Science.gov

Sample records for hyperpolarized mri image

  1. Functional lung imaging using hyperpolarized gas MRI.

    PubMed

    Fain, Sean B; Korosec, Frank R; Holmes, James H; O'Halloran, Rafael; Sorkness, Ronald L; Grist, Thomas M

    2007-05-01

    The noninvasive assessment of lung function using imaging is increasingly of interest for the study of lung diseases, including chronic obstructive pulmonary disease (COPD) and asthma. Hyperpolarized gas MRI (HP MRI) has demonstrated the ability to detect changes in ventilation, perfusion, and lung microstructure that appear to be associated with both normal lung development and disease progression. The physical characteristics of HP gases and their application to MRI are presented with an emphasis on current applications. Clinical investigations using HP MRI to study asthma, COPD, cystic fibrosis, pediatric chronic lung disease, and lung transplant are reviewed. Recent advances in polarization, pulse sequence development for imaging with Xe-129, and prototype low magnetic field systems dedicated to lung imaging are highlighted as areas of future development for this rapidly evolving technology.

  2. Hyperpolarization MRI

    PubMed Central

    Miloushev, Vesselin Z.; Keshari, Kayvan R.; Holodny, Andrei I.

    2016-01-01

    Hyperpolarization is a novel technology that can dramatically increase signal to noise in magnetic resonance. The method is being applied to small injectable endogenous molecules, which can be used to monitor transient in vivo metabolic events, in real time. The emergence of hyperpolarized 13C-labeled probes, specifically 13C pyruvate, has enabled monitoring of core cellular metabolic events. Neuro-oncological applications have been demonstrated in preclinical models. Many more applications of this technology are envisioned, with transformative potential in magnetic resonance imaging. PMID:26848559

  3. Hyperpolarized 129Xe MRI: A Viable Functional Lung Imaging Modality?

    PubMed Central

    Patz, Samuel; Hersman, F. William; Muradian, Iga; Hrovat, Mirko I.; Ruset, Iulian C.; Ketel, Stephen; Jacobson, Francine; Topulos, George P.; Hatabu, Hiroto; Butler, James P.

    2008-01-01

    The majority of researchers investigating hyperpolarized gas MRI as a candidate functional lung imaging modality have used 3He as their imaging agent of choice rather than 129Xe. This preference has been predominantly due to, 3He providing stronger signals due to higher levels of polarization and higher gyromagnetic ratio, as well as its being easily available to more researchers due to availability of polarizers (USA) or ease of gas transport (Europe). Most researchers agree, however, that hyperpolarized 129Xe will ultimately emerge as the imaging agent of choice due to its unlimited supply in nature and its falling cost. Our recent polarizer technology delivers vast improvements in hyperpolarized 129Xe output. Using this polarizer, we have demonstrated the unique property of xenon to measure alveolar surface area noninvasively. In this article, we describe our human protocols and their safety, and our results for the measurement of the partial pressure of pulmonary oxygen (pO2) by observation of 129Xe signal decay. We note that the measurement of pO2 by observation of 129Xe signal decay is more complex than that for 3He because of an additional signal loss mechanism due to interphase diffusion of 129Xe from alveolar gas spaces to septal tissue. This results in measurements of an equivalent pO2 that accounts for both traditional T1 decay from pO2 and that from interphase diffusion. We also provide an update on new technological advancements that form the foundation for an improved compact design polarizer as well as improvements that provide another order-of-magnitude scale-up in xenon polarizer output. PMID:17890035

  4. Application of Good's buffers to pH imaging using hyperpolarized (13)C MRI.

    PubMed

    Flavell, Robert R; von Morze, Cornelius; Blecha, Joseph E; Korenchan, David E; Van Criekinge, Mark; Sriram, Renuka; Gordon, Jeremy W; Chen, Hsin-Yu; Subramaniam, Sukumar; Bok, Robert A; Wang, Zhen J; Vigneron, Daniel B; Larson, Peder E; Kurhanewicz, John; Wilson, David M

    2015-09-25

    N-(2-Acetamido)-2-aminoethanesulfonic acid (ACES), one of Good's buffers, was applied to pH imaging using hyperpolarized (13)C magnetic resonance spectroscopy. Rapid NMR- and MRI-based pH measurements were obtained by exploiting the sensitive pH-dependence of its (13)C chemical shift within the physiologic range.

  5. Application of Good's buffers to pH imaging using hyperpolarized 13C MRI

    PubMed Central

    Flavell, Robert R; von Morze, Cornelius; Blecha, Joseph E.; Korenchan, David; Van Criekinge, Mark; Sriram, Renuka; Gordon, Jeremy; Chen, Hsin-Yu; Subramaniam, Sukumar; Bok, Robert; Wang, Zhen J.; Vigneron, Daniel; Larson, Peder; Kurhanewicz, John; Wilson, David M

    2016-01-01

    N-(2-Acetamido)-2-aminoethanesulfonic acid (ACES), one of Good's buffers, was applied to pH imaging using hyperpolarized 13C magnetic resonance spectroscopy. Rapid NMR- and MRI-based pH measurements were obtained by exploiting the sensitive pH-dependence of its 13C chemical shift within the physiologic range. PMID:26257040

  6. Liquid-state carbon-13 hyperpolarization generated in an MRI system for fast imaging

    PubMed Central

    Schmidt, A. B.; Berner, S.; Schimpf, W.; Müller, C.; Lickert, T.; Schwaderlapp, N.; Knecht, S.; Skinner, J. G.; Dost, A.; Rovedo, P.; Hennig, J.; von Elverfeldt, D.; Hövener, J. -B.

    2017-01-01

    Hyperpolarized (HP) tracers dramatically increase the sensitivity of magnetic resonance imaging (MRI) to monitor metabolism non-invasively and in vivo. Their production, however, requires an extra polarizing device (polarizer) whose complexity, operation and cost can exceed that of an MRI system itself. Furthermore, the lifetime of HP tracers is short and some of the enhancement is lost during transfer to the application site. Here, we present the production of HP tracers in water without an external polarizer: by Synthesis Amid the Magnet Bore, A Dramatically Enhanced Nuclear Alignment (SAMBADENA) is achieved within seconds, corresponding to a hyperpolarization of ∼20%. As transfer of the tracer is no longer required, SAMBADENA may permit a higher polarization at the time of detection at a fraction of the cost and complexity of external polarizers. This development is particularly promising in light of the recently extended portfolio of biomedically relevant para-hydrogen-tracers and may lead to new diagnostic applications. PMID:28262691

  7. Liquid-state carbon-13 hyperpolarization generated in an MRI system for fast imaging

    NASA Astrophysics Data System (ADS)

    Schmidt, A. B.; Berner, S.; Schimpf, W.; Müller, C.; Lickert, T.; Schwaderlapp, N.; Knecht, S.; Skinner, J. G.; Dost, A.; Rovedo, P.; Hennig, J.; von Elverfeldt, D.; Hövener, J.-B.

    2017-03-01

    Hyperpolarized (HP) tracers dramatically increase the sensitivity of magnetic resonance imaging (MRI) to monitor metabolism non-invasively and in vivo. Their production, however, requires an extra polarizing device (polarizer) whose complexity, operation and cost can exceed that of an MRI system itself. Furthermore, the lifetime of HP tracers is short and some of the enhancement is lost during transfer to the application site. Here, we present the production of HP tracers in water without an external polarizer: by Synthesis Amid the Magnet Bore, A Dramatically Enhanced Nuclear Alignment (SAMBADENA) is achieved within seconds, corresponding to a hyperpolarization of ~20%. As transfer of the tracer is no longer required, SAMBADENA may permit a higher polarization at the time of detection at a fraction of the cost and complexity of external polarizers. This development is particularly promising in light of the recently extended portfolio of biomedically relevant para-hydrogen-tracers and may lead to new diagnostic applications.

  8. Development of hyperpolarized noble gas MRI

    NASA Astrophysics Data System (ADS)

    Albert, M. S.; Balamore, D.

    1998-02-01

    Magnetic resonance imaging using the MR signal from hyperpolarized noble gases 129Xe and 3He may become an important new diagnostic technique. Alex Pines (adapting the hyperpolarization technique pioneered by William Happer) presented MR spectroscopy studies using hyperpolarized 129Xe. The current authors recognized that the enormous enhancement in the detectability of 129Xe, promised by hyperpolarization, would solve the daunting SNR problems impeding their attempts to use 129Xe as an in vivo MR probe, especially in order to study the action of general anesthetics. It was hoped that hyperpolarized 129Xe MRI would yield resolutions equivalent to that achievable with conventional 1H 2O MRI, and that xenon's solubility in lipids would facilitate investigations of lipid-rich tissues that had as yet been hard to image. The publication of hyperpolarized 129Xe images of excised mouse lungs heralded the emergence of hyperpolarized noble-gas MRI. Using hyperpolarized 3He, researchers have obtained images of the lung gas space of guinea pigs and of humans. Lung gas images from patients with pulmonary disease have recently been reported. 3He is easier to hyperpolarize than 129Xe, and it yields a stronger MR signal, but its extremely low solubility in blood precludes its use for the imaging of tissue. Xenon, however, readily dissolves in blood, and the T1 of dissolved 129Xe is long enough for sufficient polarization to be carried by the circulation to distal tissues. Hyperpolarized 129Xe dissolved-phase tissue spectra from the thorax and head of rodents and humans have been obtained, as have chemical shift 129Xe images from the head of rats. Lung gas 129Xe images of rodents, and more recently of humans, have been reported. Hyperpolarized 129Xe MRI (HypX-MRI) may elucidate the link between the structure of the lung and its function. The technique may also be useful in identifying ventilation-perfusion mismatch in patients with pulmonary embolism, in staging and tracking the

  9. Hyperpolarized and inert gas MRI: the future.

    PubMed

    Couch, Marcus J; Blasiak, Barbara; Tomanek, Boguslaw; Ouriadov, Alexei V; Fox, Matthew S; Dowhos, Krista M; Albert, Mitchell S

    2015-04-01

    Magnetic resonance imaging (MRI) is a potentially ideal imaging modality for noninvasive, nonionizing, and longitudinal assessment of disease. Hyperpolarized (HP) agents have been developed in the past 20 years for MR imaging, and they have the potential to vastly improve MRI sensitivity for the diagnosis and management of various diseases. The polarization of nuclear magnetic resonance (NMR)-sensitive nuclei other than (1)H (e.g., (3)He, (129)Xe) can be enhanced by a factor of up to 100,000 times above thermal equilibrium levels, which enables direct detection of the HP agent with no background signal. In this review, a number of HP media applications in MR imaging are discussed, including HP (3)He and (129)Xe lung imaging, HP (129)Xe brain imaging, and HP (129)Xe biosensors. Inert fluorinated gas MRI, which is a new lung imaging technique that does not require hyperpolarization, is also briefly discussed. This technique will likely be an important future direction for the HP gas lung imaging community.

  10. Lung ventilation- and perfusion-weighted Fourier decomposition magnetic resonance imaging: in vivo validation with hyperpolarized 3He and dynamic contrast-enhanced MRI.

    PubMed

    Bauman, Grzegorz; Scholz, Alexander; Rivoire, Julien; Terekhov, Maxim; Friedrich, Janet; de Oliveira, Andre; Semmler, Wolfhard; Schreiber, Laura Maria; Puderbach, Michael

    2013-01-01

    The purpose of this work was to validate ventilation-weighted (VW) and perfusion-weighted (QW) Fourier decomposition (FD) magnetic resonance imaging (MRI) with hyperpolarized (3)He MRI and dynamic contrast-enhanced perfusion (DCE) MRI in a controlled animal experiment. Three healthy pigs were studied on 1.5-T MR scanner. For FD MRI, the VW and QW images were obtained by postprocessing of time-resolved lung image sets. DCE acquisitions were performed immediately after contrast agent injection. (3)He MRI data were acquired following the administration of hyperpolarized helium and nitrogen mixture. After baseline MR scans, pulmonary embolism was artificially produced. FD MRI and DCE MRI perfusion measurements were repeated. Subsequently, atelectasis and air trapping were induced, which followed with FD MRI and (3)He MRI ventilation measurements. Distributions of signal intensities in healthy and pathologic lung tissue were compared by statistical analysis. Images acquired using FD, (3)He, and DCE MRI in all animals before the interventional procedure showed homogeneous ventilation and perfusion. Functional defects were detected by all MRI techniques at identical anatomical locations. Signal intensity in VW and QW images was significantly lower in pathological than in healthy lung parenchyma. The study has shown usefulness of FD MRI as an alternative, noninvasive, and easily implementable technique for the assessment of acute changes in lung function. Copyright © 2012 Wiley Periodicals, Inc.

  11. An image acquisition and registration strategy for the fusion of hyperpolarized helium-3 MRI and x-ray CT images of the lung

    NASA Astrophysics Data System (ADS)

    Ireland, Rob H.; Woodhouse, Neil; Hoggard, Nigel; Swinscoe, James A.; Foran, Bernadette H.; Hatton, Matthew Q.; Wild, Jim M.

    2008-11-01

    The purpose of this ethics committee approved prospective study was to evaluate an image acquisition and registration protocol for hyperpolarized helium-3 magnetic resonance imaging (3He-MRI) and x-ray computed tomography. Nine patients with non-small cell lung cancer (NSCLC) gave written informed consent to undergo a free-breathing CT, an inspiration breath-hold CT and a 3D ventilation 3He-MRI in CT position using an elliptical birdcage radiofrequency (RF) body coil. 3He-MRI to CT image fusion was performed using a rigid registration algorithm which was assessed by two observers using anatomical landmarks and a percentage volume overlap coefficient. Registration of 3He-MRI to breath-hold CT was more accurate than to free-breathing CT; overlap 82.9 ± 4.2% versus 59.8 ± 9.0% (p < 0.001) and mean landmark error 0.75 ± 0.24 cm versus 1.25 ± 0.60 cm (p = 0.002). Image registration is significantly improved by using an imaging protocol that enables both 3He-MRI and CT to be acquired with similar breath holds and body position through the use of a birdcage 3He-MRI body RF coil and an inspiration breath-hold CT. Fusion of 3He-MRI to CT may be useful for the assessment of patients with lung diseases.

  12. Hyperpolarized Xenon for NMR and MRI Applications

    PubMed Central

    Witte, Christopher; Kunth, Martin; Döpfert, Jörg; Rossella, Federica; Schröder, Leif

    2012-01-01

    Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) suffer from intrinsic low sensitivity because even strong external magnetic fields of ~10 T generate only a small detectable net-magnetization of the sample at room temperature 1. Hence, most NMR and MRI applications rely on the detection of molecules at relative high concentration (e.g., water for imaging of biological tissue) or require excessive acquisition times. This limits our ability to exploit the very useful molecular specificity of NMR signals for many biochemical and medical applications. However, novel approaches have emerged in the past few years: Manipulation of the detected spin species prior to detection inside the NMR/MRI magnet can dramatically increase the magnetization and therefore allows detection of molecules at much lower concentration 2. Here, we present a method for polarization of a xenon gas mixture (2-5% Xe, 10% N2, He balance) in a compact setup with a ca. 16000-fold signal enhancement. Modern line-narrowed diode lasers allow efficient polarization 7 and immediate use of gas mixture even if the noble gas is not separated from the other components. The SEOP apparatus is explained and determination of the achieved spin polarization is demonstrated for performance control of the method. The hyperpolarized gas can be used for void space imaging, including gas flow imaging or diffusion studies at the interfaces with other materials 8,9. Moreover, the Xe NMR signal is extremely sensitive to its molecular environment 6. This enables the option to use it as an NMR/MRI contrast agent when dissolved in aqueous solution with functionalized molecular hosts that temporarily trap the gas 10,11. Direct detection and high-sensitivity indirect detection of such constructs is demonstrated in both spectroscopic and imaging mode. PMID:22986346

  13. Calibration of RF transmitter voltages for hyperpolarized gas MRI.

    PubMed

    Bashir, Adil; Conradi, Mark S; Woods, Jason C; Quirk, James D; Yablonskiy, Ddmitriy A

    2009-01-01

    MRI with hyperpolarized gases, (3)He, (129)Xe, (13)C, and others, has the potential to become an important diagnostic technique for clinical imaging. Due to the nonreversible loss of magnetization in hyperpolarized gas imaging, the choice of the flip angle is a major factor that influences the signal intensity, and hence, the signal-to-noise ratio. Conventional automated radiofrequency (RF) calibration procedures for (1)H imaging are not suitable for hyperpolarized gas imaging. Herein, we have demonstrated a simple procedure for RF calibration for magnetic resonance imaging (MRI) with hyperpolarized gases that is easily adaptable to clinical settings. We have demonstrated that there exists a linear relationship between the RF transmitter voltages required to obtain the same nutation angle for protons (V(1H)) and hyperpolarized gas nuclei (V(3He)). For our (1)H and (3)He coils we found that V(3He) = 1.937 . V(1H) with correlation coefficient r(2) = 0.97. This calibration can be done as a one-time procedure during the routine quality assurance (QA) protocol. The proposed procedure was found to be extremely robust in routine scanning and provided an efficient method to achieve a desired flip angle, thus allowing optimum image quality.

  14. MO-G-18C-03: Evaluation of Deformable Image Registration for Lung Motion Estimation Using Hyperpolarized Gas Tagging MRI

    SciTech Connect

    Huang, Q; Zhang, Y; Liu, Y; Hu, L; Yin, F; Cai, J; Miller, W

    2014-06-15

    Purpose: Hyperpolarized gas (HP) tagging MRI is a novel imaging technique for direct measurement of lung motion during breathing. This study aims to quantitatively evaluate the accuracy of deformable image registration (DIR) in lung motion estimation using HP tagging MRI as references. Methods: Three healthy subjects were imaged using the HP MR tagging, as well as a high-resolution 3D proton MR sequence (TrueFISP) at the end-of-inhalation (EOI) and the end-of-exhalation (EOE). Ground truth of lung motion and corresponding displacement vector field (tDVF) was derived from HP tagging MRI by manually tracking the displacement of tagging grids between EOI and EOE. Seven different DIR methods were applied to the high-resolution TrueFISP MR images (EOI and EOE) to generate the DIR-based DVFs (dDVF). The DIR methods include Velocity (VEL), MIM, Mirada, multi-grid B-spline from Elastix (MGB) and 3 other algorithms from DIRART toolbox (Double Force Demons (DFD), Improved Lucas-Kanade (ILK), and Iterative Optical Flow (IOF)). All registrations were performed by independent experts. Target registration error (TRE) was calculated as tDVF – dDVF. Analysis was performed for the entire lungs, and separately for the upper and lower lungs. Results: Significant differences between tDVF and dDVF were observed. Besides the DFD and IOF algorithms, all other dDVFs showed similarity in deformation magnitude distribution but away from the ground truth. The average TRE for entire lung ranged 2.5−23.7mm (mean=8.8mm), depending on the DIR method and subject's breathing amplitude. Larger TRE (13.3–23.7mm) was found in subject with larger breathing amplitude of 45.6mm. TRE was greater in lower lung (2.5−33.9 mm, mean=12.4mm) than that in upper lung (2.5−11.9 mm, mean=5.8mm). Conclusion: Significant differences were observed in lung motion estimation between the HP gas tagging MRI method and the DIR methods, especially when lung motion is large. Large variation among different DIR

  15. Quantitative imaging of alveolar recruitment with hyperpolarized gas MRI during mechanical ventilation

    PubMed Central

    Cereda, Maurizio; Emami, Kiarash; Kadlecek, Stephen; Xin, Yi; Mongkolwisetwara, Puttisarn; Profka, Harrilla; Barulic, Amy; Pickup, Stephen; Månsson, Sven; Wollmer, Per; Ishii, Masaru; Deutschman, Clifford S.

    2011-01-01

    The aim of this study was to assess the utility of 3He MRI to noninvasively probe the effects of positive end-expiratory pressure (PEEP) maneuvers on alveolar recruitment and atelectasis buildup in mechanically ventilated animals. Sprague-Dawley rats (n = 13) were anesthetized, intubated, and ventilated in the supine position (4He-to-O2 ratio: 4:1; tidal volume: 10 ml/kg, 60 breaths/min, and inspiration-to-expiration ratio: 1:2). Recruitment maneuvers consisted of either a stepwise increase of PEEP to 9 cmH2O and back to zero end-expiratory pressure or alternating between these two PEEP levels. Diffusion MRI was performed to image 3He apparent diffusion coefficient (ADC) maps in the middle coronal slices of lungs (n = 10). ADC was measured immediately before and after two recruitment maneuvers, which were separated from each other with a wait period (8–44 min). We detected a statistically significant decrease in mean ADC after each recruitment maneuver. The relative ADC change was −21.2 ± 4.1 % after the first maneuver and −9.7 ± 5.8 % after the second maneuver. A significant relative increase in mean ADC was observed over the wait period between the two recruitment maneuvers. The extent of this ADC buildup was time dependent, as it was significantly related to the duration of the wait period. The two postrecruitment ADC measurements were similar, suggesting that the lungs returned to the same state after the recruitment maneuvers were applied. No significant intrasubject differences in ADC were observed between the corresponding PEEP levels in two rats that underwent three repeat maneuvers. Airway pressure tracings were recorded in separate rats undergoing one PEEP maneuver (n = 3) and showed a significant relative difference in peak inspiratory pressure between pre- and poststates. These observations support the hypothesis of redistribution of alveolar gas due to recruitment of collapsed alveoli in presence of atelectasis, which was also supported by the

  16. Perspectives of hyperpolarized noble gas MRI beyond 3He

    PubMed Central

    Lilburn, David M.L.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2013-01-01

    Nuclear Magnetic Resonance (NMR) studies with hyperpolarized (hp) noble gases are at an exciting interface between physics, chemistry, materials science and biomedical sciences. This paper intends to provide a brief overview and outlook of magnetic resonance imaging (MRI) with hp noble gases other than hp 3He. A particular focus are the many intriguing experiments with 129Xe, some of which have already matured to useful MRI protocols, while others display high potential for future MRI applications. Quite naturally for MRI applications the major usage so far has been for biomedical research but perspectives for engineering and materials science studies are also provided. In addition, the prospects for surface sensitive contrast with hp 83Kr MRI is discussed. PMID:23290627

  17. Perspectives of hyperpolarized noble gas MRI beyond 3He.

    PubMed

    Lilburn, David M L; Pavlovskaya, Galina E; Meersmann, Thomas

    2013-04-01

    Nuclear Magnetic Resonance (NMR) studies with hyperpolarized (hp) noble gases are at an exciting interface between physics, chemistry, materials science and biomedical sciences. This paper intends to provide a brief overview and outlook of magnetic resonance imaging (MRI) with hp noble gases other than hp (3)He. A particular focus are the many intriguing experiments with (129)Xe, some of which have already matured to useful MRI protocols, while others display high potential for future MRI applications. Quite naturally for MRI applications the major usage so far has been for biomedical research but perspectives for engineering and materials science studies are also provided. In addition, the prospects for surface sensitive contrast with hp (83)Kr MRI is discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Perspectives of hyperpolarized noble gas MRI beyond 3He

    NASA Astrophysics Data System (ADS)

    Lilburn, David M. L.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2013-04-01

    Nuclear Magnetic Resonance (NMR) studies with hyperpolarized (hp) noble gases are at an exciting interface between physics, chemistry, materials science and biomedical sciences. This paper intends to provide a brief overview and outlook of magnetic resonance imaging (MRI) with hp noble gases other than hp 3He. A particular focus are the many intriguing experiments with 129Xe, some of which have already matured to useful MRI protocols, while others display high potential for future MRI applications. Quite naturally for MRI applications the major usage so far has been for biomedical research but perspectives for engineering and materials science studies are also provided. In addition, the prospects for surface sensitive contrast with hp 83Kr MRI is discussed.

  19. Hyperpolarized Gas MRI: Technique and Applications

    PubMed Central

    McAdams, Holman P.; Kaushik, S. Sivaram; Driehuys, Bastiaan

    2015-01-01

    Synopsis Functional imaging today offers a rich world of information that is more sensitive to changes in lung structure and function than traditionally obtained pulmonary function tests. Hyperpolarized helium (3He) and xenon (129Xe) MR imaging of the lungs provided new sensitive contrast mechanisms to probe changes in pulmonary ventilation, microstructure and gas exchange. With the recent scarcity in the supply of 3He the field of hyperpolarized gas imaging shifted to the use of cheaper and naturally available 129Xe. Xenon is well tolerated and recent technical advances have ensured that the 129Xe image quality is on par with that of 3He. The added advantage of 129Xe is its solubility in pulmonary tissue, which allows exploring specific lung function characteristics involved in gas exchange and alveolar oxygenation. With a plethora of contrast mechanisms, hyperpolarized gases and 129Xe in particular, stands to be an excellent probe of pulmonary structure and function, and provide sensitive and non-invasive biomarkers for a wide variety of pulmonary diseases. PMID:25952516

  20. New insights into lung diseases using hyperpolarized gas MRI.

    PubMed

    Flors, L; Altes, T A; Mugler, J P; de Lange, E E; Miller, G W; Mata, J F; Ruset, I C; Hersman, F W

    2015-01-01

    Hyperpolarized (HP) gases are a new class of contrast agents that permit to obtain high temporal and spatial resolution magnetic resonance images (MRI) of the lung airspaces. HP gas MRI has become important research tool not only for morphological and functional evaluation of normal pulmonary physiology but also for regional quantification of pathologic changes occurring in several lung diseases. The purpose of this work is to provide an introduction to MRI using HP noble gases, describing both the basic principles of the technique and the new information about lung disease provided by clinical studies with this method. The applications of the technique in normal subjects, smoking related lung disease, asthma, and cystic fibrosis are reviewed. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  1. Nanodiamond-enhanced MRI via in situ hyperpolarization

    PubMed Central

    Waddington, David E. J.; Sarracanie, Mathieu; Zhang, Huiliang; Salameh, Najat; Glenn, David R.; Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Walsworth, Ronald L.; Reilly, David J.; Rosen, Matthew S.

    2017-01-01

    Nanodiamonds are of interest as nontoxic substrates for targeted drug delivery and as highly biostable fluorescent markers for cellular tracking. Beyond optical techniques, however, options for noninvasive imaging of nanodiamonds in vivo are severely limited. Here, we demonstrate that the Overhauser effect, a proton–electron polarization transfer technique, can enable high-contrast magnetic resonance imaging (MRI) of nanodiamonds in water at room temperature and ultra-low magnetic field. The technique transfers spin polarization from paramagnetic impurities at nanodiamond surfaces to 1H spins in the surrounding water solution, creating MRI contrast on-demand. We examine the conditions required for maximum enhancement as well as the ultimate sensitivity of the technique. The ability to perform continuous in situ hyperpolarization via the Overhauser mechanism, in combination with the excellent in vivo stability of nanodiamond, raises the possibility of performing noninvasive in vivo tracking of nanodiamond over indefinitely long periods of time. PMID:28443626

  2. Nanodiamond-enhanced MRI via in situ hyperpolarization

    NASA Astrophysics Data System (ADS)

    Waddington, David E. J.; Sarracanie, Mathieu; Zhang, Huiliang; Salameh, Najat; Glenn, David R.; Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Walsworth, Ronald L.; Reilly, David J.; Rosen, Matthew S.

    2017-04-01

    Nanodiamonds are of interest as nontoxic substrates for targeted drug delivery and as highly biostable fluorescent markers for cellular tracking. Beyond optical techniques, however, options for noninvasive imaging of nanodiamonds in vivo are severely limited. Here, we demonstrate that the Overhauser effect, a proton-electron polarization transfer technique, can enable high-contrast magnetic resonance imaging (MRI) of nanodiamonds in water at room temperature and ultra-low magnetic field. The technique transfers spin polarization from paramagnetic impurities at nanodiamond surfaces to 1H spins in the surrounding water solution, creating MRI contrast on-demand. We examine the conditions required for maximum enhancement as well as the ultimate sensitivity of the technique. The ability to perform continuous in situ hyperpolarization via the Overhauser mechanism, in combination with the excellent in vivo stability of nanodiamond, raises the possibility of performing noninvasive in vivo tracking of nanodiamond over indefinitely long periods of time.

  3. Signal-to-noise ratio comparison of encoding methods for hyperpolarized noble gas MRI

    NASA Technical Reports Server (NTRS)

    Zhao, L.; Venkatesh, A. K.; Albert, M. S.; Panych, L. P.

    2001-01-01

    Some non-Fourier encoding methods such as wavelet and direct encoding use spatially localized bases. The spatial localization feature of these methods enables optimized encoding for improved spatial and temporal resolution during dynamically adaptive MR imaging. These spatially localized bases, however, have inherently reduced image signal-to-noise ratio compared with Fourier or Hadamad encoding for proton imaging. Hyperpolarized noble gases, on the other hand, have quite different MR properties compared to proton, primarily the nonrenewability of the signal. It could be expected, therefore, that the characteristics of image SNR with respect to encoding method will also be very different from hyperpolarized noble gas MRI compared to proton MRI. In this article, hyperpolarized noble gas image SNRs of different encoding methods are compared theoretically using a matrix description of the encoding process. It is shown that image SNR for hyperpolarized noble gas imaging is maximized for any orthonormal encoding method. Methods are then proposed for designing RF pulses to achieve normalized encoding profiles using Fourier, Hadamard, wavelet, and direct encoding methods for hyperpolarized noble gases. Theoretical results are confirmed with hyperpolarized noble gas MRI experiments. Copyright 2001 Academic Press.

  4. Signal-to-noise ratio comparison of encoding methods for hyperpolarized noble gas MRI

    NASA Technical Reports Server (NTRS)

    Zhao, L.; Venkatesh, A. K.; Albert, M. S.; Panych, L. P.

    2001-01-01

    Some non-Fourier encoding methods such as wavelet and direct encoding use spatially localized bases. The spatial localization feature of these methods enables optimized encoding for improved spatial and temporal resolution during dynamically adaptive MR imaging. These spatially localized bases, however, have inherently reduced image signal-to-noise ratio compared with Fourier or Hadamad encoding for proton imaging. Hyperpolarized noble gases, on the other hand, have quite different MR properties compared to proton, primarily the nonrenewability of the signal. It could be expected, therefore, that the characteristics of image SNR with respect to encoding method will also be very different from hyperpolarized noble gas MRI compared to proton MRI. In this article, hyperpolarized noble gas image SNRs of different encoding methods are compared theoretically using a matrix description of the encoding process. It is shown that image SNR for hyperpolarized noble gas imaging is maximized for any orthonormal encoding method. Methods are then proposed for designing RF pulses to achieve normalized encoding profiles using Fourier, Hadamard, wavelet, and direct encoding methods for hyperpolarized noble gases. Theoretical results are confirmed with hyperpolarized noble gas MRI experiments. Copyright 2001 Academic Press.

  5. In Situ and Ex Situ Low-Field NMR Spectroscopy and MRI Endowed by SABRE Hyperpolarization**

    PubMed Central

    Barskiy, Danila A.; Kovtunov, Kirill V.; Koptyug, Igor V.; He, Ping; Groome, Kirsten A.; Best, Quinn A.; Shi, Fan; Goodson, Boyd M.; Shchepin, Roman V.; Truong, Milton L.; Coffey, Aaron M.; Waddell, Kevin W.; Chekmenev, Eduard Y.

    2015-01-01

    By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 105-fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high-resolution low-field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real-time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low-field (milli-Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen-enhanced NMR and MRI, which are free from the limitations of high-field magnetic resonance (including susceptibility-induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields. PMID:25367202

  6. Constant-variable flip angles for hyperpolarized media MRI

    NASA Astrophysics Data System (ADS)

    Deng, He; Zhong, Jianping; Ruan, Weiwei; Chen, Xian; Sun, Xianping; Ye, Chaohui; Liu, Maili; Zhou, Xin

    2016-02-01

    The longitudinal magnetization of hyperpolarized media, such as hyperpolarized 129Xe, 3He, etc., is nonrenewable. When the MRI data acquisition begins at the k-domain center, a constant flip angle (CFA) results in an image of high signal-to-noise ratio (SNR) but sacrifices the accuracy of spatial information. On the other hand, a variable flip angle (VFA) strategy results in high accuracy but suffers from a low SNR. In this paper, we propose a novel scheme to optimize both the SNR and accuracy, called constant-variable flip angles (CVFA). The proposed scheme suggests that hyperpolarized magnetic resonance signals are firstly acquired through a train of n∗ CFA excitation pulses, followed by a train of N-n∗ VFA excitation pulses. We simulate and optimize the flip angle used in the CFA section, the number of CFA excitation pulses, the number of VFA excitation pulses, and the initial and final variable flip angles adopted in the VFA section. Phantom and in vivo experiments demonstrate the good performance of the CVFA designs and their ability to maintain both high SNR and spatial resolution.

  7. Validating Excised Rodent Lungs for Functional Hyperpolarized Xenon-129 MRI

    PubMed Central

    Lilburn, David M. L.; Hughes-Riley, Theodore; Six, Joseph S.; Stupic, Karl F.; Shaw, Dominick E.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2013-01-01

    Ex vivo rodent lung models are explored for physiological measurements of respiratory function with hyperpolarized (hp) 129Xe MRI. It is shown that excised lung models allow for simplification of the technical challenges involved and provide valuable physiological insights that are not feasible using in vivo MRI protocols. A custom designed breathing apparatus enables MR images of gas distribution on increasing ventilation volumes of actively inhaled hp 129Xe. Straightforward hp 129Xe MRI protocols provide residual lung volume (RV) data and permit for spatially resolved tracking of small hp 129Xe probe volumes during the inhalation cycle. Hp 129Xe MRI of lung function in the excised organ demonstrates the persistence of post mortem airway responsiveness to intravenous methacholine challenges. The presented methodology enables physiology of lung function in health and disease without additional regulatory approval requirements and reduces the technical and logistical challenges with hp gas MRI experiments. The post mortem lung functional data can augment histological measurements and should be of interest for drug development studies. PMID:24023683

  8. Apparatus for preparing a solution of a hyperpolarized noble gas for NMR and MRI analysis

    DOEpatents

    Pines, Alexander; Budinger, Thomas; Navon, Gil; Song, Yi-Qiao; Appelt, Stephan; Bifone, Angelo; Taylor, Rebecca; Goodson, Boyd; Seydoux, Roberto; Room, Toomas; Pietrass, Tanja

    2008-06-10

    The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.

  9. Enhancement of NMR and MRI in the presence of hyperpolarized noble gases

    DOEpatents

    Pines, Alexander; Budinger, Thomas; Navon, Gil; Song, Yi-Qiao; Appelt, Stephan; Bifone, Angelo; Taylor, Rebecca; Goodson, Boyd; Seydoux, Roberto; Room, Toomas; Pietrass, Tanja

    2004-11-16

    The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.

  10. Pulmonary Kinematics From Tagged Hyperpolarized Helium-3 MRI

    PubMed Central

    Tustison, Nicholas J.; Awate, Suyash P.; Cai, Jing; Altes, Talissa A.; Miller, G. Wilson; de Lange, Eduard E.; Mugler, John P.; Gee, James C.

    2010-01-01

    Purpose To propose and test the feasibility of a novel method for quantifying 3-D regional pulmonary kinematics from hyperpolarized helium-3 tagged MRI in human subjects using a tailored image processing pipeline and a recently developed nonrigid registration framework. Materials and Methods Following image acquisition, inspiratory and expiratory tagged helium-3 MR images were preprocessed using various image filtering techniques to enhance the tag surfaces. Segmentation of the three orthogonal sets of tag planes in each lung produced distinct point-set representations of the tag surfaces. Using these labeled point-sets, deformation fields and corresponding strain maps were obtained via nonrigid point-set registration. Kinematic analysis was performed on three volunteers. Results Tag lines in inspiratory and expiratory images were co-registered producing a continuous 3-D correspondence mapping. Average displacement and directional strains were calculated in three subjects in the inferior, mid, and superior portions of the right and left lungs. As expected, the predominant direction of displacements with expiration is from inferior to superior. Conclusion Kinematic quantitation of pulmonary motion using tagged helium-3 MRI is feasible using the applied image preprocessing filtering techniques and nonrigid point-set registration. Potential benefits from regional pulmonary kinematic quantitation include the facilitation of diagnosis and local assessment of disease progression. PMID:20432362

  11. EPR oxygen imaging and hyperpolarized 13C MRI of pyruvate metabolism as non-invasive biomarkers of tumor treatment response to a glycolysis inhibitor 3-bromopyruvate

    PubMed Central

    Matsumoto, Shingo; Saito, Keita; Yasui, Hironobu; Morris, H. Douglas; Munasinghe, Jeeva P.; Lizak, Martin; Merkle, Hellmut; Ardenkjaer-Larsen, Jan Henrik; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Koretsky, Alan P.; Mitchell, James B.; Krishna, Murali C.

    2012-01-01

    The hypoxic nature of tumors results in treatment resistance and poor prognosis. To spare limited oxygen for more crucial pathways, hypoxic cancerous cells suppress mitochondrial oxidative phosphorylation, and promote glycolysis for energy production. Thereby, inhibition of glycolysis has the potential to overcome treatment resistance of hypoxic tumors. Here, EPR imaging was used to evaluate oxygen dependent efficacy on hypoxia-sensitive drug. The small molecule 3-bromopyruvate (3-BP) blocks glycolysis pathway by inhibiting hypoxia inducible enzymes, and enhanced cytotoxicity of 3-BP under hypoxic conditions has been reported in vitro. However, the efficacy of 3-BP was substantially attenuated in hypoxic tumor regions (pO2 < 10 mmHg) in vivo using squamous cell carcinoma (SCCVII)-bearing mouse model. Metabolic MRI studies using hyperpolarized 13C-labeled pyruvate showed that monocarboxylate transporter-1 (MCT1) is the major transporter for pyruvate and the analog 3-BP in SCCVII tumor. The discrepant results between in vitro and in vivo data were attributed to biphasic oxygen dependent expression of MCT1 in vivo. Expression of MCT1 was enhanced in moderately hypoxic (8–15 mmHg) tumor regions, but down regulated in severely hypoxic (< 5 mmHg) tumor regions. These results emphasize the importance of non-invasive imaging biomarkers to confirm the action of hypoxia-activated drugs. PMID:22692861

  12. EPR oxygen imaging and hyperpolarized 13C MRI of pyruvate metabolism as noninvasive biomarkers of tumor treatment response to a glycolysis inhibitor 3-bromopyruvate.

    PubMed

    Matsumoto, Shingo; Saito, Keita; Yasui, Hironobu; Morris, H Douglas; Munasinghe, Jeeva P; Lizak, Martin; Merkle, Hellmut; Ardenkjaer-Larsen, Jan Henrik; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Koretsky, Alan P; Mitchell, James B; Krishna, Murali C

    2013-05-01

    The hypoxic nature of tumors results in treatment resistance and poor prognosis. To spare limited oxygen for more crucial pathways, hypoxic cancerous cells suppress mitochondrial oxidative phosphorylation and promote glycolysis for energy production. Thereby, inhibition of glycolysis has the potential to overcome treatment resistance of hypoxic tumors. Here, EPR imaging was used to evaluate oxygen dependent efficacy on hypoxia-sensitive drug. The small molecule 3-bromopyruvate blocks glycolysis pathway by inhibiting hypoxia inducible enzymes and enhanced cytotoxicity of 3-bromopyruvate under hypoxic conditions has been reported in vitro. However, the efficacy of 3-bromopyruvate was substantially attenuated in hypoxic tumor regions (pO2<10 mmHg) in vivo using squamous cell carcinoma (SCCVII)-bearing mouse model. Metabolic MRI studies using hyperpolarized 13C-labeled pyruvate showed that monocarboxylate transporter-1 is the major transporter for pyruvate and the analog 3-bromopyruvate in SCCVII tumor. The discrepant results between in vitro and in vivo data were attributed to biphasic oxygen dependent expression of monocarboxylate transporter-1 in vivo. Expression of monocarboxylate transporter-1 was enhanced in moderately hypoxic (8-15 mmHg) tumor regions but down regulated in severely hypoxic (<5 mmHg) tumor regions. These results emphasize the importance of noninvasive imaging biomarkers to confirm the action of hypoxia-activated drugs.

  13. NMR/MRI with hyperpolarized gas and high Tc SQUID

    DOEpatents

    Schlenga, Klaus; de Souza, Ricardo E.; Wong-Foy, Annjoe; Clarke, John; Pines, Alexander

    2000-01-01

    A method and apparatus for the detection of nuclear magnetic resonance (NMR) signals and production of magnetic resonance imaging (MRI) from samples combines the use of hyperpolarized inert gases to enhance the NMR signals from target nuclei in a sample and a high critical temperature (Tc) superconducting quantum interference device (SQUID) to detect the NMR signals. The system operates in static magnetic fields of 3 mT or less (down to 0.1 mT), and at temperatures from liquid nitrogen (77K) to room temperature. Sample size is limited only by the size of the magnetic field coils and not by the detector. The detector is a high Tc SQUID magnetometer designed so that the SQUID detector can be very close to the sample, which can be at room temperature.

  14. Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner

    PubMed Central

    Gutte, Henrik; Hansen, Adam E; Henriksen, Sarah T; Johannesen, Helle H; Ardenkjaer-Larsen, Jan; Vignaud, Alexandre; Hansen, Anders E; Børresen, Betina; Klausen, Thomas L; Wittekind, Anne-Mette N; Gillings, Nic; Kristensen, Annemarie T; Clemmensen, Andreas; Højgaard, Liselotte; Kjær, Andreas

    2015-01-01

    In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized 13C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and 18F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We have named this concept hyper PET. Intravenous injection of the hyperpolarized 13C-pyruvate results in an increase of 13C-lactate, 13C-alanine and 13C-CO2 (13C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization (DNP) and use of 13C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of 13C-pyruvate to 13C-lactate. In this study, we combined it with 18F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified local recurrence of a liposarcoma on the right forepaw was imaged using a combined PET/MR clinical scanner. PET was performed as a single-bed, 10 min acquisition, 107 min post injection of 310 MBq 18F-FDG. 13C-chemical shift imaging (CSI) was performed just after FDG-PET and 30 s post injection of 23 mL hyperpolarized 13C-pyruvate. Peak heights of 13C-pyruvate and 13C-lactate were quantified using a general linear model. Anatomic 1H-MRI included axial and coronal T1 vibe, coronal T2-tse and axial T1-tse with fat saturation following gadolinium injection. In the tumor we found clearly increased 13C-lactate production, which also corresponded to high 18F-FDG uptake on PET. This is in agreement with the fact that glycolysis and production of lactate are increased in tumor cells compared to normal cells. Yet, most interestingly, also in the muscle of the forepaw of the dog high 18F-FDG uptake was observed. This was due to activity in these muscles prior to anesthesia, which was not accompanied by a similarly high 13C-lactate production. Accordingly, this clearly demonstrates how the Warburg Effect directly

  15. Simultaneous hyperpolarized (13)C-pyruvate MRI and (18)F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner.

    PubMed

    Gutte, Henrik; Hansen, Adam E; Henriksen, Sarah T; Johannesen, Helle H; Ardenkjaer-Larsen, Jan; Vignaud, Alexandre; Hansen, Anders E; Børresen, Betina; Klausen, Thomas L; Wittekind, Anne-Mette N; Gillings, Nic; Kristensen, Annemarie T; Clemmensen, Andreas; Højgaard, Liselotte; Kjær, Andreas

    2015-01-01

    In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized (13)C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and (18)F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We have named this concept hyper PET. Intravenous injection of the hyperpolarized (13)C-pyruvate results in an increase of (13)C-lactate, (13)C-alanine and (13)C-CO2 ((13)C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization (DNP) and use of (13)C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of (13)C-pyruvate to (13)C-lactate. In this study, we combined it with (18)F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified local recurrence of a liposarcoma on the right forepaw was imaged using a combined PET/MR clinical scanner. PET was performed as a single-bed, 10 min acquisition, 107 min post injection of 310 MBq (18)F-FDG. (13)C-chemical shift imaging (CSI) was performed just after FDG-PET and 30 s post injection of 23 mL hyperpolarized (13)C-pyruvate. Peak heights of (13)C-pyruvate and (13)C-lactate were quantified using a general linear model. Anatomic (1)H-MRI included axial and coronal T1 vibe, coronal T2-tse and axial T1-tse with fat saturation following gadolinium injection. In the tumor we found clearly increased (13)C-lactate production, which also corresponded to high (18)F-FDG uptake on PET. This is in agreement with the fact that glycolysis and production of lactate are increased in tumor cells compared to normal cells. Yet, most interestingly, also in the muscle of the forepaw of the dog high (18)F-FDG uptake was observed. This was due to activity in these muscles prior to anesthesia, which was not accompanied by a similarly high (13)C-lactate production. Accordingly, this clearly

  16. Hyperpolarized 3He diffusion MRI and histology in pulmonary emphysema.

    PubMed

    Woods, Jason C; Choong, Cliff K; Yablonskiy, Dmitriy A; Bentley, John; Wong, Jonathan; Pierce, John A; Cooper, Joel D; Macklem, Peter T; Conradi, Mark S; Hogg, James C

    2006-12-01

    Diffusion MRI of hyperpolarized (3)He shows that the apparent diffusion coefficient (ADC) of (3)He gas is highly restricted in the normal lung and becomes nearly unrestricted in severe emphysema. The nature of this restricted diffusion provides information about lung structure; however, no direct comparison with histology in human lungs has been reported. The purpose of this study is to provide information about (3)He gas diffusivity in explanted human lungs, and describe the relationship between (3)He diffusivity and the surface area to lung volume ratio (SA/V) and mean linear intercept (L(m)) measurements--the gold standard for diagnosis of emphysema. Explanted lungs from patients who were undergoing lung transplantation for advanced COPD, and donor lungs that were not used for transplantation were imaged via (3)He diffusion MRI. Histological measurements were made on the same specimens after they were frozen in the position of study. There is an inverse correlation between diffusivity and SA/V (and a positive correlation between diffusivity and L(m)). An important result is that restricted (3)He diffusivity separated normal from emphysematous lung tissue more clearly than the morphometric analyses. This effect may be due to the smaller histologic sampling size compared to the MRI voxel sizes.

  17. In Vivo Lung Morphometry with Accelerated Hyperpolarized 3He Diffusion MRI: A Preliminary Study

    PubMed Central

    Chang, Yulin V.; Quirk, James D.; Yablonskiy, Dmitriy A.

    2014-01-01

    Purpose Parallel imaging can be used to reduce imaging time and to increase the spatial coverage in hyperpolarized gas MRI of the lung. In this proof-of-concept study we investigate the effects of parallel imaging on the morphometric measurement of lung microstructure using diffusion MRI with hyperpolarized 3He. Methods Fully sampled and under-sampled multi-b diffusion data were acquired from human subjects using an 8-channel 3He receive coil. A parallel imaging reconstruction technique (GRAPPA) was used to reconstruct under-sampled k-space data. The morphometric results of the GRAPPA-reconstructed data were compared with the results of fully sampled data for three types of subjects: healthy volunteers, mild, and moderate COPD patients. Results Morphometric measurements varied only slightly at mild acceleration factors. The results were largely well preserved compared to fully sampled data for different lung conditions. Conclusion Parallel imaging, given sufficient signal-to-noise ratio, provides a reliable means to accelerate hyperpolarized-gas MRI with no significant difference in the measurement of lung morphometry from the fully sampled images. GRAPPA is a promising technique to significantly reduce imaging time and/or to improve the spatial coverage for the morphometric measurement with hyperpolarized gases. PMID:24799044

  18. Magnetic resonance imaging of dissolved hyperpolarized 129Xe using a membrane-based continuous flow system

    NASA Astrophysics Data System (ADS)

    Amor, N.; Zänker, P. P.; Blümler, P.; Meise, F. M.; Schreiber, L. M.; Scholz, A.; Schmiedeskamp, J.; Spiess, H. W.; Münnemann, K.

    2009-11-01

    A technique for continuous production of solutions containing hyperpolarized 129Xe is explored for MRI applications. The method is based on hollow fiber membranes which inhibit the formation of foams and bubbles. A systematic analysis of various carrier agents for hyperpolarized 129Xe has been carried out, which are applicable as contrast agents for in vivo MRI. The image quality of different hyperpolarized Xe solutions is compared and MRI results obtained in a clinical as well as in a nonclinical MRI setting are provided. Moreover, we demonstrate the application of 129Xe contrast agents produced with our dissolution method for lung MRI by imaging hyperpolarized 129Xe that has been both dissolved in and outgassed from a carrier liquid in a lung phantom, illustrating its potential for the measurement of lung perfusion and ventilation.

  19. Hyperpolarized 129Xe MRI of the Human Lung

    PubMed Central

    Mugler, John P.; Altes, Talissa A.

    2012-01-01

    By permitting direct visualization of the airspaces of the lung, MR imaging using hyperpolarized gases provides unique strategies for evaluating pulmonary structure and function. Although the vast majority of research in humans has been performed using hyperpolarized 3He, recent contraction in the supply of 3He and consequent increases in price have turned attention to the alternative agent, hyperpolarized 129Xe. Compared to 3He, 129Xe yields reduced signal due to its smaller magnetic moment. Nonetheless, taking advantage of advances in gas-polarization technology, recent studies in humans using techniques for measuring ventilation, diffusion, and partial pressure of oxygen have demonstrated results for hyperpolarized 129Xe comparable to those previously demonstrated using hyperpolarized 3He. In addition, xenon has the advantage of readily dissolving in lung tissue and blood following inhalation, which makes hyperpolarized 129Xe particularly attractive for exploring certain characteristics of lung function, such as gas exchange and uptake, which cannot be accessed using 3He. Preliminary results from methods for imaging 129Xe dissolved in the human lung suggest that these approaches will provide new opportunities for quantifying relationships among gas delivery, exchange, and transport, and thus show substantial potential to broaden our understanding of lung disease. Finally, recent changes in the commercial landscape of the hyperpolarized-gas field now make it possible for this innovative technology to move beyond the research lab. PMID:23355432

  20. Open-Source Automated Parahydrogen Hyperpolarizer for Molecular Imaging Using (13)C Metabolic Contrast Agents.

    PubMed

    Coffey, Aaron M; Shchepin, Roman V; Truong, Milton L; Wilkens, Ken; Pham, Wellington; Chekmenev, Eduard Y

    2016-08-16

    An open-source hyperpolarizer producing (13)C hyperpolarized contrast agents using parahydrogen induced polarization (PHIP) for biomedical and other applications is presented. This PHIP hyperpolarizer utilizes an Arduino microcontroller in conjunction with a readily modified graphical user interface written in the open-source processing software environment to completely control the PHIP hyperpolarization process including remotely triggering an NMR spectrometer for efficient production of payloads of hyperpolarized contrast agent and in situ quality assurance of the produced hyperpolarization. Key advantages of this hyperpolarizer include: (i) use of open-source software and hardware seamlessly allowing for replication and further improvement as well as readily customizable integration with other NMR spectrometers or MRI scanners (i.e., this is a multiplatform design), (ii) relatively low cost and robustness, and (iii) in situ detection capability and complete automation. The device performance is demonstrated by production of a dose (∼2-3 mL) of hyperpolarized (13)C-succinate with %P13C ∼ 28% and 30 mM concentration and (13)C-phospholactate at %P13C ∼ 15% and 25 mM concentration in aqueous medium. These contrast agents are used for ultrafast molecular imaging and spectroscopy at 4.7 and 0.0475 T. In particular, the conversion of hyperpolarized (13)C-phospholactate to (13)C-lactate in vivo is used here to demonstrate the feasibility of ultrafast multislice (13)C MRI after tail vein injection of hyperpolarized (13)C-phospholactate in mice.

  1. Brute-Force Hyperpolarization for NMR and MRI.

    PubMed

    Hirsch, Matthew L; Kalechofsky, Neal; Belzer, Avrum; Rosay, Melanie; Kempf, James G

    2015-07-08

    Hyperpolarization (HP) of nuclear spins is critical for ultrasensitive nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). We demonstrate an approach for >1500-fold enhancement of key small-molecule metabolites: 1-(13)C-pyruvic acid, 1-(13)C-sodium lactate, and 1-(13)C-acetic acid. The (13)C solution NMR signal of pyruvic acid was enhanced 1600-fold at B = 1 T and 40 °C by pre-polarizing at 14 T and ∼2.3 K. This "brute-force" approach uses only field and temperature to generate HP. The noted 1 T observation field is appropriate for benchtop NMR and near the typical 1.5 T of MRI, whereas high-field observation scales enhancement as 1/B. Our brute-force process ejects the frozen, solid sample from the low-T, high-B polarizer, passing it through low field (B < 100 G) to facilitate "thermal mixing". That equilibrates (1)H and (13)C in hundreds of milliseconds, providing (13)C HP from (1)H Boltzmann polarization attained at high B/T. The ejected sample arrives at a room-temperature, permanent magnet array, where rapid dissolution with 40 °C water yields HP solute. Transfer to a 1 T NMR system yields (13)C signals with enhancements at 80% of ideal for noted polarizing conditions. High-resolution NMR of the same product at 9.4 T had consistent enhancement plus resolution of (13)C shifts and J-couplings for pyruvic acid and its hydrate. Comparable HP was achieved with frozen aqueous lactate, plus notable enhancement of acetic acid, demonstrating broader applicability for small-molecule NMR and metabolic MRI. Brute-force avoids co-solvated free-radicals and microwaves that are essential to competing methods. Here, unadulterated samples obviate concerns about downstream purity and also exhibit slow solid-state spin relaxation, favorable for transporting HP samples.

  2. Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Shapiro, Mikhail G.; Ramirez, R. Matthew; Sperling, Lindsay J.; Sun, George; Sun, Jinny; Pines, Alexander; Schaffer, David V.; Bajaj, Vikram S.

    2014-07-01

    Magnetic resonance imaging (MRI) enables high-resolution non-invasive observation of the anatomy and function of intact organisms. However, previous MRI reporters of key biological processes tied to gene expression have been limited by the inherently low molecular sensitivity of conventional 1H MRI. This limitation could be overcome through the use of hyperpolarized nuclei, such as in the noble gas xenon, but previous reporters acting on such nuclei have been synthetic. Here, we introduce the first genetically encoded reporters for hyperpolarized 129Xe MRI. These expressible reporters are based on gas vesicles (GVs), gas-binding protein nanostructures expressed by certain buoyant microorganisms. We show that GVs are capable of chemical exchange saturation transfer interactions with xenon, which enables chemically amplified GV detection at picomolar concentrations (a 100- to 10,000-fold improvement over comparable constructs for 1H MRI). We demonstrate the use of GVs as heterologously expressed indicators of gene expression and chemically targeted exogenous labels in MRI experiments performed on living cells.

  3. Large Production of Hyperpolarized 129-Xe for MRI Applications

    NASA Astrophysics Data System (ADS)

    Ruset, Iulian; Hersman, F. W.; Distelbrink, Jan; Ketel, Stephen; Covrig, Silviu; Muradian, Iga; Sindile, Adrian

    2007-03-01

    Although 129-Xe was the first hyperpolarized gas to be used in MRI studies, the research community has focused on 3-He, mainly because of the larger quantities of hyperpolarized gas available. Xenon has advantages over helium, such as natural abundance, lower diffusion, and high solubility in blood. It presents a large frequency chemical shift when dissolved in blood, tissue, brain, or trapped in molecular cages. A new design of a high-flow low-pressure spin-exchange optical pumping Rb-Xe polarizer was recently demonstrated by our group. The concept of counterflowing the gas mixture against laser light and dividing the polarizing cell in three operational zones has resulted in an increase with over an order of magnitude in the output magnetization compared with previously reported polarizers. We were able to produce hyperpolarized xenon at 64% polarization for 0.3 liters/hour flow rate and 22% polarization at 6 liters/hour. We also demonstrated a new design of freezing and thawing hyperpolarized xenon with minimum losses. We will present the concept of the high-flow low-pressure counterflowing xenon polarizer, its performance, as well as new optical pumping laser technologies. We will discuss optimization plans for xenon polarizing systems based on experimental observed limitations and theoretical modeling.

  4. Hyperpolarized helium-3 mouse lung MRI: Studies of lung structure and function

    NASA Astrophysics Data System (ADS)

    Dugas, Joseph Paul

    Hyperpolarized 3He magnetic resonance imaging (MRI) of human and animal lungs has displayed promising and useful applications to studies of lung structure and function in both healthy and diseased lungs. Hyperpolarized 3He MRI allows the visualization of gas in the gas-exchange spaces of the lungs (as opposed to tissue) and has proven especially effective in studying diseases that are characterized by ventilation defects, such as emphysema. In particular, in-vivo measurements of the 3He apparent diffusion coefficient (ADC) can quantify lung structure by measuring its restrictive effects on the motion of 3He spins. This allows for detection and longitudinal tracking of changes in micro-architecture that result from disease destruction of alveolar walls. Due, in part, to the difficulties inherent in administering and imaging hyperpolarized 3He within the small (0.5 cc volume) mouse lung, applications of hyperpolarized 3He MRI techniques to laboratory mice are scarce. We have been able to implement and improve the techniques of hyperpolarized 3He mouse lung MRI and subsequently apply them to studies of several mouse models of disease, including elastase-induced emphysema, smoking-induced emphysema, and lung cancer. Here we detail the design, development, and implementation of a versatile, electronically-controlled, small animal ventilator that is capable of delivering tiny volumes of hyperpolarized 3He, mixed with oxygen, to the mouse and is also compatible with both the easily depolarized 3He gas and the highly magnetic environment within and around an imaging magnet. Also described are NM techniques developed to improve the signal-to-noise ratio of our images and effectively utilize the gas hyperpolarization. Applications of these technologies and techniques to small animal models of disease are presented wherein we have measured up to a 35% increase in 3He ADC in mice with elastase-induced emphysema as compared to healthy mice. We also demonstrate the potential

  5. Directly detected (55)Mn MRI: application to phantoms for human hyperpolarized (13)C MRI development.

    PubMed

    von Morze, Cornelius; Carvajal, Lucas; Reed, Galen D; Swisher, Christine Leon; Tropp, James; Vigneron, Daniel B

    2014-12-01

    In this work we demonstrate for the first time directly detected manganese-55 ((55)Mn) magnetic resonance imaging (MRI) using a clinical 3T MRI scanner designed for human hyperpolarized (13)C clinical studies with no additional hardware modifications. Due to the similar frequency of the (55)Mn and (13)C resonances, the use of aqueous permanganate for large, signal-dense, and cost-effective "(13)C" MRI phantoms was investigated, addressing the clear need for new phantoms for these studies. Due to 100% natural abundance, higher intrinsic sensitivity, and favorable relaxation properties, (55)Mn MRI of aqueous permanganate demonstrates dramatically increased sensitivity over typical (13)C phantom MRI, at greatly reduced cost as compared with large (13)C-enriched phantoms. A large sensitivity advantage (22-fold) was demonstrated. A cylindrical phantom (d=8 cm) containing concentrated aqueous sodium permanganate (2.7 M) was scanned rapidly by (55)Mn MRI in a human head coil tuned for (13)C, using a balanced steady state free precession acquisition. The requisite penetration of radiofrequency magnetic fields into concentrated permanganate was investigated by experiments and high frequency electromagnetic simulations, and found to be sufficient for (55)Mn MRI with reasonably sized phantoms. A sub-second slice-selective acquisition yielded mean image signal-to-noise ratio of ~60 at 0.5 cm(3) spatial resolution, distributed with minimum central signal ~40% of the maximum edge signal. We anticipate that permanganate phantoms will be very useful for testing HP (13)C coils and methods designed for human studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Characterization and optimization of the visualization performance of continuous flow overhauser DNP hyperpolarized water MRI: Inversion recovery approach.

    PubMed

    Terekhov, Maxim; Krummenacker, Jan; Denysenkov, Vasyl; Gerz, Kathrin; Prisner, Thomas; Schreiber, Laura Maria

    2016-03-01

    Overhauser dynamic nuclear polarization (DNP) allows the production of liquid hyperpolarized substrate inside the MRI magnet bore as well as its administration in continuous flow mode to acquire MR images with enhanced signal-to-noise ratio. We implemented inversion recovery preparation in order to improve contrast-to-noise ratio and to quantify the overall imaging performance of Overhauser DNP-enhanced MRI. The negative enhancement created by DNP in combination with inversion recovery (IR) preparation allows canceling selectively the signal originated from Boltzmann magnetization and visualizing only hyperpolarized fluid. The theoretical model describing gain of MR image intensity produced by steady-state continuous flow DNP hyperpolarized magnetization was established and proved experimentally. A precise quantification of signal originated purely from DNP hyperpolarization was achieved. A temperature effect on longitudinal relaxation had to be taken into account to fit experimental results with numerical prediction. Using properly adjusted IR preparation, the complete zeroing of thermal background magnetization was achieved, providing an essential increase of contrast-to-noise ratio of DNP-hyperpolarized water images. To quantify and optimize the steady-state conditions for MRI with continuous flow DNP, an approach similar to that incorporating transient-state thermal magnetization equilibrium in spoiled fast field echo imaging sequences can be used. © 2015 Wiley Periodicals, Inc.

  7. MRI of the lung gas-space at very low-field using hyperpolarized noble gases

    NASA Technical Reports Server (NTRS)

    Venkatesh, Arvind K.; Zhang, Adelaide X.; Mansour, Joey; Kubatina, Lyubov; Oh, Chang Hyun; Blasche, Gregory; Selim Unlu, M.; Balamore, Dilip; Jolesz, Ferenc A.; Goldberg, Bennett B.; hide

    2003-01-01

    In hyperpolarized (HP) noble-gas magnetic resonance imaging, large nuclear spin polarizations, about 100,000 times that ordinarily obtainable at thermal equilibrium, are created in 3He and 129Xe. The enhanced signal that results can be employed in high-resolution MRI studies of void spaces such as in the lungs. In HP gas MRI the signal-to-noise ratio (SNR) depends only weakly on the static magnetic field (B(0)), making very low-field (VLF) MRI possible; indeed, it is possible to contemplate portable MRI using light-weight solenoids or permanent magnets. This article reports the first in vivo VLF MR images of the lungs in humans and in rats, obtained at a field of only 15 millitesla (150 Gauss).

  8. MRI of the lung gas-space at very low-field using hyperpolarized noble gases

    NASA Technical Reports Server (NTRS)

    Venkatesh, Arvind K.; Zhang, Adelaide X.; Mansour, Joey; Kubatina, Lyubov; Oh, Chang Hyun; Blasche, Gregory; Selim Unlu, M.; Balamore, Dilip; Jolesz, Ferenc A.; Goldberg, Bennett B.; Albert, Mitchell S.

    2003-01-01

    In hyperpolarized (HP) noble-gas magnetic resonance imaging, large nuclear spin polarizations, about 100,000 times that ordinarily obtainable at thermal equilibrium, are created in 3He and 129Xe. The enhanced signal that results can be employed in high-resolution MRI studies of void spaces such as in the lungs. In HP gas MRI the signal-to-noise ratio (SNR) depends only weakly on the static magnetic field (B(0)), making very low-field (VLF) MRI possible; indeed, it is possible to contemplate portable MRI using light-weight solenoids or permanent magnets. This article reports the first in vivo VLF MR images of the lungs in humans and in rats, obtained at a field of only 15 millitesla (150 Gauss).

  9. Pulmonary hyperpolarized noble gas MRI: recent advances and perspectives in clinical application.

    PubMed

    Liu, Zaiyi; Araki, Tetsuro; Okajima, Yuka; Albert, Mitchell; Hatabu, Hiroto

    2014-07-01

    The invention of hyperpolarized (HP) noble gas MRI using helium-3 ((3)He) or xenon-129 ((129)Xe) has provided a new method to evaluate lung function. Using HP (3)He or (129)Xe for inhalation into the lung air spaces as an MRI contrast agent significantly increases MR signal and makes pulmonary ventilation imaging feasible. This review focuses on important aspects of pulmonary HP noble gas MRI, including the following: (1) functional imaging types, (2) applications for major pulmonary diseases, (3) safety considerations, and (4) future directions. Although it is still challenging to use pulmonary HP noble gas MRI clinically, the technology offers promise for the investigation of the microstructure and function of the lungs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Biomedical imaging with hyperpolarized noble gases

    NASA Astrophysics Data System (ADS)

    Ruppert, Kai

    2014-11-01

    Hyperpolarized noble gases (HNGs), polarized to approximately 50% or higher, have led to major advances in magnetic resonance (MR) imaging of porous structures and air-filled cavities in human subjects, particularly the lung. By boosting the available signal to a level about 100 000 times higher than that at thermal equilibrium, air spaces that would otherwise appear as signal voids in an MR image can be revealed for structural and functional assessments. This review discusses how HNG MR imaging differs from conventional proton MR imaging, how MR pulse sequence design is affected and how the properties of gas imaging can be exploited to obtain hitherto inaccessible information in humans and animals. Current and possible future imaging techniques, and their application in the assessment of normal lung function as well as certain lung diseases, are described.

  11. Biomedical imaging with hyperpolarized noble gases.

    PubMed

    Ruppert, Kai

    2014-11-01

    Hyperpolarized noble gases (HNGs), polarized to approximately 50% or higher, have led to major advances in magnetic resonance (MR) imaging of porous structures and air-filled cavities in human subjects, particularly the lung. By boosting the available signal to a level about 100 000 times higher than that at thermal equilibrium, air spaces that would otherwise appear as signal voids in an MR image can be revealed for structural and functional assessments. This review discusses how HNG MR imaging differs from conventional proton MR imaging, how MR pulse sequence design is affected and how the properties of gas imaging can be exploited to obtain hitherto inaccessible information in humans and animals. Current and possible future imaging techniques, and their application in the assessment of normal lung function as well as certain lung diseases, are described.

  12. Detection of brown adipose tissue and thermogenic activity in mice by hyperpolarized xenon MRI

    PubMed Central

    Branca, Rosa Tamara; He, Ting; Zhang, Le; Floyd, Carlos S.; Freeman, Matthew; White, Christian; Burant, Alex

    2014-01-01

    The study of brown adipose tissue (BAT) in human weight regulation has been constrained by the lack of a noninvasive tool for measuring this tissue and its function in vivo. Existing imaging modalities are nonspecific and intrinsically insensitive to the less active, lipid-rich BAT of obese subjects, the target population for BAT studies. We demonstrate noninvasive imaging of BAT in mice by hyperpolarized xenon gas MRI. We detect a greater than 15-fold increase in xenon uptake by BAT during stimulation of BAT thermogenesis, which enables us to acquire background-free maps of the tissue in both lean and obese mouse phenotypes. We also demonstrate in vivo MR thermometry of BAT by hyperpolarized xenon gas. Finally, we use the linear temperature dependence of the chemical shift of xenon dissolved in adipose tissue to directly measure BAT temperature and to track thermogenic activity in vivo. PMID:25453088

  13. High-resolution low-field molecular magnetic resonance imaging of hyperpolarized liquids.

    PubMed

    Coffey, Aaron M; Kovtunov, Kirill V; Barskiy, Danila A; Koptyug, Igor V; Shchepin, Roman V; Waddell, Kevin W; He, Ping; Groome, Kirsten A; Best, Quinn A; Shi, Fan; Goodson, Boyd M; Chekmenev, Eduard Y

    2014-09-16

    We demonstrate the feasibility of microscale molecular imaging using hyperpolarized proton and carbon-13 MRI contrast media and low-field (47.5 mT) preclinical scale (38 mm i.d.) 2D magnetic resonance imaging (MRI). Hyperpolarized proton images with 94 × 94 μm(2) spatial resolution and hyperpolarized carbon-13 images with 250 × 250 μm(2) in-plane spatial resolution were recorded in 4-8 s (largely limited by the electronics response), surpassing the in-plane spatial resolution (i.e., pixel size) achievable with micro-positron emission tomography (PET). These hyperpolarized proton and (13)C images were recorded using large imaging matrices of up to 256 × 256 pixels and relatively large fields of view of up to 6.4 × 6.4 cm(2). (13)C images were recorded using hyperpolarized 1-(13)C-succinate-d2 (30 mM in water, %P(13C) = 25.8 ± 5.1% (when produced) and %P(13C) = 14.2 ± 0.7% (when imaged), T1 = 74 ± 3 s), and proton images were recorded using (1)H hyperpolarized pyridine (100 mM in methanol-d4, %P(H) = 0.1 ± 0.02% (when imaged), T1 = 11 ± 0.1 s). Both contrast agents were hyperpolarized using parahydrogen (>90% para-fraction) in an automated 5.75 mT parahydrogen induced polarization (PHIP) hyperpolarizer. A magnetized path was demonstrated for successful transportation of a (13)C hyperpolarized contrast agent (1-(13)C-succinate-d2, sensitive to fast depolarization when at the Earth's magnetic field) from the PHIP polarizer to the 47.5 mT low-field MRI. While future polarizing and low-field MRI hardware and imaging sequence developments can further improve the low-field detection sensitivity, the current results demonstrate that microscale molecular imaging in vivo is already feasible at low (<50 mT) fields and potentially at low (~1 mM) metabolite concentrations.

  14. Detection of tobacco smoke deposition by hyperpolarized krypton-83 MRI.

    PubMed

    Cleveland, Zackary I; Pavlovskaya, Galina E; Stupic, Karl F; Wooten, Jan B; Repine, John E; Meersmann, Thomas

    2008-02-01

    Despite the importance of the tobacco smoke particulate matter in the lungs to the etiology of pulmonary disease in cigarette smokers, little is currently known about the spatial distribution of particle deposition or the persistence of the resulting deposits in humans, and no satisfactory technique currently exists to directly observe tobacco smoke condensate in airways. In this proof-of-principle work, hyperpolarized (hp) 83Kr MRI and NMR spectroscopy are introduced as probes for tobacco smoke deposition in porous media. A reduction in the hp-83Kr longitudinal (T1) relaxation of up to 95% under near-ambient humidity, pressure and temperature conditions was observed when the krypton gas was brought into contact with surfaces that had been exposed to cigarette smoke. This smoke-induced acceleration of the 83Kr self-relaxation was observed for model glass surfaces that, in some experiments, were coated with bovine lung surfactant extract. However, a similar effect was not observed with hp-(129)Xe indicating that the 83Kr sensitivity to smoke deposition was not caused by paramagnetic species but rather by quadrupolar relaxation due to high adsorption affinity for the smoke deposits. The 83Kr T1 differences between smoke-treated and untreated surfaces were sufficient to produce a strong contrast in variable flip angle FLASH hp-83Kr MRI, suggesting that hp-83Kr may be a promising contrast agent for in vivo pulmonary MRI.

  15. Silicon Nanoparticles as Hyperpolarized Magnetic Resonance Imaging Agents

    PubMed Central

    Aptekar, Jacob W.; Cassidy, Maja C.; Johnson, Alexander C.; Barton, Robert A.; Lee, Menyoung; Ogier, Alexander C.; Vo, Chinh; Anahtar, Melis N.; Ren, Yin; Bhatia, Sangeeta N.; Ramanathan, Chandrasekhar; Cory, David G.; Hill, Alison L.; Mair, Ross W.; Rosen, Matthew S.; Walsworth, Ronald L.

    2014-01-01

    Magnetic resonance imaging of hyperpolarized nuclei provides high image contrast with little or no background signal. To date, in-vivo applications of pre-hyperpolarized materials have been limited by relatively short nuclear spin relaxation times. Here, we investigate silicon nanoparticles as a new type of hyperpolarized magnetic resonance imaging agent. Nuclear spin relaxation times for a variety of Si nanoparticles are found to be remarkably long, ranging from many minutes to hours at room temperature, allowing hyperpolarized nanoparticles to be transported, administered, and imaged on practical time scales. Additionally, we demonstrate that Si nanoparticles can be surface functionalized using techniques common to other biologically targeted nanoparticle systems. These results suggest that Si nanoparticles can be used as a targetable, hyperpolarized magnetic resonance imaging agent with a large range of potential applications. PMID:19950973

  16. SU-E-J-120: Comparing 4D CT Computed Ventilation to Lung Function Measured with Hyperpolarized Xenon-129 MRI

    SciTech Connect

    Neal, B; Chen, Q

    2015-06-15

    Purpose: To correlate ventilation parameters computed from 4D CT to ventilation, profusion, and gas exchange measured with hyperpolarized Xenon-129 MRI for a set of lung cancer patients. Methods: Hyperpolarized Xe-129 MRI lung scans were acquired for lung cancer patients, before and after radiation therapy, measuring ventilation, perfusion, and gas exchange. In the standard clinical workflow, these patients also received 4D CT scans before treatment. Ventilation was computed from 4D CT using deformable image registration (DIR). All phases of the 4D CT scan were registered using a B-spline deformable registration. Ventilation at the voxel level was then computed for each phase based on a Jacobian volume expansion metric, yielding phase sorted ventilation images. Ventilation based upon 4D CT and Xe-129 MRI were co-registered, allowing qualitative visual comparison and qualitative comparison via the Pearson correlation coefficient. Results: Analysis shows a weak correlation between hyperpolarized Xe-129 MRI and 4D CT DIR ventilation, with a Pearson correlation coefficient of 0.17 to 0.22. Further work will refine the DIR parameters to optimize the correlation. The weak correlation could be due to the limitations of 4D CT, registration algorithms, or the Xe-129 MRI imaging. Continued development will refine parameters to optimize correlation. Conclusion: Current analysis yields a minimal correlation between 4D CT DIR and Xe-129 MRI ventilation. Funding provided by the 2014 George Amorino Pilot Grant in Radiation Oncology at the University of Virginia.

  17. Hyperpolarized (3)He magnetic resonance imaging: comparison with four-dimensional x-ray computed tomography imaging in lung cancer.

