Science.gov

Sample records for hypersonic turbulent boundary

  1. Hypersonic turbulent wall boundary layer computations

    NASA Astrophysics Data System (ADS)

    Kim, S. C.; Harloff, G. J.

    1988-05-01

    The Baldwin-Lomax algebraic turbulence model was modified for hypersonic flow conditions. Two coefficients in the outer layer eddy viscosity model were determined as functions of Mach number and temperature ratio. By matching the solutions from the Baldwin-Lomax model to those from the Cebeci-Smith model for a flat plate at hypersonic speed, the new values of the coefficient were obtained. The results show that the values of C sub cp and C sub kleb are functions of both Mach number and wall temperature ratio. The C sub cp and C sub kleb variations with Mach number and wall temperature were used for the calculations of both a 4 deg wedge flow at Mach 18 and an axisymmetric Mach 20 nozzle flow. The Navier-Stokes equations with thin layer approximation were solved for the above hypersonic flow conditions and the results were compared with existing experimental data. The agreement between the numerical solutions and the existing experimental data were good. The modified Baldwin-Lomax model thus is useful in the computations of hypersonic flows.

  2. Hypersonic turbulent wall boundary layer computations

    NASA Technical Reports Server (NTRS)

    Kim, S. C.; Harloff, G. J.

    1988-01-01

    The Baldwin-Lomax (1978) algebraic turbulence model was modified for hypersonic flow conditions. Two coefficients in the outer-layer eddy-viscosity model were determined as functions of Mach number and temperature ratio. By matching the solutions from the Baldwin-Lomax model to those from the Cebeci-Smith (1974) model for a flat plate at hypersonic speed, the new values of the coefficients were obtained. The results show that the values of C(cp) and C(kleb) are functions of both Mach number and wall temperature ratio. The C(cp) and C(kleb) variations with Mach number and wall temperature were used for the calculations of both a 4-deg wedge flow at Mach 18 and an axisymmetric Mach 20 nozzle flow. The Navier-Stokes equations with thin-layer approximation were solved for the above hypersonic flow conditions and the results were compared with existing experimental data. The agreement between the numerical solutions and the existing experimental data were good. The modified Baldwin-Lomax model thus is useful in the computations of hypersonic flows.

  3. Hypersonic turbulent wall boundary layer computations

    NASA Technical Reports Server (NTRS)

    Kim, S. C.; Harloff, G. J.

    1988-01-01

    The Baldwin-Lomax algebraic turbulence model was modified for hypersonic flow conditions. Two coefficients in the outer layer eddy viscosity model were determined as functions of Mach number and temperature ratio. By matching the solutions from the Baldwin-Lomax model to those from the Cebeci-Smith model for a flat plate at hypersonic speed, the new values of the coefficient were obtained. The results show that the values of C sub cp and C sub kleb are functions of both Mach number and wall temperature ratio. The C sub cp and C sub kleb variations with Mach number and wall temperature were used for the calculations of both a 4 deg wedge flow at Mach 18 and an axisymmetric Mach 20 nozzle flow. The Navier-Stokes equations with thin layer approximation were solved for the above hypersonic flow conditions and the results were compared with existing experimental data. The agreement between the numerical solutions and the existing experimental data were good. The modified Baldwin-Lomax model thus is useful in the computations of hypersonic flows.

  4. PIV Measurements of Turbulence in a Hypersonic Boundary Layer

    NASA Astrophysics Data System (ADS)

    Sahoo, Dipankar; Papageorge, Mike; Smits, Alexander

    2008-11-01

    Previous experiments on hypersonic turbulent boundary layers have documented the general features of the mean flow behavior, but virtually no high quality data exist describing the turbulence behavior for Mach numbers greater than about 5. To help improve our understanding of high Mach number wall-bounded turbulence, we perform PIV measurements of two components of velocity fluctuations in a flat plate, turbulent boundary layer at Mach 8 in a perfect gas, at a Reynolds number based on momentum thickness of about 4000. The results are compared with DNS under identical flow conditions. Supported under NASA Grant NNX08AB46A, Program Manager Catherine McGinley.

  5. Non-Equilibrium Effects on Hypersonic Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Kim, Pilbum

    Understanding non-equilibrium effects of hypersonic turbulent boundary layers is essential in order to build cost efficient and reliable hypersonic vehicles. It is well known that non-equilibrium effects on the boundary layers are notable, but our understanding of the effects are limited. The overall goal of this study is to improve the understanding of non-equilibrium effects on hypersonic turbulent boundary layers. A new code has been developed for direct numerical simulations of spatially developing hypersonic turbulent boundary layers over a flat plate with finite-rate reactions. A fifth-order hybrid weighted essentially non-oscillatory scheme with a low dissipation finite-difference scheme is utilized in order to capture stiff gradients while resolving small motions in turbulent boundary layers. The code has been validated by qualitative and quantitative comparisons of two different simulations of a non-equilibrium flow and a spatially developing turbulent boundary layer. With the validated code, direct numerical simulations of four different hypersonic turbulent boundary layers, perfect gas and non-equilibrium flows of pure oxygen and nitrogen, have been performed. In order to rule out uncertainties in comparisons, the same inlet conditions are imposed for each species, and then mean and turbulence statistics as well as near-wall turbulence structures are compared at a downstream location. Based on those comparisons, it is shown that there is no direct energy exchanges between internal and turbulent kinetic energies due to thermal and chemical non-equilibrium processes in the flow field. Instead, these non-equilibria affect turbulent boundary layers by changing the temperature without changing the main characteristics of near-wall turbulence structures. This change in the temperature induces the changes in the density and viscosity and the mean flow fields are then adjusted to satisfy the conservation laws. The perturbation fields are modified according to

  6. Hypersonic crossing shock-wave/turbulent-boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Kussoy, M. I.; Horstman, K. C.; Horstman, C. C.

    1993-01-01

    Experimental data for two three-dimensional intersecting shock-wave/turbulent boundary-layer interaction flows at Mach 8.3 are presented. The test bodies, composed of two sharp fins fastened to a flat plate test bed, were designed to generate flows with varying degrees of pressure gradient, boundary-layer separation, and turning angle. The data include surface pressure and heat transfer distributions as well as mean flow field surveys both in the undisturbed and interaction regimes. The data are presented in a convenient form to be used to validate existing or future computational models of these hypersonic flows.

  7. Turbulence measurements in hypersonic boundary layers using constant-temperature anemometry and Reynolds stress measurements in hypersonic boundary layers

    NASA Technical Reports Server (NTRS)

    Spina, Eric F.

    1995-01-01

    The primary objective in the two research investigations performed under NASA Langley sponsorship (Turbulence measurements in hypersonic boundary layers using constant temperature anemometry and Reynolds stress measurements in hypersonic boundary layers) has been to increase the understanding of the physics of hypersonic turbulent boundary layers. The study began with an extension of constant-temperature thermal anemometry techniques to a Mach 11 helium flow, including careful examinations of hot-wire construction techniques, system response, and system calibration. This was followed by the application of these techniques to the exploration of a Mach 11 helium turbulent boundary layer (To approximately 290 K). The data that was acquired over the course of more than two years consists of instantaneous streamwise mass flux measurements at a frequency response of about 500 kHz. The data are of exceptional quality in both the time and frequency domain and possess a high degree of repeatability. The data analysis that has been performed to date has added significantly to the body of knowledge on hypersonic turbulence, and the data reduction is continuing. An attempt was then made to extend these thermal anemometry techniques to higher enthalpy flows, starting with a Mach 6 air flow with a stagnation temperature just above that needed to prevent liquefaction (To approximately 475 F). Conventional hot-wire anemometry proved to be inadequate for the selected high-temperature, high dynamic pressure flow, with frequent wire breakage and poor system frequency response. The use of hot-film anemometry has since been investigated for these higher-enthalpy, severe environment flows. The difficulty with using hot-film probes for dynamic (turbulence) measurements is associated with construction limitations and conduction of heat into the film substrate. Work continues under a NASA GSRP grant on the development of a hot film probe that overcomes these shortcomings for hypersonic

  8. Pressure Fluctuations Induced by a Hypersonic Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.; Zhang, Chao

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a spatially-developed Mach 5.86 turbulent boundary layer. The unsteady pressure field is analyzed at multiple wall-normal locations, including those at the wall, within the boundary layer (including inner layer, the log layer, and the outer layer), and in the free stream. The statistical and structural variations of pressure fluctuations as a function of wall-normal distance are highlighted. Computational predictions for mean velocity pro les and surface pressure spectrum are in good agreement with experimental measurements, providing a first ever comparison of this type at hypersonic Mach numbers. The simulation shows that the dominant frequency of boundary-layer-induced pressure fluctuations shifts to lower frequencies as the location of interest moves away from the wall. The pressure wave propagates with a speed nearly equal to the local mean velocity within the boundary layer (except in the immediate vicinity of the wall) while the propagation speed deviates from the Taylor's hypothesis in the free stream. Compared with the surface pressure fluctuations, which are primarily vortical, the acoustic pressure fluctuations in the free stream exhibit a significantly lower dominant frequency, a greater spatial extent, and a smaller bulk propagation speed. The freestream pressure structures are found to have similar Lagrangian time and spatial scales as the acoustic sources near the wall. As the Mach number increases, the freestream acoustic fluctuations exhibit increased radiation intensity, enhanced energy content at high frequencies, shallower orientation of wave fronts with respect to the flow direction, and larger propagation velocity.

  9. Surface pressure fluctuations in hypersonic turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Raman, K. R.

    1974-01-01

    The surface pressure fluctuations on a flat plate model at hypersonic Mach numbers of 5.2, 7.4 and 10.4 with an attached turbulent boundary layer were measured using flush mounted small piezoelectric sensors. A high frequency resolution of the pressure field was achieved using specially designed small piezoelectric sensors that had a good frequency response well above 300 KHz. The RMS pressures and non-dimensional energy spectra for all above Mach numbers are presented. The convective velocities, obtained from space time correlation considerations are equal to 0.7 U sub infinity. The results indicate the RMS pressures vary from 5 to 25 percent of the mean static pressures. The ratios of RMS pressure to dynamic pressure are less than the universally accepted subsonic value of 6 x 10/3. The ratio decreases in value as the Mach number or the dynamic pressure is increased. The ratio of RMS pressure to wall shear for Mach number 7.4 satisfies one smaller than or equal to p/tau sub w smaller than or equal to three.

  10. Shock Wave Turbulent Boundary Layer Interaction in Hypersonic Flow

    DTIC Science & Technology

    1975-06-01

    An examination and correlation of skin friction heat transfer and pressure measurements in laminar, transitional and turbulent boundary layers on...and heat transfer measurements made In turbulent boundary layers DO 1 JAN 73 W3 EDITION OF 1 NOV 65 IS OBSOLETE ’ / Unclassified SECURITY...Eckert. The Van Driest II method is in best overall agreement with the measurements . From 50 to 100 boundary layer thicknesses are

  11. Numerical investigation of non-equilibrium effects in hypersonic turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Kim, Pilbum; Kim, John; Zhong, Xiaolin; Eldredge, Jeff

    2014-11-01

    Direct numerical simulations of a spatially developing hypersonic boundary layer have been conducted in order to investigate thermal and chemical non-equilibrium effects in a hypersonic turbulent boundary layer. Two different flows, pure oxygen and pure nitrogen flows with specific total enthalpy, h0 ,O2 = 9 . 5017 MJ/kg and h0 ,N2 = 19 . 1116 MJ/kg, respectively, have been considered. The boundary edge conditions were obtained from a separate calculation of a flow over a blunt wedge at free-stream Mach numbers M∞ ,O2 = 15 and M∞ ,N2 = 20 . The inflow conditions were obtained from a simulation of a turbulent boundary layer of a perfect gas. Non-equilibrium effects on turbulence statistics and near-wall turbulence structures were examined by comparing with those obtained in a simulation of the same boundary layer with a perfect-gas assumption.

  12. Compressibility Considerations for kappa-omega Turbulence Models in Hypersonic Boundary Layer Applications

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.

    2009-01-01

    The ability of kappa-omega models to predict compressible turbulent skin friction in hypersonic boundary layers is investigated. Although uncorrected two-equation models can agree well with correlations for hot-wall cases, they tend to perform progressively worse - particularly for cold walls - as the Mach number is increased in the hypersonic regime. Simple algebraic models such as Baldwin-Lomax perform better compared to experiments and correlations in these circumstances. Many of the compressibility corrections described in the literature are summarized here. These include corrections that have only a small influence for kappa-omega models, or that apply only in specific circumstances. The most widely-used general corrections were designed for use with jet or mixing-layer free shear flows. A less well-known dilatation-dissipation correction intended for boundary layer flows is also tested, and is shown to agree reasonably well with the Baldwin-Lomax model at cold-wall conditions. It exhibits a less dramatic influence than the free shear type of correction. There is clearly a need for improved understanding and better overall physical modeling for turbulence models applied to hypersonic boundary layer flows.

  13. Three-dimensional hypersonic shock wave/turbulent boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Kussoy, M. I.; Horstman, K. C.

    1993-01-01

    Experimental data for a series of three-dimensional shock wave/turbulent boundary-layer interaction flows at Mach 8.2 are presented. The test bodies, composed of sharp fins fastened to a flat plate test surface, were designed to generate flows with varying degrees of pressure gradient, boundary-layer separation, and turning angle. The data include surface pressure, heat transfer, and skin friction distributions as well as limited mean flowfield surveys in both the undisturbed and interaction regimes. The data were obtained for the purpose of validating computational models of these hypersonic interactions.

  14. Pressure fluctuations beneath turbulent spots and instability wave packets in a hypersonic boundary layer.

    SciTech Connect

    Beresh, Steven Jay; Casper, Katya M.; Schneider, Steven P.

    2010-12-01

    The development of turbulent spots in a hypersonic boundary layer was studied on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel. Under quiet flow conditions, the nozzle wall boundary layer remains laminar and grows very thick over the long nozzle length. This allows the development of large turbulent spots that can be readily measured with pressure transducers. Measurements of naturally occurring wave packets and developing turbulent spots were made. The peak frequencies of these natural wave packets were in agreement with second-mode computations. For a controlled study, the breakdown of disturbances created by spark and glow perturbations were studied at similar freestream conditions. The spark perturbations were the most effective at creating large wave packets that broke down into turbulent spots. The flow disturbances created by the controlled perturbations were analyzed to obtain amplitude criteria for nonlinearity and breakdown as well as the convection velocities of the turbulent spots. Disturbances first grew into linear instability waves and then quickly became nonlinear. Throughout the nonlinear growth of the wave packets, large harmonics are visible in the power spectra. As breakdown begins, the peak amplitudes of the instability waves and harmonics decrease into the rising broad-band frequencies. Instability waves are still visible on either side of the growing turbulent spots during this breakdown process.

  15. A turbulent boundary layer on a rough wall at hypersonic speeds

    NASA Astrophysics Data System (ADS)

    Sahoo, Dipankar; Desai, Parthav; Smits, Alexander

    2009-11-01

    Previous experiments on hypersonic turbulent boundary layers have documented the general features of the mean flow behavior on a smooth plate, but virtually no data exist describing the boundary layer behavior on a rough wall for Mach numbers greater than about 5. Here, we report PIV measurements of the mean flow and two components of velocity fluctuations on a flat plate with three different roughness geometries: a square bar roughness, and two diamond roughness elements of different height. The boundary layer develops at Mach 7.2 in a perfect gas, at a Reynolds number based on momentum thickness of about 3600. The results are compared with DNS under identical flow conditions. Supported under NASA Grant NNX08AB46A, Program Manager Catherine McGinley.

  16. Pressure fluctuations beneath instability wave packets and turbulent spots in a hypersonic boundary layer

    NASA Astrophysics Data System (ADS)

    Casper, Katya M.

    During atmospheric reentry, hypersonic vehicles are subjected to high levels of boundary-layer pressure fluctuations that cause vibration of internal components. Current models are not adequate to predict these fluctuations. A more physics-based approach can be obtained by using a turbulent-spot model of transition. In order to gain a better understanding of the pressure-fluctuation field and the growth of turbulent spots in a hypersonic boundary layer, the development of disturbances was studied on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel. Under quiet flow conditions, the nozzle wall boundary layer remains laminar and grows very thick over the long nozzle length. This allows the development of large disturbances that can be well-resolved with high-frequency pressure transducers. For a controlled study, disturbances were created by pulsed glow perturbations and studied at various freestream conditions. Both the centerline and the spanwise distribution of pressure fluctuations were measured as boundary-layer disturbances grew from linear instability wave packets into turbulent spots. A disturbance first grows into a linear instability wave packet and then quickly becomes nonlinear. At this point, the wave packet is still concentrated near the disturbance centerline, but weaker disturbances are seen spreading from the center. Throughout the nonlinear growth of the wave packets, large harmonics are visible in the power spectra. Breakdown to turbulence begins in the core of the wave packets where the wave amplitudes are largest. As breakdown begins, the peak amplitudes of the instability waves and harmonics decrease into the rising broadband frequencies. Second-mode waves are still evident in front of and behind the breakdown point and can be seen propagating in the spanwise direction at a spreading angle. The turbulent core grows downstream, resulting in a turbulent spot with a typical arrowhead shape. However, the spot is not merely a localized patch

  17. Pressure fluctuations beneath instability wavepackets and turbulent spots in a hypersonic boundary layer

    DOE PAGES

    Casper, Katya M.; Beresh, Steven J.; Schneider, Steven P.

    2014-09-09

    To investigate the pressure-fluctuation field beneath turbulent spots in a hypersonic boundary layer, a study was conducted on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel. Controlled disturbances were created by pulsed-glow perturbations based on the electrical breakdown of air. Under quiet-flow conditions, the nozzle-wall boundary layer remains laminar and grows very thick over the long nozzle length. This allows the development of large disturbances that can be well-resolved with high-frequency pressure transducers. A disturbance first grows into a second-mode instability wavepacket that is concentrated near its own centreline. Weaker disturbances are seen spreading from the centre. The wavesmore » grow and become nonlinear before breaking down to turbulence. The breakdown begins in the core of the packets where the wave amplitudes are largest. Second-mode waves are still evident in front of and behind the breakdown point and can be seen propagating in the spanwise direction. The turbulent core grows downstream, resulting in a spot with a classical arrowhead shape. Behind the spot, a low-pressure calmed region develops. However, the spot is not merely a localized patch of turbulence; instability waves remain an integral part. Limited measurements of naturally occurring disturbances show many similar characteristics. From the controlled disturbance measurements, the convection velocity, spanwise spreading angle, and typical pressure-fluctuation field were obtained.« less

  18. Pressure fluctuations beneath instability wavepackets and turbulent spots in a hypersonic boundary layer

    SciTech Connect

    Casper, Katya M.; Beresh, Steven J.; Schneider, Steven P.

    2014-09-09

    To investigate the pressure-fluctuation field beneath turbulent spots in a hypersonic boundary layer, a study was conducted on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel. Controlled disturbances were created by pulsed-glow perturbations based on the electrical breakdown of air. Under quiet-flow conditions, the nozzle-wall boundary layer remains laminar and grows very thick over the long nozzle length. This allows the development of large disturbances that can be well-resolved with high-frequency pressure transducers. A disturbance first grows into a second-mode instability wavepacket that is concentrated near its own centreline. Weaker disturbances are seen spreading from the centre. The waves grow and become nonlinear before breaking down to turbulence. The breakdown begins in the core of the packets where the wave amplitudes are largest. Second-mode waves are still evident in front of and behind the breakdown point and can be seen propagating in the spanwise direction. The turbulent core grows downstream, resulting in a spot with a classical arrowhead shape. Behind the spot, a low-pressure calmed region develops. However, the spot is not merely a localized patch of turbulence; instability waves remain an integral part. Limited measurements of naturally occurring disturbances show many similar characteristics. From the controlled disturbance measurements, the convection velocity, spanwise spreading angle, and typical pressure-fluctuation field were obtained.

  19. Methods for estimating pressure and thermal loads induced by elevon deflections on hypersonic-vehicle surfaces with turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Kaufman, L. G., II; Johnson, C. B.

    1981-01-01

    Empirical anaytic methods are presented for calculating thermal and pressure distributions in three-dimensional, shock-wave turbulent-boundary-layer, interaction-flow regions on the surface of controllable hypersonic aircraft and missiles. The methods, based on several experimental investigations, are useful and reliable for estimating both the extent and magnitude of the increased thermal and pressure loads on the vehicle surfaces.

  20. Direct Numerical Simulation of Hypersonic Turbulent Boundary Layer inside an Axisymmetric Nozzle

    NASA Technical Reports Server (NTRS)

    Huang, Junji; Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2017-01-01

    As a first step toward a study of acoustic disturbance field within a conventional, hypersonic wind tunnel, direct numerical simulations (DNS) of a Mach 6 turbulent boundary layer on the inner wall of a straight axisymmetric nozzle are conducted and the results are compared with those for a flat plate. The DNS results for a nozzle radius to boundary-layer thickness ratio of 5:5 show that the turbulence statistics of the nozzle-wall boundary layer are nearly unaffected by the transverse curvature of the nozzle wall. Before the acoustic waves emanating from different parts of the nozzle surface can interfere with each other and undergo reflections from adjacent portions of the nozzle surface, the rms pressure fluctuation beyond the boundary layer edge increases toward the nozzle axis, apparently due to a focusing effect inside the axisymmetric configuration. Spectral analysis of pressure fluctuations at both the wall and the freestream indicates a similar distribution of energy content for both the nozzle and the flat plate, with the peak of the premultiplied frequency spectrum at a frequency of [(omega)(delta)]/U(sub infinity) approximately 6.0 inside the free stream and at [(omega)(delta)]/U(sub infinity) approximately 2.0 along the wall. The present results provide the basis for follow-on simulations involving reverberation effects inside the nozzle.

  1. Separation control in a hypersonic shock wave / turbulent boundary-layer interaction

    NASA Astrophysics Data System (ADS)

    Schreyer, Anne-Marie; Bermejo-Moreno, Ivan; Kim, Jeonglae; Urzay, Javier

    2016-11-01

    Hypersonic vehicles play a key role for affordable access to space. The associated flow fields are strongly affected by shock wave/turbulent boundary-layer interactions, and the inherent separation causes flow distortion and low-frequency unsteadiness. Microramp sub-boundary layer vortex generators are a promising means to control separation and diminish associated detrimental effects. We investigate the effect of a microramp on the low-frequency unsteadiness in a fully separated interaction. A large eddy simulation of a 33 ∘ -compression-ramp interaction was performed for an inflow Mach number of 7.2 and a Reynolds number based on momentum thickness of Reθ = 3500 , matching the experiment of Schreyer et al. (2011). For the control case, we introduced a counter-rotating vortex pair, as induced by a single microramp, into the boundary layer through the inflow conditions. We applied a dynamic mode decomposition (DMD) on both cases to identify coherent structures that are responsible for the dynamic behavior. Based on the DMD, we discuss the reduction of the separation zone and the stabilization of the shock motion achieved by the microramp, and contribute to the description of the governing mechanisms. Pursued during the 2016 CTR Summer Program at Stanford University.

  2. Transition in hypersonic boundary layers

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanhong; Zhu, Yiding; Chen, Xi; Yuan, Huijing; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed

    2015-10-01

    Transition and turbulence production in a hypersonic boundary layer is investigated in a Mach 6 wind tunnel using Rayleigh-scattering visualization, fast-response pressure measurements, and particle image velocimetry. It is found that the second-mode instability is a key modulator of the transition process. Although the second-mode is primarily an acoustic wave, it causes the formation of high-frequency vortical waves, which triggers a fast transition to turbulence.

  3. A survey of heating and turbulent boundary layer characteristics of several hypersonic research aircraft configurations

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.

    1981-01-01

    Four of the configurations investigated during a proposed NASA-Langley hypersonic research aircraft program were selected for phase-change-paint heat-transfer testing and forebody boundary layer pitot surveys. In anticipation of future hypersonic aircraft, both published and unpublished data and results are reviewed and presented with the purpose of providing a synoptic heat-transfer data base from the research effort. Engineering heat-transfer predictions are compared with experimental data on both a global and a local basis. The global predictions are shown to be sufficient for purposes of configuration development, and even the local predictions can be adequate when interpreted in light of the proper flow field. In that regard, cross flow in the forebody boundary layers was examined for significant heating and aerodynamic effect on the scramjet engines. A design philosophy which evolved from the research airplane effort is used to design a forebody shape that produces thin, uniform, forebody boundary layers on a hypersonic airbreathing missile. Finally, heating/boundary layer phenomena which are not predictable with state-of-the-art knowledge and techniques are shown and discussed.

  4. Wall Cooling Effects on Hypersonic Transitional/Turbulent Boundary Layers at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Watson, Ralph D.

    1975-01-01

    A 4 degree wedge was used to produce a thick turbulent boundary layer with an edge Mach number of 11. By using a two-dimensional model, the boundary layer was nearly free from upstream history effects associated with nozzle wall turbulent boundary layers. Heat-transfer distributions were used to define regions of laminar, transitional, and turbulent flow at several values of T(sub w)/T(sub t) for an edge unit Reynolds number of 0.47 x lot per cm. Pitot and total temperature profiles and skin-friction measurements were obtained at selected stations along the model. Turbulence parameters (mixing length/sigma and epsilon) were derived from the fully turbulent profiles and used to more completely define the "low Reynolds number" effect. Turbulent Prandtl number distributions are also presented.

  5. Uncertainty Assessments of 2D and Axisymmetric Hypersonic Shock Wave - Turbulent Boundary Layer Interaction Simulations at Compression Corners

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Berry, Scott A.; VanNorman, John W.

    2011-01-01

    This paper is one of a series of five papers in a special session organized by the NASA Fundamental Aeronautics Program that addresses uncertainty assessments for CFD simulations in hypersonic flow. Simulations of a shock emanating from a compression corner and interacting with a fully developed turbulent boundary layer are evaluated herein. Mission relevant conditions at Mach 7 and Mach 14 are defined for a pre-compression ramp of a scramjet powered vehicle. Three compression angles are defined, the smallest to avoid separation losses and the largest to force a separated flow engaging more complicated flow physics. The Baldwin-Lomax and the Cebeci-Smith algebraic models, the one-equation Spalart-Allmaras model with the Catrix-Aupoix compressibility modification and two-equation models including Menter SST, Wilcox k-omega 98, and Wilcox k-omega 06 turbulence models are evaluated. Each model is fully defined herein to preclude any ambiguity regarding model implementation. Comparisons are made to existing experimental data and Van Driest theory to provide preliminary assessment of model form uncertainty. A set of coarse grained uncertainty metrics are defined to capture essential differences among turbulence models. Except for the inability of algebraic models to converge for some separated flows there is no clearly superior model as judged by these metrics. A preliminary metric for the numerical component of uncertainty in shock-turbulent-boundary-layer interactions at compression corners sufficiently steep to cause separation is defined as 55%. This value is a median of differences with experimental data averaged for peak pressure and heating and for extent of separation captured in new, grid-converged solutions presented here. This value is consistent with existing results in a literature review of hypersonic shock-turbulent-boundary-layer interactions by Roy and Blottner and with more recent computations of MacLean.

  6. Turbulence modeling for hypersonic flows

    NASA Technical Reports Server (NTRS)

    Marvin, J. G.; Coakley, T. J.

    1989-01-01

    Turbulence modeling for high speed compressible flows is described and discussed. Starting with the compressible Navier-Stokes equations, methods of statistical averaging are described by means of which the Reynolds-averaged Navier-Stokes equations are developed. Unknown averages in these equations are approximated using various closure concepts. Zero-, one-, and two-equation eddy viscosity models, algebraic stress models and Reynolds stress transport models are discussed. Computations of supersonic and hypersonic flows obtained using several of the models are discussed and compared with experimental results. Specific examples include attached boundary layer flows, shock wave boundary layer interactions and compressible shear layers. From these examples, conclusions regarding the status of modeling and recommendations for future studies are discussed.

  7. Investigation of a hypersonic crossing shock wave/turbulent boundary layer interaction

    NASA Technical Reports Server (NTRS)

    Narayanswami, N; Knight, D. D.; Horstman, C. C.

    1993-01-01

    A combined theoretical and experimental study is presented for the interaction between crossing shock waves generated by (10 deg, 10 deg) sharp fins and a flat plate turbulent boundary layer at Mach 8.3. The theoretical model is the full 3D mean compressible Reynolds-averaged Navier-Stokes (RANS) equations incorporating the algebraic turbulent eddy viscosity model of Baldwin and Lomax (1978). A grid refinement study indicated that adequate resolution of the flow field has been achieved. Computed results agree well with experiment for surface pressure and surface flow patterns and for pitot pressure and yaw angle profiles in the flow field. The computations, however, significantly overpredict surface heat transfer. Analysis of the computed flow field results indicates the formation of complex streamline and wave structures within the interaction region.

  8. Shock Wave/Turbulent Boundary Layer Interaction in High-Reynolds-Number Hypersonic Flows

    DTIC Science & Technology

    1987-07-01

    XtSTART TRW WEDGE SURFACERe4/" WEDGE SHOCK 0l 103, TRIPLE PLATE SHOCK UPSTREAM,- POINT I• / tFLUENCE SHOCK "JET" -PLATE BOUNDARY.,.) • -:3•< ......LAYER...particularly for turbulent interacting flows, an analysis of the characteristic scale lengths, like that employed in triple deck theory, should be performed...constant A wavelength of light •= extent of 2-D field traversed by light waves , 0 tref = relative change in density between the reference point and the

  9. Experimental Database with Baseline CFD Solutions: 2-D and Axisymmetric Hypersonic Shock-Wave/Turbulent-Boundary-Layer Interactions

    NASA Technical Reports Server (NTRS)

    Marvin, Joseph G.; Brown, James L.; Gnoffo, Peter A.

    2013-01-01

    A database compilation of hypersonic shock-wave/turbulent boundary layer experiments is provided. The experiments selected for the database are either 2D or axisymmetric, and include both compression corner and impinging type SWTBL interactions. The strength of the interactions range from attached to incipient separation to fully separated flows. The experiments were chosen based on criterion to ensure quality of the datasets, to be relevant to NASA's missions and to be useful for validation and uncertainty assessment of CFD Navier-Stokes predictive methods, both now and in the future. An emphasis on datasets selected was on surface pressures and surface heating throughout the interaction, but include some wall shear stress distributions and flowfield profiles. Included, for selected cases, are example CFD grids and setup information, along with surface pressure and wall heating results from simulations using current NASA real-gas Navier-Stokes codes by which future CFD investigators can compare and evaluate physics modeling improvements and validation and uncertainty assessments of future CFD code developments. The experimental database is presented tabulated in the Appendices describing each experiment. The database is also provided in computer-readable ASCII files located on a companion DVD.

  10. An experimental study of a three-dimensional shock wave/turbulent boundary-layer interaction at a hypersonic Mach number

    NASA Technical Reports Server (NTRS)

    Kussoy, M. I.; Horstman, K. C.; Kim, K.-S.

    1991-01-01

    Experimental data for a series of three-dimensional shock-wave/turbulent-boundary-layer interaction flows at Mach 8.2 are presented. The test bodies, composed of sharp fins fastened to a flat-plate test surface, were designed to generate flows with varying degrees of pressure gradient, boundary-layer separation, and turning angle. The data include surface-pressure, heat-transfer, and skin-friction distributions, as well as limited mean flowfield surveys both in the undisturbed and interaction regimes. The data were obtained for the purpose of validating computational models of these hypersonic interactions.

  11. Mathematical Models Of Turbulence In Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Marvin, J. G.; Coakley, T. J.

    1991-01-01

    Report discusses mathematical models of turbulence used in numerical simulations of complicated viscous, hypersonic flows. Includes survey of essential features of models and their statuses in applications.

  12. On Parametric Sensitivity of Reynolds-Averaged Navier-Stokes SST Turbulence Model: 2D Hypersonic Shock-Wave Boundary Layer Interactions

    NASA Technical Reports Server (NTRS)

    Brown, James L.

    2014-01-01

    Examined is sensitivity of separation extent, wall pressure and heating to variation of primary input flow parameters, such as Mach and Reynolds numbers and shock strength, for 2D and Axisymmetric Hypersonic Shock Wave Turbulent Boundary Layer interactions obtained by Navier-Stokes methods using the SST turbulence model. Baseline parametric sensitivity response is provided in part by comparison with vetted experiments, and in part through updated correlations based on free interaction theory concepts. A recent database compilation of hypersonic 2D shock-wave/turbulent boundary layer experiments extensively used in a prior related uncertainty analysis provides the foundation for this updated correlation approach, as well as for more conventional validation. The primary CFD method for this work is DPLR, one of NASA's real-gas aerothermodynamic production RANS codes. Comparisons are also made with CFL3D, one of NASA's mature perfect-gas RANS codes. Deficiencies in predicted separation response of RANS/SST solutions to parametric variations of test conditions are summarized, along with recommendations as to future turbulence approach.

  13. Two-equation turbulence modeling for 3-D hypersonic flows

    NASA Technical Reports Server (NTRS)

    Bardina, J. E.; Coakley, T. J.; Marvin, J. G.

    1992-01-01

    An investigation to verify, incorporate and develop two-equation turbulence models for three-dimensional high speed flows is presented. The current design effort of hypersonic vehicles has led to an intensive study of turbulence models for compressible hypersonic flows. This research complements an extensive review of experimental data and the current development of 2D turbulence models. The review of experimental data on 2D and 3D flows includes complex hypersonic flows with pressure profiles, skin friction, wall heat transfer, and turbulence statistics data. In a parallel effort, turbulence models for high speed flows have been tested against flat plate boundary layers, and are being tested against the 2D database. In the present paper, we present the results of 3D Navier-Stokes numerical simulations with an improved k-omega two-equation turbulence model against experimental data and empirical correlations of an adiabatic flat plate boundary layer, a cold wall flat plate boundary layer, and a 3D database flow, the interaction of an oblique shock wave and a thick turbulent boundary layer with a free stream Mach number = 8.18 and Reynolds number = 5 x 10 to the 6th.

  14. Review and assessment of turbulence models for hypersonic flows

    NASA Astrophysics Data System (ADS)

    Roy, Christopher J.; Blottner, Frederick G.

    2006-10-01

    Accurate aerodynamic prediction is critical for the design and optimization of hypersonic vehicles. Turbulence modeling remains a major source of uncertainty in the computational prediction of aerodynamic forces and heating for these systems. The first goal of this article is to update the previous comprehensive review of hypersonic shock/turbulent boundary-layer interaction experiments published in 1991 by Settles and Dodson (Hypersonic shock/boundary-layer interaction database. NASA CR 177577, 1991). In their review, Settles and Dodson developed a methodology for assessing experiments appropriate for turbulence model validation and critically surveyed the existing hypersonic experiments. We limit the scope of our current effort by considering only two-dimensional (2D)/axisymmetric flows in the hypersonic flow regime where calorically perfect gas models are appropriate. We extend the prior database of recommended hypersonic experiments (on four 2D and two 3D shock-interaction geometries) by adding three new geometries. The first two geometries, the flat plate/cylinder and the sharp cone, are canonical, zero-pressure gradient flows which are amenable to theory-based correlations, and these correlations are discussed in detail. The third geometry added is the 2D shock impinging on a turbulent flat plate boundary layer. The current 2D hypersonic database for shock-interaction flows thus consists of nine experiments on five different geometries. The second goal of this study is to review and assess the validation usage of various turbulence models on the existing experimental database. Here we limit the scope to one- and two-equation turbulence models where integration to the wall is used (i.e., we omit studies involving wall functions). A methodology for validating turbulence models is given, followed by an extensive evaluation of the turbulence models on the current hypersonic experimental database. A total of 18 one- and two-equation turbulence models are reviewed

  15. Evaluation of equilibrium turbulence for a hypersonic boundary layer at nonadiabatic wall conditions. M.S. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.

    1989-01-01

    This paper presents an experimental study to characterize the naturally developing compressible turbulent boundary layer produced along a flat plate measuring 9.7 feet long in the NASA Langley 8-Foot High Temperature Tunnel and to determine the test conditions necessary to achieve equilibrium turbulence. The measurements consist of pitot pressure, static pressure, and total temperature distributions in the boundary layer. In addition, surface measurements consisting of heat transfer and pressure distributions were obtained. The tests were conducted at a nominal free-stream Mach number of 6.5, total temperatures of 2700 and 3300 R, and angles of attack of 5 and 13 degrees. The corresponding nominal boundary-layer edge Mach numbers were 6.2 and 5.0. The nominal ratios of adiabatic wall temperature to cold wall temperature were 4.4 and 5.4 and the momentum thickness Reynolds numbers at the boundary layer probe locations ranged from 400 to 7800. The results of this study indicate that momentum thickness Reynolds numbers of at least 4000 are required to obtain an equilibrium turbulent boundary layer in the Langley 8-Foot High Temperature Tunnel. This evaluation is based primarily on the behavior of shape factors inferred from the boundary-layer measurements.

  16. An experimental and numerical investigation of shock-wave induced turbulent boundary-layer separation at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Marvin, J. G.; Horstman, C. C.; Rubesin, M. W.; Coakley, T. J.; Kussoy, M. I.

    1975-01-01

    An experiment designed to test and guide computations of the interaction of an impinging shock wave with a turbulent boundary layer is described. Detailed mean flow-field and surface data are presented for two shock strengths which resulted in attached and separated flows, respectively. Numerical computations, employing the complete time-averaged Navier-Stokes equations along with algebraic eddy-viscosity and turbulent Prandtl number models to describe shear stress and heat flux, are used to illustrate the dependence of the computations on the particulars of the turbulence models. Models appropriate for zero-pressure-gradient flows predicted the overall features of the flow fields, but were deficient in predicting many of the details of the interaction regions. Improvements to the turbulence model parameters were sought through a combination of detailed data analysis and computer simulations which tested the sensitivity of the solutions to model parameter changes. Computer simulations using these improvements are presented and discussed.

  17. Status of Turbulence Modeling for Hypersonic Propulsion Flowpaths

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Yoder, Dennis A.; Vyas, Manan A.; Engblom, William A.

    2012-01-01

    This report provides an assessment of current turbulent flow calculation methods for hypersonic propulsion flowpaths, particularly the scramjet engine. Emphasis is placed on Reynolds-averaged Navier-Stokes (RANS) methods, but some discussion of newer meth- ods such as Large Eddy Simulation (LES) is also provided. The report is organized by considering technical issues throughout the scramjet-powered vehicle flowpath including laminar-to-turbulent boundary layer transition, shock wave / turbulent boundary layer interactions, scalar transport modeling (specifically the significance of turbulent Prandtl and Schmidt numbers) and compressible mixing. Unit problems are primarily used to conduct the assessment. In the combustor, results from calculations of a direct connect supersonic combustion experiment are also used to address the effects of turbulence model selection and in particular settings for the turbulent Prandtl and Schmidt numbers. It is concluded that RANS turbulence modeling shortfalls are still a major limitation to the accuracy of hypersonic propulsion simulations, whether considering individual components or an overall system. Newer methods such as LES-based techniques may be promising, but are not yet at a maturity to be used routinely by the hypersonic propulsion community. The need for fundamental experiments to provide data for turbulence model development and validation is discussed.

  18. Disturbances from Shock/Boundary-Layer Interactions Affecting Upstream Hypersonic Flow

    DTIC Science & Technology

    2005-12-01

    2180, NASA, 1983. 11. J. L. Stollery. Some Viscous Interactions Affecting the Design of Hypersonic Intakes and Nozzles. Advances in Hypersonics ...affecting upstream hypersonic flow F49620-03-1-0030 Craig Ryan Skoch Purdue University, School of Aeronautics and Astronautics none Air Force Office of...separations from propagating upstream. hypersonic laminar-turbulent transition, quiet wind tunnels, shock/boundary-layer interaction U U U Unlimited 132

  19. Turbulent boundary layer heat

    NASA Astrophysics Data System (ADS)

    Finson, M. L.; Clarke, A. S.; Wu, P. K. S.

    1981-01-01

    A Reynolds stress model for turbulent boundary layers is used to study surface roughness effects on skin friction and heat transfer. The issues of primary interest are the influence of roughness character (element shape and spacing) and the nature of roughness effects at high Mach numbers. Computations based on the model compare satisfactorily with measurements from experiments involving variations in roughness character, in low speed and modestly supersonic conditions. The more limited data base at hypersonic Mach numbers is also examined with reasonable success, although no quantitative explanation is offered for the reduction of heat transfer with increasing roughness observed by Holden at Me -9.4. The present calculations indicate that the mean velocity is approximately uniform over much of the height range below the tops of the elements, y less than or equal to k. With this constant (roughness velocity,) it is simple to estimate the form drag on the elements. This roughness velocity has been investigated by systematically exercising the present model over ranges of potential parameters. The roughness velocity is found to be primarily a function of the projected element frontal area per unit surface area, thus providing a new and simple method for predicting roughness character effects. The model further suggests that increased boundary layer temperatures should be generated by roughness at high edge Mach numbers, which would tend to reduce skin friction and heat transfer, perhaps below smooth wall levels.

  20. Hypersonic Shock/Boundary-Layer Interaction Database

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Dodson, L. J.

    1991-01-01

    Turbulence modeling is generally recognized as the major problem obstructing further advances in computational fluid dynamics (CFD). A closed solution of the governing Navier-Stokes equations for turbulent flows of practical consequence is still far beyond grasp. At the same time, the simplified models of turbulence which are used to achieve closure of the Navier-Stokes equations are known to be rigorously incorrect. While these models serve a definite purpose, they are inadequate for the general prediction of hypersonic viscous/inviscid interactions, mixing problems, chemical nonequilibria, and a range of other phenomena which must be predicted in order to design a hypersonic vehicle computationally. Due to the complexity of turbulence, useful new turbulence models are synthesized only when great expertise is brought to bear and considerable intellectual energy is expended. Although this process is fundamentally theoretical, crucial guidance may be gained from carefully-executed basic experiments. Following the birth of a new model, its testing and validation once again demand comparisons with data of unimpeachable quality. This report concerns these issues which arise from the experimental aspects of hypersonic modeling and represents the results of the first phase of an effort to develop compressible turbulence models.

  1. Hypersonic Shock/Boundary-Layer Interaction Database

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Dodson, L. J.

    1991-01-01

    Turbulence modeling is generally recognized as the major problem obstructing further advances in computational fluid dynamics (CFD). A closed solution of the governing Navier-Stokes equations for turbulent flows of practical consequence is still far beyond grasp. At the same time, the simplified models of turbulence which are used to achieve closure of the Navier-Stokes equations are known to be rigorously incorrect. While these models serve a definite purpose, they are inadequate for the general prediction of hypersonic viscous/inviscid interactions, mixing problems, chemical nonequilibria, and a range of other phenomena which must be predicted in order to design a hypersonic vehicle computationally. Due to the complexity of turbulence, useful new turbulence models are synthesized only when great expertise is brought to bear and considerable intellectual energy is expended. Although this process is fundamentally theoretical, crucial guidance may be gained from carefully-executed basic experiments. Following the birth of a new model, its testing and validation once again demand comparisons with data of unimpeachable quality. This report concerns these issues which arise from the experimental aspects of hypersonic modeling and represents the results of the first phase of an effort to develop compressible turbulence models.

  2. Transition in Hypersonic Boundary Layers: Role of Dilatational Waves

    NASA Astrophysics Data System (ADS)

    Zhu, Yiding; Zhang, Chuanhong; Tang, Qing; Yuan, Huijing; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-El-Hak, Mohamed

    2015-11-01

    Transition and turbulence production in a hypersonic boundary layer is investigated in a Mach 6 quiet wind tunnel using Rayleigh-scattering visualization, fast-response pressure measurements, and particle image velocimetry. It is found that the second-mode instability is a key modulator of the transition process. Although the second mode is primarily an acoustic wave, it causes the formation of high-frequency vortical waves. While the growing acoustic wave itself is rapidly annihilated due to its large and sharp dissipation peak that is enhanced by the bulk viscosity, the acoustically generated high-frequency vortical wave keeps growing and triggers a fast transition to turbulence.

  3. On Challenges for Hypersonic Turbulent Simulations

    SciTech Connect

    Yee, H C; Sjogreen, B

    2009-01-14

    This short note discusses some of the challenges for design of suitable spatial numerical schemes for hypersonic turbulent flows, including combustion, and thermal and chemical nonequilibrium flows. Often, hypersonic turbulent flows in re-entry space vehicles and space physics involve mixed steady strong shocks and turbulence with unsteady shocklets. Material mixing in combustion poses additional computational challenges. Proper control of numerical dissipation in numerical methods beyond the standard shock-capturing dissipation at discontinuities is an essential element for accurate and stable simulations of the subject physics. On one hand, the physics of strong steady shocks and unsteady turbulence/shocklet interactions under the nonequilibrium environment is not well understood. On the other hand, standard and newly developed high order accurate (fourth-order or higher) schemes were developed for homogeneous hyperbolic conservation laws and mixed hyperbolic and parabolic partial differential equations (PDEs) (without source terms). The majority of finite rate chemistry and thermal nonequilibrium simulations employ methods for homogeneous time-dependent PDEs with a pointwise evaluation of the source terms. The pointwise evaluation of the source term might not be the best choice for stability, accuracy and minimization of spurious numerics for the overall scheme.

  4. Turbulence modeling for hypersonic flight

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.

    1993-01-01

    The objective of the proposed work is to continue to develop, verify, and incorporate the baseline two-equation turbulence models, which account for the effects of compressibility at high speeds, into a three-dimensional Reynolds averaged Navier-Stokes (RANS) code. Additionally, we plan to provide documented descriptions of the models and their numerical procedures so that they can be implemented into the NASP CFD codes.

  5. Progress in hypersonic turbulence modeling

    NASA Technical Reports Server (NTRS)

    Wilcox, David C.

    1991-01-01

    A compressibility modification is developed for k-omega (Wilcox, 1988) and k-epsilon (Jones and Launder, 1972) models, that is similar to those of Sarkar et al. (1989) and Zeman (1990). Results of the perturbation solution for the compressible wall layer demonstrate why the Sarkar and Zeman terms yield inaccurate skin friction for the flat-plate boundary layer. A new compressibility term is developed which permits accurate predictions of the compressible mixing layer, flat-plate boundary layer, and shock separated flows.

  6. Hypersonic flow separation in shock wave boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Kumar, Ajay

    1992-01-01

    An assessment is presented for the experimental data on separated flow in shock wave turbulent boundary layer interactions at hypersonic and supersonic speeds. The data base consists mainly of two dimensional and axisymmetric interactions in compression corners or cylinder-flares, and externally generated oblique shock interactions with boundary layers over flat plates or cylindrical surfaces. The conditions leading to flow separation and the subsequent changes in the flow empirical correlations for incipient separation are reviewed. The effects of the Mach number, Reynolds number, surface cooling and the methods of detecting separation are discussed. The pertinent experimental data for the separated flow characteristics in separated turbulent boundary layer shock interaction are also presented and discussed.

  7. Hypersonic flow separation in shock wave boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Kumar, Ajay

    1992-01-01

    An assessment is presented for the experimental data on separated flow in shock wave turbulent boundary layer interactions at hypersonic and supersonic speeds. The data base consists mainly of two dimensional and axisymmetric interactions in compression corners or cylinder-flares, and externally generated oblique shock interactions with boundary layers over flat plates or cylindrical surfaces. The conditions leading to flow separation and the subsequent changes in the flow empirical correlations for incipient separation are reviewed. The effects of the Mach number, Reynolds number, surface cooling and the methods of detecting separation are discussed. The pertinent experimental data for the separated flow characteristics in separated turbulent boundary layer shock interaction are also presented and discussed.

  8. Control of turbulent mixing in hypersonic flow

    NASA Astrophysics Data System (ADS)

    Nishioka, Michio

    1990-10-01

    The conventional engines for present supersonic aircrafts have a drawback in the subsonic flights: they generate strong shock waves, increase total pressure losses, dissociate gases due to increased temperature, and substantially decrease fuel burning efficiencies. When the gases are burned in the supersonic flow, duration times of gases in the combustion chamber become too short. The development of a new technology is required to mix rapidly fuel (hydrogen) and oxygen in the supersonic flow and burn them in time. Flow instability of the initial turbulent flow structure in the hypersonic shear layer is simulated as fuel injection, and the after flow (Mach number of 2.5) is analyzed using the linear stability theory and is studied on the amplified disturbances. The growth of this supersonic disturbance is observed using the Schlieren method. The method for additional mixing of gases is studied to accelerate disturbances.

  9. Dynamics Evolution Investigation of Mack Mode Instability in a Hypersonic Boundary Layer by Bicoherence Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Han, Jian; Jiang, Nan

    2012-07-01

    The instability of a hypersonic boundary layer on a cone is investigated by bicoherence spectrum analysis. The experiment is conducted at Mach number 6 in a hypersonic wind tunnel. The time series signals of instantaneous fluctuating surface-thermal-flux are measured by Pt-thin-film thermocouple temperature sensors mounted at 28 stations on the cone surface along streamwise direction to investigate the development of the unstable disturbances. The bicoherence spectrum analysis based on wavelet transform is employed to investigate the nonlinear interactions of the instability of Mack modes in hypersonic laminar boundary layer transition. The results show that wavelet bicoherence is a powerful tool in studying the unstable mode nonlinear interaction of hypersonic laminar-turbulent transition. The first mode instability gives rise to frequency shifts to higher unstable modes at the early stage of hypersonic laminar-turbulent transition. The modulations subsequently lead to the second mode instability occurrence. The second mode instability governs the last stage of instability and final breakdown to turbulence with multi-scale disturbances growth.

  10. Measurement of density and temperature in a hypersonic turbulent boundary layer using the electron beam fluorescence technique. Ph.D. Thesis. Final Report, 1 Oct. 1969 - 1 Sep. 1972

    NASA Technical Reports Server (NTRS)

    Mcronald, A. D.

    1975-01-01

    Mean density and temperature fluctuations were measured across the turbulent, cooled-wall boundary layer in a continuous hypersonic (Mach 9.4) wind tunnel in air, using the nitrogen fluorescence excited by a 50 kV electron beam. Data were taken at three values of the tunnel stagnation pressure, the corresponding free stream densities being equivalent to 1.2, 4.0, and 7.4 torr at room temperature, and the boundary layer thicknesses about 4.0, 4.5, and 6.0 inches. The mean temperature and density profiles were similar to those previously determined in the same facility by conventional probes (static and pitot pressure, total temperature). A static pressure variation of about 50% across the boundary layer was found, the shape of the variation changing somewhat for the three stagnation pressure levels. The quadrupole model for rotational temperature spectra gave closer agreement with the free stream isentropic level (approximately 44 K) than the dipole model.

  11. Turbulent Supersonic/Hypersonic Heating Correlations for Open and Closed Cavities

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Greene, Francis A.

    2009-01-01

    Supersonic/hypersonic laminar heating correlations that were developed for damage assessment analysis of atmospheric re-entry vehicles have been modified and extended to cover fully-turbulent conditions over rectangular cavity geometries that are aligned with the local velocity. Turbulent boundary layer properties were computationally determined and used to develop the cavity geometry parametrics and to correlate experimental closed cavity heating data to yield new relationships for the floor-averaged and centerline endwall peak-heating augmentation. With the form of the closed-cavity correlations established, historical data were used to develop new correlations for turbulent open-cavity heating.

  12. Turbulent Supersonic/Hypersonic Heating Correlations for Open and Closed Cavities

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.; Greene, Francis A.

    2009-01-01

    Supersonic/hypersonic laminar heating correlations that were developed for damage assessment analysis of atmospheric re-entry vehicles have been modified and extended to cover fully-turbulent conditions over rectangular cavity geometries that are aligned with the local velocity. Turbulent boundary layer properties were computationally determined and used to develop the cavity geometry parametrics and to correlate experimental closed cavity heating data to yield new relationships for the floor-averaged and centerline endwall peakheating augmentation. With the form of the closed-cavity correlations established, historical data were used to develop new correlations for turbulent open-cavity heating.

  13. Turbulent shear stresses in compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Laderman, A. J.; Demetriades, A.

    1979-01-01

    Hot-wire anemometer measurements of turbulent shear stresses in a Mach 3 compressible boundary layer were performed in order to investigate the effects of heat transfer on turbulence. Measurements were obtained by an x-probe in a flat plate, zero pressure gradient, two dimensional boundary layer in a wind tunnel with wall to freestream temperature ratios of 0.94 and 0.71. The measured shear stress distributions are found to be in good agreement with previous results, supporting the contention that the shear stress distribution is essentially independent of Mach number and heat transfer for Mach numbers from incompressible to hypersonic and wall to freestream temperature ratios of 0.4 to 1.0. It is also found that corrections for frequency response limitations of the electronic equipment are necessary to determine the correct shear stress distribution, particularly at the walls.

  14. Optimal Growth in Hypersonic Boundary Layers

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of the parabolized linear stability equations is used in a variational approach to extend the previous body of results for the optimal, nonmodal disturbance growth in boundary-layer flows. This paper investigates the optimal growth characteristics in the hypersonic Mach number regime without any high-enthalpy effects. The influence of wall cooling is studied, with particular emphasis on the role of the initial disturbance location and the value of the spanwise wave number that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary-layer equations, mean flow solutions based on the full Navier-Stokes equations are used in select cases to help account for the viscous- inviscid interaction near the leading edge of the plate and for the weak shock wave emanating from that region. Using the full Navier-Stokes mean flow is shown to result in further reduction with Mach number in the magnitude of optimal growth relative to the predictions based on the self-similar approximation to the base flow.

  15. Optimal Growth in Hypersonic Boundary Layers

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of the parabolized linear stability equations is used in a variational approach to extend the previous body of results for the optimal, nonmodal disturbance growth in boundary-layer flows. This paper investigates the optimal growth characteristics in the hypersonic Mach number regime without any high-enthalpy effects. The influence of wall cooling is studied, with particular emphasis on the role of the initial disturbance location and the value of the spanwise wave number that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary-layer equations, mean flow solutions based on the full Navier-Stokes equations are used in select cases to help account for the viscous- inviscid interaction near the leading edge of the plate and for the weak shock wave emanating from that region. Using the full Navier-Stokes mean flow is shown to result in further reduction with Mach number in the magnitude of optimal growth relative to the predictions based on the self-similar approximation to the base flow.

  16. Boundary Layer Control for Hypersonic Airbreathing Vehicles

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Nowak, Robert J.; Horvath, Thomas J.

    2004-01-01

    Active and passive methods for tripping hypersonic boundary layers have been examined in NASA Langley Research Center wind tunnels using a Hyper-X model. This investigation assessed several concepts for forcing transition, including passive discrete roughness elements and active mass addition (or blowing), in the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air Tunnels. Heat transfer distributions obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the Hyper-X nominal Mach 7 flight test-point of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For passive roughness, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The passive roughness study resulted in a swept ramp configuration, scaled to be roughly 0.6 of the calculated boundary layer thickness, being selected for the Mach 7 flight vehicle. For the active blowing study, the manifold pressure was systematically varied (while monitoring the mass flow) for each configuration to determine the jet penetration height, with schlieren, and transition movement, with the phosphor system, for comparison to the passive results. All the blowing concepts tested, which included various rows of sonic orifices (holes), two- and three-dimensional slots, and random porosity, provided transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model surface static pressure, which is adequate to ensure sonic jets. The present results indicate that the jet penetration height for blowing was roughly half the height required with passive roughness elements for an equivalent amount of transition movement.

  17. Turbulent Spots Inside the Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Skarda, Jinhie; Wu, Xiaohua; Moin, Parviz; Lozano-Duran, Adrian; Wallace, James; Hickey, Jean-Pierre

    2016-11-01

    We present evidence that the buffer region of the canonical turbulent boundary layer is populated by locally generated turbulent spots, which cause strong indentations on the near-wall low-momentum streaks. This evidence is obtained from a spatially-developing direct numerical simulation carrying the inlet Blasius boundary layer through a bypass transition to the turbulent boundary layer state over a moderate Reynolds number range. The turbulent spots are structurally analogous to their transitional counter-parts but without any direct causality connection. High-pass filtered time-history records are used to calculate the period of turbulent spot detection and this period is compared to the boundary layer bursting period reported in hot-wire experiments. The sensitivity of the results to parameters such as the high pass filter frequency and the amplitude discriminator level is examined. The characteristics of these turbulent spots are also quantified using a spatial connectivity based conditional sampling technique. This evidence seems to be at odds with the notion that the buffer region is dominated by quasi-streamwise vortices, and contributes to the potential unification of the studies on near-wall turbulent boundary layer dynamics.

  18. Second mode unstable disturbance measurement of hypersonic boundary layer on cone by wavelet transform

    NASA Astrophysics Data System (ADS)

    Han, Jian; Jiang, Nan; Tian, Yan

    2011-08-01

    Experimental investigation of hypersonic boundary layer instability on a cone is performed at Mach number 6 in a hypersonic wind tunnel. Time series signals of instantaneous fluctuating surface-thermal-flux are measured by Pt-thin-film thermocouple temperature sensors mounted at 28 stations on the cone surface in the streamwise direction to investigate the development of the unstable disturbance. Wavelet transform is employed as a mathematical tool to obtain the multi-scale characteristics of fluctuating surface-thermal-flux both in the temporal and spectrum space. The conditional sampling algorithm using wavelet coefficient as an index is put forward to extract the unstable disturbance waveform from the fluctuating surface-thermal-flux signals. The generic waveform for the second mode unstable disturbance is obtained by a phase-averaging technique. The development of the unstable disturbance in the streamwise direction is assessed both in the temporal and spectrum space. Our study shows that the local unstable disturbance detection method based on wavelet transformation offers an alternative powerful tool in studying the hypersonic unstable mode of laminar-turbulent transition. It is demonstrated that, at hypersonic speeds, the dominant flow instability is the second mode, which governs the course of laminar-turbulent transition of sharp cone boundary layer.

  19. Anisotropic power spectrum of refractive-index fluctuation in hypersonic turbulence.

    PubMed

    Li, Jiangting; Yang, Shaofei; Guo, Lixin; Cheng, Mingjian

    2016-11-10

    An anisotropic power spectrum of the refractive-index fluctuation in hypersonic turbulence was obtained by processing the experimental image of the hypersonic plasma sheath and transforming the generalized anisotropic von Kármán spectrum. The power spectrum suggested here can provide as good a fit to measured spectrum data for hypersonic turbulence as that recorded from the nano-planar laser scattering image. Based on the newfound anisotropic hypersonic turbulence power spectrum, Rytov approximation was employed to establish the wave structure function and the spatial coherence radius model of electromagnetic beam propagation in hypersonic turbulence. Enhancing the anisotropy characteristics of the hypersonic turbulence led to a significant improvement in the propagation performance of electromagnetic beams in hypersonic plasma sheath. The influence of hypersonic turbulence on electromagnetic beams increases with the increase of variance of the refractive-index fluctuation and the decrease of turbulence outer scale and anisotropy parameters. The spatial coherence radius was much smaller than that in atmospheric turbulence. These results are fundamental to understanding electromagnetic wave propagation in hypersonic turbulence.

  20. Turbulence Models for Accurate Aerothermal Prediction in Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang-Hong; Wu, Yi-Zao; Wang, Jiang-Feng

    Accurate description of the aerodynamic and aerothermal environment is crucial to the integrated design and optimization for high performance hypersonic vehicles. In the simulation of aerothermal environment, the effect of viscosity is crucial. The turbulence modeling remains a major source of uncertainty in the computational prediction of aerodynamic forces and heating. In this paper, three turbulent models were studied: the one-equation eddy viscosity transport model of Spalart-Allmaras, the Wilcox k-ω model and the Menter SST model. For the k-ω model and SST model, the compressibility correction, press dilatation and low Reynolds number correction were considered. The influence of these corrections for flow properties were discussed by comparing with the results without corrections. In this paper the emphasis is on the assessment and evaluation of the turbulence models in prediction of heat transfer as applied to a range of hypersonic flows with comparison to experimental data. This will enable establishing factor of safety for the design of thermal protection systems of hypersonic vehicle.

  1. Three-dimensional separation for interaction of shock waves with turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Goldberg, T. J.

    1973-01-01

    For the interaction of shock waves with turbulent boundary layers, obtained experimental three-dimensional separation results and correlations with earlier two-dimensional and three-dimensional data are presented. It is shown that separation occurs much earlier for turbulent three-dimensional than for two-dimensional flow at hypersonic speeds.

  2. Assessment of CFD Hypersonic Turbulent Heating Rates for Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Oliver, A. Brandon

    2011-01-01

    Turbulent CFD codes are assessed for the prediction of convective heat transfer rates at turbulent, hypersonic conditions. Algebraic turbulence models are used within the DPLR and LAURA CFD codes. The benchmark heat transfer rates are derived from thermocouple measurements of the Space Shuttle orbiter Discovery windward tiles during the STS-119 and STS-128 entries. The thermocouples were located underneath the reaction-cured glass coating on the thermal protection tiles. Boundary layer transition flight experiments conducted during both of those entries promoted turbulent flow at unusually high Mach numbers, with the present analysis considering Mach 10{15. Similar prior comparisons of CFD predictions directly to the flight temperature measurements were unsatisfactory, showing diverging trends between prediction and measurement for Mach numbers greater than 11. In the prior work, surface temperatures and convective heat transfer rates had been assumed to be in radiative equilibrium. The present work employs a one-dimensional time-accurate conduction analysis to relate measured temperatures to surface heat transfer rates, removing heat soak lag from the flight data, in order to better assess the predictive accuracy of the numerical models. The turbulent CFD shows good agreement for turbulent fuselage flow up to Mach 13. But on the wing in the wake of the boundary layer trip, the inclusion of tile conduction effects does not explain the prior observed discrepancy in trends between simulation and experiment; the flight heat transfer measurements are roughly constant over Mach 11-15, versus an increasing trend with Mach number from the CFD.

  3. Flow separation in shock wave boundary layer interactions at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Hamed, A.

