging as a prelude to in vivo experiments. The device has received FDA IND approval for a clinical study of chronic obstructive pulmonary disease subjects. The primary focus of this paper is on the technical/engineering development of the polarizer, with the explicit goals of facilitating the adaptation of design features and operative modes into other laboratories, and of spurring the further advancement of HP-gas MR applications in biomedicine. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Epoxyeicosatrienoic acids, potassium channel blockers and endothelium-dependent hyperpolarization in the guinea-pig carotid artery

    PubMed Central

    Chataigneau, Thierry; Félétou, Michel; Duhault, Jacques; Vanhoutte, Paul M

    1998-01-01

    Using intracellular microelectrodes, we investigated the effects of 17-octadecynoic acid (17-ODYA) on the endothelium-dependent hyperpolarization induced by acetylcholine in the guinea-pig isolated internal carotid artery with endothelium. In the presence of Nω-nitro-L-arginine (L-NOARG, 100 μM) and indomethacin (5 μM) to inhibit nitric oxide synthase and cyclo-oxygenase, acetylcholine (1 μM) evoked an endothelium-dependent hyperpolarization which averaged −16.4 mV starting from a resting membrane potential of −56.8 mV. There was a negative correlation between the amplitude of the hyperpolarization and the absolute values of the resting membrane potential. The acetylcholine-induced endothelium-dependent hyperpolarization was not altered by charybdotoxin (0.1 μM) or iberiotoxin (30 nM). It was partially but significantly reduced by apamin (0.5 μM) to −12.8±1.2 mV (n=10) or the combination of apamin plus iberiotoxin (−14.3±3.4 mV, n=4). However, the combination of charybdotoxin and apamin abolished the hyperpolarization and under these conditions, acetylcholine evoked a depolarization (+7.1±3.7 mV, n=8). 17-ODYA (10 μM) produced a significant hyperpolarization of the resting membrane potential which averaged −59.6 mV and a partial but significant inhibition of the acetylcholine-induced endothelium-dependent hyperpolarization (−10.9 mV). Apamin did not modify the effects of 17-ODYA but in the presence of charybdotoxin or iberiotoxin, 17-ODYA no longer influenced the resting membrane potential or the acetylcholine-induced hyperpolarization. When compared to solvent (ethanol, 1% v/v), epoxyeicosatrienoic acids (EpETrEs) (5,6-, 8,9-, 11,12- and 14,15-EpETrE, 3 μM) did not affect the cell membrane potential and did not relax the guinea-pig isolated internal carotid artery. These results indicate that, in the guinea-pig internal carotid artery, the involvement of metabolites of arachidonic acid through the cytochrome P

  13. Characterization of pyrogenic organic matter by 2-dimenstional HETeronucleus CORelation solid-state 13C NMR (HETCOR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Knicker, Heike

    2016-04-01

    technique was used for monitoring the chemical changes occurring during charring of biomass derived from model compounds, fire-affected and unaffected NOM. The 2D 13C HETCOR NMR spectrum of the fire- unaffected soils revealed that most of the carboxyl C occurs as ester or amide. Aside from cross peaks typically seen in spectra of NOM, the spectrum of the respective fire-affected counterpart shows additional signals assignable to PyOM.

  14. Hydration properties of regioselectively etherified celluloses monitored by 2H and 13C solid-state MAS NMR spectroscopy.

    PubMed

    Larsen, Flemming H; Schöbitz, Michael; Schaller, Jens

    2012-06-20

    The hydration properties of 2,3-O-hydroxypropylcellulose (HPC) and 2,3-O-hydroxyethylcellulose (HEC) were analyzed by multi-nuclear solid-state MAS NMR spectroscopy. By 13C single-pulse (SP) MAS and cross-polarization (CP) MAS NMR, differences between the immobile regions and all parts of the polysaccharides were detected as a function of hydration. Complementary information about the water environments was observed by 2H MAS NMR. By this approach it was demonstrated that side chains in 2,3-O-HPC and 2,3-O-HEC were easier to hydrate than the cellulose backbone. Furthermore the motion of water was more restricted (slower) in 2,3-O-HPC than in 2,3-O-HEC. For both polysaccharides the hydration could be explained by a two-step process: in step one increased ordering of the immobile regions occurs after which the entire polymer is hydrated in step two. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Efficient production of hyperpolarized bicarbonate by chemical reaction on a DNP precursor to measure pH.

    PubMed

    Ghosh, Rajat K; Kadlecek, Stephen J; Pourfathi, Mehrdad; Rizi, Rahim R

    2015-11-01

    To produce hyperpolarized bicarbonate indirectly via chemical reaction from a hyperpolarized precursor and utilize it for the simultaneous regional measurement of metabolism and pH. Alpha keto carboxylic acids are first hyperpolarized by dissolution dynamic nuclear polarization (DNP). These precursor molecules are rapidly reacted with hydrogen peroxide (H2O2) to decarboxylate the species, resulting in new target molecules. Unreacted H2O2 is removed from the system by reaction with sulfite. Interrogation of the ratio of dissolved carbon dioxide (CO2) to bicarbonate can be used to determine pH. Conversion of hyperpolarized alpha keto acids to bicarbonate and CO2 results in a minimal loss of the spin order. The reaction can be conducted to completion within seconds and preserves the nuclear spin polarization. Through a rapid chemical reaction, we can conserve the nuclear spin order of a DNP precursor to generate multiple hyperpolarized bioprobes otherwise unamenable to polarization. This indirect technique for the production of hyperpolarized agents can be applied to different precursor compounds to generate additional novel probes. © 2014 Wiley Periodicals, Inc.

  16. Raman spectroscopy of isotopically pure ({sup 12}C, {sup 13}C) and isotopically mixed ({sup 12.5}C) diamond single crystals at ultrahigh pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enkovich, P. V., E-mail: enkovich@hppi.troitsk.ru; Brazhkin, V. V.; Lyapin, S. G.

    The Raman scattering by isotopically pure {sup 12}C and {sup 13}C diamond single crystals and by isotopically mixed {sup 12.5}C diamond single crystals is studied at a high accuracy. The studies are performed over a wide pressure range up to 73 GPa using helium as a hydrostatic pressure-transferring medium. It is found that the quantum effects, which determine the difference between the ratio of the Raman scattering frequencies in the {sup 12}C and {sup 13}C diamonds and the classical ratio (1.0408), increase to 30 GPa and then decrease. Thus, inversion in the sign of the quantum contribution to the physicalmore » properties of diamond during compression is detected. Our data suggest that the maximum possible difference between the bulk moduli of the {sup 12}C and {sup 13}C diamonds is 0.15%. The investigation of the isotopically mixed {sup 12.5}C diamond shows that the effective mass, which determines the Raman frequency, decreases during compression from 12.38 au at normal pressure to 12.33 au at 73 GPa.« less

  17. Kinetic analysis of reactions of Si-based epoxy resins by near-infrared spectroscopy, 13C NMR and soft-hard modelling.

    PubMed

    Garrido, Mariano; Larrechi, Maria Soledad; Rius, F Xavier; Mercado, Luis Adolfo; Galià, Marina

    2007-02-05

    Soft- and hard-modelling strategy was applied to near-infrared spectroscopy data obtained from monitoring the reaction between glycidyloxydimethylphenyl silane, a silicon-based epoxy monomer, and aniline. On the basis of the pure soft-modelling approach and previous chemical knowledge, a kinetic model for the reaction was proposed. Then, multivariate curve resolution-alternating least squares optimization was carried out under a hard constraint, that compels the concentration profiles to fulfil the proposed kinetic model at each iteration of the optimization process. In this way, the concentration profiles of each species and the corresponding kinetic rate constants of the reaction, unpublished until now, were obtained. The results obtained were contrasted with 13C NMR. The joint interval test of slope and intercept for detecting bias was not significant (alpha=5%).

  18. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  19. Accurate determination of the fine-structure intervals in the 3P ground states of C-13 and C-12 by far-infrared laser magnetic resonance

    NASA Technical Reports Server (NTRS)

    Cooksy, A. L.; Saykally, R. J.; Brown, J. M.; Evenson, K. M.

    1986-01-01

    Accurate values are presented for the fine-structure intervals in the 3P ground state of neutral atomic C-12 and C-13 as obtained from laser magnetic resonance spectroscopy. The rigorous analysis of C-13 hyperfine structure, the measurement of resonant fields for C-12 transitions at several additional far-infrared laser frequencies, and the increased precision of the C-12 measurements, permit significant improvement in the evaluation of these energies relative to earlier work. These results will expedite the direct and precise measurement of these transitions in interstellar sources and should assist in the determination of the interstellar C-12/C-13 abundance ratio.

  20. Renal MR angiography and perfusion in the pig using hyperpolarized water.

    PubMed

    Wigh Lipsø, Kasper; Hansen, Esben Søvsø Szocska; Tougaard, Rasmus Stilling; Laustsen, Christoffer; Ardenkjaer-Larsen, Jan Henrik

    2017-09-01

    To study hyperpolarized water as an angiography and perfusion tracer in a large animal model. Protons dissolved in deuterium oxide (D 2 O) were hyperpolarized in a SPINlab dissolution dynamic nuclear polarization (dDNP) polarizer and subsequently investigated in vivo in a pig model at 3 Tesla (T). Approximately 15 mL of hyperpolarized water was injected in the renal artery by hand over 4-5 s. A liquid state polarization of 5.3 ± 0.9% of 3.8 M protons in 15 mL of deuterium oxide was achieved with a T 1 of 24 ± 1 s. This allowed injection through an arterial catheter into the renal artery and subsequently high-contrast imaging of the entire kidney parenchyma over several seconds. The dynamic images allow quantification of tissue perfusion, with a mean cortical perfusion of 504 ± 123 mL/100 mL/min. Hyperpolarized water MR imaging was successfully demonstrated as a renal angiography and perfusion method. Quantitative perfusion maps of the kidney were obtained in agreement with literature and control experiments with gadolinium contrast. Magn Reson Med 78:1131-1135, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  1. Distal airways in humans: dynamic hyperpolarized 3He MR imaging--feasibility

    NASA Technical Reports Server (NTRS)

    Tooker, Angela C.; Hong, Kwan Soo; McKinstry, Erin L.; Costello, Philip; Jolesz, Ferenc A.; Albert, Mitchell S.

    2003-01-01

    Dynamic hyperpolarized helium 3 (3He) magnetic resonance (MR) imaging of the human airways is achieved by using a fast gradient-echo pulse sequence during inhalation. The resulting dynamic images show differential contrast enhancement of both distal airways and the lung periphery, unlike static hyperpolarized 3He MR images on which only the lung periphery is seen. With this technique, up to seventh-generation airway branching can be visualized. Copyright RSNA, 2003.

  2. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  3. Surface diffusion of CO on silica-supported Ru particles: 13C nuclear magnetic resonance studies

    NASA Astrophysics Data System (ADS)

    Duncan, T. M.; Thayer, A. M.; Root, T. W.

    1990-02-01

    Portions of CO adsorbed on Ru particles, selected by the orientation of the C-O bond relative to an external magnetic field, are labeled by inversion of the 13C nuclear magnetic dipole. Changes in the orientation of the CO bond of these labeled molecules are then observed with 13C NMR spectroscopy. The temperature dependence and rate of reorientation are consistent with surface diffusion on Ru particles with small numbers of flat faces. The insensitivity to CO pressure in the range 0.5-100 Torr discounts stimulated desorption by gas-phase CO.

  4. The Spin-Lattice Relaxation of Hyperpolarized 89Y Complexes

    NASA Astrophysics Data System (ADS)

    Jindal, Ashish; Lumata, Lloyd; Xing, Yixun; Merritt, Matthew; Zhao, Piyu; Malloy, Craig; Sherry, Dean; Kovacs, Zoltan

    2011-03-01

    The low sensitivity of NMR can be overcome by dynamic nuclear polarization (DNP). However, a limitation to the use of hyperpolarized materials is the signal decay due to T1 relaxation. Among NMR-active nuclei, 89 Y is potentially valuable in medical imaging because in chelated form, pH-sensitive agents can be developed. 89 Y also offers many attractive features -- 100 % abundance, a 1/2 spin, and a long T1 , up to 10 min. Yet, developing new 89 Y complexes with even longer T1 values is desirable. Designing such complexes relies upon understanding the mechanism(s) responsible for T1 relaxation. We report an approach to hyperpolarized T1 measurements that enabled an analysis of relaxation mechanisms by selective deuteration of the ligand backbone, the solvent or both. Hyperpolarized 89 Y -- DTPA, DOTA, EDTA, and deuterated EDTA complexes were studied. Results suggest that substitution of low-gamma nuclei on the ligand backbone as opposed to that of the solvent most effectively increase the 89 Y T1 . These results are encouraging for in vivo applications as the presence of bound water may not dramatically affect the T1 .

  5. Cortical activation of accumbens hyperpolarization-active NMDARs mediates aversion-resistant alcohol intake

    PubMed Central

    Seif, Taban; Chang, Shao-Ju; Simms, Jeffrey A; Gibb, Stuart L; Dadgar, Jahan; Chen, Billy T; Harvey, Brandon K; Ron, Dorit; Messing, Robert O; Bonci, Antonello; Hopf, F Woodward

    2014-01-01

    Compulsive drinking despite serious adverse medical, social and economic consequences is a characteristic of alcohol use disorders in humans. Although frontal cortical areas have been implicated in alcohol use disorders, little is known about the molecular mechanisms and pathways that sustain aversion-resistant intake. Here, we show that nucleus accumbens core (NAcore) NMDA-type glutamate receptors and medial prefrontal (mPFC) and insula glutamatergic inputs to the NAcore are necessary for aversion-resistant alcohol consumption in rats. Aversion-resistant intake was associated with a new type of NMDA receptor adaptation, in which hyperpolarization-active NMDA receptors were present at mPFC and insula but not amygdalar inputs in the NAcore. Accordingly, inhibition of Grin2c NMDA receptor subunits in the NAcore reduced aversion-resistant alcohol intake. None of these manipulations altered intake when alcohol was not paired with an aversive consequence. Our results identify a mechanism by which hyperpolarization-active NMDA receptors under mPFC- and insula-to-NAcore inputs sustain aversion-resistant alcohol intake. PMID:23817545

  6. Spontaneous 15N Nuclear Spin Hyperpolarization in Metal-Free Activation of Parahydrogen by Molecular Tweezers

    PubMed Central

    2018-01-01

    The ability of frustrated Lewis pairs (FLPs) to activate H2 is of significant interest for metal-free catalysis. The activation of H2 is also the key element of parahydrogen-induced polarization (PHIP), one of the nuclear spin hyperpolarization techniques. It is demonstrated that o-phenylene-based ansa-aminoboranes (AABs) can produce 1H nuclear spin hyperpolarization through a reversible interaction with parahydrogen at ambient temperatures. Heteronuclei are useful in NMR and MRI as well because they have a broad chemical shift range and long relaxation times and may act as background-free labels. We report spontaneous formation of 15N hyperpolarization of the N–H site for a family of AABs. The process is efficient at the high magnetic field of an NMR magnet (7 T), and it provides up to 350-fold 15N signal enhancements. Different hyperpolarization effects are observed with various AAB structures and in a broad temperature range. Spontaneous hyperpolarization, albeit an order of magnitude weaker than that for 15N, was also observed for 11B nuclei. PMID:29401399

  7. Monovacancy paramagnetism in neutron-irradiated graphite probed by 13C NMR

    NASA Astrophysics Data System (ADS)

    Zhang, Z. T.; Xu, C.; Dmytriieva, D.; Molatta, S.; Wosnitza, J.; Wang, Y. T.; Helm, M.; Zhou, Shengqiang; Kühne, H.

    2017-11-01

    We report on the magnetic properties of monovacancy defects in neutron-irradiated graphite, probed by 13C nuclear magnetic resonance spectroscopy. The bulk paramagnetism of the defect moments is revealed by the temperature dependence of the NMR frequency shift and spectral linewidth, both of which follow a Curie behavior, in agreement with measurements of the macroscopic magnetization. Compared to pristine graphite, the fluctuating hyperfine fields generated by the defect moments lead to an enhancement of the 13C nuclear spin-lattice relaxation rate 1/T1 by about two orders of magnitude. With an applied magnetic field of 7.1 T, the temperature dependence of 1/T1 below about 10 K can well be described by a thermally activated form, \

  8. Bulk Nuclear Hyperpolarization of Inorganic Solids by Relay from the Surface.

    PubMed

    Björgvinsdóttir, Snædís; Walder, Brennan J; Pinon, Arthur C; Emsley, Lyndon

    2018-06-14

    NMR is a method of choice to determine structural and electronic features in inorganic materials, and has been widely used in the past, but its application is severely limited by its low relative sensitivity. We show how the bulk of proton-free inorganic solids can be hyperpolarized with a general strategy using impregnation dynamic nuclear polarization through homonuclear spin diffusion between low-γ nuclei. This is achieved either through direct hyperpolarization or with a pulse cooling cross-polarization method, transferring hyperpolarization from protons to heteronuclei at particle surfaces. We demonstrate a factor of 50 gain in overall sensitivity for the 119 Sn spectrum of powdered SnO 2 , corresponding to an acceleration of a factor >2500 in acquisition times. The method is also shown for 31 P spectra of GaP, 113 Cd spectra of CdTe, and 29 Si spectra of α-quartz.

  9. Calibration of δ13C and δ18O measurements in CO2 using Off-axis Integrated Cavity Output Spectrometer (ICOS)

    NASA Astrophysics Data System (ADS)

    Joseph, Jobin; Külls, Christoph

    2014-05-01

    The δ13C and δ18O of CO2 has enormous potential as tracers to study and quantify the interaction between the water and carbon cycles. Isotope ratio mass spectrometry (IRMS) being the conventional method for stable isotopic measurements, has many limitations making it impossible for deploying them in remote areas for online or in-situ sampling. New laser based absorption spectroscopy approaches like Cavity Ring Down Spectroscopy (CRDS) and Integrated Cavity Output Spectroscopy (ICOS) have been developed for online measurements of stable isotopes at an expense of considerably less power requirement but with precision comparable to IRMS. In this research project, we introduce a new calibration system for an Off- Axis ICOS (Los Gatos Research CCIA-36d) for a wide range of varying concentrations of CO2 (800ppm - 25,000ppm), a typical CO2 flux range at the plant-soil continuum. The calibration compensates for the concentration dependency of δ13C and δ18O measurements, and was performed using various CO2 standards with known CO2 concentration and δC13 and δO18 values. A mathematical model was developed after the calibration procedure as a correction factor for the concentration dependency of δ13C and δ18O measurements. Temperature dependency of δ13C and δ18O measurements were investigated and no significant influence was found. Simultaneous calibration of δ13C and δ18O is achieved using this calibration system with an overall accuracy of (~ 0.75±0.24 ‰ for δ13C, ~ 0.81 ±0.26‰ for δ18O). This calibration procedure is found to be appropriate for making Off-Axis ICOS suitable for measuring CO2 concentration and δ13C and δ18O measurements at atmosphere-plant-soil continuum.

  10. Probing Lung Microstructure with Hyperpolarized 3He Gradient Echo MRI

    PubMed Central

    Sukstanskii, Alexander L; Quirk, James D; Yablonskiy, Dmitriy A

    2014-01-01

    In this paper we demonstrate that Gradient Echo MRI with hyperpolarized 3He gas can be used for simultaneously extracting in vivo information about lung ventilation properties, alveolar geometrical parameters, and blood vessel network structure. This new approach is based on multi-gradient-echo experimental measurements of hyperpolarized 3He gas MRI signal from human lungs and a proposed theoretical model of this signal. Based on computer simulations of 3He atoms diffusing in the acinar airway tree in the presence of an inhomogeneous magnetic field induced by the susceptibility differences between lung tissue (alveolar septa, blood vessels) and lung airspaces we derive analytical expressions relating the time-dependent MR signal to the geometrical parameters of acinar airways and blood vessel network. Data obtained on 8 healthy volunteers are in good agreement with literature values. This information is complementary to the information that is obtained by means of in vivo lung morphometry technique with hyperpolarized 3He diffusion MRI previously developed by our group and opens new opportunities to study lung microstructure in health and disease. PMID:24920182

  11. Endothelium-dependent Hyperpolarization-mediated Vasodilatation Compensates Nitric Oxide-mediated Endothelial Dysfunction during Ischemia in Diabetes-induced Canine Coronary Collateral Microcirculation in Vivo.

    PubMed

    Yada, Toyotaka; Shimokawa, Hiroaki; Tachibana, Hiroyuki

    2018-04-17

    It has been previously demonstrated that endothelial caveolin-1 plays crucial roles to produce an endothelium-derived hyperpolarizing factor in mouse mesenteric arteries. We examined whether this mechanism is involved in the endothelium-derived hyperpolarizing-mediated responses to compensate reduced NO-mediated responses in diabetes mellitus during coronary occlusion in dogs in vivo. Canine subepicardial collateral coronary small arteries (≥100 μm) and arterioles (<100 μm) were observed by an intravital microscope. Experiments were performed during occlusion of the left anterior descending coronary artery (90 min) under the following conditions (n=6 each); (i) control, (ii) diabetes mellitus, and (iii) diabetes mellitus+L-NMMA+K C a channel blockade. Vascular and myocardial levels of caveolin-1, eNOS and caspase-3 were measured by ELISA. Caveolin-1 levels in the ischemic area were greater in coronary microvessels than in conduit arteries in the control group. NO-mediated coronary vasodilatations of small arteries to bradykinin did not increase in diabetes mellitus associated with decreased eNOS phosphorylation at Ser1177 compared with baseline of controls, and were restored by compensation of endothelium-derived hyperpolarizing, and were suppressed by K C a channel blockade. NO-mediated vasodilatations of small coronary arteries during coronary occlusion are impaired in diabetes mellitus and are compensated by endothelium-derived hyperpolarizing of arterioles in dogs in vivo. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Following Glycolysis Using 13C NMR: An Experiment Adaptable to Different Undergraduate Levels

    NASA Astrophysics Data System (ADS)

    Mega, T. L.; Carlson, C. B.; Cleary, D. A.

    1997-12-01

    This paper describes a laboratory exercise where the glycolysis of [1-13C] glucose under anaerobic conditions was followed using 13C NMR spectroscopy. The exercise is described in terms of its suitability for a variety of different undergraduate levels, although the emphasis in this paper is on its use in a n advanced chemistry laboratory course. The kinetics of the loss of glucose and the production of ethanol were investigated and found not to fit simple first or second order kinetics. In addition, the relative reaction rates of the two anomeric forms of glucose were analyzed, and it was determined that the a anomeric form reacted faster than the β anomeric form. Using proton-coupled 13C NMR, some of the metabolites were identified including ethanol (major) and glycerol (minor). Reaction and spectroscopic details are included.

  13. Continuous hyperpolarization with parahydrogen in a membrane reactor

    NASA Astrophysics Data System (ADS)

    Lehmkuhl, Sören; Wiese, Martin; Schubert, Lukas; Held, Mathias; Küppers, Markus; Wessling, Matthias; Blümich, Bernhard

    2018-06-01

    Hyperpolarization methods entail a high potential to boost the sensitivity of NMR. Even though the "Signal Amplification by Reversible Exchange" (SABRE) approach uses para-enriched hydrogen, p-H2, to repeatedly achieve high polarization levels on target molecules without altering their chemical structure, such studies are often limited to batch experiments in NMR tubes. Alternatively, this work introduces a continuous flow setup including a membrane reactor for the p-H2, supply and consecutive detection in a 1 T NMR spectrometer. Two SABRE substrates pyridine and nicotinamide were hyperpolarized, and more than 1000-fold signal enhancement was found. Our strategy combines low-field NMR spectrometry and a membrane flow reactor. This enables precise control of the experimental conditions such as liquid and gas pressures, and volume flow for ensuring repeatable maximum polarization.

  14. Enhanced Sensitivity to Hyperpolarizing Inhibition in Mesoaccumbal Relative to Nigrostriatal Dopamine Neuron Subpopulations

    PubMed Central

    2017-01-01

    Midbrain dopamine neurons recorded in vivo pause their firing in response to reward omission and aversive stimuli. While the initiation of pauses typically involves synaptic or modulatory input, intrinsic membrane properties may also enhance or limit hyperpolarization, raising the question of how intrinsic conductances shape pauses in dopamine neurons. Using retrograde labeling and electrophysiological techniques combined with computational modeling, we examined the intrinsic conductances that shape pauses evoked by current injections and synaptic stimulation in subpopulations of dopamine neurons grouped according to their axonal projections to the nucleus accumbens or dorsal striatum in mice. Testing across a range of conditions and pulse durations, we found that mesoaccumbal and nigrostriatal neurons differ substantially in rebound properties with mesoaccumbal neurons displaying significantly longer delays to spiking following hyperpolarization. The underlying mechanism involves an inactivating potassium (IA) current with decay time constants of up to 225 ms, and small-amplitude hyperpolarization-activated currents (IH), characteristics that were most often observed in mesoaccumbal neurons. Pharmacological block of IA completely abolished rebound delays and, importantly, shortened synaptically evoked inhibitory pauses, thereby demonstrating the involvement of A-type potassium channels in prolonging pauses evoked by GABAergic inhibition. Therefore, these results show that mesoaccumbal and nigrostriatal neurons display differential responses to hyperpolarizing inhibitory stimuli that favors a higher sensitivity to inhibition in mesoaccumbal neurons. These findings may explain, in part, observations from in vivo experiments that ventral tegmental area neurons tend to exhibit longer aversive pauses relative to SNc neurons. SIGNIFICANCE STATEMENT Our study examines rebound, postburst, and synaptically evoked inhibitory pauses in subpopulations of midbrain dopamine

  15. Blockade of hyperpolarization-activated channels modifies the effect of beta-adrenoceptor stimulation.

    PubMed

    Zefirov, T L; Ziyatdinova, N I; Gainullin, A A; Zefirov, A L

    2002-05-01

    Experiments on rats showed that blockade of hyperpolarization-activated currents moderates tachycardia induced by beta-adrenoceptor agonist isoproterenol and potentiates the increase in stroke volume produced by this agonist. Electrical stimulation of the vagus nerve against the background of isoproterenol treatment augmented bradycardia and increased stroke volume. Blockade of hyperpolarization-activated currents followed by application of isoproterenol moderated vagus-induced bradycardia and had no effect on the dynamics of stroke volume.

  16. An ether -à-go-go K+ current, Ih-eag, contributes to the hyperpolarization of human fusion-competent myoblasts

    PubMed Central

    Bijlenga, Philippe; Occhiodoro, Teresa; Liu, Jian-Hui; Bader, Charles R; Bernheim, Laurent; Fischer-Lougheed, Jacqueline

    1998-01-01

    Two early signs of human myoblast commitment to fusion are membrane potential hyperpolarization and concomitant expression of a non-inactivating delayed rectifier K+ current, IK(NI). This current closely resembles the outward K+ current elicited by rat ether-à-go-go (r-eag) channels in its range of potential for activation and unitary conductance.It is shown that activation kinetics of IK(NI), like those of r-eag, depend on holding potential and on [Mg2+]o, and that IK(NI), like r-eag, is reversibly inhibited by a rise in [Ca2+].Forced expression of an isolated human ether-à-go-go K+ channel (h-eag) cDNA in undifferentiated myoblasts generates single-channel and whole-cell currents with remarkable similarity to IK(NI).h-eag current (Ih-eag) is reversibly inhibited by a rise in [Ca2+]i, and the activation kinetics depend on holding potential and [Mg2+]o.Forced expression of h-eag hyperpolarizes undifferentiated myoblasts from −9 to −50 mV, the threshold for the activation of both Ih-eag and IK(NI). Similarly, the higher the density of IK(NI), the more hyperpolarized the resting potential of fusion-competent myoblasts.It is concluded that h-eag constitutes the channel underlying IK(NI) and that it contributes to the hyperpolarization of fusion-competent myoblasts. To our knowledge, this is the first demonstration of a physiological role for a mammalian eag K+ channel. PMID:9763622

  17. Real-time analysis of δ13C- and δD-CH4 in ambient air with laser spectroscopy: method development and first intercomparison results

    NASA Astrophysics Data System (ADS)

    Eyer, S.; Tuzson, B.; Popa, M. E.; van der Veen, C.; Röckmann, T.; Rothe, M.; Brand, W. A.; Fisher, R.; Lowry, D.; Nisbet, E. G.; Brennwald, M. S.; Harris, E.; Zellweger, C.; Emmenegger, L.; Fischer, H.; Mohn, J.

    2015-08-01

    In situ and simultaneous measurement of the three most abundant isotopologues of methane using mid-infrared laser absorption spectroscopy is demonstrated. A field-deployable, autonomous platform is realized by coupling a compact quantum cascade laser absorption spectrometer (QCLAS) to a preconcentration unit, called TRace gas EXtractor (TREX). This unit enhances CH4 mole fractions by a factor of up to 500 above ambient levels and quantitatively separates interfering trace gases such as N2O and CO2. The analytical precision of the QCLAS isotope measurement on the preconcentrated (750 ppm, parts-per-million, μmole/mole) methane is 0.1 and 0.5 ‰ for δ13C- and δD-CH4 at 10 min averaging time. Based on replicate measurements of compressed air during a two-week intercomparison campaign, the repeatability of the TREX-QCLAS was determined to be 0.19 and 1.9 ‰ for δ13C and δD-CH4, respectively. In this intercomparison campaign the new in situ technique is compared to isotope-ratio mass-spectrometry (IRMS) based on glass flask and bag sampling and real time CH4 isotope analysis by two commercially available laser spectrometers. Both laser-based analyzers were limited to methane mole fraction and δ13C-CH4 analysis, and only one of them, a cavity ring down spectrometer, was capable to deliver meaningful data for the isotopic composition. After correcting for scale offsets, the average difference between TREX-QCLAS data and bag/flask sampling-IRMS values are within the extended WMO compatibility goals of 0.2 and 5 ‰ for δ13C- and δD-CH4, respectively. Thus, the intercomparison also reveals the need for reference air samples with accurately determined isotopic composition of CH4 to further improve the interlaboratory compatibility.

  18. 13C NMR and isotopic (δ13C) investigations on modern vegetation samples: a tool to understand the soil organic matter degradation dynamics and preferences

    NASA Astrophysics Data System (ADS)

    Rakshit, Subhadeep; Sanyal, Prasanta; Vardhan Gaur, Harsh

    2015-04-01

    Soil organic carbon, one of the largest reservoirs of carbon, is a heterogeneous mixture of organic compounds with dominant contribution derived from decomposition of plants in various stages. Although general ideas about the processes and mechanisms of soil organic matter (SOM) degradation have been developed, a very few study has linked the SOM with its parent material. In this study we aim to generate reference data set of functional groups from modern vegetation samples (C3 and C4plants) to better understand the degradation dynamics and preferences. The carbon functional groups from modern vegetation samples (eight C3 and nine C4 plants collected from Mohanpur, Nadia, West Bengal, India) were examined by solid state 13C CPMAS NMR spectroscopy. Additionally, isotopic investigations (δ13C) has also been carried out on the modern vegetation samples to understand the relationship of bulk isotopic values to the concentration of functional groups. The major functional groups (alkyl C, O-alkyl C, aromatic C, carbonyl C and aldehyde/ketone) of modern vegetation samples form 16%, 65%, 5%, 14% and 1% respectively in C3 plants. Considerable differences has been observed for C4 plants with average values of alkyl C, O-alkyl C, aromatic C, carbonyl C and aldehyde/ketone are 8%, 83%, 3%, 5% and 1% respectively. The concentration of functional groups from the modern vegetational samples can be considered as reference scale to compare with the 13C NMR data derived from the different soil horizons to understand the SOM degradation dynamics. The δ13CV PDB values of modern vegetation samples plotted against the individual concentration of functional groups shows significant correlation in C4 plants, whereas a lack in correlation has been observed for C3 plants. We assume this difference in relationship of δ13CV PDB values with functional groups of C3 and C4plants can be due to the differences in photosynthesis pathways, the fractionation of CO2 and accumulation of the products

  19. Characteristics and physiological role of hyperpolarization activated currents in mouse cold thermoreceptors

    PubMed Central

    Orio, Patricio; Madrid, Rodolfo; de la Peña, Elvira; Parra, Andrés; Meseguer, Víctor; Bayliss, Douglas A; Belmonte, Carlos; Viana, Félix

    2009-01-01

    Hyperpolarization-activated currents (Ih) are mediated by the expression of combinations of hyperpolarization-activated, cyclic nucleotide-gated (HCN) channel subunits (HCN1–4). These cation currents are key regulators of cellular excitability in the heart and many neurons in the nervous system. Subunit composition determines the gating properties and cAMP sensitivity of native Ih currents. We investigated the functional properties of Ih in adult mouse cold thermoreceptor neurons from the trigeminal ganglion, identified by their high sensitivity to moderate cooling and responsiveness to menthol. All cultured cold-sensitive (CS) neurons expressed a fast activating Ih, which was fully blocked by extracellular Cs+ or ZD7288 and had biophysical properties consistent with those of heteromeric HCN1–HCN2 channels. In CS neurons from HCN1(−/−) animals, Ih was greatly reduced but not abolished. We find that Ih activity is not essential for the transduction of cold stimuli in CS neurons. Nevertheless, Ih has the potential to shape the excitability of CS neurons. First, Ih blockade caused a membrane hyperpolarization in CS neurons of about 5 mV. Furthermore, impedance power analysis showed that all CS neurons had a prominent subthreshold membrane resonance in the 5–7 Hz range, completely abolished upon blockade of Ih and absent in HCN1 null mice. This frequency range matches the spontaneous firing frequency of cold thermoreceptor terminals in vivo. Behavioural responses to cooling were reduced in HCN1 null mice and after peripheral pharmacological blockade of Ih with ZD7288, suggesting that Ih plays an important role in peripheral sensitivity to cold. PMID:19273581

  20. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates

    NASA Astrophysics Data System (ADS)

    Azurmendi, Hugo F.; Freedberg, Darón I.

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for 1DCC determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a 13C-13C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield 1JCC and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for JHH determinations, but adapted and extended to applications where, like in sugars, large one-bond 13C-13C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and oriented phases are very

  1. 13C-13C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: Applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination

    NASA Astrophysics Data System (ADS)

    Ishii, Yoshitaka

    2001-05-01

    A technique is presented to recouple homonuclear dipolar couplings between dilute spin pairs such as 13C-13C systems under very fast magic angle spinning (MAS) in solid-state nuclear magnetic resonance (NMR) spectroscopy. The presented technique, finite pulse rf driven recoupling (fpRFDR), restores homonuclear dipolar interactions based on constructive usage of finite pulse-width effects in a phase- and symmetry-cycled π-pulse train in which a rotor-synchronous π pulse is applied every rotation period. The restored effective dipolar interaction has the form of a zero-quantum dipolar Hamiltonian for static solids, whose symmetry in spin space is different from that obtained by conventional rf driven recoupling (RFDR) techniques. It is demonstrated that the efficiency of recoupling by fpRFDR is not strongly dependent on chemical shift differences or resonance offsets in contrast to previous recoupling methods under very fast MAS. To realize distance measurements without effects of spin relaxation, a constant-time version of fpRFDR (CT-fpRFDR) is introduced, in which the effective evolution period is varied by refocusing dipolar evolution with a rotor-synchronized solid echo while the total recoupling period is kept constant. From CT-fpRFDR experiments at a spinning speed of 30.3 kHz in a field of 17.6 T, the 13C-13C distance of [1-13C]Ala-[1-13C]Gly-Gly was determined to be 3.27 Å, which agrees well with the value of 3.20 Å obtained by x-ray diffraction. Also, two-dimensional (2D) 13C/13C chemical-shift correlation NMR spectrum in a field of 9.4 T was obtained with fpRFDR for fibrils of the segmentally 13C- and 15N-labeled Alzheimer's β-Amyloid fragments, Aβ16-22 (residues 16-22 taken from the 40-residue Aβ peptide) in which Leu-17 through Ala-21 are uniformly 13C- and 15N-labeled. Most 13C resonances for the main chain as well as for the side chains are assigned based on 2D 13C/13C chemical-shift correlation patterns specific to amino-acid types. Examination

  2. The Influence of Plant Litter on Soil Water Repellency: Insight from 13C NMR Spectroscopy.

    PubMed

    Cesarano, Gaspare; Incerti, Guido; Bonanomi, Giuliano

    2016-01-01

    Soil water repellency (SWR, i.e. reduced affinity for water owing to the presence of organic hydrophobic coatings on soil particles) has relevant hydrological implications because low rates of infiltration enhance water runoff, and untargeted diffusion of fertilizers and pesticides. Previous studies investigated the occurrence of SWR in ecosystems with different vegetation cover but did not clarify its relationships with litter biochemical quality. Here, we investigated the capability of different plant litter types to induce SWR by using fresh and decomposed leaf materials from 12 species, to amend a model sandy soil over a year-long microcosm experiment. Water repellency, measured by the Molarity of an Ethanol Droplet (MED) test, was tested for the effects of litter species and age, and compared with litter quality assessed by 13C-CPMAS NMR in solid state and elemental chemical parameters. All litter types were highly water repellent, with MED values of 18% or higher. In contrast, when litter was incorporated into the soil, only undecomposed materials induced SWR, but with a large variability of onset and peak dynamics among litter types. Surprisingly, SWR induced by litter addition was unrelated to the aliphatic fraction of litter. In contrast, lignin-poor but labile C-rich litter, as defined by O-alkyl C and N-alkyl and methoxyl C of 13C-CPMAS NMR spectral regions, respectively, induced a stronger SWR. This study suggests that biochemical quality of plant litter is a major controlling factor of SWR and, by defining litter quality with 13C-CPMAS NMR, our results provide a significant novel contribution towards a full understanding of the relationships between plant litter biochemistry and SWR.

  3. Hyperpolarizing and age-dependent depolarizing responses of cultured locus coeruleus neurons to noradrenaline.

    PubMed

    Finlayson, P G; Marshall, K C

    1984-08-01

    The electrical activity and responses to noradrenaline (NA) of locus coeruleus (LC) neurons have been studied in organotypic cultures using intracellular recording. Most LC neurons were predominantly quiescent, though occasional bursts of activity were observed; a few cells were tonically active at rates of 0.5-5/s. In most cells tested, iontophoretic application of NA evoked responses which were initially hyperpolarizing, sometimes followed by a depolarizing phase and frequently followed by a period of increased excitatory synaptic activity. The enhanced synaptic activity appeared to be an indirect effect since it was blocked by bath application of tetrodotoxin (TTX). In the presence of TTX, responses to NA of all but one cell were simple hyperpolarizations or biphasic (hyperpolarization/depolarization) responses. The presence of the depolarizing component appeared to be age-dependent, since it was frequently observed in cultures grown in vitro for less than 26 days, while neurons in older cultures exhibited only hyperpolarizing responses. If such age-dependent depolarizing responses are present in vivo, they would represent a unique example of a transmitter response which is present only during a transient developmental phase.

  4. 13C ENDOR Spectroscopy of Lipoxygenase-Substrate Complexes Reveals the Structural Basis for C-H Activation by Tunneling.

    PubMed

    Horitani, Masaki; Offenbacher, Adam R; Carr, Cody A Marcus; Yu, Tao; Hoeke, Veronika; Cutsail, George E; Hammes-Schiffer, Sharon; Klinman, Judith P; Hoffman, Brian M

    2017-02-08

    In enzymatic C-H activation by hydrogen tunneling, reduced barrier width is important for efficient hydrogen wave function overlap during catalysis. For native enzymes displaying nonadiabatic tunneling, the dominant reactive hydrogen donor-acceptor distance (DAD) is typically ca. 2.7 Å, considerably shorter than normal van der Waals distances. Without a ground state substrate-bound structure for the prototypical nonadiabatic tunneling system, soybean lipoxygenase (SLO), it has remained unclear whether the requisite close tunneling distance occurs through an unusual ground state active site arrangement or by thermally sampling conformational substates. Herein, we introduce Mn 2+ as a spin-probe surrogate for the SLO Fe ion; X-ray diffraction shows Mn-SLO is structurally faithful to the native enzyme. 13 C ENDOR then reveals the locations of 13 C10 and reactive 13 C11 of linoleic acid relative to the metal; 1 H ENDOR and molecular dynamics simulations of the fully solvated SLO model using ENDOR-derived restraints give additional metrical information. The resulting three-dimensional representation of the SLO active site ground state contains a reactive (a) conformer with hydrogen DAD of ∼3.1 Å, approximately van der Waals contact, plus an inactive (b) conformer with even longer DAD, establishing that stochastic conformational sampling is required to achieve reactive tunneling geometries. Tunneling-impaired SLO variants show increased DADs and variations in substrate positioning and rigidity, confirming previous kinetic and theoretical predictions of such behavior. Overall, this investigation highlights the (i) predictive power of nonadiabatic quantum treatments of proton-coupled electron transfer in SLO and (ii) sensitivity of ENDOR probes to test, detect, and corroborate kinetically predicted trends in active site reactivity and to reveal unexpected features of active site architecture.

  5. Hyperpolarization-activated current (I(h)) in vestibular calyx terminals: characterization and role in shaping postsynaptic events.