    PubMed

    Mathew, Lindsay; Wheatley, Andrew; Castillo, Richard; Castillo, Edward; Rodrigues, George; Guerrero, Thomas; Parraga, Grace

    2012-12-01

    Pulmonary functional imaging using four-dimensional x-ray computed tomographic (4DCT) imaging and hyperpolarized (3)He magnetic resonance imaging (MRI) provides regional lung function estimates in patients with lung cancer in whom pulmonary function measurements are typically dominated by tumor burden. The aim of this study was to evaluate the quantitative spatial relationship between 4DCT and hyperpolarized (3)He MRI ventilation maps. Eleven patients with lung cancer provided written informed consent to 4DCT imaging and MRI performed within 11 ± 14 days. Hyperpolarized (3)He MRI was acquired in breath-hold after inhalation from functional residual capacity of 1 L hyperpolarized (3)He, whereas 4DCT imaging was acquired over a single tidal breath of room air. For hyperpolarized (3)He MRI, the percentage ventilated volume was generated using semiautomated segmentation; for 4DCT imaging, pulmonary function maps were generated using the correspondence between identical tissue elements at inspiratory and expiratory phases to generate percentage ventilated volume. After accounting for differences in image acquisition lung volumes ((3)He MRI: 1.9 ± 0.5 L ipsilateral, 2.3 ± 0.7 L contralateral; 4DCT imaging: 1.2 ± 0.3 L ipsilateral, 1.3 ± 0.4 L contralateral), there was no significant difference in percentage ventilated volume between hyperpolarized (3)He MRI (72 ± 11% ipsilateral, 79 ± 12% contralateral) and 4DCT imaging (74 ± 3% ipsilateral, 75 ± 4% contralateral). Spatial correspondence between 4DCT and (3)He MRI ventilation was evaluated using the Dice similarity coefficient index (ipsilateral, 86 ± 12%; contralateral, 88 ± 12%). Despite rather large differences in image acquisition breathing maneuvers, good spatial and significant quantitative agreement was observed for ventilation maps on hyperpolarized (3)He MRI and 4DCT imaging, suggesting that pulmonary regions with good lung function are similar between modalities in this small group of patients with

  18. Hyperpolarized water as an authentic magnetic resonance imaging contrast agent

    PubMed Central

    McCarney, Evan R.; Armstrong, Brandon D.; Lingwood, Mark D.; Han, Songi

    2007-01-01

    Pure water in a highly 1H spin-polarized state is proposed as a contrast-agent-free contrast agent to visualize its macroscopic evolution in aqueous media by MRI. Remotely enhanced liquids for image contrast (RELIC) utilizes a 1H signal of water that is enhanced outside the sample in continuous-flow mode and immediately delivered to the sample to obtain maximum contrast between entering and bulk fluids. Hyperpolarization suggests an ideal contrast mechanism to highlight the ubiquitous and specific function of water in physiology, biology, and materials because the physiological, chemical, and macroscopic function of water is not altered by the degree of magnetization. We present an approach that is capable of instantaneously enhancing the 1H MRI signal by up to 2 orders of magnitude through the Overhauser effect under ambient conditions at 0.35 tesla by using highly spin-polarized unpaired electrons that are covalently immobilized onto a porous, water-saturated gel matrix. The continuous polarization of radical-free flowing water allowed us to distinctively visualize vortices in model reactors and dispersion patterns through porous media. A 1H signal enhancement of water by a factor of −10 and −100 provides for an observation time of >4 and 7 s, respectively, upon its injection into fluids with a T1 relaxation time of >1.5 s. The implications for chemical engineering or biomedical applications of using hyperpolarized solvents or physiological fluids to visualize mass transport and perfusion with high and authentic MRI contrast originating from water itself, and not from foreign contrast agents, are immediate. PMID:17264210

  19. Hyperpolarized water as an authentic magnetic resonance imaging contrast agent.

    PubMed

    McCarney, Evan R; Armstrong, Brandon D; Lingwood, Mark D; Han, Songi

    2007-02-06

    Pure water in a highly (1)H spin-polarized state is proposed as a contrast-agent-free contrast agent to visualize its macroscopic evolution in aqueous media by MRI. Remotely enhanced liquids for image contrast (RELIC) utilizes a (1)H signal of water that is enhanced outside the sample in continuous-flow mode and immediately delivered to the sample to obtain maximum contrast between entering and bulk fluids. Hyperpolarization suggests an ideal contrast mechanism to highlight the ubiquitous and specific function of water in physiology, biology, and materials because the physiological, chemical, and macroscopic function of water is not altered by the degree of magnetization. We present an approach that is capable of instantaneously enhancing the (1)H MRI signal by up to 2 orders of magnitude through the Overhauser effect under ambient conditions at 0.35 tesla by using highly spin-polarized unpaired electrons that are covalently immobilized onto a porous, water-saturated gel matrix. The continuous polarization of radical-free flowing water allowed us to distinctively visualize vortices in model reactors and dispersion patterns through porous media. A (1)H signal enhancement of water by a factor of -10 and -100 provides for an observation time of >4 and 7 s, respectively, upon its injection into fluids with a T(1) relaxation time of >1.5 s. The implications for chemical engineering or biomedical applications of using hyperpolarized solvents or physiological fluids to visualize mass transport and perfusion with high and authentic MRI contrast originating from water itself, and not from foreign contrast agents, are immediate.

  20. Pulmonary MRI contrast using Surface Quadrupolar Relaxation (SQUARE) of hyperpolarized (83)Kr.

    PubMed

    Six, Joseph S; Hughes-Riley, Theodore; Lilburn, David M L; Dorkes, Alan C; Stupic, Karl F; Shaw, Dominick E; Morris, Peter G; Hall, Ian P; Pavlovskaya, Galina E; Meersmann, Thomas

    2014-01-01

    Hyperpolarized (83)Kr has previously been demonstrated to enable MRI contrast that is sensitive to the chemical composition of the surface in a porous model system. Methodological advances have lead to a substantial increase in the (83)Kr hyperpolarization and the resulting signal intensity. Using the improved methodology for spin exchange optical pumping of isotopically enriched (83)Kr, internal anatomical details of ex vivo rodent lung were resolved with hyperpolarized (83)Kr MRI after krypton inhalation. Different (83)Kr relaxation times were found between the main bronchi and the parenchymal regions in ex vivo rat lungs. The T1 weighted hyperpolarized (83)Kr MRI provided a first demonstration of surface quadrupolar relaxation (SQUARE) pulmonary MRI contrast.

  1. Molecular MRI in the Earth's Magnetic Field Using Continuous Hyperpolarization of a Biomolecule in Water.

    PubMed

    Rovedo, Philipp; Knecht, Stephan; Bäumlisberger, Tim; Cremer, Anna Lena; Duckett, Simon B; Mewis, Ryan E; Green, Gary G R; Burns, Michael; Rayner, Peter J; Leibfritz, Dieter; Korvink, Jan G; Hennig, Jürgen; Pütz, Gerhard; von Elverfeldt, Dominik; Hövener, Jan-Bernd

    2016-06-30

    In this work, we illustrate a method to continuously hyperpolarize a biomolecule, nicotinamide, in water using parahydrogen and signal amplification by reversible exchange (SABRE). Building on the preparation procedure described recently by Truong et al. [ J. Phys. Chem. B , 2014 , 118 , 13882 - 13889 ], aqueous solutions of nicotinamide and an Ir-IMes catalyst were prepared for low-field NMR and MRI. The (1)H-polarization was continuously renewed and monitored by NMR experiments at 5.9 mT for more than 1000 s. The polarization achieved corresponds to that induced by a 46 T magnet (P = 1.6 × 10(-4)) or an enhancement of 10(4). The polarization persisted, although reduced, if cell culture medium (DPBS with Ca(2+) and Mg(2+)) or human cells (HL-60) were added, but was no longer observable after the addition of human blood. Using a portable MRI unit, fast (1)H-MRI was enabled by cycling the magnetic field between 5 mT and the Earth's field for hyperpolarization and imaging, respectively. A model describing the underlying spin physics was developed that revealed a polarization pattern depending on both contact time and magnetic field. Furthermore, the model predicts an opposite phase of the dihydrogen and substrate signal after one exchange, which is likely to result in the cancelation of some signal at low field.

  2. Variable flip angle schedules in bSSFP imaging of hyperpolarized noble gases.

    PubMed

    Deppe, Martin H; Wild, Jim M

    2012-06-01

    Balanced steady-state free precession imaging sequences provide signal-to-noise ratio benefits for MRI of hyperpolarized nuclei. Hyperpolarized magnetization decays during the imaging sequence to thermal equilibrium, effectively necessitating imaging in a transient state characterized by nonconstant transverse magnetization and k-space filtering when using constant flip angles. This work presents an analytical method for calculation of variable flip angle schedules which maintain constant transverse magnetization in balanced steady-state free precession imaging of hyperpolarized nuclei. The approach is based on direct inversion of the Bloch equations and does not require any numerical optimization. Input parameters are pulse sequence timings and effective relaxation times, which take diffusion of hyperpolarized gas in imaging gradients into account. Provision of constant transverse magnetization is demonstrated in phantom experiments and human lung imaging using hyperpolarized (3) He. The benefit of a flat k-space filter is demonstrated by reduced blurring in (3) He and digital phantom data, and high quality (3) He ventilation images from human lungs are obtained. Copyright © 2011 Wiley-Liss, Inc.

  3. Novel Imaging Contrast Methods for Hyperpolarized 13 C Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Reed, Galen Durant

    Magnetic resonance imaging using hyperpolarized 13C-labeled small molecules has emerged as an extremely powerful tool for the in vivo monitoring of perfusion and metabolism. This work presents methods for improved imaging, parameter mapping, and image contrast generation for in vivo hyperpolarized 13C MRI. Angiography using hyperpolarized urea was greatly improved with a highly T2-weighted acquisition in combination with 15N labeling of the urea amide groups. This is due to the fact that the T2 of [13C]urea is strongly limited by the scalar coupling to the neighboring quadrupolar 14N. The long in vivo T2 values of [13C, 15N2]urea were utilized for sub-millimeter projection angiography using a contrast agent that could be safely injected in concentrations of 10-100 mM while still tolerated in patients with renal insufficiency. This study also presented the first method for in vivo T2 mapping of hyperpolarized 13C compounds. The in vivo T2 of urea was short in the blood and long within the kidneys. This persistent signal component was isolated to the renal filtrate, thus enabling for the first time direct detection of an imaging contrast agent undergoing glomerular filtration. While highly T2-weighted acquisitions select for molecules with short rotational correlation times, high diffusion weighting selects for those with the long translational correlation times. A specialized spin-echo EPI sequence was developed in order to generate highly diffusion-weighted hyperpolarized 13C images on a clinical MRI system operating within clinical peak- RF and gradient amplitude constraints. Low power adiabatic spin echo pulses were developed in order to generate a sufficiently large refocused bandwidth while maintaining low nominal power. This diffusion weighted acquisition gave enhanced tumor contrast-to-noise ratio when imaging [1-13C]lactate after infusion of [1-13C]pyruvate. Finally, the first in-man hyperpolarized 13C MRI clinical trial is discussed.

  4. Hyperpolarized 13C Metabolic Magnetic Resonance Spectroscopy and Imaging.

    PubMed

    Kubala, Eugen; Muñoz-Álvarez, Kim A; Topping, Geoffrey; Hundshammer, Christian; Feuerecker, Benedikt; Gómez, Pedro A; Pariani, Giorgio; Schilling, Franz; Glaser, Steffen J; Schulte, Rolf F; Menzel, Marion I; Schwaiger, Markus

    2016-12-30

    In the past decades, new methods for tumor staging, restaging, treatment response monitoring, and recurrence detection of a variety of cancers have emerged in conjunction with the state-of-the-art positron emission tomography with (18)F-fluorodeoxyglucose ([(18)F]-FDG PET). (13)C magnetic resonance spectroscopic imaging ((13)CMRSI) is a minimally invasive imaging method that enables the monitoring of metabolism in vivo and in real time. As with any other method based on (13)C nuclear magnetic resonance (NMR), it faces the challenge of low thermal polarization and a subsequent low signal-to-noise ratio due to the relatively low gyromagnetic ratio of (13)C and its low natural abundance in biological samples. By overcoming these limitations, dynamic nuclear polarization (DNP) with subsequent sample dissolution has recently enabled commonly used NMR and magnetic resonance imaging (MRI) systems to measure, study, and image key metabolic pathways in various biological systems. A particularly interesting and promising molecule used in (13)CMRSI is [1-(13)C]pyruvate, which, in the last ten years, has been widely used for in vitro, preclinical, and, more recently, clinical studies to investigate the cellular energy metabolism in cancer and other diseases. In this article, we outline the technique of dissolution DNP using a 3.35 T preclinical DNP hyperpolarizer and demonstrate its usage in in vitro studies. A similar protocol for hyperpolarization may be applied for the most part in in vivo studies as well. To do so, we used lactate dehydrogenase (LDH) and catalyzed the metabolic reaction of [1-(13)C]pyruvate to [1-(13)C]lactate in a prostate carcinoma cell line, PC3, in vitro using (13)CMRSI.

  5. Transportable hyperpolarized metabolites

    NASA Astrophysics Data System (ADS)

    Ji, Xiao; Bornet, Aurélien; Vuichoud, Basile; Milani, Jonas; Gajan, David; Rossini, Aaron J.; Emsley, Lyndon; Bodenhausen, Geoffrey; Jannin, Sami

    2017-01-01

    Nuclear spin hyperpolarization of 13C-labelled metabolites by dissolution dynamic nuclear polarization can enhance the NMR signals of metabolites by several orders of magnitude, which has enabled in vivo metabolic imaging by MRI. However, because of the short lifetime of the hyperpolarized magnetization (typically <1 min), the polarization process must be carried out close to the point of use. Here we introduce a concept that markedly extends hyperpolarization lifetimes and enables the transportation of hyperpolarized metabolites. The hyperpolarized sample can thus be removed from the polarizer and stored or transported for use at remote MRI or NMR sites. We show that hyperpolarization in alanine and glycine survives 16 h storage and transport, maintaining overall polarization enhancements of up to three orders of magnitude.

  6. Transportable hyperpolarized metabolites

    PubMed Central

    Ji, Xiao; Bornet, Aurélien; Vuichoud, Basile; Milani, Jonas; Gajan, David; Rossini, Aaron J.; Emsley, Lyndon; Bodenhausen, Geoffrey; Jannin, Sami

    2017-01-01

    Nuclear spin hyperpolarization of 13C-labelled metabolites by dissolution dynamic nuclear polarization can enhance the NMR signals of metabolites by several orders of magnitude, which has enabled in vivo metabolic imaging by MRI. However, because of the short lifetime of the hyperpolarized magnetization (typically <1 min), the polarization process must be carried out close to the point of use. Here we introduce a concept that markedly extends hyperpolarization lifetimes and enables the transportation of hyperpolarized metabolites. The hyperpolarized sample can thus be removed from the polarizer and stored or transported for use at remote MRI or NMR sites. We show that hyperpolarization in alanine and glycine survives 16 h storage and transport, maintaining overall polarization enhancements of up to three orders of magnitude. PMID:28072398

  7. NOTE: MR imaging of the lungs with hyperpolarized helium-3 gas transported by air

    NASA Astrophysics Data System (ADS)

    Wild, J. M.; Schmiedeskamp, J.; Paley, M. N. J.; Filbir, F.; Fichele, S.; Kasuboski, L.; Knitz, F.; Woodhouse, N.; Swift, A.; Heil, W.; Mills, G. H.; Wolf, M.; Griffiths, P. D.; Otten, E.; van Beek, E. J. R.

    2002-07-01

    Hyperpolarized noble gas MRI shows promise in the functional imaging of the pulmonary air spaces. The production of hyperpolarized (HP) gas requires specialized laser optical pumping apparatus, which is not likely to be home built in the majority of clinical MRI radiology centres. There are two routes through which HP gas will be made available to hospitals for clinical use: either the apparatus will be installed locally at a considerable expense to the centre, or a central facility will produce the gas and then deliver it to remote MRI sites as and when required. In this study, the feasibility of transporting large quantities of HP gas for in vivo MR imaging from a remote production facility in Mainz, Germany, by airfreight to Sheffield, UK, was successfully demonstrated.

  8. Synthesis of Long-T1 Silicon Nanoparticles for Hyperpolarized 29Si Magnetic Resonance Imaging

    PubMed Central

    Atkins, Tonya M.; Cassidy, Maja C.; Lee, Menyoung; Ganguly, Shreyashi; Marcus, Charles M.; Kauzlarich, Susan M.

    2013-01-01

    We describe the synthesis, materials characterization and dynamic nuclear polarization (DNP) of amorphous and crystalline silicon nanoparticles for use as hyperpolarized magnetic resonance imaging (MRI) agents. The particles were synthesized by means of a metathesis reaction between sodium silicide (Na4Si4) and silicon tetrachloride (SiCl4) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ~10 nm with long size-adjusted 29Si spin lattice relaxation (T1) times (> 600 s), which are retained after hyperpolarization by low temperature DNP. PMID:23350651

  9. Synthesis of long T₁ silicon nanoparticles for hyperpolarized ²⁹Si magnetic resonance imaging.

    PubMed

    Atkins, Tonya M; Cassidy, Maja C; Lee, Menyoung; Ganguly, Shreyashi; Marcus, Charles M; Kauzlarich, Susan M

    2013-02-26

    We describe the synthesis, materials characterization, and dynamic nuclear polarization (DNP) of amorphous and crystalline silicon nanoparticles for use as hyperpolarized magnetic resonance imaging (MRI) agents. The particles were synthesized by means of a metathesis reaction between sodium silicide (Na₄Si₄) and silicon tetrachloride (SiCl₄) and were surface functionalized with a variety of passivating ligands. The synthesis scheme results in particles of diameter ∼10 nm with long size-adjusted ²⁹Si spin-lattice relaxation (T₁) times (>600 s), which are retained after hyperpolarization by low-temperature DNP.

  10. Magnetic resonance imaging with hyperpolarized agents: methods and applications

    NASA Astrophysics Data System (ADS)

    Adamson, Erin B.; Ludwig, Kai D.; Mummy, David G.; Fain, Sean B.

    2017-07-01

    In the past decade, hyperpolarized (HP) contrast agents have been under active development for MRI applications to address the twin challenges of functional and quantitative imaging. Both HP helium (3He) and xenon (129Xe) gases have reached the stage where they are under study in clinical research. HP 129Xe, in particular, is poised for larger scale clinical research to investigate asthma, chronic obstructive pulmonary disease, and fibrotic lung diseases. With advances in polarizer technology and unique capabilities for imaging of 129Xe gas exchange into lung tissue and blood, HP 129Xe MRI is attracting new attention. In parallel, HP 13C and 15N MRI methods have steadily advanced in a wide range of pre-clinical research applications for imaging metabolism in various cancers and cardiac disease. The HP [1-13C] pyruvate MRI technique, in particular, has undergone phase I trials in prostate cancer and is poised for investigational new drug trials at multiple institutions in cancer and cardiac applications. This review treats the methodology behind both HP gases and HP 13C and 15N liquid state agents. Gas and liquid phase HP agents share similar technologies for achieving non-equilibrium polarization outside the field of the MRI scanner, strategies for image data acquisition, and translational challenges in moving from pre-clinical to clinical research. To cover the wide array of methods and applications, this review is organized by numerical section into (1) a brief introduction, (2) the physical and biological properties of the most common polarized agents with a brief summary of applications and methods of polarization, (3) methods for image acquisition and reconstruction specific to improving data acquisition efficiency for HP MRI, (4) the main physical properties that enable unique measures of physiology or metabolic pathways, followed by a more detailed review of the literature describing the use of HP agents to study: (5) metabolic pathways in cancer and cardiac

  11. Magnetic resonance imaging with hyperpolarized agents: methods and applications.

    PubMed

    Adamson, Erin B; Ludwig, Kai D; Mummy, David G; Fain, Sean B

    2017-07-07

    In the past decade, hyperpolarized (HP) contrast agents have been under active development for MRI applications to address the twin challenges of functional and quantitative imaging. Both HP helium ((3)He) and xenon ((129)Xe) gases have reached the stage where they are under study in clinical research. HP (129)Xe, in particular, is poised for larger scale clinical research to investigate asthma, chronic obstructive pulmonary disease, and fibrotic lung diseases. With advances in polarizer technology and unique capabilities for imaging of (129)Xe gas exchange into lung tissue and blood, HP (129)Xe MRI is attracting new attention. In parallel, HP (13)C and (15)N MRI methods have steadily advanced in a wide range of pre-clinical research applications for imaging metabolism in various cancers and cardiac disease. The HP [1-(13)C] pyruvate MRI technique, in particular, has undergone phase I trials in prostate cancer and is poised for investigational new drug trials at multiple institutions in cancer and cardiac applications. This review treats the methodology behind both HP gases and HP (13)C and (15)N liquid state agents. Gas and liquid phase HP agents share similar technologies for achieving non-equilibrium polarization outside the field of the MRI scanner, strategies for image data acquisition, and translational challenges in moving from pre-clinical to clinical research. To cover the wide array of methods and applications, this review is organized by numerical section into (1) a brief introduction, (2) the physical and biological properties of the most common polarized agents with a brief summary of applications and methods of polarization, (3) methods for image acquisition and reconstruction specific to improving data acquisition efficiency for HP MRI, (4) the main physical properties that enable unique measures of physiology or metabolic pathways, followed by a more detailed review of the literature describing the use of HP agents to study: (5) metabolic pathways

  12. Hyperpolarization without persistent radicals for in vivo real-time metabolic imaging.

    PubMed

    Eichhorn, Tim R; Takado, Yuhei; Salameh, Najat; Capozzi, Andrea; Cheng, Tian; Hyacinthe, Jean-Noël; Mishkovsky, Mor; Roussel, Christophe; Comment, Arnaud

    2013-11-05

    Hyperpolarized substrates prepared via dissolution dynamic nuclear polarization have been proposed as magnetic resonance imaging (MRI) agents for cancer or cardiac failure diagnosis and therapy monitoring through the detection of metabolic impairments in vivo. The use of potentially toxic persistent radicals to hyperpolarize substrates was hitherto required. We demonstrate that by shining UV light for an hour on a frozen pure endogenous substance, namely the glucose metabolic product pyruvic acid, it is possible to generate a concentration of photo-induced radicals that is large enough to highly enhance the (13)C polarization of the substance via dynamic nuclear polarization. These radicals recombine upon dissolution and a solution composed of purely endogenous products is obtained for performing in vivo metabolic hyperpolarized (13)C MRI with high spatial resolution. Our method opens the way to safe and straightforward preclinical and clinical applications of hyperpolarized MRI because the filtering procedure mandatory for clinical applications and the associated pharmacological tests necessary to prevent contamination are eliminated, concurrently allowing a decrease in the delay between preparation and injection of the imaging agents for improved in vivo sensitivity.

  13. Functional Imaging: CT and MRI

    PubMed Central

    van Beek, Edwin JR; Hoffman, Eric A

    2008-01-01

    Synopsis Numerous imaging techniques permit evaluation of regional pulmonary function. Contrast-enhanced CT methods now allow assessment of vasculature and lung perfusion. Techniques using spirometric controlled MDCT allow for quantification of presence and distribution of parenchymal and airway pathology, Xenon gas can be employed to assess regional ventilation of the lungs and rapid bolus injections of iodinated contrast agent can provide quantitative measure of regional parenchymal perfusion. Advances in magnetic resonance imaging (MRI) of the lung include gadolinium-enhanced perfusion imaging and hyperpolarized helium imaging, which can allow imaging of pulmonary ventilation and .measurement of the size of emphysematous spaces. PMID:18267192

  14. Hyperpolarized Xenon-129 Magnetic Resonance Imaging of Functional Lung Microstructure

    NASA Astrophysics Data System (ADS)

    Dregely, Isabel

    Hyperpolarized 129Xe (HXe) is a non-invasive contrast agent for lung magnetic resonance imaging (MRI), which upon inhalation follows the functional pathway of oxygen in the lung by dissolving into lung tissue structures and entering the blood stream. HXe MRI therefore provides unique opportunities for functional lung imaging of gas exchange which occurs from alveolar air spaces across the air-blood boundary into parenchymal tissue. However challenges in acquisition speed and signal-to-noise ratio have limited the development of a HXe imaging biomarker to diagnose lung disease. This thesis addresses these challenges by introducing parallel imaging to HXe MRI. Parallel imaging requires dedicated hardware. This work describes design, implementation, and characterization of a 32-channel phased-array chest receive coil with an integrated asymmetric birdcage transmit coil tuned to the HXe resonance on a 3 Tesla MRI system. Using the newly developed human chest coil, a functional HXe imaging method, multiple exchange time xenon magnetization transfer contrast (MXTC) is implemented. MXTC dynamically encodes HXe gas exchange into the image contrast. This permits two parameters to be derived regionally which are related to gas-exchange functionality by characterizing tissue-to-alveolar-volume ratio and alveolar wall thickness in the lung parenchyma. Initial results in healthy subjects demonstrate the sensitivity of MXTC by quantifying the subtle changes in lung microstructure in response to orientation and lung inflation. Our results in subjects with lung disease show that the MXTC-derived functional tissue density parameter exhibits excellent agreement with established imaging techniques. The newly developed dynamic parameter, which characterizes the alveolar wall, was elevated in subjects with lung disease, most likely indicating parenchymal inflammation. In light of these observations we believe that MXTC has potential as a biomarker for the regional quantification of 1

  15. Hyperpolarized xenon NMR and MRI signal amplification by gas extraction

    PubMed Central

    Zhou, Xin; Graziani, Dominic; Pines, Alexander

    2009-01-01

    A method is reported for enhancing the sensitivity of NMR of dissolved xenon by detecting the signal after extraction to the gas phase. We demonstrate hyperpolarized xenon signal amplification by gas extraction (Hyper-SAGE) in both NMR spectra and magnetic resonance images with time-of-flight information. Hyper-SAGE takes advantage of a change in physical phase to increase the density of polarized gas in the detection coil. At equilibrium, the concentration of gas-phase xenon is ≈10 times higher than that of the dissolved-phase gas. After extraction the xenon density can be further increased by several orders of magnitude by compression and/or liquefaction. Additionally, being a remote detection technique, the Hyper-SAGE effect is further enhanced in situations where the sample of interest would occupy only a small proportion of the traditional NMR receiver. Coupled with targeted xenon biosensors, Hyper-SAGE offers another path to highly sensitive molecular imaging of specific cell markers by detection of exhaled xenon gas. PMID:19805177

  16. Ventilation imaging of the lung: comparison of hyperpolarized helium-3 MR imaging with Xe-133 scintigraphy.

    PubMed

    Altes, Talissa A; Rehm, Patrice K; Harrell, Frank; Salerno, Michael; Daniel, Thomas M; De Lange, Eduard E

    2004-07-01

    To compare hyperpolarized helium-3 (HHe) magnetic resonance imaging (MRI) of the lung with standard Xe-133 lung ventilation scintigraphy. We performed a retrospective review of 15 subjects who underwent HHe MRI and Xe-133 lung ventilation imaging. Coronal MRI sections were acquired after a single inhalation of HHe gas, and standard posterior planar lung ventilation scintigraphy was performed during continuous breathing of Xe-133 gas. The first breath scintigram of each patient was compared with a composite MR image composed of the sum of the individual MR images and with the individual helium-3 MR images. Ventilation defects on the two imaging modalities were compared for size, conspicuity, and concordance in presence and location. Assessment was done separately for each of four lung quadrants. Comparing the composite HHe MR images with Xe-133 scintigraphy, ventilation defect size, conspicuity and concordance were the same in 67% (40/60), 63% (38/60), and 62% (37/60) quadrants, respectively. Comparing the individual HHe MR image sections with the Xe-133 ventilation scan, there was concordance between the ventilation defects in 27% (16/60) of quadrants. More defects were identified on the individual HHe MR images in 62% (37/60) of quadrants. There was good agreement between composite HHe MR image and first breath Xe-133 scintigraphic images, supporting the widely held assumption that HHe MRI likely depicts first breath lung ventilation.

  17. MRI (Magnetic Resonance Imaging)

    MedlinePlus

    ... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Magnetic Resonance Imaging (MRI) is a medical imaging procedure for making ...

  18. In vivo single-shot 13C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding

    NASA Astrophysics Data System (ADS)

    Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio

    2014-03-01

    Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model.

  19. Development and testing of hyperpolarized 13C MR calibrationless parallel imaging

    PubMed Central

    Feng, Yesu; Gordon, Jeremy W.; Shin, Peter J.; von Morze, Cornelius; Lustig, Michael; Larson, Peder E.Z.; Ohliger, Michael A.; Carvajal, Lucas; Tropp, James; Pauly, John M.; Vigneron, Daniel B.

    2016-01-01

    A calibrationless parallel imaging technique developed previously for 1H MRI was modified and tested for hyperpolarized 13C MRI for applications requiring large FOV and high spatial resolution. The technique was demonstrated with both retrospective and prospective under-sampled data acquired in phantom and in vivo rat studies. A 2-fold acceleration was achieved using a 2D symmetric EPI readout equipped with random blips on the phase encode dimension. Reconstructed images showed excellent qualitative agreement with fully sampled data. Further acceleration can be achieved using acquisition schemes that incorporate multi-dimensional under-sampling. PMID:26679288

  20. Regional anisotropy of airspace orientation in the lung as assessed with hyperpolarized helium-3 diffusion MRI.

    PubMed

    Komlosi, Peter; Altes, Talissa A; Qing, Kun; Mooney, Karen E; Miller, G Wilson; Mata, Jaime F; de Lange, Eduard E; Tobias, William A; Cates, Gordon D; Brookeman, James R; Mugler, John P

    2015-12-01

    To evaluate regional anisotropy of lung-airspace orientation by assessing the dependence of helium-3 ((3) He) apparent diffusion coefficient (ADC) values on the direction of diffusion sensitization at two field strengths. Hyperpolarized (3) He diffusion-weighted magnetic resonance imaging (MRI) of the lung was performed at 0.43T and 1.5T in 12 healthy volunteers. A gradient-echo pulse sequence was used with a bipolar diffusion-sensitization gradient applied separately along three orthogonal directions. ADC maps, median ADC values, and signal-to-noise ratios were calculated from the diffusion-weighted images. Two readers scored the ADC maps for increased values at lung margins, major fissures, or within focal central regions. ADC values were found to depend on the direction of diffusion sensitization (P < 0.01, except for craniocaudal vs. anteroposterior directions at 1.5T) and were increased at the lateral and medial surfaces for left-right diffusion sensitization (12 of 12 subjects); at the apex and base (9 of 12), and along the major fissure (8 of 12), for craniocaudal diffusion sensitization; and at the most anterior and posterior lung (10 of 12) for anteroposterior diffusion sensitization. Median ADC values at 0.43T (0.201 ± 0.017, left-right; 0.193 ± 0.019, craniocaudal; and 0.187 ± 0.017 cm(2) /s, anteroposterior) were slightly lower than those at 1.5T (0.205 ± 0.017, 0.197 ± 0.017 and 0.194 ± 0.016 cm(2) /s, respectively; P < 0.05). These findings indicate that diffusion-weighted hyperpolarized (3) He MRI can detect regional anisotropy of lung-airspace orientation, including that associated with preferential orientation of terminal airways near pleural surfaces. © 2015 Wiley Periodicals, Inc.

  1. 3D hyperpolarized He-3 MRI of ventilation using a multi-echo projection acquisition

    PubMed Central

    Holmes, James H.; O’Halloran, Rafael L.; Brodsky, Ethan K.; Jung, Youngkyoo; Block, Walter F.; Fain, Sean B.

    2010-01-01

    A method is presented for high resolution 3D imaging of the whole lung using inhaled hyperpolarized (HP) He-3 MR with multiple half-echo radial trajectories that can accelerate imaging through undersampling. A multiple half-echo radial trajectory can be used to reduce the level of artifact for undersampled 3D projection reconstruction (PR) imaging by increasing the amount of data acquired per unit time for HP He-3 lung imaging. The point spread functions (PSFs) for breath-held He-3 MRI using multiple half-echo trajectories were evaluated using simulations to predict the effects of T2* and gas diffusion on image quality. Results from PSF simulations were consistent with imaging results in volunteer studies showing improved image quality with increasing number of echoes using up to 8 half-echoes. The 8 half-echo acquisition is shown to accommodate lost breath-holds as short as 6 s using a retrospective reconstruction at reduced resolution as well as to allow reduced breath-hold time compared to an equivalent Cartesian trajectory. Furthermore, preliminary results from a 3D dynamic inhalation-exhalation maneuver are demonstrated using the 8 half-echo trajectory. Results demonstrate the first high resolution 3D PR imaging of ventilation and respiratory dynamics in humans using HP He-3 MR. PMID:18429034

  2. Kinetic Modeling and Constrained Reconstruction of Hyperpolarized [1-13C]-Pyruvate Offers Improved Metabolic Imaging of Tumors

    PubMed Central

    Bankson, James A.; Walker, Christopher M.; Ramirez, Marc S.; Stefan, Wolfgang; Fuentes, David; Merritt, Matthew E.; Lee, Jaehyuk; Sandulache, Vlad C.; Chen, Yunyun; Phan, Liem; Chou, Ping-Chieh; Rao, Arvind; Yeung, Sai-Ching J; Lee, Mong-Hong; Schellingerhout, Dawid; Conrad, Charles A.; Malloy, Craig; Sherry, A. Dean; Lai, Stephen Y.; Hazle, John D.

    2015-01-01

    Hyperpolarized [1-13C]-pyruvate has shown tremendous promise as an agent for imaging tumor metabolism with unprecedented sensitivity and specificity. Imaging hyperpolarized substrates by magnetic resonance is unlike traditional MRI because signals are highly transient and their spatial distribution varies continuously over their observable lifetime. Therefore, new imaging approaches are needed to ensure optimal measurement under these circumstances. Constrained reconstruction algorithms can integrate prior information, including biophysical models of the substrate/target interaction, to reduce the amount of data that is required for image analysis and reconstruction. In this study, we show that metabolic MRI with hyperpolarized pyruvate is biased by tumor perfusion, and present a new pharmacokinetic model for hyperpolarized substrates that accounts for these effects. The suitability of this model is confirmed by statistical comparison to alternates using data from 55 dynamic spectroscopic measurements in normal animals and murine models of anaplastic thyroid cancer, glioblastoma, and triple-negative breast cancer. The kinetic model was then integrated into a constrained reconstruction algorithm and feasibility was tested using significantly under-sampled imaging data from tumor-bearing animals. Compared to naïve image reconstruction, this approach requires far fewer signal-depleting excitations and focuses analysis and reconstruction on new information that is uniquely available from hyperpolarized pyruvate and its metabolites, thus improving the reproducibility and accuracy of metabolic imaging measurements. PMID:26420214

  3. Towards hyperpolarized 13C-succinate imaging of brain cancer

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Pratip; Chekmenev, Eduard Y.; Perman, William H.; Harris, Kent C.; Lin, Alexander P.; Norton, Valerie A.; Tan, Chou T.; Ross, Brian D.; Weitekamp, Daniel P.

    2007-05-01

    We describe a novel 13C enriched precursor molecule, sodium 1- 13C acetylenedicarboxylate, which after hydrogenation by PASADENA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment) under controlled experimental conditions, becomes hyperpolarized 13C sodium succinate. Fast in vivo 3D FIESTA MR imaging demonstrated that, following carotid arterial injection, the hyperpolarized 13C-succinate appeared in the head and cerebral circulation of normal and tumor-bearing rats. At this time, no in vivo hyperpolarized signal has been localized to normal brain or brain tumor. On the other hand, ex vivo samples of brain harvested from rats bearing a 9L brain tumor, 1 h or more following in vivo carotid injection of hyperpolarized 13C sodium succinate, contained significant concentrations of the injected substrate, 13C sodium succinate, together with 13C maleate and succinate metabolites 1- 13C-glutamate, 5- 13C-glutamate, 1- 13C-glutamine and 5- 13C-glutamine. The 13C substrates and products were below the limits of NMR detection in ex vivo samples of normal brain consistent with an intact blood-brain barrier. These ex vivo results indicate that hyperpolarized 13C sodium succinate may become a useful tool for rapid in vivo identification of brain tumors, providing novel biomarkers in 13C MR spectral-spatial images.

  4. Towards hyperpolarized 13C-succinate imaging of brain cancer

    PubMed Central

    Bhattacharya, Pratip; Chekmenev, Eduard Y.; Perman, William H.; Harris, Kent C.; Lin, Alexander P.; Norton, Valerie A.; Tan, Chou T.; Ross, Brian D.; Weitekamp, Daniel P.

    2009-01-01

    We describe a novel 13C enriched precursor molecule, sodium 1-13C acetylenedicarboxylate, which after hydrogenation by PASADE-NA (Parahydrogen and Synthesis Allows Dramatically Enhanced Nuclear Alignment) under controlled experimental conditions, becomes hyperpolarized 13C sodium succinate. Fast in vivo 3D FIESTA MR imaging demonstrated that, following carotid arterial injection, the hyperpolarized 13C-succinate appeared in the head and cerebral circulation of normal and tumor-bearing rats. At this time, no in vivo hyperpolarized signal has been localized to normal brain or brain tumor. On the other hand, ex vivo samples of brain harvested from rats bearing a 9L brain tumor, 1 h or more following in vivo carotid injection of hyperpolarized 13C sodium succinate, contained significant concentrations of the injected substrate, 13C sodium succinate, together with 13C maleate and succinate metabolites 1-13C-glutamate, 5-13C-glutamate, 1-13C-glutamine and 5-13C-glutamine. The 13C substrates and products were below the limits of NMR detection in ex vivo samples of normal brain consistent with an intact blood–brain barrier. These ex vivo results indicate that hyperpolarized 13C sodium succinate may become a useful tool for rapid in vivo identification of brain tumors, providing novel biomarkers in 13C MR spectral-spatial images. PMID:17303454

  5. Linking Ventilation Heterogeneity Quantified via Hyperpolarized 3He MRI to Dynamic Lung Mechanics and Airway Hyperresponsiveness.

    PubMed

    Lui, Justin K; Parameswaran, Harikrishnan; Albert, Mitchell S; Lutchen, Kenneth R

    2015-01-01

    Advancements in hyperpolarized helium-3 MRI (HP 3He-MRI) have introduced the ability to render and quantify ventilation patterns throughout the anatomic regions of the lung. The goal of this study was to establish how ventilation heterogeneity relates to the dynamic changes in mechanical lung function and airway hyperresponsiveness in asthmatic subjects. In four healthy and nine mild-to-moderate asthmatic subjects, we measured dynamic lung resistance and lung elastance from 0.1 to 8 Hz via a broadband ventilation waveform technique. We quantified ventilation heterogeneity using a recently developed coefficient of variation method from HP 3He-MRI imaging. Dynamic lung mechanics and imaging were performed at baseline, post-challenge, and after a series of five deep inspirations. AHR was measured via the concentration of agonist that elicits a 20% decrease in the subject's forced expiratory volume in one second compared to baseline (PC20) dose. The ventilation coefficient of variation was correlated to low-frequency lung resistance (R = 0.647, P < 0.0001), the difference between high and low frequency lung resistance (R = 0.668, P < 0.0001), and low-frequency lung elastance (R = 0.547, P = 0.0003). In asthmatic subjects with PC20 values <25 mg/mL, the coefficient of variation at baseline exhibited a strong negative trend (R = -0.798, P = 0.02) to PC20 dose. Our findings were consistent with the notion of peripheral rather than central involvement of ventilation heterogeneity. Also, the degree of AHR appears to be dependent on the degree to which baseline airway constriction creates baseline ventilation heterogeneity. HP 3He-MRI imaging may be a powerful predictor of the degree of AHR and in tracking the efficacy of therapy.

  6. Linking Ventilation Heterogeneity Quantified via Hyperpolarized 3He MRI to Dynamic Lung Mechanics and Airway Hyperresponsiveness

    PubMed Central

    Lui, Justin K.; Parameswaran, Harikrishnan; Albert, Mitchell S.; Lutchen, Kenneth R.

    2015-01-01

    Advancements in hyperpolarized helium-3 MRI (HP 3He-MRI) have introduced the ability to render and quantify ventilation patterns throughout the anatomic regions of the lung. The goal of this study was to establish how ventilation heterogeneity relates to the dynamic changes in mechanical lung function and airway hyperresponsiveness in asthmatic subjects. In four healthy and nine mild-to-moderate asthmatic subjects, we measured dynamic lung resistance and lung elastance from 0.1 to 8 Hz via a broadband ventilation waveform technique. We quantified ventilation heterogeneity using a recently developed coefficient of variation method from HP 3He-MRI imaging. Dynamic lung mechanics and imaging were performed at baseline, post-challenge, and after a series of five deep inspirations. AHR was measured via the concentration of agonist that elicits a 20% decrease in the subject’s forced expiratory volume in one second compared to baseline (PC20) dose. The ventilation coefficient of variation was correlated to low-frequency lung resistance (R = 0.647, P < 0.0001), the difference between high and low frequency lung resistance (R = 0.668, P < 0.0001), and low-frequency lung elastance (R = 0.547, P = 0.0003). In asthmatic subjects with PC20 values <25 mg/mL, the coefficient of variation at baseline exhibited a strong negative trend (R = -0.798, P = 0.02) to PC20 dose. Our findings were consistent with the notion of peripheral rather than central involvement of ventilation heterogeneity. Also, the degree of AHR appears to be dependent on the degree to which baseline airway constriction creates baseline ventilation heterogeneity. HP 3He-MRI imaging may be a powerful predictor of the degree of AHR and in tracking the efficacy of therapy. PMID:26569412

  7. Using hyperpolarized (129)Xe MRI to quantify regional gas transfer in idiopathic pulmonary fibrosis.

    PubMed

    Wang, Jennifer M; Robertson, Scott H; Wang, Ziyi; He, Mu; Virgincar, Rohan S; Schrank, Geoffry M; Smigla, Rose Marie; O'Riordan, Thomas G; Sundy, John; Ebner, Lukas; Rackley, Craig R; McAdams, Page; Driehuys, Bastiaan

    2017-08-31

    Assessing functional impairment, therapeutic response and disease progression in patients with idiopathic pulmonary fibrosis (IPF) continues to be challenging. Hyperpolarized (129)Xe MRI can address this gap through its unique capability to image gas transfer three-dimensionally from airspaces to interstitial barrier tissues to red blood cells (RBCs). This must be validated by testing the degree to which it correlates with pulmonary function tests (PFTs) and CT scores, and its spatial distribution reflects known physiology and patterns of disease. 13 healthy individuals (33.6±15.7 years) and 12 patients with IPF (66.0±6.4 years) underwent (129)Xe MRI to generate three-dimensional quantitative maps depicting the (129)Xe ventilation distribution, its uptake in interstitial barrier tissues and its transfer to RBCs. For each map, mean values were correlated with PFTs and CT fibrosis scores, and their patterns were tested for the ability to depict functional gravitational gradients in healthy lung and to detect the known basal and peripheral predominance of disease in IPF. (129)Xe MRI depicted functional impairment in patients with IPF, whose mean barrier uptake increased by 188% compared with the healthy reference population. (129)Xe MRI metrics correlated poorly and insignificantly with CT fibrosis scores but strongly with PFTs. Barrier uptake and RBC transfer both correlated significantly with diffusing capacity of the lungs for carbon monoxide (r=-0.75, p<0.01 and r=0.72, p<0.01), while their ratio (RBC/barrier) correlated most strongly (r=0.94, p<0.01). RBC transfer exhibited significant anterior-posterior gravitational gradients in healthy volunteers, but not in IPF, where it was significantly impaired in the basal (p=0.02) and subpleural (p<0.01) lung. Hyperpolarized(129)Xe MRI is a rapid and well-tolerated exam that provides region-specific quantification of interstitial barrier thickness and RBC transfer efficiency. With further development, it could become

  8. Whole lung morphometry with 3D multiple b-value hyperpolarized gas MRI and compressed sensing.

    PubMed

    Chan, Ho-Fung; Stewart, Neil J; Parra-Robles, Juan; Collier, Guilhem J; Wild, Jim M

    2017-05-01

    To demonstrate three-dimensional (3D) multiple b-value diffusion-weighted (DW) MRI of hyperpolarized (3) He gas for whole lung morphometry with compressed sensing (CS). A fully-sampled, two b-value, 3D hyperpolarized (3) He DW-MRI dataset was acquired from the lungs of a healthy volunteer and retrospectively undersampled in the ky and kz phase-encoding directions for CS simulations. Optimal k-space undersampling patterns were determined by minimizing the mean absolute error between reconstructed and fully-sampled (3) He apparent diffusion coefficient (ADC) maps. Prospective three-fold, undersampled, 3D multiple b-value (3) He DW-MRI datasets were acquired from five healthy volunteers and one chronic obstructive pulmonary disease (COPD) patient, and the mean values of maps of ADC and mean alveolar dimension (LmD ) were validated against two-dimensional (2D) and 3D fully-sampled (3) He DW-MRI experiments. Reconstructed undersampled datasets showed no visual artifacts and good preservation of the main image features and quantitative information. A good agreement between fully-sampled and prospective undersampled datasets was found, with a mean difference of +3.4% and +5.1% observed in mean global ADC and LmD values, respectively. These differences were within the standard deviation range and consistent with values reported from healthy and COPD lungs. Accelerated CS acquisition has facilitated 3D multiple b-value (3) He DW-MRI scans in a single breath-hold, enabling whole lung morphometry mapping. Magn Reson Med 77:1916-1925, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals

  9. Regional Anisotropy of Airspace Orientation in the Lung as Assessed with Hyperpolarized Helium-3 Diffusion MRI

    PubMed Central

    Komlosi, Peter; Altes, Talissa A.; Qing, Kun; Mooney, Karen E.; Miller, G. Wilson; Mata, Jaime F.; de Lange, Eduard E.; Tobias, William A.; Cates, Gordon D.; Brookeman, James R.; Mugler, John P.

    2015-01-01

    Purpose To evaluate regional anisotropy of lung-airspace orientation by assessing the dependence of helium-3 (3He) apparent diffusion coefficient (ADC) values on the direction of diffusion sensitization at two field strengths. Materials and Methods Hyperpolarized 3He diffusion-weighted MRI of the lung was performed at 0.43T and 1.5T in 12 healthy volunteers. A gradient-echo pulse sequence was used with a bipolar diffusion-sensitization gradient applied separately along three orthogonal directions. ADC maps, median ADC values and signal-to-noise ratios were calculated from the diffusion-weighted images. Two readers scored the ADC maps for increased values at lung margins, major fissures, or within focal central regions. Results ADC values were found to depend on the direction of diffusion sensitization (p < 0.01, except for craniocaudal versus anteroposterior directions at 1.5T) and were increased at the lateral and medial surfaces for left-right diffusion sensitization (12 of 12 subjects); at the apex and base (9 of 12), and along the major fissure (8 of 12), for craniocaudal diffusion sensitization; and at the most anterior and posterior lung (10 of 12) for anteroposterior diffusion sensitization. Median ADC values at 0.43T (0.201 ± 0.017, left-right; 0.193 ± 0.019, craniocaudal; and 0.187 ± 0.017 cm2/s, anteroposterior) were slightly lower than those at 1.5T (0.205 ± 0.017, 0.197 ± 0.017 and 0.194 ± 0.016 cm2/s, respectively; p < 0.05). Conclusion These findings indicate that diffusion-weighted hyperpolarized 3He MRI can detect regional anisotropy of lung-airspace orientation, including that associated with preferential orientation of terminal airways near pleural surfaces. PMID:26012720

  10. Hyperpolarized Gas Diffusion MRI for the Study of Atelectasis and Acute Respiratory Distress Syndrome

    PubMed Central

    Cereda, Maurizio; Xin, Yi; Kadlecek, Stephen; Hamedani, Hooman; Rajaei, Jennia; Clapp, Justin; Rizi, Rahim R.

    2014-01-01

    Considerable uncertainty remains about the best ventilator strategies for the mitigation of atelectasis and associated airspace stretch in patients with acute respiratory distress syndrome (ARDS). In addition to several immediate physiological effects, atelectasis increases the risk of ventilator-associated lung injury (VALI), which has been shown to significantly worsen ARDS outcomes. A number of lung imaging techniques have made substantial headway in clarifying the mechanisms of atelectasis. This paper reviews the contributions of CT, PET, and conventional MRI to understanding this phenomenon. In doing so, it also reveals several important shortcomings inherent to each of these approaches. Once these shortcomings have been made apparent, we describe how hyperpolarized gas magnetic resonance imaging (HP MRI)—a technique that is uniquely able to assess responses to mechanical ventilation and lung injury in peripheral airspaces—is poised to fill several of these knowledge gaps. The HP-MRI-derived apparent diffusion coefficient (ADC) quantifies the restriction of 3He diffusion by peripheral airspaces, thereby obtaining pulmonary structural information at an extremely small scale. Lastly, this paper reports the results of a series of experiments that measured ADC in mechanically ventilated rats in order to investigate (i) the effect of atelectasis on ventilated airspaces; (ii) the relationship between positive end-expiratory pressure (PEEP), hysteresis, and the dimensions of peripheral airspaces; and (iii) the ability of PEEP and surfactant to reduce airspace dimensions after lung injury. An increase in ADC was found to be a marker of atelectasis-induced overdistension. With recruitment, higher airway pressures were shown to reduce stretch rather than worsen it. Moving forward, HP MRI has significant potential to shed further light on the atelectatic processes that occur during mechanical ventilation. PMID:24920074

  11. Regional fractional ventilation mapping in spontaneously breathing mice using hyperpolarized ¹²⁹Xe MRI.

    PubMed

    Imai, Hirohiko; Matsumoto, Hironobu; Miyakoshi, Erika; Okumura, Shintaro; Fujiwara, Hideaki; Kimura, Atsuomi

    2015-01-01

    The feasibility of ventilation imaging with hyperpolarized (HP) (129) Xe MRI has been investigated for quantitative and regional assessment of ventilation in spontaneously breathing mice. The multiple breath ventilation imaging technique was modified to the protocol of spontaneous inhalation of HP (129) Xe delivered continuously from a (129) Xe polarizer. A series of (129) Xe ventilation images was obtained by varying the number of breaths before the (129) Xe lung imaging. The fractional ventilation, r, was successfully evaluated for spontaneously breathing mice. An attempt was made to detect ventilation dysfunction in the emphysematous mouse lung induced by intratracheal administration of porcine pancreatic elastase (PPE). As a result, the distribution of fractional ventilation could be visualized by the r map. Significant dysfunction of ventilation was quantitatively identified in the PPE-treated group. The whole-lung r value of 0.34 ± 0.01 for control mice (N = 4) was significantly reduced, to 0.25 ± 0.07, in PPE-treated mice (N = 4) (p = 0.038). This study is the first application of multiple breath ventilation imaging to spontaneously breathing mice, and shows that this methodology is sensitive to differences in the pulmonary ventilation. This methodology is expected to improve simplicity as well as noninvasiveness when assessing regional ventilation in small rodents.

  12. Hyperpolarized 129Xe magnetic resonance imaging of a rat model of transient Ischemic Stroke

    NASA Astrophysics Data System (ADS)

    Walvick, Ronn P.; Bastan, Birgul; Reno, Austin; Mansour, Joey; Sun, Yanping; Zhou, Xin; Mazzani, Mary; Fisher, Marc; Sotak, Christopher H.; Albert, Mitchell S.

    2009-02-01

    Ischemic stroke accounts for nearly 80% of all stroke cases. Although proton diffusion and perfusion magnetic resonance imaging (MRI) are the gold standards in ischemic stroke diagnostics, the use of hyperpolarized 129Xe MRI has a potential role to contribute to the diagnostic picture. The highly lipophilic hyperpolarized 129Xe can be non-invasively delivered via inhalation into the lungs where it is dissolved into the blood and delivered to other organs such as the brain. As such, we expect hyperpolarized 129Xe to act as a perfusion tracer which will result in a signal deficit in areas of blood deprived tissue. In this work, we present imaging results from an animal model of transient ischemic stroke characterized through 129Xe MRI. In this model, a suture is used to occlude the middle cerebral artery (MCA) in the rat brain, thus causing an ischemic event. After a period of MCA occlusion, the suture can then be removed to reperfuse the ischemic area. During the ischemic phase of the stroke, a signal void was observed in the MCA territory; which was subsequently restored by normal 129Xe MRI signal once perfusion was reinstated. Further, a higher resolution one-dimensional chemical shift image shows a sharp signal drop in the area of ischemia. Validation of ischemic damage was shown through both proton diffusion-weighted MRI (DWI) and by 2,3,5-triphenyltetrazoliumchloride (TTC) staining. The results show the potential of 129Xe to act as a perfusion tracer; information that may add to the diagnostic and prognostic utility of the clinical picture of stroke.

  13. Imaging pH with hyperpolarized 13C.

    PubMed

    Gallagher, Ferdia A; Kettunen, Mikko I; Brindle, Kevin M

    2011-10-01

    pH is a fundamental physiological parameter that is tightly controlled by endogenous buffers. The acid-base balance is altered in many disease states, such as inflammation, ischemia and cancer. Despite the importance of pH, there are currently no routine methods for imaging the spatial distribution of pH in humans. The enormous gain in sensitivity afforded by dynamic nuclear polarization (DNP) has provided a novel way in which to image tissue pH using MR, which has the potential to be translated into the clinic. This review explores the advantages and disadvantages of current pH imaging techniques and how they compare with DNP-based approaches for the measurement and imaging of pH with hyperpolarized (13)C. Intravenous injection of hyperpolarized (13)C-labeled bicarbonate results in the rapid production of hyperpolarized (13)CO(2) in the reaction catalyzed by carbonic anhydrase. As this reaction is close to equilibrium in the body and is pH dependent, the ratio of the (13)C signal intensities from H(13)CO(3)(-) and (13)CO(2), measured using MRS, can be used to calculate pH in vivo. The application of this technique to a murine tumor model demonstrated that it measured predominantly extracellular pH and could be mapped in the animal using spectroscopic imaging techniques. A second approach has been to use the production of hyperpolarized (13)CO(2) from hyperpolarized [1-(13)C]pyruvate to measure predominantly intracellular pH. In tissues with a high aerobic capacity, such as the heart, the hyperpolarized [1-(13)C]pyruvate undergoes rapid oxidative decarboxylation, catalyzed by intramitochondrial pyruvate dehydrogenase. Provided that there is sufficient carbonic anhydrase present to catalyze the rapid equilibration of the hyperpolarized (13)C label between CO(2) and bicarbonate, the ratio of their resonance intensities may again be used to estimate pH, which, in this case, is predominantly intracellular. As both pyruvate and bicarbonate are endogenous molecules they

  14. Hyperpolarized (3)He pulmonary functional magnetic resonance imaging prior to radiation therapy.

    PubMed

    Mathew, Lindsay; Vandyk, Jake; Etemad-Rezai, Roya; Rodrigues, George; Parraga, Grace

    2012-07-01

    Radiation-induced lung injury (RILI) is the primary dose-limiting toxicity for radiation therapy of the lung, and although the effects of radiation dose on RILI development have been well characterized, the influence of chronic obstructive pulmonary disease (COPD) on the development of RILI and other outcomes is not well understood. The purpose of this small pilot study was to evaluate the relationship between hyperpolarized (3)He magnetic resonance imaging (MRI) measurements of COPD with RILI and 12-month survival in lung cancer patients undergoing radical radiotherapy and to evaluate the feasibility of pulmonary functional MRI as an image guidance∕planning tool for radiation therapy. Fifteen non-small cell and small cell lung cancer patients underwent pulmonary function tests, x-ray computed tomography (CT), and hyperpolarized (3)He MRI prior to radical radiation therapy (≥60 Gy). Conventional thoracic (1)H and hyperpolarized (3)He MRI were acquired to generate ventilation defect percent and the apparent diffusion coefficient for the ipsilateral and contralateral lungs independently. CT was acquired postradiation therapy and qualitatively evaluated for radiological evidence of RILI and 12-month survival was reported. Hyperpolarized (3)He MRI measurements of COPD classified 10∕15 subjects with contralateral lung COPD (CLC), and five subjects without COPD [contralateral lung normal (CLN)]. Of the 10 subjects with CLC, only four had a previous clinical diagnosis of COPD. CT images were acquired postradiation therapy for 13 subjects, and for eight (62%) of these there was qualitative evidence of RILI, including 5∕9 CLC and 3∕4 CLN subjects. The one-year survival was 2∕10 for CLC and 3∕5 for CLN subjects. In this small pilot study, we report the use of (3)He MRI to stratify lung cancer patients based on MRI evidence of COPD and showed that comorbid COPD was present in the majority of lung cancer subjects stratified for radiation therapy. Lung cancer

  15. Real-Time MRI-Guided Catheter Tracking Using Hyperpolarized Silicon Particles

    PubMed Central

    Whiting, Nicholas; Hu, Jingzhe; Shah, Jay V.; Cassidy, Maja C.; Cressman, Erik; Zacharias Millward, Niki; Menter, David G.; Marcus, Charles M.; Bhattacharya, Pratip K.

    2015-01-01

    Visualizing the movement of angiocatheters during endovascular interventions is typically accomplished using x-ray fluoroscopy. There are many potential advantages to developing magnetic resonance imaging-based approaches that will allow three-dimensional imaging of the tissue/vasculature interface while monitoring other physiologically-relevant criteria, without exposing the patient or clinician team to ionizing radiation. Here we introduce a proof-of-concept development of a magnetic resonance imaging-guided catheter tracking method that utilizes hyperpolarized silicon particles. The increased signal of the silicon particles is generated via low-temperature, solid-state dynamic nuclear polarization, and the particles retain their enhanced signal for ≥40 minutes—allowing imaging experiments over extended time durations. The particles are affixed to the tip of standard medical-grade catheters and are used to track passage under set distal and temporal points in phantoms and live mouse models. With continued development, this method has the potential to supplement x-ray fluoroscopy and other MRI-guided catheter tracking methods as a zero-background, positive contrast agent that does not require ionizing radiation. PMID:26239953

  16. Real-Time MRI-Guided Catheter Tracking Using Hyperpolarized Silicon Particles

    NASA Astrophysics Data System (ADS)

    Whiting, Nicholas; Hu, Jingzhe; Shah, Jay V.; Cassidy, Maja C.; Cressman, Erik; Zacharias Millward, Niki; Menter, David G.; Marcus, Charles M.; Bhattacharya, Pratip K.

    2015-08-01

    Visualizing the movement of angiocatheters during endovascular interventions is typically accomplished using x-ray fluoroscopy. There are many potential advantages to developing magnetic resonance imaging-based approaches that will allow three-dimensional imaging of the tissue/vasculature interface while monitoring other physiologically-relevant criteria, without exposing the patient or clinician team to ionizing radiation. Here we introduce a proof-of-concept development of a magnetic resonance imaging-guided catheter tracking method that utilizes hyperpolarized silicon particles. The increased signal of the silicon particles is generated via low-temperature, solid-state dynamic nuclear polarization, and the particles retain their enhanced signal for ≥40 minutes—allowing imaging experiments over extended time durations. The particles are affixed to the tip of standard medical-grade catheters and are used to track passage under set distal and temporal points in phantoms and live mouse models. With continued development, this method has the potential to supplement x-ray fluoroscopy and other MRI-guided catheter tracking methods as a zero-background, positive contrast agent that does not require ionizing radiation.

  17. Hyperpolarized gas diffusion MRI for the study of atelectasis and acute respiratory distress syndrome.

    PubMed

    Cereda, Maurizio; Xin, Yi; Kadlecek, Stephen; Hamedani, Hooman; Rajaei, Jennia; Clapp, Justin; Rizi, Rahim R

    2014-12-01

    Considerable uncertainty remains about the best ventilator strategies for the mitigation of atelectasis and associated airspace stretch in patients with acute respiratory distress syndrome (ARDS). In addition to several immediate physiological effects, atelectasis increases the risk of ventilator-associated lung injury, which has been shown to significantly worsen ARDS outcomes. A number of lung imaging techniques have made substantial headway in clarifying the mechanisms of atelectasis. This paper reviews the contributions of computed tomography, positron emission tomography, and conventional MRI to understanding this phenomenon. In doing so, it also reveals several important shortcomings inherent to each of these approaches. Once these shortcomings have been made apparent, we describe how hyperpolarized (HP) gas MRI--a technique that is uniquely able to assess responses to mechanical ventilation and lung injury in peripheral airspaces--is poised to fill several of these knowledge gaps. The HP-MRI-derived apparent diffusion coefficient (ADC) quantifies the restriction of (3) He diffusion by peripheral airspaces, thereby obtaining pulmonary structural information at an extremely small scale. Lastly, this paper reports the results of a series of experiments that measured ADC in mechanically ventilated rats in order to investigate (i) the effect of atelectasis on ventilated airspaces, (ii) the relationship between positive end-expiratory pressure (PEEP), hysteresis, and the dimensions of peripheral airspaces, and (iii) the ability of PEEP and surfactant to reduce airspace dimensions after lung injury. An increase in ADC was found to be a marker of atelectasis-induced overdistension. With recruitment, higher airway pressures were shown to reduce stretch rather than worsen it. Moving forward, HP MRI has significant potential to shed further light on the atelectatic processes that occur during mechanical ventilation. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications☆

    PubMed Central

    Hughes-Riley, Theodore; Six, Joseph S.; Lilburn, David M.L.; Stupic, Karl F.; Dorkes, Alan C.; Shaw, Dominick E.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2013-01-01

    As an alternative to cryogenic gas handling, hyperpolarized (hp) gas mixtures were extracted directly from the spin exchange optical pumping (SEOP) process through expansion followed by compression to ambient pressure for biomedical MRI applications. The omission of cryogenic gas separation generally requires the usage of high xenon or krypton concentrations at low SEOP gas pressures to generate hp 129Xe or hp 83Kr with sufficient MR signal intensity for imaging applications. Two different extraction schemes for the hp gasses were explored with focus on the preservation of the nuclear spin polarization. It was found that an extraction scheme based on an inflatable, pressure controlled balloon is sufficient for hp 129Xe handling, while 83Kr can efficiently be extracted through a single cycle piston pump. The extraction methods were tested for ex vivo MRI applications with excised rat lungs. Precise mixing of the hp gases with oxygen, which may be of interest for potential in vivo applications, was accomplished during the extraction process using a piston pump. The 83Kr bulk gas phase T1 relaxation in the mixtures containing more than approximately 1% O2 was found to be slower than that of 129Xe in corresponding mixtures. The experimental setup also facilitated 129Xe T1 relaxation measurements as a function of O2 concentration within excised lungs. PMID:24135800

  19. Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications

    NASA Astrophysics Data System (ADS)

    Hughes-Riley, Theodore; Six, Joseph S.; Lilburn, David M. L.; Stupic, Karl F.; Dorkes, Alan C.; Shaw, Dominick E.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2013-12-01

    As an alternative to cryogenic gas handling, hyperpolarized (hp) gas mixtures were extracted directly from the spin exchange optical pumping (SEOP) process through expansion followed by compression to ambient pressure for biomedical MRI applications. The omission of cryogenic gas separation generally requires the usage of high xenon or krypton concentrations at low SEOP gas pressures to generate hp 129Xe or hp 83Kr with sufficient MR signal intensity for imaging applications. Two different extraction schemes for the hp gasses were explored with focus on the preservation of the nuclear spin polarization. It was found that an extraction scheme based on an inflatable, pressure controlled balloon is sufficient for hp 129Xe handling, while 83Kr can efficiently be extracted through a single cycle piston pump. The extraction methods were tested for ex vivo MRI applications with excised rat lungs. Precise mixing of the hp gases with oxygen, which may be of interest for potential in vivo applications, was accomplished during the extraction process using a piston pump. The 83Kr bulk gas phase T1 relaxation in the mixtures containing more than approximately 1% O2 was found to be slower than that of 129Xe in corresponding mixtures. The experimental setup also facilitated 129Xe T1 relaxation measurements as a function of O2 concentration within excised lungs.

  20. Cryogenics free production of hyperpolarized 129Xe and 83Kr for biomedical MRI applications.

    PubMed

    Hughes-Riley, Theodore; Six, Joseph S; Lilburn, David M L; Stupic, Karl F; Dorkes, Alan C; Shaw, Dominick E; Pavlovskaya, Galina E; Meersmann, Thomas

    2013-12-01

    As an alternative to cryogenic gas handling, hyperpolarized (hp) gas mixtures were extracted directly from the spin exchange optical pumping (SEOP) process through expansion followed by compression to ambient pressure for biomedical MRI applications. The omission of cryogenic gas separation generally requires the usage of high xenon or krypton concentrations at low SEOP gas pressures to generate hp (129)Xe or hp (83)Kr with sufficient MR signal intensity for imaging applications. Two different extraction schemes for the hp gasses were explored with focus on the preservation of the nuclear spin polarization. It was found that an extraction scheme based on an inflatable, pressure controlled balloon is sufficient for hp (129)Xe handling, while (83)Kr can efficiently be extracted through a single cycle piston pump. The extraction methods were tested for ex vivo MRI applications with excised rat lungs. Precise mixing of the hp gases with oxygen, which may be of interest for potential in vivo applications, was accomplished during the extraction process using a piston pump. The (83)Kr bulk gas phase T1 relaxation in the mixtures containing more than approximately 1% O2 was found to be slower than that of (129)Xe in corresponding mixtures. The experimental setup also facilitated (129)Xe T1 relaxation measurements as a function of O2 concentration within excised lungs. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  1. An evaluation of pulmonary atelectasis and its re-expansion: hyperpolarized 3He MRI in the Yorkshire pig.

    PubMed

    Ferrante, Margaret A; Asiaii, Ali; Ishii, Masaru; Roberts, David A; Edvinsson, Johan M; Jalali, Aman; Spector, Zebulon Z; Meisel, Fabian; Rizi, Rahim R

    2003-11-01

    Atelectasis, the collapse of small airways, is a significant clinical problem. We use hyperpolarized (HP) 3He magnetic resonance imaging (MRI), or HP 3He MRI, to describe atelectasis in the normal Yorkshire pig, the pig with atelectasis, and the pig with re-expansion of atelectasis. We compare HP 3He MRI findings with depictions of atelectasis by proton MRI. During end-expiration in the anesthetized and paralyzed Yorkshire pig (n = 6), HP 3He gas produced by the optical pumping spin-exchange method, was delivered via an endotracheal tube. For two separate groups, atelectasis was either induced by Fogarty-catheter occlusion balloon inflation (n = 3), or lateral chest wall administration of sodium hydroxide (NaOH) (n = 3). MRI was performed at time zero, at 5, 9, 13, 15, and 19 minutes after atelectasis production, 30 minutes after balloon deflation, and 10 and 30 minutes after recruitment of atelectatic areas with increased tidal volumes and added positive end-expiratory pressure. High-resolution, cross-sectional MR images were procured, and comparison was made with the traditional proton MRI. Atelectatic areas by HP 3He MRI were easily distinguishable in both subject groups, and correlated with those located by proton MR. HP 3He MR images showed absence of ventilation, whereas proton MR images depicted dense, white areas. Re-expansion of atelectasis was well delineated by HP 3He MRI. HP 3He MRI may overcome many of the shortcomings of other well-established radiographic methods. HP 3He MRI is a novel, informative method for describing atelectasis and its re-expansion.

  2. Hyperpolarized (3) He and (129) Xe MRI: differences in asthma before bronchodilation.

    PubMed

    Svenningsen, Sarah; Kirby, Miranda; Starr, Danielle; Leary, Del; Wheatley, Andrew; Maksym, Geoffrey N; McCormack, David G; Parraga, Grace

    2013-12-01

    To compare hyperpolarized helium-3 ((3) He) and xenon-129 ((129) Xe) MRI in asthmatics before and after salbutamol inhalation. Seven asthmatics provided written informed consent and underwent spirometry, plethysmography, and MRI before and after salbutamol inhalation. (3) He and (129) Xe ventilation defect percent (VDP) and ventilation coefficient of variation (COV) were measured. To characterize the airways spatially related to ventilation defects, wall area percent (WA%) and lumen area (LA) were evaluated for two subjects who had thoracic x-ray computed tomography (CT) acquired 1 year before MRI. Before salbutamol inhalation, (129) Xe VDP (8 ± 5%) was significantly greater than (3) He VDP (6 ± 5%, P = 0.003). Post-salbutamol, there was a significant improvement in both (129) Xe (5 ± 4%, P < 0.0001) and (3) He (4 ± 3%, P = 0.001) VDP, and the improvement in (129) Xe VDP was significantly greater (P = 0.008). (129) Xe MRI COV (Pre: 0.309 ± 0.028, Post: 0.296 ± 0.036) was significantly greater than (3) He MRI COV (Pre: 0.282 ± 0.018, Post: 0.269 ± 0.024), pre- (P < 0.0001) and post-salbutamol (P < 0.0001) and the decrease in COV post-salbutamol was significant ((129) Xe, P = 0.002; (3) He, P < 0.0001). For a single asthmatic, a sub-segmental (129) Xe MRI ventilation defect that was visible only before salbutamol inhalation but not visible using (3) He MRI was spatially related to a remodeled fourth generation sub-segmental airway (WA% = 78%, LA = 2.9 mm(2) ). In asthma, hyperpolarized (129) Xe MRI may help reveal ventilation abnormalities before bronchodilation that are not observed using hyperpolarized (3) He MRI. Copyright © 2013 Wiley Periodicals, Inc.

  3. Nuclear spin imaging with hyperpolarized nuclei created by brute force method

    NASA Astrophysics Data System (ADS)

    Tanaka, Masayoshi; Kunimatsu, Takayuki; Fujiwara, Mamoru; Kohri, Hideki; Ohta, Takeshi; Utsuro, Masahiko; Yosoi, Masaru; Ono, Satoshi; Fukuda, Kohji; Takamatsu, Kunihiko; Ueda, Kunihiro; Didelez, Jean-P.; Prossati, Giorgio; de Waard, Arlette

    2011-05-01

    We have been developing a polarized HD target for particle physics at the SPring-8 under the leadership of the RCNP, Osaka University for the past 5 years. Nuclear polarizaton is created by means of the brute force method which uses a high magnetic field (~17 T) and a low temperature (~ 10 mK). As one of the promising applications of the brute force method to life sciences we started a new project, "NSI" (Nuclear Spin Imaging), where hyperpolarized nuclei are used for the MRI (Magnetic Resonance Imaging). The candidate nuclei with spin ½hslash are 3He, 13C, 15N, 19F, 29Si, and 31P, which are important elements for the composition of the biomolecules. Since the NMR signals from these isotopes are enhanced by orders of magnitudes, the spacial resolution in the imaging would be much more improved compared to the practical MRI used so far. Another advantage of hyperpolarized MRI is that the MRI is basically free from the radiation, while the problems of radiation exposure caused by the X-ray CT or PET (Positron Emission Tomography) cannot be neglected. In fact, the risk of cancer for Japanese due to the radiation exposure through these diagnoses is exceptionally high among the advanced countries. As the first step of the NSI project, we are developing a system to produce hyperpolarized 3He gas for the diagnosis of serious lung diseases, for example, COPD (Chronic Obstructive Pulmonary Disease). The system employs the same 3He/4He dilution refrigerator and superconducting solenoidal coil as those used for the polarized HD target with some modification allowing the 3He Pomeranchuk cooling and the following rapid melting of the polarized solid 3He to avoid the depolarization. In this report, the present and future steps of our project will be outlined with some latest experimental results.

  4. Developing hyperpolarized silicon particles for in vivo MRI targeting of ovarian cancer

    PubMed Central

    Whiting, Nicholas; Hu, Jingzhe; Zacharias, Niki M.; Lokesh, Ganesh L. R.; Volk, David E.; Menter, David G.; Rupaimoole, Rajesha; Previs, Rebecca; Sood, Anil K.; Bhattacharya, Pratip

    2016-01-01

    Abstract. Silicon-based nanoparticles are ideally suited for use as biomedical imaging agents due to their biocompatibility, biodegradability, and simple surface chemistry that facilitates drug loading and targeting. A method of hyperpolarizing silicon particles using dynamic nuclear polarization, which increases magnetic resonance imaging signals by several orders-of-magnitude through enhanced nuclear spin alignment, has recently been developed to allow silicon particles to function as contrast agents for in vivo magnetic resonance imaging. The enhanced spin polarization of silicon lasts significantly longer than other hyperpolarized agents (tens of minutes, whereas <1  min for other species at room temperature), allowing a wide range of potential applications. We report our recent characterizations of hyperpolarized silicon particles, with the ultimate goal of targeted, noninvasive, and nonradioactive molecular imaging of various cancer systems. A variety of particle sizes (20 nm to 2  μm) were found to have hyperpolarized relaxation times ranging from ∼10 to 50 min. The addition of various functional groups to the particle surface had no effect on the hyperpolarization buildup or decay rates and allowed in vivo imaging over long time scales. Additional in vivo studies examined a variety of particle administration routes in mice, including intraperitoneal injection, rectal enema, and oral gavage. PMID:27547777

  5. Time resolved spectroscopic NMR imaging using hyperpolarized 129Xe

    NASA Astrophysics Data System (ADS)

    Han, S.; Kühn, H.; Häsing, F. W.; Münnemann, K.; Blümich, B.; Appelt, S.

    2004-04-01

    We have visualized the melting and dissolution processes of xenon (Xe) ice into different solvents using the methods of nuclear magnetic resonance (NMR) spectroscopy, imaging, and time resolved spectroscopic imaging by means of hyperpolarized 129Xe. Starting from the initial condition of a hyperpolarized solid Xe layer frozen on top of an ethanol (ethanol/water) ice block we measured the Xe phase transitions as a function of time and temperature. In the pure ethanol sample, pieces of Xe ice first fall through the viscous ethanol to the bottom of the sample tube and then form a thin layer of liquid Xe/ethanol. The xenon atoms are trapped in this liquid layer up to room temperature and keep their magnetization over a time period of 11 min. In the ethanol/water mixture (80 vol%/20%), most of the polarized Xe liquid first stays on top of the ethanol/water ice block and then starts to penetrate into the pores and cracks of the ethanol/water ice block. In the final stage, nearly all the Xe polarization is in the gas phase above the liquid and trapped inside the pores. NMR spectra of homogeneous samples of pure ethanol containing thermally polarized Xe and the spectroscopic images of the melting process show that very high concentrations of hyperpolarized Xe (about half of the density of liquid Xe) can be stored or delivered in pure ethanol.