    1990-01-01

    An assessment is presented for the experimental data on separated flow in shock wave turbulent boundary layer interactions at hypersonic and supersonic speeds. The data base consists mainly of two dimensional and axisymmetric interactions in compression corners or cylinder-flares, and externally generated oblique shock interactions with boundary layers over flat plates or cylindrical surfaces. The conditions leading to flow separation and the subsequent changes in the flow empirical correlations for incipient separation are reviewed. The effects of the Mach number, Reynolds number, surface cooling and the methods of detecting separation are discussed. The pertinent experimental data for the separated flow characteristics in separated turbulent boundary layer shock interaction are also presented and discussed.

  4. Numerical Study of Freestream Waves Receptivity and Nonlinear Breakdown in Hypersonic Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lei, Jia

    Laminar-turbulent transition prediction in hypersonic boundary layer remains one of the most challenging topics in the design of hypervelocity vehicle. It requires thorough understanding of the physical mechanisms underlay freestream wave receptivity and nonlinear breakdown process. Freestream wave receptivity concerns the evolution of freestream disturbance passing through the shock and exciting the boundary layer normal modes that eventually become unstable. Nonlinear breakdown focuses on the study of the relevant mechanisms in the secondary instability region that leads to laminar-turbulent transition. These two topics have been extensively studied separately for decades. Significant progress has been made in terms of understanding how the instability waves form and develop in the early region as well as what are the viable paths from breakdown to turbulent. However, the linkage between receptivity and breakdown is still not well understood. The nature transition process commonly observed in hypersonic boundary layer consists of the following ingredients: freestream wave receptivity, linear growth, secondary instability and breakdown to turbulent. The transition location highly depends on the freestream wave disturbance profile. In order to attain a better understanding of the natural transition process, it is necessary to conduct a complete simulation from freestream wave receptivity all the way to nonlinear breakdown. This kind of simulation is considered beyond the capability of current computer power. The objective of current research is to devise a new three-step approach to simulate the flow from receptivity process to breakdown. In order to achieve the goal, direct numerical simulations (DNS) are performed over various freestream conditions and cone geometries to investigate the hypersonic boundary layer stability, freestream wave receptivity and nonlinear breakdown. In the study of nose bluntness effect on hypersonic boundary layer stability, three cone

  5. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer

    NASA Astrophysics Data System (ADS)

    Han, Jian; Jiang, Nan

    2008-05-01

    Experimental measurement of hypersonic boundary layer stability and transition on a sharp cone with a half angle of 5° is carried out at free-coming stream Mach number 6 in a hypersonic wind tunnel. Mean and fluctuation surface-thermal-flux characteristics of the hypersonic boundary layer flow are measured by Pt-thin-film thermocouple temperature sensors installed at 28 stations on the cone surface along longitudinal direction. At hypersonic speeds, the dominant flow instabilities demonstrate that the growth rate of the second mode tends to exceed that of the low-frequency mode. Wavelet-based cross-spectrum technique is introduced to obtain the multi-scale cross-spectral characteristics of the fluctuating signals in the frequency range of the second mode. Nonlinear interactions both of the second mode disturbance and the first mode disturbance are demonstrated to be dominant instabilities in the initial stage of laminar-turbulence transition for hypersonic shear flow.

  6. Hypersonic laminar/turbulent transition: computations and experiments

    NASA Astrophysics Data System (ADS)

    Orlik, E.; Kornilov, V.; Ferrier, M.; Fedioun, I.; Davidenko, D.

    2012-01-01

    In order to predict the laminar/turbulent transition on a hypersonic vehicle forebody at Mach numbers 4 and 6, the three-dimensional (3D) modal linear stability analysis is applied, coupled with the eN method. Nevertheless, N factors are unknown for wind tunnel conditions. Experimental investigations have been carried out on a flat plate in the blowdown wind tunnel T-313 of ITAM RAS (Novosibirsk). At M∞ = 2 to 6, the position of laminar/turbulent transition was measured by both Pitot tube and thermocouples. Then, stability analysis allows computing N factors at transition on the flat plate: they are about 3 ˜ 4, typical of conventional wind tunnels. These flat plate correlations can then be used to predict the transition on the forebody in the same wind tunnel. Experiments for the forebody are currently in progress and will allow checking the predicted transition location.

  7. Application of a transitional boundary-layer theory in the low hypersonic Mach number regime

    NASA Technical Reports Server (NTRS)

    Shamroth, S. J.; Mcdonald, H.

    1975-01-01

    An investigation is made to assess the capability of a finite-difference boundary-layer procedure to predict the mean profile development across a transition from laminar to turbulent flow in the low hypersonic Mach-number regime. The boundary-layer procedure uses an integral form of the turbulence kinetic-energy equation to govern the development of the Reynolds apparent shear stress. The present investigation shows the ability of this procedure to predict Stanton number, velocity profiles, and density profiles through the transition region and, in addition, to predict the effect of wall cooling and Mach number on transition Reynolds number. The contribution of the pressure-dilatation term to the energy balance is examined and it is suggested that transition can be initiated by the direct absorption of acoustic energy even if only a small amount (1 per cent) of the incident acoustic energy is absorbed.

  8. Boundary Layer Transition Experiments in Support of the Hypersonics Program

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Chen, Fang-Jenq; Wilder, Michael C.; Reda, Daniel C.

    2007-01-01

    Two experimental boundary layer transition studies in support of fundamental hypersonics research are reviewed. The two studies are the HyBoLT flight experiment and a new ballistic range effort. Details are provided of the objectives and approach associated with each experimental program. The establishment of experimental databases from ground and flight are to provide better understanding of high-speed flows and data to validate and guide the development of simulation tools.

  9. Simulation of hypersonic shock wave - laminar boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Kianvashrad, N.; Knight, D.

    2017-06-01

    The capability of the Navier-Stokes equations with a perfect gas model for simulation of hypersonic shock wave - laminar boundary layer interactions is assessed. The configuration is a hollow cylinder flare. The experimental data were obtained by Calspan-University of Buffalo (CUBRC) for total enthalpies ranging from 5.07 to 21.85 MJ/kg. Comparison of the computed and experimental surface pressure and heat transfer is performed and the computed §ow¦eld structure is analyzed.

  10. Study of flow control by localized volume heating in hypersonic boundary layers

    NASA Astrophysics Data System (ADS)

    Keller, M. A.; Kloker, M. J.; Kirilovskiy, S. V.; Polivanov, P. A.; Sidorenko, A. A.; Maslov, A. A.

    2014-12-01

    Boundary-layer flow control is a prerequisite for a safe and efficient operation of future hypersonic transport systems. Here, the influence of an electric discharge—modeled by a heat-source term in the energy equation—on laminar boundary-layer flows over a flat plate with zero pressure gradient at Mach 3, 5, and 7 is investigated numerically. The aim was to appraise the potential of electro-gasdynamic devices for an application as turbulence generators in the super- and hypersonic flow regime. The results with localized heat-source elements in boundary layers are compared to cases with roughness elements serving as classical passive trips. The numerical simulations are performed using the commercial code ANSYS FLUENT (by ITAM) and the high-order finite-difference DNS code NS3D (by IAG), the latter allowing for the detailed analysis of laminar flow instability. For the investigated setups with steady heating, transition to turbulence is not observed, due to the Reynolds-number lowering effect of heating.

  11. Stereoscopic Imaging in Hypersonics Boundary Layers using Planar Laser-Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett; Inman, Jennifer A.; Alderfer, David W.; Jones, Stephen B.

    2008-01-01

    Stereoscopic time-resolved visualization of three-dimensional structures in a hypersonic flow has been performed for the first time. Nitric Oxide (NO) was seeded into hypersonic boundary layer flows that were designed to transition from laminar to turbulent. A thick laser sheet illuminated and excited the NO, causing spatially-varying fluorescence. Two cameras in a stereoscopic configuration were used to image the fluorescence. The images were processed in a computer visualization environment to provide stereoscopic image pairs. Two methods were used to display these image pairs: a cross-eyed viewing method which can be viewed by naked eyes, and red/blue anaglyphs, which require viewing through red/blue glasses. The images visualized three-dimensional information that would be lost if conventional planar laser-induced fluorescence imaging had been used. Two model configurations were studied in NASA Langley Research Center's 31-Inch Mach 10 Air Wind tunnel. One model was a 10 degree half-angle wedge containing a small protuberance to force the flow to transition. The other model was a 1/3-scale, truncated Hyper-X forebody model with blowing through a series of holes to force the boundary layer flow to transition to turbulence. In the former case, low flowrates of pure NO seeded and marked the boundary layer fluid. In the latter, a trace concentration of NO was seeded into the injected N2 gas. The three-dimensional visualizations have an effective time resolution of about 500 ns, which is fast enough to freeze this hypersonic flow. The 512x512 resolution of the resulting images is much higher than high-speed laser-sheet scanning systems with similar time response, which typically measure 10-20 planes.

  12. Comparative study of turbulence models in predicting hypersonic inlet flows

    NASA Technical Reports Server (NTRS)

    Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.

    1992-01-01

    A numerical study was conducted to analyze the performance of different turbulence models when applied to the hypersonic NASA P8 inlet. Computational results from the PARC2D code, which solves the full two-dimensional Reynolds-averaged Navier-Stokes equation, were compared with experimental data. The zero-equation models considered for the study were the Baldwin-Lomax model, the Thomas model, and a combination of the Baldwin-Lomax and Thomas models; the two-equation models considered were the Chien model, the Speziale model (both low Reynolds number), and the Launder and Spalding model (high Reynolds number). The Thomas model performed best among the zero-equation models, and predicted good pressure distributions. The Chien and Speziale models compared very well with the experimental data, and performed better than the Thomas model near the walls.

  13. Comparative study of turbulence models in predicting hypersonic inlet flows

    NASA Technical Reports Server (NTRS)

    Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.

    1992-01-01

    A numerical study was conducted to analyze the performance of different turbulence models when applied to the hypersonic NASA P8 inlet. Computational results from the PARC2D code, which solves the full two-dimensional Reynolds-averaged Navier-Stokes equation, were compared with experimental data. The zero-equation models considered for the study were the Baldwin-Lomax model, the Thomas model, and a combination of the Baldwin-Lomax and Thomas models; the two-equation models considered were the Chien model, the Speziale model (both low Reynolds number), and the Launder and Spalding model (high Reynolds number). The Thomas model performed best among the zero-equation models, and predicted good pressure distributions. The Chien and Speziale models compared wery well with the experimental data, and performed better than the Thomas model near the walls.

  14. High enthalpy hypersonic boundary layer flow

    NASA Technical Reports Server (NTRS)

    Yanow, G.

    1972-01-01

    A theoretical and experimental study of an ionizing laminar boundary layer formed by a very high enthalpy flow (in excess of 12 eV per atom or 7000 cal/gm) with allowance for the presence of helium driver gas is described. The theoretical investigation has shown that the use of variable transport properties and their respective derivatives is very important in the solution of equilibrium boundary layer equations of high enthalpy flow. The effect of low level helium contamination on the surface heat transfer rate is minimal. The variation of ionization is much smaller in a chemically frozen boundary layer solution than in an equilibrium boundary layer calculation and consequently, the variation of the transport properties in the case of the former was not essential in the integration. The experiments have been conducted in a free piston shock tunnel, and a detailed study of its nozzle operation, including the effects of low levels of helium driver gas contamination has been made. Neither the extreme solutions of an equilibrium nor of a frozen boundary layer will adequately predict surface heat transfer rate in very high enthalpy flows.

  15. Assessment of a transitional boundary layer theory at low hypersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Shamroth, S. J.; Mcdonald, H.

    1972-01-01

    An investigation was carried out to assess the accuracy of a transitional boundary layer theory in the low hypersonic Mach number regime. The theory is based upon the simultaneous numerical solution of the boundary layer partial differential equations for the mean motion and an integral form of the turbulence kinetic energy equation which controls the magnitude and development of the Reynolds stress. Comparisions with experimental data show the theory is capable of accurately predicting heat transfer and velocity profiles through the transitional regime and correctly predicts the effects of Mach number and wall cooling on transition Reynolds number. The procedure shows promise of predicting the initiation of transition for given free stream disturbance levels. The effects on transition predictions of the pressure dilitation term and of direct absorption of acoustic energy by the boundary layer were evaluated.

  16. Numerical methods for hypersonic boundary layer stability

    NASA Technical Reports Server (NTRS)

    Malik, M. R.

    1990-01-01

    Four different schemes for solving compressible boundary layer stability equations are developed and compared, considering both the temporal and spatial stability for a global eigenvalue spectrum and a local eigenvalue search. The discretizations considered encompass: (1) a second-order-staggered finite-difference scheme; (2) a fourth-order accurate, two-point compact scheme; (3) a single-domain Chebychev spectral collocation scheme; and (4) a multidomain spectral collocation scheme. As Mach number increases, the performance of the single-domain collocation scheme deteriorates due to the outward movement of the critical layer; a multidomain spectral method is accordingly designed to furnish superior resolution of the critical layer.

  17. X-33 Hypersonic Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J.; Hollis, Brian R.; Thompson, Richard A.; Hamilton, H. Harris, II

    1999-01-01

    Boundary layer and aeroheating characteristics of several X-33 configurations have been experimentally examined in the Langley 20-Inch Mach 6 Air Tunnel. Global surface heat transfer distributions, surface streamline patterns, and shock shapes were measured on 0.013-scale models at Mach 6 in air. Parametric variations include angles-of-attack of 20-deg, 30-deg, and 40-deg; Reynolds numbers based on model length of 0.9 to 6.6 million; and body-flap deflections of 0, 10 and 20-deg. The effects of discrete and distributed roughness elements on boundary layer transition, which included trip height, size, location, and distribution, both on and off the windward centerline, were investigated. The discrete roughness results on centerline were used to provide a transition correlation for the X-33 flight vehicle that was applicable across the range of reentry angles of attack. The attachment line discrete roughness results were shown to be consistent with the centerline results, as no increased sensitivity to roughness along the attachment line was identified. The effect of bowed panels was qualitatively shown to be less effective than the discrete trips; however, the distributed nature of the bowed panels affected a larger percent of the aft-body windward surface than a single discrete trip.

  18. Waves, Turbulence and Boundary Layers

    DTIC Science & Technology

    2005-09-30

    turbulent bottom boundary layers to account for shallow water wave and streaming effects . OBJECTIVES 1. Derive the three-dimensional, wave...deficiency. 1 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average...completing and reviewing the collection of information . Send comments regarding this burden estimate or any other aspect of this collection of

  19. Effect of bulk viscosity on a hypersonic boundary layer

    NASA Astrophysics Data System (ADS)

    Emanuel, George

    1992-03-01

    The bulk viscosity mu(b) is generally set equal to zero (Stokes' hypothesis). For certain gases, such as CO2, mu(b)/mu exceeds 1000, where mu is the shear viscosity. In this circumstance, the bulk viscosity may substantially alter a hypersonic boundary layer. A general, nonsimilar, laminar, boundary-layer formulation is provided in which the bulk viscosity terms are included as a correction. To obtain explicit results, flow over a flat plate is considered. In addition to the heat transfer, the transverse pressure gradient inside the boundary layer is not zero, whereas the skin friction is unaltered by the bulk viscosity. This analysis is relevant to aerogravity-assisted maneuvers in planetary atmospheres that largely consist of CO2.

  20. Effect of bulk viscosity on a hypersonic boundary layer

    NASA Astrophysics Data System (ADS)

    Emanuel, George

    1992-03-01

    The bulk viscosity μb is generally set equal to zero (Stokes' hypothesis). For certain gases, such as CO2, μb/μ exceeds 103, where μ is the shear viscosity. In this circumstance, the bulk viscosity may substantially alter a hypersonic boundary layer. A general, nonsimilar, laminar, boundary-layer formulation is provided in which the bulk viscosity terms are included as a correction. To obtain explicit results, flow over a flat plate is considered. In addition to the heat transfer, the transverse pressure gradient inside the boundary layer is not zero, whereas the skin friction is unaltered by the bulk viscosity. This analysis is relevant to aerogravity-assisted maneuvers in planetary atmospheres that largely consist of CO2.

  1. Nonlinear evolution of Mack modes in a hypersonic boundary layer

    NASA Astrophysics Data System (ADS)

    Chokani, Ndaona

    2005-01-01

    In hypersonic boundary layer flows the nonlinear disturbance evolution occurs relatively slowly over a very long length scale and has a profound effect on boundary layer transition. In the case of low-level freestream disturbances and negligible surface roughness, the transition is due to the modal growth of exponentially growing Mack modes that are destabilized by wall cooling. Cross-bicoherence measurements, derived from hot-wire data acquired in a quiet hypersonic tunnel, are used to identify and quantify phase-locked, quadratic sum and difference interactions involving the Mack modes. In the early stages of the nonlinear disturbance evolution, cross-bicoherence measurements indicate that the energy exchange between the Mack mode and the mean flow first occurs to broaden the sidebands; this is immediately followed by a sum interaction of the Mack mode to generate the first harmonic. In the next stages of the nonlinear disturbance evolution, there is a difference interaction of the first harmonic, which is also thought to contribute to the mean flow distortion. This difference interaction, in the latter stages, is also accompanied by a difference interaction between Mack mode and first harmonic, and a sum interaction, which forces the second harmonic. Analysis using the digital complex demodulation technique, shows that the low-frequency, phase-locked interaction that is identified in the cross bicoherence when the Mack mode and first harmonic have large amplitudes, arises due to the amplitude modulation of Mack mode and first harmonic.

  2. Receptivity of Hypersonic Boundary Layer to Wall Disturbances

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Khokhlov, A. P.

    Theoretical analysis of hypersonic boundary-layer receptivity to wall disturbances is conducted using a combination of asymptotic and numerical methods. Excitation of the second mode by distributed and local forcing on a flat-plate surface is studied under adiabatic and cooled wall conditions. Analysis addresses receptivity to wall vibrations, periodic suction/blowing, and temperature disturbances. A strong excitation occurs in local regions where forcing is in resonance with normal waves. It is shown that the receptivity function tends to infinity as the resonance point tends to the branch point of the discrete spectrum that is typical for boundary layers on cool surfaces. Asymptotic analysis resolves this singularity and provides the receptivity coefficient in the branch-point vicinity. Numerical results indicate extremely high receptivity to vibrations and suction/blowing in the vicinity of the branch point located near the lower neutral branch of the Mack second mode.

  3. Nonparallel instability of supersonic and hypersonic boundary layers

    NASA Technical Reports Server (NTRS)

    El-Hady, Nabil M.

    1991-01-01

    Multiple scaling technique is used to examine the nonparallel instability of supersonic and hypersonic boundary-layer flows to three dimensional (first mode) and two dimensional (second mode) disturbances. The method is applied to the flat plate boundary layer for a range of Mach numbers from 0 to 10. Growth rates of disturbances are calculated based on three different criteria: following the maximum of the mass-flow disturbance, using an integral of the disturbance kinetic energy, and using the integral of the square of the mass-flow amplitude. By following the maximum of the mass-flow disturbance, the calculated nonparallel growth rates are in good quantitative agreement with the experimental results at Mach number 4.5.

  4. Assessment of Turbulent CFD Against STS-128 Hypersonic Flight Data

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.; Hyatt, Andrew J.

    2010-01-01

    Turbulent CFD simulations are compared against surface temperature measurements of the space shuttle orbiter windward tiles at reentry flight conditions. Algebraic turbulence models are used within both the LAURA and DPLR CFD codes. The flight data are from temperature measurements obtained by seven thermocouples during the STS-128 mission (September 2009). The flight data indicate boundary layer transition onset over the Mach number range 13.5{15.5, depending upon the location on the vehicle. But the boundary layer flow appeared to be transitional down through Mach 12, based upon the flight data and CFD trends. At Mach 9 the simulations match the flight data on average within 20 F/11 C, where typical surface temperatures were approximately 1600 F/870 C.

  5. Downstream influence of swept slot injection in hypersonic turbulent flow

    NASA Technical Reports Server (NTRS)

    Hefner, J. N.; Cary, A. M., Jr.; Bushnell, D. B.

    1977-01-01

    Results of an experimental and numerical investigation of tangential swept slot injection into a thick turbulent boundary layer at Mach 6 are presented. Film cooling effectiveness, skin friction, and flow structure downstream of the swept slot injection were investigated. The data were compared with that for unswept slots, and it was found that cooling effectiveness and skin friction reductions are not significantly affected by sweeping the slot.

  6. Direct numerical simulation of the laminar-turbulent transition at hypersonic flow speeds on a supercomputer

    NASA Astrophysics Data System (ADS)

    Egorov, I. V.; Novikov, A. V.; Fedorov, A. V.

    2017-08-01

    A method for direct numerical simulation of three-dimensional unsteady disturbances leading to a laminar-turbulent transition at hypersonic flow speeds is proposed. The simulation relies on solving the full three-dimensional unsteady Navier-Stokes equations. The computational technique is intended for multiprocessor supercomputers and is based on a fully implicit monotone approximation scheme and the Newton-Raphson method for solving systems of nonlinear difference equations. This approach is used to study the development of three-dimensional unstable disturbances in a flat-plate and compression-corner boundary layers in early laminar-turbulent transition stages at the free-stream Mach number M = 5.37. The three-dimensional disturbance field is visualized in order to reveal and discuss features of the instability development at the linear and nonlinear stages. The distribution of the skin friction coefficient is used to detect laminar and transient flow regimes and determine the onset of the laminar-turbulent transition.

  7. Flow Visualization in Supersonic Turbulent Boundary Layers.

    NASA Astrophysics Data System (ADS)

    Smith, Michael Wayne

    This thesis is a collection of novel flow visualizations of two different flat-plate, zero pressure gradient, supersonic, turbulent boundary layers (M = 2.8, Re _theta ~ 82,000, and M = 2.5, Re_ theta ~ 25,000, respectively). The physics of supersonic shear flows has recently drawn increasing attention with the renewed interest in flight at super and hypersonic speeds. This work was driven by the belief that the study of organized, Reynolds -stress producing turbulence structures will lead to improved techniques for the modelling and control of high-speed boundary layers. Although flow-visualization is often thought of as a tool for providing qualitative information about complex flow fields, in this thesis an emphasis is placed on deriving quantitative results from image data whenever possible. Three visualization techniques were applied--'selective cut-off' schlieren, droplet seeding, and Rayleigh scattering. Two experiments employed 'selective cut-off' schlieren. In the first, high-speed movies (40,000 fps) were made of strong density gradient fronts leaning downstream at between 30^circ and 60^ circ and travelling at about 0.9U _infty. In the second experiment, the same fronts were detected with hot-wires and imaged in real time, thus allowing the examination of the density gradient fronts and their associated single-point mass -flux signals. Two experiments employed droplet seeding. In both experiments, the boundary layer was seeded by injecting a stream of acetone through a single point in the wall. The acetone is atomized by the high shear at the wall into a 'fog' of tiny (~3.5mu m) droplets. In the first droplet experiment, the fog was illuminated with copper-vapor laser sheets of various orientations. The copper vapor laser pulses 'froze' the fog motion, revealing a variety of organized turbulence structures, some with characteristic downstream inclinations, others with large-scale roll-up on the scale of delta. In the second droplet experiment, high

  8. Receptivity of Hypersonic Boundary Layers over Straight and Flared Cones

    NASA Technical Reports Server (NTRS)

    Balakumar, Ponnampalam; Kegerise, Michael A.

    2010-01-01

    The effects of adverse pressure gradients on the receptivity and stability of hypersonic boundary layers were numerically investigated. Simulations were performed for boundary layer flows over a straight cone and two flared cones. The steady and the unsteady flow fields were obtained by solving the two-dimensional Navier-Stokes equations in axi-symmetric coordinates using the 5th order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The mean boundary layer profiles were analyzed using local stability and non-local parabolized stability equations (PSE) methods. After the most amplified disturbances were identified, two-dimensional plane acoustic waves were introduced at the outer boundary of the computational domain and time accurate simulations were performed. The adverse pressure gradient was found to affect the boundary layer stability in two important ways. Firstly, the frequency of the most amplified second-mode disturbance was increased relative to the zero pressure gradient case. Secondly, the amplification of first- and second-mode disturbances was increased. Although an adverse pressure gradient enhances instability wave growth rates, small nose-tip bluntness was found to delay transition due to the low receptivity coefficient and the resulting weak initial amplitude of the instability waves. The computed and measured amplitude-frequency spectrums in all three cases agree very well in terms of frequency and the shape except for the amplitude.

  9. Recommendations for Hypersonic Boundary Layer Transition Flight Testing

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Kimmel, Roger; Reshotko, Eli

    2011-01-01

    Much has been learned about the physics underlying the transition process at supersonic and hypersonic speeds through years of analysis, experiment and computation. Generally, the application of this knowledge has been restricted to simple shapes like plates, cones and spherical bodies. However, flight reentry vehicles are in reality never simple. They typically are highly complex geometries flown at angle of attack so three-dimensional effects are very important, as are roughness effects due to surface features and/or ablation. This paper will review our present understanding of the physics of the transition process and look back at some of the recent flight test programs for their successes and failures. The goal of this paper is to develop rationale for new hypersonic boundary layer transition flight experiments. Motivations will be derived from both an inward look at what we believe constitutes a good flight test program as well as an outward review of the goals and objectives of some recent US based unclassified proposals and programs. As part of our recommendations, this paper will address the need for careful experimental work as per the guidelines enunciated years ago by the U.S. Transition Study Group. Following these guidelines is essential to obtaining reliable, usable data for allowing refinement of transition estimation techniques.

  10. Hypersonic boundary layer instabilities affected by various porous surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowen; Zhong, Xiaolin

    2010-11-01

    Hypersonic boundary layer instabilities of a Mach 5.92 flow over a flat plate affected by various porous surfaces are studied by numerical simulations. Steady base flow is obtained by solving compressible Navier-Stokes equations with a fifth-order shock-fitting method and a second-order TVD scheme. Stability simulations consist of two steps: (1) disturbances corresponding to a single boundary layer wave (mode F or mode S) are superimposed at a cross-section of the boundary layer near the leading edge to show spatial development of the wave; (2) porous coatings are used downstream of the superimposed wave to investigate its effect on boundary-layer instabilities. The results show that porous coating only has local effects on the instabilities of mode S and mode F. In porous region, Mack's first mode is destabilized whereas Mack's second mode and Mode F are stabilized. For felt-metal porous coating, destabilization of Mack's first mode is so significant that disturbances are slightly destabilized when porous coating are put on the whole flat plate. At approximately the same porosity, regular structure porous coating is weaker in first mode destabilization and second mode stabilization than felt-metal porous coating.

  11. Hypersonic Boundary-Layer Trip Development for Hyper-X

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Auslender, Aaron H.; Dilley, Authur D.; Calleja, John F.

    2000-01-01

    Boundary layer trip devices for the Hper-X forebody have been experimentally examined in several wind tunnels. Five different trip configurations were compared in three hypersonic facilities, the LaRC 20-Inch Mach 6 Air Tunnel, the LaRC 31 -Inch Mach 10 Air Tunnel, and in the HYPULSE Reflected Shock Tunnel at GASL. Heat transfer distributions, utilizing the phosphor thermography and thin-film techniques, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. Parametric variations include angles-of-attack of 0-deg, 2-deg, and 4-deg; Reynolds numbers based on model length of 1.2 to 15.4 million: and inlet cowl door simulated in both open and closed positions. Comparisons of transition due to discrete roughness elements have led to the selection of a trip configuration for the Hyper-X Mach 7 flight vehicle.

  12. Cyclone separator having boundary layer turbulence control

    DOEpatents

    Krishna, Coimbatore R.; Milau, Julius S.

    1985-01-01

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  13. Prehistory of Instability in a Hypersonic Boundary Layer

    NASA Astrophysics Data System (ADS)

    Fedorov, Alexander V.; Khokhlov, Andrew P.

    The initial phase of hypersonic boundary-layer transition comprising excitation of boundary-layer modes and their downstream evolution from receptivity regions to the unstable region (instability prehistory problem) is considered. The disturbance spectrum reveals the following features: (1) the first and second modes are synchronized with acoustic waves near the leading edge; (2) further downstream, the first mode is synchronized with entropy and vorticity waves; (3) near the lower neutral branch of the Mack second mode, the first mode is synchronized with the second mode. Disturbance behavior in Regions (2) and (3) is studied using the multiple-mode method accounting for interaction between modes due to mean-flow nonparallel effects. Analysis of the disturbance behavior in Region 3) provides the intermodal exchange rule coupling input and output amplitudes of the first and second modes. It is shown that Region (3) includes branch points at which disturbance group velocity and amplitude are singular. These singularities can cause difficulties in stability analyses. In Region (2), vorticity/entropy waves are partially swallowed by the boundary layer. They may effectively generate the Mack second mode near its lower neutral branch.

  14. Fluorescence Visualization of Hypersonic Flow Past Triangular and Rectangular Boundary-layer Trips

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Garcia, A. P.; Borg, Stephen E.; Dyakonov, Artem A.; Berry, Scott A.; Inman, Jennifer A.; Alderfer, David W.

    2007-01-01

    Planar laser-induced fluorescence (PLIF) flow visualization has been used to investigate the hypersonic flow of air over surface protrusions that are sized to force laminar-to-turbulent boundary layer transition. These trips were selected to simulate protruding Space Shuttle Orbiter heat shield gap-filler material. Experiments were performed in the NASA Langley Research Center 31-Inch Mach 10 Air Wind Tunnel, which is an electrically-heated, blowdown facility. Two-mm high by 8-mm wide triangular and rectangular trips were attached to a flat plate and were oriented at an angle of 45 degrees with respect to the oncoming flow. Upstream of these trips, nitric oxide (NO) was seeded into the boundary layer. PLIF visualization of this NO allowed observation of both laminar and turbulent boundary layer flow downstream of the trips for varying flow conditions as the flat plate angle of attack was varied. By varying the angle of attack, the Mach number above the boundary layer was varied between 4.2 and 9.8, according to analytical oblique-shock calculations. Computational Fluid Dynamics (CFD) simulations of the flowfield with a laminar boundary layer were also performed to better understand the flow environment. The PLIF images of the tripped boundary layer flow were compared to a case with no trip for which the flow remained laminar over the entire angle-of-attack range studied. Qualitative agreement is found between the present observed transition measurements and a previous experimental roughness-induced transition database determined by other means, which is used by the shuttle return-to-flight program.

  15. Hypersonic Boundary Layer Transition Measurements Using NO2 approaches NO Photo-dissociation Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Goyne, Christopher P.

    2011-01-01

    Measurements of instantaneous and mean streamwise velocity profiles in a hypersonic laminar boundary layer as well as a boundary layer undergoing laminar-to-turbulent transition were obtained over a 10-degree half-angle wedge model. A molecular tagging velocimetry technique consisting of a NO2 approaches?NO photo-dissociation reaction and two subsequent excitations of NO was used. The measurement of the transitional boundary layer velocity profiles was made downstream of a 1-mm tall, 4-mm diameter cylindrical trip along several lines lying within a streamwise measurement plane normal to the model surface and offset 6-mm from the model centerline. For laminar and transitional boundary layer measurements, the magnitudes of streamwise velocity fluctuations are compared. In the transitional boundary layer the fluctuations were, in general, 2-4 times larger than those in the laminar boundary layer. Of particular interest were fluctuations corresponding to a height of approximately 50% of the laminar boundary layer thickness having a magnitude of nearly 30% of the mean measured velocity. For comparison, the measured fluctuations in the laminar boundary layer were approximately 5% of the mean measured velocity at the same location. For the highest 10% signal-to-noise ratio data, average single-shot uncertainties using a 1 ?Es and 50 ?Es interframe delay were 115 m/s and 3 m/s, respectively. By averaging single-shot measurements of the transitional boundary layer, uncertainties in mean velocity as low as 39 m/s were obtained in the wind tunnel. The wall-normal and streamwise spatial resolutions were 0.14-mm (2 pixel) and 0.82-mm (11 pixels), respectively. These measurements were performed in the 31-inch Mach 10 Air Wind Tunnel at the NASA Langley Research Center.

  16. A Numerical Study of 2-D Surface Roughness Effects on the Growth of Wave Modes in Hypersonic Boundary Layers

    NASA Astrophysics Data System (ADS)

    Fong, Kahei Danny

    The current understanding and research efforts on surface roughness effects in hypersonic boundary-layer flows focus, almost exclusively, on how roughness elements trip a hypersonic boundary layer to turbulence. However, there were a few reports in the literature suggesting that roughness elements in hypersonic boundary-layer flows could sometimes suppress the transition process and delay the formation of turbulent flow. These reports were not common and had not attracted much attention from the research community. Furthermore, the mechanisms of how the delay and stabilization happened were unknown. A recent study by Duan et al. showed that when 2-D roughness elements were placed downstream of the so-called synchronization point, the unstable second-mode wave in a hypersonic boundary layer was damped. Since the second-mode wave is typically the most dangerous and dominant unstable mode in a hypersonic boundary layer for sharp geometries at a zero angle of attack, this result has pointed to an explanation on how roughness elements delay transition in a hypersonic boundary layer. Such an understanding can potentially have significant practical applications for the development of passive flow control techniques to suppress hypersonic boundary-layer transition, for the purpose of aero-heating reduction. Nevertheless, the previous study was preliminary because only one particular flow condition with one fixed roughness parameter was considered. The study also lacked an examination on the mechanism of the damping effect of the second mode by roughness. Hence, the objective of the current research is to conduct an extensive investigation of the effects of 2-D roughness elements on the growth of instability waves in a hypersonic boundary layer. The goal is to provide a full physical picture of how and when 2-D roughness elements stabilize a hypersonic boundary layer. Rigorous parametric studies using numerical simulation, linear stability theory (LST), and parabolized

  17. Transition Delay in Hypersonic Boundary Layers via Optimal Perturbations

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    The effect of nonlinear optimal streaks on disturbance growth in a Mach 6 axisymmetric flow over a 7deg half-angle cone is investigated in an e ort to expand the range of available techniques for transition control. Plane-marching parabolized stability equations are used to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone, but subharmonic first mode instabilities, which are destabilized by the presence of the streaks, reach N = 6 near the end of the cone. These results suggest a passive flow control strategy of using micro vortex generators to induce streaks that would delay transition in hypersonic boundary layers.

  18. Calculation methods for compressible turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1976-01-01

    Calculation procedures for non-reacting compressible two- and three-dimensional turbulent boundary layers were reviewed. Integral, transformation and correlation methods, as well as finite difference solutions of the complete boundary layer equations summarized. Alternative numerical solution procedures were examined, and both mean field and mean turbulence field closure models were considered. Physics and related calculation problems peculiar to compressible turbulent boundary layers are described. A catalog of available solution procedures of the finite difference, finite element, and method of weighted residuals genre is included. Influence of compressibility, low Reynolds number, wall blowing, and pressure gradient upon mean field closure constants are reported.

  19. Characterization of structural response to hypersonic boundary-layer transition

    SciTech Connect

    Riley, Zachary B.; Deshmukh, Rohit; Miller, Brent A.; McNamara, Jack J.; Casper, Katya M.

    2016-05-24

    The inherent relationship between boundary-layer stability, aerodynamic heating, and surface conditions makes the potential for interaction between the structural response and boundary-layer transition an important and challenging area of study in high-speed flows. This paper phenomenologically explores this interaction using a fundamental two-dimensional aerothermoelastic model under the assumption of an aluminum panel with simple supports. Specifically, an existing model is extended to examine the impact of transition onset location, transition length, and transitional overshoot in heat flux and fluctuating pressure on the structural response of surface panels. Transitional flow conditions are found to yield significantly increased thermal gradients, and they can result in higher maximum panel temperatures compared to turbulent flow. Results indicate that overshoot in heat flux and fluctuating pressure reduces the flutter onset time and increases the strain energy accumulated in the panel. Furthermore, overshoot occurring near the midchord can yield average temperatures and peak displacements exceeding those experienced by the panel subject to turbulent flow. Lastly, these results suggest that fully turbulent flow does not always conservatively predict the thermo-structural response of surface panels.

  20. Characterization of structural response to hypersonic boundary-layer transition

    DOE PAGES

    Riley, Zachary B.; Deshmukh, Rohit; Miller, Brent A.; ...

    2016-05-24

    The inherent relationship between boundary-layer stability, aerodynamic heating, and surface conditions makes the potential for interaction between the structural response and boundary-layer transition an important and challenging area of study in high-speed flows. This paper phenomenologically explores this interaction using a fundamental two-dimensional aerothermoelastic model under the assumption of an aluminum panel with simple supports. Specifically, an existing model is extended to examine the impact of transition onset location, transition length, and transitional overshoot in heat flux and fluctuating pressure on the structural response of surface panels. Transitional flow conditions are found to yield significantly increased thermal gradients, and theymore » can result in higher maximum panel temperatures compared to turbulent flow. Results indicate that overshoot in heat flux and fluctuating pressure reduces the flutter onset time and increases the strain energy accumulated in the panel. Furthermore, overshoot occurring near the midchord can yield average temperatures and peak displacements exceeding those experienced by the panel subject to turbulent flow. Lastly, these results suggest that fully turbulent flow does not always conservatively predict the thermo-structural response of surface panels.« less

  1. Characterization of structural response to hypersonic boundary-layer transition

    SciTech Connect

    Riley, Zachary B.; Deshmukh, Rohit; Miller, Brent A.; McNamara, Jack J.; Casper, Katya M.

    2016-05-24

    The inherent relationship between boundary-layer stability, aerodynamic heating, and surface conditions makes the potential for interaction between the structural response and boundary-layer transition an important and challenging area of study in high-speed flows. This paper phenomenologically explores this interaction using a fundamental two-dimensional aerothermoelastic model under the assumption of an aluminum panel with simple supports. Specifically, an existing model is extended to examine the impact of transition onset location, transition length, and transitional overshoot in heat flux and fluctuating pressure on the structural response of surface panels. Transitional flow conditions are found to yield significantly increased thermal gradients, and they can result in higher maximum panel temperatures compared to turbulent flow. Results indicate that overshoot in heat flux and fluctuating pressure reduces the flutter onset time and increases the strain energy accumulated in the panel. Furthermore, overshoot occurring near the midchord can yield average temperatures and peak displacements exceeding those experienced by the panel subject to turbulent flow. Lastly, these results suggest that fully turbulent flow does not always conservatively predict the thermo-structural response of surface panels.

  2. Some aspects of shock-wave boundary layer interaction at hypersonic speeds

    NASA Astrophysics Data System (ADS)

    Stollery, John L.

    1990-07-01

    The paper discusses the topics of `two dimensional' shock-induced separation, glancing interaction and hypersonic viscous interaction. Wherever possible both laminar and turbulent boundary layers are considered and reference is made to experimental data and to the results of mathematical modelling. Many quasi-two dimensional tests have been made to study the flow past a compression corner. The data are reviewed with particular reference to incipient separation and the effects of separation on the pressure and heat transder distributions are described. One of the most important three-dimensional interactions concerns the way in which a shock wave generated by a fin, pylon, tail-plane or wing influences the boundary layer growing over the surface to which the shock-generator is attached. A number of results are examined for a fin mounted on a flat plate or side wall. The sparate and combined effects of incidence, sweep and blutness are described. Even when no separatin occurs the boundary layers at hpersonic speeds can be be thick enough to significantly modify the pressure distribution around a given geometric shape. The example considered here is laminar viscous interaction over a trailing edge control surface and a simple analytical method is used to demonstrate the reductions in control effectiveness. The paper ends with some thoughts on future research topics and the facilities needed to pursue them.

  3. Nonlinear spatial evolution of inviscid instabilities on hypersonic boundary layers

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.

    1996-01-01

    The spatial development of an initially linear vorticity-mode instability on a compressible flat-plate boundary layer is considered. The analysis is done in the framework of the hypersonic limit where the free-stream Mach number M approaches infinity. Nonlinearity is shown to become important locally, in a thin critical layer, when sigma, the deviation of the phase speed from unity, becomes o(M(exp -8/7)) and the magnitude of the pressure fluctuations becomes 0(sigma(exp 5/2)M(exp 2)). The unsteady flow outside the critical layer takes the form of a linear instability wave but with its amplitude completely determined by the nonlinear flow within the critical layer. The coupled set of equations which govern the critical-layer dynamics reflect a balance between spatial-evolution, (linear and nonlinear) convection and nonlinear vorticity-generation terms. The numerical solution to these equations shows that nonlinear effects produce a dramatic reduction in the instability-wave amplitude.

  4. Hypersonic turbulent expansion-corner flow with shock impingement

    NASA Technical Reports Server (NTRS)

    Chung, Kung-Ming; Lu, Frank K.

    1992-01-01

    Mean and fluctuating surface pressure data were obtained in a Mach 8, turbulent, cold flow past an expansion corner subjected to shock impingement. The expansion corner of 2.5 or 4.25 deg was located at 0.77 m (30.25 in.) from the leading edge of a shape-edged flat plate while an external shock, generated by either a 2- or 4-deg sharp wedge, impinged at the corner, or at one boundary layer thickness ahead or behind the corner. The mean pressure distribution was strongly influenced by the mutual interaction between the shock and the expansion. For example, the upstream influence decreased when the shock impinged downstream of the corner. Also, the unsteadiness of the interactions was characterized by an intermittent region and a local rms pressure peak near the upstream influence line. The peak rms pressure fluctuations increased with a larger overall interaction strength. Shock impingement downstream of the corner resulted in lower peaks and also in a shorter region of reduced fluctuation levels. These features may be exploited in inlet design by impinging the cowl shock downstream of an expansion corner instead of at the corner. In addition, a limited Pitot pressure survey showed a thinning of the boundary layer downstream of the corner.

  5. Secondary Instability of Second Modes in Hypersonic Boundary Layers

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; White, Jeffery A.

    2012-01-01

    Second mode disturbances dominate the primary instability stage of transition in a number of hypersonic flow configurations. The highest amplification rates of second mode disturbances are usually associated with 2D (or axisymmetric) perturbations and, therefore, a likely scenario for the onset of the three-dimensionality required for laminar-turbulent transition corresponds to the parametric amplification of 3D secondary instabilities in the presence of 2D, finite amplitude second mode disturbances. The secondary instability of second mode disturbances is studied for selected canonical flow configurations. The basic state for the secondary instability analysis is obtained by tracking the linear and nonlinear evolution of 2D, second mode disturbances using nonlinear parabolized stability equations. Unlike in previous studies, the selection of primary disturbances used for the secondary instability analysis was based on their potential relevance to transition in a low disturbance environment and the effects of nonlinearity on the evolution of primary disturbances was accounted for. Strongly nonlinear effects related to the self-interaction of second mode disturbances lead to an upstream shift in the upper branch neutral location. Secondary instability computations confirm the previously known dominance of subharmonic modes at relatively small primary amplitudes. However, for the Purdue Mach 6 compression cone configuration, it was shown that a strong fundamental secondary instability can exist for a range of initial amplitudes of the most amplified second mode disturbance, indicating that the exclusive focus on subharmonic modes in the previous applications of secondary instability theory to second mode primary instability may not have been fully justified.

  6. Vortex unwinding in a turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Mcginley, Catherine B.; Beeler, George B.

    1987-01-01

    The vortex unwinding method is used as a tool in performing vortex cancellation in a turbulent boundary layer. Sufficient reduction in the isotach variation was achieved to verify the usefulness of this technique, for the cases of both wall turbulence control and horseshoe vortex alleviation. More detailed measurements of vortex strength and position improve the optimization process and increase the amount of vortex unwinding.

  7. Numerical Computations of Hypersonic Boundary-Layer over Surface Irregularities

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan M.; Li, Fei

    2010-01-01

    Surface irregularities such as protuberances inside a hypersonic boundary layer may lead to premature transition on the vehicle surface. Early transition in turn causes large localized surface heating that could damage the thermal protection system. Experimental measurements as well as numerical computations aimed at building a knowledge base for transition Reynolds numbers with respect to different protuberance sizes and locations have been actively pursued in recent years. This paper computationally investigates the unsteady wake development behind large isolated cylindrical roughness elements and the scaled wind-tunnel model of the trip used in a recent flight measurement during the reentry of space shuttle Discovery. An unstructured mesh, compressible flow solver based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for the flow past a roughness element under several wind-tunnel conditions. For a cylindrical roughness element with a height to the boundary-layer thickness ratio from 0.8 to 2.5, the wake flow is characterized by a mushroom-shaped centerline streak and horse-shoe vortices. While time-accurate solutions converged to a steady-state for a ratio of 0.8, strong flow unsteadiness is present for a ratio of 1.3 and 2.5. Instability waves marked by distinct disturbance frequencies were found in the latter two cases. Both the centerline streak and the horse-shoe vortices become unstable downstream. The oscillatory vortices eventually reach an early breakdown stage for the largest roughness element. Spectral analyses in conjunction with the computed root mean square variations suggest that the source of the unsteadiness and instability waves in the wake region may be traced back to possible absolute instability in the front-side separation region.

  8. Aero-optic characteristics of turbulent compressible boundary layers

    NASA Astrophysics Data System (ADS)

    Wyckham, Christopher Mark

    This dissertation presents a detailed study of the aberrating effect on a plane incident wavefront of light due to its passage through a turbulent, compressible boundary layer. This aberration has important implications for the design of airborne optical systems for imaging, communications, or projection. A Shack-Hartmann sensor and associated data analysis software suite were developed and validated for the high resolution measurement of two dimensional wavefront phase. Significant improvements in wavefront reconstruction were achieved by using the calculated centroid uncertainties to weight the least squares fitting of the phase surface. Using the Shack-Hartmann sensor in a high speed, one dimensional mode, individual structures are observed propagating past the sensor in a transonic flow. The uncertainties on the reconstructed phase in this mode are very high, however. In a two dimensional mode the uncertainties are greatly reduced and a large database of individual, uncorrelated wavefronts was collected, allowing statistics to be calculated such as the rms wavefront height and the Strehl ratio. Data were collected at transonic and hypersonic speeds and with no injection or with helium or nitrogen injection into the boundary layer. In all cases except the hypersonic helium injection case, the time averaged wavefronts reveal no features in the boundary layer which are steady in time. In the hypersonic helium injection case, however, steady, longitudinal features are observed, in agreement with previous observations. When helium is injected for window cooling at high speeds, the results show there may be an opportunity to reduce the resulting distortion by taking advantage of the stable structures that form in the boundary layer by using a low bandwidth adaptive optic system. A new scaling argument is also presented to allow the prediction and comparison of wavefront data for different compressible boundary layer flow conditions. The proposed formula gives

  9. Numerical solution of the hypersonic viscous-shock-layer equations for laminar, transitional, and turbulent flows of a perfect gas over blunt axially symmetric bodies

    NASA Technical Reports Server (NTRS)

    Anderson, E. C.; Moss, J. N.

    1975-01-01

    The viscous shock layer equations applicable to hypersonic laminar, transitional, and turbulent flows of a perfect gas over two-dimensional plane or axially symmetric blunt bodies are presented. The equations are solved by means of an implicit finite difference scheme, and the results are compared with a turbulent boundary layer analysis. The agreement between the two solution procedures is satisfactory for the region of flow where streamline swallowing effects are negligible. For the downstream regions, where streamline swallowing effects are present, the expected differences in the two solution procedures are evident.

  10. Interaction Between Aerothermally Compliant Structures and Boundary-Layer Transition in Hypersonic Flow

    NASA Astrophysics Data System (ADS)

    Riley, Zachary Bryce

    The use of thin-gauge, light-weight structures in combination with the severe aero-thermodynamic loading makes reusable hypersonic cruise vehicles prone to fluid-thermal-structural interactions. These interactions result in surface perturbations in the form of temperature changes and deformations that alter the stability and eventual transition of the boundary layer. The state of the boundary layer has a significant effect on the aerothermodynamic loads acting on a hypersonic vehicle. The inherent relationship between boundary-layer stability, aerothermodynamic loading, and surface conditions make the interaction between the structural response and boundary-layer transition an important area of study in high-speed flows. The goal of this dissertation is to examine the interaction between boundary layer transition and the response of aerothermally compliant structures. This is carried out by first examining the uncoupled problems of: (1) structural deformation and temperature changes altering boundary-layer stability and (2) the boundary layer state affecting structural response. For the former, the stability of boundary layers developing over geometries that typify the response of surface panels subject to combined aerodynamic and thermal loading is numerically assessed using linear stability theory and the linear parabolized stability equations. Numerous parameters are examined including: deformation direction, deformation location, multiple deformations in series, structural boundary condition, surface temperature, the combined effect of Mach number and altitude, and deformation mode shape. The deformation-induced pressure gradient alters the boundary-layer thickness, which changes the frequency of the most-unstable disturbance. In regions of small boundary-layer growth, the disturbance frequency modulation resulting from a single or multiple panels deformed into the flowfield is found to improve boundary-layer stability and potentially delay transition. For the

  11. A method for the direct numerical simulation of hypersonic boundary-layer instability with finite-rate chemistry

    SciTech Connect

    Marxen, Olaf; Magin, Thierry E.; Shaqfeh, Eric S.G.; Iaccarino, Gianluca

    2013-12-15

    A new numerical method is presented here that allows to consider chemically reacting gases during the direct numerical simulation of a hypersonic fluid flow. The method comprises the direct coupling of a solver for the fluid mechanical model and a library providing the physio-chemical model. The numerical method for the fluid mechanical model integrates the compressible Navier–Stokes equations using an explicit time advancement scheme and high-order finite differences. This Navier–Stokes code can be applied to the investigation of laminar-turbulent transition and boundary-layer instability. The numerical method for the physio-chemical model provides thermodynamic and transport properties for different gases as well as chemical production rates, while here we exclusively consider a five species air mixture. The new method is verified for a number of test cases at Mach 10, including the one-dimensional high-temperature flow downstream of a normal shock, a hypersonic chemical reacting boundary layer in local thermodynamic equilibrium and a hypersonic reacting boundary layer with finite-rate chemistry. We are able to confirm that the diffusion flux plays an important role for a high-temperature boundary layer in local thermodynamic equilibrium. Moreover, we demonstrate that the flow for a case previously considered as a benchmark for the investigation of non-equilibrium chemistry can be regarded as frozen. Finally, the new method is applied to investigate the effect of finite-rate chemistry on boundary layer instability by considering the downstream evolution of a small-amplitude wave and comparing results with those obtained for a frozen gas as well as a gas in local thermodynamic equilibrium.

  12. Structure of relaminarizing turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Ramesh, O.; Patwardhan, Saurabh

    2014-11-01

    Relaminarization of a turbulent boundary layer in a strongly accelerated flow has received a great attention in recent times. It has been found that such relaminarization is a general and regularly occurring phenomenon in the leading-edge region of a swept wing of an airplane (van Dam et al., 1993). In this work, we investigate the effect of initial Reynolds number on the process of relaminarization in turbulent boundary layers. The experimental and numerical investigation of relaminarizing turbulent boundary layers undergoing same history reveals that the boundary layer with higher initial Reynolds number relaminarizes at a lower pressure gradient value compared to the one with lower Reynolds number. This effect can be explained on the inviscid theory proposed earlier in the literature. Further, various parameter criteria proposed to predict relaminarization, are assessed and the structure of relaminarizing boundary layers is investigated. A mechanism for stabilization of near-wall low speed streaks is proposed.

  13. Shuttle Damage/Repair from the Perspective of Hypersonic Boundary Layer Transition - Experimental Results

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Berry, Scott A.; Merski, N. Ronald; Berger, Karen T.; Buck, Gregory M.; Liechty, Derek S.; Schneider, Steven P.

    2006-01-01

    An overview is provided of the experimental wind tunnel program conducted at the NASA Langley Research Center Aerothermodynamics Laboratory in support of an agency-wide effort to prepare the Shuttle Orbiter for Return-to-Flight. The effect of an isolated protuberance and an isolated rectangular cavity on hypersonic boundary layer transition onset on the windward surface of the Shuttle Orbiter has been experimentally characterized. These experimental studies were initiated to provide a protuberance and cavity effects database for developing hypersonic transition criteria to support on-orbit disposition of thermal protection system damage or repair. In addition, a synergistic experimental investigation was undertaken to assess the impact of an isolated mass-flow entrainment source (simulating pyrolysis/outgassing from a proposed tile repair material) on boundary layer transition. A brief review of the relevant literature regarding hypersonic boundary layer transition induced from cavities and localized mass addition from ablation is presented. Boundary layer transition results were obtained using 0.0075-scale Orbiter models with simulated tile damage (rectangular cavities) of varying length, width, and depth and simulated tile damage or repair (protuberances) of varying height. Cavity and mass addition effects were assessed at a fixed location (x/L = 0.3) along the model centerline in a region of near zero pressure gradient. Cavity length-to-depth ratio was systematically varied from 2.5 to 17.7 and length-to-width ratio of 1 to 8.5. Cavity depth-to-local boundary layer thickness ranged from 0.5 to 4.8. Protuberances were located at several sites along the centerline and port/starboard attachment lines along the chine and wing leading edge. Protuberance height-to-boundary layer thickness was varied from approximately 0.2 to 1.1. Global heat transfer images and heating distributions of the Orbiter windward surface using phosphor thermography were used to infer the

  14. Unsteady Heat-Flux Measurements of Second-Mode Instability Waves in a Hypersonic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Kergerise, Michael A.; Rufer, Shann J.

    2016-01-01

    In this paper we report on the application of the atomic layer thermopile (ALTP) heat- flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are in agreement with data previously reported in the literature. Heat flux time series, and the Morlet-wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was developed to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.

  15. Turbulence closure modeling near rigid boundaries

    NASA Technical Reports Server (NTRS)

    Durbin, Paul A.

    1991-01-01

    The near-wall region plays an essential role in turbulent boundary layers: it is a region of high shear; the peak rate of production and peak intensity of turbulence occurs there; and the peak rate of dissipation occurs right at the wall. Nevertheless, this region has received less attention from modelers than have more nearly homogeneous flows. One reason for this is that when the boundary layer is near equilibrium, experimental data can be used to prescribe the flow in the wall layer. Another reason is that most turbulence models are developed under assumptions of near homogeneity. This is a poor approximation in the wall region. A single-point moment closure model for the strongly non-homogeneous A turbulent flow near a rigid boundary is developed.

  16. Simulations of Boundary Turbulence in Tokamak Experiments

    SciTech Connect

    Nevins, W M; Xu, X Q; Carlstrom, T N; Cohen, R H; Groebner, R; Jennings, T; LaBombard, B; Maqueda, R A; Mazurenko, A; McKee, G R; Moyer, R; Mossessian, D; Porkolab, M; Porter, G D; Rensink, M E; Rhodes, T L; Rognlien, T D; Rost, C; Snipes, J; Stotler, D P; Terry, J; Zweben, S

    2002-10-11

    Comparisons between the boundary plasma turbulence observed in the BOUT code and experiments on C-Mod, NSTX, and DIII-D are presented. BOUT is a 3D non-local electromagnetic turbulence simulation code which models boundary-plasma turbulence in a realistic divertor geometry using the modified Braginskii equations for plasma vorticity, density, the electron and ion temperatures and parallel momenta. Many features of the Quasi-Coherent (QC) mode, observed at high densities during enhanced D-alpha (EDA) H-Mode in Alcator C-Mod, are reproduced in BOUT simulations. The spatial structure of boundary plasma turbulence as observed by gas puff imaging (GPI) from discharges on NSTX and C-Mod are in general (NSTX) to good (CMod) agreement with BOUT simulations. Finally, BOUT simulations of DIII-D L-mode experiments near the Hmode transition threshold are in broad agreement with the experimental results.

  17. Matching boundary layer and inviscid flowfields at hypersonic speeds

    NASA Astrophysics Data System (ADS)

    Harwell, Karen Elizabeth

    2000-10-01

    Boundary layer equations are developed and incorporated into an implicit finite-difference technique solving non-similar, axi-symmetric boundary layer equations for both laminar and turbulent flow. The new equations match all the boundary layer properties with the variation of the inviscid solution near the edge, except for the normal velocity. In this way entropy layer swallowing effects are automatically included in the solution. The method also incorporates more inviscid flowfield information into the boundary layer solution than other methods at a negligible increase in run-time. Results show that the new technique can provide improved heating rates and skin friction predictions for preliminary design of vehicles where shear layers and entropy layer swallowing are important. Solutions are presented for three sphere-cone configurations at high Mach number and comparisons are made with the SABLE boundary layer code, Navier-Stokes solutions, and Viscous Shock Layer solutions. Use of a new L'Hopital rule-based inviscid velocity gradient provides better prediction of stagnation-point heating rates. Heating rates are predicted more accurately in both the nose region and areas near the sphere-cone juncture than SABLE's final iteration. Shear stress results are also improved in the sphere-cone juncture area. The new technique's impact is seen readily in cases where the inviscid flowfield experiences velocity and enthalpy gradients near the wall. Little effect was seen on cases where the inviscid velocity ratios at the boundary layer edge was less than 1.5 and the enthalpy ratio greater than 0.9.

  18. Alpha models and boundary-layer turbulence

    NASA Astrophysics Data System (ADS)

    Cheskidov, Alexey

    We study boundary-layer turbulence using the Navier-Stokes-alpha model obtaining an extension of the Prandtl equations for the averaged flow in a turbulent boundary layer. In the case of a zero pressure gradient flow along a flat plate, we derive a nonlinear fifth-order ordinary differential equation, an extension of the Blasius equation. We study it analytically and prove the existence of a two-parameter family of solutions satisfying physical boundary conditions. From this equation we obtain a theoretical prediction of the skin-friction coefficient in a wide range of Reynolds numbers based on momentum thickness, and deduce the maximal value of the skin-friction coefficient in the turbulent boundary layer. The two-parameter family of solutions to the equation matches experimental data in the transitional boundary layers with different free stream turbulence intensity. A one-parameter sub-family of solutions, obtained using our skin-friction coefficient law, matches experimental data in the turbulent boundary layer for moderately large Reynolds numbers.

  19. The evolution of a wave packet to turbulent spot in the boundary layer at high speeds

    NASA Astrophysics Data System (ADS)

    Sidorenko, A. A.; Polivanov, P. A.; Gromyko, Y. V.; Bountin, D. A.; Maslov, A. A.

    2016-10-01

    Hypersonic boundary layer stability and transition were studied experimentally for the test cases of 7 deg half-angle sharp and blunted cones. The experiments were performed for M=6. Wall pressure pulsations were recorded synchronously with high speed Schlieren visualization. The combined data processing algorithm for coupling of unsteady pressure sensors with high-speed Schlieren images is proposed. Analysis of the wall pressure pulsations evolution reveals that the turbulent spot may arise in different ways. It was found that for the blunted model the role of the second mode in origination of the turbulent spot is more evident.

  20. Evolution of a wave packet to turbulent spot in a boundary layer at high speeds

    NASA Astrophysics Data System (ADS)

    Polivanov, P. A.; Gromiko, Yu. V.; Bountin, D. A.; Sidorenko, A. A.; Maslov, A. A.

    2017-06-01

    Hypersonic boundary layer stability and transition were studied experimentally for the test case of 7 degree half-angle cone with various nose bluntness. The experiments were performed for M = 6. Wall pressure pulsations were recorded synchronously with the high-speed schlieren. The combined data processing algorithm for coupling of unsteady pressure sensors with high-speed schlieren images was proposed. Analysis of the wall pressure pulsations evolution reveals that the turbulent spot may arise in different ways. It was found that for the blunted model, the role of the second mode in origination of the turbulent spot is more evident.

  1. Hypersonic Transition and Turbulence with Non-Equilibrium Thermochemistry

    DTIC Science & Technology

    2009-08-31

    unsolved problem in classical physics’ by Nobel-prize winning physicist Richard Feynman . Similar statements regarding the intricacies of turbulence have...jets and turbulence.’ MS thesis (2006). 2. B. M. Riley, J. C. Richard and S. S. Girirnaji. ’Magnetic field effects on axis-switching and notabilities...B. M. Riley, J. C. Richard and S. S. Girirnaji. ’Assessment of magneto-hydrodynamic Lattice-Boltzmann schemes in turbulence and rectangular jets

  2. Roles of Engineering Correlations in Hypersonic Entry Boundary Layer Transition Prediction

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.; King, Rudolph A.; Kergerise, Michael A.; Berry, Scott A.; Horvath, Thomas J.

    2010-01-01

    Efforts to design and operate hypersonic entry vehicles are constrained by many considerations that involve all aspects of an entry vehicle system. One of the more significant physical phenomenon that affect entry trajectory and thermal protection system design is the occurrence of boundary layer transition from a laminar to turbulent state. During the Space Shuttle Return To Flight activity following the loss of Columbia and her crew of seven, NASA's entry aerothermodynamics community implemented an engineering correlation based framework for the prediction of boundary layer transition on the Orbiter. The methodology for this implementation relies upon the framework of correlation techniques that have been in use for several decades. What makes the Orbiter boundary layer transition correlation implementation unique is that a statistically significant data set was acquired in multiple ground test facilities, flight data exists to assist in establishing a better correlation and the framework was founded upon state of the art chemical nonequilibrium Navier Stokes flow field simulations. The basic tenets that guided the formulation and implementation of the Orbiter Return To Flight boundary layer transition prediction capability will be reviewed as a recommended format for future empirical correlation efforts. The validity of this approach has since been demonstrated by very favorable comparison of recent entry flight testing performed with the Orbiter Discovery, which will be graphically summarized. These flight data can provide a means to validate discrete protuberance engineering correlation approaches as well as high fidelity prediction methods to higher confidence. The results of these Orbiter engineering and flight test activities only serve to reinforce the essential role that engineering correlations currently exercise in the design and operation of entry vehicles. The framework of information-related to the Orbiter empirical boundary layer transition

  3. Measured and calculated mean flow properties of a two-dimensional, hypersonic, turbulent wake

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.

    1972-01-01

    The hypersonic turbulent wake produced by a wedge was studied experimentally and its properties were compared with predictions obtained from a numerical computation procedure. In the computation procedure several models for the eddy viscosity formulation of the turbulent transport were examined. Conventional-defect models and a modified mixing-length model were found to yield good predictions of the experimental data. The classical mixing-length model gave unrealistic results. The experimental data displayed similarity when velocity and temperature defects were scaled by the maximum defects and the transverse coordinate was scaled by the velocity-defect half-width.

  4. Three-Dimensional Navier-Stokes Simulations with Two-Equation Turbulence Models of Intersecting Shock-Waves/Turbulent Boundary Layer at Mach 8.3

    NASA Technical Reports Server (NTRS)

    Bardina, J. E.; Coakley, T. J.