    PubMed

    Meredith, Frances L; Benke, Tim A; Rennie, Katherine J

    2012-12-01

    Calyx afferent terminals engulf the basolateral region of type I vestibular hair cells, and synaptic transmission across the vestibular type I hair cell/calyx is not well understood. Calyces express several ionic conductances, which may shape postsynaptic potentials. These include previously described tetrodotoxin-sensitive inward Na(+) currents, voltage-dependent outward K(+) currents and a K(Ca) current. Here, we characterize an inwardly rectifying conductance in gerbil semicircular canal calyx terminals (postnatal days 3-45), sensitive to voltage and to cyclic nucleotides. Using whole-cell patch clamp, we recorded from isolated calyx terminals still attached to their type I hair cells. A slowly activating, noninactivating current (I(h)) was seen with hyperpolarizing voltage steps negative to the resting potential. External Cs(+) (1-5 mM) and ZD7288 (100 μM) blocked the inward current by 97 and 83 %, respectively, confirming that I(h) was carried by hyperpolarization-activated, cyclic nucleotide gated channels. Mean half-activation voltage of I(h) was -123 mV, which shifted to -114 mV in the presence of cAMP. Activation of I(h) was well described with a third order exponential fit to the current (mean time constant of activation, τ, was 190 ms at -139 mV). Activation speeded up significantly (τ=136 and 127 ms, respectively) when intracellular cAMP and cGMP were present, suggesting that in vivo I(h) could be subject to efferent modulation via cyclic nucleotide-dependent mechanisms. In current clamp, hyperpolarizing current steps produced a time-dependent depolarizing sag followed by either a rebound afterdepolarization or an action potential. Spontaneous excitatory postsynaptic potentials (EPSPs) became larger and wider when I(h) was blocked with ZD7288. In a three-dimensional mathematical model of the calyx terminal based on Hodgkin-Huxley type ionic conductances, removal of I(h) similarly increased the EPSP, whereas cAMP slightly decreased simulated EPSP size

  6. Analysis of neuron–astrocyte metabolic cooperation in the brain of db/db mice with cognitive decline using 13C NMR spectroscopy

    PubMed Central

    Zheng, Hong; Zheng, Yongquan; Wang, Dan; Cai, Aimin; Lin, Qiuting; Zhao, Liangcai; Chen, Minjiang; Deng, Mingjie; Ye, Xinjian

    2016-01-01

    Type 2 diabetes has been linked to cognitive impairment, but its potential metabolic mechanism is still unclear. The present study aimed to explore neuron–astrocyte metabolic cooperation in the brain of diabetic (db/db, BKS.Cg-m+/+ Leprdb/J) mice with cognitive decline using 13C NMR technique in combination with intravenous [2-13C]-acetate and [3-13C]-lactate infusions. We found that the 13C-enrichment from [2-13C]-acetate into tricarboxylic acid cycle intermediate, succinate, was significantly decreased in db/db mice with cognitive decline compared with wild-type (WT, C57BLKS/J) mice, while an opposite result was obtained after [3-13C]-lactate infusion. Relative to WT mice, db/db mice with cognitive decline had significantly lower 13C labeling percentages in neurotransmitters including glutamine, glutamate, and γ-aminobutyric acid after [2-13C]-acetate infusion. However, [3-13C]-lactate resulted in increased 13C-enrichments in neurotransmitters in db/db mice with cognitive decline. This may indicate that the disturbance of neurotransmitter metabolism occurred during the development of cognitive decline. In addition, a reduction in 13C-labeling of lactate and an increase in gluconeogenesis were found from both labeled infusions in db/db mice with cognitive decline. Therefore, our results suggest that the development of cognitive decline in type 2 diabetes may be implicated to an unbalanced metabolism in neuron–astrocyte cooperation and an enhancement of gluconeogenesis. PMID:26762505

  7. Analysis of neuron-astrocyte metabolic cooperation in the brain of db/db mice with cognitive decline using 13C NMR spectroscopy.

    PubMed

    Zheng, Hong; Zheng, Yongquan; Wang, Dan; Cai, Aimin; Lin, Qiuting; Zhao, Liangcai; Chen, Minjiang; Deng, Mingjie; Ye, Xinjian; Gao, Hongchang

    2017-01-01

    Type 2 diabetes has been linked to cognitive impairment, but its potential metabolic mechanism is still unclear. The present study aimed to explore neuron-astrocyte metabolic cooperation in the brain of diabetic (db/db, BKS.Cg-m +/+ Leprdb/J) mice with cognitive decline using 13 C NMR technique in combination with intravenous [2- 13 C]-acetate and [3- 13 C]-lactate infusions. We found that the 13 C-enrichment from [2- 13 C]-acetate into tricarboxylic acid cycle intermediate, succinate, was significantly decreased in db/db mice with cognitive decline compared with wild-type (WT, C57BLKS/J) mice, while an opposite result was obtained after [3- 13 C]-lactate infusion. Relative to WT mice, db/db mice with cognitive decline had significantly lower 13 C labeling percentages in neurotransmitters including glutamine, glutamate, and γ-aminobutyric acid after [2- 13 C]-acetate infusion. However, [3- 13 C]-lactate resulted in increased 13 C-enrichments in neurotransmitters in db/db mice with cognitive decline. This may indicate that the disturbance of neurotransmitter metabolism occurred during the development of cognitive decline. In addition, a reduction in 13 C-labeling of lactate and an increase in gluconeogenesis were found from both labeled infusions in db/db mice with cognitive decline. Therefore, our results suggest that the development of cognitive decline in type 2 diabetes may be implicated to an unbalanced metabolism in neuron-astrocyte cooperation and an enhancement of gluconeogenesis. © The Author(s) 2016.

  8. Measurement and significance of the equilibrium reaction C-13/+/ + /C-12/O yields C-12/+/ + /C-13/O for alteration of the C-13/C-12 ratio in interstellar molecules

    NASA Technical Reports Server (NTRS)

    Watson, W. D.; Anicich, V. G.; Huntress, W. T., Jr.

    1976-01-01

    Laboratory measurements using the ion-cyclotron resonance technique yield a rate constant of 2 by 10 to the -10th power cu cm/sec at 300 K for the isotope exchange C-13(+) + (C-12)O yields C-12(+) + (C-13)O. According to the usual ideas about ion-molecule reactions, this rate constant should also be appropriate at temperatures not exceeding about 100 K. Then the observed C-13/C-12 ratio obtained from radio observation of interstellar molecules may be either larger or smaller than the actual value in the interstellar medium by factors of 2 or so. If the ratio is altered from the actual interstellar value, it will not be the same in all molecules, and CO will tend to have the highest value. The chief astronomical uncertainty for the occurrence of this isotope fractionation is the abundance of 'unobservable' molecules which can react rapidly with C(+): e.g., O2, H2O, CO2, and CH4. If their abundance is greater than about one-tenth that of CO, the isotope fractionation will be inhibited.

  9. The calcineurin pathway links hyperpolarization (Kir2.1)-induced Ca2+ signals to human myoblast differentiation and fusion.

    PubMed

    Konig, Stéphane; Béguet, Anne; Bader, Charles R; Bernheim, Laurent

    2006-08-01

    In human myoblasts triggered to differentiate, a hyperpolarization, resulting from K+ channel (Kir2.1) activation, allows the generation of an intracellular Ca2+ signal. This signal induces an increase in expression/activity of two key transcription factors of the differentiation process, myogenin and MEF2. Blocking hyperpolarization inhibits myoblast differentiation. The link between hyperpolarization-induced Ca2+ signals and the four main regulatory pathways involved in myoblast differentiation was the object of this study. Of the calcineurin, p38-MAPK, PI3K and CaMK pathways, only the calcineurin pathway was inhibited when Kir2.1-linked hyperpolarization was blocked. The CaMK pathway, although Ca2+ dependent, is unaffected by changes in membrane potential or block of Kir2.1 channels. Concerning the p38-MAPK and PI3K pathways, their activity is present already in proliferating myoblasts and they are unaffected by hyperpolarization or Kir2.1 channel block. We conclude that the Kir2.1-induced hyperpolarization triggers human myoblast differentiation via the activation of the calcineurin pathway, which, in turn, induces expression/activity of myogenin and MEF2.

  10. (13)C NMR Studies, Molecular Order, and Mesophase Properties of Thiophene Mesogens.

    PubMed

    Veeraprakash, B; Lobo, Nitin P; Narasimhaswamy, T

    2015-12-03

    Three-ring mesogens with a core comprising thiophene linked to one phenyl ring directly and to the other via flexible ester are synthesized with terminal alkoxy chains to probe the mesophase properties and find the molecular order. The phenyl thiophene link in the core offers a comparison of the mesophase features with the molecular shape of the mesogen. The synthesized mesogens display enantiotropic polymesomorphism and accordingly nematic, smectic A, smectic C and smectic B mesophases are perceived depending upon the terminal chain length. For some of the homologues, monotropic higher order smectic phases such as smectic F and crystal E are also witnessed. The existence of polymesomorphism are originally observed by HOPM and DSC and further confirmed by powder X-ray diffraction studies. For the C8 homologue, high resolution solid state (13)C NMR spectroscopy is employed to find the molecular structure in the liquid crystalline phase and using the 2D SLF technique, the (13)C-(1)H dipolar couplings are extracted to calculate the order parameter. By comparing the ratio of local order of thiophene as well as phenyl rings, we establish the bent-core shape of the mesogen. Importantly, for assigning the carbon chemical shifts of the core unit of aligned C8 mesogen, the (13)C NMR measured in mesophase of the synthetic intermediate is employed. Thus, the proposed approach addresses the key step in the spectral assignment of target mesogens with the use of (13)C NMR data of mesomorphic intermediate.

  11. Obtaining molecular and structural information from 13C-14N systems with 13C FIREMAT experiments.

    PubMed

    Strohmeier, Mark; Alderman, D W; Grant, David M

    2002-04-01

    The effect of dipolar coupling to 14N on 13C FIREMAT (five pi replicated magic angle turning) experiments is investigated. A method is developed for fitting the 13C FIREMAT FID employing the full theory to extract the 13C-14N dipolar and 13C chemical shift tensor information. The analysis requires prior knowledge of the electric field gradient (EFG) tensor at the 14N nucleus. In order to validate the method the analysis is done for the amino acids alpha-glycine, gamma-glycine, l-alanine, l-asparagine, and l-histidine on FIREMAT FIDs recorded at 13C frequencies of 50 and 100 MHz. The dipolar and chemical shift data obtained with this analysis are in very good agreement with the previous single-crystal 13C NMR results and neutron diffraction data on alpha-glycine, l-alanine, and l-asparagine. The values for gamma-glycine and l-histidine obtained with this new method are reported for the first time. The uncertainties in the EFG tensor on the resultant 13C chemical shift and dipolar tensor values are assessed. (c) 2002 Elsevier Science (USA).

  12. In vivo dynamic turnover of cerebral 13C isotopomers from [U- 13C]glucose

    NASA Astrophysics Data System (ADS)

    Xu, Su; Shen, Jun

    2006-10-01

    An INEPT-based 13C MRS method and a cost-effective and widely available 11.7 Tesla 89-mm bore vertical magnet were used to detect dynamic 13C isotopomer turnover from intravenously infused [U- 13C]glucose in a 211 μL voxel located in the adult rat brain. The INEPT-based 1H → 13C polarization transfer method is mostly adiabatic and therefore minimizes signal loss due to B 1 inhomogeneity of the surface coils used. High quality and reproducible data were acquired as a result of combined use of outer volume suppression, ISIS, and the single-shot three-dimensional localization scheme built in the INEPT pulse sequence. Isotopomer patterns of both glutamate C4 at 34.00 ppm and glutamine C4 at 31.38 ppm are dominated first by a doublet originated from labeling at C4 and C5 but not at C3 (with 1JC4C5 = 51 Hz) and then by a quartet originated from labeling at C3, C4, and C5 (with 1JC3C4 = 35 Hz). A lag in the transition of glutamine C4 pattern from doublet-dominance to quartet dominance as compared to glutamate C4 was observed, which provides an independent verification of the precursor-product relationship between neuronal glutamate and glial glutamine and a significant intercompartmental cerebral glutamate-glutamine cycle between neurons and glial cells.

  13. SABRE-Relay: A Versatile Route to Hyperpolarization.

    PubMed

    Roy, Soumya S; Appleby, Kate M; Fear, Elizabeth J; Duckett, Simon B

    2018-03-01

    Signal Amplification by Reversible Exchange (SABRE) is used to switch on the latent singlet spin order of para-hydrogen (p-H 2 ) so that it can hyperpolarize a substrate (sub = nicotinamide, nicotinate, niacin, pyrimidine, and pyrazine). The substrate then reacts reversibly with [Pt(OTf) 2 (bis-diphenylphosphinopropane)] by displacing OTf - to form [Pt(OTf)(sub)(bis-diphenylphosphinopropane)]OTf. The 31 P NMR signals of these metal complexes prove to be enhanced when the substrate possesses an accessible singlet state or long-lived Zeeman polarization. In the case of pyrazine, the corresponding 31 P signal was 105 ± 8 times larger than expected, which equated to an 8 h reduction in total scan time for an equivalent signal-to-noise ratio under normal acquisition conditions. Hence, p-H 2 derived spin order is successfully relayed into a second metal complex via a suitable polarization carrier (sub). When fully developed, we expect this route involving a second catalyst to successfully hyperpolarize many classes of substrates that are not amenable to the original SABRE method.

  14. SABRE-Relay: A Versatile Route to Hyperpolarization

    PubMed Central

    2018-01-01

    Signal Amplification by Reversible Exchange (SABRE) is used to switch on the latent singlet spin order of para-hydrogen (p-H2) so that it can hyperpolarize a substrate (sub = nicotinamide, nicotinate, niacin, pyrimidine, and pyrazine). The substrate then reacts reversibly with [Pt(OTf)2(bis-diphenylphosphinopropane)] by displacing OTf– to form [Pt(OTf)(sub)(bis-diphenylphosphinopropane)]OTf. The 31P NMR signals of these metal complexes prove to be enhanced when the substrate possesses an accessible singlet state or long-lived Zeeman polarization. In the case of pyrazine, the corresponding 31P signal was 105 ± 8 times larger than expected, which equated to an 8 h reduction in total scan time for an equivalent signal-to-noise ratio under normal acquisition conditions. Hence, p-H2 derived spin order is successfully relayed into a second metal complex via a suitable polarization carrier (sub). When fully developed, we expect this route involving a second catalyst to successfully hyperpolarize many classes of substrates that are not amenable to the original SABRE method. PMID:29432020

  15. Development of LC-13C NMR

    NASA Technical Reports Server (NTRS)

    Dorn, H. C.; Wang, J. S.; Glass, T. E.

    1986-01-01

    This study involves the development of C-13 nuclear resonance as an on-line detector for liquid chromatography (LC-C-13 NMR) for the chemical characterization of aviation fuels. The initial focus of this study was the development of a high sensitivity flow C-13 NMR probe. Since C-13 NMR sensitivity is of paramount concern, considerable effort during the first year was directed at new NMR probe designs. In particular, various toroid coil designs were examined. In addition, corresponding shim coils for correcting the main magnetic field (B sub 0) homogeneity were examined. Based on these initial probe design studies, an LC-C-13 NMR probe was built and flow C-13 NMR data was obtained for a limited number of samples.

  16. A reconnaissance study of 13C-13C clumping in ethane from natural gas

    NASA Astrophysics Data System (ADS)

    Clog, Matthieu; Lawson, Michael; Peterson, Brian; Ferreira, Alexandre A.; Santos Neto, Eugenio V.; Eiler, John M.

    2018-02-01

    Ethane is the second most abundant alkane in most natural gas reservoirs. Its bulk isotopic compositions (δ13C and δD) are used to understand conditions and progress of cracking reactions that lead to the accumulation of hydrocarbons. Bulk isotopic compositions are dominated by the concentrations of singly-substituted isotopologues (13CH3-12CH3 for δ13C and 12CDH2-12CH3 for δD). However, multiply-substituted isotopologues can bring additional independent constraints on the origins of natural ethane. The 13C2H6 isotopologue is particularly interesting as it can potentially inform the distribution of 13C atoms in the parent biomolecules whose thermal cracking lead to the production of natural gas. This work presents methods to purify ethane from natural gas samples and quantify the abundance of the rare isotopologue 13C2H6 in ethane at natural abundances to a precision of ±0.12 ‰ using a high-resolution gas source mass spectrometer. To investigate the natural variability in carbon-carbon clumping, we measured twenty-five samples of thermogenic ethane from a range of geological settings, supported by two hydrous pyrolysis of shales experiments and a dry pyrolysis of ethane experiment. The natural gas samples exhibit a range of 'clumped isotope' signatures (Δ13C2H6) at least 30 times larger than our analytical precision, and significantly larger than expected for thermodynamic equilibration of the carbon-carbon bonds during or after formation of ethane, inheritance from the distribution of isotopes in organic molecules or different extents of cracking of the source. However we show a relationship between the Δ13C2H6 and the proportion of alkanes in natural gas samples, which we believe can be associated to the extent of secondary ethane cracking. This scenario is consistent with the results of laboratory experiments, where breaking down ethane leaves the residue with a low Δ13C2H6 compared to the initial gas. Carbon-carbon clumping is therefore a new

  17. Synaptic hyperpolarization and inhibition of turtle cochlear hair cells.

    PubMed

    Art, J J; Fettiplace, R; Fuchs, P A

    1984-11-01

    Intracellular recordings were made from turtle cochlear hair cells in order to examine the properties of the post-synaptic potentials evoked by electrical stimulation of the efferent axons. Single shocks to the efferents generated a hair cell membrane hyperpolarization with an average amplitude generally less than 1 mV and lasting for about 100 ms. With short trains of shocks, the size of the post-synaptic potential grew markedly to a maximum of 20-30 mV. The interaction between pairs of shocks separated by a varying interval was studied. For an interval of 4 ms, the response to the second shock was increased on average by a factor of 3 and the conditioning effect of the first shock decayed with a time constant of about 100 ms. We suggest the augmentation in response to trains of shocks may be partly due to facilitation of efferent transmitter release. The efferent post-synaptic potentials could be reversibly abolished by perfusion with perilymphs containing 3 microM-curare or atropine, and infusion of acetylcholine gave a transient membrane hyperpolarization. These observations are consistent with efferent action being mediated via a cholinergic synapse onto the hair cells. The post-synaptic potentials could be reversed in polarity by injection of hyperpolarizing currents through the recording electrode. The reversal potential was estimated as about -80 mV, 30 mV negative to the resting potential. Near reversal, a small brief depolarization was evident and may constitute a minor component of the synaptic response. The value of the reversal potential was unaffected by substitution of the perilymphatic chloride, but was altered in a predictable manner by changes in extracellular potassium concentration indicating that the post-synaptic potentials arise mainly by an increase in the permeability of the hair cell membrane to potassium ions. Throughout the post-synaptic hyperpolarization there was a reduction in the sensitivity of the hair cell to tones at its

  18. An improved 13C-tracer method for the study of lignin structure and reactions : differential 13C-NMR

    Treesearch

    Noritsugu Terashima; Dmitry Evtuguin; Carlos Pascoal Neto; Jim Parkas; Magnus Paulsson; Ulla Westermark; Sally Ralph; John Ralph

    2003-01-01

    The technique of selective 13C-enrichment of specific carbons in lignin combined with 13C-NMR differential spectrometry between spectra of 13C-enriched and unenriched lignins (Ä13C-NMR) provides definitive information on the structure of the lignin macromolecule. Improvements were made on, (1) specific 13C-enrichment of almost all carbons involved in inter-unit bonds...

  19. 13C NMR spectroscopic analysis of poly(electrolyte) cement liquids.

    PubMed

    Watts, D C

    1979-05-01

    13C NMR spectroscopy has been applied to the analysis of carboxylic poly-acid cement liquids. Monomer incorporation, composition ratio, sequence statistics, and stereochemical configuration have been considered theoretically, and determined experimentally, from the spectra. Conventionally polymerized poly(acrylic acid) has an approximately random configuration, but other varieties may be synthesized. Two commercial glass-ionomer cement liquids both contain tartaric acid as a chelating additive but the composition of their poly-acids are different. Itaconic acid units, distributed randomly, constitute 21% of the repeating units in one of these polyelectrolytes.

  20. Metabolism of uniformly labeled 13C-eicosapentaenoic acid and 13C-arachidonic acid in young and old men.

    PubMed

    Léveillé, Pauline; Chouinard-Watkins, Raphaël; Windust, Anthony; Lawrence, Peter; Cunnane, Stephen C; Brenna, J Thomas; Plourde, Mélanie

    2017-08-01

    Background: Plasma eicosapentaenoic acid (EPA) and arachidonic acid (AA) concentrations increase with age. Objective: The aim of this study was to evaluate EPA and AA metabolism in young and old men by using uniformly labeled carbon-13 ( 13 C) fatty acids. Design: Six young (∼25 y old) and 6 old (∼75 y old) healthy men were recruited. Each participant consumed a single oral dose of 35 mg 13 C-EPA and its metabolism was followed in the course of 14 d in the plasma and 28 d in the breath. After the washout period of ≥28 d, the same participants consumed a single oral dose of 50 mg 13 C-AA and its metabolism was followed for 28 d in plasma and breath. Results: There was a time × age interaction for 13 C-EPA ( P time × age = 0.008), and the shape of the postprandial curves was different between young and old men. The 13 C-EPA plasma half-life was ∼2 d for both young and old men ( P = 0.485). The percentage dose recovered of 13 C-EPA per hour as 13 CO 2 and the cumulative β-oxidation of 13 C-EPA did not differ between young and old men. At 7 d, however, old men had a >2.2-fold higher plasma 13 C-DHA concentration synthesized from 13 C-EPA compared with young men ( P age = 0.03). 13 C-AA metabolism was not different between young and old men. The 13 C-AA plasma half-life was ∼4.4 d in both young and old participants ( P = 0.589). Conclusions: The metabolism of 13 C-AA was not modified by age, whereas 13 C-EPA metabolism was slightly but significantly different in old compared with young men. The higher plasma 13 C-DHA seen in old men may be a result of slower plasma DHA clearance with age. This trial was registered at clinicaltrials.gov as NCT02957188. © 2017 American Society for Nutrition.

  1. Phosphoglucoisomerase-catalyzed interconversion of hexose phosphates. Study by 13C NMR of proton and deuteron exchange.

    PubMed

    Malaisse, W J; Liemans, V; Malaisse-Lagae, F; Ottinger, R; Willem, R

    1991-05-15

    The exchange of protons and deuterons by phosphoglucoisomerase during the single passage conversion of D-[2-13C,1-2H]fructose 6-phosphate in H2O or D-[2-13C]fructose 6-phosphate in D2O to D-[2-13C]glucose 6-phosphate, as coupled with the further generation of 6-phospho-D-[2-13C]gluconate in the presence of excess glucose-6-phosphate dehydrogenase was investigated by 13C NMR spectroscopy of the latter metabolite. In H2O, the intramolecular deuteron transfer from the C1 of D-fructose 6-phosphate to the C2 of D-glucose 6-phosphate amounted to 65%, a value only slightly lower than the 72% intramolecular proton transfer in D2O. Both percentages, especially the latter one, were lower than those previously recorded during the single passage conversion of D-[1-13C,2-2H]glucose 6-phosphate in H2O or D-[1-13C]glucose 6-phosphate in D2O to D-fructose 6-phosphate and then to D-fructose 1,6-bisphosphate. These differences indicate that the sequence of interactions between the hexose esters and the binding sites of phosphoglucoisomerase is not strictly in mirror image during, respectively, the conversion of the aldose phosphate to ketose phosphate and the opposite process.

  2. 1H and 13C-NMR studies on phenol-formaldehyde prepolymers for tannin-based adhesives

    Treesearch

    Gerald W. McGraw; Lawerence L. Lanucci; Seiji Ohara; Richard W. Hemingway

    1989-01-01

    The number average structure and the molecular weight distribution of phenol-formaldehyde prepolymers for use in synthesis of tannin-based adhesive resins were determined with 1H and 13C-NMR spectroscopy and gel permeation chromatography of acetylated resins. These methods were used to determine differences in phenol-...

  3. Monovacancy paramagnetism in neutron-irradiated graphite probed by 13C NMR.

    PubMed

    Zhang, Z T; Xu, C; Dmytriieva, D; Molatta, S; Wosnitza, J; Wang, Y T; Helm, M; Zhou, Shengqiang; Kühne, H

    2017-10-20

    We report on the magnetic properties of monovacancy defects in neutron-irradiated graphite, probed by 13 C nuclear magnetic resonance spectroscopy. The bulk paramagnetism of the defect moments is revealed by the temperature dependence of the NMR frequency shift and spectral linewidth, both of which follow a Curie behavior, in agreement with measurements of the macroscopic magnetization. Compared to pristine graphite, the fluctuating hyperfine fields generated by the defect moments lead to an enhancement of the 13 C nuclear spin-lattice relaxation rate [Formula: see text] by about two orders of magnitude. With an applied magnetic field of 7.1 T, the temperature dependence of [Formula: see text] below about 10 K can well be described by a thermally activated form, [Formula: see text], yielding a singular Zeeman energy of ([Formula: see text]) meV, in excellent agreement with the sole presence of polarized, non-interacting defect moments.

  4. Electrical coupling and release of K+ from endothelial cells co-mediate ACh-induced smooth muscle hyperpolarization in guinea-pig inner ear artery

    PubMed Central

    Jiang, Zhi-Gen; Nuttall, Alfred L; Zhao, Hui; Dai, Chun-Fu; Guan, Bing-Cai; Si, Jun-Qiang; Yang, Yu-Qin

    2005-01-01

    The physiological basis of ACh-elicited hyperpolarization in guinea-pig in vitro cochlear spiral modiolar artery (SMA) was investigated by intracellular recording combined with dye labelling of recorded cells and immunocytochemistry. We found the following. (1) The ACh-hyperpolarization was prominent only in cells that had a low resting potential (less negative than −60 mV). ACh-hyperpolarization was reversibly blocked by 4-DAMP, charybdotoxin or BAPTA-AM, but not by Nω-nitro-l-arginine methyl ester, glipizide, indomethacin or 17-octadecynoic acid. (2) Ba2+ (100 μm) and ouabain (1 μm) each attenuated ACh-hyperpolarization by ∼ 30% in smooth muscle cells (SMCs) but had only slight or no inhibition in endothelial cells (ECs). A combination of Ba2+ and 18β-glycyrrhetinic acid near completely blocked the ACh-hyperpolarization in SMCs. (3) High K+ (10 mm) induced a smaller hyperpolarization in ECs than in SMCs, with an amplitude ratio of 0.49: 1. Ba2+ blocked the K+-induced hyperpolarization by ∼ 85% in both cell types, whereas ouabain inhibited K+-hyperpolarization differently in SMCs (19%) and ECs (35%) and increased input resistance. 18β-Glycyrrhetinic acid blocked the high K+-hyperpolarization in ECs only. (4) Weak myoendothelial dye coupling was detected by confocal microscopy in cells recorded with a propidium iodide-containing electrode for longer than 30 min. A sparse plexus of choline acetyltransferase-immunoreactive (ChAT) fibres was observed around the SMA and its up-stream arteries. (5) Evoked excitatory junction potentials (EJP) were partially blocked by 4-DAMP in half of the cells tested. We conclude that ACh-induced hyperpolarization originates from ECs via activation of Ca2+-activated potassium channels, and is independent of the release of NO, cyclo-oxygenase or cytochrome P450 products. ACh-induced hyperpolarization in smooth muscle cells involves two mechanisms: (a) electrical spread of the hyperpolarization from the endothelium, and (b

  5. Electrical coupling and release of K+ from endothelial cells co-mediate ACh-induced smooth muscle hyperpolarization in guinea-pig inner ear artery.

    PubMed

    Jiang, Zhi-Gen; Nuttall, Alfred L; Zhao, Hui; Dai, Chun-Fu; Guan, Bing-Cai; Si, Jun-Qiang; Yang, Yu-Qin

    2005-04-15

    The physiological basis of ACh-elicited hyperpolarization in guinea-pig in vitro cochlear spiral modiolar artery (SMA) was investigated by intracellular recording combined with dye labelling of recorded cells and immunocytochemistry. We found the following. (1) The ACh-hyperpolarization was prominent only in cells that had a low resting potential (less negative than -60 mV). ACh-hyperpolarization was reversibly blocked by 4-DAMP, charybdotoxin or BAPTA-AM, but not by N(omega)-nitro-L-arginine methyl ester, glipizide, indomethacin or 17-octadecynoic acid. (2) Ba(2)(+) (100 microm) and ouabain (1 microm) each attenuated ACh-hyperpolarization by approximately 30% in smooth muscle cells (SMCs) but had only slight or no inhibition in endothelial cells (ECs). A combination of Ba(2)(+) and 18beta-glycyrrhetinic acid near completely blocked the ACh-hyperpolarization in SMCs. (3) High K(+) (10 mm) induced a smaller hyperpolarization in ECs than in SMCs, with an amplitude ratio of 0.49 : 1. Ba(2)(+) blocked the K(+)-induced hyperpolarization by approximately 85% in both cell types, whereas ouabain inhibited K(+)-hyperpolarization differently in SMCs (19%) and ECs (35%) and increased input resistance. 18beta-Glycyrrhetinic acid blocked the high K(+)-hyperpolarization in ECs only. (4) Weak myoendothelial dye coupling was detected by confocal microscopy in cells recorded with a propidium iodide-containing electrode for longer than 30 min. A sparse plexus of choline acetyltransferase-immunoreactive (ChAT) fibres was observed around the SMA and its up-stream arteries. (5) Evoked excitatory junction potentials (EJP) were partially blocked by 4-DAMP in half of the cells tested. We conclude that ACh-induced hyperpolarization originates from ECs via activation of Ca(2)(+)-activated potassium channels, and is independent of the release of NO, cyclo-oxygenase or cytochrome P450 products. ACh-induced hyperpolarization in smooth muscle cells involves two mechanisms: (a) electrical spread

  6. Investigating the Hydrolysis Reactions of a Chemical Warfare Agent Surrogate. A Systematic Study using 1H, 13C, 17O, 19F, 31P, and 35Cl NMR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Todd M.; Wilson, Brendan W.

    2015-07-24

    During the summer of 2015, I participated in the DHS HS-STEM fellowship at Sandia National Laboratories (SNL, NM) under the supervision of Dr. Todd M. Alam in his Nuclear Magnetic Resonance (NMR) Spectroscopy research group. While with the group, my main project involved pursing various hydrolysis reactions with Diethyl Chlorophosphate (DECP), a surrogate for the agent Sarin (GB). Specifically, I performed different hydrolysis reactions, monitored and tracked the different phosphorous containing species using phosphorous ( 31P) NMR spectroscopy. With the data collected, I performed kinetics studies mapping the rates of DECP hydrolysis. I also used the NMR of different nucleimore » such as 1H, 13C, 17O, and 35Cl to help understand the complexity of the reactions that take place. Finally, my last task at SNL was to work with Insensitive Nuclei Enhanced by Polarization Transfer (INEPT) NMR Spectroscopy optimizing conditions for 19F- 31P filtering NMR experiments.« less

  7. Characterization of the humic substances isolated from postfire soils of scotch pine forest in Togljatty city, Samara region by the 13C-NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Maksimova, Ekaterina; Abakumov, Evgeny

    2016-04-01

    Postpyrogenic soil dynamics is an informative tool for studying of soil elementary processes in extreme temperature conditions and for predicting of short time environmental changes in conditions of catastrophic landscape changes. Soil organic matter (SOM) system evolution is the most rapid process of postpyrogenic soil development. In this relation the evaluation of humus accumulation rates and humification trend were conducted with use of the classical chemical and modern spectroscopy methods. Soil restoration after spontaneous forest fires near Togljatty city (Samara region, Russia) was abandoned in 2010, and further monitoring over the next four years was organized to evaluate the speed of biogenic processes and humus accumulation dynamics. Three key soil plots were studied for estimating SOM quality changes under the forest fire effect: surface forest fire, crown forest fire and control. Total carbon and nitrogen content as well as Cha/Cfa ratios (content of humic acids/ content of fulvic acids), were estimated to assess the dynamics of soil restoration. Humic acid powders were extracted and analyzed by elemental composition and 13C-NMR spectroscopy to assess changes in humic substance structure and composition. The data obtained indicate that burning of a forest floor and sod (humic) horizon led to humus losses and decreases in total carbon stocks. As a result of the fires, the content of humic acids in the pyrogenic horizon increased, leading alterations of humus type. Greater increases in the degree of organic matter humification were observed for surface fires than crown fires. It was shown that the humus molecular composition was substantially affected by the wildfires. The data show an increase in aromaticity, a loss of oxygen-containing groups and dehydrogenation of humic acids. Humic acids in the soils of the control plots and after wildfires were significantly different, especially in the ratios of hydrogen, oxygen and carbon. The increase in the

  8. Unveiling the Interplay Between Diffusing CO2 and Ethanol Molecules in Champagne Wines by Classical Molecular Dynamics and (13)C NMR Spectroscopy.

    PubMed

    Bonhommeau, David A; Perret, Alexandre; Nuzillard, Jean-Marc; Cilindre, Clara; Cours, Thibaud; Alijah, Alexander; Liger-Belair, Gérard

    2014-12-18

    The diffusion coefficients of carbon dioxide (CO2) and ethanol (EtOH) in carbonated hydroalcoholic solutions and Champagne wines are evaluated as a function of temperature by classical molecular dynamics (MD) simulations and (13)C NMR spectroscopy measurements. The excellent agreement between theoretical and experimental diffusion coefficients suggest that ethanol is the main molecule, apart from water, responsible for the value of the CO2 diffusion coefficients in typical Champagne wines, a result that could likely be extended to most sparkling wines with alike ethanol concentrations. CO2 and EtOH hydrodynamical radii deduced from viscometry measurements by applying the Stokes-Einstein relationship are found to be mostly constant and in close agreement with MD predictions. The reliability of our approach should be of interest to physical chemists aiming to model transport phenomena in supersaturated aqueous solutions or water/alcohol mixtures.

  9. Hyperpolarized Magnetic Resonance as a Sensitive Detector of Metabolic Function

    PubMed Central

    2015-01-01

    Hyperpolarized magnetic resonance allows for noninvasive measurements of biochemical reactions in vivo. Although this technique provides a unique tool for assaying enzymatic activities in intact organs, the scope of its application is still elusive for the wider scientific community. The purpose of this review is to provide key principles and parameters to guide the researcher interested in adopting this technology to address a biochemical, biomedical, or medical issue. It is presented in the form of a compendium containing the underlying essential physical concepts as well as suggestions to help assess the potential of the technique within the framework of specific research environments. Explicit examples are used to illustrate the power as well as the limitations of hyperpolarized magnetic resonance. PMID:25369537

  10. Real-time analysis of δ13C- and δD-CH4 in ambient air with laser spectroscopy: Method development and intercomparison

    NASA Astrophysics Data System (ADS)

    Harris, E. J.; Eyer, S.; Mohn, J.; Röckmann, T.; Popa, E.; Lowry, D.; Nisbet, E. G.; Fisher, R. E.; Brennwald, M. S.; Fischer, H.; Emmenegger, L.; Tuzson, B.; Zellweger, C.

    2015-12-01

    Methane (CH4) is the second most important anthropogenically emitted greenhouse gas after carbon dioxide (CO2). Its mole fraction has increased from around 722 ppb in pre-industrial times to 1824 ppb in 2013 and the anthropogenic fraction is estimated to be 60 % of the total emissions. A promising approach to improve the understanding of the CH4 budget is the use of isotopologues to distinguish between various CH4 source processes. In the presented study in situ and simultaneous measurement of the three most abundant isotopologues of methane using mid-infrared laser absorption spectroscopy is demonstrated. A field-deployable, autonomous platform is realized by coupling a compact quantum cascade laser absorption spectrometer (QCLAS) to a preconcentration unit, called TRace gas EXtractor (TREX). This unit enhances CH4 mole fractions by a factor of up to 500 above ambient levels and quantitatively separates interfering trace gases such as N2O and CO2. The analytical precision of the QCLAS isotope measurement on the preconcentrated (750 ppm, parts-per-million, mmole/mole) methane is 0.1‰ and 0.5 ‰ for δ13C- and δD-CH4 at 10 min averaging time. [1] Based on replicate measurements of compressed air during a two-week intercomparison campaign, the repeatability of the TREX-QCLAS was determined to be 0.19 ‰ and 1.9 ‰ for δ13C and δD-CH4, respectively. In this intercomparison campaign the new in situ technique is compared to IRMS based on glass flask and bag sampling and real time CH4 isotope analysis by two commercially available laser spectrometers (Figure). Both laser-based analyzers were limited to methane mole fraction and δ13C-CH4 analysis, and only one of them, a cavity ring down spectrometer, was capable to deliver meaningful data for the isotopic composition. After correcting for scale offsets, the average difference between TREX-QCLAS data and bag/flask sampling-IRMS values are within the extended WMO compatibility goals of 0.2 and 5 ‰ for δ13C- and

  11. Computer Code for Interpreting 13C NMR Relaxation Measurements with Specific Models of Molecular Motion: The Rigid Isotropic and Symmetric Top Rotor Models and the Flexible Symmetric Top Rotor Model

    DTIC Science & Technology

    2017-01-01

    unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT: Carbon-13 nuclear magnetic resonance (13C NMR) spectroscopy is a powerful technique for...FLEXIBLE SYMMETRIC TOP ROTOR MODEL 1. INTRODUCTION Nuclear magnetic resonance (NMR) spectroscopy is a tremendously powerful technique for...application of NMR spectroscopy concerns the property of molecular motion, which is related to many physical, and even biological, functions of molecules in

  12. Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of 13C-labeled Plant Metabolites and Lignocellulose

    PubMed Central

    Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun

    2015-01-01

    Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our 13C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the 13C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the 13C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in 13C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886

  13. Diffusion Lung Imaging with Hyperpolarized Gas MRI

    PubMed Central

    Yablonskiy, Dmitriy A; Sukstanskii, Alexander L; Quirk, James D

    2015-01-01

    Lung imaging using conventional 1H MRI presents great challenges due to low density of lung tissue, lung motion and very fast lung tissue transverse relaxation (typical T2* is about 1-2 ms). MRI with hyperpolarized gases (3He and 129Xe) provides a valuable alternative due to a very strong signal originated from inhaled gas residing in the lung airspaces and relatively slow gas T2* relaxation (typical T2* is about 20-30 ms). Though in vivo human experiments should be done very fast – usually during a single breath-hold. In this review we describe the recent developments in diffusion lung MRI with hyperpolarized gases. We show that a combination of modeling results of gas diffusion in lung airspaces and diffusion measurements with variable diffusion-sensitizing gradients allows extracting quantitative information on the lung microstructure at the alveolar level. This approach, called in vivo lung morphometry, allows from a less than 15-second MRI scan, providing quantitative values and spatial distributions of the same physiological parameters as are measured by means of the “standard” invasive stereology (mean linear intercept, surface-to-volume ratio, density of alveoli, etc.). Besides, the approach makes it possible to evaluate some advanced Weibel parameters characterizing lung microstructure - average radii of alveolar sacs and ducts, as well as the depth of their alveolar sleeves. Such measurements, providing in vivo information on the integrity of pulmonary acinar airways and their changes in different diseases, are of great importance and interest to a broad range of physiologists and clinicians. We also discuss a new type of experiments that are based on the in vivo lung morphometry technique combined with quantitative CT measurements as well as with the Gradient Echo MRI measurements of hyperpolarized gas transverse relaxation in the lung airspaces. Such experiments provide additional information on the blood vessel volume fraction, specific gas

  14. Factors, fiction and endothelium-derived hyperpolarizing factor.

    PubMed

    Sandow, Shaun L

    2004-09-01

    1. The principal mediators of vascular tone are neural, endothelial and physical stimuli that result in the initiation of dilator and constrictor responses to facilitate the control of blood pressure. Two primary vasodilatory stimuli produced by the endothelium are nitric oxide (NO) and prostaglandins. An additional endothelium-dependent vasodilatory mechanism is characterized as the hyperpolarization-mediated relaxation that remains after the inhibition of the synthesis of NO and prostaglandins. This mechanism is due to the action of a so-called endothelium-derived hyperpolarizing factor (EDHF) and is dependent on either the release of diffusible factor(s) and/or to a direct contact-mediated mechanism. 2. Most evidence supports the concept that 'EDHF' activity is dependent on contact-mediated mechanisms. This involves the transfer of an endothelium-derived electrical current, as an endothelium-derived hyperpolarization (EDH), through direct heterocellular coupling of endothelial cells and smooth muscle cells via myoendothelial gap junctions (MEGJ). However, there is a lack of consensus with regard to the nature and mechanism of action of EDHF/EDH (EDH(F)), which has been shown to vary within and between vascular beds, as well as among species, strains, sex and during development, ageing and disease. 3. In addition to actual heterogeneity in EDH(F), further heterogeneity has resulted from the less-than-optimal design, analysis and interpretation of data in some key papers in the EDHF literature; with such views being perpetuated in the subsequent literature. 4. The focus of the present brief review is to examine what factors are proposed as EDH(F) and highlight the correlative structural and functional studies from our laboratory that demonstrate an integral role for MEGJ in the conduction of EDH, which account for the heterogeneity in EDH(F), while incorporating the reported diffusible mechanisms in the regulation of this activity. Furthermore, in addition to the

  15. Hyperpolarized 13C MR Markers of Renal Tumor Aggressiveness

    DTIC Science & Technology

    2015-12-01

    production in two human glioblastoma xenograft models where the blood–brain barrier (BBB) was disrupted relative to normal brain, suggesting that HP...rodent mammary adenocarcinoma and murine lymphoma xenografts ) has shown ample conversion to leucine.98 In this preclinical study, SNR and contrast were...4 depletes stem-like glioblastoma cells and inhibits HIF transcriptional response in a lactate-independent manner, Oncogene 33 (2013) 4433–4441. Real

  16. Noninvasive Measurement of Murine Hepatic Acetyl-CoA 13C-Enrichment Following Overnight Feeding with 13C-Enriched Fructose and Glucose

    PubMed Central

    Carvalho, Filipa; Duarte, Joao; Simoes, Ana Rita; Cruz, Pedro F.; Jones, John G.