  6. On the Use of Hyperpolarized Helium MRI for Conformal Avoidance Lung Radiotherapy

    SciTech Connect

    Hodge, C.W.; Tome, Wolfgang A.; Fain, S.B.; Bentzen, S.M.; Mehta, M.P.

    2010-01-01

    We wanted to illustrate the feasibility of using hyperpolarized helium magnetic resonance imaging (HPH-MRI) to obtain functional information that may assist in improving conformal avoidance of ventilating lung tissue during thoracic radiotherapy. HPH-MRI images were obtained from a volunteer patient and were first fused with a proton density-weighted (PD{sub w}) MRI to provide corresponding anatomic detail; they were then fused with the treatment planning computed tomography scan of a patient from our treatment planning database who possessed equivalent thoracic dimensions. An optimized treatment plan was then generated using the TomoTherapy treatment planning system, designating the HPH-enhancing regions as ventilation volume (VV). A dose-volume histogram compares the dosimetry of the lungs as a paired organ, the VV, and the lungs minus the VV. The clinical consequences of these changes was estimated using a bio-effect model, the parallel architecture model, or the local damage (f{sub dam}) model. Model parameters were chosen from published studies linking the incidence of grade 3+ pneumonitis, with the dose and volume irradiated. For two hypothetical treatment plans of 60 Gy in 30 fractions delivered to a right upper-lobe lung mass, one using and one ignoring the VV as an avoidance structure, the mean normalized total dose (NTD{sub mean}) values for the lung subvolumes were: lungs = 12.5 Gy{sub 3}vs. 13.52 Gy{sub 3}, VV = 9.94 Gy{sub 3}vs. 13.95 Gy{sub 3}, and lungs minus VV = 16.69 Gy{sub 3}vs. 19.16 Gy{sub 3}. Using the f{sub dam} values generated from these plans, one would predict a reduction of the incidence of grade 3+ radiation pneumonitis from 12%-4% when compared with a conventionally optimized plan. The use of HPH-MRI to identify ventilated lung subvolumes is feasible and has the potential to be incorporated into conformal avoidance treatment planning paradigms. A prospective clinical study evaluating this imaging technique is being developed.

  7. In vivo detection of cucurbit[6]uril, a hyperpolarized xenon contrast agent for a xenon magnetic resonance imaging biosensor

    NASA Astrophysics Data System (ADS)

    Hane, Francis T.; Li, Tao; Smylie, Peter; Pellizzari, Raiili M.; Plata, Jennifer A.; Deboef, Brenton; Albert, Mitchell S.

    2017-01-01

    The Hyperpolarized gas Chemical Exchange Saturation Transfer (HyperCEST) Magnetic Resonance (MR) technique has the potential to increase the sensitivity of a hyperpolarized xenon-129 MRI contrast agent. Signal enhancement is accomplished by selectively depolarizing the xenon within a cage molecule which, upon exchange, reduces the signal in the dissolved phase pool. Herein we demonstrate the in vivo detection of the cucurbit[6]uril (CB6) contrast agent within the vasculature of a living rat. Our work may be used as a stepping stone towards using the HyperCEST technique as a molecular imaging modality.

  8. In vivo detection of cucurbit[6]uril, a hyperpolarized xenon contrast agent for a xenon magnetic resonance imaging biosensor

    PubMed Central

    Hane, Francis T.; Li, Tao; Smylie, Peter; Pellizzari, Raiili M.; Plata, Jennifer A.; DeBoef, Brenton; Albert, Mitchell S.

    2017-01-01

    The Hyperpolarized gas Chemical Exchange Saturation Transfer (HyperCEST) Magnetic Resonance (MR) technique has the potential to increase the sensitivity of a hyperpolarized xenon-129 MRI contrast agent. Signal enhancement is accomplished by selectively depolarizing the xenon within a cage molecule which, upon exchange, reduces the signal in the dissolved phase pool. Herein we demonstrate the in vivo detection of the cucurbit[6]uril (CB6) contrast agent within the vasculature of a living rat. Our work may be used as a stepping stone towards using the HyperCEST technique as a molecular imaging modality. PMID:28106110

  9. Hyperpolarized gas diffusion MRI of biphasic lung inflation in short- and long-term emphysema models.

    PubMed

    Xin, Yi; Cereda, Maurizio; Kadlecek, Stephen; Emami, Kiarash; Hamedani, Hooman; Duncan, Ian; Rajaei, Jennia; Hughes, Liam; Meeder, Natalie; Naji, Joseph; Profka, Harrilla; Bolognese, Brian J; Foley, Joseph P; Podolin, Patricia L; Rizi, Rahim R

    2017-08-01

    During lung inflation, airspace dimensions are affected nonlinearly by both alveolar expansion and recruitment, potentially confounding the identification of emphysematous lung by hyperpolarized helium-3 diffusion magnetic resonance imaging (HP MRI). This study aimed to characterize lung inflation over a broad range of inflation volume and pressure values in two different models of emphysema, as well as in normal lungs. Elastase-treated rats (n = 7) and healthy controls (n = 7) were imaged with HP MRI. Gradual inflation was achieved by incremental changes to both inflation volume and airway pressure. The apparent diffusion coefficient (ADC) was measured at each level of inflation and fitted to the corresponding airway pressures as the second-order response equation, with minimizing residue (χ(2) < 0.001). A biphasic ADC response was detected, with an initial ADC increase followed by a decrease at airway pressures >18 cmH2O. Discrimination between treated and control rats was optimal when airway pressure was intermediate (between 10 and 11 cmH2O). Similar findings were confirmed in mice following long-term exposure to cigarette smoke, where optimal discrimination between treated and healthy mice occurred at a similar airway pressure as in the rats. We subsequently explored the evolution of ADC measured at the intermediate inflation level in mice after prolonged smoke exposure and found a significant increase (P < 0.01) in ADC over time. Our results demonstrate that measuring ADC at intermediate inflation enhances the distinction between healthy and diseased lungs, thereby establishing a model that may improve the diagnostic accuracy of future HP gas diffusion studies. Copyright © 2017 the American Physiological Society.

  10. Hyperpolarized krypton-83 as a contrast agent for magnetic resonance imaging.

    PubMed

    Pavlovskaya, Galina E; Cleveland, Zackary I; Stupic, Karl F; Basaraba, Randall J; Meersmann, Thomas

    2005-12-20

    For the first time, magnetic resonance imaging (MRI) with hyperpolarized (hp) krypton-83 (83Kr) has become available. The relaxation of the nuclear spin of 83Kr atoms (I = 9/2) is driven by quadrupolar interactions during brief adsorption periods on surrounding material interfaces. Experiments in model systems reveal that the longitudinal relaxation of hp 83Kr gas strongly depends on the chemical composition of the materials. The relaxation-weighted contrast in hp 83Kr MRI allows for the distinction between hydrophobic and hydrophilic surfaces. The feasibility of hp 83Kr MRI of airways is tested in canine lung tissue by using krypton gas with natural abundance isotopic distribution. Additionally, the influence of magnetic field strength and the presence of a breathable concentration of molecular oxygen on longitudinal relaxation are investigated.

  11. (1) H-(13) C independently tuned radiofrequency surface coil applied for in vivo hyperpolarized MRI.

    PubMed

    Cao, Peng; Zhang, Xiaoliang; Park, Ilwoo; Najac, Chloe; Nelson, Sarah J; Ronen, Sabrina; Larson, Peder E Z

    2016-11-01

    To develop a lump-element double-tuned common-mode-differential-mode (CMDM) radiofrequency (RF) surface coil with independent frequency tuning capacity for MRS and MRI applications. The presented design has two modes that can operate with different current paths, allowing independent frequency adjustment. The coil prototype was tested on the bench and then examined in phantom and in vivo experiments. Standard deviations of frequency and impedance fluctuations measured in one resonator, while changing the tuning capacitor of another resonator, were less than 13 kHz and 0.55 Ω. The unloaded S21 was -36 dB and -41 dB, while the unloaded Q factor was 260 and 287, for (13) C and (1) H, respectively. In vivo hyperpolarized (13) C MR spectroscopy data demonstrated the feasibility of using the CMDM coil to measure the dynamics of lactate, alanine, pyruvate and bicarbonate signal in a normal rat head along with acquiring (1) H anatomical reference images. Independent frequency tuning capacity was demonstrated in the presented lump-element double-tuned CMDM coil. This CMDM coil maintained intrinsically decoupled magnetic fields, which provided sufficient isolation between the two resonators. The results from in vivo experiments demonstrated high sensitivity of both the (1) H and (13) C resonators. Magn Reson Med 76:1612-1620, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  12. Improved Technique for Measurement of Regional Fractional Ventilation by Hyperpolarized 3He MRI

    PubMed Central

    Emami, Kiarash; Kadlecek, Stephen J.; Woodburn, John M.; Zhu, Jianliang; Yu, Jiangsheng; Vahdat, Vahid; Pickup, Stephen; Ishii, Masaru; Rizi, Rahim R.

    2012-01-01

    Quantitative measurement of regional lung ventilation is of great significance in assessment of lung function in many obstructive and restrictive pulmonary diseases. A new technique for regional measurement of fractional ventilation using hyperpolarized 3He MRI is proposed, addressing the shortcomings of an earlier approach that limited its use to small animals. The new approach allows for the acquisition of similar quantitative maps over a shortened period and requires substantially less 3He gas. This technique is therefore a better platform for implementation in large species, including humans. The measurements using the two approaches were comparable to a great degree, as verified in a healthy rat lung, and are very reproducible. Preliminary validation is performed in a lung phantom system. Volume dependency of measurements was assessed both in vivo and in vitro. A scheme for selecting an optimum flip angle is proposed. In addition, a dead space modeling approach is proposed to yield more accurate measurements of regional fractional ventilation using either method. Finally, sensitivity of the new technique to model parameters, noise, and number of included images were assessed numerically. As a prelude to application in humans, the technique was implemented in a large animal study successfully. PMID:19877277

  13. Dynamic MRI of Grid-Tagged Hyperpolarized Helium-3 for the Assessment of Lung Motion During Breathing

    SciTech Connect

    Cai Jing; Sheng Ke; Benedict, Stanley H.; Read, Paul W.; Larner, James M.; Mugler, John P.; Lange, Eduard E. de; Cates, Gordon D.; Miller, G. Wilson

    2009-09-01

    Purpose: To develop a dynamic magnetic resonance imaging (MRI) tagging technique using hyperpolarized helium-3 (HP He-3) to track lung motion. Methods and Materials: An accelerated non-Cartesian k-space trajectory was used to gain acquisition speed, at the cost of introducing image artifacts, providing a viable strategy for obtaining whole-lung coverage with adequate temporal resolution. Multiple-slice two-dimensional dynamic images of the lung were obtained in three healthy subjects after inhaling He-3 gas polarized to 35%-40%. Displacement, strain, and ventilation maps were computed from the observed motion of the grid peaks. Results: Both temporal and spatial variations of pulmonary mechanics were observed in normal subjects, including shear motion between different lobes of the same lung. Conclusion: These initial results suggest that dynamic imaging of grid-tagged hyperpolarized magnetization may potentially be a powerful tool for observing and quantifying pulmonary biomechanics on a regional basis and for assessing, validating, and improving lung deformable image registration algorithms.

  14. In vivo lung morphometry with hyperpolarized 3He diffusion MRI: Theoretical background

    NASA Astrophysics Data System (ADS)

    Sukstanskii, A. L.; Yablonskiy, D. A.

    2008-02-01

    MRI-based study of 3He gas diffusion in lungs may provide important information on lung microstructure. Lung acinar airways can be described in terms of cylinders covered with alveolar sleeve [Haefeli-Bleuer, Weibel, Anat. Rec. 220 (1988) 401]. For relatively short diffusion times (on the order of a few ms) this geometry allows description of the 3He diffusion attenuated MR signal in lungs in terms of two diffusion coefficients—longitudinal (D) and transverse (D) with respect to the individual acinar airway axis [Yablonskiy et al., PNAS 99 (2002) 3111]. In this paper, empirical relationships between D and D and the geometrical parameters of airways and alveoli are found by means of computer Monte Carlo simulations. The effects of non-Gaussian signal behavior (dependence of D and D on b-value) are also taken into account. The results obtained are quantitatively valid in the physiologically important range of airway parameters characteristic of healthy lungs and lungs with mild emphysema. In lungs with advanced emphysema, the results provide only "apparent" characteristics but still could potentially be used to evaluate emphysema progression. This creates a basis for in vivo lung morphometry—evaluation of the geometrical parameters of acinar airways from hyperpolarized 3He diffusion MRI, despite the airways being too small to be resolved by direct imaging. These results also predict a rather substantial dependence of 3He ADC on the experimentally-controllable diffusion time, Δ. If Δ is decreased from 3 ms to 1 ms, the ADC in normal human lungs may increase by almost 50%. This effect should be taken into account when comparing experimental data obtained with different pulse sequences.

  15. In vivo lung morphometry with hyperpolarized 3He diffusion MRI: theoretical background.

    PubMed

    Sukstanskii, A L; Yablonskiy, D A

    2008-02-01

    MRI-based study of (3)He gas diffusion in lungs may provide important information on lung microstructure. Lung acinar airways can be described in terms of cylinders covered with alveolar sleeve [Haefeli-Bleuer, Weibel, Anat. Rec. 220 (1988) 401]. For relatively short diffusion times (on the order of a few ms) this geometry allows description of the (3)He diffusion attenuated MR signal in lungs in terms of two diffusion coefficients-longitudinal (D(L)) and transverse (D(T)) with respect to the individual acinar airway axis [Yablonskiy et al., PNAS 99 (2002) 3111]. In this paper, empirical relationships between D(L) and D(T) and the geometrical parameters of airways and alveoli are found by means of computer Monte Carlo simulations. The effects of non-Gaussian signal behavior (dependence of D(L) and D(T) on b-value) are also taken into account. The results obtained are quantitatively valid in the physiologically important range of airway parameters characteristic of healthy lungs and lungs with mild emphysema. In lungs with advanced emphysema, the results provide only "apparent" characteristics but still could potentially be used to evaluate emphysema progression. This creates a basis for in vivo lung morphometry-evaluation of the geometrical parameters of acinar airways from hyperpolarized (3)He diffusion MRI, despite the airways being too small to be resolved by direct imaging. These results also predict a rather substantial dependence of (3)He ADC on the experimentally-controllable diffusion time, Delta. If Delta is decreased from 3 ms to 1 ms, the ADC in normal human lungs may increase by almost 50%. This effect should be taken into account when comparing experimental data obtained with different pulse sequences.

  16. NMR Hyperpolarization Techniques of Gases.

    PubMed

    Barskiy, Danila A; Coffey, Aaron M; Nikolaou, Panayiotis; Mikhaylov, Dmitry M; Goodson, Boyd M; Branca, Rosa T; Lu, George J; Shapiro, Mikhail G; Telkki, Ville-Veikko; Zhivonitko, Vladimir V; Koptyug, Igor V; Salnikov, Oleg G; Kovtunov, Kirill V; Bukhtiyarov, Valerii I; Rosen, Matthew S; Barlow, Michael J; Safavi, Shahideh; Hall, Ian P; Schröder, Leif; Chekmenev, Eduard Y

    2017-01-18

    Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Imaging of Lung Function using Hyperpolarized Helium-3 Magnetic Resonance Imaging: Review of Current and Emerging Translational Methods and Applications

    PubMed Central

    Fain, Sean; Schiebler, Mark L.; McCormack, David G; Parraga, Grace

    2010-01-01

    During the past several years there has been extensive development and application of hyperpolarized helium-3 (HP 3He) magnetic resonance imaging (MRI) in clinical respiratory indications such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, radiation-induced lung injury and transplantation. This review focuses on the state-of-the-art of hyperpolarized 3He MRI and its application to clinical pulmonary research. This is not an overview of the physics of the method, as this topic has been covered previously. We focus here on the potential of this imaging method and its challenges in demonstrating new types of information that has the potential to influence clinical research and decision making in pulmonary medicine. Particular attention is given to functional imaging approaches related to ventilation and diffusion-weighted imaging with applications in chronic obstructive pulmonary disease, cystic fibrosis, asthma and radiation-induced lung injury. The strengths and challenges of the application of 3He MRI in these indications are discussed along with a comparison to established and emerging imaging techniques. PMID:21105144

  18. NMR and MRI of blood-dissolved hyperpolarized Xe-129 in different hollow-fiber membranes.

    PubMed

    Amor, Nadia; Hamilton, Kathrin; Küppers, Markus; Steinseifer, Ulrich; Appelt, Stephan; Blümich, Bernhard; Schmitz-Rode, Thomas

    2011-11-18

    Magnetic resonance of hyperpolarized (129)Xe has found a wide field of applications in the analysis of biologically relevant fluids. Recently, it has been shown that the dissolution of hyperpolarized gas into the fluid via hollow-fiber membranes leads to bubble-free (129)Xe augmentation, and thus to an enhanced signal. In addition, hollow-fiber membranes permit a continuous operation mode. Herein, a quantitative magnetic resonance imaging and spectroscopy analysis of a customized hollow-fiber membrane module is presented. Different commercial hollow-fiber membrane types are compared with regard to their (129)Xe dissolution efficiency into porcine blood, its constituents, and other fluids. The presented study gives new insight into the suitability of these hollow-fiber membrane types for hyperpolarized gas dissolution setups.

  19. Hyperpolarized [1-(13) C]pyruvate MRI for noninvasive examination of placental metabolism and nutrient transport: A feasibility study in pregnant guinea pigs.

    PubMed

    Friesen-Waldner, Lanette J; Sinclair, Kevin J; Wade, Trevor P; Michael, Banoub; Chen, Albert P; de Vrijer, Barbra; Regnault, Timothy R H; McKenzie, Charles A

    2016-03-01

    To test the feasibility of hyperpolarized [1-(13) C]pyruvate magnetic resonance imaging (MRI) for noninvasive examination of guinea pig fetoplacental metabolism and nutrient transport. Seven pregnant guinea pigs with a total of 30 placentae and fetuses were anesthetized and scanned at 3T. T1 -weighted (1) H images were obtained from the maternal abdomen. An 80 mM solution of hyperpolarized [1-(13) C]pyruvate (hereafter referred to as pyruvate) was injected into a vein in the maternal foot. Time-resolved 3D (13) C images were acquired starting 10 seconds after the beginning of bolus injection and every 10 seconds after to 50 seconds. The pregnant guinea pigs were recovered after imaging. Regions of interest (ROIs) were drawn around the maternal heart and each placenta and fetal liver in all slices in the (1) H images. These ROIs were copied to the (13) C images and were used to calculate the sum of the pyruvate and lactate signal intensities for each organ. The signal intensities were normalized by the volume of the organ and the maximum signal in the maternal heart. No adverse events were observed in the pregnant guinea pigs and natural pupping occurred at term (∼68 days). Pyruvate signal was observed in all 30 placentae, and lactate, a by-product of pyruvate metabolism, was also observed in all placentae. The maximum pyruvate and lactate signals in placentae occurred at 20 seconds. In addition to the observation of pyruvate and lactate signals in the placentae, both pyruvate and lactate signals were observed in all fetal livers. The maximum pyruvate and lactate signals in the fetal livers occurred at 10 seconds and 20 seconds, respectively. This work demonstrates the feasibility of using hyperpolarized [1-(13) C]pyruvate MRI to noninvasively examine fetoplacental metabolism and transport of pyruvate in guinea pigs. Hyperpolarized (13) C MRI may provide a novel method for longitudinal studies of fetoplacental abnormalities. © 2015 Wiley Periodicals, Inc.

  20. Magnetic Resonance Imaging (MRI)

    MedlinePlus

    ... an image. Repeated exposure can be harmful.An MRI scan takes longer to perform (30 to 60 minutes, ... a treatment plan.Depending on your symptoms, an MRI will scan a specific portion of your body to diagnose: ...

  1. Perfusion Imaging with a Freely Diffusible Hyperpolarized Contrast Agent

    PubMed Central

    Grant, Aaron K.; Vinogradov, Elena; Wang, Xiaoen; Lenkinski, Robert E.; Alsop, David C.

    2011-01-01

    Contrast agents that can diffuse freely into or within tissue have numerous attractive features for perfusion imaging. Here we present preliminary data illustrating the suitability of hyperpolarized 13C labeled 2-methylpropan-2-ol (also known as dimethylethanol, tertiary butyl alcohol and tert-butanol) as a freely diffusible contrast agent for magnetic resonance perfusion imaging. Dynamic 13C images acquired in rat brain with a balanced steady-state free precession (bSSFP) sequence following administration of hyperpolarized 2-methylpropan-2-ol show that this agent can be imaged with 2–4s temporal resolution, 2mm slice thickness, and 700 micron in-plane resolution while retaining adequate signal-to-noise ratio. 13C relaxation measurements on 2-methylpropan-2-ol in blood at 9.4T yield T1=46±4s and T2=0.55±0.03s. In the rat brain at 4.7T, analysis of the temporal dynamics of the bSSFP image intensity in tissue and venous blood indicate that 2-methylpropan-2-ol has a T2 of roughly 2–4s and a T1 of 43±24s. In addition, the images indicate that 2-methylpropan-2-ol is freely diffusible in brain and hence has a long residence time in tissue; this in turn makes it possible to image the agent continuously for tens of seconds. These characteristics show that 2-methylpropan-2-ol is a promising agent for robust and quantitative perfusion imaging in the brain and body. PMID:21432901

  2. Hyperpolarized Helium-3 MRI of exercise-induced bronchoconstriction during challenge and therapy.

    PubMed

    Kruger, Stanley J; Niles, David J; Dardzinski, Bernard; Harman, Amy; Jarjour, Nizar N; Ruddy, Marcella; Nagle, Scott K; Francois, Christopher J; Sorkness, Ronald L; Burton, Ryan M; Munoz del Rio, Alejandro; Fain, Sean B

    2014-05-01

    To investigate the utility of hyperpolarized He-3 MRI for detecting regional lung ventilated volume (VV) changes in response to exercise challenge and leukotriene inhibitor montelukast, human subjects with exercise induced bronchoconstriction (EIB) were recruited. This condition is described by airway constriction following exercise leading to reduced forced expiratory volume in 1 second (FEV1) coinciding with ventilation defects on hyperpolarized He-3 MRI. Thirteen EIB subjects underwent spirometry and He-3 MRI at baseline, postexercise, and postrecovery at multiple visits. On one visit montelukast was given and on two visits placebo was given. Regional VV was calculated in the apical/basilar dimension, in the anterior/posterior dimension, and for the entire lung volume. The whole lung VV was used as an end-point and compared with spirometry. Postchallenge FEV1 dropped with placebo but not with treatment, while postchallenge VV dropped more with placebo than treatment. Sources of variability for VV included region (anterior/posterior), scan, and treatment. VV correlated with FEV1/ forced vital capacity (FVC) and forced expiratory flow between 25 and 75% of FVC and showed gravitational dependence after exercise challenge. A paradigm testing the response of ventilation to montelukast revealed both a whole-lung and regional response to exercise challenge and therapy in EIB subjects. Copyright © 2013 Wiley Periodicals, Inc.

  3. Evaluation of carrier agents for hyperpolarized xenon MRI

    NASA Technical Reports Server (NTRS)

    Venkatesh, A. K.; Zhao, L.; Balamore, D.; Jolesz, F. A.; Albert, M. S.

    2000-01-01

    Several biocompatible carrier agents, in which xenon is highly soluble and has a long T(1), were tested, and injected in living rats. These included saline, Intralipid suspension, perfluorocarbon emulsion and (129)Xe gas-filled liposomes. The T(1) of (129)Xe in these compounds ranged from 47 to 116 s. Vascular injection of these carrier agents was tolerated well, encouraging their use for further experiments in live animals. In vivo spectra, obtained from gas-filled liposomes and perfluorocarbon solutions, suggest that these carrier agents have potential for use in angiography and perfusion imaging. Copyright 2000 John Wiley & Sons, Ltd.

  4. Evaluation of carrier agents for hyperpolarized xenon MRI

    NASA Technical Reports Server (NTRS)

    Venkatesh, A. K.; Zhao, L.; Balamore, D.; Jolesz, F. A.; Albert, M. S.

    2000-01-01

    Several biocompatible carrier agents, in which xenon is highly soluble and has a long T(1), were tested, and injected in living rats. These included saline, Intralipid suspension, perfluorocarbon emulsion and (129)Xe gas-filled liposomes. The T(1) of (129)Xe in these compounds ranged from 47 to 116 s. Vascular injection of these carrier agents was tolerated well, encouraging their use for further experiments in live animals. In vivo spectra, obtained from gas-filled liposomes and perfluorocarbon solutions, suggest that these carrier agents have potential for use in angiography and perfusion imaging. Copyright 2000 John Wiley & Sons, Ltd.

  5. A Molecular Imaging Approach to Mercury Sensing Based on Hyperpolarized (129)Xe Molecular Clamp Probe.

    PubMed

    Guo, Qianni; Zeng, Qingbin; Jiang, Weiping; Zhang, Xiaoxiao; Luo, Qing; Zhang, Xu; Bouchard, Louis-S; Liu, Maili; Zhou, Xin

    2016-03-14

    Mercury pollution, in the form of mercury ions (Hg(2+)), is a major health and environmental hazard. Commonly used sensors are invasive and limited to point measurements. Fluorescence-based sensors do not provide depth resolution needed to image spatial distributions. Herein we report a novel sensor capable of yielding spatial distributions by MRI using hyperpolarized (129)Xe. A molecular clamp probe was developed consisting of dipyrrolylquinoxaline (DPQ) derivatives and twocryptophane-A cages. The DPQ derivatives act as cation receptors whereas cryptophane-A acts as a suitable host molecule for xenon. When the DPQ moiety interacts with mercury ions, the molecular clamp closes on the ion. Due to overlap of the electron clouds of the two cryptophane-A cages, the shielding effect on the encapsulated Xe becomes important. This leads to an upfield change of the chemical shift of the encapsulated Xe. This sensor exhibits good selectivity and sensitivity toward the mercury ion. This mercury-activated hyperpolarized (129)Xe-based chemosensor is a new concept method for monitoring Hg(2+) ion distributions by MRI.

  6. High-Resolution 3D Proton MRI of Hyperpolarized Gas Enabled by Parahydrogen and Rh/TiO2 Heterogeneous Catalyst

    PubMed Central

    Barskiy, Danila A.; Coffey, Aaron M.; Truong, Milton L.; Salnikov, Oleg G.; Khudorozhkov, Alexander K.; Inozemtseva, Elizaveta A.; Prosvirin, Igor P.; Bukhtiyarov, Valery I.; Waddell, Kevin W.; Koptyug, Igor V.

    2015-01-01

    Several supported metal catalysts were synthesized, characterized, and tested in heterogeneous hydrogenation of propene with parahydrogen to maximize nuclear spin hyperpolarization of propane gas using parahydrogen induced polarization (PHIP). The Rh/TiO2 catalyst with a metal particle size of 1.6 nm was found to be the most active and effective in the pairwise hydrogen addition and robust, demonstrating reproducible results with multiple hydrogenation experiments and stability for ≥1.5 years. 3D 1H magnetic resonance imaging (MRI) of 1 % hyperpolarized flowing gas with microscale spatial resolution (625 × 625 × 625 μm3) and large imaging matrix (128 × 128 × 32) was demonstrated by using a preclinical 4.7 T scanner and 17.4 s imaging scan time. PMID:24961814

  7. Assessment of repeatability of hyperpolarized gas MR ventilation functional imaging in cystic fibrosis.

    PubMed

    O'Sullivan, Brian; Couch, Marcus; Roche, John P; Walvick, Ronn; Zheng, Shaokuan; Baker, Dawn; Johnson, Mac; Botfield, Martyn; Albert, Mitchell S

    2014-12-01

    Hyperpolarized (HP) gas magnetic resonance imaging (MRI) is an advanced imaging technique that provides high-resolution regional information on lung function without using ionizing radiation. Before this modality can be considered for assessing clinical or investigational interventions, baseline repeatability needs to be established. We assessed repeatability of lung function measurement using HP helium-3 MRI (HP (3)He MRI) in a small cohort of patients with cystic fibrosis (CF). We examined repeatability of HP (3)He MR images of five patients with CF in four scanning sessions over a 4-week period. We acquired images on a Philips 3.0 Tesla Achieva MRI scanner using a quadrature, flexible, wrap-around, (3)He radiofrequency coil with a fast gradient-echo pulse sequence. We determined ventilation volume and ventilation defect volume using an advanced semiautomatic segmentation algorithm and also quantified ventilation heterogeneity. There were no significant differences in total ventilation volume, ventilation defect volume, ventilation defect percentage, or mean ventilation heterogeneity (repeated-measures analysis of variance, P = .2116, P = .2825, P = .2871, and P = .7265, respectively) in the patients across the four scanning sessions. Our results indicate that total ventilation volume, ventilation defect volume, ventilation defect percentage, and mean ventilation heterogeneity as assessed by HP gas MRI in CF patients with stable health are reproducible over time. This repeatability and the technique's capability to provide noninvasive high-resolution data on regional lung function without ionizing radiation make (3)He MRI a potentially useful outcome measure for CF-related clinical trials. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  8. MRI brain imaging.

    PubMed

    Skinner, Sarah

    2013-11-01

    General practitioners (GPs) are expected to be allowed to request MRI scans for adults for selected clinically appropriate indications from November 2013 as part of the expansion of Medicare-funded MRI services announced by the Federal Government in 2011. This article aims to give a brief overview of MRI brain imaging relevant to GPs, which will facilitate explanation of scan findings and management planning with their patients. Basic imaging techniques, common findings and terminology are presented using some illustrative case examples.

  9. Hyperpolarized 13C Metabolic MRI of the Human Heart: Initial Experience.

    PubMed

    Cunningham, Charles H; Lau, Justin Y C; Chen, Albert P; Geraghty, Benjamin J; Perks, William J; Roifman, Idan; Wright, Graham A; Connelly, Kim A

    2016-11-11

    Altered cardiac energetics is known to play an important role in the progression toward heart failure. A noninvasive method for imaging metabolic markers that could be used in longitudinal studies would be useful for understanding therapeutic approaches that target metabolism. To demonstrate the first hyperpolarized (13)C metabolic magnetic resonance imaging of the human heart. Four healthy subjects underwent conventional proton cardiac magnetic resonance imaging followed by (13)C imaging and spectroscopic acquisition immediately after intravenous administration of a 0.1 mmol/kg dose of hyperpolarized [1-(13)C]pyruvate. All subjects tolerated the procedure well with no adverse effects reported ≤1 month post procedure. The [1-(13)C]pyruvate signal appeared within the chambers but not within the muscle. Imaging of the downstream metabolites showed (13)C-bicarbonate signal mainly confined to the left ventricular myocardium, whereas the [1-(13)C]lactate signal appeared both within the chambers and in the myocardium. The mean (13)C image signal:noise ratio was 115 for [1-(13)C]pyruvate, 56 for (13)C-bicarbonate, and 53 for [1-(13)C]lactate. These results represent the first (13)C images of the human heart. The appearance of (13)C-bicarbonate signal after administration of hyperpolarized [1-(13)C]pyruvate was readily detected in this healthy cohort (n=4). This shows that assessment of pyruvate metabolism in vivo in humans is feasible using current technology. URL: https://www.clinicaltrials.gov. Unique identifier: NCT02648009. © 2016 The Authors.

  10. Distal airways in humans: dynamic hyperpolarized 3He MR imaging--feasibility

    NASA Technical Reports Server (NTRS)

    Tooker, Angela C.; Hong, Kwan Soo; McKinstry, Erin L.; Costello, Philip; Jolesz, Ferenc A.; Albert, Mitchell S.

    2003-01-01

    Dynamic hyperpolarized helium 3 (3He) magnetic resonance (MR) imaging of the human airways is achieved by using a fast gradient-echo pulse sequence during inhalation. The resulting dynamic images show differential contrast enhancement of both distal airways and the lung periphery, unlike static hyperpolarized 3He MR images on which only the lung periphery is seen. With this technique, up to seventh-generation airway branching can be visualized. Copyright RSNA, 2003.

  11. Distal airways in humans: dynamic hyperpolarized 3He MR imaging--feasibility

    NASA Technical Reports Server (NTRS)

    Tooker, Angela C.; Hong, Kwan Soo; McKinstry, Erin L.; Costello, Philip; Jolesz, Ferenc A.; Albert, Mitchell S.

    2003-01-01

    Dynamic hyperpolarized helium 3 (3He) magnetic resonance (MR) imaging of the human airways is achieved by using a fast gradient-echo pulse sequence during inhalation. The resulting dynamic images show differential contrast enhancement of both distal airways and the lung periphery, unlike static hyperpolarized 3He MR images on which only the lung periphery is seen. With this technique, up to seventh-generation airway branching can be visualized. Copyright RSNA, 2003.

  12. A robust protocol for regional evaluation of methacholine challenge in mouse models of allergic asthma using hyperpolarized 3He MRI.

    PubMed

    Thomas, Abraham C; Potts, Erin N; Chen, Ben T; Slipetz, Deborah M; Foster, W Michael; Driehuys, Bastiaan

    2009-06-01

    Hyperpolarized (HP) (3)He magnetic resonance imaging has been recently used to produce high-resolution images of pulmonary ventilation after methacholine (MCh) challenge in mouse models of allergic inflammation. This capability presents an opportunity to gain new insights about these models and to more sensitively evaluate new drug treatments in the pre-clinical setting. In the current study, we present our initial experience using two-dimensional (2D), time-resolved (3)He MRI of MCh challenge-induced airways hyperreactivity (AHR) to compare ovalbumin-sensitized and challenged (N = 8) mice to controls (N = 8). Imaging demonstrated that ovalbumin-sensitized and challenged animals exhibited many large ventilation defects even prior to MCh challenge (four out of eight) compared to no defects in the control animals. Additionally, the ovalbumin-sensitized and challenged animals experienced a greater number of ventilation defects (4.5 +/- 0.4) following MCh infusion than did controls (3.3 +/- 0.6). However, due to variability in MCh delivery that was specific to the small animal MRI environment, the difference in mean defect number was not statistically significant. These findings are reviewed in detail and a comprehensive solution to the variability problem is presented that has greatly enhanced the magnitude and reproducibility of the MCh response. This has permitted us to develop a new imaging protocol consisting of a baseline 3D image, a time-resolved 2D series during MCh challenge, and a post-MCh 3D image that reveals persistent ventilation defects.

  13. Deuteration of Hyperpolarized (13) C-Labeled Zymonic Acid Enables Sensitivity-Enhanced Dynamic MRI of pH.

    PubMed

    Hundshammer, Christian; Düwel, Stephan; Köcher, Simone S; Gersch, Malte; Feuerecker, Benedikt; Scheurer, Christoph; Haase, Axel; Glaser, Steffen J; Schwaiger, Markus; Schilling, Franz

    2017-09-20

    Aberrant pH is characteristic of many pathologies such as ischemia, inflammation or cancer. Therefore, a non-invasive and spatially resolved pH determination is valuable for disease diagnosis, characterization of response to treatment and the design of pH-sensitive drug-delivery systems. We recently introduced hyperpolarized [1,5-(13) C2 ]zymonic acid (ZA) as a novel MRI probe of extracellular pH utilizing dissolution dynamic polarization (DNP) for a more than 10000-fold signal enhancement of the MRI signal. Here we present a strategy to enhance the sensitivity of this approach by deuteration of ZA yielding [1,5-(13) C2 , 3,6,6,6-D4 ]zymonic acid (ZAd ), which prolongs the liquid state spin lattice relaxation time (T1 ) by up to 39 % in vitro. Measurements with ZA and ZAd on subcutaneous MAT B III adenocarcinoma in rats show that deuteration increases the signal-to-noise ratio (SNR) by up to 46 % in vivo. Furthermore, we demonstrate a proof of concept for real-time imaging of dynamic pH changes in vitro using ZAd , potentially allowing for the characterization of rapid acidification/basification processes in vivo. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. In Vivo Lung Morphometry With Hyperpolarized 3He Diffusion MRI: Reproducibility and the Role of Diffusion Sensitizing Gradient Direction

    PubMed Central

    Quirk, James D.; Chang, Yulin V.; Yablonskiy, Dmitriy A.

    2014-01-01

    Purpose Lung morphometry with hyperpolarized gas diffusion MRI is a highly sensitive technique for the non-invasive measurement of acinar microstructural parameters traditionally only accessible by histology. The goal of this work is to establish the reproducibility of these measurements in healthy volunteers and their dependence upon the direction of the applied diffusion-sensitizing gradient. Methods Helium-3 lung morphometry MRI was performed on a total of five healthy subjects. Two subjects received duplicate imaging on the same day and three after a four or twenty-seven month delay to assess reproducibility. Four subjects repeated the measurement during the same session with different diffusion-sensitizing gradient directions to determine the effect on the parameter estimates. Results The helium-3 lung morphometry measurements were reproducible over the short and long term (e.g. % coefficient of variation (CV) of mean chord length, Lm = 2.1% and 2.9% respectively) and across different diffusion gradient directions (Lm % CV = 2.6%). Results also show independence of field inhomogeneity effects at 1.5T. Conclusion Helium-3 lung morphometry is a reproducible technique for measuring acinar microstructure and is effectively independent of the choice of diffusion gradient direction. This provides confidence for the use of this technique to compare populations and treatment efficacy. PMID:24752926

  15. Screening and Monitoring Response to Treatment Using Subsecond Molecular Imaging and Hyperpolarized Contrast Agents

    DTIC Science & Technology

    2013-05-01

    Magnetization transfer MRI in multiple sclerosis . J Neuroimaging. 2007;17 Suppl 1:S22–S26. 82. Filippi M, Rocca MA. Magnetization transfer magnetic resonance... multiple sclerosis . Neuroimaging Clin N Am. 2009;19(1):27–36. 84. Lundbom N. Determination of magnetization transfer contrast in tissue: an MR... multiple RF coils intended for optimal direct and indirect detection of hyperpolarized contrast agents in vivo. 4.b. Y1Q3-Y1Q4. Low field MRI: pre

  16. Concentric Rings K-Space Trajectory for Hyperpolarized 13C MR Spectroscopic Imaging

    PubMed Central

    Jiang, Wenwen; Lustig, Michael; Larson, Peder E.Z.

    2014-01-01

    Purpose To develop a robust and rapid imaging technique for hyperpolarized 13C MR Spectroscopic Imaging (MRSI) and investigate its performance. Methods A concentric rings readout trajectory with constant angular velocity is proposed for hyperpolarized 13C spectroscopic imaging and its properties are analyzed. Quantitative analyses of design tradeoffs are presented for several imaging scenarios. The first application of concentric rings on 13C phantoms and in vivo animal hyperpolarized 13C MRSI studies were performed to demonstrate the feasibility of the proposed method. Finally, a parallel imaging accelerated concentric rings study is presented. Results The concentric rings MRSI trajectory has the advantages of acquisition timesaving compared to echo-planar spectroscopic imaging (EPSI). It provides sufficient spectral bandwidth with relatively high SNR efficiency compared to EPSI and spiral techniques. Phantom and in vivo animal studies showed good image quality with half the scan time and reduced pulsatile flow artifacts compared to EPSI. Parallel imaging accelerated concentric rings showed advantages over Cartesian sampling in g-factor simulations and demonstrated aliasing-free image quality in a hyperpolarized 13C in vivo study. Conclusion The concentric rings trajectory is a robust and rapid imaging technique that fits very well with the speed, bandwidth, and resolution requirements of hyperpolarized 13C MRSI. PMID:25533653

  17. Inert fluorinated gas MRI: a new pulmonary imaging modality.

    PubMed

    Couch, Marcus J; Ball, Iain K; Li, Tao; Fox, Matthew S; Ouriadov, Alexei V; Biman, Birubi; Albert, Mitchell S

    2014-12-01

    Fluorine-19 ((19)F) MRI of the lungs using inhaled inert fluorinated gases can potentially provide high quality images of the lungs that are similar in quality to those from hyperpolarized (HP) noble gas MRI. Inert fluorinated gases have the advantages of being nontoxic, abundant, and inexpensive compared with HP gases. Due to the high gyromagnetic ratio of (19)F, there is sufficient thermally polarized signal for imaging, and averaging within a single breath-hold is possible due to short longitudinal relaxation times. Therefore, the gases do not need to be hyperpolarized prior to their use in MRI. This eliminates the need for an expensive polarizer and expensive isotopes. Inert fluorinated gas MRI of the lungs has been previously demonstrated in animals, and more recently in healthy volunteers and patients with lung diseases. The ongoing improvements in image quality demonstrate the potential of (19)F MRI for visualizing the distribution of ventilation in human lungs and detecting functional biomarkers. In this brief review, the development of inert fluorinated gas MRI, current progress, and future prospects are discussed. The current state of HP noble gas MRI is also briefly discussed in order to provide context to the development of this new imaging modality. Overall, this may be a viable clinical imaging modality that can provide useful information for the diagnosis and management of chronic respiratory diseases.

  18. Real-time tracking of dissociation of hyperpolarized 89Y-DTPA: a model for degradation of open-chain Gd3+ MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Ferguson, Sarah; Niedbalski, Peter; Parish, Christopher; Kiswandhi, Andhika; Kovacs, Zoltan; Lumata, Lloyd

    Gadolinium (Gd) complexes are widely used relaxation-based clinical contrast agents in magnetic resonance imaging (MRI). Gd-based MRI contrast agents with open-chain ligand such as Gd-DTPA, commercially known as magnevist, are less stable compared to Gd complexes with macrocyclic ligands such as GdDOTA (Dotarem). The dissociation of Gd-DPTA into Gd ion and DTPA ligand under certain biological conditions such as high zinc levels can potentially cause kidney damage. Since Gd is paramagnetic, direct NMR detection of the Gd-DTPA dissociation is quite challenging due to ultra-short relaxation times. In this work, we have investigated Y-DTPA as a model for Gd-DPTA dissociation under high zinc content solutions. Using dissolution dynamic nuclear polarization (DNP), the 89Y NMR signal is amplified by several thousand-fold. Due to the the relatively long T1 relaxation time of 89Y which translates to hyperpolarization lifetime of several minutes, the dissociation of Y-DTPA can be tracked in real-time by hyperpolarized 89Y NMR spectroscopy. Dissociation kinetic rates and implications on the degradation of open-chain Gd3+ MRI contrast agents will be discussed. This work was supported by the U.S. Department of Defense Award Number W81XWH-14-1-0048 and by the Robert A. Welch Foundation research Grant Number AT-1877.

  19. 32-channel phased-array receive with asymmetric birdcage transmit coil for hyperpolarized xenon-129 lung imaging.

    PubMed

    Dregely, Isabel; Ruset, Iulian C; Wiggins, Graham; Mareyam, Azma; Mugler, John P; Altes, Talissa A; Meyer, Craig; Ruppert, Kai; Wald, Lawrence L; Hersman, F William

    2013-08-01

    Hyperpolarized xenon-129 has the potential to become a noninvasive contrast agent for lung MRI. In addition to its utility for imaging of ventilated airspaces, the property of xenon to dissolve in lung tissue and blood upon inhalation provides the opportunity to study gas exchange. Implementations of imaging protocols for obtaining regional parameters that exploit the dissolved phase are limited by the available signal-to-noise ratio, excitation homogeneity, and length of acquisition times. To address these challenges, a 32-channel receive-array coil complemented by an asymmetric birdcage transmit coil tuned to the hyperpolarized xenon-129 resonance at 3 T was developed. First results of spin-density imaging in healthy subjects and subjects with obstructive lung disease demonstrated the improvements in image quality by high-resolution ventilation images with high signal-to-noise ratio. Parallel imaging performance of the phased-array coil was demonstrated by acceleration factors up to three in 2D acquisitions and up to six in 3D acquisitions. Transmit-field maps showed a regional variation of only 8% across the whole lung. The newly developed phased-array receive coil with the birdcage transmit coil will lead to an improvement in existing imaging protocols, but moreover enable the development of new, functional lung imaging protocols based on the improvements in excitation homogeneity, signal-to-noise ratio, and acquisition speed.

  20. Feasibility, tolerability and safety of pediatric hyperpolarized (129)Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis.

    PubMed

    Walkup, Laura L; Thomen, Robert P; Akinyi, Teckla G; Watters, Erin; Ruppert, Kai; Clancy, John P; Woods, Jason C; Cleveland, Zackary I

    2016-11-01

    Hyperpolarized (129)Xe is a promising contrast agent for MRI of pediatric lung function, but its safety and tolerability in children have not been rigorously assessed. To assess the feasibility, safety and tolerability of hyperpolarized (129)Xe gas as an inhaled contrast agent for pediatric pulmonary MRI in healthy control subjects and in children with cystic fibrosis. Seventeen healthy control subjects (ages 6-15 years, 11 boys) and 11 children with cystic fibrosis (ages 8-16 years, 4 boys) underwent (129)Xe MRI, receiving up to three doses of (129)Xe gas prepared by either a commercially available or a homebuilt (129)Xe polarizer. Subject heart rate and SpO2 were monitored for 2 min post inhalation and compared to resting baseline values. Adverse events were reported via follow-up phone call at days 1 and 30 (range ±7 days) post-MRI. All children tolerated multiple doses of (129)Xe, and no children withdrew from the study. Relative to baseline, most children who received a full dose of gas for imaging (10 of 12 controls and 8 of 11 children with cystic fibrosis) experienced a nadir in SpO2 (mean -6.0 ± standard deviation 7.2%, P≤0.001); however within 2 min post inhalation SpO2 values showed no significant difference from baseline (P=0.11). There was a slight elevation in heart rate (mean +6.6 ± 13.9 beats per minute [bpm], P=0.021), which returned from baseline within 2 min post inhalation (P=0.35). Brief side effects related to the anesthetic properties of xenon were mild and quickly resolved without intervention. No serious or severe adverse events were observed; in total, four minor adverse events (14.3%) were reported following (129)Xe MRI, but all were deemed unrelated to the study. The feasibility, safety and tolerability of (129)Xe MRI has been assessed in a small group of children as young as 6 years. SpO2 changes were consistent with the expected physiological effects of a short anoxic breath-hold, and other mild side effects were

  1. Evaluation of oxygen sensitivity of hyperpolarized helium imaging for the detection of pulmonary ischemia.

    PubMed

    Walvick, Ronn P; Roche, John P; Reno, Austin L; Gounis, Matthew J; Albert, Mitchell S

    2016-05-01

    In this study, a new model of pulmonary embolism in rats was developed and tested, to examine if hyperpolarized (HP) (3) He MR images can measure impairment of the exchange of oxygen from the airspaces to the blood during pulmonary embolism. HP (3) He MRI was used to image six treatment-group rats in which a branch of the pulmonary artery was embolized, and six control-group rats. HP (3) He MR images were used to calculate the initial partial pressure of oxygen (pO ) and the rate of oxygen depletion (R) in rat lungs. The pO was significantly higher in the ischemic lung than in the contralateral normal side, and pO was significantly higher in the ischemic lung than in both sides of the control lungs. Mean R in ischemic lungs was significantly lower than in the contralateral lungs, and mean R in ischemic lungs was also significantly lower than in both control lungs. These results demonstrate that pO and R, as measured by the T1 decay of HP (3) He, are sensitive to pulmonary ischemia in rats, confirming the findings in studies performed in large animal models of pulmonary ischemia. © 2015 Wiley Periodicals, Inc.

  2. Hyperpolarized [2-13C]-Fructose: A Hemiketal DNP Substrate for In Vivo Metabolic Imaging

    PubMed Central

    Keshari, Kayvan R.; Wilson, David M.; Chen, Albert P.; Bok, Robert; Larson, Peder E. Z.; Hu, Simon; Van Criekinge, Mark; Macdonald, Jeffrey M.; Vigneron, Daniel B.; Kurhanewicz, John

    2009-01-01

    Hyperpolarized 13C labelled molecular probes have been used to investigate metabolic pathways of interest as well as facilitate in vivo spectroscopic imaging by taking advantage of the dramatic signal enhancement provided by DNP. Due to the limited lifetime of the hyperpolarized nucleus, with signal decay dependant on T1 relaxation, carboxylate carbons have been the primary targets for development of hyperpolarized metabolic probes. The use of these carbon nuclei makes it difficult to investigate upstream glycolytic processes, which have been related to both cancer metabolism as well as other metabolic abnormalities, such as fatty liver disease and diabetes. Glucose carbons have very short T1s (< 1 sec) and therefore cannot be used as an in vivo hyperpolarized metabolic probe of glycolysis. However, the pentose analogue fructose can also enter glycolysis through its phosphorylation by hexokinase and yield complimentary information. The C2 of fructose is a hemiketal that has a relatively longer relaxation time (≈ 16 s at 37° C) and high solution state polarization (≈ 12%). Hyperpolarized [2-13C]-fructose was also injected into a transgenic model of prostate cancer (TRAMP) and demonstrated difference in uptake and metabolism in regions of tumor relative to surrounding tissue. Thus, this study demonstrates the first hyperpolarization of a carbohydrate carbon with a sufficient T1 and solution state polarization for ex vivo spectroscopy and in vivo spectroscopic imaging studies. PMID:19860409

  3. Hyperpolarized [2-13C]-fructose: a hemiketal DNP substrate for in vivo metabolic imaging.

    PubMed

    Keshari, Kayvan R; Wilson, David M; Chen, Albert P; Bok, Robert; Larson, Peder E Z; Hu, Simon; Van Criekinge, Mark; Macdonald, Jeffrey M; Vigneron, Daniel B; Kurhanewicz, John

    2009-12-09

    Hyperpolarized (13)C labeled molecular probes have been used to investigate metabolic pathways of interest as well as facilitate in vivo spectroscopic imaging by taking advantage of the dramatic signal enhancement provided by DNP. Due to the limited lifetime of the hyperpolarized nucleus, with signal decay dependent on T(1) relaxation, carboxylate carbons have been the primary targets for development of hyperpolarized metabolic probes. The use of these carbon nuclei makes it difficult to investigate upstream glycolytic processes, which have been related to both cancer metabolism as well as other metabolic abnormalities, such as fatty liver disease and diabetes. Glucose carbons have very short T(1)s (<1 s) and therefore cannot be used as an in vivo hyperpolarized metabolic probe of glycolysis. However, the pentose analogue fructose can also enter glycolysis through its phosphorylation by hexokinase and yield complementary information. The C(2) of fructose is a hemiketal that has a relatively longer relaxation time (approximately 16 s at 37 degrees C) and high solution state polarization (approximately 12%). Hyperpolarized [2-(13)C]-fructose was also injected into a transgenic model of prostate cancer (TRAMP) and demonstrated difference in uptake and metabolism in regions of tumor relative to surrounding tissue. Thus, this study demonstrates the first hyperpolarization of a carbohydrate carbon with a sufficient T(1) and solution state polarization for ex vivo spectroscopy and in vivo spectroscopic imaging studies.

  4. Development and application of methods to quantify spatial and temporal hyperpolarized 3He MRI ventilation dynamics: preliminary results in chronic obstructive pulmonary disease

    NASA Astrophysics Data System (ADS)

    Kirby, Miranda; Wheatley, Andrew; McCormack, David G.; Parraga, Grace

    2010-03-01

    Hyperpolarized helium-3 (3He) magnetic resonance imaging (MRI) has emerged as a non-invasive research method for quantifying lung structural and functional changes, enabling direct visualization in vivo at high spatial and temporal resolution. Here we described the development of methods for quantifying ventilation dynamics in response to salbutamol in Chronic Obstructive Pulmonary Disease (COPD). Whole body 3.0 Tesla Excite 12.0 MRI system was used to obtain multi-slice coronal images acquired immediately after subjects inhaled hyperpolarized 3He gas. Ventilated volume (VV), ventilation defect volume (VDV) and thoracic cavity volume (TCV) were recorded following segmentation of 3He and 1H images respectively, and used to calculate percent ventilated volume (PVV) and ventilation defect percent (VDP). Manual segmentation and Otsu thresholding were significantly correlated for VV (r=.82, p=.001), VDV (r=.87 p=.0002), PVV (r=.85, p=.0005), and VDP (r=.85, p=.0005). The level of agreement between these segmentation methods was also evaluated using Bland-Altman analysis and this showed that manual segmentation was consistently higher for VV (Mean=.22 L, SD=.05) and consistently lower for VDV (Mean=-.13, SD=.05) measurements than Otsu thresholding. To automate the quantification of newly ventilated pixels (NVp) post-bronchodilator, we used translation, rotation, and scaling transformations to register pre-and post-salbutamol images. There was a significant correlation between NVp and VDV (r=-.94 p=.005) and between percent newly ventilated pixels (PNVp) and VDP (r=- .89, p=.02), but not for VV or PVV. Evaluation of 3He MRI ventilation dynamics using Otsu thresholding and landmark-based image registration provides a way to regionally quantify functional changes in COPD subjects after treatment with beta-agonist bronchodilators, a common COPD and asthma therapy.

  5. Near-unity nuclear polarization with an open-source 129Xe hyperpolarizer for NMR and MRI

    PubMed Central

    Nikolaou, Panayiotis; Coffey, Aaron M.; Walkup, Laura L.; Gust, Brogan M.; Whiting, Nicholas; Newton, Hayley; Barcus, Scott; Muradyan, Iga; Dabaghyan, Mikayel; Moroz, Gregory D.; Rosen, Matthew S.; Patz, Samuel; Barlow, Michael J.; Chekmenev, Eduard Y.; Goodson, Boyd M.

    2013-01-01

    The exquisite NMR spectral sensitivity and negligible reactivity of hyperpolarized xenon-129 (HP129Xe) make it attractive for a number of magnetic resonance applications; moreover, HP129Xe embodies an alternative to rare and nonrenewable 3He. However, the ability to reliably and inexpensively produce large quantities of HP129Xe with sufficiently high 129Xe nuclear spin polarization (PXe) remains a significant challenge—particularly at high Xe densities. We present results from our “open-source” large-scale (∼1 L/h) 129Xe polarizer for clinical, preclinical, and materials NMR and MRI research. Automated and composed mostly of off-the-shelf components, this “hyperpolarizer” is designed to be readily implementable in other laboratories. The device runs with high resonant photon flux (up to 200 W at the Rb D1 line) in the xenon-rich regime (up to 1,800 torr Xe in 500 cc) in either single-batch or stopped-flow mode, negating in part the usual requirement of Xe cryocollection. Excellent agreement is observed among four independent methods used to measure spin polarization. In-cell PXe values of ∼90%, ∼57%, ∼50%, and ∼30% have been measured for Xe loadings of ∼300, ∼500, ∼760, and ∼1,570 torr, respectively. PXe values of ∼41% and ∼28% (with ∼760 and ∼1,545 torr Xe loadings) have been measured after transfer to Tedlar bags and transport to a clinical 3 T scanner for MR imaging, including demonstration of lung MRI with a healthy human subject. Long “in-bag” 129Xe polarization decay times have been measured (T1 ∼38 min and ∼5.9 h at ∼1.5 mT and 3 T, respectively)—more than sufficient for a variety of applications. PMID:23946420

  6. Multi-band frequency encoding method for metabolic imaging with hyperpolarized [1- 13C]pyruvate

    NASA Astrophysics Data System (ADS)

    von Morze, Cornelius; Reed, Galen; Shin, Peter; Larson, Peder E. Z.; Hu, Simon; Bok, Robert; Vigneron, Daniel B.

    2011-08-01

    A new method was developed for simultaneous spatial localization and spectral separation of multiple compounds based on a single echo, by designing the acquisition to place individual compounds in separate frequency encoding bands. This method was specially designed for rapid and robust metabolic imaging of hyperpolarized 13C substrates and their metabolic products, and was investigated in phantom studies and studies in normal mice and transgenic models of prostate cancer to provide rapid metabolic imaging of hyperpolarized [1- 13C]pyruvate and its metabolic products [1- 13C]lactate and [1- 13C]alanine at spatial resolutions up to 3 mm in-plane. Elevated pyruvate and lactate signals in the vicinity of prostatic tissues were observed in transgenic tumor mice. The multi-band frequency encoding technique enabled rapid metabolic imaging of hyperpolarized 13C compounds with important advantages over prior approaches, including less complicated acquisition and reconstruction methods.

  7. Investigating lung responses with functional hyperpolarized xenon‐129 MRI in an ex vivo rat model of asthma

    PubMed Central

    Lilburn, David M.L.; Tatler, Amanda L.; Six, Joseph S.; Lesbats, Clémentine; Habgood, Anthony; Porte, Joanne; Hughes‐Riley, Theodore; Shaw, Dominick E.; Jenkins, Gisli

    2015-01-01

    Purpose Asthma is a disease of increasing worldwide importance that calls for new investigative methods. Ex vivo lung tissue is being increasingly used to study functional respiratory parameters independent of confounding systemic considerations but also to reduce animal numbers and associated research costs. In this work, a straightforward laboratory method is advanced to probe dynamic changes in gas inhalation patterns by using an ex vivo small animal ovalbumin (OVA) model of human asthma. Methods Hyperpolarized (hp) 129Xe was actively inhaled by the excised lungs exposed to a constant pressure differential that mimicked negative pleural cavity pressure. The method enabled hp 129Xe MRI of airway responsiveness to intravenous methacholine (MCh) and airway challenge reversal through salbutamol. Results Significant differences were demonstrated between control and OVA challenged animals on global lung hp 129Xe gas inhalation with P < 0.05 at MCh dosages above 460 μg. Spatial mapping of the regional hp gas distribution revealed an approximately three‐fold increase in heterogeneity for the asthma model organs. Conclusion The experimental results from this proof of concept work suggest that the ex vivo hp noble gas imaging arrangement and the applied image analysis methodology may be useful as an adjunct to current diagnostic techniques. Magn Reson Med 76:1224–1235, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26507239

  8. Selective spectroscopic imaging of hyperpolarized pyruvate and its metabolites using a single-echo variable phase advance method in balanced SSFP

    PubMed Central

    Varma, Gopal; Wang, Xiaoen; Vinogradov, Elena; Bhatt, Rupal S.; Sukhatme, Vikas; Seth, Pankaj; Lenkinski, Robert E.; Alsop, David C.; Grant, Aaron K.

    2015-01-01

    Purpose In balanced steady state free precession (bSSFP), the signal intensity has a well-known dependence on the off-resonance frequency, or, equivalently, the phase advance between successive radiofrequency (RF) pulses. The signal profile can be used to resolve the contributions from the spectrally separated metabolites. This work describes a method based on use of a variable RF phase advance to acquire spatial and spectral data in a time-efficient manner for hyperpolarized 13C MRI. Theory and Methods The technique relies on the frequency response from a bSSFP acquisition to acquire relatively rapid, high-resolution images that may be reconstructed to separate contributions from different metabolites. The ability to produce images from spectrally separated metabolites was demonstrated in-vitro, as well as in-vivo following administration of hyperpolarized 1-13C pyruvate in mice with xenograft tumors. Results In-vivo images of pyruvate, alanine, pyruvate hydrate and lactate were reconstructed from 4 images acquired in 2 seconds with an in-plane resolution of 1.25 × 1.25mm2 and 5mm slice thickness. Conclusions The phase advance method allowed acquisition of spectroscopically selective images with high spatial and temporal resolution. This method provides an alternative approach to hyperpolarized 13C spectroscopic MRI that can be combined with other techniques such as multi-echo or fluctuating equilibrium bSSFP. PMID:26507361

  9. Magnetic Resonance Imaging (MRI) Safety

    MedlinePlus

    ... Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how does ... the area being scanned include: Metallic spinal rod Plates, pins, screws, or metal mesh used to repair ...

  10. Optimizing Flip Angles for Metabolic Rate Estimation in Hyperpolarized Carbon-13 MRI.

    PubMed

    Maidens, John; Gordon, Jeremy W; Arcak, Murat; Larson, Peder E Z

    2016-11-01

    Hyperpolarized carbon-13 magnetic resonance imaging has enabled the real-time observation of perfusion and metabolism in vivo. These experiments typically aim to distinguish between healthy and diseased tissues based on the rate at which they metabolize an injected substrate. However, existing approaches to optimizing flip angle sequences for these experiments have focused on indirect metrics of the reliability of metabolic rate estimates, such as signal variation and signal-to-noise ratio. In this paper we present an optimization procedure that focuses on maximizing the Fisher information about the metabolic rate. We demonstrate through numerical simulation experiments that flip angles optimized based on the Fisher information lead to lower variance in metabolic rate estimates than previous flip angle sequences. In particular, we demonstrate a 20% decrease in metabolic rate uncertainty when compared with the best competing sequence. We then demonstrate appropriateness of the mathematical model used in the simulation experiments with in vivo experiments in a prostate cancer mouse model. While there is no ground truth against which to compare the parameter estimates generated in the in vivo experiments, we demonstrate that our model used can reproduce consistent parameter estimates for a number of flip angle sequences.

  11. Monitoring tumor response of prostate cancer to radiation therapy by multi-parametric 1H and hyperpolarized 13C magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Vickie Yi

    Radiation therapy is one of the most common curative therapies for patients with localized prostate cancer, but despite excellent success rates, a significant number of patients suffer post- treatment cancer recurrence. The accurate characterization of early tumor response remains a major challenge for the clinical management of these patients. Multi-parametric MRI/1H MR spectroscopy imaging (MRSI) has been shown to increase the diagnostic performance in evaluating the effectiveness of radiation therapy. 1H MRSI can detect altered metabolic profiles in cancerous tissue. In this project, the concentrations of prostate metabolites from snap-frozen biopsies of recurrent cancer after failed radiation therapy were correlated with histopathological findings to identify quantitative biomarkers that predict for residual aggressive versus indolent cancer. The total choline to creatine ratio was significantly higher in recurrent aggressive versus indolent cancer, suggesting that use of a higher threshold tCho/Cr ratio in future in vivo 1H MRSI studies could improve the selection and therapeutic planning for patients after failed radiation therapy. Varying radiation doses may cause a diverse effect on prostate cancer micro-environment and metabolism, which could hold the key to improving treatment protocols for individual patients. The recent development and clinical translation of hyperpolarized 13C MRI have provided the ability to monitor both changes in the tumor micro-environment and its metabolism using a multi-probe approach, [1-13C]pyruvate and 13C urea, combined with 1H Multi-parametric MRI. In this thesis, hyperpolarized 13C MRI, 1H dynamic contrast enhancement, and diffusion weighted imaging were used to identify early radiation dose response in a transgenic prostate cancer model. Hyperpolarized pyruvate to lactate metabolism significantly decreased in a dose dependent fashion by 1 day after radiation therapy, prior to any changes observed using 1H DCE and diffusion

  12. Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents

    PubMed Central

    Rogers, Nicola J.; Hill-Casey, Fraser; Stupic, Karl F.; Six, Joseph S.; Lesbats, Clémentine; Rigby, Sean P.; Fraissard, Jacques; Pavlovskaya, Galina E.; Meersmann, Thomas

    2016-01-01

    Hyperpolarized (hp) 83Kr is a promising MRI contrast agent for the diagnosis of pulmonary diseases affecting the surface of the respiratory zone. However, the distinct physical properties of 83Kr that enable unique MRI contrast also complicate the production of hp 83Kr. This work presents a previously unexplored approach in the generation of hp 83Kr that can likewise be used for the production of hp 129Xe. Molecular nitrogen, typically used as buffer gas in spin-exchange optical pumping (SEOP), was replaced by molecular hydrogen without penalty for the achievable hyperpolarization. In this particular study, the highest obtained nuclear spin polarizations were P = 29% for 83Kr and P = 63% for 129Xe. The results were reproduced over many SEOP cycles despite the laser-induced on-resonance formation of rubidium hydride (RbH). Following SEOP, the H2 was reactively removed via catalytic combustion without measurable losses in hyperpolarized spin state of either 83Kr or 129Xe. Highly spin-polarized 83Kr can now be purified for the first time, to our knowledge, to provide high signal intensity for the advancement of in vivo hp 83Kr MRI. More generally, a chemical reaction appears as a viable alternative to the cryogenic separation process, the primary purification method of hp 129Xe for the past 2 1/2 decades. The inherent simplicity of the combustion process will facilitate hp 129Xe production and should allow for on-demand continuous flow of purified and highly spin-polarized 129Xe. PMID:26961001

  13. Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents.

    PubMed

    Rogers, Nicola J; Hill-Casey, Fraser; Stupic, Karl F; Six, Joseph S; Lesbats, Clémentine; Rigby, Sean P; Fraissard, Jacques; Pavlovskaya, Galina E; Meersmann, Thomas

    2016-03-22

    Hyperpolarized (hp) (83)Kr is a promising MRI contrast agent for the diagnosis of pulmonary diseases affecting the surface of the respiratory zone. However, the distinct physical properties of (83)Kr that enable unique MRI contrast also complicate the production of hp (83)Kr. This work presents a previously unexplored approach in the generation of hp (83)Kr that can likewise be used for the production of hp (129)Xe. Molecular nitrogen, typically used as buffer gas in spin-exchange optical pumping (SEOP), was replaced by molecular hydrogen without penalty for the achievable hyperpolarization. In this particular study, the highest obtained nuclear spin polarizations were P =29% for(83)Kr and P= 63% for (129)Xe. The results were reproduced over many SEOP cycles despite the laser-induced on-resonance formation of rubidium hydride (RbH). Following SEOP, the H2 was reactively removed via catalytic combustion without measurable losses in hyperpolarized spin state of either (83)Kr or (129)Xe. Highly spin-polarized (83)Kr can now be purified for the first time, to our knowledge, to provide high signal intensity for the advancement of in vivo hp (83)Kr MRI. More generally, a chemical reaction appears as a viable alternative to the cryogenic separation process, the primary purification method of hp(129)Xe for the past 2 1/2 decades. The inherent simplicity of the combustion process will facilitate hp (129)Xe production and should allow for on-demand continuous flow of purified and highly spin-polarized (129)Xe.

  14. Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Rogers, Nicola J.; Hill-Casey, Fraser; Stupic, Karl F.; Six, Joseph S.; Lesbats, Clémentine; Rigby, Sean P.; Fraissard, Jacques; Pavlovskaya, Galina E.; Meersmann, Thomas

    2016-03-01

    Hyperpolarized (hp) 83Kr is a promising MRI contrast agent for the diagnosis of pulmonary diseases affecting the surface of the respiratory zone. However, the distinct physical properties of 83Kr that enable unique MRI contrast also complicate the production of hp 83Kr. This work presents a previously unexplored approach in the generation of hp 83Kr that can likewise be used for the production of hp 129Xe. Molecular nitrogen, typically used as buffer gas in spin-exchange optical pumping (SEOP), was replaced by molecular hydrogen without penalty for the achievable hyperpolarization. In this particular study, the highest obtained nuclear spin polarizations were P = 29% for 83Kr and P = 63% for 129Xe. The results were reproduced over many SEOP cycles despite the laser-induced on-resonance formation of rubidium hydride (RbH). Following SEOP, the H2 was reactively removed via catalytic combustion without measurable losses in hyperpolarized spin state of either 83Kr or 129Xe. Highly spin-polarized 83Kr can now be purified for the first time, to our knowledge, to provide high signal intensity for the advancement of in vivo hp 83Kr MRI. More generally, a chemical reaction appears as a viable alternative to the cryogenic separation process, the primary purification method of hp 129Xe for the past 2 1/2 decades. The inherent simplicity of the combustion process will facilitate hp 129Xe production and should allow for on-demand continuous flow of purified and highly spin-polarized 129Xe.

  15. Fast Determination of Flip Angle and T1 in Hyperpolarized Gas MRI During a Single Breath-Hold

    PubMed Central

    Zhong, Jianping; Ruan, Weiwei; Han, Yeqing; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-01-01

    MRI of hyperpolarized media, such as 129Xe and 3He, shows great potential for clinical applications. The optimal use of the available spin polarization requires accurate flip angle calibrations and T1 measurements. Traditional flip angle calibration methods are time-consuming and suffer from polarization losses during T1 relaxation. In this paper, we propose a method to simultaneously calibrate flip angles and measure T1 in vivo during a breath-hold time of less than 4 seconds. We demonstrate the accuracy, robustness and repeatability of this method and contrast it with traditional methods. By measuring the T1 of hyperpolarized gas, the oxygen pressure in vivo can be calibrated during the same breath hold. The results of the calibration have been applied in variable flip angle (VFA) scheme to obtain a stable steady-state transverse magnetization. Coupled with this method, the ultra-short TE (UTE) and constant VFA (CVFA) schemes are expected to give rise to new applications of hyperpolarized media. PMID:27169670

  16. Ventilation defects observed with hyperpolarized 3He magnetic resonance imaging in a mouse model of acute lung injury.

    PubMed

    Thomas, Abe C; Nouls, John C; Driehuys, Bastiaan; Voltz, James W; Fubara, Boma; Foley, Julie; Bradbury, J Alyce; Zeldin, Darryl C

    2011-05-01

    Regions of diminished ventilation are often evident during functional pulmonary imaging studies, including hyperpolarized gas magnetic resonance imaging (MRI), positron emission tomography, and computed tomography (CT). The objective of this study was to characterize the hypointense regions observed via (3)He MRI in a murine model of acute lung injury. LPS at doses ranging from 15-50 μg was intratracheally administered to C57BL/6 mice under anesthesia. Four hours after exposure to either LPS or saline vehicle, mice were imaged via hyperpolarized (3)He MRI. All images were evaluated to identify regions of hypointense signals. Lungs were then characterized by conventional histology, or used to obtain tissue samples from regions of normal and hypointense (3)He signals and analyzed for cytokine content. The characterization of (3)He MRI images identified three distinct types of hypointense patterns: persistent defects, atelectatic defects, and dorsal lucencies. Persistent defects were associated with the administration of LPS. The number of persistent defects depended on the dose of LPS, with a significant increase in mean number of defects in 30-50-μg LPS-dosed mice versus saline-treated control mice. Atelectatic defects predominated in LPS-dosed mice under conditions of low-volume ventilation, and could be reversed with deep inspiration. Dorsal lucencies were present in nearly all mice studied, regardless of the experimental conditions, including control animals that did not receive LPS. A comparison of (3)He MRI with histopathology did not identify tissue abnormalities in regions of low (3)He signal, with the exception of a single region of atelectasis in one mouse. Furthermore, no statistically significant differences were evident in concentrations of IL-1β, IL-6, macrophage inflammatory protein (MIP)-1α, MIP-2, chemokine (C-X-C motif) ligand 1 (KC), TNFα, and monocyte chemotactic protein (MCP)-1 between hypointense and normally ventilated lung regions in LPS

  17. Hyperpolarized (13)C urea myocardial first-pass perfusion imaging using velocity-selective excitation.

    PubMed

    Fuetterer, Maximilian; Busch, Julia; Peereboom, Sophie M; von Deuster, Constantin; Wissmann, Lukas; Lipiski, Miriam; Fleischmann, Thea; Cesarovic, Nikola; Stoeck, Christian T; Kozerke, Sebastian

    2017-06-21

    A velocity-selective binomial excitation scheme for myocardial first-pass perfusion measurements with hyperpolarized (13)C substrates, which preserves bolus magnetization inside the blood pool, is presented. The proposed method is evaluated against gadolinium-enhanced (1)H measurements in-vivo. The proposed excitation with an echo-planar imaging readout was implemented on a clinical CMR system. Dynamic myocardial stress perfusion images were acquired in six healthy pigs after bolus injection of hyperpolarized (13)C urea with the velocity-selective vs. conventional excitation, as well as standard (1)H gadolinium-enhanced images. Signal-to-noise, contrast-to-noise (CNR) and homogeneity of semi-quantitative perfusion measures were compared between methods based on first-pass signal-intensity time curves extracted from a mid-ventricular slice. Diagnostic feasibility is demonstrated in a case of septal infarction. Velocity-selective excitation provides over three-fold reduction in blood pool signal with a two-fold increase in myocardial CNR. Extracted first-pass perfusion curves reveal a significantly reduced variability of semi-quantitative first-pass perfusion measures (12-20%) for velocity-selective excitation compared to conventional excitation (28-93%), comparable to that of reference (1)H gadolinium data (9-15%). Overall image quality appears comparable between the velocity-selective hyperpolarized and gadolinium-enhanced imaging. The feasibility of hyperpolarized (13)C first-pass perfusion CMR has been demonstrated in swine. Comparison with reference (1)H gadolinium data revealed sufficient data quality and indicates the potential of hyperpolarized perfusion imaging for human applications.