    1994-01-01

    An investigation of the numerical simulation with two-equation turbulence models of a three-dimensional hypersonic intersecting (SWTBL) shock-wave/turbulent boundary layer interaction flow is presented. The flows are solved with an efficient implicit upwind flux-difference split Reynolds-averaged Navier-Stokes code. Numerical results are compared with experimental data for a flow at Mach 8.28 and Reynolds number 5.3x10(exp 6) with crossing shock-waves and expansion fans generated by two lateral 15 fins located on top of a cold-wall plate. This experiment belongs to the hypersonic database for modeling validation. Simulations show the development of two primary counter-rotating cross-flow vortices and secondary turbulent structures under the main vortices and in each corner singularity inside the turbulent boundary layer. A significant loss of total pressure is produced by the complex interaction between the main vortices and the uplifted jet stream of the boundary layer. The overall agreement between computational and experimental data is generally good. The turbulence modeling corrections show improvements in the predictions of surface heat transfer distribution and an increase in the strength of the cross-flow vortices. Accurate predictions of the outflow flowfield is found to require accurate modeling of the laminar/turbulent boundary layers on the fin walls.

  5. Linear Controllers for Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Lim, Junwoo; Kim, John; Kang, Sung-Moon; Speyer, Jason

    2000-11-01

    Several recent studies have shown that controllers based on a linear system theory work surprisingly well in turbulent flows, suggesting that a linear mechanism may play an important role even in turbulent flows. It has been also shown that non-normality of the linearized Navier-Stokes equations is an essential characteristic in the regeneration of near-wall turbulence structures in turbulent boundary layers. A few controllers designed to reduce the role of different linear mechanisms, including that to minimize the non-normality of the linearized Navier-Stokes equations, have been developed and applied to a low Reynolds nubmer turbulent channel flow. A reduced-order model containing the most controllable and observables modes is derived for each system. Other existing control schemes, such as Choi et al's opposition control, have been examined from the point of a linear system control. Further discussion on controller design, such as choice of cost function and other control parameters, will be presented.

  6. A Turbulent Boundary Layer over Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Park, Hyunwook; Kim, John

    2015-11-01

    Direct numerical simulations of a spatially developing turbulent boundary layer (TBL) developing over superhydrophobic surfaces (SHS) were performed in order to investigate the underlying physics of turbulent flow over SHS. SHS were modeled through the shear-free boundary condition, assuming that the gas-liquid interfaces remained as non-deformable. Pattern-averaged turbulence statistics were examined in order to determine the effects of SHS on turbulence in no-slip and slip regions separately. Near-wall turbulence over the slip region was significantly affected by SHS due to insufficient mean shear required to sustain near-wall turbulence. SHS also indirectly affected near-wall turbulence over the no-slip region. In addition to the effects of the spanwise width of SHS on skin-friction drag reduction reported previously, spatial effects in the streamwise direction were examined. A guideline for optimal design of SHS geometry will be discussed. This research was supported by the ONR (Grant No. N000141410291).

  7. Bursting frequency prediction in turbulent boundary layers

    SciTech Connect

    LIOU,WILLIAM W.; FANG,YICHUNG

    2000-02-01

    The frequencies of the bursting events associated with the streamwise coherent structures of spatially developing incompressible turbulent boundary layers were predicted using global numerical solution of the Orr-Sommerfeld and the vertical vorticity equations of hydrodynamic stability problems. The structures were modeled as wavelike disturbances associated with the turbulent mean flow. The global method developed here involves the use of second and fourth order accurate finite difference formula for the differential equations as well as the boundary conditions. An automated prediction tool, BURFIT, was developed. The predicted resonance frequencies were found to agree very well with previous results using a local shooting technique and measured data.

  8. The 3-D Navier-Stokes analysis of crossing, glancing shocks/turbulent boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Reddy, D. R.

    1991-01-01

    Three dimensional viscous flow analysis is performed for a configuration where two crossing and glancing shocks interact with a turbulent boundary layer. A time marching 3-D full Navier-Stokes code, called PARC3D, is used to compute the flow field, and the solution is compared to the experimental data obtained at the NASA Lewis Research Center's 1 x 1 ft supersonic wind tunnel facility. The study is carried out as part of the continuing code assessment program in support of the generic hypersonic research at NASA Lewis. Detailed comparisons of static pressure fields and oil flow patterns are made with the corresponding solution on the wall containing the shock/boundary layer interaction in an effort to validate the code for hypersonic inlet applications.

  9. Calculation methods for compressible turbulent boundary layers, 1976

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1977-01-01

    Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.

  10. An assessment and application of turbulence models for hypersonic flows

    NASA Technical Reports Server (NTRS)

    Coakley, T. J.; Viegas, J. R.; Huang, P. G.; Rubesin, M. W.

    1990-01-01

    The current approach to the Accurate Computation of Complex high-speed flows is to solve the Reynolds averaged Navier-Stokes equations using finite difference methods. An integral part of this approach consists of development and applications of mathematical turbulence models which are necessary in predicting the aerothermodynamic loads on the vehicle and the performance of the propulsion plant. Computations of several high speed turbulent flows using various turbulence models are described and the models are evaluated by comparing computations with the results of experimental measurements. The cases investigated include flows over insulated and cooled flat plates with Mach numbers ranging from 2 to 8 and wall temperature ratios ranging from 0.2 to 1.0. The turbulence models investigated include zero-equation, two-equation, and Reynolds-stress transport models.

  11. LDV measurements of turbulent baroclinic boundary layers

    SciTech Connect

    Neuwald, P.; Reichenbach, H.; Kuhl, A.L.

    1993-07-01

    Described here are shock tube experiments of nonsteady, turbulent boundary layers with large density variations. A dense-gas layer was created by injecting Freon through the porous floor of the shock tube. As the shock front propagated along the layer, vorticity was created at the air-Freon interface by an inviscid, baroclinic mechanism. Shadow-schlieren photography was used to visualize the turbulent mixing in this baroclinic boundary layer. Laser-Doppler-Velocimetry (LDV) was used to measure the streamwise velocity histories at 14 heights. After transition, the boundary layer profiles may be approximated by a power-law function u {approximately} u{sup {alpha}} where {alpha} {approx_equal} 3/8. This value lies between the clean flat plate value ({alpha} = 1/7) and the dusty boundary layer value ({alpha} {approx_equal} 0.7), and is controlled by the gas density near the wall.

  12. Boundary Plasma Turbulence Simulations for Tokamaks

    SciTech Connect

    Xu, X; Umansky, M; Dudson, B; Snyder, P

    2008-05-15

    The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

  13. Turbulence modeling in shock wave/turbulent boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Smits, A. J.

    1992-01-01

    The research performed was an experimental program to help develop turbulence models for shock wave boundary layer interactions. The measurements were taken in a Mach 3, 16 deg compression corner interaction, at a unit Reynolds number of 63 x 10(exp 6)/m. The data consisted of heat transfer data taken upstream and downstream of the interaction, hot wire measurements of the instantaneous temperature and velocity fluctuations to verify the Strong Reynolds Analogy, and single- and double-pulsed Rayleigh scattering images to study the development of the instantaneous shock/turbulence interaction.

  14. Experimental Investigation of Turbulent Flames in Hypersonic Flows

    DTIC Science & Technology

    2015-09-01

    supersonic (Mach-2 freestream) wind tunnel at Wright Patterson Air Force Base (RC-19), see Fig. 13. Direct Spectrum Matching ( DSM ) Method: A...direct spectrum matching ( DSM ) method for improving the accuracy of the n-LIBS technique in turbulent reacting environments was newly proposed. In this

  15. The Kinematics of Turbulent Boundary Layer Structure

    NASA Technical Reports Server (NTRS)

    Robinson, Stephen Kern

    1991-01-01

    The long history of research into the internal structure of turbulent boundary layers has not provided a unified picture of the physics responsible for turbulence production and dissipation. The goals of the present research are to: (1) define the current state of boundary layer structure knowledge; and (2) utilize direct numerical simulation results to help close the unresolved issues identified in part A and to unify the fragmented knowledge of various coherent motions into a consistent kinematic model of boundary layer structure. The results of the current study show that all classes of coherent motion in the low Reynolds number turbulent boundary layer may be related to vortical structures, but that no single form of vortex is representative of the wide variety of vortical structures observed. In particular, ejection and sweep motions, as well as entrainment from the free-streem are shown to have strong spatial and temporal relationships with vortical structures. Disturbances of vortex size, location, and intensity show that quasi-streamwise vortices dominate the buffer region, while transverse vortices and vortical arches dominate the wake region. Both types of vortical structure are common in the log region. The interrelationships between the various structures and the population distributions of vortices are combined into a conceptual kinematic model for the boundary layer. Aspects of vortical structure dynamics are also postulated, based on time-sequence animations of the numerically simulated flow.

  16. Streamline curvature effects on turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Wilcox, D. C.; Chambers, T. L.

    1976-01-01

    A theoretical tool has been developed for predicting, in a nonempirical manner, effects of streamline curvature and coordinate-system rotation on turbulent boundary layers. The second-order closure scheme developed by Wilcox and Traci has been generalized for curved streamline flow and for flow in a rotating coordinate system. A physically based straightforward argument shows that curvature/rotation primarily affects the turbulent mixing energy; the argument yields suitable curvature/rotation terms which are added to the mixing-energy equation. Singular-perturbation solutions valid in the wall layer of a curved-wall boundary layer and a fully developed rotating channel flow demonstrate that, with the curvature/rotation terms, the model predicts the curved-wall and the rotating coordinate system laws of the wall. Results of numerical computations of curved-wall boundary layers and of rotating channel flow show that curvature/rotation effects can be computed accurately with second-order closure.

  17. NHWAVE: Consistent boundary conditions and turbulence modeling

    NASA Astrophysics Data System (ADS)

    Derakhti, Morteza; Kirby, James T.; Shi, Fengyan; Ma, Gangfeng

    2016-10-01

    Large-scale σ-coordinate ocean circulation models neglect the horizontal variation of σ in the calculation of stress terms and boundary conditions. Following this practice, the effects of surface and bottom slopes in the dynamic surface and bottom boundary conditions have been usually neglected in the available non-hydrostatic wave-resolving models using a terrain-following grid. In this paper, we derive consistent surface and bottom boundary conditions for the normal and tangential stress fields as well as a Neumann-type boundary condition for scalar fluxes. Further, we examine the role of surface slopes in the predicted near-surface velocity and turbulence fields in surface gravity waves. By comparing the predicted velocity field in a deep-water standing wave in a closed basin, we show that the consistent boundary conditions do not generate unphysical vorticity at the free surface, in contrast to commonly used, simplified stress boundary conditions developed by ignoring all contributions except vertical shear in the transformation of stress terms. In addition, it is shown that the consistent boundary conditions significantly improve predicted wave shape, velocity and turbulence fields in regular surf zone breaking waves, compared with the simplified case. A more extensive model-data comparison of various breaking wave properties in different types of surface breaking waves is presented in companion papers (Derakhti et al., 2016a,b).

  18. Transitional-turbulent spots and turbulent-turbulent spots in boundary layers

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Moin, Parviz; Wallace, James M.; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre

    2017-07-01

    Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional-turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a ΛΛ vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional-turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional-turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional-turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent-turbulent spots. These turbulent-turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional-turbulent spots, these turbulent-turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent-turbulent spots.

  19. Sound Radiation from a Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Laufer, J.

    1961-01-01

    If the restriction of incompressibility in the turbulence problem is relaxed, the phenomenon of energy radiation in the form of sound from the turbulent zone arises. In order to calculate this radiated energy, it is shown that new statistical quantities, such as time-space correlation tensors, have to be known within the turbulent zone in addition to the conventional quantities. For the particular case of the turbulent boundary layer, indications are that the intensity of radiation becomes significant only in supersonic flows. Under these conditions, the recent work of Phillips is examined together with some experimental findings of the author. It is shown that the qualitative features of the radiation field (intensity, directionality) as predicted by the theory are consistent with the measurements; however, even for the highest Mach number flow, some of the assumptions of the asymptotic theory are not yet satisfied in the experiments. Finally, the question of turbulence damping due to radiation is discussed, with the result that in the Mach number range covered by the experiments, the energy lost from the boundary layer due to radiation is a small percentage of the work done by the wall shearing stresses.

  20. Sound Radiation from a Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Laufer, J.

    1961-01-01

    If the restriction of incompressibility in the turbulence problem is relaxed, the phenomenon of energy radiation in the form of sound from the turbulent zone arises. In order to calculate this radiated energy, it is shown that new statistical quantities, such as time-space correlation tensors, have to be known within the turbulent zone in addition to the conventional quantities. For the particular case of the turbulent boundary layer, indications are that the intensity of radiation becomes significant only in supersonic flows. Under these conditions, the recent work of Phillips is examined together with some experimental findings of the author. It is shown that the qualitative features of the radiation field (intensity, directionality) as predicted by the theory are consistent with the measurements; however, even for the highest Mach number flow, some of the assumptions of the asymptotic theory are not yet satisfied in the experiments. Finally, the question of turbulence damping due to radiation is discussed, with the result that in the Mach number range covered by the experiments, the energy lost from the boundary layer due to radiation is a small percentage of the work done by the wall shearing stresses.

  1. Asymptotic similarity in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Duncan, Richard D.

    The turbulent boundary layer is one of the most fundamental and important applications of fluid mechanics. Despite great practical interest and its direct impact on frictional drag among its many important consequences, no theory absent of significant inference or assumption exists. Numerical simulations and empirical guidance are used to produce models and adequate predictions, but even minor improvements in modeling parameters or physical understanding could translate into significant improvements in the efficiency of aerodynamic and hydrodynamic vehicles. Classically, turbulent boundary layers and fully-developed turbulent channels and pipes are considered members of the same "family," with similar "inner" versus "outer" descriptions. However, recent advances in experiments, simulations, and data processing have questioned this, and, as a result, their fundamental physics. To address a full range of pressure gradient boundary layers, a new approach to the governing equations and physical description of wall-bounded flows is formulated, using a two variable similarity approach and many of the tools of the classical method with slight but significant variations. A new set of similarity requirements for the characteristic scales of the problem is found, and when these requirements are applied to the classical "inner" and "outer" scales, a "similarity map" is developed providing a clear prediction of what flow conditions should result in self-similar forms. An empirical model with a small number of parameters and a form reminiscent of Coles' "wall plus wake" is developed for the streamwise Reynolds stress, and shown to fit experimental and numerical data from a number of turbulent boundary layers as well as other wall-bounded flows. It appears from this model and its scaling using the free-stream velocity that the true asymptotic form of u'2 may not become self-evident until Retheta ≈ 275,000 or delta+ ≈ 105, if not higher. A perturbation expansion made possible

  2. Roles of Engineering Correlations in Hypersonic Entry Boundary Layer Transition Prediction

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.; Anderson, Brian P.; King, Rudolph A.; Kegerise, Michael A.; Berry, Scott A.; Horvath, Thomas J.

    2010-01-01

    Efforts to design and operate hypersonic entry vehicles are constrained by many considerations that involve all aspects of an entry vehicle system. One of the more significant physical phenomenon that affect entry trajectory and thermal protection system design is the occurrence of boundary layer transition from a laminar to turbulent state. During the Space Shuttle Return To Flight activity following the loss of Columbia and her crew of seven, NASA's entry aerothermodynamics community implemented an engineering correlation based framework for the prediction of boundary layer transition on the Orbiter. The methodology for this implementation relies upon similar correlation techniques that have been is use for several decades. What makes the Orbiter boundary layer transition correlation implementation unique is that a statistically significant data set was acquired in multiple ground test facilities, flight data exists to assist in establishing a better correlation and the framework was founded upon state of the art chemical nonequilibrium Navier Stokes flow field simulations. Recent entry flight testing performed with the Orbiter Discovery now provides a means to validate this engineering correlation approach to higher confidence. These results only serve to reinforce the essential role that engineering correlations currently exercise in the design and operation of entry vehicles. The framework of information related to the Orbiter empirical boundary layer transition prediction capability will be utilized to establish a fresh perspective on this role, and to discuss the characteristics which are desirable in a next generation advancement. The details of the paper will review the experimental facilities and techniques that were utilized to perform the implementation of the Orbiter RTF BLT Vsn 2 prediction capability. Statistically significant results for multiple engineering correlations from a ground testing campaign will be reviewed in order to describe why only

  3. Roles of Engineering Correlations in Hypersonic Entry Boundary Layer Transition Prediction

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.; Anderson, Brian P.; King, Rudolph A.; Kegerise, Michael A.; Berry, Scott A.; Horvath, Thomas J.

    2010-01-01

    Efforts to design and operate hypersonic entry vehicles are constrained by many considerations that involve all aspects of an entry vehicle system. One of the more significant physical phenomenon that affect entry trajectory and thermal protection system design is the occurrence of boundary layer transition from a laminar to turbulent state. During the Space Shuttle Return To Flight activity following the loss of Columbia and her crew of seven, NASA's entry aerothermodynamics community implemented an engineering correlation based framework for the prediction of boundary layer transition on the Orbiter. The methodology for this implementation relies upon similar correlation techniques that have been is use for several decades. What makes the Orbiter boundary layer transition correlation implementation unique is that a statistically significant data set was acquired in multiple ground test facilities, flight data exists to assist in establishing a better correlation and the framework was founded upon state of the art chemical nonequilibrium Navier Stokes flow field simulations. Recent entry flight testing performed with the Orbiter Discovery now provides a means to validate this engineering correlation approach to higher confidence. These results only serve to reinforce the essential role that engineering correlations currently exercise in the design and operation of entry vehicles. The framework of information related to the Orbiter empirical boundary layer transition prediction capability will be utilized to establish a fresh perspective on this role, and to discuss the characteristics which are desirable in a next generation advancement. The details of the paper will review the experimental facilities and techniques that were utilized to perform the implementation of the Orbiter RTF BLT Vsn 2 prediction capability. Statistically significant results for multiple engineering correlations from a ground testing campaign will be reviewed in order to describe why only

  4. Low Reynolds-number turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Wang, Ting

    1993-06-01

    An experimental investigation was performed to determine the Reynolds analogy factor and turbulent Prandtl number in the transitional and low-Reynolds-number turbulent boundary layer. A miniature three-wire probe was specially designed to measure the mean velocity and temperature profiles and the Reynolds stresses and heat fluxes. Tests were conducted over a heated flat wall with zero pressure gradient and three levels of streamwise acceleration: K = 0.07, 0.16, and 0.25 x 10(exp -6). Mean temperature profiles lagged in development compared to the mean velocity profiles and the values of the Reynolds analogy factor, 2St/Cf, in the late-transition and early-turbulent regions were lower than the values known to apply to the high-Reynolds-number turbulent flow. The profiles of Reynolds cross-stream heat flux showed negative values in the near wall region. The region of negative vt narrowed as the flow proceeded downstream. These negative values of vt in a flow with a negative mean temperature gradient result in negative eddy thermal diffusivity and negative Pr(sub t). It is speculated that the negative values might be caused by the size of the sensor and the three-dimensional behavior of transition. A conditional sampling technique was utilized to separate the flow into turbulent and non-turbulent portions. Detailed flow and thermal structures were investigated.

  5. Preliminary Study of Turbulence for a Lobed Body in Hypersonic Flight

    DTIC Science & Technology

    2013-02-22

    complexity to support turbulent flow while retaining the ease of single block grid generation. As is shown in Figure 1, our test body has a complex...unlimited. (96ABW-2013-0024) The present study addresses the aerodynamics of a lobed body immersed in a Mach 6 hypersonic flow field at sea level. As...a first study of this type, the shape of the body is held fixed, and the flow field is resolved by applying state-of-the-art large eddy simulation

  6. Nonstationary atmospheric boundary layer turbulence simulation

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Perlmutter, M.

    1974-01-01

    Report on a new and general technique for simulating atmospheric turbulence-like random processes which are statistically homogeneous along the horizontal and nonhomogeneous along the vertical. This technique is general in the sense that it can be used for a broad class of similar problems. Like the other presently available schemes, the techniques presented are based on the Dryden hypothesis and Taylor's frozen eddy hypothesis; however, they go a step further by utilizing certain self-similarity properties of the Dryden spectral density function which permits the development of height invariant filters. These filters are in turn used to generate vertically homogeneous (statistically) random processes from which turbulence at any specified level in the boundary layer can be simulated, thus facilitating the simulation of a nonstationary turbulence process along the flight path of an aircraft during take-off or landing.

  7. Turbulent boundary layer over flexible plates

    NASA Astrophysics Data System (ADS)

    Rostami, Parand; Ioppolo, Tindaro

    2016-11-01

    This research describes the structure of a turbulent boundary layer flow with a zero pressure gradient over elastic plates. The elastic plates made of a thin aluminum sheets with thickness between 50 and 500 microns were placed on the floor of a subsonic wind tunnel and exposed to a turbulent boundary layer flow with a free stream velocity between 20m/s and 100m/s. The ceiling of the test section of the wind tunnel is adjustable so that a nearly zero pressure gradient is obtained in the test section. Hot-wire anemometry was used to measure the velocity components. Mean, fluctuating velocities and Reynolds stresses will be presented and compared with the values of a rigid plate.

  8. The main structure of turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Taneda, S.

    1983-12-01

    The structure of turbulent boundary layers in the flow over a flat plate is investigated experimentally. Liquid-paraffin smoke sheets, TiCl4 smoke, and smoke wires are used to visualize the flow at 10-6000 cm/sec over a 121 x 484-cm plate with a 1 x 120-cm 2D fence mounted horizontally in the closed 400 x 200 x 600-cm working section of a wind tunnel. The flow phenomena are recorded with still and cine photography, and hot-wire anemometry is used to measure flow velocity. Sample photographs and conceptual diagrams are included. The turbulent boundary layers are characterized by large-scale 2D Tollmien-Schlichting waves (attributed to the instability of the mean velocity distribution) and 3D G1 and G2 waves arising in the troughs of the Tollmien-Schlichting waves due to centrifugal instability.

  9. Free-Stream Boundaries of Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Corrsin, Stanley; Kistler, Alan L

    1955-01-01

    Report presents the results of an experimental and theoretical study made of the instantaneously sharp and irregular front which is always found to separate turbulent fluid from contiguous "nonturbulent" fluid at a free-stream boundary. This distinct demarcation is known to give an intermittent character to hot-wire signals in the boundary zone. The overall behavior of the front is described statistically in terms of its wrinkle-amplitude growth and its lateral propagation relative to the fluid as functions of downstream coordinate.

  10. Soft turbulence in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Jánosi, Imre M.; Vattay, Gábor

    1993-08-01

    In this work we compare the spectral properties of the daily medium temperature fluctuations with the experimental results of the Chicago Group, in which the local temperature fluctuations were measured in a helium cell. The results suggest that the dynamics of the daily temperature fluctuations is determined by the soft turbulent state of the atmospheric boundary layer, which state is significantly different from low dimensional chaos.

  11. Experimental studies of hypersonic shock-wave boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Lu, Frank K.

    1992-01-01

    Two classes of shock-wave boundary-layer interactions were studied experimentally in a shock tunnel in which a low Reynolds number, turbulent flow at Mach 8 was developed on a cold, flat test surface. The two classes of interactions were: (1) a swept interaction generated by a wedge ('fin') mounted perpendicularly on the flat plate; and (2) a two-dimensional, unseparated interaction induced by a shock impinging near an expansion corner. The swept interaction, with wedge angles of 5-20 degrees, was separated and there was also indication that the strongest interactions prossessed secondary separation zones. The interaction spread out extensively from the inviscid shock location although no indication of quasi-conical symmetry was evident. The surface pressure from the upstream influence to the inviscid shock was relatively low compared to the inviscid downstream value but it rose rapidly past the inviscid shock location. However, the surface pressure did not reach the downstream inviscid value and reasons were proposed for this anomalous behavior compared to strongly separated, supersonic interactions. The second class of interactions involved weak shocks impinging near small expansion corners. As a prelude to studying this interaction, a hypersonic similarity parameter was identified for the pure, expansion corner flow. The expansion corner severely damped out surface pressure fluctuations. When a shock impinged upstream of the corner, no significant changes to the surface pressure were found as compared to the case when the shock impinged on a flat plate. But, when the shock impinged downstream of the corner, a close coupling existed between the two wave systems, unlike the supersonic case. This close coupling modified the upstream influence. Regardless of whether the shock impinged ahead or behind the corner, the downstream region was affected by the close coupling between the shock and the expansion. Not only was the mean pressure distribution modified but the

  12. Correlation of heat transfer for the zero pressure gradient hypersonic laminar boundary layer for several gases

    NASA Technical Reports Server (NTRS)

    Cook, W. J.

    1973-01-01

    A theoretical study of heat transfer for zero pressure gradient hypersonic laminar boundary layers for various gases with particular application to the flows produced in an expansion tube facility was conducted. A correlation based on results obtained from solutions to the governing equations for five gases was formulated. Particular attention was directed toward the laminar boundary layer shock tube splitter plates in carbon dioxide flows generated by high speed shock waves. Computer analysis of the splitter plate boundary layer flow provided information that is useful in interpreting experimental data obtained in shock tube gas radiation studies.

  13. High-frequency instabilities of stationary crossflow vortices in a hypersonic boundary layer

    NASA Astrophysics Data System (ADS)

    Li, Fei; Choudhari, Meelan; Paredes, Pedro; Duan, Lian

    2016-09-01

    Hypersonic boundary layer flows over a circular cone at moderate incidence angle can support strong crossflow instability in between the windward and leeward rays on the plane of symmetry. Due to more efficient excitation of stationary crossflow vortices by surface roughness, such boundary layer flows may transition to turbulence via rapid amplification of the high-frequency secondary instabilities of finite-amplitude stationary crossflow vortices. The amplification characteristics of these secondary instabilities are investigated for crossflow vortices generated by an azimuthally periodic array of roughness elements over a 7° half-angle circular cone in a Mach 6 free stream. The analysis is based on both quasiparallel stability theory in the form of a partial-differential-equation-based eigenvalue analysis and plane marching parabolized stability equations that account for the effects of the nonparallel basic state on the growth of secondary disturbances. Depending on the local amplitude of the stationary crossflow mode, the most unstable high-frequency disturbances either originate from the second (i.e., Mack) mode instabilities of the unperturbed boundary layer or correspond to genuine secondary instabilities that reduce to stable disturbances at sufficiently small amplitudes of the stationary crossflow vortex. The predicted frequencies of the dominant secondary disturbances of either type are similar to those measured during wind tunnel experiments at Purdue University and the Technical University of Braunschweig, Germany. Including transverse surface curvature within the quasiparallel predictions does not alter the topology of the unstable modes; however, the resulting changes in both mode shape and disturbance growth rate are rather significant and curvature can be either stabilizing or destabilizing depending on the disturbance frequency and mode type. Nonparallel effects are shown to be strongly destabilizing for secondary instabilities originating from

  14. A quiet tunnel investigation of hypersonic boundary-layer stability over a cooled, flared cone

    NASA Technical Reports Server (NTRS)

    Blanchard, Alan E.; Selby, Gregory V.; Wilkinson, Stephen P.

    1996-01-01

    A flared-cone model under adiabatic and cooled-wall conditions was placed in a calibrated, low-disturbance Mach 6 flow and the stability of the boundary layer was investigated using a prototype constant-voltage anemometer. The results were compared with linear-stability theory predictions and good agreement was found in the prediction of second-mode frequencies and growth. In addition, the same 'N = 10' criterion used to predict boundary-layer transition in subsonic, transonic, and supersonic flows under low freestream noise conditions was found to be applicable for the hypersonic flow regime as well. Under cooled-wall conditions, a unique set of spectral data was acquired that documents the linear, nonlinear, and breakdown regions associated with the transition of hypersonic flow under low-noise conditions.

  15. Three-dimensional turbulent boundary layers in turbomachines

    NASA Astrophysics Data System (ADS)

    Lakshminarayana, B.

    Turbulent shear layers in turbomachines are compared with turbulent boundary layers on airfoils. The effects of turbulent boundary layers on turbomachine performance (rotating blade, stator blade, end wall, annulus wall, rotating hub) are listed. Generalized equations; momentum integral techniques; velocity profile models; and skin friction stress calculation are summarized.

  16. Streamwise Vortex Instability and Hypersonic Boundary-Layer Transition on the Hyper-2000

    DTIC Science & Technology

    2003-12-01

    portions of the gap, of a depth more than an inch, were refilled with Orthocast Inc.’s Orthodontic Plaster. Twice the quoted amount of water was used...Hamilton II, H.H. X-33 Hypersonic Boundary-Layer Transition. Journal of Spacecraft and Rockets, 38(5):646-657, September-October 2001. [5...Palmer, G., Kontinos, D., and Sherman, B. Surface Heating Effects of X-33 Vehicle Thermal-Protection-System Panel Bowing. Journal of Spacecraft and

  17. Role of Turbulent Prandtl Number on Heat Flux at Hypersonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Xiao, X.; Edwards, J. R.; Hassan, H. A.; Gaffney, R. L., Jr.

    2007-01-01

    A new turbulence model suited for calculating the turbulent Prandtl number as part of the solution is presented. The model is based on a set of two equations: one governing the variance of the enthalpy and the other governing its dissipation rate. These equations were derived from the exact energy equation and thus take into consideration compressibility and dissipation terms. The model is used to study two cases involving shock wave/boundary layer interaction at Mach 9.22 and Mach 5.0. In general, heat transfer prediction showed great improvement over traditional turbulence models where the turbulent Prandtl number is assumed constant. It is concluded that using a model that calculates the turbulent Prandtl number as part of the solution is the key to bridging the gap between theory and experiment for flows dominated by shock wave/boundary layer interactions.

  18. Role of Turbulent Prandtl Number on Heat Flux at Hypersonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Gaffney, R. L., Jr.; Xiao, X.; Edwards, J. R.; Hassan, H. A.

    2005-01-01

    A new turbulence model suited for calculating the turbulent Prandtl number as part of the solution is presented. The model is based on a set of two equations: one governing the variance of the enthalpy and the other governing its dissipation rate. These equations were derived from the exact energy equation and thus take into consideration compressibility and dissipation terms. The model is used to study two cases involving shock wave/boundary layer interaction at Mach 9.22 and Mach 5.0. In general, heat transfer prediction showed great improvement over traditional turbulence models where the turbulent Prandtl number is assumed constant. It is concluded that using a model that calculates the turbulent Prandtl number as part of the solution is the key to bridging the gap between theory and experiment for flows dominated by shock wave/boundary layer interactions.

  19. Computation of unsteady turbulent boundary layers with flow reversal and evaluation of two separate turbulence models

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Carr, L. W.

    1981-01-01

    A procedure which solves the governing boundary layer equations within Keller's box method was developed for calculating unsteady laminar flows with flow reversal. This method is extended to turbulent boundary layers with flow reversal. Test cases are used to investigate the proposition that unsteady turbulent boundary layers also remain free of singularities. Turbulent flow calculations are performed. The governing equations for both models are solved. As in laminar flows, the unsteady turbulent boundary layers are free from singularities, but there is a clear indication of rapid thickening of the boundary layer with increasing flow reversal. Predictions of both turbulence models are the same for all practical purposes.

  20. Turbulence Modeling for Shock Wave/Turbulent Boundary Layer Interactions

    NASA Technical Reports Server (NTRS)

    Lillard, Randolph P.

    2011-01-01

    Accurate aerodynamic computational predictions are essential for the safety of space vehicles, but these computations are of limited accuracy when large pressure gradients are present in the flow. The goal of the current project is to improve the state of compressible turbulence modeling for high speed flows with shock wave / turbulent boundary layer interactions (SWTBLI). Emphasis will be placed on models that can accurately predict the separated region caused by the SWTBLI. These flows are classified as nonequilibrium boundary layers because of the very large and variable adverse pressure gradients caused by the shock waves. The lag model was designed to model these nonequilibrium flows by incorporating history effects. Standard one- and two-equation models (Spalart Allmaras and SST) and the lag model will be run and compared to a new lag model. This new model, the Reynolds stress tensor lag model (lagRST), will be assessed against multiple wind tunnel tests and correlations. The basis of the lag and lagRST models are to preserve the accuracy of the standard turbulence models in equilibrium turbulence, when the Reynolds stresses are linearly related to the mean strain rates, but create a lag between mean strain rate effects and turbulence when nonequilibrium effects become important, such as in large pressure gradients. The affect this lag has on the results for SWBLI and massively separated flows will be determined. These computations will be done with a modified version of the OVERFLOW code. This code solves the RANS equations on overset grids. It was used for this study for its ability to input very complex geometries into the flow solver, such as the Space Shuttle in the full stack configuration. The model was successfully implemented within two versions of the OVERFLOW code. Results show a substantial improvement over the baseline models for transonic separated flows. The results are mixed for the SWBLI assessed. Separation predictions are not as good as the

  1. Turbulence modeling for shock wave/turbulent boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Lillard, Randolph Pascal

    Accurate aerodynamic computational predictions are essential for the safety of space vehicles, but these computations are of limited accuracy when large pressure gradients are present in the flow. The goal of the current project is to improve the state of compressible turbulence modeling for high speed flows with shock wave / turbulent boundary layer interactions (SWTBLI). Emphasis is placed on models that can accurately predict the separated region caused by SWTBLI. These flows are classified as nonequilibrium boundary layers because of the very large and variable adverse pressure gradients caused by the shock waves. The Lag model was designed to model these nonequilibrium flows by incorporating history effects. Standard one- and two-equation models (Spalart Allmaras and SST) and the Lag model are run and compared to the new model. The focus of this work is thus to introduce a new model that builds on the success of the Lag model, but uses the Reynolds Stress Tensor (RST) as the lagged variable. This new model, the Reynolds stress tensor lag model (lagRST), is assessed against multiple wind tunnel tests and correlations as well as other models. The basis of the Lag and lagRST models is to preserve the accuracy of the standard turbulence models in equilibrium turbulence, when the Reynolds stresses are linearly related to the mean strain rates, but create a lag between mean strain rate effects and turbulence when nonequilibrium effects become important, such as in large pressure gradients. The effect this lag has on the results for SWTBLI and massively separated flows is determined. These computations are done with a modified version of the OVERFLOW code. This code solves the Reynolds Averaged Navier Stokes (RANS) equations on overset grids. It was used for this study for its ability to input very complex geometries into the flow solver, such as the Space Shuttle in the full stack configuration. The model was successfully implemented within two versions of the

  2. Some measurements in synthetic turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Savas, O.

    1980-01-01

    Synthetic turbulent boundary layers are examined which were constructed on a flat plate by generating systematic moving patterns of turbulent spots in a laminar flow. The experiments were carried out in a wind tunnel at a Reynolds number based on plate length of 1,700,000. Spots were generated periodically in space and time near the leading edge to form a regular hexagonal pattern. The disturbance mechanism was a camshaft which displaced small pins momentarily into the laminar flow at frequencies up to 80 Hz. The main instrumentation was a rake of 24 hot wires placed across the flow in a line parallel to the surface. The main measured variable was local intermittency; i.e., the probability of observing turbulent flow at a particular point in space and time. The results are reported in x-t diagrams showing the evolution of various synthetic flows along the plate. The dimensionless celerity or phase velocity of the large eddies is found to be 0.88, independent of eddy scale. All patterns with sufficiently small scales eventually showed loss of coherence as they moved downstream. A novel phenomenon called eddy transposition was observed in several flows which contained appreciable laminar regions. The large eddies shifted in formation to new positions, intermediate to their original ones, while preserving their hexagonal pattern. The present results, together with some empirical properties of a turbulent spot, are used to estimate the best choice of scales for constructing a synthetic boundary layer suitable for detailed study. The values recommended are: spanwise scale/thickness = 2.5, streamwise scale/thickness = 8.

  3. Experiments on passive hypersonic boundary layer control using ultrasonically absorptive carbon-carbon material with random microstructure

    NASA Astrophysics Data System (ADS)

    Wagner, Alexander; Kuhn, Markus; Martinez Schramm, Jan; Hannemann, Klaus

    2013-10-01

    For the first time, the influence of ultrasonically absorptive carbon-carbon material on hypersonic laminar to turbulent boundary layer transition was investigated experimentally. A 7° half-angle blunted cone with a nose radius of 2.5 mm and a total length of 1,077 mm was tested at zero angle of attack in the High Enthalpy Shock Tunnel Göttingen of the German Aerospace Center (DLR) at Mach 7.5. One-third of the metallic model surface in circumferential direction was replaced by DLR in-house manufactured ultrasonically absorptive carbon-carbon material with random microstructure for passive transition control. The remaining model surface consisted of polished steel and served as reference surface. The model was equipped with coaxial thermocouples to determine the transition location by means of surface heat flux distribution. Flush-mounted piezoelectric fast-response pressure transducers were used to measure the pressure fluctuations in the boundary layer associated with second-mode instabilities. The free-stream unit Reynolds number was varied over a range of Re m = 1.5 × 106 m-1 to Re m = 6.4 × 106 m-1 at a stagnation enthalpy of h 0 ≈ 3.2 MJ/kg and a wall temperature ratio of T w/ T 0 ≈ 0.1. The present study revealed a clear damping of the second-mode instabilities and a delay of boundary layer transition along the ultrasonically absorptive carbon-carbon insert.

  4. Modeling hypersonic boundary-layer flows with second-moment closure

    NASA Technical Reports Server (NTRS)

    Huang, P. George

    1991-01-01

    An ongoing research effort designed to apply the best possible second-moment-closure model to simulate complex hypersonic flows is presented. The baseline model under consideration is the Launder-Reece-Rodi Reynolds stress transport turbulence model. Two add-ons accounting for wall effects, namely, the Launder-Shima low-Reynolds-number model and the compressible wall-function technique, are tested. Results are reported for flow over a flat plate, both adiabatic-wall and cooled-wall cases. It has been found that further improvements of the existing models are necessary to achieve accurate prediction in high Mach number flow range.

  5. Receptivity characteristics of a hypersonic boundary layer under freestream slow acoustic wave with different amplitudes

    NASA Astrophysics Data System (ADS)

    Tang, Xiaojun; Zhu, Xusheng; Hui, Tianli; Yu, Wentao; Yang, Fenglong; Cao, Chengyu

    2017-08-01

    An unsteady hypersonic blunt wedge flowfield under freestream slow acoustic wave is solved by direct numerical simulation (DNS), and the receptivity characteristics of the boundary layer under slow acoustic disturbance with different amplitudes are analyzed. Results show that slow acoustic wave in the freestream not only has a significant effect on the aerothermodynamics characteristics of hypersonic flowfield and boundary layer, but also on the bow shock characteristics. It shows that the maximum amplitudes of the disturbance modes in the boundary layer are positively correlated with the disturbance amplitude of the freestream. The bigger the amplitude of the freestream disturbance gets, the earlier the high-frequency disturbance mode exists, and the stronger the high frequency interference is. The larger amplitude of freestream disturbance wave can accelerate the generation of the higher order harmonic modes in boundary layer. Furthermore, the transformation position and the times of the dominant mode in the boundary layer differ under various amplitude of freestream disturbance, and compared with the smaller amplitude's slow acoustic disturbance in the freestream, the larger amplitude disturbance can accelerate the first transformation of the dominant mode in boundary layer, and also delay its second transformation.

  6. Hypersonic three-dimensional nonequilibrium boundary-layer equations in generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Hun

    1993-01-01

    The basic governing equations for the second-order three-dimensional hypersonic thermal and chemical nonequilibrium boundary layer are derived by means of an order-of-magnitude analysis. A two-temperature concept is implemented into the system of boundary-layer equations by simplifying the rather complicated general three-temperature thermal gas model. The equations are written in a surface-oriented non-orthogonal curvilinear coordinate system, where two curvilinear coordinates are non-orthogonial and a third coordinate is normal to the surface. The equations are described with minimum use of tensor expressions arising from the coordinate transformation, to avoid unnecessary confusion for readers. The set of equations obtained will be suitable for the development of a three-dimensional nonequilibrium boundary-layer code. Such a code could be used to determine economically the aerodynamic/aerothermodynamic loads to the surfaces of hypersonic vehicles with general configurations. In addition, the basic equations for three-dimensional stagnation flow, of which solution is required as an initial value for space-marching integration of the boundary-layer equations, are given along with the boundary conditions, the boundary-layer parameters, and the inner-outer layer matching procedure. Expressions for the chemical reaction rates and the thermodynamic and transport properties in the thermal nonequilibrium environment are explicitly given.

  7. The stabilization of a hypersonic boundary layer using local sections of porous coating

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowen; Zhong, Xiaolin

    2012-03-01

    The stabilization effect of porous coating on the hypersonic boundary layers over flat plates and cones has been studied by theoretical analyses, experiments, and numerical simulations. It was found that porous coating slightly destabilizes Mack's first mode whereas it significantly stabilizes Mack's second mode. In previous studies, porous coating covers either the entire flat plate or the surface around half the cone circumference. The effect of porous coating location on boundary-layer stabilization has not been considered. Furthermore, the destabilization of Mack's first mode has not been studied in detail. In this paper, the stabilization of a Mach 5.92 flat-plate boundary layer using local sections of porous coating is studied with the emphasis on the effect of porous coating location and the first-mode destabilization. Artificial disturbances corresponding to a single boundary-layer wave are introduced near the leading edge. A series of stability simulations are carried out by locally putting felt-metal porous coatings along the flat plate. It is found that disturbances are destabilized or stabilized when porous coating is located upstream or downstream of the synchronization point. For felt-metal porous coating, the destabilization of Mack's first mode is significant. The results suggest that an efficient way to stabilize hypersonic boundary-layer flows is to put porous coating downstream of the synchronization point. Finally, porous coating is used to stabilize the boundary layer disturbed by one blowing-suction actuator.

  8. Coherent motions in the turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Robinson, Stephen K.

    1991-01-01

    The role of coherent structures in the production and dissipation of turbulence in a boundary layer is characterized, summarizing the results of recent investigations. Coherent motion is defined as a three-dimensional region of flow where at least one fundamental variable exhibits significant correlation with itself or with another variable over a space or time range significantly larger than the smallest local scales of the flow. Sections are then devoted to flow-visualization experiments, statistical analyses, numerical simulation techniques, the history of coherent-structure studies, vortices and vortical structures, conceptual models, and predictive models. Diagrams and graphs are provided.

  9. Three-Dimensional Navier-Stokes Method with Two-Equation Turbulence Models for Efficient Numerical Simulation of Hypersonic Flows

    NASA Technical Reports Server (NTRS)

    Bardina, J. E.

    1994-01-01

    A new computational efficient 3-D compressible Reynolds-averaged implicit Navier-Stokes method with advanced two equation turbulence models for high speed flows is presented. All convective terms are modeled using an entropy satisfying higher-order Total Variation Diminishing (TVD) scheme based on implicit upwind flux-difference split approximations and arithmetic averaging procedure of primitive variables. This method combines the best features of data management and computational efficiency of space marching procedures with the generality and stability of time dependent Navier-Stokes procedures to solve flows with mixed supersonic and subsonic zones, including streamwise separated flows. Its robust stability derives from a combination of conservative implicit upwind flux-difference splitting with Roe's property U to provide accurate shock capturing capability that non-conservative schemes do not guarantee, alternating symmetric Gauss-Seidel 'method of planes' relaxation procedure coupled with a three-dimensional two-factor diagonal-dominant approximate factorization scheme, TVD flux limiters of higher-order flux differences satisfying realizability, and well-posed characteristic-based implicit boundary-point a'pproximations consistent with the local characteristics domain of dependence. The efficiency of the method is highly increased with Newton Raphson acceleration which allows convergence in essentially one forward sweep for supersonic flows. The method is verified by comparing with experiment and other Navier-Stokes methods. Here, results of adiabatic and cooled flat plate flows, compression corner flow, and 3-D hypersonic shock-wave/turbulent boundary layer interaction flows are presented. The robust 3-D method achieves a better computational efficiency of at least one order of magnitude over the CNS Navier-Stokes code. It provides cost-effective aerodynamic predictions in agreement with experiment, and the capability of predicting complex flow structures in

  10. Dissociation-recombination models in hypersonic boundary layer O2/O flows

    NASA Astrophysics Data System (ADS)

    Armenise, I.; Esposito, F.

    2012-04-01

    A recent complete set of oxygen atom-molecule collision rate coefficients, calculated by means of a quasiclassical trajectory (QCT) method, has been used to evaluate the vibrational non-equilibrium in hypersonic boundary layer flows. The importance of multiquanta transitions has been demonstrated. Moreover a new 'direct dissociation-recombination' (DDR) model has been adopted and the corresponding results differ from the ones obtained with the ladder-climbing (LC) model, characterized by the extrapolation of bound-to-bound transitions to the continuum. The heat flux through the boundary layer and at the surface has been calculated too.

  11. Structure of turbulence in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Subramanian, Chelakara S.

    1993-01-01

    This report provides an overview of the three dimensional turbulent boundary layer concepts and of the currently available experimental information for their turbulence modeling. It is found that more reliable turbulence data, especially of the Reynolds stress transport terms, is needed to improve the existing modeling capabilities. An experiment is proposed to study the three dimensional boundary layer formed by a 'sink flow' in a fully developed two dimensional turbulent boundary layer. Also, the mean and turbulence field measurement procedure using a three component laser Doppler velocimeter is described.

  12. Characteristics of turbulence in boundary layer with zero pressure gradient

    NASA Technical Reports Server (NTRS)

    Klebanoff, P S

    1955-01-01

    The results of an experimental investigation of a turbulent boundary layer with zero pressure gradient are presented. Measurements with the hot-wire anemometer were made of turbulent energy and turbulent shear stress, probability density and flattening factor of u-fluctuation (fluctuation in x-direction), spectra of turbulent energy and shear stress, and turbulent dissipation. The importance of the region near the wall and the inadequacy of the concept of local isotropy are demonstrated. Attention is given to the energy balance and the intermittent character of the outer region of the boundary layer. Also several interesting features of the spectral distribution of the turbulent motions are discussed.

  13. Numerical simulation of crossing/turbulent boundary layer interaction at Mach 8.3 comparison of zero and two-equation turbulence models

    NASA Technical Reports Server (NTRS)

    Narayanswami, N.; Horstman, C. C.; Knight, D. D.

    1993-01-01

    A 3D hypersonic crossing shock wave/turbulent boundary layer interaction is examined numerically. The test geometry consists of a pair of opposing sharp fins of angle alpha = 15 deg mounted on a flat plate. The freestream Mach number is 8.28. Two theoretical models are evaluated. The full 3D Reynolds-averaged Navier-Stokes equations are solved using the Baldwin-Lomax algebraic turbulent eddy viscosity model and the Rodi turbulence model. Computed results for both cases show good agreement with experiment for flat plate surface pressure and for pitot pressure and yaw angle profiles in the flowfield. General agreement is obtained for surface flow direction. Fair to poor agreement is obtained for surface heat transfer, indicating a need for more accurate turbulence models. The overall flowfield structure is similar to that observed in previous crossing shock interaction studies.

  14. Electromagnetic precipitation and ducting of particles in turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Davey, K. R.; Melcher, J. R.

    1980-01-01

    A method for analyzing magnetic migration of particles in turbulent flows is applied to the prediction of particle trajectories and densities in turbulent aerodynamic boundary layers. Results for conditions typical of aircraft with 30-40 micron particles indicate a large upstream collection and a 5% loss of particles during one pass through the boundary layer. The capacity of the magnetic field to achieve a balance with turbulent diffusion in confining the particles to the boundary layer is discussed.

  15. The effects of anisotropic free-stream turbulence on turbulent boundary layer behavior

    NASA Technical Reports Server (NTRS)

    Liang-Wei, F.; Hoffman, J. A.

    1985-01-01

    The effects of near-isotropic and highly anisotropic free-stream turbulence on mean flow properties of the turbulence structure of turbulent boundary layers in a near zero pressure gradient flow has been experimentally evaluated. Turbulence levels vary from 0.5% to 8.0% and the momentum thickness Reynolds number varies from 800 to 1100. The results indicate that the effects of free-stream turbulence on the classical boundary layer properties for near-isotropic turbulence which have been published by other investigators are similar to the case of highly anisotropic turbulence fields, while the effects of free-stream turbulence on the properties of the turbulent structure within the boundary layer for the case of near-isotropic turbulence are quite different compared to the highly anisotropic case.

  16. Analytic prediction for planar turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Chen, Xi; She, Zhen-Su

    2016-11-01

    Analytic predictions of mean velocity profile (MVP) and streamwise ( x) development of related integral quantities are presented for flows in channel and turbulent boundary layer (TBL), based on a symmetry analysis of eddy length and total stress. Specific predictions include the relations for momentum Reynolds number ( Re θ) with friction Re τ and streamwise Re x : Re θ ≈ 3.27 Re τ, and Re x / Re θ = 4.94 [(ln Re θ + 1.88)2 + 1]; the streamwise development of the friction velocity u τ: U e / u τ ≈ 2.22ln Re x + 2.86 - 3.83ln(ln Re x ), and of the boundary layer thickness δ e : x/δ e ≈ 7.27ln Re x -5.18-12.52ln(ln Re x ), which are fully validated by recent reliable data.

  17. Analytic prediction for planar turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    She, Zhen-Su; Chen, Xi

    2016-11-01

    Analytic predictions of mean velocity profile (MVP) and streamwise (x) development of related integral quantities are presented for flows in channel and turbulent boundary layer (TBL), based on a symmetry analysis of eddy length and total stress. Specific predictions include the relations for momentum Reynolds number (Reθ) with friction Reτ and streamwise Rex : Reθ 3 . 27 Reτ and Rex / Reθ = 4 . 94 [(lnReθ + 1 . 88) 2 + 1 ] ; the streamwise development of the friction velocityuτ: Ue /uτ 2 . 22 lnRex + 2 . 86 - 3 . 83 ln (lnRex) , and of the boundary layer thickness δe: x /δe 7 . 27 lnRex - 5 . 18 - 12 . 52 ln (lnRex) , which are fully validated by recent reliable data.

  18. Wall catalytic recombination and boundary conditions in nonequilibrium hypersonic flows - With applications

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.

    1992-01-01

    The meaning of catalysis and its relation to aerodynamic heating in nonequilibrium hypersonic flows are discussed. The species equations are described and boundary conditions for them are derived for a multicomponent gas and for a binary gas. Slip effects are included for application of continuum methods to low-density flows. Measurement techniques for determining catalytic wall recombination rates are discussed. Among them are experiments carried out in arc jets as well as flow reactors. Diagnostic methods for determining the atom or molecule concentrations in the flow are included. Results are given for a number of materials of interest to the aerospace community, including glassy coatings such as the RCG coating of the Space Shuttle and for high temperature refractory metals such as coated niobium. Methods of calculating the heat flux to space vehicles in nonequilibrium flows are described. These methods are applied to the Space Shuttle, the planned Aeroassist Flight Experiment, and a hypersonic slender vehicle such as a transatmospheric vehicle.

  19. Crossflow effects on the growth rate of inviscid Goertler vortices in a hypersonic boundary layer

    NASA Technical Reports Server (NTRS)

    Fu, Yibin; Hall, Philip

    1992-01-01

    The effects of crossflow on the growth rate of inviscid Goertler vortices in a hypersonic boundary layer with pressure gradient are studied. Attention is focused on the inviscid mode trapped in the temperature adjustment layer; this mode has greater growth rate than any other mode. The eigenvalue problem which governs the relationship between the growth rate, the crossflow amplitude, and the wavenumber is solved numerically, and the results are then used to clarify the effects of crossflow on the growth rate of inviscid Goertler vortices. It is shown that crossflow effects on Goertler vortices are fundamentally different for incompressible and hypersonic flows. The neutral mode eigenvalue problem is found to have an exact solution, and as a by-product, we have also found the exact solution to a neutral mode eigenvalue problem which was formulated, but unsolved before, by Bassom and Hall (1991).

  20. Turbulence in the Stable Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Fernando, Harindra; Kit, Eliezer; Conry, Patrick; Hocut, Christopher; Liberzon, Dan

    2016-11-01

    During the field campaigns of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program, fine-scale measurements of turbulence in the atmospheric boundary layer (ABL) were made using a novel sonic and hot-film anemometer dyad (a combo probe). A swath of scales, from large down to Kolmogorov scales, was covered. The hot-film was located on a gimbal within the sonic probe volume, and was automated to rotate in the horizontal plane to align with the mean flow measured by sonic. This procedure not only helped satisfy the requirement of hot-film alignment with the mean flow, but also allowed in-situ calibration of hot-films. This paper analyzes a period of nocturnal flow that was similar to an idealized stratified parallel shear flow. Some new phenomena were identified, which included the occurrence of strong bursts in the velocity records indicative of turbulence generation at finer scales that are not captured by conventional sonic anemometers. The spectra showed bottleneck effect, but its manifestation did not fit into the framework of previous bottleneck-effect theories and was unequivocally related to bursts of turbulence. The measurements were also used to evaluate the energetics of stratified shear flows typical of the environment. ONR # N00014-11-1-0709; NSF # AGS-1528451; ISF 408/15.

  1. Experimental studies of hypersonic boundary-layer transition and effects of wind tunnel disturbances. [using different conical models

    NASA Technical Reports Server (NTRS)

    Stainback, P. C.; Wagner, R. D.; Owen, F. K.; Horstman, C. C.

    1974-01-01

    Boundary layer transition data on cones and free stream disturbance levels were measured in a hypersonic wind tunnel and Mach 8 variable density hypersonic tunnel. Transition data were obtained by using different conical models and techniques for detecting the location of transition. The disturbance levels were measured by using hot wire anemometry and pressure transducers. The transition Reynolds numbers obtained from the tests correlated well when the fluctuating pressures measured at the surface of conical models were used as a correlating parameter.

  2. Flow visualization of turbulent boundary layer structure

    NASA Astrophysics Data System (ADS)

    Head, M. R.; Bandyopadhyay, P.

    1980-01-01

    The results from flow visualization experiments performed using an argon-ion laser to illuminate longitudinal and transverse sections of the smoke filled boundary layer in zero pressure gradient are discussed. Most of the experiments were confined to the range 600 Re sub theta 10,000. Results indicate that the boundary layer consists almost exclusively of vortex loops or hairpins, some of which may extend through the complete boundary layer thickness and all of which are inclined at a more or less constant characteristic angle of approximately 45 deg to the wall. Since the cross-stream dimensions of the hairpins appear to scale roughly with the wall variables U sub tau and nu, while their length is limited only by the boundary layer thickness, there are very large scale effects on the turbulence structure. At high Reynolds numbers (Re sub theta = 10,000) there is little evidence of large-scale coherent motions, other than a slow overturning of random agglomerations of the hairpins just mentioned.

  3. The structure of APG turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Gungor, Ayse G.; Maciel, Yvan; Simens, Mark P.; Soria, Julio

    2013-11-01

    A boundary layer under influence of a strong APG is studied using DNS. Transition to turbulence is triggered using a trip wire which is modelled using the immersed boundary method. The Reynolds number close to the exit of the numerical domain is Reθ = 2175 and the shape-factor H = 2 . 5 . Two dimensional two-point spatial correlation functions are obtained in this region and close to the transition region. Cvu with a reference point close to the transition region shows a flow periodicity until Reθ ~ 1600 . This periodicity is related to the shear layer instability of the separation bubble created as a result of the APG. The Cvv and Cww correlations obtained far from the transition region at Reθ = 2175 and at y / δ = 0 . 4 coincide with results obtained for a ZPG boundary layer. Implying that the structure of the v , w fluctuations is the same as in ZPG. However, Cuu indicates that the structure of the u fluctuation in an APG boundary layer is almost twice as short as the ZPG structures. The APG structures are also less correlated with the flow at the wall. The near wall structure of strong APG flows is different from ZPG flows in that streaks are much shorter or absent. Funded in part by ITU, NSERC of Canada, ARC Discovery Grant, and Multiflow program of the ERC.

  4. Methods for direct simulation of transition in hypersonic boundary layers

    NASA Technical Reports Server (NTRS)

    Vandervegt, J. J. W.; Ferziger, J. H.

    1991-01-01

    An implicit numerical algorithm for the time accurate solution of the compressible Navier-Stokes equations is described. Results for steady flow past a finite flat plate are presented, together with preliminary results for the temporal simulation of second mode instability in a flat plate boundary layer at Mach 4.5.

  5. Unsteady heat-flux measurements of second-mode instability waves in a hypersonic flat-plate boundary layer

    NASA Astrophysics Data System (ADS)

    Kegerise, Michael A.; Rufer, Shann J.

    2016-08-01

    In this paper, we report on the application of the atomic layer thermopile (ALTP) heat-flux sensor to the measurement of laminar-to-turbulent transition in a hypersonic flat-plate boundary layer. The centerline of the flat-plate model was instrumented with a streamwise array of ALTP sensors, and the flat-plate model was exposed to a Mach 6 freestream over a range of unit Reynolds numbers. Here, we observed an unstable band of frequencies that are associated with second-mode instability waves in the laminar boundary layer that forms on the flat-plate surface. The measured frequencies, group velocities, phase speeds, and wavelengths of these instability waves are consistent with data previously reported in the literature. Heat flux time series, and the Morlet wavelet transforms of them, revealed the wave-packet nature of the second-mode instability waves. In addition, a laser-based radiative heating system was used to measure the frequency response functions (FRF) of the ALTP sensors used in the wind tunnel test. These measurements were used to assess the stability of the sensor FRFs over time and to correct spectral estimates for any attenuation caused by the finite sensor bandwidth.

  6. Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances

    NASA Technical Reports Server (NTRS)

    Balakamar, P.; Kegerise, Michael A.

    2011-01-01

    Boundary layer receptivity to two-dimensional acoustic disturbances at different incidence angles and to vortical disturbances is investigated by solving the Navier-Stokes equations for Mach 6 flow over a 7deg half-angle sharp-tipped wedge and a cone. Higher order spatial and temporal schemes are employed to obtain the solution. The results show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. It is found that the receptivity of the boundary layer on the windward side (with respect to the acoustic forcing) decreases when the incidence angle is increased from 0 to 30 degrees. However, the receptivity coefficient for the leeward side is found to vary relatively weakly with the incidence angle. The maximum receptivity is obtained when the wave incident angle is about 20 degrees. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that for the acoustic waves. Vortical disturbances first generate the fast acoustic modes and they switch to the slow mode near the continuous spectrum.

  7. Effects of small-scale freestream turbulence on turbulent boundary layers with and without thermal convection

    NASA Astrophysics Data System (ADS)

    Nagata, Kouji; Sakai, Yasuhiko; Komori, Satoru

    2011-06-01

    Effects of weak, small-scale freestream turbulence on turbulent boundary layers with and without thermal convection are experimentally investigated using a wind tunnel. Two experiments are carried out: the first is isothermal boundary layers with and without grid turbulence, and the second is non-isothermal boundary layers with and without grid turbulence. Both boundary layers develop under a small favorable pressure gradient. For the latter case, the bottom wall of the test section is heated at a constant wall temperature to investigate the effects of thermal convection under the effects of freestream turbulence. For both cases, the turbulence intensity in the freestream is Tu = 1.3% ˜ 2.4%, and the integral length scale of freestream turbulence, L∞, is much smaller than the boundary layer thickness δ, i.e., L∞/δ ≪1. The Reynolds numbers Reθ based on the momentum thickness and freestream speed U∞ are Reθ = 560, 1100, 1310, and 2330 in isothermal boundary layers without grid turbulence. Instantaneous velocities, U and V, and instantaneous temperature T are simultaneously measured using a hot-wire anemometry and a constant-current resistance thermometer. The results show that the rms velocities and Reynolds shear stress normalized by the friction velocity are strongly suppressed by the freestream turbulence throughout the boundary layer in both isothermal and non-isothermal boundary layers. In the non-isothermal boundary layers, the normalized rms temperature and vertical turbulent heat flux are also strongly suppressed by the freestream turbulence. Turbulent momentum and heat transfer at the wall are enhanced by the freestream turbulence and the enhancement is notable in unstable stratification. The power spectra of u, v, and θ and their cospectra show that motions of almost all scales are suppressed by the freestream turbulence in both the isothermal and non-isothermal boundary layers.

  8. Aeolian Sand Transport by Boundary Layer Turbulence

    NASA Astrophysics Data System (ADS)

    Baas, A. C.

    2007-12-01

    The erratic and intermittent nature of wind-driven sand transport challenges our current transport models, which lack physical mechanisms for explaining and taking into account this spatio-temporal variability. This paper presents a collective overview of results from investigations into the nature of spatio-temporal variability in sand transport generally, and the formation and behaviour of aeolian streamers specifically. This includes three principal studies. First, the results of field investigations into the formation and behaviour of aeolian streamers in coastal and desert environments, where spatio-temporal transport variability and associated turbulence characteristics were assessed with an extensive instrument array. Streamers were measured with a transverse array of Safires, while the wind field and associated turbulent structures were monitored with cup-anemometry and a rake of hot-film probes. Second, these field data were used to assess the statistical trends in transport variability as a function of spanwise scale of measurement and the temporal scale of time-averaging transport rates. Third, spectral wavelet analysis of high-frequency collocated wind speed (hot- film probes) and transport flux (Safires) time-series revealed distinct forcing-response regimes at different temporal scales. The transitions between these regimes and their ranges compare favourably with physically meaningful scales, such as the minimum temporal scale of saltation response to wind speed fluctuations, and the integral time-scale of the observed internal boundary layer turbulence dynamics. The paper concludes with a tentative conceptual framework that attempts to integrate the results and insights from these studies towards an improved understanding of aeolian sediment transport processes.

  9. Persistent Structures in the Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan; Chabalko, Chris

    2005-01-01

    Persistent structures in the turbulent boundary layer are located and analyzed. The data are taken from flight experiments on large commercial aircraft. An interval correlation technique is introduced which is able to locate the structures. The Morlet continuous wavelet is shown to not only locates persistent structures but has the added benefit that the pressure data are decomposed in time and frequency. To better understand how power is apportioned among these structures, a discrete Coiflet wavelet is used to decompose the pressure data into orthogonal frequency bands. Results indicate that some structures persist a great deal longer in the TBL than would be expected. These structure contain significant power and may be a primary source of vibration energy in the airframe.