    2013-01-01

    The 13C-isotopomer enrichment of hepatic cytosolic acetyl-CoA of overnight-fed mice whose drinking water was supplemented with [U-13C]fructose, and [1-13C]glucose and p-amino benzoic acid (PABA) was quantified by 13C NMR analysis of urinary N-acetyl-PABA. Four mice were given normal chow plus drinking water supplemented with 5% [1-13C]glucose, 2.5% [U-13C]fructose, and 2.5% fructose (Solution 1) overnight. Four were given chow and water containing 17.5% [1-13C]glucose, 8.75% [U-13C]fructose and 8.75% fructose (Solution 2). PABA (0.25%) was present in both studies. Urinary N-acetyl-PABA was analyzed by 13C NMR. In addition to [2-13C]- and [1,2-13C]acetyl isotopomers from catabolism of [U-13C]fructose and [1-13C]glucose to acetyl-CoA, [1-13C]acetyl was also found indicating pyruvate recycling activity. This precluded precise estimates of [1-13C]glucose contribution to acetyl-CoA while that of [U-13C]fructose was unaffected. The fructose contribution to acetyl-CoA from Solutions 1 and 2 was 4.0 ± 0.4% and 10.6 ± 0.6%, respectively, indicating that it contributed to a minor fraction of lipogenic acetyl-CoA under these conditions. PMID:23841082

  17. The C-12/C-13 Ratio as a Chemistry Indicator

    NASA Technical Reports Server (NTRS)

    Wirstroem, Eva; Geppert, Wolf; Persson, Carina; Charnley, Steven

    2011-01-01

    Isotopic ratios of elements are considered powerful tools, e.g. in tracing the origin of solar system body materials, or the degree of nucleosynthesis processing throughout the Galaxy. In interstellar molecules, some isotopic ratios like H/D and C-12/C-13 can also be used as indicators of their chemical origin. Isotope fractionation in gas-phase chemical reactions and gas-dust interaction makes observations of the ratio between C-12 and C-13 isotopologues suitable to distinguish between different formation scenarios. We will present observations of the C-12/C-13 ratio in methanol and formaldehyde towards a sample of embedded, massive young stellar objects. In relation to this we also present results from theoretical modeling showing the usefulness of the C-12/C-13 ratio as a chemistry indicator.

  18. The 12C/13C Isotopic Ratio In Titan's Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Nixon, Conor A.; Achterberg, R. K.; Vinatier, S.; Bezard, B.; Coustenis, A.; Teanby, N. A.; Irwin, P. G.; Cassini CIRS Team

    2007-10-01

    Isotopic ratios in planetary atmospheres are of considerable interest, yielding insights both about currently occurring processes, and also the formation and early evolution of the body. Before Cassini, ground-based measurements of Titan's 12C/13C in HCN showed no firm evidence of deviation from the terrestrial inorganic standard (88.9) - albeit with large error bars of 20% - contrasting the enrichment in nitrogen (15N/14N≈4.5 terrestrial). Since 2004, the Composite Infrared Spectrometer (CIRS) instrument on Cassini has recorded spectra of Titan's stratosphere globally, including the emissions of multiple isotopologues for certain hydrocarbons. We selected spectra for analysis from four flybys (T4, T12, T19, T22), covering five latitudes from 65°S to 71°N. By means of a radiative transfer code and inversion scheme, we have first modeled the ν4 band of 12CH4 at 1304 cm-1 to retrieve stratospheric temperatures, and subsequently the emissions of 13CH4, 12C2H2, 13C12CH2, 12C2H6 and 13C12CH6. Our results indicate 12C/13C = 81.2±2.0 for all three species combined over all five latitudes, in excellent agreement with the Huygens GCMS value of 12CH4/13CH4 = 82.3±1.0 (Niemann et al. 2005), some 9% lower than terrestrial inorganic, and lower than in ethane on Saturn (91 (-13) (+26)) and Jupiter (99 (-23) (+43)) (Sada et al. 1996). No latitude variation was detected, however the 12C/13C in the C2 species (83.9±3.1 in acetylene, 89.9±7.2 in ethane) were consistently higher than in methane (78.0±2.7) after considering random errors. Although it is possible that this is a real chemical or physical (condensation) effect, it is more likely due to systematic errors in our temperature profile, as our spectra do not yield independent temperature information at 10 mbar where the emissions of 13C12CH2 and 13C12CH6 originate, and we default to the Huygens probe temperatures. In future, this problem may be resolved by modeling CIRS limb spectra.

  19. Imaging Human Brain Perfusion with Inhaled Hyperpolarized 129Xe MR Imaging.

    PubMed

    Rao, Madhwesha R; Stewart, Neil J; Griffiths, Paul D; Norquay, Graham; Wild, Jim M

    2018-02-01

    Purpose To evaluate the feasibility of directly imaging perfusion of human brain tissue by using magnetic resonance (MR) imaging with inhaled hyperpolarized xenon 129 ( 129 Xe). Materials and Methods In vivo imaging with 129 Xe was performed in three healthy participants. The combination of a high-yield spin-exchange optical pumping 129 Xe polarizer, custom-built radiofrequency coils, and an optimized gradient-echo MR imaging protocol was used to achieve signal sensitivity sufficient to directly image hyperpolarized 129 Xe dissolved in the human brain. Conventional T1-weighted proton (hydrogen 1 [ 1 H]) images and perfusion images by using arterial spin labeling were obtained for comparison. Results Images of 129 Xe uptake were obtained with a signal-to-noise ratio of 31 ± 9 and demonstrated structural similarities to the gray matter distribution on conventional T1-weighted 1 H images and to perfusion images from arterial spin labeling. Conclusion Hyperpolarized 129 Xe MR imaging is an injection-free means of imaging the perfusion of cerebral tissue. The proposed method images the uptake of inhaled xenon gas to the extravascular brain tissue compartment across the intact blood-brain barrier. This level of sensitivity is not readily available with contemporary MR imaging methods. © RSNA, 2017.

  20. Real-time measurement of hyperpolarized lactate production and efflux as a biomarker of tumor aggressiveness in an MR compatible 3D cell culture bioreactor.

    PubMed

    Sriram, Renuka; Van Criekinge, Mark; Hansen, Ailin; Wang, Zhen J; Vigneron, Daniel B; Wilson, David M; Keshari, Kayvan R; Kurhanewicz, John

    2015-09-01

    We have developed a 3D cell/tissue culture bioreactor compatible with hyperpolarized (HP) (13)C MR and interrogated HP [1-(13)C]lactate production and efflux in human renal cell carcinoma (RCC) cells. This platform is capable of resolving intracellular and extracellular HP lactate pools, allowing the kinetic measurement of lactate production and efflux in the context of cancer aggressiveness and response to therapy. HP (13)C MR studies were performed on three immortalized human renal cell lines: HK2, a normal renal proximal tubule cell line from which a majority of RCCs arise, UMRC6, a cell line derived from a localized RCC, and UOK262, an aggressive and metastatic RCC. The intra- (Lacin ) and extracellular (Lacex ) HP lactate signals were robustly resolved in dynamic (13)C spectra of the cell lines due to a very small but reproducible chemical shift difference (0.031 ± 0.0005 ppm). Following HP [1-(13)C]pyruvate delivery, the ratio of HP Lacin /Lacex was significantly lower for UOK262 cells compared with both UMRC6 and HK2 cells due to a significant (p < 0.05) increase in the Lacex pool size. Lacin /Lacex correlated with the MCT4 mRNA expression of the cell lines, and inhibition of MCT4 transport using DIDS resulted in a significant reduction in the HP Lacex pool size. The extension of these studies to living patient-derived RCC tissue slices using HP [1,2-(13)C2]pyruvate demonstrated a similarly split lactate doublet with a high Lacex pool fraction; in contrast, only a single NMR resonance is noted for HP [5-(13)C]glutamate, consistent with intracellular localization. These studies support the importance of lactate efflux as a biomarker of cancer aggressiveness and metastatic potential, and the utility of the MR compatible 3D cell/tissue culture bioreactor to study not only cellular metabolism but also transport. Additionally, this platform offers a sophisticated way to follow therapeutic interventions and screen novel therapies that target lactate export

  1. The metabolism of [3-(13)C]lactate in the rat brain is specific of a pyruvate carboxylase-deprived compartment.

    PubMed

    Bouzier, A K; Thiaudiere, E; Biran, M; Rouland, R; Canioni, P; Merle, M

    2000-08-01

    Lactate metabolism in the adult rat brain was investigated in relation with the concept of lactate trafficking between astrocytes and neurons. Wistar rats were infused intravenously with a solution containing either [3-(13)C]lactate (534 mM) or both glucose (750 mM) and [3-(13)C]lactate (534 mM). The time courses of both the concentration and (13)C enrichment of blood glucose and lactate were determined. The data indicated the occurrence of [3-(13)C]lactate recycling through liver gluconeogenesis. The yield of glucose labeling was, however, reduced when using the glucose-containing infusate. After a 20-min or 1-h infusion, perchloric acid extracts of the brain tissue were prepared and subsequently analyzed by (13)C- and (1)H-observed/(13)C-edited NMR spectroscopy. The (13)C labeling of amino acids indicated that [3-(13)C]lactate was metabolized in the brain. Based on the alanine C3 enrichment, lactate contribution to brain metabolism amounted to 35% under the most favorable conditions used. By contrast with what happens with [1-(13)C]glucose metabolism, no difference in glutamine C2 and C3 labeling was evidenced, indicating that lactate was metabolized in a compartment deprived of pyruvate carboxylase activity. This result confirms, for the first time from an in vivo study, that lactate is more specifically a neuronal substrate.

  2. Hyperpolarized Porous Silicon Nanoparticles: Potential Theragnostic Material for ²⁹Si Magnetic Resonance Imaging.

    PubMed

    Seo, Hyeonglim; Choi, Ikjang; Whiting, Nicholas; Hu, Jingzhe; Luu, Quy Son; Pudakalakatti, Shivanand; McCowan, Caitlin; Kim, Yaewon; Zacharias, Niki; Lee, Seunghyun; Bhattacharya, Pratip; Lee, Youngbok

    2018-05-20

    Porous silicon nanoparticles have recently garnered attention as potentially-promising biomedical platforms for drug delivery and medical diagnostics. Here, we demonstrate porous silicon nanoparticles as contrast agents for ²⁹Si magnetic resonance imaging. Size-controlled porous silicon nanoparticles were synthesized by magnesiothermic reduction of silica nanoparticles and were surface activated for further functionalization. Particles were hyperpolarized via dynamic nuclear polarization to enhance their ²⁹Si MR signals; the particles demonstrated long ²⁹Si spin-lattice relaxation (T₁) times (~ 25 mins), which suggests potential applicability for medical imaging. Furthermore, ²⁹Si hyperpolarization levels were sufficient to allow ²⁹Si MRI in phantoms. These results underscore the potential of porous silicon nanoparticles that, when combined with hyperpolarized magnetic resonance imaging, can be a powerful theragnostic deep tissue imaging platform to interrogate various biomolecular processes in vivo. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. IRMS detection of testosterone manipulated with 13C labeled standards in human urine by removing the labeled 13C.

    PubMed

    Wang, Jingzhu; Yang, Rui; Yang, Wenning; Liu, Xin; Xing, Yanyi; Xu, Youxuan

    2014-12-10

    Isotope ratio mass spectrometry (IRMS) is applied to confirm testosterone (T) abuse by determining the carbon isotope ratios (δ(13)C value). However, (13)C labeled standards can be used to control the δ(13)C value and produce manipulated T which cannot be detected by the current method. A method was explored to remove the (13)C labeled atom at C-3 from the molecule of androsterone (Andro), the metabolite of T in urine, to produce the resultant (A-nor-5α-androstane-2,17-dione, ANAD). The difference in δ(13)C values between Andro and ANAD (Δδ(13)CAndro-ANAD, ‰) would change significantly in case manipulated T is abused. Twenty-one volunteers administered T manipulated with different (13)C labeled standards. The collected urine samples were analyzed with the established method, and the maximum value of Δδ(13)CAndro-ANAD post ingestion ranged from 3.0‰ to 8.8‰. Based on the population reference, the cut-off value of Δδ(13)CAndro-ANAD for positive result was suggested as 1.2‰. The developed method could be used to detect T manipulated with 3-(13)C labeled standards. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Oxidation of [U-13 C]glucose in the human brain at 7T under steady state conditions.

    PubMed

    Cheshkov, Sergey; Dimitrov, Ivan E; Jakkamsetti, Vikram; Good, Levi; Kelly, Dorothy; Rajasekaran, Karthik; DeBerardinis, Ralph J; Pascual, Juan M; Sherry, A Dean; Malloy, Craig R

    2017-12-01

    Disorders of brain energy metabolism and neurotransmitter recycling have been implicated in multiple neurological conditions. 13 C magnetic resonance spectroscopy ( 13 C MRS) during intravenous administration of 13 C-labeled compounds has been used to measure turnover rates of brain metabolites. This approach, however, requires prolonged infusion inside the magnet. Proton decoupling is typically required but may be difficult to implement with standard equipment. We examined an alternative approach to monitor glucose metabolism in the human brain. 13 C-enriched glucose was infused in healthy subjects outside the magnet to a steady-state level of 13 C enrichment. Subsequently, the subjects were scanned at 7T for 60 min without 1 H decoupling. Metabolic modeling was used to calculate anaplerosis. Biomarkers of energy metabolism and anaplerosis were detected. The glutamate C5 doublet provided information about glucose-derived acetyl-coenzyme A flux into the tricarboxylic acid (TCA) cycle via pyruvate dehydrogenase, and the bicarbonate signal reflected overall TCA cycle activity. The glutamate C1/C5 ratio is sensitive to anaplerosis. Brain 13 C MRS at 7T provides information about glucose oxidation and anaplerosis without the need of prolonged 13 C infusions inside the scanner and without technical challenges of 1 H decoupling, making it a feasible approach for clinical research. Magn Reson Med 78:2065-2071, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Shapiro, Mikhail G.; Ramirez, R. Matthew; Sperling, Lindsay J.; Sun, George; Sun, Jinny; Pines, Alexander; Schaffer, David V.; Bajaj, Vikram S.

    2014-07-01

    Magnetic resonance imaging (MRI) enables high-resolution non-invasive observation of the anatomy and function of intact organisms. However, previous MRI reporters of key biological processes tied to gene expression have been limited by the inherently low molecular sensitivity of conventional 1H MRI. This limitation could be overcome through the use of hyperpolarized nuclei, such as in the noble gas xenon, but previous reporters acting on such nuclei have been synthetic. Here, we introduce the first genetically encoded reporters for hyperpolarized 129Xe MRI. These expressible reporters are based on gas vesicles (GVs), gas-binding protein nanostructures expressed by certain buoyant microorganisms. We show that GVs are capable of chemical exchange saturation transfer interactions with xenon, which enables chemically amplified GV detection at picomolar concentrations (a 100- to 10,000-fold improvement over comparable constructs for 1H MRI). We demonstrate the use of GVs as heterologously expressed indicators of gene expression and chemically targeted exogenous labels in MRI experiments performed on living cells.

  6. Stress Analysis of SiC MEMS Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ness, Stanley J.; Marciniak, M. A.; Lott, J. A.; Starman, L. A.; Busbee, J. D.; Melzak, J. M.

    2003-03-01

    During the fabrication of Micro-Electro-Mechanical Systems (MEMS), residual stress is often induced in the thin films that are deposited to create these systems. These stresses can cause the device to fail due to buckling, curling, or fracture. Industry is looking for ways to characterize the stress during the deposition of thin films in order to reduce or eliminate device failure. Micro-Raman spectroscopy has been successfully used to characterize poly-Si MEMS devices made with the MUMPS® process. Raman spectroscopy was selected because it is nondestructive, fast and has the potential for in situ stress monitoring. This research attempts to use Raman spectroscopy to analyze the stress in SiC MEMS made with the MUSiC® process. Raman spectroscopy is performed on 1-2-micron-thick SiC thin films deposited on silicon, silicon nitride, and silicon oxide substrates. The most common poly-type of SiC found in thin film MEMS made with the MUSiC® process is 3C-SiC. Research also includes baseline spectra of 6H, 4H, and 15R poly-types of bulk SiC.

  7. Structural comparison of Gilsonite and Trinidad Lake Asphalt using 13C-NMR technique

    NASA Astrophysics Data System (ADS)

    Nciri, Nader; Cho, Namjun

    2017-04-01

    The recent increased importance of natural asphalt as an alternative binder for sustainable road pavement has dictated that more knowledge should be acquired about its structure and properties. Earlier, Carbon-13 NMR spectroscopy has been applied to very few natural bituminous materials. In this work, two types of raw binders namely Gilsonite and Trinidad Lake asphalt (TLA) have been subjected to an extensive investigation by using 13C-NMR technique. Results have shown that valuable chemical data can be readily withdrawn on aromatic ring structures and ring substituents in natural asphalts derived from different sources. The chemical significance of these findings will be discussed.

  8. The rate of lactate production from glucose in hearts is not altered by per-deuteration of glucose

    NASA Astrophysics Data System (ADS)

    Funk, Alexander M.; Anderson, Brian L.; Wen, Xiaodong; Hever, Thomas; Khemtong, Chalermchai; Kovacs, Zoltan; Sherry, A. Dean; Malloy, Craig R.

    2017-11-01

    This study was designed to determine whether perdeuterated glucose experiences a kinetic isotope effect (KIE) as glucose passes through glycolysis and is further oxidized in the tricarboxylic acid (TCA) cycle. Metabolism of deuterated glucose was investigated in two groups of perfused rat hearts. The control group was supplied with a 1:1 mixture of [U-13C6]glucose and [1,6-13C2]glucose, while the experimental group received [U-13C6,U-2H7]glucose and [1,6-13C2]glucose. Tissue extracts were analyzed by 1H, 2H and proton-decoupled 13C NMR spectroscopy. Extensive 2H-13C scalar coupling plus chemical shift isotope effects were observed in the proton-decoupled 13C NMR spectra of lactate, alanine and glutamate. A small but measureable (∼8%) difference in the rate of conversion of [U-13C6]glucose vs. [1,6-13C2]glucose to lactate, likely reflecting rates of Csbnd C bond breakage in the aldolase reaction, but conversion of [U-13C6]glucose versus [U-13C6,U-2H7]glucose to lactate did not differ. This shows that the presence of deuterium in glucose does not alter glycolytic flux. However, there were two distinct effects of deuteration on metabolism of glucose to alanine and oxidation of glucose in the TCA. First, alanine undergoes extensive exchange of methyl deuterons with solvent protons in the alanine amino transferase reaction. Second, there is a substantial kinetic isotope effect in metabolism of [U-13C6,U-2H7]glucose to alanine and glutamate. In the presence of [U-13C6,U-2H7]glucose, alanine and lactate are not in rapid exchange with the same pool of pyruvate. These studies indicate that the appearance of hyperpolarized 13C-lactate from hyperpolarized [U-13C6,U-2H7]glucose is not substantially influenced by a deuterium kinetic isotope effect.

  9. Conversion electron Mössbauer spectroscopy of plasma immersion ion implanted H13 tool steel

    NASA Astrophysics Data System (ADS)

    Terwagne, G.; Collins, G. A.; Hutchings, R.

    1994-12-01

    Conversion electron Mössbauer spectroscopy (CEMS) has been used to investigate nitride formation in AISI-H13 tool steel after treatment by plasma immersion ion implantation (PI3) at 350 °C. With only slight variation in the plasma conditions, it is possible to influence the kinetics of nitride precipitation so as to obtain nitrogen concentrations that range from those associated with ɛ-Fe2N through ɛ-Fe3N to γ'-Fe4N. The CEMS results enable a more definite identification of the nitrides than that obtained by glancing-angle X-ray diffraction and nuclear reaction analysis alone.

  10. [Detection of Helicobacter pylori by culture and the 13C-urea breath test using an automated breath 13C analyzer].

    PubMed

    Yamamoto, Y; Kouda, M; Abe, K; Sakurabayashi, S; Sezai, S; Hirano, M; Oka, H

    1995-11-01

    Up to now, the diagnosis of H. pylori infection has been made by the breath test using 13C-urea. In this study, 13C-urea breath samples were tested in 34 patients (peptic ulcer scar 17, chronic gastritis 17 cases) with an automated breath 13C analyzer (ABCA. Europa Scientific, Crewe, UK) and compared with the results of endoscopical diagnosis for H. pylori infection. Endoscopic and 13C-urea breath test (13C-UBT) were performed before eradicative medication. We described a modified protocol for the growth grade of H. pylori colonies in microbiology (H. pylori score), and for the delta 13C area under curve (AUC; permil*hr) obtained from each sample of expired breath. There was a significant correlation between delta 13C-AUC and the delta 13C level of each sample, but the correlation coefficient obtained at 10min (R2 = 0.582) was lower than that obtained at the other four time points (20min; 0.891, 30min; 0.949, 40min; 0.946, 50min; 0.946, 60min; 0.820). The delta 13C-AUC well correlated with H. pylori score (p < 0.01), none of 26 H. pylori positive patients detected by culture was 13C-UBT negative (delta 13C-AUC < 8.2 permil*hr in mean + 2SD of H. pylori negative group). In conclusion, 13C-UBT using ABCA has high sensitivity and specificity, and it provides a non-invasive method for the detection of H. pylori urease activity.

  11. NMR crystallography of campho[2,3-c]pyrazole (Z' = 6): combining high-resolution 1H-13C solid-state MAS NMR spectroscopy and GIPAW chemical-shift calculations.

    PubMed

    Webber, Amy L; Emsley, Lyndon; Claramunt, Rosa M; Brown, Steven P

    2010-09-30

    (1)H-(13)C two-dimensional magic-angle spinning (MAS) solid-state NMR correlation spectra, recorded with the MAS-J-HMQC experiment, are presented for campho[2,3-c]pyrazole. For each (13)C moiety, there are six resonances associated with the six distinct molecules in the asymmetric unit cell (Z' = 6). The one-bond C-H correlations observed in the 2D (1)H-(13)C MAS-J-HMQC spectra allow the experimental determination of the (1)H and (13)C chemical shifts associated with the separate CH, CH(2), and CH(3) groups. (1)H and (13)C chemical shifts calculated by using the GIPAW (Gauge Including Projector Augmented Waves) plane-wave pseudopotential approach are presented. Calculations for the whole unit cell (12 × 29 = 348 atoms, with geometry optimization of all atoms) allow the assignment of the experimental (1)H and (13)C chemical shifts to the six distinct molecules. The calculated chemical shifts for the full crystal structure are compared with those for isolated molecules as extracted from the geometry-optimized crystal structure. In this way, the effect of intermolecular interactions on the observed chemical shifts is quantified. In particular, the calculations are sufficiently precise to differentiate the small (<1 ppm) differences between the (1)H chemical shifts of the six resonances associated with each distinct CH or CH(2) moiety.

  12. Positron annihilation spectroscopy investigation of vacancy defects in neutron-irradiated 3 C -SiC

    DOE PAGES

    Hu, Xunxiang; Koyanagi, Takaaki; Katoh, Yutai; ...

    2017-03-10

    We described positron annihilation spectroscopy characterization results for neutron-irradiated 3 C -SiC, with a specific focus on explaining the size and character of vacancy clusters as a complement to the current understanding of the neutron irradiation response of 3 C -SiC. Positron annihilation lifetime spectroscopy was used to capture the irradiation temperature and dose dependence of vacancy defects in 3 C -SiC following neutron irradiation from 0.01 to 31 dpa in the temperature range from 380C °to 790C .° The neutral and negatively charged vacancy clusters were identified and quantified. The results suggest that the vacancy defects that were measuredmore » by positron annihilation spectroscopy technique contribute very little to the transient swelling of SiC. Additionally, we used coincidence Doppler broadening measurement to investigate the chemical identity surrounding the positron trapping sites.Finally, we found that silicon vacancy-related defects dominate in the studied materials and the production of the antisite defect C Si may result in an increase in the probability of positron annihilation with silicon core electrons.« less

  13. NMR 1H,13C, 15N backbone and 13C side chain resonance assignment of the G12C mutant of human K-Ras bound to GDP.

    PubMed

    Sharma, Alok K; Lee, Seung-Joo; Rigby, Alan C; Townson, Sharon A

    2018-05-02

    K-Ras is a key driver of oncogenesis, accounting for approximately 80% of Ras-driven human cancers. The small GTPase cycles between an inactive, GDP-bound and an active, GTP-bound state, regulated by guanine nucleotide exchange factors and GTPase activating proteins, respectively. Activated K-Ras regulates cell proliferation, differentiation and survival by signaling through several effector pathways, including Raf-MAPK. Oncogenic mutations that impair the GTPase activity of K-Ras result in a hyperactivated state, leading to uncontrolled cellular proliferation and tumorogenesis. A cysteine mutation at glycine 12 is commonly found in K-Ras associated cancers, and has become a recent focus for therapeutic intervention. We report here 1 H N, 15 N, and 13 C resonance assignments for the 19.3 kDa (aa 1-169) human K-Ras protein harboring an oncogenic G12C mutation in the GDP-bound form (K-RAS G12C-GDP ), using heteronuclear, multidimensional NMR spectroscopy. Backbone 1 H- 15 N correlations have been assigned for all non-proline residues, except for the first methionine residue.

  14. Characterization and optimization of the visualization performance of continuous flow overhauser DNP hyperpolarized water MRI: Inversion recovery approach.

    PubMed

    Terekhov, Maxim; Krummenacker, Jan; Denysenkov, Vasyl; Gerz, Kathrin; Prisner, Thomas; Schreiber, Laura Maria

    2016-03-01

    Overhauser dynamic nuclear polarization (DNP) allows the production of liquid hyperpolarized substrate inside the MRI magnet bore as well as its administration in continuous flow mode to acquire MR images with enhanced signal-to-noise ratio. We implemented inversion recovery preparation in order to improve contrast-to-noise ratio and to quantify the overall imaging performance of Overhauser DNP-enhanced MRI. The negative enhancement created by DNP in combination with inversion recovery (IR) preparation allows canceling selectively the signal originated from Boltzmann magnetization and visualizing only hyperpolarized fluid. The theoretical model describing gain of MR image intensity produced by steady-state continuous flow DNP hyperpolarized magnetization was established and proved experimentally. A precise quantification of signal originated purely from DNP hyperpolarization was achieved. A temperature effect on longitudinal relaxation had to be taken into account to fit experimental results with numerical prediction. Using properly adjusted IR preparation, the complete zeroing of thermal background magnetization was achieved, providing an essential increase of contrast-to-noise ratio of DNP-hyperpolarized water images. To quantify and optimize the steady-state conditions for MRI with continuous flow DNP, an approach similar to that incorporating transient-state thermal magnetization equilibrium in spoiled fast field echo imaging sequences can be used. © 2015 Wiley Periodicals, Inc.

  15. Theoretical estimation of 13C-D clumped isotope effects in methyl of several organic compound

    NASA Astrophysics Data System (ADS)

    LIU, Q.; Yin, X.; Liu, Y.

    2015-12-01

    Recent developments in mass spectrometry and tunable infrared laser direct absorption spectroscopy make it possible to measure 13C-D clumped isotope effects of methane. These techniques can be further applied to determine 13C-D clumped isotope effects of methyl fragments, therefore need accurate equilirbium Δi values to calibrate experimental measurements. In this study, we calculate temperature depandences of 13C-D clumped isotope signatures in methyl of several organic compounds including ethane, propane, acetic acid, etc. Our calculation are performed at CCSD/6-311+G(3df,3pd) by using Gaussian 03 program with no scale treament. Our results show that the Δi values of 13C-D clumping in methyl fragments of different organic compounds yield similar signals (~5.5‰ at 25˚C, slightly lower than Δi value of 13C-D clumping in methane). For testing the calculated accuracy, theoretical treaments beyond the harmonic level by including several higher-order corrections to the Bigeleisen-Mayer equation are used. Contributions from higher-order corrections (e.g., AnZPE, AnEXC, VrZPE, VrEXC, QmCorr and CenDist) are estimated to repire the ignorings of the Bigeleisen-Mayer equation (the anharmonic effects of vibration, vibration-rotation coupling, quantum mechanics and centrifugal distortion for rotation, etc.) for the calculation of partition function ratios. The results show that the higher-order corrections contribute ~0.05‰ at 25˚C, which is similar to the contribution for calculating 13C-D clumped isotope signature of methane. By comparing our calculated frequencies to the measured ones, the uncertainty of our calculation of Δi values 13C-D clumping in methyl fragments is considered to be within ~0.05‰ at room temperature.

  16. New guidelines for δ13C measurements

    USGS Publications Warehouse

    Coplen, Tyler B.; Brand, Willi A.; Gehre, Matthias; Groning, Manfred; Meijer, Harro A. J.; Toman, Blaza; Verkouteren, R. Michael

    2006-01-01

    Consistency of δ13C measurements can be improved 39−47% by anchoring the δ13C scale with two isotopic reference materials differing substantially in 13C/12C. It is recommended thatδ13C values of both organic and inorganic materials be measured and expressed relative to VPDB (Vienna Peedee belemnite) on a scale normalized by assigning consensus values of −46.6‰ to L-SVEC lithium carbonate and +1.95‰ to NBS 19 calcium carbonate. Uncertainties of other reference material values on this scale are improved by factors up to two or more, and the values of some have been notably shifted:  the δ13C of NBS 22 oil is −30.03%.

  17. Investigation of Lung Structure-Function Relationships Using Hyperpolarized Noble Gases

    NASA Astrophysics Data System (ADS)

    Thomen, Robert P.

    Magnetic Resonance Imaging (MRI) is an application of the nuclear magnetic resonance (NMR) phenomenon to non-invasively generate 3D tomographic images. MRI is an emerging modality for the lung, but it suffers from low sensitivity due to inherent low tissue density and short T(*/2) . Hyperpolarization is a process by which the nuclear contribution to NMR signal is greatly enhanced to more than 100,000 times that of samples in thermal equilibrium. The noble gases 3He and 129Xe are most often hyperpolarized by transfer of light angular momentum through the electron of a vaporized alkali metal to the noble gas nucleus (called Spin Exchange Optical Pumping). The enhancement in NMR signal is so great that the gas itself can be imaged via MRI, and because noble gases are chemically inert, they can be safely inhaled by a subject, and the gas distribution within the interior of the lung can be imaged. The mechanics of respiration is an elegant physical process by which air is is brought into the distal airspaces of the lungs for oxygen/carbon dioxide gas exchange with blood. Therefore proper description of lung function is intricately related to its physical structure , and the basic mechanical operation of healthy lungs -- from pressure driven airflow, to alveolar airspace gas kinetics, to gas exchange by blood/gas concentration gradients, to elastic contraction of parenchymal tissue -- is a process decidedly governed by the laws of physics. This dissertation will describe experiments investigating the relationship of lung structure and function using hyperpolarized (HP) noble gas MRI. In particular HP gases will be applied to the study of several pulmonary diseases each of which demonstrates unique structure-function abnormalities: asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Successful implementation of an HP gas acquisition protocol for pulmonary studies is an involved and stratified undertaking which requires a solid theoretical foundation in NMR

  18. Propionate stimulates pyruvate oxidation in the presence of acetate.

    PubMed

    Purmal, Colin; Kucejova, Blanka; Sherry, A Dean; Burgess, Shawn C; Malloy, Craig R; Merritt, Matthew E

    2014-10-15

    Flux through pyruvate dehydrogenase (PDH) in the heart may be reduced by various forms of injury to the myocardium, or by oxidation of alternative substrates in normal heart tissue. It is important to distinguish these two mechanisms because imaging of flux through PDH based on the appearance of hyperpolarized (HP) [(13)C]bicarbonate derived from HP [1-(13)C]pyruvate has been proposed as a method for identifying viable myocardium. The efficacy of propionate for increasing PDH flux in the setting of PDH inhibition by an alternative substrate was studied using isotopomer analysis paired with exams using HP [1-(13)C]pyruvate. Hearts from C57/bl6 mice were supplied with acetate (2 mM) and glucose (8.25 mM). (13)C NMR spectra were acquired in a cryogenically cooled probe at 14.1 Tesla. After addition of hyperpolarized [1-(13)C]pyruvate, (13)C NMR signals from lactate, alanine, malate, and aspartate were easily detected, in addition to small signals from bicarbonate and CO2. The addition of propionate (2 mM) increased appearance of HP [(13)C]bicarbonate >30-fold without change in O2 consumption. Isotopomer analysis of extracts from the freeze-clamped hearts indicated that acetate was the preferred substrate for energy production, glucose contribution to energy production was minimal, and anaplerosis was stimulated in the presence of propionate. Under conditions where production of acetyl-CoA is dominated by the availability of an alternative substrate, acetate, propionate markedly stimulated PDH flux as detected by the appearance of hyperpolarized [(13)C]bicarbonate from metabolism of hyperpolarized [1-(13)C]pyruvate. Copyright © 2014 the American Physiological Society.

  19. The effect of 13C enrichment in the glassing matrix on dynamic nuclear polarization of [1-13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Kovacs, Zoltan; Malloy, Craig; Sherry, A. Dean; Merritt, Matthew

    2011-03-01

    Dimethyl sulfoxide (DMSO) can effectively form a glassy matrix necessary for dynamic nuclear polarization (DNP) experiments. We tested the effects of 13C enrichment in DMSO on DNP of [1-13C]pyruvate doped with trityl radical OX063Me. We found that the polarization build-up time τ of pyruvate in 13C-labeled DMSO glassing solution is twice as fast as the unenriched DMSO while the nuclear magnetic resonance enhancement was unchanged. This indicates that 13C-13C spin diffusion is a limiting factor in the kinetics of DNP in this system, but it has a minimal effect on the absolute value of polarization achievable for the target.

  20. Hypernuclear Spectroscopy at JLab Hall C

    NASA Astrophysics Data System (ADS)

    Hashimoto, O.; Chiba, A.; Doi, D.; Fujii, Y.; Gogami, T.; Kanda, H.; Kaneta, M.; Kawama, D.; Maeda, K.; Maruta, T.; Matsumura, A.; Nagao, S.; Nakamura, S. N.; Shichijo, A.; Tamura, H.; Taniya, N.; Yamamoto, T.; Yokota, K.; Kato, S.; Sato, Y.; Takahashi, T.; Noumi, H.; Motoba, T.; Hiyama, E.; Albayrak, I.; Ates, O.; Chen, C.; Christy, M.; Keppel, C.; Kohl, M.; Li, Y.; Liyanage, A.; Tang, L.; Walton, T.; Ye, Z.; Yuan, L.; Zhu, L.; Baturin, P.; Boeglin, W.; Dhamija, S.; Markowitz, P.; Raue, B.; Reinhold, J.; Hungerford, Ed. V.; Ent, R.; Fenker, H.; Gaskell, D.; Horn, T.; Jones, M.; Smith, G.; Vulcan, W.; Wood, S. A.; Johnston, C.; Simicevic, N.; Wells, S.; Samanta, C.; Hu, B.; Shen, J.; Wang, W.; Zhang, X.; Zhang, Y.; Feng, J.; Fu, Y.; Zhou, J.; Zhou, S.; Jiang, Y.; Lu, H.; Yan, X.; Ye, Y.; Gan, L.; Ahmidouch, A.; Danagoulian, S.; Gasparian, A.; Elaasar, M.; Wesselmann, F. R.; Asaturyan, A.; Margaryan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.; Androic, D.; Furic, M.; Petkovic, T.; Seva, T.; Niculescu, G.; Niculescu, I.; Rodriguez, V. M.; Cisbani, E.; Cusanno, F.; Garibaldi, F.; Uuciuoli, G. M.; De Leo, R.; Maronne, S.; Achenback, P.; Pochodzala, J.

    2010-04-01

    Since the 1st generation experiment, E89-009, which was successfully carried out as a pilot experiment of (e,e'K+) hypernuclear spectroscopy at JLab Hall C in 2000, precision hypernuclear spectroscopy by the (e,e'K+) reactions made considerable progress. It has evolved to the 2nd generation experiment, E01-011, in which a newly constructed high resolution kaon spectrometer (HKS) was installed and the "Tilt method" was adopted in order to suppress large electromagnetic background and to run with high luminosity. Preliminary high-resolution spectra of 7ΛHe and 28ΛAl together with that of 12ΛB that achieved resolution better than 500 keV(FWHM) were obtained. The third generation experiment, E05-115, has completed data taking with an experimental setup combining a new splitter magnet, high resolution electron spectrometer (HES) and the HKS used in the 2nd generation experiment. The data were accumulated with targets of 7Li, 9Be, 10B, 12C and 52Cr as well as with those of CH 2 and H 2O for calibration. The analysis is under way with particular emphasis of determining precision absolute hypernuclear masses. In this article, hypernuclear spectroscopy program in the wide mass range at JLab Hall C that has undergone three generation is described.

  1. Preparative chromatography for specific δ13C isotopic analysis of individual carbohydrates in environmental samples

    NASA Astrophysics Data System (ADS)

    Nouara, Amel; Panagiotopoulos, Christos; Balesdent, Jérôme; Sempéré, Richard

    2017-04-01

    Carbohydrates are among the most abundant organic molecules on the Earth and are present in all geochemical systems. Despite their high abundance in the environment, very few studies assessed their origin using molecular carbohydrate isotopic analyses. In contrast with bulk stable isotope analysis (BSIA), which gives the isotopic signature of the entire sample without any specification about its chemical composition, compound specific 13C isotopic analysis of individual sugars (CSIA) offers valuable information about the origin of single molecules. Previous investigations used gas or liquid chromatography coupled with isotope ratio mass spectroscopy (GC-IRMS; HPLC-IRMS) for CSIA of sugars however the former requires δ13C corrections due to the carbon added to the sugar (derivatization) while the later does not provide always adequate separations among monosaccharides. Here we used cation preparative chromatography (Ca2+, Pb2+ and Na+) with refractive index detection in order to produce pure monosaccharide targets for subsequent EA-IRMS analyses. Milli-Q water was used as eluant at a flow rate 0.6 ml min-1. In general, three successive purifications (Ca2+, Pb2+, Ca2+) were sufficient to produce pure compounds. Pure monosaccharides were compared with authentic monosaccharide standards using 1H NMR and/or mass spectroscopy. The detection limit of our technique was about 1µM/sugar with a precision of 10% (n=6). Blanks run with Milli-Q water after three successive purifications resulted in carbon content of 0.13 to 2.77 µgC per collected sugar. These values are much lower than the minimum required amount (5 µgC) of the EA-IRSMS system with a precision of ± 0.35 ‰. Application of our method to environmental samples resulted in δ13C values of glucose, fructose, and levoglucosan in the range of -24 to -26 ‰ (PM10 atmospheric particles), and -15‰ to -22 ‰ for arabinose, glucose, and xylose (marine high molecular dissolved organic matter). These results fall in

  2. [13C] GC-C-IRMS analysis of methylboronic acid derivatives of glucose from liver glycogen after the ingestion of [13C] labeled tracers in rats.

    PubMed

    Luengo, Catherine; Azzout-Marniche, Dalila; Fromentin, Claire; Piedcoq, Julien; Lemosquet, Sophie; Tomé, Daniel; Gaudichon, Claire

    2009-11-01

    We developed a complete method to measure low [(13)C] enrichments in glycogen. Fourteen rats were fed a control diet. Six of them also ingested either [U-(13)C] glucose (n=2) or a mixture of 20 [U-(13)C] amino acids (n=4). Hepatic glycogen was extracted, digested to glucose and purified on anion-cation exchange resins. After the optimization of methylboronic acid derivatization using GC-MS, [(13)C] enrichment of extracted glucose was measured by GC-C-IRMS. The accuracy was addressed by measuring the enrichment excess of a calibration curve, which observed values were in good agreement with the expected values (R=0.9979). Corrected delta values were -15.6+/-1.6 delta(13)C (per thousand) for control rats (n=8) and increased to -5 to 8 delta(13)C (per thousand) per thousand and 12-14 delta(13)C (per thousand) per thousand after the ingestion of [U-(13)C] amino acids or [U-(13)C] glucose as oral tracers, respectively. The method enabled the determination of dietary substrate transfer into glycogen. The sequestration of dietary glucose in liver glycogen 4 h after the meal was 35% of the ingested dose whereas the transfer of carbon skeletons from amino acids was only 0.25 to 1%.

  3. Synthesis of [1-.sup.13C]pyruvic acid], [2-.sup.13C]pyruvic acid], [3-.sup.13C]pyruvic acid] and combinations thereof

    DOEpatents

    Martinez, Rodolfo A. , Unkefer; Clifford J. , Alvarez; Marc, A [Santa Fe, NM

    2012-06-12

    The present invention is directed to the labeled compounds, ##STR00001## wherein C* is each either .sup.13C and .sup.12C where at least one C* is .sup.13C, each hydrogen of the methylene group is hydrogen or deuterium, the methyl group includes either zero or three deuterium atoms, Q is sulfide, sulfinyl, or sulfone, Z is an aryl group such as 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, or a phenyl group ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently either hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group such as NH.sub.2, NHR and NRR' where R and R' are each independently either a C.sub.1-C.sub.4 lower alkyl, a phenyl, and an alkoxy group, and the methyl group can include either zero or three deuterium atoms. The present invention is also directed to the labeled compounds ##STR00003##

  4. A Novel Method for Analysis of Dissolved Inorganic Carbon Concentration and δ13C by Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Smith, E.; Gonneea, M. E.; Boze, L. G.; Casso, M.; Pohlman, J.