  18. Analysis of Cancer Metabolism by Imaging Hyperpolarized Nuclei: Prospects for Translation to Clinical Research

    PubMed Central

    Kurhanewicz, John; Vigneron, Daniel B; Brindle, Kevin; Chekmenev, Eduard Y; Comment, Arnaud; Cunningham, Charles H; DeBerardinis, Ralph J; Green, Gary G; Leach, Martin O; Rajan, Sunder S; Rizi, Rahim R; Ross, Brian D; Warren, Warren S; Malloy, Craig R

    2011-01-01

    A major challenge in cancer biology is to monitor and understand cancer metabolism in vivo with the goal of improved diagnosis and perhaps therapy. Because of the complexity of biochemical pathways, tracer methods are required for detecting specific enzyme-catalyzed reactions. Stable isotopes such as 13C or 15N with detection by nuclear magnetic resonance provide the necessary information about tissue biochemistry, but the crucial metabolites are present in low concentration and therefore are beyond the detection threshold of traditional magnetic resonance methods. A solution is to improve sensitivity by a factor of 10,000 or more by temporarily redistributing the populations of nuclear spins in a magnetic field, a process termed hyperpolarization. Although this effect is short-lived, hyperpolarized molecules can be generated in an aqueous solution and infused in vivo where metabolism generates products that can be imaged. This discovery lifts the primary constraint on magnetic resonance imaging for monitoring metabolism—poor sensitivity—while preserving the advantage of biochemical information. The purpose of this report was to briefly summarize the known abnormalities in cancer metabolism, the value and limitations of current imaging methods for metabolism, and the principles of hyperpolarization. Recent preclinical applications are described. Hyperpolarization technology is still in its infancy, and current polarizer equipment and methods are suboptimal. Nevertheless, there are no fundamental barriers to rapid translation of this exciting technology to clinical research and perhaps clinical care. PMID:21403835

  19. Two and three-dimensional segmentation of hyperpolarized 3He magnetic resonance imaging of pulmonary gas distribution

    NASA Astrophysics Data System (ADS)

    Heydarian, Mohammadreza; Kirby, Miranda; Wheatley, Andrew; Fenster, Aaron; Parraga, Grace

    2012-03-01

    A semi-automated method for generating hyperpolarized helium-3 (3He) measurements of individual slice (2D) or whole lung (3D) gas distribution was developed. 3He MRI functional images were segmented using two-dimensional (2D) and three-dimensional (3D) hierarchical K-means clustering of the 3He MRI signal and in addition a seeded region-growing algorithm was employed for segmentation of the 1H MRI thoracic cavity volume. 3He MRI pulmonary function measurements were generated following two-dimensional landmark-based non-rigid registration of the 3He and 1H pulmonary images. We applied this method to MRI of healthy subjects and subjects with chronic obstructive lung disease (COPD). The results of hierarchical K-means 2D and 3D segmentation were compared to an expert observer's manual segmentation results using linear regression, Pearson correlations and the Dice similarity coefficient. 2D hierarchical K-means segmentation of ventilation volume (VV) and ventilation defect volume (VDV) was strongly and significantly correlated with manual measurements (VV: r=0.98, p<.0001 VDV: r=0.97, p<.0001) and mean Dice coefficients were greater than 92% for all subjects. 3D hierarchical K-means segmentation of VV and VDV was also strongly and significantly correlated with manual measurements (VV: r=0.98, p<.0001 VDV: r=0.64, p<.0001) and the mean Dice coefficients were greater than 91% for all subjects. Both 2D and 3D semi-automated segmentation of 3He MRI gas distribution provides a way to generate novel pulmonary function measurements.

  20. The Efficiency Limits of Spin Exchange Optical Pumping Methods of 129Xe Hyperpolarization: Implications for in vivo MRI Applications

    NASA Astrophysics Data System (ADS)

    Freeman, Matthew S.

    Since the inception of hyperpolarized 129Xe MRI, the field has yearned for more efficient production of more highly polarized 129Xe. For nearly all polarizers built to date, both peak 129Xe polarization and production rate fall far below theoretical predictions. This thesis sought to develop a fundamental understanding of why the observed performance of large-scale 129Xe hyperpolarization lagged so badly behind theoretical predictions. This is done by thoroughly characterizing a high-volume, continuous-flow polarizer using optical cells having three different internal volumes, and employing two different laser sources. For each of these 6 combinations, 129Xe polarization was carefully measured as a function of production rate across a range of laser absorption levels. The resultant peak polarizations were consistently a factor of 2-3 lower than predicted across a range of absorption levels, and scaling of production rates deviated badly from predictions based on spin exchange efficiency. To bridge this gap, we propose that paramagnetic, activated Rb clusters form during spin exchange optical pumping (SEOP), and depolarize Rb and 129Xe, while unproductively scattering optical pumping light. When a model was built that incorporated the effects of clusters, its predictions matched observations for both polarization and production rate for all 6 systems studied. This permits us to place a limit on cluster number density of <2 x 109 cm-3. The work culminates with deploying this framework to identify methods to improve polarization to above 50%, leaving the SEOP cell. Combined with additional methods of preserving polarization, the polarization of a 300-mL batch of 129Xe increased from an average of 9%, before this work began, to a recent value of 34%. We anticipate that these developments will lay the groundwork for continued advancement and scaling up of SEOP-based hyperpolarization methods that may one day permit real-time, on-demand 129Xe MRI to become a reality.

  1. Optimized production of hyperpolarized 129Xe at 2 bars for in vivo lung magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Norquay, Graham; Parnell, Steven R.; Xu, Xiaojun; Parra-Robles, Juan; Wild, Jim M.

    2013-01-01

    In this work, the production rate of a spin-exchange optical pumping 129Xe gas polarizer was optimized for routine generation of hyperpolarized 129Xe for in vivo lung MRI. This system uses a narrow (˜ 0.1 nm linewidth), tuneable external cavity laser (operating at ˜25 W) for SEOP of 3% gas mixtures of Xe inside a mid-pressure (2 bars) cell of 491 cm3 volume. Under this regime, theoretical and experimentally measured 129Xe polarizations were calculated to be 24% and 12%, respectively, for a gas flow rate of 300 sccm and a cell temperature of 373 K. The photon efficiency was evaluated, yielding theoretical and experimental values of 0.039 and 0.046, respectively. The theoretical efficiency was calculated from spin-exchange and spin-destruction cross sections and the experimental photon efficiency was measured under flow for a gas-cell residency time equal to an empirically determined spin-exchange time of 45 s. In addition, details of the Xe freeze-out process were analyzed with a model of polarization decay during Xe accumulation in the frozen phase, where a T1 of 87 ± 2 min was observed. To demonstrate the system's application, in vivo lung magnetic resonance images (signal-to-noise ratio ˜ 50 from a voxel of 15 mm× 4 mm× 4 mm) were acquired using modest volumes (<400 ml) of isotopically enriched (86% 129Xe) Xe gas polarized to >10%. Despite the experimental polarization being a factor of 2 lower than the predicted polarization for typical operating parameters, the system is close to the theoretical photon efficiency and the system has so far produced polarized gas for more than 100 in vivo 129Xe lung imaging studies.

  2. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate.

    PubMed

    Gallagher, Ferdia A; Kettunen, Mikko I; Day, Sam E; Hu, De-En; Ardenkjaer-Larsen, Jan Henrik; Zandt, René in 't; Jensen, Pernille R; Karlsson, Magnus; Golman, Klaes; Lerche, Mathilde H; Brindle, Kevin M

    2008-06-12

    As alterations in tissue pH underlie many pathological processes, the capability to image tissue pH in the clinic could offer new ways of detecting disease and response to treatment. Dynamic nuclear polarization is an emerging technique for substantially increasing the sensitivity of magnetic resonance imaging experiments. Here we show that tissue pH can be imaged in vivo from the ratio of the signal intensities of hyperpolarized bicarbonate (H(13)CO(3)(-)) and (13)CO(2) following intravenous injection of hyperpolarized H(13)CO(3)(-). The technique was demonstrated in a mouse tumour model, which showed that the average tumour interstitial pH was significantly lower than the surrounding tissue. Given that bicarbonate is an endogenous molecule that can be infused in relatively high concentrations into patients, we propose that this technique could be used clinically to image pathological processes that are associated with alterations in tissue pH, such as cancer, ischaemia and inflammation.

  3. Robust hyperpolarized (13)C metabolic imaging with selective non-excitation of pyruvate (SNEP).

    PubMed

    Chen, Way Cherng; Teo, Xing Qi; Lee, Man Ying; Radda, George K; Lee, Philip

    2015-08-01

    In vivo metabolic imaging using hyperpolarized [1-(13)C]pyruvate provides localized biochemical information and is particularly useful in detecting early disease changes, as well as monitoring disease progression and treatment response. However, a major limitation of hyperpolarized magnetization is its unrecoverable decay, due not only to T1 relaxation but also to radio-frequency (RF) excitation. RF excitation schemes used in metabolic imaging must therefore be able to utilize available hyperpolarized magnetization efficiently and robustly for the optimal detection of substrate and metabolite activities. In this work, a novel RF excitation scheme called selective non-excitation of pyruvate (SNEP) is presented. This excitation scheme involves the use of a spectral selective RF pulse to specifically exclude the excitation of [1-(13)C]pyruvate, while uniformly exciting the key metabolites of interest (namely [1-(13)C]lactate and [1-(13)C]alanine) and [1-(13)C]pyruvate-hydrate. By eliminating the loss of hyperpolarized [1-(13)C]pyruvate magnetization due to RF excitation, the signal from downstream metabolite pools is increased together with enhanced dynamic range. Simulation results, together with phantom measurements and in vivo experiments, demonstrated the improvement in signal-to-noise ratio (SNR) and the extension of the lifetime of the [1-(13)C]lactate and [1-(13)C]alanine pools when compared with conventional non-spectral selective (NS) excitation. SNEP has also been shown to perform comparably well with multi-band (MB) excitation, yet SNEP possesses distinct advantages, including ease of implementation, less stringent demands on gradient performance, increased robustness to frequency drifts and B0 inhomogeneity as well as easier quantification involving the use of [1-(13)C]pyruvate-hydrate as a proxy for the actual [1-(13)C] pyruvate signal. SNEP is therefore a promising alternative for robust hyperpolarized [1-(13)C]pyruvate metabolic imaging with high

  4. Hyperpolarized 83Kr magnetic resonance imaging of alveolar degradation in a rat model of emphysema.

    PubMed

    Lilburn, David M L; Lesbats, Clémentine; Six, Joseph S; Dubuis, Eric; Yew-Booth, Liang; Shaw, Dominick E; Belvisi, Maria G; Birrell, Mark A; Pavlovskaya, Galina E; Meersmann, Thomas

    2015-06-06

    Hyperpolarized (83)Kr surface quadrupolar relaxation (SQUARE) generates MRI contrast that was previously shown to correlate with surface-to-volume ratios in porous model surface systems. The underlying physics of SQUARE contrast is conceptually different from any other current MRI methodology as the method uses the nuclear electric properties of the spin I = 9/2 isotope (83)Kr. To explore the usage of this non-radioactive isotope for pulmonary pathophysiology, MRI SQUARE contrast was acquired in excised rat lungs obtained from an elastase-induced model of emphysema. A significant (83)Kr T1 relaxation time increase in the SQUARE contrast was found in the elastase-treated lungs compared with the baseline data from control lungs. The SQUARE contrast suggests a reduction in pulmonary surface-to-volume ratio in the emphysema model that was validated by histology. The finding supports usage of (83)Kr SQUARE as a new biomarker for surface-to-volume ratio changes in emphysema.

  5. Design and evaluation of a 32-channel phased-array coil for lung imaging with hyperpolarized 3-helium.

    PubMed

    Meise, Florian M; Rivoire, Julien; Terekhov, Maxim; Wiggins, Graham C; Keil, Boris; Karpuk, Sergej; Salhi, Zahir; Wald, Lawrence L; Schreiber, Laura M

    2010-02-01

    Imaging with hyperpolarized 3-helium is becoming an increasingly important technique for MRI diagnostics of the lung but is hampered by long breath holds (>20 sec), which are not always applicable in patients with severe lung disease like chronic obstructive pulmonary disease (COPD) or alpha-1-anti-trypsin deficiency. Additionally, oxygen-induced depolarization decay during the long breath holds complicates interpretation of functional data such as apparent diffusion coefficients. To address these issues, we describe and validate a 1.5-T, 32-channel array coil for accelerated (3)He lung imaging and demonstrate its ability to speed up imaging (3)He. A signal-to-noise ratio increase of up to a factor of 17 was observed compared to a conventional double-resonant birdcage for unaccelerated imaging, potentially allowing increased image resolution or decreased gas production requirements. Accelerated imaging of the whole lung with one-dimensional and two-dimensional acceleration factors of 4 and 4 x 2, respectively, was achieved while still retaining excellent image quality. Finally, the potential of highly parallel detection in lung imaging is demonstrated with high-resolution morphologic and functional images.

  6. A flexible 32-channel receive array combined with a homogeneous transmit coil for human lung imaging with hyperpolarized 3He at 1.5 T.

    PubMed

    Deppe, Martin H; Parra-Robles, Juan; Marshall, Helen; Lanz, Titus; Wild, Jim M

    2011-12-01

    Parallel imaging presents a promising approach for MRI of hyperpolarized nuclei, as the penalty in signal-to-noise ratio typically encountered with (1)H MRI due to a reduction in acquisition time can be offset by an increase in flip angle. The signal-to-noise ratio of hyperpolarized MRI generally exhibits a strong dependence on flip angle, which makes a homogeneous B(1)(+) transmit field desirable. This paper presents a flexible 32-channel receive array for (3) He human lung imaging at 1.5T designed for insertion into an asymmetric birdcage transmit coil. While the 32-channel array allows parallel imaging at high acceleration factors, the birdcage transmit coil provides a homogeneous B(1)(+) field. Decoupling between array elements is achieved by using a concentric shielding approach together with preamplifier decoupling. Coupling between transmit coil and array elements is low by virtue of a low geometric coupling coefficient, which is reduced further by the concentric shields in the array. The combination of the 32-channel array and birdcage transmit coil provides (3)He ventilation images of excellent quality with similar signal-to-noise ratio at acceleration factors R = 2 and R = 4, while maintaining a homogeneous B(1)(+). Copyright © 2011 Wiley Periodicals, Inc.

  7. A 32-Channel Phased-Array Receive with Asymmetric Birdcage Transmit RF Coil for Hyperpolarized Xenon-129 Lung Imaging

    PubMed Central

    Dregely, Isabel; Ruset, Iulian C.; Wiggins, Graham; Mareyam, Azma; Mugler, John P.; Altes, Talissa A.; Meyer, Craig; Ruppert, Kai; Wald, Lawrence L.; Hersman, F. William

    2012-01-01

    Hyperpolarized xenon-129 (HP Xe) has the potential to become a non-invasive contrast agent for lung MRI. In addition to its utility for imaging of ventilated airspaces, the property of xenon to dissolve in lung tissue and blood upon inhalation provides the opportunity to study gas exchange. Implementations of imaging protocols for obtaining regional parameters that exploit the dissolved phase are limited by the available signal-to-noise ratio (SNR), excitation homogeneity, and length of acquisition times. To address these challenges, a 32-channel receive-array coil complemented by an asymmetric birdcage transmit coil tuned to the HP Xe resonance at 3T was developed. First results of spin-density imaging in healthy subjects and subjects with obstructive lung disease demonstrated the improvements in image quality by high resolution ventilation images with high SNR. Parallel imaging performance of the phased-array coil was demonstrated by acceleration factors up to three in 2D acquisitions and up to six in 3D acquisitions. Transmit-field maps showed a regional variation of only 8% across the whole lung. The newly developed phased-array receive coil with the birdcage transmit coil will lead to an improvement in existing imaging protocols, but moreover enable the development of new, functional lung imaging protocols based on the improvements in excitation homogeneity, SNR, and acquisition speed. PMID:23132336

  8. Imaging Renal Urea Handling in Rats at Millimeter Resolution using Hyperpolarized Magnetic Resonance Relaxometry

    PubMed Central

    Reed, Galen D.; von Morze, Cornelius; Verkman, Alan S.; Koelsch, Bertram L.; Chaumeil, Myriam M.; Lustig, Michael; Ronen, Sabrina M.; Bok, Robert A.; Sands, Jeff M.; Larson, Peder E. Z.; Wang, Zhen J.; Larsen, Jan Henrik Ardenkjær; Kurhanewicz, John; Vigneron, Daniel B.

    2016-01-01

    In vivo spin spin relaxation time (T2) heterogeneity of hyperpolarized [13C,15N2]urea in the rat kidney was investigated. Selective quenching of the vascular hyperpolarized 13C signal with a macromolecular relaxation agent revealed that a long-T2 component of the [13C,15N2]urea signal originated from the renal extravascular space, thus allowing the vascular and renal filtrate contrast agent pools of the [13C,15N2]urea to be distinguished via multi-exponential analysis. The T2 response to induced diuresis and antidiuresis was performed with two imaging agents: hyperpolarized [13C,15N2]urea and a control agent hyperpolarized bis-1,1-(hydroxymethyl)-1-13C-cyclopropane-2H8. Large T2 increases in the inner-medullar and papilla were observed with the former agent and not the latter during antidiuresis. Therefore, [13C,15N2]urea relaxometry is sensitive to two steps of the renal urea handling process: glomerular filtration and the inner-medullary urea transporter (UT)-A1 and UT-A3 mediated urea concentrating process. Simple motion correction and subspace denoising algorithms are presented to aid in the multi exponential data analysis. Furthermore, a T2-edited, ultra long echo time sequence was developed for sub-2 mm3 resolution 3D encoding of urea by exploiting relaxation differences in the vascular and filtrate pools. PMID:27570835

  9. Quantitative analysis of regional airways obstruction using dynamic hyperpolarized 3He MRI-preliminary results in children with cystic fibrosis.

    PubMed

    Koumellis, Panos; van Beek, Edwin J R; Woodhouse, Neil; Fichele, Stan; Swift, Andrew J; Paley, Martyn N J; Hill, Catherine; Taylor, Chris J; Wild, Jim M

    2005-09-01

    To investigate regional airways obstruction in patients with cystic fibrosis (CF) with quantitative analysis of dynamic hyperpolarized (HP) (3)He MRI. Dynamic radial projection MRI of HP (3)He gas was used to study respiratory dynamics in a group of eight children with CF. Signal kinetics in a total of seven regions of interest (ROIs; three in each lung, and one in the trachea) were compared with the results of spirometric pulmonary function tests (PFTs). The tracheal signal intensity was used as a form of "input function" to normalize for input flow effects. A pattern of low flow rate in the upper lobes was observed. When the flow measurements from the peripheral ROIs were averaged to obtain an index of flow in the peripheral lung, a good correlation was found (P = 3.74 x 10(-5)) with the forced expired volume in one second (FEV1). These results suggest that a quantitative measurement of localized airways obstruction in the early stages of CF may be obtained from dynamic (3)He MRI by using the slope of the signal rise as a measure of air flow into the peripheral lung. This study also demonstrates that children can cooperate well with the (3)He MRI technique. (c) 2005 Wiley-Liss, Inc.

  10. Hyperpolarized Xenon-129 Gas-Exchange Imaging of Lung Microstructure: First Case Studies in Subjects with Obstructive Lung Disease

    PubMed Central

    Dregely, Isabel; Mugler, John P.; Ruset, Iulian C.; Altes, Talissa A.; Mata, Jaime F.; Miller, G. Wilson; Ketel, Jeffrey; Ketel, Steve; Distelbrink, Jan; Hersman, F.W.; Ruppert, Kai

    2011-01-01

    Purpose To develop and test a method to non-invasively assess the functional lung microstructure. Materials and Methods The Multiple exchange time Xenon polarization Transfer Contrast technique (MXTC) encodes xenon gas-exchange contrast at multiple delay times permitting two lung-function parameters to be derived: 1) MXTC-F, the long exchange-time depolarization value, which is proportional to the tissue to alveolar-volume ratio and 2) MXTC-S, the square root of the xenon exchange-time constant, which characterizes thickness and composition of alveolar septa. Three healthy volunteers, one asthmatic and two COPD (GOLD stage I and II) subjects were imaged with MXTC MRI. In a subset of subjects, hyperpolarized xenon-129 ADC MRI and CT imaging were also performed. Results The MXTC-S parameter was found to be elevated in subjects with lung disease (p-value = 0.018). In the MXTC-F parameter map it was feasible to identify regional loss of functional tissue in a COPD patient. Further, the MXTC-F map showed excellent regional correlation with CT and ADC (ρ ≥ 0.90) in one COPD subject. Conclusion The functional tissue-density parameter MXTC-F showed regional agreement with other imaging techniques. The newly developed parameter MXTC-S, which characterizes the functional thickness of alveolar septa, has potential as a novel biomarker for regional parenchymal inflammation or thickening. PMID:21509861

  11. Ventilation-based segmentation of the lungs using hyperpolarized (3)He MRI.

    PubMed

    Tustison, Nicholas J; Avants, Brian B; Flors, Lucia; Altes, Talissa A; de Lange, Eduard E; Mugler, John P; Gee, James C

    2011-10-01

    To develop an automated segmentation method to differentiate the ventilated lung volume on (3) He magnetic resonance imaging (MRI). Computational processing (CP) for each subject consisted of the following three essential steps: 1) inhomogeneity bias correction, 2) whole lung segmentation, and 3) subdivision of the lung segmentation into regions of similar ventilation. Evaluation consisted of two comparative analyses: i) comparison of the number of defects scored by two human readers in 43 subjects, and ii) simultaneous truth and performance level estimation (STAPLE) in 18 subjects in which the ventilation defects were manually segmented by four human readers. There was excellent correlation between the number of ventilation defects tabulated by CP and reader #1 (intraclass correlation coefficient [ICC] = 0.86), CP and reader #2 (ICC = 0.85), and between the two readers (ICC = 0.97). The STAPLE results from the second analysis yielded the following sensitivity/specificity numbers: CP (0.898/0.905), radiologist #1 (0.743/0.897), radiologist #2 (0.501/0.985), radiologist #3 (0.898/0.848), and the first author (0.600/0.984). We developed and evaluated an automated method for quantifying the ventilated lung volume on (3) He MRI. The findings strongly indicate that our proposed algorithmic processing may be a reliable, automatic method for quantitating ventilation defects. Copyright © 2011 Wiley-Liss, Inc.

  12. Developing hyperpolarized krypton-83 for nuclear magnetic resonance spectroscopy and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cleveland, Zackary I.

    This dissertation discusses the production of highly nonequilibrium nuclear spin polarization, referred to as hyperpolarization or hp, in the nuclear spin I = 9/2 noble gas isotope krypton-83 using spin exchange optical pumping (SEOP). This nonequilibrium polarization yields nuclear magnetic resonance (NMR) signals that are enhanced three or more orders of magnitude above those of thermally polarized krypton and enables experiments that would otherwise be impossible. Krypton-83 possesses a nuclear electric quadrupole moment that dominates the longitudinal (T1) relaxation due to coupling of the quadrupole moment to fluctuating electric field gradients generated by distortions to the spherical symmetry of the electronic environment. Relaxation slows polarization buildup and limits the maximum signal intensity but makes krypton-83 a sensitive probe of its environment. The gas-phase krypton-83 longitudinal relaxation rate increases linearly with total gas density due to binary collisions. Density independent relaxation, caused by the formation of krypton-krypton van der Waals molecules and surface adsorption, also contributes to the observed rate. Buffer gases suppress van der Waals molecule mediated relaxation by breaking apart the weakly bound krypton dimers. Surface relaxation is gas composition independent and therefore more difficult to suppress. However, this relaxation mechanism makes hp krypton-83 sensitive to important surface properties including surface-to-volume ratio, surface chemistry, and surface temperature. The presence of surfaces with high krypton adsorption affinities (i.e. hydrophobic surfaces) accelerates the relaxation times and can produce T1 contrast in hp krypton-83 magnetic resonance imaging (MRI). Tobacco smoke deposited on surfaces generates strong T1 contrast allowing the observation of smoke deposition with spatial resolution. Conversely, water adsorption on surfaces significantly lengths the T1 times due competitive surface adsorption

  13. Cardiac perfusion imaging using hyperpolarized (13)C urea using flow sensitizing gradients.

    PubMed

    Lau, Angus Z; Miller, Jack J; Robson, Matthew D; Tyler, Damian J

    2016-04-01

    To demonstrate the feasibility of imaging the first passage of a bolus of hyperpolarized (13)C urea through the rodent heart using flow-sensitizing gradients to reduce signal from the blood pool. A flow-sensitizing bipolar gradient was optimized to reduce the bright signal within the cardiac chambers, enabling improved contrast of the agent within the tissue capillary bed. The gradient was incorporated into a dynamic golden angle spiral (13)C imaging sequence. Healthy rats were scanned during rest (n = 3) and under adenosine stress-induced hyperemia (n = 3). A two-fold increase in myocardial perfusion relative to rest was detected during adenosine stress-induced hyperemia, consistent with a myocardial perfusion reserve of two in rodents. The new pulse sequence was used to obtain dynamic images of the first passage of hyperpolarized (13)C urea in the rodent heart, without contamination from bright signal within the neighboring cardiac lumen. This probe of myocardial perfusion is expected to enable new hyperpolarized (13)C studies in which the cardiac metabolism/perfusion mismatch can be identified. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  14. Incorporation of prior knowledge in compressed sensing for faster acquisition of hyperpolarized gas images.

    PubMed

    Ajraoui, S; Parra-Robles, J; Wild, J M

    2013-02-01

    Adding prior knowledge to compressed sensing reconstruction can improve image reconstruction. In this work, two approaches are investigated to improve reconstruction of two-dimensional hyperpolarized (3)He lung ventilation images using prior knowledge. When compared against a standard compressed sensing reconstruction, the proposed methods allowed acquisition of images with higher under-sampling factors and reduction of the blurring effects that increase with higher reduction factors when fixed flip angles are used. These methods incorporate the prior knowledge of polarization decay of hyperpolarized (3)He and the mutual anatomical information from a registered (1)H image acquired in the same breath. Three times accelerated two-dimensional images reconstructed with compressed sensing and prior knowledge gave lower root-mean square error, than images reconstructed without introduction of any prior information. When introducing the polarization decay as prior knowledge, a significant improvement was achieved in the lung region, the root mean square value decreased by 45% and from the whole image by 36%. When introducing the mutual anatomical information as prior knowledge, the root mean square decreased by 21% over the lung region and by 15% over the whole image. Copyright © 2012 Wiley Periodicals, Inc.

  15. Hyperpolarized 3He MR imaging of the lung: effect of subject immobilization on the occurrence of ventilation defects.

    PubMed

    Mata, Jaime; Altes, Talissa; Knake, Jeffrey; Mugler, John; Brookeman, James; de Lange, Eduard

    2008-02-01

    To investigate immobilization-induced ventilation defects when performing hyperpolarized (3)He (H(3)He) magnetic resonance imaging (MRI) of the lung. Twelve healthy subjects underwent MRI of the lungs after inhalation of H(3)He gas at three time points: 1) immediately after having been positioned supine on the MRI scanner table, 2) at 45 minutes while remaining supine, 3) and immediately thereafter after having turned prone. All image sets were reviewed in random order by three independent, blinded readers who recorded number, location, and size of H(3)He ventilation defects. Scores were averaged for each time point and comparisons were made to determine change in number, location, and size of ventilation defects with time and positioning of the subject in the scanner. At baseline supine, there were small numbers of defects in the dependent (posterior) and nondependent (anterior) portions of the lung (P = .625). At 45 minutes, there was a significant increase in the mean number of ventilation defects/slice (VDS) for the dependent (P = .005) and a decrease for the nondependent lung portions (P = .021). After subjects turned prone, mean VDS for posterior defects decreased significantly (P = .011), whereas those for anterior defects increased (P = .010). Most defects were less than 3 cm in diameter. It was found that immobilization of the subject for an extended period led to increased number of H(3)He ventilation defects in the dependent portions of the lung. Therefore, after a subject is positioned in the scanner, H(3)He MR imaging should be performed quickly to avoid the occurrence of the immobilization-induced ventilation defects and possible overestimation of disease.

  16. Pulse sequence for dynamic volumetric imaging of hyperpolarized metabolic products

    NASA Astrophysics Data System (ADS)

    Cunningham, Charles H.; Chen, Albert P.; Lustig, Michael; Hargreaves, Brian A.; Lupo, Janine; Xu, Duan; Kurhanewicz, John; Hurd, Ralph E.; Pauly, John M.; Nelson, Sarah J.; Vigneron, Daniel B.

    2008-07-01

    Dynamic nuclear polarization and dissolution of a 13C-labeled substrate enables the dynamic imaging of cellular metabolism. Spectroscopic information is typically acquired, making the acquisition of dynamic volumetric data a challenge. To enable rapid volumetric imaging, a spectral-spatial excitation pulse was designed to excite a single line of the carbon spectrum. With only a single resonance present in the signal, an echo-planar readout trajectory could be used to resolve spatial information, giving full volume coverage of 32 × 32 × 16 voxels every 3.5 s. This high frame rate was used to measure the different lactate dynamics in different tissues in a normal rat model and a mouse model of prostate cancer.

  17. Pulse Sequence for Dynamic Volumetric Imaging of Hyperpolarized Metabolic Products

    PubMed Central

    Cunningham, Charles H.; Chen, Albert P.; Lustig, Michael; Lupo, Janine; Xu, Duan; Kurhanewicz, John; Hurd, Ralph E.; Pauly, John M.; Nelson, Sarah J.; Vigneron, Daniel B.

    2011-01-01

    Dynamic nuclear polarization and dissolution of a 13C-labeled substrate enables the dynamic imaging of cellular metabolism. Spectroscopic information is typically acquired, making the acquisition of dynamic volumetric data a challenge. To enable rapid volumetric imaging, a spectral-spatial excitation pulse was designed to excite a single line of the carbon spectrum. With only a single resonance present in the signal, an echo-planar readout trajectory could be used to resolve spatial information, giving full volume coverage of 32 × 32 × 16 voxels every 3.5 seconds. This high frame rate was used to measure the different lactate dynamics in different tissues in a normal rat model and a mouse model of prostate cancer. PMID:18424203

  18. Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging.

    PubMed

    Keshari, Kayvan R; Kurhanewicz, John; Bok, Robert; Larson, Peder E Z; Vigneron, Daniel B; Wilson, David M

    2011-11-15

    Reduction and oxidation (redox) chemistry is involved in both normal and abnormal cellular function, in processes as diverse as circadian rhythms and neurotransmission. Intracellular redox is maintained by coupled reactions involving NADPH, glutathione (GSH), and vitamin C, as well as their corresponding oxidized counterparts. In addition to functioning as enzyme cofactors, these reducing agents have a critical role in dealing with reactive oxygen species (ROS), the toxic products of oxidative metabolism seen as culprits in aging, neurodegenerative disease, and ischemia/ reperfusion injury. Despite this strong relationship between redox and human disease, methods to interrogate a redox pair in vivo are limited. Here we report the development of [1-(13)C] dehydroascorbate [DHA], the oxidized form of Vitamin C, as an endogenous redox sensor for in vivo imaging using hyperpolarized (13)C spectroscopy. In murine models, hyperpolarized [1-(13)C] DHA was rapidly converted to [1-(13)C] vitamin C within the liver, kidneys, and brain, as well as within tumor in a transgenic prostate cancer mouse. This result is consistent with what has been previously described for the DHA/Vitamin C redox pair, and points to a role for hyperpolarized [1-(13)C] DHA in characterizing the concentrations of key intracellular reducing agents, including GSH. More broadly, these findings suggest a prognostic role for this new redox sensor in determining vulnerability of both normal and abnormal tissues to ROS.

  19. Simultaneous magnetic resonance imaging of ventilation distribution and gas uptake in the human lung using hyperpolarized xenon-129

    PubMed Central

    Mugler, John P.; Altes, Talissa A.; Ruset, Iulian C.; Dregely, Isabel M.; Mata, Jaime F.; Miller, G. Wilson; Ketel, Stephen; Ketel, Jeffrey; Hersman, F. William; Ruppert, Kai

    2010-01-01

    Despite a myriad of technical advances in medical imaging, as well as the growing need to address the global impact of pulmonary diseases, such as asthma and chronic obstructive pulmonary disease, on health and quality of life, it remains challenging to obtain in vivo regional depiction and quantification of the most basic physiological functions of the lung—gas delivery to the airspaces and gas uptake by the lung parenchyma and blood—in a manner suitable for routine application in humans. We report a method based on MRI of hyperpolarized xenon-129 that permits simultaneous observation of the 3D distributions of ventilation (gas delivery) and gas uptake, as well as quantification of regional gas uptake based on the associated ventilation. Subjects with lung disease showed variations in gas uptake that differed from those in ventilation in many regions, suggesting that gas uptake as measured by this technique reflects such features as underlying pathological alterations of lung tissue or of local blood flow. Furthermore, the ratio of the signal associated with gas uptake to that associated with ventilation was substantially altered in subjects with lung disease compared with healthy subjects. This MRI-based method provides a way to quantify relationships among gas delivery, exchange, and transport, and appears to have significant potential to provide more insight into lung disease. PMID:21098267

  20. Translational applications of hyperpolarized 3He and 129Xe.

    PubMed

    Walkup, Laura L; Woods, Jason C

    2014-12-01

    Clinical magnetic resonance imaging of the lung is technologically challenging, yet over the past two decades hyperpolarized noble gas ((3)He and (129)Xe) imaging has demonstrated the ability to measure multiple pulmonary functional biomarkers. There is a growing need for non-ionizing, non-invasive imaging techniques due to increased concern about cancer risk from ionizing radiation, but the translation of hyperpolarized gas imaging to the pulmonary clinic has been stunted by limited access to the technology. New developments may open doors to greater access and more translation to clinical studies. Here we briefly review a few translational applications of hyperpolarized gas MRI in the contexts of ventilation, diffusion, and dissolved-phase imaging, as well as comparing and contrasting (3)He and (129)Xe gases for these applications. Simple static ventilation MRI reveals regions of the lung not participating in normal ventilation, and these defects have been observed in many pulmonary diseases. Biomarkers related to airspace size and connectivity can be quantified by apparent diffusion coefficient measurements of hyperpolarized gas, and have been shown to be more sensitive to small changes in lung morphology than standard clinical pulmonary functional tests and have been validated by quantitative histology. Parameters related to gas uptake and exchange and lung tissue density can be determined using (129)Xe dissolved-phase MRI. In most cases functional biomarkers can be determined via MRI of either gas, but for some applications one gas may be preferred, such as (3)He for long-range diffusion measurements and (129)Xe for dissolved-phase imaging. Greater access to hyperpolarized gas imaging coupled with newly developing therapeutics makes pulmonary medicine poised for a potential revolution, further adding to the prospects of personalized medicine already evidenced by advancements in molecular biology. Hyperpolarized gas researchers have the opportunity to

  1. Hyperpolarized noble gas magnetic resonance imaging of the animal lung: Approaches and applications

    NASA Astrophysics Data System (ADS)

    Santyr, Giles E.; Lam, Wilfred W.; Parra-Robles, Juan M.; Taves, Timothy M.; Ouriadov, Alexei V.

    2009-05-01

    Hyperpolarized noble gas (HNG) magnetic resonance (MR) imaging is a very promising noninvasive tool for the investigation of animal models of lung disease, particularly to follow longitudinal changes in lung function and anatomy without the accumulated radiation dose associated with x rays. The two most common noble gases for this purpose are H3e (helium 3) and X129e (xenon 129), the latter providing a cost-effective approach for clinical applications. Hyperpolarization is typically achieved using spin-exchange optical pumping techniques resulting in ˜10 000-fold improvement in available magnetization compared to conventional Boltzmann polarizations. This substantial increase in polarization allows high spatial resolution (<1 mm) single-slice images of the lung to be obtained with excellent temporal resolution (<1 s). Complete three-dimensional images of the lungs with 1 mm slice thickness can be obtained within reasonable breath-hold intervals (<20 s). This article provides an overview of the current methods used in HNG MR imaging with an emphasis on ventilation studies in animals. Special MR hardware and software considerations are described in order to use the strong but nonrecoverable magnetization as efficiently as possible and avoid depolarization primarily by molecular oxygen. Several applications of HNG MR imaging are presented, including measurement of gross lung anatomy (e.g., airway diameters), microscopic anatomy (e.g., apparent diffusion coefficient), and a variety of functional parameters including dynamic ventilation, alveolar oxygen partial pressure, and xenon diffusing capacity.

  2. Cardiac perfusion imaging using hyperpolarized 13c urea using flow sensitizing gradients

    PubMed Central

    Miller, Jack J.; Robson, Matthew D.; Tyler, Damian J.

    2015-01-01

    Purpose To demonstrate the feasibility of imaging the first passage of a bolus of hyperpolarized 13C urea through the rodent heart using flow‐sensitizing gradients to reduce signal from the blood pool. Methods A flow‐sensitizing bipolar gradient was optimized to reduce the bright signal within the cardiac chambers, enabling improved contrast of the agent within the tissue capillary bed. The gradient was incorporated into a dynamic golden angle spiral 13C imaging sequence. Healthy rats were scanned during rest (n = 3) and under adenosine stress‐induced hyperemia (n = 3). Results A two‐fold increase in myocardial perfusion relative to rest was detected during adenosine stress‐induced hyperemia, consistent with a myocardial perfusion reserve of two in rodents. Conclusion The new pulse sequence was used to obtain dynamic images of the first passage of hyperpolarized 13C urea in the rodent heart, without contamination from bright signal within the neighboring cardiac lumen. This probe of myocardial perfusion is expected to enable new hyperpolarized 13C studies in which the cardiac metabolism/perfusion mismatch can be identified. Magn Reson Med, 2015. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Magn Reson Med 75:1474–1483, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance. PMID:25991580

  3. A comparison of quantitative methods for clinical imaging with hyperpolarized (13)C-pyruvate.

    PubMed

    Daniels, Charlie J; McLean, Mary A; Schulte, Rolf F; Robb, Fraser J; Gill, Andrew B; McGlashan, Nicholas; Graves, Martin J; Schwaiger, Markus; Lomas, David J; Brindle, Kevin M; Gallagher, Ferdia A

    2016-04-01

    Dissolution dynamic nuclear polarization (DNP) enables the metabolism of hyperpolarized (13)C-labelled molecules, such as the conversion of [1-(13)C]pyruvate to [1-(13)C]lactate, to be dynamically and non-invasively imaged in tissue. Imaging of this exchange reaction in animal models has been shown to detect early treatment response and correlate with tumour grade. The first human DNP study has recently been completed, and, for widespread clinical translation, simple and reliable methods are necessary to accurately probe the reaction in patients. However, there is currently no consensus on the most appropriate method to quantify this exchange reaction. In this study, an in vitro system was used to compare several kinetic models, as well as simple model-free methods. Experiments were performed using a clinical hyperpolarizer, a human 3 T MR system, and spectroscopic imaging sequences. The quantitative methods were compared in vivo by using subcutaneous breast tumours in rats to examine the effect of pyruvate inflow. The two-way kinetic model was the most accurate method for characterizing the exchange reaction in vitro, and the incorporation of a Heaviside step inflow profile was best able to describe the in vivo data. The lactate time-to-peak and the lactate-to-pyruvate area under the curve ratio were simple model-free approaches that accurately represented the full reaction, with the time-to-peak method performing indistinguishably from the best kinetic model. Finally, extracting data from a single pixel was a robust and reliable surrogate of the whole region of interest. This work has identified appropriate quantitative methods for future work in the analysis of human hyperpolarized (13)C data.

  4. Hyperpolarized noble gases as contrast agents.

    PubMed

    Zhou, Xin

    2011-01-01

    Hyperpolarized noble gases ((3)He and (129)Xe) can provide NMR signal enhancements of 10,000 to 100,000 times that of thermally polarized gases and have shown great potential for applications in lung magnetic resonance imaging (MRI) by greatly enhancing the sensitivity and contrast. These gases obtain a highly polarized state by employing a spin exchange optical pumping technique. In this chapter, the underlying physics of spin exchange optical pumping for production of hyperpolarized noble gases is explained and the basic components and procedures for building a polarizer are described. The storage and delivery strategies of hyperpolarized gases for in vivo imaging are discussed. Many of the problems that are likely to be encountered in practical experiments and the corresponding detailed approaches to overcome them are also discussed.

  5. Physiological response of rats to delivery of helium and xenon: implications for hyperpolarized noble gas imaging

    NASA Technical Reports Server (NTRS)

    Ramirez, M. P.; Sigaloff, K. C.; Kubatina, L. V.; Donahue, M. A.; Venkatesh, A. K.; Albert, M. S.; ALbert, M. S. (Principal Investigator)

    2000-01-01

    The physiological effects of various hyperpolarized helium and xenon MRI-compatible breathing protocols were investigated in 17 Sprague-Dawley rats, by continuous monitoring of blood oxygen saturation, heart rate, EKG, temperature and endotracheal pressure. The protocols included alternating breaths of pure noble gas and oxygen, continuous breaths of pure noble gas, breath-holds of pure noble gas for varying durations, and helium breath-holds preceded by two helium rinses. Alternate-breath protocols up to 128 breaths caused a decrease in oxygen saturation level of less than 5% for either helium or xenon, whereas 16 continuous-breaths caused a 31.5% +/- 2.3% decrease in oxygen saturation for helium and a 30.7% +/- 1. 3% decrease for xenon. Breath-hold protocols up to 25 s did not cause the oxygen saturation to fall below 90% for either of the noble gases. Oxygen saturation values below 90% are considered pathological. At 30 s of breath-hold, the blood oxygen saturation dropped precipitously to 82% +/- 0.6% for helium, and to 76.5% +/- 7. 4% for xenon. Breath-holds longer than 10 s preceded by pre-rinses caused oxygen saturation to drop below 90%. These findings demonstrate the need for standardized noble gas inhalation procedures that have been carefully tested, and for continuous physiological monitoring to ensure the safety of the subject. We find short breath-hold and alternate-breath protocols to be safe procedures for use in hyperpolarized noble gas MRI experiments. Copyright 2000 John Wiley & Sons, Ltd.

  6. Physiological response of rats to delivery of helium and xenon: implications for hyperpolarized noble gas imaging

    NASA Technical Reports Server (NTRS)

    Ramirez, M. P.; Sigaloff, K. C.; Kubatina, L. V.; Donahue, M. A.; Venkatesh, A. K.; Albert, M. S.; ALbert, M. S. (Principal Investigator)

    2000-01-01

    The physiological effects of various hyperpolarized helium and xenon MRI-compatible breathing protocols were investigated in 17 Sprague-Dawley rats, by continuous monitoring of blood oxygen saturation, heart rate, EKG, temperature and endotracheal pressure. The protocols included alternating breaths of pure noble gas and oxygen, continuous breaths of pure noble gas, breath-holds of pure noble gas for varying durations, and helium breath-holds preceded by two helium rinses. Alternate-breath protocols up to 128 breaths caused a decrease in oxygen saturation level of less than 5% for either helium or xenon, whereas 16 continuous-breaths caused a 31.5% +/- 2.3% decrease in oxygen saturation for helium and a 30.7% +/- 1. 3% decrease for xenon. Breath-hold protocols up to 25 s did not cause the oxygen saturation to fall below 90% for either of the noble gases. Oxygen saturation values below 90% are considered pathological. At 30 s of breath-hold, the blood oxygen saturation dropped precipitously to 82% +/- 0.6% for helium, and to 76.5% +/- 7. 4% for xenon. Breath-holds longer than 10 s preceded by pre-rinses caused oxygen saturation to drop below 90%. These findings demonstrate the need for standardized noble gas inhalation procedures that have been carefully tested, and for continuous physiological monitoring to ensure the safety of the subject. We find short breath-hold and alternate-breath protocols to be safe procedures for use in hyperpolarized noble gas MRI experiments. Copyright 2000 John Wiley & Sons, Ltd.

  7. Hyperpolarized 83Kr magnetic resonance imaging of alveolar degradation in a rat model of emphysema

    PubMed Central

    Lilburn, David M. L.; Lesbats, Clémentine; Six, Joseph S.; Dubuis, Eric; Yew-Booth, Liang; Shaw, Dominick E.; Belvisi, Maria G.; Birrell, Mark A.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2015-01-01

    Hyperpolarized 83Kr surface quadrupolar relaxation (SQUARE) generates MRI contrast that was previously shown to correlate with surface-to-volume ratios in porous model surface systems. The underlying physics of SQUARE contrast is conceptually different from any other current MRI methodology as the method uses the nuclear electric properties of the spin I = 9/2 isotope 83Kr. To explore the usage of this non-radioactive isotope for pulmonary pathophysiology, MRI SQUARE contrast was acquired in excised rat lungs obtained from an elastase-induced model of emphysema. A significant 83Kr T1 relaxation time increase in the SQUARE contrast was found in the elastase-treated lungs compared with the baseline data from control lungs. The SQUARE contrast suggests a reduction in pulmonary surface-to-volume ratio in the emphysema model that was validated by histology. The finding supports usage of 83Kr SQUARE as a new biomarker for surface-to-volume ratio changes in emphysema. PMID:25994296

  8. Quantification of regional early stage gas exchange changes using hyperpolarized {sup 129}Xe MRI in a rat model of radiation-induced lung injury

    SciTech Connect

    Doganay, Ozkan; Stirrat, Elaine; McKenzie, Charles; Schulte, Rolf F.; Santyr, Giles E.

    2016-05-15

    Purpose: To assess the feasibility of hyperpolarized (HP) {sup 129}Xe MRI for detection of early stage radiation-induced lung injury (RILI) in a rat model involving unilateral irradiation by assessing differences in gas exchange dynamics between irradiated and unirradiated lungs. Methods: The dynamics of gas exchange between alveolar air space and pulmonary tissue (PT), PT and red blood cells (RBCs) was measured using single-shot spiral iterative decomposition of water and fat with echo asymmetry and least-squares estimation images of the right and left lungs of two age-matched cohorts of Sprague Dawley rats. The first cohort (n = 5) received 18 Gy irradiation to the right lung using a {sup 60}Co source and the second cohort (n = 5) was not irradiated and served as the healthy control. Both groups were imaged two weeks following irradiation when radiation pneumonitis (RP) was expected to be present. The gas exchange data were fit to a theoretical gas exchange model to extract measurements of pulmonary tissue thickness (L{sub PT}) and relative blood volume (V{sub RBC}) from each of the right and left lungs of both cohorts. Following imaging, lung specimens were retrieved and percent tissue area (PTA) was assessed histologically to confirm RP and correlate with MRI measurements. Results: Statistically significant differences in L{sub PT} and V{sub RBC} were observed between the irradiated and non-irradiated cohorts. In particular, L{sub PT} of the right and left lungs was increased approximately 8.2% and 5.0% respectively in the irradiated cohort. Additionally, V{sub RBC} of the right and left lungs was decreased approximately 36.1% and 11.7% respectively for the irradiated cohort compared to the non-irradiated cohort. PTA measurements in both right and left lungs were increased in the irradiated group compared to the non-irradiated cohort for both the left (P < 0.05) and right lungs (P < 0.01) confirming the presence of RP. PTA measurements also correlated with the

  9. Obturator hernia - MRI image.

    PubMed

    Vitone, Louis; Joel, Abraham; Masters, Andrew; Lea, Simon

    2013-08-01

    Obturator hernia although considered a rare entity is the most frequently encountered pelvic floor hernia. Since the first published report in the 18th century, their unusual and unfamiliar clinical presentation still represents a diagnostic dilemma for the modern day clinician. A detailed history and clinical examination in our thin, elderly female patient who presented with intermittent small bowel obstruction and symptoms of right obturator nerve compression with a positive Howship-Romberg sign was crucial in establishing a diagnosis. Sophisticated radiologic modalities such as MRI as shown below in the case of our patient can reliably confirm the diagnosis of obturator hernia.

  10. Hyperpolarized 3He MR imaging of the lung: Effect of subject immobilization on the occurrence of ventilation defects

    PubMed Central

    Mata, Jaime; Altes, Talissa; Knake, Jeffrey; Mugler, John; Brookeman, James; de Lange, Eduard

    2008-01-01

    Purpose To investigate immobilization-induced ventilation defects when performing hyperpolarized 3He (H3He) MRI of the lung. Methods and Materials Twelve healthy subjects underwent MRI of the lungs following inhalation of H3He gas at three time points: 1) immediately after having been positioned supine on the MR scanner table, 2) at 45 minutes while remaining supine, 3) and immediately thereafter after having turned prone. All image sets were reviewed in random order by three independent, blinded readers who recorded number, location and size of H3He ventilation defects. Scores were averaged for each time point and comparisons were made to determine change in number, location and size of ventilation defects with time and positioning of the subject in the scanner. Results At baseline supine there were small numbers of defects in the dependent (posterior) and non-dependent (anterior) portions of the lung (p=0.625). At 45 minutes there was a significant increase in the mean number of ventilation defects/slice (VDS) for the dependent (p=0.005) and a decrease for the non-dependent lung portions (p=0.021). After subjects turned prone, mean VDS for posterior defects decreased significantly (p=0.011) while those for anterior defects increased (p=0.010). Most defects were less than 3 cm in diameter. Conclusion It was found that immobilization of the subject for an extended period of time led to increased number of H3He ventilation defects in the dependent portions of the lung. Therefore, after a subject is positioned in the scanner, H3He MR imaging should be performed quickly to avoid the occurrence of the immobilization-induced ventilation defects, and possible overestimation of disease. PMID:18206626

  11. In Vivo MR Imaging of Pulmonary Perfusion and Gas Exchange in Rats via Continuous Extracorporeal Infusion of Hyperpolarized 129Xe

    PubMed Central

    Cleveland, Zackary I.; Möller, Harald E.; Hedlund, Laurence W.; Nouls, John C.; Freeman, Matthew S.; Qi, Yi; Driehuys, Bastiaan

    2012-01-01

    Background Hyperpolarized (HP) 129Xe magnetic resonance imaging (MRI) permits high resolution, regional visualization of pulmonary ventilation. Additionally, its reasonably high solubility (>10%) and large chemical shift range (>200 ppm) in tissues allow HP 129Xe to serve as a regional probe of pulmonary perfusion and gas transport, when introduced directly into the vasculature. In earlier work, vascular delivery was accomplished in rats by first dissolving HP 129Xe in a biologically compatible carrier solution, injecting the solution into the vasculature, and then detecting HP 129Xe as it emerged into the alveolar airspaces. Although easily implemented, this approach was constrained by the tolerable injection volume and the duration of the HP 129Xe signal. Methods and Principal Findings Here, we overcome the volume and temporal constraints imposed by injection, by using hydrophobic, microporous, gas-exchange membranes to directly and continuously infuse 129Xe into the arterial blood of live rats with an extracorporeal (EC) circuit. The resulting gas-phase 129Xe signal is sufficient to generate diffusive gas exchange- and pulmonary perfusion-dependent, 3D MR images with a nominal resolution of 2×2×2 mm3. We also show that the 129Xe signal dynamics during EC infusion are well described by an analytical model that incorporates both mass transport into the blood and longitudinal relaxation. Conclusions Extracorporeal infusion of HP 129Xe enables rapid, 3D MR imaging of rat lungs and, when combined with ventilation imaging, will permit spatially resolved studies of the ventilation-perfusion ratio in small animals. Moreover, EC infusion should allow 129Xe to be delivered elsewhere in the body and make possible functional and molecular imaging approaches that are currently not feasible using inhaled HP 129Xe. PMID:22363613

  12. Magnetic Resonance Imaging (MRI) -- Head

    MedlinePlus

    ... provides detailed images of blood vessels in the brain—often without the need for contrast material. See the MRA page for more information. MRI can detect stroke at a very early stage by mapping the motion of water molecules in the tissue. ...

  13. Magnetic Resonance Imaging (MRI): Brain (For Parents)

    MedlinePlus

    ... to 2-Year-Old Magnetic Resonance Imaging (MRI): Brain KidsHealth > For Parents > Magnetic Resonance Imaging (MRI): Brain ... child may be given headphones to listen to music or earplugs to block the noise, and will ...

  14. Effects of corticosteroid treatment on airway inflammation, mechanics, and hyperpolarized 3He magnetic resonance imaging in an allergic mouse model

    PubMed Central

    Thomas, Abraham C.; Kaushik, S. Sivaram; Nouls, John; Potts, Erin N.; Slipetz, Deborah M.; Foster, W. Michael

    2012-01-01

    The purpose of this study was to assess the effects of corticosteroid therapy on a murine model of allergic asthma using hyperpolarized 3He magnetic resonance imaging (MRI) and respiratory mechanics measurements before, during, and after methacholine (MCh) challenge. Three groups of mice were prepared, consisting of ovalbumin sensitized/ovalbumin challenged (Ova/Ova, n = 5), Ova/Ova challenged but treated with the corticosteroid dexamethasone (Ova/Ova+Dex, n = 3), and ovalbumin-sensitized/saline-challenged (Ova/PBS, n = 4) control animals. All mice underwent baseline 3D 3He MRI, then received a MCh challenge while 10 2D 3He MR images were acquired for 2 min, followed by post-MCh 3D 3He MRI. Identically treated groups underwent respiratory mechanics evaluation (n = 4/group) and inflammatory cell counts (n = 4/group). Ova/Ova animals exhibited predominantly large whole lobar defects at baseline, with significantly higher ventilation defect percentage (VDP = 19 ± 4%) than Ova/PBS (+2 ± 1%, P = 0.01) animals. Such baseline defects were suppressed by dexamethasone (0%, P = 0.009). In the Ova/Ova group, MCh challenge increased VDP on both 2D (+30 ± 8%) and 3D MRI scans (+14 ± 2%). MCh-induced VDP changes were diminished in Ova/Ova+Dex animals on both 2D (+21 ± 9%, P = 0.63) and 3D scans (+7 ± 2%, P = 0.11) and also in Ova/PBS animals on 2D (+6 ± 3%, P = 0.07) and 3D (+4 ± 1%, P = 0.01) scans. Because MCh challenge caused near complete cessation of ventilation in four of five Ova/Ova animals, even as large airways remained patent, this implies that small airway (<188 μm) obstruction predominates in this model. This corresponds with respiratory mechanics observations that MCh challenge significantly increases elastance and tissue damping but only modestly affects Newtonian airway resistance. PMID:22241062

  15. Quantified pH imaging with hyperpolarized (13) C-bicarbonate.

    PubMed

    Scholz, David Johannes; Janich, Martin A; Köllisch, Ulrich; Schulte, Rolf F; Ardenkjaer-Larsen, Jan H; Frank, Annette; Haase, Axel; Schwaiger, Markus; Menzel, Marion I

    2015-06-01

    Because pH plays a crucial role in several diseases, it is desirable to measure pH in vivo noninvasively and in a spatially localized manner. Spatial maps of pH were quantified in vitro, with a focus on method-based errors, and applied in vivo. In vitro and in vivo (13) C mapping were performed for various flip angles for bicarbonate (BiC) and CO2 with spectral-spatial excitation and spiral readout in healthy Lewis rats in five slices. Acute subcutaneous sterile inflammation was induced with Concanavalin A in the right leg of Buffalo rats. pH and proton images were measured 2 h after induction. After optimizing the signal to noise ratio of the hyperpolarized (13) C-bicarbonate, error estimation of the spectral-spatial excited spectrum reveals that the method covers the biologically relevant pH range of 6 to 8 with low pH error (< 0.2). Quantification of pH maps shows negligible impact of the residual bicarbonate signal. pH maps reflect the induction of acute metabolic alkalosis. Inflamed, infected regions exhibit lower pH. Hyperpolarized (13) C-bicarbonate pH mapping was shown to be sensitive in the biologically relevant pH range. The mapping of pH was applied to healthy in vivo organs and interpreted within inflammation and acute metabolic alkalosis models. © 2014 Wiley Periodicals, Inc.

  16. Hyperpolarized [1-13C] glutamate: a metabolic imaging biomarker of IDH1 mutational status in glioma.

    PubMed

    Chaumeil, Myriam M; Larson, Peder E Z; Woods, Sarah M; Cai, Larry; Eriksson, Pia; Robinson, Aaron E; Lupo, Janine M; Vigneron, Daniel B; Nelson, Sarah J; Pieper, Russell O; Phillips, Joanna J; Ronen, Sabrina M

    2014-08-15

    Mutations of the isocitrate dehydrogenase 1 (IDH1) gene are among the most prevalent in low-grade glioma and secondary glioblastoma, represent an early pathogenic event, and are associated with epigenetically driven modulations of metabolism. Of particular interest is the recently uncovered relationship between the IDH1 mutation and decreased activity of the branched-chain amino acid transaminase 1 (BCAT1) enzyme. Noninvasive imaging methods that can assess BCAT1 activity could therefore improve detection of mutant IDH1 tumors and aid in developing and monitoring new targeted therapies. BCAT1 catalyzes the transamination of branched-chain amino acids while converting α-ketoglutarate (α-KG) to glutamate. Our goal was to use (13)C magnetic resonance spectroscopy to probe the conversion of hyperpolarized [1-(13)C] α-KG to hyperpolarized [1-(13)C] glutamate as a readout of BCAT1 activity. We investigated two isogenic glioblastoma lines that differed only in their IDH1 status and performed experiments in live cells and in vivo in rat orthotopic tumors. Following injection of hyperpolarized [1-(13)C] α-KG, hyperpolarized [1-(13)C] glutamate production was detected both in cells and in vivo, and the level of hyperpolarized [1-(13)C] glutamate was significantly lower in mutant IDH1 cells and tumors compared with their IDH1-wild-type counterparts. Importantly however, in our cells the observed drop in hyperpolarized [1-(13)C] glutamate was likely mediated not only by a drop in BCAT1 activity, but also by reductions in aspartate transaminase and glutamate dehydrogenase activities, suggesting additional metabolic reprogramming at least in our model. Hyperpolarized [1-(13)C] glutamate could thus inform on multiple mutant IDH1-associated metabolic events that mediate reduced glutamate production. ©2014 American Association for Cancer Research.

  17. Hyperpolarized [1-13C] glutamate: a metabolic imaging biomarker of IDH1 mutational status in glioma

    PubMed Central

    Chaumeil, Myriam M.; Larson, Peder E.Z.; Woods, Sarah M.; Cai, Larry; Eriksson, Pia; Robinson, Aaron E.; Lupo, Janine M.; Vigneron, Daniel B.; Nelson, Sarah J.; Pieper, Russell O.; Phillips, Joanna J.; Ronen, Sabrina M.

    2014-01-01

    Mutations of the isocitrate dehydrogenase 1 (IDH1) gene are among the most prevalent in low-grade glioma and secondary glioblastoma, represent an early pathogenic event, and are associated with epigenetically-driven modulations of metabolism. Of particular interest is the recently uncovered relationship between the IDH1 mutation and decreased activity of the branched-chain amino acid transaminase 1 (BCAT1) enzyme. Non-invasive imaging methods that can assess BCAT1 activity could therefore improve detection of mutant IDH1 tumors and aid in developing and monitoring new targeted therapies. BCAT1 catalyzes the transamination of branched-chain amino acids while converting α-ketoglutarate (α-KG) to glutamate. Our goal was to use 13C magnetic resonance spectroscopy to probe the conversion of hyperpolarized [1-13C] α-KG to hyperpolarized [1-13C] glutamate as a readout of BCAT1 activity. We investigated two isogenic glioblastoma lines that differed only in their IDH1 status, and performed experiments in live cells and in vivo in rat orthotopic tumors. Following injection of hyperpolarized [1-13C] α-KG, hyperpolarized [1-13C] glutamate production was detected both in cells and in vivo, and the level of hyperpolarized [1-13C] glutamate was significantly lower in mutant IDH1 cells and tumors compared to their IDH1-wild-type counterparts. Importantly however, in our cells the observed drop in hyperpolarized [1-13C] glutamate was likely mediated not only by a drop in BCAT1 activity, but also by reductions in aspartate transaminase and glutamate dehydrogenase activities, suggesting additional metabolic reprogramming at least in our model. Hyperpolarized [1-13C] glutamate could thus inform on multiple mutant IDH1-associated metabolic events that mediate reduced glutamate production. PMID:24876103

  18. Toward Biocompatible Nuclear Hyperpolarization Using Signal Amplification by Reversible Exchange: Quantitative in Situ Spectroscopy and High-Field Imaging

    PubMed Central

    2014-01-01

    Signal amplification by reversible exchange (SABRE) of a substrate and parahydrogen at a catalytic center promises to overcome the inherent insensitivity of magnetic resonance. In order to apply the new approach to biomedical applications, there is a need to develop experimental equipment, in situ quantification methods, and a biocompatible solvent. We present results detailing a low-field SABRE polarizer which provides well-controlled experimental conditions, defined spins manipulations, and which allows in situ detection of thermally polarized and hyperpolarized samples. We introduce a method for absolute quantification of hyperpolarization yield in situ by means of a thermally polarized reference. A maximum signal-to-noise ratio of ∼103 for 148 μmol of substance, a signal enhancement of 106 with respect to polarization transfer field of SABRE, or an absolute 1H-polarization level of ≈10–2 is achieved. In an important step toward biomedical application, we demonstrate 1H in situ NMR as well as 1H and 13C high-field MRI using hyperpolarized pyridine (d3) and 13C nicotinamide in pure and 11% ethanol in aqueous solution. Further increase of hyperpolarization yield, implications of in situ detection, and in vivo application are discussed. PMID:24397559

  19. Regional Mapping of Gas Uptake by Blood and Tissue in the Human Lung using Hyperpolarized Xenon-129 MRI

    PubMed Central

    Qing, Kun; Ruppert, Kai; Jiang, Yun; Mata, Jaime F.; Miller, G. Wilson; Shim, Y. Michael; Wang, Chengbo; Ruset, Iulian C.; Hersman, F. William; Altes, Talissa A.; Mugler, John P.

    2013-01-01

    Purpose To develop a breath-hold acquisition for regional mapping of ventilation and the fractions of hyperpolarized xenon-129 (Xe129) dissolved in tissue (lung parenchyma and plasma) and red blood cells (RBCs), and to perform an exploratory study to characterize data obtained in human subjects. Materials and Methods A three-dimensional, multi-echo, radial-trajectory pulse sequence was developed to obtain ventilation (gaseous Xe129), tissue and RBC images in healthy subjects, smokers and asthmatics. Signal ratios (total dissolved Xe129 to gas, tissue-to-gas, RBC-to-gas and RBC-to-tissue) were calculated from the images for quantitative comparison. Results Healthy subjects demonstrated generally uniform values within coronal slices, and a gradient in values along the anterior-to-posterior direction. In contrast, images and associated ratio maps in smokers and asthmatics were generally heterogeneous and exhibited values mostly lower than those in healthy subjects. Whole-lung values of total dissolved Xe129 to gas, tissue-to-gas, and RBC-to-gas ratios in healthy subjects were significantly larger than those in diseased subjects. Conclusion Regional maps of tissue and RBC fractions of dissolved Xe129 were obtained from a short breath-hold acquisition, well tolerated by healthy volunteers and subjects with obstructive lung disease. Marked differences were observed in spatial distributions and overall amounts of Xe129 dissolved in tissue and RBCs among healthy subjects, smokers and asthmatics. PMID:23681559

  20. High Resolution 13C MRI With Hyperpolarized Urea: In Vivo T2 Mapping and 15N Labeling Effects

    PubMed Central

    Reed, Galen D.; von Morze, Cornelius; Bok, Robert; Koelsch, Bertram L.; Van Criekinge, Mark; Smith, Kenneth J.; Shang, Hong; Larson, Peder E. Z.; Kurhanewicz, John; Vigneron, Daniel B.

    2014-01-01

    13C steady state free precession (SSFP) magnetic resonance imaging and effective spin-spin relaxation time (T2) mapping were performed using hyperpolarized [13C] urea and [13C, 15N2] urea injected intravenously in rats. 15N labeling gave large T2 increases both in solution and in vivo due to the elimination of a strong scalar relaxation pathway. The T2 increase was pronounced in the kidney, with [13C, 15N2] urea giving T2 values of 6.3±1.3 s in the cortex and medulla, and 11±2 s in the renal pelvis. The measured T2 in the aorta was 1.3±0.3 s. [13C] urea showed shortened T2 values in the kidney of 0.23±0.03 s compared to 0.28±0.03 s measured in the aorta. The enhanced T2 of [13C, 15N2] urea was utilized to generate large signal enhancement by SSFP acquisitions with flip angles approaching the fully refocused regime. Projection images at 0.94 mm in-plane resolution were acquired with both urea isotopes, with [13C, 15N2] urea giving a greater than four-fold increase in signal-to-noise ratio [13C] over urea. PMID:24235273

  1. BI-07HYPERPOLARIZED [1-13C] GLUTAMATE: A METABOLIC IMAGING BIOMARKER OF IDH1 MUTATIONAL STATUS IN GLIOMA

    PubMed Central

    Chaumeil, Myriam; Larson, Peder; Woods, Sarah; Cai, Larry; Eriksson, Pia; Robinson, Aaron; Lupo, Janine; Vigneron, Daniel; Nelson, Sarah; Pieper, Russell; Phillips, Joanna; Ronen, Sabrina

    2014-01-01

    Mutations of the isocitrate dehydrogenase 1 (IDH1) gene are among the most prevalent in low-grade glioma and secondary glioblastoma, represent an early pathogenic event and are being considered a promising therapeutic target. Consequently, non-invasive imaging methods are needed to monitor IDH1 status. Amongst these, we previously demonstrated the use of 13C MR spectroscopic imaging of hyperpolarized [1-13C] α-ketoglutarate (α-KG) to non-invasively assess IDH1 status through the detection of the conversion of hyperpolarized α-ketoglutarate to 2-hydroxyglutarate (2-HG) catalyzed by mutant IDH1. Importantly, in addition to its oncogenic role, IDH1 mutation is also associated with global modulations in metabolism. Interestingly, a study recently uncovered a relationship between presence of IDH1 mutation and decreased activity of the branched chained amino acid transaminase 1 (BCAT1) enzyme, which transaminates amino acids while converting α-KG to glutamate. Given this new study, we decided to expand on our previous findings and investigated the potential of hyperpolarized α-KG as an imaging probe to monitor BCAT1-driven α-KG-to-glutamate conversion and its modulation in the presence of IDH1 mutation. We investigated two isogenic glioblastoma lines that differed only in their IDH1 status, and performed experiments in live cells and in vivo in rat orthotopic tumors. Following injection of hyperpolarized α-KG, hyperpolarized glutamate production was detected both in cells and in vivo, and the level of hyperpolarized glutamate was significantly lower in mutant IDH1 cells and tumors compared to their IDH1-wild-type counterparts. Importantly however, the observed drop in hyperpolarized glutamate was likely mediated not only by a drop in BCAT1 activity, but also by reductions in aspartate transaminase and glutamate dehydrogenase activities, suggesting additional metabolic reprogramming at least in our model. Hyperpolarized glutamate could thus inform on multiple

  2. Switchable resonant hyperpolarization transfer to 29Si spins in natural silicon

    NASA Astrophysics Data System (ADS)

    Dluhy, Phillip; Salvail, Jeff Z.; Saeedi, Kamyar; Thewalt, Mike L. W.; Simmons, Stephanie

    2015-05-01

    Silicon nano- and microparticles containing polarized 29Si spins are promising inexpensive and biocompatible medical imaging agents, particularly for magnetic resonance imaging (MRI). Maximizing out-of-equilibrium polarization (i.e., hyperpolarization) of the 29Si nuclear spins as efficiently as possible is critical for such an application. Here we identify and exploit a frequency-matched resonant transfer process between easily hyperpolarized bulk 31P and otherwise insensitive 29Si nuclear spins in natural silicon, boosting the 29Si signal to over 200 times its thermal equilibrium signal. This technique could be used in tandem with microwave-based hyperpolarization schemes for even higher efficiencies. Lastly, this hyperpolarization buildup process does not necessarily introduce an additional source of decoherence; after hyperpolarization the resonant transfer process can be switched off to recover the ultralong lifetimes of 29Si spins for in vivo imaging.

  3. SU-E-QI-11: Measurement of Renal Pyruvate-To-Lactate Exchange with Hyperpolarized 13C MRI

    SciTech Connect

    Adamson, E; Johnson, K; Fain, S; Gordon, J

    2014-06-15

    Purpose: Previous work [1] modeling the metabolic flux between hyperpolarized [1-13C]pyruvate and [1-13C]lactate in magnetic resonance spectroscopic imaging (MRSI) experiments failed to account for vascular signal artifacts. Here, we investigate a method to minimize the vascular signal and its impact on the fidelity of metabolic modeling. Methods: MRSI was simulated for renal metabolism in MATLAB both with and without bipolar gradients. The resulting data were fit to a two-site exchange model [1], and the effects of vascular partial volume artifacts on kinetic modeling were assessed. Bipolar gradients were then incorporated into a gradient echo sequence to validate the simulations experimentally. The degree of diffusion weighting (b = 32 s/mm{sup 2}) was determined empirically from 1H imaging of murine renal vascular signal. The method was then tested in vivo using MRSI with bipolar gradients following injection of hyperpolarized [1-{sup 13}C]pyruvate (∼80 mM at 20% polarization). Results: In simulations, vascular signal contaminated the renal metabolic signal at resolutions as high as 2 × 2 mm{sup 2} due to partial volume effects. The apparent exchange rate from pyruvate to lactate (k{sub p}) was underestimated in the presence of these artifacts due to contaminating pyruvate signal. Incorporation of bipolar gradients suppressed vascular signal and improved the accuracy of kp estimation. Experimentally, the in vivo results supported the ability of bipolar gradients to suppress vascular signal. The in vivo exchange rate increased, as predicted in simulations, from k{sub p} = 0.012 s-{sup 1} to k{sub p} = 0.020-{sup 1} after vascular signal suppression. Conclusion: We have demonstrated the limited accuracy of the two-site exchange model in the presence of vascular partial volume artifacts. The addition of bipolar gradients suppressed vascular signal and improved model accuracy in simulations. Bipolar gradients largely affected kp estimation in vivo. Currently

  4. Fast Volumetric Spatial-Spectral MR Imaging of Hyperpolarized 13C-Labeled Compounds using Multiple Echo 3D bSSFP

    PubMed Central

    Perman, William H.; Bhattacharya, Pratip; Leupold, Jochen; Lin, Alexander P.; Harris, Kent C.; Norton, Valerie A.; Hovener, Jan B.; Ross, Brian D.

    2010-01-01

    PURPOSE The goal of this work was to develop a fast 3D chemical shift imaging technique for the non-invasive measurement of hyperpolarized 13C-labeled substrates and metabolic products at low concentration. MATERIALS AND METHODS Multiple echo 3D balanced steady state MR imaging (ME-3DbSSFP) was performed in vitro on a syringe containing hyperpolarized [1,3,3-2H3; 1-13C]2-hydroxyethylpropionate (HEP) adjacent to a 13C-enriched acetate phantom, and in vivo on a rat before and after IV injection of hyperpolarized HEP at 1.5 T. Chemical shift images of the hyperpolarized HEP were derived from the multiple echo data by Fourier transformation along the echoes on a voxel by voxel basis for each slice of the 3D data set. RESULTS ME-3DbSSFP imaging was able to provide chemical shift images of hyperpolarized HEP in vivo, and in a rat with isotropic 7 mm spatial resolution, 93 Hz spectral resolution and 16 second temporal resolution for a period greater than 45 seconds. CONCLUSION Multiple echo 3D bSSFP imaging can provide chemical shift images of hyperpolarized 13C-labeled compounds in vivo with relatively high spatial resolution and moderate spectral resolution. The increased signal-to-noise ratio (SNR) of this 3D technique will enable the detection of hyperpolarized 13C-labeled metabolites at lower concentrations as compared to a 2D technique. PMID:20171034

  5. Magnetic Resonance Imaging (MRI) (For Teens)

    MedlinePlus

    ... away. A radiologist (a doctor trained to understand MRI scans) needs to look at the images. The radiologist ... TOPIC Medical Tests: What to Expect (Video) CAT Scan (Video) MRI (Video) Questions to Ask Your Doctor Taking Charge ...

  6. Hyperpolarized (129) Xe imaging of the rat lung using spiral IDEAL.

    PubMed

    Doganay, Ozkan; Wade, Trevor; Hegarty, Elaine; McKenzie, Charles; Schulte, Rolf F; Santyr, Giles E

    2016-08-01

    To implement and optimize a single-shot spiral encoding strategy for rapid 2D IDEAL projection imaging of hyperpolarized (Hp) (129) Xe in the gas phase, and in the pulmonary tissue (PT) and red blood cells (RBCs) compartments of the rat lung, respectively. A theoretical and experimental point spread function analysis was used to optimize the spiral k-space read-out time in a phantom. Hp (129) Xe IDEAL images from five healthy rats were used to: (i) optimize flip angles by a Bloch equation analysis using measured kinetics of gas exchange and (ii) investigate the feasibility of the approach to characterize the exchange of Hp (129) Xe. A read-out time equal to approximately 1.8 × T2* was found to provide the best trade-off between spatial resolution and signal-to-noise ratio (SNR). Spiral IDEAL approaches that use the entire dissolved phase magnetization should give an SNR improvement of a factor of approximately three compared with Cartesian approaches with similar spatial resolution. The IDEAL strategy allowed imaging of gas, PT, and RBC compartments with sufficient SNR and temporal resolution to permit regional gas exchange measurements in healthy rats. Single-shot spiral IDEAL imaging of gas, PT and RBC compartments and gas exchange is feasible in rat lung using Hp (129) Xe. Magn Reson Med 76:566-576, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  7. Imaging oxygen metabolism with hyperpolarized magnetic resonance: a novel approach for the examination of cardiac and renal function

    PubMed Central

    Schroeder, Marie

    2016-01-01

    Every tissue in the body critically depends on meeting its energetic demands with sufficient oxygen supply. Oxygen supply/demand imbalances underlie the diseases that inflict the greatest socio-economic burden globally. The purpose of this review is to examine how hyperpolarized contrast media, used in combination with MR data acquisition methods, may advance our ability to assess oxygen metabolism non-invasively and thus improve management of clinical disease. We first introduce the concept of hyperpolarization and how hyperpolarized contrast media have been practically implemented to achieve translational and clinical research. We will then analyse how incorporating hyperpolarized contrast media could enable realization of unmet technical needs in clinical practice. We will focus on imaging cardiac and renal oxygen metabolism, as both organs have unique physiological demands to satisfy their requirements for tissue oxygenation, their dysfunction plays a fundamental role in society’s most prevalent diseases, and each organ presents unique imaging challenges. It is our aim that this review attracts a multi-disciplinary audience and sparks collaborations that utilize an exciting, emergent technology to advance our ability to treat patients adversely affected by an oxygen supply/demand mismatch. PMID:27899435

  8. Imaging oxygen metabolism with hyperpolarized magnetic resonance: a novel approach for the examination of cardiac and renal function.