  10. Atmospheric Boundary-Layer Turbulence Intermittency Revisited

    NASA Astrophysics Data System (ADS)

    Mezemate, Y.; Fitton, G. F.; Tchiguirinskaia, I.; Schertzer, D. J. M.

    2015-12-01

    Turbulence has been and still is the focus of countless experimental, numerical, and theoretical studies. A common physics based approach to complex problems involving extremely large (possibly infinite) degrees of freedom is to consider the possible symmetries of the governing equations. In turbulence, the scaling symmetry of the Navier-Stokes equation justifies a multiple scaling (multifractal) analysis of the phenomena. Kolmogorov's famous 1941 hypotheses led to the 2/3rds law (essentially hypothesizing fractal velocity statistics) for the velocity increments and later in 1962 corrected his hypothesis to include an intermittency correction (essentially allowing the velocity to have multiple scaling exponents). Both hypotheses have been tested in numerous wind tunnel experiments but empirical validation of the hypotheses in the atmospheric boundary-layer have been difficult due to complex symmetry breaking effects. Using 50Hz Sonic Anemometer velocity data measured on the site of École des Ponts ParisTech we test Kolmogorov's hypotheses. We find that contrary to numerous wind tunnel testing results, we do not observe a slight increase of the spectral exponent, but a significant decrease this exponent, therefore that intermittency favorise small eddies. We show that it is necessary to reconsider the classical and frequently used assumptions regarding the normalization of the energy flux through scales.

  11. Hypersonic Boundary-Layer Transition for X-33 Phase 2 Vehicle

    NASA Technical Reports Server (NTRS)

    Thompson, Richard A.; Hamilton, Harris H., II; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.

    1998-01-01

    A status review of the experimental and computational work performed to support the X-33 program in the area of hypersonic boundary-layer transition is presented. Global transition fronts are visualized using thermographic phosphor measurements. Results are used to derive transition correlations for "smooth body" and discrete roughness data and a computational tool is developed to predict transition onset for X-33 using these results. The X-33 thermal protection system appears to be conservatively designed for transition effects based on these studies. Additional study is needed to address concerns related to surface waviness. A discussion of future test plans is included.

  12. Effects of compressibility on boundary-layer turbulence

    NASA Technical Reports Server (NTRS)

    Acharya, M.

    1976-01-01

    A series of turbulence measurements in a subsonic compressible turbulent boundary-layer flow in the Mach number range of 0.1 to 0.7 is described. Measurements include detailed surveys of the turbulence intensities and Reynolds shear stresses, and other quantities such as the turbulent kinetic energy. These data are examined to bring out the effects of compressibility and show that the stream-wise and transverse fluctuations and the turbulent shear stress follow a universal scaling law. A preliminary attempt is made to examine some of the assumptions made in turbulence models commonly used in numerical codes for the calculation of compressible flows.

  13. A simplified Reynolds stress model for unsteady turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Fan, Sixin; Lakshminarayana, Budugur

    1993-01-01

    A simplified Reynolds stress model has been developed for the prediction of unsteady turbulent boundary layers. By assuming that the net transport of Reynolds stresses is locally proportional to the net transport of the turbulent kinetic energy, the time dependent full Reynolds stress model is reduced to a set of ordinary differential equations. These equations contain only time derivatives and can be readily integrated in a time dependent boundary layer or Navier-Stokes code. The turbulent kinetic energy and dissipation rate needed for the model are obtained by solving the k-epsilon equations. This simplified Reynolds stress turbulence model (SRSM) does not use the eddy viscosity assumption, which may not be valid for unsteady turbulent flows. The anisotropy of both the steady and the unsteady turbulent normal stresses can be captured by the SRSM model. Through proper damping of the shear stresses, the present model can be used in the near wall region of turbulent boundary layers. This model has been validated against data for steady and unsteady turbulent boundary layers, including periodic turbulent boundary layers subjected to a mean adverse pressure gradient. For the cases tested, the predicted unsteady velocity and turbulent stress components agree well with the experimental data. Comparison between the predictions from the SRSM model and a k-epsilon model is also presented.

  14. Intersecting Shock-Wave/Turbulent Boundary-Layer Interactions at Mach 8.3

    NASA Technical Reports Server (NTRS)

    Kussoy, M. I.; Horstman, K. C.

    1992-01-01

    Experimental data for two three-dimensional intersecting shock-wave/turbulent boundary-layer interaction flows at Mach 8.3 are presented. The test bodies, composed of two sharp fins fastened to a flat-plate test bed, were designed to generate flows with varying degrees of pressure gradient, boundary-layer separation, and turning angle. The data include surface pressure and heat transfer distributions as well as mean flow-field surveys both in the undisturbed and interaction regimes. The data are presented in a convenient form to be used to validate existing or future computational models of these hypersonic flows. The data are also on a 3.5-inch diskette included and are available through E-mail.

  15. Boundary Layer Transition over Blunt Hypersonic Vehicles Including Effects of Ablation-Induced Out-Gassing

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan; Chang, Chau-Lyan; White, Jeffery

    2011-01-01

    Computations are performed to study the boundary layer instability mechanisms pertaining to hypersonic flow over blunt capsules. For capsules with ablative heat shields, transition may be influenced both by out-gassing associated with surface pyrolysis and the resulting modification of surface geometry including the formation of micro-roughness. To isolate the effects of out-gassing, this paper examines the stability of canonical boundary layer flows over a smooth surface in the presence of gas injection into the boundary layer. For a slender cone, the effects of out-gassing on the predominantly second mode instability are found to be stabilizing. In contrast, for a blunt capsule flow dominated by first mode instability, out-gassing is shown to be destabilizing. Analogous destabilizing effects of outgassing are also noted for both stationary and traveling modes of crossflow instability over a blunt sphere-cone configuration at angle of attack.

  16. The influence of free-stream turbulence on turbulent boundary layers with mild adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Hoffmann, J. A.; Kassir, S. M.; Larwood, S. M.

    1989-01-01

    The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent boundary layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free-stream, both of which act to improve the transmission of momentum from the free-stream to the boundary layers.

  17. Three velocity component, nonhomogeneous atmospheric boundary layer turbulence modeling

    NASA Technical Reports Server (NTRS)

    Perlmutter, M.; Frost, W.; Fichtl, G. H.

    1976-01-01

    The vertical nonhomogeneous character of turbulence in the atmospheric boundary layer results in a non-stationary turbulence process relative to an aircraft during takeoff and landing despite the fact that the turbulence statistics can be horizontally homogeneous. The simulation of the three components of the turbulent winds which include the nonstationary aspect of atmospheric turbulence is the subject of this paper. A procedure is developed and demonstrated to generate the three components of a turbulence ramdom process field, u sub i(x,z) where x and z denote horizontal and vertical coordinates and u sub i, i = 1,2,3 are the three orthogonal components of the turbulent random field. This field satisfies any desired one point auto spectra as well as two point statistics (interlevel correlations). By use of Taylors frozen eddy hypothesis we can transform the turbulent random field into the time domain and obtain the random turbulence along an aircraft trajectory.

  18. Hypersonic Wind-Tunnel Measurements of Boundary-Layer Pressure Fluctuations

    DTIC Science & Technology

    2009-08-01

    be tested for noise reduction . Better grounding of the data acquisition system or greater amplification of the sensor signals may also improve results...laminar boundary layers reflected tunnel noise levels. Laminar boundary-layer measurements under quiet flow were an order of magnitude lower than under...the peak, depended on tunnel noise parameters. Turbulent boundary-layer fluctuations were lower than transitional fluctuations and also reflected

  19. Finite-element numerical modeling of atmospheric turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Lee, H. N.; Kao, S. K.

    1979-01-01

    A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.

  20. Experimental measurements of unsteady turbulent boundary layers near separation

    NASA Technical Reports Server (NTRS)

    Simpson, R. L.

    1982-01-01

    Investigations conducted to document the behavior of turbulent boundary layers on flat surfaces that separate due to adverse pressure gradients are reported. Laser and hot wire anemometers measured turbulence and flow structure of a steady free stream separating turbulent boundary layer produced on the flow of a wind tunnel section. The effects of sinusoidal and unsteadiness of the free stream velocity on this separating turbulent boundary layer at a reduced frequency were determined. A friction gage and a thermal tuft were developed and used to measure the surface skin friction and the near wall fraction of time the flow moves downstream for several cases. Abstracts are provided of several articles which discuss the effects of the periodic free stream unsteadiness on the structure or separating turbulent boundary layers.

  1. Transition Prediction in Hypersonic Boundary Layers Using Receptivity and Freestream Spectra

    NASA Technical Reports Server (NTRS)

    Balakumar, P.; Chou, Amanda

    2016-01-01

    Boundary-layer transition in hypersonic flows over a straight cone can be predicted using measured freestream spectra, receptivity, and threshold values for the wall pressure fluctuations at the transition onset points. Simulations are performed for hypersonic boundary-layer flows over a 7-degree half-angle straight cone with varying bluntness at a freestream Mach number of 10. The steady and the unsteady flow fields are obtained by solving the two-dimensional Navier-Stokes equations in axisymmetric coordinates using a 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using a third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The calculated N-factors at the transition onset location increase gradually with increasing unit Reynolds numbers for flow over a sharp cone and remain almost the same for flow over a blunt cone. The receptivity coefficient increases slightly with increasing unit Reynolds numbers. They are on the order of 4 for a sharp cone and are on the order of 1 for a blunt cone. The location of transition onset predicted from the simulation including the freestream spectrum, receptivity, and the linear and the weakly nonlinear evolutions yields a solution close to the measured onset location for the sharp cone. The simulations over-predict transition onset by about twenty percent for the blunt cone.

  2. Symmetries in Turbulent Boundary Layer Flows

    NASA Technical Reports Server (NTRS)

    Oberlack, M.

    1996-01-01

    The objective is the development of a new theory which enables the algorithmic computation of all self-similar mean velocity profiles. The theory is based on Liegroup analysis and unifies a large set of self-similar solutions for the mean velocity of stationary parallel turbulent shear flows. The results include the logarithmic law of the wall, an algebraic law, the viscous sublayer, the linear region in the middle of a Couette flow and in the middle of a rotating channel flow, and a new exponential mean velocity profile not previously reported. Experimental results taken in the outer parts of a high Reynolds number flat-plate boundary layer, strongly support the exponential profile. From experimental as well as from DNS data of a turbulent channel flow the algebraic scaling law could be confirmed in both the center region and in the near wall region. In the case of the logarithmic law of the wall, the scaling with the wall distance arises as a result of the analysis and has not been assumed in the derivation. The crucial part of the derivation of all the different mean velocity profiles is to consider the invariance of the equation for the velocity fluctuations at the same time as the invariance of the equation for the velocity product equations. The latter is the dyad product of the velocity fluctuations with the equation for the velocity fluctuations. It has been proven that all the invariant solutions are also consistent with similarity of all velocity moment equations up to any arbitrary order.

  3. Crossing turbulent boundaries: interfacial flux in environmental flows.

    PubMed

    Grant, Stanley B; Marusic, Ivan

    2011-09-01

    Advances in the visualization and prediction of turbulence are shedding new light on mass transfer in the turbulent boundary layer. These discoveries have important implications for many topics in environmental science and engineering, from the transport of earth-warming CO2 across the sea-air interface, to nutrient processing and sediment erosion in rivers, lakes, and the ocean, to pollutant removal in water and wastewater treatment systems. In this article we outline current understanding of turbulent boundary layer flows, with particular focus on coherent turbulence and its impact on mass transport across the sediment-water interface in marine and freshwater systems.

  4. Laser-spectroscopic measurement techniques for hypersonic, turbulent wind tunnel flows

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert L.; Fletcher, Douglas G.

    1992-01-01

    A review is given of the nature, present status, and capabilities of two laser spectroscopic methods for the simultaneous measurement of temperature, density, and their fluctuations owing to turbulence in high speed wind tunnel flows. One method is based on the two frequency excitation of nitric oxide seeded into a nitrogen flow, using tunable dye lasers. The second, more recent method relies on the excitation of oxygen in air flows using a tunable, ArF excimer laser. Signal are obtained from both the laser induced fluorescence and from Raman scattering of the same laser pulse. Measurements are demonstrated in the turbulent boundary layer of a Mach-2 channel flow.

  5. An investigation of turbulence structure in a low-Reynolds-number incompressible turbulent boundary

    NASA Technical Reports Server (NTRS)

    White, B. R.; Strataridakis, C. J.

    1987-01-01

    An existing high turbulence intensity level (5%) atmospheric boundary-layer wind tunnel has been successfully converted to a relatively low level turbulence (0.3%) wind tunnel through extensive modification, testing, and calibration. A splitter plate was designed, built, and installed into the wind-tunnel facility to create thick, mature, two-dimensional turbulent boundary layer flow at zero pressure gradient. Single and cross hot-wire measurements show turbulent boundary layer characteristics of good quality with unusually large physical size, i.e., viscous sublayer of the order of 1 mm high. These confirm the potential ability of the tunnel to be utilized for future high-quality near-wall turbulent boundary layer measurements. It compares very favorably with many low turbulence research tunnels.

  6. The influence of free-stream turbulence on turbulent boundary layers with mild adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Hoffmann, Jon A.

    1988-01-01

    The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent bounday layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free stream, both of which act to improve the transmission of momentum from the free stream to the boundary layers.

  7. Simulation of hypersonic rarefied flows with the immersed-boundary method

    NASA Astrophysics Data System (ADS)

    Bruno, D.; De Palma, P.; de Tullio, M. D.

    2011-05-01

    This paper provides a validation of an immersed boundary method for computing hypersonic rarefied gas flows. The method is based on the solution of the Navier-Stokes equation and is validated versus numerical results obtained by the DSMC approach. The Navier-Stokes solver employs a flexible local grid refinement technique and is implemented on parallel machines using a domain-decomposition approach. Thanks to the efficient grid generation process, based on the ray-tracing technique, and the use of the METIS software, it is possible to obtain the partitioned grids to be assigned to each processor with a minimal effort by the user. This allows one to by-pass the expensive (in terms of time and human resources) classical generation process of a body fitted grid. First-order slip-velocity boundary conditions are employed and tested for taking into account rarefied gas effects.

  8. Expansion Effects on Supersonic Turbulent Boundary Layers

    DTIC Science & Technology

    1994-02-01

    For spatial correlations, sef denotes a point. For double-pulse correlations, s,ef denotes a horizontal line of length 6,./2. q2 Turbulent kinetic ...based on ratios of triple products of velocity fluctuations) for Reynolds shear stress (-uv) and turbulent kinetic energy (q 2 ) were seen to decrease...large scale motions (similar to the turbulent kinetic energy), a destruction of turbulence present upstream of the curvature 11 and subsequent re-creation

  9. Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance

    PubMed Central

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter. PMID:24737993

  10. Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.

    PubMed

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  11. A Comparison of Active and Passive Methods for Control of Hypersonic Boundary Layers on Airbreathing Configurations

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Nowak, Robert J.

    2003-01-01

    Active and passive methods for control of hypersonic boundary layers have been experimentally examined in NASA Langley Research Center wind tunnels on a Hyper-X model. Several configurations for forcing transition using passive discrete roughness elements and active mass addition, or blowing, methods were compared in two hypersonic facilities, the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air tunnels. Heat transfer distributions, obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the nominal Mach 7 flight trajectory of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For the passive roughness examination, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The prior passive roughness study resulted in a swept ramp configuration being selected for the Mach 7 flight vehicle that was scaled to be roughly 0.6 of the calculated boundary layer thickness. For the active jet blowing study, the blowing manifold pressure was systematically varied for each configuration, while monitoring the mass flow, to determine the jet penetration height with schlieren and transition movement with the phosphor system for comparison to the passive results. All the blowing concepts tested were adequate for providing transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model static pressure or higher.

  12. Structure of the turbulent/non-turbulent interface of turbulent boundary layers - DNS results

    NASA Astrophysics Data System (ADS)

    Ishihara, Takashi; Ogasawara, Hiroki; Hunt, Julian C. R.

    2013-11-01

    Direct numerical simulations (DNS) of turbulent boundary layers (TBL) along a flat plate are used to study the properties of turbulent/non-turbulent (T/NT) interface of the TBL. The values of the momentum-thickness-based Reynolds numbers, Reθ , used for this study, are 500 - 2200 . Analysis of the conditional statistics near the interface of the TBL shows that there is a small peak in the span-wise vorticity, and an associated small jump in stream-wise velocity. It is shown that the interfacial layer has a double structure which consists of a turbulent sub-layer with thickness of the order of the Taylor micro scale and its outer boundary (super layer) with thickness of the order of the Kolmogorov length scale. An approximate profile of the conditional average of span-wise vorticity near the interface fits well to the DNS data. The velocity jump near the T/NT interface of the TBL is of the order of the rms value of velocity fluctuations near the interface. Conditional cross correlations of the stream-wise or the wall-normal velocity fluctuations change sharply across the interface, which are consistent with the blocking mechanism of the interface (Hunt and Durbin 1999).

  13. Numerical simulation of shock/turbulent boundary layer interaction

    NASA Technical Reports Server (NTRS)

    Biringen, Sedat; Hatay, Ferhat F.

    1993-01-01

    Most flows of aerodynamic interest are compressible and turbulent. However, our present knowledge on the structures and mechanisms of turbulence is mostly based on incompressible flows. In the present work, compressibility effects in turbulent, high-speed, boundary layer flows are systematically investigated using the Direct Numerical Simulation (DNS) approach. Three-dimensional, time-dependent, fully nonlinear, compressible Navier-Stokes equations were numerically integrated by high-order finite-difference methods; no modeling for turbulence is used during the solution because the available resolution is sufficient to capture the relevant scales. The boundary layer problem deals with fully-turbulent compressible flows over flat geometries. Apart from its practical relevance to technological flows, turbulent compressible boundary layer flow is the simplest experimentally realizable turbulent compressible flow. Still, measuring difficulties prohibit a detailed experimental description of the flow, especially in the near-wall region. DNS studies provide a viable means to probe the physics of compressible turbulence in this region. The focus of this work is to explore the paths of energy transfer through which compressible turbulence is sustained. The structural similarities and differences between the incompressible and compressible turbulence are also investigated. The energy flow patterns or energy cascades are found to be directly related to the evolution of vortical structures which are generated in the near-wall region. Near-wall structures, and mechanisms which are not readily accessible through physical experiments are analyzed and their critical role on the evolution and the behavior of the flow is documented extensively.

  14. Direct numerical simulation of turbulent boundary layer with constant thickness

    NASA Astrophysics Data System (ADS)

    Yao, Yichen; Xu, Chunxiao; Huang, Weixi

    2016-11-01

    Direct numerical simulation is performed to turbulent boundary layer (TBL) with constant thickness at Reθ = 1420 . Periodic boundary condition is applied in the streamwise direction, and a mean body force equivalent to the convection term in the mean momentum equation is imposed in this direction. The body force is calculated using the published TBL data of Schlatter and Orlu (2010) at Reθ = 1420 . The presently simulated TBL is compared with the conventional TBL and turbulent channel flow at the prescribed Reynolds number. The turbulent statistics agrees well with that of Schlatter and Orlu (2010). The pre-multiplied energy spectra in current simulation also present high similarity with the conventional TBL, while differ obviously with those in turbulent channel. The successful replication of turbulent boundary in the current simulation provides an alternative method for boundary layer simulation with much less computational cost. Meanwhile, in aspect of both turbulent statistics and flow structures, the current results indicate that the differences between turbulent channel and boundary layer flow mainly caused by the discrepancy in driving force distribution rather than the periodic boundary restriction. National Natural Science Foundation of China (Project No. 11490551, 11472154, 11322221, 11132005).

  15. Multilayer scaling of mean velocity and thermal fields of compressible turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Bi, Weitao; Wu, Bin; Zhang, Yousheng; Hussain, Fazle; She, Zhen-Su

    2014-11-01

    Recently, a symmetry based structural ensemble dynamics (SED) theory was proposed by She et al. for canonical wall bounded turbulent flows, yielding prediction of the mean velocity profile at an unprecedented accuracy (99%). Here, we extend the theory to compressible turbulent boundary layers (TBL) at supersonic and hypersonic Mach numbers. The flows are acquired by spatially evolving direct numerical simulations (DNS). A momentum mixing length displays a four layer structure and quantitatively obeys the dilation group invariance as for the incompressible TBL. In addition, a temperature mixing length behaves very similarly to the momentum mixing length when the wall is adiabatic, with a small difference in the scaling exponents in the buffer layer - consistent with the strong Reynolds analogy. The Lie group based formulization of the two mixing lengths yields a multilayer model for the turbulent Prandtl number, along with predictions to the mean thermal and velocity profiles, both in good agreement with the DNS. Thus, we assert that the compressible TBLs are governed by the same symmetry principle as that in the canonical wall bounded turbulent flows, and its mean fields can be accurately described by the SED theory.

  16. The effects of concave curvature on turbulent boundary layer structure

    NASA Astrophysics Data System (ADS)

    Jeans, A. H.; Johnston, J. P.

    This paper reports the results of flow visualization studies on the structure of turbulent boundary layers over concave walls. A flat plate turbulent boundary layer was grown on one wall of a straight, large water channel and then passed over a concave wall. The flow was visualized in two ways, (1) by injecting dyes into the sublayers and (2) by generating hydrogen bubbles on fine wires placed in the flow. Mean velocity and turbulence intensity profiles were measured using a hot film anemometer. The boundary layer on the concave wall was found to be dominated by randomly occurring, large-scale sweeps and ejections. The stationary roll-cells, or Taylor-Goertler structures are not a feature of this flow. The sweeps appear to inhibit the usual bursting mechanism for producing turbulence near the wall, while the ejections appear to create additional turbulence in the outer flow.

  17. Investigations on entropy layer along hypersonic hyperboloids using a defect boundary layer

    NASA Technical Reports Server (NTRS)

    Brazier, J. P.; Aupoix, B.; Cousteix, J.

    1992-01-01

    A defect approach coupled with matched asymptotic expansions is used to derive a new set of boundary layer equations. This method ensures a smooth matching of the boundary layer with the inviscid solution. These equations are solved to calculate boundary layers over hypersonic blunt bodies involving the entropy gradient effect. Systematic comparisons are made for both axisymmetric and plane flows in several cases with different Mach and Reynolds numbers. After a brief survey of the entropy layer characteristics, the defect boundary layer results are compared with standard boundary layer and full Navier-Stokes solutions. The entropy gradient effects are found to be more important in the axisymmetric case than in the plane one. The wall temperature has a great influence on the results through the displacement effect. Good predictions can be obtained with the defect approach over a cold wall in the nose region, with a first order solution. However, the defect approach gives less accurate results far from the nose on axisymmetric bodies because of the thinning of the entropy layer.

  18. Hypersonic Boundary Layer Stability Experiments in a Quiet Wind Tunnel with Bluntness Effects

    NASA Technical Reports Server (NTRS)

    Lachowicz, Jason T.; Chokani, Ndaona

    1996-01-01

    Hypersonic boundary layer measurements over a flared cone were conducted in a Mach 6 quiet wind tunnel at a freestream unit Reynolds number of 2.82 million/ft. This Reynolds number provided laminar-to-transitional flow over the cone model in a low-disturbance environment. Four interchangeable nose-tips, including a sharp-tip, were tested. Point measurements with a single hot-wire using a novel constant voltage anemometer were used to measure the boundary layer disturbances. Surface temperature and schlieren measurements were also conducted to characterize the transitional state of the boundary layer and to identify instability modes. Results suggest that second mode disturbances were the most unstable and scaled with the boundary layer thickness. The second mode integrated growth rates compared well with linear stability theory in the linear stability regime. The second mode is responsible for transition onset despite the existence of a second mode subharmonic. The subharmonic disturbance wavelength also scales with the boundary layer thickness. Furthermore, the existence of higher harmonics of the fundamental suggests that nonlinear disturbances are not associated with 'high' free stream disturbance levels. Nose-tip radii greater than 2.7% of the base radius completely stabilized the second mode.

  19. Hypersonic Boundary Layer Stability over a Flared Cone in a Quiet Tunnel

    NASA Technical Reports Server (NTRS)

    Lachowicz, Jason T.; Chokani, Ndaona; Wilkinson, Stephen P.

    1996-01-01

    Hypersonic boundary layer measurements were conducted over a flared cone in a quiet wind tunnel. The flared cone was tested at a freestream unit Reynolds number of 2.82x106/ft in a Mach 6 flow. This Reynolds number provided laminar-to-transitional flow over the model in a low-disturbance environment. Point measurements with a single hot wire using a novel constant voltage anemometry system were used to measure the boundary layer disturbances. Surface temperature and schlieren measurements were also conducted to characterize the laminar-to-transitional state of the boundary layer and to identify instability modes. Results suggest that the second mode disturbances were the most unstable and scaled with the boundary layer thickness. The integrated growth rates of the second mode compared well with linear stability theory in the linear stability regime. The second mode is responsible for transition onset despite the existence of a second mode sub-harmonic. The sub-harmonic wavelength also scales with the boundary layer thickness. Furthermore, the existence of higher harmonics of the fundamental suggests that non-linear disturbances are not associated with high free stream disturbance levels.

  20. Development of a two-equation turbulence model for hypersonic flows. Volume 1; Evaluation of a low Reynolds number correction to the Kappa - epsilon two equation compressible turbulence model

    NASA Technical Reports Server (NTRS)

    Knight, Doyle D.; Becht, Robert J.

    1995-01-01

    The objective of the current research is the development of an improved k-epsilon two-equation compressible turbulence model for turbulent boundary layer flows experiencing strong viscous-inviscid interactions. The development of an improved model is important in the design of hypersonic vehicles such as the National Aerospace Plane (NASP) and the High Speed Civil Transport (HSCT). Improvements have been made to the low Reynolds number functions in the eddy viscosity and dissipation of solenoidal dissipation of the k-epsilon turbulence mode. These corrections offer easily applicable modifications that may be utilized for more complex geometries. The low Reynolds number corrections are functions of the turbulent Reynolds number and are therefore independent of the coordinate system. The proposed model offers advantages over some current models which are based upon the physical distance from the wall, that modify the constants of the standard model, or that make more corrections than are necessary to the governing equations. The code has been developed to solve the Favre averaged, boundary layer equations for mass, momentum, energy, turbulence kinetic energy, and dissipation of solenoidal dissipation using Keller's box scheme and the Newton spatial marching method. The code has been validated by removing the turbulent terms and comparing the solution with the Blasius solution, and by comparing the turbulent solution with an existing k-epsilon model code using wall function boundary conditions. Excellent agreement is seen between the computed solution and the Blasius solution, and between the two codes. The model has been tested for both subsonic and supersonic flat-plate turbulent boundary layer flow by comparing the computed skin friction with the Van Driest II theory and the experimental data of Weighardt; by comparing the transformed velocity profile with the data of Weighardt, and the Law of the Wall and the Law of the Wake; and by comparing the computed results

  1. Development of a two-equation turbulence model for hypersonic flows. Volume 1; Evaluation of a low Reynolds number correction to the Kappa - epsilon two equation compressible turbulence model

    NASA Technical Reports Server (NTRS)

    Knight, Doyle D.; Becht, Robert J.

    1995-01-01

    The objective of the current research is the development of an improved k-epsilon two-equation compressible turbulence model for turbulent boundary layer flows experiencing strong viscous-inviscid interactions. The development of an improved model is important in the design of hypersonic vehicles such as the National Aerospace Plane (NASP) and the High Speed Civil Transport (HSCT). Improvements have been made to the low Reynolds number functions in the eddy viscosity and dissipation of solenoidal dissipation of the k-epsilon turbulence mode. These corrections offer easily applicable modifications that may be utilized for more complex geometries. The low Reynolds number corrections are functions of the turbulent Reynolds number and are therefore independent of the coordinate system. The proposed model offers advantages over some current models which are based upon the physical distance from the wall, that modify the constants of the standard model, or that make more corrections than are necessary to the governing equations. The code has been developed to solve the Favre averaged, boundary layer equations for mass, momentum, energy, turbulence kinetic energy, and dissipation of solenoidal dissipation using Keller's box scheme and the Newton spatial marching method. The code has been validated by removing the turbulent terms and comparing the solution with the Blasius solution, and by comparing the turbulent solution with an existing k-epsilon model code using wall function boundary conditions. Excellent agreement is seen between the computed solution and the Blasius solution, and between the two codes. The model has been tested for both subsonic and supersonic flat-plate turbulent boundary layer flow by comparing the computed skin friction with the Van Driest II theory and the experimental data of Weighardt; by comparing the transformed velocity profile with the data of Weighardt, and the Law of the Wall and the Law of the Wake; and by comparing the computed results

  2. On the determination of the position of laminar-turbulent transition in boundary layer by optical methods

    NASA Astrophysics Data System (ADS)

    Bountin, D. A.; Gromyko, Yu. V.; Maslov, A. A.; Polivanov, P. A.; Sidorenko, A. A.

    2015-11-01

    As a rule, aerodynamic studies at hypersonic flow velocities are carried out in short-duration wind-tunnel facilities. For such facilities, optical diagnostic methods are most preferable. In the present study, we give for the first time a comparison of two methods for determining the end of laminar-turbulent transition: from the distribution of heat fluxes and from schlieren visualization data for the boundary-layer flow. Parametric data on the position of the transition are obtained. These data can be used in the future as reference ones while calibrating semi-empirical calculation models for the transition.

  3. Thermal And Chemical Non-Equilibrium Effects In The Wake Of A Boundary-Layer Sized Object In Hypersonic Flows

    NASA Astrophysics Data System (ADS)

    Birrer, Marcel; Stemmer, Christian; Adams, Nikolaus N.

    2011-05-01

    Investigations of hypersonic boundary-layer flows around a cubical obstacle with a height in the order of half the boundary layer thickness were carried out in this work. Special interest was laid on the influence of chemical non-equilibrium effects on the wake flow of the obstacle. Direct numerical simulations were conducted using three different gas models, a caloric perfect, an equilibrium and a chemical non-equilibrium gas model. The geometry was chosen as a wedge with a six degree half angle, according to the aborted NASA HyBoLT free flight experiment. At 0.5 m downstream of the leading edge, a surface trip was positioned. The free-stream flow was set to Mach 8.5 with air conditions taken from the 1976 standard atmosphere at an altitude of 42 km according to the predicted flight path. The simulations were done in three steps for all models. First, two-dimensional calculations of the whole configuration including the leading edge and the obstacle were conducted. These provide constant span-wise profiles for detailed, steady three-dimensional simulations around the close vicinity of the obstacle. A free-stream Mach number of about 6.3 occurs behind the shock. A cross-section in the wake of the object then delivers the steady inflow for detailed unsteady simulations of the wake. Perturbations at unstable frequencies, obtained from a bi-global secondary stability analysis, were added to these profiles. The solutions are time-Fourier transformed to investigate the unsteady downstream development of the different modes due to the interaction with the base-flow containing two counter-rotating vortices. Results will be presented that show the influence of the presence of chemical non-equilibrium on the instability in the wake of the object leading to a laminar or a turbulent wake.

  4. Onset of turbulent mean dynamics in boundary layer flow

    NASA Astrophysics Data System (ADS)

    Hamman, Curtis; Sayadi, Taraneh; Moin, Parviz

    2012-11-01

    Statistical properties of turbulence in low Reynolds number boundary layers are compared. Certain properties are shown to approach an asymptotic state resembling higher Reynolds number flow much earlier during transition than previously thought. This incipient turbulence is less stochastic and more organized than developed turbulence farther downstream, but the mean dynamics and production mechanisms are remarkably similar. The onset of turbulence in our recent simulations is also similar to that observed in the bypass transition of Wu & Moin where continuous freestream turbulence, rather than small-amplitude linear waves, triggers transition. For these inflow disturbances, self-sustaining turbulence occurs rapidly after laminar flow breakdown without requiring a significant development length nor significant randomization. Slight disagreements with FST-induced bypass transition are observed that correlate with the extra strain a turbulent freestream would impose upon the near-wall dynamics. Nevertheless, the turbulence statistics are similar shortly after the skin-friction overshoot independent of upstream receptivity. This early onset of deterministic turbulence provides support for reduced-order modeling of turbulent boundary layers based on non-linear stability mechanisms.

  5. Turbulent Boundary Layer in High Rayleigh Number Convection in Air

    NASA Astrophysics Data System (ADS)

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-01

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra =1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re ≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  6. Turbulent boundary layer in high Rayleigh number convection in air.

    PubMed

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  7. Effects of Nose Bluntness on Hypersonic Boundary-Layer Receptivity and Stability Over Cones

    NASA Technical Reports Server (NTRS)

    Kara, Kursat; Balakumar, Ponnampalam; Kandil, Osama A.

    2011-01-01

    The receptivity to freestream acoustic disturbances and the stability properties of hypersonic boundary layers are numerically investigated for boundary-layer flows over a 5 straight cone at a freestream Mach number of 6.0. To compute the shock and the interaction of the shock with the instability waves, the Navier-Stokes equations in axisymmetric coordinates were solved. In the governing equations, inviscid and viscous flux vectors are discretized using a fifth-order accurate weighted-essentially-non-oscillatory scheme. A third-order accurate total-variation-diminishing Runge-Kutta scheme is employed for time integration. After the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. The appearance of instability waves near the nose region and the receptivity of the boundary layer with respect to slow mode acoustic waves are investigated. Computations confirm the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary-layer transition. The current solutions, compared with experimental observations and other computational results, exhibit good agreement.

  8. Effects of Nose Bluntness on Stability of Hypersonic Boundary Layers over Blunt Cone

    NASA Technical Reports Server (NTRS)

    Kara, K.; Balakumar, P.; Kandil, O. A.

    2007-01-01

    Receptivity and stability of hypersonic boundary layers are numerically investigated for boundary layer flows over a 5-degree straight cone at a free-stream Mach number of 6.0. To compute the shock and the interaction of shock with the instability waves, we solve the Navier-Stokes equations in axisymmetric coordinates. The governing equations are solved using the 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. After the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. Generation of instability waves from leading edge region and receptivity of boundary layer to slow acoustic waves are investigated. Computations are performed for a cone with nose radii of 0.001, 0.05 and 0.10 inches that give Reynolds numbers based on the nose radii ranging from 650 to 130,000. The linear stability results showed that the bluntness has a strong stabilizing effect on the stability of axisymmetric boundary layers. The transition Reynolds number for a cone with the nose Reynolds number of 65,000 is increased by a factor of 1.82 compared to that for a sharp cone. The receptivity coefficient for a sharp cone is about 4.23 and it is very small, approx.10(exp -3), for large bluntness.

  9. Spatial evolution of nonlinear acoustic mode instabilities on hypersonic boundary layers

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Wundrow, D. W.

    1990-01-01

    The effects are considered of strong critical layer nonlinearity on the spatial evolution of an initially linear acoustic mode instability wave on a hypersonic flat plate boundary layer. The analysis shows that nonlinearity, which is initially confined to a thin critical layer, first becomes important when the amplitude of the pressure fluctuations become O(1/M exp 4 in M exp 2), where M is the free stream Mach number. The flow outside the critical layer is still determined by linear dynamics and therefore takes the form of a linear instability wave, but with its amplitude completely determined by the flow within the critical layer. The latter flow is determined by a coupled set of nonlinear equations, which were solved numerically.

  10. Spatial evolution of nonlinear acoustic mode instabilities on hypersonic boundary layers

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Wundrow, D. W.

    1989-01-01

    The effects are considered of strong critical layer nonlinearity on the spatial evolution of an initially linear acoustic mode instability wave on a hypersonic flat plate boundary layer. The analysis shows that nonlinearity, which is initially confined to a thin critical layer, first becomes important when the amplitude of the pressure fluctuations become 0(1/M exp 4 In M exp 2), where M is the free stream Mach number. The flow outside the critical layer is still determined by linear dynamics and therefore takes the form of a linear instability wave, but with its amplitude completely determined by the flow within the critical layer. The latter flow is determined by a coupled set of nonlinear equations, which were solved numerically.

  11. Interaction between Shock Wave and Boundary Layer in Nonequilibrium Hypersonic Rarefied Flow

    NASA Astrophysics Data System (ADS)

    Tsuboi, Nobuyuki; Matsumoto, Yoichiro

    An experimental study of the interaction between a shock wave and a boundary layer over a flat plate with a sharp leading edge in hypersonic rarefied gas flow is presented. Experiments in a low-density wind tunnel using an electron beam probe were conducted at the Shock Wave Laboratory, RWTH Aachen, Germany. Rotational temperatures for stagnation temperatures of T0=670˜1000 K and Kn=0.024˜0.028 based on a reference length of 0.05m were calculated using Muntz’s method and Robben and Talbot’s method. The domain of quasi two-dimensional flow over the plate was determined from three-dimensional rotational temperature measurements. Nonequilibrium between translational and rotational temperatures was observed near the leading edge, and the experimental rotational relaxation length explains the rotational collision number of 2˜4.

  12. Numerical Simulation of a Spatially Evolving Supersonic Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Erlebacher, G.

    2002-01-01

    The results from direct numerical simulations of a spatially evolving, supersonic, flat-plate turbulent boundary-layer flow, with free-stream Mach number of 2.25 are presented. The simulated flow field extends from a transition region, initiated by wall suction and blowing near the inflow boundary, into the fully turbulent regime. Distributions of mean and turbulent flow quantities are obtained and an analysis of these quantities is performed at a downstream station corresponding to Re(sub x)= 5.548 x10(exp 6) based on distance from the leading edge.

  13. Calculation of compressible nonadiabatic boundary layers in laminar, transitional and turbulent flow by the method of integral relations

    NASA Technical Reports Server (NTRS)

    Kuhn, G. D.

    1971-01-01

    A computer program was developed to do the calculations for two-dimensional or axisymmetric configurations from low speeds to hypersonic speeds with arbitrary streamwise pressure, temperature, and Mach number distributions. Options are provided for obtaining initial conditions either from experimental information or from a theoretical similarity solution. The transition region can be described either by an arbitrary distribution of intermittency or by a function based on Emmons' probability theory. Correlations were developed for use in estimating the parameters of the theoretical intermittency function. Correlations obtained from other sources are used for estimating the transition point. Comparisons were made between calculated and measured boundary layer quantities for laminar, transitional, and turbulent flows on flat plates, cones, cone flares, and a waisted body of revolution. Excellent agreement was obtained between the present theory and two other theories based on the method of finite differences. The intermittency required to reproduce some experimental heat transfer results in hypersonic flow was found to be quite different from the theoretical function. It is suggested that the simple probability theory of Emmons may not be valid for representing the intermittency of hypersonic transitional boundary layers and that the program could be useful as a tool for detailed study of the intermittency of the transition region.

  14. The Boundary Layer Late Afternoon and Sunset Turbulence Project

    NASA Astrophysics Data System (ADS)

    Lothon, Marie; Lohou, Fabienne; Darbieu, Clara; Couvreux, Fleur; Pino, David; Blay, Estel; Vila-Guerau de Arellano, Jordi; Pietersen, Henk; Hartogensis, Oscar; Pardyjak, Eric; Alexander, Daniel; Reuder, Joachim; Baaserud, Line; Nilsson, Erik; Jimenez, Maria Antonia; Faloona, Ian; Sastre-Marugan, Mariano; Angevine, Wayne M.; Canut, Guylaine; Bazile, Eric

    2014-05-01

    The BLLAST (Boundary Layer Late Afternoon and Sunset Turbulence) project aims at better understanding the turbulence processes which occur during the transition from a well-mixed convective boundary layer to a residual layer overlying a stabilized nocturnal layer. This phase of the diurnal cycle is challenging from both modeling and observational perspectives: it is transitory, most of the forcings are small or null during the transition and the turbulence regime changes from the fully convective regime of turbulence, close to homogeneous and isotropic, toward more heterogeneous and intermittent turbulence during its decay. Those issues motivated a field campaign that was conducted from 14 June to 8 July 2011 in southern France in complex terrain and consisted of a range of integrated instrument platforms including: full-size aircraft, Remotely Piloted Airplane Systems (RPAS), remote sensing instruments, radiosoundings, tethered balloons, surface flux stations, and various meteorological towers deployed over different surface covers. The boundary layer, from the earth's surface to free troposphere was densely probed during the entire day, with a focus and intense observations from midday until sunset. The field dataset now forms the base of a set of studies utilizing the observations and several types of models including: Large Eddy Simulation, Mesoscale models, forecast models. The presentation will expose an overview of this experiment and of the current observational and modeling studies, with the focus on: the turbulence decay process within the entire boundary layer from surface to the top, the mesoscale forcings of importance during BLLAST, the ability of the forecast models to represent the diurnal cycle, the relevance of the Monin Obukhov similarity theory, and shallow drainage flows. Reference: Lothon M. et al., 2012. The Boundary-Layer Late Afternoon and Sunset Turbulence field experiment, Proc. of the 20th Symposium on Boundary-Layers and Turbulence, 7

  15. Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances (Invited)

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2015-01-01

    Boundary-layer receptivity to two-dimensional acoustic and vortical disturbances for hypersonic flows over two-dimensional and axi-symmetric geometries were numerically investigated. The role of bluntness, wall cooling, and pressure gradients on the receptivity and stability were analyzed and compared with the sharp nose cases. It was found that for flows over sharp nose geometries in adiabatic wall conditions the instability waves are generated in the leading-edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. The computations confirmed the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary layer transition. The receptivity coefficients in flows over blunt bodies are orders of magnitude smaller than that for the sharp cone cases. Wall cooling stabilizes the first mode strongly and destabilizes the second mode. However, the receptivity coefficients are also much smaller compared to the adiabatic case. The adverse pressure gradients increased the unstable second mode regions.

  16. Total temperature probes for high-temperature hypersonic boundary-layer measurements

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Bauserman, Willard A., Jr.

    1993-01-01

    The design and test results of two types of total temperature probes that were used for hypersonic boundary-layer measurements are presented. The intent of each design was to minimize the total error and to maintain minimal size for measurements in boundary layers 1.0 in. thick and less. A single platinum-20-percent-rhodium shield was used in both designs to minimize radiation heat transfer losses during exposure to the high-temperature test stream. The shield of the smaller design was flattened at the flow entrance to an interior height of 0.02 in., compared with 0.03 in. for the larger design. The resulting vent-to-inlet area ratios were 60 and 50 percent. A stainless steel structural support sleeve that was used in the larger design was excluded from the smaller design, which resulted in an outer diameter of 0.059 in., to allow closer placement of the probes to each other and to the wall. These small design changes to improve resolution did not affect probe performance. Tests were conducted at boundary-layer-edge Mach numbers of 5.0 and 6.2. The nominal free-stream total temperatures were 2600 degrees and 3200 degrees R. The probes demonstrated extremely good reliability. The best performance in terms of recovery factor occurred when the wire-based Nusselt number was at least 0.04. Recommendations for future probe designs are included.

  17. PLIF Visualization of Active Control of Hypersonic Boundary Layers Using Blowing

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Inman, Jennifer A.; Alderfer, David W.; Berry, Scott A.

    2008-01-01

    Planar laser-induced fluorescence (PLIF) imaging was used to visualize the boundary layer flow on a 1/3-scale Hyper-X forebody model. The boundary layer was perturbed by blowing out of orifices normal to the model surface. Two blowing orifice configurations were used: a spanwise row of 17-holes spaced at 1/8 inch, with diameters of 0.020 inches and a single-hole orifice with a diameter of 0.010 inches. The purpose of the study was to visualize and identify laminar and turbulent structures in the boundary layer and to make comparisons with previous phosphor thermography measurements of surface heating. Jet penetration and its influence on the boundary layer development was also examined as was the effect of a compression corner on downstream boundary layer transition. Based upon the acquired PLIF images, it was determined that global surface heating measurements obtained using the phosphor thermography technique provide an incomplete indicator of transitional and turbulent behavior of the corresponding boundary layer flow. Additionally, the PLIF images show a significant contribution towards transition from instabilities originating from the underexpanded jets. For this experiment, a nitric oxide/nitrogen mixture was seeded through the orifices, with nitric oxide (NO) serving as the fluorescing gas. The experiment was performed in the 31-inch Mach 10 Air Tunnel at NASA Langley Research Center.

  18. Investigations on the turbulent wake of a generic space launcher geometry in the hypersonic flow regime

    NASA Astrophysics Data System (ADS)

    Saile, D.; Gülhan, A.; Henckels, A.; Glatzer, C.; Statnikov, V.; Meinke, M.

    2013-06-01

    The turbulent wake flow of generic rocket configurations is investigated experimentally and numerically at a freestream Mach number of 6.0 and a unit Reynolds number of 10·106 m-1. The flow condition is based on the trajectory of Ariane V-like launcher at an altitude of 50 km, which is used as the baseline to address the overarching tasks of wake flows in the hypersonic regime like fluid-structural coupling, reverse hot jets and base heating. Experimental results using pressure transducers and the high-speed Schlieren measurement technique are shown to gain insight into the local pressure fluctuations on the base and the oscillations of the recompression shock. This experimental configuration features a wedgeprofiled strut orthogonally mounted to the main body. Additionally, the influence of cylindrical dummy nozzles attached to the base of the rocket is investigated, which is the link to the numerical investigations. Here, the axisymmetric model possesses a cylindrical sting support of the same diameter as the dummy nozzles. The sting support allows investigations for an undisturbed wake flow. A time-accurate zonal Reynolds-Averaged Navier-Stokes/Large Eddy Simulation (RANS/LES) approach is applied to identify shocks, expansion waves, and the highly unsteady recompression region numerically. Subsequently, experimental and numerical results in the strut-averted region are compared with regard to the wall pressure and recompression shock frequency spectra. For the compared configurations, experimental pressure spectra exhibit dominant Strouhal numbers at about SrD = 0.03 and 0.27, and the recompression shock oscillates at 0.2. In general, the pressure and recompression shock fluctuations numerically calculated agree reasonably with the experimental results. The experiments with a blunt base reveal base-pressure spectra with dominant Strouhal numbers at 0.08 at the center position and 0.145, 0.21-0.22, and 0.31-0.33 at the outskirts of the base.

  19. Complex dynamics of a boundary layer with free stream turbulence

    NASA Astrophysics Data System (ADS)

    Sharp, Nicole; Neuscamman, Stephanie; Warhaft, Zellman

    2008-11-01

    Boundary layers in nature and in engineering applications often occur with turbulent free streams above them. Previous work by Hancock and Bradshaw (JFM, 205, 1989), Thole and Bogard (J. Fluids Eng., 118, 1996), and others has shown that free stream turbulence affects the statistics of a boundary layer significantly. In the present wind tunnel study using hot wire anemometry, a flat plate generates a boundary layer that is subjected to a variety of free stream turbulence conditions using active and passive grids. The free stream varies in turbulence intensity from 0.25% to 11% and in free stream turbulent Taylor- scale Reynolds number from 20 to 550. The ratio of the free stream length scale to the boundary layer thickness is also varied. Spectral data reveal a double-peaked energy spectrum, indicating the interaction of two different, major length scales. The double peak develops as the plate is approached from the free stream, and, though the feature is most pronounced at higher free stream Reynolds numbers, it is also evident at very low free stream turbulence intensities. This work was supported by the US NSF.

  20. Laminarization of Turbulent Boundary Layer on Flexible and Rigid Surfaces

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2001-01-01

    An investigation of the control of turbulent boundary layer flow over flexible and rigid surfaces downstream of a concave-convex geometry has been made. The concave-convex curvature induces centrifugal forces and a pressure gradient on the growth of the turbulent boundary layer. The favorable gradient is not sufficient to overcome the unfavorable; thus, the net effect is a destabilizing, of the flow into Gortler instabilities. This study shows that control of the turbulent boundary layer and structural loading can be successfully achieved by using localized surface heating because the subsequent cooling and geometrical shaping downstream over a favorable pressure gradient is effective in laminarization of the turbulence. Wires embedded in a thermally insulated substrate provide surface heating. The laminarized velocity profile adjusts to a lower Reynolds number, and the structure responds to a lower loading. In the laminarization, the turbulent energy is dissipated by molecular transport by both viscous and conductivity mechanisms. Laminarization reduces spanwise vorticity because of the longitudinal cooling gradient of the sublayer profile. The results demonstrate that the curvature-induced mean pressure gradient enhances the receptivity of the flow to localized surface heating, a potentially viable mechanism to laminarize turbulent boundary layer flow; thus, the flow reduces the response of the flexible structure and the resultant sound radiation.

  1. The Effects of Free-Stream Turbulence on the Turbulence Structure and Heat Transfer in Zero Pressure Gradient Boundary Layers.

    DTIC Science & Technology

    1982-11-01

    detailed boundary layer turbulence measurements were: (1) to provide data to which current finite - difference boundary layer turbulence mcdels could be...capability of a finite difference boundary layer computer program, ABLE (Analysis of the Boundary Layer Equations) for predicting the effect of free...measurements were: (1) to provide data to which current finite - difference boundary layer turbulence models could be compared, and (2) to generate a

  2. Analysis of Instabilities in Non-Axisymmetric Hypersonic Boundary Layers Over Cones

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; White, Jeffery A.

    2010-01-01

    Hypersonic flows over circular cones constitute one of the most important generic configurations for fundamental aerodynamic and aerothermodynamic studies. In this paper, numerical computations are carried out for Mach 6 flows over a 7-degree half-angle cone with two different flow incidence angles and a compression cone with a large concave curvature. Instability wave and transition-related flow physics are investigated using a series of advanced stability methods ranging from conventional linear stability theory (LST) and a higher-fidelity linear and nonlinear parabolized stability equations (PSE), to the 2D eigenvalue analysis based on partial differential equations. Computed N factor distribution pertinent to various instability mechanisms over the cone surface provides initial assessments of possible transition fronts and a guide to corresponding disturbance characteristics such as frequency and azimuthal wave numbers. It is also shown that strong secondary instability that eventually leads to transition to turbulence can be simulated very efficiently using a combination of advanced stability methods described above.

  3. Dispersed phase effects on boundary layer turbulence

    NASA Astrophysics Data System (ADS)

    Richter, David; Helgans, Brian

    2016-11-01

    In natural and environmental settings, turbulence is often seeded with some sort of dispersed phase: dust, rain, snow, sediment, etc. Depending on the circumstances, elements of the dispersed phase can participate in both dynamic and thermodynamic coupling, thereby altering the turbulent transfer of heat, moisture, and momentum through several complex avenues. In this study, evaporating droplets are two-way coupled to turbulent wall-bounded flow via direct numerical simulation (DNS) and Lagrangian point particle tracking, and we are specifically interested in the wall-normal transport of momentum, heat, and moisture. Our studies show that particles can carry significant portions of all three, and that this is a strong function of the particle Stokes number. These findings are interpreted in the context of environmental flows and the practical implications will be discussed. The authors acknowledge the National Science Foundation for funding under Grant #AGS-1429921.

  4. A review of unsteady turbulent boundary-layer experiments

    NASA Technical Reports Server (NTRS)

    Carr, L. W.

    1981-01-01

    The essential results of a comprehensive review of existing unsteady turbulent boundary-layer experiments are presented. Different types of unsteady flow facilities are described, and the related unsteady turbulent boundary-layer experiments are cataloged and discussed. The measurements that were obtained in the various experiments are described, and a complete list of experimental results is presented. All the experiments that measured instantaneous values of velocity, turbulence intensity, or turbulent shear stress are identified, and the availability of digital data is indicated. The results of the experiments are analyzed, and several significant trends are identified. An assessment of the available data is presented, delineating gaps in the existing data, and indicating where new or extended information is needed. Guidelines for future experiments are included.

  5. LAMINAR TRANSITIONAL AND TURBULENT BOUNDARY LAYERS FOR COMPRESSIBLE AXISYMMETRIC FLOW

    NASA Technical Reports Server (NTRS)

    Albers, J. A.

    1994-01-01

    This is a finite-difference program for calculating the viscous compressible boundary layer flow over either planar or axisymmetric surfaces. The flow may be initially laminar and progress through a transitional zone to a fully turbulent flow, or it may remain laminar, depending on the imposed boundary conditions, laws of viscosity, and numerical solution of the momentum and energy equations. The flow may also be forced into a turbulent flow at a chosen spot by the data input. The input may contain factors of arbitrary Reynolds number, free-stream Mach number, free stream turbulence, wall heating or cooling, longitudinal wall curvature, wall suction or blowing, and wall roughness. The solution may start from an initial Falkner-Skan similarity profile, an approximate equilibrium turbulent profile, or an initial arbitrary input profile. This program has been implemented on the IBM 7094/7044 Direct Couple System. This program is written in FORTRAN IV and was developed in 1974.

  6. Turbulence structures in a strongly decelerated boundary layer

    NASA Astrophysics Data System (ADS)

    Gungor, Ayse G.; Maciel, Yvan; Simens, Mark P.

    2014-11-01

    The characteristics of three-dimensional intense Reynolds shear stress structures (Qs) are presented from a direct numerical simulation of an adverse pressure gradient boundary layer at Reθ = 1500 -2175. The intense Q2 (ejections) and Q4 (sweeps) structures separate into two groups: wall-attached and wall-detached structures. In the region where turbulent activity is maximal, between 0 . 2 δ and 0 . 6 δ , 94 % of the structures are detached structures. In comparison to canonical wall flows, the large velocity defect turbulent boundary layers are less efficient in extracting turbulent energy from the mean flow. There is, furthermore, much less turbulence activity and less velocity coherence near the wall. Additionally, the wall-detached structures are more frequent and carry a much larger amount of Reynolds shear stress. Funded in part by ITU, NSERC of Canada, and Multiflow program of the ERC.

  7. LAMINAR TRANSITIONAL AND TURBULENT BOUNDARY LAYERS FOR COMPRESSIBLE AXISYMMETRIC FLOW

    NASA Technical Reports Server (NTRS)

    Albers, J. A.

    1994-01-01

    This is a finite-difference program for calculating the viscous compressible boundary layer flow over either planar or axisymmetric surfaces. The flow may be initially laminar and progress through a transitional zone to a fully turbulent flow, or it may remain laminar, depending on the imposed boundary conditions, laws of viscosity, and numerical solution of the momentum and energy equations. The flow may also be forced into a turbulent flow at a chosen spot by the data input. The input may contain factors of arbitrary Reynolds number, free-stream Mach number, free stream turbulence, wall heating or cooling, longitudinal wall curvature, wall suction or blowing, and wall roughness. The solution may start from an initial Falkner-Skan similarity profile, an approximate equilibrium turbulent profile, or an initial arbitrary input profile. This program has been implemented on the IBM 7094/7044 Direct Couple System. This program is written in FORTRAN IV and was developed in 1974.

  8. A Review of Unsteady Turbulent Boundary-Layer Experiments.

    DTIC Science & Technology

    1981-06-01

    thickness. A good example of this phenomenon is shown in Fig. 17, from Houdeville et al. (1976). Here the adverse pressure gradient has combined with...e) When existing data are plotted using the dimensionless frequency, S , quasisteady results occur for only a small range of amplitude or frequency...Houdeville, R.; Raynaud , M.: Oscillating turbulent boundary layer with strong mean pressure gradient. Presented at 2nd Symposium on Turbulent Shear

  9. Trip-Induced Transition Measurements in a Hypersonic Boundary Layer Using Molecular Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Jones, Stephen B.; Johansen, Craig T.; Goyne, Christopher P.

    2013-01-01

    Measurements of mean streamwise velocity, fluctuating streamwise velocity, and instantaneous streamwise velocity profiles in a hypersonic boundary layer were obtained over a 10-degree half-angle wedge model. A laser-induced fluorescence-based molecular tagging velocimetry technique was used to make the measurements. The nominal edge Mach number was 4.2. Velocity profiles were measured both in an untripped boundary layer and in the wake of a 4-mm diameter cylindrical tripping element centered 75.4 mm downstream of the sharp leading edge. Three different trip heights were investigated: k = 0.53 mm, k = 1.0 mm and k = 2.0 mm. The laminar boundary layer thickness at the position of the measurements was approximately 1 mm, though the exact thickness was dependent on Reynolds number and wall temperature. All of the measurements were made starting from a streamwise location approximately 18 mm downstream of the tripping element. This measurement region continued approximately 30 mm in the streamwise direction. Additionally, measurements were made at several spanwise locations. An analysis of flow features show how the magnitude, spatial location, and spatial growth of streamwise velocity instabilities are affected by parameters such as the ratio of trip height to boundary layer thickness and roughness Reynolds number. The fluctuating component of streamwise velocity measured along the centerline of the model increased from approximately 75 m/s with no trip to +/-225 m/s with a 0.53-mm trip, and to +/-240 m/s with a 1-mm trip, while holding the freestream Reynolds number constant. These measurements were performed in the 31-inch Mach 10 Air Tunnel at the NASA Langley Research Center.

  10. Assessment of One- and Two-Equation Turbulence Models for Hypersonic Transitional Flows

    SciTech Connect

    ROY,CHRISTOPHER J.; BLOTTNER,FREDERICK G.

    2000-01-14

    Many Navier-Stokes codes require that the governing equations be written in conservation form with a source term. The Spalart-Allmaras one-equation model was originally developed in substantial derivative form and when rewritten in conservation form, a density gradient term appears in the source term. This density gradient term causes numerical problems and has a small influence on the numerical predictions. Further work has been performed to understand and to justify the neglect of this term. The transition trip term has been included in the one-equation eddy viscosity model of Spalart-Allmaras. Several problems with this model have been discovered when applied to high-speed flows. For the Mach 8 flat plate boundary layer flow with the standard transition method, the Baldwin-Barth and both k-{omega} models gave transition at the specified location. The Spalart-Allmaras and low Reynolds number k-{var_epsilon} models required an increase in the freestream turbulence levels in order to give transition at the desired location. All models predicted the correct skin friction levels in both the laminar and turbulent flow regions. For Mach 8 flat plate case, the transition location could not be controlled with the trip terms as given in the Spalart-Allmaras model. Several other approaches have been investigated to allow the specification of the transition location. The approach that appears most appropriate is to vary the coefficient that multiplies the turbulent production term in the governing partial differential equation for the eddy viscosity (Method 2). When this coefficient is zero, the flow remains laminar. The coefficient is increased to its normal value over a specified distance to crudely model the transition region and obtain fully turbulent flow. While this approach provides a reasonable interim solution, a separate effort should be initiated to address the proper transition procedure associated with the turbulent production term. Also, the transition process

  11. Markovian properties of velocity increments in boundary layer turbulence

    NASA Astrophysics Data System (ADS)

    Tutkun, Murat

    2017-08-01

    Markovian properties of the turbulent velocity increments in a flat plate boundary layer at Reθ of 19100 are investigated using hot-wire anemometry measurements of the streamwise velocity component in a wind tunnel. Increments of the longitudinal velocities at different wall-normal positions show that the flow exhibits Markovian properties when the separation between different scales, or the Markov-Einstein coherence length, is on the order of the Taylor microscale, λ. The results indicate that Markovian nature of turbulence evolves across the boundary layer showing certain characteristics pertaining to the distance to the wall. The connection between the Markovian properties of turbulent boundary layer and existence of the spectral gap is explored. Markovianity of the process is also discussed in relation to the nonlocal nonlinear versus local nonlinear transfer of energy, triadic interactions and dissipation.

  12. Simple turbulence models and their application to boundary layer separation

    NASA Technical Reports Server (NTRS)

    Wadcock, A. J.

    1980-01-01

    Measurements in the boundary layer and wake of a stalled airfoil are presented in two coordinate systems, one aligned with the airfoil chord, the other being conventional boundary layer coordinates. The NACA 4412 airfoil is studied at a single angle of attack corresponding to maximum lift, the Reynolds number based on chord being 1.5 x 10 to the 6th power. Turbulent boundary layer separation occurred at the 85 percent chord position. The two-dimensionality of the flow was documented and the momentum integral equation studied to illustrate the importance of turbulence contributions as separation is approached. The assumptions of simple eddy-viscosity and mixing-length turbulence models are checked directly against experiment. Curvature effects are found to be important as separation is approached.

  13. Combustion-turbulence interaction in the turbulent boundary layer over a hot surface

    SciTech Connect

    Ng, T.T.; Cheng, R.K.; Robben, F.; Talbot, L.

    1982-01-01

    The turbulence-combustion interaction in a reacting turbulent boundary layer over a heated flat plate was studied. Ethylene/air mixture with equivalence ratio of 0.35 was used. The free stream velocity was 10.5 m/s and the wall temperature was 1250/sup 0/K. Combustion structures visualization was provided by high-speed schlieren photographs. Fluid density statistics were deduced from Rayleigh scattering intensity measurements. A single-component laser Doppler velocimetry system was used to obtain mean and root-mean-square velocity distributions, the Reynolds stress, the streamwise and the cross-stream turbulent kinetic energy diffusion, and the production of turbulent kinetic energy by Reynolds stress. The combustion process was dominated by large-scale turbulent structures of the boundary layer. Combustion causes expansion of the boundary layer. No overall self-similarity is observed in either the velocity or the density profiles. Velocity fluctuations were increased in part of the boundary layer and the Reynolds stress was reduced. The turbulent kinetic energy diffusion pattern was changed significantly and a modification of the boundary layer assumption will be needed when dealing with this problem analytically. 11 figures, 1 table.

  14. Turbulence studies in Tokamak boundary plasmas with realistic divertor geometry

    SciTech Connect

    Xu, X.Q.

    1998-10-14

    Results are presented from the 3D nonlocal electromagnetic turbulence code BOUT [1] and the linearized shooting code BAL[2] to study turbulence in tokamak boundary plasmas and its relationship to the L-H transition, in a realistic divertor plasma geometry. The key results include: (1) the identification of the dominant, resistive X-point mode in divertor geometry and (2) turbulence suppression in the L-H transition by shear in the ExB drift speed, ion diamagnetism and finite polarization. Based on the simulation results, a parameterization of the transport is given that includes the dependence on the relevant physical parameters.

  15. Hot wire anemometry in compressible turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    1981-11-01

    Hot-wire anemometry in compressible flow was studied. New techniques for the measurement of turbulence in compressible flows with thermal sensors are described. The greatest amount of information about fluctuating flow variables as achieved using the newly developed sensors and techniques in conjunction with the classical hot-wire mode diagram method. It was found that the hot wire has no fundamental handicap for accurate high speed turbulence measurements in non-separated boundary layers outside the immediate wall region. It was also known that extreme overheating of a supported sensors leads to advantages in simplicity and accuracy of measurements of turbulent fluctuations over the full Mach number range.