    2017-12-01

    Dissolved inorganic carbon (DIC) is the largest pool of carbon in the oceans and is where about half of anthropogenic carbon dioxide (CO2) emissions are being sequestered. Determining the concentration and stable carbon isotopic content (δ13C) of DIC allows us to delineate carbon sources that contribute to marine DIC. A simple and reliable method for measuring DIC concentration and δ13C can be used to apportion contributions from external sources and identify effects from biogeochemical reactions that contribute or remove DIC. The U.S. Geological Survey has developed a discrete sample analysis module (DSAM) that interfaces to a Picarro G-2201i cavity ring-down spectrometer (CRDS, Picarro Inc.) to analyze CO2 and methane concentrations and δ13C from discrete gas samples. In this study, we adapted the USGS DSAM-CRDS analysis system to include an AutoMate prep device (Automate FX, Inc.) for analysis of DIC concentration and δ13C from aqueous samples. The Automate prep device was modified to deliver CO2 extracted from DIC to the DSAM, which conditions and transfers the gas to the CRDS. LabVIEW software (National Instruments) triggers the Automate Prep device, controls the DSAM and collects data from the CRDS. CO2 mass concentration data are obtained by numerical integration of the CO2 volumetric concentrations output by the CRDS and subsequent comparison to standard materials. CO2 carbon isotope values from the CRDS (iCO2) are converted to δ13C values using a slope and offset correction calibration procedure. The system design and operation was optimized using sodium bicarbonate (NaHCO3) standards and a certified reference material. Surface water and pore water samples collected from Sage Lot Pond, a salt marsh in Cape Cod MA, have been analyzed for concentration by coulometry and δ13C by isotope ratio mass spectrometry and will be used to validate the DIC-DSAM-CRDS method for field applications.

  5. Synthesis of 13 C-labeled 5-Aminoimidazole-4-carboxamide-1-β-D-[13 C5 ] ribofuranosyl 5'-monophosphate.

    PubMed

    Zarkin, Allison K; Elkins, Phyllis D; Gilbert, Amanda; Jester, Teresa L; Seltzman, Herbert H

    2018-06-14

    5-Aminoimidazole-4-carboxamide-1-β-D-[ 13 C 5 ] ribofuranosyl 5'-monophosphate ([ 13 C 5 ribose] AICAR-PO 3 H 2 ) (6) has been synthesized from [ 13 C 5 ]adenosine. Incorporation of the mass-label into [ 13 C 5 ribose] AICAR-PO 3 H 2 provides a useful standard to aid in metabolite identification and quantification in monitoring metabolic pathways. A synthetic route to the 13 C-labeled compound has not been previously reported. Our method employs a hybrid enzymatic and chemical synthesis approach that applies an enzymatic conversion from adenosine to inosine followed by a ring-cleavage of the protected inosine. A direct phosphorylation of the resulting 2',3'-isopropylidine acadesine (5) was developed to yield the title compound in 99% purity following ion exchange chromatography. This article is protected by copyright. All rights reserved.

  6. New optical analyzer for 13C-breath test

    NASA Astrophysics Data System (ADS)

    Harde, Hermann; Dressler, Matthias; Helmrich, Günther; Wolff, Marcus; Groninga, Hinrich

    2008-04-01

    Medical breath tests are well established diagnostic tools, predominantly for gastroenterological inspections, but also for many other examinations. Since the composition and concentration of exhaled volatile gases reflect the physical condition of a patient, a breath analysis allows one to recognize an infectious disease in an organ or even to identify a tumor. One of the most prominent breath tests is the 13C-urea-breath test, applied to ascertain the presence of the bacterium helicobacter pylori in the stomach wall as an indication of a gastric ulcer. In this contribution we present a new optical analyzer that is based on photoacoustic spectroscopy and uses a DFB diode laser at 2.744 μm. The concentration ratio of the CO II isotopologues is determined by measuring the absorption on a 13CO II line in comparison to a 12CO II line. In the specially selected spectral range the lines have similar strengths, although the concentrations differ by a factor of 90. Therefore, the signals are well comparable. Due to an excellent signal-noise-ratio isotope variations of less than 1% can be resolved as required for the breath test.

  7. Hyperpolarized MRS: New tool to study real-time brain function and metabolism.

    PubMed

    Mishkovsky, Mor; Comment, Arnaud

    2017-07-15

    The advent of dissolution dynamic nuclear polarization (DNP) led to the emergence of a new kind of magnetic resonance (MR) measurements providing the opportunity to probe metabolism in vivo in real time. It has been shown that, following the injection of hyperpolarized substrates prepared using dissolution DNP, specific metabolic bioprobes that can be used to differentiate between healthy and pathological tissue in preclinical and clinical studies can be readily detected by MR thanks to the tremendous signal enhancement. The present article aims at reviewing the studies of cerebral function and metabolism based on the use of hyperpolarized MR. The constraints and future opportunities that this technology could offer are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Light-evoked hyperpolarization and silencing of neurons by conjugated polymers.

    PubMed

    Feyen, Paul; Colombo, Elisabetta; Endeman, Duco; Nova, Mattia; Laudato, Lucia; Martino, Nicola; Antognazza, Maria Rosa; Lanzani, Guglielmo; Benfenati, Fabio; Ghezzi, Diego

    2016-03-04

    The ability to control and modulate the action potential firing in neurons represents a powerful tool for neuroscience research and clinical applications. While neuronal excitation has been achieved with many tools, including electrical and optical stimulation, hyperpolarization and neuronal inhibition are typically obtained through patch-clamp or optogenetic manipulations. Here we report the use of conjugated polymer films interfaced with neurons for inducing a light-mediated inhibition of their electrical activity. We show that prolonged illumination of the interface triggers a sustained hyperpolarization of the neuronal membrane that significantly reduces both spontaneous and evoked action potential firing. We demonstrate that the polymeric interface can be activated by either visible or infrared light and is capable of modulating neuronal activity in brain slices and explanted retinas. These findings prove the ability of conjugated polymers to tune neuronal firing and suggest their potential application for the in-vivo modulation of neuronal activity.

  9. Age-related peculiarities of contractile activity of rat myocardium during blockade of hyperpolarization-activated currents.

    PubMed

    Zefirov, T L; Gibina, A E; Sergejeva, A M; Ziyatdinova, N I; Zefirov, A L

    2007-09-01

    Contractile activity of atrial and ventricular myocardial strips isolated from rats of various age was examined under conditions of blockade of non-selective hyperpolarization-activated cation currents. Addition of ZD7288, a blocker of non-selective hyperpolarization-activated cation currents, to the perfusion solution increased the contraction force of atrial and ventricular strips in 1-, 8-, and 20-week rats, but produced an opposite effect on contractile activity of atrial and ventricular strips in 3-week rats.

  10. In vivo detection of 13C isotopomer turnover in the human brain by sequential infusion of 13C labeled substrates

    NASA Astrophysics Data System (ADS)

    Li, Shizhe; Zhang, Yan; Ferraris Araneta, Maria; Xiang, Yun; Johnson, Christopher; Innis, Robert B.; Shen, Jun

    2012-05-01

    This study demonstrates the feasibility of simultaneously detecting human brain metabolites labeled by two substrates infused in a sequential order. In vivo 13C spectra of carboxylic/amide carbons were acquired only during the infusion of the second substrate. This approach allowed dynamic detection of 13C labeling from two substrates with considerably different labeling patterns. [2-13C]glucose and [U-13C6]glucose were used to generate singlet and doublet signals of the same carboxylic/amide carbon atom, respectively. Because of the large one-bond 13C-13C homonuclear J coupling between a carboxylic/amide carbon and an aliphatic carbon (˜50 Hz), the singlet and doublet signals of the same carboxylic/amide carbon were well distinguished. The results demonstrated that different 13C isotopomer patterns could be simultaneously and distinctly measured in vivo in a clinical setting at 3 T.

  11. Biological degradation of tannins in sericea lespedeza (Lespedeza cuneata) by the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus analyzed by solid-state 13C nuclear magnetic resonance spectroscopy.

    PubMed Central

    Gamble, G R; Akin, D E; Makkar, H P; Becker, K

    1996-01-01

    Leaves of sericea lespedeza exhibit a high proportion of condensed tannin, resulting in poor forage quality. The white rot fungi Ceriporiopsis subvermispora and Cyathus sterocoreus are known to preferentially degrade lignin in a variety of plants and were evaluated for their ability to degrade condensed tannin from sericea leaves with the aim of improving digestibility. Relative levels of condensed tannin, cutin, pectin, and cellulose were monitored as a function of fungal treatment by solid-state cross-polarization and magic angle spinning 13C nuclear magnetic resonance spectroscopy. Total soluble phenolics, soluble tannins, and soluble and insoluble proanthocyanidin levels in fungus-treated and control samples were measured by established chemical techniques. Results indicate that both species of fungus preferentially degrade condensed tannin and that C. subvermispora is markedly superior to C. stercoreus in this capacity. PMID:8837414

  12. Two Techniques for Estimating Deglacial Mean-Ocean δ13 C Change from the Same Set of 493 Benthic δ13C Records

    NASA Astrophysics Data System (ADS)

    Peterson, C. D.; Lisiecki, L. E.; Gebbie, G.

    2013-12-01

    The crux of carbon redistribution over the deglaciation centers on the ocean, where the isotopic signature of terrestrial carbon (δ13C terrestrial carbon = -25‰) is observed as a 0.3-0.7‰ shift in benthic foraminiferal δ13C. Deglacial mean-ocean δ13C estimates vary due to different subsets of benthic δ13C data and different methods of weighting the mean δ13C by volume. Here, we present a detailed 1-to-1 comparison of two methods of calculating mean δ13C change and uncertainty estimates using the same set of 493 benthic Cibicidoides spp. δ13C measurements for the LGM and Late Holocene. The first method divides the ocean into 8 regions, and uses simple line fits to describe the distribution of δ13C data for each timeslice over 0.5-5 km depth. With these line fits, we estimate the δ13C value at 100-meter intervals and weight those estimates by the regional volume at each depth slice. The mean-ocean δ13C is the sum of these volume-weighted regional δ13C estimates and the uncertainty of these mean-ocean δ13C estimates is computed using Monte Carlo simulations. The whole-ocean δ13C change is estimated using extrapolated surface- and deep-ocean δ13C estimates, and an assumed δ13C value for the Southern Ocean. This method yields an estimated LGM-to-Holocene change of 0.38×0.07‰ for 0.5-5km and 0.35×0.16‰ for the whole ocean (Peterson et al., 2013, submitted to Paleoceanography). The second method reconstructs glacial and modern δ13C by combining the same data compilation as above with a steady-state ocean circulation model (Gebbie, 2013, submitted to Paleoceanography). The result is a tracer distribution on a 4-by-4 degree horizontal resolution grid with 23 vertical levels, and an estimate of the distribution's uncertainty that accounts for the distinct modern and glacial water-mass geometries. From both methods, we compare the regional δ13C estimates (0.5-5 km), surface δ13C estimates (0-0.5 km), deep δ13C estimates (>5 km), Southern Ocean

  13. Assessing Metabolism and Injury in Acute Human Traumatic Brain Injury with Magnetic Resonance Spectroscopy: Current and Future Applications

    PubMed Central

    Stovell, Matthew G.; Yan, Jiun-Lin; Sleigh, Alison; Mada, Marius O.; Carpenter, T. Adrian; Hutchinson, Peter J. A.; Carpenter, Keri L. H.

    2017-01-01

    Traumatic brain injury (TBI) triggers a series of complex pathophysiological processes. These include abnormalities in brain energy metabolism; consequent to reduced tissue pO2 arising from ischemia or abnormal tissue oxygen diffusion, or due to a failure of mitochondrial function. In vivo magnetic resonance spectroscopy (MRS) allows non-invasive interrogation of brain tissue metabolism in patients with acute brain injury. Nuclei with “spin,” e.g., 1H, 31P, and 13C, are detectable using MRS and are found in metabolites at various stages of energy metabolism, possessing unique signatures due to their chemical shift or spin–spin interactions (J-coupling). The most commonly used clinical MRS technique, 1H MRS, uses the great abundance of hydrogen atoms within molecules in brain tissue. Spectra acquired with longer echo-times include N-acetylaspartate (NAA), creatine, and choline. NAA, a marker of neuronal mitochondrial activity related to adenosine triphosphate (ATP), is reported to be lower in patients with TBI than healthy controls, and the ratio of NAA/creatine at early time points may correlate with clinical outcome. 1H MRS acquired with shorter echo times produces a more complex spectrum, allowing detection of a wider range of metabolites.31 P MRS detects high-energy phosphate species, which are the end products of cellular respiration: ATP and phosphocreatine (PCr). ATP is the principal form of chemical energy in living organisms, and PCr is regarded as a readily mobilized reserve for its replenishment during periods of high utilization. The ratios of high-energy phosphates are thought to represent a balance between energy generation, reserve and use in the brain. In addition, the chemical shift difference between inorganic phosphate and PCr enables calculation of intracellular pH.13 C MRS detects the 13C isotope of carbon in brain metabolites. As the natural abundance of 13C is low (1.1%), 13C MRS is typically performed following administration of 13C

  14. A Bacterial Toxin with Analgesic Properties: Hyperpolarization of DRG Neurons by Mycolactone.

    PubMed

    Song, Ok-Ryul; Kim, Han-Byul; Jouny, Samuel; Ricard, Isabelle; Vandeputte, Alexandre; Deboosere, Nathalie; Marion, Estelle; Queval, Christophe J; Lesport, Pierre; Bourinet, Emmanuel; Henrion, Daniel; Oh, Seog Bae; Lebon, Guillaume; Sandoz, Guillaume; Yeramian, Edouard; Marsollier, Laurent; Brodin, Priscille

    2017-07-18

    Mycolactone, a polyketide molecule produced by Mycobacterium ulcerans , is the etiological agent of Buruli ulcer. This lipid toxin is endowed with pleiotropic effects, presents cytotoxic effects at high doses, and notably plays a pivotal role in host response upon colonization by the bacillus. Most remarkably, mycolactone displays intriguing analgesic capabilities: the toxin suppresses or alleviates the pain of the skin lesions it inflicts. We demonstrated that the analgesic capability of mycolactone was not attributable to nerve damage, but instead resulted from the triggering of a cellular pathway targeting AT₂ receptors (angiotensin II type 2 receptors; AT₂R), and leading to potassium-dependent hyperpolarization. This demonstration paves the way to new nature-inspired analgesic protocols. In this direction, we assess here the hyperpolarizing properties of mycolactone on nociceptive neurons. We developed a dedicated medium-throughput assay based on membrane potential changes, and visualized by confocal microscopy of bis-oxonol-loaded Dorsal Root Ganglion (DRG) neurons. We demonstrate that mycolactone at non-cytotoxic doses triggers the hyperpolarization of DRG neurons through AT₂R, with this action being not affected by known ligands of AT₂R. This result points towards novel AT₂R-dependent signaling pathways in DRG neurons underlying the analgesic effect of mycolactone, with the perspective for the development of new types of nature-inspired analgesics.

  15. Synthesis of long T₁ silicon nanoparticles for hyperpolarized ²⁹Si magnetic resonance imaging.

    PubMed

    Atkins, Tonya M; Cassidy, Maja C; Lee, Menyoung; Ganguly, Shreyashi; Marcus, Charles M; Kauzlarich, Susan M

    2013-02-26

    We describe the synthesis, materials characterization, and dynamic nuclear polarization (DNP) of amorphous and crystalline silicon nanoparticles for use as hyperpolarized magnetic resonance imaging (MRI) agents. The particles were synthesized by means of a metathesis reaction between sodium silicide (Na₄Si₄) and silicon tetrachloride (SiCl₄) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ∼10 nm with long size-adjusted ²⁹Si spin-lattice relaxation (T₁) times (>600 s), which are retained after hyperpolarization by low-temperature DNP.

  16. Synthesis of Long-T1 Silicon Nanoparticles for Hyperpolarized 29Si Magnetic Resonance Imaging

    PubMed Central

    Atkins, Tonya M.; Cassidy, Maja C.; Lee, Menyoung; Ganguly, Shreyashi; Marcus, Charles M.; Kauzlarich, Susan M.

    2013-01-01

    We describe the synthesis, materials characterization and dynamic nuclear polarization (DNP) of amorphous and crystalline silicon nanoparticles for use as hyperpolarized magnetic resonance imaging (MRI) agents. The particles were synthesized by means of a metathesis reaction between sodium silicide (Na4Si4) and silicon tetrachloride (SiCl4) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ~10 nm with long size-adjusted 29Si spin lattice relaxation (T1) times (> 600 s), which are retained after hyperpolarization by low temperature DNP. PMID:23350651

  17. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this section...

  18. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this section...

  19. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this section...

  20. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this section...

  1. 40 CFR 721.6505 - Polymers of C13C15 oxoalcohol ethoxolates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymers of C13C15 oxoalcohol... Specific Chemical Substances § 721.6505 Polymers of C13C15 oxoalcohol ethoxolates. (a) Chemical substance... polymers of C13C15 oxoalcohol ethoxolates (PMNs P-96-950/951) are subject to reporting under this section...

  2. 19F and 13C NMR studies of polyol metabolism in freeze-tolerant pupae of Hyalophora cecropia.

    PubMed

    Podlasek, C A; Serianni, A S

    1994-01-28

    Sorbitol biosynthesis and regulation in freeze tolerant pupae of Hyalophora cecropia have been investigated as a function of temperature by 19F and 13C nuclear magnetic resonance (NMR) spectroscopy using several 13C-labeled and/or fluorine-substituted carbohydrates. 3-Deoxy-3-fluoro-D-glucose (3DFG) was metabolized to 3-deoxy-3-fluoro-D-sorbitol (3DFS), 3-deoxy-3-fluoro-D-fructose (3DFF), and 3-deoxy-3-fluoro-D-gluconic acid (3DFGA), indicating that the enzymes required for sorbitol biosynthesis and metabolism are active in H. cecropia at warm (22 degrees C) and cold (4 and -10 degrees C) temperatures. Two additional metabolites were produced when pupae were injected with either 3DFG, 3DFS, 3DFF, or 3-deoxy-3-fluoro-D-mannose (3DFM). One of these was identified as 3-deoxy-3-fluoro-D-mannitol (3DFML) by 13C NMR using [1-13C]3DFM and [1-13C]3DFG as metabolic probes. H. cecropia pupae injected with D-glucose labeled with 13C at C-1, C-2, or C-3 and subsequently analyzed by 13C NMR clearly demonstrated the ability to generate sorbitol and fructose. In contrast, gas chromatography/mass spectrometric analysis of hemolymph failed to detect sorbitol in pupae reared under natural conditions (i.e. in the absence of injected enriched sugars). Thus, although H. cecropia pupae have the enzymic machinery to biosynthesize sorbitol, they do not appear to accumulate high steady-state concentrations of this polyol over the temperature range studied. The specificity of the enzymes involved in alditol biosynthesis in H. cecropia was examined by 13C NMR with a wide range of aldoses enriched with 13C at C-1. Pupae were capable of converting these sugars to their corresponding [1-13C]alditols, indicating that nonspecific dehydrogenase(s), in addition to aldose reductase, is(are) involved in polyol biosynthesis in H. cecropia pupae.

  3. Magnetic state and phase composition of carbon-encapsulated Co@C nanoparticles according to 59Co, 13C NMR data and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Mikhalev, K. N.; Germov, A. Yu; Uimin, M. A.; Yermakov, A. E.; Konev, A. S.; Novikov, S. I.; Gaviko, V. S.; Ponosov, Yu S.

    2018-05-01

    59Co, 13C NMR spectra, magnetization and Raman spectra of Co@C nanoparticles encapsulated in carbon have been analyzed. It has been shown that the cores of the nanoparticles consist of metallic cobalt with FCC structure and perhaps the carbide of cobalt Co3C. Carbon shell have been characterized as a highly defective structure similar to amorphous or glassy-like carbon, however, it may include a small amount of the carbon nanotubes.

  4. Variability of 13C-labeling in plant leaves.

    PubMed

    Nguyen Tu, Thanh Thuy; Biron, Philippe; Maseyk, Kadmiel; Richard, Patricia; Zeller, Bernd; Quénéa, Katell; Alexis, Marie; Bardoux, Gérard; Vaury, Véronique; Girardin, Cyril; Pouteau, Valérie; Billiou, Daniel; Bariac, Thierry

    2013-09-15

    Plant tissues artificially labeled with (13)C are increasingly used in environmental studies to unravel biogeochemical and ecophysiological processes. However, the variability of (13)C-content in labeled tissues has never been carefully investigated. Hence, this study aimed at documenting the variability of (13)C-content in artificially labeled leaves. European beech and Italian ryegrass were subjected to long-term (13)C-labeling in a controlled-environment growth chamber. The (13)C-content of the leaves obtained after several months labeling was determined by isotope ratio mass spectrometry. The (13)C-content of the labeled leaves exhibited inter- and intra-leaf variability much higher than those naturally occurring in unlabeled plants, which do not exceed a few per mil. This variability was correlated with labeling intensity: the isotope composition of leaves varied in ranges of ca 60‰ and 90‰ for experiments that led to average leaf (13)C-content of ca +15‰ and +450‰, respectively. The reported variability of isotope composition in (13)C-enriched leaves is critical, and should be taken into account in subsequent experimental investigations of environmental processes using (13)C-labeled plant tissues. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Modeling 13C discrimination in Tree Rings

    NASA Astrophysics Data System (ADS)

    Berninger, Frank; Sonninen, Eloni; Aalto, Tuula; Lloyd, Jon

    2000-03-01

    Annual variations from 1877 to 1995 in tree-ring α-cellulose 13C/12C isotopic ratios for four subarctic Pinus sylvestris trees were determined, and, in conjunction with a recent record of atmospheric 13CO2/12CO2 ratios, the historical pattern of photosynthetic isotope discrimination, Δ13C, was evaluated. Year-to-year variability in Δ13C has been as much as 1.5‰ with the period 1900-1920 showing an extended period of unusually high photosynthetic discriminations. The summers during these years were, on average, unusually cold. Since 1920 a long term trend of increasing Δ13C of ˜0.016‰yr-1 is inferred. We compared measured Δ13C with those predicted on the basis of the theoretical relationship between Δ13C and the ratio of substomatal to ambient CO2 concentration, Ci/Ca using mechanistic equations for chloroplast biochemistry coupled with a stomatal conductance model. Two variations of a nonlinear optimal-regulation stomatal conductance model were compared. Although both models were based on the assumption that stomata serve to minimize the average transpiration rate for a given average rate of CO2 assimilation, one version of the model incorporated reductions in stomatal conductance in response to recent increases in atmospheric CO2 concentrations and the other did not. The CO2 sensitive stomatal model failed to describe the long-term increase in 13C discrimination, especially after 1950. The insensitive model gave good agreement, suggesting that an observed increase in subarctic Pinus sylvestris Δ13C since 1920 is attributable to recent increases in atmospheric CO2 concentrations with subsequent increases in the ratio of substomatal to ambient CO2 concentrations. The model was also capable of accounting for high frequency (year-to-year) variations in Δ13C, these differences being attributable to year-to-year fluctuations in the average leaf-to-air vapor pressure difference affecting stomatal conductance and hence Ci/Ca.

  6. δ13C and δ18O measurements of carbonate rocks using Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lucic, G.; Kim-Hak, D.; Curtis, J. H.

    2017-12-01

    We present a novel, user friendly and cost effective method for the analysis of δ13C and δ18O in CO2 gas obtained from acid digestion of carbonate rocks. 2 to 3 milligrams of pure carbonate, ground to a powder, is digested in a pre-evacuated glass vial using 100% phosphoric acid at 70° C. Vials with the reacted samples are then loaded onto an automated carousel sampler where produced CO2 gas in the headspace is extracted and sent to a Picarro CRDS isotopic C and O analyzer. Once loaded onto the carousel, 49 samples may be analyzed automatically at a rate of one sample every 15 minutes. δ13C and δ18O of the sample are reported in real time with a precision of 0.2 and 0.4 per mil, respectively. The portability and simplicity of the autosampler and CRDS setup opens up potential for permanent and mobile deployments, enabling near-realtime sampling feedback in the lab or on the go in the field. Consumable and operating costs are small when compared to other technology in use, making the CRDS-Carbonate system suitable for large and small research labs. Finally, we present a summary results from a series of validation tests in which standards and natural carbonate rock samples were analyzed and compared to traditional Kiel-IRMS results.

  7. Synthesis of [1-.sup.13C]pyruvic acid], [2-.sup.13C]pyruvic acid], [3-.sup.13C]pyruvic acid] and combinations thereof

    DOEpatents

    Martinez, Rodolfo A [Santa Fe, NM; Unkefer, Clifford J [Los Alamos, NM; Alvarez, Marc A [Santa Fe, NM

    2009-09-01

    The present invention is directed to labeled compounds, of the formulae ##STR00001## wherein C* is each independently selected from the group consisting of .sup.13C and .sup.12C with the proviso that at least one C* is .sup.13C, each hydrogen of the methylene group can independently be either hydrogen or deuterium, the methyl group includes either zero or three deuterium atoms, Q is from the group of sulfide, sulfinyl, and sulfone, Z is an aryl group from the group of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently from the group of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group from the group of NH.sub.2, NHR and NRR' where R and R' are each independently from the group of a C.sub.1-C.sub.4 lower alkyl, a phenyl, and an alkoxy group, and the methyl group can include either zero or three deuterium atoms.

  8. Generation of C3- and C2-deuterated L-lactic acid by human erythrocytes exposed to D-[1-13C]glucose, D-[2-13C]glucose and D-[6-13C]glucose in the presence of D2O.

    PubMed

    Malaisse, W J; Biesemans, M; Willem, R

    1994-05-01

    1. The generation of C2- and C3-deuterated L-lactate was monitored by 13C NMR in human erythrocytes exposed to D-[1-13C]glucose, D-[2-13C]glucose or D-[6-13C]glucose and incubated in a medium prepared in D2O. 2. The results suggested that the deuteration of the C1 of D-fructose 6-phosphate in the phosphoglucoisomerase reaction, the deuteration of the C1 of D-glyceraldehyde-3-phosphate in the sequence of reactions catalyzed by triose phosphate isomerase and aldolase and the deuteration of the C3 of pyruvate in the reaction catalyzed by pyruvate kinase were all lower than expected from equilibration with D2O. 3. Moreover, about 40% of the molecules of pyruvate generated by glycolysis apparently underwent deuteration on their C3 during interconversion of the 2-keto acid and L-alanine in the reaction catalyzed by glutamate-pyruvate transaminase. 4. The occurrence of the latter process was also documented in cells exposed to exogenous [3-13C]pyruvate. 5. This methodological approach is proposed to provide a new tool to assess in intact cells the extent of back-and-forth interconversion of selected metabolic intermediates.

  9. Influence of 13C isotopic labeling location of 13C DNP of acetate using TEMPO free radical

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Lumata, Lloyd

    2015-03-01

    Dynamic nuclear polarization (DNP) via the dissolution method enhances the liquid-state magnetic resonance (NMR or MRI) signals of insensitive nuclear spins by at least 10,000-fold. The basis for all these signal enhancements at room temperature is the polarization transfer from the electrons to nuclear spins at cryogenic temperature and high magnetic field. In this work, we have studied the influence of the location of 13C isotopic labeling on the DNP of sodium acetate at 3.35 T and 1.4 K using a wide ESR linewidth free radical 4-oxo-TEMPO. The carbonyl [1-13C]acetate spins produced a polarization level that is almost twice that of the methyl [2-13C]acetate spins. On the other hand, the polarization of the methyl 13C spins doubled to reach the level of [1-13C]acetate when the methyl group was deuterated. Meanwhile, the solid-state nuclear relaxation of these samples are the same and do not correlate with the polarization levels. These behavior implies that the nuclear relaxation for these samples is dominated by the contribution from the free radicals and the polarization levels can be explained by a thermodynamic picture of DNP.

  10. Rotational spectrum of 13C{2}-methyl formate (HCOO13CH{3}) and detection of the two 13C-methyl formate in Orion

    NASA Astrophysics Data System (ADS)

    Carvajal, M.; Margulès, L.; Tercero, B.; Demyk, K.; Kleiner, I.; Guillemin, J. C.; Lattanzi, V.; Walters, A.; Demaison, J.; Wlodarczak, G.; Huet, T. R.; Møllendal, H.; Ilyushin, V. V.; Cernicharo, J.

    2009-06-01

    Context: Laboratory measurements and analysis of the microwave and millimeter-wave spectra of potential interstellar molecules are a prerequisite for their subsequent identification by radioastronomical techniques. The spectral analysis provides spectroscopic parameters that are used in the assignment procedure of the laboratory spectra, and that also predict the frequencies of transitions not measured in the laboratory with a high degree of precision. Aims: An experimental laboratory study and its theoretical analysis is presented for 13C2-methyl formate (HCOO13CH3) allowing a search for this isotopologue in the Orion molecular cloud. The 13C1-methyl formate (H13COOCH3) molecule was also searched for in this interstellar cloud, using previously published spectroscopic data. Methods: The experimental spectra of 13C2-methyl formate were recorded in the microwave and sub-mm energy ranges (4-20 GHz, 8-80 GHz, 150-700 GHz). The spectra were analyzed using the Rho-Axis Method (RAM), which takes the CH3 internal rotation and the coupling between internal rotation and global rotation into account. Results: Twenty-seven spectroscopic constants of 13C2-methyl formate have been obtained from a fit of 936 transitions of the ground torsional state with a standard (unitless) deviation of 1.08. A prediction of line positions and intensities is also produced. This prediction allowed us to identify 230 13C2-methyl formate lines in the Orion interstellar molecular cloud. We refitted all previously published ground state transitions of the 13C1-methyl formate molecule in order to provide a prediction of its ground state spectrum. 234 lines of 13C1-methyl formate were detected in the Orion interstellar cloud using that prediction. Tables A.1-A.5 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/500/1109

  11. Spin Noise Detection of Nuclear Hyperpolarization at 1.2 K

    PubMed Central

    Pöschko, Maria Theresia; Vuichoud, Basile; Milani, Jonas; Bornet, Aurélien; Bechmann, Matthias; Bodenhausen, Geoffrey; Jannin, Sami; Müller, Norbert

    2015-01-01

    We report proton spin noise spectra of a hyperpolarized solid sample of commonly used “DNP (dynamic nuclear polarization) juice” containing TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine N-oxide) and irradiated by a microwave field at a temperature of 1.2 K in a magnetic field of 6.7 T. The line shapes of the spin noise power spectra are sensitive to the variation of the microwave irradiation frequency and change from dip to bump, when the electron Larmor frequency is crossed, which is shown to be in good accordance with theory by simulations. Small but significant deviations from these predictions are observed, which can be related to spin noise and radiation damping phenomena that have been reported in thermally polarized systems. The non-linear dependence of the spin noise integral on nuclear polarization provides a means to monitor hyperpolarization semi-quantitatively without any perturbation of the spin system by radio frequency irradiation. PMID:26477605

  12. Light-evoked hyperpolarization and silencing of neurons by conjugated polymers

    PubMed Central

    Feyen, Paul; Colombo, Elisabetta; Endeman, Duco; Nova, Mattia; Laudato, Lucia; Martino, Nicola; Antognazza, Maria Rosa; Lanzani, Guglielmo; Benfenati, Fabio; Ghezzi, Diego

    2016-01-01

    The ability to control and modulate the action potential firing in neurons represents a powerful tool for neuroscience research and clinical applications. While neuronal excitation has been achieved with many tools, including electrical and optical stimulation, hyperpolarization and neuronal inhibition are typically obtained through patch-clamp or optogenetic manipulations. Here we report the use of conjugated polymer films interfaced with neurons for inducing a light-mediated inhibition of their electrical activity. We show that prolonged illumination of the interface triggers a sustained hyperpolarization of the neuronal membrane that significantly reduces both spontaneous and evoked action potential firing. We demonstrate that the polymeric interface can be activated by either visible or infrared light and is capable of modulating neuronal activity in brain slices and explanted retinas. These findings prove the ability of conjugated polymers to tune neuronal firing and suggest their potential application for the in-vivo modulation of neuronal activity. PMID:26940513

  13. Hyperpolarization of the plasma membrane potential provokes reorganization of the actin cytoskeleton and increases the stability of adherens junctions in bovine corneal endothelial cells in culture.

    PubMed

    Nin, Verónica; Hernández, Julio A; Chifflet, Silvia

    2009-12-01

    In previous works we showed that the depolarization of the plasma membrane potential (PMP) determines a reorganization of the cytoskeleton of diverse epithelia in culture, consisting mainly of a reallocation of peripheral actin toward the cell center, ultimately provoking intercellular disruption. In view of this evidence, we explored in this study the possible effects of membrane potential hyperpolarization on the cytoskeletal organization and adherens junction (AJ) morphology and the stability of confluent bovine corneal endothelial cells in culture. For this purpose, hyperpolarization was achieved by substitution of extracellular sodium by nondiffusible cations or via the incorporation of valinomycin to the control solution. Actin compactness at the cell periphery was assessed by quantitative analysis of fluorescence microscopy images. The stability of the AJ was challenged by calcium deprivation or temperature decrease. Our results showed that plasma membrane hyperpolarization provokes a compaction of AJ-associated actin filaments toward the plasma membrane and an increase in the stability of the AJs. We also observed that the hyperpolarizing procedures determined similar modifications in the actin cytoskeleton of endothelial cells in whole bovine corneas. Together with our previous work, the results of this study contribute to the idea that modifications in the PMP of nonexcitable cells participate in cellular adaptive responses involving reorganization of cytoskeletal components. (c) 2009 Wiley-Liss, Inc.

  14. NOTE The effect of 13C enrichment in the glassing matrix on dynamic nuclear polarization of [1-13C]pyruvate

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd; Kovacs, Zoltan; Malloy, Craig; Sherry, A. Dean; Merritt, Matthew

    2011-03-01

    Dimethyl sulfoxide (DMSO) can effectively form a glassy matrix necessary for dynamic nuclear polarization (DNP) experiments. We tested the effects of 13C enrichment in DMSO on DNP of [1-13C]pyruvate doped with trityl radical OX063Me. We found that the polarization build-up time τ of pyruvate in 13C-labeled DMSO glassing solution is twice as fast as the unenriched DMSO while the nuclear magnetic resonance enhancement was unchanged. This indicates that 13C-13C spin diffusion is a limiting factor in the kinetics of DNP in this system, but it has a minimal effect on the absolute value of polarization achievable for the target.

  15. Prospective Work for Alma: the Millimeterwave and Submillimeterwave Spectrum of 13C-GLYCOLALDEHYDE

    NASA Astrophysics Data System (ADS)

    Haykal, Imane; Margulès, Laurent; Huet, Therese R.; Motiyenko, Roman; Guillemin, J.-C.

    2011-06-01

    Glycolaldehyde has been identified in interstellar sources. The relative abundance ratios of the three isomers (acetic acid) : (glycolaldehyde) : (methylformate) were estimated . The detection of 13C_1 and 13C_2 isotopomers of methylformate has been recently reported in Orion, as a result of the detailled labororatory spectroscopic study. Therefore the spectroscopy of the 13C isotopomers of glycolaldehyde is investigated in laboratory in order to provide data for an astronomical search. The instrument ALMA will certainly be a good instrument to detect them. Up to now, only the microwave spectra of 13CH_2OH-CHO and of CH_2OH-13CHO have been observed several years ago in the 12-40 GHz range. Spectra of both species are presently recorded in Lille in the 150-950 GHz range with the new submillimetre-wave spectrometer based on harmonic generation of a microwave synthesizer source, using only solid-state devices, and coupled to a cell of 2.2 m length The absolute accuracy of the line positions is better than 30 KHz. The rotational structure of the ground state and of the three first excited vibrational states has been observed. Two 13C enriched samples were used. The analysis is in progress. This work is supported by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS) and by the contract ANR-08-BLAN-0054 J. M. Hollis, S. N. Vogel, L. E. Snyder, et al., Astrophys. J. 554(2001) L81 R. A. H. Butler, F. C. De Lucia, D. T Petkie, et al., Astrophys. J. Supp. 134 (2001) 319 M. T. Beltran, C. Codella, S. Viti, R. Niri, R. Cesaroni, Astrophys. J. 690 (2009) L93. M. Carjaval, L. Margulès, B. Tercero et al., Astron. Astrophys. 500 (2009) 1109. K.-M. Marstokk and H. Møllendal, J. Mol. Struct. 16 (1973) 259. R. A. Motiyenko, L. Margulès, E. A. Alekseev et al., J. Mol. Spectrosc. 264 (2010) 94.

  16. Hyperpolarized 129Xe MRI: A Viable Functional Lung Imaging Modality?

    PubMed Central

    Patz, Samuel; Hersman, F. William; Muradian, Iga; Hrovat, Mirko I.; Ruset, Iulian C.; Ketel, Stephen; Jacobson, Francine; Topulos, George P.; Hatabu, Hiroto; Butler, James P.

    2008-01-01

    The majority of researchers investigating hyperpolarized gas MRI as a candidate functional lung imaging modality have used 3He as their imaging agent of choice rather than 129Xe. This preference has been predominantly due to, 3He providing stronger signals due to higher levels of polarization and higher gyromagnetic ratio, as well as its being easily available to more researchers due to availability of polarizers (USA) or ease of gas transport (Europe). Most researchers agree, however, that hyperpolarized 129Xe will ultimately emerge as the imaging agent of choice due to its unlimited supply in nature and its falling cost. Our recent polarizer technology delivers vast improvements in hyperpolarized 129Xe output. Using this polarizer, we have demonstrated the unique property of xenon to measure alveolar surface area noninvasively. In this article, we describe our human protocols and their safety, and our results for the measurement of the partial pressure of pulmonary oxygen (pO2) by observation of 129Xe signal decay. We note that the measurement of pO2 by observation of 129Xe signal decay is more complex than that for 3He because of an additional signal loss mechanism due to interphase diffusion of 129Xe from alveolar gas spaces to septal tissue. This results in measurements of an equivalent pO2 that accounts for both traditional T1 decay from pO2 and that from interphase diffusion. We also provide an update on new technological advancements that form the foundation for an improved compact design polarizer as well as improvements that provide another order-of-magnitude scale-up in xenon polarizer output. PMID:17890035

  17. Sensitivity-enhanced IPAP experiments for measuring one-bond 13C '- 13C α and 13C α- 1H α residual dipolar couplings in proteins

    NASA Astrophysics Data System (ADS)

    Ding, Keyang; Gronenborn, Angela M.

    2004-04-01

    Sensitivity-enhanced 2D IPAP experiments using the accordion principle for measuring one-bond 13C '- 13C α and 1H α- 13C α dipolar couplings in proteins are presented. The resolution of the resulting spectra is identical to that of the decoupled HSQC spectra and the sensitivity of the corresponding 1D acquisitions are only slightly lower than those obtained with 3D HNCO and 3D HN(COCA)HA pulse sequences due to an additional delay 2 Δ. For cases of limited resolution in the 2D 15N- 1H N HSQC spectrum the current pulse sequences can easily be modified into 3D versions by introducing a poorly digitized third dimension, if so desired. The experiments described here are a valuable addition to the suites available for determination of residual dipolar couplings in biological systems.

  18. Monovacancy paramagnetism in neutron-irradiated graphite probed by 13C NMR.

    PubMed

    Zhang, Zhi Tao; Xu, C; Dmytriieva, Daryna; Molatta, Sebastian; Wosnitza, J; Wang, Y T; Helm, Manfred; Zhou, Shengqiang; Kuehne, Hannes

    2017-09-18

    We report on the magnetic properties of monovacancy defects in neutron-irradiated graphite, probed by $^{13}$C nuclear magnetic resonance spectroscopy. The bulk paramagnetism of the defect moments is revealed by the temperature dependence of the NMR frequency shift and spectral linewidth, both of which follow a Curie behavior, in agreement with measurements of the macroscopic magnetization. Compared to pristine graphite, the fluctuating hyperfine fields generated by the defect moments lead to an enhancement of the $^{13}$C nuclear spin-lattice relaxation rate $1/T_{1}$ by about two orders of magnitude. With an applied magnetic field of 7.1 T, the temperature dependence of $1/T_{1}$ below about 10 K can well be described by a thermally activated form, $1/T_{1}\\propto\\exp(-\\Delta/k_{B}T)$, yielding a singular Zeeman energy of ($0.41\\pm0.01$) meV, in excellent agreement with the sole presence of polarized, non-interacting defect moments. © 2017 IOP Publishing Ltd.

  19. Non-stationary (13)C-metabolic flux ratio analysis.

    PubMed

    Hörl, Manuel; Schnidder, Julian; Sauer, Uwe; Zamboni, Nicola

    2013-12-01

    (13)C-metabolic flux analysis ((13)C-MFA) has become a key method for metabolic engineering and systems biology. In the most common methodology, fluxes are calculated by global isotopomer balancing and iterative fitting to stationary (13)C-labeling data. This approach requires a closed carbon balance, long-lasting metabolic steady state, and the detection of (13)C-patterns in a large number of metabolites. These restrictions mostly reduced the application of (13)C-MFA to the central carbon metabolism of well-studied model organisms grown in minimal media with a single carbon source. Here we introduce non-stationary (13)C-metabolic flux ratio analysis as a novel method for (13)C-MFA to allow estimating local, relative fluxes from ultra-short (13)C-labeling experiments and without the need for global isotopomer balancing. The approach relies on the acquisition of non-stationary (13)C-labeling data exclusively for metabolites in the proximity of a node of converging fluxes and a local parameter estimation with a system of ordinary differential equations. We developed a generalized workflow that takes into account reaction types and the availability of mass spectrometric data on molecular ions or fragments for data processing, modeling, parameter and error estimation. We demonstrated the approach by analyzing three key nodes of converging fluxes in central metabolism of Bacillus subtilis. We obtained flux estimates that are in agreement with published results obtained from steady state experiments, but reduced the duration of the necessary (13)C-labeling experiment to less than a minute. These results show that our strategy enables to formally estimate relative pathway fluxes on extremely short time scale, neglecting cellular carbon balancing. Hence this approach paves the road to targeted (13)C-MFA in dynamic systems with multiple carbon sources and towards rich media. © 2013 Wiley Periodicals, Inc.