    PubMed

    Schroeder, Marie; Laustsen, Christoffer

    2017-02-28

    Every tissue in the body critically depends on meeting its energetic demands with sufficient oxygen supply. Oxygen supply/demand imbalances underlie the diseases that inflict the greatest socio-economic burden globally. The purpose of this review is to examine how hyperpolarized contrast media, used in combination with MR data acquisition methods, may advance our ability to assess oxygen metabolism non-invasively and thus improve management of clinical disease. We first introduce the concept of hyperpolarization and how hyperpolarized contrast media have been practically implemented to achieve translational and clinical research. We will then analyse how incorporating hyperpolarized contrast media could enable realization of unmet technical needs in clinical practice. We will focus on imaging cardiac and renal oxygen metabolism, as both organs have unique physiological demands to satisfy their requirements for tissue oxygenation, their dysfunction plays a fundamental role in society's most prevalent diseases, and each organ presents unique imaging challenges. It is our aim that this review attracts a multi-disciplinary audience and sparks collaborations that utilize an exciting, emergent technology to advance our ability to treat patients adversely affected by an oxygen supply/demand mismatch. © 2017 The Author(s).

  9. Hyperpolarized [1,4-13C]-Diethylsuccinate: A Potential DNP Substrate for In Vivo Metabolic Imaging

    PubMed Central

    Billingsley, Kelvin L.; Josan, Sonal; Park, Jae Mo; Tee, Sui Seng; Spielman-Sun, Eleanor; Hurd, Ralph; Mayer, Dirk; Spielman, Daniel

    2014-01-01

    The tricarboxylic acid cycle (TCA) performs an essential role in the regulation of energy and metabolism, and deficiencies in this pathway are commonly correlated with various diseases. However, the development of non-invasive techniques for the assessment of the cycle in vivo has remained challenging. In this work, the applicability of a novel imaging agent, [1,4-13C]-diethylsuccinate, for hyperpolarized 13C metabolic imaging of the TCA cycle was explored. In vivo spectroscopic studies were conducted in conjunction with in vitro analyses to determine the metabolic fate of the imaging agent. Contrary to previous reports (Zacharias, N. M. et. al. J. Am. Chem. Soc. 2012, 134, 934-943), [13C]-labeled diethylsuccinate was primarily metabolized to succinate-derived products not originating from TCA cycle metabolism. These results illustrate potential issues of utilizing dialkyl ester analogs of TCA cycle intermediates as molecular probes for hyperpolarized 13C metabolic imaging. PMID:24421249

  10. Hyperpolarized 3He functional magnetic resonance imaging of bronchoscopic airway bypass in chronic obstructive pulmonary disease

    PubMed Central

    Mathew, Lindsay; Kirby, Miranda; Farquhar, Donald; Licskai, Christopher; Santyr, Giles; Etemad-Rezai, Roya; Parraga, Grace; McCormack, David G

    2012-01-01

    A 73-year-old exsmoker with Global initiative for chronic Obstructive Lung Disease stage III chronic obstructive pulmonary disease underwent airway bypass (AB) as part of the Exhale Airway Stents for Emphysema (EASE) trial, and was the only EASE subject to undergo hyperpolarized 3He magnetic resonance imaging for evaluation of lung function pre- and post-AB. 3He magnetic resonance imaging was acquired twice previously (32 and eight months pre-AB) and twice post-AB (six and 12 months post-AB). Six months post-AB, his increase in forced vital capacity was <12% predicted, and he was classified as an AB nonresponder. However, post-AB, he also demonstrated improvements in quality of life scores, 6 min walk distance and improvements in 3He gas distribution in the regions of stent placement. Given the complex relationship between well-established pulmonary function and quality of life measurements, the present case provides evidence of the value-added information functional imaging may provide in chronic obstructive pulmonary disease interventional studies. PMID:22332133

  11. Hyperpolarized 3He functional magnetic resonance imaging of bronchoscopic airway bypass in chronic obstructive pulmonary disease.

    PubMed

    Mathew, Lindsay; Kirby, Miranda; Farquhar, Donald; Licskai, Christopher; Santyr, Giles; Etemad-Rezai, Roya; Parraga, Grace; McCormack, David G

    2012-01-01

    A 73-year-old exsmoker with Global initiative for chronic Obstructive Lung Disease stage III chronic obstructive pulmonary disease underwent airway bypass (AB) as part of the Exhale Airway Stents for Emphysema (EASE) trial, and was the only EASE subject to undergo hyperpolarized 3He magnetic resonance imaging for evaluation of lung function pre- and post-AB. 3He magnetic resonance imaging was acquired twice previously (32 and eight months pre-AB) and twice post-AB (six and 12 months post-AB). Six months post-AB, his increase in forced vital capacity was <12% predicted, and he was classified as an AB nonresponder. However, post-AB, he also demonstrated improvements in quality of life scores, 6 min walk distance and improvements in 3He gas distribution in the regions of stent placement. Given the complex relationship between well-established pulmonary function and quality of life measurements, the present case provides evidence of the value-added information functional imaging may provide in chronic obstructive pulmonary disease interventional studies.

  12. Fast volumetric imaging of ethanol metabolism in rat liver with hyperpolarized [1-13C]-pyruvate

    PubMed Central

    Josan, Sonal; Spielman, Daniel; Yen, Yi-Fen; Hurd, Ralph; Pfefferbaum, Adolf; Mayer, Dirk

    2012-01-01

    Rapid, volumetric imaging of hyperpolarized 13C compounds allows the real time measurement of metabolic activity and can be useful in distinguishing between normal and diseased tissues. This work extends a fast 2D under-sampled spiral magnetic resonance spectroscopic imaging (MRSI) sequence to provide volumetric coverage, acquiring a 16×16×12 matrix with a nominal 5 mm isotropic resolution in 4.5 s. The rapid acquisition enables a high temporal resolution for dynamic imaging. This dynamic 3D MRSI method was used to investigate hyperpolarized [1-13C]-pyruvate metabolism modulated by the administration of ethanol in rat liver. A significant increase in the pyruvate to lactate conversion was observed in the liver due to the greater availability of NADH from ethanol metabolism. PMID:22331837

  13. Magnetic Resonance Imaging (MRI) - Spine

    MedlinePlus

    ... does not completely surround you. Some newer MRI machines have a larger diameter bore which can be ... size patients or patients with claustrophobia. Other MRI machines are open on the sides (open MRI). Open ...

  14. Posture-Dependent Human 3He Lung Imaging in an Open Access MRI System: Initial Results

    PubMed Central

    Tsai, L. L.; Mair, R. W.; Li, C.-H.; Rosen, M. S.; Patz, S.; Walsworth, R. L.

    2008-01-01

    Rationale and Objectives The human lung and its functions are extremely sensitive to orientation and posture, and debate continues as to the role of gravity and the surrounding anatomy in determining lung function and heterogeneity of perfusion and ventilation. However, study of these effects is difficult. The conventional high-field magnets used for most hyperpolarized 3He MRI of the human lung, and most other common radiological imaging modalities including PET and CT, restrict subjects to lying horizontally, minimizing most gravitational effects. Materials and Methods In this paper, we briefly review the motivation for posture-dependent studies of human lung function, and present initial imaging results of human lungs in the supine and vertical body orientations using inhaled hyperpolarized 3He gas and an open-access MRI instrument. The open geometry of this MRI system features a “walk-in” capability that permits subjects to be imaged in vertical and horizontal positions, and potentially allows for complete rotation of the orientation of the imaging subject in a two-dimensional plane. Results Initial results include two-dimensional lung images acquired with ~ 4 × 8 mm in-plane resolution and three-dimensional images with ~ 2 cm slice thickness. Conclusion Effects of posture variation are observed, including posture-related effects of the diaphragm and distension of the lungs while vertical. PMID:18486009

  15. Discovery of Hyperpolarized Molecular Imaging Biomarkers in a Novel Prostate Tissue Slice Culture Model

    DTIC Science & Technology

    2011-06-01

    Ronen’s report) above the rotor and pushing the tissues out the sample tube into the rotor using a small plastic rod. Following the insertion of each...for pathology and LDH enzyme activity. Two pathologists used a five-point scale (1= excellent, 5 = poor) to quantify the quality of the pathology of...AUC), time to maximum hyperpolarized lactate, maximum hyperpolarized lactate peak, and LDH activity were statistically compared between benign and

  16. Discovery of Hyperpolarized Molecular Imaging Biomarkers in a Novel Prostate Tissue Slice Culture Model

    DTIC Science & Technology

    2013-06-01

    compatible bioreactor and that hyperpolarized 13C spectroscopy could be employed to study real-time metabolism of normal and malignant tissues. The...function of prostate tissue slice cultures (TCSs) in an nuclear magnetic resonance (NMR)-compatible, 3-dimensional tissue culture bioreactor , (2) to use...the TSC/NMR bioreactor model to identify hyperpolarized metabolic biomarkers of prostate cancer presence and aggressiveness, and (3) to use the TSC

  17. Discovery of Hyperpolarized Molecular Imaging Biomarkers in a Novel Prostate Tissue Slice Culture Model

    DTIC Science & Technology

    2013-06-01

    compatible bioreactor optimized in year 1 to identify hyperpolarized metabolic biomarkers of prostate cancer presence and aggressiveness. To...accomplish this goal my group finished the engineering of a 5 mm bioreactor and acquired hyperpolarized [1-13C]pyruvate data indicating that similar signal...to noise and quality data can be achieved with 4 to 5 prostate tissue slices in the 5 mm bioreactor as was acquired from 30-40 tissue slices in the

  18. Effects of corticosteroid treatment on airway inflammation, mechanics, and hyperpolarized ³He magnetic resonance imaging in an allergic mouse model.

    PubMed

    Thomas, Abraham C; Kaushik, S Sivaram; Nouls, John; Potts, Erin N; Slipetz, Deborah M; Foster, W Michael; Driehuys, Bastiaan

    2012-05-01

    The purpose of this study was to assess the effects of corticosteroid therapy on a murine model of allergic asthma using hyperpolarized (3)He magnetic resonance imaging (MRI) and respiratory mechanics measurements before, during, and after methacholine (MCh) challenge. Three groups of mice were prepared, consisting of ovalbumin sensitized/ovalbumin challenged (Ova/Ova, n = 5), Ova/Ova challenged but treated with the corticosteroid dexamethasone (Ova/Ova+Dex, n = 3), and ovalbumin-sensitized/saline-challenged (Ova/PBS, n = 4) control animals. All mice underwent baseline 3D (3)He MRI, then received a MCh challenge while 10 2D (3)He MR images were acquired for 2 min, followed by post-MCh 3D (3)He MRI. Identically treated groups underwent respiratory mechanics evaluation (n = 4/group) and inflammatory cell counts (n = 4/group). Ova/Ova animals exhibited predominantly large whole lobar defects at baseline, with significantly higher ventilation defect percentage (VDP = 19 ± 4%) than Ova/PBS (+2 ± 1%, P = 0.01) animals. Such baseline defects were suppressed by dexamethasone (0%, P = 0.009). In the Ova/Ova group, MCh challenge increased VDP on both 2D (+30 ± 8%) and 3D MRI scans (+14 ± 2%). MCh-induced VDP changes were diminished in Ova/Ova+Dex animals on both 2D (+21 ± 9%, P = 0.63) and 3D scans (+7 ± 2%, P = 0.11) and also in Ova/PBS animals on 2D (+6 ± 3%, P = 0.07) and 3D (+4 ± 1%, P = 0.01) scans. Because MCh challenge caused near complete cessation of ventilation in four of five Ova/Ova animals, even as large airways remained patent, this implies that small airway (<188 μm) obstruction predominates in this model. This corresponds with respiratory mechanics observations that MCh challenge significantly increases elastance and tissue damping but only modestly affects Newtonian airway resistance.

  19. Top-Level System Designs for Hybrid Low-Field MRI-CT with Potential of Pulmonary Imaging

    NASA Astrophysics Data System (ADS)

    Yelleswarapu, Venkata R.; Liu, Fenglin; Cong, Wenxiang; Wang, Ge

    2014-11-01

    We previously discussed "omni-tomography", but intrinsic conflicts between the magnetic fields of the MRI and the X-ray tube within the CT are inherent. We propose that by using low-field MRI with a negligible fringe field at the site of the CT source, it is possible to create a CT-MRI system with minimal interference. Low field MRI is particularly useful for lung imaging, where hyperpolarized gas can enhance the signal. Three major designs were considered and simulated, with modifications in coil design and axis allowing for further variation. The first uses Halbach arrays to minimize magnetic fields outside, the second uses solenoids pairs with active shielding, and the third uses a rotating compact MRI-CT. Each system is low field, which may allow the implementation of a standard rotating CT. Both structural and functional information can be acquired simultaneously for a true hybrid image with matching temporal and spatial image acquisition.

  20. Accelerated 3D echo-planar imaging with compressed sensing for time-resolved hyperpolarized (13) C studies.

    PubMed

    Geraghty, Benjamin J; Lau, Justin Y C; Chen, Albert P; Cunningham, Charles H

    2017-02-01

    To enable large field-of-view, time-resolved volumetric coverage in hyperpolarized (13) C metabolic imaging by implementing a novel data acquisition and image reconstruction method based on the compressed sensing framework. A spectral-spatial pulse for single-resonance excitation followed by a symmetric echo-planar imaging (EPI) readout was implemented for encoding a 72 × 18 cm(2) field of view at 5 × 5 mm(2) resolution. Random undersampling was achieved with blipped z-gradients during the ramp portion of the echo-planar imaging readout. The sequence and reconstruction were tested with phantom studies and consecutive in vivo hyperpolarized (13) C scans in rats. Retrospectively and prospectively undersampled data were compared on the basis of structural similarity in the reconstructed images and the quantification of the lactate-to-pyruvate ratio in rat kidneys. No artifacts or loss of resolution are evident in the compressed sensing reconstructed images acquired with the proposed sequence. Structural similarity analysis indicate that compressed sensing reconstructions can accurately recover spatial features in the metabolic images evaluated. A novel z-blip acquisition sequence for compressed sensing accelerated hyperpolarized (13) C 3D echo-planar imaging was developed and demonstrated. The close agreement in lactate-to-pyruvate ratios from both retrospectively and prospectively undersampled data from rats shows that metabolic information is preserved with acceleration factors up to 3-fold with the developed method. Magn Reson Med 77:538-546, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  1. Simultaneous imaging of tumor oxygenation and microvascular permeability using Overhauser enhanced MRI

    PubMed Central

    Matsumoto, Shingo; Yasui, Hironobu; Batra, Sonny; Kinoshita, Yuichi; Bernardo, Marcelino; Munasinghe, Jeeva P.; Utsumi, Hideo; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Mitchell, James B.; Krishna, Murali C.

    2009-01-01

    Architectural and functional abnormalities of blood vessels are a common feature in tumors. A consequence of increased vascular permeability and concomitant aberrant blood flow is poor delivery of oxygen and drugs, which is associated with treatment resistance. In the present study, we describe a strategy to simultaneously visualize tissue oxygen concentration and microvascular permeability by using a hyperpolarized 1H-MRI, known as Overhauser enhanced MRI (OMRI), and an oxygen-sensitive contrast agent OX63. Substantial MRI signal enhancement was induced by dynamic nuclear polarization (DNP). The DNP achieved up to a 7,000% increase in MRI signal at an OX63 concentration of 1.5 mM compared with that under thermal equilibrium state. The extent of hyperpolarization is influenced mainly by the local concentration of OX63 and inversely by the tissue oxygen level. By collecting dynamic OMRI images at different hyperpolarization levels, local oxygen concentration and microvascular permeability of OX63 can be simultaneously determined. Application of this modality to murine tumors revealed that tumor regions with high vascular permeability were spatio-temporally coincident with hypoxia. Quantitative analysis of image data from individual animals showed an inverse correlation between tumor vascular leakage and median oxygen concentration. Immunohistochemical analyses of tumor tissues obtained from the same animals after OMRI experiments demonstrated that lack of integrity in tumor blood vessels was associated with increased tumor microvascular permeability. This dual imaging technique may be useful for the longitudinal assessment of changes in tumor vascular function and oxygenation in response to chemotherapy, radiotherapy, or antiangiogenic treatment. PMID:19815528

  2. A three-coil RF probe-head at 2.35 T: Potential applications to the (23)Na and to the hyperpolarized (129)Xe MRI in small animals.

    PubMed

    Asfour, Aktham

    2010-01-01

    We present in this paper a dedicated home-built RF probe-head for the MRI of rat brain at 2.35 T. This probe consists of an association of three coils: a double-tuned birdcage coil, which could be used for both transmitting and receiving, and a single-tuned surface coil that is used for the only receiving. This single-tuned coil is actively decoupled from the double-tuned volume coil. The active decoupling is based on the pole insertion technique using PIN diodes circuitry. This development was initially motivated by its potential and future application to the brain perfusion measurements by the MRI of hyperpolarized xenon-129 (HP (129)Xe). However, one of underlying ideas behind this work is to proceed well beyond this specific application. Particularly, the developed coil could also be dedicated for the sodium-23 ((23)Na) MRI in the rat brain. Indeed we tried to make the design versatile, simple and easy to replicate by other research groups, with a low cost, minimum development time and accepted performances. We believe that this design could by useful for groups who consider building own hardware. This is why we describe in some details the practical aspects of the workbench design as well as the coil characterization. For simplicity reasons, the first results of developed prototype were obtained at 100 MHz and 26.4 MHz (proton and sodium-23 frequencies at 2.35 T). MR images of phantoms were realized. In-vivo (1)H images and (23)Na spectra of the rat brain were also obtained. Future validation would concern the MRI of HP (129)Xe.

  3. Quantitative in vivo assessment of lung microstructure at the alveolar level with hyperpolarized 3He diffusion MRI

    NASA Astrophysics Data System (ADS)

    Yablonskiy, Dmitriy A.; Sukstanskii, Alexander L.; Leawoods, Jason C.; Gierada, David S.; Bretthorst, G. Larry; Lefrak, Stephen S.; Cooper, Joel D.; Conradi, Mark S.

    2002-03-01

    The study of lung emphysema dates back to the beginning of the 17th century. Nevertheless, a number of important questions remain unanswered because a quantitative localized characterization of emphysema requires knowledge of lung structure at the alveolar level in the intact living lung. This information is not available from traditional imaging modalities and pulmonary function tests. Herein, we report the first in vivo measurements of lung geometrical parameters at the alveolar level obtained with 3He diffusion MRI in healthy human subjects and patients with severe emphysema. We also provide the first experimental data demonstrating that 3He gas diffusivity in the acinus of human lung is highly anisotropic. A theory of anisotropic diffusion is presented. Our results clearly demonstrate substantial differences between healthy and emphysematous lung at the acinar level and may provide new insights into emphysema progression. The technique offers promise as a clinical tool for early diagnosis of emphysema.

  4. Open magnetic resonance imaging (MRI) scanners.

    PubMed

    Hailey, D

    2006-11-01

    (1) In most MRI scanners, the patient examination table fits inside a long cylindrical tube. Large patients cannot be accommodated, and some persons experience claustrophobic reactions. Open MRI systems, in which the patient is placed between two plates, overcome these disadvantages. (2) Open MRI scanners are widely used in health care. High-field closed MRI systems are preferred for many examinations. (3) Early versions of open MRI scanners had low magnetic field strength, gave poorer image quality than most closed systems, and required longer examination times. Newer open scanners include machines with higher magnetic field strengths and improved image quality. (4) Closed high magnetic field scanners with short magnets and wide bore tubes offer improved comfort to patients, and may be an alternative to open scanners. (5) There is interest in using open systems for intra-operative and image-guided interventions.

  5. [Gatrointestinal imaging with multidetector CT and MRI].

    PubMed

    Lorusso, Filomenamila; Fonio, Paolo; Scardapane, Arnaldo; Giganti, Melchiore; Rubini, Giuseppe; Ferrante, Annunziata; Stabile Ianora, Amato Antonio

    2012-11-01

    Computed tomography (CT) and magnetic resonance imaging (MRI) are important diagnostic tools for evaluating gastrointestinal disorders. A rigorous examination protocol is needed to achieve the best results. This paper describes the technical issues of CT and MRI for the study of gastrointestinal tracts (esophagus, stomach, small and large bowel).

  6. NMR Hyperpolarization Techniques for Biomedicine

    PubMed Central

    Nikolaou, Panayiotis; Goodson, Boyd M.

    2015-01-01

    Recent developments in NMR hyperpolarization have enabled a wide array of new in vivo molecular imaging modalities—ranging from functional imaging of the lungs to metabolic imaging of cancer. This Concept article explores selected advances in methods for the preparation and use of hyperpolarized contrast agents, many of which are already at or near the phase of their clinical validation in patients. PMID:25470566

  7. Functional MRI using regularized parallel imaging acquisition.

    PubMed

    Lin, Fa-Hsuan; Huang, Teng-Yi; Chen, Nan-Kuei; Wang, Fu-Nien; Stufflebeam, Steven M; Belliveau, John W; Wald, Lawrence L; Kwong, Kenneth K

    2005-08-01

    Parallel MRI techniques reconstruct full-FOV images from undersampled k-space data by using the uncorrelated information from RF array coil elements. One disadvantage of parallel MRI is that the image signal-to-noise ratio (SNR) is degraded because of the reduced data samples and the spatially correlated nature of multiple RF receivers. Regularization has been proposed to mitigate the SNR loss originating due to the latter reason. Since it is necessary to utilize static prior to regularization, the dynamic contrast-to-noise ratio (CNR) in parallel MRI will be affected. In this paper we investigate the CNR of regularized sensitivity encoding (SENSE) acquisitions. We propose to implement regularized parallel MRI acquisitions in functional MRI (fMRI) experiments by incorporating the prior from combined segmented echo-planar imaging (EPI) acquisition into SENSE reconstructions. We investigated the impact of regularization on the CNR by performing parametric simulations at various BOLD contrasts, acceleration rates, and sizes of the active brain areas. As quantified by receiver operating characteristic (ROC) analysis, the simulations suggest that the detection power of SENSE fMRI can be improved by regularized reconstructions, compared to unregularized reconstructions. Human motor and visual fMRI data acquired at different field strengths and array coils also demonstrate that regularized SENSE improves the detection of functionally active brain regions.

  8. Functional MRI Using Regularized Parallel Imaging Acquisition

    PubMed Central

    Lin, Fa-Hsuan; Huang, Teng-Yi; Chen, Nan-Kuei; Wang, Fu-Nien; Stufflebeam, Steven M.; Belliveau, John W.; Wald, Lawrence L.; Kwong, Kenneth K.

    2013-01-01

    Parallel MRI techniques reconstruct full-FOV images from undersampled k-space data by using the uncorrelated information from RF array coil elements. One disadvantage of parallel MRI is that the image signal-to-noise ratio (SNR) is degraded because of the reduced data samples and the spatially correlated nature of multiple RF receivers. Regularization has been proposed to mitigate the SNR loss originating due to the latter reason. Since it is necessary to utilize static prior to regularization, the dynamic contrast-to-noise ratio (CNR) in parallel MRI will be affected. In this paper we investigate the CNR of regularized sensitivity encoding (SENSE) acquisitions. We propose to implement regularized parallel MRI acquisitions in functional MRI (fMRI) experiments by incorporating the prior from combined segmented echo-planar imaging (EPI) acquisition into SENSE reconstructions. We investigated the impact of regularization on the CNR by performing parametric simulations at various BOLD contrasts, acceleration rates, and sizes of the active brain areas. As quantified by receiver operating characteristic (ROC) analysis, the simulations suggest that the detection power of SENSE fMRI can be improved by regularized reconstructions, compared to unregularized reconstructions. Human motor and visual fMRI data acquired at different field strengths and array coils also demonstrate that regularized SENSE improves the detection of functionally active brain regions. PMID:16032694

  9. Dynamic and High-Resolution Metabolic Imaging of Hyperpolarized [1-13C]-Pyruvate in the Rat Brain Using a High-Performance Gradient Insert

    PubMed Central

    Mayer, Dirk; Yen, Yi-Fen; Takahashi, Atsushi; Josan, Sonal; Tropp, James; Rutt, B.K.; Hurd, Ralph E.; Spielman, Daniel M.; Pfefferbaum, Adolf

    2010-01-01

    Fast chemical shift imaging techniques are advantageous in metabolic imaging of hyperpolarized compounds due to the limited duration of the signal amplification. At the same time, reducing the acquisition time in hyperpolarized imaging does not necessarily lead to the conventional penalty in signal-to-noise ratio that occurs in imaging at thermal equilibrium polarization levels. Here a high-performance gradient insert was used in combination with undersampled spiral chemical shift imaging to increase either the imaging speed or the spatial resolution of hyperpolarized 13C metabolic imaging on a clinical 3T MR scanner. Both a single-shot sequence with a total acquisition time of 125 ms and a 3-shot sequence with a nominal in-plane resolution of 1.5 mm were implemented. The k-space trajectories were measured and then used during image reconstruction. The technique was applied to metabolic imaging of the rat brain in vivo after the injection of hyperpolarized [1-13C]-pyruvate. Dynamic imaging afforded the measurement of region-of-interest-specific time courses of pyruvate and its metabolic products, while imaging at high spatial resolution was used to better characterize the spatial distribution of the metabolite signals. PMID:21500253

  10. Differences in hyperpolarized (3) He ventilation imaging after 4 years in adults with cystic fibrosis.

    PubMed

    Paulin, Gregory A; Svenningsen, Sarah; Jobse, Brian N; Mohan, Sindu; Kirby, Miranda; Lewis, James F; Parraga, Grace

    2015-06-01

    To evaluate cystic fibrosis (CF) subjects over 4 years using (3) He magnetic resonance imaging (MRI), pulmonary function tests, and track hospitalization and physician visits. Five CF adults provided written informed consent to an approved protocol and underwent MRI, spirometry, and plethysmography at baseline, 7 days, and 4 ± 1 years later. (3) He MRI ventilation defect percent (VDP) was generated for all subjects and timepoints. After 4 years, mean forced expiratory volume in 1 second / forced vital capacity (FEV1 /FVC) was lower (P = 0.01) in all subjects and there were no other pulmonary function test changes. Two CF adults showed significantly elevated (worse) (3) He VDP at baseline and after 4 years they had significantly greater (worsened) VDP (P = 0.02), without a significant FEV1 decline (P = 0.06) but with a greater number of exacerbations (P < 0.05). Baseline VDP strongly correlated with FEV1 (r(2)  = 0.98, P = 0.0007) at 4-year follow-up. For two CF subjects, VDP was significantly worse at baseline and worsened over 4 years, which was in agreement with a greater number of hospitalizations and clinic visits. These results are limited by the very small sample size, but the strong VDP correlation with longitudinal changes in FEV1 generates the hypothesis that abnormal VDP may temporally precede FEV1 decline in CF subjects; this must be tested in a larger CF study. © 2014 Wiley Periodicals, Inc.

  11. Magnetic Resonance Imaging (MRI) Safety

    MedlinePlus

    ... radiation. Instead, MRI uses a powerful magnetic field, radio waves, rapidly changing magnetic fields, and a computer to ... in most of the body's tissues. The applied radio waves then cause these protons to produce signals that ...

  12. 4D flow imaging with MRI

    PubMed Central

    Stankovic, Zoran; Allen, Bradley D.; Garcia, Julio; Jarvis, Kelly B.

    2014-01-01

    Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiovascular disease. Since its introduction in the late 1980s, 2-dimensional phase contrast MRI (2D PC-MRI) has become a routine part of standard-of-care cardiac MRI for the assessment of regional blood flow in the heart and great vessels. More recently, time-resolved PC-MRI with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (also termed ‘4D flow MRI’) has been developed and applied for the evaluation of cardiovascular hemodynamics in multiple regions of the human body. 4D flow MRI allows for the comprehensive evaluation of complex blood flow patterns by 3D blood flow visualization and flexible retrospective quantification of flow parameters. Recent technical developments, including the utilization of advanced parallel imaging techniques such as k-t GRAPPA, have resulted in reasonable overall scan times, e.g., 8-12 minutes for 4D flow MRI of the aorta and 10-20 minutes for whole heart coverage. As a result, the application of 4D flow MRI in a clinical setting has become more feasible, as documented by an increased number of recent reports on the utility of the technique for the assessment of cardiac and vascular hemodynamics in patient studies. A number of studies have demonstrated the potential of 4D flow MRI to provide an improved assessment of hemodynamics which might aid in the diagnosis and therapeutic management of cardiovascular diseases. The purpose of this review is to describe the methods used for 4D flow MRI acquisition, post-processing and data analysis. In addition, the article provides an overview of the clinical applications of 4D flow MRI and includes a review of applications in the heart, thoracic aorta and hepatic system. PMID:24834414

  13. In Vivo Application of Sub-Second Spiral Chemical Shift Imaging (CSI) to Hyperpolarized 13C Metabolic Imaging: Comparison with Phase-Encoded CSI

    PubMed Central

    Mayer, Dirk; Yen, Yi-Fen; Levin, Yakir S.; Tropp, James; Pfefferbaum, Adolf; Hurd, Ralph E.; Spielman, Daniel M.

    2010-01-01

    A fast spiral chemical shift imaging (CSI) has been developed to address the challenge of the limited acquisition window in hyperpolarized 13C metabolic imaging. The sequence exploits the sparsity of the spectra and prior knowledge of resonance frequencies to reduce the measurement time by undersampling the data in the spectral domain. As a consequence, multiple reconstructions are necessary for any given data set as only frequency components within a selected bandwidth are reconstructed “in-focus” while components outside that band are severely blurred (“spectral tomosynthesis”). A variable-flip-angle scheme was used for optimal use of the longitudinal magnetization. The sequence was applied to sub-second metabolic imaging of the rat in vivo after injection of hyperpolarized [1-13C]-pyruvate on a clinical 3T MR scanner. The comparison with conventional CSI based on phase encoding showed similar signal-to-noise ratio (SNR) and spatial resolution in metabolic maps for the substrate and its metabolic products lactate, alanine, and bicarbonate, despite a 50-fold reduction in scan time for the spiral CSI acquisition. The presented results demonstrate that dramatic reductions in scan time are feasible in hyperpolarized 13C metabolic imaging without a penalty in SNR or spatial resolution. PMID:20346717

  14. Regional Ventilation Changes in the Lung: Treatment Response Mapping by Using Hyperpolarized Gas MR Imaging as a Quantitative Biomarker.

    PubMed

    Horn, Felix C; Marshall, Helen; Collier, Guilhem J; Kay, Richard; Siddiqui, Salman; Brightling, Christopher E; Parra-Robles, Juan; Wild, Jim M

    2017-09-01

    Purpose To assess the magnitude of regional response to respiratory therapeutic agents in the lungs by using treatment response mapping (TRM) with hyperpolarized gas magnetic resonance (MR) imaging. TRM was used to quantify regional physiologic response in adults with asthma who underwent a bronchodilator challenge. Materials and Methods This study was approved by the national research ethics committee and was performed with informed consent. Imaging was performed in 20 adult patients with asthma by using hyperpolarized helium 3 ((3)He) ventilation MR imaging. Two sets of baseline images were acquired before inhalation of a bronchodilating agent (salbutamol 400 μg), and one set was acquired after. All images were registered for voxelwise comparison. Regional treatment response, ΔR(r), was calculated as the difference in regional gas distribution (R[r] = ratio of inhaled gas to total volume of a voxel when normalized for lung inflation volume) before and after intervention. A voxelwise activation threshold from the variability of the baseline images was applied to ΔR(r) maps. The summed global treatment response map (ΔRnet) was then used as a global lung index for comparison with metrics of bronchodilator response measured by using spirometry and the global imaging metric percentage ventilated volume (%VV). Results ΔRnet showed significant correlation (P < .01) with changes in forced expiratory volume in 1 second (r = 0.70), forced vital capacity (r = 0.84), and %VV (r = 0.56). A significant (P < .01) positive treatment effect was detected with all metrics; however, ΔRnet showed a lower intersubject coefficient of variation (64%) than all of the other tests (coefficient of variation, ≥99%). Conclusion TRM provides regional quantitative information on changes in inhaled gas ventilation in response to therapy. This method could be used as a sensitive regional outcome metric for novel respiratory interventions. (©) RSNA, 2017 Online supplemental material is

  15. Developments in boron magnetic resonance imaging (MRI)

    SciTech Connect

    Schweizer, M.

    1995-11-01

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  16. Magnetic Resonance Imaging (MRI): Lumbar Spine (For Parents)

    MedlinePlus

    ... If You Have Questions en español Resonancia magnética: columna lumbar What It Is Magnetic resonance imaging (MRI) ... MORE ON THIS TOPIC Magnetic Resonance Imaging (MRI): Cervical Spine Lumbar Puncture (Spinal Tap) Magnetic Resonance Imaging ( ...

  17. [Microstructure of the lung: diffusion measurement of hyperpolarized 3Helium].

    PubMed

    Morbach, Andreas E; Gast, Klaus K; Schmiedeskamp, Jörg; Herweling, Annette; Windirsch, Michael; Dahmen, Anja; Ley, Sebastian; Heussel, Claus-Peter; Heil, Werner; Kauczor, Hans-Ulrich; Schreiber, Wolfgang G

    2006-01-01

    Imaging methods to study the lung are traditionally based on x-ray or on radioactive contrast agents. Conventional magnetic resonance imaging (MRI) has only limited applications for lung imaging because of the low tissue density of protons concentration of hydrogen atoms, which are usually the basis for the imaging. The introduction of hyperpolarized noble gases as a contrast agent in MRI has opened new possibilities for lung diagnosis. The present paper describes this new technique. Diffusion-weighted MRI for assessment of the lung microstructure is presented here as an example of the new possibilities of functional imaging. Studies to determine the sensitivity of the diffusion measurement and regarding the correlation with traditionally established methods are also presented, along with results of the measurement of the reproducibility determined in a clinical pilot study on healthy volunteers and patients. Furthermore, a pilot measurement of the 3He diffusion tensor in the lung is presented.

  18. Saturation-recovery metabolic-exchange rate imaging with hyperpolarized [1-13C] pyruvate using spectral-spatial excitation.

    PubMed

    Schulte, Rolf F; Sperl, Jonathan I; Weidl, Eliane; Menzel, Marion I; Janich, Martin A; Khegai, Oleksandr; Durst, Markus; Ardenkjaer-Larsen, Jan Henrik; Glaser, Steffen J; Haase, Axel; Schwaiger, Markus; Wiesinger, Florian

    2013-05-01

    Within the last decade hyperpolarized [1-13C] pyruvate chemical-shift imaging has demonstrated impressive potential for metabolic MR imaging for a wide range of applications in oncology, cardiology, and neurology. In this work, a highly efficient pulse sequence is described for time-resolved, multislice chemical shift imaging of the injected substrate and obtained downstream metabolites. Using spectral-spatial excitation in combination with single-shot spiral data acquisition, the overall encoding is evenly distributed between excitation and signal reception, allowing the encoding of one full two-dimensional metabolite image per excitation. The signal-to-noise ratio can be flexibly adjusted and optimized using lower flip angles for the pyruvate substrate and larger ones for the downstream metabolites. Selectively adjusting the excitation of the down-stream metabolites to 90° leads to a so-called "saturation-recovery" scheme with the detected signal content being determined by forward conversion of the available pyruvate. In case of repetitive excitations, the polarization is preserved using smaller flip angles for pyruvate. Metabolic exchange rates are determined spatially resolved from the metabolite images using a simplified two-site exchange model. This novel contrast is an important step toward more quantitative metabolic imaging. Goal of this work was to derive, analyze, and implement this "saturation-recovery metabolic exchange rate imaging" and demonstrate its capabilities in four rats bearing subcutaneous tumors.

  19. Detecting response of rat C6 glioma tumors to radiotherapy using hyperpolarized [1-13C]pyruvate and 13C magnetic resonance spectroscopic imaging

    PubMed Central

    Day, Sam E.; Kettunen, Mikko I.; Cherkuri, Murali Krishna; Mitchell, James B.; Lizak, Martin J.; Morris, H. Douglas; Koretsky, Alan P.; Brindle, Kevin M.

    2012-01-01

    13C chemical shift images acquired following intravenous injection of hyperpolarized [1-13C]pyruvate into rats with implanted C6 gliomas showed significant labeling of lactate within the tumors but not in surrounding brain tissue. Signal from pyruvate was observed in blood vessels above the brain and from other major vessels elsewhere in the rat head. Pyruvate was largely undetectable within the tumor or surrounding normal brain tissue. The ratio of hyperpolarized 13C label in the injected pyruvate and endogenous lactate was decreased from 0.25 +/− 0.13 to 0.13 +/− 0.08, (a reduction of 48%) at 96 h following whole brain irradiation with 15 Gy. These data suggest that hyperpolarized [1-13C]pyruvate may be useful in detecting treatment response in gliomas, where the use of 18FDG-PET is limited by the high background signals from normal brain tissue. PMID:21264939

  20. Development of spatial-temporal ventilation heterogeneity and probability analysis tools for hyperpolarized 3He magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Choy, S.; Ahmed, H.; Wheatley, A.; McCormack, D. G.; Parraga, G.

    2010-03-01

    We developed image analysis tools to evaluate spatial and temporal 3He magnetic resonance imaging (MRI) ventilation in asthma and cystic fibrosis. We also developed temporal ventilation probability maps to provide a way to describe and quantify ventilation heterogeneity over time, as a way to test respiratory exacerbations or treatment predictions and to provide a discrete probability measurement of 3He ventilation defect persistence.

  1. 13C-MR Spectroscopic Imaging with Hyperpolarized [1-13C]pyruvate Detects Early Response to Radiotherapy in SCC Tumors and HT-29 Tumors.

    PubMed

    Saito, Keita; Matsumoto, Shingo; Takakusagi, Yoichi; Matsuo, Masayuki; Morris, H Douglas; Lizak, Martin J; Munasinghe, Jeeva P; Devasahayam, Nallathamby; Subramanian, Sankaran; Mitchell, James B; Krishna, Murali C

    2015-11-15

    X-ray irradiation of tumors causes diverse effects on the tumor microenvironment, including metabolism. Recent developments of hyperpolarized (13)C-MRI enabled detecting metabolic changes in tumors using a tracer [1-(13)C]pyruvate, which participates in important bioenergetic processes that are altered in cancers. Here, we investigated the effects of X-ray irradiation on pyruvate metabolism in squamous cell carcinoma (SCCVII) and colon cancer (HT-29) using hyperpolarized (13)C-MRI. SCCVII and HT-29 tumors were grown by injecting tumor cells into the hind legs of mice. [1-(13)C]pyruvate was hyperpolarized and injected intravenously into tumor-bearing mice, and (13)C-MR signals were acquired using a 4.7 T scanner. [1-(13)C]pyruvate and [1-(13)C]lactate were detected in the tumor-bearing legs immediately after hyperpolarized [1-(13)C]pyruvate administration. The [1-(13)C]lactate to [1-(13)C]pyruvate ratio (Lac/Pyr) increased as the tumors grew in nonirradiated SCCVII tumors. The increase in Lac/Pyr was suppressed modestly with a single 10 Gy of irradiation, but it significantly decreased by further irradiation (10 Gy × 3). Similar results were obtained in HT-29; Lac/Pyr significantly dropped with fractionated 30 Gy irradiation. Independent ex vivo measurements revealed that the lactate dehydrogenase (LDH) activity and protein level were significantly smaller in the irradiated SCCVII tumors compared with the nonirradiated tumors, indicating that a decrease in LDH activity was one of the main factors responsible for the decrease of Lac/Pyr observed on (13)C-MRI. Robust changes of Lac/Pyr observed in the HT-29 after the radiation suggested that lactate conversion from pyruvate monitored with hyperpolarized (13)C-MRI could be useful for the evaluation of early response to radiotherapy. See related commentary by Lai et al., p. 4996. ©2015 American Association for Cancer Research.

  2. Progression of emphysema in a 12-month hyperpolarized 3He-MRI study: lacunarity analysis provided a more sensitive measure than standard ADC analysis.

    PubMed

    Diaz, Sandra; Casselbrant, Ingrid; Piitulainen, Eeva; Magnusson, Peter; Peterson, Barry; Pickering, Evelyn; Tuthill, Theresa; Ekberg, Olle; Akeson, Per

    2009-06-01

    Inhaled hyperpolarized (3)He magnetic resonance (MR) imaging has been used to measure alveolar size in patients with emphysema. The aim of this study was to test the hypothesis that (3)He MR images could be used to develop a biomarker of emphysema progression. Twelve healthy controls and 18 patients with emphysema (eight current smokers, 10 ex-smokers) were imaged at baseline and 6 and 12 months. An additional nine subjects with alpha-1 antitrypsin deficiency (four with emphysema, six without symptoms) were also imaged at baseline and at 6 months. Each subject was imaged at two lung volumes: functional residual capacity (FRC) and FRC plus 15% of total lung capacity. Means and standard deviations of apparent diffusion coefficients (ADCs) were calculated from coronal images of the entire lung and correlated with pulmonary function test results. The lacunarity hypothesis was tested and calculated from the data using a range of 2 x 2 x 2 to 6 x 6 x 6 voxels, and the average was calculated. There was no change in the mean ADC at either lung volume in any subject over the 6- or 12-month period. FRC and residual volume increased over the 12 months, suggesting air trapping. The lacunarity of images collected at FRC increased at 6 and 12 months in smokers only (P = .063 and P = .023, respectively). The mean ADC calculated from MR images of the lungs with helium was not sufficiently sensitive to detect changes over a 12-month period. However, lacunarity captured more of the spatial information in the images and detected emphysema progress in the smokers.

  3. Comparison between 2D and 3D gradient-echo sequences for MRI of human lung ventilation with hyperpolarized 3He.

    PubMed

    Wild, Jim M; Woodhouse, Neil; Paley, Martyn N J; Fichele, Stan; Said, Zead; Kasuboski, Larry; van Beek, Edwin J R

    2004-09-01

    Images of hyperpolarized 3He were acquired during breath-hold in four healthy volunteers with the use of an optimized 3D gradient-echo sequence. The images were compared with existing 2D gradient-echo methods. The average SNR from a 13-mm-thick slice in the peripheral lung was 1.4 times greater with 3D. In the airways the average SNR was 1.7 times greater with 3D. The higher SNR of 3D was particularly evident when regions of unimpeded gas diffusion, such as the major airways, were imaged with thin slices. This is because diffusion dephasing due to the slice-encoding gradient is minimized with a 3D sequence. The in vivo experimental findings were substantiated with experiments on phantoms of free gas, which showed more than four times the SNR with 3D compared to 2D. Theoretical simulations of the 2D and 3D k-space filters were also performed to predict the SNR and spatial resolution observed in the experimental images. Copyright 2004 Wiley-Liss, Inc.

  4. Measuring glomerular number from kidney MRI images

    NASA Astrophysics Data System (ADS)

    Thiagarajan, Jayaraman J.; Natesan Ramamurthy, Karthikeyan; Kanberoglu, Berkay; Frakes, David; Bennett, Kevin; Spanias, Andreas

    2016-03-01

    Measuring the glomerular number in the entire, intact kidney using non-destructive techniques is of immense importance in studying several renal and systemic diseases. Commonly used approaches either require destruction of the entire kidney or perform extrapolation from measurements obtained from a few isolated sections. A recent magnetic resonance imaging (MRI) method, based on the injection of a contrast agent (cationic ferritin), has been used to effectively identify glomerular regions in the kidney. In this work, we propose a robust, accurate, and low-complexity method for estimating the number of glomeruli from such kidney MRI images. The proposed technique has a training phase and a low-complexity testing phase. In the training phase, organ segmentation is performed on a few expert-marked training images, and glomerular and non-glomerular image patches are extracted. Using non-local sparse coding to compute similarity and dissimilarity graphs between the patches, the subspace in which the glomerular regions can be discriminated from the rest are estimated. For novel test images, the image patches extracted after pre-processing are embedded using the discriminative subspace projections. The testing phase is of low computational complexity since it involves only matrix multiplications, clustering, and simple morphological operations. Preliminary results with MRI data obtained from five kidneys of rats show that the proposed non-invasive, low-complexity approach performs comparably to conventional approaches such as acid maceration and stereology.

  5. Hyperpolarized 3He magnetic resonance imaging ventilation defects in asthma: relationship to airway mechanics.

    PubMed

    Leary, Del; Svenningsen, Sarah; Guo, Fumin; Bhatawadekar, Swati; Parraga, Grace; Maksym, Geoffrey N

    2016-04-01

    In patients with asthma, magnetic resonance imaging (MRI) provides direct measurements of regional ventilation heterogeneity, the etiology of which is not well-understood, nor is the relationship of ventilation abnormalities with lung mechanics. In addition, respiratory resistance and reactance are often abnormal in asthmatics and the frequency dependence of respiratory resistance is thought to reflect ventilation heterogeneity. We acquiredMRIventilation defect maps, forced expiratory volume in one-second (FEV1), and airways resistance (Raw) measurements, and used a computational airway model to explore the relationship of ventilation defect percent (VDP) with simulated measurements of respiratory system resistance (Rrs) and reactance (Xrs).MRIventilation defect maps were experimentally acquired in 25 asthmatics before, during, and after methacholine challenge and these were nonrigidly coregistered to the airway tree model. Using the model coregistered to ventilation defect maps, we narrowed proximal (9th) and distal (14th) generation airways that were spatially related to theMRIventilation defects. The relationships forVDPwith Raw measured using plethysmography (r = 0.79), and model predictions of Rrs>14(r = 0.91,P < 0.0001) and Rrs>9(r = 0.88,P < 0.0001) were significantly stronger (P = 0.005;P = 0.03, respectively) than withFEV1(r = -0.68,P = 0.0001). The slopes for the relationship ofVDPwith simulated lung mechanics measurements were different (P < 0.0001); among these, the slope for theVDP-Xrs0.2relationship was largest, suggesting thatVDPwas dominated by peripheral airway heterogeneity in these patients. In conclusion, as a first step toward understanding potential links between lung mechanics and ventilation defects, impedance predictions were made using a computational airway tree model with simulated constriction of airways related to ventilation defects measured in mild-moderate asthmatics. © 2016 The Authors. Physiological Reports

  6. Application of Double Spin-Echo Spiral Chemical Shift Imaging to Rapid Metabolic Mapping of Hyperpolarized [1-13C]-Pyruvate

    PubMed Central

    Josan, Sonal; Yen, Yi-Fen; Hurd, Ralph; Pfefferbaum, Adolf; Spielman, Daniel; Mayer, Dirk

    2011-01-01

    Undersampled spiral CSI (spCSI) using a free induction decay (FID) acquisition allows sub-second metabolic imaging of hyperpolarized 13C. Phase correction of the FID acquisition can be difficult, especially with contributions from aliased out-of-phase peaks. This work extends the spCSI sequence by incorporating double spin-echo radiofrequency (RF) pulses to eliminate the need for phase correction and obtain high quality spectra in magnitude mode. The sequence also provides an added benefit of attenuating signal from flowing spins, which can otherwise contaminate signal in the organ of interest. The refocusing pulses can potentially lead to a loss of hyperpolarized magnetization in dynamic imaging due to flow of spins through the fringe field of the RF coil, where the refocusing pulses fail to provide complete refocusing. Care must be taken for dynamic imaging to ensure that the spins remain within the B1-homogeneous sensitive volume of the RF coil. PMID:21316280

  7. Pomeranchuk cell for hyperpolarized 3He based on the brute force method

    NASA Astrophysics Data System (ADS)

    Makino, Seiji; Tanaka, Masayoshi; Ueda, Kunihiro; Fujiwara, Mamoru; Fujimura, Hisako; Yosoi, Masaru; Ohta, Takeshi; Frossati, Giorgio; de Waard, Arlette; Rouille, Gerard

    2014-09-01

    MRI (Magnetic Resonance Imaging) has been used for the medical diagnosis as a radiation-free imaging equipment. Since the proton has been mainly used for medical MRI, usefulness has been rather restrictive. As an example for expanding the range of applicability, MRI with hyperpolarized 3He gas has been used for the lung disease. Here, ``hyperpolarized'' means ``polarized higher than the thermal equilibrium polarization.'' For producing a large amount of hyperpolarized 3He gas at a time, we have been developing a hyperpolarization technique based on the brute force method which uses an ultralow temperature of a few mK and a strong magnetic field around 17 T in combination with the principle of the Pomeranchuk cooling. The Pomeranchuk cell made with non-metallic materials of small heat capacity is attached to the 3He/4He dilution refrigerator using a sintered silver allowing large heat conduction. After the sensors to monitor the temperature and pressure of 3He are calibrated and the Pomeranchuk cell is constructed, the system is tested. Then, the solidification of 3He and the measurement of NMR (Nuclear Magnetic Resonance) signals of 3He under the magnetic field of 17 T are carried out. The current status is reported in this talk.

  8. Assessment of in vitro vs. in vivo lung structure using hyperpolarized helium-3 diffusion magnetic resonance imaging.

    PubMed

    Mata, Jaime F; Altes, Talissa A; Ruppert, Kai; Hagspiel, Klaus D; Miller, Grady W; Brookeman, James R; Mugler, John P

    2009-07-01

    The purpose of this study was to assess the properties of a model system for hyperpolarized He-3 (HHe) diffusion MR imaging created from the lungs of New Zealand white rabbits by drying the lungs while inflated at constant pressure. The dried lungs were prepared by sacrificing the animal, harvesting the lungs en bloc and dehydrating the lungs for several days using dry compressed air. In four rabbits, the apparent diffusion coefficient (ADC) of HHe gas was measured in vivo and, within 1 week, in vitro in the dried lungs. To assess long-term repeatability, in vitro ADC values were measured again 3 months later. Dried lungs from four additional rabbits were imaged twice on the same day to assess the short-term repeatability of ADC measurements, and tissue samples from these lungs were then removed for histology. In vivo and in vitro ADC maps showed similar features and similar distributions of ADC values; mean in vivo and in vitro ADC values differed by less than 12%. The in vitro mean ADC values were highly reproducible, with no more than 5% difference between measurements for the short-term repeatability and less than 17% difference between measurements for the long-term repeatability. Histological samples from the dried lungs demonstrated that the lung structure remained intact. These results suggest that the dried lungs are a useful and inexpensive alternative to human or in vivo animal studies for HHe diffusion MR sequence development, testing and optimization.

  9. Image-space automatic motion correction for MRI images

    NASA Astrophysics Data System (ADS)

    Manduca, Armando; Lake, David S.; Khaylova, Natalia; Ehman, Richard L.

    2004-05-01

    Automatic retrospective motion correction algorithms based on iterative optimization of an image quality measure have been demonstrated in a variety of MRI acquisitions. These algorithms are computationally intensive and may require several minutes per image or more. One computational bottleneck is the need for an inverse FFT at each iteration to reconstruct and evaluate the image. We describe a method for performing the iterative search primarily in image space, greatly reducing the number of FFTs required. This can significantly increase the computational speed, particularly when the evaluation is performed only on a sub-region of the image.

  10. Micro-imaging of the Mouse Lung via MRI

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    inflammation, particularly in the lung periphery, indicating airspace enlargement after virus infection. Another important application of the imaging technique is the study of lung regeneration in a pneumonectomy (PNX) model. Partial resection of the lung by unilateral PNX is a robust model of compensatory lung growth. It is typically studied by postmortem morphometry in which longitudinal assessment in the same animal cannot be achieved. Here we successfully assess the microstructural changes and quantify the compensatory lung growth in vivo in the PNX mouse model via 1H and hyperpolarized 3He diffusion MRI. Our results show complete restoration in lung volume and total alveolar number with enlargement of alveolar size, which is consistent with prior histological studies conducted in different animals at various time points. This dissertation demonstrates that 3He lung morphometry has good sensitivity in quantifying small microstructural changes in the mouse lung and can be applied to a variety of mouse pulmonary models. Particularly, it has great potential to become a valuable tool in understanding the time course and the mechanism of lung growth in individual animals and may provide insight into post-natal lung growth and lung regeneration.

  11. Approximate Subject Specific Pseudo MRI from an Available MRI Dataset for MEG Source Imaging.

    PubMed

    Gohel, Bakul; Lim, Sanghyun; Kim, Min-Young; Kwon, Hyukchan; Kim, Kiwoong

    2017-01-01

    Computation of headmodel and sourcemodel from the subject's MRI scan is an essential step for source localization of magnetoencephalography (MEG) (or EEG) sensor signals. In the absence of a real MRI scan, pseudo MRI (i.e., associated headmodel and sourcemodel) is often approximated from an available standard MRI template or pool of MRI scans considering the subject's digitized head surface. In the present study, we approximated two types of pseudo MRI (i.e., associated headmodel and sourcemodel) using an available pool of MRI scans with the focus on MEG source imaging. The first was the first rank pseudo MRI; that is, the MRI scan in the dataset having the lowest objective registration error (ORE) after being registered (rigid body transformation with isotropic scaling) to the subject's digitized head surface. The second was the averaged rank pseudo MRI that is generated by averaging of headmodels and sourcemodels from multiple MRI scans respectively, after being registered to the subject's digitized head surface. Subject level analysis showed that the mean upper bound of source location error for the approximated sourcemodel in reference to the real one was 10 ± 3 mm for the averaged rank pseudo MRI, which was significantly lower than the first rank pseudo MRI approach. Functional group source response in the brain to visual stimulation in the form of event-related power (ERP) at the time latency of peak amplitude showed noticeably identical source distribution for first rank pseudo MRI, averaged rank pseudo MRI, and real MRI. The source localization error for functional peak response was significantly lower for averaged rank pseudo MRI compared to first rank pseudo MRI. We conclude that it is feasible to use approximated pseudo MRI, particularly the averaged rank pseudo MRI, as a substitute for real MRI without losing the generality of the functional group source response.

  12. Approximate Subject Specific Pseudo MRI from an Available MRI Dataset for MEG Source Imaging

    PubMed Central

    Gohel, Bakul; Lim, Sanghyun; Kim, Min-Young; Kwon, Hyukchan; Kim, Kiwoong

    2017-01-01

    Computation of headmodel and sourcemodel from the subject's MRI scan is an essential step for source localization of magnetoencephalography (MEG) (or EEG) sensor signals. In the absence of a real MRI scan, pseudo MRI (i.e., associated headmodel and sourcemodel) is often approximated from an available standard MRI template or pool of MRI scans considering the subject's digitized head surface. In the present study, we approximated two types of pseudo MRI (i.e., associated headmodel and sourcemodel) using an available pool of MRI scans with the focus on MEG source imaging. The first was the first rank pseudo MRI; that is, the MRI scan in the dataset having the lowest objective registration error (ORE) after being registered (rigid body transformation with isotropic scaling) to the subject's digitized head surface. The second was the averaged rank pseudo MRI that is generated by averaging of headmodels and sourcemodels from multiple MRI scans respectively, after being registered to the subject's digitized head surface. Subject level analysis showed that the mean upper bound of source location error for the approximated sourcemodel in reference to the real one was 10 ± 3 mm for the averaged rank pseudo MRI, which was significantly lower than the first rank pseudo MRI approach. Functional group source response in the brain to visual stimulation in the form of event-related power (ERP) at the time latency of peak amplitude showed noticeably identical source distribution for first rank pseudo MRI, averaged rank pseudo MRI, and real MRI. The source localization error for functional peak response was significantly lower for averaged rank pseudo MRI compared to first rank pseudo MRI. We conclude that it is feasible to use approximated pseudo MRI, particularly the averaged rank pseudo MRI, as a substitute for real MRI without losing the generality of the functional group source response. PMID:28848418

  13. Target image search using fMRI signals

    NASA Astrophysics Data System (ADS)

    Xiong, Shi; Song, Sutao; Zhan, Yu; Zhang, Jiacai

    2014-03-01

    Recent neural signal decoding studies based on functional magnetic resonance imaging (fMRI) have identified the specific image presenting to the subject from a set of potential images, and some studies extend neural decoding into image reconstruction, i.e. image contents that the subject perceived were decoded from the fMRI signals recorded during the subject looking at images. In this paper, we decoded the target images using fMRI signals and described a target image searching method based on the relationship between target image stimuli and fMRI activity. We recorded fMRI data during a serial visual stimuli image presentation task, some of the stimuli images were target images and the rest images were non-target ones. Our fMRI data analysis results showed that in the serial visual presentation task, target images elicited a stereotypical response in the fMRI, which can be detected by multi-voxel pattern analysis (MVPA). Classifiers designed with support vector machine (SVM) used this response to decipher target images from non-target images. The leave-one-run-out cross-validation showed that we can pick out the target images with a possibility far above the chance level, which indicate that there's a neural signatures correlated with the target image recognition process in the human systems.

  14. Simultaneous PET/MRI with (13)C magnetic resonance spectroscopic imaging (hyperPET): phantom-based evaluation of PET quantification.

    PubMed

    Hansen, Adam E; Andersen, Flemming L; Henriksen, Sarah T; Vignaud, Alexandre; Ardenkjaer-Larsen, Jan H; Højgaard, Liselotte; Kjaer, Andreas; Klausen, Thomas L

    2016-12-01

    Integrated PET/MRI with hyperpolarized (13)C magnetic resonance spectroscopic imaging ((13)C-MRSI) offers simultaneous, dual-modality metabolic imaging. A prerequisite for the use of simultaneous imaging is the absence of interference between the two modalities. This has been documented for a clinical whole-body system using simultaneous (1)H-MRI and PET but never for (13)C-MRSI and PET. Here, the feasibility of simultaneous PET and (13)C-MRSI as well as hyperpolarized (13)C-MRSI in an integrated whole-body PET/MRI hybrid scanner is evaluated using phantom experiments. Combined PET and (13)C-MRSI phantoms including a NEMA [(18)F]-FDG phantom, (13)C-acetate and (13)C-urea sources, and hyperpolarized (13)C-pyruvate were imaged repeatedly with PET and/or (13)C-MRSI. Measurements evaluated for interference effects included PET activity values in the largest sphere and a background region; total number of PET trues; and (13)C-MRSI signal-to-noise ratio (SNR) for urea and acetate phantoms. Differences between measurement conditions were evaluated using t tests. PET and (13)C-MRSI data acquisition could be performed simultaneously without any discernible artifacts. The average difference in PET activity between acquisitions with and without simultaneous (13)C-MRSI was 0.83 (largest sphere) and -0.76 % (background). The average difference in net trues was -0.01 %. The average difference in (13)C-MRSI SNR between acquisitions with and without simultaneous PET ranged from -2.28 to 1.21 % for all phantoms and measurement conditions. No differences were significant. The system was capable of (13)C-MRSI of hyperpolarized (13)C-pyruvate. Simultaneous PET and (13)C-MRSI in an integrated whole-body PET/MRI hybrid scanner is feasible. Phantom experiments showed that possible interference effects introduced by acquiring data from the two modalities simultaneously are small and non-significant. Further experiments can now investigate the benefits of simultaneous PET and

  15. Clinical image: MRI during migraine with aura

    SciTech Connect

    McNeal, A.C.

    1996-03-01

    Migraine refers to severe headaches that are usually unilateral, throbbing, and associated with nausea, vomiting, photophobia, and phonophobia. Migraine with aura (formerly called {open_quotes}classic migraine{close_quotes}) consists of the headache preceded or accompanied by neurological dysfunction. This dysfunction (aura) usually involves visual and sensory symptoms. The patient described herein experienced migraine with aura. MRI during and after the attack showed a reversible abnormality of the right posterior cerebral artery, with no parenchymal lesions. This appears to be the first report of abnormal MR vascular imaging during migraine with aura. 10 refs., 2 figs.

  16. Magnetic Field Strength Dependence of Transverse Relaxation and Signal-to-Noise Ratio for Hyperpolarized Xenon-129 and Helium-3 Gas Magnetic Resonance Imaging of Lungs

    NASA Astrophysics Data System (ADS)

    Dominguez-Viqueira, William

    Magnetic resonance (MR) imaging with hyperpolarized noble gases (HNG), 3He or 129Xe, has become a promising approach for studying lung anatomy and function. Unlike conventional MR imaging, the magnetization in HNG MR is independent of the magnetic field strength. This means that no improvement in signal-to-noise ratio (SNR) is expected with increasing clinical field strength above ˜0.25T. Furthermore, it has been predicted that the SNR may decline at clinical field strength due to decreases in the apparent transverse relaxation time (T2*), caused by the increased magnetic susceptibility induced field gradients at the air-tissue interface. In this thesis the magnetic field strength dependence of T2* and SNR in HNG MR is investigated experimentally in rodent and human lungs. For rodent imaging, a novel broad-band (0.1-100MHz) variable field strength MR imaging system for rodents was built. This system permitted imaging of 129Xe, 3He and 1H at low magnetic field strengths (3-73.5mT) to experimentally investigate the field dependence of HNG imaging SNR in rodent lungs. In vivo 129Xe and 3He signals were acquired at 73.5mT and T 2* was estimated to be approximately 180+/-8 ms, in good agreement with previously reported values. At 73.5mT, image noise is dominated by losses originated from the radiofrequency (RF) coils. To address this issue, RF coils were built using different types of copper wire and compared in phantoms and in vivo in rat lungs using hyperpolarized 3He and 129Xe gas. An SNR improvement of up to 200% was obtained with Litz wire compared to conventional copper wire. This improvement demonstrated the feasibility of HNG lung imaging in rodents at 73.5mT with SNR comparable to that obtained at clinical field strengths. To verify the SNR field dependence in humans, hyperpolarized 3He lung imaging at two commonly used clinical field strengths (1.5T and 3T) was performed in the same volunteers and compared. No significant differences in SNR were obtained

  17. Demonstration of a compact compressor for application of metastability-exchange optical pumping of 3He to human lung imaging.

    PubMed

    Gentile, T R; Jones, G L; Thompson, A K; Rizi, R R; Roberts, D A; Dimitrov, I E; Reddy, R; Lipson, D A; Gefter, W; Schnall, M D; Leigh, J S

    2000-02-01

    Hyperpolarized gas magnetic resonance imaging has recently emerged as a method to image lungs, sinuses, and the brain. The best lung images to date have been produced using hyperpolarized 3He, which is produced by either spin-exchange or metastability-exchange optical pumping. For hyperpolarized gas MRI, the metastable method has demonstrated higher polarization levels and higher polarizing rates, but it requires compression of the hyperpolarized gas. Prior to this work, compression of hyperpolarized gas had only been accomplished using a large, complex and expensive apparatus. Here, human lung ventilation images are presented that were obtained using a compact compressor that is relatively simple and inexpensive. For this test, 1.1 bar-L of 15% hyperpolarized 3He gas was produced at the National Institute of Standards and Technology using a modified commercial diaphragm pump. The hyperpolarized gas was transported to the University of Pennsylvania in a holding field provided by a portable solenoid.

  18. Hyperpolarized (129)Xe T (1) in oxygenated and deoxygenated blood

    NASA Technical Reports Server (NTRS)

    Albert, M. S.; Balamore, D.; Kacher, D. F.; Venkatesh, A. K.; Jolesz, F. A.

    2000-01-01

    The viability of the new technique of hyperpolarized (129)Xe MRI (HypX-MRI) for imaging organs other than the lungs depends on whether the spin-lattice relaxation time, T(1), of (129)Xe is sufficiently long in the blood. In previous experiments by the authors, the T(1) was found to be strongly dependent upon the oxygenation of the blood, with T(1) increasing from about 3 s in deoxygenated samples to about 10 s in oxygenated samples. Contrarily, Tseng et al. (J. Magn. Reson. 1997; 126: 79-86) reported extremely long T(1) values deduced from an indirect experiment in which hyperpolarized (129)Xe was used to create a 'blood-foam'. They found that oxygenation decreased T(1). Pivotal to their experiment is the continual and rapid exchange of hyperpolarized (129)Xe between the gas phase (within blood-foam bubbles) and the dissolved phase (in the skin of the bubbles); this necessitated a complicated analysis to extract the T(1) of (129)Xe in blood. In the present study, the experimental design minimizes gas exchange after the initial bolus of hyperpolarized (129)Xe has been bubbled through the sample. This study confirms that oxygenation increases the T(1) of (129)Xe in blood, from about 4 s in freshly drawn venous blood, to about 13 s in blood oxygenated to arterial levels, and also shifts the red blood cell resonance to higher frequency. Copyright 2000 John Wiley & Sons, Ltd. Abbreviations used BOLD blood oxygen level dependent NOE nuclear overhouses effect PO(2) oxygen partial pressure RBC red blood cells RF radio frequency SNR signal-to-noise ratio.

  19. Hyperpolarized (129)Xe T (1) in oxygenated and deoxygenated blood

    NASA Technical Reports Server (NTRS)

    Albert, M. S.; Balamore, D.; Kacher, D. F.; Venkatesh, A. K.; Jolesz, F. A.

    2000-01-01

    The viability of the new technique of hyperpolarized (129)Xe MRI (HypX-MRI) for imaging organs other than the lungs depends on whether the spin-lattice relaxation time, T(1), of (129)Xe is sufficiently long in the blood. In previous experiments by the authors, the T(1) was found to be strongly dependent upon the oxygenation of the blood, with T(1) increasing from about 3 s in deoxygenated samples to about 10 s in oxygenated samples. Contrarily, Tseng et al. (J. Magn. Reson. 1997; 126: 79-86) reported extremely long T(1) values deduced from an indirect experiment in which hyperpolarized (129)Xe was used to create a 'blood-foam'. They found that oxygenation decreased T(1). Pivotal to their experiment is the continual and rapid exchange of hyperpolarized (129)Xe between the gas phase (within blood-foam bubbles) and the dissolved phase (in the skin of the bubbles); this necessitated a complicated analysis to extract the T(1) of (129)Xe in blood. In the present study, the experimental design minimizes gas exchange after the initial bolus of hyperpolarized (129)Xe has been bubbled through the sample. This study confirms that oxygenation increases the T(1) of (129)Xe in blood, from about 4 s in freshly drawn venous blood, to about 13 s in blood oxygenated to arterial levels, and also shifts the red blood cell resonance to higher frequency. Copyright 2000 John Wiley & Sons, Ltd. Abbreviations used BOLD blood oxygen level dependent NOE nuclear overhouses effect PO(2) oxygen partial pressure RBC red blood cells RF radio frequency SNR signal-to-noise ratio.

  20. Band-selective chemical exchange saturation transfer imaging with hyperpolarized xenon-based molecular sensors.

    PubMed

    Meldrum, Tyler; Bajaj, Vikram S; Wemmer, David E; Pines, Alexander

    2011-12-01

    Molecular imaging based on saturation transfer in exchanging systems is a tool for amplified and chemically specific magnetic resonance imaging. Xenon-based molecular sensors are a promising category of molecular imaging agents in which chemical exchange of dissolved xenon between its bulk and agent-bound phases has been use to achieve sub-picomolar detection sensitivity. Control over the saturation transfer dynamics, particularly when multiple exchanging resonances are present in the spectra, requires saturation fields of limited bandwidth and is generally accomplished by continuous wave irradiation. We demonstrate instead how band-selective saturation sequences based on multiple pulse inversion elements can yield saturation bandwidth tuneable over a wide range, while depositing less RF power in the sample. We show how these sequences can be used in imaging experiments that require spatial-spectral and multispectral saturation. The results should be applicable to all CEST experiments and, in particular, will provide the spectroscopic control required for applications of arrays of xenon chemical sensors in microfluidic chemical analysis devices.

  1. Band-selective chemical exchange saturation transfer imaging with hyperpolarized xenon-based molecular sensors

    NASA Astrophysics Data System (ADS)

    Meldrum, Tyler; Bajaj, Vikram S.; Wemmer, David E.; Pines, Alexander

    2011-12-01

    Molecular imaging based on saturation transfer in exchanging systems is a tool for amplified and chemically specific magnetic resonance imaging. Xenon-based molecular sensors are a promising category of molecular imaging agents in which chemical exchange of dissolved xenon between its bulk and agent-bound phases has been use to achieve sub-picomolar detection sensitivity. Control over the saturation transfer dynamics, particularly when multiple exchanging resonances are present in the spectra, requires saturation fields of limited bandwidth and is generally accomplished by continuous wave irradiation. We demonstrate instead how band-selective saturation sequences based on multiple pulse inversion elements can yield saturation bandwidth tuneable over a wide range, while depositing less RF power in the sample. We show how these sequences can be used in imaging experiments that require spatial-spectral and multispectral saturation. The results should be applicable to all CEST experiments and, in particular, will provide the spectroscopic control required for applications of arrays of xenon chemical sensors in microfluidic chemical analysis devices.

  2. Improving the Hyperpolarization of 31P Nuclei by Synthetic Design

    PubMed Central

    2015-01-01

    Traditional 31P NMR or MRI measurements suffer from low sensitivity relative to 1H detection and consequently require longer scan times. We show here that hyperpolarization of 31P nuclei through reversible interactions with parahydrogen can deliver substantial signal enhancements in a range of regioisomeric phosphonate esters containing a heteroaromatic motif which were synthesized in order to identify the optimum molecular scaffold for polarization transfer. A 3588-fold 31P signal enhancement (2.34% polarization) was returned for a partially deuterated pyridyl substituted phosphonate ester. This hyperpolarization level is sufficient to allow single scan 31P MR images of a phantom to be recorded at a 9.4 T observation field in seconds that have signal-to-noise ratios of up to 94.4 when the analyte concentration is 10 mM. In contrast, a 12 h 2048 scan measurement under standard conditions yields a signal-to-noise ratio of just 11.4. 31P-hyperpolarized images are also reported from a 7 T preclinical scanner. PMID:25811635

  3. Investigation of Lung Structure-Function Relationships Using Hyperpolarized Noble Gases

    NASA Astrophysics Data System (ADS)

    Thomen, Robert P.

    Magnetic Resonance Imaging (MRI) is an application of the nuclear magnetic resonance (NMR) phenomenon to non-invasively generate 3D tomographic images. MRI is an emerging modality for the lung, but it suffers from low sensitivity due to inherent low tissue density and short T(*/2) . Hyperpolarization is a process by which the nuclear contribution to NMR signal is greatly enhanced to more than 100,000 times that of samples in thermal equilibrium. The noble gases 3He and 129Xe are most often hyperpolarized by transfer of light angular momentum through the electron of a vaporized alkali metal to the noble gas nucleus (called Spin Exchange Optical Pumping). The enhancement in NMR signal is so great that the gas itself can be imaged via MRI, and because noble gases are chemically inert, they can be safely inhaled by a subject, and the gas distribution within the interior of the lung can be imaged. The mechanics of respiration is an elegant physical process by which air is is brought into the distal airspaces of the lungs for oxygen/carbon dioxide gas exchange with blood. Therefore proper description of lung function is intricately related to its physical structure , and the basic mechanical operation of healthy lungs -- from pressure driven airflow, to alveolar airspace gas kinetics, to gas exchange by blood/gas concentration gradients, to elastic contraction of parenchymal tissue -- is a process decidedly governed by the laws of physics. This dissertation will describe experiments investigating the relationship of lung structure and function using hyperpolarized (HP) noble gas MRI. In particular HP gases will be applied to the study of several pulmonary diseases each of which demonstrates unique structure-function abnormalities: asthma, cystic fibrosis, and chronic obstructive pulmonary disease. Successful implementation of an HP gas acquisition protocol for pulmonary studies is an involved and stratified undertaking which requires a solid theoretical foundation in NMR

  4. Detecting response of rat C6 glioma tumors to radiotherapy using hyperpolarized [1- 13C]pyruvate and 13C magnetic resonance spectroscopic imaging.

    PubMed

    Day, Sam E; Kettunen, Mikko I; Cherukuri, Murali Krishna; Mitchell, James B; Lizak, Martin J; Morris, H Douglas; Matsumoto, Shingo; Koretsky, Alan P; Brindle, Kevin M

    2011-02-01

    We show here that hyperpolarized [1-(13) C]pyruvate can be used to detect treatment response in a glioma tumor model; a tumor type where detection of response with (18) fluoro-2-deoxyglucose, using positron emission tomography, is limited by the high background signals from normal brain tissue. (13) C chemical shift images acquired following intravenous injection of hyperpolarized [1-(13) C]pyruvate into rats with implanted C6 gliomas showed significant labeling of lactate within the tumors but comparatively low levels in surrounding brain.Labeled pyruvate was observed at high levels in blood vessels above the brain and from other major vessels elsewhere but was detected at only low levels in tumor and brain.The ratio of hyperpolarized (13) C label in tumor lactate compared to the maximum pyruvate signal in the blood vessels was decreased from 0.38 ± 0.16 to 0.23 ± 0.13, (a reduction of 34%) by 72 h following whole brain irradiation with 15 Gy.

  5. Multi-channel metabolic imaging, with SENSE reconstruction, of hyperpolarized [1- 13C] pyruvate in a live rat at 3.0 tesla on a clinical MR scanner

    NASA Astrophysics Data System (ADS)

    Tropp, James; Lupo, Janine M.; Chen, Albert; Calderon, Paul; McCune, Don; Grafendorfer, Thomas; Ozturk-Isik, Esin; Larson, Peder E. Z.; Hu, Simon; Yen, Yi-Fen; Robb, Fraser; Bok, Robert; Schulte, Rolf; Xu, Duan; Hurd, Ralph; Vigneron, Daniel; Nelson, Sarah

    2011-01-01

    We report metabolic images of 13C, following injection of a bolus of hyperpolarized [1-13C] pyruvate in a live rat. The data were acquired on a clinical scanner, using custom coils for volume transmission and array reception. Proton blocking of all carbon resonators enabled proton anatomic imaging with the system body coil, to allow for registration of anatomic and metabolic images, for which good correlation was achieved, with some anatomic features (kidney and heart) clearly visible in a carbon image, without reference to the corresponding proton image. Parallel imaging with sensitivity encoding was used to increase the spatial resolution in the SI direction of the rat. The signal to noise ratio in was in some instances unexpectedly high in the parallel images; variability of the polarization among different trials, plus partial volume effects, are noted as a possible cause of this.