  16. Turbulent oceanic western-boundary layers at low latitude

    NASA Astrophysics Data System (ADS)

    Quam Cyrille Akuetevi, Cataria; Wirth, Achim

    2013-04-01

    Low latitude oceanic western-boundary layers range within the most turbulent regions in the worlds ocean. The Somali current system with the Great Whirl and the Brazilian current system with its eddy shedding are the most prominent examples. Results from analytical calculations and integration of a one layer reduced-gravity fine resolution shallow water model is used to entangle this turbulent dynamics. Two types of wind-forcing are applied: a remote Trade wind forcing with maximum shear along the equator and a local Monsoon wind forcing with maximum shear in the vicinity of the boundary. For high values of the viscosity (> 1000m2s-1) the stationary solutions compare well to analytical predictions using Munk and inertial layer theory. When lowering the friction parameter time dependence results. The onset of instability is strongly influenced by inertial effects. The unstable boundary current proceeds as a succession of anti-cyclonic coherent eddies performing a chaotic dynamics in a turbulent flow. The dynamics is governed by the turbulent fluxes of mass and momentum. We determine these fluxes by analyzing the (potential) vorticity dynamics. We demonstrate that the boundary-layer can be separated in four sub-layers, which are (starting from the boundary): (1) the viscous sub-layer (2) the turbulent buffer-layer (3) the layer containing the coherent structures and (4) the extended boundary layer. The characteristics of each sub-layer and the corresponding turbulent fluxes are determined, as are the dependence on latitude and the type of forcing. A new pragmatic method of determining the eddy viscosity, based on Munk-layer theory, is proposed. Results are compared to observations and solutions of the multi-level primitive equation model (DRAKKAR).

  17. Transitional–turbulent spots and turbulent–turbulent spots in boundary layers

    PubMed Central

    Wu, Xiaohua; Moin, Parviz; Wallace, James M.; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre

    2017-01-01

    Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional–turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a Λ vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional–turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional–turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional–turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent–turbulent spots. These turbulent–turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional–turbulent spots, these turbulent–turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent–turbulent spots. PMID:28630304

  18. Numerical Study of Hypersonic Boundary-Layer Receptivity and Stability with Freestream Hotspot Perturbations

    NASA Astrophysics Data System (ADS)

    Huang, Yuet

    This dissertation presents a numerical simulation study of linear hypersonic boundary-layer receptivity and stability over blunt compression cones with freestream hotspot perturbations. This study is conducted for freestream disturbances with broad, continuous frequency spectra over cones that have nose radii of 1, 0.5 and 0.1 mm under freestream conditions of Mach 6, 10 and 15. The simulations are carried out using the high-order shock-fitting finite-difference scheme developed by Zhong (1998), the results of which are shown to agree well with linear stability theory (LST) and experiments. The general receptivity mechanism is then studied by the simulation-LST comparisons under two parametric effects: nose bluntness and freestream Mach number. Among the new findings of the current study, the mechanisms of the receptivity process are found to be mainly caused by the fast acoustic waves that are generated behind the bow shock from the hotspot/shock interaction in the nose region. It is these fast acoustic waves that substantially enter the boundary layer and generate mode F through the synchronization of fast acoustic waves and mode F in the upstream part of the cone. Subsequently, the synchronization of modes F and S generates mode S, or the second mode, which eventually grows into a dominant level at the downstream part of the cone. Additionally, we have obtained the receptivity coefficients of mode S along the Branch-I neutral stability curve using a method that combines LST predicted N-factors and simulated disturbance amplitudes. These receptivity coefficients agree well with those obtained from the theoretical modal decomposition method. In addition to obtaining the general receptivity mechanism and receptivity coefficients, we have also studied the parametric effects of nose bluntness and freestream Mach number on boundary-layer receptivity and stability over cones. Specifically, our results have shown that nose bluntness reduces the boundary

  19. Turbulent boundary layer on perforated surfaces with vector injection

    NASA Astrophysics Data System (ADS)

    Eroshenko, V. M.; Zaichik, L. I.; Klimov, A. A.; Ianovskii, L. S.; Kondratev, V. I.

    1980-10-01

    The paper presents an experimental investigation of a turbulent boundary layer on perforated plates with uniform vector injection at various angles to gas flow. It was shown that with strong injection at angles oriented in the flow direction the intensity of turbulent pulsation is decreased, while injection at angles in the opposite direction increase the intensity. A relationship was established between the critical parameters of the boundary layer injection angles; it was concluded that the asymptotic theory of Kutateladze and Leontiev can be used for determining the coefficient of friction of vector injection.

  20. Variation of turbulence in a coastal thermal internal boundary layer

    SciTech Connect

    SethuRaman, S.; Raynor, G.S.; Brown, R.M.

    1981-01-01

    Internal boundary layers (IBL) form when an air mass encounters a change in surface characteristics. There are essentially two types of internal boundary layers - one caused by the change in surface roughness and the other by the variation in surface heating. The former is known as the aerodynamic internal boundary layer (AIBL) and the latter the thermal internal boundary layer (TIBL). Change in shear stress generally characterizes the AIBL and change in turbulence the TIBL. Results of some observations of the vertical component of turbulence made in a coastal TIBL over Long Island, New York from 1974 to 1978 are reported. Vertical turbulence measured by a simple sail plane variometer in a thermal internal boundary layer over Long Island with onshore flows indicates the structure to depend significantly on the land-water temperature difference. The position of the vertical velocity fluctuation maximum seems to vary from one test to another but its variation could not be correlated to other parameters due to lack of a sufficient number of tests. The structure of vertical turbulence was found to be different for sea breeze flows as compared to gradient winds.

  1. An experimental investigation of turbulent boundary layers along curved surfaces

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Mellor, G. L.

    1972-01-01

    A curved wall tunnel was designed, and an equilibrium turbulent boundary layer was set up on the straight section preceding the curved test section. Turbulent boundary layer flows with uniform and adverse pressure distributions along convex and concave walls were investigated. Hot-wire measurements along the convex surface indicated that turbulent mixing between fluid layers was very much reduced. However, the law of the wall held and the skin friction, thus determined, correlated well with other measurements. Hot-wire measurements along the concave test wall revealed a system of longitudinal vortices inside the boundary layer and confirmed that concave curvature enhances mixing. A self-consistent set of turbulent boundary layer equations for flows along curved surfaces was derived together with a modified eddy viscosity. Solution of these equations together with the modified eddy viscosity gave results that correlated well with the present data on flows along the convex surface with arbitrary pressure distribution. However, it could only be used to predict the mean characteristics of the flow along concave walls because of the existence of the system of longitudinal vortices inside the boundary layer.

  2. Finite-Difference Solution for Laminar or Turbulent Boundary Layer Flow over Axisymmetric Bodies with Ideal Gas, CF4, or Equilibrium Air Chemistry

    NASA Technical Reports Server (NTRS)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-01-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  3. Interacting turbulent boundary layer over a wavy wall

    NASA Technical Reports Server (NTRS)

    Polak, A.; Werle, M. J.

    1977-01-01

    The two dimensional supersonic flow of a thick turbulent boundary layer over a train of relatively small wave-like protuberances is considered. The flow conditions and the geometry are such that there exists a strong interaction between the viscous and inviscid flow. The problem cannot be solved without inclusion of interaction effects due to the occurrence of the separation singularity in classical boundary layer methods. The interacting boundary layer equations are solved numerically using a time-like relaxation method with turbulence effects represented by the inclusion of the eddy viscosity model. Results are presented for flow over a train of up to six waves for Mach numbers of 10 and 32 million/meter, and wall temperature rations (T sub w/T sub 0) of 0.4 and 0.8. Limited comparisons with independent experimental and analytical results are also given. Detailed results on the influence of small protuberances on surface heating by boundary layers are presented.

  4. Acoustic sources in the low Mach number turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.

    1991-01-01

    The sources of sound production in a low Mach number turbulent boundary layer are examined. The sources are shown to be quadrupole in nature and to result from supersonically convecting wave-number components of the fluctuating Reynolds' normal stresses. The primary Tollmien-Schlichting instability of the boundary layer is found to radiate no sound. Analysis of various vortical phenomena suggests that the primary source is the process of formation of horseshoe vortices, with viscous sublayer bursts a possible secondary source.

  5. Separating and turbulent boundary layer calculations using polynomial interpretation

    NASA Technical Reports Server (NTRS)

    Rubin, S. G.; Rivera, S.

    1977-01-01

    Higher order numerical methods derived from polynomial spline interpolation or Hermitian differencing are applied to a separating laminar boundary layer, i.e., the Howarth problem, and the turbulent flat plate boundary layer flow. Preliminary results are presented. It is found that accuracy equal to that of conventional second order accurate finite difference methods is achieved with many fewer mesh points and with reduced computer storage and time requirements.

  6. Numerical study of secondary separation in glancing shock/turbulent boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Panaras, Argyris G.; Stanewsky, Egon

    1992-07-01

    Experimentally it has been found that in moderate strength glancing shock/turbulent boundary layer interactions, as they occur, e.g., in supersonic and hypersonic intakes, a secondary separation line appears in the surface flow pattern. In the present paper, a flow of this type, studied at the Pennsylvania State University, is simulated numerically. It is shown that if the turbulence model of Baldwin and Lomax is applied according to the physics of the flow, the resulting solution agrees very well with the experimental evidence (wall pressure, skin friction, flow angle). Then, post-processing of the solution reveals that in this type of interaction the secondary separation phenomenon is similar to that observed in flows around bodies at high incidence. Furthermore, it has been found that the secondary separation adversely affects the conical nature of the flow. The dynamic characteristics of the conical vortex which are known to appear in these types of flow change in such a way that the various flow parameters exhibit a variation along conical rays in the region of the conical vortex, instead of remaining constant, a requirement for a purely conical flow.

  7. Anisotropic Mesh Adaptivity for Turbulent Flows with Boundary Layers

    NASA Astrophysics Data System (ADS)

    Chitale, Kedar C.

    Turbulent flows are found everywhere in nature and are studied, analyzed and simulated using various experimental and numerical tools. For computational analysis, a variety of turbulence models are available and the accuracy of these models in capturing the phenomenon depends largely on the mesh spacings, especially near the walls, in the boundary layer region. Special semi-structured meshes called "mesh boundary layers" are widely used in the CFD community in simulations of turbulent flows, because of their graded and orthogonal layered structure. They provide an efficient way to achieve very fine and highly anisotropic mesh spacings without introducing poorly shaped elements. Since usually the required mesh spacings to accurately resolve the flow are not known a priori to the simulations, an adaptive approach based on a posteriori error indicators is used to achieve an appropriate mesh. In this study, we apply the adaptive meshing techniques to turbulent flows with a focus on boundary layers. We construct a framework to calculate the critical wall normal mesh spacings inside the boundary layers based on the flow physics and the knowledge of the turbulence model. This approach is combined with numerical error indicators to adapt the entire flow region. We illustrate the effectiveness of this hybrid approach by applying it to three aerodynamic flows and studying their superior performance in capturing the flow structures in detail. We also demonstrate the capabilities of the current developments in parallel boundary layer mesh adaptation by applying them to two internal flow problems. We also study the application of adaptive boundary layer meshes to complex geometries like multi element wings. We highlight the advantage of using such techniques for superior wake and tip region resolution by showcasing flow results. We also outline the future direction for the adaptive meshing techniques to be useful to the large scale flow computations.

  8. Stability of Hypersonic Boundary Layers on a Cone at an Angle of Attack

    NASA Technical Reports Server (NTRS)

    Balakumar, P.; Owens, Lewis R.

    2010-01-01

    The stability and receptivity of a three-dimensional hypersonic boundary layer over a 7deg half-angle straight cone at an angle of attack of 6deg is numerically investigated at a freestream Mach number of 6.0 and a Reynolds number of 10.4x10(exp 6)/m. The generation and evolution of stationary crossflow vortices are also investigated by performing simulations with three-dimensional roughness elements located on the surface of the cone. The flow fields with and without the roughness elements are obtained by solving the full Navier- Stokes equations in cylindrical coordinates using a fifth-order accurate weighted essentially non-oscillatory (WENO) scheme for spatial discretization and a third-order total-variation-diminishing (TVD) Runge-Kutta scheme for temporal integration. Stability computations produced azimuthal wavenumbers in the range of m approx. 20-50 for the most amplified traveling disturbances and in the range of m approx.30-70 for the stationary disturbances. The frequency of the unstable second-mode ranges from 400 kHz to 900 kHz along the windward ray. The N-Factor computations predicted transition would occur more forward on the sides of the cone as compared to the transition fronts near the windward and the leeward rays. The simulations also show the crossflow vortices originating from the nose region propagate towards the leeward ray. No perturbations were observed toward the windward half of the cone.

  9. Excitation of the lowest CO2 vibrational states by electrons in hypersonic boundary layers

    NASA Astrophysics Data System (ADS)

    Armenise, I.

    2017-07-01

    The state-to-state vibrational kinetics of a CO2/O2/CO/C/O/e- mixture in a hypersonic boundary layer under conditions compatible with the Mars re-entry is studied. The model adopted treats three CO2 modes (the two degenerated bending modes are approximated as a unique one) as not independent ones. Vibrational-translational transitions in the bending mode, inter-mode exchanges within CO2 molecule and between molecules of different chemical species as well as dissociation-recombination reactions are considered. Attention is paid to the electron-CO2 collisions that cause transitions from the ground vibrational state, CO2(0,0,0), to the first excited ones, CO2(1,0,0), CO2(0,1,0) and CO2(0,0,1). The corresponding processes rate coefficients are obtained starting from the electron energy distribution function, calculated either as an equilibrium Boltzmann distribution at the local temperature or by solving the Boltzmann equation. Results obtained either neglecting or including in the kinetic scheme the electron-CO2 collisions are compared and explained by analysing the rate coefficients of the electron-CO2 collisions.

  10. Investigation of the three-dimensional turbulent flow downstream of swept slot injection in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Hefner, J. N.; Cary, A. M., Jr.; Bushnell, D. M.

    1974-01-01

    Results of an experimental and numerical investigation of tangential swept slot injection (sweep angles of 22.5 and 45 deg) into a thick turbulent boundary layer at Mach 6 are presented. Film cooling effectiveness, skin friction, and flow structure downstream of the swept slot injection are investigated. The data are compared to that for unswept slots, and it is found that cooling effectiveness and skin-friction reductions are not significantly affected by sweeping the slot. Predictions of cooling effectiveness and skin friction obtained by a numerical finite-difference technique agree reasonably well with experimental surface variables. As in previous supersonic two-dimensional slot research, reduced mixing was found downstream of the slot lip in the present three-dimensional case.

  11. Effects of Goertler vortices, wall cooling and gas dissociation on the Rayleigh instability in a hypersonic boundary layer

    NASA Technical Reports Server (NTRS)

    Fu, Yibin; Hall, Philip

    1993-01-01

    In a hypersonic boundary layer over a wall of variable curvature, the region most susceptible to Goertler vortices is the temperature adjustment layer sitting at the edge of the boundary layer. This temperature adjustment layer is also the most dangerous site for Reyleigh instability. We investigate how the existence of large amplitude Goertler vortices affects the growth rate of Rayleigh instability. The effects of wall cooling and gas dissociation on this instability are also studied. We find that all these mechanisms increase the growth rate of Rayleigh instability and are therefore destabilizing.

  12. Turbulent properties in a homogeneous tidal bottom boundary layer

    NASA Astrophysics Data System (ADS)

    Sanford, Thomas B.; Lien, Ren-Chieh

    1999-01-01

    Profiles of mean and turbulent velocity and vorticity in a tidal bottom boundary layer are reported. Friction velocities estimated (1) by the profile method using the time mean streamwise velocity, (2) by the eddy-correlation method using the turbulent Reynolds stress, and (3) by the dissipation method using the turbulent kinetic energy dissipation rate ɛ are in good agreement. The mean streamwise velocity component exhibits two distinct log layers. In both layers, ɛ is inversely proportional to the distance from the bottom Z. The lower log layer occupies the bottom 3 m. In this layer, the turbulent Reynolds stress is nearly constant. The dynamics in the lower log layer are directly related to the stress induced by the seabed. The upper log layer spans 5 to 12 m above the bottom. In this layer, the turbulent Reynolds stress decreases toward the surface. The friction velocity estimated by the profile method in the upper log layer is about 1.8 times of that estimated in the lower log layer. Form drag might be important in the upper log layer. A detailed study of upstream topography is required for the bed stress estimate. The mean profile of vertical flux of spanwise vorticity is nearly uniform with Z and is at least a factor of 5 larger than the vertical divergence of turbulent Reynolds stress to which it may be compared. A new method of estimating the friction velocity is proposed that uses the vertical flux of turbulent spanwise vorticity. This is supported by the fact that the vertical eddy diffusivity for the turbulent vorticity is about equal in magnitude and vertical structure to the eddy viscosity for the turbulent momentum. The friction velocity calculated from the vorticity flux is equal to that estimated by the other three methods. Turbulent enstrophy, corrected for the sensor response function, is proportional to Z-1 for the entire water column. The relation between ɛ and enstrophy for high-Reynolds-number flows is confirmed by our observations.

  13. Investigation of Turbulent Boundary-Layer Separation Using Laser Velocimetry

    NASA Technical Reports Server (NTRS)

    Modarress, D.; Johnson, D. A.

    1979-01-01

    Boundary-layer measurements realized by laser velocimetry are presented for a Much 2.9, two-dimensional, shock-wave/turbulent boundary-layer interaction containing an extensive region of separated flow. Mean velocity and turbulent intensity profiles were obtained from upstream of the interaction zone to downstream of the mean reattachment point. The superiority of the laser velocimeter technique over pressure sensors in turbulent separated flows is demonstrated by a comparison of the laser velocimeter data with results obtained from local pilot and static pressure measurements for the same flow conditions. The locations of the mean separation and reattachment points as deduced from the mean velocity measurements are compared to oil-now visualization results. Representative velocity probability density functions obtained in the separated now region are also presented. Critical to the success of this investigation were: the use of Bragg cell frequency shifting and artificial seeding of the now with submicron light-scattering particles.

  14. Vorticity interaction effects on blunt bodies. [hypersonic viscous shock layers

    NASA Technical Reports Server (NTRS)

    Anderson, E. C.; Wilcox, D. C.

    1977-01-01

    Numerical solutions of the viscous shock layer equations governing laminar and turbulent flows of a perfect gas and radiating and nonradiating mixtures of perfect gases in chemical equilibrium are presented for hypersonic flow over spherically blunted cones and hyperboloids. Turbulent properties are described in terms of the classical mixing length. Results are compared with boundary layer and inviscid flowfield solutions; agreement with inviscid flowfield data is satisfactory. Agreement with boundary layer solutions is good except in regions of strong vorticity interaction; in these flow regions, the viscous shock layer solutions appear to be more satisfactory than the boundary layer solutions. Boundary conditions suitable for hypersonic viscous shock layers are devised for an advanced turbulence theory.

  15. Turbulent Boundary Layers on a Systematically Varied Rough Wall

    DTIC Science & Technology

    2009-01-01

    Aeronaut. Sci. 21, 91 1954. 47I. P. Castro, “Rough-wall boundary layers: Mean flow universality,” J. Fluid Mech. 585, 469 2007. 48P. S. Granville ...Properties of d- and k-type roughness in turbulent channel flow,” Phys. Fluids 19, 125101 2007. 50D. H. Wood and R. A. Antonia, “Measurements in a

  16. Turbulent boundary layer measurements over high-porosity surfaces

    NASA Astrophysics Data System (ADS)

    Efstathiou, Christoph; Luhar, Mitul

    2016-11-01

    Porous surfaces are ubiquitous across a variety of turbulent boundary layer flows of scientific and engineering interest. While turbulent flows over smooth and rough walls have been studied extensively, experimental measurements over porous walls have thus far focused on packed beds, which are limited in porosity (Φ = 0 . 3 - 0 . 5) by their geometry. The current project seeks to address this limitation. A two-component laser doppler velocimeter (LDV) is used to generate velocity measurements in turbulent boundary layer flows over commercially available reticulated foams and 3D-printed porous media at Reynolds number Reθ 3000 - 4000 . Smooth wall profiles for mean and turbulent quantities are compared to data over substrates with porosity Φ > 0 . 8 and average pore sizes in the range 0.4-2.5mm (corresponding to 8 - 50 viscous units). Previous analytical and simulation efforts indicate that the effects of porous substrates on boundary layer flows depend on a modified Reynolds number defined using the length scale √{ κ}, where κ is substrate permeability. A custom permeameter is currently being developed to estimate κ for the substrates tested in the boundary layer experiments.

  17. Use of shear-stress-sensitive, temperature-insensitive liquid crystals for hypersonic boundary-layer transition detection

    SciTech Connect

    Aeschliman, D.P.; Croll, R.H.; Kuntz, D.W.

    1997-04-01

    The use of shear-stress-sensitive, temperature-insensitive (SSS/TI) liquid crystals (LCs) has been evaluated as a boundary-layer transition detection technique for hypersonic flows. Experiments were conducted at Mach 8 in the Sandia National Laboratories Hypersonic Wind Tunnel using a flat plate model at near zero-degree angle of attack over the freestream unit Reynolds number range 1.2-5.8x10{sup 6}/ft. Standard 35mm color photography and Super VHS color video were used to record LC color changes due to varying surface shear stress during the transition process for a range of commercial SSS liquid crystals. Visual transition data were compared to an established method using calorimetric surface heat-transfer measurements to evaluate the LC technique. It is concluded that the use of SSS/TI LCs can be an inexpensive, safe, and easy to use boundary-layer transition detection method for hypersonic flows. However, a valid interpretation of the visual records requires careful attention to illumination intensity levels and uniformity, lighting and viewing angles, some prior understanding of the general character of the flow, and the selection of the appropriate liquid crystal for the particular flow conditions.

  18. Wave-turbulence dynamics in the stably stratified boundary layer

    NASA Technical Reports Server (NTRS)

    Einaudi, F.; Finnigan, J. J.

    1993-01-01

    New data obtained at the Boulder Atmospheric Observatory are analyzed to obtain separation of wave, turbulence, and mean field necessary for a complete treatment of wave-turbulence interaction. The data were compared with a linear stability analysis of the background atmospheric state, showing good agreement between measured wave parameters (such as wavelength, period, and vector phase velocity) and the eigenvalues of the linear solution. The analysis of the budgets of wave heat flux and temperature variance revealed the essential role of wave-turbulence interaction in maintaining a large amplitude temperature wave and countergradient heat flux. A mechanism for the maintenance of turbulence by waves in strongly stratified boundary layers is described, which emphasizes that the time-mean Richardson number is an irrelevant parameter at such times.

  19. Interaction of the acoustic boundary layer with turbulent flow

    NASA Astrophysics Data System (ADS)

    Hoehler, G.

    Sound attenuation in flow ducts with rigid walls was examined. A pure shear wave with large acoustic boundary layer thickness was excited by streamwise oscillations of the wall of an oil tunnel carrying a two dimensional fully developed turbulent flow with a thick viscous sublayer. A hot-film probe measured the streamwise component of the velocity. Relative to the oscillating wall, a phase averaging procedure gives magnitude and phase of the fluctuating velocity of the shear wave propagating into the turbulent flow. Dividing the shear stress by the shear rate yields the 'effective' viscosity, which consists of the molecular viscosity and the eddy viscosity. Further information is obtained by calculating the turbulent component of the oscillating shear stress. The modulation of bursts by the shear wave plays a dominant role in the production and propagation of the oscillating part of the turbulent shear stress.

  20. Dissipation scaling in constant-pressure turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Nedić, Jovan; Tavoularis, Stavros; Marusic, Ivan

    2017-03-01

    Using results from previous direct numerical simulations and experiments in the outer region of spatially evolving turbulent boundary layers, we compute the streamwise evolution and the wall-normal variation of the dissipation parameter Cɛ, namely, the turbulent kinetic energy dissipation rate, normalized by appropriate powers of the local turbulent kinetic energy and integral length scale. For Reθ≳10 000 (Reθ is a Reynolds number on the freestream velocity and the local momentum thickness), Cɛ is essentially constant in the streamwise direction, but varies by up to 50% in the wall-normal direction. For Reθ<10000 , Cɛ is additionally found to vary in the streamwise direction and is inversely proportional to the local turbulence Reynolds number Reλ.

  1. Boundary Layer Theory. Part 2; Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Schlichting, H.

    1949-01-01

    The flow laws of the actual flows at high Reynolds numbers differ considerably from those of the laminar flows treated in the preceding part. These actual flows show a special characteristic, denoted as turbulence. The character of a turbulent flow is most easily understood the case of the pipe flow. Consider the flow through a straight pipe of circular cross section and with a smooth wall. For laminar flow each fluid particle moves with uniform velocity along a rectilinear path. Because of viscosity, the velocity of the particles near the wall is smaller than that of the particles at the center. i% order to maintain the motion, a pressure decrease is required which, for laminar flow, is proportional to the first power of the mean flow velocity. Actually, however, one oberves that, for larger Reynolds numbers, the pressure drop increases almost with the square of the velocity and is very much larger then that given by the Hagen Poiseuille law. One may conclude that the actual flow is very different from that of the Poiseuille flow.

  2. Boundary layer effects in turbulent flow testing

    SciTech Connect

    Turgoose, S.; Dawson, J.L.; Palmer, J.W.; Rizk, T.

    1995-10-01

    Flow accelerated corrosion under turbulent flow is a complex process with enhanced mass transport, development of concentration gradients and film formation all influencing the corrosion rate. Published data from well established hydrodynamic correlations of mass transfer and flow, and shear stress and flow, are first compared to illustrate the relative magnitudes of the various parameters for different flow geometries. The results of these empirical studies are also compared with the universal velocity profile concept. The analysis shows that any lack of correspondence between corrosion data obtained with different, well characterize, flow apparatus, such as pipe loop, rotating cylinder electrode (RCE) or jet impingement rig, cannot be ascribed to any fundamental difference in correlations between mass transfer and shear stress. The corrosion system of carbon steel in CO{sub 2} containing brine is then used to demonstrate that the developing concentration profiles are a major factor in flow enhanced corrosion under turbulent conditions. Leading edge effects on electrodes have a significant influence not anticipated from fully developed flow data. The study indicates that the RCE provides baseline corrosion data comparable with that from an infinitely long pipeline. Test loop electrodes are usually of short length and experience conditions comparable to jet impingement. It is shown that local rates of mass transfer are significantly greater on short electrodes than on ``long`` electrodes and hence higher corrosion rates are expected. Also, the local ferrous ion concentrations will be lower (at a given corrosion rate) on short electrodes, thereby reducing the tendency to form protective films.

  3. JANNAF boundary layer integral matrix procedure. [turbulent boundary layer/rocket nozzles - prediction analysis techniques

    NASA Technical Reports Server (NTRS)

    Evans, R. M.

    1975-01-01

    Accurate predictions of the thrust loss due to boundary layer effects and of the wall heat flux are very important to the design and performance evaluation of rocket nozzles. A method used in analytical procedures for liquid fuel rocket engine performance prediction and evaluation is presented. A computer program is examined that is a fast and accurate procedure for solving the set of boundary layer equation (momentum, energy, and species) for laminar or turbulent, chemically reacting flows with a wide variety of boundary conditions. Results of comparison of the various turbulent models are presented. A summary of the modifications and additions to the program is examined.

  4. Comparing Experiment and Computation of Hypersonic Laminar Boundary Layers with Isolated Roughness

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Iyer, Prahladh S.; Mahesh, Krishnan; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Johansen, Craig T.

    2014-01-01

    Streamwise velocity profile behavior in a hypersonic laminar boundary layer in the presence of an isolated roughness element is presented for an edge Mach number of 8.2. Two different roughness element types are considered: a 2-mm tall, 4-mm diameter cylinder, and a 2-mm radius hemisphere. Measurements of the streamwise velocity behavior using nitric oxide (NO) planar laser-induced fluorescence (PLIF) molecular tagging velocimetry (MTV) have been performed on a 20-degree wedge model. The top surface of this model acts as a flat-plate and is oriented at 5 degrees with respect to the freestream flow. Computations using direct numerical simulation (DNS) of these flows have been performed and are compared to the measured velocity profiles. Particular attention is given to the characteristics of velocity profiles immediately upstream and downstream of the roughness elements. In these regions, the streamwise flow can experience strong deceleration or acceleration. An analysis in which experimentally measured MTV profile displacements are compared with DNS particle displacements is performed to determine if the assumption of constant velocity over the duration of the MTV measurement is valid. This assumption is typically made when reporting MTV-measured velocity profiles, and may result in significant errors when comparing MTV measurements to computations in regions with strong deceleration or acceleration. The DNS computations with the cylindrical roughness element presented in this paper were performed with and without air injection from a rectangular slot upstream of the cylinder. This was done to determine the extent to which gas seeding in the MTV measurements perturbs the boundary layer flowfield.

  5. Exponential wake structure of heated turbulent boundary layers at elevated levels of free-stream turbulence

    SciTech Connect

    Sepri, P. )

    1987-05-01

    The wake region of a turbulent boundary layer is demonstrated to exhibit simple exponential behavior at elevated levels of free-stream turbulence (FST). As a predictive tool, the computer code STANCOOL has been modified to include FST effects in heated turbulent boundary layers. Preliminary comparisons with experimental data indicate improvements in computational capabiity, although futher development of the code is required. From these comparisons, three new results are offered: (1) At elevated levels of FST, several statistical profiles in the boundary layer wake region decay exponentially into the free stream; (2) {ovr v{prime}T{prime}} decays at half the rate of the mean velocity and temperature; (3) analytical expressions are provided for {ovr u{prime}v{prime}} and {ovr v{prime}T{prime}} in this case.

  6. Interaction of unsteady, turbulent vortical structures with a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Kothmann, Bruce D.; Pauley, Wayne R.

    1992-01-01

    The interaction of unsteady, turbulent, spanwise vortices with a turbulent boundary layer has been studied using smoke-wire photographs and time-resolved hot-wire measurements. Inner-variable scaling of the ensemble-averaged instantaneous velocity and turbulence intensity profiles was found to be meaningful at all times during the interaction. However, predictions of changes in wall shear stress using the logarithmic law of the wall, with the usual constants, were not reliable. A detailed account of the experimental procedure and data reduction schemes is given, in addition to comments on the use of ensemble-averaging for the analysis of low-speed unsteady flows.

  7. Structure of the zero-pressure-gradient turbulent boundary layer.

    PubMed

    Barenblatt, G I; Chorin, A J; Hald, O H; Prostokishin, V M

    1997-07-22

    A processing of recent experimental data by Nagib and Hites [Nagib, H. & Hites, M. (1995) AIAA paper 95-0786, Reno, NV) shows that the flow in a zero-pressure-gradient turbulent boundary layer, outside the viscous sublayer, consists of two self-similar regions, each described by a scaling law. The results concerning the Reynolds-number dependence of the coefficients of the wall-region scaling law are consistent with our previous results concerning pipe flow, if the proper definition of the boundary layer Reynolds number (or boundary layer thickness) is used.

  8. High Enthalpy Effects on Two Boundary Layer Disturbances in Supersonic and Hypersonic Flow

    NASA Astrophysics Data System (ADS)

    Wagnild, Ross Martin

    The fluid flow phenomenon of boundary layer transition is a complicated and difficult process to model and predict. The importance of the state of the boundary layer with regard to vehicle design cannot be understated. The high enthalpy environment in which high speed vehicles operate in further complicates the transition process by adding several more degrees of freedom. In this environment, the internal properties of the gas can stabilize or destabilize the boundary layer as well as modify the disturbances that cause transition. In the current work, the interaction of two types of disturbances with the high enthalpy flow environment are analyzed. The first is known as a second mode disturbance, which is acoustic in nature. The second type is known as a transient growth disturbance and is associated with flows behind roughness elements. Theoretical analyses, linear stability analyses, and computation fluid dynamics (CFD) are used to determine the ways in which these disturbances interact with the high enthalpy environment as well as the consequences of these interactions. First, acoustic wave are directly studied in order to gain a basic understanding of the response of second mode disturbances in the high enthalpy boundary layer. Next, this understanding is used in interpreting the results of several computations attempting to simulate the flow through a high enthalpy flow facility as well as experiments attempting to take advantage of the acoustic interaction with the high enthalpy environment. Because of the difficulty in modeling these experiments, direct simulations of acoustic waves in a hypersonic flow of a gas with molecular vibration are performed. Lastly, compressible transient growth disturbances are simulated using a linear optimal disturbance solver as well as a CFD solver. The effect of an internal molecular process on this type of disturbance is tested through the use of a vibrational mode. It is the goal of the current work to reinforce the

  9. The structure of sheared turbulence near a plane boundary

    NASA Technical Reports Server (NTRS)

    Lee, Moon J.; Hunt, J. C. R.

    1988-01-01

    An analysis is presented of how a plane boundary affects the structure of turbulence in a sheared free stream. A uniform-shear boundary layer (USBL) is formulated with slip velocity condition at the surface, and inhomogeneous rapid distortion theory is applied. The effects of blocking by the surface on the turbulence structure in USBL is compared with those in the shear-free boundary layer (SFBL). Shear produces highly anisotropic eddies elongated in the flow direction. The vertical velocity variance is reduced with shear at all heights, roughly in proportion to the reduction in the homogeneous value, but the shape of the profile remains unchanged only near the surface. The streamwise integral scales increase with shear, indicating elongation of the streamwise extent of eddies.

  10. On the theory of the turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Rotta, J

    1953-01-01

    As a rule, a division of the turbulent boundary layer is admissible: a division into a part near the wall, where the flow is governed only by the wall effects, and into an outer part, where the wall roughness and the viscosity of the flow medium affects only the wall shearing stress occurring as boundary condition but does not exert any other influence on the flow. Both parts may be investigated to a large extent independently. Under certain presuppositions there result for the outer part "similar" solutions. The theoretical considerations give a cue how to set up, by appropriate experiments and their evaluation, generally valid connections which are required for the approximate calculation of the turbulent boundary layer according to the momentum and energy theorem.

  11. Modeling Disturbance Dynamics in Transitional and Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.; Gatski, T. B. (Technical Monitor)

    2002-01-01

    The dynamics of an ensemble of linear disturbances in boundary-layer flows at various Reynolds numbers is studied through an analysis of the transport equations for the mean disturbance kinetic energy and energy dissipation rate. Effects of adverse and favorable pressure-gradients on the disturbance dynamics are also included in the analysis. Unlike the fully turbulent regime where nonlinear phase scrambling of the fluctuations affects the flow field even in proximity to the wall, the early stage transition regime fluctuations studied here are influenced across the boundary layer by the solid boundary. In addition, the dominating dynamics in the disturbance kinetic energy equation is governed by the energy production, pressure-transport and viscous diffusion - also in contrast to the fully turbulent regime. For the disturbance dissipation rate, a dynamic balance exists between the destruction and diffusion of dissipation.

  12. Interacting turbulent boundary layer over a wavy wall

    NASA Technical Reports Server (NTRS)

    Polak, A.; Werle, M. J.

    1977-01-01

    This paper is concerned with the two-dimensional supersonic flow of a thick turbulent boundary layer over a train of relatively small wave-like protuberances. The flow conditions and the geometry are such that there exists a strong interaction between the viscous and inviscid flow. The problem cannot be solved without inclusion of interaction effects due to the occurrence of the separation singularity in classical boundary layer methods. Here the interacting boundary layer equations are solved numerically using a time-like relaxation method with turbulence effects represented by the inclusion of the eddy viscosity model of Cebeci and Smith. Results are presented for flow over a train of up to six waves for Mach numbers of 2.5 and 3.5, Reynolds numbers of 10,000,000/m and 32,000,000/m, and wall temperature ratios of 0.4 and 0.8. Limited comparisons with independent experimental and analytical results are also given.

  13. Supersonic separated turbulent boundary - layer over a wavy wall

    NASA Technical Reports Server (NTRS)

    Polak, A.; Werle, M. J.

    1977-01-01

    A prediction method is developed for calculating distributions of surface heating rates, pressure and skin friction over a wavy wall in a two-dimensional supersonic flow. Of particular interest is the flow of thick turbulent boundary layers. The surface geometry and the flow conditions considered are such that there exists a strong interaction between the viscous and inviscid flow. First, using the interacting turbulent boundary layer equations, the problem is formulated in physical coordinates and then a reformulation of the governing equations in terms of Levy-Lees variables is given. Next, a numerical scheme for solving interacting boundary layer equations is adapted. A number of modifications which led to the improvement of the numerical algorithm are discussed. Finally, results are presented for flow over a train of up to six waves at various flow conditions.

  14. Additive thermochemical effects in turbulent erosive boundary layers

    SciTech Connect

    Buckingham, A.C.; Levatin, J.L.

    1983-01-18

    Previously obtained interior ballistics and wall boundary layer modeling results indicate that significant reduction in erosive heating can be expected when finely divided particles are dispersed through the propellant combustion flow field. Attention was first placed on the particle size influences, together with particle dispersal dynamics in both turbulent combustion core flow and the erosive wall boundary layer region. Submicron thermochemically inert particles were predicted to disperse readily to the near wall region where they were then entrained in the boundary layer. This was estimated to substantially reduce the predicted erosive heat and mass transfer and experimentally confirmed. Examination of the time-averaged turbulent boundary layer macrostructure changes indicated that inertial influences were primarily responsible for this reduction in erosive heating to gun barrel walls. The boundary layers were thickened by the additives and erosive diffusion gradients were correspondingly reduced. The isolated inertial mechanisms are now understood but are difficult to apply in general dimensional analysis scaling or in analytical heat transfer correlation predictions. Three major factors which contribute to these difficulties are: time dependence of both developing mean flow and particle field; turbulence-particle interactions; and thermochemical heat release and exchange between reactive gas components and particles, particles and wall surface, and reactive gas and wall surface. To help illustrate the influence of thes mechanisms and provide a basis for prediction, the influence of submicron additives in unsteady turbulent boundary layer growth and interaction regions adjacent to a model of a chemically active metallic (steel) surface are examined. Equilibrium chemistry is assumed for all phases.

  15. Numerical Simulation of Supersonic Compression Corners and Hypersonic Inlet Flows Using the RPLUS2D Code

    NASA Technical Reports Server (NTRS)

    Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.

    1994-01-01

    A two-dimensional computational code, PRLUS2D, which was developed for the reactive propulsive flows of ramjets and scramjets, was validated for two-dimensional shock-wave/turbulent-boundary-layer interactions. The problem of compression corners at supersonic speeds was solved using the RPLUS2D code. To validate the RPLUS2D code for hypersonic speeds, it was applied to a realistic hypersonic inlet geometry. Both the Baldwin-Lomax and the Chien two-equation turbulence models were used. Computational results showed that the RPLUS2D code compared very well with experimentally obtained data for supersonic compression corner flows, except in the case of large separated flows resulting from the interactions between the shock wave and turbulent boundary layer. The computational results compared well with the experiment results in a hypersonic NASA P8 inlet case, with the Chien two-equation turbulence model performing better than the Baldwin-Lomax model.

  16. An engineering method for interactive inviscid-boundary layers in three-dimensional hypersonic flows. Ph.D. Thesis - North Carolina State Univ., Raleigh

    NASA Technical Reports Server (NTRS)

    Riley, Christopher J.

    1992-01-01

    An engineering method has been developed that couples an approximate three dimensional inviscid technique with the axisymmetric analog and a set of approximate convective heating equations. The displacement effect on the boundary layer on the outer inviscid flow is calculated and included as a boundary condition in the inviscid technique. This accounts for the viscous interaction present at lower Reynolds numbers. The method is applied to blunted axisymmetric and three dimensional elliptic cones at angle of attack for the laminar hypersonic flow of a perfect gas. The method is applied to turbulent and equilibrium-air conditions. The present technique predicts surface heating rates, pressures, and shock shapes that compare favorably with experimental (ground-test and flight) data and numerical solutions of the Navier-Stokes and viscous shock-layer equations. In addition, the inclusion of viscous interaction significantly improves results obtained at lower Reynolds numbers. The new technique represents a major improvement over current engineering aerothermal methods with only a modest increase in computational effort.

  17. The interaction of synthetic jets with turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Cui, Jing

    In recent years, a promising approach to the control of wall bounded as well as free shear flows, using synthetic jet (oscillatory jet with zero-net-mass-flux) actuators, has received a great deal of attention. A variety of impressive flow control results have been achieved experimentally by many researchers including the vectoring of conventional propulsive jets, modification of aerodynamic characteristics of bluff bodies, control of lift and drag of airfoils, reduction of skin-friction of a flat plate boundary layer, enhanced mixing in circular jets, and control of external as well as internal flow separation and of cavity oscillations. More recently, attempts have been made to numerically simulate some of these flowfields. Numerically several of the above mentioned flow fields have been simulated primarily by employing the Unsteady Reynolds-Averaged Navier Stokes (URANS) equations with a turbulence model and a limited few by Direct Numerical Simulation (DNS). In simulations, both the simplified boundary conditions at the exit of the jet as well as the details of the cavity and lip have been included. In this dissertation, I describe the results of simulations for several two- and three-dimensional flowfields dealing with the interaction of a synthetic jet with a turbulent boundary layer and control of separation. These simulations have been performed using the URANS equations in conjunction with either one- or a two-equation turbulence model. 2D simulations correspond to the experiments performed by Honohan at Georgia Tech. and 3D simulations correspond to the CFD validation test cases proposed in the NASA Langley Research Center Workshop---"CFD Validation of Synthetic Jets and Turbulent Separation Control" held at Williamsburg VA in March 2004. The sources of uncertainty due to grid resolution, time step, boundary conditions, turbulence modeling etc. have been examined during the computations. Extensive comparisons for various flow variables are made with the

  18. Turbulent boundary-layer control with plasma spanwise travelling waves

    NASA Astrophysics Data System (ADS)

    Whalley, Richard D.; Choi, Kwing-So

    2014-08-01

    Arrays of dielectric-barrier-discharge plasma actuators have been designed to generate spanwise travelling waves in the turbulent boundary layer for possible skin-friction drag reductions. Particle image velocimetry was used to elucidate the modifications to turbulence structures created by the plasma spanwise travelling waves. It has been observed that the plasma spanwise travelling waves amalgamated streamwise vortices, lifting low-speed fluid from the near-wall region up and around the peripheries of their cores to form wide ribbons of low-speed streamwise velocity within the viscous sublayer.

  19. Direct simulation of a turbulent oscillating boundary layer

    NASA Technical Reports Server (NTRS)

    Spalart, Philippe R.; Baldwin, Barrett S.

    1987-01-01

    The turbulent boundary layer driven by a freestream velocity that varies sinusoidally in time around a zero mean is considered. The flow has a rich behavior including strong pressure gradients, inflection points, and reversal. A theory for the velocity and stress profiles at high Reynolds number is formulated. Well-resolved direct Navier-Stokes simulations are conducted over a narrow range of Reynolds numbers, and the results are compared with the theoretical predictions. The flow is also computed over a wide range of Reynolds numbers using a new algebraic turbulence model; the results are compared with the direct simulations and the theory.

  20. Interaction of a Boundary Layer with a Turbulent Wake

    NASA Technical Reports Server (NTRS)

    Piomelli, Ugo

    2004-01-01

    The objective of this grant was to study the transition mechanisms on a flat-plate boundary layer interacting with the wake of a bluff body. This is a simplified configuration presented and designed to exemplify the phenomena that occur in multi-element airfoils, in which the wake of an upstream element impinges on a downstream one. Some experimental data is available for this configuration at various Reynolds numbers. The first task carried out was the implementation and validation of the immersed-boundary method. This was achieved by performing calculations of the flow over a cylinder at low and moderate Reynolds numbers. The low-Reynolds number results are discussed, which is enclosed as Appendix A. The high-Reynolds number results are presented in a paper in preparation for the Journal of Fluid Mechanics. We performed calculations of the wake-boundary-layer interaction at two Reynolds numbers, Re approximately equal to 385 and 1155. The first case is discussed and a comparison of the two calculations is reported. The simulations indicate that at the lower Reynolds number the boundary layer is buffeted by the unsteady Karman vortex street shed by the cylinder. This is shown: long streaky structures appear in the boundary layer in correspondence of the three-dimensionalities in the rollers. The fluctuations, however, cannot be self-sustained due to the low Reynolds-number, and the flow does not reach a turbulent state within the computational domain. In contrast, in the higher Reynolds-number case, boundary-layer fluctuations persist after the wake has decayed (due, in part, to the higher values of the local Reynolds number Re achieved in this case); some evidence could be observed that a self-sustaining turbulence generation cycle was beginning to be established. A third simulation was subsequently carried out at a higher Reynolds number, Re=3900. This calculation gave results similar to those of the Re=l155 case. Turbulence was established at fairly low

  1. The high-order statistics of APG turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Maciel, Yvan; Gungor, Ayse G.; Simens, Mark P.; Soria, Julio

    2013-11-01

    One and two-point statistics are presented from a new direct numerical simulation of an adverse pressure gradient boundary layer, at Reθ = 250 - 2175 , in which the transition to turbulence is triggered by a trip wire which is modeled using the immersed boundary method. Mean velocity results in the attached turbulent region do not show log law profiles. Departure from the law of the wall occurs throughout the inner region. The production and Reynolds stress peaks move to roughly the middle of the boundary layer. The profiles of the uv correlation factor reveal that de-correlation between u and v takes place throughout the boundary layer, but especially near the wall, as the mean velocity defect increases. The non-dimensional stress ratios and quadrant analysis of uv indicate changes to the turbulence structure. The structure parameter is low, similar to equilibrium APG flows and mixing layers in the present flow and seems to be decreasing as the mean velocity defect increases. The statistics of the upper half of the APG flow show resemblance with results for a mixing layer. Funded in part by ITU, NSERC of Canada, ARC Discovery Grant, and Multiflow program of the ERC.

  2. Hypersonic Boundary Layer Measurements with Variable Blowing Rates Using Molecular Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Johansen, Craig T.; Jones, Stephen B.; Goyne, Christopher P.

    2012-01-01

    Measurements of mean and instantaneous streamwise velocity profiles in a hypersonic boundary layer with variable rates of mass injection (blowing) of nitrogen dioxide (NO2) were obtained over a 10-degree half-angle wedge model. The NO2 was seeded into the flow from a slot located 29.4 mm downstream of the sharp leading edge. The top surface of the wedge was oriented at a 20 degree angle in the Mach 10 flow, yielding an edge Mach number of approximately 4.2. The streamwise velocity profiles and streamwise fluctuating velocity component profiles were obtained using a three-laser NO2->NO photolysis molecular tagging velocimetry method. Observed trends in the mean streamwise velocity profiles and profiles of the fluctuating component of streamwise velocity as functions of the blowing rate are described. An effort is made to distinguish between the effect of blowing rate and wall temperature on the measured profiles. An analysis of the mean velocity profiles for a constant blowing rate is presented to determine the uncertainty in the measurement for different probe laser delay settings. Measurements of streamwise velocity were made to within approximately 120 gm of the model surface. The streamwise spatial resolution in this experiment ranged from 0.6 mm to 2.6 mm. An improvement in the spatial precision of the measurement technique has been made, with spatial uncertainties reduced by about a factor of 2 compared to previous measurements. For the quiescent flow calibration measurements presented, uncertainties as low as 2 m/s are obtained at 95% confidence for long delay times (25 gs). For the velocity measurements obtained with the wind tunnel operating, average single-shot uncertainties of less than 44 m/s are obtained at 95% confidence with a probe laser delay setting of 1 gs. The measurements were performed in the 31-inch Mach 10 Air Tunnel at the NASA Langley Research Center.

  3. The large Reynolds number - Asymptotic theory of turbulent boundary layers.

    NASA Technical Reports Server (NTRS)

    Mellor, G. L.

    1972-01-01

    A self-consistent, asymptotic expansion of the one-point, mean turbulent equations of motion is obtained. Results such as the velocity defect law and the law of the wall evolve in a relatively rigorous manner, and a systematic ordering of the mean velocity boundary layer equations and their interaction with the main stream flow are obtained. The analysis is extended to the turbulent energy equation and to a treatment of the small scale equilibrium range of Kolmogoroff; in velocity correlation space the two-thirds power law is obtained. Thus, the two well-known 'laws' of turbulent flow are imbedded in an analysis which provides a great deal of other information.

  4. Modelling Unsteady Wall Pressures Beneath Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Ahn, B-K.; Graham, W. R.; Rizzi, S. A.

    2004-01-01

    As a structural entity of turbulence, hairpin vortices are believed to play a major role in developing and sustaining the turbulence process in the near wall region of turbulent boundary layers and may be regarded as the simplest conceptual model that can account for the essential features of the wall pressure fluctuations. In this work we focus on fully developed typical hairpin vortices and estimate the associated surface pressure distributions and their corresponding spectra. On the basis of the attached eddy model, we develop a representation of the overall surface pressure spectra in terms of the eddy size distribution. Instantaneous wavenumber spectra and spatial correlations are readily derivable from this representation. The model is validated by comparison of predicted wavenumber spectra and cross-correlations with existing emperical models and experimental data.

  5. CFD application to supersonic/hypersonic inlet airframe integration. [computational fluid dynamics (CFD)

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1988-01-01

    Supersonic external compression inlets are introduced, and the computational fluid dynamics (CFD) codes and tests needed to study flow associated with these inlets are outlined. Normal shock wave turbulent boundary layer interaction is discussed. Boundary layer control is considered. Glancing sidewall shock interaction is treated. The CFD validation of hypersonic inlet configurations is explained. Scramjet inlet modules are shown.

  6. Characteristics of Mach 10 transitional and turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Watson, R. D.

    1978-01-01

    Measurements of the mean flow properties of transitional and turbulent boundary layers in helium on 4 deg and 5 deg wedges were made for flows with edge Mach numbers from 9.5 to 11.3, ratios of wall temperature to total temperature of 0.4 to 0.95, and maximum length Reynolds numbers of one hundred million. The data include pitot and total temperature surveys and measurements of heat transfer and surface shear. In addition, with the assumption of local similarity, turbulence quantities such as the mixing length were derived from the mean flow profiles. Low Reynolds number and precursor transition effects were significant factors at these test conditions and were included in finite difference boundary layer predictions.

  7. Turbulent heat flux measurements in a transitional boundary layer

    NASA Technical Reports Server (NTRS)

    Sohn, K. H.; Zaman, K. B. M. Q.; Reshotko, E.

    1992-01-01

    During an experimental investigation of the transitional boundary layer over a heated flat plate, an unexpected result was encountered for the turbulent heat flux (bar-v't'). This quantity, representing the correlation between the fluctuating normal velocity and the temperature, was measured to be negative near the wall under certain conditions. The result was unexpected as it implied a counter-gradient heat transfer by the turbulent fluctuations. Possible reasons for this anomalous result were further investigated. The possible causes considered for this negative bar-v't' were: (1) plausible measurement error and peculiarity of the flow facility, (2) large probe size effect, (3) 'streaky structure' in the near wall boundary layer, and (4) contributions from other terms usually assumed negligible in the energy equation including the Reynolds heat flux in the streamwise direction (bar-u't'). Even though the energy balance has remained inconclusive, none of the items (1) to (3) appear to be contributing directly to the anomaly.

  8. Modeling roughness effects in turbulent boundary layers using elliptic relaxation

    NASA Astrophysics Data System (ADS)

    George, Jacob; de Simone, Alejandro; Iaccarino, Gianluca; Jimenez, Javier

    2010-11-01

    We present results from the efforts towards modeling roughness in turbulent boundary layers using elliptic relaxation. This scheme, included in the v^2-f model and first formulated by Durbin (1993, JFM, vol. 249, p.465) for smooth-walls, uses an elliptic partial differential equation to incorporate near-wall turbulence anisotropy and non-local pressure-strain effects. The use of the elliptic PDE is extended to model roughness effects in various transitionally-rough and fully-rough boundary layers consisting of a uniform and sparse distribution of cylinders for which experimental data is available. The roughness effects are incorporated through the elliptic PDE by including the length and time scales that the roughness imposes upon the flow, which the experiment has shown to be constant within the rough-walls. Further modeling of roughness effects is considered by altering the source terms in the elliptic PDE.

  9. Influence of localised double suction on a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Oyewola, O.; Djenidi, L.; Antonia, R. A.

    2007-07-01

    The effects of localised suction applied through a pair of porous wall strips on a turbulent boundary layer have been quantified through the measurements of mean velocity and Reynolds stresses. The results indicate that the use of second strip extends the pseudo-relaminarisation zone but also reduces the overshoot in the longitudinal and normal r.m.s. velocities. While the minimum r.m.s. occurs at x/δo=3.0 (one strip) and x/δo=12 (two strips), the reduction observed for the latter case is larger. Relative to no suction, the turbulence level is modified by suction and the effect is enhanced with double suction. This increased effectiveness reflects the fact that the second strip acts on a boundary layer whose near-wall active motion has been seriously weakened by the first strip.

  10. Turbulent boundary layer on a convex, curved surface

    NASA Technical Reports Server (NTRS)

    Gillis, J. C.; Johnston, J. P.; Kays, W. M.; Moffat, R. J.

    1980-01-01

    The effects of strong convex curvature on boundary layer turbulence were investigated. The data gathered on the behavior of Reynolds stress suggested the formulation of a simple turbulence model. Three sets of data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning, and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero - thus avoiding any effects of streamwise acceleration on the wall layers. Results show that after a sudden introduction of curvature, the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. In contrast, when the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions.

  11. Buoyancy effects in an unstably stratified turbulent boundary layer flow

    NASA Astrophysics Data System (ADS)

    Li, Dong; Luo, Kun; Fan, Jianren

    2017-01-01

    Direct numerical simulation has been performed to investigate the effect of buoyancy on an unstably stratified turbulent boundary layer with the Oberbeck-Boussinesq approximation. The simulation results show that the mean values of the streamwise velocity and scalar fields are increased in the near-wall region but decreased in the outer layer under the effect of buoyancy, which leads to significant increases in the skin-friction drag and heat transfer. In addition, it is found that the unstable thermal stratification results in large increases in the intensities of the near-wall streamwise vortices and high- and low-speed streaks, and a reduction in the mean diameter of the vortical structures. Moreover, the turbulent coherent structures become less organized due to the stratification effect. With respect to the neutral boundary layer flow, the outer vortical structures tend to bias the direction of the principal extensional strain towards the vertical plane in the unstably stratified flow.

  12. Boundary-layer turbulence as a kangaroo process

    NASA Astrophysics Data System (ADS)

    Dekker, H.; de Leeuw, G.; Maassen van den Brink, A.

    1995-09-01

    A nonlocal mixing-length theory of turbulence transport by finite size eddies is developed by means of a novel evaluation of the Reynolds stress. The analysis involves the contruct of a sample path space and a stochastic closure hypothesis. The simplifying property of exhange (strong eddies) is satisfied by an analytical sampling rate model. A nonlinear scaling relation maps the path space onto the semi-infinite boundary layer. The underlying near-wall behavior of fluctuating velocities perfectly agrees with recent direct numerical simulations. The resulting integro-differential equation for the mixing of scalar densities represents fully developed boundary-layer turbulence as a nondiffusive (Kubo-Anderson or kangaroo) type of stochastic process. The model involves a scaling exponent ɛ (with ɛ-->∞ in the diffusion limit). For the (partly analytical) solution for the mean velocity profile, excellent agreement with the experimental data yields ɛ~=0.58.

  13. Characteristics of turbulent boundary layer flow over algal biofilm

    NASA Astrophysics Data System (ADS)

    Murphy, Elizabeth; Barros, Julio; Schultz, Michael; Steppe, Cecily; Flack, Karen; Reidenbach, Matthew

    2015-11-01

    Algal biofilms are an important fouling community on ship hulls, with severe economic consequences due to drag-induced increases in fuel use and cleaning costs. Here, we characterize the boundary layer flow structure in turbulent flow over diatomaceous slime, a type of biofilm. Diatomaceous slime composed of three species of diatoms commonly found on ship hulls was grown on acrylic test plates under shear stress. The slime averages 1.6 mm in thickness and has a high density of streamers, which are flexible elongated growths with a length on the order of 1- 2 mm located at the top of the biofilm that interact with the flow. Fouled acrylic plates were placed in a water tunnel facility specialized for detailed turbulent boundary layer measurements. High resolution Particle Image Velocimetry (PIV) data are analyzed for mean velocity profile as well as local turbulent stresses and turbulent kinetic energy (TKE) production, dissipation and transport. Quadrant analysis is used to characterize the impact of the instantaneous events of Reynolds shear stress (RSS) in the flow. To investigate the coherence of the large-scale motion in the flow two-point correlation analysis is employed. Funding provided by the Office of Naval Research and the National Science Foundation.

  14. An Experimental Investigation of Wall-Cooling Effects on Hypersonic Boundary-Layer Stability in a Quiet Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Blanchard, Alan E.; Selby, Gregory V.

    1996-01-01

    One of the primary reasons for developing quiet tunnels is for the investigation of high-speed boundary-layer stability and transition phenomena without the transition-promoting effects of acoustic radiation from tunnel walls. In this experiment, a flared-cone model under adiabatic- and cooled-wall conditions was placed in a calibrated, 'quiet' Mach 6 flow and the stability of the boundary layer was investigated using a prototype constant-voltage anemometer. The results were compared with linear-stability theory predictions and good agreement was found in the prediction of second-mode frequencies and growth. In addition, the same 'N=10' criterion used to predict boundary-layer transition in subsonic, transonic, and supersonic flows was found to be applicable for the hypersonic flow regime as well. Under cooled-wall conditions, a unique set of continuous spectra data was acquired that documents the linear, nonlinear, and breakdown regions associated with the transition of hypersonic flow under low-noise conditions.

  15. Calculations of unsteady turbulent boundary layers with flow reversal

    NASA Technical Reports Server (NTRS)

    Nash, J. F.; Patel, V. C.

    1975-01-01

    The results are presented of a series of computational experiments aimed at studying the characteristics of time-dependent turbulent boundary layers with embedded reversed-flow regions. A calculation method developed earlier was extended to boundary layers with reversed flows for this purpose. The calculations were performed for an idealized family of external velocity distributions, and covered a range of degrees of unsteadiness. The results confirmed those of previous studies in demonstrating that the point of flow reversal is nonsingular in a time-dependent boundary layer. A singularity was observed to develop downstream of reversal, under certain conditions, accompanied by the breakdown of the boundary-layer approximations. A tentative hypothesis was advanced in an attempt to predict the appearance of the singularity, and is shown to be consistent with the calculated results.

  16. Behavior of turbulent boundary layers on curved convex walls

    NASA Technical Reports Server (NTRS)

    Schmidbauer, Hans

    1936-01-01

    The system of linear differential equations which indicated the approach of separation and the so-called "boundary-layer thickness" by Gruschwitz is extended in this report to include the case where the friction layer is subject to centrifugal forces. Evaluation of the data yields a strong functional dependence of the momentum change and wall drag on the boundary-layer thickness radius of curvature ratio for the wall. It is further shown that the transition from laminar to turbulent flow occurs at somewhat higher Reynolds Numbers at the convex wall than at the flat plate, due to the stabilizing effect of the centrifugal forces.

  17. Acoustic Radiation From a Mach 14 Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.< or approx. 0.08 or z+ < or approx. 50). The peak of the pre-multiplied frequency spectrum of the pressure fluctuation is f(delta)/U(sub infinity) approx. 2.1 at the surface and shifts to a lower frequency of f(delta)/U(sub infinity) approx. 0.7 in the free stream where the pressure signal is predominantly acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.

  18. Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows

    DTIC Science & Technology

    2007-01-01

    Streamline upwind / Petrov-Galerkin for- mulations for convection dominated flows with particular emphasis on the incompressible Navier - Stokes equations...yields an improvement over the original method. Key words: fluids, Navier - Stokes equations, boundary layers, turbulence, law of the wall, weakly imposed...The paper is organized as follows. In Section 2, we describe the weak formula- tion of the continuous problem for the incompressible Navier - Stokes

  19. Simulation of Turbulent Boundary Layer Flow with Large Roughness

    NASA Astrophysics Data System (ADS)

    Johnson, Erika; Subramanian, Chelakara

    2006-11-01

    Several studies indicate that in situations where surface roughness is very strong, the friction velocity scaling for the mean and turbulent velocities are not satisfactory. Subramanian et al showed a dramatic effect of a strong irregular roughened surface on the turbulent properties. The log-law relation in the overlap region was distorted. A significant pressure gradient normal to the surface was observed with a concomitant increase in normal turbulent stress, v^'2 . The pressure gradient velocity scale, uP, was suggested as a better alternative for capturing the effects of this roughness induced pressure gradient. Here, we performed a numerical simulation of a roughened boundary layer to gain more insight on the correlation between the wall normal pressure gradient and normal turbulent stress, v^'2 and further validate this new pressure gradient velocity scale, uP for different types of roughness. A two-dimensional flat plate computational model with strong regular (k-type) roughness, was constructed in GAMBIT and a CFD analysis performed using FLUENT, version 6.2. The roughness elements cause the pressure near the wall to increase suddenly at the first element and then decrease gradually similar to experiments. The variation of this normal pressure gradient is well correlated with the normal turbulent stress v^'2 variation. Application of the uP as scaling parameter for other non-equilibrium flows such as with suction and blowing is also investigated.

  20. Effect of free-stream turbulence on boundary layer transition.

    PubMed

    Goldstein, M E

    2014-07-28

    This paper is concerned with the transition to turbulence in flat plate boundary layers due to moderately high levels of free-stream turbulence. The turbulence is assumed to be generated by an (idealized) grid and matched asymptotic expansions are used to analyse the resulting flow over a finite thickness flat plate located in the downstream region. The characteristic Reynolds number Rλ based on the mesh size λ and free-stream velocity is assumed to be large, and the turbulence intensity ε is assumed to be small. The asymptotic flow structure is discussed for the generic case where the turbulence Reynolds number εRλ and the plate thickness and are held fixed (at O(1) and O(λ), respectively) in the limit as [Formula: see text] and ε→0. But various limiting cases are considered in order to explain the relevant transition mechanisms. It is argued that there are two types of streak-like structures that can play a role in the transition process: (i) those that appear in the downstream region and are generated by streamwise vorticity in upstream flow and (ii) those that are concentrated near the leading edge and are generated by plate normal vorticity in upstream flow. The former are relatively unaffected by leading edge geometry and are usually referred to as Klebanoff modes while the latter are strongly affected by leading edge geometry and are more streamwise vortex-like in appearance.