  20. A Bacterial Toxin with Analgesic Properties: Hyperpolarization of DRG Neurons by Mycolactone

    PubMed Central

    Song, Ok-Ryul; Kim, Han-Byul; Jouny, Samuel; Ricard, Isabelle; Vandeputte, Alexandre; Deboosere, Nathalie; Marion, Estelle; Queval, Christophe J.; Lesport, Pierre; Henrion, Daniel; Oh, Seog Bae; Lebon, Guillaume; Sandoz, Guillaume; Yeramian, Edouard; Marsollier, Laurent; Brodin, Priscille

    2017-01-01

    Mycolactone, a polyketide molecule produced by Mycobacterium ulcerans, is the etiological agent of Buruli ulcer. This lipid toxin is endowed with pleiotropic effects, presents cytotoxic effects at high doses, and notably plays a pivotal role in host response upon colonization by the bacillus. Most remarkably, mycolactone displays intriguing analgesic capabilities: the toxin suppresses or alleviates the pain of the skin lesions it inflicts. We demonstrated that the analgesic capability of mycolactone was not attributable to nerve damage, but instead resulted from the triggering of a cellular pathway targeting AT2 receptors (angiotensin II type 2 receptors; AT2R), and leading to potassium-dependent hyperpolarization. This demonstration paves the way to new nature-inspired analgesic protocols. In this direction, we assess here the hyperpolarizing properties of mycolactone on nociceptive neurons. We developed a dedicated medium-throughput assay based on membrane potential changes, and visualized by confocal microscopy of bis-oxonol-loaded Dorsal Root Ganglion (DRG) neurons. We demonstrate that mycolactone at non-cytotoxic doses triggers the hyperpolarization of DRG neurons through AT2R, with this action being not affected by known ligands of AT2R. This result points towards novel AT2R-dependent signaling pathways in DRG neurons underlying the analgesic effect of mycolactone, with the perspective for the development of new types of nature-inspired analgesics. PMID:28718822

  1. Stellar Origins of C-13 and N-15-Enriched Presolar SiC Grains

    NASA Technical Reports Server (NTRS)

    Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua; Pignatari, Marco; Jose, Jordi; Nguyen, Ann

    2016-01-01

    Extreme excesses of 13 C ( C (12 C/ 13 C<10) and 15 N ( N (14 N/ 15 N< 20) in rare presolar SiC 20) in rare presolar SiClar SiC grains have been considered diagnostic of an origin in classical novae [1], though an origin in core-collapse supernovae (CCSNe) has also been proposed [2]. We report multi-element isotopic data for 19 13 C- and 15 N-enriched presolar SiC grains(12 C/13 C<16 and 14 N/ 15 N<150) from an acid resistant residue of the Murchison meteorite. These grains are enriched in 13 C and15 N, but with quite diverse Si isotopic signatures. Four grains with isotopic signatures. Four grains with isotopic signatures. Four grains with isotopic signatures. Four grains with isotopic signatures.

  2. Site-specific 13C content by quantitative isotopic 13C nuclear magnetic resonance spectrometry: a pilot inter-laboratory study.

    PubMed

    Chaintreau, Alain; Fieber, Wolfgang; Sommer, Horst; Gilbert, Alexis; Yamada, Keita; Yoshida, Naohiro; Pagelot, Alain; Moskau, Detlef; Moreno, Aitor; Schleucher, Jürgen; Reniero, Fabiano; Holland, Margaret; Guillou, Claude; Silvestre, Virginie; Akoka, Serge; Remaud, Gérald S

    2013-07-25

    Isotopic (13)C NMR spectrometry, which is able to measure intra-molecular (13)C composition, is of emerging demand because of the new information provided by the (13)C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic (13)C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular (13)C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic (13)C NMR was then assessed on vanillin from three different origins associated with specific δ (13)Ci profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ (13)Ci in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Ultra-sensitive atomic magnetometer for studying magnetization fields produced by hyperpolarized helium-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Sheng; Zhang, Hong; Fang, Jian-cheng, E-mail: fangjiancheng@buaa.edu.cn

    2016-04-14

    An ingenious approach to acquire the absolute magnetization fields produced by polarized atoms has been presented in this paper. The method was based on detection of spin precession signal of the hyperpolarized helium-3 with ultra-sensitive atomic magnetometer of potassium by referring to time-domain analysis. At first, dynamic responses of the mixed spin ensembles in the presence of variant external magnetic fields have been analyzed by referring to the Bloch equation. Subsequently, the relevant equipment was established to achieve the functions of hyperpolarizing helium-3 and detecting the precession of spin-polarized noble gas. By analyzing the transient response of the magnetometer inmore » time domain, we obtained the relevant damping ratio and natural frequency. When the value of damping ratio reached the maximum value of 0.0917, the combined atomic magnetometer was in equilibrium. We draw a conclusion from the steady response: the magnetization fields of the polarized electrons and the hyperpolarized nuclei were corresponding 16.12 nT and 90.74 nT. Under this situation, the nuclear magnetization field could offset disturbing magnetic fields perpendicular to the orientation of the electronic polarization, and it preserved the electronic spin staying in a stable axis. Therefore, the combined magnetometer was particularly attractive for inertial measurements.« less

  4. Determinations of the {sup 12}C/{sup 13}C Ratio for the Secondary Stars of AE Aquarii, SS Cygni, and RU Pegasi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Thomas E.; Marra, Rachel E., E-mail: tharriso@nmsu.edu, E-mail: rmarra@nmsu.edu

    We present new moderate-resolution near-infrared spectroscopy of three CVs obtained using GNIRS on Gemini-North. These spectra covered three {sup 13}CO bandheads found in the K -band, allowing us to derive the isotopic abundance ratios for carbon. We find small {sup 12}C/{sup 13}C ratios for all three donor stars. In addition, these three objects show carbon deficits, with AE Aqr being the most extreme ([C/Fe] = −1.4). This result confirms the conjecture that the donor stars in some long-period CVs have undergone considerable nuclear evolution prior to becoming semi-contact binaries. In addition to the results for carbon, we find that themore » abundance of sodium is enhanced in these three objects, and the secondary stars in both RU Peg and SS Cyg suffer magnesium deficits. Explaining such anomalies appears to require higher mass progenitors than commonly assumed for the donor stars of CVs.« less

  5. Analysis of the ν 12 Band of Ethylene- 13C 2 by High-Resolution FTIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, T. L.; Goh, K. L.; Ong, P. P.; Teo, H. H.

    2001-06-01

    The Fourier transform infrared (FTIR) spectrum of the ν12 fundamental band of ethylene-13C2 (13C2H4) was recorded with an unapodized resolution of 0.004 cm-1 in the frequency range from 1380 to 1500 cm-1. Rovibrational constants for the upper state (ν12=1) up to five quartic and three sextic centrifugal distortion terms were derived for the first time by assigning and fitting a total of 1177 infrared transitions using a Watson's A-reduced Hamiltonian in the Ir representation. The rms deviation of the fit was 0.00045 cm-1. The ground state rovibrational constants were also determined for the first time by a fit of 738 combination differences from the present infrared measurements, with a rms deviation of 0.00060 cm-1. The A-type ν12 band with a band center at 1436.65411±0.00005 cm-1 was found to be relatively free from local frequency perturbations. The inertial defect Δ12 was found to be 0.24300±0.00002 uÅ2.

  6. Probing the porosity of cocrystallized MCM-49/ZSM-35 zeolites by hyperpolarized 129Xe NMR.

    PubMed

    Liu, Yong; Zhang, Weiping; Xie, Sujuan; Xu, Longya; Han, Xiuwen; Bao, Xinhe

    2008-01-31

    One- and two-dimensional 129Xe NMR spectroscopy has been employed to study the porosity of cocrystallized MCM-49/ZSM-35 zeolites under the continuous flow of hyperpolarized xenon gas. It is found by variable-temperature experiments that Xe atoms can be adsorbed in different domains of MCM-49/ZSM-35 cocrystallized zeolites and the mechanically mixed counterparts. The exchange of Xe atoms in different types of pores is very fast at ambient temperatures. Even at very low temperature two-dimensional exchange spectra (EXSY) show that Xe atoms still undergo much faster exchange between MCM-49 and ZSM-35 analogues in the cocrystallized zeolites than in the mechanical mixture. This demonstrates that the MCM-49 and ZSM-35 analogues in cocrystallized zeolites may be stacked much closer than in the physical mixture, and some parts of intergrowth may be formed due to the partially similar basic structure of MCM-49 and ZSM-35.

  7. Constraining 3-PG with a new δ13C submodel: a test using the δ13C of tree rings.

    PubMed

    Wei, Liang; Marshall, John D; Link, Timothy E; Kavanagh, Kathleen L; DU, Enhao; Pangle, Robert E; Gag, Peter J; Ubierna, Nerea

    2014-01-01

    A semi-mechanistic forest growth model, 3-PG (Physiological Principles Predicting Growth), was extended to calculate δ(13)C in tree rings. The δ(13)C estimates were based on the model's existing description of carbon assimilation and canopy conductance. The model was tested in two ~80-year-old natural stands of Abies grandis (grand fir) in northern Idaho. We used as many independent measurements as possible to parameterize the model. Measured parameters included quantum yield, specific leaf area, soil water content and litterfall rate. Predictions were compared with measurements of transpiration by sap flux, stem biomass, tree diameter growth, leaf area index and δ(13)C. Sensitivity analysis showed that the model's predictions of δ(13)C were sensitive to key parameters controlling carbon assimilation and canopy conductance, which would have allowed it to fail had the model been parameterized or programmed incorrectly. Instead, the simulated δ(13)C of tree rings was no different from measurements (P > 0.05). The δ(13)C submodel provides a convenient means of constraining parameter space and avoiding model artefacts. This δ(13)C test may be applied to any forest growth model that includes realistic simulations of carbon assimilation and transpiration. © 2013 John Wiley & Sons Ltd.

  8. Characteristics and degradation of carbon and phosphorus from aquatic macrophytes in lakes: Insights from solid-state 13C NMR and solution 31P NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    LIU, S. S.; Zhu, Y.; Meng, W.; Wu, F.

    2016-12-01

    Water extractable organic matter (WEOM) derived from macrophytes plays an important role in biogeochemical cycling of nutrients, including carbon (C), nitrogen (N) and phosphorus (P) in lakes. However, reports of their composition and degradation in natural waters are scarce. Therefore, compositions and degradation of WEOM derived from six aquatic macrophytes species of Tai Lake, China, were investigated by use of solid-state 13C NMR and solution 31P NMR spectroscopy. Carbohydrates were the predominant constituents of WEOM fractions, followed by carboxylic acid. Orthophosphate (ortho-P) was the dominant form of P (78.7% of total dissolved P) in the water extracts, followed by monoester P (mono-P) (20.6%) and little diester P (0.65%). The proportion of mono-P in total P species increased with the percentage of O-alkyl and O-C-O increasing in the WEOM, which is likely due to degradation and dissolution of biological membranes and RNA from aquatic plants. Whereas the proportion of mono-P decreased with alkyl-C, NCH/OCH3 and COO/N-C=O increasing, which may be owing to the insoluble compounds including C functional groups of alkyl-C, NCH/OCH3 and COO/N-C=O, such as aliphatic biopolymers, lignin and peptides. Based on the results of this study and information in the literature about water column and sediment, we propose that WEOM, dominated by polysaccharides, are the most labile and bioavailable component in debris of macrophytes. Additionally, these WEOMs would also be a potential source for bioavailable organic P (e.g., RNA, DNA and phytate) for lakes.

  9. Characterization of oil shale, isolated kerogen, and post-pyrolysis residues using advanced 13 solid-state nuclear magnetic resonance spectroscopy

    USGS Publications Warehouse

    Cao, Xiaoyan; Birdwell, Justin E.; Chappell, Mark A.; Li, Yuan; Pignatello, Joseph J.; Mao, Jingdong

    2013-01-01

    Characterization of oil shale kerogen and organic residues remaining in postpyrolysis spent shale is critical to the understanding of the oil generation process and approaches to dealing with issues related to spent shale. The chemical structure of organic matter in raw oil shale and spent shale samples was examined in this study using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Oil shale was collected from Mahogany zone outcrops in the Piceance Basin. Five samples were analyzed: (1) raw oil shale, (2) isolated kerogen, (3) oil shale extracted with chloroform, (4) oil shale retorted in an open system at 500°C to mimic surface retorting, and (5) oil shale retorted in a closed system at 360°C to simulate in-situ retorting. The NMR methods applied included quantitative direct polarization with magic-angle spinning at 13 kHz, cross polarization with total sideband suppression, dipolar dephasing, CHn selection, 13C chemical shift anisotropy filtering, and 1H-13C long-range recoupled dipolar dephasing. The NMR results showed that, relative to the raw oil shale, (1) bitumen extraction and kerogen isolation by demineralization removed some oxygen-containing and alkyl moieties; (2) unpyrolyzed samples had low aromatic condensation; (3) oil shale pyrolysis removed aliphatic moieties, leaving behind residues enriched in aromatic carbon; and (4) oil shale retorted in an open system at 500°C contained larger aromatic clusters and more protonated aromatic moieties than oil shale retorted in a closed system at 360°C, which contained more total aromatic carbon with a wide range of cluster sizes.

  10. Identifying guanosine self assembly at natural isotopic abundance by high-resolution 1H and 13C solid-state NMR spectroscopy.

    PubMed

    Webber, Amy L; Masiero, Stefano; Pieraccini, Silvia; Burley, Jonathan C; Tatton, Andrew S; Iuga, Dinu; Pham, Tran N; Spada, Gian Piero; Brown, Steven P

    2011-12-14

    By means of the (1)H chemical shifts and the proton-proton proximities as identified in (1)H double-quantum (DQ) combined rotation and multiple-pulse spectroscopy (CRAMPS) solid-state NMR correlation spectra, ribbon-like and quartet-like self-assembly can be identified for guanosine derivatives without isotopic labeling for which it was not possible to obtain single crystals suitable for diffraction. Specifically, characteristic spectral fingerprints are observed for dG(C10)(2) and dG(C3)(2) derivatives, for which quartet-like and ribbon-like self-assembly has been unambiguously identified by (15)N refocused INADEQUATE spectra in a previous study of (15)N-labeled derivatives (Pham, T. N.; et al. J. Am. Chem. Soc.2005, 127, 16018). The NH (1)H chemical shift is observed to be higher (13-15 ppm) for ribbon-like self-assembly as compared to 10-11 ppm for a quartet-like arrangement, corresponding to a change from NH···N to NH···O intermolecular hydrogen bonding. The order of the two NH(2)(1)H chemical shifts is also inverted, with the NH(2) proton closest in space to the NH proton having a higher or lower (1)H chemical shift than that of the other NH(2) proton for ribbon-like as opposed to quartet-like self-assembly. For the dG(C3)(2) derivative for which a single-crystal diffraction structure is available, the distinct resonances and DQ peaks are assigned by means of gauge-including projector-augmented wave (GIPAW) chemical shift calculations. In addition, (14)N-(1)H correlation spectra obtained at 850 MHz under fast (60 kHz) magic-angle spinning (MAS) confirm the assignment of the NH and NH(2) chemical shifts for the dG(C3)(2) derivative and allow longer range through-space N···H proximities to be identified, notably to the N7 nitrogens on the opposite hydrogen-bonding face. © 2011 American Chemical Society

  11. Tree-ring cellulose exhibits several distinct intramolecular 13C signals

    NASA Astrophysics Data System (ADS)

    Wieloch, Thomas; Ehlers, Ina; Frank, David; Gessler, Arthur; Grabner, Michael; Yu, Jun; Schleucher, Jürgen

    2017-04-01

    Stable carbon isotopes are a key tool in biogeosciences. Present applications including compound-specific isotope analysis measure 13C/12C ratios (δ13C) of bulk material or of whole molecules. However, it is well known that primary metabolites also show large intramolecular 13C variation - also called isotopomer variation. This variation reflects 13C fractionation by enzyme reactions and therefore encodes metabolic information. Furthermore, δ13C must be considered an average of the intramolecular 13C distribution. Here we will present (1) methodology to analyse intramolecular 13C distributions of tree-ring cellulose by quantitative 13C NMR (Chaintreau et al., 2013, Anal Chim Acta, 788, 108-113); (2) intramolecular 13C distributions of an annually-resolved tree ring chronology (Pinus nigra, 1961-1995); (3) isotope parameters and terminology for analysis of intramolecular isotope time series; (4) a method for correcting for heterotrophic C redistribution. We will show that the intramolecular 13C distribution of tree-ring cellulose shows large variation, with differences between isotopomers exceeding 10‰Ṫhus, individual 13C isotopomers of cellulose constitute distinct 13C inputs into major global C pools such as wood and soil organic matter. When glucose units with the observed intramolecular 13C pattern are broken down along alternative catabolic pathways, it must be expected that respired CO2 with strongly differing δ13C will be released; indicating that intramolecular 13C variation affects isotope signals of atmosphere-biosphere C exchange fluxes. taking this variation into account will improve modelling of the global C cycle. Furthermore, cluster analysis shows that tree-ring glucose exhibits several independent intramolecular 13C signals, which constitute distinct ecophysiological information channels. Thus, whole-molecule 13C analysis likely misses a large part of the isotope information stored in tree rings. As we have shown for deuterium (Ehlers et al

  12. Improved CRDS δ13C Stability Through New Calibration Application For CO2 and CH4

    NASA Astrophysics Data System (ADS)

    Arata, C.; Rella, C.

    2014-12-01

    Stable carbon isotope ratio measurements of CO2 and CH4 provide valuable insight into global and regional sources and sinks of the two most important greenhouse gasses. Methodologies based on Cavity Ring-Down Spectroscopy (CRDS) have been developed capable of delivering δ13C measurements with a precision greater than 0.12 permil for CO2 and 0.4 permil for CH4 (1 hour window, 5 minute average). Here we present a method to further improve this measurement's stability. We have developed a two point calibration method which corrects for δ13C drift due to a dependance on carbon species concentration. This method calibrates for both carbon species concentration as well as δ13C. We go on to show that this added stability is especially valuable when using carbon isotope data in linear regression models such as Keeling plots, where even small amounts of error can be magnified to give inconclusive results. This method is demonstrated in both laboratory and ambient atmospheric conditions, and we demonstrate how to select the calibration frequency.

  13. Synthesis of 2H- and 13C-substituted dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2003-01-01

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  14. Synthesis Of 2h- And 13c-Substituted Dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-05-04

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  15. XeNA: An automated ‘open-source’ 129Xe hyperpolarizer for clinical use

    PubMed Central

    Nikolaou, Panayiotis; Coffey, Aaron M.; Walkup, Laura L.; Gust, Brogan M.; Whiting, Nicholas; Newton, Hayley; Muradyan, Iga; Dabaghyan, Mikayel; Ranta, Kaili; Moroz, Gregory D.; Rosen, Matthew S.; Patz, Samuel; Barlow, Michael J.; Chekmenev, Eduard Y.; Goodson, Boyd M.

    2014-01-01

    Here we provide a full report on the construction, components, and capabilities of our consortium’s “open-source” large-scale (~1 L/hr) 129Xe hyperpolarizer for clinical, pre-clinical, and materials NMR/MRI (Nikolaou et al., Proc. Natl. Acad. Sci. USA, 110, 14150 (2013)). The ‘hyperpolarizer’ is automated and built mostly of off-the-shelf components; moreover, it is designed to be cost-effective and installed in both research laboratories and clinical settings with materials costing less than $125,000. The device runs in the xenon-rich regime (up to 1800 Torr Xe in 0.5 L) in either stopped-flow or single-batch mode—making cryo-collection of the hyperpolarized gas unnecessary for many applications. In-cell 129Xe nuclear spin polarization values of ~30-90% have been measured for Xe loadings of ~300-1600 Torr. Typical 129Xe polarization build-up and T1 relaxation time constants were ~8.5 min and ~1.9 hr respectively under our SEOP conditions; such ratios, combined with near-unity Rb electron spin polarizations enabled by the high resonant laser power (up to ~200 W), permits such high PXe values to be achieved despite the high in-cell Xe densities. Importantly, most of the polarization is maintained during efficient HP gas transfer to other containers, and ultra-long 129Xe relaxation times (up to nearly 6 hr) were observed in Tedlar bags following transport to a clinical 3 T scanner for MR spectroscopy and imaging as a prelude to in vivo experiments. The device has received FDA IND approval for a clinical study of COPD subjects. The primary focus of this paper is on the technical / engineering development of the polarizer, with the explicit goals of facilitating the adaptation of design features and operative modes into other laboratories, and of spurring the further advancement of HP-gas MR applications in biomedicine. PMID:24631715

  16. Sequential pictorial presentation of neural interaction in the retina. 2. The depolarizing and hyperpolarizing bipolar cells at rod terminals.

    PubMed

    Sjöstrand, F S

    2002-01-01

    Each rod is connected to one depolarizing and one hyperpolarizing bipolar cell. The synaptic connections of cone processes to each bipolar cell and presynaptically to the two rod-bipolar cell synapses establishes conditions for lateral interaction at this level. Thus, the cones raise the threshold for bipolar cell depolarization which is the basis for spatial brightness contrast enhancement and consequently for high visual acuity (Sjöstrand, 2001a). The cones facilitate ganglion cell depolarization by the bipolar cells and cone input prevents horizontal cell blocking of depolarization of the depolarizing bipolar cell, extending rod vision to low illumination. The combination of reduced cone input and transient hyperpolarization of the hyperpolarizing bipolar cell at onset of a light stimulus facilitates ganglion cell depolarization extensively at onset of the stimulus while no corresponding enhancement applies to the ganglion cell response at cessation of the stimulus, possibly establishing conditions for discrimination between on- vs. off-signals in the visual centre. Reduced cone input and hyperpolarization of the hyperpolarizing bipolar cell at onset of a light stimulus accounts for Granit's (1941) 'preexcitatory inhibition'. Presynaptic inhibition maintains transmitter concentration low in the synaptic gap at rod-bipolar cell and bipolar cell-ganglion cell synapses, securing proportional and amplified postsynaptic responses at these synapses. Perfect timing of variations in facilitatory and inhibitory input to the ganglion cell confines the duration of ganglion cell depolarization at onset and at cessation of a light stimulus to that of a single synaptic transmission.

  17. Laboratory spectra of C-13 ethane

    NASA Technical Reports Server (NTRS)

    Kurtz, Joe; Reuter, Dennis C.; Jennings, Donald E.; Hillman, John J.

    1991-01-01

    The laboratory infrared spectrum of C-13 monosubstituted ethane has been obtained at high resolution (0.0025/cm) using the McMath Fourier transform spectrometer at Kitt Peak National Observatory in May 1990. A preliminary analysis of the nu12 rQ0 branch (substituted species) suggests that its intensity is 1.15 + or - 0.05 times stronger than the equivalent nu9 branch in the normal (C-12)2H6 species. This result leads to a correction of a previously published estimate for the C-12/C-13 ratio in the atmosphere of Jupiter from about 94 to about 106.

  18. (3, 2)D 1H, 13C BIRDr,X-HSQC-TOCSY for NMR structure elucidation of mixtures: application to complex carbohydrates.

    PubMed

    Brodaczewska, Natalia; Košťálová, Zuzana; Uhrín, Dušan

    2018-02-01

    Overlap of NMR signals is the major cause of difficulties associated with NMR structure elucidation of molecules contained in complex mixtures. A 2D homonuclear correlation spectroscopy in particular suffers from low dispersion of 1 H chemical shifts; larger dispersion of 13 C chemical shifts is often used to reduce this overlap, while still providing the proton-proton correlation information e.g. in the form of a 2D 1 H, 13 C HSQC-TOCSY experiment. For this methodology to work, 13 C chemical shift must be resolved. In case of 13 C chemical shifts overlap, 1 H chemical shifts can be used to achieve the desired resolution. The proposed (3, 2)D 1 H, 13 C BIRD r,X -HSQC-TOCSY experiment achieves this while preserving singlet character of cross peaks in the F 1 dimension. The required high-resolution in the 13 C dimension is thus retained, while the cross peak overlap occurring in a regular HSQC-TOCSY experiment is eliminated. The method is illustrated on the analysis of a complex carbohydrate mixture obtained by depolymerisation of a fucosylated chondroitin sulfate isolated from the body wall of the sea cucumber Holothuria forskali.

  19. Developmental conditioning of endothelium-derived hyperpolarizing factor-mediated vasorelaxation

    PubMed Central

    Stead, Rebecca; Musa, Moji G.; Bryant, Claire L.; Lanham, Stuart A.; Johnston, David A.; Reynolds, Richard; Torrens, Christopher; Fraser, Paul A.; Clough, Geraldine F.

    2016-01-01

    Objectives: The endothelium maintains vascular homeostasis through the release of endothelium-derived relaxing factors (EDRF) and endothelium-derived hyperpolarization (EDH). The balance in EDH : EDRF is disturbed in cardiovascular disease and may also be susceptible to developmental conditioning through exposure to an adverse uterine environment to predispose to later risk of hypertension and vascular disease. Methods: Developmentally conditioned changes in EDH : EDRF signalling pathways were investigated in cremaster arterioles (18–32 μm diameter) and third-order mesenteric arteries of adult male mice offspring of dams fed either a fat-rich (high fat, HF, 45% energy from fat) or control (C, 10% energy from fat) diet. After weaning, offspring either continued on high fat or were placed on control diets to give four dietary groups (C/C, HF/C, C/HF, and HF/HF) and studied at 15 weeks of age. Results: EDH via intermediate (IKCa) and small (SKca) conductance calcium-activated potassium channels contributed less than 10% to arteriolar acetylcholine-induced relaxation in in-situ conditioned HF/C offspring compared with ∼60% in C/C (P < 0.01). The conditioned reduction in EDH signalling in HF/C offspring was reversed in offspring exposed to a high-fat diet both before and after weaning (HF/HF, 55%, P < 0.01 vs. HF/C). EDH signalling was unaffected in arterioles from C/HF offspring. The changes in EDH : EDRF were associated with altered endothelial cell expression and localization of IKCa channels. Conclusion: This is the first evidence that EDH-mediated microvascular relaxation is susceptible to an adverse developmental environment through down-regulation of the IKCa signalling pathway. Conditioned offspring exposed to a ‘second hit’ (HF/HF) exhibit adaptive vascular mechanisms to preserve dilator function. PMID:26682783

  20. Developmental conditioning of endothelium-derived hyperpolarizing factor-mediated vasorelaxation.

    PubMed

    Stead, Rebecca; Musa, Moji G; Bryant, Claire L; Lanham, Stuart A; Johnston, David A; Reynolds, Richard; Torrens, Christopher; Fraser, Paul A; Clough, Geraldine F

    2016-03-01

    The endothelium maintains vascular homeostasis through the release of endothelium-derived relaxing factors (EDRF) and endothelium-derived hyperpolarization (EDH). The balance in EDH : EDRF is disturbed in cardiovascular disease and may also be susceptible to developmental conditioning through exposure to an adverse uterine environment to predispose to later risk of hypertension and vascular disease. Developmentally conditioned changes in EDH : EDRF signalling pathways were investigated in cremaster arterioles (18-32  μm diameter) and third-order mesenteric arteries of adult male mice offspring of dams fed either a fat-rich (high fat, HF, 45% energy from fat) or control (C, 10% energy from fat) diet. After weaning, offspring either continued on high fat or were placed on control diets to give four dietary groups (C/C, HF/C, C/HF, and HF/HF) and studied at 15 weeks of age. EDH via intermediate (IKCa) and small (SKca) conductance calcium-activated potassium channels contributed less than 10% to arteriolar acetylcholine-induced relaxation in in-situ conditioned HF/C offspring compared with ∼60% in C/C (P < 0.01). The conditioned reduction in EDH signalling in HF/C offspring was reversed in offspring exposed to a high-fat diet both before and after weaning (HF/HF, 55%, P < 0.01 vs. HF/C). EDH signalling was unaffected in arterioles from C/HF offspring. The changes in EDH : EDRF were associated with altered endothelial cell expression and localization of IKCa channels. This is the first evidence that EDH-mediated microvascular relaxation is susceptible to an adverse developmental environment through down-regulation of the IKCa signalling pathway. Conditioned offspring exposed to a 'second hit' (HF/HF) exhibit adaptive vascular mechanisms to preserve dilator function.

  1. Characterization of cerebral glutamine uptake from blood in the mouse brain: implications for metabolic modeling of 13C NMR data

    PubMed Central

    Bagga, Puneet; Behar, Kevin L; Mason, Graeme F; De Feyter, Henk M; Rothman, Douglas L; Patel, Anant B

    2014-01-01

    13C Nuclear Magnetic Resonance (NMR) studies of rodent and human brain using [1-13C]/[1,6-13C2]glucose as labeled substrate have consistently found a lower enrichment (∼25% to 30%) of glutamine-C4 compared with glutamate-C4 at isotopic steady state. The source of this isotope dilution has not been established experimentally but may potentially arise either from blood/brain exchange of glutamine or from metabolism of unlabeled substrates in astrocytes, where glutamine synthesis occurs. In this study, the contribution of the former was evaluated ex vivo using 1H-[13C]-NMR spectroscopy together with intravenous infusion of [U-13C5]glutamine for 3, 15, 30, and 60 minutes in mice. 13C labeling of brain glutamine was found to be saturated at plasma glutamine levels >1.0 mmol/L. Fitting a blood–astrocyte–neuron metabolic model to the 13C enrichment time courses of glutamate and glutamine yielded the value of glutamine influx, VGln(in), 0.036±0.002 μmol/g per minute for plasma glutamine of 1.8 mmol/L. For physiologic plasma glutamine level (∼0.6 mmol/L), VGln(in) would be ∼0.010 μmol/g per minute, which corresponds to ∼6% of the glutamine synthesis rate and rises to ∼11% for saturating blood glutamine concentrations. Thus, glutamine influx from blood contributes at most ∼20% to the dilution of astroglial glutamine-C4 consistently seen in metabolic studies using [1-13C]glucose. PMID:25074745

  2. STS-13 (41-C) BET products

    NASA Technical Reports Server (NTRS)

    Findlay, J. T.; Kelly, G. M.; Mcconnell, J. G.; Heck, M. L.

    1984-01-01

    Results from the STS-13 (41-C) Shuttle entry flight are presented. The entry trajectory was reconstructed from an altitude of 700 kft through rollout on Runway 17 at EAFB. The anchor epoch utilized was April 13, 1984 13(h)1(m)30.(s)0 (46890(s).0) GMT. The final reconstructed inertial trajectory for this flight is BT13M23 under user catalog 169750N. Trajectory reconstruction and Extended BET development are discussed in Section 1 and 2, respectively. The NOAA totem-pole atmosphere extracted from the JSC/TRW BET was adopted in the development of the LaRC Extended BET, namely ST13BET/UN=274885C. The Aerodynamic BET was generated on physical nine track reel NC0728 with a duplicate copy on NC0740 for back-up. Plots of the more relevant parameters from the AEROBET are presented in Section 3. Section 4 discusses the MMLE input files created for STS-13. Appendices are attached which present spacecraft and physical constants utilized (Appendix A), residuals by station and data type (Appendix B), a two second spaced listing of trajectory and air data parameters (Appendix C), and input and output source products for archival (Appendix D).

  3. SRS-sensor 13C/12C isotops measurements for detecting Helicobacter Pylori

    NASA Astrophysics Data System (ADS)

    Grishkanich, Aleksandr; Chubchenko, Yan; Elizarov, Valentin; Zhevlakov, Aleksandr; Konopelko, Leonid

    2018-02-01

    We developed SRS-sensor 13C/12C isotops measurements detecting Helicobacter Pylori for medical diagnostics of human health. Measuring of absolute 13C/12C isotope amount ratios allows to explore the topical problems of the modern world, alcoholic beverages and tobacco, medical diagnostics of human health. SRS method is used to measure the ratio of carbon isotopes in the exhaled carbon dioxide, which is used to diagnose the human infection of Helicobacter pylori and the influence of the Helicobacter pylori bacterium on the occurrence of gastritis, gastric and duodenal ulcers. A method for the analysis of human infection with Helicobacter pylori was developed on the basis of measurements of the ratio of 13C / 12C carbon isotopes in human exhaled air with a high level of measurement accuracy. The article reviews the work in the field of provision comparability of absolute 13C/12C isotope amount ratios in the environment and food. The analysis of the technical and metrological characteristics of traditional and perspective instruments for measuring isotope ratios is presented. The provision of comparability of absolute 13C/12C isotope amount ratios is carried by gravimetrically prepared reference standards. The key features and emerging issues are discussed.

  4. High Field Small Animal Magnetic Resonance Oncology Studies

    PubMed Central

    Bokacheva, Louisa; Ackerstaff, Ellen; LeKaye, H. Carl; Zakian, Kristen; Koutcher, Jason A.

    2014-01-01

    This review focuses on the applications of high magnetic field magnetic resonance imaging (MRI) and spectroscopy (MRS) to cancer studies in small animals. High field MRI can provide information about tumor physiology, the microenvironment, metabolism, vascularity and cellularity. Such studies are invaluable for understanding tumor growth and proliferation, response to treatment and drug development. The MR techniques reviewed here include 1H, 31P, Chemical Exchange Saturation Transfer (CEST) imaging, and hyperpolarized 13C MR spectroscopy as well as diffusion-weighted, Blood Oxygen Level Dependent (BOLD) contrast imaging, and dynamic contrast-enhanced MR imaging. These methods have been proven effective in animal studies and are highly relevant to human clinical studies. PMID:24374985

  5. Backbone dynamics of a model membrane protein: assignment of the carbonyl carbon /sup 13/C NMR resonances in detergent-solubilized M13 coat protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, G.D.; Weiner, J.H.; Sykes, B.D.

    The major coat protein of the filamentous bacteriophage M13 is a 50-residue amphiphilic polypeptide which is inserted, as an integral membrane-spanning protein, in the inner membrane of the Escherichia coli host during infection. /sup 13/C was incorporated biosynthetically into a total of 23 of the peptide carbonyls using labeled amino acids (alanine, glycine, lysine, phenylalanine, and proline). The structure and dynamics of carbonyl-labeled M13 coat protein were monitored by /sup 13/C nuclear magnetic resonance (NMR) spectroscopy. Assignment of many resonances was achieved by using protease digestion, pH titration, or labeling of the peptide bond with both /sup 13/C and /supmore » 15/N. The carbonyl region of the natural-abundance /sup 13/C NMR spectrum of M13 coat protein in sodium dodecyl sulfate solution shows approximately eight backbone carbonyl resonances with line widths much narrower than the rest. Three of these more mobile residues correspond to assigned peaks (glycine-3, lysine-48, and alanine-49) in the individual amino acid spectra, and another almost certainly arises from glutamic acid-2. A ninth residue, alanine-1, also gives rise to a very narrow carbonyl resonance if the pH is well above or below the pK/sub a/ of the terminal amino group. These data suggest that only about four residues at either end of the protein experience large-amplitude spatial fluctuations; the rest of the molecule is essentially rigid on the time scale of the overall rotational tumbling of the protein-detergent complex. The relative exposure of different regions of detergent-bound protein was monitored by limited digestion with proteinase K. Comparable spectra and digestion patterns were obtained when the protein was solubilized in sodium deoxycholate, suggesting that the coat protein binds both amphiphiles in a similar fashion.« less

  6. Combined chemometric analysis of (1)H NMR, (13)C NMR and stable isotope data to differentiate organic and conventional milk.

    PubMed

    Erich, Sarah; Schill, Sandra; Annweiler, Eva; Waiblinger, Hans-Ulrich; Kuballa, Thomas; Lachenmeier, Dirk W; Monakhova, Yulia B

    2015-12-01

    The increased sales of organically produced food create a strong need for analytical methods, which could authenticate organic and conventional products. Combined chemometric analysis of (1)H NMR-, (13)C NMR-spectroscopy data, stable-isotope data (IRMS) and α-linolenic acid content (gas chromatography) was used to differentiate organic and conventional milk. In total 85 raw, pasteurized and ultra-heat treated (UHT) milk samples (52 organic and 33 conventional) were collected between August 2013 and May 2014. The carbon isotope ratios of milk protein and milk fat as well as the α-linolenic acid content of these samples were determined. Additionally, the milk fat was analyzed by (1)H and (13)C NMR spectroscopy. The chemometric analysis of combined data (IRMS, GC, NMR) resulted in more precise authentication of German raw and retail milk with a considerably increased classification rate of 95% compared to 81% for NMR and 90% for IRMS using linear discriminate analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Biokinetics of 13C in the human body after oral administration of 13C-labeled glucose as an index for the biokinetics of 14C.

    PubMed

    Masuda, Tsuyoshi; Tako, Yasuhiro; Matsushita, Kensaku; Takeda, Hiroshi; Endo, Masahiro; Nakamura, Yuji; Hisamatsu, Shun'ichi

    2016-09-01

    The retention of 13 C in the human body after oral administration of 13 C-labeled glucose was studied in three healthy volunteer subjects to estimate the 50 year cumulative body burden for 13 C as an index of the committed dose of the radioisotope 14 C. After administration of 13 C-labeled glucose, the volunteers ingested controlled diets with a fixed number of calories for 112 d. Samples of breath and urine were collected up to 112 d after administration. Samples of feces were collected up to 14 d after administration. Hair samples were obtained at 119 d after administration and analyzed as a representative index of the rate of excretion of organic 13 C via pathways such as skin cell exfoliation and mucus secretion. All samples were analyzed for 13 C/ 12 C atomic ratio to determine the rate of excretion via each pathway. We then constructed a metabolic model with a total of four pathways (breath, urine, feces, and other) comprising seven compartments. We determined the values of the biokinetic parameters in the model by using the obtained excretion data. From 74% to 94% of the 13 C administered was excreted in breath, whereas  <2% was excreted in urine and feces. In the other pathway, the excretion rate constant in the compartment with the longest residence time stretched to hundreds of days but the rate constant for each subject was not statistically significant (P value  >  0.1). In addition, the dataset for one of the three subjects was markedly different from those of the other two. When we estimated the 50 year cumulative body burden for 13 C by using our model and we included non-statistically significant parameters, a considerable cumulative body burden was found in the compartments excreting to the other pathway. Although our results on the cumulative body burden of 13 C from orally administered carbon as glucose were inconclusive, we found that the compartments excreting to the other pathway had a markedly long residence time and therefore

  8. Using solid 13C NMR coupled with solution 31P NMR spectroscopy to investigate molecular species and lability of organic carbon and phosphorus from aquatic plants in Tai Lake, China.

    PubMed

    Liu, Shasha; Zhu, Yuanrong; Wu, Fengchang; Meng, Wei; Wang, Hao; He, Zhongqi; Guo, Wenjing; Song, Fanhao; Giesy, John P

    2017-01-01

    Forms and labilities of plant-derived organic matters (OMs) including carbon (C) and phosphorus (P) were fundamental for understanding their release, degradation and environmental behaviour in lake ecosystems. Thus, solid 13 C and solution 31 P nuclear magnetic resonance (NMR) spectroscopy were used to characterize biomass of six aquatic plants in Tai Lake, China. The results showed that carbohydrates (61.2% of the total C) were predominant C functional group in the solid 13 C NMR spectra of plant biomass, which may indicate high lability and bioavailability of aquatic plants-derived organic matter in lakes. There was 72.6-103.7% of the total P in aquatic plant biomass extracted by NaOH-EDTA extracts. Solution 31 P NMR analysis of these NaOH-EDTA extracts further identified several molecular species of P including orthophosphate (50.1%), orthophosphate monoesters (46.8%), DNA (1.6%) and pyrophosphate (1.4%). Orthophosphate monoesters included β-glycerophosphate (17.7%), hydrolysis products of RNA (11.7%), α-glycerophosphate (9.2%) and other unknown monoesters (2.1%). Additionally, phytate, the major form of organic P in many lake sediments, was detected in floating plant water poppy. These inorganic P (e.g. orthophosphate and pyrophosphate) and organic P (e.g. diester and its degradation products) identified in plant biomass were all labile and bioavailable P, which would play an important role in recycling of P in lakes. These results increased knowledge of chemical composition and bioavailability of OMs derived from aquatic plants in lakes.

  9. Foliar δ13C Showed No Altitudinal Trend in an Arid Region and Atmospheric Pressure Exerted a Negative Effect on Plant δ13C.

    PubMed

    Chen, Zixun; Wang, Guoan; Jia, Yufu

    2017-01-01

    Previous studies have suggested foliar δ 13 C generally increases with altitude. However, some observations reported no changes or even decreased trends in foliar δ 13 C. We noted that all the studies in which δ 13 C increased with elevation were conducted in the human regions, whereas those investigations in which δ 13 C did not vary or decreased were conducted in areas with water stress. Thus, we proposed that the pattern of increasing δ 13 C with elevation is not a general one, and that δ 13 C may remain unchanged or decrease in plants grown in arid environments. To test the hypothesis, we sampled plants along altitude gradients on the shady and sunny slopes of Mount Tianshan characterized by arid and semiarid climates. The measurements of foliar δ 13 C showed no altitudinal trends for the plants grown on either of the slopes. Therefore, this study supported our hypothesis. In addition, the present study addressed the effect of atmospheric pressure on plant δ 13 C by accounting for the effects of temperature and precipitation on δ 13 C. This study found that the residual foliar δ 13 C increased with increasing altitude, suggesting that atmospheric pressure played a negative role in foliar δ 13 C.