  6. Hemorrhage detection in MRI brain images using images features

    NASA Astrophysics Data System (ADS)

    Moraru, Luminita; Moldovanu, Simona; Bibicu, Dorin; Stratulat (Visan), Mirela

    2013-11-01

    The abnormalities appear frequently on Magnetic Resonance Images (MRI) of brain in elderly patients presenting either stroke or cognitive impairment. Detection of brain hemorrhage lesions in MRI is an important but very time-consuming task. This research aims to develop a method to extract brain tissue features from T2-weighted MR images of the brain using a selection of the most valuable texture features in order to discriminate between normal and affected areas of the brain. Due to textural similarity between normal and affected areas in brain MR images these operation are very challenging. A trauma may cause microstructural changes, which are not necessarily perceptible by visual inspection, but they could be detected by using a texture analysis. The proposed analysis is developed in five steps: i) in the pre-processing step: the de-noising operation is performed using the Daubechies wavelets; ii) the original images were transformed in image features using the first order descriptors; iii) the regions of interest (ROIs) were cropped from images feature following up the axial symmetry properties with respect to the mid - sagittal plan; iv) the variation in the measurement of features was quantified using the two descriptors of the co-occurrence matrix, namely energy and homogeneity; v) finally, the meaningful of the image features is analyzed by using the t-test method. P-value has been applied to the pair of features in order to measure they efficacy.

  7. Medical image segmentation using 3D MRI data

    NASA Astrophysics Data System (ADS)

    Voronin, V.; Marchuk, V.; Semenishchev, E.; Cen, Yigang; Agaian, S.

    2017-05-01

    Precise segmentation of three-dimensional (3D) magnetic resonance imaging (MRI) image can be a very useful computer aided diagnosis (CAD) tool in clinical routines. Accurate automatic extraction a 3D component from images obtained by magnetic resonance imaging (MRI) is a challenging segmentation problem due to the small size objects of interest (e.g., blood vessels, bones) in each 2D MRA slice and complex surrounding anatomical structures. Our objective is to develop a specific segmentation scheme for accurately extracting parts of bones from MRI images. In this paper, we use a segmentation algorithm to extract the parts of bones from Magnetic Resonance Imaging (MRI) data sets based on modified active contour method. As a result, the proposed method demonstrates good accuracy in a comparison between the existing segmentation approaches on real MRI data.

  8. Image denoising for real-time MRI.

    PubMed

    Klosowski, Jakob; Frahm, Jens

    2017-03-01

    To develop an image noise filter suitable for MRI in real time (acquisition and display), which preserves small isolated details and efficiently removes background noise without introducing blur, smearing, or patch artifacts. The proposed method extends the nonlocal means algorithm to adapt the influence of the original pixel value according to a simple measure for patch regularity. Detail preservation is improved by a compactly supported weighting kernel that closely approximates the commonly used exponential weight, while an oracle step ensures efficient background noise removal. Denoising experiments were conducted on real-time images of healthy subjects reconstructed by regularized nonlinear inversion from radial acquisitions with pronounced undersampling. The filter leads to a signal-to-noise ratio (SNR) improvement of at least 60% without noticeable artifacts or loss of detail. The method visually compares to more complex state-of-the-art filters as the block-matching three-dimensional filter and in certain cases better matches the underlying noise model. Acceleration of the computation to more than 100 complex frames per second using graphics processing units is straightforward. The sensitivity of nonlocal means to small details can be significantly increased by the simple strategies presented here, which allows partial restoration of SNR in iteratively reconstructed images without introducing a noticeable time delay or image artifacts. Magn Reson Med 77:1340-1352, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. MRI alone versus MRI-CBCT registered images to evaluate temporomandibular joint internal derangement.

    PubMed

    Al-Saleh, Mohammed A Q; Alsufyani, Noura A; Lagravere, Manuel; Nebbe, Brian; Lai, Hollis; Jaremko, Jacob L; Major, Paul W

    2016-11-01

    To evaluate the effect of magnetic resonance imaging-cone beam computed tomography (MRI-CBCT) image registration on inter- and intraexaminer consistency when evaluating temporomandibular joint (TMJ) internal derangement compared to MRI alone. MRI and CBCT images of 25 patients (50 TMJs) were obtained and coregistered using mutual-information rigid image registration via Mirada XD software. Two experienced radiologists independently and blindly evaluated two types of images (MRI alone and MRI-CBCT registered images) at two different times (T1 and T2) for TMJ internal derangement, based on sagittal and coronal articular disc position in relation to the head of the condyle and the posterior slope of the articular eminence. The intraexaminer consistency with MRI alone (examiner 1 = 0.85 [0.74-0.92]; examiner 2 = 0.91 [0.84-0.95]) was lower than for the MRI-CBCT registered images (examiner 1 = 0.95 [0.91-0.97]; examiner 2 = 0.97 [0.96-0.99]). The interexaminer consistency of evaluating internal derangement with MRI alone (0.52 [0.18-0.73] at T1; 0.71 [0.45-0.84] at T2) was lower than for the MRI-CBCT registered images (0.97 [0.95-0.98] at T1; 0.98 [0.96-0.99] at T2). When disc position classification was dichotomized to normal versus anteriorly displaced, intraexaminer agreement for the two examiners was 0.52 and 0.63 for MRI alone, but was 0.91 and 0.92 for MRI-CBCT registered images. Interexaminer agreement for MRI alone was 0.29 at T1 and 0.42 at T2, but was 0.96 at both examination times for MRI-CBCT registered images. The MRI-CBCT registered images improved intra- and interexaminer consistency in the evaluation of internal derangement of TMJ. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. An open-access, very-low-field MRI system for posture-dependent 3He human lung imaging

    NASA Astrophysics Data System (ADS)

    Tsai, L. L.; Mair, R. W.; Rosen, M. S.; Patz, S.; Walsworth, R. L.

    2008-08-01

    We describe the design and operation of an open-access, very-low-field, magnetic resonance imaging (MRI) system for in vivo hyperpolarized 3He imaging of the human lungs. This system permits the study of lung function in both horizontal and upright postures, a capability with important implications in pulmonary physiology and clinical medicine, including asthma and obesity. The imager uses a bi-planar B0 coil design that produces an optimized 65 G (6.5 mT) magnetic field for 3He MRI at 210 kHz. Three sets of bi-planar coils produce the x, y, and z magnetic field gradients while providing a 79-cm inter-coil gap for the imaging subject. We use solenoidal Q-spoiled RF coils for operation at low frequencies, and are able to exploit insignificant sample loading to allow for pre-tuning/matching schemes and for accurate pre-calibration of flip angles. We obtain sufficient SNR to acquire 2D 3He images with up to 2.8 mm resolution, and present initial 2D and 3D 3He images of human lungs in both supine and upright orientations. 1H MRI can also be performed for diagnostic and calibration reasons.

  11. An Open-Access, Very-Low-Field MRI System for Posture-Dependent 3He Human Lung Imaging

    PubMed Central

    Tsai, L. L.; Mair, R. W.; Rosen, M. S.; Patz, S.; Walsworth, R. L.

    2008-01-01

    We describe the design and operation of an open-access, very-low-field, magnetic resonance imaging (MRI) system for in-vivo hyperpolarized 3He imaging of the human lungs. This system permits the study of lung function in both horizontal and upright postures, a capability with important implications in pulmonary physiology and clinical medicine, including asthma and obesity. The imager uses a bi-planar B0 coil design that produces an optimized 65 G (6.5 mT) magnetic field for 3He MRI at 210 kHz. Three sets of bi-planar coils produce the x, y, and z magnetic field gradients while providing a 79-cm inter-coil gap for the imaging subject. We use solenoidal Q-spoiled RF coils for operation at low frequencies, and are able to exploit insignificant sample loading to allow for pre-tuning/matching schemes and for accurate pre-calibration of flip angles. We obtain sufficient SNR to acquire 2D 3He images with up to 2.8 mm resolution, and present initial 2D and 3D 3He images of human lungs in both supine and upright orientations. 1H MRI can also be performed for diagnostic and calibration reasons. PMID:18550402

  12. Heart MRI

    MedlinePlus

    Magnetic resonance imaging - cardiac; Magnetic resonance imaging - heart; Nuclear magnetic resonance - cardiac; NMR - cardiac; MRI of the heart; Cardiomyopathy - MRI; Heart failure - MRI; Congenital heart disease - MRI

  13. Hybrid polarizing solids for pure hyperpolarized liquids through dissolution dynamic nuclear polarization

    PubMed Central

    Gajan, David; Bornet, Aurélien; Vuichoud, Basile; Milani, Jonas; Melzi, Roberto; van Kalkeren, Henri A.; Veyre, Laurent; Thieuleux, Chloé; Conley, Matthew P.; Grüning, Wolfram R.; Schwarzwälder, Martin; Lesage, Anne; Copéret, Christophe; Bodenhausen, Geoffrey; Emsley, Lyndon; Jannin, Sami

    2014-01-01

    Hyperpolarization of substrates for magnetic resonance spectroscopy (MRS) and imaging (MRI) by dissolution dynamic nuclear polarization (D-DNP) usually involves saturating the ESR transitions of polarizing agents (PAs; e.g., persistent radicals embedded in frozen glassy matrices). This approach has shown enormous potential to achieve greatly enhanced nuclear spin polarization, but the presence of PAs and/or glassing agents in the sample after dissolution can raise concerns for in vivo MRI applications, such as perturbing molecular interactions, and may induce the erosion of hyperpolarization in spectroscopy and MRI. We show that D-DNP can be performed efficiently with hybrid polarizing solids (HYPSOs) with 2,2,6,6-tetramethyl-piperidine-1-oxyl radicals incorporated in a mesostructured silica material and homogeneously distributed along its pore channels. The powder is wetted with a solution containing molecules of interest (for example, metabolites for MRS or MRI) to fill the pore channels (incipient wetness impregnation), and DNP is performed at low temperatures in a very efficient manner. This approach allows high polarization without the need for glass-forming agents and is applicable to a broad range of substrates, including peptides and metabolites. During dissolution, HYPSO is physically retained by simple filtration in the cryostat of the DNP polarizer, and a pure hyperpolarized solution is collected within a few seconds. The resulting solution contains the pure substrate, is free from any paramagnetic or other pollutants, and is ready for in vivo infusion. PMID:25267650

  14. A Bloch-McConnell simulator with pharmacokinetic modeling to explore accuracy and reproducibility in the measurement of hyperpolarized pyruvate

    NASA Astrophysics Data System (ADS)

    Walker, Christopher M.; Bankson, James A.

    2015-03-01

    Magnetic resonance imaging (MRI) of hyperpolarized (HP) agents has the potential to probe in-vivo metabolism with sensitivity and specificity that was not previously possible. Biological conversion of HP agents specifically for cancer has been shown to correlate to presence of disease, stage and response to therapy. For such metabolic biomarkers derived from MRI of hyperpolarized agents to be clinically impactful, they need to be validated and well characterized. However, imaging of HP substrates is distinct from conventional MRI, due to the non-renewable nature of transient HP magnetization. Moreover, due to current practical limitations in generation and evolution of hyperpolarized agents, it is not feasible to fully experimentally characterize measurement and processing strategies. In this work we use a custom Bloch-McConnell simulator with pharmacokinetic modeling to characterize the performance of specific magnetic resonance spectroscopy sequences over a range of biological conditions. We performed numerical simulations to evaluate the effect of sequence parameters over a range of chemical conversion rates. Each simulation was analyzed repeatedly with the addition of noise in order to determine the accuracy and reproducibility of measurements. Results indicate that under both closed and perfused conditions, acquisition parameters can affect measurements in a tissue dependent manner, suggesting that great care needs to be taken when designing studies involving hyperpolarized agents. More modeling studies will be needed to determine what effect sequence parameters have on more advanced acquisitions and processing methods.

  15. Current Status of Hybrid PET/MRI in Oncologic Imaging

    PubMed Central

    Rosenkrantz, Andrew B.; Friedman, Kent; Chandarana, Hersh; Melsaether, Amy; Moy, Linda; Ding, Yu-Shin; Jhaveri, Komal; Beltran, Luis; Jain, Rajan

    2016-01-01

    OBJECTIVE This review article explores recent advancements in PET/MRI for clinical oncologic imaging. CONCLUSION Radiologists should understand the technical considerations that have made PET/MRI feasible within clinical workflows, the role of PET tracers for imaging various molecular targets in oncology, and advantages of hybrid PET/MRI compared with PET/CT. To facilitate this understanding, we discuss clinical examples (including gliomas, breast cancer, bone metastases, prostate cancer, bladder cancer, gynecologic malignancy, and lymphoma) as well as future directions, challenges, and areas for continued technical optimization for PET/MRI. PMID:26491894

  16. Simultaneous MRI and PET imaging of a rat brain

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan K.; Sendhil Velan, S.; Kross, Brian; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Zorn, Carl; Marano, Gary D.

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI will allow the correlation of form with function. Our group is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode. Each MRI-PET detector module consists of an array of LSO detector elements coupled through a long fibre optic light guide to a single Hamamatsu flat panel position-sensitive photomultiplier tube (PSPMT). The use of light guides allows the PSPMTs to be positioned outside the bore of a 3T MRI scanner where the magnetic field is relatively small. To test the device, simultaneous MRI and PET images of the brain of a male Sprague Dawley rat injected with FDG were successfully obtained. The images revealed no noticeable artefacts in either image set. Future work includes the construction of a full ring PET scanner, improved light guides and construction of a specialized MRI coil to permit higher quality MRI imaging.

  17. Evaluation of Heterogeneous Metabolic Profile in an Orthotopic Human Glioblastoma Xenograft Model Using Compressed Sensing Hyperpolarized 3D 13C Magnetic Resonance Spectroscopic Imaging

    PubMed Central

    Park, Ilwoo; Hu, Simon; Bok, Robert; Ozawa, Tomoko; Ito, Motokazu; Mukherjee, Joydeep; Phillips, Joanna J.; James, C. David; Pieper, Russell O.; Ronen, Sabrina M.; Vigneron, Daniel B.; Nelson, Sarah J.

    2013-01-01

    High resolution compressed sensing hyperpolarized 13C magnetic resonance spectroscopic imaging was applied in orthotopic human glioblastoma xenografts for quantitative assessment of spatial variations in 13C metabolic profiles and comparison with histopathology. A new compressed sensing sampling design with a factor of 3.72 acceleration was implemented to enable a factor of 4 increase in spatial resolution. Compressed sensing 3D 13C magnetic resonance spectroscopic imaging data were acquired from a phantom and 10 tumor-bearing rats following injection of hyperpolarized [1-13C]-pyruvate using a 3T scanner. The 13C metabolic profiles were compared with hematoxylin and eosin staining and carbonic anhydrase 9 staining. The high-resolution compressed sensing 13C magnetic resonance spectroscopic imaging data enabled the differentiation of distinct 13C metabolite patterns within abnormal tissues with high specificity in similar scan times compared to the fully sampled method. The results from pathology confirmed the different characteristics of 13C metabolic profiles between viable, non-necrotic, nonhypoxic tumor, and necrotic, hypoxic tissue. PMID:22851374

  18. Fusing MRI and Mechanical Imaging for Improved Prostate Cancer Diagnosis

    DTIC Science & Technology

    2016-10-01

    find out if radiomic features extracted from CT images can identify patients with high and low TILs in non-small cell lung cancer (NSCLC). Methods...AWARD NUMBER: W81XWH-15-1-0613 TITLE: Fusing MRI and Mechanical Imaging for Improved Prostate Cancer Diagnosis PRINCIPAL INVESTIGATOR: Dr...4. TITLE AND SUBTITLE Fusing MRI and Mechanical Imaging for Improved Prostate Cancer Diagnosis 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  19. PET/MRI in Oncological Imaging: State of the Art

    PubMed Central

    Bashir, Usman; Mallia, Andrew; Stirling, James; Joemon, John; MacKewn, Jane; Charles-Edwards, Geoff; Goh, Vicky; Cook, Gary J.

    2015-01-01

    Positron emission tomography (PET) combined with magnetic resonance imaging (MRI) is a hybrid technology which has recently gained interest as a potential cancer imaging tool. Compared with CT, MRI is advantageous due to its lack of ionizing radiation, superior soft-tissue contrast resolution, and wider range of acquisition sequences. Several studies have shown PET/MRI to be equivalent to PET/CT in most oncological applications, possibly superior in certain body parts, e.g., head and neck, pelvis, and in certain situations, e.g., cancer recurrence. This review will update the readers on recent advances in PET/MRI technology and review key literature, while highlighting the strengths and weaknesses of PET/MRI in cancer imaging. PMID:26854157

  20. Magnetic resonance imaging (MRI) of solid rocket components

    SciTech Connect

    Wallner, A.S.; Nissan, R.A.; Merwin, L.H.

    1995-12-01

    The evaluation of solid rocket components has become an area of great interest. Studying these materials with MRI offers a great advantage to observe knit lines, regions of inhomogeneity, voids, defects, plasticizer rich/poor areas and solids distribution because of the nondestructive nature of the technique. Aspects of sample preparation, spectroscopic relaxation studies, and MRI as a method of studying these systems will be discussed. Initial images show the ability to image propellant, liner, and explosive materials with an in-plane resolution of 70 {mu}m/pixel. These initial images show that MRI can be developed as a viable nondestructive evaluation method of solid rocket components.

  1. Role of pyruvate dehydrogenase inhibition in the development of hypertrophy in the hyperthyroid rat heart: a combined magnetic resonance imaging and hyperpolarized magnetic resonance spectroscopy study.

    PubMed

    Atherton, Helen J; Dodd, Michael S; Heather, Lisa C; Schroeder, Marie A; Griffin, Julian L; Radda, George K; Clarke, Kieran; Tyler, Damian J

    2011-06-07

    Hyperthyroidism increases heart rate, contractility, cardiac output, and metabolic rate. It is also accompanied by alterations in the regulation of cardiac substrate use. Specifically, hyperthyroidism increases the ex vivo activity of pyruvate dehydrogenase kinase, thereby inhibiting glucose oxidation via pyruvate dehydrogenase. Cardiac hypertrophy is another effect of hyperthyroidism, with an increase in the abundance of mitochondria. Although the hypertrophy is initially beneficial, it can eventually lead to heart failure. The aim of this study was to use hyperpolarized magnetic resonance spectroscopy to investigate the rate and regulation of in vivo pyruvate dehydrogenase flux in the hyperthyroid heart and to establish whether modulation of flux through pyruvate dehydrogenase would alter cardiac hypertrophy. Hyperthyroidism was induced in 18 male Wistar rats with 7 daily intraperitoneal injections of freshly prepared triiodothyronine (0.2 mg x kg(-1) x d(-1)). In vivo pyruvate dehydrogenase flux, assessed with hyperpolarized magnetic resonance spectroscopy, was reduced by 59% in hyperthyroid animals (0.0022 ± 0.0002 versus 0.0055 ± 0.0005 second(-1); P=0.0003), and this reduction was completely reversed by both short- and long-term delivery of dichloroacetic acid, a pyruvate dehydrogenase kinase inhibitor. Hyperpolarized [2-(13)C]pyruvate was also used to evaluate Krebs cycle metabolism and demonstrated a unique marker of anaplerosis, the level of which was significantly increased in the hyperthyroid heart. Cine magnetic resonance imaging showed that long-term dichloroacetic acid treatment significantly reduced the hypertrophy observed in hyperthyroid animals (100 ± 20 versus 200 ± 30 mg; P=0.04) despite no change in the increase observed in cardiac output. This work has demonstrated that inhibition of glucose oxidation in the hyperthyroid heart in vivo is mediated by pyruvate dehydrogenase kinase. Relieving this inhibition can increase the metabolic

  2. Thermal annihilation of photo-induced radicals following dynamic nuclear polarization to produce transportable frozen hyperpolarized 13C-substrates

    NASA Astrophysics Data System (ADS)

    Capozzi, Andrea; Cheng, Tian; Boero, Giovanni; Roussel, Christophe; Comment, Arnaud

    2017-06-01

    Hyperpolarization via dynamic nuclear polarization (DNP) is pivotal for boosting magnetic resonance imaging (MRI) sensitivity and dissolution DNP can be used to perform in vivo real-time 13C MRI. The type of applications is however limited by the relatively fast decay time of the hyperpolarized spin state together with the constraint of having to polarize the 13C spins in a dedicated apparatus nearby but separated from the MRI magnet. We herein demonstrate that by polarizing 13C with photo-induced radicals, which can be subsequently annihilated using a thermalization process that maintains the sample temperature below its melting point, hyperpolarized 13C-substrates can be extracted from the DNP apparatus in the solid form, while maintaining the enhanced 13C polarization. The melting procedure necessary to transform the frozen solid into an injectable solution containing the hyperpolarized 13C-substrates can therefore be performed ex situ, up to several hours after extraction and storage of the polarized solid.

  3. [MRI of the prostate: optimization of imaging protocols].

    PubMed

    Rouvière, O

    2006-02-01

    This article details the imaging protocols for prostate MRI and the influence on image quality of each particular setting: type of coils to be used (endorectal or external phased-array coils?), patient preparation, type of sequences, spatial resolution parameters. The principle and technical constraints of dynamic contrast-enhanced MRI are also presented, as well as the predictable changes due to the introduction of high-field strength (3T) scanners.

  4. (13) C magnetic resonance spectroscopic imaging of hyperpolarized [1-(13) C, U-(2) H5 ] ethanol oxidation can be used to assess aldehyde dehydrogenase activity in vivo.

    PubMed

    Dzien, Piotr; Kettunen, Mikko I; Marco-Rius, Irene; Serrao, Eva M; Rodrigues, Tiago B; Larkin, Timothy J; Timm, Kerstin N; Brindle, Kevin M

    2015-05-01

    Aldehyde dehydrogenase (ALDH2) is an emerging drug target for the treatment of heart disease, cocaine and alcohol dependence, and conditions caused by genetic polymorphisms in ALDH2. Noninvasive measurement of ALDH2 activity in vivo could inform the development of these drugs and accelerate their translation to the clinic. [1-(13) C, U-(2) H5 ] ethanol was hyperpolarized using dynamic nuclear polarization, injected into mice and its oxidation in the liver monitored using (13) C MR spectroscopy and spectroscopic imaging. Oxidation of [1-(13) C, U-(2) H5 ] ethanol to [1-(13) C] acetate was observed. Saturation of the acetaldehyde resonance, which was below the level of detection in vivo, demonstrated that acetate was produced via acetaldehyde. Irreversible inhibition of ALDH2 activity with disulfiram resulted in a proportional decrease in the amplitude of the acetate resonance. (13) C magnetic resonance spectroscopy measurements of hyperpolarized [1-(13) C, U-(2) H5 ] ethanol oxidation allow real-time assessment of ALDH2 activity in liver in vivo. © 2014 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance.

  5. TH-A-BRF-11: Image Intensity Non-Uniformities Between MRI Simulation and Diagnostic MRI

    SciTech Connect

    Paulson, E

    2014-06-15

    Purpose: MRI simulation for MRI-based radiotherapy demands that patients be setup in treatment position, which frequently involves use of alternative radiofrequency (RF) coil configurations to accommodate immobilized patients. However, alternative RF coil geometries may exacerbate image intensity non-uniformities (IINU) beyond those observed in diagnostic MRI, which may challenge image segmentation and registration accuracy as well as confound studies assessing radiotherapy response when MR simulation images are used as baselines for evaluation. The goal of this work was to determine whether differences in IINU exist between MR simulation and diagnostic MR images. Methods: ACR-MRI phantom images were acquired at 3T using a spin-echo sequence (TE/TR:20/500ms, rBW:62.5kHz, TH/skip:5/5mm). MR simulation images were obtained by wrapping two flexible phased-array RF coils around the phantom. Diagnostic MR images were obtained by placing the phantom into a commercial phased-array head coil. Pre-scan normalization was enabled in both cases. Images were transferred offline and corrected for IINU using the MNI N3 algorithm. Coefficients of variation (CV=σ/μ) were calculated for each slice. Wilcoxon matched-pairs and Mann-Whitney tests compared CV values between original and N3 images and between MR simulation and diagnostic MR images. Results: Significant differences in CV were detected between original and N3 images in both MRI simulation and diagnostic MRI groups (p=0.010, p=0.010). In addition, significant differences in CV were detected between original MR simulation and original and N3 diagnostic MR images (p=0.0256, p=0.0016). However, no significant differences in CV were detected between N3 MR simulation images and original or N3 diagnostic MR images, demonstrating the importance of correcting MR simulation images beyond pre-scan normalization prior to use in radiotherapy. Conclusions: Alternative RF coil configurations used in MRI simulation can Result in

  6. Effects of Image Contrast on Functional MRI Image Registration

    PubMed Central

    Gonzalez-Castillo, Javier; Duthie, Kristen N.; Saad, Ziad S.; Chu, Carlton; Bandettini, Peter A.; Luh, Wen-Ming

    2012-01-01

    Lack of tissue contrast and existing inhomogeneous bias fields from multi-channel coils have the potential to degrade the output of registration algorithms; and consequently degrade group analysis and any attempt to accurately localize brain function. Non-invasive ways to improve tissue contrast in fMRI images include the use of low flip angles (FAs) well below the Ernst angle and longer repetition times (TR). Techniques to correct intensity inhomogeneity are also available in most mainstream fMRI data analysis packages; but are not used as part of the pre-processing pipeline in many studies. In this work, we use a combination of real data and simulations to show that simple-to-implement acquisition/pre-processing techniques can significantly improve the outcome of both functional-to-functional and anatomical-to-functional image registrations. We also emphasize the need of tissue contrast on EPI images to be able to appropriately evaluate the quality of the alignment. In particular, we show that the use of low FAs (e.g., θ≤40°), when physiological noise considerations permit such an approach, significantly improves accuracy, consistency and stability of registration for data acquired at relatively short TRs (TR≤2s). Moreover, we also show that the application of bias correction techniques significantly improves alignment both for array-coil data (known to contain high intensity inhomogeneity) as well as birdcage-coil data. Finally, improvements in alignment derived from the use of the first infinite-TR volumes (ITVs) as targets for registration are also demonstrated. For the purpose of quantitatively evaluating the different scenarios, two novel metrics were developed: Mean Voxel Distance (MVD) to evaluate registration consistency, and Deviation of Mean Voxel Distance (dMVD) to evaluate registration stability across successive alignment attempts. PMID:23128074

  7. Magnetic Resonance Imaging (MRI): Dynamic Pelvic Floor

    MedlinePlus

    ... noninvasive test that uses a powerful magnetic field, radio waves and a computer to produce detailed pictures of ... scans, MRI does not utilize ionizing radiation. Instead, radio waves redirect alignment of hydrogen atoms that naturally exist ...

  8. Magnetic Resonance Imaging (MRI): Dynamic Pelvic Floor

    MedlinePlus

    ... The magnetic field is produced by passing an electric current through wire coils in most MRI units. Other ... signals that are detected by the coils. The electric current does not come in contact with the patient. ...

  9. Magnetic Resonance Imaging (MRI): Brain (For Parents)

    MedlinePlus

    ... cause a problem near a strong magnetic field. Electronic devices aren't permitted in the MRI room. ... child may be given headphones to listen to music or earplugs to block the noise, and will ...

  10. Prostate cancer magnetic resonance imaging (MRI): multidisciplinary standpoint.

    PubMed

    Li, Liang; Wang, Liang; Feng, Zhaoyan; Hu, Zhiquan; Wang, Guoping; Yuan, Xianglin; Wang, He; Hu, Daoyu

    2013-04-01

    Prostate cancer is the most common cancer diagnosed in men and a leading cause of death. Accurate assessment is a prerequisite for optimal clinical management and therapy selection of prostate cancer. There are several parameters and nomograms to differentiate between patients with clinically insignificant disease and patients in need of treatment. Magnetic resonance imaging (MRI) is a technique which provides more detailed anatomical images due to high spatial resolution, superior contrast resolution, and multiplanar capability. State-of-the-art MRI techniques, such as diffusion weighted imaging (DWI), MR spectroscopic imaging (MRSI), dynamic contrast enhanced MRI (DCE-MRI), improve interpretation of prostate cancer imaging. In this article, we review the major role of MRI in the advanced management of prostate cancer to noninvasively improve tumor staging, biologic potential, treatment planning, therapy response, local recurrence, and to guide target biopsy for clinical suspected cancer with previous negative biopsy. Finally, future challenges and opportunities in prostate cancer management in the area of functional MRI are discussed as well.

  11. Fusion of PET and MRI for Hybrid Imaging

    NASA Astrophysics Data System (ADS)

    Cho, Zang-Hee; Son, Young-Don; Kim, Young-Bo; Yoo, Seung-Schik

    Recently, the development of the fusion PET-MRI system has been actively studied to meet the increasing demand for integrated molecular and anatomical imaging. MRI can provide detailed anatomical information on the brain, such as the locations of gray and white matter, blood vessels, axonal tracts with high resolution, while PET can measure molecular and genetic information, such as glucose metabolism, neurotransmitter-neuroreceptor binding and affinity, protein-protein interactions, and gene trafficking among biological tissues. State-of-the-art MRI systems, such as the 7.0 T whole-body MRI, now can visualize super-fine structures including neuronal bundles in the pons, fine blood vessels (such as lenticulostriate arteries) without invasive contrast agents, in vivo hippocampal substructures, and substantia nigra with excellent image contrast. High-resolution PET, known as High-Resolution Research Tomograph (HRRT), is a brain-dedicated system capable of imaging minute changes of chemicals, such as neurotransmitters and -receptors, with high spatial resolution and sensitivity. The synergistic power of the two, i.e., ultra high-resolution anatomical information offered by a 7.0 T MRI system combined with the high-sensitivity molecular information offered by HRRT-PET, will significantly elevate the level of our current understanding of the human brain, one of the most delicate, complex, and mysterious biological organs. This chapter introduces MRI, PET, and PET-MRI fusion system, and its algorithms are discussed in detail.

  12. An optimized microfabricated platform for the optical generation and detection of hyperpolarized 129Xe

    PubMed Central

    Kennedy, Daniel J.; Seltzer, Scott J.; Jiménez-Martínez, Ricardo; Ring, Hattie L.; Malecek, Nicolas S.; Knappe, Svenja; Donley, Elizabeth A.; Kitching, John; Bajaj, Vikram S.; Pines, Alexander

    2017-01-01

    Low thermal-equilibrium nuclear spin polarizations and the need for sophisticated instrumentation render conventional nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) incompatible with small-scale microfluidic devices. Hyperpolarized 129Xe gas has found use in the study of many materials but has required very large and expensive instrumentation. Recently a microfabricated device with modest instrumentation demonstrated all-optical hyperpolarization and detection of 129Xe gas. This device was limited by 129Xe polarizations less than 1%, 129Xe NMR signals smaller than 20 nT, and transport of hyperpolarized 129Xe over millimeter lengths. Higher polarizations, versatile detection schemes, and flow of 129Xe over larger distances are desirable for wider applications. Here we demonstrate an ultra-sensitive microfabricated platform that achieves 129Xe polarizations reaching 7%, NMR signals exceeding 1 μT, lifetimes up to 6 s, and simultaneous two-mode detection, consisting of a high-sensitivity in situ channel with signal-to-noise of 105 and a lower-sensitivity ex situ detection channel which may be useful in a wider variety of conditions. 129Xe is hyperpolarized and detected in locations more than 1 cm apart. Our versatile device is an optimal platform for microfluidic magnetic resonance in particular, but equally attractive for wider nuclear spin applications benefitting from ultra-sensitive detection, long coherences, and simple instrumentation. PMID:28266629

  13. An optimized microfabricated platform for the optical generation and detection of hyperpolarized 129Xe

    NASA Astrophysics Data System (ADS)

    Kennedy, Daniel J.; Seltzer, Scott J.; Jiménez-Martínez, Ricardo; Ring, Hattie L.; Malecek, Nicolas S.; Knappe, Svenja; Donley, Elizabeth A.; Kitching, John; Bajaj, Vikram S.; Pines, Alexander

    2017-03-01

    Low thermal-equilibrium nuclear spin polarizations and the need for sophisticated instrumentation render conventional nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) incompatible with small-scale microfluidic devices. Hyperpolarized 129Xe gas has found use in the study of many materials but has required very large and expensive instrumentation. Recently a microfabricated device with modest instrumentation demonstrated all-optical hyperpolarization and detection of 129Xe gas. This device was limited by 129Xe polarizations less than 1%, 129Xe NMR signals smaller than 20 nT, and transport of hyperpolarized 129Xe over millimeter lengths. Higher polarizations, versatile detection schemes, and flow of 129Xe over larger distances are desirable for wider applications. Here we demonstrate an ultra-sensitive microfabricated platform that achieves 129Xe polarizations reaching 7%, NMR signals exceeding 1 μT, lifetimes up to 6 s, and simultaneous two-mode detection, consisting of a high-sensitivity in situ channel with signal-to-noise of 105 and a lower-sensitivity ex situ detection channel which may be useful in a wider variety of conditions. 129Xe is hyperpolarized and detected in locations more than 1 cm apart. Our versatile device is an optimal platform for microfluidic magnetic resonance in particular, but equally attractive for wider nuclear spin applications benefitting from ultra-sensitive detection, long coherences, and simple instrumentation.

  14. Initial tests of a prototype MRI-compatible PET imager

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan; Velan, S. Sendhil; Kross, Brain; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randy

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI, will allow the correlation of form with function. Our group (a collaboration of West Virginia University and Jefferson Lab) is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode with an active FOV of 5×5×4 cm 3. Each MRI-PET detector module consists of an array of LSO detector elements (2.5×2.5×15 mm 3) coupled through a long fiber optic light guide to a single Hamamatsu flat panel PSPMT. The fiber optic light guide is made of a glued assembly of 2 mm diameter acrylic fibers with a total length of 2.5 m. The use of a light guides allows the PSPMTs to be positioned outside the bore of the 3 T General Electric MRI scanner used in the tests. Photon attenuation in the light guides resulted in an energy resolution of ˜60% FWHM, interaction of the magnetic field with PSPMT further reduced energy resolution to ˜85% FWHM. Despite this effect, excellent multi-plane PET and MRI images of a simple disk phantom were acquired simultaneously. Future work includes improved light guides, optimized magnetic shielding for the PSPMTs, construction of specialized coils to permit high-resolution MRI imaging, and use of the system to perform simultaneous PET and MRI or MR-spectroscopy .

  15. Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)/MRI for Lung Cancer Staging.

    PubMed

    Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Yoshikawa, Takeshi; Sugimura, Kazuro

    2016-07-01

    Tumor, lymph node, and metastasis (TNM) classification of lung cancer is typically performed with the TNM staging system, as recommended by the Union Internationale Contre le Cancer (UICC), the American Joint Committee on Cancer (AJCC), and the International Association for the Study of Lung Cancer (IASLC). Radiologic examinations for TNM staging of lung cancer patients include computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography with 2-[fluorine-18] fluoro-2-deoxy-D-glucose (FDG-PET), and FDG-PET combined with CT (FDG-PET/CT) and are used for pretherapeutic assessments. Recent technical advances in MR systems, application of fast and parallel imaging and/or introduction of new MR techniques, and utilization of contrast media have markedly improved the diagnostic utility of MRI in this setting. In addition, FDG-PET can be combined or fused with MRI (PET/MRI) for clinical practice. This review article will focus on these recent advances in MRI as well as on PET/MRI for lung cancer staging, in addition to a discussion of their potential and limitations for routine clinical practice in comparison with other modalities such as CT, FDG-PET, and PET/CT.

  16. Restriction spectrum imaging improves MRI-based prostate cancer detection

    PubMed Central

    McCammack, Kevin C.; Schenker-Ahmed, Natalie M.; White, Nathan S.; Best, Shaun R.; Marks, Robert M.; Heimbigner, Jared; Kane, Christopher J.; Parsons, J. Kellogg; Kuperman, Joshua M.; Bartsch, Hauke; Desikan, Rahul S.; Rakow-Penner, Rebecca A.; Liss, Michael A.; Margolis, Daniel J. A.; Raman, Steven S.; Shabaik, Ahmed; Dale, Anders M.; Karow, David S.

    2017-01-01

    Purpose To compare the diagnostic performance of restriction spectrum imaging (RSI), with that of conventional multi-parametric (MP) magnetic resonance imaging (MRI) for prostate cancer (PCa) detection in a blinded reader-based format. Methods Three readers independently evaluated 100 patients (67 with proven PCa) who underwent MP-MRI and RSI within 6 months of systematic biopsy (N = 67; 23 with targeting performed) or prostatectomy (N = 33). Imaging was performed at 3 Tesla using a phased-array coil. Readers used a five-point scale estimating the likelihood of PCa present in each prostate sextant. Evaluation was performed in two separate sessions, first using conventional MP-MRI alone then immediately with MP-MRI and RSI in the same session. Four weeks later, another scoring session used RSI and T2-weighted imaging (T2WI) without conventional diffusion-weighted or dynamic contrast-enhanced imaging. Reader interpretations were then compared to prostatectomy data or biopsy results. Receiver operating characteristic curves were performed, with area under the curve (AUC) used to compare across groups. Results MP-MRI with RSI achieved higher AUCs compared to MP-MRI alone for identifying high-grade (Gleason score greater than or equal to 4 + 3=7) PCa (0.78 vs. 0.70 at the sextant level; P < 0.001 and 0.85 vs. 0.79 at the hemigland level; P = 0.04). RSI and T2WI alone achieved AUCs similar to MP-MRI for high-grade PCa (0.71 vs. 0.70 at the sextant level). With hemigland analysis, high-grade disease results were similar when comparing RSI + T2WI with MP-MRI, although with greater AUCs compared to the sextant analysis (0.80 vs. 0.79). Conclusion Including RSI with MP-MRI improves PCa detection compared to MP-MRI alone, and RSI with T2WI achieves similar PCa detection as MP-MRI. PMID:26910114

  17. PCA-based groupwise image registration for quantitative MRI.

    PubMed

    Huizinga, W; Poot, D H J; Guyader, J-M; Klaassen, R; Coolen, B F; van Kranenburg, M; van Geuns, R J M; Uitterdijk, A; Polfliet, M; Vandemeulebroucke, J; Leemans, A; Niessen, W J; Klein, S

    2016-04-01

    Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T1 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different acquisition parameters (or at multiple time points after injection of a contrast agent) and by fitting a qMRI signal model to the image intensities. Image registration is often necessary to compensate for misalignments due to subject motion and/or geometric distortions caused by the acquisition. However, large differences in image appearance make accurate image registration challenging. In this work, we propose a groupwise image registration method for compensating misalignment in qMRI. The groupwise formulation of the method eliminates the requirement of choosing a reference image, thus avoiding a registration bias. The method minimizes a cost function that is based on principal component analysis (PCA), exploiting the fact that intensity changes in qMRI can be described by a low-dimensional signal model, but not requiring knowledge on the specific acquisition model. The method was evaluated on 4D CT data of the lungs, and both real and synthetic images of five different qMRI applications: T1 mapping in a porcine heart, combined T1 and T2 mapping in carotid arteries, ADC mapping in the abdomen, diffusion tensor mapping in the brain, and dynamic contrast-enhanced mapping in the abdomen. Each application is based on a different acquisition model. The method is compared to a mutual information-based pairwise registration method and four other state-of-the-art groupwise registration methods. Registration accuracy is evaluated in terms of the precision of the estimated qMRI parameters, overlap of segmented structures, distance between corresponding landmarks, and smoothness of the deformation. In all qMRI applications the proposed method performed better than or equally well as

  18. Spectrally selective three-dimensional dynamic balanced steady-state free precession for hyperpolarized C-13 metabolic imaging with spectrally selective radiofrequency pulses.

    PubMed

    Shang, Hong; Sukumar, Subramaniam; von Morze, Cornelius; Bok, Robert A; Marco-Rius, Irene; Kerr, Adam; Reed, Galen D; Milshteyn, Eugene; Ohliger, Michael A; Kurhanewicz, John; Larson, Peder E Z; Pauly, John M; Vigneron, Daniel B

    2017-09-01

    Balanced steady-state free precession (bSSFP) sequences can provide superior signal-to-noise ratio efficiency for hyperpolarized (HP) carbon-13 ((13) C) magnetic resonance imaging by efficiently utilizing the nonrecoverable magnetization, but managing their spectral response is challenging in the context of metabolic imaging. A new spectrally selective bSSFP sequence was developed for fast imaging of multiple HP (13) C metabolites with high spatiotemporal resolution. This novel approach for bSSFP spectral selectivity incorporates optimized short-duration spectrally selective radiofrequency pulses within a bSSFP pulse train and a carefully chosen repetition time to avoid banding artifacts. The sequence enabled subsecond 3D dynamic spectrally selective imaging of (13) C metabolites of copolarized [1-(13) C]pyruvate and [(13) C]urea at 2-mm isotropic resolution, with excellent spectral selectivity (∼100:1). The sequence was successfully tested in phantom studies and in vivo studies with normal mice. This sequence is expected to benefit applications requiring dynamic volumetric imaging of metabolically active (13) C compounds at high spatiotemporal resolution, including preclinical studies at high field and, potentially, clinical studies. Magn Reson Med 78:963-975, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  19. Molecular Imaging with MRI: Potential Application in Pancreatic Cancer

    PubMed Central

    Chen, Chen; Wu, Chang Qiang; Chen, Tian Wu; Tang, Meng Yue; Zhang, Xiao Ming

    2015-01-01

    Despite the variety of approaches that have been improved to achieve a good understanding of pancreatic cancer (PC), the prognosis of PC remains poor, and the survival rates are dismal. The lack of early detection and effective interventions is the main reason. Therefore, considerable ongoing efforts aimed at identifying early PC are currently being pursued using a variety of methods. In recent years, the development of molecular imaging has made the specific targeting of PC in the early stage possible. Molecular imaging seeks to directly visualize, characterize, and measure biological processes at the molecular and cellular levels. Among different imaging technologies, the magnetic resonance (MR) molecular imaging has potential in this regard because it facilitates noninvasive, target-specific imaging of PC. This topic is reviewed in terms of the contrast agents for MR molecular imaging, the biomarkers related to PC, targeted molecular probes for MRI, and the application of MRI in the diagnosis of PC. PMID:26579537

  20. High resolution spectroscopy and chemical shift imaging of hyperpolarized 129Xe dissolved in the human brain in vivo at 1.5 tesla

    PubMed Central

    Rao, Madhwesha; Stewart, Neil J.; Norquay, Graham; Griffiths, Paul D.

    2016-01-01

    Purpose Upon inhalation, xenon diffuses into the bloodstream and is transported to the brain, where it dissolves in various compartments of the brain. Although up to five chemically distinct peaks have been previously observed in 129Xe rat head spectra, to date only three peaks have been reported in the human head. This study demonstrates high resolution spectroscopy and chemical shift imaging (CSI) of 129Xe dissolved in the human head at 1.5 Tesla. Methods A 129Xe radiofrequency coil was built in‐house and 129Xe gas was polarized using spin‐exchange optical pumping. Following the inhalation of 129Xe gas, NMR spectroscopy was performed with spectral resolution of 0.033 ppm. Two‐dimensional CSI in all three anatomical planes was performed with spectral resolution of 2.1 ppm and voxel size 20 mm × 20 mm. Results Spectra of hyperpolarized 129Xe dissolved in the human head showed five distinct peaks at 188 ppm, 192 ppm, 196 ppm, 200 ppm, and 217 ppm. Assignment of these peaks was consistent with earlier studies. Conclusion High resolution spectroscopy and CSI of hyperpolarized 129Xe dissolved in the human head has been demonstrated. For the first time, five distinct NMR peaks have been observed in 129Xe spectra from the human head in vivo. Magn Reson Med 75:2227–2234, 2016. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27080441

  1. Clinical applications of magnetic resonance imaging (MRI) of the heart

    SciTech Connect

    Westcott, J.L.; Steiner, R.M.

    1986-01-01

    The rapid progress of MRI has been remarkable, and it is clear that it will become an important method for cardiac imaging. Its major advantages are the lack of ionizing radiation and the ability to obtain excellent global images of the cardiac walls and chambers without the need for contrast injection or cardiac catheterization. High resolution surface coil imaging, tissue spectroscopy, and other improvements and applications should be rapidly forthcoming.

  2. Quantification and description of fracture network by MRI image analysis.

    PubMed

    Balzarini, M; Nicula, S; Mattiello, D; Aliverti, E

    2001-01-01

    The contribution of fractures to total porosity and their geometrical descriptions have been studied by Image Analysis applied to 1H Magnetic Resonance Imaging (MRI). Reservoirs of different lithology were acquired with MSME 2D quantitative and 3D sequences. An image analysis procedure, developed ad hoc, was then applied to these acquisitions and the petrophysical parameters computed. These parameters range from fracture porosity to fracture density.

  3. MRI and PET image fusion using fuzzy logic and image local features.

    PubMed

    Javed, Umer; Riaz, Muhammad Mohsin; Ghafoor, Abdul; Ali, Syed Sohaib; Cheema, Tanveer Ahmed

    2014-01-01

    An image fusion technique for magnetic resonance imaging (MRI) and positron emission tomography (PET) using local features and fuzzy logic is presented. The aim of proposed technique is to maximally combine useful information present in MRI and PET images. Image local features are extracted and combined with fuzzy logic to compute weights for each pixel. Simulation results show that the proposed scheme produces significantly better results compared to state-of-art schemes.

  4. The physics of functional magnetic resonance imaging (fMRI)

    PubMed Central

    Buxton, Richard B

    2015-01-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology. PMID:24006360

  5. Prostate MRI for brachytherapists: Diagnosis, imaging pitfalls, and post-therapy assessment.

    PubMed

    Venkatesan, A M; Stafford, R J; Duran, C; Soni, P D; Berlin, A; McLaughlin, P W

    2017-01-27

    Optimal integration of multiparametric MRI (mp MRI) into prostate brachytherapy practice necessitates an understanding of imaging findings pertinent to prostate cancer detection and staging. This review will summarize prostate cancer imaging findings and tumor staging on mp MRI, including an overview of the Prostate Imaging Reporting and Data System (PIRADS)-structured reporting schema, mp MRI findings observed in the post-therapy setting including cases of post-treatment recurrence, and MRI concepts integral to successful salvage brachytherapy.

  6. Magnetic resonance imaging (MRI): A review of genetic damage investigations.

    PubMed

    Vijayalaxmi; Fatahi, Mahsa; Speck, Oliver

    2015-01-01

    Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic medical imaging technique widely used to acquire detailed information about anatomy and function of different organs in the body, in both health and disease. It utilizes electromagnetic fields of three different frequency bands: static magnetic field (SMF), time-varying gradient magnetic fields (GMF) in the kHz range and pulsed radiofrequency fields (RF) in the MHz range. There have been some investigations examining the extent of genetic damage following exposure of bacterial and human cells to all three frequency bands of electromagnetic fields, as used during MRI: the rationale for these studies is the well documented evidence of positive correlation between significantly increased genetic damage and carcinogenesis. Overall, the published data were not sufficiently informative and useful because of the small sample size, inappropriate comparison of experimental groups, etc. Besides, when an increased damage was observed in MRI-exposed cells, the fate of such lesions was not further explored from multiple 'down-stream' events. This review provides: (i) information on the basic principles used in MRI technology, (ii) detailed experimental protocols, results and critical comments on the genetic damage investigations thus far conducted using MRI equipment and, (iii) a discussion on several gaps in knowledge in the current scientific literature on MRI. Comprehensive, international, multi-centered collaborative studies, using a common and widely used MRI exposure protocol (cardiac or brain scan) incorporating several genetic/epigenetic damage end-points as well as epidemiological investigations, in large number of individuals/patients are warranted to reduce and perhaps, eliminate uncertainties raised in genetic damage investigations in cells exposed in vitro and in vivo to MRI. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Magnetic Resonance Imaging (MRI) (For Parents)

    MedlinePlus

    ... by a powerful antenna and sent to a computer. The computer performs millions of calculations, resulting in clear, cross- ... The Nemours Foundation, iStock, Getty Images, Corbis, Veer, Science Photo Library, Science Source Images, Shutterstock, and Clipart. ...

  8. Heading toward Macromolecular and Nanosized Bioresponsive MRI Probes for Successful Functional Imaging.

    PubMed

    Angelovski, Goran

    2017-09-19

    The quest for bioresponsive or smart contrast agents (SCAs) in molecular imaging, in particular magnetic resonance imaging (MRI), is progressively increasing since they allow for the monitoring of essential biological processes on molecular and cellular levels in a dynamic fashion. These are offshoot molecules of common contrast agents that are sensitive to biochemical changes in their environment, capable of reporting on such changes by inducing MRI signal alteration. Various mechanistic approaches and different types of SCAs have been developed in order to visualize desired processes, using diverse imaging protocols and methods. To date, the most frequently exploited probes are paramagnetic molecules that change longitudinal or transverse relaxation at proton frequency, or so-called T1- and T2-weighted probes, respectively. Moreover, SCAs operating by the chemical exchange saturation transfer mechanism, suitable for (19)F MRI or possessing hyperpolarized nuclei have also appeared in the past decade, slowly finding their role in functional imaging studies. Following these mechanistic principles, a large number of SCAs suitable for diverse targets have been reported to date. This Account condenses this exciting progress, particularly focusing on probes designed for abundant targets that are suitable for practical, in vivo utilization. To date, the greatest advancements have been certainly made in the preparation of pH sensitive probes, which usually contain protonable groups that interact with paramagnetic centers, or take advantage of supramolecular (dis)assembling to induce the MRI signal change, thereupon enabling pH mapping in vivo. In a complementary approach, a combination of metal chelating ligands for Ca(2+) or Zn(2+) with MR reporting units results in a wide variety of SCAs that operate with different contrast mechanisms and can be used for initial functional experiments. Finally, the first examples of molecular sensing by creating host-guest complexes to

  9. Breast imaging with ultrasound tomography: a comparative study with MRI

    NASA Astrophysics Data System (ADS)

    Ranger, Bryan; Littrup, Peter; Duric, Neb; Li, Cuiping; Schmidt, Steven; Lupinacci, Jessica; Myc, Lukasz; Szczepanski, Amy; Rama, Olsi; Bey-Knight, Lisa

    2010-03-01

    The purpose of this study was to investigate the performance of an ultrasound tomography (UST) prototype relative to magnetic resonance (MR) for imaging overall breast anatomy and accentuating tumors relative to background tissue. The study was HIPAA compliant, approved by the Institutional Review Board, and performed after obtaining the requisite informed consent. Twenty-three patients were imaged with MR and the UST prototype. T1 weighted images with fat saturation, with and without gadolinium enhancement, were used to examine anatomical structures and tumors, while T2 weighted images were used to identify cysts. The UST scans generated sound speed, attenuation, and reflection images. A qualitative visual comparison of the MRI and UST images was then used to identify anatomical similarities. A more focused approach that involved a comparison of reported masses, lesion volumes, and breast density was used to quantify the findings from the visual assessment. Our acoustic tomography prototype imaged distributions of fibrous stroma, parenchyma, fatty tissues, and lesions in patterns similar to those seen in the MR images. The range of thresholds required to establish tumor volume equivalency between MRI and UST suggested that a universal threshold for isolating masses relative to background tissue is feasible with UST. UST has demonstrated the ability to visualize and characterize breast tissues in a manner comparable to MRI. Thresholding techniques accentuate masses relative to background anatomy, which may prove clinically useful for early cancer detection.

  10. Simultaneous imaging using Si-PM-based PET and MRI for development of an integrated PET/MRI system.

    PubMed

    Yamamoto, Seiichi; Watabe, Tadashi; Watabe, Hiroshi; Aoki, Masaaki; Sugiyama, Eiji; Imaizumi, Masao; Kanai, Yasukazu; Shimosegawa, Eku; Hatazawa, Jun

    2012-01-21

    The silicon photomultiplier (Si-PM) is a promising photo-detector for PET for use in magnetic resonance imaging (MRI) systems because it has high gain and is insensitive to static magnetic fields. Recently we developed a Si-PM-based depth-of-interaction PET system for small animals and performed simultaneous measurements by combining the Si-PM-based PET and the 0.15 T permanent MRI to test the interferences between the Si-PM-based PET and an MRI. When the Si-PM was inside the MRI and installed around the radio frequency (RF) coil of the MRI, significant noise from the RF sequence of the MRI was observed in the analog signals of the PET detectors. However, we did not observe any artifacts in the PET images; fluctuation increased in the count rate of the Si-PM-based PET system. On the MRI side, there was significant degradation of the signal-to-noise ratio (S/N) in the MRI images compared with those without PET. By applying noise reduction procedures, the degradation of the S/N was reduced. With this condition, simultaneous measurements of a rat brain using a Si-PM-based PET and an MRI were made with some degradation in the MRI images. We conclude that simultaneous measurements are possible using Si-PM-based PET and MRI.

  11. Mri: Selected Topics in Quantitation and Image Processing.

    NASA Astrophysics Data System (ADS)

    Yi, Yun

    1990-10-01

    This research has focused on four areas of MRI with the objectives being a critical evaluation of the factors both visually and instrumentation that effect the quantitative indices of MRI. The following four areas of MRI were investigated:. Project #1. In both of the r.f. transmitter and receiver, many non-linearities exist which produce image distortions and loss of quantitative information. Key factors in spin echo (SE) imaging involve phase and gain adjustment of the quadrature phase detectors. To compensate for these nonlinearities, NMR spectroscopist developed techniques involving phase rolling of the rf pulses for dealing with one dimensional spectra. In this project, the effect of these nonlinearities were investigated for MR imaging on a 2.0T small bore system in respect to image uniformity and artifacts. Project #2. In the presence of surface coils, image artifacts are generated which oftentimes produce large signal intensities and suppress the image gray scale in clinically useful regions. In this study, eight image renormalization algorithms were evaluated for their effects on image contrast, suppression of artifacts, and texture. In addition, images were evaluated independently by four radiologists. Project #3. The use of MRI to follow and characterize serial changes in vertebral marrow, as a function of therapy, age or sex, has produced inconsistent results. Systematic examinations were made of the effects of RF tuning and tip angles as well as RF coil response on both T1 and T2 relaxation times. Using calibration phantoms, algorithms were developed which reduce the instrumental variation in MR signal to less than 10% from the cervical (C7) to the lumbar (L2) vertebral bodies. These algorithms were evaluated by use of serial MRI on volunteers and a few patients receiving radiation therapy (RT) of the chest and abdomen for lymphoma. Project #4. Evaluation of sensitivity of chemical shift RF pulse sequences for water/lipid separation were evaluated on a

  12. Opening the black box: imaging nanoparticle transport with MRI

    NASA Astrophysics Data System (ADS)

    Phoenix, V.; Holmes, W. M.

    2009-12-01

    While most renown for its use in medicine, magnetic resonance imaging (MRI) has tremendous potential in the study of environmental processes. Its ability to non-invasively image inside materials that are opaque to other imaging methods (in particular light based techniques) is a particular strength. MRI has already been used, for example, to study fluid flow in rocks and image mass transport and biogeochemical processes in biofilms [1-4]. Here, we report of the use of MRI to image nanoparticle transport through porous geologic media (in this case packed gravel columns). Packed column experiments are key to understanding nanoparticulate transport in porous geologic media. Whilst highly informative, the data obtained can be a bulk average of a complex and heterogeneous array of interactions within the column. Natural environmental systems are often complex, displaying heterogeneity in geometry, hydrodynamics, geochemistry and microbiology throughout. MRI enables us to quantify better how this heterogeneity may influence nanoparticle transport and fate by enabling us to look inside the column and image the movement of nanoparticles within. To make the nanoparticle readily visible to MRI, it is labelled with a paramagnetic tag (commonly gadolinium). Indeed, a wide variety of off-the-shelf paramagnetically tagged nanoparticles and macromolecules are available, each with different properties enabling us to explore the impact of particle charge, size etc on their transport behaviour. In this preliminary study, packed columns of quartz or marble based gravels (approx 5 mm diameter) were first imaged to check their suitability for MR imaging. This was done as geologic material can contain sufficiently high concentrations of ferro- and paramagnetic ions to induce unwanted artefacts in the MR image. All gravels imaged (Rose quartz, Creswick quartz gravel and Ben Deulin white marble) produced minimal or no artefacts. A solution of the nanoparticle GadoCELLTrack (BioPAL), was

  13. LIGHT-SABRE enables efficient in-magnet catalytic hyperpolarization

    NASA Astrophysics Data System (ADS)

    Theis, Thomas; Truong, Milton; Coffey, Aaron M.; Chekmenev, Eduard Y.; Warren, Warren S.

    2014-11-01

    Nuclear spin hyperpolarization overcomes the sensitivity limitations of traditional NMR and MRI, but the most general method demonstrated to date (dynamic nuclear polarization) has significant limitations in scalability, cost, and complex apparatus design. As an alternative, signal amplification by reversible exchange (SABRE) of parahydrogen on transition metal catalysts can hyperpolarize a variety of substrates, but to date this scheme has required transfer of the sample to low magnetic field or very strong RF irradiation. Here we demonstrate "Low-Irradiation Generation of High Tesla-SABRE" (LIGHT-SABRE) which works with simple pulse sequences and low power deposition; it should be usable at any magnetic field and for hyperpolarization of many different nuclei. This approach could drastically reduce the cost and complexity of producing hyperpolarized molecules.

  14. Magnetic Particle Imaging (MPI) for NMR and MRI researchers

    NASA Astrophysics Data System (ADS)

    Saritas, Emine U.; Goodwill, Patrick W.; Croft, Laura R.; Konkle, Justin J.; Lu, Kuan; Zheng, Bo; Conolly, Steven M.

    2013-04-01

    Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the “black blood” contrast generated by SPIOs in MRI due to increased T2∗ dephasing, SPIOs in MPI generate positive, “bright blood” contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field.

  15. Magnetic particle imaging (MPI) for NMR and MRI researchers.

    PubMed

    Saritas, Emine U; Goodwill, Patrick W; Croft, Laura R; Konkle, Justin J; Lu, Kuan; Zheng, Bo; Conolly, Steven M

    2013-04-01

    Magnetic Particle Imaging (MPI) is a new tracer imaging modality that is gaining significant interest from NMR and MRI researchers. While the physics of MPI differ substantially from MRI, it employs hardware and imaging concepts that are familiar to MRI researchers, such as magnetic excitation and detection, pulse sequences, and relaxation effects. Furthermore, MPI employs the same superparamagnetic iron oxide (SPIO) contrast agents that are sometimes used for MR angiography and are often used for MRI cell tracking studies. These SPIOs are much safer for humans than iodine or gadolinium, especially for Chronic Kidney Disease (CKD) patients. The weak kidneys of CKD patients cannot safely excrete iodine or gadolinium, leading to increased morbidity and mortality after iodinated X-ray or CT angiograms, or after gadolinium-MRA studies. Iron oxides, on the other hand, are processed in the liver, and have been shown to be safe even for CKD patients. Unlike the "black blood" contrast generated by SPIOs in MRI due to increased T2* dephasing, SPIOs in MPI generate positive, "bright blood" contrast. With this ideal contrast, even prototype MPI scanners can already achieve fast, high-sensitivity, and high-contrast angiograms with millimeter-scale resolutions in phantoms and in animals. Moreover, MPI shows great potential for an exciting array of applications, including stem cell tracking in vivo, first-pass contrast studies to diagnose or stage cancer, and inflammation imaging in vivo. So far, only a handful of prototype small-animal MPI scanners have been constructed worldwide. Hence, MPI is open to great advances, especially in hardware, pulse sequence, and nanoparticle improvements, with the potential to revolutionize the biomedical imaging field. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH

    PubMed Central

    2016-01-01

    NMR signal amplification by reversible exchange (SABRE) is a NMR hyperpolarization technique that enables nuclear spin polarization enhancement of molecules via concurrent chemical exchange of a target substrate and parahydrogen (the source of spin order) on an iridium catalyst. Recently, we demonstrated that conducting SABRE in microtesla fields provided by a magnetic shield enables up to 10% 15N-polarization (Theis, T.; et al. J. Am. Chem. Soc.2015, 137, 1404). Hyperpolarization on 15N (and heteronuclei in general) may be advantageous because of the long-lived nature of the hyperpolarization on 15N relative to the short-lived hyperpolarization of protons conventionally hyperpolarized by SABRE, in addition to wider chemical shift dispersion and absence of background signal. Here we show that these unprecedented polarization levels enable 15N magnetic resonance imaging. We also present a theoretical model for the hyperpolarization transfer to heteronuclei, and detail key parameters that should be optimized for efficient 15N-hyperpolarization. The effects of parahydrogen pressure, flow rate, sample temperature, catalyst-to-substrate ratio, relaxation time (T1), and reversible oxygen quenching are studied on a test system of 15N-pyridine in methanol-d4. Moreover, we demonstrate the first proof-of-principle 13C-hyperpolarization using this method. This simple hyperpolarization scheme only requires access to parahydrogen and a magnetic shield, and it provides large enough signal gains to enable one of the first 15N images (2 × 2 mm2 resolution). Importantly, this method enables hyperpolarization of molecular sites with NMR T1 relaxation times suitable for biomedical imaging and spectroscopy. PMID:25960823

  17. Imaging brain neuronal activity using functionalized magnetonanoparticles and MRI.

    PubMed

    Akhtari, Massoud; Bragin, Anatol; Moats, Rex; Frew, Andrew; Mandelkern, Mark

    2012-10-01

    This study explored the use of non-radioactive 2-deoxy glucose (2DG)-labeled magnetonanoparticles (MNP) and magnetic resonance imaging (MRI) to detect functional activity during rest, peripheral stimulation, and epileptic seizures, in animal models. Non-radioactive 2DG was covalently attached to magnetonanoparticles composed of iron oxide and dextran and intravenous (tail) injections were performed. 2DG-MNP was injected in resting and stimulated naïve rodents and the subsequent MRI was compared to published (14)C-2DG autoradiography data. Reproducibility and statistical significance was established in one studied model. Negative contrast enhancement (NCE) in acute seizures and chronic models of epilepsy were investigated. MRI NCE due to 2DG-MNP particles was compared to that of plain (unconjugated) MNP in one animal. NCE due to 2DG-MNP particles at 3 T, which is approved for human use, was also investigated. Histology showed presence of MNP (following intravenous injection) in the brain tissues of resting naïve animal. 2DG-MNP intraparenchymal uptake was visible on MRI and histology. The locations of NCE agreed with published results of 2DG autoradiography in resting and stimulated animals and epileptic rats. Localization of epileptogenicity was confirmed by subsequent depth-electrode EEG (iEEG). Non-radioactive 2DG-MNP can cross the blood-brain barrier (BBB) and may accurately localize areas of increased activity. Although, this proof-of-principle study involves only a limited number of animals, and much more research and quantification are necessary to demonstrate that 2DG-MNP, or MNPs conjugated with other ligands, could eventually be used to image localized cerebral function with MRI in humans, this MNP-MRI approach is potentially applicable to the use of many bioactive molecules as ligands for imaging normal and abnormal localized cerebral functions.

  18. New insights on COPD imaging via CT and MRI

    PubMed Central

    Sverzellati, N; Molinari, F; Pirronti, T; Bonomo, L; Spagnolo, P; Zompatori, M

    2007-01-01

    Multidetector-row computed tomography (MDCT) can be used to quantify morphological features and investigate structure/function relationship in COPD. This approach allows a phenotypical definition of COPD patients, and might improve our understanding of disease pathogenesis and suggest new therapeutical options. In recent years, magnetic resonance imaging (MRI) has also become potentially suitable for the assessment of ventilation, perfusion and respiratory mechanics. This review focuses on the established clinical applications of CT, and novel CT and MRI techniques, which may prove valuable in evaluating the structural and functional damage in COPD. PMID:18229568

  19. Imaging Local Diffusive Dynamics Using Diffusion Exchange Spectroscopy MRI

    NASA Astrophysics Data System (ADS)

    Benjamini, Dan; Komlosh, Michal E.; Basser, Peter J.

    2017-04-01

    The movement of water between microenvironments presents a central challenge in the physics of soft matter and porous media. Diffusion exchange spectroscopy (DEXSY) is a powerful 2D nuclear magnetic resonance method for measuring such exchange, yet it is rarely used because of its long scan time requirements. Moreover, it has never been combined with magnetic resonance imaging (MRI). Using probability theory, we vastly reduce the required data, making DEXSY MRI feasible for the first time. Experiments are performed on a composite nerve tissue phantom with restricted and free water-exchanging compartments.

  20. Imaging industry expectations for compressed sensing in MRI

    NASA Astrophysics Data System (ADS)

    King, Kevin F.; Kanwischer, Adriana; Peters, Rob

    2015-09-01

    Compressed sensing requires compressible data, incoherent acquisition and a nonlinear reconstruction algorithm to force creation of a compressible image consistent with the acquired data. MRI images are compressible using various transforms (commonly total variation or wavelets). Incoherent acquisition of MRI data by appropriate selection of pseudo-random or non-Cartesian locations in k-space is straightforward. Increasingly, commercial scanners are sold with enough computing power to enable iterative reconstruction in reasonable times. Therefore integration of compressed sensing into commercial MRI products and clinical practice is beginning. MRI frequently requires the tradeoff of spatial resolution, temporal resolution and volume of spatial coverage to obtain reasonable scan times. Compressed sensing improves scan efficiency and reduces the need for this tradeoff. Benefits to the user will include shorter scans, greater patient comfort, better image quality, more contrast types per patient slot, the enabling of previously impractical applications, and higher throughput. Challenges to vendors include deciding which applications to prioritize, guaranteeing diagnostic image quality, maintaining acceptable usability and workflow, and acquisition and reconstruction algorithm details. Application choice depends on which customer needs the vendor wants to address. The changing healthcare environment is putting cost and productivity pressure on healthcare providers. The improved scan efficiency of compressed sensing can help alleviate some of this pressure. Image quality is strongly influenced by image compressibility and acceleration factor, which must be appropriately limited. Usability and workflow concerns include reconstruction time and user interface friendliness and response. Reconstruction times are limited to about one minute for acceptable workflow. The user interface should be designed to optimize workflow and minimize additional customer training. Algorithm

  1. MRI Image Processing Based on Fractal Analysis

    PubMed

    Marusina, Mariya Y; Mochalina, Alexandra P; Frolova, Ekaterina P; Satikov, Valentin I; Barchuk, Anton A; Kuznetcov, Vladimir I; Gaidukov, Vadim S; Tarakanov, Segrey A

    2017-01-01

    Background: Cancer is one of the most common causes of human mortality, with about 14 million new cases and 8.2 million deaths reported in in 2012. Early diagnosis of cancer through screening allows interventions to reduce mortality. Fractal analysis of medical images may be useful for this purpose. Materials and Methods: In this study, we examined magnetic resonance (MR) images of healthy livers and livers containing metastases from colorectal cancer. The fractal dimension and the Hurst exponent were chosen as diagnostic features for tomographic imaging using Image J software package for image processings FracLac for applied for fractal analysis with a 120x150 pixel area. Calculations of the fractal dimensions of pathological and healthy tissue samples were performed using the box-counting method. Results: In pathological cases (foci formation), the Hurst exponent was less than 0.5 (the region of unstable statistical characteristics). For healthy tissue, the Hurst index is greater than 0.5 (the zone of stable characteristics). Conclusions: The study indicated the possibility of employing fractal rapid analysis for the detection of focal lesions of the liver. The Hurst exponent can be used as an important diagnostic characteristic for analysis of medical images.

  2. Image segmentation and 3D visualization for MRI mammography

    NASA Astrophysics Data System (ADS)

    Li, Lihua; Chu, Yong; Salem, Angela F.; Clark, Robert A.

    2002-05-01

    MRI mammography has a number of advantages, including the tomographic, and therefore three-dimensional (3-D) nature, of the images. It allows the application of MRI mammography to breasts with dense tissue, post operative scarring, and silicon implants. However, due to the vast quantity of images and subtlety of difference in MR sequence, there is a need for reliable computer diagnosis to reduce the radiologist's workload. The purpose of this work was to develop automatic breast/tissue segmentation and visualization algorithms to aid physicians in detecting and observing abnormalities in breast. Two segmentation algorithms were developed: one for breast segmentation, the other for glandular tissue segmentation. In breast segmentation, the MRI image is first segmented using an adaptive growing clustering method. Two tracing algorithms were then developed to refine the breast air and chest wall boundaries of breast. The glandular tissue segmentation was performed using an adaptive thresholding method, in which the threshold value was spatially adaptive using a sliding window. The 3D visualization of the segmented 2D slices of MRI mammography was implemented under IDL environment. The breast and glandular tissue rendering, slicing and animation were displayed.

  3. The role of susceptibility weighted imaging in functional MRI.

    PubMed

    Haacke, E Mark; Ye, Yongquan

    2012-08-15

    The development of functional brain magnetic resonance imaging (fMRI) has been a boon for neuroscientists and radiologists alike. It provides for fundamental information on brain function and better diagnostic tools to study disease. In this paper, we will review some of the early concepts in high resolution gradient echo imaging with a particular emphasis on susceptibility weighted imaging (SWI) and MR angiography (MRA). We begin with the history of our own experience in this area, followed by a discussion of the role of high resolution in studying the vasculature of the brain and how this relates to the BOLD (blood oxygenation level dependent) signal. We introduce the role of SWI and susceptibility mapping (SWIM) in fMRI and close with recommendations for future high resolution experiments.

  4. [Brain development of infant and MRI by diffusion tensor imaging].

    PubMed

    Dubois, J; Dehaene-Lambertz, G; Mangin, J-F; Le Bihan, D; Hüppi, P S; Hertz-Pannier, L

    2012-01-01

    Studying how the brain develops and becomes functional is important to understand how the man has been able to develop specific cognitive abilities, and to comprehend the complexity of some developmental pathologies. Thanks to magnetic resonance imaging (MRI), it is now possible to image the baby's immature brain and to consider subtle correlations between the brain anatomical development and the early acquisition of cognitive functions. Dedicated methodologies for image acquisition and post-treatment must then be used because the size of cerebral structures and the image contrast are very different in comparison with the adult brain, and because the examination length is a major constraint. Two recent studies have evaluated the developing brain under an original perspective. The first one has focused on cortical folding in preterm newborns, from 6 to 8 months of gestational age, assessed with T2-weighted conventional MRI. The second study has mapped the organization and maturation of white matter fiber bundles in 1- to 4-month-old healthy infants with diffusion tensor imaging (DTI). Both studies have enabled to highlight spatio-temporal differences in the brain regions' maturation, as well as early anatomical asymmetries between cerebral hemispheres. These studies emphasize the potential of MRI to evaluate brain development compared with the infant's psychomotor acquisitions after birth.

  5. Lossless Compression on MRI Images Using SWT.

    PubMed

    Anusuya, V; Raghavan, V Srinivasa; Kavitha, G

    2014-10-01

    Medical image compression is one of the growing research fields in biomedical applications. Most medical images need to be compressed using lossless compression as each pixel information is valuable. With the wide pervasiveness of medical imaging applications in health-care settings and the increased interest in telemedicine technologies, it has become essential to reduce both storage and transmission bandwidth requirements needed for archival and communication of related data, preferably by employing lossless compression methods. Furthermore, providing random access as well as resolution and quality scalability to the compressed data has become of great utility. Random access refers to the ability to decode any section of the compressed image without having to decode the entire data set. The system proposes to implement a lossless codec using an entropy coder. 3D medical images are decomposed into 2D slices and subjected to 2D-stationary wavelet transform (SWT). The decimated coefficients are compressed in parallel using embedded block coding with optimized truncation of the embedded bit stream. These bit streams are decoded and reconstructed using inverse SWT. Finally, the compression ratio (CR) is evaluated to prove the efficiency of the proposal. As an enhancement, the proposed system concentrates on minimizing the computation time by introducing parallel computing on the arithmetic coding stage as it deals with multiple subslices.

  6. Imaging tumour motion for radiotherapy planning using MRI

    PubMed Central

    Kauczor, Hans-Ulrich; Plathow, Christian

    2006-01-01

    Novel technology has made dynamic magnetic resonance imaging (MRI) of lung motion and lung tumour mobility during continuous respiration feasible. This might be beneficial for planning of radiotherapy of lung tumours, especially when using high precision techniques. This paper describes the recent developments to analyze and visualize pulmonary nodules during continuous respiration using MRI. Besides recent dynamic two-dimensional approaches to quantify motion of pulmonary nodules during respiration novel three-dimensional techniques are presented. Beyond good correlation to pulmonary function tests MRI also provides regional information about differences between tumour-bearing and non-tumour bearing lung and the restrictive effects of radiotherapy as well as the compensation by the contralateral lung. PMID:17114068

  7. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    NASA Astrophysics Data System (ADS)

    Sinharay, Sanhita; Pagel, Mark D.

    2016-06-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection.

  8. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    PubMed Central

    Sinharay, Sanhita; Pagel, Mark D.