  1. The effects of external conditions in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Brzek, Brian G.

    The effects of multiple external conditions on turbulent boundary layers were studied in detail. These external conditions include: surface roughness, upstream turbulence intensity, and pressure gradient. Furthermore, the combined effects of these conditions show the complicated nature of many realistic flow conditions. It was found that the effects of surface roughness are difficult to generalize, given the importance of so many parameters. These parameters include: roughness geometry, roughness regime, roughness height to boundary layer thickness, (k/delta), roughness parameter, ( k+), Reynolds number, and roughness function (Delta B+). A further complication, is the difficulty in computing the wall shear stress, tauw/rho. For the sand grain type roughness, the mean velocity and Reynolds stresses were studied in inner and outer variables, as well as, boundary layer parameters, anisotropy tensor, production term, and viscous stress and form drag contributions. To explore the effects of roughness and Reynolds number dependence in the boundary layer, a new experiment was carefully designed to properly capture the x-dependence of the single-point statistics. It was found that roughness destroys the viscous layer near the wall, thus, reducing the contribution of the viscous stress in the wall region. As a result, the contribution in the skin friction due to form drag increases, while the viscous stress decreases. This yields Reynolds number invariance in the skin friction, near-wall roughness parameters, and inner velocity profiles as k + increases into the fully rough regime. However, in the transitionally rough regime, (i.e., 5 < k+ < 70), it was found that these parameters are functions of both Reynolds number and roughness. For the sand grain type roughnesses, only the Zagarola and Smits scaling, Uinfinitydelta*/delta, is able to remove the effects of roughness and Reynolds number from the velocity profiles in outer variables, provided there is no freestream

  2. Surface boundary layer turbulence in the Southern ocean

    NASA Astrophysics Data System (ADS)

    Merrifield, Sophia; St. Laurent, Louis; Owens, Breck; Naveira Garabato, Alberto

    2015-04-01

    Due to the remote location and harsh conditions, few direct measurements of turbulence have been collected in the Southern Ocean. This region experiences some of the strongest wind forcing of the global ocean, leading to large inertial energy input. While mixed layers are known to have a strong seasonality and reach 500m depth, the depth structure of near-surface turbulent dissipation and diffusivity have not been examined using direct measurements. We present data collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) field program. In a range of wind conditions, the wave affected surface layer (WASL), where surface wave physics are actively forcing turbulence, is contained to the upper 15-20m. The lag-correlation between wind stress and turbulence shows a strong relationship up to 6 hours (˜1/2 inertial period), with the winds leading the oceanic turbulent response, in the depth range between 20-50m. We find the following characterize the data: i) Profiles that have a well-defined hydrographic mixed layer show that dissipation decays in the mixed layer inversely with depth, ii) WASLs are typically 15 meters deep and 30% of mixed layer depth, iii) Subject to strong winds, the value of dissipation as a function of depth is significantly lower than predicted by theory. Many dynamical processes are known to be missing from upper-ocean parameterizations of mixing in global models. These include surface-wave driven processes such as Langmuir turbulence, submesocale frontal processes, and nonlocal representations of mixing. Using velocity, hydrographic, and turbulence measurements, the existence of coherent structures in the boundary layer are investigated.

  3. Turbulence spectra of the FIRE stratocumulus-topped boundary layers

    NASA Technical Reports Server (NTRS)

    Young, G. S.; Nucciarone, J. J.; Albrecht, Bruce A.

    1990-01-01

    There are at least four physical phenomena which contribute to the FIRE boundary layer turbulence spectra: boundary layer spanning eddies resulting from buoyant and mechanical production of turbulent kinetic energy (the microscale subrange); inertial subrange turbulence which cascades this energy to smaller scales; quasi-two dimensional mesoscale variations; and gravity waves. The relative contributions of these four phenomena to the spectra depend on the altitude of observation and variable involved (vertical velocity, temperature and moisture spectra are discussed). The physical origins of these variations in relative contribution are discussed. As expected from the theory (Kaimal et al., 1976), mixed layer scaling of the spectra (i.e., nondimensionalizing wavelength by Z(sub i) and spectral density by Z(sub i) and the dissipation rates) is successful for the microscale subrange and inertial subrange but not for the mesoscale subrange. The most striking feature of the normalized vertical velocity spectra is the lack of any significant mesoscale contribution. The spectral peak results from buoyant and mechanical production on scales similar to the boundary layer depth. The decrease in spectral density at larger scales results from the suppression of vertical velocity perturbations with large horizontal scales by the shallowness of the atmosphere. The spectral density also decreases towards smaller scales following the well known inertial subrange slope. There is a significant variation in the shape of the normalized spectra with height.

  4. Impinging Turbulent Boundary Layer Influence on Horseshoe Vortex Periodicity

    NASA Astrophysics Data System (ADS)

    Smith, Charles; Sabatino, Daniel

    2000-11-01

    The spatial-temporal flow-field and associated surface heat transfer for a turbulent juncture flow were experimentally examined in a water channel using PIV and thermochromic liquid crystals. Turbulent boundary layer "burst" events, which have been previously described as hairpin vortex "packets," are shown to interact and periodically strengthen the juncture-region horseshoe vortex (HV). This strengthening of the HV precipitates its movement upstream and toward the surface. This process that induces the ejection of a secondary vortex, which weakens the HV, with the strengthen-ejection-weakening cycle repeating quasi-periodically. The dominant period of motion for the HV correlates closely to the impinging turbulent boundary layer bursting frequency. This vortex-bursting interaction is responsible for the elevated endwall surface heat transfer upstream of the corner vortex region. The temporal endwall surface heat transfer behavior for a linear turbine cascade juncture was also determined to be essentially the same as that for a simple bluff body, with the impinging boundary layer bursting frequency again being the controlling parameter.

  5. Turbulent thermal boundary layers subjected to severe acceleration

    NASA Astrophysics Data System (ADS)

    Araya, Guillermo; Castillo, Luciano

    2013-11-01

    Favorable turbulent boundary layers are flows of great importance in industry. Particularly, understanding the mechanisms of quasi-laminarization by means of a very strong favorable streamwise pressure gradient is indeed crucial in drag reduction and energy management applications. Furthermore, due to the low Reynolds numbers involved in the quasi-laminarization process, abundant experimental investigation can be found in the literature for the past few decades. However, several grey zones still remain unsolved, principally associated with the difficulties that experiments encounter as the boundary layer becomes smaller. In addition, little attention has been paid to the heat transfer in a quasi-laminarization process. In this investigation, DNS of spatially-developing turbulent thermal boundary layers with prescribed very strong favorable pressure gradients (K = 4 × 10-6) are performed. Realistic inflow conditions are prescribed based on the Dynamic Multi-scale Approach (DMA) [Araya et al. JFM, Vol. 670, pp. 581-605, 2011]. In this sense the flow carries the footprint of turbulence, particularly in the streamwise component of the Reynolds stresses.

  6. Reynolds number influences on turbulent boundary layer momentum transport

    NASA Astrophysics Data System (ADS)

    Priyadarshana, Paththage A.

    There are many engineering applications at Reynolds numbers orders of magnitude higher than existing turbulent boundary layer studies. Currently, the mechanisms for turbulent transport and the Reynolds number dependence of these mechanisms are not well understood. This dissertation presents Reynolds number influences on velocity and vorticity statistics, Reynolds shear stress, and velocity-vorticity correlations for turbulent boundary layers. Well resolved hot-wire data for this study were acquired in the atmospheric surface layer at the SLTEST facility in western Utah. It is shown that during near neutral thermal stability, the flow behaves as a canonical zero pressure gradient turbulent boundary layer, in which the Reynolds number based on momentum thickness, Rtheta, is approximately 2 x 106. The present study also provides information regarding the effects of wall roughness over a limited range of roughness. It is observed that with increasing Rtheta, the inner normalized streamwise intensity increases. This statistic is less sensitive to wall roughness away from the roughness sublayer. In contrast, the inner normalized wall normal intensity is less sensitive to the variation of Rtheta, and it is significantly sensitive to wall roughness. Outside the viscous sublayer, the inner normalized vorticity intensity is less sensitive to both Rtheta and roughness. A primary observation of the Reynolds stress study is that the predominant motions underlying the Reynolds shear stress undergo a significant shift from large to intermediate scales as Rtheta becomes large, irrespective of surface roughness. Quadrant analysis shows that types of motions contributing to the Reynolds stress change significantly at comparable wall normal locations with increasing Rtheta. The mean wall normal gradients of the Reynolds shear stress and the turbulent kinetic energy have direct connections to the transport mechanisms of the turbulent boundary layer. These gradients can be expressed in

  7. Turbulence interaction with fractal trees in a turbulent boundary layer over a rough surface

    NASA Astrophysics Data System (ADS)

    Kang, Hyung-Suk; Meneveau, Charles

    2008-11-01

    An experimental study is performed of turbulence interacting with multi-scale fractal objects placed in turbulent boundary layer flows. The main objectives of the study are to quantify drag forces generated by such interactions and to compare with the simulation results of Chester et al. (Journal of Computational Physics, volume 225, 2007) who used renormalized numerical simulation (RNS) to predict the forces. In the present study, fractal trees with branches in a single cross-plane are considered. Each branch has three subbranches and the scale ratio is 0.5, so the similarity fractal dimension is about 1.58. The models are placed in a wind-tunnel model of the atmospheric-like turbulent boundary layer over a rough surface. The inflow is generated by a combination of an active grid and a row of strakes. Six trees corresponding to increasing generations of branchings are considered. The fractal trees are mounted on a load cell unit, which enables us to measure the drag forces depending on the included generation of branches. The averaged total drag coefficients agree well with a branch-resolved simulation (Chester et al. 2007). Also, turbulence data are sampled at 4 different downstream locations of the fractal trees by using an X-type hot-wire probe. The effects of generation number on the turbulence spectra and PDFs are quantified.

  8. Turbulence in a convective marine atmospheric boundary layer

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Atlas, D.; Yeh, E.-N.

    1986-01-01

    The structure and kinetic energy budget of turbulence in the convective marine atmospheric boundary layer as observed by aircraft during a cold air outbreak have been studied using mixed layer scaling. The results are significantly different from those of previous studies under conditions closer to free convection. The normalized turbulent kinetic energy and turbulent transport are about twice those found during the Air Mass Transformation Experiment (AMTEX). This implies that for a given surface heating the present case is dynamically more active. The difference is mainly due to the greater importance of wind shear in the present case. This case is closer to the roll vortex regime, whereas AMTEX observed mesoscale cellular convection which is closer to free convection. Shear generation is found to provide a significant energy source, in addition to buoyancy production, to maintain a larger normalized turbulent kinetic energy and to balance a larger normalized dissipation. The interaction between turbulent pressure and divergence (i.e., pressure scrambling) is also found to transfer energy from the vertical to the horizontal components, and is expected to be stronger in roll vortices than in m esoscale cells. The sensible heat flux is found to fit well with a linear vertical profile in a clear or subcloud planetary boundary layer (PBL), in good agreement with the results of Lenschow et al., (1980). The heat flux ratio between the PBL top and the surface, derived from the linear fitted curve, is approximately -0.14, in good agreement with that derived from the lidar data for the same case. Near the PBL top, the heat flux profiles are consistent with those of Deardoff (1979) and Deardorff et al. (1980).

  9. Turbulence modeling for sharp-fin-induced shock wave/turbulent boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Horstman, C. C.

    1990-01-01

    Solutions of the Reynolds averaged Navier-Stokes equations are presented and compared with a family of experimental results for the 3-D interaction of a sharp fin induced shock wave with a turbulent boundary layer. Several algebraic and two equation eddy viscosity turbulence models are employed. The computed results are compared with experimental surface pressure, skin friction, and yaw angle data as well as the overall size of the interaction. Although the major feature of the flow fields are correctly predicted, several discrepancies are noted. Namely, the maximum skin friction values are significantly underpredicted for the strongest interaction cases. These and other deficiencies are discussed.

  10. A Simple Method for Determining Heat Transfer, Skin Friction, and Boundary-Layer Thickness for Hypersonic Laminar Boundary-Layer Flows in a Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Bertram, Mitchel H.; Feller, William V.

    1959-01-01

    A procedure based on the method of similar solutions is presented by which the skin friction, heat transfer, and boundary-layer thickness in a laminar hypersonic flow with pressure gradient may be rapidly evaluated if the pressure distribution is known. This solution, which at present is. restricted to power-law variations of pressure with surface distance, is presented for a wide range of exponents in the power law corresponding to both favorable and adverse pressure gradients. This theory has been compared to results from heat-transfer experiments on blunt-nose flat plates and a hemisphere cylinder at free-stream Mach numbers of 4 and 6.8. The flat-plate experiments included tests made at a Mach number of 6.8 over a range of angle of attack of +/- 10 deg. Reasonable agreement of the experimental and theoretical heat-transfer coefficients has been obtained as well as good correlation of the experimental results over the entire range of angle of attack studied. A similar comparison of theory with experiment was not feasible for boundary-layer-thickness data; however, the hypersonic similarity theory was found to account satisfactorily for the variation in boundary-layer thickness due to local pressure distribution for several sets of measurements.

  11. Analysis of the development of perturbations in a hypersonic boundary layer behind a wavy surface

    NASA Astrophysics Data System (ADS)

    Bountin, D. A.; Maslov, A. A.

    2017-07-01

    The stability of a supersonic near-wall flow above a finely corrugated plate in the incident flow inside an aerodynamic tube with a Mach number of 6 has been studied experimentally. We obtained the perturbation growth coefficients that show that a wavy wall stabilizes the flow in the boundary layer with respect to the perturbations of the second mode, but it destabilizes the perturbations of the first mode. A bispectral analysis of perturbations is carried out. It is shown that with decreasing pulsation amplitudes of the second mode, nonlinear processes in the boundary layer behind the wavy surface become strongly suppressed: there is no harmonic resonance of the second mode, and nonlinear processes in the low-frequency region of the spectrum have an interaction amplitude that is an order of magnitude smaller and a much more limited frequency range. Due to the stabilizing effect of a wavy surface on perturbations of the second mode, the onset of a laminar-turbulent transition is generally delayed.

  12. Instability of a Local Downflow in a Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lundgren, Thomas

    2006-11-01

    In the laminar Hiemenz stagnation point flow a downflow produces a straining flow along the boundary. This flow is unstable (Hammerlin,1955) with neutral eigensolution consisting of alternating sign vortex cells of uniform strength along the flow direction. Low-speed and high-speed streaks at the cell boundaries increase in amplitude in the flow direction. In the turbulent problem a local downflow is envisioned to be caused by large scale structures in the outer part of the boundary layer. The Reynolds-averaged equations were employed with an eddy viscosity which depens only on the distance from the wall. The resulting equations are unstable to longitudinal vortices with a structure similar to the Hiemenz neutral egensolutin, with a continuous spectrum of the spanwise wavenumber. It is found that the wavenumber must be smaller than a critical value which depends on the local strainrate. In general when the downflow is weaker the critical wavenuber is smaller (streak spacing larger).

  13. Lag model for turbulent boundary layers over rough bleed surfaces

    NASA Astrophysics Data System (ADS)

    Lee, J.; Sloan, M. L.; Paynter, G. C.

    1994-07-01

    Boundary-layer mass removal (bleed) through spanwise bands of holes on a surface is used to prevent or control separation and to stabilize the normal shock in supersonic inlets. The addition of a transport equation lag relationship for eddy viscosity to the rough wall algebraic turbulence model of Cebeci and Chang was found to improve agreement between predicted and measured mean velocity distributions downstream of a bleed band. The model was demonstrated for a range of bleed configurations, bleed rates, and local freestream Mach numbers. In addition, the model was applied to the boundary-layer development over acoustic lining materials for the inlets and nozzles of commercial aircraft. The model was found to yield accurate results for integral boundary-layer properties unless there was a strong adverse pressure gradient.

  14. A compilation of unsteady turbulent boundary-layer experimental data

    NASA Technical Reports Server (NTRS)

    Carr, L. W.

    1981-01-01

    An extensive literature search was conducted and those experiments related to unsteady boundary layer behavior were cataloged. In addition, an international survey of industrial, university, and governmental research laboratories was made in which new and ongoing experimental programs associated with unsteady turbulent boundary layer research were identified. Pertinent references were reviewed and classified based on the technical emphasis of the various experiments. Experiments that include instantaneous or ensemble averaged profiles of boundary layer variables are stressed. The experimental apparatus and flow conditions are described and summaries of acquired data and significant conclusions are summarized. Measurements obtained from the experiments which exist in digital form were stored on magnetic tape. Instructions are given for accessing these data sets for further analysis.

  15. Glancing shock wave-turbulent boundary layer interaction with boundary layer suction

    NASA Technical Reports Server (NTRS)

    Barnhart, P. J.; Greber, I.; Hingst, W. R.

    1988-01-01

    Tests conducted to ascertain the stagnation pressure and flow angularity profiles of a turbulent boundary layer subjected to boundary layer suction (BLS) as it crosses a glancing sidewall shock wave have determined that the boundary layer does not separate upon crossing the shock wave. Without BLS, the upstream influence of the shock wave-induced wall static pressure rise was extensive, of the order of four bloundary layer thicknesses; for the same case, with suction, the extent of upstream influence was 50 percent lower. In addition, flow angularities at the wall were found to be smaller with suction than without it.

  16. Glancing shock wave-turbulent boundary layer interaction with boundary layer suction

    NASA Technical Reports Server (NTRS)

    Barnhart, P. J.; Greber, I.; Hingst, W. R.

    1988-01-01

    Tests conducted to ascertain the stagnation pressure and flow angularity profiles of a turbulent boundary layer subjected to boundary layer suction (BLS) as it crosses a glancing sidewall shock wave have determined that the boundary layer does not separate upon crossing the shock wave. Without BLS, the upstream influence of the shock wave-induced wall static pressure rise was extensive, of the order of four bloundary layer thicknesses; for the same case, with suction, the extent of upstream influence was 50 percent lower. In addition, flow angularities at the wall were found to be smaller with suction than without it.

  17. Mixing at the External Boundary of a Submerged Turbulent Jet

    NASA Astrophysics Data System (ADS)

    Eidelman, A.; Elperin, T.; Kleeorin, N.; Hazak, G.; Rogachevskii, I.; Sadot, O.; Sapir-Katiraie, I.

    We study experimentally and theoretically mixing at the external boundary of a submerged turbulent jet. In the experimental study we use Particle Image Velocimetry and an Image Processing Technique based on the analysis of the intensity of the Mie scattering to determine the spatial distribution of tracer particles. An air jet is seeded with the incense smoke particles which are characterized by large Schmidt number and small Stokes number. We determine the spatial distributions of the jet fluid characterized by a high concentration of the particles and of the ambient fluid characterized by a low concentration of the tracer particles. In the data analysis we use an approach that is based on analysis of the two-point second-order correlation function of the particle number density fluctuations generated by tangling of the gradient of the mean particle number density by the turbulent velocity field. This gradient is formed at the external boundary of a submerged turbulent jet. We demonstrate that the two-point second-order correlation function of the particle number density does not have universal scaling and cannot be described by a power-law function. The theoretical predictions made in this study are in a qualitative agreement with the obtained experimental results.

  18. Mixing at the external boundary of a submerged turbulent jet

    NASA Astrophysics Data System (ADS)

    Eidelman, A.; Elperin, T.; Kleeorin, N.; Hazak, G.; Rogachevskii, I.; Sadot, O.; Sapir-Katiraie, I.

    2009-02-01

    We study experimentally and theoretically mixing at the external boundary of a submerged turbulent jet. In the experimental study we use particle image velocimetry and an image processing technique based on the analysis of the intensity of the Mie scattering to determine the spatial distribution of tracer particles. An air jet is seeded with the incense smoke particles, which are characterized by a large Schmidt number and a small Stokes number. We determine the spatial distributions of the jet fluid characterized by a high concentration of the particles and of the ambient fluid characterized by a low concentration of the tracer particles. In the data analysis we use two approaches, whereby one approach is based on the measured phase function for the study of the mixed state of two fluids. The other approach is based on the analysis of the two-point second-order correlation function of the particle number density fluctuations generated by tangling of the gradient of the mean particle number density by the turbulent velocity field. This gradient is formed at the external boundary of a submerged turbulent jet. We demonstrate that probability density function of the phase function of a jet fluid penetrating into an external flow and the two-point second-order correlation function of the particle number density do not have universal scaling and cannot be described by a power-law function. The theoretical predictions made in this study are in qualitative agreement with the obtained experimental results.

  19. Scaling of pressure spectrum in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Patwardhan, Saurabh S.; Ramesh, O. N.

    2014-04-01

    Scaling of pressure spectrum in zero-pressure-gradient turbulent boundary layers is discussed. Spatial DNS data of boundary layer at one time instant (Reθ = 4500) are used for the analysis. It is observed that in the outer regions the pressure spectra tends towards the -7/3 law predicted by Kolmogorov's theory of small-scale turbulence. The slope in the pressure spectra varies from -1 close to the wall to a value close to -7/3 in the outer region. The streamwise velocity spectra also show a -5/3 trend in the outer region of the flow. The exercise carried out to study the amplitude modulation effect of the large scales on the smaller ones in the near-wall region reveals a strong modulation effect for the streamwise velocity, but not for the pressure fluctuations. The skewness of the pressure follows the same trend as the amplitude modulation coefficient, as is the case for the velocity. In the inner region, pressure spectra were seen to collapse better when normalized with the local Reynolds stress than when scaled with the local turbulent kinetic energy

  20. Sonic eddy model of the turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Breidenthal, Robert; Dintilhac, Paul; Williams, Owen

    2016-11-01

    A model of the compressible turbulent boundary layer is proposed. It is based on the notion that turbulent transport by an eddy requires that information of nonsteady events propagates across the diameter of that eddy during one rotation period. The finite acoustic signaling speed then controls the turbulent fluxes. As a consequence, the fluxes are limited by the largest eddies that satisfies this requirement. Therefore "sonic eddies" with a rotational Mach number of about unity would determine the skin friction, which is predicted to vary inversely with Mach number. This sonic eddy model contrasts with conventional models that are based on the energy equation and variations in the density. The effect of density variations is known to be weak in free shear flows, and the sonic eddy model assumes the same for the boundary layer. In general, Mach number plays two simultaneous roles in compressible flow, one related to signaling and the other related to the energy equation. The predictions of the model are compared with experimental data and DNS results from the literature.

  1. Mixing at the external boundary of a submerged turbulent jet.

    PubMed

    Eidelman, A; Elperin, T; Kleeorin, N; Hazak, G; Rogachevskii, I; Sadot, O; Sapir-Katiraie, I

    2009-02-01

    We study experimentally and theoretically mixing at the external boundary of a submerged turbulent jet. In the experimental study we use particle image velocimetry and an image processing technique based on the analysis of the intensity of the Mie scattering to determine the spatial distribution of tracer particles. An air jet is seeded with the incense smoke particles, which are characterized by a large Schmidt number and a small Stokes number. We determine the spatial distributions of the jet fluid characterized by a high concentration of the particles and of the ambient fluid characterized by a low concentration of the tracer particles. In the data analysis we use two approaches, whereby one approach is based on the measured phase function for the study of the mixed state of two fluids. The other approach is based on the analysis of the two-point second-order correlation function of the particle number density fluctuations generated by tangling of the gradient of the mean particle number density by the turbulent velocity field. This gradient is formed at the external boundary of a submerged turbulent jet. We demonstrate that probability density function of the phase function of a jet fluid penetrating into an external flow and the two-point second-order correlation function of the particle number density do not have universal scaling and cannot be described by a power-law function. The theoretical predictions made in this study are in qualitative agreement with the obtained experimental results.

  2. On the turbulent boundary layer over geophysical-like topographies

    NASA Astrophysics Data System (ADS)

    Chamorro, Leonardo P.; Hamed, Ali M.; Castillo, Luciano

    2016-11-01

    The developing and developed flows over 2D and 3D large-scale wavy walls were experimentally studied with high-resolution planar PIV in a refractive-index-matching channel. The 2D wall is described by a sinusoidal wave in the streamwise direction with amplitude to wavelength ratio a/ λx = 0.05, while the 3D wall has an additional wave in the spanwise direction with a/ λy = 0.1. The flow was characterized at Re = 4000 and 40000, based on the bulk velocity and the channel half height. The walls have amplitude to boundary layer thickness ratio a /δ99 0 . 1 and resemble large-scale and geophysical-like roughnesses found in rivers and natural terrain. Instantaneous velocity fields and time-averaged turbulence quantities reveal strong coupling between large-scale topography and the turbulence dynamics near the wall, and the presence of a well-structured shear layer that enhances the turbulence for both walls. However, the 3D wall exhibits spanwise flow that is thought to be responsible for distinctive flow features, including comparatively reduced spanwise vorticity and decreased turbulence levels. Further insight is drawn in the developed and developing regions through proper orthogonal decomposition and quadrant analysis.

  3. Coupling between roughness and freestream acceleration in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Yuan, Junlin; Piomelli, Ugo

    2015-11-01

    To explain various rough-wall flow responses to different types of free-stream conditions previously observed, we carried out a direct numerical simulation of a spatially developing turbulent boundary layer with freestream acceleration. Unlike the equilibrium (self-similar) accelerating scenario, where a strong acceleration leads to complete laminarization and lower friction, in the present non-equilibrium case the friction coefficient increases with acceleration, due to the faster near-wall acceleration than that of the freestream. At the same time, roughness reduces the near-wall time scale of the turbulence, preventing the acceleration from linearly stretching the near-wall eddies and freezing the turbulence intensity as in the smooth case. In addition, acceleration leads to similar decrease of mean-velocity logarithmic slope on rough and smooth walls; this allows a clear definition of the roughness function in a local sense. Interestingly, this roughness function correlates with the roughness Reynolds number in the same way as in self-similar or non-accelerating flows. This study may also help develop benchmark cases for evaluating rough-wall treatments for industrial turbulence models.

  4. Small particle transport across turbulent nonisothermal boundary layers

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Fernandez De La Mora, J.

    1982-01-01

    The interaction between turbulent diffusion, Brownian diffusion, and particle thermophoresis in the limit of vanishing particle inertial effects is quantitatively modeled for applications in gas turbines. The model is initiated with consideration of the particle phase mass conservation equation for a two-dimensional boundary layer, including the thermophoretic flux term directed toward the cold wall. A formalism of a turbulent flow near a flat plate in a heat transfer problem is adopted, and variable property effects are neglected. Attention is given to the limit of very large Schmidt numbers and the particle concentration depletion outside of the Brownian sublayer. It is concluded that, in the parameter range of interest, thermophoresis augments the high Schmidt number mass-transfer coefficient by a factor equal to the product of the outer sink and the thermophoretic suction.

  5. Turbulent thermal boundary layer on a permeable flat plate

    SciTech Connect

    Vigdorovich, I. I.

    2007-06-15

    Scaling laws are established for the profiles of temperature, turbulent heat flux, rms temperature fluctuation, and wall heat transfer in the turbulent boundary layer on a flat plate with transpiration. In the case of blowing, the temperature distribution represented in scaling variables outside the viscous sublayer has a universal form known from experimental data for flows over impermeable flat plates. In the case of suction, the temperature distribution is described by a one-parameter family of curves. A universal law of heat transfer having the form of a generalized Reynolds analogy provides a basis for representation of the heat flux distributions corresponding to different Reynolds numbers and transpiration velocities in terms of a function of one variable. The results are obtained without invoking any special closure hypotheses.

  6. Heterogeneous evaporation across a turbulent internal boundary layer

    NASA Astrophysics Data System (ADS)

    Shahraeeni, Ebrahim; Vanderborght, Jan; Vereecken, Harry

    2014-05-01

    In local evaporation from sufficiently uniform and large surfaces, horizontal advection close to the changes in surface condition is not significant. Under natural condition, this assumption is often invalid and horizontal inhomogeneity is important. When partially saturated air flows from a uniform dry land surface over a wet surface, all lower boundary conditions of transport equations change abruptly. Also surface humidity and roughness are likely to be different from their upwind values. Due to these changes, the velocity profile and turbulence structure of the airflow must readjust. The vertical profiles are no longer in equilibrium and the horizontal gradients do not equal to zero. When there is more than one of these changes in the domain of interest, the interaction between different patches with a contrast in roughness, temperature or surface water content is also important. Rigorous experimental and numerical analysis of turbulent transfer of mass and momentum in the so-called internal boundary layer (the region affected by such step changes in surface condition) is the aim of this work. A combination of numerical simulations using in-house codes and commercial softwares and experimental measurements in the environmental wind tunnel is performed. We are specifically interested in correct depiction of roughness, in a more accurate representation of the turbulent velocity profile and in a better description of turbulent diffusion close to the interface. A series of simplifying assumptions in the classical representation of this problem are investigated and a sensitivity analysis is performed to identify the contribution of neglected terms. We are also interested in the parameterization of the heat and mass exchange processes for the case with different wet patches in a background of dry soil, which is of interest in several field scale applications.

  7. Manipulation of Turbulent Boundary Layers Using Synthetic Jets

    NASA Astrophysics Data System (ADS)

    Berger, Zachary; Gomit, Guillaume; Lavoie, Philippe; Ganapathisubramani, Bharath

    2015-11-01

    This work focuses on the application of active flow control, in the form of synthetic jet actuators, of turbulent boundary layers. An array of 2 synthetic jets are oriented in the spanwise direction and located approximately 2.7 meters downstream from the leading edge of a flat plate. Actuation is applied perpendicular to the surface of the flat plate with varying blowing ratios and reduced frequencies (open-loop). Two-component large window particle image velocimetry (PIV) was performed at the University of Southampton, in the streamwise-wall-normal plane. Complementary stereo PIV measurements were performed at the University of Toronto Institute for Aerospace Studies (UTIAS), in the spanwise-wall-normal plane. The freestream Reynolds number is 3x104, based on the boundary layer thickness. The skin friction Reynolds number is 1,200 based on the skin friction velocity. The experiments at Southampton allow for the observation of the control effects as the flow propagates downstream. The experiments at UTIAS allow for the observation of the streamwise vorticity induced from the actuation. Overall the two experiments provide a 3D representation of the flow field with respect to actuation effects. The current work focuses on the comparison of the two experiments, as well as the effects of varying blowing ratios and reduced frequencies on the turbulent boundary layer. Funded Supported by Airbus.

  8. Turbulence and mixing in the stable atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Yagüe, C.; Morales, G.; Terradellas, E.; Cuxart, J.

    2003-04-01

    Transport and mixing in the Stable Atmospheric Boundary Layer is not well understood yet. However this is an important feature in atmospheric pollution as well as in other environmental studies. A Stable Atmospheric Boundary Layer Experiment in Spain (SABLES98) took place from the 10th to the 28th of September 1998. Two masts (100 m and 10 m) were instrumented with five sonic anemometers, 14 thermocouples, 8 cup anemometers, vanes,radiometers, etc. In addition, a sodar, a tethered balloon and a triangular array of cup anemometers were operating during the campaign. The experiment showed three different regimes, being specially interesting the one between 14th and 21st of September where stable and very stable conditions were present. In this work we present the behaviour of turbulent and stability parameters at several heights. The different evolutions of the Nocturnal Boundary Layer and the main parameters that controle its behaviour are discussed.The influence of internal gravity waves and their interaction with turbulence is also studied using wavelets.

  9. An analytical model of capped turbulent oscillatory bottom boundary layers

    NASA Astrophysics Data System (ADS)

    Shimizu, Kenji

    2010-03-01

    An analytical model of capped turbulent oscillatory bottom boundary layers (BBLs) is proposed using eddy viscosity of a quadratic form. The common definition of friction velocity based on maximum bottom shear stress is found unsatisfactory for BBLs under rotating flows, and a possible extension based on turbulent kinetic energy balance is proposed. The model solutions show that the flow may slip at the top of the boundary layer due to capping by the water surface or stratification, reducing the bottom shear stress, and that the Earth's rotation induces current and bottom shear stress components perpendicular to the interior flow with a phase lag (or lead). Comparisons with field and numerical experiments indicate that the model predicts the essential characteristics of the velocity profiles, although the agreement is rather qualitative due to assumptions of quadratic eddy viscosity with time-independent friction velocity and a well-mixed boundary layer. On the other hand, the predicted linear friction coefficients, phase lead, and veering angle at the bottom agreed with available data with an error of 3%-10%, 5°-10°, and 5°-10°, respectively. As an application of the model, the friction coefficients are used to calculate e-folding decay distances of progressive internal waves with a semidiurnal frequency.

  10. Compressible turbulent channel flow with impedance boundary conditions

    NASA Astrophysics Data System (ADS)

    Scalo, Carlo; Bodart, Julien; Lele, Sanjiva

    2014-11-01

    We have performed large-eddy simulations of compressible turbulent channel flow at one bulk Reynolds number, Reb = 6900, for bulk Mach numbers Mb = 0.05, 0.2, 0.5, with linear acoustic impedance boundary conditions (IBCs). The IBCs are formulated in the time domain following Fung and Ju (2004) and coupled with a Navier-Stokes solver. The impedance model adopted is a three-parameter Helmholtz oscillator with resonant frequency tuned to the outer layer eddies. The IBC's resistance, R, has been varied in the range, R = 0.01, 0.10, 1.00. Tuned IBCs result in a noticeable drag increase for sufficiently high Mb and/or low R, exceeding 300% for Mb = 0.5 and R = 0.01, and thus represents a promising passive control technique for delaying boundary layer separation and/or enhancing wall heat transfer. Alterations to the turbulent flow structure are confined to the first 15% of the boundary layer thickness where the classical buffer-layer coherent vortical structures are replaced by an array of Kelvin-Helmholtz-like rollers. The non-zero asymptotic value of the Reynolds shear stress gradient at the wall results in the disappearance of the viscous sublayer and very early departure of the mean velocity profiles from the law of the wall.

  11. Deformation of the turbulent/non-turbulent interface by large-scale motions in boundary layers

    NASA Astrophysics Data System (ADS)

    Lee, Jin; Sung, Hyung Jin; Zaki, Tamer A.

    2014-11-01

    The relationship between large-scale motions (LSMs) and the shape of the turbulent/non-turbulent interface (TNTI) is examined using data from direct numerical simulation (DNS) of turbulent boundary layer (TBL) flow. The Reynolds number based on the momentum thickness and the free-stream velocity ranges from 1180 to 3500. Feature extraction techniques are used to identify cores of the large-scale motions in the perturbation fields. Since turbulence kinetic energy and enstrophy are different inside low- and high-speed LSMs, the wall-normal elevation of TNTI is correlated with the streamwise momentum of these structures. The large-scale crests and troughs of TNTI are matched to the locations of the wall-detached LSMs of low- and high-speed streaks, respectively. In addition, abrupt changes in turbulence statistics across the TNTI reported in previous studies are associated with population trends of the wall-detached LSMs near the TNTI. This work was supported by the Creative Research Initiatives (No. 2014-001493) program of the National Research Foundation of Korea (MSIP).

  12. Boundary-layer turbulence modeling and vorticity dynamics: I. A kangaroo-process mixing model of boundary-layer turbulence

    NASA Astrophysics Data System (ADS)

    Dekker, H.; de Leeuw, G.; van den Brink, A. Maassen

    A nonlocal turbulence transport theory is presented by means of a novel analysis of the Reynolds stress, inter alia involving the construct of a sample path space and a stochastic hypothesis. An analytical sampling rate model (satisfying exchange) and a nonlinear scaling relation (mapping the path space onto the boundary layer) lead to an integro-differential equation for the mixing of scalar densities, which represents fully-developed boundary-layer turbulence as a nondiffusive (Kubo-Anderson or kangaroo) type stochastic process. The underlying near-wall behavior (i.e. for y +→0) of fluctuating velocities fully agrees with recent direct numerical simulations. The model involves a scaling exponent ɛ, with ɛ→∞ in the diffusion limit. For the (partly analytical) solution for the mean velocity profile, excellent agreement with the experimental data yields ɛ≈0.58. The significance of ɛ as a turbulence Cantor set dimension (in the logarithmic profile region, i.e. for y +→∞) is discussed.

  13. Modelling wall pressure fluctuations under a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Doisy, Yves

    2017-07-01

    The derivation of the wave vector-frequency (w-f) spectrum of wall pressure fluctuations below a turbulent boundary layer developed over a rigid flat plate is re-considered. The Lighthill's equation for pressure fluctuations is derived in a frame of reference fix with respect to the plate, at low Mach numbers, and transformed into the convected frame moving with the flow. To model the source terms of the Lighthill equation, it is assumed that in the inertial range, the turbulence is locally isotropic in the convected frame. The w-f spectrum of isotropic turbulence is obtained from symmetry considerations by extending the isotropy to space time, based on the concept of sweeping velocity. The resulting solution for the pressure w-f spectrum contains a term (the mean shear-turbulence term) which does not fulfill the Kraichnan Philipps theorem, due to the form of the selected turbulent velocity spectrum. The viscous effects are accounted for by a cut-off depending on wall distance; this procedure allows extending the model beyond the inertial range contribution. The w-f pressure spectrum is derived and compared to the experimental low wavenumber data of Farabee and Geib (1991) [8] and Bonness et al. (2010) [5], for which a good agreement is obtained. The derived expression is also compared to Chase theoretical model Chase (1987) [6] and found to agree well in the vicinity of the convective ridge of the subsonic domain and to differ significantly both in supersonic and subsonic low wavenumber limits. The pressure spectrum derived from the model and its scaling are discussed and compared to experimental data and to the empirical model of Goody (2002) [23], which results from the compilation of a large set of experimental data. Very good agreement is obtained, except at vanishing frequencies where it is claimed that the experimental results lack of significance due to the limited size of the experimental facilities. This hypothesis supported by the results obtained from

  14. Turbulent flux events in a nearly neutral atmospheric boundary layer.

    PubMed

    Narasimha, Roddam; Kumar, S Rudra; Prabhu, A; Kailas, S V

    2007-03-15

    We propose here a novel method of analysing turbulent momentum flux signals. The data for the analysis come from a nearly neutral atmospheric boundary layer and are taken at a height of 4m above ground corresponding to 1.1 x 10(5) wall units, within the log layer for the mean velocity. The method of analysis involves examining the instantaneous flux profiles that exceed a given threshold, for which an optimum value is found to be 1 s.d. of the flux signal. It is found feasible to identify normalized flux variation signatures separately for positive and negative 'flux events'-the sign being determined by that of the flux itself. Using these signatures, the flux signal is transformed to one of events characterized by the time of occurrence, duration and intensity. It is also found that both the average duration and the average time-interval between successive events are of order 1s, about four orders of magnitude higher than a wall unit in time. This episodic description of the turbulence flux in the time domain enables us to identify separately productive, counter-productive and idle periods (accounting, respectively, for 36, 15 and 49% of the time), taking as criterion the generation of the momentum flux. A 'burstiness' index of 0.72 is found for the data. Comparison with laboratory data indicates higher (/lower) ejection (/sweep) quadrant occupancy but lower (/higher) contributions to flux from the ejection (/sweep) quadrant at the high Reynolds numbers of the atmospheric boundary layer. Possible connections with the concept of active and passive motion in a turbulent boundary layer are briefly discussed.

  15. Spherical bubble motion in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Felton, Keith; Loth, Eric

    2001-09-01

    Monodisperse dilute suspensions of spherical air bubbles in a tap-water turbulent vertical boundary layer were experimentally studied to note their motion and distribution. Bubbles with diameters of 0.37-1.2 mm were injected at various transverse wall-positions for free-stream velocities between 0.4 and 0.9 m/s. The bubbles were released from a single injector at very low frequencies such that two-way coupling and bubble-bubble interaction were negligible. The experimental diagnostics included ensemble-averaged planar laser intensity profiles for bubble concentration distribution, as well as Cinematic Particle Image Velocimetry with bubble tracking for bubble hydrodynamic forces. A variety of void distributions within the boundary layer were found. For example, there was a tendency for bubbles to collect along the wall for higher Stokes number conditions, while the lower Stokes number conditions produced Gaussian-type profiles throughout the boundary layer. In addition, three types of bubble trajectories were observed—sliding bubbles, bouncing bubbles, and free-dispersion bubbles. Instantaneous liquid forces acting on individual bubbles in the turbulent flow were also obtained to provide the drag and lift coefficients (with notable experimental uncertainty). These results indicate that drag coefficient decreases with increasing Reynolds number as is conventionally expected but variations were observed. In general, the instantaneous drag coefficient (for constant bubble Reynolds number) tended to be reduced as the turbulence intensity increased. The averaged lift coefficient is higher than that given by inviscid theory (and sometimes even that of creeping flow theory) and tends to decrease with increasing bubble Reynolds number.

  16. Injection-induced turbulence in stagnation-point boundary layers

    NASA Astrophysics Data System (ADS)

    Park, C.

    1984-02-01

    A theory is developed for the stagnation point boundary layer with injection under the hypothesis that turbulence is produced at the wall by injection. From the existing experimental heat transfer rate data obtained in wind tunnels, the wall mixing length is deduced to be a product of a time constant and an injection velocity. The theory reproduces the observed increase in heat transfer rates at high injection rates. For graphite and carbon-carbon composite, the time constant is determined to be 0.0002 sec from the existing ablation data taken in an arc-jet tunnel and a balistic range.

  17. Injection-induced turbulence in stagnation-point boundary layers

    NASA Technical Reports Server (NTRS)

    Park, C.

    1984-01-01

    A theory is developed for the stagnation point boundary layer with injection under the hypothesis that turbulence is produced at the wall by injection. From the existing experimental heat transfer rate data obtained in wind tunnels, the wall mixing length is deduced to be a product of a time constant and an injection velocity. The theory reproduces the observed increase in heat transfer rates at high injection rates. For graphite and carbon-carbon composite, the time constant is determined to be 0.0002 sec from the existing ablation data taken in an arc-jet tunnel and a balistic range.

  18. Effect of compliant wall motion on turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Hefner, J. N.; Ash, R. L.

    1977-01-01

    A critical analysis of available compliant wall data which indicated drag reduction under turbulent boundary layers is presented. Detailed structural dynamic calculations suggest that the surfaces responded in a resonant, rather than a compliant, manner. Alternate explanations are given for drag reductions observed in two classes of experiments: (1) flexible pipe flows and (2) water-backed membranes in air. Analysis indicates that the wall motion for the remaining data is typified by short wavelengths in agreement with the requirements of a possible compliant wall drag reduction mechanism recently suggested by Langley.

  19. Turbulent boundary-layer control with plasma actuators.

    PubMed

    Choi, Kwing-So; Jukes, Timothy; Whalley, Richard

    2011-04-13

    This paper reviews turbulent boundary-layer control strategies for skin-friction reduction of aerodynamic bodies. The focus is placed on the drag-reduction mechanisms by two flow control techniques-spanwise oscillation and spanwise travelling wave, which were demonstrated to give up to 45 per cent skin-friction reductions. We show that these techniques can be implemented by dielectric-barrier discharge plasma actuators, which are electric devices that do not require any moving parts or complicated ducting. The experimental results show different modifications to the near-wall structures depending on the control technique.

  20. Kubo-Anderson Mixing in the Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Dekker, H.; de Leeuw, G.; Brink, A. Maassen Van Den

    A novel ab initio analysis of the Reynolds stress is presented in order to model non-local turbulence transport. The theory involves a sample path space and a stochastic hypothesis. A scaling relation maps the path space onto the boundary layer. Analytical sampling rates are shown to model mixing by exchange. Nonlocal mixing involves a scaling exponent ɛ≈0.58 (ɛ→∞ in the diffusion limit). The resulting transport equation represents a nondiffusive (Kubo-Anderson or kangaroo) type stochastic process.

  1. Thermodynamic and Turbulence Characteristics of the Southern Great Plains Nocturnal Boundary Layer Under Differing Turbulent Regimes

    NASA Astrophysics Data System (ADS)

    Bonin, Timothy A.; Blumberg, William G.; Klein, Petra M.; Chilson, Phillip B.

    2015-12-01

    The nocturnal stable boundary layer (SBL) can generally be classified into the weakly stable boundary layer (wSBL) and very stable boundary layer (vSBL). Within the wSBL, turbulence is relatively continuous, whereas in the vSBL, turbulence is intermittent and not well characterized. Differentiating characteristics of each type of SBL are still unknown. Herein, thermodynamic and kinematic data collected by a suite of instruments in north central Oklahoma in autumn 2012 are analyzed to better understand both SBL regimes and their differentiating characteristics. Many low-level jets were observed during the experiment, as it took place near a climatological maximum. A threshold wind speed, above which bulk shear-generated turbulence develops, is found to exist up to 300 m. The threshold wind speed must also be exceeded at lower heights (down to the surface) in order for strong turbulence to develop. Composite profiles, which are normalized using low-level jet scaling, of potential temperature, wind speed, vertical velocity variance, and the third-order moment of vertical velocity (overline{w'^3}) are produced for weak and moderate/strong turbulence regimes, which exhibit features of the vSBL and wSBL, respectively. Within the wSBL, turbulence is generated at the surface and transported upward. In the vSBL, values of vertical velocity variance are small throughout the entire boundary layer, likely due to the fact that a strong surface inversion typically forms after sunset. The temperature profile tends to be approximately isothermal in the lowest portions of the wSBL, and it did not substantially change over the night. Within both types of SBL, stability in the residual layer tends to increase as the night progresses. It is thought that this stability increase is due to differential warm air advection, which frequently occurs in the southern Great Plains when southerly low-level jets and a typical north-south temperature gradient are present. Differential radiative

  2. Temporal and Spatial Evolution Characteristics of Disturbance Wave in a Hypersonic Boundary Layer due to Single-Frequency Entropy Disturbance

    PubMed Central

    Lv, Hongqing; Shi, Jianqiang

    2014-01-01

    By using a high-order accurate finite difference scheme, direct numerical simulation of hypersonic flow over an 8° half-wedge-angle blunt wedge under freestream single-frequency entropy disturbance is conducted; the generation and the temporal and spatial nonlinear evolution of boundary layer disturbance waves are investigated. Results show that, under the freestream single-frequency entropy disturbance, the entropy state of boundary layer is changed sharply and the disturbance waves within a certain frequency range are induced in the boundary layer. Furthermore, the amplitudes of disturbance waves in the period phase are larger than that in the response phase and ablation phase and the frequency range in the boundary layer in the period phase is narrower than that in these two phases. In addition, the mode competition, dominant mode transformation, and disturbance energy transfer exist among different modes both in temporal and in spatial evolution. The mode competition changes the characteristics of nonlinear evolution of the unstable waves in the boundary layer. The development of the most unstable mode along streamwise relies more on the motivation of disturbance waves in the upstream than that of other modes on this motivation. PMID:25143983

  3. Temporal and spatial evolution characteristics of disturbance wave in a hypersonic boundary layer due to single-frequency entropy disturbance.

    PubMed

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing; Shi, Jianqiang

    2014-01-01

    By using a high-order accurate finite difference scheme, direct numerical simulation of hypersonic flow over an 8° half-wedge-angle blunt wedge under freestream single-frequency entropy disturbance is conducted; the generation and the temporal and spatial nonlinear evolution of boundary layer disturbance waves are investigated. Results show that, under the freestream single-frequency entropy disturbance, the entropy state of boundary layer is changed sharply and the disturbance waves within a certain frequency range are induced in the boundary layer. Furthermore, the amplitudes of disturbance waves in the period phase are larger than that in the response phase and ablation phase and the frequency range in the boundary layer in the period phase is narrower than that in these two phases. In addition, the mode competition, dominant mode transformation, and disturbance energy transfer exist among different modes both in temporal and in spatial evolution. The mode competition changes the characteristics of nonlinear evolution of the unstable waves in the boundary layer. The development of the most unstable mode along streamwise relies more on the motivation of disturbance waves in the upstream than that of other modes on this motivation.

  4. Optimal control of wind turbines in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Yilmaz, Ali Emre; Meyers, Johan

    2016-11-01

    In recent years, optimal control theory was combined with large-eddy simulations to study the optimal control of wind farms and their interaction with the atmospheric boundary layer. The individual turbine's induction factors were dynamically controlled in time with the aim of increasing overall power extraction. In these studies, wind turbines were represented using an actuator disk method. In the current work, we focus on optimal control on a much finer mesh (and a smaller computational domain), representing turbines with an actuator line method. Similar to Refs., optimization is performed using a gradient-based method, and gradients are obtained employing an adjoint formulation. Different cases are investigated, that include a single and a double turbine case both with uniform inflow, and with turbulent-boundary-layer inflow. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  5. Temporally optimized spanwise vorticity sensor measurements in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Morrill-Winter, C.; Klewicki, J.; Baidya, R.; Marusic, I.

    2015-12-01

    Multi-element hot-wire anemometry was used to measure spanwise vorticity fluctuations in turbulent boundary layers. Smooth wall boundary layer profiles, with very good spatial and temporal resolution, were acquired over a Kármán number range of 2000-12,700 at the Melbourne Wind Tunnel at the University of Melbourne and the University of New Hampshire's Flow Physics Facility. A custom hot-wire probe was necessary to simultaneously obtain velocity and spanwise vorticity measurements centered at a fixed point in space. A custom calibration/processing scheme was developed to utilize single-wall-parallel wires to optimize the accuracy of the measured wall-normal velocity fluctuations derived from the sensor's ×-array.

  6. Turbulent boundary layer under the control of different schemes

    NASA Astrophysics Data System (ADS)

    Qiao, Z. X.; Zhou, Y.; Wu, Z.

    2017-06-01

    This work explores experimentally the control of a turbulent boundary layer over a flat plate based on wall perturbation generated by piezo-ceramic actuators. Different schemes are investigated, including the feed-forward, the feedback, and the combined feed-forward and feedback strategies, with a view to suppressing the near-wall high-speed events and hence reducing skin friction drag. While the strategies may achieve a local maximum drag reduction slightly less than their counterpart of the open-loop control, the corresponding duty cycles are substantially reduced when compared with that of the open-loop control. The results suggest a good potential to cut down the input energy under these control strategies. The fluctuating velocity, spectra, Taylor microscale and mean energy dissipation are measured across the boundary layer with and without control and, based on the measurements, the flow mechanism behind the control is proposed.

  7. Crossing shock wave-turbulent boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Narayanswami, N.; Knight, D. D.; Bogdonoff, S. M.; Horstman, C. C.

    1991-01-01

    Three-dimensional interactions between crossing shock waves generated by symmetric sharp fins and a turbulent boundary layer on a flat plate are investigated experimentally and theoretically at Mach number 2.95 and freestream unit Reynolds number 1.96 x 10 to the 7th/ft. The incoming boundary layer has a thickness of 4 mm at the location of the fin leading edges. A comparison of experimental and computational results for two sets of fin angles (11 x 11 and 9 x 9 deg) shows general agreement with regard to surface pressure measurements and surface streamline patterns. The principal feature of the streamline structure is a collision of counterrotating vortical structures emanating from near the fin leading edges and meeting at the geometric centerline of the interaction.

  8. Investigation of the temperature field in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Byers, Clayton; Hultmark, Marcus

    2015-11-01

    The scaling and evolution of a developing turbulent thermal boundary layer is investigated. By allowing the temperature differences in the fluid to remain small enough to treat temperature as a passive scalar, the analysis can be extended to any turbulent convection/diffusion problem. Mean temperature scaling is developed and analyzed by utilizing the ``Asymptotic Invariance Principle'' developed by George and Castillo (1997). Possible effects of the Reynolds and Prandtl number are discussed. The derived power law solution for the inner and outer scaling is then used to develop a ``heat transfer law'' for the wall heat flux, qw. Data collection is performed with a newly developed MEMS sensor, allowing improved performance and reduced spatial and temporal filtering of the signal. Integration with a PIV system will allow direct measurements of the turbulent heat flux - θv to investigate the extent of the overlap layer and validity of the proposed scaling laws. Temperature variance 1/2 θ2 will also be investigated, with a possible scaling proposed.

  9. Influence of transverse surface waves on turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.; Ash, R. L.; Cary, A. M., Jr.; Bushnell, D. M.

    1977-01-01

    Wavy wall experiments using solid waves and progressive waves have been reported. For this paper, the major effects of waviness of the wall on the flow are identified as due to oscillatory curvature (convex-concavity) and oscillatory acceleration/deceleration of the flow, which imposes a highly nonequilibrium influence upon the turbulence structure. The theoretical analysis in this presentation takes into account proper turbulence modeling (including the nonequilibrium effects) for the wavy wall problem. The analysis proceeds in three stages: (1) inviscid solution for induced pressure due to the physical wall, (2) solution of a turbulent boundary layer with pressure gradients and curvature effects in the modeling from which the profile correction is computed, and (3) induced pressure computations for the corrected profile. The phase shift of pressure perturbations with respect to the physical wall can be predicted, and pressure drag and skin friction drag can be estimated, with nonlinear viscous effects included. Comparison of the theoretical estimates with experimental data are also presented.

  10. Heavy Particle Transport in the Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Richter, D. H.

    2016-12-01

    To describe the emission and transport of dust in the atmosphere, assumptions must typically be made in order to connect the micro-scale emission and saltation process with the larger-scale atmospheric uptake and turbulent flux. In the context of numerical models, this can be thought of as the transport process which occurs between the domain bottom and the first vertical grid point. For example, in the limit of small particles (both low inertia and low settling velocity), theory built upon Monin-Obukhov similarity has proven effective in relating mean dust concentration profiles to surface emission fluxes. For increasing particle mass, however, it becomes more difficult to represent dust transport as a simple extension of the transport of a passive scalar due to issues such as the crossing trajectories effect. This study focuses specifically on the problem of large particle transport and dispersion in the turbulent boundary layer by utilizing direct numerical simulations with Lagrangian point-particle tracking to determine under what, if any, conditions the large particles can be described in a simplified Eulerian framework such as Monin-Obukhov similarity theory. In particular, results will be presented detailing the independent contributions of both particle inertia and particle settling velocity relative to the strength of the surrounding turbulent flow.

  11. Direct route to turbulence in a rotating boundary layer

    NASA Astrophysics Data System (ADS)

    Viaud, Bertrand; Serre, Eric; Chomaz, Jean-Marc

    2010-11-01

    The transition to turbulence in a rotating boundary layer is analysed via DNS in an annular cavity made of two parallel co-rotating disks of finite radial extent, fed by a forced inflow at the hub. A former investigation [Viaud et al. JFM 2008] has established the existence of a primary subcritical bifurcation to nonlinear global mode with angular phase velocity and radial envelop coherent with the so-called elephant mode theory. When the Reynolds number based on the forced throughflow is increased above a threshold value for the existence of the nonlinear global mode, a large amplitude impulsive perturbation gives rise to a self-sustained saturated wave which is itself globally unstable. A second front appears in the lee of the primary where small-scale instability develops with characteristics indicating a Floquet mode of zero azimuthal wavenumber. This secondary instability leads to a very disorganized state, defining transition to turbulence. This transition, linked to the secondary instability of a global mode, confirms for the first time on a real flow the possibility of a direct transition to turbulence through an elephant cascade, a scenario up to now only observed on the Ginzburg--Landau model. Further work investigates the sensitivity of this scenario to environmental parameters, namely the streamwise extent of the flow, the incoming noise level, or the amplitude of the initial perturbation.

  12. The influence of free-stream turbulence on separation of turbulent boundary layers in incompressible, two-dimensional flow

    NASA Technical Reports Server (NTRS)

    Potter, J. Leith; Barnett, R. Joel; Fisher, Carl E.; Koukousakis, Costas E.

    1986-01-01

    Experiments were conducted to determine if free-stream turbulence scale affects separation of turbulent boundary layers. In consideration of possible interrelation between scale and intensity of turbulence, the latter characteristic also was varied and its role was evaluated. Flow over a 2-dimensional airfoil in a subsonic wind tunnel was studied with the aid of hot-wire anemometry, liquid-film flow visualization, a Preston tube, and static pressure measurements. Profiles of velocity, relative turbulence intensity, and integral scale in the boundary layer were measured. Detachment boundary was determined for various angles of attack and free-stream turbulence. The free-stream turbulence intensity and scale were found to spread into the entire turbulent boundary layer, but the effect decreased as the airfoil surface was approached. When the changes in stream turbulence were such that the boundary layer velocity profiles were unchanged, detachment location was not significantly affected by the variations of intensity and scale. Pressure distribution remained the key factor in determining detachment location.

  13. Hypersonic Wind Tunnels: Latest Citations from the Aerospace Database

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, construction, operation, performance, and use of hypersonic wind tunnels. References cover the design of flow nozzles, diffusers, test sections, and ejectors for tunnels driven by compressed air, high-pressure gases, or cryogenic liquids. Methods for flow calibration, boundary layer control, local and freestream turbulence reduction, and force measurement are discussed. Intrusive and non-intrusive instrumentation, sources of measurement error, and measurement corrections are also covered. The citations also include the testing of inlets, nozzles, airfoils, and other components of hypersonic aerospace vehicles. Comprehensive coverage of supersonic and blowdown wind tunnels, and force balance systems for wind tunnels are covered in separate bibliographies.

  14. Multi-Exciter Vibroacoustic Simulation of Hypersonic Flight Vibration

    SciTech Connect

    GREGORY,DANNY LYNN; CAP,JEROME S.; TOGAMI,THOMAS C.; NUSSER,MICHAEL A.; HOLLINGSHEAD,JAMES RONALD

    1999-11-11

    Many aerospace structures must survive severe high frequency, hypersonic, random vibration during their flights. The random vibrations are generated by the turbulent boundary layer developed along the exterior of the structures during flight. These environments have not been simulated very well in the past using a fixed-based, single exciter input with an upper frequency range of 2 kHz. This study investigates the possibility of using acoustic ardor independently controlled multiple exciters to more accurately simulate hypersonic flight vibration. The test configuration, equipment, and methodology are described. Comparisons with actual flight measurements and previous single exciter simulations are also presented.

  15. Demonstration of a laser vorticity probe in turbulent boundary layers

    SciTech Connect

    Su, W-J.; Stepaniuk, V.; Oetuegen, M. V.

    2007-09-15

    A laser-based probe for the nonintrusive measurement of velocity gradient and vorticity was demonstrated in turbulent boundary layers. Unlike most other optical methods, the current technique provides an estimate of the velocity gradient, without having to first measure velocity at multiple points. The measurement principle is based on the heterodyne of coherent light scattered from two adjacent particles. The beat frequency of the heterodyne is directly proportional to the velocity gradient. The probe is assembled from commercially available, inexpensive optical components. A laser Doppler velocimeter (LDV) processor is used to analyze the heterodyne signal. A component of vorticity is obtained by using two appropriately aligned velocity gradient probes. The optical probes developed were used in turbulent boundary layers to measure local, time-frozen velocity gradients {partial_derivative}u/{partial_derivative}y, {partial_derivative}v/{partial_derivative}x, and {partial_derivative}v/{partial_derivative}y, as well as the spanwise vorticity. The measurements were compared to those inferred from LDV measurements in the same facility and to data available in the literature.

  16. Velocity-vorticity correlation structures in compressible turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Li, Shi-Yao; She, Zhen-Su

    2016-11-01

    A velocity-vorticity correlation structure (VVCS) analysis is applied to analyze data of 3-dimensional (3-D) direct numerical simulations (DNS), to investigate the quantitative properties of the most correlated vortex structures in compressible turbulent boundary layer (CTBL) at Mach numbers, Ma = 2 . 25 and 6 . 0 . It is found that the geometry variation of the VVCS closely reflects the streamwise development of CTBL. In laminar region, the VVCS captures the instability wave number of the boundary layer. The transition region displays a distinct scaling change of the dimensions of VVCS. The developed turbulence region is characterized by a constant spatial extension of the VVCS. For various Mach numbers, the maximum correlation coefficient of the VVCS presents a clear multi-layer structure with the same scaling laws as a recent symmetry analysis proposed to quantifying the sublayer, the log-layer, and the wake flow. A surprising discovery is that the wall friction coefficient, Cf, holds a "-1"-power law of the wall normal distance of the VVCS, ys. This validates the speculation that the wall friction is determined by the near-wall coherent structure, which clarifies the correlation between statistical structures and the near-wall dynamics. Project 11452002 and 11172006 supported by National Natural Science Foundation of China.

  17. Entropy generation in the viscous parts of turbulent boundary layers

    SciTech Connect

    Donald M. McEligot; Edmund J. Walsh; Eckart Laurien; Philippe R. Spalart

    2008-06-01

    The local (pointwise) entropy generation rate per unit volume S is a key to improving many energy processes and applications. Consequently, in the present study, the objectives are to examine the effects of Reynolds number and favorable streamwise pressure gradients on entropy generation rates across turbulent boundary layers on flat plates and—secondarily—to assess a popular approximate technique for their evaluation. About two-thirds or more of the entropy generation occurs in the viscous part, known as the viscous layer. Fundamental new results for entropy generation in turbulent boundary layers are provided by extending available direct numerical simulations. It was found that, with negligible pressure gradients, results presented in wall coordinates are predicted to be near “universal” in the viscous layer. This apparent universality disappears when a significant pressure gradient is applied; increasing the pressure gradient decreases the entropy generation rate. Within the viscous layer, the approximate evaluation of S differs significantly from the “proper” value but its integral, the entropy generation rate per unit surface area S, agrees within 5% at its edge.

  18. On the development of turbulent boundary layer with wall transpiration

    NASA Astrophysics Data System (ADS)

    Ferro, Marco; Downs, Robert S., III; Fallenius, Bengt E. G.; Fransson, Jens H. M.