  10. Real-time tracking of dissociation of hyperpolarized 89Y-DTPA: a model for degradation of open-chain Gd3+ MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Ferguson, Sarah; Niedbalski, Peter; Parish, Christopher; Kiswandhi, Andhika; Kovacs, Zoltan; Lumata, Lloyd

    Gadolinium (Gd) complexes are widely used relaxation-based clinical contrast agents in magnetic resonance imaging (MRI). Gd-based MRI contrast agents with open-chain ligand such as Gd-DTPA, commercially known as magnevist, are less stable compared to Gd complexes with macrocyclic ligands such as GdDOTA (Dotarem). The dissociation of Gd-DPTA into Gd ion and DTPA ligand under certain biological conditions such as high zinc levels can potentially cause kidney damage. Since Gd is paramagnetic, direct NMR detection of the Gd-DTPA dissociation is quite challenging due to ultra-short relaxation times. In this work, we have investigated Y-DTPA as a model for Gd-DPTA dissociation under high zinc content solutions. Using dissolution dynamic nuclear polarization (DNP), the 89Y NMR signal is amplified by several thousand-fold. Due to the the relatively long T1 relaxation time of 89Y which translates to hyperpolarization lifetime of several minutes, the dissociation of Y-DTPA can be tracked in real-time by hyperpolarized 89Y NMR spectroscopy. Dissociation kinetic rates and implications on the degradation of open-chain Gd3+ MRI contrast agents will be discussed. This work was supported by the U.S. Department of Defense Award Number W81XWH-14-1-0048 and by the Robert A. Welch Foundation research Grant Number AT-1877.

  11. C-13 nuclear magnetic resonance in organic geochemistry.

    NASA Technical Reports Server (NTRS)

    Balogh, B.; Wilson, D. M.; Burlingame, A. L.

    1972-01-01

    Study of C-13 nuclear magnetic resonance (NMR) spectra of polycyclic fused systems. The fingerprint qualities of the natural abundance in C-13 NMR spectra permitting unequivocal identification of these compounds is discussed. The principle of structural additivity of C-13 NMR information is exemplified on alpha and beta androstanes, alpha and beta cholestanes, ergostanes, sitostanes, and isodecanes.

  12. 13C-methacetin and 13C-galactose breath tests can assess restricted liver function even in early stages of primary biliary cirrhosis.

    PubMed

    Holtmeier, Julia; Leuschner, Maria; Schneider, Arne; Leuschner, Ulrich; Caspary, Wolfgang F; Braden, Barbara

    2006-11-01

    The 13C-methacetin breath test quantitatively evaluates cytochrome P450-dependent liver function. The 13C-galactose breath test non-invasively measures the galactose oxidation capacity of the liver. The aim of this study was to find out whether these breath tests are sensitive parameters also in non-cirrhotic patients with primary biliary cirrhosis. Nineteen patients with early-stage primary biliary cirrhosis (no cirrhotic alterations in the liver biopsy, Ludwig stage I-III) and 20 healthy controls underwent the 13C-methacetin and 13C-galactose breath tests. Patients with primary biliary cirrhosis metabolized less 13C-methacetin than controls (cumulative recovery within 30 min 7.5+/-2.4% versus 14.0+/-2.6%; p < 0.001). When a cut-off > 9.8% was used for the cumulative recovery after 30 min, the methacetin breath test reached 84.2% sensitivity and 95.0 specificity. In the 13C-galactose breath test, the percentage recovery at 60 min in patients was 3.1+/-1.3%/h, and 6.3+/-1.1%/h in controls (p < 0.001). Using a cut-off > 4.7%/h, the galactose breath test reached 89.5% sensitivity and 95.0 specificity. In non-cirrhotic, early-stage, primary biliary cirrhosis the 13C-methacetin breath test and the 13C-galactose breath test reliably indicate decreased liver function. The 13C-galactose breath test can also predict the histological score.

  13. Effect of alcohol consumption on the liver detoxication capacity as measured by [13C]methacetin- and [methyl-13C]methionine-breath tests.

    PubMed

    Wutzke, Klaus D; Forberger, Anke; Wigger, Marianne

    2008-06-01

    The aim of this study was to investigate the hepatic microsomal and mitochondrial functions by using the 13CO2-breath test in healthy subjects either before or after the consumption of red wine. Fourteen adults received [13C]methacetin and [methyl-13C]methionine together with a standardised dinner. Expired air samples were taken over 6 h. After a wash-out period, the subjects consumed 0.4 ml ethanol/kg/day together with dinner over a 10-day period. Thereafter, 13C-tracer administration was repeated under identical conditions. The 13CO2-enrichments were measured by isotope ratio mass spectrometry. The mean cumulative percentage 13C-dose recovery (CPDR) after administration of [13C]methacetin and [methyl-13C]methionine either without or with red wine consumption amounted to 38.2+/-6.3 vs. 36.3+/-6.7% (p=0.363) and 9.5+/-3.3 vs. 8.8+/-2.5% (p=0.47), respectively. Moderate alcohol consumption does not induce significant short-term changes of the microsomal and the mitochondrial functions of the human liver in healthy subjects.

  14. Ethane's 12C/13C Ratio in Titan: Implications for Methane Replenishment

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Nixon, C. A.; Romani, P. N.; Bjoraker, G. L.; Sada, P. V.; Lunsford, A. W.; Boyle, R. J.; Hesman, B. E.; McCabe, G. H.

    2009-01-01

    As the .main destination of carbon in the destruction of methane in the atmosphere of Titan, ethane provides information about the carbon isotopic composition of the reservoir from which methane is replenished. If the amount of methane entering the atmosphere is presently equal to the amount converted to ethane, the 12C/13C ratio in ethane should be close to the ratio in the reservoir. We have measured the 12C/13C ratio in ethane both with Cassini CIRS(exp 1) and from the ground and find that it is very close to the telluric standard and outer planet values (89), consistent with a primordial origin for the methane reservoir. The lower 12C/13C ratio measured for methane by Huygens GCMS (82.3) can be explained if the conversion of CH4 to CH3 (and C2H6) favors 12C over 13C with a carbon kinetic isotope effect of 1.08. The time required for the atmospheric methane to reach equilibrium, i.e., for replenishment to equal destruction, is approximately 5 methane atmospheric lifetimes.

  15. Ruminant Methane δ (13C/12C) - Values: Relation to Atmospheric Methane

    NASA Astrophysics Data System (ADS)

    Rust, Fleet

    1981-03-01

    The δ (13C/12C) - values of methane produced by fistulated steers, dairy cattle, and wethers, and dairy and beef cattle herds show a bimodal distribution that appears to be correlated with the plant type (C3 or C4, that is, producing either a three- or a four-carbon acid in the first step of photosynthesis) consumed by the animals. These results indicate that cattle and sheep, on a global basis, release methane with an average δ (13C/12C) value of -60 and -63 per mil, respectively. Together they are a source of atmospheric methane whose δ (13C/12C) is similar to published values for marsh gas and cannot explain the 20 per mil higher values for atmospheric methane.

  16. Structure-based affinity maturation of a chimeric anti-ricin antibody C4C13.

    PubMed

    Luo, Longlong; Luo, Qun; Guo, Leiming; Lv, Ming; Lin, Zhou; Geng, Jing; Li, Xinying; Li, Yan; Shen, Beifen; Qiao, Chunxia; Feng, Jiannan

    2014-01-01

    Ricin is a highly lethal toxin. Anti-ricin chimeric monoclonal antibody (mAb) C4C13 was prepared in our lab; however, its binding affinity was much weaker than that of the parent antibody 4C13. In this study, based on the computer-guided homology modeling and conformational optimization methods, the 3-D structure of C4C13 variable regions Fv was constructed and optimized. Using molecular docking and dynamics simulation methods, the 3-D complex structure of ricin and C4C13 Fv was obtained. Considering the orientation property, surface electrostatic distribution, residues chemical and physical character and intermolecular hydrogen bond, the binding mode and key residues were predicted. According to C4C13 Fv fragment and ricin complementary binding surface, electrostatic attraction periphery and van der Waals interaction interface, three mutants (i.e., M1 (N(H102)F, W(H103)Y); M2 (W(H103)Y) and M3 (R(L90)G)) were designed, in which M1 and M2 were predicted to possess higher antigen-binding activity than C4C13, while M3 was weaker. The relative affinity assays by ELISA showed that M1 and M2 mutations had higher affinity (9.6 and 18.3 nmol/L) than C4C13 (130 nmol/L) and M3 had weaker affinity (234.5 nmol/L) than C4C13. The results showed that the modeling complex structure of the antigen (ricin) and antibody (C4C13) is reasonable. Our work offered affinity maturated antibodies by site mutations, which were beneficial for valuable anti-ricin antibody design and preparation in future.

  17. Biosphere model simulations of interannual variability in terrestrial 13C/12C exchange

    NASA Astrophysics Data System (ADS)

    van der Velde, I. R.; Miller, J. B.; Schaefer, K.; Masarie, K. A.; Denning, S.; White, J. W. C.; Tans, P. P.; Krol, M. C.; Peters, W.

    2013-09-01

    Previous studies suggest that a large part of the variability in the atmospheric ratio of 13CO2/12CO2originates from carbon exchange with the terrestrial biosphere rather than with the oceans. Since this variability is used to quantitatively partition the total carbon sink, we here investigate the contribution of interannual variability (IAV) in biospheric exchange to the observed atmospheric 13C variations. We use the Simple Biosphere - Carnegie-Ames-Stanford Approach biogeochemical model, including a detailed isotopic fractionation scheme, separate 12C and 13C biogeochemical pools, and satellite-observed fire disturbances. This model of 12CO2 and 13CO2 thus also produces return fluxes of 13CO2from its differently aged pools, contributing to the so-called disequilibrium flux. Our simulated terrestrial 13C budget closely resembles previously published model results for plant discrimination and disequilibrium fluxes and similarly suggests that variations in C3 discrimination and year-to-year variations in C3and C4 productivity are the main drivers of their IAV. But the year-to-year variability in the isotopic disequilibrium flux is much lower (1σ=±1.5 PgC ‰ yr-1) than required (±12.5 PgC ‰ yr-1) to match atmospheric observations, under the common assumption of low variability in net ocean CO2 fluxes. This contrasts with earlier published results. It is currently unclear how to increase IAV in these drivers suggesting that SiBCASA still misses processes that enhance variability in plant discrimination and relative C3/C4productivity. Alternatively, 13C budget terms other than terrestrial disequilibrium fluxes, including possibly the atmospheric growth rate, must have significantly different IAV in order to close the atmospheric 13C budget on a year-to-year basis.

  18. Mapping methane plumes and the delta C-13 composition of anthropogenic sources in southwest Germany

    NASA Astrophysics Data System (ADS)

    Schmidt, Martina; Yeman, Christiane; Dinger, Florian; Ars, Sebastien; Yver Kwok, Camille

    2016-04-01

    A mobile analyser based on Cavity-Ring-Down Spectroscopy was installed on a vehicle, together with a GPS receiver. This allows us to measure atmospheric methane and carbon dioxide mole fractions and the C-13 isotopes of both gases while driving. Methane mole fraction measurements show a good repeatability even for high frequency measurements whereas the 13CH4 measurements need a longer averaging time of 1 minute for 1 ‰ repeatability and 15 minutes for 0.23 ‰ repeatability. Driving through an emission plume, the signal is typically only 60 seconds long. To overcome the precision problem for the isotope measurements we filled a 25 m tubing when driving through the plume, which was then flushed back through our analyser during 30 minutes. During several campaigns we visited a land fill site, a biogas plant, a dairy cow farm and a natural gas storage and measured an averaged isotopic methane signature(C-13) of -58.3 ±3 ‰, -62.5 ± 1‰, -62.2 ± 2‰, -51 ± 7‰, respectively.

  19. Biosynthesis of highly enriched 13C-lycopene for human metabolic studies using repeated batch tomato cell culturing with 13C-glucose

    PubMed Central

    Moran, Nancy E.; Rogers, Randy B.; Lu, Chi-Hua; Conlon, Lauren E.; Lila, Mary Ann; Clinton, Steven K.; Erdman, John W.

    2013-01-01

    While putative disease-preventing lycopene metabolites are found in both tomato (Solanum lycopersicum) products and in their consumers, mammalian lycopene metabolism is poorly understood. Advances in tomato cell culturing techniques offer an economical tool for generation of highly-enriched 13C-lycopene for human bioavailability and metabolism studies. To enhance the 13C-enrichment and yields of labeled lycopene from the hp-1 tomato cell line, cultures were first grown in 13C-glucose media for three serial batches and produced increasing proportions of uniformly labeled lycopene (14.3 +/− 1.2 %, 39.6 +/− 0.5 %, and 48.9 +/− 1.5% with consistent yields (from 5.8 to 9 mg/L). An optimized 9-day-long 13C-loading and 18-day-long labeling strategy developed based on glucose utilization and lycopene yields, yielded 13C-lycopene with 93% 13C isotopic purity, and 55% of isotopomers were uniformly labeled. Furthermore, an optimized acetone and hexane extraction led to a four-fold increase in lycopene recovery from cultures compared to a standard extraction. PMID:23561155

  20. Alterations in Cytosolic and Mitochondrial [U-13C]Glucose Metabolism in a Chronic Epilepsy Mouse Model

    PubMed Central

    Carrasco-Pozo, Catalina

    2017-01-01

    Abstract Temporal lobe epilepsy is a common form of adult epilepsy and shows high resistance to treatment. Increasing evidence has suggested that metabolic dysfunction contributes to the development of seizures, with previous studies indicating impairments in brain glucose metabolism. Here we aim to elucidate which pathways involved in glucose metabolism are impaired, by tracing the hippocampal metabolism of injected [U-13C]glucose (i.p.) during the chronic stage of the pilocarpine-status epilepticus mouse model of epilepsy. The enrichment of 13C in the intermediates of glycolysis and the TCA cycle were quantified in hippocampal extracts using liquid chromatography–tandem mass spectroscopy, along with the measurement of the activities of enzymes in each pathway. We show that there is reduced incorporation of 13C in the intermediates of glycolysis, with the percentage enrichment of all downstream intermediates being highly correlated with those of glucose 6-phosphate. Furthermore, the activities of all enzymes in this pathway including hexokinase and phosphofructokinase were unaltered, suggesting that glucose uptake is reduced in this model without further impairments in glycolysis itself. The key findings were 33% and 55% losses in the activities of pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase, respectively, along with reduced 13C enrichment in TCA cycle intermediates. This lower 13C enrichment is best explained in part by the reduced enrichment in glycolytic intermediates, whereas the reduction of key TCA cycle enzyme activity indicates that TCA cycling is also impaired in the hippocampal formation. Together, these data suggest that multitarget approaches may be necessary to restore metabolism in the epileptic brain. PMID:28303258

  1. High field hyperpolarization-EXSY experiment for fast determination of dissociation rates in SABRE complexes

    NASA Astrophysics Data System (ADS)

    Hermkens, Niels K. J.; Feiters, Martin C.; Rutjes, Floris P. J. T.; Wijmenga, Sybren S.; Tessari, Marco

    2017-03-01

    SABRE (Signal Amplification By Reversible Exchange) is a nuclear spin hyperpolarization technique based on the reversible concurrent binding of small molecules and para-hydrogen (p-H2) to an iridium metal complex in solution. At low magnetic field, spontaneous conversion of p-H2 spin order to enhanced longitudinal magnetization of the nuclear spins of the other ligands occurs. Subsequent complex dissociation results in hyperpolarized substrate molecules in solution. The lifetime of this complex plays a crucial role in attained SABRE NMR signal enhancements. Depending on the ligands, vastly different dissociation rates have been previously measured using EXSY or selective inversion experiments. However, both these approaches are generally time-consuming due to the long recycle delays (up to 2 min) necessary to reach thermal equilibrium for the nuclear spins of interest. In the cases of dilute solutions, signal averaging aggravates the problem, further extending the experimental time. Here, a new approach is proposed based on coherent hyperpolarization transfer to substrate protons in asymmetric complexes at high magnetic field. We have previously shown that such asymmetric complexes are important for application of SABRE to dilute substrates. Our results demonstrate that a series of high sensitivity EXSY spectra can be collected in a short experimental time thanks to the NMR signal enhancement and much shorter recycle delay.

  2. DCEBIO facilitates myogenic differentiation via intermediate conductance Ca2+ activated K+ channel activation in C2C12 myoblasts.

    PubMed

    Tanaka, Shoko; Ono, Yuko; Sakamoto, Kazuho

    2017-04-01

    Membrane hyperpolarization is suggested to be a trigger for skeletal muscle differentiation. We investigated whether DCEBIO, an opener of the small/intermediate conductance Ca 2+ activated K + (SK Ca /IK Ca ) channels, increase myogenic differentiation in C2C12 skeletal myoblasts. DCEBIO significantly increased myotube formation, protein expression level of myosin heavy chain II, and mRNA expression level of myogenin in C2C12 myoblasts cultured in differentiation medium. DCEBIO induced myotube formation and hyperpolarization were reduced by the IK Ca channel blocker TRAM-34, but not by the SK Ca channel blocker apamin. These findings show that DCEBIO increases myogenic differentiation by activating IK Ca channels. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  3. The Effect of Curcumin on Intracellular pH (pHi), Membrane Hyperpolarization and Sperm Motility.

    PubMed

    Naz, Rajesh K

    2014-04-01

    Curcumin has shown to affect sperm motility and function in vitro and fertility in vivo. The molecular mechanism(s) by which curcumin affects sperm motility has not been delineated. Since modulation of intracellular pH (pHi) and plasma membrane polarization is involved in sperm motility, the present study was conducted to investigate the effect of curcumin on these sperm (human and murine) parameters. The effect of curcumin on sperm forward motility was examined by counting percentages of forward moving sperm. The effect of curcumin on intracellular pH (pHi) was measured by the fluorescent pH indicator 2,7-bicarboxyethyl-5,6-carboxyfluorescein-acetoxymethyl ester (BCECF-AM). The effect of curcumin on plasma membrane polarization was examined using the fluorescence sensitive dye bis (1,3-dibarbituric acid)-trimethine oxanol [DiBAC4(3)]. Curcumin caused a concentration-dependent (p<0.05) decrease in forward motility of both human and mouse sperm. It also caused a concentration-dependent decrease in intracellular pH (pHi) in both human and mouse sperm. Curcumin induced significant (p<0.05) hyperpolarization of the plasma membrane in both human and mouse sperm. These findings indicate that curcumin inhibits sperm forward motility by intracellular acidification and hyperpolarization of sperm plasma membrane. This is the first study to our knowledge which examined the effect of curcumin on sperm pHi and membrane polarization that affect sperm forward motility. These exciting findings will have application in deciphering the signal transduction pathway involved in sperm motility and function and in development of a novel non-steroidal contraceptive for infertility.

  4. Observing and preventing rubidium runaway in a direct-infusion xenon-spin hyperpolarizer optimized for high-resolution hyper-CEST (chemical exchange saturation transfer using hyperpolarized nuclei) NMR.

    PubMed

    Witte, C; Kunth, M; Rossella, F; Schröder, L

    2014-02-28

    Xenon is well known to undergo host-guest interactions with proteins and synthetic molecules. As xenon can also be hyperpolarized by spin exchange optical pumping, allowing the investigation of highly dilute systems, it makes an ideal nuclear magnetic resonance probe for such host molecules. The utility of xenon as a probe can be further improved using Chemical Exchange Saturation Transfer using hyperpolarized nuclei (Hyper-CEST), but for highly accurate experiments requires a polarizer and xenon infusion system optimized for such measurements. We present the design of a hyperpolarizer and xenon infusion system specifically designed to meet the requirements of Hyper-CEST measurements. One key element of this design is preventing rubidium runaway, a chain reaction induced by laser heating that prevents efficient utilization of high photon densities. Using thermocouples positioned along the pumping cell we identify the sources of heating and conditions for rubidium runaway to occur. We then demonstrate the effectiveness of actively cooling the optical cell to prevent rubidium runaway in a compact setup. This results in a 2-3-fold higher polarization than without cooling, allowing us to achieve a polarization of 25% at continuous flow rates of 9 ml/min of (129)Xe. The simplicity of this design also allows it to be retrofitted to many existing polarizers. Combined with a direction infusion system that reduces shot-to-shot noise down to 0.56% we have captured Hyper-CEST spectra in unprecedented detail, allowing us to completely resolve peaks separated by just 1.62 ppm. Due to its high polarization and excellent stability, our design allows the comparison of underlying theories of host-guest systems with experiment at low concentrations, something extremely difficult with previous polarizers.

  5. Activation state of the hyperpolarization-activated current modulates temperature-sensitivity of firing in locus coeruleus neurons from bullfrogs.

    PubMed

    Santin, Joseph M; Hartzler, Lynn K

    2015-06-15

    Locus coeruleus neurons of anuran amphibians contribute to breathing control and have spontaneous firing frequencies that, paradoxically, increase with cooling. We previously showed that cooling inhibits a depolarizing membrane current, the hyperpolarization-activated current (I h) in locus coeruleus neurons from bullfrogs, Lithobates catesbeianus (Santin JM, Watters KC, Putnam RW, Hartzler LK. Am J Physiol Regul Integr Comp Physiol 305: R1451-R1464, 2013). This suggests an unlikely role for I h in generating cold activation, but led us to hypothesize that inhibition of I h by cooling functions as a physiological brake to limit the cold-activated response. Using whole cell electrophysiology in brain slices, we employed 2 mM Cs(+) (an I h antagonist) to isolate the role of I h in spontaneous firing and cold activation in neurons recorded with either control or I h agonist (cyclic AMP)-containing artificial intracellular fluid. I h did not contribute to the membrane potential (V m) and spontaneous firing at 20°C. Although voltage-clamp analysis confirmed that cooling inhibits I h, its lack of involvement in setting baseline firing and V m precluded its ability to regulate cold activation as hypothesized. In contrast, neurons dialyzed with cAMP exhibited greater baseline firing frequencies at 20°C due to I h activation. Our hypothesis was supported when the starting level of I h was enhanced by elevating cAMP because cold activation was converted to more ordinary cold inhibition. These findings indicate that situations leading to enhancement of I h facilitate firing at 20°C, yet the hyperpolarization associated with inhibiting a depolarizing cation current by cooling blunts the net V m response to cooling to oppose normal cold-depolarizing factors. This suggests that the influence of I h activation state on neuronal firing varies in the poikilothermic neuronal environment. Copyright © 2015 the American Physiological Society.

  6. FTIR and NDIR spectroscopies as valuable alternatives to IRMS spectrometry for the δ(13)C analysis of food.

    PubMed

    Pironti, Concetta; Proto, Antonio; Camin, Federica; Cucciniello, Raffaele; Zarrella, Ilaria; Motta, Oriana

    2016-11-01

    The (13)C/(12)C carbon isotope ratio is a chemical parameter with many important applications in several scientific area and the technique of choice currently used for the δ(13)C determination is the isotope ratio mass spectrometry (IRMS). This latter is highly accurate (0.1‰) and sensitive (up to 0.01‰), but at the same time expensive and complex. The objective of this work was to assess the reliability of FTIR and NDIRS techniques for the measurement of carbon stable isotope ratio of food sample, in comparison to IRMS. IRMS, NDIRS and FTIR were used to analyze samples of food, such as oil, durum, cocoa, pasta and sugar, in order to determine the natural abundance isotopic ratio of carbon in a parallel way. The results were comparable, showing a close relationship among the three techniques. The main advantage in using FTIR and NDIRS is related to their cheapness and easy-to-operate in comparison to IRMS. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. First-cycle defect evolution of Li1-xNi1/3Mn1/3Co1/3O2 lithium ion battery electrodes investigated by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Seidlmayer, Stefan; Buchberger, Irmgard; Reiner, Markus; Gigl, Thomas; Gilles, Ralph; Gasteiger, Hubert A.; Hugenschmidt, Christoph

    2016-12-01

    In this study the structure and evolution of vacancy type defects in lithium ion batteries are investigated in respect of crystallographic properties. The relation between positron annihilation and electronic structure is discussed in terms of structural dynamics during the lithiation process. Samples of Li1-xNi1/3Mn1/3Co1/3O2 (NMC-111) electrodes with decreasing lithium content (x = 0-0.7) covering the whole range of state of charge were electrochemically prepared for the non-destructive analysis using positron coincidence Doppler broadening spectroscopy (CDBS). The positron measurements allowed us to observe the evolution of the defect structure caused by the delithiation process in the NMC-111 electrodes. The combination of CDBS with X-ray diffraction for the characterization of the lattice structures enabled the analysis of the well-known kinetic-hindrance-effect in the first charge-discharge cycle and possible implications of vacancy ordering. In particular, CDBS revealed the highest degree of relithiation after discharge to 3.0 V at 55 °C. For the first time, we report on the successful application of CDBS on NMC-111 electrodes yielding new insights in the important role of defects caused by the delithiation process and the kinetic hindrance effect.

  8. The role of solid state 13 C NMR spectroscopy in studies of the nature of native celluloses

    Treesearch

    R.H. Atalla; D.L. VanderHart

    1999-01-01

    Published spectroscopic observations pertaining to the crystal structure of native celluloses are reviewed for the purpose of defining our current level of understanding about crystalline polymorphism in these materials. Emphasis is placed on observations from solid state 13 C nuclear magnetic resonance (NMR), which first led to the postulate that most native,...

  9. A complete 1H and 13C NMR data assignment for the diterpene methyl (-)-zanzibarate by 2D spectroscopy and NOE experiments.

    PubMed

    Imamura, P M; Miranda, P C M L; Giacomini, R A

    2004-06-01

    The 1H and 13C NMR spectra of methyl (-)-zanzibarate (1), an ent-labdanic diterpene isolated from the epicarp of Hymenaea courbaril var. altissima (Leguminosaea, Cesalpinoideae, Detariae), was fully assigned by COSY experiments, 13C/1H shift correlation diagrams and NOE experiments. Copyright 2004 John Wiley & Sons, Ltd.

  10. First Time Detection of C13CC and Study of 13CCC in Dense Star Forming Regions

    NASA Astrophysics Data System (ADS)

    Giesen, Thomas

    Small carbon chain molecules play an important role in the formation of larger, complex molecules as well as in the destruction process of interstellar grains. Linear C3 was found in dense star forming regions and in shells of late type carbon stars. In the course of recent SOFIA cycle 4 observations we made a first time detection of the 13C-isotopologue 13CCC in space. Asymmetrically substituted 13CCC transitions were detected based on recent unpublished laboratory data. Following this detection we propose to look for the yet undetected C13CC isotopologue and to observe higher-J Q-transitions for both isotopologues. The measurements aim to determine the 13CCC/C13CC ratio which equals 2 for random 13C-incorporation during the C3 formation process. A non-random, chemically driven 13CCC/C13CC ratio will shed light on possible routes to C3-formation. Furthermore high level J-transitions are sensitive to the prevailing excitation conditions. Below 50K symmetrically substituted C13CC can only be cooled by collisions with the ambient gas, whereas asymmetrically substituted 13CCC is cooled by collisions AND radiation thanks to a small permanent dipole moment. Thus 13CCC/C13CC-intensity ratios of the Q(8) line will give insights into excitation mechanism and temperatures of C3. For the new measurements we choose SgrB2(M) as source in order to compare line strengths of C3 and its 13C-isotopologues at exactly the same conditions than we had in our previous CCC observations.

  11. Determination of fructose metabolic pathways in normal and fructose-intolerant children: A sup 13 C NMR study using (U- sup 13 C)fructose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopher, A.; Lapidot, A.; Vaisman, N.

    1990-07-01

    An inborn deficiency in the ability of aldolase B to split fructose 1-phosphate is found in humans with hereditary fructose intolerance (HFI). A stable isotope procedure to elucidate the mechanism of conversion of fructose to glucose in normal children and in HFI children has been developed. A constant infusion of D-(U-{sup 13}C)fructose was given nasogastrically to control and to HFI children. Hepatic fructose conversion to glucose was estimated by examination of {sup 13}C NMR spectra of plasma glucose. Significantly lower values ({approx}3-fold) for fructose conversion to glucose were obtained for the HFI patients as compared to the controls. A quantitativemore » determination of the metabolic pathways of fructose conversion to glucose was derived from {sup 13}C NMR measurement of plasma ({sup 13}C)glucose isotopomer populations. The finding of isotopomer populations of three adjacent {sup 13}C atoms at glucose C-4 ({sup 13}C{sub 3}-{sup 13}C{sub 4}-{sup 13}C{sub 5}) suggests that there is a direct pathway from fructose, by-passing fructose-1-phosphate aldolase, to fructose 1,6-bisphosphate. The metabolism of fructose by fructose-1-phosphate aldolase activity accounts for only {approx}50% of the total amount of hepatic fructose conversion to glucose. In view of the marked decline by 67% in synthesis of glucose from fructose in HFI subjects found in this study, the extent of ({sup 13}C)glucose formation from a trace amount of (U-{sup 13}C)fructose infused into the patient can be used as a safe and noninvasive diagnostic test for inherent faulty fructose metabolism.« less

  12. Paleoclimate record from Zidita Cave (Romania) using guano-derived δ13C isotopic data

    NASA Astrophysics Data System (ADS)

    Forray, Ferenc L.; Giurgiu, Alexandra; Onac, Bogdan P.; Tămaş, Tudor

    2014-05-01

    In this study, we measured the carbon isotopic composition of a core taken from a bat guano deposit in Zidita Cave (Metaliferi Mountains, Romania). The cave develops in Late Jurassic limestones, has a total length of 547 m, and its entrance was fortified during the XIV - XVIII centuries. The cave is a fossil maze with a filling represented by limestone blocks, clay sediments, and scarce calcite speleothems. The guano accumulation, 1.5 m thick, is located in a small room towards the end of the cave, under a Rhinolophus euryale roost site.The core was recovered with a Russian peat corer. 14C dating performed on the guano indicates a continuous deposition since ca. 500 years BP, but however, the upper first meter of the core has a modern age and high radiocarbon activity acquired from atmospheric radiocarbon bomb pulse. The core was sampled at 2 cm ± 2 mm intervals for δ13C analyses (76 samples) and at 5 cm for pollen. The investigations were carried out using a Picarro G2121-i δ13C analyzer (Combustion Module coupled with a Cavity Ring Down Spectroscopy technique) at the Stable Isotope Laboratory of the Department of Geology, Babes-Bolyai University (Cluj-Napoca, Romania). The result shows that guano δ13C range from -24.07 to -27.61 o‰The carbon isotopic profile indicates two major wet periods and 2 to 3 shorter periods characterized by drier climate.

  13. Optimisation of dynamic nuclear polarisation of [1-13C] pyruvate by addition of gadolinium-based contrast agents

    NASA Astrophysics Data System (ADS)

    Friesen-Waldner, Lanette; Chen, Albert; Mander, Will; Scholl, Timothy J.; McKenzie, Charles A.

    2012-10-01

    Dynamic nuclear polarisation (DNP) of carbon-13 (13C) enriched endogenous compounds provides a novel means for magnetic resonance imaging and spectroscopy of biological processes. Adding small amounts of gadolinium-based contrast agents (GBCAs) to the 13C-enriched substrate matrix increases the amount of hyperpolarisation that can be achieved, but also may decrease the longitudinal relaxation time (T1) of the 13C nucleus in solution. This study examined the effects of five different GBCA at concentrations of 0.5, 1, 2, and 3 mM on [1-13C]-enriched pyruvic acid. It was found that contrast agents with an open chain structure (Gadobenate dimeglumine, Gadopentetate dimeglumine, Gadodiamide) caused the largest enhancement (up to 82%) in solid state polarisation relative to solutions without GBCA. In the liquid state, T1 of pyruvate decreased by as much as 62% and polarisation was much lower (70%) relative to solutions without GBCA added. Conversely, for GBCA with macrocyclic structures (Gadoterate meglumine, Gadoteridol), the solid state polarisation enhancement was only slightly less than the open chain GBCA, but enhanced polarisation was retained much better in the liquid state with minimal decrease in T1 (25% at the highest GBCA concentrations). Near maximum polarisation in the solid state was obtained at a GBCA concentration of 2 mM, with a higher concentration of 3 mM producing minimal improvement. These results indicate that the macrocyclic contrast agents provide the best combination of high solid state and liquid state polarisations with minimal loss of T1 in experiments with hyperpolarised 13C-enriched pyruvate. This suggests that macrocyclic contrast agents should be the GBCA of choice for maximising signal in experiments with hyperpolarised 13C-enriched pyruvate, particularly for in vivo measurements where shortened substrate T1 is especially problematic.

  14. Improved CRDS δ13C Stability Through New Calibration Application For CO2 And CH4

    NASA Astrophysics Data System (ADS)

    Rella, Chris; Arata, Caleb; Saad, Nabil; Leggett, Graham; Miles, Natasha; Richardson, Scott; Davis, Ken

    2015-04-01

    Stable carbon isotope ratio measurements of CO2 and CH4 provide valuable insight into global and regional sources and sinks of the two most important greenhouse gases. Methodologies based on Cavity Ring-Down Spectroscopy (CRDS) have been developed and are capable of delivering δ13C measurements with a precision better than 0.12 permil for CO2 and 0.4 permil for CH4 (1 hour window, 5 minute average). Here we present a method to further improve this measurement stability. We have developed a two-point calibration method which corrects for δ13C drift due to a dependence on carbon species concentration. This method calibrates for both carbon species concentration as well as δ13C. In addition, we further demonstrate that this added stability is especially valuable when using carbon isotope data in linear regression models such as Keeling plots, where even small amounts of error can be magnified to give inconclusive results. Furthermore, we show how this method is used to validate multiple instruments simultaneously and can be used to create the standard samples needed for field calibrations.

  15. Substance P and bradykinin activate different types of KCa currents to hyperpolarize cultured porcine coronary artery endothelial cells

    PubMed Central

    Frieden, M; Sollini, M; Bény, J-L

    1999-01-01

    Substance P and bradykinin, endothelium-dependent vasodilators of pig coronary artery, trigger in endothelial cells a rise in cytosolic Ca2+ concentration ([Ca2+]i) and membrane hyperpolarization. The aim of the present study was to determine the type of Ca2+-dependent K+ (KCa) currents underlying the endothelial cell hyperpolarization. The substance P-induced increase in [Ca2+]i was 30 % smaller than that induced by bradykinin, although the two peptides triggered a membrane hyperpolarization of the same amplitude. The two agonists evoked a large outward K+ current of the same conductance at maximal stimulation. Agonists applied together produced the same maximal current amplitude as either one applied alone. Iberiotoxin (50 nM) reduced by about 40 % the K+ current activated by bradykinin without modifying the substance P response. Conversely, apamin (1 μm) inhibited the substance P-induced K+ current by about 65 %, without affecting the bradykinin response. Similar results were obtained on peptide-induced membrane hyperpolarization. Bradykinin-induced, but not substance P-induced, endothelium-dependent relaxation resistant to NG-nitro-L-arginine and indomethacin was partly inhibited by 3 μm 17-octadecynoic acid (17-ODYA), an inhibitor of cytochrome P450 epoxygenase. Similarly, the bradykinin-induced K+ current was reduced by 17-ODYA. Our results show that responses to substance P and bradykinin result in a hyperpolarization due to activation of different KCa currents. A current consistent with the activation of large conductance (BKCa) channels was activated only by bradykinin, whereas a current consistent with the activation of small conductance (SKCa) channels was stimulated only by substance P. The observation that a similar electrical response is produced by different pools of channels implies distinct intracellular pathways leading to KCa current activation. PMID:10457055

  16. LabVIEW-based control software for para-hydrogen induced polarization instrumentation.

    PubMed

    Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-04-01

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ((13)C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (Bo), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of (13)C based endogenous contrast agents used in molecular imaging.

  17. Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus

    PubMed Central

    Aponte, Yexica; Lien, Cheng-Chang; Reisinger, Ellen; Jonas, Peter

    2006-01-01

    Hyperpolarization-activated channels (Ih or HCN channels) are widely expressed in principal neurons in the central nervous system. However, Ih in inhibitory GABAergic interneurons is less well characterized. We examined the functional properties of Ih in fast-spiking basket cells (BCs) of the dentate gyrus, using hippocampal slices from 17- to 21-day-old rats. Bath application of the Ih channel blocker ZD 7288 at a concentration of 30 μm induced a hyperpolarization of 5.7 ± 1.5 mV, an increase in input resistance and a correlated increase in apparent membrane time constant. ZD 7288 blocked a hyperpolarization-activated current in a concentration-dependent manner (IC50, 1.4 μm). The effects of ZD 7288 were mimicked by external Cs+. The reversal potential of Ih was −27.4 mV, corresponding to a Na+ to K+ permeability ratio (PNa/PK) of 0.36. The midpoint potential of the activation curve of Ih was −83.9 mV, and the activation time constant at −120 mV was 190 ms. Single-cell expression analysis using reverse transcription followed by quantitative polymerase chain reaction revealed that BCs coexpress HCN1 and HCN2 subunit mRNA, suggesting the formation of heteromeric HCN1/2 channels. ZD 7288 increased the current threshold for evoking antidromic action potentials by extracellular stimulation, consistent with the expression of Ih in BC axons. Finally, ZD 7288 decreased the frequency of miniature inhibitory postsynaptic currents (mIPSCs) in hippocampal granule cells, the main target cells of BCs, to 70 ± 4% of the control value. In contrast, the amplitude of mIPSCs was unchanged, consistent with the presence of Ih in inhibitory terminals. In conclusion, our results suggest that Ih channels are expressed in the somatodendritic region, axon and presynaptic elements of fast-spiking BCs in the hippocampus. PMID:16690716

  18. Infrared Spectroscopy of C_6D_6-Rg_n(n=1,2)

    NASA Astrophysics Data System (ADS)

    George, Jobin; Yousefi, Mahdi; Rezaei, Mojtaba; McKellar, Bob; Moazzen-Ahmadi, Nasser

    2014-06-01

    Benzene-noble gas complexes were one of the earliest topics of interest in spectroscopic investigation of van der Waals (vdW) complexes. Smalley et al. observed C_6H_6-(He)1,2 vdW complexes in the late 1970s by means of electronic spectroscopy. A recent study on the same species was done by M. Hayashi et al. Here, we present the infrared observation of C_6D_6-Rg_n (n=1,2) with the rare gas being He, Ne, or Ar, in the regions of νb{12} fundamental band of C_6D_6 (˜2289 wn) and the νb{2} + νb{13} combination band (˜2275 wn) which are coupled by a Fermi resonance. The spectra were observed at a resolution of 60 MHz using a tunable optical parametric oscillator to probe a pulsed supersonic-jet expansion from a slit nozzle. In the case of C_6D_6-Rg dimers, the spectra were assigned to a symmetric top with C6v symmetry with the rare gas atom being located on the C6 symmetry axis. To observe C_6D_6-Rg_2 trimers, the nozzle was cooled using a closed-cycle methanol refrigerator and the spectra were simulated with a rotational temperature of 1.3K. The spectra of the C_6D_6-Rg_2 trimers were in agreement with a D6h symmetry structure, where the rare gas atoms are positioned above and below the C_6D_6 plane. Data analysis and observation are presently ongoing. S. M. Beck, M. G. Liverman, D. L. Monts and R. E. Smalley, J. Chem. Phys. 70, 232 (1979). M. Hayashi, Y. Ohshima, Chem. Phys. 419, 131 (2013).

  19. Direct Measurement of Lung Motion Using Hyperpolarized Helium-3 MR Tagging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Jing; Miller, G. Wilson; Altes, Talissa A.

    2007-07-01

    Purpose: To measure lung motion between end-inhalation and end-exhalation using a hyperpolarized helium-3 (HP {sup 3}He) magnetic resonance (MR) tagging technique. Methods and Materials: Three healthy volunteers underwent MR tagging studies after inhalation of 1 L HP {sup 3}He gas diluted with nitrogen. Multiple-slice two-dimensional and volumetric three-dimensional MR tagged images of the lungs were obtained at end-inhalation and end-exhalation, and displacement vector maps were computed. Results: The grids of tag lines in the HP {sup 3}He MR images were well defined at end-inhalation and remained evident at end-exhalation. Displacement vector maps clearly demonstrated the regional lung motion and deformationmore » that occurred during exhalation. Discontinuity and differences in motion pattern between two adjacent lung lobes were readily resolved. Conclusions: Hyperpolarized helium-3 MR tagging technique can be used for direct in vivo measurement of respiratory lung motion on a regional basis. This technique may lend new insights into the regional pulmonary biomechanics and thus provide valuable information for the deformable registration of lung.« less

  20. High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance

    PubMed Central

    Zare, Richard N.; Kuramoto, Douglas S.; Haase, Christa; Tan, Sze M.; Crosson, Eric R.; Saad, Nabil M. R.

    2009-01-01

    A continuous-flow cavity ring-down spectroscopy (CRDS) system integrating a chromatographic separation technique, a catalytic combustor, and an isotopic 13C/12C optical analyzer is described for the isotopic analysis of a mixture of organic compounds. A demonstration of its potential is made for the geochemically important class of short-chain hydrocarbons. The system proved to be linear over a 3-fold injection volume dynamic range with an average precision of 0.95‰ and 0.67‰ for ethane and propane, respectively. The calibrated accuracy for methane, ethane, and propane is within 3‰ of the values determined using isotope ratio mass spectrometry (IRMS), which is the current method of choice for compound-specific isotope analysis. With anticipated improvements, the low-cost, portable, and easy-to-use CRDS-based instrumental setup is poised to evolve into a credible challenge to the high-cost and complex IRMS-based technique. PMID:19564619

  1. Microwave Spectra for the Three 13C_1 Isotopologues of Propene and New Rotational Constants for Propene and its 13C_1 Isotopologues

    NASA Astrophysics Data System (ADS)

    Craig, Norman C.; Groner, Peter; Conrad, Andrew R.; Gurusinghe, Ranil M.; Tubergen, Michael

    2016-06-01

    New measurements of microwave lines (A and E) of propene and its three 13C_1 isotopologues have been made in the 10-22 GHz region with FT accuracy. The revised lines for propene along with many hundreds from the literature were fitted with the ERHAM program for internal rotors to give improved rotational constants. The new constants for propene are A_0 = 46280.2904(16), B_0 = 9305.24260(30), and C_0 = 8134.22685(28) MHz. Lines for the 3-13C_1 species were observed in a pure sample; lines for the 1-13C_1 and 2-13C_1 species were observed in natural abundance. In fitting the limited sets of lines for the 13C_1 species, many of the centrifugal distortion constants and most of the tunneling parameters were transferred from the fit of propene itself with 27 parameters. Improved rotational constants for the 13C_1 species are reported.