    2016-01-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630

  9. Idiopathic granulomatous mastitis: magnetic resonance imaging findings with diffusion MRI.

    PubMed

    Aslan, Hulya; Pourbagher, Aysin; Colakoglu, Tamer

    2016-07-01

    Idiopathic granulomatous mastitis (IGM) is a rare benign breast disease with unknown etiology which can mimic breast carcinoma, both clinically and radiologically. Magnetic resonance imaging (MRI) findings of IGM have been previously described; however there is no study evaluating diffusion-weighted MRI findings of IGM. To analyze conventional, dynamic contrast-enhanced, and diffusion-weighted MRI signal characteristics of IGM by comparing it with the contralateral normal breast parenchyma. A total of 39 patients were included in the study. On dynamic contrast-enhanced MRI, the distribution and enhancement patterns of the lesions were evaluated. We also detected the frequencies of involving quadrants, retroareolar involvement, accompanying abscess, and skin edema. T2-weighted (T2W) and STIR signal intensities and both mean and minimum apparent diffusion coefficient (ADC) values were compared with the contralateral normal parenchyma. IGM showed significantly lower mean and minimum ADC values when compared with the normal parenchyma. Signal intensities on T2W and STIR sequences of the lesion were significantly higher than the normal parenchyma. On dynamic contrast-enhanced MRI, 7.7% of the patients had mass-like contrast enhancement, 92.3% of the patients had non-mass-like contrast enhancement. Abscess was positive in 33.3% of the patients. As a result, IGM showed commonly non-mass-like lesions with restricted diffusion. Although it is a benign pathology, it may show clustered ring-like enhancement like malignant lesions. © The Foundation Acta Radiologica 2015.

  10. Gas Phase UTE MRI of Propane and Propene

    PubMed Central

    Kovtunov, Kirill V.; Romanov, Alexey S.; Salnikov, Oleg G.; Barskiy, Danila A.; Chekmenev, Eduard Y.; Koptyug, Igor V.

    2016-01-01

    1H MRI of gases can potentially enable functional lung imaging to probe gas ventilation and other functions. In this work, 1H MR images of hyperpolarized and thermally polarized propane gas were obtained using UTE (ultrashort echo time) pulse sequence. A 2D image of thermally polarized propane gas with ~0.9×0.9 mm2 spatial resolution was obtained in less than 2 seconds, demonstrating that even non-hyperpolarized hydrocarbon gases can be successfully utilized for conventional proton MRI. The experiments were also performed with hyperpolarized propane gas and demonstrated acquisition of high-resolution multi-slice FLASH 2D images in ca. 510 s and non slice-selective 2D UTE MRI images in ca. 2 s. The UTE approach adopted in this study can be potentially used for medical lung imaging. Furthermore, the possibility to combine UTE with selective suppression of 1H signals from one of the two gases in a mixture is demonstrated in this MRI study. The latter can be useful for visualizing industrially important processes where several gases may be present, e.g., gas-solid catalytic reactions. PMID:27478870

  11. Renal compartment segmentation in DCE-MRI images.

    PubMed

    Yang, Xin; Le Minh, Hung; Tim Cheng, Kwang-Ting; Sung, Kyung Hyun; Liu, Wenyu

    2016-08-01

    Renal compartment segmentation from Dynamic Contrast-Enhanced MRI (DCE-MRI) images is an important task for functional kidney evaluation. Despite advancement in segmentation methods, most of them focus on segmenting an entire kidney on CT images, there still lacks effective and automatic solutions for accurate segmentation of internal renal structures (i.e. cortex, medulla and renal pelvis) from DCE-MRI images. In this paper, we introduce a method for renal compartment segmentation which can robustly achieve high segmentation accuracy for a wide range of DCE-MRI data, and meanwhile requires little manual operations and parameter settings. The proposed method consists of five main steps. First, we pre-process the image time series to reduce the motion artifacts caused by the movement of the patients during the scans and enhance the kidney regions. Second, the kidney is segmented as a whole based on the concept of Maximally Stable Temporal Volume (MSTV). The proposed MSTV detects anatomical structures that are homogeneous in the spatial domain and stable in terms of temporal dynamics. MSTV-based kidney segmentation is robust to noises and does not require a training phase. It can well adapt to kidney shape variations caused by renal dysfunction. Third, voxels in the segmented kidney are described by principal components (PCs) to remove temporal redundancy and noises. And then k-means clustering of PCs is applied to separate voxels into multiple clusters. Fourth, the clusters are automatically labeled as cortex, medulla and pelvis based on voxels' geometric locations and intensity distribution. Finally, an iterative refinement method is introduced to further remove noises in each segmented compartment. Experiments on 14 real clinical kidney datasets and 12 synthetic dataset demonstrate that results produced by our method match very well with those segmented manually and the performance of our method is superior to the other five existing methods.

  12. Linking MRI Postprocessing with Magnetic Source Imaging in MRI-negative Epilepsy

    PubMed Central

    Wang, Zhong I.; Alexopoulos, Andreas V.; Jones, Stephen E.; Najm, Imad M.; Ristic, Aleksandar; Wong, Chong; Prayson, Richard; Schneider, Felix; Kakisaka, Yosuke; Wang, Shuang; Bingaman, William; Gonzalez-Martinez, Jorge A.; Burgess, Richard C.

    2015-01-01

    Objective MRI-negative (MRI–) pharmacoresistant focal epilepsy (PFE) patients are most challenging for epilepsy surgical management. This study utilizes a voxel-based MRI postprocessing technique, implemented using a morphometric analysis program (MAP), aiming to facilitate detection of subtle focal cortical dysplasia (FCD) in MRI– patients. Furthermore, the study examines the concordance between MAP-identified regions and localization from magnetic source imaging (MSI). Methods Included in this retrospective study were 25 MRI– surgical patients. MAP was performed on T1-weighted MRI, with comparison to a normal database. The pertinence of MAP+ areas was confirmed by MSI, surgical outcome and pathology. Analyses of MAP and MSI were performed blindly from patients' clinical information and independently from each other. Results The detection rate of subtle changes by MAP was 48% (12/25). Once MAP+ areas were resected, patients were more likely to be seizure-free (p = 0.02). There were no false positives in the 25 age-matched normal controls. Seven patients had a concordant MSI correlate. Patients in whom a concordant area was identified by both MAP and MSI had a significantly higher chance of achieving a seizure-free outcome following complete resection of this area (p = 0.008). In the 9 resected MAP+ areas, pathology revealed FCD type IA in 7 and type IIB in 2. Interpretation MAP shows promise in identifying subtle FCD abnormalities and increasing the diagnostic yield of conventional MRI visual analysis in presurgical evaluation of PFE. Concordant MRI postprocessing and MSI analyses may lead to the noninvasive identification of a structurally and electrically abnormal subtle lesion that can be surgically targeted. PMID:24777960

  13. Photo-magnetic imaging: resolving optical contrast at MRI resolution

    NASA Astrophysics Data System (ADS)

    Lin, Yuting; Gao, Hao; Thayer, David; Luk, Alex L.; Gulsen, Gultekin

    2013-06-01

    In this paper, we establish the mathematical framework of a novel imaging technique, namely photo-magnetic imaging (PMI). PMI uses a laser to illuminate biological tissues and measure the induced temperature variations using magnetic resonance imaging (MRI). PMI overcomes the limitation of conventional optical imaging and allows imaging of the optical contrast at MRI spatial resolution. The image reconstruction for PMI, using a finite-element-based algorithm with an iterative approach, is presented in this paper. The quantitative accuracy of PMI is investigated for various inclusion sizes, depths and absorption values. Then, a comparison between conventional diffuse optical tomography (DOT) and PMI is carried out to illustrate the superior performance of PMI. An example is presented showing that two 2 mm diameter inclusions embedded 4.5 mm deep and located side by side in a 25 mm diameter circular geometry medium are recovered as a single 6 mm diameter object with DOT. However, these two objects are not only effectively resolved with PMI, but their true concentrations are also recovered successfully.

  14. Photo-magnetic Imaging: Resolving Optical Contrast at MRI resolution

    PubMed Central

    Lin, Yuting; Gao, Hao; Thayer, David; Luk, Alex L.; Gulsen, Gultekin

    2014-01-01

    In this paper, we establish the mathematical framework of a novel imaging technique, namely Photo-magnetic Imaging (PMI). PMI uses laser to illuminate biological tissues and measure the induced temperature variations using magnetic resonance imaging (MRI). PMI overcomes the limitation of conventional optical imaging and allows imaging of optical contrast at MRI spatial resolution. The image reconstruction for PMI, using a finite element-based algorithm with iterative approach, is presented in this paper. The quantitative accuracy of PMI is investigated for various inclusion sizes, depths and absorption values. Then, a comparison between conventional Diffuse Optical Tomography (DOT) and PMI is carried out to illustrate the superior performance of PMI. An example is presented showing that two 2 mm diameter inclusions embedded 4.5 mm deep and located side by side in a 25 mm diameter circular geometry medium is recovered as a single 6 mm diameter object with DOT. However, these two objects are not only effectively resolved with PMI, but their true concentration are also recovered successfully. PMID:23640084

  15. Diffeomorphic image registration of diffusion MRI using spherical harmonics.

    PubMed

    Geng, Xiujuan; Ross, Thomas J; Gu, Hong; Shin, Wanyong; Zhan, Wang; Chao, Yi-Ping; Lin, Ching-Po; Schuff, Norbert; Yang, Yihong

    2011-03-01

    Nonrigid registration of diffusion magnetic resonance imaging (MRI) is crucial for group analyses and building white matter and fiber tract atlases. Most current diffusion MRI registration techniques are limited to the alignment of diffusion tensor imaging (DTI) data. We propose a novel diffeomorphic registration method for high angular resolution diffusion images by mapping their orientation distribution functions (ODFs). ODFs can be reconstructed using q-ball imaging (QBI) techniques and represented by spherical harmonics (SHs) to resolve intra-voxel fiber crossings. The registration is based on optimizing a diffeomorphic demons cost function. Unlike scalar images, deforming ODF maps requires ODF reorientation to maintain its consistency with the local fiber orientations. Our method simultaneously reorients the ODFs by computing a Wigner rotation matrix at each voxel, and applies it to the SH coefficients during registration. Rotation of the coefficients avoids the estimation of principal directions, which has no analytical solution and is time consuming. The proposed method was validated on both simulated and real data sets with various metrics, which include the distance between the estimated and simulated transformation fields, the standard deviation of the general fractional anisotropy and the directional consistency of the deformed and reference images. The registration performance using SHs with different maximum orders were compared using these metrics. Results show that the diffeomorphic registration improved the affine alignment, and registration using SHs with higher order SHs further improved the registration accuracy by reducing the shape difference and improving the directional consistency of the registered and reference ODF maps.

  16. [Reformatting 3-dimensional medical images. Application to MRI and scanners].

    PubMed

    Cuchet, E; Lambert, F; Derosier, C

    1994-04-01

    Several kinds of images, each giving a different information, are now available to radiologists. The MRI images have excellent contrast resolution and enable soft tissues to be differentiated, but they do not distinguish structures with low water content, notably air and bone, whereas these are easily recognized by CT. The aim of this study is to present a simple, entirely radiologist-supervised method to examine the radiological data of any patient, obtained from several kinds of images. MRI is performed using a GEMS Signa, 1.5 Tesla, 4.9 version magnet. Acquisitions are T1- or T2-weighted spin-echo or gradient sequences, with a 256 or 512 matrix, on axial sections, with of without contrast injection. CT is performed using a GEMS Hi Speed scanner. Acquisitions are obtained on a 512 matrix and with a "Soft" or "Bone" filter, without contrast injection. The two series of sections are transmitted, through an Etherne network, to a Sun console where the two corresponding volumes are reconstructed on a GEMS Voxtol by means of a 3-dimensional soft ware for image treatment. At least 3 couples define the rotation and translation required for one of the two volumes to reset it in the guide mark of the other. The soft ware then looks for the best transformation, in terms of least square, between the two 3-dimensional volumes. The calculation demands only a few seconds. One of the two objects is then recalculated in the guide mark of the other. The cursor positioned by the user on any point of the object is linked to a second cursor which will automatically position itself on the corresponding point of the other object. The accuracy obtained (about one millimeter) is specified by the soft ware which indicates how to improve resetting. In addition to its teaching value, this superimposition image can help in the diagnosis and can be used for surgical stimulation because it is possible to mix the images. This mixing gives access to a new type of imaging, since the images spared

  17. Designing Image Operators for MRI-PET Image Fusion of the Brain

    SciTech Connect

    Marquez, Jorge; Gastelum, Alfonso; Padilla, Miguel A.

    2006-09-08

    Our goal is to obtain images combining in a useful and precise way the information from 3D volumes of medical imaging sets. We address two modalities combining anatomy (Magnetic Resonance Imaging or MRI) and functional information (Positron Emission Tomography or PET). Commercial imaging software offers image fusion tools based on fixed blending or color-channel combination of two modalities, and color Look-Up Tables (LUTs), without considering the anatomical and functional character of the image features. We used a sensible approach for image fusion taking advantage mainly from the HSL (Hue, Saturation and Luminosity) color space, in order to enhance the fusion results. We further tested operators for gradient and contour extraction to enhance anatomical details, plus other spatial-domain filters for functional features corresponding to wide point-spread-function responses in PET images. A set of image-fusion operators was formulated and tested on PET and MRI acquisitions.

  18. Functional MRI studies of human vision on a clinical imager

    SciTech Connect

    George, J.S.; Lewine, J.D.; Aine, C.J.; van Hulsteyn, D.; Wood, C.C. ); Sanders, J.; Maclin, E. ); Belliveau, J.W. ); Caprihan, A. )

    1992-01-01

    During the past decade, Magnetic Resonance Imaging (MRI) has become the method of choice for imaging the anatomy of the human brain. Recently, Belliveau and colleagues have reported the use of echo planar magnetic resonance imaging (EPI) to image patterns of neural activity. Here, we report functional MR imaging in response to visual stimulation without the use of contrast agents, and without the extensive hardware modifications required for EPI. Regions of activity were observed near the expected locations of V1, V2 and possibly V3 and another active region was observed near the parietal-occipital sulcus on the superior surface of the cerebrum. These locations are consistent with sources observed in neuromagnetic studies of the human visual response.

  19. Functional MRI studies of human vision on a clinical imager

    SciTech Connect

    George, J.S.; Lewine, J.D.; Aine, C.J.; van Hulsteyn, D.; Wood, C.C.; Sanders, J.; Maclin, E.; Belliveau, J.W.; Caprihan, A.

    1992-09-01

    During the past decade, Magnetic Resonance Imaging (MRI) has become the method of choice for imaging the anatomy of the human brain. Recently, Belliveau and colleagues have reported the use of echo planar magnetic resonance imaging (EPI) to image patterns of neural activity. Here, we report functional MR imaging in response to visual stimulation without the use of contrast agents, and without the extensive hardware modifications required for EPI. Regions of activity were observed near the expected locations of V1, V2 and possibly V3 and another active region was observed near the parietal-occipital sulcus on the superior surface of the cerebrum. These locations are consistent with sources observed in neuromagnetic studies of the human visual response.

  20. Complete fourier direct magnetic resonance imaging (CFD-MRI) for diffusion MRI

    PubMed Central

    Özcan, Alpay

    2013-01-01

    The foundation for an accurate and unifying Fourier-based theory of diffusion weighted magnetic resonance imaging (DW–MRI) is constructed by carefully re-examining the first principles of DW–MRI signal formation and deriving its mathematical model from scratch. The derivations are specifically obtained for DW–MRI signal by including all of its elements (e.g., imaging gradients) using complex values. Particle methods are utilized in contrast to conventional partial differential equations approach. The signal is shown to be the Fourier transform of the joint distribution of number of the magnetic moments (at a given location at the initial time) and magnetic moment displacement integrals. In effect, the k-space is augmented by three more dimensions, corresponding to the frequency variables dual to displacement integral vectors. The joint distribution function is recovered by applying the Fourier transform to the complete high-dimensional data set. In the process, to obtain a physically meaningful real valued distribution function, phase corrections are applied for the re-establishment of Hermitian symmetry in the signal. Consequently, the method is fully unconstrained and directly presents the distribution of displacement integrals without any assumptions such as symmetry or Markovian property. The joint distribution function is visualized with isosurfaces, which describe the displacement integrals, overlaid on the distribution map of the number of magnetic moments with low mobility. The model provides an accurate description of the molecular motion measurements via DW–MRI. The improvement of the characterization of tissue microstructure leads to a better localization, detection and assessment of biological properties such as white matter integrity. The results are demonstrated on the experimental data obtained from an ex vivo baboon brain. PMID:23596401

  1. Wavelet-space correlation imaging for high-speed MRI without motion monitoring or data segmentation.

    PubMed

    Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles

    2015-12-01

    This study aims to (i) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and (ii) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called "wavelet-space correlation imaging", is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI, and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. © 2014 Wiley Periodicals, Inc.

  2. Adaptive image guided brachytherapy for cervical cancer: A combined MRI-/CT-planning technique with MRI only at first fraction

    PubMed Central

    Nesvacil, Nicole; Pötter, Richard; Sturdza, Alina; Hegazy, Neamat; Federico, Mario; Kirisits, Christian

    2013-01-01

    Purpose To investigate and test the feasibility of adaptive 3D image based BT planning for cervix cancer patients in settings with limited access to MRI, using a combination of MRI for the first BT fraction and planning of subsequent fractions on CT. Material and methods For 20 patients treated with EBRT and HDR BT with tandem/ring applicators two sets of treatment plans were compared. Scenario one is based on the “gold standard” with individual MRI-based treatment plans (applicator reconstruction, target contouring and dose optimization) for two BT applications with two fractions each. Scenario two is based on one initial MRI acquisition with an applicator in place for the planning of the two fractions of the first BT application and reuse of the target contour delineated on MRI for subsequent planning of the second application on CT. Transfer of the target from MRI of the first application to the CT of the second one was accomplished by use of an automatic applicator-based image registration procedure. Individual dose optimization of the second BT application was based on the transferred MRI target volume and OAR structures delineated on CT. DVH parameters were calculated for transferred target structures (virtual dose from MRI/CT plan) and CT-based OAR. The quality of the MRI/CT combination method was investigated by evaluating the CT-based dose distributions on MRI-based target and OAR contours of the same application (real dose from MRI/CT plan). Results The mean difference between the MRI based target volumes (HR CTVMRI2) and the structures transferred from MRI to CT (HR CTVCT2) was −1.7 ± 6.6 cm3 (−2.9 ± 20.4%) with a median of −0.7 cm3. The mean difference between the virtual and the real total D90, based on the MRI/CT combination technique was −1.5 ± 4.3 Gy EQD2. This indicates a small systematic underestimation of the real D90. Conclusions A combination of MRI for first fraction and subsequent CT based planning is feasible and easy

  3. Adaptive image guided brachytherapy for cervical cancer: a combined MRI-/CT-planning technique with MRI only at first fraction.

    PubMed

    Nesvacil, Nicole; Pötter, Richard; Sturdza, Alina; Hegazy, Neamat; Federico, Mario; Kirisits, Christian

    2013-04-01

    To investigate and test the feasibility of adaptive 3D image based BT planning for cervix cancer patients in settings with limited access to MRI, using a combination of MRI for the first BT fraction and planning of subsequent fractions on CT. For 20 patients treated with EBRT and HDR BT with tandem/ring applicators two sets of treatment plans were compared. Scenario one is based on the "gold standard" with individual MRI-based treatment plans (applicator reconstruction, target contouring and dose optimization) for two BT applications with two fractions each. Scenario two is based on one initial MRI acquisition with an applicator in place for the planning of the two fractions of the first BT application and reuse of the target contour delineated on MRI for subsequent planning of the second application on CT. Transfer of the target from MRI of the first application to the CT of the second one was accomplished by use of an automatic applicator-based image registration procedure. Individual dose optimization of the second BT application was based on the transferred MRI target volume and OAR structures delineated on CT. DVH parameters were calculated for transferred target structures (virtual dose from MRI/CT plan) and CT-based OAR. The quality of the MRI/CT combination method was investigated by evaluating the CT-based dose distributions on MRI-based target and OAR contours of the same application (real dose from MRI/CT plan). The mean difference between the MRI based target volumes (HR CTVMRI2) and the structures transferred from MRI to CT (HR CTVCT2) was -1.7±6.6 cm(3) (-2.9±20.4%) with a median of -0.7 cm(3). The mean difference between the virtual and the real total D90, based on the MRI/CT combination technique was -1.5±4.3 Gy EQD2. This indicates a small systematic underestimation of the real D90. A combination of MRI for first fraction and subsequent CT based planning is feasible and easy when automatic applicator-based image registration and target transfer

  4. A new paramagnetically shifted imaging probe for MRI

    PubMed Central

    Senanayake, P. Kanthi; Rogers, Nicola J.; Finney, Katie‐Louise N.A.; Harvey, Peter; Funk, Alexander M.; Wilson, J. Ian; O'Hogain, Dara; Maxwell, Ross; Parker, David

    2016-01-01

    Purpose To develop and characterize a new paramagnetic contrast agent for molecular imaging by MRI. Methods A contrast agent was developed for direct MRI detection through the paramagnetically shifted proton magnetic resonances of two chemically equivalent tert‐butyl reporter groups within a dysprosium(III) complex. The complex was characterized in phantoms and imaged in physiologically intact mice at 7 Tesla (T) using three‐dimensional (3D) gradient echo and spectroscopic imaging (MRSI) sequences to measure spatial distribution and signal frequency. Results The reporter protons reside ∼6.5 Å from the paramagnetic center, resulting in fast T 1 relaxation (T 1 = 8 ms) and a large paramagnetic frequency shift exceeding 60 ppm. Fast relaxation allowed short scan repetition times with high excitation flip angle, resulting in high sensitivity. The large dipolar shift allowed direct frequency selective excitation and acquisition of the dysprosium(III) complex, independent of the tissue water signal. The biokinetics of the complex were followed in vivo with a temporal resolution of 62 s following a single, low‐dose intravenous injection. The lower concentration limit for detection was ∼23 μM. Through MRSI, the temperature dependence of the paramagnetic shift (0.28 ppm.K−1) was exploited to examine tissue temperature variation. Conclusions These data demonstrate a new MRI agent with the potential for physiological monitoring by MRI. Magn Reson Med 77:1307–1317, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26922918

  5. In vivo prostate cancer detection and grading using restriction spectrum imaging-MRI.

    PubMed

    McCammack, K C; Kane, C J; Parsons, J K; White, N S; Schenker-Ahmed, N M; Kuperman, J M; Bartsch, H; Desikan, R S; Rakow-Penner, R A; Adams, D; Liss, M A; Mattrey, R F; Bradley, W G; Margolis, D J A; Raman, S S; Shabaik, A; Dale, A M; Karow, D S

    2016-06-01

    Magnetic resonance imaging (MRI) is emerging as a robust, noninvasive method for detecting and characterizing prostate cancer (PCa), but limitations remain in its ability to distinguish cancerous from non-cancerous tissue. We evaluated the performance of a novel MRI technique, restriction spectrum imaging (RSI-MRI), to quantitatively detect and grade PCa compared with current standard-of-care MRI. In a retrospective evaluation of 33 patients with biopsy-proven PCa who underwent RSI-MRI and standard MRI before radical prostatectomy, receiver-operating characteristic (ROC) curves were performed for RSI-MRI and each quantitative MRI term, with area under the ROC curve (AUC) used to compare each term's ability to differentiate between PCa and normal prostate. Spearman rank-order correlations were performed to assess each term's ability to predict PCa grade in the radical prostatectomy specimens. RSI-MRI demonstrated superior differentiation of PCa from normal tissue, with AUC of 0.94 and 0.85 for RSI-MRI and conventional diffusion MRI, respectively (P=0.04). RSI-MRI also demonstrated superior performance in predicting PCa aggressiveness, with Spearman rank-order correlation coefficients of 0.53 (P=0.002) and -0.42 (P=0.01) for RSI-MRI and conventional diffusion MRI, respectively, with tumor grade. RSI-MRI significantly improves upon current noninvasive PCa imaging and may potentially enhance its diagnosis and characterization.

  6. In vivo prostate cancer detection and grading using restriction spectrum imaging-MRI

    PubMed Central

    McCammack, KC; Kane, CJ; Parsons, JK; White, NS; Schenker-Ahmed, NM; Kuperman, JM; Bartsch, H; Desikan, RS; Rakow-Penner, RA; Adams, D; Liss, MA; Mattrey, RF; Bradley, WG; Margolis, DJA; Raman, SS; Shabaik, A; Dale, AM; Karow, DS

    2017-01-01

    BACKGROUND Magnetic resonance imaging (MRI) is emerging as a robust, noninvasive method for detecting and characterizing prostate cancer (PCa), but limitations remain in its ability to distinguish cancerous from non-cancerous tissue. We evaluated the performance of a novel MRI technique, restriction spectrum imaging (RSI-MRI), to quantitatively detect and grade PCa compared with current standard-of-care MRI. METHODS In a retrospective evaluation of 33 patients with biopsy-proven PCa who underwent RSI-MRI and standard MRI before radical prostatectomy, receiver-operating characteristic (ROC) curves were performed for RSI-MRI and each quantitative MRI term, with area under the ROC curve (AUC) used to compare each term’s ability to differentiate between PCa and normal prostate. Spearman rank-order correlations were performed to assess each term’s ability to predict PCa grade in the radical prostatectomy specimens. RESULTS RSI-MRI demonstrated superior differentiation of PCa from normal tissue, with AUC of 0.94 and 0.85 for RSI-MRI and conventional diffusion MRI, respectively (P = 0.04). RSI-MRI also demonstrated superior performance in predicting PCa aggressiveness, with Spearman rank-order correlation coefficients of 0.53 (P = 0.002) and − 0.42 (P = 0.01) for RSI-MRI and conventional diffusion MRI, respectively, with tumor grade. CONCLUSIONS RSI-MRI significantly improves upon current noninvasive PCa imaging and may potentially enhance its diagnosis and characterization. PMID:26754261

  7. Diffeomorphic Image Registration of Diffusion MRI Using Spherical Harmonics

    PubMed Central

    Geng, Xiujuan; Ross, Thomas J.; Gu, Hong; Shin, Wanyong; Zhan, Wang; Chao, Yi-Ping; Lin, Ching-Po; Schuff, Norbert; Yang, Yihong

    2013-01-01

    Non-rigid registration of diffusion MRI is crucial for group analyses and building white matter and fiber tract atlases. Most current diffusion MRI registration techniques are limited to the alignment of diffusion tensor imaging (DTI) data. We propose a novel diffeomorphic registration method for high angular resolution diffusion images by mapping their orientation distribution functions (ODFs). ODFs can be reconstructed using q-ball imaging (QBI) techniques and represented by spherical harmonics (SHs) to resolve intra-voxel fiber crossings. The registration is based on optimizing a diffeomorphic demons cost function. Unlike scalar images, deforming ODF maps requires ODF reorientation to maintain its consistency with the local fiber orientations. Our method simultaneously reorients the ODFs by computing a Wigner rotation matrix at each voxel, and applies it to the SH coefficients during registration. Rotation of the coefficients avoids the estimation of principal directions, which has no analytical solution and is time consuming. The proposed method was validated on both simulated and real data sets with various metrics, which include the distance between the estimated and simulated transformation fields, the standard deviation of the general fractional anisotropy and the directional consistency of the deformed and reference images. The registration performance using SHs with different maximum orders were compared using these metrics. Results show that the diffeomorphic registration improved the affine alignment, and registration using SHs with higher order SHs further improved the registration accuracy by reducing the shape difference and improving the directional consistency of the registered and reference ODF maps. PMID:21134814

  8. Development of a calibration phantom set for MRI temperature imaging system quality assurance.

    PubMed

    Xin, Xuegang; Han, Jijun; Wang, Di; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan

    2012-06-01

    Magnetic resonance imaging (MRI) temperature imaging systems need to be routinely calibrated to guarantee accurate temperature results and qualified MRI. No independent physical temperature calibration phantom (TCP) set is currently available. An economical TCP set was developed to routinely ensure the quality of MRI temperature imaging system. The novel TCP was constructed using a heating unit, temperature sensor, and MRI phantom liquid. A specialized heating unit was developed using carbon fibers. The TCP set design was an integration of the TCP, temperature measurement unit, display unit, and control unit. The proposed MRI calibration kit, which is a combination of the TCP set and standard MRI phantom, was used in the MRI thermometry calibration and MRI quality calibration. The TCP set provided an efficient, accurate, and homogeneous temperature map as the reference standard temperature for calibration. Accuracy and heating efficiency of the TCP set were 1°C and 1°C/minute, respectively. Calibration of the MRI thermometry and MRI quality were implemented successfully. The proposed TCP set is completely compatible with the MRI system and can be used to calibrate MRI thermometry and MRI quality to ensure the quality performance of the MRI temperature imaging system. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.

  9. Wavelet-space Correlation Imaging for High-speed MRI without Motion Monitoring or Data Segmentation

    PubMed Central

    Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles

    2014-01-01

    Purpose This study aims to 1) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and 2) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Methods Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called “wavelet-space correlation imaging”, is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Results Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Conclusion Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. PMID:25470230

  10. Combined Contrast-Enhanced MRI and Fluorescence Molecular Tomography for Breast Tumor Imaging

    DTIC Science & Technology

    2009-03-01

    into a small-diameter radio frequency rf pickup coil for imaging small animals a 3T MRI . II. SYSTEM DESIGN The parallel spectrometer-based tomographic...attached to a commercial 3T MRI breast coil MRI Devices, Waukesha, WI, depicted in Fig. 6. The current design requires manual fiber position- ing using...accomplishments of this project was the design and development of a parallel spectrometer- based tomographic imaging system which couples into a Philips 3T MRI

  11. Nanomedicine strategies for molecular targets with MRI and optical imaging

    PubMed Central

    Pan, Dipanjan; Caruthers, Shelton D; Chen, Junjie; Winter, Patrick M; SenPan, Angana; Schmieder, Anne H; Wickline, Samuel A

    2010-01-01

    The science of ‘theranostics’ plays a crucial role in personalized medicine, which represents the future of patient management. Over the last decade an increasing research effort has focused on the development of nanoparticle-based molecular-imaging and drug-delivery approaches, emerging as a multidisciplinary field that shows promise in understanding the components, processes, dynamics and therapies of a disease at a molecular level. The potential of nanometer-sized agents for early detection, diagnosis and personalized treatment of diseases is extraordinary. They have found applications in almost all clinically relevant biomedical imaging modality. In this review, a number of these approaches will be presented with a particular emphasis on MRI and optical imaging-based techniques. We have discussed both established molecular-imaging approaches and recently developed innovative strategies, highlighting the seminal studies and a number of successful examples of theranostic nanomedicine, especially in the areas of cardiovascular and cancer therapy. PMID:20485473

  12. Image quality transfer and applications in diffusion MRI.

    PubMed

    Alexander, Daniel C; Zikic, Darko; Ghosh, Aurobrata; Tanno, Ryutaro; Wottschel, Viktor; Zhang, Jiaying; Kaden, Enrico; Dyrby, Tim B; Sotiropoulos, Stamatios N; Zhang, Hui; Criminisi, Antonio

    2017-03-03

    This paper introduces a new computational imaging technique called image quality transfer (IQT). IQT uses machine learning to transfer the rich information available from one-off experimental medical imaging devices to the abundant but lower-quality data from routine acquisitions. The procedure uses matched pairs to learn mappings from low-quality to corresponding high-quality images. Once learned, these mappings then augment unseen low quality images, for example by enhancing image resolution or information content. Here, we demonstrate IQT using a simple patch-regression implementation and the uniquely rich diffusion MRI data set from the human connectome project (HCP). Results highlight potential benefits of IQT in both brain connectivity mapping and microstructure imaging. In brain connectivity mapping, IQT reveals, from standard data sets, thin connection pathways that tractography normally requires specialised data to reconstruct. In microstructure imaging, IQT shows potential in estimating, from standard "single-shell" data (one non-zero b-value), maps of microstructural parameters that normally require specialised multi-shell data. Further experiments show strong generalisability, highlighting IQT's benefits even when the training set does not directly represent the application domain. The concept extends naturally to many other imaging modalities and reconstruction problems.

  13. Ultrafast inverse imaging techniques for fMRI

    PubMed Central

    Lin, Fa-Hsuan; Tsai, Kevin W.K.; Chu, Ying-Hua; Witzel, Thomas; Nummenmaa, Aapo; Raij, Tommi; Ahveninen, Jyrki; Kuo, Wen-Jui; Belliveau, John W.

    2012-01-01

    Inverse imaging (InI) supercharges the sampling rate of traditional functional MRI 10–100 fold at a cost of a moderate reduction in spatial resolution. The technique is inspired by similarities between multi-sensor magnetoencephalography (MEG) and highly parallel radio-frequency (RF) MRI detector arrays. Using presently available 32-channel head coils at 3T, InI can be sampled at 10 Hz and provides about 5-mm cortical spatial resolution with whole-brain coverage. Here we discuss the present applications of InI, as well as potential future challenges and opportunities in further improving its spatiotemporal resolution and sensitivity. InI may become a helpful tool for clinicians and neuroscientists for revealing the complex dynamics of brain functions during task-related and resting states. PMID:22285221

  14. Ultrafast inverse imaging techniques for fMRI.

    PubMed

    Lin, Fa-Hsuan; Tsai, Kevin W K; Chu, Ying-Hua; Witzel, Thomas; Nummenmaa, Aapo; Raij, Tommi; Ahveninen, Jyrki; Kuo, Wen-Jui; Belliveau, John W

    2012-08-15

    Inverse imaging (InI) supercharges the sampling rate of traditional functional MRI 10-100 fold at a cost of a moderate reduction in spatial resolution. The technique is inspired by similarities between multi-sensor magnetoencephalography (MEG) and highly parallel radio-frequency (RF) MRI detector arrays. Using presently available 32-channel head coils at 3T, InI can be sampled at 10 Hz and provides about 5-mm cortical spatial resolution with whole-brain coverage. Here we discuss the present applications of InI, as well as potential future challenges and opportunities in further improving its spatiotemporal resolution and sensitivity. InI may become a helpful tool for clinicians and neuroscientists for revealing the complex dynamics of brain functions during task-related and resting states.

  15. Whole-Body MRI in Children: Current Imaging Techniques and Clinical Applications

    PubMed Central

    2015-01-01

    Whole-body magnetic resonance imaging (MRI) is increasingly used in children to evaluate the extent and distribution of various neoplastic and non-neoplastic diseases. Not using ionizing radiation is a major advantage of pediatric whole-body MRI. Coronal and sagittal short tau inversion recovery imaging is most commonly used as the fundamental whole-body MRI protocol. Diffusion-weighted imaging and Dixon-based imaging, which has been recently incorporated into whole-body MRI, are promising pulse sequences, particularly for pediatric oncology. Other pulse sequences may be added to increase diagnostic capability of whole-body MRI. Of importance, the overall whole-body MRI examination time should be less than 30-60 minutes in children, regardless of the imaging protocol. Established and potentially useful clinical applications of pediatric whole-body MRI are described. PMID:26355493

  16. Whole-Body MRI in Children: Current Imaging Techniques and Clinical Applications.

    PubMed

    Goo, Hyun Woo

    2015-01-01

    Whole-body magnetic resonance imaging (MRI) is increasingly used in children to evaluate the extent and distribution of various neoplastic and non-neoplastic diseases. Not using ionizing radiation is a major advantage of pediatric whole-body MRI. Coronal and sagittal short tau inversion recovery imaging is most commonly used as the fundamental whole-body MRI protocol. Diffusion-weighted imaging and Dixon-based imaging, which has been recently incorporated into whole-body MRI, are promising pulse sequences, particularly for pediatric oncology. Other pulse sequences may be added to increase diagnostic capability of whole-body MRI. Of importance, the overall whole-body MRI examination time should be less than 30-60 minutes in children, regardless of the imaging protocol. Established and potentially useful clinical applications of pediatric whole-body MRI are described.

  17. Validation of the hypercapnic calibrated fMRI method using DOT-fMRI fusion imaging

    PubMed Central

    Yücel, Meryem A.; Evans, Karleyton C.; Selb, Juliette; Huppert, Theodore J.; Boas, David A.; Gagnon, Louis

    2014-01-01

    Calibrated functional Magnetic Resonance Imaging (fMRI) is a widely used method to investigate brain function in terms of physiological quantities such as the cerebral metabolic rate of oxygen (CMRO2). The first and one of the most common methods of fMRI calibration is hypercapnic calibration. This is achieved via simultaneous measures of blood-oxygenation-level dependent (BOLD) and the arterial spin labeling (ASL) signals during a functional task that evokes regional changes in CMRO2. A subsequent acquisition is then required during which the subject inhales carbon dioxide for short periods of time. A calibration constant, typically labeled M, is then estimated from the hypercapnic data and is subsequently used together with the BOLD-ASL recordings to compute evoked changes in CMRO2 during the functional task. The computation of M assumes a constant CMRO2 during the CO2 inhalation, an assumption that has been questioned since the origin of calibrated fMRI. In this study we used Diffuse Optical Tomography (DOT) together with BOLD and ASL – an alternative calibration method that does not require any gas manipulation and therefore no constant CMRO2 assumption - to cross-validate the estimation of M obtained from a traditional hypercapnic calibration. We found a high correlation between the M values (R=0.87, p<0.01) estimated using these two approaches. The findings serve to validate the hypercapnic fMRI calibration technique and suggest that the inter-subject variability routinely obtained for M is reproducible with an alternative method and might therefore reflect inter-subject physiological variability. PMID:25196509

  18. Current status of magnetic resonance imaging (MRI) and ultrasonography fusion software platforms for guidance of prostate biopsies.

    PubMed

    Logan, Jennifer K; Rais-Bahrami, Soroush; Turkbey, Baris; Gomella, Andrew; Amalou, Hayet; Choyke, Peter L; Wood, Bradford J; Pinto, Peter A

    2014-11-01

    Prostate MRI is currently the best diagnostic imaging method for detecting PCa. Magnetic resonance imaging (MRI)/ultrasonography (US) fusion allows the sensitivity and specificity of MRI to be combined with the real-time capabilities of transrectal ultrasonography (TRUS). Multiple approaches and techniques exist for MRI/US fusion and include direct 'in bore' MRI biopsies, cognitive fusion, and MRI/US fusion via software-based image coregistration platforms. © 2013 The Authors. BJU International © 2013 BJU International.

  19. Curvelet processing of MRI for local image enhancement.

    PubMed

    Tsai, Kunyu; Ma, Jianwei; Ye, Datian; Wu, Jian

    2012-01-01

    Magnetic resonance imaging provides very good contrast between different soft tissues; however, in some cases, this technique is not so suitable to image calcified structures like bones. The quality of images is often degraded by blur edges or noises, which makes it difficult to accurately identify bone structures. In this paper, we proposed a new curvelet preprocessing method for local image enhancement to especially improve the quality of spinal MRI. Our objective is to both sharpen boundaries and smoothen the intensity variation of the vertebra. In the first phase, we extract features through curvelet coefficients and the gradient of the original image, then we utilize fuzzy cluster method to classify the whole image scope into the 'edge' region and the 'nonedge' region. In the second phase, we locally sharpen or smoothen the image by adaptive adjustment of curvelet coefficients and Gaussian smoothing method in different subregions. To evaluate the effect of the preprocessing method, we examine the gradient of the image and its segmentation results as the assessments. The experiment results show that the feature extraction method is effective for classification and the vertebra performs higher contrast on boundaries and less noises after the enhancement, which indeed helps increase the accuracy of further segmentation. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Simultaneous Multiparametric PET/MRI with Silicon Photomultiplier PET and Ultra-High-Field MRI for Small-Animal Imaging.

    PubMed

    Ko, Guen Bae; Yoon, Hyun Suk; Kim, Kyeong Yun; Lee, Min Sun; Yang, Bo Yeun; Jeong, Jae Min; Lee, Dong Soo; Song, In Chan; Kim, Seok-Ki; Kim, Daehong; Lee, Jae Sung

    2016-08-01

    Visualization of biologic processes at molecular and cellular levels has revolutionized the understanding and treatment of human diseases. However, no single biomedical imaging modality provides complete information, resulting in the emergence of multimodal approaches. Combining state-of-the-art PET and MRI technologies without loss of system performance and overall image quality can provide opportunities for new scientific and clinical innovations. Here, we present a multiparametric PET/MR imager based on a small-animal dedicated, high-performance, silicon photomultiplier (SiPM) PET system and a 7-T MR scanner. A SiPM-based PET insert that has the peak sensitivity of 3.4% and center volumetric resolution of 1.92/0.53 mm(3) (filtered backprojection/ordered-subset expectation maximization) was developed. The SiPM PET insert was placed between the mouse body transceiver coil and gradient coil of a 7-T small-animal MRI scanner for simultaneous PET/MRI. Mutual interference between the MRI and SiPM PET systems was evaluated using various MR pulse sequences. A cylindric corn oil phantom was scanned to assess the effects of the SiPM PET on the MR image acquisition. To assess the influence of MRI on the PET imaging functions, several PET performance indicators including scintillation pulse shape, flood image quality, energy spectrum, counting rate, and phantom image quality were evaluated with and without the application of MR pulse sequences. Simultaneous mouse PET/MRI studies were also performed to demonstrate the potential and usefulness of the multiparametric PET/MRI in preclinical applications. Excellent performance and stability of the PET system were demonstrated, and the PET/MRI combination did not result in significant image quality degradation of either modality. Finally, simultaneous PET/MRI studies in mice demonstrated the feasibility of the developed system for evaluating the biochemical and cellular changes in a brain tumor model and facilitating the

  1. Multispectral optoacoustic and MRI coregistration for molecular imaging of orthotopic model of human glioblastoma.

    PubMed

    Attia, Amalina Binte Ebrahim; Ho, Chris Jun Hui; Chandrasekharan, Prashant; Balasundaram, Ghayathri; Tay, Hui Chien; Burton, Neal C; Chuang, Kai-Hsiang; Ntziachristos, Vasilis; Olivo, Malini

    2016-07-01

    Multi-modality imaging methods are of great importance in oncologic studies for acquiring complementary information, enhancing the efficacy in tumor detection and characterization. We hereby demonstrate a hybrid non-invasive in vivo imaging approach of utilizing magnetic resonance imaging (MRI) and Multispectral Optoacoustic Tomography (MSOT) for molecular imaging of glucose uptake in an orthotopic glioblastoma in mouse. The molecular and functional information from MSOT can be overlaid on MRI anatomy via image coregistration to provide insights into probe uptake in the brain, which is verified by ex vivo fluorescence imaging and histological validation. In vivo MSOT and MRI imaging of an orthotopic glioma mouse model injected with IRDye800-2DG. Image coregistration between MSOT and MRI enables multifaceted (anatomical, functional, molecular) information from MSOT to be overlaid on MRI anatomy images to derive tumor physiological parameters such as perfusion, haemoglobin and oxygenation.

  2. CNS Animal fMRI imaging in Pain and Analgesia

    PubMed Central

    Borsook, David; Becerra, Lino

    2010-01-01

    Animal imaging of brain systems offers exciting opportunities to better understand the neurobiology of pain and analgesia. Overall functional studies have lagged behind human studies as a result of technical issues including the use of anesthesia. Now that many of these issues have been overcome including the possibility of imaging awake animals, there are new opportunities to study whole brain systems neurobiology of acute and chronic pain as well as analgesic effects on brain systems de novo (using pharmacological MRI) or testing in animal models of pain. Understanding brain networks in these areas may provide new insights into translational science, and use neural networks as a “language of translation” between preclinical to clinical models. In this review we evaluate the role of functional and anatomical imaging in furthering our understanding in pain and analgesia. PMID:21126534

  3. A paramagnetic CEST agent for imaging glucose by MRI.

    PubMed

    Zhang, Shanrong; Trokowski, Robert; Sherry, A Dean

    2003-12-17

    The europium(III) complex of a DOTA-tetraamide ligand (DOTA = 1,4,7,10-tetraazacyclododecane-N,N',N' ',N' ''-tetraacetic acids) containing two phenyl boronate pendent arms binds glucose reversibly with an association constant of 383 M-1 at pH 7. Glucose binding results in slowing of water exchange between a single Eu(III)-bound water molecule and bulk water, and this can be imaged by MRI using chemical exchange saturation transfer (CEST) imaging sequence. This metabolite-responsive paramagnetic CEST agent responds to changes in glucose over the physiologically important range (0-20 mM), and thus it offers the possibility of high-sensitivity MR imaging glucose in tissues using bulk water protons as antenna.

  4. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.

    PubMed

    Pereira, Sergio; Pinto, Adriano; Alves, Victor; Silva, Carlos A

    2016-05-01

    Among brain tumors, gliomas are the most common and aggressive, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of oncological patients. Magnetic resonance imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. So, automatic and reliable segmentation methods are required; however, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this paper, we propose an automatic segmentation method based on Convolutional Neural Networks (CNN), exploring small 3 ×3 kernels. The use of small kernels allows designing a deeper architecture, besides having a positive effect against overfitting, given the fewer number of weights in the network. We also investigated the use of intensity normalization as a pre-processing step, which though not common in CNN-based segmentation methods, proved together with data augmentation to be very effective for brain tumor segmentation in MRI images. Our proposal was validated in the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013), obtaining simultaneously the first position for the complete, core, and enhancing regions in Dice Similarity Coefficient metric (0.88, 0.83, 0.77) for the Challenge data set. Also, it obtained the overall first position by the online evaluation platform. We also participated in the on-site BRATS 2015 Challenge using the same model, obtaining the second place, with Dice Similarity Coefficient metric of 0.78, 0.65, and 0.75 for the complete, core, and enhancing regions, respectively.

  5. Brain Tumor Segmentation using Convolutional Neural Networks in MRI Images.

    PubMed

    Pereira, Sergio; Pinto, Adriano; Alves, Victor; Silva, Carlos A

    2016-03-04

    Among brain tumors, gliomas are the most common and aggressive, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of oncological patients. Magnetic Resonance Imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. So, automatic and reliable segmentation methods are required; however, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this paper, we propose an automatic segmentation method based on Convolutional Neural Networks (CNN), exploring small 33 kernels. The use of small kernels allows designing a deeper architecture, besides having a positive effect against overfitting, given the fewer number of weights in the network. We also investigated the use of intensity normalization as a pre-processing step, which though not common in CNN-based segmentation methods, proved together with data augmentation to be very effective for brain tumor segmentation in MRI images. Our proposal was validated in the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013), obtaining simultaneously the first position for the complete, core, and enhancing regions in Dice Similarity Coefficient metric (0:88, 0:83, 0:77) for the Challenge data set. Also, it obtained the overall first position by the online evaluation platform. We also participated in the on-site BRATS 2015 Challenge using the same model, obtaining the second place, with Dice Similarity Coefficient metric of 0:78, 0:65, and 0:75 for the complete, core, and enhancing regions, respectively.

  6. Imaging of juvenile idiopathic arthritis. Part II: Ultrasonography and MRI

    PubMed Central

    Grochowska, Elżbieta; Gietka, Piotr; Płaza, Mateusz; Pracoń, Grzegorz; Saied, Fadhil; Walentowska-Janowicz, Marta

    2016-01-01

    Juvenile idiopathic arthritis is the most common autoimmune systemic disease of the connective tissue affecting individuals in the developmental age. Radiography, which was described in the first part of this publication, is the standard modality in the assessment of this condition. Ultrasound and magnetic resonance imaging enable early detection of the disease which affects soft tissues, as well as bones. Ultrasound assessment involves: joint cavities, tendon sheaths and bursae for the presence of synovitis, intraand extraarticular fat tissue to visualize signs of inflammation, hyaline cartilage, cartilaginous epiphysis and subchondral bone to detect cysts and erosions, and ligaments, tendons and their entheses for signs of enthesopathies and tendinopathies. Magnetic resonance imaging is indicated in children with juvenile idiopathic arthritis for assessment of inflammation in peripheral joints, tendon sheaths and bursae, bone marrow involvement and identification of inflammatory lesions in whole-body MRI, particularly when the clinical picture is unclear. Also, MRI of the spine and spinal cord is used in order to diagnose synovial joint inflammation, bone marrow edema and spondylodiscitis as well as to assess their activity, location, and complications (spinal canal stenosis, subluxation, e.g. in the atlantoaxial region). This article discusses typical pathological changes seen on ultrasound and magnetic resonance imaging. The role of these two methods for disease monitoring, its identification in the pre-clinical stage and establishing its remission are also highlighted. PMID:27679727

  7. 3D reconstruction, visualization, and measurement of MRI images

    NASA Astrophysics Data System (ADS)

    Pandya, Abhijit S.; Patel, Pritesh P.; Desai, Mehul B.; Desai, Paramtap

    1999-03-01

    This paper primarily focuses on manipulating 2D medical image data that often come in as Magnetic Resonance and reconstruct them into 3D volumetric images. Clinical diagnosis and therapy planning using 2D medical images can become a torturous problem for a physician. For example, our 2D breast images of a patient mimic a breast carcinoma. In reality, the patient has 'fat necrosis', a benign breast lump. Physicians need powerful, accurate and interactive 3D visualization systems to extract anatomical details and examine the root cause of the problem. Our proposal overcomes the above mentioned limitations through the development of volume rendering algorithms and extensive use of parallel, distributed and neural networks computing strategies. MRI coupled with 3D imaging provides a reliable method for quantifying 'fat necrosis' characteristics and progression. Our 3D interactive application enables a physician to compute spatial measurements and quantitative evaluations and, from a general point of view, use all 3D interactive tools that can help to plan a complex surgical operation. The capability of our medical imaging application can be extended to reconstruct and visualize 3D volumetric brain images. Our application promises to be an important tool in neurological surgery planning, time and cost reduction.

  8. Combined Contrast-Enhanced MRI and Fluorescence Molecular Tomography for Breast Tumor Imaging

    DTIC Science & Technology

    2007-03-01

    accomplishments follows. Imaging system 4 The fluorescence imaging system is coupled into a Philips 3T MRI and is shown schematically in Fig. 1, which...AD_________________ Award Number: W81XWH-06-1-0367 TITLE: Combined Contrast-Enhanced MRI and...CONTRACT NUMBER Combined Contrast-Enhanced MRI and Fluorescence Molecular Tomography for Breast Tumor Imaging 5b. GRANT NUMBER W81XWH-06-1-0367 5c

  9. The Efficiency of Diffusion Weighted MRI and MR Spectroscopy On Breast MR Imaging

    PubMed Central

    Altay, Canan; Balcı, Pınar

    2014-01-01

    The main purpose of breast magnetic resonance imaging (MRI) in radiologically routine is to establish an imaging protocol that will create high quality images with a short period of time. Fort this purpose, an imaging protocol should include a conventional breast MRI and contrast enhanced sequences. Proton MR spectroscopy (MRS) and diffusion weighted imaging (DWI) are important MR techniques for evaluation to complicated breast lesions. In this article, we will evaluate that technical properties of the MRS and DWI as additional MR imaging.

  10. Hyperpolarized lithium-6 as a sensor of nanomolar contrast agents

    PubMed Central

    van Heeswijk, Ruud B.; Uffmann, Kai; Comment, Arnaud; Kurdzesau, Fiodar; Perazzolo, Chiara; Cudalbu, Cristina; Jannin, Sami; Konter, Jacobus A.; Hautle, Patrick; van den Brandt, Ben; Navon, Gil; van der Klink, Jacques J.; Gruetter, Rolf

    2009-01-01

    Lithium is widely used in psychotherapy. The 6Li isotope has a long intrinsic longitudinal relaxation time T1 on the order of minutes, making it an ideal candidate for hyperpolarization experiments. In the present study, we demonstrated that lithium-6 can be readily hyperpolarized within 30 min, while retaining a long polarization decay time on the order of a minute. We used the intrinsically long relaxation time for the detection of 500 nM contrast agent in vitro. Hyperpolarized lithium-6 was administered to the rat and its signal retained a decay time on the order of 70 s in vivo. Localization experiments imply that the lithium signal originated from within the brain and that it was detectable up to 5 min after administration. We conclude that the detection of sub-micromolar contrast agents using hyperpolarized NMR nuclei such as 6Li may provide a novel avenue for molecular imaging. PMID:19353663

  11. Hyperpolarized nanodiamond with long spin-relaxation times

    PubMed Central

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E.J.; Reilly, David J.

    2015-01-01

    The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically <60 s for 13C liquid-state compounds, which limit the time that the signal remains boosted. Here we demonstrate that 1.1% natural abundance 13C spins in synthetic nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance. PMID:26450570

  12. Hyperpolarized nanodiamond with long spin-relaxation times

    NASA Astrophysics Data System (ADS)

    Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.

    2015-10-01

    The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically <60 s for 13C liquid-state compounds, which limit the time that the signal remains boosted. Here we demonstrate that 1.1% natural abundance 13C spins in synthetic nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.

  13. Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.

    PubMed

    Li, Liang; Wang, Bigong; Wang, Ge

    2016-01-01

    In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.

  14. MRI Biomarkers in Oncology Clinical Trials

    PubMed Central

    Abramson, Richard G.; Arlinghaus, Lori; Dula, Adrienne; Quarles, C. Chad; Stokes, Ashley; Weis, Jared; Whisenant, Jennifer; Chekmenev, Eduard Y.; Zhukov, Igor; Williams, Jason; Yankeelov, Thomas

    2015-01-01

    Quantitative magnetic resonance imaging (MRI) techniques have the ability to quantitatively report various pathophysiological processes associated with cancer. These measures have been shown to provide complementary information to that typically obtained from standard morphologically based criteria (e.g., size) and, furthermore, have been shown to outperform sized based measures in certain applications. In this review, we discuss eight areas of quantitative MRI that are either currently employed in clinical trials, or are emerging as promising techniques for both diagnosing cancer as well as assessing—or even predicting—the response of cancer to various therapies. The currently employed methods include the response evaluation criteria in solid tumors (RECIST), dynamic susceptibility MRI (DSC-MRI), dynamic contrast enhanced MRI (DCE-MRI), and diffusion weighted imaging (DWI). The emerging techniques covered are chemical exchange saturation transfer MRI (CEST-MRI), elastography, hyperpolarized MRI, and multi-parameter MRI. After a brief introduction to each technique, we present a small number of illustrative applications before noting the existing limitations of each method and what must be done to move each to more routine clinical application. PMID:26613873

  15. Imaging mouse lung allograft rejection with 1H MRI

    PubMed Central

    Guo, Jinbang; Huang, Howard J.; Wang, Xingan; Wang, Wei; Ellison, Henry; Thomen, Robert P.; Gelman, Andrew E.; Woods, Jason C.

    2014-01-01

    Purpose To demonstrate that longitudinal, non-invasive monitoring via MRI can characterize acute cellular rejection (ACR) in mouse orthotopic lung allografts. Methods Nineteen Balb/c donor to C57BL/6 recipient orthotopic left lung transplants were performed, further divided into control-Ig vs anti-CD4/anti-CD8 treated groups. A two-dimensional multi-slice gradient-echo pulse sequence synchronized with ventilation was used on a small-animal MR scanner to acquire proton images of lung at post-operative days 3, 7 and 14, just before sacrifice. Lung volume and parenchymal signal were measured, and lung compliance was calculated as volume change per pressure difference between high and low pressures. Results Normalized parenchymal signal in the control-Ig allograft increased over time, with statistical significance between day 14 and day 3 post transplantation (0.046→0.789, P < 0.05), despite large inter-mouse variations; this was consistent with histopathologic evidence of rejection. Compliance of the control-Ig allograft decreased significantly over time (0.013→0.003, P < 0.05), but remained constant in mice treated with anti-CD4/anti-CD8 antibodies. Conclusion Lung allograft rejection in individual mice can be monitored by lung parenchymal signal changes and by lung compliance through MRI. Longitudinal imaging can help us better understand the time course of individual lung allograft rejection and response to treatment. PMID:24954886

  16. Elasticity reconstructive imaging by means of stimulated echo MRI.

    PubMed

    Chenevert, T L; Skovoroda, A R; O'Donnell, M; Emelianov, S Y

    1998-03-01

    A method is introduced to measure internal mechanical displacement and strain by means of MRI. Such measurements are needed to reconstruct an image of the elastic Young's modulus. A stimulated echo acquisition sequence with additional gradient pulses encodes internal displacements in response to an externally applied differential deformation. The sequence provides an accurate measure of static displacement by limiting the mechanical transitions to the mixing period of the simulated echo. Elasticity reconstruction involves definition of a region of interest having uniform Young's modulus along its boundary and subsequent solution of the discretized elasticity equilibrium equations. Data acquisition and reconstruction were performed on a urethane rubber phantom of known elastic properties and an ex vivo canine kidney phantom using <2% differential deformation. Regional elastic properties are well represented on Young's modulus images. The long-term objective of this work is to provide a means for remote palpation and elasticity quantitation in deep tissues otherwise inaccessible to manual palpation.

  17. Imaging Modality of Choice for Pre-Operative Cochlear Imaging: HRCT vs. MRI Temporal Bone

    PubMed Central

    Solanki, Rajendra N.; Shah, Dipali C.; Vishwakarma, Rajesh; Kumar, Sandeep

    2016-01-01

    Introduction Congenital inner ear malformations occur as a result of the arrest or aberrance of inner ear development due to the heredity, gene mutation or other factors. Ever since the availability of cochlear implants, pre-operative evaluation by imaging of temporal bone has gained much attention. Precise selection of the candidate for cochlear implant dependent on preoperative radiological investigations. Only CT (Computed Tomography) and MRI (Magnetic Resonance Imaging) can provide a better picture of anatomy and pathology. Aim To compare pre-operative imaging findings of both MRI and High Resolution Computed Tomography (HRCT) temporal bone and to find the best modality of choice in patients with bilateral profound Sensorineural Hearing Loss (SNHL). Materials and Methods This was a prospective, longitudinal, observational study conducted between June 2010 to November 2012. A total of 144 temporal bones were evaluated in 72 children with bilateral profound SNHL with congenital inner ear malformations. Each temporal bone was considered as a single case (144 cases). All the patients underwent HRCT and high field MRI study. MRI study included T2 W axial 3D FIESTA (Fast Imaging Employing Steady-state Acquisition) sequence. Anatomic abnormalities in each temporal bone were described and noted. For complete and better evaluation of Vestibulo-Cochlear Nerve (VCN) additional 3D oblique parasagittal view was taken perpendicular to the internal auditory canal with a small Field Of View (FOV). Results HRCT and MRI allowed accurate detection of inner ear malformations in children with bilateral SNHL. Majority of the patients presented with multiple structural abnormalities of inner ear. The common pathologies detected in the study were semicircular canal abnormality (89/144) followed by cochlear abnormalities (39/144). Most common cochlear abnormality was Mondini’s deformity (14/144). MRI demonstrated absent of vestibulo-cochlear nerve in 15 cases. Conclusion Few

  18. Quality assurance of PASADENA hyperpolarization for 13C biomolecules

    PubMed Central

    Hövener, Jan-Bernd; Chekmenev, Eduard Y.; Harris, Kent C.; Perman, William H.; Tran, Thao T.; Bhattacharya, Pratip

    2009-01-01

    Object Define MR quality assurance procedures for maximal PASADENA hyperpolarization of a biological 13C molecular imaging reagent. Materials and methods An automated PASADENA polarizer and a parahydrogen generator were installed. 13C enriched hydroxyethyl acrylate, 1-13C, 2,3,3-d3 (HEA), was converted to hyperpolarized hydroxyethyl propionate, 1-13C, 2,3,3-d3 (HEP) and fumaric acid, 1-13C, 2,3-d2 (FUM) to hyperpolarized succinic acid, 1-13C, 2,3-d2 (SUC), by reaction with parahydrogen and norbornadiene rhodium catalyst. Incremental optimization of successive steps in PASADENA was implemented. MR spectra and in vivo images of hyperpolarized 13C imaging agents were acquired at 1.5 and 4.7 T. Results Application of quality assurance (QA) criteria resulted in incremental optimization of the individual steps in PASADENA implementation. Optimal hyperpolarization of HEP of P = 20% was achieved by calibration of the NMR unit of the polarizer (B0 field strength ± 0.002 mT). Mean hyperpolarization of SUC, P = [15.3 ± 1.9]% (N = 16) in D2O, and P = [12.8 ± 3.1]% (N = 12) in H2O, was achieved every 5–8 min (range 13–20%). An in vivo 13C succinate image of a rat was produced. Conclusion PASADENA spin hyperpolarization of SUC to 15.3% in average was demonstrated (37,400 fold signal enhancement at 4.7 T). The biological fate of 13C succinate, a normally occurring cellular intermediate, might be monitored with enhanced sensitivity. PMID:19067009

  19. Propane-d6 Heterogeneously Hyperpolarized by Parahydrogen

    PubMed Central

    2015-01-01

    Long-lived spin states of hyperpolarized propane-d6 gas were demonstrated following pairwise addition of parahydrogen gas to propene-d6 using heterogeneous parahydrogen-induced polarization (HET-PHIP). Hyperpolarized molecules were synthesized using Rh/TiO2 solid catalyst with 1.6 nm Rh nanoparticles. Hyperpolarized (PH ∼ 1%) propane-d6 was detected at high magnetic field (9.4 T) spectroscopically and by high-resolution 3D gradient-echo MRI (4.7 T) as the gas flowed through the radiofrequency coil with a spatial and temporal resolution of 0.5 × 0.5 × 0.5 mm3 and 17.7 s, respectively. Stopped-flow hyperpolarized propane-d6 gas was also detected at 0.0475 T with an observed nuclear spin polarization of PH ∼ 0.1% and a relatively long lifetime with T1,eff = 6.0 ± 0.3 s. Importantly, it was shown that the hyperpolarized protons of the deuterated product obtained via pairwise parahydrogen addition could be detected directly at low magnetic field. Importantly, the relatively long low-field T1,eff of HP propane-d6 gas is not susceptible to paramagnetic impurities as tested by exposure to ∼0.2 atm oxygen. This long lifetime and nontoxic nature of propane gas could be useful for bioimaging applications including potentially pulmonary low-field MRI. The feasibility of high-resolution low-field 2D gradient-echo MRI was demonstrated with 0.88 × 0.88 mm2 spatial and ∼0.7 s temporal resolution, respectively, at 0.0475 T. PMID:25506406

  20. PASADENA hyperpolarization of 13C biomolecules: equipment design and installation

    PubMed Central

    Hövener, Jan-Bernd; Chekmenev, Eduard Y.; Harris, Kent C.; Perman, William H.; Robertson, Larry W.; Bhattacharya, Pratip

    2009-01-01

    Object The PASADENA method has achieved hyperpolarization of 16–20% (exceeding 40,000-fold signal enhancement at 4.7 T), in liquid samples of biological molecules relevant to in vivo MRI and MRS. However, there exists no commercial apparatus to perform this experiment conveniently and reproducibly on the routine basis necessary for translation of PASADENA to questions of biomedical importance. The present paper describes equipment designed for rapid production of six to eight liquid samples per hour with high reproducibility of hyperpolarization. Materials and methods Drawing on an earlier, but unpublished, prototype, we provide diagrams of a delivery circuit, a laminar-flow reaction chamber within a low field NMR contained in a compact, movable housing. Assembly instructions are provided from which a computer driven, semiautomated PASADENA polarizer can be constructed. Results Together with an available parahydrogen generator, the polarizer, which can be operated by a single investigator, completes one cycle of hyperpolarization each 52 s. Evidence of efficacy is presented. In contrast to competing, commercially available devices for dynamic nuclear polarization which characteristically require 90 min per cycle, PASADENA provides a low-cost alternative for high throughput. Conclusions This equipment is suited to investigators who have an established small animal NMR and wish to explore the potential of heteronuclear (13C and 15N) MRI, MRS, which harnesses the enormous sensitivity gain offered by hyperpolarization. PMID:19067008

  1. Image formation in diffusion MRI: A review of recent technical developments

    PubMed Central

    Miller, Karla L.

    2017-01-01

    Diffusion magnetic resonance imaging (MRI) is a standard imaging tool in clinical neurology, and is becoming increasingly important for neuroscience studies due to its ability to depict complex neuroanatomy (eg, white matter connectivity). Single‐shot echo‐planar imaging is currently the predominant formation method for diffusion MRI, but suffers from blurring, distortion, and low spatial resolution. A number of methods have been proposed to address these limitations and improve diffusion MRI acquisition. Here, the recent technical developments for image formation in diffusion MRI are reviewed. We discuss three areas of advance in diffusion MRI: improving image fidelity, accelerating acquisition, and increasing the signal‐to‐noise ratio. Level of Evidence: 5 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:646–662 PMID:28194821

  2. Clinical Utility of Positron Emission Tomography Magnetic Resonance Imaging (PET-MRI) in Gastrointestinal Cancers.

    PubMed

    Matthews, Robert; Choi, Minsig

    2016-09-09

    Anatomic imaging utilizing both CT (computed tomography) and MRI (magnetic resonance imaging) limits the assessment of cancer metastases in lymph nodes and distant organs while functional imaging like PET (positron emission tomography) scan has its limitation in spatial resolution capacity. Hybrid imaging utilizing PET-CT and PET-MRI are novel imaging modalities that are changing the current landscape in cancer diagnosis, staging, and treatment response. MRI has shown to have higher sensitivity in soft tissue, head and neck pathology, and pelvic disease, as well as, detecting small metastases in the liver and bone compared to CT. Combining MRI with PET allows for detection of metastases that may have been missed with current imaging modalities. In this review, we will examine the clinical utility of FDG PET-MRI in the diagnosis and staging of gastrointestinal cancers with focus on esophageal, stomach, colorectal, and pancreatic cancers. We will also explore its role in treatment response and future directions associated with it.

  3. A novel approach to image neural activity directly by MRI

    NASA Astrophysics Data System (ADS)

    Singh, Manbir; Sungkarat, Witaya

    2005-04-01

    Though an approach to image the electrical activity of neurons directly by detecting phase shifts in MRI was first reported in 1991, results to-date remain equivocal due to the low signal-to-noise ratio. The objective of this work was to develop a stimulus-presentation and data acquisition strategy specially geared to detect phase-dispersion effects of neuronal currents within 10-100 ms following stimulation. The key feature is to set the repeated MR data acquisition time TR and the stimulus presentation interval (TI) slightly different from each other so that the time at which images are acquired shifts gradually from one acquisition to the next with respect to stimulus onset. For example, at TR=275ms and 4 Hz stimulus presentation (TI=250ms), initial synchronization of the stimulus onset and MR acquisition would result in the first image being acquired at a latency of 0+/- (temporal width of data acquisition window), second image at a latency of 25ms, third image at a latency of 50ms and so on up to a latency of 250ms, at which time the stimulus and data acquisition times would become re-synchronized to once again acquire an image at latency=0. Human data were acquired on a 1.5T GE EXCITE scanner from two 8mm thick contiguous slices bracketing the calcarine fissure during a checkerboard flashing at 4 Hz. Preliminary results show activity in the visual cortex at latencies consistent with EEG studies, suggesting the potential of this methodology to image neural activity directly.

  4. Multiparametric imaging of tumor oxygenation, redox status, and anatomical structure using Overhauser-enhanced MRI-prepolarized MRI system.

    PubMed

    Ahn, Kang-Hyun; Scott, Greig; Stang, Pascal; Conolly, Steve; Hristov, Dimitre

    2011-05-01

    An integrated Overhauser-enhanced MRI-Prepolarized MRI system was developed to obtain radiobiological information that could be accurately coregistered with diagnostic quality anatomic images. EPR and NMR images were acquired through the double resonance technique and field cycling of the main magnetic field from 5 mT to 0.5 T. Dedicated EPR and NMR coils were devised to minimize radiofrequency power deposition with high signal-to-noise ratio. Trityl and nitroxide radicals were used to characterize oxygen and redox sensitivities of multispin echo Overhauser-enhanced MRI. Oxygen resolution of 3 mmHg was obtained from 2 mM deoxygenated trityl phantoms. Trityl radicals were stable in reducing environments and did not alter the redox-sensitive decaying rate of the nitroxide signals. Nitroxide radicals had a compounding effect for the trityl oximetry. Tumor oxygenation and redox status were acquired with anatomical images by injecting trityl and nitroxide probes subsequently in murine tumors. The Overhauser-enhanced MRI-Prepolarized MRI system is ready for quantitative longitudinal imaging studies of tumor hypoxia and redox status as radiotherapy prognostic factors. Copyright © 2010 Wiley-Liss, Inc.

  5. Hyperpolarization Of Phosphorus Donors In Silicon

    NASA Astrophysics Data System (ADS)

    Sorte, Eric; Baker, William; McCamey, Dane; Laicher, Gernot; Boehme, Christoph; Saam, Brian

    2008-10-01

    Silicon phosphorus (Si:P) is a model system for investigating spin effects in solid state materials. Recently, members of this group demonstrated a simple method for optically inducing a non-equilibrium state of spin hyperpolarization in phosphorus doped silicon by exploiting a modified Overhauser process. The ability to pump high nuclear spin polarizations in this system could have far reaching technological implications for many fields. For example, hyperpolarized silicon nanoparticles have the potential to improve contrast in magnetic resonance imaging. Additionally, well-characterized quantum spin states have the potential to be useful as quantum qubits. Our current work attempts to extend these recent electron paramagnetic resonance (EPR) and electrically detected magnetic resonance (EDMR) measurements to direct nuclear magnetic resonance measurement of the hyperpolarized phosphorus nuclei. In this talk we will report on our current efforts to measure ^31P spin hyper-antipolarization after the sample is briefly exposed to an inert room temperature environment. We demonstrate the procedure of ^31P polarization measurement through low field electron spin resonance as a precursor to direct NMR measurement.

  6. TH-A-BRF-08: Deformable Registration of MRI and CT Images for MRI-Guided Radiation Therapy

    SciTech Connect

    Zhong, H; Wen, N; Gordon, J; Movsas, B; Chetty, I

    2014-06-15

    Purpose: To evaluate the quality of a commercially available MRI-CT image registration algorithm and then develop a method to improve the performance of this algorithm for MRI-guided prostate radiotherapy. Methods: Prostate contours were delineated on ten pairs of MRI and CT images using Eclipse. Each pair of MRI and CT images was registered with an intensity-based B-spline algorithm implemented in Velocity. A rectangular prism that contains the prostate volume was partitioned into a tetrahedral mesh which was aligned to the CT image. A finite element method (FEM) was developed on the mesh with the boundary constraints assigned from the Velocity generated displacement vector field (DVF). The resultant FEM displacements were used to adjust the Velocity DVF within the prism. Point correspondences between the CT and MR images identified within the prism could be used as additional boundary constraints to enforce the model deformation. The FEM deformation field is smooth in the interior of the prism, and equal to the Velocity displacements at the boundary of the prism. To evaluate the Velocity and FEM registration results, three criteria were used: prostate volume conservation and center consistence under contour mapping, and unbalanced energy of their deformation maps. Results: With the DVFs generated by the Velocity and FEM simulations, the prostate contours were warped from MRI to CT images. With the Velocity DVFs, the prostate volumes changed 10.2% on average, in contrast to 1.8% induced by the FEM DVFs. The average of the center deviations was 0.36 and 0.27 cm, and the unbalance energy was 2.65 and 0.38 mJ/cc3 for the Velocity and FEM registrations, respectively. Conclusion: The adaptive FEM method developed can be used to reduce the error of the MIbased registration algorithm implemented in Velocity in the prostate region, and consequently may help improve the quality of MRI-guided radiation therapy.

  7. Framework for 2D-3D image fusion of infrared thermography with preoperative MRI.

    PubMed

    Hoffmann, Nico; Weidner, Florian; Urban, Peter; Meyer, Tobias; Schnabel, Christian; Radev, Yordan; Schackert, Gabriele; Petersohn, Uwe; Koch, Edmund; Gumhold, Stefan; Steiner, Gerald; Kirsch, Matthias

    2017-01-23

    Multimodal medical image fusion combines information of one or more images in order to improve the diagnostic value. While previous applications mainly focus on merging images from computed tomography, magnetic resonance imaging (MRI), ultrasonic and single-photon emission computed tomography, we propose a novel approach for the registration and fusion of preoperative 3D MRI with intraoperative 2D infrared thermography. Image-guided neurosurgeries are based on neuronavigation systems, which further allow us track the position and orientation of arbitrary cameras. Hereby, we are able to relate the 2D coordinate system of the infrared camera with the 3D MRI coordinate system. The registered image data are now combined by calibration-based image fusion in order to map our intraoperative 2D thermographic images onto the respective brain surface recovered from preoperative MRI. In extensive accuracy measurements, we found that the proposed framework achieves a mean accuracy of 2.46 mm.

  8. Single-Step Assembly of Multimodal Imaging Nanocarriers: MRI and Long-Wavelength Fluorescence Imaging.

    PubMed

    Pinkerton, Nathalie M; Gindy, Marian E; Calero-DdelC, Victoria L; Wolfson, Theodore; Pagels, Robert F; Adler, Derek; Gao, Dayuan; Li, Shike; Wang, Ruobing; Zevon, Margot; Yao, Nan; Pacheco, Carlos; Therien, Michael J; Rinaldi, Carlos; Sinko, Patrick J; Prud'homme, Robert K

    2015-06-24

    Magnetic resonance imaging (MRI)- and near-infrared (NIR)-active, multimodal composite nanocarriers (CNCs) are prepared using a simple one-step process, flash nanoprecipitation (FNP). The FNP process allows for the independent control of the hydrodynamic diameter, co-core excipient and NIR dye loading, and iron oxide-based nanocrystal (IONC) content of the CNCs. In the controlled precipitation process, 10 nm IONCs are encapsulated into poly(ethylene glycol) (PEG) stabilized CNCs to make biocompatible T2 contrast agents. By adjusting the formulation, CNC size is tuned between 80 and 360 nm. Holding the CNC size constant at an intensity weighted average diameter of 99 ± 3 nm (PDI width 28 nm), the particle relaxivity varies linearly with encapsulated IONC content ranging from 66 to 533 × 10(-3) m(-1) s(-1) for CNCs formulated with 4-16 wt% IONC. To demonstrate the use of CNCs as in vivo MRI contrast agents, CNCs are surface functionalized with liver-targeting hydroxyl groups. The CNCs enable the detection of 0.8 mm(3) non-small cell lung cancer metastases in mice livers via MRI. Incorporating the hydrophobic, NIR dye tris-(porphyrinato)zinc(II) into CNCs enables complementary visualization with long-wavelength fluorescence at 800 nm. In vivo imaging demonstrates the ability of CNCs to act both as MRI and fluorescent imaging agents.