    2015-11-01

    An experimental study of the development of the transpired boundary layer in zero pressure gradient is carried out on a 6.4 m long hydrodynamically smooth and perforated plate. The relatively longer development length of the present perforated plate compared to the ones used in previous studies allows us to investigate whether an asymptotic suction boundary layer with constant thickness is achieved for the turbulent state, analogously to what happens in the laminar state. Velocity profiles are obtained via hot-wire anemometry while the wall shear stress is measured at several streamwise locations with hot-film and wall-wire probes as well as with oil-film interferometry. The threshold suction coefficient above which relaminarization starts to occur is examined. The scaling of the mean velocity and of higher order velocity moments is discussed in light of the measured wall shear stress data. Support from the European Research Council of the Advanced Fluid Research On Drag reduction in Turbulence Experiments (AFRODITE) is acknowledged.

  19. Demonstration of a laser vorticity probe in turbulent boundary layers.

    PubMed

    Su, W-J; Stepaniuk, V; Otügen, M V

    2007-09-01

    A laser-based probe for the nonintrusive measurement of velocity gradient and vorticity was demonstrated in turbulent boundary layers. Unlike most other optical methods, the current technique provides an estimate of the velocity gradient, without having to first measure velocity at multiple points. The measurement principle is based on the heterodyne of coherent light scattered from two adjacent particles. The beat frequency of the heterodyne is directly proportional to the velocity gradient. The probe is assembled from commercially available, inexpensive optical components. A laser Doppler velocimeter (LDV) processor is used to analyze the heterodyne signal. A component of vorticity is obtained by using two appropriately aligned velocity gradient probes. The optical probes developed were used in turbulent boundary layers to measure local, time-frozen velocity gradients partial differential u / partial differential y, partial differential v / partial differential x, and partial differential v / partial differential y, as well as the spanwise vorticity. The measurements were compared to those inferred from LDV measurements in the same facility and to data available in the literature.

  20. Reversing flow development in a separating turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Santos, Leonardo; Lang, Amy; Wahidi, Redha; Bonacci, Andrew

    2016-11-01

    Fast swimming sharks have micro-structures on their skin consisting of bristling scales. These scales are hypothesized to bristle in response to backflow generated from the separated turbulent boundary layer (TBL) in regions of adverse pressure gradient (APG) on the shark body. Vortices are trapped in the cavities between the scales, which induce momentum exchange between the higher momentum fluid in the outer flow and that in the separated region. This momentum exchange causes reattachment of the separated TBL, causing the scales to return to the unbristled location, and the cycle continues. The rows of scales have widths that are comparable to the spanwise length scale of the intermittent backflow patches that appear in the region of incipient detachment of TBLs. In this experimental investigation, correlations between the shark scale's width and the spanwise size of the low backflow streaks are examined, as well as details of the incipient detachment region. The experiments are conducted in a water tunnel facility and the flow field is measured using PIV. Turbulent boundary layers are subjected to an APG via a rotating cylinder. Separated TBLs are investigated on a flat plate. The authors would like to greatfully acknowledge the Army Research Office for funding this project.

  1. Direct numerical simulation of a separated turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Na, Y.; Moin, P.

    1998-09-01

    A separated turbulent boundary layer over a flat plate was investigated by direct numerical simulation of the incompressible Navier Stokes equations. A suction-blowing velocity distribution was prescribed along the upper boundary of the computational domain to create an adverse-to-favourable pressure gradient that produces a closed separation bubble. The Reynolds number based on inlet free-stream velocity and momentum thickness is 300. Neither instantaneous detachment nor reattachment points are fixed in space but fluctuate significantly. The mean detachment and reattachment locations determined by three different definitions, i.e. (i) location of 50% forward flow fraction, (ii) mean dividing streamline ([psi]=0), (iii) location of zero wall-shear stress ([tau]w=0), are in good agreement. Instantaneous vorticity contours show that the turbulent structures emanating upstream of separation move upwards into the shear layer in the detachment region and then turn around the bubble. The locations of the maximum turbulence intensities as well as Reynolds shear stress occur in the middle of the shear layer. In the detached flow region, Reynolds shear stresses and their gradients are large away from the wall and thus the largest pressure fluctuations are in the middle of the shear layer. Iso-surfaces of negative pressure fluctuations which correspond to the core region of the vortices show that large-scale structures grow in the shear layer and agglomerate. They then impinge on the wall and subsequently convect downstream. The characteristic Strouhal number St=f[delta]*in/U0 associated with this motion ranges from 0.0025 to 0.01. The kinetic energy budget in the detachment region is very similar to that of a plane mixing layer.

  2. Lumley decomposition of turbulent boundary layer at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Tutkun, Murat; George, William K.

    2017-02-01

    The decomposition proposed by Lumley in 1966 is applied to a high Reynolds number turbulent boundary layer. The experimental database was created by a hot-wire rake of 143 probes in the Laboratoire de Mécanique de Lille wind tunnel. The Reynolds numbers based on momentum thickness (Reθ) are 9800 and 19 100. Three-dimensional decomposition is performed, namely, proper orthogonal decomposition (POD) in the inhomogeneous and bounded wall-normal direction, Fourier decomposition in the homogeneous spanwise direction, and Fourier decomposition in time. The first POD modes in both cases carry nearly 50% of turbulence kinetic energy when the energy is integrated over Fourier dimensions. The eigenspectra always peak near zero frequency and most of the large scale, energy carrying features are found at the low end of the spectra. The spanwise Fourier mode which has the largest amount of energy is the first spanwise mode and its symmetrical pair. Pre-multiplied eigenspectra have only one distinct peak and it matches the secondary peak observed in the log-layer of pre-multiplied velocity spectra. Energy carrying modes obtained from the POD scale with outer scaling parameters. Full or partial reconstruction of turbulent velocity signal based only on energetic modes or non-energetic modes revealed the behaviour of urms in distinct regions across the boundary layer. When urms is based on energetic reconstruction, there exists (a) an exponential decay from near wall to log-layer, (b) a constant layer through the log-layer, and (c) another exponential decay in the outer region. The non-energetic reconstruction reveals that urms has (a) an exponential decay from the near-wall to the end of log-layer and (b) a constant layer in the outer region. Scaling of urms using the outer parameters is best when both energetic and non-energetic profiles are combined.

  3. Unsteady turbulent boundary layers in swimming rainbow trout.

    PubMed

    Yanase, Kazutaka; Saarenrinne, Pentti

    2015-05-01

    The boundary layers of rainbow trout, Oncorhynchus mykiss, swimming at 1.02±0.09 L s(-1) (mean±s.d., N=4), were measured by the particle image velocimetry (PIV) technique at a Reynolds number of 4×10(5). The boundary layer profile showed unsteadiness, oscillating above and beneath the classical logarithmic law of the wall with body motion. Across the entire surface regions that were measured, local Reynolds numbers based on momentum thickness, which is the distance that is perpendicular to the fish surface through which the boundary layer momentum flows at free-stream velocity, were greater than the critical value of 320 for the laminar-to-turbulent transition. The skin friction was dampened on the convex surface while the surface was moving towards a free-stream flow and increased on the concave surface while retreating. These observations contradict the result of a previous study using different species swimming by different methods. Boundary layer compression accompanied by an increase in local skin friction was not observed. Thus, the overall results may not support absolutely the Bone-Lighthill boundary layer thinning hypothesis that the undulatory motions of swimming fish cause a large increase in their friction drag because of the compression of the boundary layer. In some cases, marginal flow separation occurred on the convex surface in the relatively anterior surface region, but the separated flow reattached to the fish surface immediately downstream. Therefore, we believe that a severe impact due to induced drag components (i.e. pressure drag) on the swimming performance, an inevitable consequence of flow separation, was avoided.

  4. Interaction between plasma synthetic jet and subsonic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Zong, Haohua; Kotsonis, Marios

    2017-04-01

    This paper experimentally investigates the interaction between a plasma synthetic jet (PSJ) and a subsonic turbulent boundary layer (TBL) using a hotwire anemometer and phase-locked particle imaging velocimetry. The PSJ is interacting with a fully developed turbulent boundary layer developing on the flat wall of a square wind tunnel section of 1.7 m length. The Reynolds number based on the freestream velocity (U∞ = 20 m/s) and the boundary layer thickness (δ99 = 34.5 mm) at the location of interaction is 44 400. A large-volume (1696 mm3) three-electrode plasma synthetic jet actuator (PSJA) with a round exit orifice (D = 2 mm) is adopted to produce high-speed (92 m/s) and short-duration (Tjet = 1 ms) pulsed jets. The exit velocity variation of the adopted PSJA in a crossflow is shown to remain almost identical to that in quiescent conditions. However, the flow structures emanating from the interaction between the PSJ and the TBL are significantly different from what were observed in quiescent conditions. In the midspan xy plane (z = 0 mm), the erupted jet body initially follows a wall-normal trajectory accompanied by the formation of a distinctive front vortex ring. After three convective time scales the jet bends to the crossflow, thus limiting the peak penetration depth to approximately 0.58δ99. Comparison of the normalized jet trajectories indicates that the penetration ability of the PSJ is less than steady jets with the same momentum flow velocity. Prior to the jet diminishing, a recirculation region is observed in the leeward side of the jet body, experiencing first an expansion and then a contraction in the area. In the cross-stream yz plane, the signature structure of jets in a crossflow, the counter-rotating vortex pair (CVP), transports high-momentum flow from the outer layer to the near-wall region, leading to a fuller velocity profile and a drop in the boundary layer shape factor (1.3 to 1.2). In contrast to steady jets, the CVP produced by the PSJ

  5. Application of a general boundary layer analysis to turbulent boundary layers subjected to strong favorable pressure gradients

    NASA Technical Reports Server (NTRS)

    Kreskovsky, J. P.; Shamroth, S. J.; Mcdonald, H.

    1975-01-01

    Theoretical predictions of turbulent boundary layer development under the influence of strong favorable pressure gradients made using a finite-difference calculation procedure are compared to experimental data. Comparisons are presented for low speed flows with and without wall heat transfer as well as for supersonic flows with adiabatic walls. The turbulence model used is governed by an integral form of the turbulence kinetic energy equation and the results are compared with predictions made using a conventional equilibrium turbulence model based upon Prandtl's mixing length, a Clauser-type eddy viscosity model used by Cebecci and Mosinskis, and a two-equation turbulence energy model of Launder and Jones.

  6. Direct numerical simulation of turbulent boundary layers under unsteady pressure gradients

    NASA Astrophysics Data System (ADS)

    Bromby, William; You, Donghyun

    2011-11-01

    Direct numerical simulations are performed to improve the understanding of unsteady separation processes of turbulent boundary layers characterizing the performance and efficiency of many aerodynamic applications such as helicopter rotor blades, wind turbine blades, pitching and flapping airfoils and wings, and rotating turbomachines. A time varying blowing-suction velocity distribution is imposed along the upper boundary to introduce unsteady adverse pressure gradients to the turbulent boundary layer. The distinct characteristics of turbulent boundary layers under unsteady adverse pressure gradients including unsteady boundary-layer detachment and reattachment, and production and dissipation of turbulent kinetic energy and vorticity, are revealed by a systematic comparison with steady attached/separated turbulent boundary layers. Supported by the Army Research Office Grant W911NF1010348. Done...processed 2146 records...17:52:29 Beginning APS data extraction...17:52:30

  7. Mechanisms for Control of Boundary-Layer Turbulence Across the Speed Regimes

    DTIC Science & Technology

    2011-11-01

    Boundary - Layer Turbulence across the Speed Regimes AFOSR GRANT FA9550-08-1-0093 SECTION 1 Summary Information R. Bowersox...knowledge to demonstrate localized control of boundary layer turbulence using small, O(1/10th) of the boundary layer thickness, surface elements. The...number boundary layer . This goal was accomplished. Through our simulations, we predicted a peak reduction of 20%. Experimentally , we observed 25%

  8. Laminar-turbulent transition on a blunted ogive-conical body at hypersonic speeds

    NASA Astrophysics Data System (ADS)

    Vaganov, A. V.; Noev, A. Yu.; Plyashechnik, V. I.; Radchenko, V. N.; Skuratov, A. S.; Shustov, A. A.

    2016-10-01

    Influence of flow parameters and nose radius on laminar-turbulent transition location is under investigation. Experiments were conducted in shock tunnel at Mach number 6. Transition location was diagnosed by heat transfer rate distribution determined with aid of luminescent temperature converters. Model used was ogive-conical body of revolution having half angle about 9°. Through obtained Reynolds number range (up to Re∞,R = 3.44×105) no transition reversal was observed. Present data are in accordance with the hypothesis that transition reversal is due to formation of turbulence wedges in nosetip region. Highest observed transition onset Reynolds number was about Re∞,Xt ≈ 1.4×107 which is anomaly higher than conventional wind tunnel data for sharp cone at this Mach number range and lies in flight data region.

  9. Stochastic mechanics of loose boundary particle transport in turbulent flow

    NASA Astrophysics Data System (ADS)

    Dey, Subhasish; Ali, Sk Zeeshan

    2017-05-01

    In a turbulent wall shear flow, we explore, for the first time, the stochastic mechanics of loose boundary particle transport, having variable particle protrusions due to various cohesionless particle packing densities. The mean transport probabilities in contact and detachment modes are obtained. The mean transport probabilities in these modes as a function of Shields number (nondimensional fluid induced shear stress at the boundary) for different relative particle sizes (ratio of boundary roughness height to target particle diameter) and shear Reynolds numbers (ratio of fluid inertia to viscous damping) are presented. The transport probability in contact mode increases with an increase in Shields number attaining a peak and then decreases, while that in detachment mode increases monotonically. For the hydraulically transitional and rough flow regimes, the transport probability curves in contact mode for a given relative particle size of greater than or equal to unity attain their peaks corresponding to the averaged critical Shields numbers, from where the transport probability curves in detachment mode initiate. At an inception of particle transport, the mean probabilities in both the modes increase feebly with an increase in shear Reynolds number. Further, for a given particle size, the mean probability in contact mode increases with a decrease in critical Shields number attaining a critical value and then increases. However, the mean probability in detachment mode increases with a decrease in critical Shields number.

  10. Roll-cell structure in a concave turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Barlow, R. S.; Johnston, J. P.

    1985-01-01

    Flow visualization by laser-induced fluorescence and velocity profiles obtained by laser-doppler anemometry are used to study the structure of roll cells in a turbulent boundary layer on a concave surface. Vortex generators are used to lock the roll cells into stable spanwise locations, and the resulting flow is compared to the natural flow, in which the roll cells wander about, merge, separate, appear and disappear. In both cases the spanwise-average friction coefficient, C(f), is increased by about 40 percent relative to flat-plate values. A significant lag in the response of C(f) to the onset of curvature suggests that the large-scale eddy structure in the boundary layer must be modified before the full effect on skin friction is seen. Mean velocity profiles, which extend as far into the sublayer as Y(+) = 1.5, demonstrate that strong concave curvature produces a negative wake. This result confirms the visual evidence of vigorous mixing which accompanies larger than normal length scales across the boundary layer.

  11. Modification of Turbulent Boundary Layer Flows by Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Gose, James W.; Golovin, Kevin; Barros, Julio; Schultz, Michael P.; Tuteja, Anish; Perlin, Marc; Ceccio, Steven L.

    2016-11-01

    Measurements of near zero pressure gradient turbulent boundary layer (TBL) flow over several superhydrophobic surfaces (SHSs) are presented and compared to those for a hydraulically smooth baseline. The surfaces were developed at the University of Michigan as part of an ongoing research thrust to investigate the feasibility of SHSs for skin-friction drag reduction in turbulent flow. The SHSs were previously evaluated in fully-developed turbulent channel flow and have been shown to provide meaningful drag reduction. The TBL experiments were conducted at the USNA in a water tunnel with a test section 2.0 m (L) x 0.2 m (W) x 0.2 m (H). The free-stream speed was set to 1.26 m/s which corresponded to a friction Reynolds number of 1,500. The TBL was tripped at the test section inlet with a 0.8 mm diameter wire. The upper and side walls provided optical access, while the lower wall was either the smooth baseline or a spray coated SHS. The velocity measurements were obtained with a TSI FSA3500 two-component Laser-Doppler Velocimeter (LDV) and custom-designed beam displacer operated in coincidence mode. The LDV probe volume diameter was 45 μm (approx. one wall-unit). The measurements were recorded 1.5 m downstream of the trip. When the measured quantities were normalized using the inner variables, the results indicated a significant reduction in the near wall viscous and total stresses with little effect on the flow outside the inner layer.

  12. Interaction of compliant surfaces with transitional and turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Gad-El-Hak, M.; Riley, J. J.; Blackwelder, R. F.

    The interaction of plastisol gel coatings of different thicknesses and shear moduli with transitional and turbulent boundary layers was investigated over a range of velocities. Whenever the free-stream velocity within the fluid was comparable to the transverse wave speed within the solid, large-amplitude static-divergence waves appeared on the surface of the solid. The amplitude of the waves was always of the order of the coating thickness. As the free-stream velocity increased, the waves became less two-dimensional and developed larger variations in their amplitude along the crests. This disturbance led to the formation of additional waves downstream having a shorter span. Ways of reducing or eliminating the static-divergence waves are briefly discussed.

  13. Second order modeling of boundary-free turbulent shear flows

    NASA Technical Reports Server (NTRS)

    Shih, T.-H.; Chen, Y.-Y.; Lumley, J. L.

    1991-01-01

    A set of realizable second order models for boundary-free turbulent flows is presented. The constraints on second order models based on the realizability principle are re-examined. The rapid terms in the pressure correlations for both the Reynolds stress and the passive scalar flux equations are constructed to exactly satisfy the joint realizability. All other model terms (return-to-isotropy, third moments, and terms in the dissipation equations) already satisfy realizability. To correct the spreading rate of the axisymmetric jet, an extra term is added to the dissipation equation which accounts for the effect of mean vortex stretching on dissipation. The test flows used in this study are the mixing shear layer, plane jet, axisymmetric jet, and plane wake. The numerical solutions show that the unified model equations predict all these flows reasonably. It is expected that these models would be suitable for more complex and critical flows.

  14. Adaptive Feed-Forward Control of a Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Breuer, K. S.; Rathnasingham, R.

    1997-11-01

    Recent progress in the active control of a turbulent boundary is reported. A matrix of three shear sensors and three actuators are used to control the fluctuation statistics at three ``control points'' downstream of the actuators. Althouh any measureable quantity can be controlled, the present results are only for (i) streamwise velocity fluctuations at y^+ = 15 and (ii) wall-pressure fluctuations. The control algorithm used is an adaptive feed-forward scheme in which the signal at each control point is estimated using a linear multiple-input multiple-output (MIMO) predictive filter with pre-conditioning to isolate the large-scale structures associated with turbulence production. The actuator inputs are then designed to linearly cancel the predicted signals. Results are presented showing excellent performance of the forward prediction and a broad reduction in the rms of the control variables which extends uniformly behind the control patch. Different optimization strategies, nonlinear corrections and sensor pre-conditioning methods are also discussed.

  15. Distance-from-the-wall scaling in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Baidya, Rio; Philip, Jimmy; Hutchins, Nicholas; Monty, Jason; Marusic, Ivan

    2016-11-01

    An assessment of self-similarity in the inertial sublayer of turbulent boundary layers (TBL) is presented by simultaneously considering the streamwise and wall-normal velocities. Here, we utilise carefully conducted subminiature ×-probe experiments at high Reynolds number. Moreover, the turbulent stresses are compared against results from a synthetic flow where the distance-from-the wall (z-) scaling is strictly enforced, following the Attached Eddy Hypothesis. We show that not all stresses approach the asymptotic solution at an equal rate as the friction Reynolds number (Reτ) is increased. Specifically, the motions which contribute to the wall-normal variance and Reynolds shear stress are found to follow the asymptotic solution at a relatively lower Reτ even when the streamwise variance does not, and this trend is attributed to the contribution from attached eddies. Based on these findings, the Reynolds shear stress cospectra, through its z-scaling, are used to assess the wall-normal limits where self-similarity applies within the TBL. The limits are found to be consistent with the recent observations that the self-similar region starts and ends at viscous scaled wall-distances of O (√{Reτ }) and O (√{Reτ }) respectively.

  16. Calculation of shock-separated turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Baldwin, B. S.; Rose, W. C.

    1975-01-01

    Numerical solutions of the complete, time-averaged conservation equations using several eddy-viscosity models for the Reynolds shear stress to close the equations are compared with experimental measurements in a compressible, turbulent separated flow. An efficient time-splitting, explicit difference scheme was used to solve the two-dimensional conservation equations. The experiment used for comparison was a turbulent boundary layer that was separated by an incident shock wave in a Mach 2.93 flow with a unit Reynolds number of 5.7 x 10 to the seventh power m. Comparisons of predicted and experimental values of surface pressure, shear stress along the wall, and velocity profiles are shown. One of the tested eddy-viscosity models which allows the shear stress to be out of equilibrium with the mean flow produces substantially better agreement with the experimental measurements than the simpler models. A tool is thereby provided for inferring additional information about the flow, such as static pressures in the stream, which might not be directly obtainable from experiments.

  17. Mesolayer analysis in a turbulent boundary layer and DNS data

    NASA Astrophysics Data System (ADS)

    Afzal, Noor

    2012-11-01

    The intermediate layer (mesolayer) in turbulent boundary layer has been analysed by the matched asymptotic expansions where matching is implemented by Izakson-Millikan-Kolmogorov hypothesis. The large-scale motions and very large scale motion are modifying the influences of the outer geometries, and most significantly near the locus of the peak in shear stress in the mesolayer. The mesolayer is formed by the interaction of inner and outer layer scales, whose length (time) scale is the geometric mean of the inner and outer length (time) scales, and is also proportional to Taylor micro length (time) scale. The mesolayer variable is proportional to inverse square root of appropriate friction Reynolds number, provided Reynolds number is large. It is shown that the shape factor and Reynolds shear maxima scale with mesolayer scale equivalent to Taylor micro length scale. Further, the turbulent bursting time period scales is shown to mesolayer time scale which is equivalent to Taylor micro time scale. The implications of mesolayer on higher order effects on skin friction law for lower Reynolds number have also been analyzed. The implications of shift origin are proposed by the Prandtl's transposition theorem, and consequently without any closure model.

  18. Turbulent boundary layer over a divergent convergent superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Jalalabadi, Razieh; Hwang, Jinyul; Nadeem, Muhammad; Yoon, Min; Sung, Hyung Jin

    2017-08-01

    A direct numerical simulation of a spatially developing turbulent boundary layer over a divergent and convergent superhydrophobic surface (SHS) was performed over the range 800 < Reθ < 1200. The surface patterns were aligned along the streamwise direction. The SHS was modeled as a pattern of free-slip and no-slip surfaces. The gas fraction of the divergent and convergent SHS was the same as that for the straight SHS for a given slip area. The divergent and convergent SHS gave 21% more drag reduction than the straight SHS. Although the maximum value of the streamwise slip velocity was larger over the divergent and convergent SHS, the average slip velocity (Uslip/U∞) was larger over the straight SHS. The greater drag reduction was attributed to the manipulation of the secondary flow in the y-z plane and the changes in the turbulence structure. The streamwise vortices generated by the secondary flow over the divergent and convergent SHS were diminished which reduced drag relative to the flow over the straight SHS. The ejection and sweep motions were weak, and the vortical structure was attenuated near the wall over the divergent and convergent SHS. The skin friction contributions were explored using the velocity-vorticity correlation. The vortex stretching contribution dominated the skin friction budget. The reduced skin friction over the divergent and convergent SHS resulted mainly from reduced vortex stretching.

  19. A study of synthetic large scales in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Duvvuri, Subrahmanyam; Luhar, Mitul; Barnard, Casey; Sheplak, Mark; McKeon, Beverley

    2013-11-01

    Synthetic spanwise-constant spatio-temporal disturbances are excited in a turbulent boundary layer through a spatially impulsive patch of dynamic wall-roughness. The downstream flow response is studied through hot wire anemometry, pressure measurements at the wall and direct measurements of wall-shear-stress made using a novel micro-machined capacitive floating element sensor. These measurements are phase-locked to the input perturbation to recover the synthetic large-scale motion and characterize its structure and wall signature. The phase relationship between the synthetic large scale and small scale activity provides further insights into the apparent amplitude modulation effect between them, and the dynamics of wall-bounded turbulent flows in general. Results from these experiments will be discussed in the context of the critical-layer behavior revealed by the resolvent analysis of McKeon & Sharma (J Fluid Mech, 2010), and compared with similar earlier work by Jacobi & McKeon (J Fluid Mech, 2011). Model predictions are shown to be in broad agreement with experiments. The support of AFOSR grant #FA 9550-12-1-0469, Resnick Institute Graduate Research Fellowship (S.D.) and Sandia Graduate Fellowship (C.B.) are gratefully acknowledged.

  20. Direct Numerical Simulation of Two Shock Wave/Turbulent Boundary Layer Interactions

    NASA Astrophysics Data System (ADS)

    Priebe, Stephan

    Direct numerical simulations (DNSs) of two shock wave/turbulent boundary layer interactions (STBLIs) are presented in this thesis. The first interaction is a 24° compression ramp at Mach 2.9, and the second interaction is an 8° compression ramp at Mach 7.2. The large-scale low-frequency unsteadiness in the Mach 2.9 DNS is investigated with the aim of shedding some light on its physical origin. Previous experimental and computational works have linked the unsteadiness either to fluctuations in the incoming boundary layer or to a mechanism in the downstream separated flow. Consistent with experimental observations, the shock in the DNS is found to undergo streamwise oscillations, which are broadband and occur at frequencies that are about two orders of magnitude lower than the characteristic frequency of the energy-containing turbulent scales in the incoming boundary layer. Based on a coherence and phase analysis of signals at the wall and in the flow field, it is found that the low frequency shock unsteadiness is statistically linked to pulsations of the downstream separated flow. The statistical link with fluctuations in the upstream boundary layer is also investigated. A weak link is observed: the value of the low-frequency coherence with the upstream flow is found to lie just above the limit of statistical significance, which is determined by means of a Monte Carlo study. The dynamics of the downstream separated flow are characterized further based on low-pass filtered DNS fields. The results suggest that structural changes occur in the downstream separated flow during the low-frequency motions, including the breaking-up of the separation bubble, which is observed when the shock moves downstream. The structural changes are described based on the Cf distribution through the interaction, as well as the velocity and vorticity fields. The possible link between the low-frequency dynamics observed in the DNS and results from global instability theory is explored. It

  1. Modification in drag of turbulent boundary layers resulting from manipulation of large-scale structures

    NASA Technical Reports Server (NTRS)

    Corke, T. C.; Guezennec, Y.; Nagib, H. M.

    1981-01-01

    The effects of placing a parallel-plate turbulence manipulator in a boundary layer are documented through flow visualization and hot wire measurements. The boundary layer manipulator was designed to manage the large scale structures of turbulence leading to a reduction in surface drag. The differences in the turbulent structure of the boundary layer are summarized to demonstrate differences in various flow properties. The manipulator inhibited the intermittent large scale structure of the turbulent boundary layer for at least 70 boundary layer thicknesses downstream. With the removal of the large scale, the streamwise turbulence intensity levels near the wall were reduced. The downstream distribution of the skin friction was also altered by the introduction of the manipulator.

  2. Turbulence measurements in axisymmetric supersonic boundary layer flow in adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Gootzait, E.; Childs, M. E.

    1977-01-01

    Mean flow and turbulence measurements are presented for adiabatic compressible turbulent boundary layer flow in adverse pressure gradients. The gradients were induced on the wall of an axially symmetric wind tunnel by contoured centerbodies mounted on the wind tunnel centerline. The boundary layer turbulence downstream of a boundary layer bleed section in a zero pressure gradient was also examined. The measurements were obtained using a constant temperature hot-wire anemometer. The adverse pressure gradients were found to significantly alter the turbulence properties of the boundary layer. With flow through the bleed holes there was a measureable decrease in the rms longitudinal velocity fluctuations near the wall and the turbulent shear stress in the boundary layer was reduced.

  3. Effect of free-stream turbulence properties on boundary layer laminar-turbulent transition: A new approach

    NASA Astrophysics Data System (ADS)

    Darag, Sakhr A.; Horák, Vladimír

    2012-11-01

    The effect of length scale on flat-plate by-pass transitional boundary layers subject to free stream turbulence intensities ranging from 1.3 to 6.0 percent has been investigated. The analysis is based on the recent experimental and numerical observations into non-equilibrium flows that considering the effect of turbulence properties at the plate leading edge on the transition onset. According to this analysis, physical correlation is developed and incorporated in a conventional boundary layer computer scheme for prediction of transitional flows. The scheme was proposed to calculate the characteristics of the boundary layers under the effect of moderate free-stream turbulence levels by enhancing established integral techniques in conjunction with intermittency weighted model of the transitional boundary layer. To support the results validation, the experimental ERCOFTAC Test Cases T3A, T3B and T3AM for transitional integral parameters have been represented. The results show that the transition location for turbulence level higher than 4% is only a function of turbulence intensity (Tu) and unaffected by significant changes in the length scale (Lx). Whereas for low level of the incoming turbulent flows the transition onset is extremely dependent on FST characteristics, turbulence intensity and integral length scale.

  4. Phase relations in a forced turbulent boundary layer: implications for modelling of high Reynolds number wall turbulence.

    PubMed

    Duvvuri, Subrahmanyam; McKeon, Beverley

    2017-03-13

    Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'.

  5. Compressible turbulent channel flow with impedance boundary conditions

    NASA Astrophysics Data System (ADS)

    Scalo, Carlo; Bodart, Julien; Lele, Sanjiva K.

    2015-03-01

    We have performed large-eddy simulations of isothermal-wall compressible turbulent channel flow with linear acoustic impedance boundary conditions (IBCs) for the wall-normal velocity component and no-slip conditions for the tangential velocity components. Three bulk Mach numbers, Mb = 0.05, 0.2, 0.5, with a fixed bulk Reynolds number, Reb = 6900, have been investigated. For each Mb, nine different combinations of IBC settings were tested, in addition to a reference case with impermeable walls, resulting in a total of 30 simulations. The adopted numerical coupling strategy allows for a spatially and temporally consistent imposition of physically realizable IBCs in a fully explicit compressible Navier-Stokes solver. The IBCs are formulated in the time domain according to Fung and Ju ["Time-domain impedance boundary conditions for computational acoustics and aeroacoustics," Int. J. Comput. Fluid Dyn. 18(6), 503-511 (2004)]. The impedance adopted is a three-parameter damped Helmholtz oscillator with resonant angular frequency, ωr, tuned to the characteristic time scale of the large energy-containing eddies. The tuning condition, which reads ωr = 2πMb (normalized with the speed of sound and channel half-width), reduces the IBCs' free parameters to two: the damping ratio, ζ, and the resistance, R, which have been varied independently with values, ζ = 0.5, 0.7, 0.9, and R = 0.01, 0.10, 1.00, for each Mb. The application of the tuned IBCs results in a drag increase up to 300% for Mb = 0.5 and R = 0.01. It is shown that for tuned IBCs, the resistance, R, acts as the inverse of the wall-permeability and that varying the damping ratio, ζ, has a secondary effect on the flow response. Typical buffer-layer turbulent structures are completely suppressed by the application of tuned IBCs. A new resonance buffer layer is established characterized by large spanwise-coherent Kelvin-Helmholtz rollers, with a well-defined streamwise wavelength λx, traveling downstream with

  6. Characterization of the influence of a favorable pressure gradient on the basic structure of a mach 5.0 high reynolds number supersonic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Tichenor, Nathan Ryan

    High-speed high Reynolds number boundary layer flows with mechanical non-equilibrium effects have numerous practical applications; examples include access-to-space ascent, re-entry and descent, and military hypersonic systems. However, many of the basic turbulent flow processes in this regime are poorly understood and are beyond the realm of modern direct numerical simulations Previous studies have shown that curvature driven pressure gradients significantly alter the state of the turbulence in high-speed boundary layers; the turbulence levels have been shown to decrease by large amounts (up to 100%) and the Reynolds shear stress has been shown to change sign. However, most of our understanding is based on point measurement techniques such as hot-wire and Laser Doppler anemometry acquired at low to moderate supersonic Mach numbers (i.e., M = 2-3). After reviewing the available literature, the following scientific questions remain unanswered pertaining to the effect of favorable pressure gradients: (1) How is state of the mean flow and turbulence statistics altered? (2) How is the structure of wall turbulence; break-up, stretch or a combination? (3) How are the Reynolds stress component production mechanisms altered? (4) What is the effect of Mach number on the above processes? To answer these questions and to enhance the current database, an experimental analysis was performed to provide high fidelity documentation of the mean and turbulent flow properties using two-dimensional particle image velocimetry (PIV) along with flow visualizations of a high speed (M = 4.88), high Reynolds number (Retheta ≈ 36,000) supersonic turbulent boundary layer with curvature-driven favorable pressure gradients (a nominally zero, a weak, and a strong favorable pressure gradient). From these data, detailed turbulence analyses were performed including calculating classical mean flow and turbulence statistics, examining turbulent stress production, and performing quadrant

  7. Ultrasonic absorption characteristics of porous carbon-carbon ceramics with random microstructure for passive hypersonic boundary layer transition control

    NASA Astrophysics Data System (ADS)

    Wagner, Alexander; Hannemann, Klaus; Kuhn, Markus

    2014-06-01

    Preceding studies in the high enthalpy shock tunnel Göttingen of the German Aerospace Center (DLR) revealed that carbon fibre reinforced carbon ceramic (C/C) surfaces can be utilized to damp hypersonic boundary layer instabilities leading to a delay of boundary layer transition onset. To assess the ultrasonic absorption properties of the material, a test rig was set up to measure the reflection coefficient at ambient pressures ranging from 0.1 × 105 to 1 × 105 Pa. For the first time, broadband ultrasonic sound transducers with resonance frequencies of up to 370 kHz were applied to directly cover the frequency range of interest with respect to the second-mode instabilities observed in previous experiments. The reflection of ultrasonic waves from three flat plate test samples with a porous layer thickness between 5 and 30 mm was investigated and compared to an ideally reflecting surface. C/C was found to absorb up to 19 % of the acoustic power transmitted towards the material. The absorption characteristics were investigated theoretically by means of the quasi-homogeneous absorber theory. The experimental results were found to be in good agreement with the theory.

  8. Aerothermodynamic heating due to shock wave/laminar boundary-layer interactions in high-enthalpy hypersonic flow

    NASA Technical Reports Server (NTRS)

    Hackett, Charles M.

    1993-01-01

    The interaction between a swept shock wave and a laminar boundary layer was investigated experimentally in high-enthalpy hypersonic flow. The effect of high-temperature, real gas physics on the interaction was examined by conducting tests in air and helium. Heat transfer measurements were made on the surface of a flat plate and a shock-generating fin using thin-film resistance sensors for fin incidence angles of 0, 5, and 10 deg at Mach numbers of 6.9 in air and 7.2 in helium. The experiments were conducted in the NASA HYPULSE expansion tube, an impulse-type facility capable of generating high-enthalpy, high-velocity flow with freestream levels of dissociated species that are particularly low. The measurements indicate that the swept shock wave creates high local heat transfer levels in the interaction region, with the highest heating found in the strongest interaction. The maximum measured heating rates in the interaction are order of magnitude greater than laminar flat plate boundary layer heating levels at the same location.

  9. Direct numerical simulation of shockwave and turbulent boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Wu, Minwei

    Direct numerical simulations (DNS) of a shockwave/turbulent boundary layer interaction (STBLI) at Mach number 3 and Reynolds number based on the momentum thickness of 2300 are performed. A 4th-order accurate, bandwidth-optimized weighted-essentially-non-oscillatory (WENO) scheme is used and the method is found to be too dissipative for the STBLI simulation due to the over-adaptation properties of this original WENO scheme. In turn, a relative limiter is introduced to mitigate the problem. Tests on the Shu-Osher problem show that the modified WENO scheme decreases the numerical dissipation significantly. By utilizing a combination of the relative limiter and the absolute limiter described by Jiang & Shu [32], the DNS results are improved further. The DNS data agree well with the reference experiments of Bookey et al. [10] in the size of the separation bubble, the separation and reattachment point, the mean wall-pressure distribution, and the velocity profiles both upstream and downstream of the interaction region. The DNS data show that velocity profiles change dramatically along the streamwise direction. Downstream of the interaction, the velocity profiles show a characteristic "dip" in the logarithmic region, as shown by the experiments of Smits & Muck [66] at much higher Reynolds number. In the separation region, the velocity profiles are found to resemble those of a laminar flow, yet the flow does not fully relaminarize. The mass-flux turbulence intensity is amplified by a factor of about 5 throughout the interaction, which is consistent with that found in higher Reynolds experiments of Selig et al. [52]. All Reynolds stress components are greatly amplified by the interaction. Assuming that the ow is still two dimensional downstream of the interaction, the components rhou'u', rhov'v', rho w'w', and rho u'w' are amplified by factors of 6, 6, 12, and 24, respectively, where u is the streamwise and w is the wall-normal velocity. However, analyses of the turbulence

  10. Some Features of Artificially Thickened Fully Developed Turbulent Boundary Layers with Zero Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Klebanoff, P S; Diehl, Z W

    1952-01-01

    Report gives an account of an investigation conducted to determine the feasibility of artificially thickening a turbulent boundary layer on a flat plate. A description is given of several methods used to thicken artificially the boundary layer. It is shown that it is possible to do substantial thickening and obtain a fully developed turbulent boundary layer, which is free from any distortions introduced by the thickening process, and, as such, is a suitable medium for fundamental research.

  11. Turbulent boundary layer response to large-scale wavy topographies

    NASA Astrophysics Data System (ADS)

    Hamed, Ali M.; Castillo, Luciano; Chamorro, Leonardo P.

    2017-06-01

    Flat-plate turbulent boundary layer adjustment to large-scale 2D and 3D wavy topographies was experimentally studied using high-resolution particle image velocimetry in a refractive-index-matching flume. The flow was characterized at a Reynolds number R e = 4 ×1 04, based on the channel half height and incoming free-stream velocity. Two ratios of amplitude (a) to incoming boundary layer thickness (δ0 ) were considered for each topography (a /δ0 = 0.12 and 0.81). The 2D topography is described by a sinusoidal wave in the streamwise direction with an amplitude to wavelength ratio a /λx = 0.05 , while the 3D topography is defined with an additional wave superimposed in the spanwise direction. The results show that the spanwise variability of the topography leads to a much milder response in both a /δ0 ratios. The regions of strong acceleration and deceleration over the crests and troughs of the topography are reduced over the 3D topography due to the alternate flow path around the 3D elements. Furthermore, the boundary layer thickness and integral parameters experienced milder variations over the 3D topography for both a /δ0. The Reynolds shear stress shows distinctive evolution with downstream distance. In the 3D case, maximum Reynolds stress similar to those in the developed region is achieved within the first three wavelengths past the topographic change indicating that the dynamics of the downstream evolution is dominated by vertical diffusion and redistribution. This is in contrast with the 2D case with a /δ0 = 0.12 where the Reynolds stress did not achieve the levels observed in the developed region.

  12. Measurements of the turbulent transport of heat and momentum in convexly curved boundary layers - Effects of curvature, recovery and free-stream turbulence

    NASA Technical Reports Server (NTRS)

    Kim, J.; Simon, T. W.

    1987-01-01

    The effects of streamwise convex curvature, recovery, and freestream turbulence intensity on the turbulent transport of heat and momentum in a mature boundary layer are studied using a specially designed three-wire hot-wire probe. Increased freestream turbulence is found to increase the profiles throughout the boundary layer on the flat developing wall. Curvature effects were found to dominate turbulence intensity effects for the present cases considered. For the higher TI (turbulence intensity) case, negative values of the turbulent Prandtl number are found in the outer half of the boundary layer, indicating a breakdown in Reynolds analogy.

  13. A vectorized code for calculating laminar and turbulent hypersonic flows about blunt axisymmetric bodies at zero and small angles of attack

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Graves, R. A., Jr.

    1980-01-01

    A user's guide is provided for a computer code which calculates the laminar and turbulent hypersonic flows about blunt axisymmetric bodies, such as spherically blunted cones, hyperboloids, etc., at zero and small angles of attack. The code is written in STAR FORTRAN language for the CDC-STAR-100 computer. Time-dependent, viscous-shock-layer-type equations are used to describe the flow field. These equations are solved by an explicit, two-step, time asymptotic, finite-difference method. For the turbulent flow, a two-layer, eddy-viscosity model is used. The code provides complete flow-field properties including shock location, surface pressure distribution, surface heating rates, and skin-friction coefficients. This report contains descriptions of the input and output, the listing of the program, and a sample flow-field solution.

  14. Effect of Sub-Boundary Layer Vortex Generations on Incident Turbulence

    NASA Technical Reports Server (NTRS)

    Casper, J.; Lin, J. C.; Yao, C. S.

    2003-01-01

    Sub-boundary layer vortex generators were tested in a wind tunnel to assess their effect on the velocity field within the wake region of a turbulent boundary layer. Both mean flow quantities and turbulence statistics were measured. Although very small relative to the boundary layer thickness, these so-called micro vortex generators were found to have a measurable effect on the power spectra and integral length scales of the turbulence at a distance many times the height of the devices themselves. In addition, the potential acoustic impact of these devices is also discussed. Measured turbulence spectra are used as input to an acoustic formulation in a manner that compares predicted sound pressure levels that result from the incident boundary-layer turbulence, with and without the vortex generators in the flow.

  15. Multiscale geometry, scaling and fluxes at the turbulent/non-turbulent interface in high Reynolds number boundary layers

    NASA Astrophysics Data System (ADS)

    Meneveau, Charles; de Silva, Charitha M.; Philip, Jimmy; Chauhan, Kapil; Marusic, Ivan

    2013-11-01

    The scaling and surface area properties of the wrinkled surface separating turbulent from non-turbulent regions in open shear flows are important to our understanding of entrainment mechanisms at the boundaries of turbulent flows. PIV data from high Reynolds number turbulent boundary layers covering three decades in scale are used to resolve the turbulent/non-turbulent interface experimentally and to determine unambiguously that such surfaces exhibit fractal scaling with box-counting exponent between -1.3 and -1.4. A complementary analysis based on spatial filtering of the velocity fields also shows power-law behavior of the coarse-grained interface length as a function of filter width, with an exponent between -0.3 and -0.4. These results establish that the interface is fractal-like with a multiscale geometry and fractal dimension of D ~ 2.3-2.4. Measurements of viscous, subgrid-scale and turbulent fluxes across the interface at various scales confirm the complementary nature of viscous nibbling at small scales while turbulent and then large-scale engulfment dominate when viewed at large scales. Financial support provided by the Australian Research Council, Fulbright, Melbourne U. and the NSF (CBET 1033942).

  16. Turbulence measurements in a three-dimensional boundary layer in supersonic flow

    NASA Astrophysics Data System (ADS)

    Konrad, Wolfgang; Smits, Alexander J.

    1998-10-01

    Turbulence measurements were obtained in a three-dimensional supersonic turbulent boundary layer. A 20° curved fin was used to generate a three-dimensional compression of a boundary layer at Mach 3 in the absence of shock waves. Data include hot-wire measurements of five components of the Reynolds stress tensor. The results are interpreted in terms of the mean flow field history of the turbulence. It is demonstrated that in-plane curvature can have a strong stabilizing effect on the turbulence.

  17. Turbulent eddy viscosity modeling in transonic shock/boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Inger, G. R.

    1989-01-01

    The treatment of turbulence effects on transonic shock/turbulent boundary layer interaction is addressed within the context of a triple deck approach valid for arbitrary practical Reynolds numbers between 1000 and 10 billion. The modeling of the eddy viscosity and basic turbulent boundary profile effects in each deck is examined in detail using Law-of-the-Wall/Law-of-the-Wake concepts as the foundation. Results of parametric studies showing how each of these turbulence model aspects influences typical interaction zone property distributions (wall pressure, displacement thickness and local skin friction) are presented and discussed.

  18. Review of wave-turbulence interactions in the stable atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Sun, Jielun; Nappo, Carmen J.; Mahrt, Larry; Belušić, Danijel; Grisogono, Branko; Stauffer, David R.; Pulido, Manuel; Staquet, Chantal; Jiang, Qingfang; Pouquet, Annick; Yagüe, Carlos; Galperin, Boris; Smith, Ronald B.; Finnigan, John J.; Mayor, Shane D.; Svensson, Gunilla; Grachev, Andrey A.; Neff, William D.

    2015-09-01

    Flow in a stably stratified environment is characterized by anisotropic and intermittent turbulence and wavelike motions of varying amplitudes and periods. Understanding turbulence intermittency and wave-turbulence interactions in a stably stratified flow remains a challenging issue in geosciences including planetary atmospheres and oceans. The stable atmospheric boundary layer (SABL) commonly occurs when the ground surface is cooled by longwave radiation emission such as at night over land surfaces, or even daytime over snow and ice surfaces, and when warm air is advected over cold surfaces. Intermittent turbulence intensification in the SABL impacts human activities and weather variability, yet it cannot be generated in state-of-the-art numerical forecast models. This failure is mainly due to a lack of understanding of the physical mechanisms for seemingly random turbulence generation in a stably stratified flow, in which wave-turbulence interaction is a potential mechanism for turbulence intermittency. A workshop on wave-turbulence interactions in the SABL addressed the current understanding and challenges of wave-turbulence interactions and the role of wavelike motions in contributing to anisotropic and intermittent turbulence from the perspectives of theory, observations, and numerical parameterization. There have been a number of reviews on waves, and a few on turbulence in stably stratified flows, but not much on wave-turbulence interactions. This review focuses on the nocturnal SABL; however, the discussions here on intermittent turbulence and wave-turbulence interactions in stably stratified flows underscore important issues in stably stratified geophysical dynamics in general.

  19. Performances of feature tracking in turbulent boundary layer investigation

    NASA Astrophysics Data System (ADS)

    Miozzi, M.; Jacob, B.; Olivieri, A.

    2008-10-01

    In this paper, we describe the application of a feature tracking (FT) algorithm for the measurement of velocity statistics in a turbulent boundary layer over a flat plate at Re θ ≃ 3,700. The feature tracking algorithm is based on an optical flow approach. Displacements are obtained by searching the parameters of the mapping between interrogation windows in the first and second image which minimize a correlation distance between them. The correlation distance is here defined as the minimum of the sum of squared differences of interrogation windows intensities. The linearized equation which governs the minimization problem is solved with an iterative procedure only where the solution is guaranteed to exist, thus maximizing the signal-to-noise ratio. In this process, the interrogation window first undergoes a pure translation, and then a complete affine deformation. Final mapping parameters provide the velocity and velocity gradients values in a lagrangian framework. The interpolation inherent to window-deforming algorithms represents a critical factor for the overall accuracy and particular attention must be devoted to this step. In this paper different schemes are tested, and their effects on algorithm accuracy are first discussed by looking at the distribution of systematic and random errors computed from synthetic images. The same analysis is then performed on the turbulent boundary layer data, where the effects associated with the use of a near-wall logical mask are also investigated. The comparison with single-point data gathered from the literature demonstrate the overall ability of the FT technique to correctly extract all relevant statistical quantities, including the spanwise vorticity distribution. Concerning the mean velocity profile, no evident influence of the interpolation scheme appears, while the near-wall accuracy is improved by the application of the logical mask. On the contrary, for the fluctuating components of the velocity, the interpolation

  20. Phase relations in a forced turbulent boundary layer: implications for modelling of high Reynolds number wall turbulence

    NASA Astrophysics Data System (ADS)

    Duvvuri, Subrahmanyam; McKeon, Beverley

    2017-03-01

    Phase relations between specific scales in a turbulent boundary layer are studied here by highlighting the associated nonlinear scale interactions in the flow. This is achieved through an experimental technique that allows for targeted forcing of the flow through the use of a dynamic wall perturbation. Two distinct large-scale modes with well-defined spatial and temporal wavenumbers were simultaneously forced in the boundary layer, and the resulting nonlinear response from their direct interactions was isolated from the turbulence signal for the study. This approach advances the traditional studies of large- and small-scale interactions in wall turbulence by focusing on the direct interactions between scales with triadic wavenumber consistency. The results are discussed in the context of modelling high Reynolds number wall turbulence.

  1. Integral method for the calculation of three-dimensional, laminar and turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Stock, H. W.

    1978-01-01

    The method for turbulent flows is a further development of an existing method; profile families with two parameters and a lag entrainment method replace the simple entrainment method and power profiles with one parameter. The method for laminar flows is a new development. Moment of momentum equations were used for the solution of the problem, the profile families were derived from similar solutions of boundary layer equations. Laminar and turbulent flows at the wings were calculated. The influence of wing tapering on the boundary layer development was shown. The turbulent boundary layer for a revolution ellipsoid is calculated for 0 deg and 10 deg incidence angles.

  2. Validation of High-Speed Turbulent Boundary Layer and Shock-Boundary Layer Interaction Computations with the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.

    2006-01-01

    The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.

  3. Turbulance boundary conditions for shear flow analysis, using the DTNS flow solver

    NASA Technical Reports Server (NTRS)

    Mizukami, M.

    1995-01-01

    The effects of different turbulence boundary conditions were examined for two classical flows: a turbulent plane free shear layer and a flat plate turbulent boundary layer with zero pressure gradient. The flow solver used was DTNS, an incompressible Reynolds averaged Navier-Stokes solver with k-epsilon turbulence modeling, developed at the U.S. Navy David Taylor Research Center. Six different combinations of turbulence boundary conditions at the inflow boundary were investigated: In case 1, 'exact' k and epsilon profiles were used; in case 2, the 'exact' k profile was used, and epsilon was extrapolated upstream; in case 3, both k and epsilon were extrapolated; in case 4, the turbulence intensity (I) was 1 percent, and the turbulent viscosity (mu(sub t)) was equal to the laminar viscosity; in case 5, the 'exact' k profile was used and mu(sub t) was equal to the laminar viscosity; in case 6, the I was 1 percent, and epsilon was extrapolated. Comparisons were made with experimental data, direct numerical simulation results, or theoretical predictions as applicable. Results obtained with DTNS showed that turbulence boundary conditions can have significant impacts on the solutions, especially for the free shear layer.

  4. Analysis of turbulent free-convection boundary layer on flat plate

    NASA Technical Reports Server (NTRS)

    Eckert, E R G; Jackson, Thomas W

    1950-01-01

    A calculation was made for the flow and heat transfer in the turbulent free-convection boundary layer on a vertical flat plate. Formulas for the heat-transfer coefficient, boundary layer thickness, and the maximum velocity in the boundary layer were obtained.

  5. The Physics of Turbulence in the Boundary Layer

    NASA Technical Reports Server (NTRS)

    Kline, Stephen; Cantwell, Brian

    1995-01-01

    The geometry of the velocity field in a numerically simulated incompressible turbulent boundary layer over a flat plate at Re theta=670 has been studied using the invariants of the velocity gradient tensor. These invariants are computed at every grid point in the flow and used to form the discriminant. Of primary interest are those regions in the flow where the discriminant is positive; regions where, according to the characteristic equation, the eigenvalues of the velocity gradient tensor are complex. An observer moving with a frame of reference which is attached to a fluid particle lying within such a region would see a local flow pattern of the type stable-focus-stretching or unstable-focus-compressing. When the flow is visualized this way, continuous, connected, large-scale structures are revealed that extend from the point just below the buffer layer out to the beginning of the wake region. These structures are aligned with the mean shear close to the wall and arch in the cross-stream direction away from the wall. In some cases the structures observed are very similar to to the hairpin eddy vision of boundary layer structure proposed by Theodorsen. That the structure of the flow is revealed more effectively by the discriminant rather than by the vorticity is important and adds support to recent observations of the discriminant in a channel flow simulation. Of particular importance is the fact that the procedure does not require the use of an arbitrary threshold in the discriminant. Further analysis using computer flow visualization shows a high degree of spatial correlation between regions of positive discriminant, extreme negative pressure fluctuations and large instantaneous values of Reynolds shear stress.

  6. Approximate convective heating equations for hypersonic flows

    NASA Technical Reports Server (NTRS)

    Zoby, E. V.; Moss, J. N.; Sutton, K.

    1979-01-01

    Laminar and turbulent heating-rate equations appropriate for engineering predictions of the convective heating rates about blunt reentry spacecraft at hypersonic conditions are developed. The approximate methods are applicable to both nonreacting and reacting gas mixtures for either constant or variable-entropy edge conditions. A procedure which accounts for variable-entropy effects and is not based on mass balancing is presented. Results of the approximate heating methods are in good agreement with existing experimental results as well as boundary-layer and viscous-shock-layer solutions.

  7. Dynamical effects of suction/heating on turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Blackwelder, Ron

    1992-01-01

    The main emphasis of this quarter has been to test the effects of suction in a controlled environment with the emulated wall eddy structure. A study of the curved working wall of the test section in the Goertler Wind Tunnel showed that there were sufficient stresses within the plexiglas that cutting elongated slits for suction would probably cause the surface to develop step-type roughnesses. Thus several individual holes were initially drilled along the streamline direction in a spanwise region between two vortices. Air was withdrawn through this series of holes to provide a semi-continuous region of suction. Differing rates of suction through these holes were used to explore the effects upon the eddy structure. These preliminary results were obtained using visualization; i.e., smoke as introduced via a smoke wire into the boundary layer. Images were captured using a video camera and analyzed to determine the best suction rates. The preliminary results showed that suction has a large effect upon individual streaks of low speed fluid. Without the suction, the low speed region lying in the upwelling zone between two streamwise vortices was broken down by a secondary instability. This instability typically caused the low speed fluid marked with the smoke to oscillate from side to side in a manifestation of an inflectional instability in the spanwise direction as found and reported earlier in this research. With increasing distance downstream, the oscillation amplitude grew very rapidly until it broke down into complete turbulence.

  8. Large Scale Organization of a Near Wall Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Stanislas, Michel; Dekou Tiomajou, Raoul Florent; Foucaut, Jean Marc

    2016-11-01

    This study lies in the context of large scale coherent structures investigation in a near wall turbulent boundary layer. An experimental database at high Reynolds numbers (Re θ = 9830 and Re θ = 19660) was obtained in the LML wind tunnel with stereo-PIV at 4 Hz and hot wire anemometry at 30 kHz. A Linear Stochastic Estimation procedure, is used to reconstruct a 3 component field resolved in space and time. Algorithms were developed to extract coherent structures from the reconstructed field. A sample of 3D view of the structures is depicted in Figure 1. Uniform momentum regions are characterized with their mean hydraulic diameter in the YZ plane, their life time and their contribution to Reynolds stresses. The vortical motions are characterized by their position, radius, circulation and vorticity in addition to their life time and their number computed at a fixed position from the wall. The spatial organization of the structures was investigated through a correlation of their respective indicative functions in the spanwise direction. The simplified large scale model that arise is compared to the ones available in the literature. Streamwise low (green) and high (yellow) uniform momentum regions with positive (red) and negative (blue) vortical motions. This work was supported by Campus International pour la Sécurité et l'Intermodalité des Transports.

  9. Instantaneous velocity profile measurements in a turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Robinson, S. K.

    1986-01-01

    Instantaneous wall shear stress and streamwise velocities have been measured simultaneously in a flat-plate, turbulent boundary layer at moderate Reynolds number in an effort to provide experimental support for large eddy simulations. Data were obtained using a buried-wire, wall shear gage and a hot-wire rake positioned in the log region of the flow. Fluctuations of the instantaneous U(+) versus Y(+) profiles about a mean law of the wall are shown to be significant and complex. Peak cross-correlation values between wall shear stress and the velocities are high, and reflect the passage of a large structure inclined at a small angle to the wall. Estimates of this angle are consistent with those made by other investigators. Conditional sampling techniques were used to detect the passage of various sizes and types of flow disturbances (events), and to estimate their mean frequency of occurrence. Events characterized by large aand sudden streamwise accelerations were found to be highly coherent throughout the log region and were strongly correlated with large fluctuations in wall shear stress. Phase randomness between the near-wall quantities and the outer velocities was small. The results suggest that the flow events detected by conditional sampling applied to velocities in the log region may be related to the bursting process.

  10. Lagrangian statistics of bubbles in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Mattson, Michael; Mahesh, Krishnan

    2010-11-01

    We are developing the capability to simulate bubbly flows in complex geometries using unstructured grids and an Euler--Lagrangian methodology. In the Lagrangian bubble model, the bubbles are treated as a dispersed phase in the carrier fluid, and individual bubbles are point--particles governed by an equation for bubble motion. The behavior of the bubble radius is determined by integrating the Rayleigh--Plesset equation. For this talk, direct numerical simulation is used to solve the Navier--Stokes equations for a spatially--evolving turbulent boundary layer (Reθ 00 800) and bubbles are injected into the near-wall region. Except for the Reynolds number, the simulation matches all parameters of an experiment by Sanders, et al. (J. Fluid Mech., 2006). The bubbly suspension is dilute and one--way coupled equations are used. The temporal evolution of the bubble dispersion, probability density functions of the forces on a bubble and void--fraction profiles will be presented, and the impact of bubble behavior on drag reduction and the effect of cavitation number will be discussed.

  11. A Simple Technique for Controlling the Görtler Vortex Wavelength in Hypersonic Shock-Wave/Boundary-Layer Interaction

    NASA Astrophysics Data System (ADS)

    Itoh, Hajime; Honda, Hirokazu

    This paper describes results of an exploratory study to investigate the capability of a passive approach for controlling the characteristic spanwise length of Görtler vortices generated in hypersonic flows: a serrated leading edge. Heat transfer, pressure measurements, encapsulated thermochromic liquid crystal, schlieren and glow spark visualizations were conducted with a flat plate/ramp model whose leading edge had a triangular wave shape in a gun tunnel at Mach number 10. Effect of wavelength Λ of the triangular waves on downstream flows was studied. Aerodynamic heating patterns observed with the liquid crystal confirmed that the vortex wavelength was equal to Λ. This was also supported by the spark results that filamentary bright lines perpendicular to an installed line-anode parallel to the spanwise direction at the ramp surface emerged at intervals of Λ. Phase lag was observed only between heat transfer data measured in the spanwise direction, which suggests that the vortex structure existed in the reattaching boundary layers. Pressure distribution in the streamwise direction was similar among all of the Λ tested. In contrast, the heat transfer data points exhibited a large scatter and the peak heating value for the finite Λ was somewhat larger than that for the infinite Λ. Schlieren results indicated that the appropriate Λ can mitigate flow separation.

  12. Large-eddy simulations of mean and turbulence dynamics in unsteady Ekman boundary layers

    NASA Astrophysics Data System (ADS)

    Momen, Mostafa; Bou-Zeid, Elie

    2015-11-01

    Unsteady geostrophic forcing in the atmosphere or ocean not only influences the mean wind, but also affects the turbulent statistics. In order to see when turbulence is in quasi-equilibrium with the mean, one needs to understand how the turbulence decays or develops, and how do the turbulent production, transport and dissipation respond to changes in the imposed forcing. This helps us understand the underlying dynamics of the unsteady boundary layers and develop better turbulence closures for weather/climate models and engineering applications. The present study focuses on the unsteady Ekman boundary layer where pressure gradient, Coriolis, and friction forces interact but are not necessarily in equilibrium. Several cases are simulated using LES to examine how the turbulence and resolved TKE budget terms are modulated by the variability of the mean pressure gradient. We also examine the influence of the forcing variability time-scale on the turbulence equilibrium and TKE budget. It is shown that when the forcing time-scale is in the order of the turbulence characteristic time-scale, the turbulence is no longer in quasi-equilibrium due to highly nonlinear mean-turbulence interactions and hence the conventional log-law and turbulence closures are no longer valid. NSF-PDM under AGS-10266362. Simulations performed at NCAR, and Della server at Princeton University. Cooperative Institute for Climate Science, NOAA-Princeton University under NA08OAR4320752.

  13. An experimental investigation of a two and a three-dimensional low speed turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Melnik, W. L.

    1976-01-01

    Experimental studies of a two and a three-dimensional low speed turbulent boundary layer were conducted on the side wall of a boundary layer wind tunnel. The 20 ft. long test section, with a rectangular cross section measuring 17.5 in. x 46 in., produced a 3.5 in. thick turbulent boundary layer at a free stream Reynolds number. The three-dimensional turbulent boundary layer was produced by a 30 deg swept wing-like model faired into the side wall of the test section. Preliminary studies in the two-dimensional boundary layer indicated that the flow was nonuniform on the 46 in. wide test wall. The nonuniform boundary layer is characterized by transverse variations in the wall shear stress and is primarily caused by nonuniformities in the inlet damping screens.

  14. The relation between skin friction fluctuations and turbulent fluctuating velocities in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Diaz Daniel, Carlos; Laizet, Sylvain; Vassilicos, John Christos

    2015-11-01

    The Townsend-Perry hypothesis of wall-attached eddies relates the friction velocity uτ at the wall to velocity fluctuations at a position y from the wall, resulting in a wavenumber range where the streamwise fluctuating velocity spectrum scales as E (k) ~k-1 and the corresponding structure function scales as uτ2 in the corresponding length-scale range. However, this model does not take in account the fluctuations of the skin friction velocity, which are in fact strongly intermittent. A DNS of zero-pressure gradient turbulent boundary layer suggests a 10 to 15 degree angle from the lag of the peak in the cross-correlations between the fluctuations of the shear stress and streamwise fluctuating velocities at different heights in the boundary layer. Using this result, it is possible to refine the definition of the attached eddy range of scales, and our DNS suggests that, in this range, the second order structure function depends on filtered skin friction fluctuations in a way which is about the same at different distances from the wall and different local Reynolds numbers.

  15. Free-stream turbulence and concave curvature effects on heated, transitional boundary layers

    NASA Technical Reports Server (NTRS)

    Kim, J.; Simon, T. W.