  2. Synthesis and biosynthesis of {sup 13}C-, {sup 15}N-labeled deoxynucleosides useful for biomolecular structural determinations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashburn, D.A.; Garcia, K.; Hanners, J.L.

    Currently, there is a great emphasis on elucidating the structure, function, and dynamics of DNA. Much of the research involved in this study uses nuclear magnetic resonance (NMR) spectroscopy. Effective use of NMR spectroscopy for DNA molecules with mw > 10,000 requires stable isotope enrichment. We present strategies for site-specific isotopic labeling of the purine bases adenosine and guanosine and the biosynthesis of (U-{sup 13}C, {sup 15}N) DNA from methylotropic bacteria. With commercially available 6-chloropurine, an effective two-step route leads to 2{prime}-deoxy-(amino-{sup 15}N)adenosine (dA). The resulting d(amino-{sup 15}N)A is used in a series of reactions to synthesize 2{prime}-deoxy-(2-{sup 13}C,1,amino-{sup 15}N{submore » 2})guanosine or any combination thereof. An improved biosynthesis of labeled DNA has been accomplished using Methylobacterium extorquens AS1. Each liter of growth medium contains 4 g of methanol to yield 1 g of lyophilized cells. As much as 200 mg of RNA per liter of culture has been obtained. We are currently developing large-scale isolation protocols. General synthetic pathways to oligomeric DNA will be presented.« less

  3. The 12C/ 13C isotopic ratio in Titan hydrocarbons from Cassini/CIRS infrared spectra

    NASA Astrophysics Data System (ADS)

    Nixon, C. A.; Achterberg, R. K.; Vinatier, S.; Bézard, B.; Coustenis, A.; Irwin, P. G. J.; Teanby, N. A.; de Kok, R.; Romani, P. N.; Jennings, D. E.; Bjoraker, G. L.; Flasar, F. M.

    2008-06-01

    We have analyzed infrared spectra of Titan recorded by the Cassini Composite Infrared Spectrometer (CIRS) to measure the isotopic ratio 12C/ 13C in each of three chemical species in Titan's stratosphere: CH 4, C 2H 2 and C 2H 6. This is the first measurement of 12C/ 13C in any C 2 molecule on Titan, and the first measurement of 12CH 4/ 13CH 4 (non-deuterated) on Titan by remote sensing. Our spectra cover five widely-spaced latitudes, 65° S to 71° N and we have searched for both latitude variability of 12C/ 13C within a given species, and also for differences between the 12C/ 13C in the three gases. For CH 4 alone, we find C12/C13=76.6±2.7 (1- σ), essentially in agreement with the 12CH 4/ 13CH 4 measured by the Huygens Gas Chromatograph/Mass Spectrometer instrument (GCMS) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784]: 82.3±1.0, and also with measured values in H 13CN and 13CH 3D by CIRS at lower precision [Bézard, B., Nixon, C., Kleiner, I., Jennings, D., 2007. Icarus 191, 397-400; Vinatier, S., Bézard, B., Nixon, C., 2007. Icarus 191, 712-721]. For the C 2 species, we find C12/C13=84.8±3.2 in C 2H 2 and 89.8±7.3 in C 2H 6, a possible trend of increasingly value with molecular mass, although these values are both compatible with the Huygens GCMS value to within error bars. There are no convincing trends in latitude. Combining all fifteen measurements, we obtain a value of C12/C13=80.8±2.0, also compatible with GCMS. Therefore, the evidence is mounting that 12C/ 13C is some 8% lower on Titan than on the Earth (88.9, inorganic standard), and lower than typical for the outer planets ( 88±7 [Sada, P.V., McCabe, G.H., Bjoraker, G.L., Jennings, D.E., Reuter, D.C., 1996. Astrophys. J. 472, 903-907]). There is no current model for this enrichment, and we discuss several mechanisms that may be at work.

  4. High field hyperpolarization-EXSY experiment for fast determination of dissociation rates in SABRE complexes.

    PubMed

    Hermkens, Niels K J; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco

    2017-03-01

    SABRE (Signal Amplification By Reversible Exchange) is a nuclear spin hyperpolarization technique based on the reversible concurrent binding of small molecules and para-hydrogen (p-H 2 ) to an iridium metal complex in solution. At low magnetic field, spontaneous conversion of p-H 2 spin order to enhanced longitudinal magnetization of the nuclear spins of the other ligands occurs. Subsequent complex dissociation results in hyperpolarized substrate molecules in solution. The lifetime of this complex plays a crucial role in attained SABRE NMR signal enhancements. Depending on the ligands, vastly different dissociation rates have been previously measured using EXSY or selective inversion experiments. However, both these approaches are generally time-consuming due to the long recycle delays (up to 2min) necessary to reach thermal equilibrium for the nuclear spins of interest. In the cases of dilute solutions, signal averaging aggravates the problem, further extending the experimental time. Here, a new approach is proposed based on coherent hyperpolarization transfer to substrate protons in asymmetric complexes at high magnetic field. We have previously shown that such asymmetric complexes are important for application of SABRE to dilute substrates. Our results demonstrate that a series of high sensitivity EXSY spectra can be collected in a short experimental time thanks to the NMR signal enhancement and much shorter recycle delay. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Rovibrational constants of the ground state and v8 = 1 state of 13C2HD3 by high-resolution FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ng, L. L.; Tan, T. L.

    2016-06-01

    The Fourier transform infrared (FTIR) spectrum of the c-type ν8 band of 13C2HD3 was recorded for the first time at a unapodized resolution of 0.0063 cm-1 in the wavenumber region of 830-1000 cm-1. Through the fitting of a total of 1057 assigned infrared transitions using Watson's A-reduced Hamiltonian in the Ir representation, rovibrational constants for the upper state (v8 = 1) up to five quartic centrifugal distortion terms were derived for the first time with a root-mean-square (rms) deviation of 0.00073 cm-1. The band center of ν8 of 13C2HD3 was found to be 913.011021(55) cm-1. Ground state rovibrational constants up to five quartic terms of 13C2HD3 were also determined from a fit of 453 ground state combination-differences from the present infrared measurements with an rms deviation of 0.00072 cm-1 for the first time. The uncertainty of the measured infrared lines was estimated to be ±0.0012 cm-1. From the ground state rotational constants, the inertial defect of 13C2HD3 was calculated to be 0.06973(16) uÅ2, showing the high planarity of the molecule.

  6. Auger electron spectroscopy, secondary ion mass spectroscopy and optical characterization of a-C-H and BN films

    NASA Technical Reports Server (NTRS)

    Pouch, J. J.; Alterovitz, S. A.; Warner, J. D.

    1986-01-01

    The amorphous dielectrics a-C:H and BN were deposited on III-V semiconductors. Optical band gaps as high as 3 eV were measured for a-C:H generated by C4H10 plasmas; a comparison was made with bad gaps obtained from films prepared by CH4 glow discharges. The ion beam deposited BN films exhibited amorphous behavior with band gaps on the order of 5 eV. Film compositions were studied by Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The optical properties were characterized by ellipsometry, UV/VIS absorption, and IR reflection and transmission. Etching rates of a-C:H subjected to O2 dicharges were determined.

  7. Inhibitors of the alpha-ketoglutarate dehydrogenase complex alter [1-13C]glucose and [U-13C]glutamate metabolism in cerebellar granule neurons.

    PubMed

    Santos, Sónia Sá; Gibson, Gary E; Cooper, Arthur J L; Denton, Travis T; Thompson, Charles M; Bunik, Victoria I; Alves, Paula M; Sonnewald, Ursula

    2006-02-15

    Diminished activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), an important component of the tricarboxylic acid (TCA) cycle, occurs in several neurological diseases. The effect of specific KGDHC inhibitors [phosphonoethyl ester of succinyl phosphonate (PESP) and the carboxy ethyl ester of succinyl phosphonate (CESP)] on [1-13C]glucose and [U-13C]glutamate metabolism in intact cerebellar granule neurons was investigated. Both inhibitors decreased formation of [4-13C]glutamate from [1-13C]glucose, a reduction in label in glutamate derived from [1-13C]glucose/[U-13C]glutamate through a second turn of the TCA cycle and a decline in the amounts of gamma-aminobutyric acid (GABA), aspartate, and alanine. PESP decreased formation of [U-13C]aspartate and total glutathione, whereas CESP decreased concentrations of valine and leucine. The findings are consistent with decreased KGDHC activity; increased alpha-ketoglutarate formation; increased transamination of alpha-ketoglutarate with valine, leucine, and GABA; and new equilibrium position of the aspartate aminotransferase reaction. Overall, the findings also suggest that some carbon derived from alpha-ketoglutarate may bypass the block in the TCA cycle at KGDHC by means of the GABA shunt and/or conversion of valine to succinate. The results suggest the potential of succinyl phosphonate esters for modeling the biochemical and pathophysiological consequences of reduced KGDHC activity in brain diseases.

  8. Determination of Multiple φ-Torsion Angles in Proteins by Selective and Extensive 13C Labeling and Two-Dimensional Solid-State NMR

    NASA Astrophysics Data System (ADS)

    Hong, Mei

    1999-08-01

    We describe an approach to efficiently determine the backbone conformation of solid proteins that utilizes selective and extensive 13C labeling in conjunction with two-dimensional magic-angle-spinning NMR. The selective 13C labeling approach aims to reduce line broadening and other multispin complications encountered in solid-state NMR of uniformly labeled proteins while still enhancing the sensitivity of NMR spectra. It is achieved by using specifically labeled glucose or glycerol as the sole carbon source in the protein expression medium. For amino acids synthesized in the linear part of the biosynthetic pathways, [1-13C]glucose preferentially labels the ends of the side chains, while [2-13C]glycerol labels the Cα of these residues. Amino acids produced from the citric-acid cycle are labeled in a more complex manner. Information on the secondary structure of such a labeled protein was obtained by measuring multiple backbone torsion angles φ simultaneously, using an isotropic-anisotropic 2D correlation technique, the HNCH experiment. Initial experiments for resonance assignment of a selectively 13C labeled protein were performed using 15N-13C 2D correlation spectroscopy. From the time dependence of the 15N-13C dipolar coherence transfer, both intraresidue and interresidue connectivities can be observed, thus yielding partial sequential assignment. We demonstrate the selective 13C labeling and these 2D NMR experiments on a 8.5-kDa model protein, ubiquitin. This isotope-edited NMR approach is expected to facilitate the structure determination of proteins in the solid state.

  9. Catenanes: A molecular mechanics analysis of the (C13H26)2 Structure 13-13 D2.

    PubMed

    Lii, Jenn-Huei; Allinger, Norman L; Hu, Ching-Han; Schaefer, Henry F

    2016-01-05

    Molecular mechanics (MM4) studies have been carried out on the catenane (C13H26)2, specifically 13-13D2. The structure obtained is in general agreement with second-order perturbation theory. More importantly, the MM4 structure allows a breakdown of the energy of the molecule into its component classical parts. This allows an understanding of why the structure is so distorted, in terms of C-C bonding and nonbonding interactions, van der Waals repulsion, C-C-C and C-C-H angle bending, torsional energies, stretch-bend, torsion-stretch, and bend-torsion-bend interactions. Clearly, the hole in 113-membered ring is too small for the other ring to fit through comfortably. There are too many atoms trying to fit into the limited space at the same time, leading to large van der Waals repulsions. The rings distort in such a way as to enlarge this available space, and lower the total energy of the molecule. While the distortions are spread around the rings, one of the nominally tetrahedral C-C-C bond angles in each ring is opened to 147.9° by MM4 (146.8° by MP2). The stability of the compound is discussed in terms of the strain energy. © 2015 Wiley Periodicals, Inc.

  10. Resynthesis of muscle glycogen after soccer specific performance examined by 13C-magnetic resonance spectroscopy in elite players.

    PubMed

    Zehnder, M; Rico-Sanz, J; Kühne, G; Boutellier, U

    2001-05-01

    The purpose of this study was to examine using 13C-magnetic resonance spectroscopy whether muscle glycogen (Gly) utilized during a simulation of a fatiguing soccer match followed by repeated sprints would be resynthesized during the next 24 h while players consumed their habitual diet. A group of 12 elite young players [mean age 17.5 (SD 0.8) years, mean body mass 68.9 (SD 6.6) kg, mean height 177.0 (SD 5.4) cm] participated in the study. Average muscle Gly content before the simulation was 134 (SD 16) mmol.(kg wet mass)-1 and decreased during the test (P < 0.001) to 80 (SD 29) mmol.(kg wet mass)-1. The value had increased (P < 0.01) to 122 (SD 33) mmol.(kg wet mass)-1 24 h later but it was not significantly different from the value obtained before the soccer test. Dietary analysis of the food intake during the 24 h after the running test revealed that players consumed an average of 2,681 (SD 970) kcal.day-1. Mean daily protein, fat, and carbohydrate (CHO) intakes were 85 (SD 29), 99 (SD 44), and 327 (SD 116) g, respectively. The mean amounts of CHO intake normalised to body mass were 4.8 (SD 1.8) g.(kg body mass)-1. In conclusion, the results of this study showed that despite a CHO intake of less than 5 g.(kg body mass)-1 the habitual diet of soccer players might be sufficient to replenish in 24 h the muscle Gly utilized during soccer specific performance. However, cumulative deficits of about 10% in Gly replenishment as found in the present study might provoke decrements in performance. Thus, players should pay attention to their habitual diets and add more carbohydrates to replenish their daily deficits and perhaps increase their basal levels of intake.

  11. Field measurements of del13C in ecosystem respiration

    NASA Astrophysics Data System (ADS)

    van Asperen, Hella; Sabbatini, Simone; Nicolini, Giacomo; Warneke, Thorsten; Papale, Dario; Notholt, Justus

    2014-05-01

    Stable carbon isotope del13C-measurements are extensively used to study ecological and biogeochemical processes in ecosystems. Above terrestrial ecosystems, atmospheric del13C can vary largely due to photosynthetic fractionation. Photosynthetic processes prefer the uptake of the lighter isotope 12C (in CO2), thereby enriching the atmosphere in 13C and depleting the ecosystem carbon. At night, when ecosystem respiratory fluxes are dominant, 13C-depleted CO2 is respired and thereby depletes the atmospheric del13C-content. Different ecosystems and different parts of one ecosystem (type of plant, leaves, and roots) fractionate and respire with a different del13C-ratio signature. By determining the del13C-signature of ecosystem respiration in temporal and spatial scale, an analysis can be made of the composition of respiratory sources of the ecosystem. A field study at a dry cropland after harvest (province of Viterbo, Lazio, Italy) was performed in the summer of 2013. A FTIR (Fourier Transform Infrared Spectrometer) was set up to continuously measure CO2-, CH4-, N2O-, CO- and del13C-concentrations. The FTIR was connected to 2 different flux measurements systems: a Flux Gradient system (sampling every half hour at 1.3m and 4.2m) and 2 flux chambers (measured every hour), providing a continuous data set of the biosphere-atmosphere gas fluxes and of the gas concentrations at different heights. Keeling plot intercept values of respiratory CO2, measured by the Flux Gradient system at night, were determined to be between -25‰ and -20‰. Keeling plot intercept values of respiratory CO2, measured by the flux chamber system, varied between -24‰ and -29‰, and showed a clear diurnal pattern, suggesting different (dominant) respiratory processes between day and night.

  12. Detection of (C-13)-ethane in Jupiter's atmosphere

    NASA Technical Reports Server (NTRS)

    Wiedemann, Guenter; Bjoraker, Gordon L.; Jennings, Donald E.

    1991-01-01

    High-resolution (C-12)- and (C-13)-ethane spectra of Jupiter were acquired with the Kitt Peak 4 m Fourier spectrometer and the Goddard postdisperser in June 1987. A relative abundance ratio (C-12/C-13) of 94 +/- 12 was derived from the measurements. This nearly terrestrial value indicates little or no fractionation of carbon isotopes when ethane is produced in the photolysis of methane in Jupiter's atmosphere.

  13. GPR55 agonist lysophosphatidylinositol and lysophosphatidylcholine inhibit endothelial cell hyperpolarization via GPR-independent suppression of Na+-Ca2+ exchanger and endoplasmic reticulum Ca2+ refilling.

    PubMed

    Bondarenko, Alexander I; Montecucco, Fabrizio; Panasiuk, Olga; Sagach, Vadim; Sidoryak, Nataliya; Brandt, Karim J; Mach, François

    2017-02-01

    Lysophosphatidylinositol (LPI) and lysophosphatidylcholine (LPC) are lipid signaling molecules that induce endothelium-dependent vasodilation. In addition, LPC suppresses acetylcholine (Ach)-induced responses. We aimed to determine the influence of LPC and LPI on hyperpolarizing responses in vitro and in situ endothelial cells (EC) and identify the underlying mechanisms. Using patch-clamp method, we show that LPI and LPC inhibit EC hyperpolarization to histamine and suppress Na + /Ca 2+ exchanged (NCX) currents in a concentration-dependent manner. The inhibition is non-mode-specific and unaffected by intracellular GDPβS infusion and tempol, a superoxide dismutase mimetic. In excised mouse aorta, LPI strongly inhibits the sustained and the peak endothelial hyperpolarization induced by Ach, but not by SKA-31, an opener of Ca 2+ -dependent K + channels of intermediate and small conductance. The hyperpolarizing responses to consecutive histamine applications are strongly reduced by NCX inhibition. In a Ca 2+ -re-addition protocol, bepridil, a NCX inhibitor, and KB-R7943, a blocker of reversed NCX, inhibit the hyperpolarizing responses to Ca 2+ -re-addition following Ca 2+ stores depletion. These finding indicate that LPC and LPI inhibit endothelial hyperpolarization to Ach and histamine independently of G-protein coupled receptors and superoxide anions. Reversed NCX is critical for ER Ca 2+ refilling in EC. The inhibition of NCX by LPI and LPC underlies diminished endothelium-dependent responses and endothelial dysfunction accompanied by increased levels of these lipids in the blood. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Bacterial Production of Site Specific 13C Labeled Phenylalanine and Methodology for High Level Incorporation into Bacterially Expressed Recombinant Proteins

    PubMed Central

    Ramaraju, Bhargavi; McFeeters, Hana; Vogler, Bernhard; McFeeters, Robert L.

    2016-01-01

    Nuclear magnetic resonance spectroscopy studies of ever larger systems have benefited from many different forms of isotope labeling, in particular, site specific isotopic labeling. Site specific 13C labeling of methyl groups has become an established means of probing systems not amenable to traditional methodology. However useful, methyl reporter sites can be limited in number and/or location. Therefore, new complementary site specific isotope labeling strategies are valuable. Aromatic amino acids make excellent probes since they are often found at important interaction interfaces and play significant structural roles. Aromatic side chains have many of the same advantages as methyl containing amino acids including distinct 13C chemical shifts and multiple magnetically equivalent 1H positions. Herein we report economical bacterial production and one-step purification of phenylalanine with 13C incorporation at the Cα, Cγ and Cε positions, resulting in two isolated 1H-13C spin systems. We also present methodology to maximize incorporation of phenylalanine into recombinantly overexpressed proteins in bacteria and demonstrate compatibility with ILV-methyl labeling. Inexpensive, site specific isotope labeled phenylalanine adds another dimension to biomolecular NMR, opening new avenues of study. PMID:28028744

  15. Validated ¹H and 13C Nuclear Magnetic Resonance Methods for the Quantitative Determination of Glycerol in Drug Injections.

    PubMed

    Lu, Jiaxi; Wang, Pengli; Wang, Qiuying; Wang, Yanan; Jiang, Miaomiao

    2018-05-15

    In the current study, we employed high-resolution proton and carbon nuclear magnetic resonance spectroscopy (¹H and 13 C NMR) for quantitative analysis of glycerol in drug injections without any complex pre-treatment or derivatization on samples. The established methods were validated with good specificity, linearity, accuracy, precision, stability, and repeatability. Our results revealed that the contents of glycerol were convenient to calculate directly via the integration ratios of peak areas with an internal standard in ¹H NMR spectra, while the integration of peak heights were proper for 13 C NMR in combination with an external calibration of glycerol. The developed methods were both successfully applied in drug injections. Quantitative NMR methods showed an extensive prospect for glycerol determination in various liquid samples.

  16. Monitoring creatine and phosphocreatine by (13)C MR spectroscopic imaging during and after (13)C4 creatine loading: a feasibility study.

    PubMed

    Janssen, Barbara H; Lassche, Saskia; Hopman, Maria T; Wevers, Ron A; van Engelen, Baziel G M; Heerschap, Arend

    2016-08-01

    Creatine (Cr) supplementation to enhance muscle performance shows variable responses among individuals and different muscles. Direct monitoring of the supplied Cr in muscles would address these differences. In this feasibility study, we introduce in vivo 3D (13)C MR spectroscopic imaging (MRSI) of the leg with oral ingestion of (13)C4-creatine to observe simultaneously Cr and phosphocreatine (PCr) for assessing Cr uptake, turnover, and the ratio PCr over total Cr (TCr) in individual muscles. (13)C MRSI was performed of five muscles in the posterior thigh in seven subjects (two males and two females of ~20 years, one 82-year-old male, and two neuromuscular patients) with a (1)H/(13)C coil in a 3T MR system before, during and after intake of 15 % (13)C4-enriched Cr. Subjects ingested 20 g Cr/day for 4 days in four 5 g doses at equal time intervals. The PCr/TCr did not vary significantly during supplementation and was similar for all subjects and investigated muscles (average 0.71 ± 0.07), except for the adductor magnus (0.64 ± 0.03). The average Cr turnover rate, assessed in male muscles, was 2.1 ± 0.7 %/day. The linear uptake rates of Cr were variable between muscles, although not significantly different. This assessment was possible in all investigated muscles of young male volunteers, but less so in muscles of the other subjects due to lower signal-to-noise ratio. Improvements for future studies are discussed. In vivo (13)C MRSI after (13)C-Cr ingestion is demonstrated for longitudinal studies of Cr uptake, turnover, and PCr/TCr ratios of individual muscles in one exam.

  17. CACA-TOCSY with alternate 13C-12C labeling: a 13Calpha direct detection experiment for mainchain resonance assignment, dihedral angle information, and amino acid type identification.

    PubMed

    Takeuchi, Koh; Frueh, Dominique P; Sun, Zhen-Yu J; Hiller, Sebastian; Wagner, Gerhard

    2010-05-01

    We present a (13)C direct detection CACA-TOCSY experiment for samples with alternate (13)C-(12)C labeling. It provides inter-residue correlations between (13)C(alpha) resonances of residue i and adjacent C(alpha)s at positions i - 1 and i + 1. Furthermore, longer mixing times yield correlations to C(alpha) nuclei separated by more than one residue. The experiment also provides C(alpha)-to-sidechain correlations, some amino acid type identifications and estimates for psi dihedral angles. The power of the experiment derives from the alternate (13)C-(12)C labeling with [1,3-(13)C] glycerol or [2-(13)C] glycerol, which allows utilizing the small scalar (3)J(CC) couplings that are masked by strong (1)J(CC) couplings in uniformly (13)C labeled samples.

  18. Effect of alcohol consumption on the liver detoxication capacity as measured by [13C2]aminopyrine and L-[1-13C]phenylalanine breath tests.

    PubMed

    Wutzke, Klaus D; Wigger, Marianne

    2009-09-01

    The aim of this study was to investigate the hepatic microsomal and cytosolic functions by using the 13CO2 breath test in healthy subjects either before or after consumption of red wine. Twelve adults received [13C2]aminopyrine and L-[1-13C]phenylalanine together with a standardised dinner. Expired air samples were taken over 6 h. After a wash-out period, the subjects consumed 0.4 ml ethanol per kg per day together with dinner over a 7.5-day period on average. Thereafter, 13C-tracer administration was repeated under identical conditions. The 13CO2 enrichments were measured by isotope ratio mass spectrometry. The mean cumulative percentage 13C-dose recovery after administration of [13C2]aminopyrine and L-[1-13C]phenylalanine either without or with red wine consumption amounted to 17.0+/-4.4 vs. 14.7+/-3.1% (p=0.170) and 14.0+/-2.8 vs. 11.5+/-3.9% (p=0.084), respectively. Moderate alcohol consumption does not induce significant short-term changes of the microsomal and the cytosolic function of the human liver in healthy subjects.

  19. Importance of Residue 13 and the C-Terminus for the Structure and Activity of the Antimicrobial Peptide Aurein 2.2

    PubMed Central

    Cheng, John T.J.; Hale, John D.; Kindrachuk, Jason; Jessen, Havard; Elliott, Melissa; Hancock, Robert E.W.; Straus, Suzana K.

    2010-01-01

    Previous studies on aurein 2.2 and 2.3 in DMPC/DMPG and POPC/POPG membranes have shown that bilayer thickness and phosphatidylglycerol content have a significant impact on the interaction of these peptides with membrane bilayers. Further examination with the DiSC35 assay has indicated that aurein 2.2 induces greater membrane leakage than aurein 2.3 in Staphylococcus aureus C622. The only difference between these peptides is a Leu to Ile mutation at residue 13. To better understand the importance of this residue, the structure and activity of the L13A, L13F, and L13V mutants were investigated. In addition, we investigated a number of peptides with truncations at the C-terminus to determine whether the C-terminus, which contains residue 13, is crucial for antimicrobial activity. Solution circular dichroism results demonstrated that the L13F mutation and the truncation of the C-terminus by six residues resulted in decreased helical content, whereas the L13A or L13V mutation and the truncation of the C-terminus by three residues showed little to no effect on the structure. Oriented circular dichroism results demonstrated that only an extensive C-terminal truncation reduced the ability of the peptide to insert into lipid bilayers. 31P NMR spectroscopy showed that all peptides disorder the headgroups. The implications of these results in terms of antimicrobial activity and the ability of these peptides to induce leakage in S. aureus are discussed. The results suggest that the presence of the 13th residue in aurein 2.2 is important for structure and activity, but the exact nature of residue 13 is less important as long as it is a hydrophobic residue. PMID:21044590

  20. [Bioremediation of oil-polluted soils: using the [13C]/[12C] ratio to characterize microbial products of oil hydrocarbon biodegradation].

    PubMed

    Ziakun, A M; Brodskiĭ, E S; Baskunov, B P; Zakharchenko, V N; Peshenko, V P; Filonov, A E; Vetrova, A A; Ivanova, A A; Boronin, A M

    2014-01-01

    We compared data on the extent of bioremediation in soils polluted with oil. The data were obtained using conventional methods of hydrocarbon determination: extraction gas chromatography-mass spectrometry, extraction IR spectroscopy, and extraction gravimetry. Due to differences in the relative abundances of the stable carbon isotopes (13C/12C) in oil and in soil organic matter, these ratios could be used as natural isotopic labels of either substance. Extraction gravimetry in combination with characteristics of the carbon isotope composition of organic products in the soil before and after bioremediation was shown to be the most informative approach to an evaluation of soil bioremediation. At present, it is the only method enabling quantification of the total petroleum hydrocarbons in oil-polluted soil, as well as of the amounts of hydrocarbons remaining after bioremediation and those microbially transformed into organic products and biomass.

  1. LabVIEW-based control software for para-hydrogen induced polarization instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agraz, Jose, E-mail: joseagraz@ucla.edu; Grunfeld, Alexander; Li, Debiao

    2014-04-15

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10 000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ({sup 13}C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (B{sub o}), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures.more » Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of {sup 13}C based endogenous contrast agents used in molecular imaging.« less

  2. The role of hyperpolarized 129xenon in MR imaging of pulmonary function

    PubMed Central

    Ebner, Lukas; Kammerman, Jeff; Driehuys, Bastiaan; Schiebler, Mark L.; Cadman, Robert V.; Fain, Sean B.

    2016-01-01

    In the last two decades, functional imaging of the lungs using hyperpolarized noble gases has entered the clinical stage. Both helium (3 He) and xenon (129Xe) gas have been thoroughly investigated for their ability to assess both the global and regional patterns of lung ventilation. With advances in polarizer technology and the current transition towards the widely available 129Xe gas, this method is ready for translation to the clinic. Currently, hyperpolarized (HP) noble gas lung MRI is limited to selected academic institutions; yet, the promising results from initial clinical trials have drawn the attention of the pulmonary medicine community. HP 129Xe MRI provides not only 3-dimensional ventilation imaging, but also unique capabilities for probing regional lung physiology. In this review article, we aim to (1) provide a brief overview of current ventilation MR imaging techniques, (2) emphasize the role of HP 129Xe MRI within the array of different imaging strategies, (3) discuss the unique imaging possibilities with HP 129Xe MRI, and (4) propose clinical applications. PMID:27707585

  3. Isotopic 13C NMR spectrometry to assess counterfeiting of active pharmaceutical ingredients: site-specific 13C content of aspirin and paracetamol.

    PubMed

    Silvestre, Virginie; Mboula, Vanessa Maroga; Jouitteau, Catherine; Akoka, Serge; Robins, Richard J; Remaud, Gérald S

    2009-10-15

    Isotope profiling is a well-established technique to obtain information about the chemical history of a given compound. However, the current methodology using IRMS can only determine the global (13)C content, leading to the loss of much valuable data. The development of quantitative isotopic (13)C NMR spectrometry at natural abundance enables the measurement of the (13)C content of each carbon within a molecule, thus giving simultaneous access to a number of isotopic parameters. When it is applied to active pharmaceutical ingredients, each manufactured batch can be characterized better than by IRMS. Here, quantitative isotopic (13)C NMR is shown to be a very promising and effective tool for assessing the counterfeiting of medicines, as exemplified by an analysis of aspirin (acetylsalicylic acid) and paracetamol (acetaminophen) samples collected from pharmacies in different countries. It is proposed as an essential complement to (2)H NMR and IRMS.

  4. Carbon Isotopic Compositions in Carbon Dioxide Measured By Micro-Laser Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, J.-J.; Li, R.-X.; Dong, H.; Wang, Zh.-H.; Zhao, B.-S.; Wang, N.; Cheng, J.-H.

    2017-05-01

    We have prepared a series of 12CO2/13CO2 binary mixtures as standard samples at room temperature. Using microlaser Raman spectroscopy, it was found that the relationship between the 12CO2 mole fractions and the peak area ratios of 12CO2/13CO2 in the Raman spectra of CO2 binary mixtures showed a polynomial correlation. The establishment of the experimental working curve paves the way for estimating the mole fractions of each individual fluid inclusion and determining 13C/12C and δ13C u sing micro-Raman spectroscopy. The Raman spectra of 12CO2 and 13CO2 showed a characteristic peak at 1348 cm-1 with an argon laser at 785 nm, which is perhaps due to the formation of dimers.

  5. 13C-based metabolic flux analysis: fundamentals and practice.

    PubMed

    Yang, Tae Hoon

    2013-01-01

    Isotope-based metabolic flux analysis is one of the emerging technologies applied to system level metabolic phenotype characterization in metabolic engineering. Among the developed approaches, (13)C-based metabolic flux analysis has been established as a standard tool and has been widely applied to quantitative pathway characterization of diverse biological systems. To implement (13)C-based metabolic flux analysis in practice, comprehending the underlying mathematical and computational modeling fundamentals is of importance along with carefully conducted experiments and analytical measurements. Such knowledge is also crucial when designing (13)C-labeling experiments and properly acquiring key data sets essential for in vivo flux analysis implementation. In this regard, the modeling fundamentals of (13)C-labeling systems and analytical data processing are the main topics we will deal with in this chapter. Along with this, the relevant numerical optimization techniques are addressed to help implementation of the entire computational procedures aiming at (13)C-based metabolic flux analysis in vivo.

  6. Application of ChemDraw NMR Tool: Correlation of Program-Generated 13C Chemical Shifts and pKa Values of para-Substituted Benzoic Acids

    NASA Astrophysics Data System (ADS)

    Wang, Hongyi

    2005-09-01

    An application of ChemDraw NMR Tool was demonstrated by correlation of program-generated 13 C NMR chemical shifts and p K a values of para-substituted benzoic acids. Experimental 13 C NMR chemical shifts were analyzed in the same way for comparison. The project can be used as an assignment at the end of the first-year organic chemistry course to review topics or explore new techniques: Hammett equation, acid base equilibrium theory, electronic nature of functional groups, inductive and resonance effects, structure reactivity relationship, NMR spectroscopy, literature search, database search, and ChemDraw software.

  7. Quantitative measurement of carbon isotopic composition in CO2 gas reservoir by Micro-Laser Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli

    2018-04-01

    The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12CO2 and 13CO2 were mixed with N2 at various molar fraction ratios to obtain Raman quantification factors (F12CO2 and F13CO2), which provide a theoretical basis for calculating the δ13C value. And the corresponding values were 0.523 (0 < C12CO2/CN2 < 2) and 1.11998 (0 < C13CO2/CN2 < 1.5) respectively. It has shown that the representative Raman peak area can be used for the determination of δ13C values within the relative errors range of 0.076% to 1.154% in 13CO2/12CO2 binary mixtures when F12CO2/F13CO2 is 0.466972625. In addition, measurement of δ13C values by Micro-Laser Raman analysis were carried out on natural CO2 gas from Shengli Oil-field at room temperature under different pressures. The δ13C values obtained by Micro-Laser Raman spectroscopy technology and Isotope Ratio Mass Spectrometry (IRMS) technology are in good agreement with each other, and the relative errors range of δ13C values is 1.232%-6.964%. This research provides a fundamental analysis tool for determining gas carbon isotope composition (δ13C values) quantitatively by using Micro-Laser Raman spectroscopy. Experiment of results demonstrates that this method has the potential for obtaining δ13C values in natural CO2 gas reservoirs.

  8. Determinations of the 12C/13C Ratio for the Secondary Stars of AE Aquarii, SS Cygni, and RU Pegasi

    NASA Astrophysics Data System (ADS)

    Harrison, Thomas E.; Marra, Rachel E.

    2017-07-01

    We present new moderate-resolution near-infrared spectroscopy of three CVs obtained using GNIRS on Gemini-North. These spectra covered three 13CO bandheads found in the K-band, allowing us to derive the isotopic abundance ratios for carbon. We find small 12C/13C ratios for all three donor stars. In addition, these three objects show carbon deficits, with AE Aqr being the most extreme ([C/Fe] = -1.4). This result confirms the conjecture that the donor stars in some long-period CVs have undergone considerable nuclear evolution prior to becoming semi-contact binaries. In addition to the results for carbon, we find that the abundance of sodium is enhanced in these three objects, and the secondary stars in both RU Peg and SS Cyg suffer magnesium deficits. Explaining such anomalies appears to require higher mass progenitors than commonly assumed for the donor stars of CVs. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  9. Chemical structures of coal lithotypes before and after CO2 adsorption as investigated by advanced solid-state 13C nuclear magnetic resonance spectroscopy

    USGS Publications Warehouse

    Cao, X.; Mastalerz, Maria; Chappell, M.A.; Miller, L.F.; Li, Y.; Mao, J.

    2011-01-01

    Four lithotypes (vitrain, bright clarain, clarain, and fusain) of a high volatile bituminous Springfield Coal from the Illinois Basin were characterized using advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The NMR techniques included quantitative direct polarization/magic angle spinning (DP/MAS), cross polarization/total sideband suppression (CP/TOSS), dipolar dephasing, CHn selection, and recoupled C-H long-range dipolar dephasing techniques. The lithotypes that experienced high-pressure CO2 adsorption isotherm analysis were also analyzed to determine possible changes in coal structure as a result of CO2 saturation at high pressure and subsequent evacuation. The main carbon functionalities present in original vitrain, bright clarain, clarain and fusain were aromatic carbons (65.9%-86.1%), nonpolar alkyl groups (9.0%-28.9%), and aromatic C-O carbons (4.1%-9.5%). Among these lithotypes, aromaticity increased in the order of clarain, bright clarain, vitrain, and fusain, whereas the fraction of alkyl carbons decreased in the same order. Fusain was distinct from other three lithotypes in respect to its highest aromatic composition (86.1%) and remarkably small fraction of alkyl carbons (11.0%). The aromatic cluster size in fusain was larger than that in bright clarain. The lithotypes studied responded differently to high pressure CO2 saturation. After exposure to high pressure CO2, vitrain and fusain showed a decrease in aromaticity but an increase in the fraction of alkyl carbons, whereas bright clarain and clarain displayed an increase in aromaticity but a decrease in the fraction of alkyl carbons. Aromatic fused-rings were larger for bright clarain but smaller for fusain in the post-CO2 adsorption samples compared to the original lithotypes. These observations suggested chemical CO2-coal interactions at high pressure and the selectivity of lithotypes in response to CO2 adsorption. ?? 2011 Elsevier B.V.

  10. Cavity Ringdown Laser Asorption Spectroscopy(crlas) of Isotopically Labeled Acetylene Between 12,500 - 13,600 wn

    NASA Astrophysics Data System (ADS)

    Lue, Christopher J.; Sullivan, Michael N.; Draganjac, Mark E.; Reeve, Scott W.

    2011-06-01

    About five years ago, Arkansas State University created the Arkansas Center for Laser Applications and Science (ArCLAS) with the intention of making it a state-of-the-art facility for laser-based research and optical spectroscopy in the midSouth. Since that time, University and DoD support has lead to the acquisition of numerous laser based spectrometers including a novel three color picosecond system utilized primarily for STIRAP measurements of bulk gas samples. Over the past few months, we have begun collecting near infrared overtone and combination band spectra for the acetylene molecule with a pulsed cavity ringdown laser absorption spectrometer (CRDLAS) as part of the STIRAP support effort. Certainly acetylene has been extensively studied by a number of different spectroscopic methods. During these CRDLAS investigations a 13C_2H_2 band was discovered which we believe has not been previously reported. Here a complete rovibrational analysis of this band will be presented. See for example, Michel Herman, Jacques lievin, Jean Vander Auwera, and Alain Campargue, in Global and Accurate Vibration Hamiltonians from High Resolution Molecular Spectroscopy, Advances in Chemical Physics Volume 108, John Wiley and Sons, NY, NY (1999) and references therein.

  11. Ab initio/GIAO-CCSD(T) (13)C NMR study of the rearrangement and dynamic aspects of rapidly equilibrating tertiary carbocations, C6H13(+) and C7H15(+).

    PubMed

    Olah, George A; Prakash, G K Surya; Rasul, Golam

    2016-01-05

    The rearrangement pathways of the equilibrating tertiary carbocations, 2,3-dimethyl-2-butyl cation (C6H13(+), 1), 2,3,3-trimethyl-2-butyl cation (C7H15(+), 5) and 2,3-dimethyl-2-pentyl cation (C7H15(+), 8 and 9) were investigated using the ab initio/GIAO-CCSD(T) (13)C NMR method. Comparing the calculated and experimental (13)C NMR chemical shifts of a series of carbocations indicates that excellent prediction of δ(13)C could be achieved through scaling. In the case of symmetrical equilibrating cations (1 and 5) the Wagner-Meerwein 1,2-hydride and 1,2-methide shifts, respectively, produce the same structure. This indicates that the overall (13)C NMR chemical shifts are conserved and independent of temperature. However, in the case of unsymmetrical equilibrating cations (8 and 9) the Wagner-Meerwein shift produces different tertiary structures, which have slightly different thermodynamic stabilities and, thus, different spectra. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level structure 8 is only 90 calories/mol more stable than structure 9. Based on computed (13)C NMR chemical shift calculations, mole fractions of these isomers were determined by assuming the observed chemical shifts are due to the weighted average of the chemical shifts of the static ions. © 2015 Wiley Periodicals, Inc.

  12. Quantitative measurement of carbon isotopic composition in CO2 gas reservoir by Micro-Laser Raman spectroscopy.

    PubMed

    Li, Jiajia; Li, Rongxi; Zhao, Bangsheng; Guo, Hui; Zhang, Shuan; Cheng, Jinghua; Wu, Xiaoli

    2018-04-15

    The use of Micro-Laser Raman spectroscopy technology for quantitatively determining gas carbon isotope composition is presented. In this study, 12 CO 2 and 13 CO 2 were mixed with N 2 at various molar fraction ratios to obtain Raman quantification factors (F 12CO2 and F 13CO2 ), which provide a theoretical basis for calculating the δ 13 C value. And the corresponding values were 0.523 (0<C 12CO2 /C N2 <2) and 1.11998 (0<C 13CO2 /C N2 <1.5) respectively. It has shown that the representative Raman peak area can be used for the determination of δ 13 C values within the relative errors range of 0.076% to 1.154% in 13 CO 2 / 12 CO 2 binary mixtures when F 12CO2 /F 13CO2 is 0.466972625. In addition, measurement of δ 13 C values by Micro-Laser Raman analysis were carried out on natural CO 2 gas from Shengli Oil-field at room temperature under different pressures. The δ 13 C values obtained by Micro-Laser Raman spectroscopy technology and Isotope Ratio Mass Spectrometry (IRMS) technology are in good agreement with each other, and the relative errors range of δ 13 C values is 1.232%-6.964%. This research provides a fundamental analysis tool for determining gas carbon isotope composition (δ 13 C values) quantitatively by using Micro-Laser Raman spectroscopy. Experiment of results demonstrates that this method has the potential for obtaining δ 13 C values in natural CO 2 gas reservoirs. Copyright © 2018. Published by Elsevier B.V.