  9. Amyloid imaging using fluorine-19 magnetic resonance imaging ((19)F-MRI).

    PubMed

    Tooyama, Ikuo; Yanagisawa, Daijiro; Taguchi, Hiroyasu; Kato, Tomoko; Hirao, Koichi; Shirai, Nobuaki; Sogabe, Takayuki; Ibrahim, Nor Faeizah; Inubushi, Toshiro; Morikawa, Shigehiro

    2016-09-01

    The formation of senile plaques followed by the deposition of amyloid-β is the earliest pathological change in Alzheimer's disease. Thus, the detection of senile plaques remains the most important early diagnostic indicator of Alzheimer's disease. Amyloid imaging is a noninvasive technique for visualizing senile plaques in the brains of Alzheimer's patients using positron emission tomography (PET) or magnetic resonance imaging (MRI). Because fluorine-19 ((19)F) displays an intense nuclear magnetic resonance signal and is almost non-existent in the body, targets are detected with a higher signal-to-noise ratio using appropriate fluorinated contrast agents. The recent introduction of high-field MRI allows us to detect amyloid depositions in the brain of living mouse using (19)F-MRI. So far, at least three probes have been reported to detect amyloid deposition in the brain of transgenic mouse models of Alzheimer's disease; (E,E)-1-fluoro-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (FSB), 1,7-bis(4'-hydroxy-3'-trifluoromethoxyphenyl)-4-methoxycarbonylethyl-1,6-heptadiene3,5-dione (FMeC1, Shiga-Y5) and 6-(3',6',9',15',18',21'-heptaoxa-23',23',23'-trifluorotricosanyloxy)-2-(4'-dimethylaminostyryl)benzoxazole (XP7, Shiga-X22). This review presents the recent advances in amyloid imaging using (19)F-MRI, including our own studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Molecular characterization of rheumatoid arthritis with magnetic resonance imaging.

    PubMed

    Gu, Jeffrey T; Nguyen, Linda; Chaudhari, Abhijit J; MacKenzie, John D

    2011-04-01

    Several recent advances in the field of magnetic resonance imaging (MRI) may transform the detection and monitoring of rheumatoid arthritis (RA). These advances depict both anatomic and molecular alterations from RA. Previous techniques could detect specific end products of metabolism in vitro or were limited to providing anatomic information. This review focuses on the novel molecular imaging techniques of hyperpolarized carbon-13 MRI, MRI with iron-labeled probes, and fusion of MRI with positron emission tomography. These new imaging approaches go beyond the anatomic description of RA and lend new information into the status of this disease by giving molecular information.

  11. Testing the quality of images for permanent magnet desktop MRI systems using specially designed phantoms.

    PubMed

    Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng

    2013-12-21

    Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards.

  12. A hybrid multibreath wash-in wash-out lung function quantification scheme in human subjects using hyperpolarized (3) He MRI for simultaneous assessment of specific ventilation, alveolar oxygen tension, oxygen uptake, and air trapping.

    PubMed

    Hamedani, Hooman; Kadlecek, Stephen; Xin, Yi; Siddiqui, Sarmad; Gatens, Heather; Naji, Joseph; Ishii, Masaru; Cereda, Maurizio; Rossman, Milton; Rizi, Rahim

    2017-08-01

    To present a method for simultaneous acquisition of alveolar oxygen tension (PA O2 ), specific ventilation (SV), and apparent diffusion coefficient (ADC) of hyperpolarized (HP) gas in the human lung, allowing reinterpretation of the PA O2 and SV maps to produce a map of oxygen uptake (R). An imaging scheme was designed with a series of identical normoxic HP gas wash-in breaths to measure ADC, SV, PA O2 , and R in less than 2 min. Signal dynamics were fit to an iterative recursive model that regionally solved for these parameters. This measurement was successfully performed in 12 subjects classified in three healthy, smoker, and chronic obstructive pulmonary disease (COPD) cohorts. The overall whole lung ADC, SV, PA O2 , and R in healthy, smoker, and COPD subjects was 0.20 ± 0.03 cm(2) /s, 0.39 ± 0.06,113 ± 2 Torr, and 1.55 ± 0.35 Torr/s, respectively, in healthy subjects; 0.21 ± 0.03 cm(2) /s, 0.33 ± 0.06, 115.9 ± 4 Torr, and 0.97 ± 0.2 Torr/s, respectively, in smokers; and 0.25 ± 0.06 cm(2) /s, 0.23 ± 0.08, 114.8 ± 6.0Torr, and 0.94 ± 0.12 Torr/s, respectively, in subjects with COPD. Hetrogeneity of SV, PA O2 , and R were indicators of both smoking-related changes and disease, and the severity of the disease correlated with the degree of this heterogeneity. Subjects with symptoms showed reduced oxygen uptake and specific ventilation. High-resolution, nearly coregistered and quantitative measures of lung function and structure were obtained with less than 1 L of HP gas. This hybrid multibreath technique produced measures of lung function that revealed clear differences among the cohorts and subjects and were confirmed by correlations with global lung measurements. Magn Reson Med 78:611-624, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  13. Rectal Imaging: Part I, High-Resolution MRI of Carcinoma of the Rectum at 3 T

    PubMed Central

    Halappa, Vivek Gowdra; Villalobos, Celia Pamela Corona; Bonekamp, Susanne; Gearhart, Susan L.; Efron, Jonathan; Herman, Joseph; Kamel, Ihab R.

    2013-01-01

    OBJECTIVE MRI is currently the imaging modality of choice for the detection, characterization, and staging of rectal cancer. A variety of examinations have been used for preoperative staging of rectal cancer, including digital rectal examination, endorectal (endoscopic) ultrasound, CT, and MRI. Endoscopic ultrasound is the imaging modality of choice for small and small superficial tumors. MRI is superior to CT for assessing invasion to adjacent organs and structures, especially low tumors that carry a high risk of recurrence. CONCLUSION High-resolution MRI is an accurate and sensitive imaging method delineating tumoral margins, mesorectal involvement, nodes, and distant metastasis. In this article, we will review the utility of rectal MRI in local staging, preoperative evaluation, and surgical planning. MRI at 3 T can accurately delineate the mesorectal fascia involvement, which is one of the main decision points in planning treatment. PMID:22733930

  14. Design of a Novel MRI Compatible Manipulator for Image Guided Prostate Interventions

    PubMed Central

    Krieger, Axel; Susil, Robert C.; Ménard, Cynthia; Coleman, Jonathan A.; Fichtinger, Gabor; Atalar, Ergin

    2012-01-01

    This paper reports a novel remotely actuated manipulator for access to prostate tissue under magnetic resonance imaging guidance (APT-MRI) device, designed for use in a standard high-field MRI scanner. The device provides three-dimensional MRI guided needle placement with millimeter accuracy under physician control. Procedures enabled by this device include MRI guided needle biopsy, fiducial marker placements, and therapy delivery. Its compact size allows for use in both standard cylindrical and open configuration MRI scanners. Preliminary in vivo canine experiments and first clinical trials are reported. PMID:15709668

  15. MRI/PET nonrigid breast-image registration using skin fiducial markers.

    PubMed

    Krol, Andrezej; Unlu, Mehmet Z; Baum, Karl G; Mandel, James A; Lee, Wei; Coman, Ioana L; Lipson, Edward D; Feiglin, David H

    2006-01-01

    We propose a finite-element method (FEM) deformable breast model that does not require elastic breast data for nonrigid PET/MRI breast image registration. The model is applicable only if the stress conditions in the imaged breast are virtually the same in PET and MRI. Under these conditions, the observed intermodality displacements are solely due the imaging/reconstruction process. Similar stress conditions are assured by use of an MRI breast-antenna replica for breast support during PET, and use of the same positioning. The tetrahedral volume and triangular surface elements are used to construct the FEM mesh from the MRI image. Our model requires a number of fiducial skin markers (FSM) visible in PET and MRI. The displacement vectors of FSMs are measured followed by the dense displacement field estimation by first distributing the displacement, vectors linearly over the breast surface and then distributing them throughout the volume. Finally, the floating MRI image is warped to a fixed PET image, by using an appropriate shape function in the interpolation from mesh nodes to voxels. We tested our model on an elastic breast phantom with simulated internal lesions and on a small number of patients imaged, with FMS using PET and MRI. Using simulated lesions (in phantom) and real lesions (in patients) visible in both PET and MRI, we established that the target registration error (TRE) is below two pet voxels.

  16. Unsupervised segmentation of MRI knees using image partition forests

    NASA Astrophysics Data System (ADS)

    Marčan, Marija; Voiculescu, Irina

    2016-03-01

    Nowadays many people are affected by arthritis, a condition of the joints with limited prevention measures, but with various options of treatment the most radical of which is surgical. In order for surgery to be successful, it can make use of careful analysis of patient-based models generated from medical images, usually by manual segmentation. In this work we show how to automate the segmentation of a crucial and complex joint -- the knee. To achieve this goal we rely on our novel way of representing a 3D voxel volume as a hierarchical structure of partitions which we have named Image Partition Forest (IPF). The IPF contains several partition layers of increasing coarseness, with partitions nested across layers in the form of adjacency graphs. On the basis of a set of properties (size, mean intensity, coordinates) of each node in the IPF we classify nodes into different features. Values indicating whether or not any particular node belongs to the femur or tibia are assigned through node filtering and node-based region growing. So far we have evaluated our method on 15 MRI knee images. Our unsupervised segmentation compared against a hand-segmented gold standard has achieved an average Dice similarity coefficient of 0.95 for femur and 0.93 for tibia, and an average symmetric surface distance of 0.98 mm for femur and 0.73 mm for tibia. The paper also discusses ways to introduce stricter morphological and spatial conditioning in the bone labelling process.

  17. Image Registration for Targeted MRI-guided Transperineal Prostate Biopsy

    PubMed Central

    Fedorov, Andriy; Tuncali, Kemal; Fennessy, Fiona M.; Tokuda, Junichi; Hata, Nobuhiko; Wells, William M.; Kikinis, Ron; Tempany, Clare M.

    2012-01-01

    Purpose To develop and evaluate image registration methodology for automated re-identification of tumor-suspicious foci from pre-procedural MR exams during MR-guided transperineal prostate core biopsy. Materials and Methods A hierarchical approach for automated registration between planning and intra-procedural T2-weighted prostate MRI was developed and evaluated on the images acquired during 10 consecutive MR-guided biopsies. Registration accuracy was quantified at image-based landmarks and by evaluating spatial overlap for the manually segmented prostate and sub-structures. Registration reliability was evaluated by simulating initial mis-registration and analyzing the convergence behavior. Registration precision was characterized at the planned biopsy targets. Results The total computation time was compatible with a clinical setting, being at most 2 minutes. Deformable registration led to a significant improvement in spatial overlap of the prostate and peripheral zone contours compared to both rigid and affine registration. Average in-slice landmark registration error was 1.3±0.5 mm. Experiments simulating initial mis-registration resulted in an estimated average capture range of 6 mm and an average in-slice registration precision of ±0.3 mm. Conclusion Our registration approach requires minimum user interaction and is compatible with the time constraints of our interventional clinical workflow. The initial evaluation shows acceptable accuracy, reliability and consistency of the method. PMID:22645031

  18. Image to physical space registration of supine breast MRI for image guided breast surgery

    NASA Astrophysics Data System (ADS)

    Conley, Rebekah H.; Meszoely, Ingrid M.; Pheiffer, Thomas S.; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    Breast conservation therapy (BCT) is a desirable option for many women diagnosed with early stage breast cancer and involves a lumpectomy followed by radiotherapy. However, approximately 50% of eligible women will elect for mastectomy over BCT despite equal survival benefit (provided margins of excised tissue are cancer free) due to uncertainty in outcome with regards to complete excision of cancerous cells, risk of local recurrence, and cosmesis. Determining surgical margins intraoperatively is difficult and achieving negative margins is not as robust as it needs to be, resulting in high re-operation rates and often mastectomy. Magnetic resonance images (MRI) can provide detailed information about tumor margin extents, however diagnostic images are acquired in a fundamentally different patient presentation than that used in surgery. Therefore, the high quality diagnostic MRIs taken in the prone position with pendant breast are not optimal for use in surgical planning/guidance due to the drastic shape change between preoperative images and the common supine surgical position. This work proposes to investigate the value of supine MRI in an effort to localize tumors intraoperatively using image-guidance. Mock intraoperative setups (realistic patient positioning in non-sterile environment) and preoperative imaging data were collected from a patient scheduled for a lumpectomy. The mock intraoperative data included a tracked laser range scan of the patient's breast surface, tracked center points of MR visible fiducials on the patient's breast, and tracked B-mode ultrasound and strain images. The preoperative data included a supine MRI with visible fiducial markers. Fiducial markers localized in the MRI were rigidly registered to their mock intraoperative counterparts using an optically tracked stylus. The root mean square (RMS) fiducial registration error using the tracked markers was 3.4mm. Following registration, the average closest point distance between the MR

  19. Hyperpolarized 13C MR Markers of Renal Tumor Aggressiveness

    DTIC Science & Technology

    2015-12-01

    such measures in order to distinguish between benign and RCC tumors in patients using the non - invasive rapid hyperpolarized 13C MRI. Review of...using RCC human cells to capture a range of aggressive renal tumors. And have shown using such a model several approaches to non -invasively assess...recent study reported that CHKA forms a complex with EGF receptor (EGFR) in a c-Src– dependent manner, and functions cooper- atively with EGFR and c-Src

  20. Prediction of MRI erosive progression: a comparison of modern imaging modalities in early rheumatoid arthritis patients.

    PubMed

    Bøyesen, Pernille; Haavardsholm, Espen A; van der Heijde, Désirée; Østergaard, Mikkel; Hammer, Hilde Berner; Sesseng, Sølve; Kvien, Tore K

    2011-01-01

    To examine the associations between modern imaging modalities and joint damage measured as 1-year MRI erosive progression, in early rheumatoid arthritis (RA) patients. 84 RA patients with disease duration of less than 1 year were included in this inception cohort. Patients were evaluated at baseline, 3, 6 and 12 months by core measures of disease activity, MRI and ultrasound grey-scale (USGS) of inflammation, conventional radiography and digital x-ray radiogrammetry (DXR) bone mineral density (BMD) of cortical hand bone. 53 of the 79 patients (67%) who completed the follow-up had MRI erosive progression (dependent variable). USGS and MRI bone marrow oedema (BME) were in multivariate analyses independent predictors of 1-year MRI erosive progression. There was a trend towards higher MRI synovitis score and 3-month DXR BMD loss in patients developing MRI erosions. On an individual level, USGS inflammation, MRI synovitis and MRI BME also somewhat better predicted outcome than rheumatoid factor, anticitrullinated protein antibodies and disease activity score 28. USGS inflammation and MRI BME were independent predictors of MRI erosive progression in early RA patients on a group level. The exact prognosis of the individual patients could not be determined by imaging alone.

  1. Complementary aspects of diffusion imaging and fMRI; I: structure and function.

    PubMed

    Mulkern, Robert V; Davis, Peter E; Haker, Steven J; Estepar, Raul San Jose; Panych, Lawrence P; Maier, Stephan E; Rivkin, Michael J

    2006-05-01

    Studying the intersection of brain structure and function is an important aspect of modern neuroscience. The development of magnetic resonance imaging (MRI) over the last 25 years has provided new and powerful tools for the study of brain structure and function. Two tools in particular, diffusion imaging and functional MRI (fMRI), are playing increasingly important roles in elucidating the complementary aspects of brain structure and function. In this work, we review basic technical features of diffusion imaging and fMRI for studying the integrity of white matter structural components and for determining the location and extent of cortical activation in gray matter, respectively. We then review a growing body of literature in which the complementary aspects of diffusion imaging and fMRI, applied as separate examinations but analyzed in tandem, have been exploited to enhance our knowledge of brain structure and function.

  2. Vision 20/20: Simultaneous CT-MRI — Next chapter of multimodality imaging

    SciTech Connect

    Wang, Ge Xi, Yan; Gjesteby, Lars; Getzin, Matthew; Yang, Qingsong; Cong, Wenxiang; Vannier, Michael

    2015-10-15

    Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRI are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called “omnitomography” defined as the integration of all relevant imaging modalities for systems biology and precision medicine.

  3. Vision 20/20: Simultaneous CT-MRI--Next chapter of multimodality imaging.

    PubMed

    Wang, Ge; Kalra, Mannudeep; Murugan, Venkatesh; Xi, Yan; Gjesteby, Lars; Getzin, Matthew; Yang, Qingsong; Cong, Wenxiang; Vannier, Michael

    2015-10-01

    Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRI are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called "omnitomography" defined as the integration of all relevant imaging modalities for systems biology and precision medicine.

  4. T1 nuclear magnetic relaxation dispersion of hyperpolarized sodium and cesium hydrogencarbonate-(13) C.

    PubMed

    Martínez-Santiesteban, Francisco M; Dang, Thien Phuoc; Lim, Heeseung; Chen, Albert P; Scholl, Timothy J

    2017-09-01

    In vivo pH mapping in tissue using hyperpolarized hydrogencarbonate-(13) C has been proposed as a method to study tumor growth and treatment and other pathological conditions related to pH changes. The finite spin-lattice relaxation times (T1 ) of hyperpolarized media are a significant limiting factor for in vivo imaging. Relaxation times can be measured at standard magnetic fields (1.5 T, 3.0 T etc.), but no such data are available at low fields, where T1 values can be significantly shorter. This information is required to determine the potential loss of polarization as the agent is dispensed and transported from the polarizer to the MRI scanner. The purpose of this study is to measure T1 dispersion from low to clinical magnetic fields (0.4 mT to 3.0 T) of different hyperpolarized hydrogencarbonate formulations previously proposed in the literature for in vivo pH measurements. (13) C-enriched cesium and sodium hydrogencarbonate preparations were hyperpolarized using dynamic nuclear polarization, and the T1 values of different samples were measured at different magnetic field strengths using a fast field-cycling relaxometer and a 3.0 T clinical MRI system. The effects of deuterium oxide as a dissolution medium for sodium hydrogencarbonate were also analyzed. This study finds that the cesium formulation has slightly shorter T1 values compared with the sodium preparation. However, the higher solubility of cesium hydrogencarbonate-(13) C means it can be polarized at greater concentration, using less trityl radical than sodium hydrogencarbonate-(13) C. This study also establishes that the preparation and handling of sodium hydrogencarbonate formulations in relation to cesium hydrogencarbonate is more difficult, due to the higher viscosity and lower achievable concentrations, and that deuterium oxide significantly increases the T1 of sodium hydrogencarbonate solutions. Finally, this work also investigates the influence of pH on the spin-lattice relaxation of cesium

  5. Imaging children suffering from lymphoma: an evaluation of different (18)F-FDG PET/MRI protocols compared to whole-body DW-MRI.

    PubMed

    Kirchner, Julian; Deuschl, Cornelius; Schweiger, Bernd; Herrmann, Ken; Forsting, Michael; Buchbender, Christian; Antoch, Gerald; Umutlu, Lale

    2017-09-01

    The objectives of this study were to evaluate and compare the diagnostic potential of different PET/MRI reading protocols, entailing non-enhanced / contrast-enhanced and diffusion-weighted (18)F-FDG PET/MR imaging and whole-body diffusion-weighted MRI for lesion detection and determination of the tumor stage in pediatric lymphoma patients. A total of 28 (18)F-FDG PET/MRI datasets were included for analysis of four different reading protocols: (1) PET/MRI utilizing sole unenhanced T2w and T1w imaging, (2) PET/MRI utilizing additional contrast enhanced sequences, (3) PET/MR imaging utilizing unenhanced, contrast enhanced and DW imaging or (4) WB-DW-MRI. Statistical analyses were performed on a per-patient and a per-lesion basis. Follow-up and prior examinations as well as histopathology served as reference standards. PET/MRI correctly identified all 17 examinations with active lymphoma disease, while WB-DW-MRI correctly identified 15/17 examinations. Sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy were 96%, 96.5%, 97%, 95%, and 96% for PET/MRI1; 97%, 96.5%, 97%, 96.5%, and 97% for PET/MRI2; 97%, 96.5%, 97%, 96.5%, and 97% for PET/MRI3 and 77%, 96%, 96%, 78.5% and 86% for MRI-DWI. (18)F-FDG PET/MRI is superior to WB-DW-MRI in staging pediatric lymphoma patients. Neither application of contrast media nor DWI leads to a noticeable improvement of the diagnostic accuracy of PET/MRI. Thus, unenhanced PET/MRI may play a crucial role for the diagnostic work-up of pediatric lymphoma patients in the future.

  6. Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies

    PubMed Central

    Stoyanova, Radka; Pollack, Alan; Takhar, Mandeep; Lynne, Charles; Parra, Nestor; Lam, Lucia L.C.; Alshalalfa, Mohammed; Buerki, Christine; Castillo, Rosa; Jorda, Merce; Ashab, Hussam Al-deen; Kryvenko, Oleksandr N.; Punnen, Sanoj; Parekh, Dipen J.; Abramowitz, Matthew C.; Gillies, Robert J.; Davicioni, Elai; Erho, Nicholas; Ishkanian, Adrian

    2016-01-01

    Standard clinicopathological variables are inadequate for optimal management of prostate cancer patients. While genomic classifiers have improved patient risk classification, the multifocality and heterogeneity of prostate cancer can confound pre-treatment assessment. The objective was to investigate the association of multiparametric (mp)MRI quantitative features with prostate cancer risk gene expression profiles in mpMRI-guided biopsies tissues. Global gene expression profiles were generated from 17 mpMRI-directed diagnostic prostate biopsies using an Affimetrix platform. Spatially distinct imaging areas (‘habitats’) were identified on MRI/3D-Ultrasound fusion. Radiomic features were extracted from biopsy regions and normal appearing tissues. We correlated 49 radiomic features with three clinically available gene signatures associated with adverse outcome. The signatures contain genes that are over-expressed in aggressive prostate cancers and genes that are under-expressed in aggressive prostate cancers. There were significant correlations between these genes and quantitative imaging features, indicating the presence of prostate cancer prognostic signal in the radiomic features. Strong associations were also found between the radiomic features and significantly expressed genes. Gene ontology analysis identified specific radiomic features associated with immune/inflammatory response, metabolism, cell and biological adhesion. To our knowledge, this is the first study to correlate radiogenomic parameters with prostate cancer in men with MRI-guided biopsy. PMID:27438142

  7. Continuous flow Overhauser dynamic nuclear polarization of water in the fringe field of a clinical magnetic resonance imaging system for authentic image contrast

    PubMed Central

    Lingwood, Mark D.; Siaw, Ting Ann; Sailasuta, Napapon; Ross, Brian D.; Bhattacharya, Pratip; Han, Songi

    2016-01-01

    We describe and demonstrate a system to generate hyperpolarized water in the 0.35 T fringe field of a clinical 1.5 T whole-body magnetic resonance imaging (MRI) magnet. Once generated, the hyperpolarized water is quickly and continuously transferred from the 0.35 T fringe to the 1.5 T center field of the same magnet for image acquisition using standard MRI equipment. The hyperpolarization is based on Overhauser dynamic nuclear polarization (DNP), which effectively and quickly transfers the higher spin polarization of free radicals to nuclear spins at ambient temperatures. We visualize the dispersion of hyperpolarized water as it flows through water-saturated systems by utilizing an observed −15 fold DNP signal enhancement with respect to the unenhanced 1H MRI signal of water at 1.5 T. The experimental DNP apparatus presented here is readily portable and can be brought to and used with any conventional unshielded MRI system. A new method of immobilizing radicals to gel beads via polyelectrolyte linker arms is described, which led to superior flow Overhauser DNP performance compared to previously presented gels. We discuss the general applicability of Overhauser DNP hyperpolarization of water and aqueous solutions in the fringe field of commercially available magnets with central fields up to 4.7 Tesla. PMID:20541445

  8. Interhemispheric neuroplasticity following limb deafferentation detected by resting-state functional connectivity magnetic resonance imaging (fcMRI) and functional magnetic resonance imaging (fMRI)

    PubMed Central

    Pawela, Christopher P.; Biswal, Bharat B.; Hudetz, Anthony G.; Li, Rupeng; Jones, Seth R.; Cho, Younghoon R.; Matloub, Hani S.; Hyde, James S.

    2009-01-01

    Functional connectivity magnetic resonance imaging (fcMRI) studies in rat brain show brain reorganization following peripheral nerve injury. Subacute neuroplasticity was observed two weeks following transection of the four major nerves of the brachial plexus. Direct functional magnetic resonance imaging (fMRI) stimulation of the intact radial nerve reveals an activation pattern in the forelimb regions of the sensory and motor cortices that is significantly different from that observed in normal rats. Results of this fMRI experiment were used to determine seed voxel regions for fcMRI analysis. Intrahemispheric connectivities in the sensorimotor forelimb representations in both hemispheres are largely unaffected by deafferentation, whereas substantial disruption of interhemispheric sensorimotor cortical connectivity occurs. In addition, significant intra- and interhemispheric changes in connectivities of thalamic nuclei were found. These are the central findings of the study. They could not have been obtained from fMRI studies alone—both fMRI and fcMRI are needed. The combination provides a general marker for brain plasticity. The rat visual system was studied in the same animals as a control. No neuroplastic changes in connectivities were found in the primary visual cortex upon forelimb deafferentation. Differences were noted in regions responsible for processing multisensory visual-motor information. This incidental discovery is considered to be significant. It may provide insight into phantom limb epiphenomena. PMID:19796693

  9. Impact of magnetic resonance imaging on ventricular tachyarrhythmia sensing: Results of the Evera MRI Study.

    PubMed

    Gold, Michael R; Sommer, Torsten; Schwitter, Juerg; Kanal, Emanuel; Bernabei, Matthew A; Love, Charles J; Surber, Ralf; Ramza, Brian; Cerkvenik, Jeffrey; Merkely, Béla

    2016-08-01

    Studies have shown that magnetic resonance imaging (MRI) conditional pacemakers experience no significant effect from MRI on device function, sensing, or pacing. More recently, similar safety outcomes were demonstrated with MRI conditional defibrillators (implantable cardioverter-defibrillator [ICD]), but the impact on ventricular arrhythmias has not been assessed. The purpose of this study was to assess the effect of MRI on ICD sensing and treatment of ventricular tachyarrhythmias. The Evera MRI Study was a worldwide trial of 156 patients implanted with an ICD designed to be MRI conditional. Device-detected spontaneous and induced ventricular tachycardia/ventricular fibrillation (VT/VF) episodes occurring before and after whole body MRI were evaluated by a blinded episode review committee. Detection delay was computed as the sum of RR intervals of undersensed beats. A ≥5-second delay in detection due to undersensing was prospectively defined as clinically significant. Post-MRI, there were 22 polymorphic VT/VF episodes in 21 patients, with 16 of these patients having 17 VT/VF episodes pre-MRI. Therapy was successful for all episodes, with no failures to treat or terminate arrhythmias. The mean detection delay due to undersensing pre- and post-MRI was 0.60 ± 0.59 and 0.33 ± 0.63 seconds, respectively (P = .17). The maximum detection delay was 2.19 seconds pre-MRI and 2.87 seconds post-MRI. Of the 17 pre-MRI episodes, 14 (82%) had some detection delay as compared with 11 of 22 (50%) post-MRI episodes (P = .03); no detection delay was clinically significant. Detection and treatment of VT/VF was excellent, with no detection delays or significant impact of MRI observed. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  10. Assessing the reliability of MRI-CBCT image registration to visualize temporomandibular joints

    PubMed Central

    Jaremko, J L; Alsufyani, N; Jibri, Z; Lai, H; Major, P W

    2015-01-01

    Objectives: To evaluate image quality of two methods of registering MRI and CBCT images of the temporomandibular joint (TMJ), particularly regarding TMJ articular disc–condyle relationship and osseous abnormality. Methods: MR and CBCT images for 10 patients (20 TMJs) were obtained and co-registered using two methods (non-guided and marker guided) using Mirada XD software (Mirada Medical Ltd, Oxford, UK). Three radiologists independently and blindly evaluated three types of images (MRI, CBCT and registered MRI-CBCT) at two times (T1 and T2) on two criteria: (1) quality of MRI-CBCT registrations (excellent, fair or poor) and (2) TMJ disc–condylar position and articular osseous abnormalities (osteophytes, erosions and subcortical cyst, surface flattening, sclerosis). Results: 75% of the non-guided registered images showed excellent quality, and 95% of the marker-guided registered images showed poor quality. Significant difference was found between the non-guided and marker-guided registration (χ2 = 108.5; p < 0.01). The interexaminer variability of the disc position in MRI [intraclass correlation coefficient (ICC) = 0.50 at T1, 0.56 at T2] was lower than that in MRI-CBCT registered images [ICC = 0.80 (0.52–0.92) at T1, 0.84 (0.62–0.93) at T2]. Erosions and subcortical cysts were noticed less frequently in the MRI-CBCT images than in CBCT images. Conclusions: Non-guided registration proved superior to marker-guided registration. Although MRI-CBCT fused images were slightly more limited than CBCT alone to detect osseous abnormalities, use of the fused images improved the consistency among examiners in detecting disc position in relation to the condyle. PMID:25734241

  11. The Role of Imaging for Trigeminal Neuralgia: A Segmental Approach to High-Resolution MRI.

    PubMed

    Seeburg, Daniel P; Northcutt, Benjamin; Aygun, Nafi; Blitz, Ari M

    2016-07-01

    High-resolution MRI affords exquisite anatomic detail and allows radiologists to scrutinize the entire course of the trigeminal nerve (cranial nerve [CN] V). This article focuses first on the normal MRI appearance of the course of CN V and how best to image each segment. Special attention is then devoted to the role of MRI in presurgical evaluation of patients with neurovascular conflict and in identifying secondary causes of trigeminal neuralgia, including multiple sclerosis. Fundamental concepts in postsurgical imaging after neurovascular decompression are also addressed. Finally, how imaging has been used to better understand the etiology of trigeminal neuralgia is discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Echo Planar Imaging before and after fMRI: A personal history

    PubMed Central

    Cohen, Mark S.; Schmitt, Franz

    2012-01-01

    Echo-planar imaging (EPI) plays a crucial role in functional MRI. Focusing especially on the period from 1988 to 1992, the authors offer personal recollections, on the development of practical means of deploying EPI, the people that participated, and its impact on MRI in general. PMID:22266173

  13. Magnetic resonance imaging (MRI) simulation on EGEE grid architecture: a web portal design.

    PubMed

    Bellet, F; Nistoreanu, I; Pera, C; Benoit-Cattin, H

    2006-01-01

    In this paper, we present a web portal that enables simulation of MRI images on the grid. Such simulations are done using the SIMRI MRI simulator that is implemented on the grid using MPI and the LCG2 middleware. MRI simulations are mainly used to study MRI sequence, and to validate image processing algorithms. As MRI simulation is computationally very expensive, grid technologies appear to be a real added value for the MRI simulation task. Nevertheless the grid access should be simplified to enable final user running MRI simulations. That is why we develop this specific web portal to propose a user friendly interface for MRI simulation on the grid. The web portal is designed using a three layers client/server architecture. Its main component is the process layer part that manages the simulation jobs. This part is mainly based on a java thread that screens a data base of simulation jobs. The thread submits the new jobs to the grid and updates the status of the running jobs. When a job is terminated, the thread sends the simulated image to the user. Through a client web interface, the user can submit new simulation jobs, get a detailed status of the running jobs, have the history of all the terminated jobs as well as their status and corresponding simulated image.

  14. In vivo NMR of hyperpolarized 3He in the human lung at very low magnetic fields

    NASA Astrophysics Data System (ADS)

    Bidinosti, Christopher P.; Choukeife, Jamal; Nacher, Pierre-Jean; Tastevin, Geneviève

    2003-05-01

    We present NMR measurements of the diffusion of hyperpolarized 3He in the human lung performed at fields much lower than those of conventional MRI scanners. The measurements were made on standing subjects using homebuilt apparatus operating at 3 mT. O 2-limited transverse relaxation ( T2 up to 15-35 s) could be measured in vivo. Accurate global diffusion measurements have been performed in vivo and in a plastic bag; the average apparent diffusion coefficient (ADC) in vivo was 14.2±0.6 mm2/ s, whereas the diffusion coefficient in the bag ( 3He diluted in N 2) was 79.5±1 mm2/ s. 1D ADC mapping with high SNR (˜200-300) demonstrates the real possibility of performing quality lung imaging at extremely low fields.

  15. In vivo NMR of hyperpolarized 3He in the human lung at very low magnetic fields.

    PubMed

    Bidinosti, Christopher P; Choukeife, Jamal; Nacher, Pierre Jean; Tastevin, Geneviève

    2003-05-01

    We present NMR measurements of the diffusion of hyperpolarized 3He in the human lung performed at fields much lower than those of conventional MRI scanners. The measurements were made on standing subjects using homebuilt apparatus operating at 3mT. O(2)-limited transverse relaxation (T(2) up to 15-35s) could be measured in vivo. Accurate global diffusion measurements have been performed in vivo and in a plastic bag; the average apparent diffusion coefficient (ADC) in vivo was 14.2+/-0.6mm(2)/s, whereas the diffusion coefficient in the bag (3He diluted in N(2)) was 79.5+/-1mm(2)/s. 1D ADC mapping with high SNR ( approximately 200-300) demonstrates the real possibility of performing quality lung imaging at extremely low fields.

  16. Parameterization of hyperpolarized (13)C-bicarbonate-dissolution dynamic nuclear polarization.

    PubMed

    Scholz, David Johannes; Otto, Angela M; Hintermair, Josef; Schilling, Franz; Frank, Annette; Köllisch, Ulrich; Janich, Martin A; Schulte, Rolf F; Schwaiger, Markus; Haase, Axel; Menzel, Marion I

    2015-12-01

    (13)C metabolic MRI using hyperpolarized (13)C-bicarbonate enables preclinical detection of pH. To improve signal-to-noise ratio, experimental procedures were refined, and the influence of pH, buffer capacity, temperature, and field strength were investigated. Bicarbonate preparation was investigated. Bicarbonate was prepared and applied in spectroscopy at 1, 3, 14 T using pure dissolution, culture medium, and MCF-7 cell spheroids. Healthy rats were imaged by spectral-spatial spiral acquisition for spatial and temporal bicarbonate distribution, pH mapping, and signal decay analysis. An optimized preparation technique for maximum solubility of 6 mol/L and polarization levels of 19-21% is presented; T1 and SNR dependency on field strength, buffer capacity, and pH was investigated. pH mapping in vivo is demonstrated. An optimized bicarbonate preparation and experimental procedure provided improved T1 and SNR values, allowing in vitro and in vivo applications.

  17. Computerized Analysis And Information Extraction' Of Medical Magnetic Resonance Images (Mri)

    NASA Astrophysics Data System (ADS)

    DeLaPaz, Robert L.; Bernstein, Ralph

    1988-06-01

    Magnetic Resonance Imaging (MRI) is a relatively new diagnostic imaging modality that is rapidly finding broad clinical application. MRI differs from other diagnostic techniques in its capacity to obtain multiple qualitatively different images of the same anatomic region each emphasizing a different fundamental parameter of the tissue. This multiparametric nature of MRI provides the potential for greatly improved sensitivity and specificity in the detection of pathological conditions. However, the complexity of MRI can produce a potentially overwhelming volume of image data for the physician to analyze visually utilizing the traditional grey-scale. Additionally, "visual synthesis" of images from multiple data sets is only semi-quantitative at best and subject to errors introduced by observer bias. Data dimension reduction techniques are needed for analysis of these image sets of multi-parametric MRI data. It is hoped that improved diagnostic specificity of MRI will come from such a quantitative analysis of multiple MR images. Our initial experience with application of fuzzy clustering analysis to these MR images as a method of data dimension reduction suggests that such an approach can improve tissue specificity.

  18. Towards inherently distortion-free MR images for image-guided radiotherapy on an MRI accelerator.

    PubMed

    Crijns, S P M; Bakker, C J G; Seevinck, P R; de Leeuw, H; Lagendijk, J J W; Raaymakers, B W

    2012-03-07

    In MR-guided interventions, it is mandatory to establish a solid relationship between the imaging coordinate system and world coordinates. This is particularly important in image-guided radiotherapy (IGRT) on an MRI accelerator, as the interaction of matter with γ-radiation cannot be visualized. In conventional acquisitions, off-resonance effects cause discrepancies between coordinate systems. We propose to mitigate this by using only phase encoding and to reduce the longer acquisitions by under-sampling and regularized reconstruction. To illustrate the performance of this acquisition in the presence of off-resonance phenomena, phantom and in vivo images are acquired using spin-echo (SE) and purely phase-encoded sequences. Data are retrospectively under-sampled and reconstructed iteratively. We observe accurate geometries in purely phase-encoded images for all cases, whereas SE images of the same phantoms display image distortions. Regularized reconstruction yields accurate phantom images under high acceleration factors. In vivo images were reconstructed faithfully while using acceleration factors up to 4. With the proposed technique, inherently undistorted images with one-to-one correspondence to world coordinates can be obtained. It is a valuable tool in geometry quality assurance, treatment planning and online image guidance. Under-sampled acquisition combined with regularized reconstruction can be used to accelerate the acquisition while retaining geometrical accuracy.

  19. High-throughput hyperpolarized (13)C metabolic investigations using a multi-channel acquisition system.

    PubMed

    Lee, Jaehyuk; Ramirez, Marc S; Walker, Christopher M; Chen, Yunyun; Yi, Stacey; Sandulache, Vlad C; Lai, Stephen Y; Bankson, James A

    2015-11-01

    Magnetic resonance imaging and spectroscopy of hyperpolarized (HP) compounds such as [1-(13)C]-pyruvate have shown tremendous potential for offering new insight into disease and response to therapy. New applications of this technology in clinical research and care will require extensive validation in cells and animal models, a process that may be limited by the high cost and modest throughput associated with dynamic nuclear polarization. Relatively wide spectral separation between [1-(13)C]-pyruvate and its chemical endpoints in vivo are conducive to simultaneous multi-sample measurements, even in the presence of a suboptimal global shim. Multi-channel acquisitions could conserve costs and accelerate experiments by allowing acquisition from multiple independent samples following a single dissolution. Unfortunately, many existing preclinical MRI systems are equipped with only a single channel for broadband acquisitions. In this work, we examine the feasibility of this concept using a broadband multi-channel digital receiver extension and detector arrays that allow concurrent measurement of dynamic spectroscopic data from ex vivo enzyme phantoms, in vitro anaplastic thyroid carcinoma cells, and in vivo in tumor-bearing mice. Throughput and the cost of consumables were improved by up to a factor of four. These preliminary results demonstrate the potential for efficient multi-sample studies employing hyperpolarized agents. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. High-throughput hyperpolarized 13C metabolic investigations using a multi-channel acquisition system

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyuk; Ramirez, Marc S.; Walker, Christopher M.; Chen, Yunyun; Yi, Stacey; Sandulache, Vlad C.; Lai, Stephen Y.; Bankson, James A.

    2015-11-01

    Magnetic resonance imaging and spectroscopy of hyperpolarized (HP) compounds such as [1-13C]-pyruvate have shown tremendous potential for offering new insight into disease and response to therapy. New applications of this technology in clinical research and care will require extensive validation in cells and animal models, a process that may be limited by the high cost and modest throughput associated with dynamic nuclear polarization. Relatively wide spectral separation between [1-13C]-pyruvate and its chemical endpoints in vivo are conducive to simultaneous multi-sample measurements, even in the presence of a suboptimal global shim. Multi-channel acquisitions could conserve costs and accelerate experiments by allowing acquisition from multiple independent samples following a single dissolution. Unfortunately, many existing preclinical MRI systems are equipped with only a single channel for broadband acquisitions. In this work, we examine the feasibility of this concept using a broadband multi-channel digital receiver extension and detector arrays that allow concurrent measurement of dynamic spectroscopic data from ex vivo enzyme phantoms, in vitro anaplastic thyroid carcinoma cells, and in vivo in tumor-bearing mice. Throughput and the cost of consumables were improved by up to a factor of four. These preliminary results demonstrate the potential for efficient multi-sample studies employing hyperpolarized agents.

  1. Imaging in arthritis: quantifying effects of therapeutic intervention using MRI and molecular imaging.

    PubMed

    Cimmino, Marco A; Barbieri, Francesca; Zampogna, Giuseppe; Camellino, Dario; Paparo, Francesco; Parodi, Massimiliano

    2012-01-05

    Modern imaging techniques are becoming increasingly important in assessing the course of arthritis and in permitting measurement of response to treatment as part of the follow-up of patients. They include ultrasonography (US), MRI, PET/CT, and biofluorescence. In patients with rheumatoid arthritis, clinical evaluation is significantly less sensitive than either US or MRI in detecting synovitis. As a result, imaging is a useful alternative to achieving proper assessment of disease activity. The different areas in which the new imaging techniques could help practicing rheumatologists and internal physicians include the following: early and differential diagnosis of arthritis, evaluation of disease activity, prognosis, assessment of treatment efficacy, assessment of remission, and evaluation of subclinical disease. MRI is probably the best imaging method to study disease activity in RA, because it can study all the joints with similar efficacy, has been sufficiently standardised, and yields data on inflammation that can be quantified. Different methods, developed to score synovitis activity, are increasingly used in clinical trials. The main application of PET/CT in rheumatology is the diagnosis and follow-up of large vessel vasculitis. More recently, also RA disease activity has been evaluated, allowing a panoramic view of the patient. Molecular imaging studies molecular and cellular processes in intact living organisms in a non-invasive fashion. In fluorescence, dyes, that emit light upon excitation by a light source and are read by a camera, can be used to show inflamed areas where neoangiogenesis, vasodilatation, and increased vessel permeability are present. These dyes can be coupled with different compounds including antibodies and drugs.

  2. Delineating potential epileptogenic areas utilizing resting functional magnetic resonance imaging (fMRI) in epilepsy patients.

    PubMed

    Pizarro, Ricardo; Nair, Veena; Meier, Timothy; Holdsworth, Ryan; Tunnell, Evelyn; Rutecki, Paul; Sillay, Karl; Meyerand, Mary E; Prabhakaran, Vivek

    2016-08-01

    Seizure localization includes neuroimaging like electroencephalogram, and magnetic resonance imaging (MRI) with limited ability to characterize the epileptogenic network. Temporal clustering analysis (TCA) characterizes epileptogenic network congruent with interictal epileptiform discharges by clustering together voxels with transient signals. We generated epileptogenic areas for 12 of 13 epilepsy patients with TCA, congruent with different areas of seizure onset. Resting functional MRI (fMRI) scans are noninvasive, and can be acquired quickly, in patients with different levels of severity and function. Analyzing resting fMRI data using TCA is quick and can complement clinical methods to characterize the epileptogenic network.

  3. Interobserver variability in the radiological assessment of magnetic resonance imaging (MRI) including perfusion MRI in glioblastoma multiforme.

    PubMed

    Kerkhof, M; Hagenbeek, R E; van der Kallen, B F W; Lycklama À Nijeholt, G J; Dirven, L; Taphoorn, M J B; Vos, M J

    2016-10-01

    Conventional magnetic resonance imaging (MRI) has limited value for differentiation of true tumor progression and pseudoprogression in treated glioblastoma multiforme (GBM). Perfusion weighted imaging (PWI) may be helpful in the differentiation of these two phenomena. Here interobserver variability in routine radiological evaluation of GBM patients is assessed using MRI, including PWI. Three experienced neuroradiologists evaluated MR scans of 28 GBM patients during temozolomide chemoradiotherapy at three time points: preoperative (MR1) and postoperative (MR2) MR scan and the follow-up MR scan after three cycles of adjuvant temozolomide (MR3). Tumor size was measured both on T1 post-contrast and T2 weighted images according to the Response Assessment in Neuro-Oncology criteria. PW images of MR3 were evaluated by visual inspection of relative cerebral blood volume (rCBV) color maps and by quantitative rCBV measurements of enhancing areas with highest rCBV. Image interpretability of PW images was also scored. Finally, the neuroradiologists gave a conclusion on tumor status, based on the interpretation of both T1 and T2 weighted images (MR1, MR2 and MR3) in combination with PWI (MR3). Interobserver agreement on visual interpretation of rCBV maps was good (κ = 0.63) but poor on quantitative rCBV measurements and on interpretability of perfusion images (intraclass correlation coefficient 0.37 and κ = 0.23, respectively). Interobserver agreement on the overall conclusion of tumor status was moderate (κ = 0.48). Interobserver agreement on the visual interpretation of PWI color maps was good. However, overall interpretation of MR scans (using both conventional and PW images) showed considerable interobserver variability. Therefore, caution should be applied when interpreting MRI results during chemoradiation therapy. © 2016 EAN.

  4. The accuracy of magnetic resonance imaging (MRI) in detecting meniscal pathology.

    PubMed

    Chambers, S; Cooney, A; Caplan, N; Dowen, D; Kader, D

    2014-01-01

    The purpose of this study was to determine the accuracy of Magnetic Resonance Imaging (MRI) scanning in the detection of meniscal pathology in a district general hospital. We retrospectively analysed a single-surgeon series of 240 knee arthroscopic investigations for all indications. The arthroscopic reports included an outline diagram of the meniscus upon which the surgeon could record his operative findings. 112 of these patients had also had a recent MRI scan. We compared the MRI findings with the arthroscopy findings. 66 patients had a positive MRI scan. 64 of these were found to have a meniscal tear at surgery. 37 MRI scans were reported as "no tear", of which four were found to have a meniscal tear at surgery. Nine MRI scans were descriptive, e.g. "signal change, possible tear", or "tear cannot be ruled out." These tended to correspond with equivocal arthroscopic findings of "degeneration" or "fibrillation". In our series of 112 patients with meniscal pathology, MRI scanning was 90.5% sensitive, 89.5% specific and 90.1% accurate. False positive MRI scans may lead to unnecessary surgery. Patients with negative MRI scans had a mean delay to surgery of 33 weeks compared to 18 weeks for patients with positive MRI scans. Patients with false negative MRI results may wait longer for their surgery. Two of the false negative MRI scan reports clearly showed meniscus tears, which were not identified by the reporting radiologist. In our series, the MRI scan itself was more accurate than the reporting. It is important to have an experienced musculoskeletal radiologist to minimise the number of missed meniscal tears. It is also important for the surgeon to review the MRI scan itself, as well as the report.

  5. DCE-MRI, DW-MRI, and MRS in Cancer: Challenges and Advantages of Implementing Qualitative and Quantitative Multi-parametric Imaging in the Clinic

    PubMed Central

    Winfield, Jessica M.; Payne, Geoffrey S.; Weller, Alex; deSouza, Nandita M.

    2016-01-01

    Abstract Multi-parametric magnetic resonance imaging (mpMRI) offers a unique insight into tumor biology by combining functional MRI techniques that inform on cellularity (diffusion-weighted MRI), vascular properties (dynamic contrast-enhanced MRI), and metabolites (magnetic resonance spectroscopy) and has scope to provide valuable information for prognostication and response assessment. Challenges in the application of mpMRI in the clinic include the technical considerations in acquiring good quality functional MRI data, development of robust techniques for analysis, and clinical interpretation of the results. This article summarizes the technical challenges in acquisition and analysis of multi-parametric MRI data before reviewing the key applications of multi-parametric MRI in clinical research and practice. PMID:27748710

  6. A study on the magnetic resonance imaging (MRI)-based radiation treatment planning of intracranial lesions

    NASA Astrophysics Data System (ADS)

    Stanescu, T.; Jans, H.-S.; Pervez, N.; Stavrev, P.; Fallone, B. G.

    2008-07-01

    The aim of this study is to develop a magnetic resonance imaging (MRI)-based treatment planning procedure for intracranial lesions. The method relies on (a) distortion correction of raw magnetic resonance (MR) images by using an adaptive thresholding and iterative technique, (b) autosegmentation of head structures relevant to dosimetric calculations (scalp, bone and brain) using an atlas-based software and (c) conversion of MR images into computed tomography (CT)-like images by assigning bulk CT values to organ contours and dose calculations performed in Eclipse (Philips Medical Systems). Standard CT + MRI-based and MRI-only plans were compared by means of isodose distributions, dose volume histograms and several dosimetric parameters. The plans were also ranked by using a tumor control probability (TCP)-based technique for heterogeneous irradiation, which is independent of radiobiological parameters. For our 3 T Intera MRI scanner (Philips Medical Systems), we determined that the total maximum image distortion corresponding to a typical brain study was about 4 mm. The CT + MRI and MRI-only plans were found to be in good agreement for all patients investigated. Following our clinical criteria, the TCP-based ranking tool shows no significant difference between the two types of plans. This indicates that the proposed MRI-based treatment planning procedure is suitable for the radiotherapy of intracranial lesions.

  7. Rapid ex vivo imaging of PAIII prostate to bone tumor with SWIFT-MRI

    PubMed Central

    Luhach, Ihor; Idiyatullin, Djaudat; Lynch, Conor C.; Corum, Curt; Martinez, Gary V.; Garwood, Michael; Gillies, Robert J.

    2013-01-01

    Introduction The limiting factor for MRI of skeletal/mineralized tissue is fast transverse relaxation. A recent advancement in MRI technology, SWIFT (Sweep Imaging with Fourier Transform), is emerging as a new approach to overcome this difficulty. Among other techniques like UTE, ZTE and WASPI, the application of SWIFT technology has the strong potential to impact preclinical and clinical imaging, particularly in the context of primary or metastatic bone cancers since it has the added advantage of imaging water in mineralized tissues of bone allowing MRI images to be obtained of tissues previously visible only with modalities such as CT. The goal of the current study is to examine the feasibility of SWIFT for the assessment of the prostate cancer induced changes in bone formation (osteogenesis) and destruction (osteolysis) in ex vivo specimens. Methods A luciferase expressing prostate cancer cell line (PAIII) or saline control was inoculated directly into the tibia of 6-week old immunocompromised male mice. Tumor growth was assessed weekly for three weeks prior to euthanasia and dissection of the tumor bearing and sham tibias. The ex vivo mouse tibia specimens were imaged with a 9.4T and 7T MRI systems. SWIFT images are compared with traditional gradient-echo and spin-echo MRI images as well as CT and histological sections. Results SWIFT images with nominal resolution of 78 μm are obtained with the tumor and different bone structures identified. Prostate cancer induced changes in the bone microstructure are visible in SWIFT images, which is supported by spin-echo, high resolution CT and histological analysis. Conclusions SWIFT MRI is capable of high-quality high-resolution ex vivo imaging of bone tumor and surrounding bone and soft tissues. Furthermore, SWIFT MRI shows promise for in vivo bone tumor imaging, with the added benefits of non-exposure to ionizing radiation, quietness and speed. PMID:24155275

  8. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    PubMed

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  9. A comparison of five standard methods for evaluating image intensity uniformity in partially parallel imaging MRI.

    PubMed

    Goerner, Frank L; Duong, Timothy; Stafford, R Jason; Clarke, Geoffrey D

    2013-08-01

    To investigate the utility of five different standard measurement methods for determining image uniformity for partially parallel imaging (PPI) acquisitions in terms of consistency across a variety of pulse sequences and reconstruction strategies. Images were produced with a phantom using a 12-channel head matrix coil in a 3T MRI system (TIM TRIO, Siemens Medical Solutions, Erlangen, Germany). Images produced using echo-planar, fast spin echo, gradient echo, and balanced steady state free precession pulse sequences were evaluated. Two different PPI reconstruction methods were investigated, generalized autocalibrating partially parallel acquisition algorithm (GRAPPA) and modified sensitivity-encoding (mSENSE) with acceleration factors (R) of 2, 3, and 4. Additionally images were acquired with conventional, two-dimensional Fourier imaging methods (R=1). Five measurement methods of uniformity, recommended by the American College of Radiology (ACR) and the National Electrical Manufacturers Association (NEMA) were considered. The methods investigated were (1) an ACR method and a (2) NEMA method for calculating the peak deviation nonuniformity, (3) a modification of a NEMA method used to produce a gray scale uniformity map, (4) determining the normalized absolute average deviation uniformity, and (5) a NEMA method that focused on 17 areas of the image to measure uniformity. Changes in uniformity as a function of reconstruction method at the same R-value were also investigated. Two-way analysis of variance (ANOVA) was used to determine whether R-value or reconstruction method had a greater influence on signal intensity uniformity measurements for partially parallel MRI. Two of the methods studied had consistently negative slopes when signal intensity uniformity was plotted against R-value. The results obtained comparing mSENSE against GRAPPA found no consistent difference between GRAPPA and mSENSE with regard to signal intensity uniformity. The results of the two

  10. Principles of T2 *-weighted dynamic susceptibility contrast MRI technique in brain tumor imaging.

    PubMed

    Shiroishi, Mark S; Castellazzi, Gloria; Boxerman, Jerrold L; D'Amore, Francesco; Essig, Marco; Nguyen, Thanh B; Provenzale, James M; Enterline, David S; Anzalone, Nicoletta; Dörfler, Arnd; Rovira, Àlex; Wintermark, Max; Law, Meng

    2015-02-01

    Dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) is used to track the first pass of an exogenous, paramagnetic, nondiffusible contrast agent through brain tissue, and has emerged as a powerful tool in the characterization of brain tumor hemodynamics. DSC-MRI parameters can be helpful in many aspects, including tumor grading, prediction of treatment response, likelihood of malignant transformation, discrimination between tumor recurrence and radiation necrosis, and differentiation between true early progression and pseudoprogression. This review aims to provide a conceptual overview of the underlying principles of DSC-MRI of the brain for clinical neuroradiologists, scientists, or students wishing to improve their understanding of the technical aspects, pitfalls, and controversies of DSC perfusion MRI of the brain. Future consensus on image acquisition parameters and postprocessing of DSC-MRI will most likely allow this technique to be evaluated and used in high-quality multicenter studies and ultimately help guide clinical care. © 2014 Wiley Periodicals, Inc.

  11. Breast-specific gamma imaging is a cost effective and efficacious imaging modality when compared with MRI.

    PubMed

    Johnson, Nathalie; Sorenson, Leslie; Bennetts, Laura; Winter, Karen; Bryn, Sally; Johnson, William; Glissmeyer, Margie; Garreau, Jennifer; Blanchard, Deb

    2014-05-01

    Both MRI and breast-specific gamma imaging are tools for surgical planning in newly diagnosed breast cancer. Breast-specific gamma imaging (BSGI) is used less frequently although it is of similar utility and lower cost. We compared the diagnostic and cost efficacy of BSGI with MRI. Retrospective review of 1,480 BSGIs was performed in a community breast health center, 539 had a new diagnosis of cancer, 75 patients having both MRI and BSGI performed within 2 months of each other. Institutional charges for BSGI ($850) and MRI ($3,381) were noted. BSGI had a sensitivity of 92%, specificity of 73%, positive predictive value of 78%, and negative predictive value of 90%. This compared favorably with MRI that had sensitivity of 89%, specificity 54%, positive predictive value 67%, and negative predictive value 83%. The accuracy of BSGI was higher at 82% vs MRI at 72%. Total cost of MRI imaging was $253,575 vs BSGI at $63,750. BSGI is a cost-effective and accurate imaging study for further evaluation of dense breast tissue and new diagnosis of cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. [The Diagnostic Value of Pre-Biopsy Magnetic Resonance Imaging (MRI) for Detecting Prostate Cancer].

    PubMed

    Mori, Kohei; Miyoshi, Yasuhide; Yoneyama, Shuko; Ishida, Hiroaki; Hattori, Yusuke; Teranishi, Jun-ichi; Kondo, Keiichi; Noguchi, Kazumi

    2016-01-01

    We examined the value of pre-biopsy magnetic resonance imaging (MRI) for detecting prostate cancer. We analyzed 267 men with prostate-specific antigen (PSA) levels of 3-10 ng/ml who underwent systematic prostate needle biopsy. From April 2009 to March 2011, a total of 98 male patients underwent 16-core prostatic biopsies without pre-biopsy magnetic resonance imaging (MRI) (nonenforcement group). From April 2011 to March 2013, 169 men underwent pre-biopsy MRI [T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI)] (enforcement group). When MRI findings indicated cancer in the latter group, in addition to the systematic 16-core biopsy one or two targeted biopsies were performed. Patients without suspicious MRI findings underwent only systematic 16-core biopsy. Cancer detection rates in the nonenforcement and enforcement groups were 42.9% (48/92) and 46. 2% (78/169), respectively. The difference did not reach significance (p=0.612). Although the cancer detection rates were 39.4% (41/104) in the MRI-negative group and 56. 9% (37/65) in the MRI-positive group (p=0.039), the sensitivity and specificity for cancer detection by MRI were relatively low: 47.4% and 69.2%, respectively. By receiver-operating curve analysis, the area under the curve for cancer detection by MRI was only 0.583. There were two study limitations. First, the patient sample size was small. Second, it is unclear whether an adequate sample of the suspicious lesion was obtained by biopsy. We thus demonstrated that it might be improper to base a diagnosis solely on pre-biopsy MRI (T2WI and DWI) findings in men with serum PSA levels of 3-10 ng/ml.

  13. MRI-SPECT image registration using multiple MR pulse sequences to examine osteoarthritis of the knee

    NASA Astrophysics Data System (ADS)

    Lynch, John A.; Peterfy, Charles G.; White, David L.; Hawkins, Randall A.; Genant, Harry K.

    1999-05-01

    We have examined whether automated image registration can be used to combine metabolic information from SPECT knee scans with anatomical information from MRI. Ten patients, at risk of developing OA due to meniscal surgery, were examined. 99mTc methyldiphosphonate SPECT, T2-weighted fast spin echo (FSE) MRI, and T1-weighted, 3D fat-suppressed gradient recalled echo (SPGR) MRI images were obtained. Registration was performed using normalized mutual information. For each patient, FSE data was registered to SPGR data, providing a composite MRI image with each voxel represented by two intensities (ISPGR, IFSE). Modifications to the registration algorithm were made to allow registration of SPECT data (one intensity per voxel) to composite MRI data (2 intensities per voxel). Registration sources was assessed by visual inspection of uptake localization over expected anatomical locations, and the absence of uptake over unlikely sites. Three patients were discarded from SPECT-MRI registration tests since they had metallic artifacts that prevented co-registration of MR data. Registration of SPECT to SPGR or FSE data alone proved unreliable, with less than 50% of attempts succeeding. The modified algorithm, treating co-registered SPGR and FSE data as a two-value-per-voxel image, proved most reliable, allowing registration of all patients with no metallic artifacts on MRI.

  14. [MRI, geometric distortion of the image and stereotaxy].

    PubMed

    Derosier, C; Delegue, G; Munier, T; Pharaboz, C; Cosnard, G

    1991-01-01

    The MRI technology may be the starting-point of geometric distorsion. The mathematical preciseness of a spatial location may be disturbed and alter the guidance of an MRI interventionnal act, especially in stereotactic brain biopsy. A review of the literature shows errors of 1 to 1.5 mm. Our results show an error of 0.16 +/- 0.66 mm. The control of quality: homogeneity and calibration of magnetic-field gradients, permit an improve of the balistic preciseness and give permission to realize the guidance of a stereotactic brain biopsy with the alone MRI.

  15. Computer-assisted scheme for automated determination of imaging planes in cervical spinal cord MRI

    NASA Astrophysics Data System (ADS)

    Tsurumaki, Masaki; Tsai, Du-Yih; Lee, Yongbum; Sekiya, Masaru; Kazama, Kiyoko

    2009-02-01

    This paper presents a computerized scheme to assist MRI operators in accurate and rapid determination of sagittal sections for MRI exam of cervical spinal cord. The algorithm of the proposed scheme consisted of 6 steps: (1) extraction of a cervical vertebra containing spinal cord from an axial localizer image; (2) extraction of spinal cord with sagittal image from the extracted vertebra; (3) selection of a series of coronal localizer images corresponding to various, involved portions of the extracted spinal cord with sagittal image; (4) generation of a composite coronal-plane image from the obtained coronal images; (5) extraction of spinal cord from the obtained composite image; (6) determination of oblique sagittal sections from the detected location and gradient of the extracted spinal cord. Cervical spine images obtained from 25 healthy volunteers were used for the study. A perceptual evaluation was performed by five experienced MRI operators. Good agreement between the automated and manual determinations was achieved. By use of the proposed scheme, average execution time was reduced from 39 seconds/case to 1 second/case. The results demonstrate that the proposed scheme can assist MRI operators in performing cervical spinal cord MRI exam accurately and rapidly.

  16. Magnetic Resonance Imaging (MRI): Lumbar Spine (For Parents)

    MedlinePlus

    ... cause a problem near a strong magnetic field. Electronic devices aren't permitted in the MRI room. ... child may be given headphones to listen to music or earplugs to block the noise, and will ...

  17. An iterative reconstruction method of complex images using expectation maximization for radial parallel MRI

    NASA Astrophysics Data System (ADS)

    Choi, Joonsung; Kim, Dongchan; Oh, Changhyun; Han, Yeji; Park, HyunWook

    2013-05-01

    In MRI (magnetic resonance imaging), signal sampling along a radial k-space trajectory is preferred in certain applications due to its distinct advantages such as robustness to motion, and the radial sampling can be beneficial for reconstruction algorithms such as parallel MRI (pMRI) due to the incoherency. For radial MRI, the image is usually reconstructed from projection data using analytic methods such as filtered back-projection or Fourier reconstruction after gridding. However, the quality of the reconstructed image from these analytic methods can be degraded when the number of acquired projection views is insufficient. In this paper, we propose a novel reconstruction method based on the expectation maximization (EM) method, where the EM algorithm is remodeled for MRI so that complex images can be reconstructed. Then, to optimize the proposed method for radial pMRI, a reconstruction method that uses coil sensitivity information of multichannel RF coils is formulated. Experiment results from synthetic and in vivo data show that the proposed method introduces better reconstructed images than the analytic methods, even from highly subsampled data, and provides monotonic convergence properties compared to the conjugate gradient based reconstruction method.

  18. Reliability of Early Magnetic Resonance Imaging (MRI) and Necessity of Repeating MRI in Noncooled and Cooled Infants With Neonatal Encephalopathy.

    PubMed

    Chakkarapani, Elavazhagan; Poskitt, Kenneth J; Miller, Steven P; Zwicker, Jill G; Xu, Qi; Wong, Darren S T; Roland, Elke H; Hill, Alan; Chau, Vann

    2016-04-01

    In cooled newborns with encephalopathy, although late magnetic resonance imaging (MRI) scan (10-14 days of age) is reliable in predicting long-term outcome, it is unknown whether early scan (3-6 days of life) is. We compared the predominant pattern and extent of lesion between early and late MRI in 89 term neonates with neonatal encephalopathy. Forty-three neonates (48%) were cooled. The predominant pattern of lesions and the extent of lesion in the watershed region agreed near perfectly in noncooled (kappa = 0.94; k = 0.88) and cooled (k = 0.89; k = 0.87) infants respectively. There was perfect agreement in the extent of lesion in the basal nuclei in noncooled infants (k = 0.83) and excellent agreement in cooled infants (k = 0.67). Changes in extent of lesions on late MRI occurred in 19 of 89 infants, with higher risk in infants with hypoglycemia and moderate-severe lesions in basal nuclei. In most term neonates with neonatal encephalopathy, early MRI (relative to late scan) robustly predicts the predominant pattern and extent of injury. © The Author(s) 2015.

  19. The Rightful Role of MRI after Negative Conventional Imaging in the Management of Bloody Nipple Discharge.

    PubMed

    Sanders, Linda M; Daigle, Megan

    2016-01-01

    Nipple discharge is a frequent presenting complaint at breast clinics. Bloody nipple discharge (BND) has the highest risk of malignancy, albeit low. If mammogram and ultrasound are unrevealing, central duct excision (CDE) has been considered the gold standard in its management. Magnetic resonance imaging (MRI) has been widely confirmed as a highly sensitive test for detection of breast cancer, with an accompanying high negative predictive value. This article presents a retrospective review of patients with BND and negative conventional imaging, comparing outcome of patients who went directly to CDE without MRI to those patients who underwent preoperative MRI. Of 115 patients who underwent mammography and US alone prior to CDE, eight cancers were detected (seven ductal carcinoma in situ [DCIS] and 1 IDC, 7 mm [T1b]; incidence: 7%). Of 85 patients who underwent conventional imaging followed by MRI prior to surgery, eight cancers were detected (all DCIS; incidence: 9.4%), seven of which were identified by MRI. The one false-negative MRI had subtle findings which, in retrospect, were misinterpreted; however, a clinically apparent nipple lesion prompted surgical biopsy. Of 56 patients with a negative or benign MRI, CDE was negative for malignancy in all but that one patient. Sensitivity and specificity were 87.5%/71.4%. Positive predictive value and negative predictive value (NPV) were 24.1%/98.2%. MRI should be performed in all patients with BND and negative conventional imaging. The extremely high NPV of MRI suggests that a negative study could obviate CDE in most patients unless overriding clinical factors prevail.

  20. Functional MRI techniques in oncology in the era of personalized medicine

    PubMed Central

    Benz, Matthias R.; Vargas, Hebert Alberto; Sala, Evis

    2016-01-01

    SYNOPSIS DW and DCE MRI already contribute significantly to several aspects of personalized cancer medicine, namely diagnosis, treatment planning, response assessment, and prognosis. Nevertheless, the need for further standardization of theses imaging techniques is beyond question, and needs to be addressed. Whole body DW MRI is an exciting field, however future studies need to investigate in more depth the biologic significance of the findings depicted, their prognostic relevance and cost effectiveness in comparison to MDCT and PET/CT. New MR imaging probes such as targeted or activatable contrast agents and dynamic nuclear hyperpolarization show great promise to further improve the care of cancer patients in the near future. PMID:26613872

  1. Magnetic resonance imaging of breast cancer: does the time interval between biopsy and MRI influence MRI-pathology discordance in lesion sizing?

    PubMed

    Mennella, Simone; Paparo, Francesco; Revelli, Matteo; Baccini, Paola; Secondini, Lucia; Barbagallo, Stella; Friedman, Daniele; Garlaschi, Alessandro

    2017-07-01

    Background Breast magnetic resonance imaging (MRI) is more accurate than ultrasound and mammography in estimating local extension of both invasive breast cancer and ductal carcinoma in situ (DCIS) and it is part of a breast cancer patient's preoperative management. Purpose To verify if time interval between breast biopsy and preoperative MRI, lesion margins, and biopsy technique can influence tumor sizing on MRI. Material and Methods By a database search, we retrospectively identified all women with a newly diagnosed, biopsy-proven, primary breast cancer who underwent MRI before surgery. The time interval between biopsy and MRI, the type of biopsy procedure, and various pathological features of tumors were collected. We defined the concordance between MRI and pathology measurements as a difference of <5 mm in lesion sizing. Results One hundred and sixty-six women (mean age, 51.4 ± 10.4 years) were included. The time interval between biopsy and MRI showed only a weak correlation with the absolute MRI-pathology difference (r = 0.236). Stratifying the whole cohort of patients using a cutoff value of 30 days, we found that the MRI-pathology discordance was significantly higher in patients with a biopsy-MRI time interval >30 days ( P < 0.05). By means of multivariate analysis, we found that DCIS subtype and the presence of poorly defined margins on MRI are the only two factors independently and strongly associated with MRI-pathology discordance in lesion sizing. Conclusion Size, histology, and margins of tumors may affect the accuracy of MRI measurements. The type of biopsy procedure and the time interval between biopsy and preoperative MRI are not independently associated to MRI-pathology discordance.

  2. Cell tracking with caged xenon: using cryptophanes as MRI reporters upon cellular internalization.

    PubMed

    Klippel, Stefan; Döpfert, Jörg; Jayapaul, Jabadurai; Kunth, Martin; Rossella, Federica; Schnurr, Matthias; Witte, Christopher; Freund, Christian; Schröder, Leif

    2014-01-07

    Caged xenon has great potential in overcoming sensitivity limitations for solution-state NMR detection of dilute molecules. However, no application of such a system as a magnetic resonance imaging (MRI) contrast agent has yet been performed with live cells. We demonstrate MRI localization of cells labeled with caged xenon in a packed-bed bioreactor working under perfusion with hyperpolarized-xenon-saturated medium. Xenon hosts enable NMR/MRI experiments with switchable contrast and selectivity for cell-associated versus unbound cages. We present MR images with 10(3) -fold sensitivity enhancement for cell-internalized, dual-mode (fluorescence/MRI) xenon hosts at low micromolar concentrations. Our results illustrate the capability of functionalized xenon to act as a highly sensitive cell tracer for MRI detection even without signal averaging. The method will bridge the challenging gap for translation to in vivo studies for the optimization of targeted biosensors and their multiplexing applications.

  3. Semi-automatic delineation using weighted CT-MRI registered images for radiotherapy of nasopharyngeal cancer

    SciTech Connect

    Fitton, I.; Cornelissen, S. A. P.; Duppen, J. C.; Rasch, C. R. N.; Herk, M. van; Steenbakkers, R. J. H. M.; Peeters, S. T. H.; Hoebers, F. J. P.; Kaanders, J. H. A. M.; Nowak, P. J. C. M.

    2011-08-15

    Purpose: To develop a delineation tool that refines physician-drawn contours of the gross tumor volume (GTV) in nasopharynx cancer, using combined pixel value information from x-ray computed tomography (CT) and magnetic resonance imaging (MRI) during delineation. Methods: Operator-guided delineation assisted by a so-called ''snake'' algorithm was applied on weighted CT-MRI registered images. The physician delineates a rough tumor contour that is continuously adjusted by the snake algorithm using the underlying image characteristics. The algorithm was evaluated on five nasopharyngeal cancer patients. Different linear weightings CT and MRI were tested as input for the snake algorithm and compared according to contrast and tumor to noise ratio (TNR). The semi-automatic delineation was compared with manual contouring by seven experienced radiation oncologists. Results: A good compromise for TNR and contrast was obtained by weighing CT twice as strong as MRI. The new algorithm did not notably reduce interobserver variability, it did however, reduce the average delineation time by 6 min per case. Conclusions: The authors developed a user-driven tool for delineation and correction based a snake algorithm and registered weighted CT image and MRI. The algorithm adds morphological information from CT during the delineation on MRI and accelerates the delineation task.

  4. MRI reconstruction of multi-image acquisitions using a rank regularizer with data reordering

    SciTech Connect

    Adluru, Ganesh Anderson, Jeffrey; Gur, Yaniv; Chen, Liyong; Feinberg, David; DiBella, Edward V. R.

    2015-08-15

    Purpose: To improve rank constrained reconstructions for undersampled multi-image MRI acquisitions. Methods: Motivated by the recent developments in low-rank matrix completion theory and its applicability to rapid dynamic MRI, a new reordering-based rank constrained reconstruction of undersampled multi-image data that uses prior image information is proposed. Instead of directly minimizing the nuclear norm of a matrix of estimated images, the nuclear norm of reordered matrix values is minimized. The reordering is based on the prior image estimates. The method is tested on brain diffusion imaging data and dynamic contrast enhanced myocardial perfusion data. Results: Good quality images from data undersampled by a factor of three for diffusion imaging and by a factor of 3.5 for dynamic cardiac perfusion imaging with respiratory motion were obtained. Reordering gave visually improved image quality over standard nuclear norm minimization reconstructions. Root mean squared errors with respect to ground truth images were improved by ∼18% and ∼16% with reordering for diffusion and perfusion applications, respectively. Conclusions: The reordered low-rank constraint is a way to inject prior image information that offers improvements over a standard low-rank constraint for undersampled multi-image MRI reconstructions.

  5. Selecting magnetic resonance imaging (MRI) outcome measures for juvenile idiopathic arthritis (JIA) clinical trials: first report of the MRI in JIA special interest group.

    PubMed

    Hemke, Robert; Doria, Andrea S; Tzaribachev, Nikolay; Maas, Mario; van der Heijde, Désirée M F M; van Rossum, Marion A J

    2014-02-01

    Recent advances in magnetic resonance imaging (MRI) techniques have substantially improved the evaluation of joint pathologies in juvenile idiopathic arthritis (JIA). Because of the current availability of highly effective antirheumatic therapies and the unique and useful features of MRI, there is a growing need for an accurate and reproducible MRI assessment scoring system for JIA, such as the rheumatoid arthritis MRI Scoring (RAMRIS) for patients with rheumatoid arthritis (RA). To effectively evaluate the efficacy of treatment in clinical research trials, we need to develop and validate scoring methods to accurately measure joint outcomes, standardize imaging protocols for data acquisition and interpretation, and create imaging atlases to differentiate physiologic and pathologic joint findings in childhood and adolescence. Such a standardized, validated, JIA-MRI scoring method could be used as an outcome measure in clinical trials.

  6. Clinical Utility of Positron Emission Tomography Magnetic Resonance Imaging (PET-MRI) in Gastrointestinal Cancers

    PubMed Central

    Matthews, Robert; Choi, Minsig

    2016-01-01

    Anatomic imaging utilizing both CT (computed tomography) and MRI (magnetic resonance imaging) limits the assessment of cancer metastases in lymph nodes and distant organs while functional imaging like PET (positron emission tomography) scan has its limitation in spatial resolution capacity. Hybrid imaging utilizing PET-CT and PET-MRI are novel imaging modalities that are changing the current landscape in cancer diagnosis, staging, and treatment response. MRI has shown to have higher sensitivity in soft tissue, head and neck pathology, and pelvic disease, as well as, detecting small metastases in the liver and bone compared to CT. Combining MRI with PET allows for detection of metastases that may have been missed with current imaging modalities. In this review, we will examine the clinical utility of FDG PET-MRI in the diagnosis and staging of gastrointestinal cancers with focus on esophageal, stomach, colorectal, and pancreatic cancers. We will also explore its role in treatment response and future directions associated with it. PMID:27618106