    1991-01-01

    An experimental investigation of the transition process on flat-plate and concave curved-wall boundary layers for various free-stream turbulence levels was performed. Results show that for transition of a flat-plate, the two forms of boundary layer behavior, identified as laminar-like and turbulent-like, cannot be thought of as separate Blasius and fully-turbulent profiles, respectively. Thus, simple transition models in which the desired quantity is assumed to be an average, weighted on intermittency, of the theoretical laminar and fully turbulent values is not expected to be successful. Deviation of the flow identified as laminar-like from theoretical laminar behavior is shown to be due to recovery after the passage of a turbulent spot, while deviation of the flow identified as turbulent-like from the full-turbulent values is thought to be due to incomplete establishment of the fully-turbulent power spectral distribution. Turbulent Prandtl numbers for the transitional flow, computed from measured shear stress, turbulent heat flux and mean velocity and temperature profiles, were less than unity. For the curved-wall case with low free-stream turbulence intensity, the existence of Gortler vortices on the concave wall within both laminar and turbulent flows was established using liquid crystal visualization and spanwise velocity and temperature traverses. Transition was found to occur via a vortex breakdown mode. The vortex wavelength was quite irregular in both the laminar and turbulent flows, but the vortices were stable in time and space. The upwash was found to be more unstable, with higher levels of u' and u'v', and lower skin friction coefficients and shape factors. Turbulent Prandtl numbers, measured using a triple-wire probe, were found to be near unity for all post-transitional profiles, indicating no gross violation of Reynolds analogy. No evidence of streamwise vortices was seen in the high turbulence intensity case.

  16. Experimental study of boundary layer transition with elevated freestream turbulence on a heated flat plate

    NASA Technical Reports Server (NTRS)

    Sohn, Ki-Hyeon; Reshotko, Eli

    1991-01-01

    A detailed investigation to document momentum and thermal development of boundary layers undergoing natural transition on a heated flat plate was performed. Experimental results of both overall and conditionally sampled characteristics of laminar, transitional, and low Reynolds number turbulent boundary layers are presented. Measurements were acquired in a low-speed, closed-loop wind tunnel with a freestream velocity of 100 ft/s and zero pressure gradient over a range of freestream turbulence intensities (TI) from 0.4 to 6 percent. The distributions of skin friction, heat transfer rate and Reynolds shear stress were all consistent with previously published data. Reynolds analogy factors for R(sub theta) is less than 2300 were found to be well predicted by laminar and turbulent correlations which accounted for an unheated starting length. The measured laminar value of Reynolds analogy factor was as much as 53 percent higher than the Pr(sup -2/3). A small dependence of turbulent results on TI was observed. Conditional sampling performed in the transitional boundary layer indicated the existence of a near-wall drop in intermittency, pronounced at certain low intermittencies, which is consistent with the cross-sectional shape of turbulent spots observed by others. Non-turbulent intervals were observed to possess large magnitudes of near-wall unsteadiness and turbulent intervals had peak values as much as 50 percent higher than were measured at fully turbulent stations. Non-turbulent and turbulent profiles in transitional boundary layers cannot be simply treated as Blasius and fully turbulent profiles, respectively. The boundary layer spectra indicate predicted selective amplification of T-S waves for TI is approximately 0.4 percent. However, for TI is approximately 0.8 and 1.1 percent, T-S waves are localized very near the wall and do not play a dominant role in transition process.

  17. A turbulent burst model for boundary layer flows with pressure gradient

    NASA Astrophysics Data System (ADS)

    Thomas, L. C.; Benton, D. J.

    The object of this paper is to develop a surface renewal model of the turbulent burst phenomenon for momentum and energy transfer in the wall region for turbulent boundary layer flows with pressure gradient. In addition to obtaining inner laws for the distributions in velocity and temperature, predictions are obtained for the effect of pressure gradient on the mean burst frequency and on the turbulent Prandtl number within the wall region for slight favorable and mild adverse pressure gradients.

  18. Heat Transfer in the Turbulent Boundary Layer of a Compressible Gas at High Speeds

    NASA Technical Reports Server (NTRS)

    Frankl, F.

    1942-01-01

    The Reynolds law of heat transfer from a wall to a turbulent stream is extended to the case of flow of a compressible gas at high speeds. The analysis is based on the modern theory of the turbulent boundary layer with laminar sublayer. The investigation is carried out for the case of a plate situated in a parallel stream. The results are obtained independently of the velocity distribution in the turbulent boundar layer.

  19. Emission of sound from turbulence convected by a parallel flow in the presence of solid boundaries

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Rosenbaum, B. M.

    1973-01-01

    A theoretical description is given of the sound emitted from an arbitrary point in a parallel or nearly parallel turbulent shear flow confined to a region near solid boundaries. The analysis begins with Lighthill's formulation of aerodynamic noise and assumes that the turbulence is axisymmetric. Specific results are obtained for the sound emitted from an arbitrary point in a turbulent flow within a semi-infinite, open-ended duct.

  20. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  1. Experimental studying the effect of porous coatings of different lengths on second-mode disturbances in a hypersonic boundary layer of sharp and blunted cones

    NASA Astrophysics Data System (ADS)

    Lukashevich, S. V.; Morozov, S. O.; Shiplyuk, A. N.

    2016-10-01

    This work is aimed to the experimental investigations of the effect of the passive porous coating length on the hypersonic boundary layer stability. The experiments are performed in a Transit-M hypersonic short-duration wind tunnel at the Mach number M∞ = 5.8. The measurement of the second mode disturbances are made on surface of the cone with different nose radii. It is found that by changing of the porous length it is possible to stabilize or destabilize the second mode disturbances. This effect is observed on the model with three different nose radii. The coating lengths and positions that ensure the maximum efficiency of suppression of the second-mode disturbances by the passive porous coating were found.

  2. Velocity fields and optical turbulence near the boundary in a strongly convective laboratory flow

    NASA Astrophysics Data System (ADS)

    Matt, Silvia; Hou, Weilin; Goode, Wesley; Hellman, Samuel

    2016-05-01

    Boundary layers around moving underwater vehicles or other platforms can be a limiting factor for optical communication. Turbulence in the boundary layer of a body moving through a stratified medium can lead to small variations in the index of refraction, which impede optical signals. As a first step towards investigating this boundary layer effect on underwater optics, we study the flow near the boundary in the Rayleigh-Bénard laboratory tank at the Naval Research Laboratory Stennis Space Center. The tank is set up to generate temperature-driven, i.e., convective turbulence, and allows control of the turbulence intensity. This controlled turbulence environment is complemented by computational fluid dynamics simulations to visualize and quantify multi-scale flow patterns. The boundary layer dynamics in the laboratory tank are quantified using a state-of-the-art Particle Image Velocimetry (PIV) system to examine the boundary layer velocities and turbulence parameters. The velocity fields and flow dynamics from the PIV are compared to the numerical model and show the model to accurately reproduce the velocity range and flow dynamics. The temperature variations and thus optical turbulence effects can then be inferred from the model temperature data. Optical turbulence is also visible in the raw data from the PIV system. The newly collected data are consistent with previously reported measurements from high-resolution Acoustic Doppler Velocimeter profilers (Nortek Vectrino), as well as fast thermistor probes and novel next-generation fiber-optics temperature sensors. This multi-level approach to studying optical turbulence near a boundary, combining in-situ measurements, optical techniques, and numerical simulations, can provide new insight and aid in mitigating turbulence impacts on underwater optical signal transmission.

  3. Budget of Turbulent Kinetic Energy in a Shock Wave Boundary-Layer Interaction

    NASA Technical Reports Server (NTRS)

    Vyas, Manan A.; Waindim, Mbu; Gaitonde, Datta V.

    2016-01-01

    Implicit large-eddy simulation (ILES) of a shock wave/boundary-layer interaction (SBLI) was performed. Quantities present in the exact equation of the turbulent kinetic energy transport were accumulated and used to calculate terms like production, dissipation, molecular diffusion, and turbulent transport. The present results for a turbulent boundary layer were validated by comparison with direct numerical simulation data. It was found that a longer development domain was necessary for the boundary layer to reach an equilibrium state and a finer mesh resolution would improve the predictions. In spite of these findings, trends of the present budget match closely with that of the direct numerical simulation. Budgets for the SBLI region are presented at key axial stations. These budgets showed interesting dynamics as the incoming boundary layer transforms and the terms of the turbulent kinetic energy budget change behavior within the interaction region.

  4. Supplement to the ICRPG turbulent boundary layer nozzle analysis computer program

    NASA Technical Reports Server (NTRS)

    Omori, S.; Gross, K. W.

    1972-01-01

    A supplement is presented for a turbulent boundary layer nozzle analysis computer program. It describes the program calculation sequence and presents a detailed documentation of each subroutine. Important equations are derived explicitly, and improvements to the program are discussed.

  5. Turbulent boundary layer over a flat plate with strong stepwise heating

    NASA Astrophysics Data System (ADS)

    Ng, T. T.; Talbot, L.; Robben, F.

    1982-07-01

    The turbulent boundary layer over a flat plate with stepwise wall temperature rise from room temperature to 1250 K and free stream velocity of 10.5 m/s was studied. Thermal structures in the heated boundary layer were observed using high speed schlieren cine. Mean and rootmean-square (rms) density distributions were obtained from Rayleigh scattering intensity measurements. Velocity statistics were provided by a single component laser Doppler velocimetry system. Mean and rms velocity profiles, the Reynolds stress, the streamwise and the cross stream turbulent kinetic energy diffusion were determined. Data were collected by a computer based data acquisition and control system. The overall shape of the thermal structures observed in the schlieren pictures of the heated boundary layer is similar to that of the large scale turbulent structures in an isothermal turbulent boundary layer.

  6. Laminar boundary layer in conditions of natural transition to turbulent flow

    NASA Technical Reports Server (NTRS)

    Polyakov, N. F.

    1986-01-01

    Results of experimental study of regularities of a natural transition of a laminar boundary layer to a turbulent layer at low subsonic air flow velocities are presented, analyzed and compared with theory and model experiments.

  7. Measurements in Transitional Boundary Layers Under High Free-Stream Turbulence and Strong Acceleration Conditions

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Simon, Terrence W.

    1995-01-01

    Measurements from transitional, heated boundary layers along a concave-curved test wall are presented and discussed. A boundary layer subject to low free-stream turbulence intensity (FSTI), which contains stationary streamwise (Gortler) vortices, is documented. The low FSTI measurements are followed by measurements in boundary layers subject to high (initially 8%) free-stream turbulence intensity and moderate to strong streamwise acceleration. Conditions were chosen to simulate those present on the downstream half of the pressure side of a gas turbine airfoil. Mean flow characteristics as well as turbulence statistics, including the turbulent shear stress, turbulent heat flux, and turbulent Prandtl number, are documented. A technique called "octant analysis" is introduced and applied to several cases from the literature as well as to data from the present study. Spectral analysis was applied to describe the effects of turbulence scales of different sizes during transition. To the authors'knowledge, this is the first detailed documentation of boundary layer transition under such high free-stream turbulence conditions.

  8. Large Eddy Simulation of Stable Boundary Layer Turbulent Processes in Complex Terrain

    SciTech Connect

    Eric D. Skyllingstad

    2005-01-26

    Research was performed using a turbulence boundary layer model to study the behavior of cold, dense flows in regions of complex terrain. Results show that flows develop a balance between turbulent entrainment of warm ambient air and dense, cold air created by surface cooling. Flow depth and strength is a function of downslope distance, slope angle and angle changes, and the ambient air temperature.

  9. DNS Study of Effects of Suddenly-Vanishing Wall Heating in Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Hattori, Hirofumi; Yamada, Syohei; Houra, Tomoya

    The objective of this study is to investigate a thermal field in the turbulent boundary layer by means of direct numerical simulation (DNS), in which the wall heating has suddenly vanished in the downstream region, i.e., the wall is heated by a constant temperature condition followed by an adiabatic condition. The DNS of spatially developing boundary layers with heat transfer using the generation of turbulent inflow data method has been conducted. In this study, two types of flow field with heat transfer are investigated via DNS. One is a turbulent boundary layer along flat plate, and the other is a turbulent boundary layer over the forward-facing step. In both cases, constant temperature wall followed by adiabatic wall condition is adopted. In particular, the turbulent heat transfer phenomena around suddenly-changing wall thermal condition are revealed. In the case of forward-facing step flow, since the adiabatic wall thermal condition is applied on the step, a peculiar phenomenon is observed in comparison with the case of flat plate. DNS results clearly show the statistics and structure of turbulent heat transfer in a constant temperature wall followed by an adiabatic wall. Also, DNS clearly shows the wall-limiting behaviour of turbulence in thermal field whose index number with reference to the distance from the wall changes due to the modification of wall thermal conditions, which may be useful for the turbulence modelling.

  10. Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye

    1990-01-01

    A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.

  11. Receptivity of Hypersonic Boundary Layers to Distributed Roughness and Acoustic Disturbances

    NASA Technical Reports Server (NTRS)

    Balakumar, Ponnampalam

    2012-01-01

    Boundary-layer receptivity and stability of Mach 6 flow over smooth and rough 7 half-angle sharp-tipped cones are numerically investigated. The receptivity of the boundary layer to slow acoustic disturbances, fast acoustic disturbances, and vortical disturbances are considered. The effects of two-dimensional isolated and distributed roughness on the receptivity and stability are also simulated. The results show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves than to the fast waves. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that of the slow acoustic wave. An isolated two-dimensional roughness element of height h/delta =1/4 did not produce any difference in the receptivity or in the stability of the boundary layer. Distributed roughness elements produced a small decrease in the receptivity coefficient and also stabilized the boundary layer by small amounts.

  12. Forced unsteady deceleration of a turbulent boundary layer from a temporal perspective

    NASA Technical Reports Server (NTRS)

    Brereton, G. J.

    1992-01-01

    The behavior of a turbulent boundary layer which has been subjected to a local ramp-like deceleration in the external velocity field, which leads to forced separation, has been studied experimentally. The data of this study are re-interpreted in light of more recent findings concerning the temporal nature of boundary layer turbulence in the presence of forced unsteady shear. In particular, the robustness of the near-wall turbulent motions to organized deformation is recognized. Their resilence during unsteady shearing action promotes continued efficient turbulent mixing and rapid redistribution of turbulent kinetic energy during forced transients. In aerodynamic problems, the rapid nature of the adjustment of the turbulence field to a new temporal boundary condition necessitates equally rapid remedial measures to be taken if means of control/prevention of forced unsteady separation are to be deployed to maximum effect. This requirement suggests exploration of the use of simple, real-time statistical forecasting techniques, based upon time-series analysis of easily-measurable features of the flow, to help assure timely deployment of mechanisms of boundary-layer control. This paper focuses upon the nature of turbulence in boundary layers undergoing forced deceleration which would lead to separation. A preliminary form of a forecasting model is presented and evaluated. Using observations of the previous two large eddies passing a detector, it forecasts the behavior of the future large eddy rather well.

  13. Forced unsteady deceleration of a turbulent boundary layer from a temporal perspective

    NASA Astrophysics Data System (ADS)

    Brereton, G. J.

    1992-03-01

    The behavior of a turbulent boundary layer which has been subjected to a local ramp-like deceleration in the external velocity field, which leads to forced separation, has been studied experimentally. The data of this study are re-interpreted in light of more recent findings concerning the temporal nature of boundary layer turbulence in the presence of forced unsteady shear. In particular, the robustness of the near-wall turbulent motions to organized deformation is recognized. Their resilence during unsteady shearing action promotes continued efficient turbulent mixing and rapid redistribution of turbulent kinetic energy during forced transients. In aerodynamic problems, the rapid nature of the adjustment of the turbulence field to a new temporal boundary condition necessitates equally rapid remedial measures to be taken if means of control/prevention of forced unsteady separation are to be deployed to maximum effect. This requirement suggests exploration of the use of simple, real-time statistical forecasting techniques, based upon time-series analysis of easily-measurable features of the flow, to help assure timely deployment of mechanisms of boundary-layer control. This paper focuses upon the nature of turbulence in boundary layers undergoing forced deceleration which would lead to separation. A preliminary form of a forecasting model is presented and evaluated. Using observations of the previous two large eddies passing a detector, it forecasts the behavior of the future large eddy rather well.

  14. Recovery of a supersonic turbulent boundary layer after an expansion corner

    NASA Astrophysics Data System (ADS)

    Sun, Ming-bo; Hu, Zhiwei; Sandham, Neil D.

    2017-07-01

    Supersonic turbulent flows at Mach 2.7 over expansion corners with deflection angles of 0° (flat plate), 2°, and 4° have been studied using direct numerical simulation. Distributions of skin friction, pressure, velocity, and boundary layer growth show that the turbulent boundary layer experiences a recovery from a non-equilibrium to an equilibrium state downstream of the expansion corner. Analysis of velocity profiles indicates that the streamwise velocity undergoes a reduction in the near-wall region even though the velocity in the core part of the boundary layer is accelerated after the expansion corner. Growth of the boundary layer was evaluated and a higher shape factor was found in the expansion cases. Turbulence was found to be mostly suppressed downstream of the corner, and throughout the recovery region, even though turbulence is regenerated in the near-wall region. The expansion ramp increases the near-wall streak spacing compared to a flat plate, and turbulent kinetic energy profiles and budgets exhibit a characteristic two-layer structure. Near-wall turbulence recovers to a balance between the local production and dissipation equilibrium more quickly in the inner layer than in the outer layer. The two-layer structure is due to a history effect of turbulence decay in the outer part of the boundary layer downstream of the expansion corner, with limited momentum and energy exchange between the inner layer and the main stream.

  15. Reynolds number and pressure gradient effects on compressible turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Acharya, M.; Kussoy, M. I.; Horstman, C. C.

    1978-01-01

    A detailed investigation of attached supersonic turbulent boundary layers over an extensive range of Reynolds numbers (12 x 10 to the 6th to 314 x 10 to the 6th) is presented. Experimental measurements were obtained for adverse pressure gradients ranging in magnitude from those of previous investigations to those approaching separation. The measurements include mean values of surface pressure and skin-friction, mean-flow profiles, and profiles of the three turbulent velocity fluctuation components and turbulent shear stress. Numerical solutions, employing three turbulence models of various degrees of complexity have been compared with the details of the measured flow fields. Generally, it was found that the more sophisticated turbulence models are superior to a mixing length model for predicting the Reynolds number and pressure gradient effects. However, some details of the turbulent fluctuations as well as the exact Reynolds number trends indicated by the data were not accurately predicted with any of the turbulence models considered.

  16. Low-Dimensional Dynamical Characteristics of Shock Wave /Turbulent Boundary Layer Interaction in Conical Flows

    DTIC Science & Technology

    2014-12-16

    Shock Wave /Turbulent Boundary Layer Interaction in Conical Flows FA9550-11-1-0203 Dr. Charles E. Tinney, Aerospace Engineering and Engineering...Low-Dimensional Dynamical Characteristics of Shock Wave /Turbulent Boundary Layer Interaction in Conical Flows Contract/Grant Number: FA9550-11-1-0203...driven by transonic resonance (Zaman et al, 2002). What is common about many of these planar nozzle studies is that there is just one single

  17. Developing mass spectrometric techniques for boundary layer measurement in hypersonic high enthalpy test facilities

    NASA Technical Reports Server (NTRS)

    Wood, G. M., Jr.; Lewis, B. W.; Nowak, R. J.; Eide, D. G.; Paulin, P. A.; Upchurch, B. T.

    1983-01-01

    Thermodynamic flow properties of gases in the boundary layer or the flowfield have been mainly deduced from pressures and temperatures measured on a model. However, further progress with respect to an understanding of these properties requires a more complete characterization of the layer including determination of the gas composition and chemistry. Most attempts to measure boundary layer chemistry involve the employment of a mass spectrometer and an associated gas sampling system. The three major limiting factors which must be addressed for species measurement in aerothermodynamic investigations on models at reentry stream velocities, are gas sampling effects, instrument limitations, and problems with data acquisition. The present investigation is concerned with a concentrated effort to quantitatively identify and correct for instrument and sampling system effects, and to develop a miniaturized high performance mass spectrometer for on-model real-time analysis of the boundary layer and its associated atmosphere.

  18. Receptivity of Hypersonic Boundary Layers Due to Acoustic Disturbances over Blunt Cone

    NASA Technical Reports Server (NTRS)

    Kara, K.; Balakumar, P.; Kandil, O. A.

    2007-01-01

    The transition process induced by the interaction of acoustic disturbances in the free-stream with boundary layers over a 5-degree straight cone and a wedge with blunt tips is numerically investigated at a free-stream Mach number of 6.0. To compute the shock and the interaction of shock with the instability waves the Navier-Stokes equations are solved in axisymmetric coordinates. The governing equations are solved using the 5th -order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. After the mean flow field is computed, acoustic disturbances are introduced at the outer boundary of the computational domain and unsteady simulations are performed. Generation and evolution of instability waves and the receptivity of boundary layer to slow and fast acoustic waves are investigated. The mean flow data are compared with the experimental results. The results show that the instability waves are generated near the leading edge and the non-parallel effects are stronger near the nose region for the flow over the cone than that over a wedge. It is also found that the boundary layer is much more receptive to slow acoustic wave (by almost a factor of 67) as compared to the fast wave.

  19. Understanding Near-Surface and In-Cloud Turbulent Fluxes in the Coastal Stratocumulus-Topped Boundary Layers

    DTIC Science & Technology

    2004-10-01

    UNDERSTANDING NEAR-SURFACE AND IN- CLOUD TURBULENT FLUXES IN THE COASTAL STRATOCUMULUS-TOPPED BOUNDARY LAYERS FINAL...Understanding Near-surface and In- cloud Turbulent Fluxes in the Coastal Stratocumulus-topped Boundary 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT...upwelling and stratocumulus cloud contribute significantly in the complexity of the atmospheric flow in the measurements area. Measured surface turbulent

  20. The Effects of Mass Transfer and Angle of Attack on Hypersonic Turbulent Boundary Layer Characteristics

    DTIC Science & Technology

    1975-04-01

    temperature was measured with a singly shielded thermocouple (tip height approximately 0.050"). This probe was calibrated in the free stream for several...thickness, (P u 9/ ) e e e r - radius measured from axis of symmetry; recovery factor s - wetted length along surface of body St - Stanton number, w /(Pu) e...experiment considered mass addition rates which cover the ablation gas range for current heat shield materials (simulated ablation via gaseous mass

  1. Boundary Layer for the Navier-Stokes-alpha Model of Fluid Turbulence

    NASA Astrophysics Data System (ADS)

    Cheskidov, A.

    We study boundary-layer turbulence using the Navier-Stokes-alpha model obtaining an extension of the Prandtl equations for the averaged flow in a turbulent boundary layer. In the case of a zero pressure gradient flow along a flat plate, we derive a nonlinear fifth-order ordinary differential equation, which is an extension of the Blasius equation. We study it analytically and prove the existence of a two-parameter family of solutions satisfying physical boundary conditions. Matching these parameters with the skin-friction coefficient and the Reynolds number based on momentum thickness, we get an agreement of the solutions with experimental data in the laminar and transitional boundary layers, as well as in the turbulent boundary layer for moderately large Reynolds numbers.

  2. CFD on hypersonic flow geometries with aeroheating

    NASA Astrophysics Data System (ADS)

    Sohail, Muhammad Amjad; Chao, Yan; Hui, Zhang Hui; Ullah, Rizwan

    2012-11-01

    The hypersonic flowfield around a blunted cone and cone-flare exhibits some of the major features of the flows around space vehicles, e.g. a detached bow shock in the stagnation region and the oblique shock wave/boundary layer interaction at the cone-flare junction. The shock wave/boundary layer interaction can produce a region of separated flow. This phenomenon may occur, for example, at the upstream-facing corner formed by a deflected control surface on a hypersonic entry vehicle, where the length of separation has implications for control effectiveness. Computational fluid-dynamics results are presented to show the flowfield around a blunted cone and cone-flare configurations in hypersonic flow with separation. This problem is of particular interest since it features most of the aspects of the hypersonic flow around planetary entry vehicles. The region between the cone and the flare is particularly critical with respect to the evaluation of the surface pressure and heat flux with aeroheating. Indeed, flow separation is induced by the shock wave boundary layer interaction, with subsequent flow reattachment, that can dramatically enhance the surface heat transfer. The exact determination of the extension of the recirculation zone is a particularly delicate task for numerical codes. Laminar flow and turbulent computations have been carried out using a full Navier-Stokes solver, with freestream conditions provided by the experimental data obtained at Mach 6, 8, and 16.34 wind tunnel. The numerical results are compared with the measured pressure and surface heat flux distributions in the wind tunnel and a good agreement is found, especially on the length of the recirculation region and location of shock waves. The critical physics of entropy layer, boundary layers, boundary layers and shock wave interaction and flow behind shock are properly captured and elaborated.. Hypersonic flows are characterized by high Mach number and high total enthalpy. An elevated

  3. Calculation of laminar and turbulent boundary layers for two-dimensional time-dependent flows

    NASA Technical Reports Server (NTRS)

    Cebeci, T.

    1977-01-01

    A general method for computing laminar and turbulent boundary layers for two-dimensional time-dependent flows is presented. The method uses an eddy-viscosity formulation to model the Reynolds shear-stress term and a very efficient numerical method to solve the governing equations. The model was applied to steady two-dimensional and three-dimensional flows and was shown to give good results. A discussion of the numerical method and the results obtained by the present method for both laminar and turbulent flows are discussed. Based on these results, the method is efficient and suitable for solving time-dependent laminar and turbulent boundary layers.

  4. Shock-tube chemistry. I - The laminar-to-turbulent boundary layer transition

    NASA Technical Reports Server (NTRS)

    Bander, J. A.; Sanzone, G.

    1977-01-01

    A model is proposed for calculating laminar-turbulent transition in the boundary layer of flows in chemical shock tubes. It is shown that the time to turbulent transition may be treated as the time required by the shocked gas to move over one shock-tube diameter. The model is shown to provide a means of predicting the turbulent transition time in any shock tube experiment, provided the condition of limiting flow is met. Knowing the transition time, it becomes possible to obtain the density and temperature profiles and, hence, to determine precisely the effect of shock tube boundary layers on the measurement of chemical rate constants.

  5. Hypersonic Laminar Boundary Layer Velocimetry with Discrete Roughness on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Bathel, Brett; Danehy, Paul M.; Inman, Jennifer A.; Watkins, A. Neal; Jones, Stephen B.; Lipford, William E.; Goodman, Kyle Z.; Ivey, Christopher B.; Goyne, Christopher P.

    2010-01-01

    Laminar boundary layer velocity measurements are made on a 10-degree half-angle wedge in a Mach 10 flow. Two types of discrete boundary layer trips were used to perturb the boundary layer gas. The first was a 2-mm tall, 4-mm diameter cylindrical trip. The second was a scaled version of the Orbiter Boundary Layer Transition (BLT) Detailed Test Objective (DTO) trip. Both 1-mm and 2.5-mm tall BLT DTO trips were tested. Additionally, side-view and plan-view axial boundary layer velocity measurements were made in the absence of these tripping devices. The free-stream unit Reynolds numbers tested for the cylindrical trips were 1.7x10(exp 6)/m and 3.3x10(exp 6)/m. The free-stream unit Reynolds number tested for the BLT DTO trips was 1.7x10(exp 6)/m. The angle of attack was kept at approximately 5-degrees for most of the tests resulting in a Mach number of approximately 8.3. These combinations of unit Reynolds numbers and angle of attack resulted in laminar flowfields. To study the precision of the measurement technique, the angle of attack was varied during one run. Nitric-oxide (NO) molecular tagging velocimetry (MTV) was used to obtain averaged axial velocity values and associated uncertainties. These uncertainties are as low as 20 m/s. An interline, progressive scan CCD camera was used to obtain separate images of the initial reference and shifted NO molecules that had been tagged by the laser. The CCD configuration allowed for sub-microsecond sequential acquisition of both images. The maximum planar spatial resolution achieved for the side-view velocity measurements was 0.07-mm in the wall-normal direction by 1.45-mm in the streamwise direction with a spatial depth of 0.5-mm. For the plan-view measurements, the maximum planar spatial resolution in the spanwise and streamwise directions was 0.69-mm by 1.28-mm, respectively, with a spatial depth of 0.5-mm. Temperature sensitive paint (TSP) measurements are provided to compliment the velocity data and to provide further

  6. Turbulence model investigations on the boundary layer flow with adverse pressure gradients

    NASA Astrophysics Data System (ADS)

    Yong, Zhao; Zhi, Zong; Li, Zou; Tianlin, Wang

    2015-06-01

    In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients (APGs) is conducted by using Reynolds-averaged Navier-Stokes (RANS) equations. This research chooses six typical turbulence models, which are critical to the computing precision, and to evaluating the issue of APGs. Local frictional resistance coefficient is compared between numerical and experimental results. The same comparisons of dimensionless averaged velocity profiles are also performed. It is found that results generated by Wilcox (2006) k- w are most close to the experimental data. Meanwhile, turbulent quantities such as turbulent kinetic energy and Reynolds-stress are also studied.

  7. An embedded boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries

    NASA Astrophysics Data System (ADS)

    Yang, Jianming

    2005-11-01

    A non-boundary-conforming formulation for simulating transitional and turbulent flows with complex geometries and dynamically moving boundaries on fixed orthogonal grids is developed. The underlying finite-difference solver for the filtered incompressible Navier-Stokes equations in both Cartesian and cylindrical coordinates is based on a second-order fractional step method on staggered grid. To satisfy the boundary conditions on an arbitrary immersed interface, the velocity field at the grid points near the interface is reconstructed locally without smearing the sharp interface. The complications caused by the Eulerian grid points emerging from a moving solid body into the fluid phase are treated with a novel "field-extension" strategy. To treat the two-way interactions between the fluid and structure, a strong coupling scheme based on Hamming's fourth-order predictor-corrector method has been developed. The fluid and the structure are treated as elements of a single dynamical system, and all of the governing equations are integrated simultaneously, and iteratively in the time-domain. A variety of two and three-dimensional fluid-structure interaction problems of increasing complexity have been considered to demonstrate the accuracy and the range of applicability of the method. In particular, forced vibrations of a rigid circular cylinder including the harmonic in-line vibrations in a quiescent fluid and the transverse vibrations in a free-stream, and the vortex-induced vibrations of an elastic cylinder with one and two degrees of freedom in a free-stream are presented and compared with reference simulations and experiments. Three-dimensional DNS and LES of fluid flows involving stationary complex geometries include the flow past a sphere at Re = 50 ˜ 1,000, the transitional flow past an airfoil with a 10° attack angle at Re = 10,000. Then, the turbulent flow over a traveling wavy wall at Re = 10,170 are simulated are compared with the detailed DNS using body

  8. Investigation of Gas Seeding for Planar Laser-Induced Fluorescence in Hypersonic Boundary Layers

    NASA Technical Reports Server (NTRS)

    Arisman, C. J.; Johansen, C. T.; Bathel, B. F.; Danehy, P. M.

    2015-01-01

    Numerical simulations of the gas-seeding strategies required for planar laser-induced fluorescence in a Mach 10 (approximately Mach 8.2 postshock) airflow were performed. The work was performed to understand and quantify the adverse effects associated with gas seeding and to assess various types of seed gas that could potentially be used in future experiments. In prior experiments, NO and NO2 were injected through a slot near the leading edge of a flatplate wedge model used in NASA Langley Research Center's 31 in. Mach 10 air tunnel facility. In this paper, nitric oxide, krypton, and iodine gases were simulated at various injection rates. Simulations showing the deflection of the velocity boundary layer for each of the cases are presented. Streamwise distributions of velocity and concentration boundary-layer thicknesses, as well as vertical distributions of velocity, temperature, and mass distributions, are presented for each of the cases. A comparison between simulated streamwise velocity profiles and experimentally obtained molecular tagging velocimetry profiles using a nitric oxide seeding strategy is performed to verify the influence of such a strategy on the boundary layer. The relative merits of the different seeding strategies are discussed. The results from a custom solver based on OpenFOAM version 2.2.1 are compared against results obtained from ANSYS® Fluent version 6.3.

  9. Implicit Large-Eddy Simulations of Zero-Pressure Gradient, Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Sekhar, Susheel; Mansour, Nagi N.

    2015-01-01

    A set of direct simulations of zero-pressure gradient, turbulent boundary layer flows are conducted using various span widths (62-630 wall units), to document their influence on the generated turbulence. The FDL3DI code that solves compressible Navier-Stokes equations using high-order compact-difference scheme and filter, with the standard recycling/rescaling method of turbulence generation, is used. Results are analyzed at two different Re values (500 and 1,400), and compared with spectral DNS data. They show that a minimum span width is required for the mere initiation of numerical turbulence. Narrower domains ((is) less than 100 w.u.) result in relaminarization. Wider spans ((is) greater than 600 w.u.) are required for the turbulent statistics to match reference DNS. The upper-wall boundary condition for this setup spawns marginal deviations in the mean velocity and Reynolds stress profiles, particularly in the buffer region.

  10. A documentation of two- and three-dimensional shock-separated turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Brown, J. D.; Brown, J. L.; Kussoy, M. I.

    1988-01-01

    A shock-related separation of a turbulent boundary layer has been studied and documented. The flow was that of an axisymmetric turbulent boundary layer over a 5.02-cm-diam cylinder that was aligned with the wind tunnel axis. The boundary layer was compressed by a 30 deg half-angle conical flare, with the cone axis inclined at an angle alpha to the cylinder axis. Nominal test conditions were P sub tau equals 1.7 atm and M sub infinity equals 2.85. Measurements were confined to the upper-symmetry, phi equals 0 deg, plane. Data are presented for the cases of alpha equal to 0. 5. and 10 deg and include mean surface pressures, streamwise and normal mean velocities, kinematic turbulent stresses and kinetic energies, as well as reverse-flow intermittencies. All data are given in tabular form; pressures, streamwise velocities, turbulent shear stresses, and kinetic energies are also presented graphically.

  11. A note on turbulent spots over a rough bed in wave boundary layers

    NASA Astrophysics Data System (ADS)

    Carstensen, S.; Sumer, B. M.; Fredsøe, J.

    2012-11-01

    This study is a continuation of the investigation of turbulent spots in wave boundary layers over a smooth wall reported by Carstensen et al. [J. Fluid Mech. 646, 169-206 (2010), 10.1017/S0022112009992825]. The present paper summarises the results of an experimental investigation of turbulent spots in wave boundary layers over a rough wall. Two kinds of experiments were made: flow visualization tests and velocity profile measurements. The experiments show that turbulent spots as observed in the smooth-wall wave boundary layers are present irrespective of wall roughness conditions. As in the smooth-wall case the turbulent spots over the rough wall appear locally in time and space and grow in size as time progresses.

  12. Influence of bulk turbulence and entrance boundary layer thickness on the curved duct flow field

    NASA Astrophysics Data System (ADS)

    Crawford, R. A.

    1988-11-01

    The influence of bulk turbulence and boundary layer thickness on the secondary flow development in a square, 90 degree turning duct was investigated. A three-dimensional laser velocimetry system was utilized to measure the mean and fluctuating components of velocity at six cross-planes in the duct. The results from this investigation, with entrance boundary layer thickness of 20 percent, were compared with the thin boundary layer results documented in NASA CR-174811. The axial velocity profiles, cross-flow velocities, and turbulence intensities were compared and evaluated with regard to the influence of bulk turbulence intensity and boundary layer thickness, and the influence was significant. The results of this investigation expand the 90 degree curved duct experimental data base to higher turbulence levels and thicker entrance boundary layers. The experimental results provide a challenging benchmark data base for computational fluid dynamics code development and validation. The variation of inlet bulk turbulence intensity provides additional information to aid in turbulence model evaluation.

  13. Direct Numerical Simulation of Turbulent Katabatic Slope Flows with an Immersed-Boundary Method

    NASA Astrophysics Data System (ADS)

    Umphrey, Clancy; DeLeon, Rey; Senocak, Inanc

    2017-09-01

    We investigate a Cartesian-mesh immersed-boundary formulation within an incompressible flow solver to simulate laminar and turbulent katabatic slope flows. As a proof-of-concept study, we consider four different immersed-boundary reconstruction schemes for imposing a Neumann-type boundary condition on the buoyancy field. Prandtl's laminar solution is used to demonstrate the second-order accuracy of the numerical solutions globally. Direct numerical simulation of a turbulent katabatic flow is then performed to investigate the applicability of the proposed schemes in the turbulent regime by analyzing both first- and second-order statistics of turbulence. First-order statistics show that turbulent katabatic flow simulations are noticeably sensitive to the specifics of the immersed-boundary formulation. We find that reconstruction schemes that work well in the laminar regime may not perform as well when applied to a turbulent regime. Our proposed immersed-boundary reconstruction scheme agrees closely with the terrain-fitted reference solutions in both flow regimes.

  14. Influence of bulk turbulence and entrance boundary layer thickness on the curved duct flow field

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.

    1988-01-01

    The influence of bulk turbulence and boundary layer thickness on the secondary flow development in a square, 90 degree turning duct was investigated. A three-dimensional laser velocimetry system was utilized to measure the mean and fluctuating components of velocity at six cross-planes in the duct. The results from this investigation, with entrance boundary layer thickness of 20 percent, were compared with the thin boundary layer results documented in NASA CR-174811. The axial velocity profiles, cross-flow velocities, and turbulence intensities were compared and evaluated with regard to the influence of bulk turbulence intensity and boundary layer thickness, and the influence was significant. The results of this investigation expand the 90 degree curved duct experimental data base to higher turbulence levels and thicker entrance boundary layers. The experimental results provide a challenging benchmark data base for computational fluid dynamics code development and validation. The variation of inlet bulk turbulence intensity provides additional information to aid in turbulence model evaluation.

  15. Receptivity of Hypersonic Boundary Layers to Distributed Roughness and Acoustic Disturbances

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2013-01-01

    Boundary-layer receptivity and stability of Mach 6 flows over smooth and rough seven-degree half-angle sharp-tipped cones are numerically investigated. The receptivity of the boundary layer to slow acoustic disturbances, fast acoustic disturbances, and vortical disturbances is considered. The effects of three-dimensional isolated roughness on the receptivity and stability are also simulated. The results for the smooth cone show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves than to the fast acoustic waves. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that of the slow acoustic wave. Distributed roughness elements located near the nose region decreased the receptivity of the second mode generated by the slow acoustic wave by a small amount. Roughness elements distributed across the continuous spectrum increased the receptivity of the second mode generated by the slow and fast acoustic waves and the vorticity wave. The largest increase occurred for the vorticity wave. Roughness elements distributed across the synchronization point did not change the receptivity of the second modes generated by the acoustic waves. The receptivity of the second mode generated by the vorticity wave increased in this case, but the increase is lower than that occurred with the roughness elements located across the continuous spectrum. The simulations with an isolated roughness element showed that the second mode waves generated by the acoustic disturbances are not influenced by the small roughness element. Due to the interaction, a three-dimensional wave is generated. However, the amplitude is orders of magnitude smaller than the two-dimensional wave.

  16. Stability of hypersonic compression cones

    NASA Astrophysics Data System (ADS)

    Reed, Helen; Kuehl, Joseph; Perez, Eduardo; Kocian, Travis; Oliviero, Nicholas

    2012-11-01

    Our activities focus on the identification and understanding of the second-mode instability for representative configurations in hypersonic flight. These include the Langley 93-10 flared cone and the Purdue compression cone, both at 0 degrees angle of attack at Mach 6. Through application of nonlinear parabolized stability equations (NPSE) and linear parabolized stability equations (PSE) to both geometries, it is concluded that mean-flow distortion tends to amplify frequencies less than the peak frequency and stabilize those greater by modifying the boundary-layer thickness. As initial disturbance amplitude is increased and/or a broad spectrum disturbance is introduced, direct numerical simulations (DNS) or NPSE appear to be the proper choices to model the evolution, and relative evolution, because these computational tools include these nonlinear effects (mean-flow distortion). Support from AFOSR/NASA National Center for Hypersonic Research in Laminar-Turbulent Transition through Grant FA9550-09-1-0341 is gratefully acknowledged. The authors also thank Pointwise, AeroSoft, and Texas Advanced Computing Center (TACC).

  17. Computer program for calculating laminar, transitional, and turbulent boundary layers for a compressible axisymmetric flow

    NASA Technical Reports Server (NTRS)

    Albers, J. A.; Gregg, J. L.

    1974-01-01

    Finite-difference computer program calculates viscous compressible boundary layer flow over either planar or axisymmetric surfaces. Flow may be initially laminar and progress through transitional zone to fully turbulent flow, or it may remain laminar, depending on imposed boundary conditions, laws of viscosity, and numerical solution of momentum and energy equations.

  18. Control and reduction of unsteady pressure loads in separated shock wave turbulent boundary layer interaction

    NASA Technical Reports Server (NTRS)

    Dolling, David S.; Barter, John W.

    1995-01-01

    The focus was on developing means of controlling and reducing unsteady pressure loads in separated shock wave turbulent boundary layer interactions. Section 1 describes how vortex generators can be used to effectively reduce loads in compression ramp interaction, while Section 2 focuses on the effects of 'boundary-layer separators' on the same interaction.

  19. Estimates of Turbulent Boundary Layer Behind a Shock Wave Moving with Uniform Velocity.

    DTIC Science & Technology

    1977-12-08

    reviewed. Numerical results for boundary-layer properties are presented for shock propagation in air at Mach numbers in the range 1.01 or = M sub S or...range 3 or = M sub S = 8. Approximate analytical expressions for turbulent boundary-layer properties are deduced, and estimates of the wall

  20. Power-law velocity profile in turbulent boundary layers: An integral reynolds-number dependent solution

    NASA Astrophysics Data System (ADS)

    Castro-Orgaz, Oscar; Dey, Subhasish

    2011-10-01

    Geophysical flows of practical interest encompass turbulent boundary layer flows. The velocity profile in turbulent flows is generally described by a log- or a power-law applicable to certain zones of the boundary layer, or by wall-wake law for the entire zone of the boundary layer. In this study, a novel theory is proposed from which the power-law velocity profile is obtained for the turbulent boundary layer flow. The new power-law profile is based on the conservation of mass and the skin friction within the boundary layer. From the proposed theory, analytical expressions for the power-law velocity profile are presented, and their Reynolds-number dependency is highlighted. The velocity profile, skin friction coefficient and boundary layer thickness obtained from the proposed theory are validated by the reliable experimental data for zero-pressure gradient turbulent boundary layers. The expressions for Reynolds shear stress and eddy viscosity distributions across the boundary layer are also obtained and validated by the experimental data.

  1. Effect of Free Stream Turbulence and Other Vortical Disturbances on a Laminar Boundary Layer

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Leib, S. J.; Wundrow, David W.

    1997-01-01

    This paper is concerned with the effect of free-stream turbulence on the pretransitional flat-plate boundary layer. It is assumed that either the turbulence Reynolds number or the downstream distance (or both) is small enough so that the flow can be linearized. The dominant disturbances in the boundary layer, which are of the Klebanoff type, are governed by the linearized unsteady boundary-region equations, i.e., the Navier Stokes equations with the streamwise derivatives neglected in the viscous and pressure-gradient terms. The turbulence is represented as a superposition of vortical free-stream Fourier modes, and the corresponding individual Fourier component solutions to the boundary-region equations are obtained numerically. The results are then superposed to compute the root mean square of the fluctuating streamwise velocity in the boundary layer produced by the actual free-stream turbulence. The calculated boundary-layer disturbances are in good quantitative agreement with the experimentally observed Klebanoff modes when strong low-frequency anisotropic effects are included in the free-stream turbulence spectrum. We discuss some additional effects that may need to be accounted for in order to obtain a complete description of the Klebanoff modes.

  2. Numerical Prediction of the Hypersonic Boundary-Layer Over a Row of Microcavities

    NASA Astrophysics Data System (ADS)

    Theofilis, Vassilios

    2002-09-01

    This report results from tasking Nu-Modeling, Inc. as follows: the contractor will perform detailed numerical predictions of the flowfield in the neighborhood of the microcavities that are embedded in wall-coatings. The key deliverable of the proposed work will be the ability to put forward an improved integral condition to replace what is used in the current theoretical approach. This will be determined numerically at each of the parameters of the problem. The numerical effort required for the solution of the problem at a single value of each of the parameters involved limits to subset of the (M, Re, m, d, d/D, d/ s) parameter space that can be investigated within the available year. It is intended to approximate existing analytic results of Fedorov first, at a single set of parameters, by imposing his pressure boundary condition at the lips of the microcavities (i.e. taking D=0). The effect of nonzero values of this parameter will then be examined, keeping all other parameters in the problem constant. Subsequently, the effect of d, and 5 will be investigated, at constant D and 2(d+s). In all D1 0 cases to be studied, integral boundary conditions will be provided to the parties involved in the project. Progress of the proposed research will be monitored by means of one intermediate and one final report.

  3. Correlation of boundary layer quantities for hypersonic laminar flows with zero pressure gradient for several gases

    NASA Technical Reports Server (NTRS)

    Cook, W. J.

    1975-01-01

    The laminar boundary layer has been theoretically studied for six gases for flows over cold walls with zero pressure gradient at Mach numbers between 5.5 and 12.5 to correlate boundary layer quantities for the various gases. The flow conditions considered correspond to those that can be generated in test facilities such as the shock tunnel and the expansion tube. Computed results obtained using real gas properties indicate that the Eckert number based on edge conditions serves to correlate the results in terms of the wall shear stress and enthalpy gradient, the Stanton number, and the momentum thickness for the various gases within plus or minus 10 per cent for Te = Tw and Te approximately 3Tw. Computed Reynolds analogy factors exhibit very good agreement with those predicted by the Colburn analogy. Velocity and displacement thicknesses correlate well with Eckert number for Te = Tw, but fail to correlate for Te approximately 3Tw. Differences in results are traced to property variations. Results show that the Eckert number is a significant correlating variable for the flows considered.

  4. Modeling Turbulence Generation in the Atmospheric Surface and Boundary Layers

    DTIC Science & Technology

    2015-10-01

    components, solar direct and diffuse radiation, foliage-cover effects, and a detailed discussion of gravity -wave influences. The discussion and conclusions...Development 158 9.3 Small-Scale Nocturnal Turbulence Generation 159 9.4 Gravity -Wave Turbulence in the Stable Surface Layer 163 9.5 Gravity -Wave...Equation Set 164 9.6 Vertical Wind Perturbation Equation 170 9.7 Vertical Wind Structure 178 9.8 Gravity -Wave Breakdown 181 10. Conclusions 186 References

  5. Reynolds shear stress near its maxima, turbulent bursting process and associated velocity profle in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Afzal, Noor

    2014-11-01

    The Reynolds shear stress around maxima, turbulent bursting process and associate velocity profile in ZGP turbulent boundary layer is considered in the intermediate layer/mesolayer proposed by Afzal (1982 Ing. Arch. 53, 355-277), in addition to inner and outer layers. The intermediate length scale δm = δRτ- 1 / 2 having velocity Um = mUe with 1 / 2 <= m <= 2 / 3 where Ue is velocity at boundary layer edge. Long & Chen (1981 JFM) intermediate layer/ mesolayer scale δm = δRτ- 1 / 2 with velocity Um the friction velocity uτ, is untenable assumption (Afzal 1984 AIAA J). For channel/pipe flow, Sreenivasan et al. (1981989, 1997, 2006a,b) proposed critical layer / mesolayer, cited/adopted work Long and Chen and McKeon, B.J. & Sharma, A. 2010 JFM 658, page 370 stated ``retaining the assumption that the critical layer occurs when U (y) = (2 / 3) UCL (i.e. that the critical layer scales with y+ ~Rτ+ 2 / 3),'' both untenable assumptions, but ignored citation of papers Afzal 1982 onwards on pipe flow. The present turbulent boundary layer work shows that Reynolds shear maxima, shape factor and turbulent bursting time scale with mesolayer variables and Taylor length/time scale. Residence, Embassy Hotel Rasal Gang Aligarh 202001 UP India.

  6. Effects of Wall Cooling on Hypersonic Boundary Layer Receptivity Over a Cone

    NASA Technical Reports Server (NTRS)

    Kara, K.; Balakumar, P.; Kandil, O. A.

    2008-01-01

    Effects of wall cooling on the receptivity process induced by the interaction of slow acoustic disturbances in the free-stream are numerically investigated for a boundary layer flow over a 5-degrees straight cone. The free-stream Mach number is 6.0 and the Reynolds number is 7.8x10(exp 6)/ft. Both the steady and unsteady solutions are obtained by solving the full Navier-Stokes equations using 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using 3rd-order total variation diminishing (T VD) Runge-K utta scheme for time integration. Computations are performed for a cone with nose radius of 0.001 inch for adiabatic wall temperature (T(sub aw)), 0.75*T(sub aw), 0.5*T(sub aw), 0.40*T(sub aw), 0.30*T(sub aw), and 0.20*T(sub aw). Once the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. Generation of instability waves from leading edge region and receptivity of boundary layer to slow acoustic waves are investigated. Computations showed that wall cooling has strong stabilization effect on the first mode disturbances as was observed in the experiments. T ransition location moved to upstream when wall cooling was applied It is also found that the boundary layer is much more receptive to fast acoustic wave (by almost a factor of 50). When simulations performed using the same forcing frequency growth of the second mode disturbances are delayed with wall cooling and they attained values two times higher than that of adiabatic case. In 0.20*T(sub aw) case the transition Reynolds number is doubled compared to adiabatic conditions. The receptivity coefficient for adiabatic wall case (804 R) is 1.5225 and for highly cooled cones (241, and 161 R); they are in the order of 10(exp -3).

  7. Ground Test and Computation of Boundary Layer Transition on the Hypersonic International Flight Research and Experimentation (HIFiRE)-5 Vehicle

    DTIC Science & Technology

    2011-02-01

    Design,” AIAA paper 2007-0534, January 2007. 4 Wadhams, T. P., MacLean, M. G., Holden, M.S., and Mundy , E., “Pre-Flight Ground Testing of the Full...December 2008, pp. 1125-1133. 11 Wadhams, T. P., Mundy , E., MacLean, M. G., and Holden, M. S., “Ground Test Studies of the HIFiRE-1 Transition...44 Holden, M. S., Wadhams, T. P., MacLean, M. Mundy , E., “Review of Studies of Boundary Layer Transition in Hypersonic Flows Over Axisymmetric and

  8. Uncertainty Assessment of Hypersonic Aerothermodynamics Prediction Capability

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Brown, James L.; Prabhu, Dinesh K.; Gnoffo, Peter; Johnston, Christopher O.; Hollis, Brian

    2011-01-01

    The present paper provides the background of a focused effort to assess uncertainties in predictions of heat flux and pressure in hypersonic flight (airbreathing or atmospheric entry) using state-of-the-art aerothermodynamics codes. The assessment is performed for four mission relevant problems: (1) shock turbulent boundary layer interaction on a compression corner, (2) shock turbulent boundary layer interaction due a impinging shock, (3) high-mass Mars entry and aerocapture, and (4) high speed return to Earth. A validation based uncertainty assessment approach with reliance on subject matter expertise is used. A code verification exercise with code-to-code comparisons and comparisons against well established correlations is also included in this effort. A thorough review of the literature in search of validation experiments is performed, which identified a scarcity of ground based validation experiments at hypersonic conditions. In particular, a shortage of useable experimental data at flight like enthalpies and Reynolds numbers is found. The uncertainty was quantified using metrics that measured discrepancy between model predictions and experimental data. The discrepancy data is statistically analyzed and investigated for physics based trends in order to define a meaningful quantified uncertainty. The detailed uncertainty assessment of each mission relevant problem is found in the four companion papers.

  9. A high-order numerical method to study hypersonic boundary-layer instability including high-temperature gas effects

    NASA Astrophysics Data System (ADS)

    Marxen, Olaf; Magin, Thierry; Iaccarino, Gianluca; Shaqfeh, Eric S. G.

    2011-08-01

    Prediction of laminar-turbulent transition is a key factor in the design of the heat shield of vehicles (re-)entering a planetary atmosphere. To investigate the transition by means of numerical simulation, accurate and efficient computational methods are necessary. Here, the compressible Navier-Stokes equations are solved for a gas where properties such as specific heat, thermal conductivity, viscosity, and specific gas constant depend on one or two thermodynamic variables. Our approach models a mixture of perfect gases in local thermodynamic equilibrium. The gas properties are provided either by means of direct calls to a library based on statistical mechanics and kinetic theory or indirectly in the form of look-up tables. In the first part of the paper, our method of handling a high-temperature gas in thermochemical equilibrium is described and verified. In the second part, the method is applied to the investigation of linear and non-linear boundary-layer instability. We carry out numerical simulations for a laminar flat-plate boundary layer at Mach 10 with a small, convectively amplified perturbation for both Earth and Martian atmospheres. Amplification of the perturbations shows favorable agreement with results obtained from linear theory. The secondary instability of the boundary layer in the presence of a large-amplitude two-dimensional wave is investigated. We observe that the non-linear mechanism of fundamental resonance becomes active and leads to a strong increase in amplification of three-dimensional disturbance waves.

  10. Numerical Investigation of PLIF Gas Seeding for Hypersonic Boundary Layer Flows

    NASA Technical Reports Server (NTRS)

    Johanson, Craig T.; Danehy, Paul M.

    2012-01-01

    Numerical simulations of gas-seeding strategies required for planar laser-induced fluorescence (PLIF) in a Mach 10 air flow were performed. The work was performed to understand and quantify adverse effects associated with gas seeding and to compare different flow rates and different types of seed gas. The gas was injected through a slot near the leading edge of a flat plate wedge model used in NASA Langley Research Center's 31- Inch Mach 10 Air Tunnel facility. Nitric oxide, krypton, and iodine gases were simulated at various injection rates. Simulation results showing the deflection of the velocity field for each of the cases are presented. Streamwise distributions of velocity and concentration boundary layer thicknesses as well as vertical distributions of velocity, temperature, and mass distributions are presented for each of the cases. Relative merits of the different seeding strategies are discussed.

  11. Development of an effusive inlet for mass spectrometric gas analysis of hypersonic boundary layer

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth G.; Fishel, Charles E.; Brown, David R.; Lewis, Beverley W.; Wood, George M., Jr.

    1987-01-01

    The use of a microchannel plate (MCP) as a mass spectrometer inlet device to allow nonintrusive sampling of flight vehicle boundary layers is investigated. Two possible configurations for mounting the inlet are studied: (1) flow coaxial with the channels; and (2) flow perpendicular to the channel axis. The test gases are pure Kr; pure Ne; and a mixture of 10 pct Kr, 10 pct Ne, and 80 pct N2. The pressure ranges studied vary from 500 to 10 microns. A mass discrimination at the quadrupole mass spectrometer is observed, indicating an enrichment in the heavier gas. Possible explanations for this enrichment are discussed. It is shown that an MCP is capable of acting as a nonintrusive sampling device. Further work that will enable quantitative determination of the species at the surface is discussed.

  12. Direct numerical simulation and the theory of receptivity in a hypersonic boundary layer

    NASA Astrophysics Data System (ADS)

    Tumin, Anatoli; Wang, Xiaowen; Zhong, Xiaolin

    2007-01-01

    Direct numerical simulation of receptivity in a boundary layer over a sharp wedge of half-angle 5.3degrees is carried out with two-dimensional perturbations introduced into the flow by periodic-in-time blowing-suction through a slot. The freestream Mach number is equal to 8. The perturbation flow field downstream from the slot is decomposed into normal modes with the help of the biorthogonal eigenfunction system. Filtered-out amplitudes of two discrete normal modes and of the fast acoustic modes are compared with the linear receptivity problem solution. The examples illustrate how the multimode decomposition technique may serve as a tool for gaining insight into computational results.

  13. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    SciTech Connect

    Vijayakumar, Ganesh; Brasseur, James; Lavely, Adam; Jayaraman, Balaji; Craven, Brent

    2016-01-04

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  14. INDIVIDUAL TURBULENT CELL INTERACTION: BASIS FOR BOUNDARY LAYER ESTABLISHMENT

    EPA Science Inventory

    Boundary layers are important in determining the forces on objects in flowing fluids, mixing characteristics, and other phenomena. For example, benthic boundary layers are frequently active resuspension layers that determine bottom turbidity and transniissivity. Traditionally, bo...

  15. INDIVIDUAL TURBULENT CELL INTERACTION: BASIS FOR BOUNDARY LAYER ESTABLISHMENT

    EPA Science Inventory

    Boundary layers are important in determining the forces on objects in flowing fluids, mixing characteristics, and other phenomena. For example, benthic boundary layers are frequently active resuspension layers that determine bottom turbidity and transniissivity. Traditionally, bo...

  16. Developments in the Taxonomy of Structures in Rotating Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Kaiser, B.; Clayson, C. A.; Jayne, S. R.

    2016-12-01

    The creation, migration, and destruction of coherent flow structures within rotating turbulent boundary layers has received far less attention than statistical descriptions of the dynamics, but identification of coherent structures can yield physical insights for improved modelling efforts. The broad range of dynamical scales with turbulent boundary layers makes instantaneous flow structure data difficult to collect either by observations or direct numerical simulations, and the lack of a standard definition of a vortex renders the definition of flow structures a qualitative endeavor. However, the formation and evolution of a menagerie of coherent structures, such as high/low momentum streaks and hairpin vorticies, has been documented and widely accepted for canonical non-rotating turbulent boundary layers. How do turbulent structures form and evolve as the Reynolds number increases in Ekman layers? Are turbulent Ekman layer structures similar to turbulent internal flow boundary layers, which are also constrained vertically? How does buoyancy or sloping topography alter, destroy, or generate flow structures? In this study flow structure descriptions from experiments, observations, and simulations are reviewed.

  17. Thermal Boundary Layer Equation for Turbulent Rayleigh-Bénard Convection

    NASA Astrophysics Data System (ADS)

    Ching, Emily Sc; Shishkina, Olga; Horn, Susanne; Wagner, Sebastian

    Turbulent Rayleigh-Bénard convection, consisting of a fluid confined between two horizontal plates, heated from below and cooled from above, is a paradigm system for studying turbulent thermal convection, which is ubiquitous in nature. In turbulent Rayleigh-Bénard convection, there are viscous boundary layers near all rigid walls and two thermal boundary layers, one above the bottom plate and one below the top plate. The classical Prandtl-Blasius-Pohlhausen theory has often been used to describe the mean velocity and temperature boundary layer profiles but systematic deviations are known to exist. These deviations are due to turbulent fluctuations. In this talk, we report a new thermal boundary layer equation for turbulent Rayleigh-Bénard convection derived for Prandtl number (Pr) greater than 1, which takes into account the effects of turbulent fluctuations by using the idea of an eddy thermal diffusivity. Solving this equation, we have obtained two analytical mean temperature profiles for Pr ~ 1 and Pr >> 1 . These two theoretical predictions are shown to be in excellent agreement with the results of our direct numerical simulations for Pr=4.38 (water) and Pr=2547.9 (glycerol). Work of ESCC was supported by the Hong Kong Research Grants Council under Grant No. CUHK-400311.

  18. On the impact of adverse pressure gradient on the supersonic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Wang, Qian-Cheng; Wang, Zhen-Guo; Zhao, Yu-Xin

    2016-11-01

    By employing the particle image velocimetry, the mean and turbulent characteristics of a Mach 2.95 turbulent boundary layer are experimentally investigated without the impact of curvature. The physical mechanism with which the streamwise adverse pressure gradient affects the supersonic boundary layer is revealed. The data are compared to that of the concave boundary layer with similar streamwise distributions of wall static pressure to clarify the separate impacts of the adverse pressure gradient and the concave curvature. The logarithmic law is observed to be well preserved for both of the cases. The dip below the logarithmic law is not observed in present investigation. Theoretical analysis indicates that it could be the result of compromise between the opposite impacts of the compression wave and the increased turbulent intensity. Compared to the zero pressure gradient boundary layer, the principal strain rate and the turbulent intensities are increased by the adverse pressure gradient. The shear layer formed due the hairpin packets could be sharpened by the compression wave, which leads to higher principal strain rate and the associated turbulent level. Due to the additional impact of the centrifugal instability brought by the concave wall, even higher turbulent intensities than that of the adverse pressure gradient case are introduced. The existence of velocity modes within the zero pressure gradient boundary layer suggests that the large scale motions are statistically well organized. The generation of new velocity modes due to the adverse pressure gradient indicates that the turbulent structure is changed by the adverse pressure gradient, through which more turbulence production that cannot be effectively predicted by the Reynolds-stress transport equations could be brought.

  19. Dynamics of turbulent western-boundary currents at low latitude in a shallow-water model

    NASA Astrophysics Data System (ADS)

    Akuetevi, C. Q. C.; Wirth, A.

    2015-06-01

    The dynamics of low latitude turbulent western-boundary currents (WBCs) crossing the Equator are considered using numerical results from integrations of a reduced-gravity shallow-water model. For viscosity values of 1000 m2 s-1 and greater, the boundary layer dynamics compares well to the analytical Munk-layer solution. When the viscosity is reduced, the boundary layer becomes turbulent and coherent structures in the form of anticyclonic eddies, bursts (violent detachments of the viscous sub-layer, VSL) and dipoles appear. Three distinct boundary layers emerge, the VSL, the advective boundary layer and the extended boundary layer. The first is characterized by a dominant vorticity balance between the viscous transport and the advective transport of vorticity; the second by a balance between the advection of planetary vorticity and the advective transport of relative vorticity. The extended boundary layer is the area to which turbulent motion from the boundary extends. The scaling of the three boundary layer thicknesses with viscosity is evaluated. Characteristic scales of the dynamics and dissipation are determined. A pragmatic approach to determine the eddy viscosity diagnostically for coarse-resolution numerical models is proposed.

  20. Grid resolution and turbulent inflow boundary condition recommendations for NPARC calculations

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Dudek, Julianne C.; Tierney, Thomas P.

    1995-01-01

    The effects of grid resolution and specification of turbulent inflow boundary conditions were examined using the NPARC code with the Baldwin-Lomax and Chien k-e turbulence models. Three benchmark turbulent test cases were calculated: two were wall bounded flows and the third was a compressible mixing layer. The wall bounded flows were essentially insensitive to axial grid density; however, the location of the first point off the wall had a substantial effect on flow solutions. It was determined that the first point off the wall must be in the laminar sublayer (y+ less than or equal to 5) for the entire boundary layer. For the compressible mixing layer cases, the axial grid density affected the capturing of oblique shock waves in the mixing region, but the overall mixing rate was not strongly dependent on grid resolution. In specifying the inflow turbulent boundary conditions, it was very important to match the boundary layer and momentum thicknesses of the two flows entering the mixing region; calculations obtained with smaller or no boundary layers resulted in substantially reduced mixing. The solutions were relatively insensitive to freestream turbulence level.