  13. 13C-13C rotational resonance in a transmembrane peptide: A comparison of the fluid and gel phases

    NASA Astrophysics Data System (ADS)

    Langlais, Denis B.; Hodges, Robert S.; Davis, James H.

    1999-05-01

    A comparative study of two doubly 13C labeled amphiphilic transmembrane peptides was undertaken to determine the potential of rotational resonance for measuring internuclear distances through the direct dipolar coupling in the presence of motion. The two peptides, having the sequence acetyl-K2-G-L16-K2-A-amide, differed only in the position of 13C labels. The first peptide, [1-13C]leu11:[α-13C]leu12, had labels on adjacent residues, at the carbonyl of leu11 and the α carbon of leu12. The second, [1-13C]leu8:[α-13\\|C]leu11, was labeled on consecutive turns of the α-helical peptide. The internuclear distance between labeled positions of the first peptide, which for an ideal α helix has a value of 2.48 Å, is relatively independent of internal flexibility or peptide conformational change. The dipolar coupling between these two nuclei is sensitive to motional averaging by molecular reorientation, however, making this peptide ideal for investigating these motions. The internuclear distance between labels on the second peptide has an expected static ideal α-helix value of 4.6 Å, but this is sensitive to internal flexibility. In addition, the dipolar coupling between these two nuclei is much weaker because of their larger separation, making this peptide a much more difficult test of the rotational resonance technique. The dipolar couplings between the labeled nuclei of these two peptides were measured by rotational resonance in the dry peptide powders and in multilamellar dispersions with dimyristoylphosphatidylcholine in the gel phase, at -10 °C, and in the fluid phase, at 40 °C. The results for the peptide having adjacent labels can be readily interpreted in terms of a simple model for the peptide motion. The results for the second peptide show that, in the fluid phase, the motionally averaged dipolar coupling is too small to be measured by rotational resonance. Rotational resonance, rotational echo double resonance, and related techniques can be used to

  14. Measurement of hyperpolarized gas diffusion at very short time scales

    PubMed Central

    Carl, Michael; Wilson Miller, G.; Mugler, John P.; Rohrbaugh, Scott; Tobias, William A.; Cates, Gordon D.

    2007-01-01

    We present a new pulse sequence for measuring very-short-time-scale restricted diffusion of hyperpolarized noble gases. The pulse sequence is based on concatenating a large number of bipolar diffusion-sensitizing gradients to increase the diffusion attenuation of the MR signal while maintaining a fundamentally short diffusion time. However, it differs in several respects from existing methods that use oscillating diffusion gradients for this purpose. First, a wait time is inserted between neighboring pairs of gradient pulses; second, consecutive pulse pairs may be applied along orthogonal axes; and finally, the diffusion-attenuated signal is not simply read out at the end of the gradient train but is periodically sampled during the wait times between neighboring pulse pairs. The first two features minimize systematic differences between the measured (apparent) diffusion coefficient and the actual time-dependent diffusivity, while the third feature optimizes the use of the available MR signal to improve the precision of the diffusivity measurement in the face of noise. The benefits of this technique are demonstrated using theoretical calculations, Monte-Carlo simulations of gas diffusion in simple geometries, and experimental phantom measurements in a glass sphere containing hyperpolarized 3He gas. The advantages over the conventional single-bipolar approach were found to increase with decreasing diffusion time, and thus represent a significant step toward making accurate surface-to-volume measurements in the lung airspaces. PMID:17936048

  15. The 12C/13C Isotopic Ratio in Planetary Nebulae as Deduced from IUE Data

    NASA Astrophysics Data System (ADS)

    Miskey, C. L.; Feibelman, W. A.; Bruhweiler, F. C.

    2000-05-01

    The relative abundances of C, N, and O and the isotopic ratio of 12C/13C represent tracers of nucleosynthesis in intermediate stars with main-sequence masses between 0.6 and 8.0 solar masses in our Galaxy. Determining these abundances and the isotopic 12C/13C ratio in planetary nebulae (PNe) represent perhaps the best means to discern exactly how the ISM is enriched by CNO stellar nucleosynthesis. Walsh et al. (1996) and Clegg et al. (1997), using the Hubble Space Telescope, have derived the isotopic 12C/13C abundance ratio in the galactic carbon-rich PN, NGC 3918, and placed marginal constraints on it for the Magellanic PNe, N2 (SMC) and N122 (LMC). This was done using the well-known 12C 3P-1S (J=1-0 and J=2-0) transitions of C+2 at 1906.68 Angstroms and 1908.77 Angstroms and a J=0-0 transition at 1909.6 Angstroms, which is strictly forbidden in 12C. The finite nuclear spin of 13C (I=1/2) permits a corresponding F=1/2-1/2 electric dipole transition not seen in 12C. Since the 1909.6 Angstroms line is well separated from the other two 12C transitions, it provides an important means of determining 12C/13C in planetary nebulae. We have just completed a search of archival International Ultraviolet Explorer (IUE) high-dispersion spectra of approximately three dozen PNe, and derived 12C/13C ratios of 39 and 23 for the galactic PNe, NGC 2440 and NGC 6302, respectively. These are values much lower than the solar value of 89. In the other objects, the limited S/N of the IUE data indicate 12C/13C ratio upper limits much higher than 50. The implications of these results and their pertinence to stellar evolution are discussed.

  16. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A [Santa Fe, NM; Martinez, Rodolfo A [Santa Fe, NM; Unkefer, Clifford J [Los Alamos, NM

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  17. Evidence for Biomass Burning from 14C and 13C/12C Measurements at T-0 and T-1 during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Tackett, M. J.; Sturchio, N. C.; Heraty, L. J.; Martinez, N.; Hardy, K.; Guilderson, T.

    2007-12-01

    Both stable carbon isotopic and radiocarbon characterizations of aerosols can yield important information regarding the sources of carbonaceous aerosols in urban and regional environments. Biomass derived materials are labeled due to their recent photochemical activity in radiocarbon and vary depending upon the photochemical pathway (either C-4 or C-3) in stable carbon-13 content. C-4 being enriched over C-3. During the MILAGRO campaign, quartz filter samples were taken at 12 hour intervals from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. These samples were taken at the two super-sites, T-0 (Instituto Mexicano de Petroleo in Mexico City) and T-1 (Universidad Technologica de Tecamac, State of Mexico). The total carbon content was analyzed for stable carbon isotopic composition as well as for radiocarbon. Stable isotope mass spectroscopy was used to determine the carbon-13 to carbon-12 isotopic ratios on carbon dioxide. The carbon dioxide was then converted to graphite for analysis by accelerator mass spectrometry at the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory. Results are presented for the carbon-13 content relative to the PDB standard and radiocarbon is given relative to recent carbon. The results for total radiocarbon content show that the carbonaceous aerosol content in Mexico City has more than half of the carbon coming from biomass derived sources. These can include inflow of biomass burning aerosols into the T-0 site as well as the input from local burning of biofuels and trash containing biomass derived materials (paper, boxes, etc.). Data also indicate that at the T-1 site biomass burning of C-4 grasses appears to be significant in that the carbon-13 values observed are enriched. Also at T-1 the radiocarbon levels are also found to be slightly higher indicating regional biomass burning as a significant contributor to aerosol carbon in the 0.1 to 1.0 micron size fraction. Some day

  18. Nonlinear effects of hyperpolarizing shifts in activation of mutant Nav1.7 channels on resting membrane potential

    PubMed Central

    Estacion, Mark

    2017-01-01

    The Nav1.7 sodium channel is preferentially expressed within dorsal root ganglion (DRG) and sympathetic ganglion neurons. Gain-of-function mutations that cause the painful disorder inherited erythromelalgia (IEM) shift channel activation in a hyperpolarizing direction. When expressed within DRG neurons, these mutations produce a depolarization of resting membrane potential (RMP). The biophysical basis for the depolarized RMP has to date not been established. To explore the effect on RMP of the shift in activation associated with a prototypical IEM mutation (L858H), we used dynamic-clamp models that represent graded shifts that fractionate the effect of the mutation on activation voltage dependence. Dynamic-clamp recording from DRG neurons using a before-and-after protocol for each cell made it possible, even in the presence of cell-to-cell variation in starting RMP, to assess the effects of these graded mutant models. Our results demonstrate a nonlinear, progressively larger effect on RMP as the shift in activation voltage dependence becomes more hyperpolarized. The observed differences in RMP were predicted by the “late” current of each mutant model. Since the depolarization of RMP imposed by IEM mutant channels is known, in itself, to produce hyperexcitability of DRG neurons, the development of pharmacological agents that normalize or partially normalize activation voltage dependence of IEM mutant channels merits further study. NEW & NOTEWORTHY Inherited erythromelalgia (IEM), the first human pain disorder linked to a sodium channel, is widely regarded as a genetic model of neuropathic pain. IEM is produced by Nav1.7 mutations that hyperpolarize activation. These mutations produce a depolarization of resting membrane potential (RMP) in dorsal root ganglion neurons. Using dynamic clamp to explore the effect on RMP of the shift in activation, we demonstrate a nonlinear effect on RMP as the shift in activation voltage dependence becomes more hyperpolarized. PMID

  19. High-level theoretical rovibrational spectroscopy beyond fc-CCSD(T): The C3 molecule.

    PubMed

    Schröder, Benjamin; Sebald, Peter

    2016-01-28

    An accurate local (near-equilibrium) potential energy surface (PES) is reported for the C3 molecule in its electronic ground state (X̃(1)Σg (+)). Special care has been taken in the convergence of the potential relative to high-order correlation effects, core-valence correlation, basis set size, and scalar relativity. Based on the aforementioned PES, several rovibrational states of all (12)C and (13)C substituted isotopologues have been investigated, and spectroscopic parameters based on term energies up to J = 30 have been calculated. Available experimental vibrational term energies are reproduced to better than 1 cm(-1) and rotational constants show relative errors of not more than 0.01%. The equilibrium bond length has been determined in a mixed experimental/theoretical approach to be 1.294 07(10) Å in excellent agreement with the ab initio composite value of 1.293 97 Å. Theoretical band intensities based on a newly developed electric dipole moment function also suggest that the infrared active (1, 1(1), 0)←(0, 0(0), 0) combination band might be observable by high-resolution spectroscopy.

  20. Cigarette Butt Decomposition and Associated Chemical Changes Assessed by 13C CPMAS NMR

    PubMed Central

    Bonanomi, Giuliano; Incerti, Guido; Cesarano, Gaspare; Gaglione, Salvatore A.; Lanzotti, Virginia

    2015-01-01

    Cigarette butts (CBs) are the most common type of litter on earth, with an estimated 4.5 trillion discarded annually. Apart from being unsightly, CBs pose a serious threat to living organisms and ecosystem health when discarded in the environment because they are toxic to microbes, insects, fish and mammals. In spite of the CB toxic hazard, no studies have addressed the effects of environmental conditions on CB decomposition rate. In this study we investigate the interactive effects of substrate fertility and N transfer dynamics on CB decomposition rate and carbon quality changes. We carried out an experiment using smoked CBs and wood sticks, used as a slow decomposing standard organic substrate, incubated in both laboratory and field conditions for two years. CB carbon quality changes during decomposition was assessed by 13C CPMAS NMR. Our experiment confirmed the low degradation rate of CBs which, on average, lost only 37.8% of their initial mass after two years of decomposition. Although a net N transfer occurred from soil to CBs, contrary to our hypothesis, mass loss in the medium-term (two years) was unaffected by N availability in the surrounding substrate. The opposite held for wood sticks, in agreement with the model that N-rich substrates promote the decomposition of other N-poor natural organic materials with a high C/N ratio. As regards CB chemical quality, after two years of decomposition 13C NMR spectroscopy highlighted very small changes in C quality that are likely to reflect a limited microbial attack. PMID:25625643

  1. High-resolution molecular-beam spectroscopy of NaCN and Na 13CN

    NASA Astrophysics Data System (ADS)

    van Vaals, J. J.; Meerts, W. Leo; Dymanus, A.

    The sodium cyanide molecule was studied by molecular-beam electric-resonance spectroscopy in the microwave region. We used the seeded-beam technique to produce a supersonic beam with strong translational, rotational and vibrational cooling. In the frequency range 9.5-40 GHz we observed and identified for NaCN 186 and for Na 13CN 107 hyperfine transitions in 20 and 16 rotational transitions, respectively, all in the ground vibrational state. The rotational, the five quartic and three sextic centrifugal distortion constants of NaCN are: A″ = 57921.954(7) MHz; B″ = 8369.312(2) MHz, C″ = 7272.712(2) MHz. All quadrupole and several spin-rotation coupling constants for the hyperfine interaction were evaluated. The quadrupole coupling constants (in MHz) for NaCN are: eQq12(Na) = -5.344(5), eQq12 = 2.397(7). eQq12(N) = 2.148(4), eQq12(N) = -4.142(5). From these constants and those of Na 13CN we have determined the principal components of the quadrupole coupling tensor for potassium and nitrogen. The structure of sodium cyanide evaluated from the rotational constants of NaCN and Na 13CN was found to be T shaped, similar to the structure of KCN but completely different from the linear isocyanide configuration of LiNC. The effective structural parameters for sodium cyanide in the ground vibrational state are: rCN = 1.170(4) Å, rNaC = 2.379(15) Å, rN12N = 2.233(15) Å, in gratifying agreement with ab initio calculations. Both the geometrical structure and the hyperfine coupling justify the conclusion that the CN group in gaseous sodium cyanide approximately can be considered as a free CN - ion.

  2. In situ measurement of magnesium carbonate formation from CO2 using static high-pressure and -temperature 13C NMR.

    PubMed

    Surface, J Andrew; Skemer, Philip; Hayes, Sophia E; Conradi, Mark S

    2013-01-02

    We explore a new in situ NMR spectroscopy method that possesses the ability to monitor the chemical evolution of supercritical CO(2) in relevant conditions for geological CO(2) sequestration. As a model, we use the fast reaction of the mineral brucite, Mg(OH)(2), with supercritical CO(2) (88 bar) in aqueous conditions at 80 °C. The in situ conversion of CO(2) into metastable and stable carbonates is observed throughout the reaction. After more than 58 h of reaction, the sample was depressurized and analyzed using in situ Raman spectroscopy, where the laser was focused on the undisturbed products through the glass reaction tube. Postreaction, ex situ analysis was performed on the extracted and dried products using Raman spectroscopy, powder X-ray diffraction, and magic-angle spinning (1)H-decoupled (13)C NMR. These separate methods of analysis confirmed a spatial dependence of products, possibly caused by a gradient of reactant availability, pH, and/or a reaction mechanism that involves first forming hydroxy-hydrated (basic, hydrated) carbonates that convert to the end-product, anhydrous magnesite. This carbonation reaction illustrates the importance of static (unmixed) reaction systems at sequestration-like conditions.

  3. Ruminant methane delta(/sup 13/C//sup 12/C) values: relation to atmospheric methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rust, F.

    1981-03-06

    The delta(/sup 13/C//sup 12/C) - values of methane produced by fistulated steers, dairy cattle, and wethers, and dairy and beef cattle herds show a bimodal distribution that appears to be correlated with the plant type (C/sub 3/ or C/sub 4/, that is, producing either a three- or a four-carbon acid in the first step of photosynthesis) consumed by the animals. These results indicate that cattle and sheep, on a global basis, release methane with an average delta(/sup 13/C//sup 12/C) value of -60 and -63 per mil, respectively. Together they are a source of atmospheric methane whose delta(/sup 13/C//sup 12/C) ismore » similar to published values for marsh gas and cannot explain the 20 per mil higher values for atmospheric methane.« less

  4. Synthesis of D-[U-{sup 13}C]Glucal, D-[U-{sup 13}C] Galactal, and L-[U-{sup 13}C]Fucose for NMR structure studies of oligosaccharides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, R.; Unkefer, C.J.; Silks, L.A. III

    1996-12-31

    The role of carbohydrates is well recognized in a variety of important biological phenomena such as cell surface recognition. Recent advances in carbohydrate chemistry, including the development of solid phase synthesis methods, have helped to provide significant quantities of material by offering general protocols for synthesis of well-defined, pure material. However, the study of the solution structure of oligosaccharides by nuclear magnetic resonance techniques have been hampered by the lack of enriched {sup 13}C material. In an effort to help alleviate this situation, we have been interested in the construction of the title compounds from a single economical carbon source,more » D-[U-{sup 13}C]glucose. Details of the syntheses will be provided.« less

  5. High Resolution Spectrum of the 13C12C12C Lowest Bending Mode

    NASA Astrophysics Data System (ADS)

    Endres, C. P.; Lutter, V.; Kötting, J.; Krieg, J.; Thorwirth, S.; Schlemmer, S.; Giesen, T. F.; Harding, M. E.; Vazquez, J.

    2012-06-01

    Linear C_3 is a floppy molecule which possesses an extremely low lying bending mode, ν_2, at roughly 60 cm-1 or 1.9 THz. Based on highly accurate laboratory data C_3 has been detected in various astronomical sources most recently with the HIFI instrument aboard the Herschel satellite. Although C_3 turns out to be quite abundant in interstellar environments which makes a search for 13C substituted isotopologs feasible, other isotopologs could not be detected so far, because no accurate transition frequencies have been available for these species in this frequency range. Relative abundance ratios of C_3 isotopologs might give important hints on its building mechanism and further constraints for chemical networks. In this work, the spectrum of the ν_2 lowest bending mode of 13CCC has been investigated. We used laser ablation of 13C enriched carbon samples to record absorption spectra in a supersonic jet expansion. The radiation in our setup is generated by a synthesizer referenced to a Rubidium standard in combination with a frequency multiplier chain and detected by a liquid Helium cooled InSb bolometer. The laboratory search has been supported by high-level coupled-cluster calculations, which turns out to compare very favorably with obtained experimental molecular parameters. Schmuttenmaer, C. A., Cohen, R. C., Pugliano, N., Heath, et al., Science 249, 897-900 (1990) Giesen, T. F., van Orden, A. O., Cruzan, J. D., and Provencal, R. A., et al., Astrophys. J. 551, L181-L184 (2001) Gendriesch, R. and Pehl, K. and Giesen, T. and Winnewisser, G. and Lewen, F., Z. Naturforsch. 58a, 129-138 (2003) Van Orden, A., Cruzan, J. D., Provencal, R. A., et al. in Proc. Airborne Astronomy Symp., ASP Conf. Ser. 73, 67 (1995) ernicharo, J. and Goicoechea, J. R. and Caux, E., Astrophys. J. Lett. 534, L199-L202 (2000) Mookerjea, B., Giesen, T., Stutzki, J., Cernicharo, J., et al., Astron. Astrophys. 521, L13 (2010)

  6. K+ currents underlying the action of endothelium-derived hyperpolarizing factor in guinea-pig, rat and human blood vessels

    PubMed Central

    Coleman, H A; Tare, Marianne; Parkington, Helena C

    2001-01-01

    Membrane currents attributed to endothelium-derived hyperpolarizing factor (EDHF) were recorded in short segments of submucosal arterioles of guinea-pigs using single microelectrode voltage clamp. The functional responses of arterioles and human subcutaneous, rat hepatic and guinea-pig coronary arteries were also assessed as changes in membrane potential recorded simultaneously with contractile activity. The current-voltage (I-V) relationship for the conductance due to EDHF displayed outward rectification with little voltage dependence. Components of the current were blocked by charybdotoxin (30-60 nM) and apamin (0.25-0.50 μM), which also blocked hyperpolarization and prevented EDHF-induced relaxation. The EDHF-induced current was insensitive to Ba2+ (20-100 μM) and/or ouabain (1 μM to 1 mM). In human subcutaneous arteries and guinea-pig coronary arteries and submucosal arterioles, the EDHF-induced responses were insensitive to Ba2+ and/or ouabain. Increasing [K+]o to 11-21 mM evoked depolarization under conditions in which EDHF evoked hyperpolarization. Responses to ACh, sympathetic nerve stimulation and action potentials were indistinguishable between dye-labelled smooth muscle and endothelial cells in arterioles. Action potentials in identified endothelial cells were always associated with constriction of the arterioles. 18β-Glycyrrhetinic acid (30 μM) and carbenoxolone (100 μM) depolarized endothelial cells by 31 ± 6 mV (n = 7 animals) and 33 ± 4 mV (n = 5), respectively, inhibited action potentials in smooth muscle and endothelial cells and reduced the ACh-induced hyperpolarization of endothelial cells by 56 and 58 %, respectively. Thus, activation of outwardly rectifying K+ channels underlies the hyperpolarization and relaxation due to EDHF. These channels have properties similar to those of intermediate conductance (IKCa) and small conductance (SKCa) Ca2+-activated K+ channels. Strong electrical coupling between endothelial and smooth muscle cells

  7. Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-13C]Glucose and [1,2-13C]Acetate as Substrates.

    PubMed

    McNair, Laura F; Kornfelt, Rasmus; Walls, Anne B; Andersen, Jens V; Aldana, Blanca I; Nissen, Jakob D; Schousboe, Arne; Waagepetersen, Helle S

    2017-03-01

    Brain slice preparations from rats, mice and guinea pigs have served as important tools for studies of neurotransmission and metabolism. While hippocampal slices routinely have been used for electrophysiology studies, metabolic processes have mostly been studied in cerebral cortical slices. Few comparative characterization studies exist for acute hippocampal and cerebral cortical slices, hence, the aim of the current study was to characterize and compare glucose and acetate metabolism in these slice preparations in a newly established incubation design. Cerebral cortical and hippocampal slices prepared from 16 to 18-week-old mice were incubated for 15-90 min with unlabeled glucose in combination with [U- 13 C]glucose or [1,2- 13 C]acetate. Our newly developed incubation apparatus allows accurate control of temperature and is designed to avoid evaporation of the incubation medium. Subsequent to incubation, slices were extracted and extracts analyzed for 13 C-labeling (%) and total amino acid contents (µmol/mg protein) using gas chromatography-mass spectrometry and high performance liquid chromatography, respectively. Release of lactate from the slices was quantified by analysis of the incubation media. Based on the measured 13 C-labeling (%), total amino acid contents and relative activity of metabolic enzymes/pathways, we conclude that the slice preparations in the current incubation apparatus exhibited a high degree of metabolic integrity. Comparison of 13 C-labeling observed with [U- 13 C]glucose in slices from cerebral cortex and hippocampus revealed no significant regional differences regarding glycolytic or total TCA cycle activities. On the contrary, results from the incubations with [1,2- 13 C]acetate suggest a higher capacity of the astrocytic TCA cycle in hippocampus compared to cerebral cortex. Finally, we propose a new approach for assessing compartmentation of metabolite pools between astrocytes and neurons using 13 C-labeling (%) data obtained from

  8. Pulmonary hyperpolarized (129) Xe morphometry for mapping xenon gas concentrations and alveolar oxygen partial pressure: Proof-of-concept demonstration in healthy and COPD subjects.

    PubMed

    Ouriadov, A; Farag, A; Kirby, M; McCormack, D G; Parraga, G; Santyr, G E

    2015-12-01

    Diffusion-weighted (DW) hyperpolarized (129) Xe morphometry magnetic resonance imaging (MRI) can be used to map regional differences in lung tissue micro-structure. We aimed to generate absolute xenon concentration ([Xe]) and alveolar oxygen partial pressure (pA O2 ) maps by extracting the unrestricted diffusion coefficient (D0 ) of xenon as a morphometric parameter. In this proof-of-concept demonstration, morphometry was performed using multi b-value (0, 12, 20, 30 s/cm(2) ) DW hyperpolarized (129) Xe images obtained in four never-smokers and four COPD ex-smokers. Morphometric parameters and D0 maps were computed and the latter used to generate [Xe] and pA O2 maps. Xenon concentration phantoms estimating a range of values mimicking those observed in vivo were also investigated. Xenon D0 was significantly increased (P = 0.035) in COPD (0.14 ± 0.03 cm(2) /s) compared with never-smokers (0.12 ± 0.02 cm(2) /s). COPD ex-smokers also had significantly decreased [Xe] (COPD = 8 ± 7% versus never-smokers = 13 ± 8%, P = 0.012) and increased pA O2 (COPD = 18 ± 3% versus never-smokers = 15 ± 3%, P = 0.009) compared with never-smokers. Phantom measurements showed the expected dependence of D0 on [Xe] over the range of concentrations anticipated in vivo. DW hyperpolarized (129) Xe MRI morphometry can be used to simultaneously map [Xe] and pA O2 in addition to providing micro-structural biomarkers of emphysematous destruction in COPD. Phantom measurements of D0 ([Xe]) supported the hypotheses that differences in subjects may reflect differences in functional residual capacity. © 2014 Wiley Periodicals, Inc.

  9. Parahydrogen-induced polarization of carboxylic acids: a pilot study of valproic acid and related structures.

    PubMed

    Lego, Denise; Plaumann, Markus; Trantzschel, Thomas; Bargon, Joachim; Scheich, Henning; Buntkowsky, Gerd; Gutmann, Torsten; Sauer, Grit; Bernarding, Johannes; Bommerich, Ute

    2014-07-01

    Parahydrogen-induced polarization (PHIP) is a promising new tool for medical applications of MR, including MRI. The PHIP technique can be used to transfer high non-Boltzmann polarization, derived from parahydrogen, to isotopes with a low natural abundance or low gyromagnetic ratio (e.g. (13)C), thus improving the signal-to-noise ratio by several orders of magnitude. A few molecules acting as metabolic sensors have already been hyperpolarized with PHIP, but the direct hyperpolarization of drugs used to treat neurological disorders has not been accomplished until now. Here, we report on the first successful hyperpolarization of valproate (valproic acid, VPA), an important and commonly used antiepileptic drug. Hyperpolarization was confirmed by detecting the corresponding signal patterns in the (1)H NMR spectrum. To identify the optimal experimental conditions for the conversion of an appropriate VPA precursor, structurally related molecules with different side chains were analyzed in different solvents using various catalytic systems. The presented results include hyperpolarized (13)C NMR spectra and proton images of related systems, confirming their applicability for MR studies. PHIP-based polarization enhancement may provide a new MR technique to monitor the spatial distribution of valproate in brain tissue and to analyze metabolic pathways after valproate administration. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Optically transmitted and inductively coupled electric reference to access in vivo concentrations for quantitative proton-decoupled ¹³C magnetic resonance spectroscopy.

    PubMed

    Chen, Xing; Pavan, Matteo; Heinzer-Schweizer, Susanne; Boesiger, Peter; Henning, Anke

    2012-01-01

    This report describes our efforts on quantification of tissue metabolite concentrations in mM by nuclear Overhauser enhanced and proton decoupled (13) C magnetic resonance spectroscopy and the Electric Reference To access In vivo Concentrations (ERETIC) method. Previous work showed that a calibrated synthetic magnetic resonance spectroscopy-like signal transmitted through an optical fiber and inductively coupled into a transmit/receive coil represents a reliable reference standard for in vivo (1) H magnetic resonance spectroscopy quantification on a clinical platform. In this work, we introduce a related implementation that enables simultaneous proton decoupling and ERETIC-based metabolite quantification and hence extends the applicability of the ERETIC method to nuclear Overhauser enhanced and proton decoupled in vivo (13) C magnetic resonance spectroscopy. In addition, ERETIC signal stability under the influence of simultaneous proton decoupling is investigated. The proposed quantification method was cross-validated against internal and external reference standards on human skeletal muscle. The ERETIC signal intensity stability was 100.65 ± 4.18% over 3 months including measurements with and without proton decoupling. Glycogen and unsaturated fatty acid concentrations measured with the ERETIC method were in excellent agreement with internal creatine and external phantom reference methods, showing a difference of 1.85 ± 1.21% for glycogen and 1.84 ± 1.00% for unsaturated fatty acid between ERETIC and creatine-based quantification, whereas the deviations between external reference and creatine-based quantification are 6.95 ± 9.52% and 3.19 ± 2.60%, respectively. Copyright © 2011 Wiley Periodicals, Inc.

  11. Computational (DFT) and Experimental (EXAFS) Study of the Interaction of [Ir(IMes)(H)2 (L)3 ] with Substrates and Co-substrates Relevant for SABRE in Dilute Systems.

    PubMed

    van Weerdenburg, Bram J A; Engwerda, Anthonius H J; Eshuis, Nan; Longo, Alessandro; Banerjee, Dipanjan; Tessari, Marco; Guerra, Célia Fonseca; Rutjes, Floris P J T; Bickelhaupt, F Matthias; Feiters, Martin C

    2015-07-13

    Signal amplification by reversible exchange (SABRE) is an emerging hyperpolarization method in NMR spectroscopy, in which hyperpolarization is transferred through the scalar coupling network of para-hydrogen derived hydrides in a metal complex to a reversibly bound substrate. Substrates can even be hyperpolarized at concentrations below that of the metal complex by addition of a suitable co-substrate. Here we investigate the catalytic system used for trace detection in NMR spectroscopy with [Ir(IMes)(H)2 (L)3 ](+) (IMes=1,3-dimesitylimidazol-2-ylidene) as catalyst, pyridine as a substrate and 1-methyl-1,2,3-triazole as co-substrate in great detail. With density functional theory (DFT), validated by extended X-ray absorption fine structure (EXAFS) experiments, we provide explanations for the relative abundance of the observed metal complexes, as well as their contribution to SABRE. We have established that the interaction between iridium and ligands cis to IMes is weaker than that with the trans ligand, and that in mixed complexes with pyridine and triazole, the latter preferentially takes up the trans position. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Freshwater Mussel Shell δ13C Values as a Proxy for δ13CDIC in a Polluted, Temperate River

    NASA Astrophysics Data System (ADS)

    Graniero, L. E.; Gillikin, D. P.; Surge, D. M.

    2017-12-01

    Freshwater mussel shell δ13C values have been examined as an indicator of ambient δ13C composition of dissolved inorganic carbon (DIC) in temperate rivers. However, shell δ13C values may be obscured by the assimilation of respired, metabolic carbon (CM) derived from the organism's diet. Water δ18O and δ13CDIC values were collected fortnightly from August 2015 through July 2017 from three sites (one agricultural, one downstream of a wastewater treatment plant, one urban) in the Neuse River, NC to test the reliability of Elliptio complanata shell δ13C values as a proxy for δ13CDIC values. Muscle, mantle, gill, and stomach δ13C values were analyzed to approximate the %CM incorporated into the shell. All tissue δ13C values were within 2‰ of each other, which equates to a ±1% difference in calculated %CM. As such, muscle tissue δ13C values will be used for calculating the %CM, because they have the slowest turnover rate of the tissues sampled. Water temperature and δ18O values were used to calculate predicted aragonite shell δ18O­ values (δ18O­ar) based on the aragonite-water fractionation relationship. To assign dates to each shell microsample, predicted δ18O­ar values were compared to high-resolution serially sampled shell values. Consistent with previous studies, E. complanata cease growth in winter when temperatures are below about 12ºC. Preliminary results indicate that during the growing season, shell δ13C values are lower than expected equilibrium values, reflecting the assimilation of 15% CM, on average. Shell δ13C values are not significantly different than δ13CDIC values, but do not capture the full range of δ13CDIC values during each growing season. Thus, δ13C values of E. complanata shells can be used to reliably reconstruct past δ13CDIC values within 2‰ of coeval values. Further research will investigate how differing land-use affects the relationship between shell δ13C, CM, and δ13CDIC values.

  13. Analyses of cocondensation of melamine and urea through carbon 13 enriched formaldehyde with carbon 13 nuclear magnetic resonance spectroscopy

    Treesearch

    Tomita Bunchiro; Chung-Yun Hse

    1995-01-01

    The urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins, and melamine-urea-formaldehyde (MUF) cocondensed resins were synthesized using the labeling method with 13C enriched formaldehyde unde neutral conditions and their 13C-NMR (nuclear magnetic resonance) spectra were analyzed. The remarkable down-field...

  14. In vivo detection of cucurbit[6]uril, a hyperpolarized xenon contrast agent for a xenon magnetic resonance imaging biosensor

    PubMed Central

    Hane, Francis T.; Li, Tao; Smylie, Peter; Pellizzari, Raiili M.; Plata, Jennifer A.; DeBoef, Brenton; Albert, Mitchell S.

    2017-01-01

    The Hyperpolarized gas Chemical Exchange Saturation Transfer (HyperCEST) Magnetic Resonance (MR) technique has the potential to increase the sensitivity of a hyperpolarized xenon-129 MRI contrast agent. Signal enhancement is accomplished by selectively depolarizing the xenon within a cage molecule which, upon exchange, reduces the signal in the dissolved phase pool. Herein we demonstrate the in vivo detection of the cucurbit[6]uril (CB6) contrast agent within the vasculature of a living rat. Our work may be used as a stepping stone towards using the HyperCEST technique as a molecular imaging modality. PMID:28106110

  15. 13C nuclear magnetic resonance and gas chromatography-mass spectrometry studies of carbon metabolism in the actinomycin D producer Streptomyces parvulus by use of 13C-labeled precursors.

    PubMed Central

    Inbar, L; Lapidot, A

    1991-01-01

    Fructose and glutamate metabolism was monitored in cell suspensions of streptomyces parvulus by 13C nuclear magnetic resonance. The experiments were performed for cells grown with various 13C sources in a growth medium containing D-[U-13C]fructose, L-[13C]glutamate, or L-[U-13C]aspartate and with nonlabeled precursors to compare intracellular pools in S. parvulus cells at different periods of the cell life cycle. The transport of fructose into the cells was biphasic in nature; during rapid transport, mannitol, fructose, and glucose 6-phosphate were accumulated intracellularly, whereas during the passive diffusion of fructose, the intracellular carbohydrate pool comprised mainly trehalose (1,1'-alpha-alpha-D-glucose). The regulation of fructokinase activity by the intracellular intermediates may play an important role in fructose catabolism in S. parvulus. Transaldolase activity in S. parvulus was determined from the 13C nuclear magnetic resonance labeling pattern of trehalose carbons obtained from cells grown in medium containing either L-[U-13C]aspartate or L-[U-13C]glutamate. Only carbons 4, 5, and 6 of the disaccharide were labeled. Isotopomer analysis of the trehalose carbons led us to conclude that the flux through the reverse glycolytic pathway, condensation of glyceraldehyde 3-phosphate with dihydroxyacetone phosphate, makes at best a minor contribution to the 13C-labeled glucose units observed in trehalose. The pentose pathway and transaldolase activity can explain the labeling pattern of 4,5,6-13C3 of trehalose. Moreover, the transfer of the 13C label of L-[U-13C]aspartate into the different isotopomers of trehalose C4, C5, and C6 by the transaldolase activity allowed us to calculate the relative fluxes from oxaloacetate via gluconeogenesis and through the tricarboxylic acid cycle. The ratio of the two fluxes is approximately 1. However, the main carbon source for trehalose synthesis in S. parvulus is fructose and not glutamate or aspartate. The 13C

  16. Analysis on cocondensation of melamine and urea through carbon 13 enriched formaldehyde with carbon 13 nuclear magnetic resonance spectroscopy

    Treesearch

    Bunichiro Tomita; Chung-Yun Hse

    1995-01-01

    The urea-formaldehyde (UF) resins, melamine-formaldehyde (MF) resins, and melamine-urea-formaldehyde (MUF) cocondensed resins were synthesized using the labeling method of 13C enriched formaldehyde udner neutral conditions and their 13C-NMR (nuclear magnetic resonance) spectra were analyzed. The remarkable down-field shifts...

  17. The origin of the post-tetanic hyperpolarization of mammalian motor nerve terminals

    PubMed Central

    Gage, P. W.; Hubbard, J. I.

    1966-01-01

    1. Motor nerve terminals in magnesium-poisoned rat hemidiaphragm-phrenic nerve preparations in vitro were stimulated with short depolarizing pulses of approximately threshold strength and the evoked antidromic responses recorded from the phrenic nerve. The percentage of these 1/sec or 0·5/sec stimuli to which there was no antidromic response was used as a quantitative measure of the terminal excitability. After standard tetanic stimulation (1000 impulses at 100/sec) the excitability of the terminals was depressed for an average duration of 60-70 sec, during most of which time no antidromic responses to stimuli of pretetanic intensity were recorded. There was no significant interaction between stimuli to the terminals at rates of 1 or 0·5/sec. 2. Potassium-free solutions at first increased, then decreased, the post-tetanic depression of excitability. Raising [K]o threefold (15 mM) abolished the post-tetanic depression and often converted it to an exaltation of excitability. 3. Polarizing currents were applied to the terminals with a second electrode. Depolarizing currents increased, while hyperpolarizing currents decreased, the post-tetanic depression of excitability. 4. In solutions with 70% of the normal NaCl content replaced by sucrose, the post-tetanic depression of excitability was reversibly prolonged. 5. In the presence of 7·7 × 10-6 M digoxin or 0·42 mM ouabain there was a small reversible reduction of post-tetanic excitability. 6. After exposure to solutions containing no glucose or to solutions containing 3-5 mM sodium azide the excitability of the terminals was not altered by the tetanus. After washing with the control solution, post-tetanic depression of excitability returned. Antimycin-A (1·8 × 10-6 M) had little or no effect upon post-tetanic excitability. 7. It was concluded that the post-tetanic depression of excitability reflected hyperpolarization of the terminals and that this hyperpolarization was caused by a shift of the membrane

  18. A global ocean climatology of preindustrial and modern ocean δ13C

    NASA Astrophysics Data System (ADS)

    Eide, Marie; Olsen, Are; Ninnemann, Ulysses S.; Johannessen, Truls

    2017-03-01

    We present a global ocean climatology of dissolved inorganic carbon δ13C (‰) corrected for the 13C-Suess effect, preindustrial δ13C. This was constructed by first using Olsen and Ninnemann's (2010) back-calculation method on data from 25 World Ocean Circulation Experiment cruises to reconstruct the preindustrial δ13C on sections spanning all major oceans. Next, we developed five multilinear regression equations, one for each major ocean basin, which were applied on the World Ocean Atlas data to construct the climatology. This reveals the natural δ13C distribution in the global ocean. Compared to the modern distribution, the preindustrial δ13C spans a larger range of values. The maxima, of up to 1.8‰, occurs in the subtropical gyres of all basins, in the upper and intermediate waters of the North Atlantic, as well as in mode waters with a Southern Ocean origin. Particularly strong gradients occur at intermediate depths, revealing a strong potential for using δ13C as a tracer for changes in water mass geometry at these levels. Further, we identify a much tighter relationship between δ13C and apparent oxygen utilization (AOU) than between δ13C and phosphate. This arises because, in contrast to phosphate, AOU and δ13C are both partly reset when waters are ventilated in the Southern Ocean and underscore that δ13C is a highly robust proxy for past changes in ocean oxygen content and ocean ventilation. Our global preindustrial δ13C climatology is openly accessible and can be used, for example, for improved model evaluation and interpretation of sediment δ13C records.

  19. 13C Mannitol as a Novel Biomarker for Measurement of Intestinal Permeability

    PubMed Central

    Grover, Madhusudan; Camilleri, Michael; Hines, Jolaine; Burton, Duane; Ryks, Michael; Wadhwa, Akhilesh; Sundt, Wendy; Dyer, Roy; Singh, Ravinder J.

    2016-01-01

    Background Gastrointestinal (GI) and non-GI disorders are associated with altered intestinal permeability, which can be measured in vivo by urinary excretion after oral lactulose and mannitol ingestion. Inadvertent dietary consumption of 12Carbon (12C, regular) mannitol in food or from other sources may interfere with the test’s interpretation. 13Carbon (13C) constitutes 1% of carbon in nature and 13C mannitol is a stable isotope. Our aim was to determine performance of 13C mannitol for measurement of intestinal permeability. Methods Ten healthy volunteers underwent intestinal permeability assay using co-administered 12C mannitol, 13C mannitol and lactulose, followed by timed urine collections. Urinary sugar concentrations were measured using tandem high performance liquid chromatography-mass spectrometry. Key Results We found that 13C mannitol can be distinguishable from 12C mannitol on tandem mass spectrometry. Additionally, 13C mannitol had ~20-fold lower baseline contamination compared to 12C mannitol. We describe here the 13C mannitol assay method for measurement of intestinal permeability. Conclusions & Inferences In conclusion, 13C mannitol is superior to 12C mannitol for measurement of intestinal permeability. It avoids issues with baseline contamination and erratic excretions during the testing period. PMID:26914765

  20. (13) C mannitol as a novel biomarker for measurement of intestinal permeability.

    PubMed

    Grover, M; Camilleri, M; Hines, J; Burton, D; Ryks, M; Wadhwa, A; Sundt, W; Dyer, R; Singh, R J

    2016-07-01

    Gastrointestinal (GI) and non-GI disorders are associated with altered intestinal permeability, which can be measured in vivo by urinary excretion after oral lactulose and mannitol ingestion. Inadvertent dietary consumption of (12) Carbon ((12) C, regular) mannitol in food or from other sources may interfere with the test's interpretation. (13) Carbon ((13) C) constitutes 1% of carbon in nature and (13) C mannitol is a stable isotope. Our aim was to determine the performance of (13) C mannitol for measurement of intestinal permeability. Ten healthy volunteers underwent intestinal permeability assay using coadministered (12) C mannitol, (13) C mannitol and lactulose, followed by timed urine collections. Urinary sugar concentrations were measured using tandem high performance liquid chromatography-mass spectrometry. We found that (13) C mannitol can be distinguishable from (12) C mannitol on tandem mass spectrometry. In addition, (13) C mannitol had ~20-fold lower baseline contamination compared to (12) C mannitol. We describe here the (13) C mannitol assay method for the measurement of intestinal permeability. In conclusion, (13) C mannitol is superior to (12) C mannitol for measurement of intestinal permeability. It avoids issues with baseline contamination and erratic excretions during the testing period. © 2016 John Wiley & Sons Ltd.